
Oracle9iAS Containers for J2EE

Services Guide

Release 2 (9.0.2)

January 2002

Part No. A95879-01

Oracle9iAS Containers for J2EE Services Guide, Release 2 (9.0.2)

Part No. A95879-01

Copyright © 2002, Oracle Corporation. All rights reserved.

Contributing Authors: Janis Greenberg and Mark Kennedy

Contributors: Ashok Banerjee, Ellen Barnes, Rachel Chan, Gary Gilchrist, Elizabeth Hanes Perry,
Min-Hank Ho, Sunil Kunisetty, Stella Li, Sastry Malladi, Sheryl Maring, Raymond Ng, Thomas Van
Raalte, Mike Sanko, Anirruddha Thakur, Brian Wright, Irene Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

Portions of this software are copyrighted by MERANT, 1991-2001.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

iii

Send Us Your Comments

Oracle9iAS Containers for J2EE Services Guide

Part No. A95191-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

iv

v

Contents

Send Us Your Comments .. iii

Preface.. xix

1 Introduction

Java Naming and Directory Interface (JNDI).. 1-1
Remote Method Invocation (RMI) .. 1-2
Java Authorization and Authentication Service (JAAS) ... 1-2
Java Transaction API (JTA).. 1-2
Java Message Service (JMS) .. 1-2
Java Connector Architecture (JCA) .. 1-3
Java Object Cache ... 1-3
HTTPS... 1-3

Data Sources .. 1-3

2 Java Naming and Directory Interface

Introduction ... 2-2
Initial Context.. 2-2

Constructing a JNDI Context.. 2-4
The JNDI Environment ... 2-5
Initial Context Factories... 2-6

ApplicationClientInitialContextFactory.. 2-6
Environment Properties ... 2-7
Remote Client Example .. 2-8

vi

Server-Side Clients .. 2-8
ApplicationInitialContextFactory .. 2-8

Example... 2-9
RMIInitialContextFactory.. 2-10

Remote Client Example .. 2-11

3 Remote Method Invocation

Configuring RMI Tunneling... 3-1
Configuring RMI In server.xml and rmi.xml .. 3-2

Editing server.xml... 3-2
Editing rmi.xml ... 3-2

4 Overview of JAAS in Oracle 9iAS

Support for JAAS .. 4-2
What are Authentication, Authorization, and Delegation? .. 4-2

Foundations of the JAAS Provider... 4-2
JAAS .. 4-2
Java2 Security Model... 4-3

Java Application Environments.. 4-3
Provider Types .. 4-3

LDAP-Based Provider Type... 4-3
XML-Based Provider Type... 4-3

What is the Java2 Security Model? .. 4-4
What is JAAS?.. 4-7

Principals.. 4-8
Subjects ... 4-8
Login Module Authentication .. 4-9
Roles.. 4-9
Realms .. 4-10
Applications... 4-10
Policies and Permissions.. 4-10

File-based Policy Example.. 4-11
XML-Based Example... 4-11

JAAS Provider Features ... 4-12
JAAS Provider User Services .. 4-13

vii

Capability Model of Access Control ... 4-13
Role-Based Access Control (RBAC) ... 4-14

Role Hierarchy ... 4-14
Role Activation .. 4-15

JAAS Provider Realm and Policy Management ... 4-15
Realm and Policy Management Tools ... 4-16
JAAS Provider Realm Framework ... 4-17

Realm Management in LDAP-Based Environments.. 4-17
Realm Management in XML-Based Environments .. 4-22

JAAS Provider Policy Administration... 4-24
Oracle Internet Directory Administration ... 4-26
AdminPermission Class ... 4-26
Policy Partitioning... 4-27

5 Quick Start JAAS Provider Demo

Quick Start JAAS Provider Demo Overview .. 5-2
Setting Up the Demo .. 5-3

Task 1: Modify OC4J Configuration Files ... 5-3
Task 2: Change Default Configurations (Optional)... 5-3

Running the Demo ... 5-5
Viewing the Results of the callerInfo Demo ... 5-6

Testing the JAZN Admintool.. 5-7

6 Integrating the JAAS Provider with Java2 Applications

Java2 Application Environments Overview .. 6-2
Oracle Components Available on the Java2 Platform... 6-2

JAAS Provider Integration in J2SE Application Environments .. 6-2
A Typical Scenario in the J2SE Environment ... 6-3

JAAS Provider Integration in J2EE Application Environments .. 6-4
Oracle9iAS Containers for J2EE (OC4J)... 6-4
JAZNUserManager... 6-4

Replacing principals.xml.. 6-4
JAZNUserManager Features ... 6-5

Authentication Environments .. 6-6
Integrating the JAAS Provider with SSO-Enabled Applications... 6-7

viii

SSO-Enabled J2EE Environments: A Typical Scenario .. 6-8
Integrating the JAAS Provider with SSL-Enabled Applications ... 6-9

SSL-Enabled J2EE Environments: A Typical Scenario ... 6-10
Integrating the JAAS Provider with Basic Authentication ... 6-12

Basic Authentication J2EE Environments: A Typical Scenario..................................... 6-13
J2EE and JAAS Provider Role Mapping.. 6-14

J2EE Security Roles.. 6-14
JAAS Provider Roles and Users .. 6-15
OC4J Group Mapping to J2EE Security Roles ... 6-15

How Do I Get Started? ... 6-16

7 Managing the JAAS Provider

JAAS Provider Management Overview ... 7-2
 LDAP-Based and XML-Based JAAS Providers ... 7-3

Using the Oracle Enterprise Manager Interface with the JAAS Provider 7-3
Accessing the JAAS Provider.. 7-4
Task 1: Managing JAAS Policy ... 7-6

Searching for and Viewing Existing Grant Entries... 7-7
Deleting Grant Entries .. 7-8
Creating a New Grant Entry .. 7-8

Task 2: Managing Java Permissions ... 7-12
Searching for and Viewing Existing Permissions ... 7-12
Revoking Permissions Assigned to a Principal... 7-13

Using the JAZN Admintool .. 7-14
Usage Examples .. 7-14
Command Options ... 7-15
Realm Operations ... 7-16

Adding and Removing Realms ... 7-16
Adding and Removing Roles... 7-17
Adding and Removing Users .. 7-17
Checking Password ... 7-17
Granting and Revoking Roles.. 7-17
Listing Realms.. 7-17
Listing Roles ... 7-18
Listing Users... 7-18

ix

Setting a Password .. 7-18
Policy Operations ... 7-18

Adding and Removing Permissions... 7-18
Adding and Removing Principals .. 7-19
Granting and Revoking Permissions.. 7-19
Listing Permissions ... 7-19
Listing Permission Information... 7-19
Listing Principal Classes... 7-20
Listing Principal Class Information.. 7-20

Interactive Shell... 7-20
Starting the JAZN Admintool Shell.. 7-20
Getting XML Configuration Information .. 7-20

Migration Operations... 7-20
Migrating Principals from the principals.xml File ... 7-20
Getting Help... 7-21

JAZN Shell Interface .. 7-21
JAZN Shell Commands ... 7-24

Using the cd Command to Navigate JAAS Provider Data ... 7-24
Using the mkdir, mk, or add Command to Create JAAS Provider Data 7-24
Using the pwd Command to Display the Current Shell Working Directory............. 7-25
Using the help Command to List JAAS Provider Commands 7-25
Using the man Command to Display Detailed JAAS Provider Commands 7-25
Using the clear Command to Clear the Screen ... 7-25
Using the exit Command to Exit the JAZN Shell ... 7-26

Managing LDAP Provider Data with Java Programs .. 7-27
About the Sample Java Code .. 7-27
The JAZNContext and JAZNConfig Classes.. 7-28
Managing Realms ... 7-28

Realm Creation .. 7-28
Creating an External Realm ... 7-29
Creating an Application Realm... 7-31
Dropping a Realm ... 7-32

Managing Users .. 7-32
Managing Roles .. 7-32

Creating Roles .. 7-33

x

Granting Roles ... 7-33
Dropping Roles .. 7-35

Managing Permissions ... 7-35
Managing JAAS Provider Policy .. 7-36

Managing Policy with JAAS Provider Packages... 7-36
Managing XML-Based Provider Data with the XML Schema ... 7-37

Managing Realms, Users, Roles, and Permissions .. 7-37
DTD Standard for XML Datafiles... 7-38

Other Utilities .. 7-39
PermissionClassManager Interface.. 7-39
PrincipalClassManager Interface.. 7-40
LoginModuleManager ... 7-40

8 Developing Secure J2SE Applications

Developing Secure J2SE Applications Overview... 8-2
Authentication in the J2SE Environment ... 8-2
Authorization in the J2SE Environment... 8-3

Subject.doAs .. 8-3
SecurityManager.checkPermission .. 8-3
PrivilegedAction ... 8-4

Testing and Executing an Application .. 8-4
Starting With RealmLoginModule ... 8-4
Start Without Using RealmLoginModule ... 8-4

Sample J2SE Application .. 8-5
Sample J2SE Application Code... 8-7
Discussion of the J2SE Sample Client Login and Application Code..................................... 8-8

9 Developing Secure J2EE Applications

Developing Secure J2EE Applications Overview... 9-2
Authentication in the J2EE Environment ... 9-2

Running with the Permissions and Roles Associated with an Authenticated Identity
(Optional) 9-2
Interception of Servlet Invocation .. 9-3
Retrieving Authentication Information... 9-3

Authorization in the J2EE Environment... 9-4

xi

Testing and Executing the J2EE Application ... 9-4
Setting Up .. 9-4
Task 1: Install Ant (Optional).. 9-5
Task 2: Modify OC4J Files ... 9-5

Modifying OC4J Files Where OC4J is Not Running .. 9-5
Deploying an Application When the OC4J Server is Running....................................... 9-6

Task 3: Change Default Configurations .. 9-6
Using XML-Based Realms (Default)... 9-6
Using LDAP-Based Realms ... 9-7
Using SSL and SSO Integration... 9-7
Using SSO ... 9-7

Task 4: Build the Directory.. 9-8
Starting an Application.. 9-8

Sample J2EE Application .. 9-9
Discussion of the J2EE Sample Application Code ... 9-10

10 Java Transaction API

Introduction ... 10-1
Single-Phase Commit... 10-2

Enlisting a Single Resource ... 10-2
Configuring the DataSource .. 10-3
Retrieving the DataSource Connection .. 10-4

Demarcating the Transaction.. 10-5
Container-Managed Transactional Demarcation ... 10-6
Bean-Managed Transactions.. 10-8
JTA Transactions ... 10-8

 JDBC Transactions ... 10-8
Two-Phase Commit... 10-10

Configuring Two-Phase Commit Engine.. 10-10
Two-Phase Commit DTD Elements ... 10-14

11 Java Message Service

Overview .. 11-1
The JMS Examples.. 11-2

Running JMS-Chat.. 11-2

xii

Running Coffeemaker .. 11-2
Configuration Issues .. 11-3

Deploying JMS Clients Across Nodes ... 11-3
 Message-Driven Beans .. 11-3

Resource Providers ... 11-4
Plugging In Resource Providers ... 11-4
Configuring Message Providers ... 11-5

JNDI Resource Provider Names.. 11-5
Accessing Message Queues.. 11-6

Using Oracle AQ as a Resource Provider.. 11-6
Configuration ... 11-6

Using MQSeries As a Resource Provider .. 11-8
Configuring .. 11-9

Using SonicMQ As A Resource Provider.. 11-9
Configuring .. 11-9

12 Java Connector Architecture

Introduction ... 12-1
Resource Adapter ... 12-2
Application Contracts .. 12-2
Quality of Service Contracts.. 12-3

Deploying Resource Adapters with OC4J ... 12-4
JCA Deployment Descriptors.. 12-4
 Deploying Stand-Alone Resource Adapter Archives... 12-4

Deployment using Admin command-line tool ... 12-4
Manual deployment through directory manipulation .. 12-5

 Deploying Embedded Resource Adapters... 12-5
Example.. 12-6

Container-Managed Sign-on vs. Component-Managed Sign-on .. 12-6

13 Working With Java Object Cache

Java Object Cache Concepts ... 13-2
Java Object Cache Basic Architecture .. 13-3

Distributed Object Management ... 13-4
How the Java Object Cache Works .. 13-5

xiii

Cache Organization.. 13-6
Java Object Cache Features ... 13-7

Java Object Cache Object Types .. 13-8
Memory Objects .. 13-8
Disk Objects ... 13-9
StreamAccess Objects... 13-10
Pool Objects ... 13-10

Java Object Cache Environment .. 13-11
Cache Regions ... 13-11
Cache Subregions ... 13-11
Cache Groups.. 13-12
Cache Object Attributes ... 13-12

Using Attributes Defined Before Object Loading... 13-13
Using Attributes Defined Before or After Object Loading.. 13-16

Developing Applications Using Java Object Cache .. 13-19
Importing the Java Object Cache.. 13-19
Defining a Cache Region ... 13-19
Defining a Cache Group .. 13-20
Defining a Cache Subregion.. 13-21
Defining and Using Cache Objects .. 13-21
Implementing a CacheLoader .. 13-22

Using CacheLoader Methods Within the Load Method ... 13-23
Invalidating Cache Objects.. 13-24
Destroying Cache Objects.. 13-25
Setting Cache Configuration Properties.. 13-26
Implementing a Cache Event Listener .. 13-28
Restrictions and Programming Pointers ... 13-31

Working with Disk Objects .. 13-33
Configuring Properties for Using the Disk Cache... 13-33

Setting the diskPath Configuration Property.. 13-33
Local and Distributed Disk Cache Objects ... 13-34

Local Objects .. 13-34
Distributed Objects.. 13-34

Adding Objects to the Disk Cache ... 13-34
Automatically Adding Objects.. 13-35

xiv

Explicitly Adding Objects... 13-35
Using Objects That Only Reside on Disk Cache ... 13-36

Working with StreamAccess Objects .. 13-38
Creating a StreamAccess Object ... 13-38

Working with Pool Objects ... 13-40
Creating Pool Objects ... 13-40
Using Objects from a Pool ... 13-41
Implementing a Pool Object Instance Factory .. 13-42

Running in Local Mode ... 13-43
Running in Distributed Mode ... 13-43

Configuring Properties for Distributed Mode.. 13-43
Setting the Distribute Configuration Property.. 13-43
Setting the DiscoveryAddress Configuration Property... 13-44

Using Distributed Objects, Regions, Subregions, and Groups .. 13-44
Using the REPLY Attribute with Distributed Objects.. 13-44
Using SYNCRONIZE and SYNCHRONIZE_DEFAULT... 13-46

Cached Object Consistency Levels ... 13-49
Using Local Objects ... 13-49
Propagating Changes Without Waiting for a Reply... 13-50
Propagating Changes and Waiting for a Reply .. 13-50
Serializing Changes Across Multiple Caches .. 13-50

14 Oracle HTTPS for Client Connections

Prerequisites .. 1-2
Audience .. 1-3

About Oracle HTTPS ... 1-4
HTTPConnection Class .. 1-4
OracleSSLCredential Class .. 1-5

Overview of Oracle HTTPS Features .. 1-6
SSL Cipher Suites Supported by Oracle HTTPS .. 1-7
Certificate and Key Management with Oracle Wallet Manager.. 1-8
Access Information About Established SSL Connections... 1-9
Security-Aware Applications Support .. 1-9
java.net.URL Framework Support ... 1-10

Specifying Default System Properties.. 1-11

xv

javax.net.ssl.KeyStore... 1-11
javax.net.ssl.KeyStorePassword ... 1-12

Potential Security Risk with Storing Passwords in System Properties 1-12
Oracle.ssl.defaultCipherSuites.. 1-12

Oracle HTTPS APIs .. 1-13
Public Class: HTTPConnection... 1-13
Public Class: OracleSSLCredential... 1-14

Constructor... 1-14
Methods .. 1-14

Oracle HTTPS Example ... 1-17
Initializing SSL Credentials... 1-19
Verifying Connection Information... 1-19
Transferring Data ... 1-20

15 Data Sources

Introduction ... 1-2
Definition of Data Sources ... 1-2

Defining Location of the DataSource XML Configuration File 1-2
Defining Data Sources .. 1-2

Retrieving a Connection From a Data Source ... 1-4
Emulated and Non-Emulated Data Sources .. 1-5

Emulated Data Sources.. 1-5
Non-Emulated Data Sources... 1-7

Other Non-Emulated DataSource Classes ... 1-7
Using Data Sources... 1-8

Configuring Data Source Objects ... 1-8
Configuration Files ... 1-9
Data Source Attributes... 1-9
Data Source Methods ... 1-10
Portable Data Source Lookup ... 1-11

Using Oracle JDBC Extensions .. 1-12
Behavior of a Non-Emulated Data Source Object .. 1-13

Retrieving a Connection Outside a Global Transaction.. 1-13
Retrieving a Connection Within a Global Transaction ... 1-13

Using Database Caching Schemes .. 1-14

xvi

Connection Retrieval Error Conditions .. 1-15
Using Different Usernames for Two Connections to DataSource 1-15
Mixing Local and Global Transactions .. 1-15

Using the OCI JDBC Drivers .. 1-16
Using Merant Drivers .. 1-17

A JAAS Provider APIs

JAAS Provider API Overview .. A-2
Package oracle.security.jazn .. A-2

Interfaces .. A-2
Persistable ... A-2

Classes .. A-2
JAZNConfig.. A-2
JAZNContext.. A-3
JAZNPermission .. A-3
JAZNWebAppConfig.. A-4

Exceptions .. A-4
JAZNConfigException .. A-4
JAZNException .. A-4
JAZNInitException .. A-4
JAZNNamingException ... A-4
JAZNObjectExistsException .. A-4
JAZNObjectNotFoundException .. A-4
JAZNRuntimeException... A-4

Package oracle.security.jazn.login ... A-5
Classes .. A-5

LoginModuleManager .. A-5
Package oracle.security.jazn.policy.. A-6

Interfaces .. A-6
GlobalPolicy ... A-6
JAZNPolicy... A-6
PermissionClassManager ... A-6
PolicyManager ... A-7
PrincipalClassManager ... A-7
RealmPolicy.. A-7

xvii

Classes .. A-7
AdminPermission.. A-7
Grantee.. A-8
PermissionClassDesc .. A-8
PrincipalClassDesc .. A-8
RoleAdminPermission.. A-8

Package oracle.security.jazn.realm .. A-9
Interfaces .. A-9

InitRealmInfo.RealmType .. A-9
Realm... A-9
Realm.LDAPProperty ... A-9
RealmPrincipal... A-9
RealmRole... A-9
RealmUser .. A-9
RoleManager .. A-10
UserManager.. A-10

Classes .. A-10
InitRealmInfo ... A-10
RealmLoginModule .. A-10
RealmManager... A-10
RealmPermission ... A-10

B JAAS Provider Standards and Samples

Sample jazn-data.xml Code .. B-2
Supplemental Code Samples ... B-7

Supplementary Code Sample: Creating an Application Realm .. B-7
Supplementary Code Sample: Modifying User Permissions... B-9

C Third-Party Licenses

Apache HTTP Server.. A-1
The Apache Software License... A-1

Apache JServ .. A-3
Apache JServ Public License ... A-3

Index

xviii

xix

Preface

This Services Guide describes the services provided by Oracle9iAS Containers for
J2EE.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Intended Audience
This book was written for developers familiar with the J2EE architecture who want
to understand Oracle’s implementation of J2EE Services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

xx

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

■ Chapter 1, "Introduction"

■ Chapter 2, "Java Naming and Directory Interface"

■ Chapter 3, "Remote Method Invocation"

■ Chapter 4, "Overview of JAAS in Oracle 9iAS"

■ Chapter 5, "Quick Start JAAS Provider Demo"

■ Chapter 6, "Integrating the JAAS Provider with Java2 Applications"

■ Chapter 7, "Managing the JAAS Provider"

■ Chapter 8, "Developing Secure J2SE Applications"

■ Chapter 9, "Developing Secure J2EE Applications".

■ Chapter 10, "Java Transaction API"

■ Chapter 11, "Java Message Service"

■ Chapter 12, "Java Connector Architecture"

■ Chapter 13, "Working With Java Object Cache"

■ Chapter 14, "Oracle HTTPS for Client Connections"

■ Chapter 15, "Data Sources"

xxi

■ Appendix A, "JAAS Provider APIs"

■ Appendix B, "JAAS Provider Standards and Samples"

■ Appendix C, "Third-Party Licenses"

Related Documentation
See the following additional OC4J documents available from the Oracle Java
Platform group:

■ Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J.

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle9i JPublisher User’s Guide

xxii

■ Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

■ Oracle HTTP Server Administration Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i Application Server Globalization Support Guide

■ Oracle Web Cache Administration and Deployment Guide

■ Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

The following documents from the Oracle Server Technologies group may also
contain information of interest:

■ Oracle9i Application Developer’s Guide - XML

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Supplied Java Packages Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i SQL Reference

■ Oracle Net Services Administrator’s Guide

■ Oracle Advanced Security Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database Error Messages

For information about Oracle9iAS Personalization, which is the foundation of the
Personalization tag library, you can refer to the following documents from the
Oracle9iAS Personalization group:

xxiii

■ Oracle9iAS Personalization Administrator’s Guide

■ Oracle9iAS Personalization Recommendation Engine API Programmer’s Guide

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

The following Oracle Technology Network (OTN) resources are available for further
information about OC4J:

■ OTN Web site for OC4J:

http://otn.oracle.com/tech/java/oc4j/content.html

■ OTN OC4J discussion forums, accessible through the following address:

http://www.oracle.com/forums/forum.jsp?id=486963

Conventions
This book generally uses UNIX syntax for file paths and shell variables. In most
cases file names and directory names are the same for Windows NT, unless
otherwise noted. The notation $ORACLE_HOME indicates the full path of the Oracle
home directory. It is equivalent functionally to the Windows NT environment
variable %ORACLE_HOME%, though of course the Oracle installation paths are
different between NT and UNIX.

xxiv

This Guide uses the following additional conventions.

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

. . . Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text (Courier font) within regular text indicates
class names, object names, method names, variable
names, Java types, Oracle data types, file names, URL or
URI fragments, and directory names.

% At the beginning of a command, indicates an operating
system shell prompt.

$ At the beginning of a command, indicates an Oracle JVM
session shell prompt.

SQL> At the beginning of a command, indicates a SQL*Plus
prompt.

Introduction 1-1

1
Introduction

Oracle9iAS Containers for J2EE (OC4J) supports the following technologies, each of
which has its own chapter(s) in this book:

■ Java Naming and Directory Interface (JNDI)

■ Java Remote Method Invocation (RMI)

■ Java Authorization and Authentication Service (JAAS)

■ Java Transaction API (JTA)

■ Java Message Service (JMS)

■ Java Connector Architecture (JCA)

■ Java Object Cache

■ HTTPS

The remainder of this chapter gives a brief overview of each technology in the
above list.

Java Naming and Directory Interface (JNDI)
JNDI provides naming and directory functionality for Java applications. JNDI is
defined independently of any specific naming or directory service implementation.
As a result, JNDI enables Java applications to access different, possibly multiple,

Note: In addition to these technologies, OC4J supports the
JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP); for information about these
technologies, see the Sun J2EE documentation.

Remote Method Invocation (RMI)

1-2 Oracle9iAS Containers for J2EE Services Guide

naming and directory services using a single API. Different naming and directory
service provider interfaces (SPIs) can be plugged in behind this common API to
handle different naming services. For information about the Oracle implementation,
see Chapter 2, "Java Naming and Directory Interface".

Remote Method Invocation (RMI)
RMI is one Java implementation of the remote procedure call paradigm, in which
distributed applications communicate by invoking procedure calls and interpreting
the return values. OC4J supports invoking RMI over HTTP, a technique known as
“RMI tunneling.” For information about the Oracle implementation, see Chapter 3,
"Remote Method Invocation".

Java Authorization and Authentication Service (JAAS)
JAAS enables applications to authenticate and enforce access control. Oracle9iAS
supports JAAS by implementing a JAAS provider. The JAAS provider provides
application developers with user authentication, authorization, and delegation
services to integrate into their application environments. Instead of devoting
resources to developing these services, application developers can focus on the
presentation and business logic of their applications.

For information about the Oracle implementation, see Chapter 4, "Overview of
JAAS in Oracle 9iAS", Chapter 5, "Quick Start JAAS Provider Demo", Chapter 6,
"Integrating the JAAS Provider with Java2 Applications", Chapter 7, "Managing the
JAAS Provider", Chapter 8, "Developing Secure J2SE Applications", Chapter 9,
"Developing Secure J2EE Applications", Appendix A, "JAAS Provider APIs" and
Appendix B, "JAAS Provider Standards and Samples".

Java Transaction API (JTA)
JTA supplies a standard interface to support communications among the parties to a
distributed transaction. These parties include the resource manager, the application
server, and the transactional applications. For information about the Oracle
implementation, see Chapter 10, "Java Transaction API".

Java Message Service (JMS)
JMS provides a common way for Java programs to access enterprise messaging
products. JMS is a set of interfaces and associated semantics that define how a JMS

HTTPS

Introduction 1-3

client accesses the facilities of an enterprise messaging product. For information
about the Oracle implementation, see Chapter 11, "Java Message Service".

Java Connector Architecture (JCA)
JCA defines a standard architecture for connecting the J2EE platform to
heterogeneous Enterprise Information Systems (EISs). Examples of EISs include
ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

For information about the Oracle implementation, see Chapter 12, "Java Connector
Architecture".

Java Object Cache
The Java Object Cache (formerly OCS4J) is a set of Java classes designed to manage
Java objects within a process, across processes, and on local disk. The primary goal
of the Java Object Cache is to provide a powerful, flexible, easy to use service that
will significantly improve server performance by managing local copies of objects
that are expensive to retrieve or create. There are no restrictions on the type of object
that can be cached or the original source of the object. The management of each
object in the cache is easily customized. Each object has a set of attributes associated
with it to control such things as how the object is loaded into the cache, where the
object is stored, (in memory, on disk or both), how it is invalidated, (based on time
or by explicit request) and who should be notified when the object is invalidated.
Objects can be invalidated as a group or individually.

 For information about the Oracle implementation, see Chapter 13, "Working With
Java Object Cache".

HTTPS
HTTPS is vital to securing client-server interactions. Java applications that act as a
clients, such as servlets that initiate connections to other Web servers, need their
own HTTPS implementation to make requests and to receive information securely
from the server. Java application developers who are familiar with the HTTP
package, HTTPClient, or the Sun Microsystems, Inc., java.net package can
easily use Oracle HTTPS to secure client interactions with a server. For information
about the Oracle implementation, see Chapter 14, "Oracle HTTPS for Client
Connections".

HTTPS

1-4 Oracle9iAS Containers for J2EE Services Guide

Data Sources
A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a database
server. For information about the Oracle implementation, see Chapter 15, "Data
Sources".

Java Naming and Directory Interface 2-1

2
Java Naming and Directory Interface

This chapter describes the Java Naming and Directory Interface (JNDI) service
implemented by Oracle9iAS Containers for J2EE (OC4J) applications. The JNDI
chapter covers the following topics:

■ Introduction

■ Constructing a JNDI Context

■ The JNDI Environment

■ Initial Context Factories

Introduction

2-2 Oracle9iAS Containers for J2EE Services Guide

Introduction
JNDI is specified as part of J2EE, and provides naming and directory functionality
for Java applications. JNDI is defined independently of any specific naming or
directory service implementation, so it enables Java applications to access different,
possibly multiple, naming and directory services using a single API. Different
naming and directory service provider interfaces (SPIs) can be plugged in behind this
common API to handle different naming services.

Before reading this chapter, you should be familiar with the basics of JNDI and the
JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at

http://java.sun.com/products/jndi/index.html

JNDI, in the form of jndi.jar, is available with OC4J. Your application can take
advantage of the JNDI API without having to provide any other libraries or JAR
files. J2EE-compatible applications use JNDI to obtain naming contexts that enable
the application to locate and retrieve objects such as data sources, local and remote
EJBs, JMS services, and many other J2EE objects and services.

Initial Context
Central to JNDI is the concept of the initial context. The two most often-used JNDI
operations in J2EE applications are:

1. Creating a new InitialContext object.

2. Using the InitialContext, looking up a J2EE or other resource.

When OC4J starts up, it constructs a JNDI initial context for each application by
reading each of the application’s configuration XML files that can contain resource
references. Applications are defined in the server.xml configuration file.

Note: After the initial configuration, the JNDI tree for each
application is purely memory-based. Additions that are made to
the context are not persisted. When OC4J is restarted, any new
bindings that were made in application code are no longer
available.

Introduction

Java Naming and Directory Interface 2-3

The following example shows two lines of Java code that would be used on the
server side in a typical Web or EJB application:

Context ctx = new InitialContext();
myEJBHome myhome =
 (HelloHome) ctx.lookup("java:comp/env/ejb/myEJB");

The first statement creates a new initial context object, using the default
environment. The second statement looks up an EJB home interface reference in the
application’s JNDI tree. In this case, myEJB might be the name of a session bean that
is declared in the orion-web.xml (or web.xml) configuration file, in an
<ejb-ref> tag. For example:

<ejb-ref>
 <ejb-ref-name>ejb/myEJB</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
</ejb-ref>

This chapter focuses on setting up the JNDI initial contexts for using JNDI, and on
describing how OC4J performs JNDI look ups. For more information about the
other JNDI classes and methods, see the Javadoc at:

http://java.sun.com/products/jndi/1.2/javadoc/index.html

Constructing a JNDI Context

2-4 Oracle9iAS Containers for J2EE Services Guide

Constructing a JNDI Context
When OC4J starts up, it constructs a JNDI context for each application that is
deployed in the server (in server.xml). There is always at least one application
for an OC4J server, the global application, which is the default parent for each
application in a server instance. User-written applications inherit properties from
the global application. User-written applications can override property values
defined in the global application, can define new values for properties, and can
define new properties as required.

In the default OC4J server, as shipped, the global application is the default
application, as defined in server.xml. For more information about configuring the
OC4J server and its contained applications, see the Oracle9iAS Containers for J2EE
User’s Guide, in particular the “Advanced Information” chapter.

The environment that OC4J uses to construct a JNDI initial context can be found in
several places. These include:

■ System property values, as set either by the OC4J server or possibly by the
application container.

■ A jndi.properties file contained in the application EAR file (as part of
application-client.jar).

■ An environment specified explicitly in a Hashtable passed to the JNDI initial
context constructor.

The JNDI Environment

Java Naming and Directory Interface 2-5

The JNDI Environment
The JNDI InitialContext has two constructors:

InitialContext()
InitialContext(Hashtable env)

The first constructor creates a Context object using the default context
environment. If this constructor is used in an OC4J server-side application, the
initial context is created using the default environment for that application, created
by OC4J when the server is started. This constructor is the one typically used in
code that runs on the server side, such as in a JSP, servlet, or EJB.

The second constructor takes an environment parameter. The second form of the
InitialContext constructor is normally used in client applications, where it is
necessary to specify the JNDI environment. The env parameter in this constructor is
a Hashtable that contains properties required by JNDI. These properties are:

See "Remote Client Example" on page 2-11 for a code example that sets these
properties and gets a new JNDI initial context.

INITIAL_CONTEXT_FACTORY A value for the java.naming.factory.initial
property that specifies which initial context
factory to use when creating a new initial
context object.

PROVIDER_URL The URL that application client code uses to
look up objects on the server. Also used by the
RMIInitialContextFactory to search for
objects in different applications.

SECURITY_PRINCIPAL The user name. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

SECURITY_CREDENTIAL The password. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

Initial Context Factories

2-6 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories
There are three JNDI initial context factories that are available for use by application
code. They are

■ ApplicationClientInitialContextFactory

■ ApplicationInitialContextFactory

■ RMIInitialContextFactory

The following sections describe each of these factories and their uses in OC4J
applications.

ApplicationClientInitialContextFactory
When an application client needs to look up a resource that is available in a J2EE
server application, the client uses
ApplicationClientInitialContextFactory as to construct the initial
context.

Consider an application client that consists of Java code running outside the OC4J
server, but that is part of a bundled J2EE application. For example, the client code
running on a workstation and might connect to a server object, such as an EJB, to
perform some application task. In this case, the environment accessible to JNDI
must specify the value of the property java.naming.factory.initial as
ApplicationClientInitialContextFactory. This can be done in client code,
or it can be specified in the jndi.properties that is part of the application’s
application-client.jar file that is included in the EAR file.

In order to have access to remote objects that are part of the application,
ApplicationClientInitialContextFactory reads the
META-INF/application-client.xml and
META-INF/orion-application-client.xml files in the <application_
name>-client.jar file.

Using the ApplicationClientInitialContextFactory to construct JNDI
initial contexts means that the client can look up local objects (objects contained in
the immediate application, or in its parent application) using the java:comp/env
mechanism, and can use ORMI to look up remote objects.

Initial Context Factories

Java Naming and Directory Interface 2-7

Environment Properties
ApplicationClientInitialContextFactory invokes
RMIInitialContextFactory to read the following properties from the
environment:

dedicated.connection Each JNDI lookup retrieves a connection to the
server. Each subsequent JNDI lookup for this
same server uses the connection returned by
the first JNDI lookup. That is, all requests are
forwarded over and share the same connection.

The dedicated.connection JNDI property
overrides this default behavior. If you set
dedicated.connection to true before you
retrieve an InitialContext, you will
retrieve a separate physical connection for each
lookup, each with its own designated
username/password.

dedicated.connection defaults to false.
Reset to true if:

1. You want to connect using a different
username/password each time. ORMI
connections are associated with an
authenticated ID; setting this property to true
will open a new connection instead of reusing a
cached connection. If this property is set to
false, the first username/password is used for
all subsequent connections, even when an
alternate username/password is supplied.

2. You want to make a remote connection, look up
an object on the remote connection, then look up
the same object locally.

java.naming.provider.url The URL to use when looking for local or
remote objects. The format is
[http: |
https:]ormi://<hostname>/<app_name>
Multiple hosts can be supplied in a
comma-separated list, for failover.

Initial Context Factories

2-8 Oracle9iAS Containers for J2EE Services Guide

Remote Client Example
The following example code shows how JNDI properties can be specified in a client
application:

...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.PROVIDER_URL, "ormi://<hostname>/employee");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

Context context = new InitialContext(env);
//do the lookups...
...

Server-Side Clients
Server-side clients need not specify an InitialContextFactory in order to look
up resources defined within the client application. By default, server-side clients
have InitialContextFactory set to ApplicationInitialContextFactory.
This allows clients to perform lookups using names in the style java:comp:/env.

To look up resources that are not defined within the client application, clients must
set the InitialContextFactory to RMIInitialContextFactory and look up
the resources or EJB using an explicit URL.

http.tunnel.path Specifies an alternative
RMIHttpTunnelServlet path. The default
path is /servlet/rmi, as bound to the target
site’s web-app.

context.SECURITY_
PRINCIPAL

The user name. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

context.SECURITY_
CREDENTIAL

The password. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

Initial Context Factories

Java Naming and Directory Interface 2-9

ApplicationInitialContextFactory

When code is running in a server, it is by definition part of an application. So as part
of an application, OC4J can establish defaults for properties that JNDI uses. For the
java.naming.factory.initial property, OC4J sets
ApplicationInitialContextFactory as the default value for this system
property.

When this context factory is being used, the ApplicationContext is specific to
the current application, so all of the references specified in files such as web.xml,
orion-web.xml, or ejb-jar.xml for that application are available. This means
that a lookup using java:comp/env works for any resource that the application
has specified. Lookups using this factory are done locally in the same virtual
machine.

However, using the default ApplicationInitialContextFactory means that
only application-local resources are available using the java:comp/env lookup
mechanism. If your application needs to look up a remote reference, either a
resource in another J2EE application or perhaps a resource external to any J2EE
application, then you must use RMIInitialContextFactory.

Example
As a concrete example, consider a servlet that needs to get a data source to do a
JDBC operation on a database. The data source reference is mapped in
orion-web.xml as

<resource-ref-mapping name="jdbc/OracleDS1" location="jdbc/pool/OracleCache" />

The data source location is specified in data-sources.xml as:

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 location="jdbc/pool/OracleCache"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@<hostname>:<TTC port>:<DB ID>"
/>

In this case, the following code in the servlet returns the correct reference to the data
source object:

...
try {
 InitialContext ic = new InitialContext();
 ds = (DataSource) ic.lookup("java:comp/env/jdbc/OracleDS1");

Initial Context Factories

2-10 Oracle9iAS Containers for J2EE Services Guide

 ...
}
catch (NamingException ne) {
 throw new ServletException(ne);
}
...

No initial context factory specification is needed, as OC4J sets
ApplicationInitialContextFactory as the default value of the system
property java.naming.factory.initial when the application starts.

There is no need to supply a provider URL in this case, as no URL is required to
look up an object contained within the same application or under java:comp/ .

Note that an application can use the java:comp/env mechanism to look up
resources that are specified not only in its own name space, but also in the name
spaces of any declared parent applications, or in the global application (which is the
default parent if no specific parent application was declared).

RMIInitialContextFactory
Using either the default server-side ApplicationInitialContextFactory, or
specifying ApplicationClientInitialContextFactory, will work for most
application purposes.

There are some cases, however, in which an additional context factory must be
used:

1. When looking up an object that is part of another J2EE application, and for
which a resource reference either cannot be or is not specified in the current
application’s application-client.xml file.

2. When doing a general lookup for external JNDI objects, that may or may not be
part of a J2EE application. A generalized JNDI object browser would be an
example of this usage.

3. When accessing the entire remote JNDI namespace, as opposed to a specific
application context. For further details, see:

Note: Some versions of the JDK on some platforms automatically
set the system property java.naming.factory.url.pkgs to
include com.sun.java.* . You should check this property and
remove com.sun.java.* if present.

Initial Context Factories

Java Naming and Directory Interface 2-11

http://www.orionserver.com/docs/remote-access/remote-access
.xml

The RMIInitialContextFactory uses the same environment properties that are
used by ApplicationClientInitialContextFactory, namely:

■ dedicated.connection

■ java.naming.provider.url

■ http.tunnel.path

■ SECURITY_PRINCIPAL

■ SECURITY_CREDENTIALS

Remote Client Example
The following code could be used to look up a remote object using
RMIInitialContextFactory:

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
 "com.evermind.server.rmi.RMIInitialContextFactory");
env.put("java.naming.provider.url","ormi://localhost/ejbsamples");
env.put("java.naming.security.principal","admin");
env.put("java.naming.security.credentials","welcome");
Context context = new InitialContext(env);
/**
* Lookup the Cart home object. The reference should be retrieved from the
* application-local context (java:comp/env, the variable is
* specified in the assembly descriptor; META-INF/application-client.xml)
* but for simplicity this example uses a global variable.
*/
System.out.println("Context = " + context);

Object homeObject = context.lookup("MyCart");
Hashtable env1 = new Hashtable();
env1.put("java.naming.factory.initial",
 "com.evermind.server.rmi.RMIInitialContextFactory");
env1.put("java.naming.provider.url","ormi://localhost/ejbsamples1");
env1.put("java.naming.security.principal","admin");
env1.put("java.naming.security.credentials","welcome");
Context context1 = new InitialContext(env1);
Object homeObject1 = context1.lookup("MyProduct");
System.out.println("HomeObject1 = " + homeObject1);

Initial Context Factories

2-12 Oracle9iAS Containers for J2EE Services Guide

Remote Method Invocation 3-1

3
Remote Method Invocation

Remote Method Invocation (RMI) is Java’s implementation of the remote procedure
call paradigm, in which distributed applications communicate by invoking
procedure calls and interpreting the return values. This chapter discusses how to
configure Oracle9iAS Containers for J2EE (OC4J) to support invoking RMI over
HTTP, a technique known as “RMI tunneling.”

Configuring RMI Tunneling
To configure OC4J to support RMI tunneling, do the following:

1. Modify the JNDI provider URL. The JNDI provider URL for accessing the OC4J
EJB server takes the form:

ormi://<hostname>:<ormi_port>/<the_app>
You should change the URL to:

http:ormi://<hostname>:<HTTP_PORT>/<the_app>

2. If your HTTP traffic goes through a proxy server, you must specify the
proxyHost and (optionally) proxyPort in the command line when starting
the EJB client. If you do not supply a value for proxyPort, it defaults to 80.

-Dhttp.proxyHost=<proxy_host> -Dhttp.proxyPort=<proxy_port>

Note: If omitted, <HTTP_PORT> defaults to 80. The argument port
number is your HTTP port, not your ORMI port.

Configuring RMI In server.xml and rmi.xml

3-2 Oracle9iAS Containers for J2EE Services Guide

Configuring RMI In server.xml and rmi.xml
In order to use RMI from OC4J, you must edit the server.xml and rmi.xml files.

Editing server.xml
Your server.xml file must specify the pathname of the RMI configuration file.
The syntax is:

<rmi-config path="<RMI_PATH>" />

The usual <RMI_PATH> is ./rmi.xml; you can name the file whatever you like.

Editing rmi.xml
The file rmi.xml must specify which host, port, and user information will be used
to connect to (and accept connections from) remote RMI servers. Your file must
contain an <rmi-server> element describing possible connections. An
<rmi-server> element looks like:

<rmi-server host="hostname" port="port">
<server host="hostname" username="username" port="port"
 password="password" http-path="pathname"/>
<log>
 <file path="logfilepathname" />
</log>
</rmi-server>

<rmi-server> has the following attributes:

hostname is the host or IP name from which your server will accept RMI requests.
hostname can be a particular hostname or “[ALL]“. If you specify a hostname, the OC4J
server will only accept RMI requests from that particular host. If hostname is “[ALL]“or
you omit the host attribute, the OC4J server will accept RMI requests from any host.

port is the port number on which your server listens for RMI requests. If you omit
this attribute, it defaults to 23791.

An <rmi-server> element can contain zero or multiple <server> elements and
zero or one <log> elements.

Each <server> element specifies a server that your application can contact over
RMI. A <server> element takes the form:

 <server host="hostname" username="username" port="port"
 password="password"/>
The host attribute is required; the remaining attributes are optional.

Configuring RMI In server.xml and rmi.xml

Remote Method Invocation 3-3

hostname the name or IP address of the server you will contact over RMI.

username the username of a valid principal on the remote server

port the port number on which the remote server listens for RMI requests

password the password used by the principal username

The <log> element contains the pathname of a log file to which the server will
write all RMI requests.

Configuring RMI In server.xml and rmi.xml

3-4 Oracle9iAS Containers for J2EE Services Guide

Overview of JAAS in Oracle 9iAS 4-1

4
Overview of JAAS in Oracle 9iAS

This chapter introduces support for Java Authentication and Authorization (JAAS),
in Oracle9iAS Containers for J2EE (OC4J). JAAS enables application developers to
integrate authentication, authorization, and delegation services with their
applications.

This chapter contains these topics:

■ Support for JAAS

■ What are Authentication, Authorization, and Delegation?

■ What is the Java2 Security Model?

■ What is JAAS?

■ JAAS Provider Features

■ JAAS Provider User Services

■ JAAS Provider Realm and Policy Management

Support for JAAS

4-2 Oracle9iAS Containers for J2EE Services Guide

Support for JAAS
JAAS is a Java package which enables applications to authenticate and enforce
access control.

Oracle9iAS supports JAAS by implementing a JAAS provider. The JAAS provider
provides application developers with user authentication, authorization, and
delegation services to integrate into their application environments. Instead of
devoting resources to developing these services, application developers can focus
on the presentation and business logic of their applications.

What are Authentication, Authorization, and Delegation?
Authentication is the process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to granting this entity access to
resources in a system. For example, when a user enters a username and password to
access resources on a computer, such as a database, the user must first be
authenticated (verified) by means of the login information before being permitted
access to these resources.

Once a user’s username and password have been authenticated, the authorization
process occurs. Authorization is the process of determining the following for the
authenticated user: Who has the right to perform an operation on an object (such as
updating a table in a database)?

Delegation provides support for impersonation of a specified user. An application
can be configured to run with the permissions associated with specified user by
means of the run-as element.

Foundations of the JAAS Provider
The JAAS framework and the Java2 Security model form the foundation of the
JAAS provider. That is, the JAAS provider implements JAAS and integrates with
J2SE and J2EE applications that use the Java2 Security model.

JAAS
The JAAS provider implements support for JAAS policies. Policies contain the rules
(permissions) that authorize a user to use resources, such as reading a file. JAAS
enables services to authenticate and enforce access control upon users of these
resources.

Note: Some class and component names contain the word
“JAZN”, which is the internal code name for “JAAS provider“.

What are Authentication, Authorization, and Delegation?

Overview of JAAS in Oracle 9iAS 4-3

Java2 Security Model
The JAAS provider integrates with J2SE and J2EE applications that use the Java2
Security Model. Unlike the original Java security model, under Java2 security,
many levels of restrictions can be configured.

Java Application Environments
Developers can easily integrate the JAAS provider with these applications for quick
development and deployment:

■ Stand-alone Java applications in Java2 Platform, Standard Edition (J2SE)
environments

■ Web-based applications in Java2 Platform, Enterprise Edition (J2EE)

Provider Types
The JAAS provider supports two types of repository providers, referred to as
provider types.

These provider types are repositories for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and
JAAS policy (permissions) information.

Use the provider type appropriate to your environment.

LDAP-Based Provider Type
The LDAP-based provider type is based on the Lightweight Directory Access
Protocol (LDAP) for centralized storage of information in a directory. Oracle9iAS
only uses the LDAP-based Oracle Internet Directory.

Use this provider type if you are using Oracle9iAS and Oracle Internet Directory.

See Also:

■ "What is JAAS?" on page 4-7

■ "What is the Java2 Security Model?" on page 4-4

See Also:

Section , "Integrating the JAAS Provider with Basic Authentication"
for additional information on the J2SE and J2EE environments

What is the Java2 Security Model?

4-4 Oracle9iAS Containers for J2EE Services Guide

XML-Based Provider Type
The XML-based provider type is used for lightweight storage of information in
XML files.

Use this provider type if you are using an XML file, such as jazn-data.xml, to
store your user and realm information.

What is the Java2 Security Model?
Sun’s Java2 Security Model is fundamental to the JAAS provider.

The Java2 Security Model enables configuration of security at all levels of
restriction. This provides developers and administrators with increased control over
many aspects of enterprise applet, component, servlet, and application security.

The Java2 Security Model is capability-based and enables you to establish
protection domains, and set security policies for these domains. When the JAAS
provider is integrated with applications developed for the J2SE or J2EE
environments, these environments use the Java2 Security Model to different
degrees.

Permissions are the basis of the Java2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission
represents a specific access to a particular resource. Table 4–1 identifies the elements
that comprise a Java permission instance:

Note: Don’t confuse the XML-based provider type with XML files
in general. XML files are used as property and configuration files in
both LDAP-based and XML-based provider types or environments.
If an XML file such as jazn-data.xml is used to store realm and
user information, then the provider type is called XML-based.

See Also:

"JAAS Provider Realm and Policy Management" on page 4-15

Table 4–1 Java Permission Instance Elements

Element Description Example

Class name The permission class java.io.FilePermission

Target The target name (resource) to which
this permission applies

Directory /home/*

What is the Java2 Security Model?

Overview of JAAS in Oracle 9iAS 4-5

Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group
of permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call
to either:

■ SecurityManager.checkPermission()

■ AccessController.checkPermission()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 4–1 shows the basic model for authorization checking at runtime.

Figure 4–1 Java2 Security Model

Table 4–2 describes the permission classes provided by the JAAS provider that
enables you to enforce access upon users of resources.

Actions The actions associated with this target Read, write, and execute permissions
on directory /home/*

Table 4–1 Java Permission Instance Elements

Element Description Example

What is the Java2 Security Model?

4-6 Oracle9iAS Containers for J2EE Services Guide

Table 4–2 JAAS Provider Permission Classes

Permission Part of Package... Description See Also...

AdminPermission oracle.security.
jazn.policy

Represents the right to administer
a permission (that is, grant or
revoke another user’s permission
assignment)

"AdminPermission" on
page A-7 for specific
syntax examples

RoleAdminPermission oracle.security.
jazn.policy

The grantee of this permission is
granted the right to further
grant/revoke the target role.

"AdminPermission" on
page A-7

JAZNPermission oracle.security.
jazn

For authorization permissions.
JAZNPermission contains a
name (also called a target name),
but no actions list; you either have
or do not have the named
permission.

"JAZNPermission" on
page A-3 for a list of
target names for
JAZNPermission,
what the permissions
allow, and the risks of
granting the permission

RealmPermission oracle.security.
jazn.realm

Represents permission actions for
a realm (such as createRealm,
dropRealm, and so on).
RealmPermission extends from
java.security.Permission,
and is used like any regular Java
permission.

"RealmPermission" on
page A-10 for a list of
permission actions

See Also:

■ "JAAS Provider Integration in J2SE Application Environments"
on page 6-2

■ "JAAS Provider Integration in J2EE Application Environments"
on page 6-4

■ Chapter 7, "Managing the JAAS Provider"

■ Sun Java documentation by visiting the following URL:

http://java.sun.com/security/

What is JAAS?

Overview of JAAS in Oracle 9iAS 4-7

What is JAAS?
The JAAS interface is implemented by the JAAS provider. JAAS is a Java package
that enables applications to authenticate and enforce access controls upon users.

JAAS is designed to complement the existing code-based security in JDK 1.3. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authorization, authentication,
and user community (realm) features. Some of these features are fully supported in
this release of JAAS, while others are not explicitly defined. The JAAS provider
provides enhancements to some of these features.

■ Principals

■ Subjects

■ Login Module Authentication

■ Roles

■ Realms

■ Policies and Permissions

See Also:

■ "JAAS Provider Realm and Policy Management" on page 4-15
for information on how the JAAS provider enhances JAAS to
more explicitly define key authorization, authentication, and
user community (realm) features

■ JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun.com/products/jaas/

What is JAAS?

4-8 Oracle9iAS Containers for J2EE Services Guide

Principals
A principal is a specific identity, such as a user named frank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service.

A principal is represented by an instance of a concrete class that implements the
java.security.Principal interface. Each class defines a namespace for its
instances, within which each principal instance has a unique name. The name and
class of a principal instance uniquely describes the instance.

For LDAP-based environments, an X500Principal class is defined that accepts the
X.500 style name as the name of the principal.

Subjects
A subject represents a grouping of related information for a single user of a
computing service, such as a person, computer, or process. Such information
includes the subject's identities and security-related attributes (such as passwords
and cryptographic keys).

Subjects can have multiple identities, where principals represent identities in the
subject. A subject becomes associated with a principal (user frank) upon successful
authentication to a computing service, that is, the subject provides evidence (such as
a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user frank, may
have two principals:

■ One binds the principal frank doe (name on his driver license) to the subject

■ Another binds the identification principal 999-99-9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are
stored in a private credential set. Credentials intended to be shared, such as public
key certificates or Kerberos server tickets are stored in a public credential set.
Different permissions are required to access and modify different credential sets.

Subjects are represented by the javax.security.auth.Subject class.

To perform work as a particular subject, an application invokes the method
Subject.doAs(Subject, PrivilegedAction) (or one of its variations). This
method associates the subject with the current thread's AccessControlContext,
and then executes the specified request.

What is JAAS?

Overview of JAAS in Oracle 9iAS 4-9

Login Module Authentication
To associate a principal (such as frank) with a subject, a client attempts to log into
an application. In login module authentication, the LoginContext class provides
the basic methods used to authenticate subjects such as users, roles, or computing
services. The LoginContext class consults configuration settings to determine
whether the authentication modules (known as login modules) are configured for
use with the particular application that the subject is attempting to access. Different
login modules can be configured with different applications.

Since the LoginContext separates the application code from the authentication
services, a different login module can be plugged in under an application without
affecting the application code.

Actual authentication occurs with the method LoginContext.login(). If
authentication succeeds, the authenticated subject can be retrieved by invoking
LoginContext.getSubject(). The real authentication process can involve multiple
login modules. JAAS defines a two-phase authentication process to coordinate the
login modules configured for an application.

After retrieving the subject from the LoginContext, the application then performs
work as the subject by invoking Subject.doAs().

Roles
JAAS does not explicitly define roles or groups. Instead, roles or groups are
implemented as concrete classes that use interface java.security.Principal.

JAAS does not define how to support the RBAC role hierarchy (granting a role to a
role). The Sun provider of javax.security.auth.Policy recognizes a special type
of principal, as defined by the PrincipalComparator interface. However,
PrincipalComparator is not fully integrated with the JAAS provider, and is
therefore not supported.

For LDAP-based environments, an X500GroupPrincipal class is defined that
accepts an X.500 style name as the name of the group.

See Also:

■ "Authentication in the J2SE Environment" on page 8-2

■ "Authentication in the J2EE Environment" on page 9-2

What is JAAS?

4-10 Oracle9iAS Containers for J2EE Services Guide

Realms
JAAS does not explicitly define user communities. However, the J2EE reference
implementation (RI) defines a similar concept of user communities called realms. A
realm provides access to users and roles (groups) and optionally provides
administrative functionality. A user community instance is essentially a realm that
is maintained internally by the authorization system. The J2EE RI Realm API
supports user-defined realms through subclassing. The J2EE RI Realm API,
however, is:

■ Not as fully developed as the JAAS provider realm framework

■ Not being proposed as a standard

■ Expected to undergo further changes to be integrated with JAAS

Applications
JAAS does not explicitly define an application or subsystem for partitioning
authorization rules. However, JAAS meets many of the requirements for the
subsystem concept. For example, JAAS defines the notion of a codebase (plus a
signer) as the target and grantee of a grant statement. This enables permissions to be
granted application-specific code. The Java notion of namespace partitioning
through packages also allows for partitioning of permission classes in an
application-specific manner.

Policies and Permissions
A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are
the granted permissions of the grantee?

Policy information is supplied by the JAAS provider. JAAS does not define an
administrative API for policy administration. The administrative API is
implementation specific.

 Table 4–3 describes Sun’s implementation of policy file parameters.

See Also:

■ "JAAS Provider Realm Framework" on page 4-17 for JAAS
provider enhancements to realms

■ "XML-Based Realm and Policy Information Storage" on
page 4-23

What is JAAS?

Overview of JAAS in Oracle 9iAS 4-11

File-based Policy Example
The following example shows a typical entry in the JAAS policy file as
implemented by Sun’s implementation of the JAAS file-based policy provider:

 grant CodeBase "http://www.foo.com",
 Principal com.sun.security.auth.SolarisPrincipal "duke"
{
 permission java.io.FilePermission "/home/duke", "read, write";
};

Code from www.foo.com, signed by foo, and running as a SolarisPrincipal with
the username duke, has the permission that permits the executing code to read and
write files in /home/duke.

XML-Based Example
The JAAS provider also provides an XML file to store policy information. In the
following example, a segment of the jazn-data.xml file grants the jazn.com
/administrators various permissions:

<!--JAZN Policy Data -->
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm>jazn.com/realm>
 <type>role/type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole
 </class>
 <name>jazn.com/administrators/name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$modifyrealmmetadata</name>

Table 4–3 Policy File Parameters

Where... Is Defined As... Example

subject one or more principal(s) duke

codesource codebase, signer http://www.foo.com, foo

JAAS Provider Features

4-12 Oracle9iAS Containers for J2EE Services Guide

 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$droprealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.
 com$createrole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

JAAS Provider Features
Table 4–4 lists the JAAS features provided by Oracle9iAS.

See Also:

■ "Sample jazn-data.xml Code" on page B-2 to view a complete
jazn-data.xml file.

■ "JAAS Provider Policy Administration" on page 4-24 for
information on JAAS provider enhancements to policies

Table 4–4 JAAS Provider Features

Feature Description See Also...

Realms Realms provide access to user and role information. An Oracle
proprietary Realm API package (oracle.security.jazn.
realm) is provided to support user and role management. This
API includes a RealmPrincipal interface that extends from
java.security.Principal and associates a realm with
users and roles

"Realms" on page 4-10

"JAAS Provider Realm
Framework" on
page 4-17

Role-based access
control (RBAC)

Support is provided for secure, centralized, and customizable
RBAC management

"Role-Based Access
Control (RBAC)" on
page 4-14

JAAS Provider User Services

Overview of JAAS in Oracle 9iAS 4-13

JAAS Provider User Services
The Oracle9iAS implementation of JAAS provides these user services for
application developers to integrate into their applications. This section describes
several JAAS provider authorization features.

■ Capability Model of Access Control

■ Role-Based Access Control (RBAC)

Capability Model of Access Control
The capability model is essentially a method for organizing authorization
information. The JAAS provider is based on the Java2 Security Model, which uses
the capability model of access control to control access to permissions. With the
capability model, authorization is associated with the principal (a user named
frank in the following example). Table 4–5 shows the permissions that user frank
is authorized to use:

Login Module
Authentication

■ Provides a RealmLoginModule class for non-SSO
environments

■ Integrates with Oracle9iAS Single Sign-On (SSO) for SSO
login authentication in J2EE application environments

Chapter 8, "Developing
Secure J2SE
Applications"

Chapter 9, "Developing
Secure J2EE
Applications"

JAAS provider type
management

Several methods for managing JAAS provider type information
are available:

■ An Admintool command line tool that supports
management of information in both provider types

■ An Oracle Enterprise Manager graphical user interface
(GUI) tool that supports management of information in
LDAP-based Oracle Internet Directory

■ Programmatic level management of both provider types

"JAAS Provider Policy
Administration" on
page 4-24

Chapter 7, "Managing
the JAAS Provider"

JAZNUserManager JAZNUserManager is an implementation of the OC4J
UserManager that integrates with both LDAP-based and
XML-based provider types.

"JAAS Provider
Integration in J2SE
Application
Environments" on
page 6-4

Chapter 9, "Developing
Secure J2EE
Applications"

Table 4–4 JAAS Provider Features

Feature Description See Also...

JAAS Provider User Services

4-14 Oracle9iAS Containers for J2EE Services Guide

When user frank logs in and is successfully authenticated, the permissions
described in Table 4–5 are retrieved from the JAAS provider (whether the LDAP-
based Oracle Internet Directory or XML-based provider type) and granted to user
frank. User frank is then free to execute the actions permitted by these
permissions.

Role-Based Access Control (RBAC)
RBAC enables you to assign permissions to roles. Users are then granted their
permissions by being made members of appropriate roles. Support for RBAC is a
key JAAS provider feature. This section describes the following RBAC features:

■ Role Hierarchy

■ Role Activation

Role Hierarchy
RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially
a major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a
role, and users are granted their permissions by being made members of that role.
Multiple roles can be granted to a user. A role can also be granted to another role,
thus forming a role hierarchy that provides administrators with a tool to model
enterprise security policies. Figure 4–2 provides an example.

Table 4–5 User Permissions

User Has These File Permissions...

frank Read and write permissions on a file named salaries.txt in the
/home/user directory

See Also:

■ "What is the Java2 Security Model?" on page 4-4

■ "Principals" on page 4-8

■ "JAAS Provider Policy Administration" on page 4-24

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-15

Figure 4–2 Role-Based Access Control

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that
individual user.

For example, if multiple users no longer require write permissions on a file named
salaries in the /home/user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

Role Activation
A user is typically granted multiple roles. However, not all roles are enabled by
default. The user can selectively enable the required roles to accomplish a specific
task in a user session with the run-as security identity and Subject.doAS(). This
ensures the principle of least privilege. This way, the user is not enabling
permissions or privileges unnecessary for the task. This limits the damage that can
potentially result from an accident or error.

JAAS Provider Realm and Policy Management
The JAAS provider supports two types of repository providers, referred to as
provider types:

■ The LDAP-based provider type used with Oracle Internet Directory (OiD)

■ The XML-based provider type used with an XML file, typically jazn-data.xml

See Also: Sun Java documentation by visiting the following URL:

http://java.sun.com/security/

JAAS Provider Realm and Policy Management

4-16 Oracle9iAS Containers for J2EE Services Guide

OiD and jazn-data.xml are repositories used to store realm (users and roles) and
policy (permissions) information. This section discusses the following topics in
relation to the two different provider types:

■ Realm and Policy Management Tools

■ JAAS Provider Realm Framework

■ JAAS Provider Policy Administration

Realm and Policy Management Tools
Several tools are provided for managing realm and policy information. Table 4–6
describes these tools and indicates the environment in which they operate.

Table 4–6 Realm and Policy Management Tools

Method/Environment Description See Also...

Oracle Enterprise
Manager

LDAP-based only

A graphical user interface tool that enables you
to create principals (known as grantees) and
assign permissions to these grantees.

"Using the Oracle
Enterprise
Manager
Interface with the
JAAS Provider"
on page 7-3

JAZN Admintool

Both LDAP and
XML-based
environments

A command line interface tool that enables
administrators to create and manage users,
realms, roles, and policies. The JAZN
Admintool:

■ Uses the JAAS ProviderAPI packages
described in Appendix A, "JAAS Provider
APIs" to perform functions

■ Can be executed from the operating system
command line

The JAZN Admintool has the same capabilities
and limitations as the JAAS Provider APIs. For
example, you cannot create users with the
JAZN Admintool if your provider type is
LDAP-based Oracle Internet Directory.
However, you can create users if your provider
type is XML-based.

"Using the JAZN
Admintool" on
page 7-15

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-17

JAAS Provider Realm Framework
The J2EE environment defines the concept of user communities. A user community
instance is essentially a realm maintained internally by the authorization system.

The API package oracle.security.jazn.realm is provided to support realms.
This API package is an enhancement to the JAAS policy provider.

Realms can be managed in both provider type environments:

■ LDAP-based Oracle Internet Directory

Provides for centralized storage of realms and JAAS policy in a directory

■ XML-based

Provide a lightweight form of storage for realms and JAAS policy

Realm Management in LDAP-Based Environments
A realm provides user and role management. An LDAP-based realm's data can be
managed:

■ Internally by creating and managing user information with the JAAS provider.
See Chapter 7, "Managing the JAAS Provider".

■ Externally by creating and managing user and role information with Oracle
Internet Directory, and then integrating it with the JAAS provider.

LDAP-Based Realm Types The JAAS provider supports three types of realms for
LDAP-based environments. Each realm provides different user and role
management capabilities. Table 4–7 describes these realms.

See Also:

■ “What JAAS Provider Components Do You Need to Install?” in
the Oracle9i Application Server Installation Guide for information
on installing the provider type you want to use

■ "Realms" on page 4-10

■ "Package oracle.security.jazn.realm" on page A-9

JAAS Provider Realm and Policy Management

4-18 Oracle9iAS Containers for J2EE Services Guide

Each realm type consists of:

■ A role manager for role management

■ A user manager for user management

User and role managers internally perform their duties (through JAAS provider
permissions) or externally (through OiD Delegated Administration Service (DAS)).

Figure 4–3 shows a sample LDAP directory information tree (DIT) containing an
External Realm that is registered as an instance with the JAAS provider. The realm
type is created below a Realms container.

Table 4–7 Implementation of Realm Types

Realms Type Description Use This Realm... See Also...

External
Realm

■ Supports external, read-only
user and role management

■ Integrates existing user
communities with the JAAS
provider

For non-hosting
environments

Figure 4–3 on
page 4-19

"Creating an
External Realm"
on page 7-29

Subscriber
Realm

■ Created through
provisioning tools

■ Used in hosting
environments

■ Supports external, read-only
user and role management

In a hosting
environment (with
subscriber-based
customers) where
multiple customers
or companies
subscribe to shared
services

Figure 4–4 on
page 4-20

Application
Realm

■ Supports external, read-only
user management

■ Supports internal roles
management

If you want to use
the JAAS provider
role management
feature

Figure 4–5 on
page 4-21

"Creating an
Application
Realm" on
page 7-31

Note: The JAAS provider does not provide an internal user
manager for creating users. Instead, you can create users with DAS
or a command line tool such as ldapadd.

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-19

Figure 4–3 Simplified Directory Information Tree for the External Realm

Table 4–8 describes the user and role management responsibilities of the External
Realm.

Figure 4–4 shows a sample LDAP directory information tree (DIT) containing a
Subscriber Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

Table 4–8 External Realm Responsibilities

External Realm Name Role Management User Management

abcRealm Retrieves external, read-only
roles

Retrieves external, read-only
users

JAAS Provider Realm and Policy Management

4-20 Oracle9iAS Containers for J2EE Services Guide

Figure 4–4 Simplified Directory Information Tree for the Subscriber Realm

Table 4–9 describes the user and role management responsibilities of the Subscriber
Realm.

Table 4–9 Subscriber Realm Responsibilities

Subscriber Realm Name Role Management User Management

BestCOMRealm Retrieves external,
read-only roles of a
subscriber

Retrieves external, read-only users
of a subscriber

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-21

Figure 4–5 shows a sample LDAP directory information tree (DIT) containing an
Application Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

Figure 4–5 Simplified Directory Information Tree for the Application Realm

Table 4–10 describes the user and role management responsibilities of the
Application Realm.

LDAP-Based Realm Data Storage The realm framework provides a means for
registering realm instances with the JAAS Provider and managing their
information.

Table 4–10 Application Realm Responsibilities

Application Realm Name Role Management User Management

devRealm Internally creates and
manages modifiable roles

Retrieves external, read-only
users

JAAS Provider Realm and Policy Management

4-22 Oracle9iAS Containers for J2EE Services Guide

A Realms container object is created under the site-wide JAAS context. (For
example, see the Realms container in Figure 4–3 on page 4-19.) For each registered
realm instance, a corresponding realm entry is created under the Realms container
that stores the realm's attributes. This directory hierarchy is known to the JAAS
provider, which enables the JAAS provider to create new realm instances in the
desirable directory location and find all the registered realms in runtime.

For example, the distinguished name (DN) for a realm called oracle can be
"cn=oracle,cn=realms,cn=JAZNContext,cn=site root".

Upon successful installation of the JAAS provider, a default realm (External Realm)
instance is installed. Predefined realm properties are configured for starting the
default realm. Any realm type must provide concrete implementations for the
system defined Java interfaces UserManager and RoleManager. In runtime, the
JAAS provider finds all the registered realms and their attributes (name, user
manager implementation class, role manager implementation class, and their
properties) from the provider type (Oracle Internet Directory) and instantiates the
realm's implementation class with the properties for initialization.

LDAP-Based Realm Permissions A RealmPermission class is defined to represent
realm permissions. RealmPermission extends from java.security. Permission.
It is used like any regular Java permission. RealmPermission has the following
characteristics:

■ Realm name, also known as target name

■ List of actions (permissions applicable to the realm, such as creating a realm,
dropping a role, and so on)

Realm Management in XML-Based Environments
A realm provides user and role management. For XML-based environments, realm
management is less restrictive and faster: a more lightweight implementation than
LDAP-based realm management.

XML-Based Realm Types The JAAS provider enables you to create a single realm type
for an XML-based environment.

See Also:

■ "RealmPermission" on page A-10

■ The JAAS Provider API Reference (Javadoc) is located in the
Oracle9i Application Server Documentation Library on the
J2EE & Internet Applications tab

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-23

XML-Based Realm and Policy Information Storage An XML-based realm enables you to:

■ Create realms, users, and roles

■ Grant roles to users and to other roles

■ Assign permissions to specific users and roles (principals)

This information is stored in an XML file, typically, jazn-data.xml. The following
example shows the structure used in a jazn-data.xml file to create realms, users,
and roles.

<!--JAZN Realm Data -->

 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>admin</name>
 <displayName>Realm Administrator</displayName>
 <description>Administrator for this realm</description>
 <credentials>Qj+w7NJulLM=</credentials>
 </user>
 <user>
 <name>anonymous</name>
 <description>The default guest/anonymous
 user</description>
 </user>
 </users>
 <roles>
 <role>
 <name>guests</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 </members>
 </role>

See Also: "Using the JAZN Admintool" on page 7-15 for
instructions on creating realm types.

JAAS Provider Realm and Policy Management

4-24 Oracle9iAS Containers for J2EE Services Guide

 <role>
 <name>administrators</name>
 <displayName>Realm Admin Role</displayName>
 <description>Administrative role for this
 realm</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
 </jazn-realm>

JAAS Provider Policy Administration
The JAAS provider implementation of javax.security.auth.Policy uses either
an LDAP-based Oracle Internet Directory or XML-based provider type for storing

See Also: "Sample jazn-data.xml Code" on page B-2 for a
completed jazn-data.xml file.

Note: Setting the <credentials> element as follows enables you
to use clear (readable) passwords in the jazn-data.xml file the first
time.

■ <credentials clear="true">welcome</credentials>

■ <credentials>!welcome</credentials>

This enables the administrator to directly edit jazn-data.xml with
a text editor. When the file is read and persistence occurs, the
password in jazn-data.xml is obfuscated and becomes
unreadable.

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-25

policy (authorization rules). The JAAS provider administrator uses various grant
and revoke methods of the JAZNPolicy class to create authorization policies for
principals.

The provider must be administered in a secure manner. There are several ways to
administer the JAAS provider policy:

■ Oracle Enterprise Manager (LDAP environments only)

■ JAZN Admintool

■ Oracle Internet Directory Administration

■ AdminPermission Class

See Also: Table 4–6 on page 4-16 for information on Oracle
Enterprise Manager and "Using the JAZN Admintool" on page 7-15
for information on the JAZN Admintool

JAAS Provider Realm and Policy Management

4-26 Oracle9iAS Containers for J2EE Services Guide

Oracle Internet Directory Administration
For LDAP-based application environments, you manage realm and policy data as
Oracle Internet Directory entries through:

■ The OiD DAS and Oidadmin administrative tools

■ Definition of access control lists in Oracle Internet Directory

Two possible administrative groups can manage the data:

■ A JAAS provider site-wide administrative group that is granted permissions to
access and modify the site-wide JAZNContext and any subscriber-specific
JAZNContext

■ A realm-specific administrative group for each realm instance or administrative
user

In hosted application environments, part of the policy data may be partitioned
along subscriber boundaries and thus stored in a subscriber subtree. That policy
data cannot be administered by the realm-specific administrative group. The same
is true with role information.

With the JAAS provider policy data (including realm data), only users that belong
to JAZNClientGroup or JAZNAdminGroup have read-access capabilities on provider
data.

The LDAP-based environment caches provider policy data; for details, see
“Managing JAAS Provider Policy” on page 36.

AdminPermission Class
The AdminPermission class can be used in either LDAP-based or XML-based
environments.

The AdminPermission class represents the right to administer a permission. This
enables a grantee (such as a user named frank) to further grant and revoke the
granted right/permission to other grantees. Instances of this permission class
include instances of other permissions. Since this is a permission about permission,
it varies slightly from the permission definition, which includes a simple name,
actions pair. This variation is resolved by encoding a permission instance as a string
and using that as the name of the AdminPermission instance. Table 4–11 provides
an example:

See Also: Oracle Internet Directory Administrator’s Guide

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iAS 4-27

When expressed in the format recognized by the policy provider, this results in the
following:

 grant Principal com.oracle.security.jazn.JAZNPrincipal "frank"
{
 permission com.oracle.security.jazn.policy.AdminPermission
 "class=java.io.FilePermission, name=\"/tmp/*\", actions=\"read, write\""
};

Note that another permission instance is encoded in the target name for this
AdminPermission instance.

Recursive embedding of AdminPermission (that is, an AdminPermission instance
embedded within another AdminPermission instance) is not supported. In the
initial policy, the JAAS user is granted AdminPermission to
java.security.AllPermission, enabling the JAAS user to grant and revoke all
permissions to anyone.

A RoleAdminPermission class is defined for roles. This means that when role hr is
granted to frank, frank is granted both role hr and a RoleAdminPermission that
enables frank to further grant and revoke role hr.

Policy Partitioning
The JAAS provider supports policy partitioning among realms (that is, each realm
has its own realm-specific policy). This realm-specific policy is administered by the
realm-specific administrative group.

In a hosted environment, a subscriber is represented by a realm and the
subscriber-specific information subtree is stored under a subscriber-specific
JAZNContext. This subscriber-specific subtree, however, is primarily administered
by the JAAS Provider administrative group from the perspective of the LDAP
server (Oracle Internet Directory).

Table 4–11 ADMIN Option Example

If User... Then User...

frank is granted the AdminPermission for
java.io.FilePermission("/tmp/*","read,
write")

frank can further grant and revoke
any permission implied by the
embedded permission (that is,
FilePermission in this instance).

See Also: "Policies and Permissions" on page 4-10 for an example
of an XML-based policy file

JAAS Provider Realm and Policy Management

4-28 Oracle9iAS Containers for J2EE Services Guide

Quick Start JAAS Provider Demo 5-1

5
Quick Start JAAS Provider Demo

This chapter describes how to quickly configure and run a sample Java2 Platform,
Enterprise Edition (J2EE) application that uses the JAAS Provider, the Oracle9iAS
Containers for J2EE (OC4J) user authentication, authorization, and delegation
service.

This chapter contains these topics:

■ Quick Start JAAS Provider Demo Overview

■ Setting Up the Demo

■ Running the Demo

■ Testing the JAZN Admintool

Notes: For the purpose of this Quick Start demonstration, many
terms and concepts in this chapter are described at a high level.
Where appropriate, references are provided to other sections in this
and other guides for specific information on these terms and
concepts.

This example provides instructions for use with the standalone
version of OC4J. Please refer to the OC4J User’s Guide for
instructions on using the example with the complete Oracle9AS
installation.

Quick Start JAAS Provider Demo Overview

5-2 Oracle9iAS Containers for J2EE Services Guide

Quick Start JAAS Provider Demo Overview
This Quick Start demo is designed to get you up and running with JAAS provider
using the sample demo application, callerInfo. It also demonstrates the use of
the JAZN Admintool.

The callerInfo demo indicates whether or not the user attempting to log into the
application has succeeded and with which roles and permissions.

The callerInfo demo application demonstrates use of the following features:

■ OC4J as the HTTP listener that listens for user login requests and functions as
the Web container that stores the callerInfo application

■ Basic authentication for validating the login credentials of the user attempting
to access the callerInfo demo application (authentication)

■ The JAAS provider for enforcing the roles and permissions assigned to the
authenticated user (authorization)

■ The XML-based provider type as the JAAS provider repository provider for
storing users, roles, and permissions

■ The J2EE environment to run the application

See Also: The following sections for more detailed information
on the concepts covered in this Quick Start demo:

■ Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

■ Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

■ "Integrating the JAAS Provider with Basic Authentication" on
page 6-13 for further information on Basic authentication

■ "Realm Management in XML-Based Environments" on
page 4-22 for further information on using XML files as the
JAAS Provider environment type

■ "JAAS Provider Integration in J2SE Application Environments"
on page 6-2 for further information on the J2EE environment

■ http://jazn.us.oracle.com for additional JAAS provider
information

Setting Up the Demo

Quick Start JAAS Provider Demo 5-3

Setting Up the Demo
These are the basic tasks you must perform to set up the Quick Start demo:

■ Task 1: Modify OC4J Configuration Files

■ Task 2: Change Default Configurations (Optional)

Task 1: Modify OC4J Configuration Files
In order to use the callerInfo demo, you must modify two OC4J files in
$ORACLE_HOME/j2ee/home/config/.

1. Modify the server.xml file by removing the comments around :

<application name="callerInfo" path="../jazn/demo/callerInfo/callerInfo.ear" />

2. Modify the default-web-site.xml file by removing the comments around :

<web-app application="callerInfo" name="callerInfo-web" root="/jazn" />

Task 2: Change Default Configurations (Optional)
The sample callerInfo application is installed with several default configuration
settings that enable you to immediately run the JAAS provider. If you want to run
the JAAS provider using these default settings, you can skip this section and go to
"Running the Demo" on page 5-5.
 If you make any changes to the default configurations, rebuild the directory with jar
or Ant.

For the purpose of this demo, two different realms are available for
experimentation. Realms provide access to users and roles. The two realms are
contained in jazn-data.xml files located in the directory
j2ee/home/jazn/config/:

■ A sample realm, sample_subrealm, is defined in the jazn-data.xml file.
sample_subrealm and the jazn-data.xml file are the current defaults.

See Also:

■ Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

■ Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

Setting Up the Demo

5-4 Oracle9iAS Containers for J2EE Services Guide

■ A more complex sample realm, jazn.com, is defined in the jazn-data1.xml
file.

To use a realm other than the default sample_subrealm, you must modify the
jazn element of the OC4J orion-application.xml (in the directory
jazn/demo/callerinfo/etc/) as follows:

■ Change the realm, default-realm, from the default value,
sample_subrealm, to jazn.com or any realm that you have created.

■ Change location from the default value, jazn-data.xml, to
jazn-data1.xml or any properly configured data file that you have created.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 7-37 for further information on the
jazn-data.xml file

Running the Demo

Quick Start JAAS Provider Demo 5-5

Running the Demo

To start OC4J and connect to the demo application:
1. Start OC4J with the JAAS provider as follows:

java -jar oc4j.jar

For the purposes of this Quick Start demo, an insecure and simple manner for
starting OC4J is presented. For more information about starting OC4J in secure
mode, see "Starting an Application" on page 9-8.

2. Run the callerInfo application from a Web browser:

http://hostname:8888/jazn

3. Follow instructions on the Web page.

4. Log in with either of the following usernames and passwords:

■ admin/welcome

Username admin is assigned the role manager, which is mapped to
sr_manager.

■ user/456

Username user is assigned the role developer, which is mapped to
sr_developer.

See Also:

■ Oracle9iAS Containers for J2EE User's Guide

■ "Testing and Executing the J2EE Application" on page 9-4 for
further information on starting OC4J with the JAAS provider

■ Chapter 9, "Developing Secure J2EE Applications" to view the
code for the callerInfo demo used in this Quick Start demo

Running the Demo

5-6 Oracle9iAS Containers for J2EE Services Guide

Viewing the Results of the callerInfo Demo
When the call to the callerInfo demo application is successful, with the
username user, for example, the browser displays a message similar to the
following:

Time stamp: Fri Aug 24 19:11:37 PDT 2001 request.getRemoteUser =
sample_subrealm/user
request.isUserInRole('FOO') = false
request.isUserInRole('ar_manager') = false
request.isUserInRole('ar_developer') = true
request.getUserPrincipal = ([JAZNUserAdaptor: user=[XMLRealmUser:
sample_subrealm/user])

In summary, this Quick Start demo performed the following:

■ The login request from username user used basic authentication to access the
callerInfo demo application.

■ The OC4J listener listened for the login request from username user.

■ The JAAS provider enforced the roles and permissions assigned to the
authenticated user user.

■ The users, roles, and permissions were retrieved from the XML-based JAAS
provider type.

Testing the JAZN Admintool

Quick Start JAAS Provider Demo 5-7

Testing the JAZN Admintool
The JAZN Admintool is a Java console application that manages provider data from
the command prompt.

You can invoke the JAZN Admintool from the UNIX command line interface as
follows:

java -jar jazn.jar -listusers sample_subrealm

These are a few of the command options that you can experiment with from a
command-line interface.

-listusers [realm [-role role|-perm permission]]
-listroles [realm [user|-role role]|-perm permission]
-listrealms
-listperms {realm user |-role role|-realm realm}
-help

The JAZN Admintool also includes a shell. The following screen listing shows how
to access the JAZN Admintool shell and some basic shell commands that you can
run, with results.

> java -jar jazn.jar -shell
JAZN:> ls
realms policy
JAZN:> cd realms
JAZN:> ls
sample_subrealm

JAZN:> cd sample_subrealm
JAZN:sample_subrealm> ls
users roles
JAZN:sample_subrealm> cd users
JAZN:sample_subrealm> ls
admin
rachel
naresh
ray
stella
anonymous

JAZN:sample_subrealm> add scott tiger
JAZN:sample_subrealm> ls
anonymous
rachel

Testing the JAZN Admintool

5-8 Oracle9iAS Containers for J2EE Services Guide

ray
scott
stella
admin
naresh

JAZN:sample_subrealm> rm scott
JAZN:sample_subrealm> ls
admin
rachel
naresh
ray
stella
anonymous

JAZN:sample_subrealm> exit
JAZN:sample_subrealm>

See Also: "Using the JAZN Admintool" on page 7-15

Integrating the JAAS Provider with Java2 Applications 6-1

6
Integrating the JAAS Provider with Java2

Applications

This chapter describes how the JAAS provider is integrated with applications
developed for Java2 environments in Oracle9iAS Containers for J2EE (OC4J).

This chapter contains these topics:

■ Java2 Application Environments Overview

■ JAAS Provider Integration in J2SE Application Environments

■ JAAS Provider Integration in J2EE Application Environments

■ How Do I Get Started?

Java2 Application Environments Overview

6-2 Oracle9iAS Containers for J2EE Services Guide

Java2 Application Environments Overview
The JAAS provider integrates into applications developed for several Java2
environments:

■ Java2 Platform, Standard Edition (J2SE)

For developing, deploying, and managing standalone Java applications

■ Java2 Platform, Enterprise Edition (J2EE)

For developing, deploying, and managing multi-tier, Web-based applications

Oracle Components Available on the Java2 Platform
When the JAAS provider is integrated with applications developed for the Java2
Platform, the following Oracle components are available to developers:

■ The JAAS provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The JAAS provider supports two possible repositories or
provider types:

■ LDAP-based Oracle Internet Directory (available only with Oracle9iAS
Infrastructure installation)

■ XML-Based Provider Type

■ Login modules, such as the JAAS provider RealmLoginModule

JAAS Provider Integration in J2SE Application Environments
Figure 6–1 provides an overview of an application running in a J2SE environment.

See Also: "JAAS Provider Integration in J2SE Application
Environments" on page 6-2

See Also: "JAAS Provider Integration in J2EE Application
Environments" on page 6-4

See Also:

■ "Provider Types" on page 4-3 for further information about
provider types

■ Chapter 7 of the Oracle9i Application Server Security Guide for
required components

JAAS Provider Integration in J2SE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-3

Figure 6–1 Oracle Component Integration in J2SE Environment

A Typical Scenario in the J2SE Environment
The following section describes the responsibilities of the Oracle components
illustrated in Figure 6–1 when a client request is initiated.

1. A client attempts to access a local, desktop application.

2. RealmLoginModule or other LoginModule authenticates the client’s login
attempt.

3. The Java virtual machine (JVM) examines the authorization context associated
with the current thread, consults the JAAS provider policy, determines that the
current subject has the required permission to write to the file, and returns
checkPermission() safely.

See Also: Your Sun Java documentation for more information on
J2SE by visiting the following URL:

http://java.sun.com/j2se/

JAAS Provider Integration in J2EE Application Environments

6-4 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments
When the JAAS provider is integrated with applications developed for the J2EE
environment, the functionality of the J2SE environment extends to the enterprise
level. Additional features in the J2EE environment include:

■ Oracle9iAS Containers for J2EE (OC4J)

■ JAZNUserManager

Oracle9iAS Containers for J2EE (OC4J)
OC4J is a key component of the JAAS provider integration in the J2EE environment.
OC4J is a Web container that accepts HTTP and RMI client connections. These
connections permit access to servlets, Java Server Pages (JSPs), and Enterprise
JavaBeans (EJBs).

J2EE containers separate business logic from resource and lifecycle management.
This enables developers to focus on writing business logic, rather than writing
enterprise infrastructure. For example, Java servlets simplify Web development by
providing an infrastructure for component, communication, and session
management in a Web container integrated with a Web server.

The JAAS provider is also integrated with OC4J to enhance application security.
This integration provides the following benefits:

■ Integration with either single sign-on (SSO) and mod_osso or secure socket
layer (SSL) and mod_ossl

■ Fine-grained access control through Java2 permissions

■ run-as identity support, delegation support (from servlet to Enterprise
JavaBeans)

■ Secure file-based storage of passwords

JAZNUserManager
Another key component of JAAS provider integration in the J2EE environment is
JAZNUserManager. JAZNUserManager is an implementation of the OC4J
UserManager interface.

Replacing principals.xml
JAZNUserManager permits secure replacement for or migration from the OC4J
principals.xml file with the following:

■ Secure storage of obfuscated passwords

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-5

■ Full role-based access control (RBAC), including hierarchical roles

■ Full support for the Java2 permission model and JAAS

■ Secure implementation based on the Java2 permission model, to allow
untrusted (or partially trusted) code to run in the same JVM as the JAAS
provider

JAZNUserManager Features
In addition to the features mentioned in "Replacing principals.xml" on page 6-4,
JAZNUserManager provides many other features, including:

■ Single Sign-On (SSO) integration with OC4J

■ RealmLoginModule integration in non-SSO environments

■ Identity propagation

■ Location, read, edit, removal, and management of user and group objects

■ Enforcement of security constraints

■ A filter for changing the content of HTTP requests, responses, and header
information.

See Also: For information on using the JAZN Admintool to
migrate from principals.xml, "Migrating Principals from the
principals.xml File" on page 7-22

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on the JaznUserManager

JAAS Provider Integration in J2EE Application Environments

6-6 Oracle9iAS Containers for J2EE Services Guide

Figure 6–2 provides an overview of an application running in a J2EE environment.

Figure 6–2 J2EE Application Model

Authentication Environments
The JAAS provider integrates with three different login authentication
environments in a J2EE applications.

■ SSO

Uses Oracle9iAS Single Sign-On to authenticate logins

■ SSL

■ Uses Secure Socket Layers, the industry standard protocol for managing the
security of message transmission on the Internet

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

■ Basic Authentication

■ Prompts user directly for username and password, without going through
Oracle9iAS Single Sign-On

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-7

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

The following sections discuss how the JAAS provider integrates with each of these
authentication types.

Integrating the JAAS Provider with SSO-Enabled Applications
SSO lets a user access multiple accounts and applications with a single set of login
credentials. Figure 6–3 shows JAAS provider integration in an application running
in an SSO-enabled J2EE environment.

Figure 6–3 Oracle Component Integration in SSO-Enabled J2EE Environments

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on configuring authentication methods

JAAS Provider Integration in J2EE Application Environments

6-8 Oracle9iAS Containers for J2EE Services Guide

SSO-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSO-enabled J2EE environment.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

2. mod_osso/Oracle HTTP Server receives the request and:

■ Determines that WebApp A1 application requires Web-based SSO for
authenticating HTTP clients

■ Redirects the HTTP client request to the Web-based SSO Oracle9iAS Single
Sign-On (since it has not yet been authenticated).

3. The HTTP client is authenticated by Oracle9iAS Single Sign-On through HTTP
or public key infrastructure (PKI) Authentication. Oracle9iAS Single Sign-On
then:

■ Validates the user's stored login credentials

■ Sets the SSO cookie (including the user’s distinguished name and realm)

■ Redirects back to the WebApp A1 application (in OC4J)

4. The JAAS provider retrieves the SSO user.

5. The final step or steps depend on the setting of the runas-mode in the
jazn-web-app element.

If the runas-mode is set to false, then the following happens:

a. The target servlet is invoked.

If the runas-mode is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's service() method within
a PrivilegedAction block through Subject.doAs(). The
JAZNUserManager enforces security constraints.

– When Subject.doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
getPermissions() method.

– The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

– JAAS runtime constructs a new AccessControlContext based on
the permissions returned from getPermissions().

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-9

b. The servlet's code runs under the AccessControlContext of the SSO
user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to SecurityManager.checkPermission().

d. The JVM then:

– Examines the authorization context associated with the current thread

– Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with SSL-Enabled Applications
SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 6–4 shows the JAAS provider integration in an
application running in an SSL-enabled J2EE environment.

JAAS Provider Integration in J2EE Application Environments

6-10 Oracle9iAS Containers for J2EE Services Guide

Figure 6–4 Oracle Component Integration in SSL-Enabled J2EE Environments

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-11

SSL-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSL-enabled J2EE environment. In this environment,
Oracle9iAS Single Sign-On is not used. A login module (for example,
RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

2. mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp A1 application requires SSL server authentication for HTTP clients.

3. If a server and/or client wallet certificate is configured, the HTTP client is
prompted to accept the server certificate and provide the client certificate.

4. The JAAS provider retrieves the SSL client certificate.

5. The JAAS provider retrieves the SSL user.

6. The final step or steps depend on the setting of the runas-mode in the
jazn-web-app element.

If the runas-mode is set to false, then the following happens:

a. The target servlet is invoked.

If the runas-mode is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's service() method within
a PrivilegedAction block through Subject.doAs(). The
JAZNUserManager enforces security constraints.

– When Subject.doAs() is called, JAAS consults for permissions
associated with the SSL user through the getPermissions() method.

– The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

– JAAS runtime constructs a new AccessControlContext based on
the permissions returned from getPermissions().

b. The servlet's code runs under the AccessControlContext of the SSL
user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to SecurityManager.checkPermission().

d. The JVM then:

JAAS Provider Integration in J2EE Application Environments

6-12 Oracle9iAS Containers for J2EE Services Guide

– Examines the authorization context associated with the current thread

– Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-13

Integrating the JAAS Provider with Basic Authentication
Basic authentication bypasses Oracle9iAS Single Sign-On. Figure 6–5 shows specific
JAAS provider integration in an application configured for Basic authentication in a
J2EE environment.

Figure 6–5 Oracle Component Integration in J2EE Environment

JAAS Provider Integration in J2EE Application Environments

6-14 Oracle9iAS Containers for J2EE Services Guide

Basic Authentication J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment configured for Basic authentication.
In this environment, Oracle9iAS Single Sign-On is not used. A login module (for
example, RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by OC4J (the Web container for executing servlets). The OC4J listener
handles the request.

2. The JAAS provider retrieves the user.

3. The final step or steps depend on the setting of the runas-mode in the
jazn-web-app element.

If the runas-mode is set to false, then the following happens:

a. The target servlet is invoked.

If the runas-mode is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's service() method within
a PrivilegedAction block through Subject.doAs(). The
JAZNUserManager enforces security constraints.

– When Subject.doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
getPermissions() method.

– The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

– JAAS runtime constructs a new AccessControlContext based on
the permissions returned from getPermissions().

Note: If you have configured BASIC authentication, OC4J invokes
the RealmLoginModule whenever the user credentials are required.
For example, when a request hits a protected page, OC4J will ask
the JAAS provider to authenticate the user, then the
RealmLoginModule will be invoked to authenticate the user, using
the credentials sent by the user via the browser over HTTP.

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Java2 Applications 6-15

b. The servlet's code runs under the AccessControlContext of the user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to SecurityManager.checkPermission().

d. The JVM then:

– Examines the authorization context associated with the current thread

– Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

J2EE and JAAS Provider Role Mapping
Two distinct roles types are available to application developers creating JAAS
provider-integrated applications in J2EE environments: J2EE roles and JAAS
provider roles. When these role types are mapped together using OC4J group
mappings, users can access an application with a defined set of role permissions for
as long as the user is mapped to this role.

This section describes these role types and how which they are mapped together.

■ J2EE Security Roles

■ JAAS Provider Roles and Users

■ OC4J Group Mapping to J2EE Security Roles

J2EE Security Roles
The J2EE development environment includes a portable security roles feature
defined in the web.xml file for servlets and Java Server Pages (JSPs). Security roles
define a set of resource access permissions for an application. Associating a
principal (in this case, a JAAS provider user or role) with a security role assigns the
defined access permissions to that principal for as long as they are mapped to the
role. For example, an application defines a security role called sr_developer:

<security-role>
 <role-name>sr_developer</role-name>
</security-role>

You also define the access permissions for the sr_developer role.

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL:

http://java.sun.com/j2ee/

JAAS Provider Integration in J2EE Application Environments

6-16 Oracle9iAS Containers for J2EE Services Guide

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>access to the entire application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developer</role-name>
 </auth-constraint>
 </security-constraint>

JAAS Provider Roles and Users
JAAS provider roles and Users are defined depending on the provider type,
LDAP-based Oracle Internet Directory or XML-based.

For example, with the XML-based provider type, developer is listed as a
role element in the jazn-data.xml file:

 <role>
 <name>developer</name>
 <members>
 <member>
 <type>user<type>
 <name>john<name>
 </member>
 </members>
 </role>

OC4J Group Mapping to J2EE Security Roles
OC4J enables you to map portable J2EE security roles defined in the J2EE web.xml
file to groups in an orion-application.xml file.

The roles and users defined in your provider environment are mapped to the OC4J
developer group role in the orion-application.xml file.

For example, the sr_developer security role is mapped to the group named
developer.

<security-role-mapping name="sr_developer">
 <group name="developer" />
</security-role-mapping>

How Do I Get Started?

Integrating the JAAS Provider with Java2 Applications 6-17

This association permits the developer group to access the resources allowed for
the sr_developer security role.

User john is listed as a member of the developer role. Because the developer
group is mapped to the J2EE security role sr_developer in the
orion-application.xml file, john has access to the application resources
defined by the sr_developer role.

How Do I Get Started?
You are now ready to get started with the JAAS Provider. To get started quickly,
follow the sections in Table 6–1 in the exact order listed:

Table 6–1 Getting Started with the JAAS Provider

To... See...

Identify and install the JAAS
provider components required
for applications developed in
the J2SE and J2EE environments

The Oracle9i Application Server Installation Guide for your
operating system

Configure the JAAS provider
after installation

Chapter 7 of the Oracle9i Application Server Security Guide

Create realms and associated
components with the provider

Chapter 7, "Managing the JAAS Provider"

Create secure J2SE and J2EE
applications with the JAAS
provider

Chapter 8, "Developing Secure J2SE Applications"

Chapter 9, "Developing Secure J2EE Applications"

How Do I Get Started?

6-18 Oracle9iAS Containers for J2EE Services Guide

Managing the JAAS Provider 7-1

7
Managing the JAAS Provider

This chapter describes how to manage the Oracle9iAS Containers for J2EE (OC4J)
JAAS Provider in Java2 Platform, Standard Edition (J2SE) and Java2 Platform,
Enterprise Edition (J2EE) environments.

This chapter contains these topics:

■ JAAS Provider Management Overview

■ Using the Oracle Enterprise Manager Interface with the JAAS Provider

■ Using the JAZN Admintool

■ Managing LDAP Provider Data with Java Programs

■ Managing XML-Based Provider Data with the XML Schema

■ Other Utilities

JAAS Provider Management Overview

7-2 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Management Overview
Managing the JAAS provider in the J2SE and J2EE environments involves creating
and managing realms, users, roles, permissions, and policy.

How you manage the JAAS provider depends on two things:

■ Whether your provider is XML-based or LDAP-based Oracle Internet Directory

■ Which of the available tools (alone or in combination) you are using:

■ Oracle Enterprise Manager (OEM) (policy and permission management,
only with this release)

■ JAZN Admintool, a command line interface tool

■ Java Programs for LDAP Management, based on the JAAS Provider APIs

■ Other Utilities including:

-PermissionClassManager

-PrincipalClassManager

-LoginModuleManager

Table 7–1 describes the general functionality of each tool in both XML-based and
LDAP-based provider type environments.

Note: Based on the provider type you are using, these tools are
used in slightly different contexts and are not necessarily directly
parallel in function. For example, the JAZN Admintool enables you
to create users if your provider type is the XML-Based Provider
Type, but not if your provider type is LDAP-based.

Therefore, if you are planning to rely on either the Oracle
Enterprise Manager or the JAZN Admintool, also read the
appropriate section, "Managing LDAP Provider Data with Java
Programs" on page 7-27 or "Managing XML-Based Provider Data
with the XML Schema" on page 7-37, for a fuller understanding of
the functions available in each environment.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-3

 LDAP-Based and XML-Based JAAS Providers
XML-based and LDAP-based JAAS providers enable different functionalities as
described in Table 7–2.

Using the Oracle Enterprise Manager Interface with the JAAS Provider
You can use Oracle Enterprise Manager to perform two JAAS provider tasks:

Table 7–1 Tools for Managing XML-Based and LDAP-Based Provider Environments

Using This Tool...

With LDAP-Based provider
type

With XML-Based provider type

Oracle Enterprise
Manger

You can create principals
(known as grantees) and assign
permissions to these grantees.

This tool is not available.

JAZN Admintool A broad range of functions is
available, including several not
included in the API.

A broad range of functions is
available, including several not
included in the API.

Java Programs for
LDAP Management

You have access to all the JAAS
Provider API functionality
available in an LDAP
environment.

This tool is not available.

Table 7–2 JAAS Provider Management

JAAS Provider Description See Also...

LDAP-based

Available with the
Oracle9iAS Infrastructure
installation type)

Enables you to:

■ Create realms

■ Manage roles (in an External
Realm or Subscriber Realm)

■ Manage or create roles (in
an Application Realm)

■ Assign permissions

"Realm Management in
LDAP-Based Environments"
on page 4-17

"Managing Realms" on
page 7-28

XML-based

(Available with all
installation types

Enables you to:

■ Create and manage realms,
users, and roles

■ Assign permissions

"Realm Management in
XML-Based Environments"
on page 4-22

"Managing XML-Based
Provider Data with the XML
Schema" on page 7-37

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-4 Oracle9iAS Containers for J2EE Services Guide

■ Manage JAAS Policy

■ Manage Java Permissions

Oracle Enterprise Manager functionality for the JAAS provider is currently only
available for the LDAP provider environment and only for policy management
tasks.

Accessing the JAAS Provider
To use the Oracle Enterprise Manager to perform JAAS provider tasks, navigate to
the Oracle9i Application Server entry, then to the OC4J system component, and
select the application default as follows:

To access the JAAS Provider:

1. Choose the appropriate Oracle9i Application Server entity in the Application
Servers Name column.

2. Choose OC4J in the System Components list.

The System Components panel appears:

See Also: Your Oracle Enterprise Manager documentation for
instructions on starting Oracle Enterprise Manager

Note: Oracle Enterprise Manager windows use Add buttons that
operate as follows: You enter or select items to be acted upon or
searched for, add them to a list using the Add button, and finally
process the items.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-5

3. Choose Oracle9i Application Server from the list of Application Defaults.

The main window for the JAAS provider appears:

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-6 Oracle9iAS Containers for J2EE Services Guide

Task 1: Managing JAAS Policy
Policies, which store JAAS authorization rules, consist of one or more grants or
grant entries. Grant entries are grantees (principals and codesource (optional)) and
their assigned permissions.

Managing JAAS Policy enables you to:

■ Search for existing grant entries and view grant entry data

■ Delete grant entries

■ Create new grant entries by assigning JAAS provider permissions to principals

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-7

Searching for and Viewing Existing Grant Entries
To search for and view grant entry data:

1. Choose JAAS Policy from the tab on the left of the main window.

The JAAS Policy Management window appears. This is the same as the main
JAAS provider window. See "Accessing the JAAS Provider" on page 7-4.

The window immediately displays a results list that you can modify by entering
a search phrase or using arrows that guide you to subsequent sections of the
results list.

2. Enter the codesource URL, if any.

3. If the grant name you are searching for does not appear immediately on the
results list, enter it.

Wild cards are implied, that is, if you enter several letters, the results list shows
all entries that begin with those letters, assuming the case is the same.

4. Choose Go or press Enter.

5. When the grant name you are searching for appears in the results list, click the
name to view the grant entry data.

For the grant name you have entered, the following data appears:

■ Principal Names and classes

■ Permission Names and classes

■ The codesource, if any, assigned to the grant entry

Note: To manage JAAS policy, the policy cache must be disabled.
This is the default setting.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-8 Oracle9iAS Containers for J2EE Services Guide

Deleting Grant Entries
To delete grant entry data:

1. Perform the search functions as described "Searching for and Viewing Existing
Grant Entries" on page 7-7.

2. Select the grant entry from the results list by choosing the radio button besides
the name.

3. Choose Delete.

Creating a New Grant Entry
To create a new grant entry:

1. Choose JAAS Policy from the tab on the left.

The JAAS Policy Management window appears.

2. Choose New Grant.

The New Grant: Name/CodeSource window appears, and enables you to enter
a name for the new grant entry and define a codesource. The codesource is the
code associated with the policy entry.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-9

3. Enter a grant name and codesource.

4. Choose Next.

The New Grant: Principal(s) window appears and enables you to select the
principal type and enter one or more principals to define the grant entry.

The available principal types are:

■ Solaris User

■ LDAP User

■ Realm User

See Also: "Policies and Permissions" on page 4-10 for information
on codesources

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-10 Oracle9iAS Containers for J2EE Services Guide

5. Select the type and enter the name of a principal.

If you have selected the LDAP type, the name must be an X.500 distinguished
name. Although the system accepts other names, they will be rejected when
you finish. For other types, you can enter any name.

6. Choose Add to add this principal to the list of principals being added to this
grant.

7. Repeat Steps 5 and 6 until all principals are added to the list of principals.

8. Choose Next to add all principals on the list to the grant.

The New Grant: Permission window appears and enables you to enter the
permission class, target, and action for the grant entry. These are essentially
what the user is authorized to do with your application.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-11

■ The class is the Java permission being assigned to the policy (for example,
java.io.FilePermission).

■ The target is the resource to which this permission applies (for example,
files in a directory named /home/*).

■ The action is the actions associated with this target (for example, read and
write privileges on all files in /home/*).

9. Select the class, target, and action from the drop-down list boxes on the left or
enter the names directly in the fields on the right.

10. Choose Add to add this permission to the list of permissions to be added the
grant.

11. Repeat Steps 9 and 10 until all permissions have been added to the list of
permissions.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-12 Oracle9iAS Containers for J2EE Services Guide

12. Choose Finish.

The entry is now granted these permissions on the designated target. The grant
entry is complete.

Task 2: Managing Java Permissions
The Java Permissions task enables you to search for and view the permissions of a
principal on a given codesource and revoke these permissions. You can search by
principal class or principal name.

Searching for and Viewing Existing Permissions
To search for permissions on a principal:

1. Choose Java Permissions from the tab on the left.

The Permission Management window appears:

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Managing the JAAS Provider 7-13

2. Enter the codesource URL.

3. Select the principal type from the drop-down list.

The available principal types are:

■ Solaris User

■ LDAP User

■ Realm User

4. Enter the name of a principal from the principal type.

5. Choose Add to add a principal to the search list. You can search for multiple
principals at once.

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7-14 Oracle9iAS Containers for J2EE Services Guide

6. Repeat Steps 4 and 5 until all principals have been added to the search list.

7. Choose Search.

The results display on-screen including permission class, permission target, and
permission actions, but the codesource does not appear.

Revoking Permissions Assigned to a Principal
To revoke permissions assigned to a principal:

1. Perform the search function as described in "Searching for and Viewing Existing
Permissions" on page 7-12.

2. Revoke permissions by selecting the radio button of an appropriate permission.

You can only revoke one permission at a time.

3. Choose Revoke.

Using the JAZN Admintool

Managing the JAAS Provider 7-15

Using the JAZN Admintool
The JAZN Admintool can manage both XML-based and LDAP-based JAAS
provider data from the command prompt.

The JAZN Admintool is a flexible Java console application, with functions that can
be called directly from the command line or through the shell interface of the
Admintool. The shell uses UNIX-derived commands to perform specific JAAS
provider functions.

This section includes the following topics:

■ Usage Examples

■ Command Options

■ Realm Operations

■ JAZN Shell Interface

■ JAZN Shell Commands

Usage Examples
The following examples illustrate the different ways that the JAZN Admintool
commands can be used.

To list all users in realm foo:
From the UNIX command line:

java -jar jazn.jar -listusers foo

From the shell interface of the Admintool (using command-line options):

JAZN:> listusers foo

From the shell interface of the Admintool (through modified UNIX commands):

JAZN:> cd /realms/foo/users
JAZN:foo> ls

To add the role fooRole to realm foo:
From the UNIX command line:

java -jar jazn.jar -addrole foo fooRole

Using the JAZN Admintool

7-16 Oracle9iAS Containers for J2EE Services Guide

From the shell interface of the Admintool (using command-line options):

JAZN:> addrole foo fooRole

From the JAAS provider shell (through modified UNIX commands):

JAZN:> cd /realms/foo/users
JAZN:foo> mkdir fooRole

Command Options
The JAZN Admintool provides the following command options, which are
described in greater detail in the following sections. The JAZN Admintool
command options can be invoked several different ways as described in "Usage
Examples" on page 7-15. Error messages display if the syntax or parameters
specified are incorrect.

Realm Operations
 -addrealm realm admin {adminpwd adminrole|adminrole
 userbase rolebase realmtype}
 -addrole realm role
 -adduser realm username password
 -checkpasswd realm user [-pw password]
 -grantrole role realm {user|-role to_role}
 -listrealms
 -listroles [realm [user|-role role]|-perm permission]
 -listusers [realm [-role role|-perm permission]]
 -remrealm realm
 -remrole realm role
 -remuser realm user
 -revokerole role realm {user|-role to_role}
 -setpasswd realm user old_pwd new_pwd

Policy Operations
 -addperm permission permission_class action target [description]
 -addprncpl principal_name prncpl_class params [description]
 -grantperm realm {user|-role role} permission_class
 permission_actions
 -listperms realm {user |-role role|-realm realm}
 -listperm permission
 -listprncpls
 -listprncpl principal_name
 -remperm permission
 -remprncpl principal_name

Using the JAZN Admintool

Managing the JAAS Provider 7-17

 -revokeperm realm {user|-role role} permission_class
 permission_actions

Interactive Shell
 -shell

Configuration Operations
 -getconfig default_realm admin password

Migration Operations
 -convert filename realm

Miscellaneous
 -help
 -version

Realm Operations

Adding and Removing Realms
-addrealm realm admin {adminpwd adminrole | adminrole userbase rolebase
 realmtype}
-remrealm realm

The -addrealm option creates a realm of the specified type with the specified
name, and -remrealm deletes a realm.

Valid realm types are:

■ LDAP Environment: external and application

■ XML Environment: XML

The user must provide the following:

■ For an XML provider type:

■ realm name

■ administrator username

■ administrator password

■ administrator role

■ For LDAP:

Using the JAZN Admintool

7-18 Oracle9iAS Containers for J2EE Services Guide

■ realm name

■ administrator name

■ administrator role

■ user search base in the directory

■ role search base in the directory

■ realm type

Adding and Removing Roles
-addrole realm role
-remrole realm role

The -addrole option creates a role in the specified realm, and -remrole deletes a
role from the realm.

Adding and Removing Users
-adduser realm username password
-remuser realm user

The -adduser option adds a user to a specified realm, and -remuser deletes a
user from the realm.

Checking Password
-checkpasswd [realm] user [-pw password]

The -checkpasswd option indicates whether the given user requires a password
for authentication. If -pw is used, it displays a message indicating whether the
specified password authenticates the user.

Granting and Revoking Roles
-grantrole role realm {user|-role to_role}
-revokerole role realm {user|-role to_role}

The -grantrole option grants the specified role to a user (when called with a user
name) or a role (when called with -role). The -revokerole option revokes the
specified role from a user or role.

Using the JAZN Admintool

Managing the JAAS Provider 7-19

Listing Realms
-listrealms

The -listrealms option displays all realms in the current JAAS provider
environments.

Listing Roles
-listroles [realm [user|-role role|-perm permission]]

The -listroles option displays a list of roles that match the list criteria. This
option lists the following:

■ All roles in all realms, when called without any parameters

■ All roles granted to a user, when called with a realm name and user name

■ Roles that are granted the specified role, when called with a realm name and
the option -role

■ Roles that are granted the specified permission, when called with a realm
name and the option -perm

Listing Users
-listusers [realm [-role role|-perm permission]]

The -listusers option displays a list of users that match the list criteria. This
option lists the following:

■ All users in all realms, when called without any parameters

■ All users in a realm, when called with a realm name

■ Users that are granted a certain role or permission, when called with a realm
name and the option -role or -perm

Setting a Password
-setpasswd realm user old_pwd new_pwd

The -setpasswd option allows administrators to reset the password of a user
given the old password.

Using the JAZN Admintool

7-20 Oracle9iAS Containers for J2EE Services Guide

Policy Operations

Adding and Removing Permissions
-addperm permission permission_class action target [description]
-remperm permission

The -addperm option registers a permission with the JAAS provider
PermissionClassManager. The -remperm option unregisters the specified
permission class. permission and description can be multiple words if
enclosed by quotation marks ("").

Adding and Removing Principals
-addprncpl principal_name prncpl_class params [description]
-remprncpl principal_name

The -addprncpl option registers a principal with the JAAS Provider
PrincipalClassManager. The -remprncpl option unregisters the specified
principal class. principal_name and description can be multiple words if
enclosed by quotation marks ("").

Granting and Revoking Permissions
-grantperm realm {user|-role role} permission_class permission_actions
-revokeperm realm {user|-role role} permission_class permission_actions

The -grantperm option grants the specified permission to a user (when called
with a username) or a role (when called with -role). The -revokeperm option
revokes the specified permission from a user or role. A permission is denoted by its
explicit class name (for example, oracle.security.jazn.realm.
RealmPermission) and its action and target parameters (for RealmPermission,
realmname action). Note that there may be multiple action and target
parameters.

Listing Permissions
-listperms realm {user |-role role| realm realm}

The -listperms option displays all permissions that match the list criteria. This
option lists the following:

■ All permissions registered with the JAAS Provider
PermissionClassManager

■ Permissions that are granted a role, when called with a realm name and the
option -role

Using the JAZN Admintool

Managing the JAAS Provider 7-21

Listing Permission Information
-listperm permission

The -listperm option displays detailed information about the specified
permission, including the permission’s display name, class, description, actions,
and targets.

Listing Principal Classes
-listprncpls

The -listprncpls option lists all principal classes registered with the
PrincipalClassManager.

Listing Principal Class Information
-listprncpl principal_name

The -listprncpl option displays detailed information about the specified
principal, including the display name, class, description, and actions.

Interactive Shell

Starting the JAZN Admintool Shell
-shell

The -shell option starts an JAAS provider interface shell. The JAAS Provider shell
provides interactive administration of JAAS provider principals and policies
through a UNIX-derived interface.

Configuration Operations

Getting XML Configuration Information
-getconfig default_realm admin password

The -getconfig option displays the current configuration setting in jazn.xml.

Using the JAZN Admintool

7-22 Oracle9iAS Containers for J2EE Services Guide

Migration Operations

Migrating Principals from the principals.xml File
-migrates filename realm|

The -migrate option migrates the OC4J principals.xml file into the specified
realm of the current JAAS provider. filename specifies the name and location of
the OC4J principals file (typically stored in
j2ee/home/config/principals.xml).

The migration converts principals.xml users to JAAS Provider RealmUsers
and principals.xml groups to JAAS Provider roles. All permissions previously
granted to a principals.xml group are mapped to the JAAS Provider role. All
users that were deactivated at the time of migration are not migrated. This is to
ensure that no users can inadvertently gain access through the migration.

An error is returned if the specified file contains errors.

Miscellaneous

Getting Help
-help

The -help option displays a list of command options available with the JAZN
Admintool.

JAZN Shell Interface
The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN
shell provides an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure 7–1 shows the node structure:

See Also: "Replacing principals.xml" on page 6-4 for additional
information on migration and replacement of principals.xml

Using the JAZN Admintool

Managing the JAAS Provider 7-23

Figure 7–1 JAZN Shell Directory Structure

In this structure, the user and role nodes are linked together. Consequently, if you
are at /realms/realm/users/user/roles in the tree and type cd role, you
are taken to /realms/realm/roles/role.

Another way to look at this, is that role 1 is a symbolic link of role 2.

Using the JAZN Admintool

7-24 Oracle9iAS Containers for J2EE Services Guide

Figure 7–2 shows nodes of the xmlRealm created by the jazn-data.xml file in
"Sample jazn-data.xml Code" on page B-2.

Figure 7–2 Illustrated Shell Directory Structure

The JAZN shell can be recognized by the shell prompt JAZN:>. At any point in
time, the prompt indicates which realm the administrator is managing. The
following is an example:

JAZN:> cd foo
JAZN:foo> ls

To start the shell, invoke the JAZN Admintool with the -shell option, as follows:

java -jar jazn.jar -shell

Using the JAZN Admintool

Managing the JAAS Provider 7-25

JAZN Shell Commands
Shell commands consists of the command options in "Realm Operations" on
page 7-17 and the following series of UNIX derived commands for viewing the
principals and policies in the structured way. Relative and absolute paths are
supported for all relevant commands.

Using the ls Command to List JAAS Provider Data

ls [path]

The ls command mirrors its UNIX counterpart and lists the contents of the current
directory or node. For example, if the current directory is the root, ls lists all
realms. If the current directory is /realm/users, then ls lists all users in the
realm. The results of the listing depends on the current directory. The ls command
can operate with the * wildcard.

Using the cd Command to Navigate JAAS Provider Data
cd path

The cd command, mirroring its UNIX counterpart, allows users to navigate the
directory tree. Relative and absolute path names are supported. To exit a directory,
type cd ... Entering cd / returns the user to the root node. An error message is
displayed if the specified directory does not exist.

Using the mkdir, mk, or add Command to Create JAAS Provider Data
mkdir directory_name [other_parameter]
mk directory_name [other_parameter]
add directory_name [other_parameter]

The mkdir, mk, and add commands are synonyms of a command that creates a new
subdirectory or node in the current directory. For example, if the current directory is
the root, it creates a realm. If the current directory is /realm/users, it creates a
user. The effect of mkdir depends upon the current directory. Some commands
require additional parameters in addition to the name.

Using the JAZN Admintool

7-26 Oracle9iAS Containers for J2EE Services Guide

Using the rm Command to Remove JAAS Provider Data
rm directory_name

The rm command mirrors its UNIX counterpart and removes the directory or node
in the current directory. For example, if the current directory is the root, it removes
the specified realm. If the current directory is /realm/users, it removes the
specified user. The effect of rm depends on the current directory. An error message
is displayed if the specified directory does not exist.

The rm command can operate with the * wildcard.

Using the pwd Command to Display the Current Shell Working Directory
pwd

The pwd command displays the current location of the user through the UNIX
directory format. Undefined values are left blank in this listing.

Using the help Command to List JAAS Provider Commands
help

The help command displays a list of all valid commands.

Using the man Command to Display Detailed JAAS Provider Commands
man command_option
man shell_command

The man command mirrors its UNIX counterpart and displays more detailed usage
information for the specified shell command or JAZN Admintool command option.
Where information presented by the man page and this document conflict, this
document contains the correct usage for the command.

Using the clear Command to Clear the Screen
clear

The clear command clears the terminal screen by displaying 80 blank lines.

Using the exit Command to Exit the JAZN Shell
exit

The exit command exits the JAZN shell.

Managing LDAP Provider Data with Java Programs

Managing the JAAS Provider 7-27

Managing LDAP Provider Data with Java Programs
You can manage JAAS provider data by creating Java programs using the JAAS
Provider APIs.

This section discusses the JAAS provider in LDAP environments. The emphasis is
on Java programming, but it also provides useful information for those using Oracle
Enterprise Manager or the JAZN Admintool.

This section contains the following topics:

■ About the Sample Java Code

■ The JAZNContext and JAZNConfig Classes

■ Managing Realms

■ Managing Users

■ Managing Roles

■ Managing Permissions

■ Managing JAAS Provider Policy

About the Sample Java Code
Some sample Java programs for managing LDAP environments are provided for
you. In the sample code, objects to be modified are presented in bold.

For some of the samples in the following chapters, relationships between samples
are discussed after the sample code:

■ Chapter 7, "Managing the JAAS Provider" (this chapter)

■ Chapter 8, "Developing Secure J2SE Applications"

■ Chapter 9, "Developing Secure J2EE Applications"

■ Appendix B, "JAAS Provider Standards and Samples"

The types of code sample relationships discussed include the following:

■ A sample code example demonstrates creating a realm type, such as an
Application Realm. A later sample contains the code for dropping that same
Application Realm.

■ A sample code example demonstrates setting permissions on a specific
application. In a later section, the user granted those permissions is shown
starting and running that application.

Managing LDAP Provider Data with Java Programs

7-28 Oracle9iAS Containers for J2EE Services Guide

The JAZNContext and JAZNConfig Classes
The JAZNContext and JAZNConfig classes of the package oracle.security.
jazn serve as a starting point for the JAAS provider. The JAZNContext and
JAZNConfig classes contain methods such as getPolicy, getProperty, and
getRealmManager that automatically retrieve information specific to the current
JAAS provider instance.

The JAZNConfig class is designed for use with multiple instances of the JAAS
provider.

The following code sample illustrates how JAZNContext or JAZNConfig are used
in creating a realm in an LDAP-based environment:

 RealmManager realmMgr = JAZNContext.getRealmManager();
 ...
 realm = realmMgr.createRealm("abcRealm", realmInfo);

Managing Realms
After you have installed and configured the required components, you must create
realms. A realm is a user community instance maintained by the authorization
system. Realms consist of a user manager and role manager, and provides access to
an LDAP-based provider environment of users and roles (groups).

This section contains the following topics:

■ Realm Creation

■ Creating an External Realm

■ Creating an Application Realm

■ Dropping a Realm

Realm Creation
Realms are created using the createRealm() method of the RealmManager class,
which requires the following information:

■ The realm name

■ The role name (adminRole) given to the administrator. This role can then be
granted to others, giving them administrative privileges

■ Other properties in name/value pairs, including the location that contains the
users and roles of the realm’s organization in Oracle Internet Directory

Managing LDAP Provider Data with Java Programs

Managing the JAAS Provider 7-29

■ A user’s searchbase property for locating the administrator and any user of the
realm. This is required for External Realm and Application Realm.

■ A role’s searchbase property for locating the administrative role and any role
for the realm. This is required for External Realm.

■ Optional properties:

■ The administrator name (adminUser), a user with administrative
privileges

■ A user object class to use as a filter to search for users

■ A role object class to use as a filter to search for roles

Creating an External Realm
An External Realm is an LDAP-based realm that integrates existing user
communities (user and role information not currently stored under the JAAS
Provider context) with the JAAS provider.

User and role management in an External Realm must be handled by an Oracle
Internet Directory tool.

See Also:

■ "Role-Based Access Control (RBAC)" on page 4-14

■ "Realms" on page 4-10

■ "JAAS Provider Realm and Policy Management" on page 4-15

■ "The JAZNContext and JAZNConfig Classes" on page 7-28

■ "Package oracle.security.jazn.realm" on page A-9

■ "LDAP-Based Realm Types" on page 4-17 for definitions of
realm types

Managing LDAP Provider Data with Java Programs

7-30 Oracle9iAS Containers for J2EE Services Guide

The following code sample creates an External Realm with the objects shown in
Table 7–3. The objects to be modified are presented in bold.

Example 7–1 External Realm Creation Code

import oracle.security.jazn.spi.ldap.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;

import java.util.*;

/**
 * Creates an external realm.
 */

public class CreateRealm extends Object
{
 public CreateRealm() {};

 public static void main (String[] args) {
 CreateRealm test = new CreateRealm();
 test.createExtRealm();
 }

 void createExtRealm() {
 Realm realm=null;

 try {
 Hashtable prop = new Hashtable();
 prop.put(Realm.LDAPProperty.USERS_SEARCHBASE,"cn=users,o=abc.com");
 prop.put(Realm.LDAPProperty.ROLES_SEARCHBASE,"cn=roles,o=abc.com");

 // specifying the following LDAP directory object class

Table 7–3 Objects in Sample External Realm Creation Code

Objects Names

sample organization abc.com

adminUser (optional) John.Singh

adminRole administrator

sample realm name abcRealm

Managing LDAP Provider Data with Java Programs

Managing the JAAS Provider 7-31

 // is optional. When specified, it will
 // be used as a filter to search for users
 prop.put(Realm.LDAPProperty.USERS_OBJ_CLASS,"orclUser");

 // adminUser is optional
 String adminUser = "John.Singh";

 String adminRole = "administrator";

 RealmManager realmMgr = JAZNContext.getRealmManager();

 InitRealmInfo realmInfo = new
 InitRealmInfo(InitRealmInfo.RealmType.EXTERNAL_REALM, adminUser,
 adminRole, prop);
 realm = realmMgr.createRealm("abcRealm", realmInfo);
 }

catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Creating an Application Realm
An Application Realm is an LDAP-based realm that supports external read-only
users and internal role management.

The code for creating an Application Realm is similar to the code for creating an
External Realm, with the following exceptions:

■ The property name for InitRealmInfo.RealmType is APPLICATION_
REALM

■ An Application Realm does not need to include the setting to search for roles as
defined in prop.put(Realm.LDAPProperty.ROLES_SEARCHBASE,
"cn=roles,o=defaultOrganization");

See Also: "Supplementary Code Sample: Creating an Application
Realm" on page B-7 for a complete code sample

Note: If both adminUser and adminRole exist, then adminRole
is granted to adminUser, using RBAC.

Managing LDAP Provider Data with Java Programs

7-32 Oracle9iAS Containers for J2EE Services Guide

Dropping a Realm
The RealmManager class of package oracle.security.jazn.realm enables
you to drop a realm.

The following code sample shows how to drop a realm:

RealmManager realmMgr = JAZNContext.getRealmManager();
realmMgr.dropRealm("abcRealm");

The JAAS provider administrator and the realm administrator both have
permission to drop a realm.

Managing Users
You cannot create or manage users directly in the JAAS provider if you are using an
LDAP-based provider type. For those tasks, use an Oracle Internet Directory tool.

You can add users to a realm using the realm’s UserManager interface, as shown in
the following code:

 UserManager usermgr = realm.getUserManager();
 RealmUser user = usermgr.getUser("Chitra.Kumar");

Managing Roles
The RoleManager interface provides methods to manage roles. Table 7–4 describes
some of the methods available with the RoleManager interface.

See Also: Oracle Internet Directory Administrator’s Guide for
information on using Oracle Internet Directory tools

Table 7–4 RoleManager Methods

Method Description
Available to These
Realms

createRole Creates a role in a realm Application Realm

grantRole Grants a role to a
RealmPrincipal

Application Realm

Managing LDAP Provider Data with Java Programs

Managing the JAAS Provider 7-33

Managing roles requires getting the realm from the RealmManager as described in
"The JAZNContext and JAZNConfig Classes" on page 7-28. After that, you get an
instance of the RoleManager interface with the method you are calling.

This section contains these topics:

■ Creating Roles

■ Granting Roles

■ Dropping Roles

Creating Roles
Roles are created either externally in an External Realm with an Oracle Internet
Directory tool or internally in an Application Realm with RoleManager.

The following code sample shows how to create a role with RoleManager:

RoleManager rolemgr = realm.getRoleManager();
RealmRole role = rolemgr.createRole("devManager_role");

Granting Roles
You can grant roles in an Application Realm, but not in an External Realm.

dropRole Drops either named roles or a role
given in the instance

Application Realm

getRoles Gets roles in a realm All realms

revokeRole Revokes a role from a
RealmPrincipal

Application Realm

Note: You can internally create, grant, drop, and revoke roles in
an Application Realm using the RoleManager interface.

However, in an External Realm, you cannot use the RoleManager
interface. Roles can be created, granted, dropped, and revoked with
an Oracle Internet Directory tool.

Table 7–4 RoleManager Methods

Method Description
Available to These
Realms

Managing LDAP Provider Data with Java Programs

7-34 Oracle9iAS Containers for J2EE Services Guide

Roles are granted by an instance of RoleManager.

These lines show how to grant a role:

RoleManager rolemgr = realm.getRoleManager();
...
rolemgr.grantRole(user, director_role);

These lines are key to the sample code show in Example 7–2 on page 7-34.

This sample code demonstrates granting a role, manager_role, to another role,
director_role, and granting the director_role to a user, Chitra.Kumar.
Consequently, Chitra is granted the director_role directly, and the manager_
role indirectly.

The objects to be modified are presented in bold.

Example 7–2 Granting Roles Code Sample

import oracle.security.jazn.spi.ldap.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;
import java.util.*;

public class GrantRole extends Object
{
 public GrantRole() {}
 public static void main (String[] args)
 {

Table 7–5 Objects in Sample Granting Roles Code

Objects Names Comments

Realm devRealm devRealm appears in this code and in
the creation of the sample Application
Realm which can be viewed in
Example 15–3 on page B-8.

RealmUser user Chitra.Kumar

RealmRole director_role

RealmRole manager_role

sample organization dev.com dev.com does not appear in this code
directly, but was acted upon in the
creation of the sample Application
Realm which can be viewed in
Example 15–3 on page B-8.

Managing LDAP Provider Data with Java Programs

Managing the JAAS Provider 7-35

 GrantRole test = new GrantRole();
 test.grantRole();

 }

 void grantRole() {
try {

 RealmManager realmMgr = JAZNContext.getRealmManager();
 Realm realm = realmMgr.getRealm("devRealm");
 RoleManager rolemgr = realm.getRoleManager();
 RealmRole manager_role = rolemgr.getRole("manager_role");
 RealmRole director_role = rolemgr.getRole("director_role");
 UserManager usermgr = realm.getUserManager();
 RealmUser user = usermgr.getUser("Chitra.Kumar");

 /* grants manager_role to director_role */
 rolemgr.grantRole(director_role, manager_role);

 /* grants director_role to Chitra */
 rolemgr.grantRole(user, director_role);
 }

catch (JAZNException e) {
 System.out.println("Exception "+e.getMessage());

 }
 }
}

Dropping Roles
The following code sample shows how to drop a role with RoleManager:

RoleManager rolemgr = realm.getRoleManager();
rolemgr.dropRole("devManager_role");

Managing Permissions
Permissions are extended from the java.security.Permission class. The JAAS
provider provides four classes of permissions representing types of actions that can
be performed. See Table 4–2 on page 4-6 for the list of permissions.

Managing LDAP Provider Data with Java Programs

7-36 Oracle9iAS Containers for J2EE Services Guide

Permissions are all created with constructors such as the following
RealmPermission:

RealmPermission Perm1 = new RealmPermission("devRealm", "createRole");

Managing JAAS Provider Policy
JAAS provider policy grants permissions to principals, such as users and roles. The
policy can be modified after initialization to grant and revoke permissions to
grantees.

Managing Policy with JAAS Provider Packages
These lines of code are key to the sample class shown in "Modifying User
Permissions Code" on page B-10.

final JAZNPolicy policy = JAZNContext.getPolicy();
...
policy.grant(new Grantee(propset, cs), new

 FilePermission("report.data", "read"));

See Also: The following for further information on permissions:

■ "What is the Java2 Security Model?" on page 4-4

■ "What is the Java2 Security Model?" on page 4-4

■ Java Security documentation by visiting the following URL:
http://java.sun.com/j2se/1.3/docs/guide/security/

Managing XML-Based Provider Data with the XML Schema

Managing the JAAS Provider 7-37

Managing XML-Based Provider Data with the XML Schema
You can manage JAAS provider data by modifying XML files used by the JAAS
Provider APIs.

This section discusses the JAAS provider in XML-based provider environments. The
emphasis is on data files that you create yourself based on the XML schema, but it
also provides useful information for those using the JAZN Admintool.

The XML-based environment provides fast, simple, lightweight JAAS provider
management. You can use an XML file (named jazn-data.xml in this example) to
manage the JAAS provider realm and policy information. Table 7–6 describes the
sections of the jazn-data.xml file.

The jazn-data.xml file is specified as follows:

■ For J2SE: in the jazn.xml configuration file

■ For J2EE: in the orion-application.xml configuration file

Managing Realms, Users, Roles, and Permissions
XML realm and provider information is stored in an XML file typically named
jazn-data.xml. To work correctly, the XML file must conform to specific policy
schema and DTD standards.

Table 7–6 Description of jazn-data.xml File

Section This section enables you to:

Realm data ■ Create realms, users, and roles

■ Grant roles to users and to other roles

Policy data Assign permissions to users and roles defined in the realm data
section of the file

See Also: Oracle9i Application Server Security Guide for
configuration information on these two XML files

See Also:

■ "Sample jazn-data.xml Code" on page B-2 to view an XML
Schema and a sample jazn-data.xml file

Managing XML-Based Provider Data with the XML Schema

7-38 Oracle9iAS Containers for J2EE Services Guide

DTD Standard for XML Datafiles
The XML data file must conform to the following DTD:

<!ELEMENT jazn-data (jazn-realm?, jazn-policy?, jazn-permission-classes?,
jazn-principal-classes?, jazn-loginconfig?)>

<!-- Realm Data -->

<!ELEMENT jazn-realm (realm*)>
<!ELEMENT realm (name, users?, roles?, jazn-policy?)>
<!ELEMENT users (user*)>
<!ELEMENT user (name, display-name?, description?, credentials?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT credentials (#PCDATA)>
<!ELEMENT roles (role*)>
<!ELEMENT role (name, display-name?, description?, members)>
<!ELEMENT members (member*)>
<!ELEMENT member (type, name)>
<!ELEMENT type (#PCDATA)>

<!-- Policy Data -->

<!ELEMENT jazn-policy (grant*)>
<!ELEMENT grant (grantee, permissions?)>
<!ELEMENT grantee (display-name?, principals?, codesource?)>
<!ELEMENT principals (principal*)>
<!ELEMENT principal (realm-name?, type?, class, name)>
<!ELEMENT realm-name (#PCDATA)>
<!ELEMENT codesource (url)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT permissions (permission+)>
<!ELEMENT permission (class, name, actions?)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT actions (#PCDATA)>

<!-- Principal Class Data -->

<!ELEMENT jazn-principal-classes (principal-class*)>
<!ELEMENT principal-class (name, description?, type, class,
name-description-map?)>
<!ELEMENT name-description-map (name-description-pair*)>
<!ELEMENT name-description-pair (name, description?)>

Other Utilities

Managing the JAAS Provider 7-39

<!-- Permission Class Data -->

<!ELEMENT jazn-permission-classes (permission-class*)>
<!ELEMENT permission-class (name, description?, type, class, target-descriptors,
action-descriptors?)>
<!ELEMENT target-descriptors (target-descriptor*)>
<!ELEMENT target-descriptor (name, description?)>
<!ELEMENT action-descriptors (action-descriptor*)>
<!ELEMENT action-descriptor (name, description?)>

<!-- Login Module Data -->

<!ELEMENT jazn-loginconfig (application*)>
<!ELEMENT application (name, login-modules)>
<!ELEMENT login-modules (login-module+)>
<!ELEMENT login-module (class, control-flag, options?)>
<!ELEMENT control-flag (#PCDATA)>
<!ELEMENT options (option+)>
<!ELEMENT option (name, value)>
<!ELEMENT value (#PCDATA)>

Other Utilities
There are three additional utilities for managing the JAAS provider. These classes
work with both LDAP-based and XML-based provider types. The classes can be
used and managed programmatically. Additionally, two can be managed through
the JAZN Admintool.

■ PermissionClassManager - Integrates with the JAZN Admintool

■ PrincipalClassManager - Integrates with the JAZN Admintool

■ LoginModuleManager - Works only with J2EE applications and is not
activated with the JAZN Admintool

PermissionClassManager Interface
The PermissionClassManager is a repository of all registered Permission classes
and a utility to help manage them. Registering a permission class allows access to
stored metadata that provides specific information about a given permission's
target, action, and/or description. Failure to register a given permission class does
not affect the JAAS provider's ability to use the permission class. That is, the JAAS

Other Utilities

7-40 Oracle9iAS Containers for J2EE Services Guide

provider does not limit permission grants or revocations to those classes registered
with the PermissionClassManager.

Works with the JAZN Admintool to perform these functions:

■ "Adding and Removing Permissions" on page 7-20

■ "Listing Permissions" on page 7-20

PrincipalClassManager Interface
PrincipalClassManager represents the repository of all registered Principal
classes and a utility to help manage them. Registering a principal class allows access
to stored metadata that provides specific information about a given principal's
name and description. Failure to register a given principal class will not affect the
JAAS provider’s ability to use the principal class. That is, the JAAS provider
recognizes all principal classes whether or not they've been registered with the
PrincipalClassManager.

The PrincipalClassManager works with the JAZN Admintool to perform these
functions:

■ "Adding and Removing Principals" on page 7-20

■ "Listing Principal Classes" on page 7-21

LoginModuleManager
LoginModuleManager is the JAAS Provider implementation of the JAAS
Configuration class and provides login configuration support to applications. The
Configuration class is a registry of applications and corresponding login modules
used by a given application and the order they are to be used. There are both
LDAPLoginModuleManager and XMLLoginModuleManager implementations of
the LoginModuleManager.

See Also:

■ "PermissionClassManager" on page A-6 to view the API

See Also:

■ "PrincipalClassManager" on page A-7 to view the API

Developing Secure J2SE Applications 8-1

8
Developing Secure J2SE Applications

This chapter describes how to develop secure Java2 Platform, Standard Edition
(J2SE) applications using the Oracle9iAS Containers for J2EE (OC4J) JAAS Provider.

This chapter contains these topics:

■ Developing Secure J2SE Applications Overview

■ Authentication in the J2SE Environment

■ Authorization in the J2SE Environment

■ Testing and Executing an Application

■ Sample J2SE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 8, "Developing Secure J2SE
Applications".

Developing Secure J2SE Applications Overview

8-2 Oracle9iAS Containers for J2EE Services Guide

Developing Secure J2SE Applications Overview
J2SE application developers develop, deploy, and manage Java applications on local
desktops or servers. Using the JAAS provider enables developers to make these
applications secure.

After the creation of realms and related components described in Chapter 6,
"Integrating the JAAS Provider with Java2 Applications", the JAAS provider can be
integrated into J2SE applications to provide the following services:

■ Authentication in the J2SE Environment

■ Authorization in the J2SE Environment

Authentication in the J2SE Environment
Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2SE environment is performed with the following:

■ A JAAS LoginContext class

■ A JAAS Provider RealmLoginModule class or another login module that can
be configured as the default login module

■ A callback handler that you must create, following the JAAS model in
javax.security.auth.callback

The constructor for the LoginContext class requires the name of the client login
and a new instance of a callback handler, an object you must implement. The
callback handlers, which are described in JAAS documentation, are required by the
login module to communicate with users.

The user of the computing service is the Subject. The Subject is passed to the
LoginContext class. The LoginContext.login() method compares the
Subject to configuration settings in the JAAS Provider RealmLoginModule or
other login module. If login() is successful, the login module associates the
Principal (a specific identity) and credentials with the Subject.

See Also:

■ "JAAS Provider Integration in J2SE Application Environments"
on page 6-2

■ "Sample J2SE Application" on page 8-5 for a J2SE application
demonstration

Authorization in the J2SE Environment

Developing Secure J2SE Applications 8-3

This authenticates the Subject, which can then be retrieved by invoking
LoginContext.getSubject in the authorization process.

Authorization in the J2SE Environment
Once a user is successfully authenticated, the authorization policy is enforced upon
the user. Authorization is achieved through the following methods and interface
based on the Java2 and JAAS Security Model:

■ javax.security.auth.Subject.doAs() method in the client

■ java.lang.SecurityManager.checkPermission method in the server

■ The PrivilegedAction interface of java.security in the application

Subject.doAs
After retrieving the authenticated Subject from the LoginContext, the client
invokes Subject.doAs with the application as a parameter. The application starts,
which activates security checking in the server. An AccessControlException is
thrown if security checking fails.

SecurityManager.checkPermission
Security checking in J2SE applications requires the use of the JDK 1.3 or greater
java.lang.SecurityManager in the server.

The security manager determines whether to permit operations. The classes in Java
packages cooperate with the security manager by asking the application's security
manager for permission to perform certain operations. Each Java application can
have its own security manager object that acts as a full-time security guard.

The SecurityManager.checkPermission method performs security checking.

See Also: JAAS documentation at the following Web site for more
information about authentication, login modules, and callback
handlers:

http://java.sun.com/products/jaas/

Testing and Executing an Application

8-4 Oracle9iAS Containers for J2EE Services Guide

PrivilegedAction
The application must implement the interface PrivilegedAction.

Testing and Executing an Application
In order to test or execute the application, you must start the SecurityManager at
the command line and, if using a login module to start an application, call it.

This is the first real test of the JAAS provider.

Starting With RealmLoginModule

To start the application using the RealmLoginModule:
1. Go to the computer on which the J2SE application is installed.

2. Start the security manager and test the application at the command prompt:

java -Djava.security.manager -Djava.security.policy=java2.policy
-Djava.security.auth.policy=jazn.xml
-Djava.security.auth.login.config=jaas.config MyApp

where the client, MyApp, calls your application. The jazn.xml file is the
property file that identifies the provider type you are using (Oracle Internet
Directory or XML-Based Provider Type). The jaas.config file indicates that
RealmLoginModule is required for authentication.

This command can be used with the sample code shown in "Sample J2SE
Application" on page 8-5.

Start Without Using RealmLoginModule
It is possible to start J2SE applications without using authentication and the
RealmLoginModule or any login module, but that is not the preferred method. To
do so and use the sample code provided in this chapter, you need to modify the

See Also: Java security architecture at the following Web site:

http://java.sun.com/j2se/1.3/docs/guide/security/

Note: The security manager is automatically started in JAAS
provider-based J2EE applications.

Sample J2SE Application

Developing Secure J2SE Applications 8-5

MyApp code in Example 8–1, "Client Login Code" on page 8-6 so that it does not
require the objects described in "Authentication in the J2SE Environment" on
page 8-2.

After you have modified the MyApp code, you can start it.

To start the application without using the RealmLoginModule:
1. Go to the computer that the J2SE application is installed on.

2. Start the security manager and execute the application at the command prompt:

For example, to test a sample application, enter:

java -Djava.security.manager -Djava.security.policy=java2.policy
-Djava.security.auth.policy=jazn.xml MyApp

where the client, MyApp, calls your application. The type of JAAS provider you
are using (LDAP-based or XML-based) is identified in the jazn.xml file.

Sample J2SE Application
This section shows a sample client login, MyApp, and a brief test application using
the JAAS provider in a J2SE environment.

The following is executed using the commands described in "Testing and Executing
an Application" on page 8-4.

Table 8–1 Sample Client Login Code

Objects Names Comments

CallbackHandler myCallbackHandler myCallbackHandler is a callback handler
that you must implement.

sample application AccessTest1 AccessTest1 is the application that
the user wants to start. The code for
AccessTest1 is show in Example 8–2
on page 8-7.

sample external realm abcRealm abcRealm was created in Example 7–1
on page 7-30.

client user Jane.Smith or
unknown

The client user added in Example 7–1 on
page 7-30. Since Jane.Smith is the
only user added; that is, the only name
returned to Principal p.

Sample J2SE Application

8-6 Oracle9iAS Containers for J2EE Services Guide

Example 8–1 Client Login Code

MyApp Code

import java.io.*;
import java.util.*;
import java.security.Principal;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import com.sun.security.auth.*;

import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;

public class MyApp {

 public static void main(String[] args) {

LoginContext lc = null;
try {
 // you must create a CallbackHandler class
 lc = new LoginContext("MyApp", new myCallbackHandler());
 } catch (LoginException le) {
 le.printStackTrace();
 System.exit(-1);
}

try {
 // attempt authentication
 lc.login();
} catch (AccountExpiredException aee) {
 System.out.println("Your account has expired. " +
 "Please notify your administrator.");
 System.exit(-1);

 // other exceptions
 //CredentialExpiredException
 // FailedLoginException
}

// checking what Principals the user has
Iterator principalIterator = lc.getSubject().getPrincipals().iterator();

Sample J2SE Application

Developing Secure J2SE Applications 8-7

System.out.println("Authenticated user has the following Principals:");
while (principalIterator.hasNext()) {
 Principal p = (Principal)principalIterator.next();
 System.out.println("\t" + p.toString());
}

System.out.println("User has " +
 lc.getSubject().getPublicCredentials().size() +
 " Public Credential(s)");

// now try to execute the sample application as the authenticated Subject
Subject.doAs(lc.getSubject(), new AccessTest1());

System.exit(0);
 }
}

Sample J2SE Application Code
This is the sample application that is executed when a successfully authenticated
principal runs MyApp.

Example 8–2 Sample Application Code

import java.lang.*;
import java.security.*;
import java.io.*;

public class AccessTest1 implements PrivilegedAction {

 public Object run() {

 File f = new File("report.data");

 // Security checking is invoked
 if (f.exists()) {
 System.out.println("*** report.data accessed ***");
 }
 return null;
 }
}

Table 8–2 Objects in Sample Application Code

Objects Names

file report.data

Sample J2SE Application

8-8 Oracle9iAS Containers for J2EE Services Guide

Discussion of the J2SE Sample Client Login and Application Code
In the MyApp client, once the authentication process is completed, Subject.doAs
starts the sample application AccessTest1.

AccessTest1 starts and requests to read the report.data file. This request
invokes security checking in the server, which determines if the user has permission
on AccessTest1 to read the report.data file.

Permission has been granted previously to Jane.Smith in Example 7–1 on
page 7-30. If Jane.Smith is the user logging in, AccessTest1 runs.

If the user is not Jane.Smith, the authorization fails because no other users have
been granted this permission.

Developing Secure J2EE Applications 9-1

9
Developing Secure J2EE Applications

This chapter describes how to develop secure Java2 Platform, Enterprise Edition
(J2EE) applications using the JAAS Provider and Oracle9iAS Containers for J2EE
(OC4J).

This chapter contains these topics:

■ Developing Secure J2EE Applications Overview

■ Authentication in the J2EE Environment

■ Authorization in the J2EE Environment

■ Testing and Executing the J2EE Application

■ Sample J2EE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 7, "Managing the JAAS
Provider".

Developing Secure J2EE Applications Overview

9-2 Oracle9iAS Containers for J2EE Services Guide

Developing Secure J2EE Applications Overview
J2EE application developers develop, deploy, and manage Web enabled,
server-centric, enterprise level Java applications that are deployed in multiple tier
environments. Using the JAAS provider enables developers to make these
applications secure.

In J2EE applications, the JAAS provider is integrated with OC4J and provides the
JAZNUserManager, an implementation of the OC4J UserManager.

After the creation of realms and related components described in Chapter 7,
"Managing the JAAS Provider", the JAAS Provider can be integrated into J2EE
applications to provide the following services:

■ Authentication in the J2EE Environment

■ Authorization in the J2EE Environment

Authentication in the J2EE Environment
Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2EE environment is performed with the following:

■ Oracle9iAS Single Sign-On (for SSO environments) or the JAAS provider
RealmLoginModule or other login module (for non-SSO environments)

■ JAZNUserManager for OC4J (Required)

Before HTTP requests can be dispatched to the target servlet, the
JAZNUserManager gets the authenticated user information (set by mod_osso)
from the HTTP request object and sets the JAAS subject in OC4J.

Running with the Permissions and Roles Associated with an Authenticated Identity
(Optional)

You can choose to configure the JAZNUserManager so that a filter enables the
target servlet to run with the permissions and roles associated with an
authenticated identity or run-as identify. To do this, configure the jazn-web-app
element.

See Also: "Oracle9iAS Containers for J2EE (OC4J)" on page 6-4

Authentication in the J2EE Environment

Developing Secure J2EE Applications 9-3

Interception of Servlet Invocation
The JAZNUserManager intercepts calls from Oracle9iAS Single Sign-On or the
JAAS Provider RealmLoginModule and retrieves authentication information to
identify the username and role.

Retrieving Authentication Information
The following javax.servlet.HttpServletRequest APIs retrieve
authentication information within the servlet:

■ getRemoteUser for the authenticated username

■ getAuthType for the authentication scheme

■ getUserPrincipal for the authenticated principal object

■ getAttribute("java.security.cert.X509certificate") for the SSL
client certificate.

(Optional if the Filter Element Has Been Set)
If the filter element has been set, JAZNUserManager performs the following when
doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) is invoked:

■ For SSO or Basic authentication, the filter relies on JAZNUserManager to
retrieve the authenticated user and the corresponding principal object.

■ For an SSL client certificate, the filter performs the following:

1. Retrieves SSL client certificate from the request object, if it is available

2. Instantiates java.security.cert.X509Certificate object x509cert
based on the client certificate

3. Creates an array of type java.security.cert.X509Certificate and
adds objects to the array

4. Sets the attribute on the request object ("java.security.cert
.X509Certificate",x509cert)

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide and "JAZNUserManager" on page 6-4 for further information
on options and configuration of the JAZNUserManager filter,
including the jazn-web-app element

Authorization in the J2EE Environment

9-4 Oracle9iAS Containers for J2EE Services Guide

5. Gets the SSL principal name by invoking oracle.security.jazn.
util.CertHash.getHash(x509cert)

6. Gets the SSL principal object sslPrincipal, a RealmPrincipal object,
from the default realm using the JAAS Provider API

The filter element constructs an oracle.security.jazn.oc4j.
JAZNServletRequest request for the HTTP request.

(End of Optional Section)
Authorization begins with a call to Subject.doAs().

Authorization in the J2EE Environment
Authorization is the process of granting the permissions and privileges entitled to
the user.

Once the user is authenticated, the JAZNUserManager invokes the target servlet
within a Subject.doAs() block to enable JAAS-based authorization in the target
servlets.

Authorization is achieved through the following:

■ JAZNUserManager

■ Methods based on the Java2 Security Model:

■ Servlet.service() in the servlet

■ Subject.doAs()in the client

■ SecurityManager.checkPermission()in the server

Testing and Executing the J2EE Application
After completing all configuration tasks, follow these steps to test or execute the
JAAS Provider within OC4J. These steps assume the following:

■ The current directory is $ORACLE_HOME/j2ee/home

■ mod_oc4j is configured

To build and configure your application, a sample application, callerInfo, has
been provided. Chapter 5, "Quick Start JAAS Provider Demo" describes how to
quickly run this sample application. This chapter elaborates on the information in
Chapter 5 and discusses available configuration options.

Testing and Executing the J2EE Application

Developing Secure J2EE Applications 9-5

Setting Up
You must perform the following tasks to test and run a J2EE application:

■ Task 1: Install Ant (Optional)

■ Task 2: Modify OC4J Files

■ Task 3: Change Default Configurations

■ Task 4: Build the Directory

Task 1: Install Ant (Optional)
You can install Ant, an XML-based build tool (similar to make), from Apache's
Jakarta Project or plan to use jar directly. If you do not have Ant installed, you can
download it from:

http://jakarta.apache.org/ant/index.html

Once you have installed Ant, and before running it, you must configure files as
described in the next section, "Task 2: Modify OC4J Files".

Task 2: Modify OC4J Files
In order to run a servlet, you need to modify several OC4J Files.

Modifying OC4J Files Where OC4J is Not Running
■ Modify the OC4J server.xml file in $ORACLE_HOME/j2ee/home/config/

by adding the following line:

<application name="myApp1" path="../jazn/demo/myApp1/
 myApp1.ear" />

For the callerInfo demo, the line is as follows:

<application name="callerInfo" path="../jazn/demo/callerInfo/
 callerInfo.ear" />

■ Modify the OC4J default-web-site.xml file in
$ORACLE_HOME/j2ee/home/ config/ by adding the following line:

See Also: Chapter 7 of the Oracle9i Application Server Security Guide
for detailed configuration information

Testing and Executing the J2EE Application

9-6 Oracle9iAS Containers for J2EE Services Guide

<web-app application="myApp1" name="myApp1-web" root="/jazn" />

For the callerInfo demo, the line is as follows:

<web-app application="callerInfo" name="callerInfo-web" root="/jazn" />

Deploying an Application When the OC4J Server is Running
If the OC4J server is already up and running, you can perform the following steps
to deploy your application.

java -jar $J2EE_HOME/admin.jar
ormi://oc4j_host:rmi_port admin_user admin_password
-deploy -file $J2EE_HOME/jazn/demo/myApp1/myApp1.ear -deploymentName callerInfo

java -jar $J2EE_HOME/admin.jar
ormi://oc4j_host:rmi_port admin_user admin_password
-bindWebApp myApp1 myApp1-web default-web-site /jazn

For the callerInfo demo, enter the following:

java -jar $J2EE_HOME/admin.jar
ormi://oc4j_host:rmi_port admin_user admin_password
-file $J2EE_HOME/jazn/demo/callerInfo/callerInfo.ear
-deploymentName callerInfo

java -jar $J2EE_HOME/admin.jar
ormi://oc4j_host:rmi_port admin_user admin_password
-bindWebApp callerInfo callerInfo-web default-web-site /jazn

Task 3: Change Default Configurations
The default realm is set to sample_subrealm. To change to another realm, you
must modify the jazn element of the OC4J orion-application.xml (in the
directory jazn/demo/callerinfo/etc/) as follows:

See Also:

■ Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

■ Chapter 7 of the Oracle9i Application Server Security Guide for
further information on JAAS Provider configuration

Testing and Executing the J2EE Application

Developing Secure J2EE Applications 9-7

Using XML-Based Realms (Default)
■ Change the realm, default-realm, from the default value,

sample_subrealm, to any realm that you have created.

■ Change location from the default value, jazn-data.xml, to any properly
configured data file that you have created. Conversely, you can also use
jazn-data.xml as a template for your own file.

Using LDAP-Based Realms
Since the installation defaults to the XML-based provider type, you need to modify
certain files if you are using the LDAP provider type environment.

In the orion-application.xml file in directory jazn/demo/
callerinfo/etc/, make the following changes:

■ Change the JAAS Provider type to LDAP.

■ Enter your LDAP location URL (for example,
ldap://myoid.us.oracle.com)

Using SSL and SSO Integration
If you are using SSO or SSL integration, make the following addition to the
mod_oc4j.conf file to add redirection information.

Oc4jMount /jazn/* ajp13_worker
Oc4jMount /jazn ajp13_worker

Assuming that ajp13_worker is a defined worker in the oc4j.conf file, this
directs any request matching /jazn/* to be handled by ajp13_worker. Any
request matching /jazn/ is to be handled by ajp13_worker.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 7-37 for further information on the
jazn-data.xml file

Note: You must use the Oracle9iAS Infrastructure installation type
if you use the LDAP provider type environment.

Testing and Executing the J2EE Application

9-8 Oracle9iAS Containers for J2EE Services Guide

Using SSO
If you are using SSO integration, make the following change in the
orion-web.xml:

Set the auth-method in the jazn-web-app element file to “SSO”as in the
following example:

<jazn-web-app
 auth-method="SSO" (optional - default to null)
 runas-mode="false" (optional - default to false)
 doasprivileged-mode="true" (optional - default to true)
/>

Task 4: Build the Directory
To build the directory, either use jar or Ant to create a new directory (build)
containing the .EAR and .WAR files for your application.

To build the directory using Ant:

1. Open a command line shell.

2. Go to the jazn/myApp1/myApp1 directory

For the callerInfo demo, go to jazn/demo/callerInfo directory,

3. Type: ant

Starting an Application
This is the first real JAAS provider test.

To start your application:

1. Start the Oracle HTTP Server listener as follows:

■ for mod_osso (SSO environments), enter apachectl start

■ for mod_ossl (SSL environments) apachectl startssl

2. Start OC4J with the JAAS provider by entering the following:

Note: Skip this step if you are using Basic Authentication.

Sample J2EE Application

Developing Secure J2EE Applications 9-9

java -jar oc4j.jar

Or start OC4J with the JAAS provider in secure mode (assuming that you have
configured your java2.policy) with the SecurityManager:

java -Djava.security.manager.
-Djava.security.policy=/jazn/config/java2.policy -jar oc4j.jar

3. Run the servlet from a Web browser using:

http://hostname:1234/myApp1/myApp1

Or to run the sample application, use:

http://hostname:1234/jazn/callerInfo

where 1234 is the port configured for your HTTP listener.

Sample J2EE Application
This sections shows the sample J2EE application, callerInfo, which you can run
using the commands described in "Testing and Executing the J2EE Application" on
page 9-4 or in Chapter 5, "Quick Start JAAS Provider Demo".

Sample J2EE Application callerInfo
package oracle.security.jazn.samples.http;

import java.io.IOException;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * A simple demo that exercises the Servlet security APIs.
 *
 * @author rkng
 */
public class CallerInfo extends HttpServlet {

 public CallerInfo()

See Also: Oracle9iAS Containers for J2EE User's Guide

Sample J2EE Application

9-10 Oracle9iAS Containers for J2EE Services Guide

 {
super();
 }
 public void init(ServletConfig config)
throws ServletException
 {
super.init(config);
 }
 public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
 {
ServletOutputStream out = response.getOutputStream();

response.setContentType("text/html");
out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
out.println("Time stamp: " + new Date().toString());
out.println("request.getRemoteUser = " + request.getRemoteUser() + "
");
out.println("request.isUserInRole('FOO') = " + request.isUserInRole("FOO") +
"
");
out.println("request.isUserInRole('ar_manager') = " +
request.isUserInRole("ar_manager") + "
");
out.println("request.isUserInRole('ar_developer') = " +
request.isUserInRole("ar_developer") + "
");
out.println("request.getUserPrincipal = " + request.getUserPrincipal() +
"
");
out.println("</BODY>");
out.println("</HTML>");
 }
}

Discussion of the J2EE Sample Application Code
When the call to callerInfo is successful, the browser displays a message similar
to the following:

Time stamp: Fri Aug 24 19:11:37 PDT 2001 request.getRemoteUser =
sample_subrealm/user
request.isUserInRole('FOO') = false
request.isUserInRole('ar_manager') = false
request.isUserInRole('ar_developer') = true
request.getUserPrincipal = ([JAZNUserAdaptor: user=[XMLRealmUser:
sample_subrealm/user])

Sample J2EE Application

Developing Secure J2EE Applications 9-11

Sample J2EE Application

9-12 Oracle9iAS Containers for J2EE Services Guide

Java Transaction API 10-1

10
 Java Transaction API

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) Transaction API.

This chapter covers the following topics:

■ Introduction

■ Single-Phase Commit

■ Two-Phase Commit

Introduction
Enterprise JavaBeans use Java Transaction API (JTA) 1.0.1 for managing
transactions. This chapter discusses the method for using JTA in OC4J. It does not
cover JTA concepts—you must understand how to use and program global
transactions before reading this chapter. See the Sun Microsystems Web site for
more information. Code examples are available for download from the OC4J
sample code site off OTN.

JTA involves enlisting resources and demarcating the transaction.

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Single-Phase Commit

10-2 Oracle9iAS Containers for J2EE Services Guide

Enlisting resources: The complexity of your transaction is determined by how
many resources your application enlists.

■ Single-Phase Commit (1pc): If only a single resource (database) is enlisted in the
transaction, you can use single-phase commit.

■ Two-Phase Commit (2pc): If more than one resource is enlisted, you must use
two-phase commit, which is more difficult to configure.

Demarcating transactions: Your application demarcates the transaction through
either bean-managed or container-managed transactions.

■ Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

■ Container-managed transactions are controlled by the container. That is, the
container either joins an existing transaction or starts a new transaction for the
application—as defined within the deployment descriptor—and ends the newly
created transaction when the bean method completes. It is not necessary for
your implementation to provide code for managing the transaction.

Single-Phase Commit
Single-phase commit (1pc) is a transaction that involves only a single resource. JTA
transactions consist of enlisting resources and demarcating transactions.

Enlisting a Single Resource
To enlist the single resource in the single-phase commit, you must do the following:

1. Configure the DataSource in data-sources.xml. For single-phase commit,
use an emulated data source.

2. Retrieve a connection to this DataSource in your bean implementation after
the transaction has begun.

a. After the transaction has begun (demarcated), lookup the DataSource
from the JNDI name space.

b. Retrieve a connection off this DataSource object using the
getConnection method.

Single-Phase Commit

Java Transaction API 10-3

Configuring the DataSource
Use an emulated data source for a single phase commit. Refer to the Chapter 15,
"Data Sources" for information on emulated and non-emulated data source types.

Use the default DataSource object if you can for the single-phase commit JTA
transaction. After modifying this data source url attribute with your database URL
information, retrieve the data source in your code using a JNDI lookup with the
JNDI name configured in the ejb-location attribute. Configure a DataSource
for each database involved in the transaction.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@myhost:myport:mySID"
 inactivity-timeout="30"
/>

The following are the expected attribute definitions:

■ The ejb-location attribute is the JNDI name that this data source is bound to
within the JNDI namespace. You use the ejb-location JNDI name in the
JNDI lookup for retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

■ The URL, username, and password identify the database, its username, and
password. Modify this example with the URL, username, and password of your
intended database. These are used to retrieve the data source session and
database schema that will be used to access and modify the database.

■ The class attribute defines what type of data source class to bind in the
namespace. The emulated data sources are defined using the
com.evermind.sql.DriverManagerDataSource class, as shown above.

Single-Phase Commit

10-4 Oracle9iAS Containers for J2EE Services Guide

Retrieving the DataSource Connection
Before executing any SQL statements against tables in the database, you must
retrieve a connection to that database. For these updates to be included in the JTA
transaction, you must do one of the following:

1. After the transaction has begun (demarcated), lookup the DataSource from
the JNDI name space. You can use one of two methods for the retrieval.

2. Retrieve a connection off this DataSource object using the getConnection
method.

There are two methods for retrieving the DataSource out of the JNDI namespace,
as follows:

■ Perform JNDI Lookup on DataSource Definition

■ Perform JNDI Lookup Using Environment

Perform JNDI Lookup on DataSource Definition You can perform a lookup on the JNDI
name bound to the DataSource definition in the data-sources.xml file and
retrieve a connection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Perform JNDI Lookup Using Environment You can perform a lookup on a logical name
defined in the environment of the bean container. For more information, see the
DataSource chapter in the Oracle9iAS Containers for J2EE Services Guide. Basically,
define the logical name in the J2EE deployment descriptor as follows:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Map the <res-ref-name> in the OC4J-specific deployment descriptor to the JNDI
name bound in the data-sources.xml file as follows:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

where “jdbc/OracleDS” is the JNDI name defined in the data-sources.xml
file.

Single-Phase Commit

Java Transaction API 10-5

Then retrieve the data source using the environment JNDI lookup and create a
connection, as shown below:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("java:comp/env/jdbc/OracleMappedDS");
Connection conn = ds.getConnection();

Example 10–1 Retrieving A Connection Using Portable JNDI Lookup

If you are using JDBC, you can start preparing and executing statements against the
database. If you are using SQLJ, create a default context to specify in the #sql
statement.

The following shows a small portion of an employee session bean that uses
container-managed transactions and uses SQLJ for updating the database.

int empno = 0;
double salary = 0.0;
DataSource remoteDS;
Context ic;

//Retrieve the initial context. No JNDI properties are necessary here
ic = new InitialContext ();

//Lookup the DataSource using the <resource-ref> definition
remoteDS = (DataSource)ic.lookup ("java:comp/env/jdbc/OracleMappedDS");

//Retrieve a connection to the database represented by this DataSource
Connection remoteConn = remoteDS.getConnection ("SCOTT", "TIGER");

//Since this implementation uses SQLJ, create a default context for this
//connection.
DefaultContext dc = new DefaultContext (remoteConn);

//Perform the SQL statement against the database, specifying the default
//context for the database in brackets after the #sql statement.
#sql [dc] { select empno, sal from emp where ename = :name };

Demarcating the Transaction
With JTA, you can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional.
Container-managed transaction is available only to entity beans and stateful beans.

11

Single-Phase Commit

10-6 Oracle9iAS Containers for J2EE Services Guide

You specify the type of demarcation in the bean deployment descriptor. The
following shows a session bean that is declared as container-managed transactional
by defining the <transaction-type> element as “Container”. To configure the
bean to use bean-managed transactional demarcation, define this element to be
“Bean”.

<session>
 <description>no description</description>
 <ejb-name>myEmployee</ejb-name>
 <home>cmtxn.ejb.EmployeeHome</home>
 <remote>cmtxn.ejb.Employee</remote>
 <ejb-class>cmtxn.ejb.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
</session>

Container-Managed Transactional Demarcation
If you define your bean to use container-managed transactions (CMT), then you
must specify how the container manages the JTA transaction for this bean in the
<trans-attribute> element in the deployment descriptor. The following table
briefly describes the transaction attribute types that you should specify in the
deployment descriptor:

Table 10–1 Transaction Attributes

Note: Currently, the client cannot demarcate the transaction.
Propagation of the transaction context cannot cross OC4J instances.
Thus, neither a remote client nor a remote EJB can initiate or join
the transaction.

Transaction Attribute Description

NotSupported The bean is not involved in a transaction. If the bean invoker
calls the bean while involved in a transaction, the invoker’s
transaction is suspended, the bean executes, and when the bean
returns, the invoker’s transaction is resumed.

Single-Phase Commit

Java Transaction API 10-7

The following <container-transaction> portion of the deployment descriptor
demonstrates how this bean specifies the RequiresNew transaction attribute for all
(*) methods of the myEmployee EJB.

 <assembly-descriptor>
 ...
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>myEmployee</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

No bean implementation is necessary to start, commit, or rollback the transaction.
The container handles all of these functions based on the transaction attribute
specified in the deployment descriptor.

Required The bean must be involved in a transaction. If the invoker is
involved in a transaction, the bean uses the invoker’s
transaction. If the invoker is not involved in a transaction, the
container starts a new transaction for the bean.

Supports Whatever transactional state that the invoker is involved in is
used for the bean. If the invoker has begun a transaction, the
invoker’s transaction context is used by the bean. If the invoker
is not involved in a transaction, neither is the bean.

RequiresNew Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself. If the
invoker calls while involved in a transaction, the invoker’s
transaction is suspended until the bean completes.

Mandatory The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker’s transaction context.

Never The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean. If the invoker is involved in a transaction, a
RemoteException is thrown.

Transaction Attribute Description

Single-Phase Commit

10-8 Oracle9iAS Containers for J2EE Services Guide

Bean-Managed Transactions
If you declare the bean as bean-managed transactional (BMT) within the
<transaction-type>, then the bean implementation must demarcate the start,
commit, or rollback for the global transaction. In addition, you must be careful to
retrieve the DataSource connection after you start the transaction and not before.

Programmatic transaction demarcation For programmatic transaction demarcation, the
bean writer can use either JTA’s user transaction interface or JDBC’s connection
interface methods. The bean writer must explicitly start and commit or rollback
transactions within the timeout interval.

Programmatic transaction demarcation must be used by Web components (JSP,
Servlets) and Stateless Session beans; Stateful Session beans may use it; entity beans
must use declarative transaction demarcation.

Client-side transaction demarcation This form of transaction demarcation is not
required by the J2EE specification, and is not recommended for performance and
latency reasons. OC4J does not support client-side transaction demarcation.

JTA Transactions
The Web component or bean writer must explicitly issue begin, commit and
rollback methods of the UserTransaction interface as follows:

Context initCtx = new Initial Context();
ut = (UserTransaction) initCtx.lookup(“java:comp/env/UserTransaction”);
…
ut.begin();
// Commit the transaction started in ejbCreate.
Try {
 ut.commit();
} catch (Exception ex) { …..}

 JDBC Transactions
The javax.sql.Connection class provides commit and rollback methods. JDBC
transactions implicitly begin with the first SQL statement that follows the most
recent commit, rollback, or connect statement.

The following code example, which is available for download from the OC4J
sample code OTN siteassumes that there are no errors.

This example demonstrates the combination of demarcating a transaction and
enlisting the database resources in the following manner:

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Single-Phase Commit

Java Transaction API 10-9

1. Retrieves the UserTransaction object from the bean context.

2. Starts the transaction with the begin method.

3. Enlists the database as "Retrieving the DataSource Connection" section on
page 10-4 describes.

This example is the same as listed in the "Retrieving the DataSource Connection"
section, but it is surrounded by UserTransaction begin and commit methods.

DataSource remoteDS;
Context ic;
int empno = 0;
double salary = 0.0;

//Retrieve the UserTransaction object. Its methods are used for txn demarcation
UserTransaction ut = ctx.getUserTransaction ();

//Start the transaction
ut.begin();

//Retrieve the initial context. No JNDI properties are necessary here
ic = new InitialContext ();

//Lookup the OrionCMTDataSource that was specified in the data-sources.xml
remoteDS = (DataSource)ic.lookup ("java:comp/env/jdbc/OracleCMTDS");

//Retrieve a connection to the database represented by this DataSource
Connection remoteConn = remoteDS.getConnection ("SCOTT", "TIGER");

//Since this implementation uses SQLJ, create a default context for this
//connection.
DefaultContext dc = new DefaultContext (remoteConn);

//Perform the SQL statement against the database, specifying the default
//context for the database in brackets after the #sql statement.
#sql [dc] { select empno, sal from emp where ename = :name };

//Assuming everything went well, commit the transaction.
ut.commit();

Two-Phase Commit

10-10 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit
The main focus of JTA is to declaratively or programmatically start and end simple
and global transactions. When a global transaction is completed, all changes are
either committed or rolled back. The difficulty in implementing a two-phase
commit transaction is in the configuration details. To understand this section, you
must understand non-emulated data sources. See the non-emulated DataSource
section in the Oracle9iAS Containers for J2EE Services Guide.

Figure 10–1 shows an example of a two-phase commit
engine—jdbc/OracleCommitDS—coordinating two databases in the global
transaction—jdbc/OracleDS1 and jdbc/OracleDS2. Refer to this example
when going through the steps for configuring your JTA two-phase commit
environment.

Figure 10–1 Two-Phase Commit Example

Configuring Two-Phase Commit Engine
When a global transaction involves multiple databases, the changes to these
resources must all be committed or rolled back at the same time. That is, when the
transaction ends, the transaction manager contacts a coordinator—also known as a
two-phase commit engine—to either commit or roll back all changes to all included
databases. The two-phase commit engine is an Oracle9i database that is configured
with the following:

two-phase commit
 engine:

OracleCommitDS

JTA database 1

OracleDS1

JTA database 2
OracleDS2

LINK1

LINK

user: SCOTT

user: SCOTT

user:SCOTT

Two-Phase Commit

Java Transaction API 10-11

■ Fully-qualified database links from itself to each of the databases involved in
the transaction. When the transaction ends, the two-phase commit engine
communicates with the included databases over their fully-qualified database
links.

■ A user that is designated to create sessions to each database involved and is
given the responsibility of performing the commit or rollback. The user that
performs the communication must be created on all involved databases and be
given the appropriate privileges.

To facilitate this coordination, you must configure the following:

1. Designate and configure an Oracle9i database as the two-phase commit engine.
When you have defined the database that is to act as the two-phase commit
engine, configure it as follows:

a. Define a non-emulated data source, using OrionCMTDataSource, for the
two-phase commit engine database in the data-sources.xml file. The
following code defines the two-phase commit engine
OrionCMTDataSource in the data-sources.xml file.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCommitDS"
 location="jdbc/OracleCommitDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="coordusr"
 password="coordpwd"
 url="jdbc:oracle:thin:@mysun:5521:jis"
 inactivity-timeout="30"
/>

b. Refer to the two-phase commit engine DataSource in either the global or
local orion-application.xml file. The global XML file exists in the
config/ directory. The local XML file exists in the application EAR file.

Configure the two-phase commit engine in the orion-application.xml
as follows:

<commit-coordinator>
 <commit-class class="com.evermind.server.OracleTwoPhaseCommitDriver" />
 <property name="datasource" value="jdbc/OracleCommitDS" />
 <property name="username" value="coordusr" />
 <property name="password" value="coordpwd" />
</commit-coordinator>

Two-Phase Commit

10-12 Oracle9iAS Containers for J2EE Services Guide

The parameters are as follows:

* Specify the JNDI name of "jdbc/OracleCommitDS" for the
OrionCMTDataSource defined in the data-sources.xml. This
identifies the DataSource to use as the two-phase commit engine.

* Specify the two-phase commit engine username and password. This
step is optional, because you can alternatively specify it in the
DataSource configuration. This is the username and password to use
as the login authorization to the two-phase commit engine. This user
must have the privileges previously mentioned in step 4.

* Specify the <commit-class>. This class is always
OracleTwoPhaseCommitDriver for two-phase commit engines.

The following example defines the two-phase commit engine in the
<commit-coordinator> element in the application.xml file.

* The OracleTwoPhaseCommitDriver class is defined in the
<commit-class> element.

* The JNDI name for the OrionCMTDataSource is identified in the
<property> element whose name is "datasource".

* The username is identified in the <property> element whose name is
"username".

* The password is identified in the <property> element whose name is
"password".

2. Create the user on the two-phase commit engine that facilitates the transaction.
First, the user opens a session from the two-phase commit engine to each of the
involved databases. Second, it must be granted the CONNECT, RESOURCE,
CREATE SESSION privileges to be able to connect to each of these databases.
The FORCE ANY TRANSACTION privilege allows the user to commit or roll back
the transaction.

Additionally, create this user and grant these permissions on all databases
involved in the transaction.

Note: The container prioritizes the username and password
defined in the orion-application.xml file over the username
and password defined in the data-sources.xml file.

Two-Phase Commit

Java Transaction API 10-13

For example, if the user that is needed for completing the transaction is
COORDUSR, you would do the following on the two-phase commit engine and
EACH database involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER COORDUSR IDENTIFIED BY COORDUSR;
GRANT CONNECT, RESOURCE, CREATE SESSION TO COORDUSR;
GRANT FORCE ANY TRANSACTION TO COORDUSR;

3. Configure fully-qualified public database links (using the CREATE PUBLIC
DATABASE LINK command) from the two-phase commit engine to each
database that may be involved in the global transaction. This is necessary for
the two-phase commit engine to communicate with each database at the end of
the transaction. The COORDUSR must be able to connect to all participating
databases using these links.

This example has two databases involved in the transaction. The database link
from the two-phase commit engine to each database is provided on each
OrionCMTDataSource definition in a <property> element in the
data-sources.xml file. See the next step for the "dblink" <property>
element.

4. Configure non-emulated data source objects of type OrionCMTDataSource
for each database involved in the transaction with the following information:

a. The JNDI bound name for the object.

b. The URL for creating a connection to the database.

c. The fully-qualified database link from the two-phase commit engine to this
database. This is provided in a <property> element within the
DataSource definition in the data-sources.xml file.

The following OrionCMTDataSource objects specify the two databases
involved in the global transaction. Notice that each of them has a <property>
element with the name "dblink" that denotes the database link from the
two-phase commit engine to itself.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS1"
 location="jdbc/OracleDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="driver"
 url="jdbc:oracle:thin:@mysun:5521:jis"

Two-Phase Commit

10-14 Oracle9iAS Containers for J2EE Services Guide

 inactivity-timeout="30"
 <property name="dblink"
 value="LINK.REGRESS.RDBMS.DEV.US.ORACLE.COM"/>
</data-source>

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS2"
 location="jdbc/OracleDS2"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="driver"
 url="jdbc:oracle:thin:@mysun:6521:jis"
 inactivity-timeout="30"
 <property name="dblink"
 value="LINK.REGRESS.RDBMS.DEV.US.ORACLE.COM"/>
</data-source>

Once the two-phase commit engine and all the databases involved in the
transaction are configured, you can start and stop a transaction in the same manner
as the single-phase commit. See "Single-Phase Commit" on page 10-2 for more
information.

Two-Phase Commit DTD Elements
The following code example contains the elements in the
orion-application.xml file that are relevant to the two-phase commit engine:

<!ELEMENT orion-application
(ejb-module*,web-module*,client-module*,security-role-mapping*,
persistence?, library*, principals?, mail-session*, user-manager?,
log?, data-sources?, commit-coordinator?, namespace-access?)>

<!-- Transaction co-ordinator for the server. -->
<!ELEMENT commit-coordinator (commit-class, property*)>

<!ELEMENT commit-class (#PCDATA)>

Note: If you change the two-phase commit engine, you must
update all database links—both within the new two-phase commit
engine as well as within the OrionCMTDataSource <property>
definitions.

Two-Phase Commit

Java Transaction API 10-15

<!ATTLIST class name CDATA #IMPLIED>

<!-- A property to set when using a custom/3rd-party DataSource. -->
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #IMPLIED
value CDATA #IMPLIED
>

Two-Phase Commit

10-16 Oracle9iAS Containers for J2EE Services Guide

Java Message Service 11-1

11
Java Message Service

This chapter describes the Java Message Service (JMS) provided as part of
Oracle9iAS Containers for J2EE (OC4J). This chapter contains these topics:

■ Overview

■ The JMS Examples

■ Configuration Issues

■ Resource Providers

Overview
Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. The Java Message Service (JMS) provides a common way for
Java programs to access these systems. JMS is the standard messaging API for
passing data asynchronously between application components, allowing business
integration in heterogeneous and legacy environments.JMS provides two
programming models:

■ Point-to-Point (Queue) —messages are sent to one consumer only.

■ Publish and Subscribe (Topics) —messages are broadcast to all registered
listeners.

JMS queues and topics are bound to the JNDI environment and made available to
J2EE applications.

The OC4J JMS implementation is fast, lightweight, and fully compliant with the
JMS 1.0.1 specification. OC4J applications (application-client programs, servlets,
EJBs, and so on) can access queues and topics using the JMS API. OC4J applications
can also use an OC4J-specific JNDI namespace to look up JMS
ConnectionFactories and Destinations.

The JMS Examples

11-2 Oracle9iAS Containers for J2EE Services Guide

OC4J defines a ResourceProvider interface for plugging in message providers
and provides the implementation classes for Oracle’s Advanced Queuing (a.k.a.
OracleJMS), as well as for third-party messaging systems such as MQSeries,
SonicMQ and SwiftMQ. The implementation classes and the connection factories
make the message providers known in the OC4J namespace
(java:comp/env/jms) for JMS consumers such as Java clients and
Message-Driven Beans. OC4J's ResourceProvider interface allows switching
between message providers transparently to the JMS client.

The JMS Examples
The OC4J JMS implementation comes with two examples, JMS-Chat and
Coffeemaker. JMS-Chat demonstrates topics; Coffeemaker demonstrates queues.

Running JMS-Chat
JMS-Chat is a small chat example that demonstrates topics.

To run the example:

1. If JMS is not activated, activate it by editing server.xml to remove the
comments around <jms-config ... />.

2. Start the OC4J server. Change to the $J2EE_HOME directory and issue the
command:

 java -jar oc4j.jar
3. Change to the $J2EE_HOME/demo/jms directory and start two chat clients in

different console windows. In each window, issue the command

 java -Djava.naming.security.credentials=<admin password> -jar jmschat.jar

4. Type a message into one console window and press RETURN; the message
appears in the other window.

Running Coffeemaker
The coffeemaker example demonstrates queues. Each service is a coffee machine,
which takes approximately 25 seconds to make a cup of coffee. You can plug in as
many makers and as many order units as you wish.

To run the example:

1. If JMS is not activated, edit server.xml and uncomment the <jms-config
... /> tag to activate the JMS service.

Configuration Issues

Java Message Service 11-3

2. Start the OC4J server. Change to the $J2EE_HOME directory and issue the
command:

 java -jar oc4j.jar

3. Change to the $J2EE_HOME/demo/jms directory and start the coffee maker.

java -jar coffeemaker.jar
4. Change to the $J2EE_HOME/demo/jms directory and start the coffee requester.

java -Djava.naming.security.credentials=<admin password> -jar coffeemaker.jar -order
5. The coffee requestor prompts Brand? Type in a brand of coffee and press

RETURN. The coffee maker prints “Making yourbrand coffee...“

Configuration Issues
This section discusses configuring OC4J to support various deployment methods
and messaging systems.

Deploying JMS Clients Across Nodes
To deploy clients across multiple nodes, you must edit the jms.xml file for the
client. For example, you would edit the queue-connection-factory property
to look like:

<queue-connection-factory host="hostname.domain.com|123.124.125.126|[ALL]"
 location="jms/QueueConnectionFactory" password="123" port="9127"
username="myUser" />
The attribute values for this property are:

■ host – The host/IP this factory connects to. By default, host is the local server.

■ location – The JNDI name the client should bind to.

■ password – The password for the specified username.

■ port – The target port. The default is 9127.

■ username – The username the client should use to connect.

 Message-Driven Beans
OC4J JMS supports message-driven beans (EJBs that process JMS messages
asynchronously), as specified in EJB2.0. Message-driven beans can either use
container-managed transactions (commit only) or bean-managed transactions. For
details, see the documentation for the messagelogger example.

Resource Providers

11-4 Oracle9iAS Containers for J2EE Services Guide

Resource Providers
The ResourceProvider interface allows you to plug in third-party message
providers (such as Oracle Advanced Queuing, MQSeries and SonicMQ) as JMS
resource providers. This allows EJBs, servlets, and OC4J clients to access many
different queue implementations. The third-party message providers are accessed
through the ResourceProvider interface.

Plugging In Resource Providers
To add a custom resource provider to OC4J, you must add the
<resource-provider> tag to orion-application.xml. This section describes
how to add one such ResourceProvider.

An example ResourceProvider, ContextScanningResourceProvider, is
bundled with OC4J. To use this ResourceProvider, you would add the following
tag to orion-application.xml:

<resource-provider
 class=”com.evermind.server.deloyment.ContextScanningResourceProvider”
 display-name=”SwiftMQ”>
 <description>
 SwiftMQ resource provider.
 </description>
 <property name=”java.naming.factory.initial”
 value=”com.swiftmq.jndi.InitialContextFactoryImpl”>
 <property name=”java.naming.provider.url”
 value=”smqp://localhost:4001”>
</resource-provider>

This example makes SwiftMQ the default ResourceProvider for JMS
connections -- the first <resource-provider> tag in orion-application.xml
becomes the default resource provider for the types it handles. Adding this tag
makes the resource available in the Orion JNDI under java:comp/resource/, as
well as making SwiftMQ the default JMS resource for such actions as deploying a
message-driven bean.

Note: Except as noted here, you configure OC4J JMS as you
would any other JMS implementation.

Resource Providers

Java Message Service 11-5

Configuring Message Providers
1. Install and configure the message provider according to the instructions in its

documentation, then verify the installation by running any examples or tools
supplied by the vendor.

2. Register the message provider in some JNDI-accessible store (a file system, an
LDAP OiD, or the like.) Use JMS provider tools to configure and populate this
JNDI store with, for instance, the provider's QueueConnectionFactory and
the queues of interest.

3. Make the JNDI store accessible to OC4J by adding a <resource-provider>
entity to orion-application.xml pointing to the JNDI store. This example
demonstrates using SonicMQ as the message provider and the file system as the
JNDI store:

<resource-provider
class="com.evermind.server.deployment.ContextScanningResourceProvider"
 name="SonicJMS">
 <property name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory" />
 <property name="java.naming.provider.url"
 value="file:/private/jndi-directory" />
</resource-provider>

4. Copy the required JNDI files (for a file-system JNDI, fscontext.jar and
providerutils.jar) to $J2EE_HOME/lib.

5. Restart OC4J. Whenever you add, delete, or reconfigure a resource provider,
you must restart OC4J.

JNDI Resource Provider Names
OC4J resource provider extensions create resources under the
java:comp/resource JNDI name tree. OJMS resource names take the form:

java:comp/resource/ProviderName/ResourceType/ResourceName
where:

ProviderName is the user-chosen name of the resource provider.

ResourceType (required for Oracle AQ/OJMS resource providers only) is a fixed string
that can take one of four values: QueueConnectionFactories,
TopicConnectionFactories, Queues, or Topics. The specified value identifies
the JMS resource as being of the appropriate administered object type.

Resource Providers

11-6 Oracle9iAS Containers for J2EE Services Guide

ResourceName is a user-chosen name for a JMS connection factory or a valid AQ
queue name for a JMS destination. Valid Oracle AQ names conform to the
[schema.]queue_name scheme.

Accessing Message Queues
OC4J applications can now access the message queues. Message queues can be
accessed in one of two ways:

1. Through their names, as in

java:comp/resource/<Provider_Name>/<Queue_Name>
An application would access the queue like this:

queueConnectionFactory=(QueueConnectionFactory)
jndiContext.lookup("java:comp/resource/SonicJMS/QueueConnectionFactory");

2. By binding message-driven beans to queues in orion-ejb-jar.xml

To bind message-driven beans to queues in orion-ejb-jar, you would add a
tag like:

<message-driven-deployment
connection-factory-location="java:comp/resource/SonicJMS/QueueConnectionFactory"
 destination-location="java:comp/resource/SonicJMS/SampleQ1"
 name="MessageBean">

Using Oracle AQ as a Resource Provider
To access Oracle AQ queues through JMS, you must do the following:

1. Create an RDBMS user through which the JMS application will connect to the
back-end database. The user should have the necessary privileges to perform
AQ operations. AQ allows any database user to access queues in any schema,
provided the user has and the schema exports the appropriate access privileges.

2. Configure an OC4J resource provider with information about the back-end
database. Create data sources or LDAP directory entries, if needed.

3. Access the resource using Oracle AQ/OJMS resource names, which include the
ResourceName name component.

Configuration
The OC4J resource provider for OJMS is implemented by the class
oracle.jms.OjmsContext. Each OJMS resource provider instance is a

Resource Providers

Java Message Service 11-7

<resource-provider ...> XML element (a child element of the
orion-application element) in the $J2EE_HOME/config/application.xml file.

There are 3 ways of configuring the OJMS resource provider.

1. Inline configuration (all relevant information for accessing the back-end
database is specified within the resource-provider element in
application.xml).

2. Data Source configuration (the resource-provider element in
application.xml refers to a data-source element configured in
data-sources.xml which contains information on accessing the back-end
database).

3. LDAP configuration (the resource provider contains information to access an
OID/LDAP directory which contains information on accessing the back-end
database).

This section describes only the inline and data source configuration methods.

Inline Configuration An inline resource provider configuration consists of a resource
provider instance name (user-chosen, but unique among all resource providers
configured in OC4J), a JDBC URL to connect to the back-end database, and the
user/password to connect as. For example:

 <resource-provider class="oracle.jms.OjmsContext" name="MyContext1">
 <description>OJMS Context using thin JDBC</description>
 <property name="url"
value="jdbc:oracle:thin:@myhost.foo.com:1521:mydb"></property>
 <property name="username" value="myuser"></property>
 <property name="password" value="mypass"></property>
 </resource-provider>

 <resource-provider class="oracle.jms.OjmsContext" name="MyContext2">
 <description>OJMS Context using OCI JDBC</description>
 <property name="url" value="jdbc:oracle:oci:@mydb.foo.com"></property>
 <property name="username" value="myuser"></property>
 <property name="password" value="mypass"></property>
 </resource-provider>
This creates 2 resource providers, MyContext1 and MyContext2, that log in as
myuser/mypass to the back-end database mydb using the thin and OCI JDBC
drivers respectively.

Data Source Configuration A data source resource provider configuration consists of a
resource provider instance name (user-chosen, but unique among all resource

Resource Providers

11-8 Oracle9iAS Containers for J2EE Services Guide

providers configured in OC4J), a data source name, and the data source
configuration (in data-sources.xml). For example:

 <resource-provider class="oracle.jms.OjmsContext" name="MyContext3">
 <description>OJMS Context using a datasource</description>
 <property name="datasource" value="jdbc/MyDS3"></property>
 </resource-provider>

 <resource-provider class="oracle.jms.OjmsContext" name="MyContext4">
 <description>OJMS Context using a datasource</description>
 <property name="datasource" value="jdbc/MyDS4"></property>
 </resource-provider>

in application.xml and the following data sources in data-sources.xml:

 <data-source
 class="oracle.jdbc.pool.OracleDataSource"
 name="MyDS3"
 location="jdbc/MyDS3"
 xa-location="jdbc/xa/MyXADS3"
 ejb-location="jdbc/MyEjbDS3"
 url="jdbc:oracle:thin:@myhost.foo.com:1521:mydb"
 username="myuser"
 password="myuser"
 inactivity-timeout="30"
 />

 <data-source
 class="oracle.jdbc.pool.OracleDataSource"
 name="MyDS4"
 location="jdbc/MyDS4"
 xa-location="jdbc/xa/MyXADS4"
 ejb-location="jdbc/MyEjbDS4"
 url="jdbc:oracle:oci:@mydb.foo.com"
 username="myuser"
 password="myuser"
 inactivity-timeout="30"
 />
This creates 2 resource providers, MyContext3 and MyContext4, that use the data
sources jdbc/MyDS3 and jdbc/MyDS4 respectively to connect to the back-end
database. The data sources themselves contain the appropriate JDBC
driver/connect information.

Resource Providers

Java Message Service 11-9

Using MQSeries As a Resource Provider
The Resource Provider interface provides support for plugging in third-party JMS
implementations. This example demonstrates how to make MQSeries the default
Resource Provider for JMS connections. The MQSeries resources are available in
OC4J under java:comp/resource/MQSeries/ as well as from deployed
message-driven beans.

Configuring
1. Install and configure MQSeries on your system, then verify the installation by

running any examples or tools supplied by the vendor.

2. Use the <resource-provider> tag in orion-application.xml to add a
custom Resource Provider. You can find an example of using this tag for
SonicMQ integration in
$J2EE_HOME/res_provider/sonicmq/orion-application.xml.

3. Add the following MQSeries JMS client jar files to $J2EE_HOME/lib:

com.ibm.mq.jar
com.ibm.mqbind.jar
com.ibm.mqjms.jar
mqji.properties

4. Add a <library> element to $J2EE_HOME/config/server.xml, forcing
the OC4J class loader to load the third party JMS client jar files:

<library path="../lib" />

5. Add $J2EE_HOME/oc4j.jar, $J2EE_HOME/jndi.jar, and
$J2EE_HOME/ejb.jar to your CLASSPATH.

Using SonicMQ As A Resource Provider
SonicMQ is a Messaging Broker with a complete implementation of the JMS 1.0.1
Specification. The Resource Provider interface provides support for plugging in
third-party JMS implementations. This example describes how to make SonicMQ
the default Resource Provider for JMS connections. The SonicMQ resources will be
available in OC4J under java:comp/resource/SonicMQ, as well as when a
message-driven Bean is deployed.

Resource Providers

11-10 Oracle9iAS Containers for J2EE Services Guide

Configuring

1. Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor.

2. In <install-dir>/SonicMQ/bin/explorer.sh, append the file system
JNDI jar files to $SONICMQ_CLASSPATH.

3. Start the SonicMQ Explorer by invoking
<install-dir>/SonicMQ/bin/explorer.sh.

4. Create a connection to SonicMQ broker by clicking on Message Brokers in the
Explorer tree with Broker Host 'localhost:2506'. Click JMS Administered
Object Stores and enter the following two properties under JNDI Directory
Service section:

java.naming.factory.initial=com.sun.jndi.context.RefFSContextFactory,
java.naming.provider.utl=file:/private/jndi

5. Under the Queue tab, create 'SampleQ1' and create
'QueueConnectionFactory' with URL tcp://localhost:2506.

6. Use the <resource-provider> tag in orion-application.xml to add a
custom Resource Provider.

7. Add the SonicMQ JMS client jar file, $J2EE_HOME/jars/client.jar, to
$J2EE_HOME/lib.

8. Add a <library> element to$J2EE_HOME/config/server.xml so that the
third party JMS client jar files will be loaded by the OC4J class loader, as in:

<library path="../lib" />

9. Add $J2EE_HOME/oc4j.jar, $J2EE_HOME/jndi.jar, and
$J2EE_HOME/ejb.jar to your CLASSPATH.

Note: SonicMQ broker does not embed a JNDI service. Instead, it
relies on an external directory server to register the administered
objects. Administered objects, such as queues, are either created by
an administrator using SonicMQ Explorer or programmatically
using the Sonic Management API. We have arbitrarily chosen to
register the administered objects from SonicMQ Explorer using the
file system JNDI.

Java Connector Architecture 12-1

12
Java Connector Architecture

This chapter describes how the Java Connector Architecture (JCA) can be used in an
Oracle9iAS Containers for J2EE (OC4J) application. This chapter covers the
following topics:

■ Introduction

■ Deploying Resource Adapters with OC4J

■ Container-Managed Sign-on vs. Component-Managed Sign-on

Introduction
The J2EE Connector Architecture (JCA) is a required J2EE 1.3 API defining a
standard architecture for connecting the J2EE platform to heterogeneous Enterprise
Information Systems (EISs). Examples of EISs include ERP, mainframe transaction
processing, database systems, and legacy applications not written in the Java
programming language.

Introduction

12-2 Oracle9iAS Containers for J2EE Services Guide

Figure 12–1 JCA Architecture

Resource Adapter
A resource adapter is a driver used by an application server or an application client
to connect to a specific EIS. Examples of resource adapters are JDBC or SQLJ drivers
to connect to a relational database, an ERP resource adapter to connect to an ERP
system, and a TP resource adapter to connect to a TP monitor. J2EE 1.3 requires
application servers to support both stand-alone and embedded resource adapters.

A stand-alone resource adapter, materialized by a stand-alone Resource Adapter
Archive (RAR) file, is available to all deployed applications in the application server
instance.

Here is an example of files found in a RAR file. The list of files can vary.

/META-INF/ra.xml
/META-INF/oc4j-ra.xml
/howto.html
/images/icon.jpg
/ra.jar
/cci.jar
/win.dll
/solaris.so

An embedded resource adapter, bundled within an enterprise application archive
(EAR), is available only to the J2EE application with which it is packaged.

Introduction

Java Connector Architecture 12-3

Application Contracts
The client API furnished by a resource adapter can either be the standard Common
Client Interface (CCI), or a client API specific to the type of a resource adapter and
its underlying EIS. For example, the JDBC API is the client API specific to relational
database accesses. The EIS side of the contract is implemented by the resource
adapter, transparently to the application components.

Quality of Service Contracts
JCA also defines three “Quality of Service” (QoS) contracts between an application
server and an EIS.

■ Connection Pooling: enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS.

■ Transaction Management: enables an application server to use a transaction
manager (JTA XAResource) to manage transactions across multiple resource
managers.

■ Security management: provides authentication, authorization, and secure
communication between the J2EE server and the EIS.

All resource adapters must support their side of the QoS contracts to be pluggable
into application servers.

Deploying Resource Adapters with OC4J

12-4 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters with OC4J
This section discusses creating deployment descriptors, deploying stand-alone
resource adapters, and deploying embedded resource adapters.

JCA Deployment Descriptors
OC4J provides the following deployment descriptors:

ra.xml standard J2EE deployment descriptor for developing against resource
adapters

oc4j-ra.xml contains deployment configurations for deploying resource adapters to
OC4J. It contains EIS connection information as specified in the deployment
descriptor of the resource adapter (ra.xml), JNDI name to be used, connection
pooling parameters, and resource principal mappings (security-config
element)

oc4j-connectors.xml In an OC4J instance with stand-alone resource adapters
deployed, there should be one oc4j-connectors.xml file in the
$OC4J_HOME/config directory, which contains a list of stand-alone resource
adapters that have been deployed in this OC4J instance.

Example:

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 <native-library>lib</native-library>
 </connector>
</oc4j-connectors>

 Deploying Stand-Alone Resource Adapter Archives
Stand-alone resource adapter archives can be deployed in OC4J. During
deployment, each stand-alone resource adapter should be given a unique name for
future operations such as undeployment of the resource adapter. Deployment of
resource adapters in OC4J can be done in one of the following ways:

Deployment using Admin command-line tool
A -deployconnector switch should be added to the admin command-line tool
(admin.jar) to allow deployment of stand-alone resource adapters:

 -deployconnector

Deploying Resource Adapters with OC4J

Java Connector Architecture 12-5

 -file [path] - path to the .rar file
 - name [name] - a name given to this resource adapter
OC4J should decompress the .rar file into
$OC4J_HOME/<connector-directory>/<connector-name> directory. If the
directory does not already exist, it will be created. A new attribute
connector-directory should be added to the <application-server> element in
application-server.dtd to specify the path used for the storage of stand-alone
resource adapters. connector-directory defaults to ../connectors.

For example, a certain resource adapter is deployed using the following values in
the -deployconnector switch:

java -jar admin.jar ... -deployconnector -name myname -file path/myconnector.rar
OC4J will uncompress myconnector.rar and store the files in
$OC4J_HOME/connectors/myname directory.

The deployment tool should verify that the transaction level and authentication
mechanism specified in the deployment descriptor of the resource adapter
(ra.xml) are supported by OC4J. Otherwise, the resource adapter cannot be
deployed into OC4J and an error message should be displayed.

Manual deployment through directory manipulation
Stand-alone resource adapter archives should also allowed to be deployed
manually by creating a <connector-name> directory under
$OC4J_HOME/<connector-directory>, copying the .rar file into that
directory, and adding an entry to the oc4j-connectors.xml file for the new
resource adapter.

 Deploying Embedded Resource Adapters
For each application deployed in an OC4J instance that contains resource adapter(s),
there should be one oc4j-connectors.xml file under
$OC4J_HOME/application-deployments/<app-name>/.

The oc4j-connectors.xml file contains the list of resource adapters for a Web
application packaged within an EAR file (one entry for each resource adapter).

The name and path of this file is defined in a new element called <connectors>
under the <orion-application> element in orion-application.xml. (If no
<connectors> element is specified in orion-application.xml, the default file is
oc4j-connectors.xml).

Container-Managed Sign-on vs. Component-Managed Sign-on

12-6 Oracle9iAS Containers for J2EE Services Guide

A resource adapter archive, myPackaged.rar, is packaged within the EAR file
myApp.ear. The application is then deployed with OC4J, under
$OC4J_HOME/applications/myapp/myPackaged_rar.

If an oc4j-connectors.xml, which specifies a deployment name "myRA", is
included in the .ear file; the generated oc4j-ra.xml file will be located in
$OC4J_HOME/application-deployment/myapp/myRA/. An
oc4j-connectors.xml file will be created under the
$OC4J_HOME/application-deployment/myapp/ directory.

Example
Let's assume that a stand-alone resource adapter connection is configured in
oc4j-ra.xml to be bound to the location eis/myEIS. An application
component would look up its connection factory using the JNDI name
"java:comp/env/eis/myEIS". The application component should have the
resource-ref element defined in its deployment descriptor in web.xml or
ejb-jar.xml, which may look like the following example:

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

try
{
 Context ic = new InitialContext();
 user = (String) ic.lookup(“java:comp/env/user”);
 password = (String) ic.lookup (“java:comp/env/password”);
cf = (ConnectionFactory)
 ic.lookup(“java:comp/env/eis/myEIS”);
 } catch (NamingException ex) {
ex.printStackTrace();
}

Container-Managed Sign-on vs. Component-Managed Sign-on
The sign-on to the EIS system through a resource adapter can be managed either by
the application component or by the application server, OC4J. This can be specified
through the <res-auth> deployment descriptor element for EJB or web
components. If the <res-auth> element is set to “Application”, the application

Container-Managed Sign-on vs. Component-Managed Sign-on

Java Connector Architecture 12-7

component would sign on to the EIS programmatically. The application component
is responsible for providing explicit security information for the sign-on. If the
<res-auth> element is set to “Container”, OC4J will provide the resource
principal and credentials required for signing on to the EIS.

Example of application code:

 Context initctx = new InitialContext();
 // perform JNDI lookup to obtain a connection factory
 javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
 // For container-managed sign-on, no security information is passed in the
getConnection call
 javax.resource.cci.Connection cx = cxf.getConnection();
 // If component-managed sign-on is specified, the code should instead
provide explicit security
 // information in the getConnection call
 // We need to get a new ConnectionSpec implementation instance for setting
login
 // attributes
 com.myeis.ConnectionSpecImpl connSpec = ...
 connSpec.setUserName("EISuser");
 connSpec.setPassword("EISpassword");
 javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

In either case, the createManagedConnection method in the resource adapter's
implementation of javax.resource.spi.ManagedConnectionFactory
interface will be called to create a physical connection to the EIS.

In the case of component-managed sign-on, OC4J will invoke the
createManagedConnection method with a null Subject and the
ConnectionRequestInfo object passed in from the application component code.

If container-managed sign-on is specified, OC4J will provide a
javax.security.auth.Subject object to the createManagedConnection
method. The content of the Subject object is different depending on the value in the
<authentication-mechanism-type> and <credential-interface> elements in the
resource adapter deployment descriptor.

If the <authentication-mechanism-type> is BasicPassword and the
<credential-interface> is
javax.resource.spi.security.PasswordCredential, the Subject object
should contain javax.resource.spi.security.PasswordCredential
objects in the private credential set.

Container-Managed Sign-on vs. Component-Managed Sign-on

12-8 Oracle9iAS Containers for J2EE Services Guide

On the other hand, if the <authentication-mechanism-type> is Kerbv5 or any other
non-password based authentication mechanism that OC4J will support in the
future, and the <credential-interface> is
javax.resource.spi.security.GenericCredential, the Subject object
should contain credentials represented by instances of implementers of the
javax.resource.spi.security.GenericCredential interface. The
GenericCredential interface is used for resource adapters that support non
password-based authentication mechanism types such as Kerberos.

Working With Java Object Cache 13-1

13
Working With Java Object Cache

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) Java Object
Cache, including its architecture and programming features.

This chapter covers the following topics:

■ Java Object Cache Concepts

■ Java Object Cache Object Types

■ Java Object Cache Environment

■ Developing Applications Using Java Object Cache

■ Working with Disk Objects

■ Working with StreamAccess Objects

■ Working with Pool Objects

■ Running in Local Mode

■ Running in Distributed Mode

Java Object Cache Concepts

13-2 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts
Oracle9iAS offers the Java Object Cache to help e-businesses manage Web-site
performance issues for dynamically generated content. The Java Object Cache
improves the performance, scalability, and availability of Web sites running on
Oracle9iAS.

By storing frequently accessed or expensive-to-create objects in memory or on disk,
the Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle9iAS cache architecture includes the following cache components:

■ Oracle9iAS Web Cache. The Web Cache sits in front of the application servers
(Web servers), caching their content and providing that content to Web
browsers that request it. When browsers access the Web site, they send HTTP
requests to the Web Cache. The Web Cache, in turn, acts as a virtual server to
the application servers. If the requested content has changed, the Web cache
retrieves the new content from the application servers.

 The Web Cache is an HTTP-level cache, maintained outside the application,
providing very fast cache operations. It is a pure, content-based cache, capable
of caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such
as servlet or JSP results). Given that it exists as a flat content-based cache
outside the application, it cannot cache objects (such as Java objects or XML
DOM objects) in a structured format. In addition, it offers relatively limited
post-processing abilities on cached data.

■ Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects may contain generated pages or may
provide support objects within the program to assist in creating new content.
The Java Object Cache automatically loads and updates objects as specified by
the Java application.

■ Web Object Cache. The Web Object Cache is a web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically using API calls (for servlets) or custom tag libraries (for JSPs).
The Web Object Cache is generally used as a complement to the Web cache. By
default, the Web Object Cache uses the Java Object Cache as its repository.

Java Object Cache Concepts

Working With Java Object Cache 13-3

A custom tag library or API allows you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or
XML text fragments, XML DOM objects, or Java serializable objects. These
objects can be cached conveniently in association with HTTP semantics.
Alternatively, they can be reused outside HTTP, such as in outputting cached
XML objects through Simple Mail Transfer Protocol (SMTP), Java Messaging
Service (JMS), Advanced Queueing (AQ), or Simple Object Access Protocol
(SOAP).

Java Object Cache Basic Architecture
For a programmer using the Java Object Cache, information has one of three
characteristics:

1. Static information that never changes. The programmer handles the data
efficiently using a Java Hashtable.

2. Dynamic information that is unique. The programmer must generate data each
time the information is requested.

3. Variable information that is sometimes static and sometimes is generated. The
programmer uses the Java Object Cache.

Figure 13–1 shows the basic architecture for the Java Object Cache. The cache
delivers information to a user process. The process could be a servlet
application that generates HTML pages or any other Java application.

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Java Object Cache Concepts

13-4 Oracle9iAS Containers for J2EE Services Guide

Figure 13–1 Java Object Cache Basic Architecture

Distributed Object Management
For simplicity, availability, and performance, the Java object cache is specific to each
process (object creation is not centrally controlled). However, using distributed
object management, the Java Object Cache provides coordination of updates and
invalidations between processes. If an object is updated or invalidated in one
process, it is also updated or invalidated in all other associated processes. This
distributed management allows a system of processes to stay synchronized, without
the overhead of centralized control.

Figure 13–2 shows the architecture for the Java Object Cache, using distributed
object management. The cache delivers information to a user process. The user
process could be a servlet application that generates HTML pages or any other Java
application. Using the distributed object management message layer, the
application uses the Java Object Cache to share the information across processes
and between caches.

Java Object Cache Concepts

Working With Java Object Cache 13-5

Figure 13–2 Java Object Cache Distributed Architecture

How the Java Object Cache Works
The Java Object Cache manages Java objects within a process, across processes, or
on a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of
Java objects. There are very few restrictions on the types of Java objects that can be
cached or on the original source of the objects. Programmers use the Java Object
Cache to manage objects that, without cache access, are expensive to retrieve or to
create.

The Java Object Cache is easy to integrate into new and existing applications.
Objects can be loaded into the object cache, using a user-defined object, the
CacheLoader, and can be accessed through a CacheAccess object. The
CacheAccess object supports local and distributed object management. Most of
the functionality of the Java Object Cache does not require administration or
configuration. Advanced features support configuration using administration
application programming interfaces (APIs) in the Cache class. Administration
includes setting configuration options, such as naming local disk space or defining
network ports. The administration features allow applications to fully integrate the
Java Object Cache.

Java Object Cache Concepts

13-6 Oracle9iAS Containers for J2EE Services Guide

Each cached Java object has a set of associated attributes that control how the object
is loaded into the cache, where the object is stored, and how the object is
invalidated. Cached objects are invalidated based on time or an explicit request
(notification can be provided when the object is invalidated). Objects can be
invalidated by group or individually.

Figure 13–3 shows the basic Java Object Cache APIs. Figure 13–3 does not show
distributed cache management.

Figure 13–3 Java Object Cache Basic APIs

Java Object Cache Concepts

Working With Java Object Cache 13-7

Cache Organization
The Java Object Cache is organized as follows:

■ Cache Environment. The cache environment includes cache regions,
subregions, groups, and attributes. Cache regions, subregions, and groups
associate objects and collections of objects. Attributes are associated with cache
regions, subregions, groups, and individual objects. Attributes affect how the
Java Object Cache manages objects.

■ Cache Object Types. The cache object types include memory objects, disk
objects, pooled objects, and StreamAccess objects.

Table 13–1 provides a summary of the constructs in the cache environment and the
cache object types.

See Also:

■ Java Object Cache Object Types on page 13-8

■ Java Object Cache Environment on page 13-11

Table 13–1 Cache Organizational Construct

Cache Construct Description

Attributes Functionality associated with cache regions, groups, and individual objects.
Attributes affect how the Java Object Cache manages objects.

Cache region An organizational name space for holding collections of cache objects within Java
Object Cache.

Cache subregion An organizational name space for holding collections of cache objects within a parent
region, subregion, or group.

Cache group An organizational construct used to define an association between objects. The objects
within a region can be invalidated as a group. Common attributes can be associated
with objects within a group.

Memory object An object that is stored and accessed from memory.

Disk object An object that is stored and accessed from disk.

Pooled object A set of identical objects that the Java Object Cache manages. The objects are checked
out of the pool, used, and then returned.

StreamAccess object An object that is loaded using a Java OutputStream and accessed using a Java
InputStream. The object can be accessed from memory or disk, depending on the
size of the object and the cache capacity.

Java Object Cache Object Types

13-8 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Features
The Java Object Cache provides the following features:

■ Objects can be updated or invalidated.

■ Objects can be invalidated either explicitly, or with an attribute specifying the
expiration time or the idle time.

■ Objects can be coordinated between processes.

■ Object loading and creation can be automatic.

■ Object loading can be coordinated between processes.

■ Objects can be associated in cache regions or groups with similar characteristics.

■ Cache event notification provides for event handling and special processing.

■ Cache management attributes can be specified for each object or applied to
cache regions or groups.

Java Object Cache Object Types
This section describes the object types that the Java Object Cache manages,
including:

■ Memory Objects

■ Disk Objects

■ StreamAccess Objects

■ Pool Objects

Java Object Cache Object Types

Working With Java Object Cache 13-9

Memory Objects
Memory objects are Java objects that the Java Object Cache manages. Memory
objects are stored in the Java VM’s heap space as Java objects. Memory objects can
hold HTML pages, the results of a database query, or any information that can be
stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object may be controlled
externally (for example, using data in a table on the Oracle9i Database Server). The
application supplied loader accesses the source and either creates or updates the
memory object. Without the Java Object Cache, the application would be
responsible for accessing the source directly, rather than using the loader.

You can update memory objects by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using CacheAccess.replace()).

The CacheAccess.defineObject() method associates attributes with an object.
If attributes are not defined, the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using
the SPOOL attribute). Setting this attribute allows the Java Object Cache to handle
memory objects that are large, or costly to re-create and seldom updated. When the
disk cache is set up to be significantly larger than the memory cache, objects on disk
usually stay in the disk cache longer than objects in memory.

Restriction on Identifying Objects:

Objects are identified by a name that can be any Java object.
Usually, the name is represented with a String. The Java object
used for the identifying name must override the default Java object
equals method, and the default Java object hashcode method.
The String class provides implementations for both of these
methods.

If you provide an object to use as the Java Object Cache name, you
need to provide implementations for the equals and hashcode
methods for the object. If the object is distributed, then the
Serializable interface must also be implemented.

Java Object Cache Object Types

13-10 Oracle9iAS Containers for J2EE Services Guide

Combining memory objects that are spooled to a local disk with the distributed
feature from the DISTRIBUTE attribute provides object persistence (when the Java
Object Cache is running in distributed mode). Object persistence allows you to
re-create objects when the system or the Java VM is restarted after the process fails
or shuts down.

There are very few restrictions on Java Object Cache memory objects. Memory
objects can contain any Java object.

Disk Objects
Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DISTRIBUTE attribute (and whether the Java Object Cache is
running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the TimeToLive or
IdleTime attributes. Disk objects can be updated by obtaining a private copy of
the disk object (file). When the Java Object Cache requires additional space, disk
objects that are not being referenced may be removed from the cache.

There are very few restrictions on disk objects in the Java Object Cache.

StreamAccess Objects
StreamAccess objects are objects that are accessed as a stream, and are automatically
loaded to the disk cache. The object is loaded as an OutputStream and read as an
InputStream. The Java Object Cache determines how to access the StreamAccess
object based on the size of the object and the capacity of the cache. Smaller objects
are accessed from memory, while larger objects are streamed directly from disk.

The cache user’s access to the StreamAccess object is through an InputStream. All
the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not provide a mechanism to
manage a stream; for example, StreamAccess objects cannot manage socket
endpoints. InputStream and OutputStream objects are available to access fixed
sized, potentially very large objects.

See Also: "Developing Applications Using Java Object Cache"
on page 13-19

See Also: "Developing Applications Using Java Object Cache"
on page 13-19

Java Object Cache Environment

Working With Java Object Cache 13-11

The Java Object Cache places some restrictions on StreamAccess objects.

Pool Objects
A pool object is a special class of objects that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, while the objects within the pool are private objects. Individual objects
within the pool can be checked out to be used and then returned to the pool when
they are no longer needed.

Attributes, including TimeToLive or IdleTime may be associated with a pool
object. These attributes apply to the pool object as a whole, or they can be applied to
the objects within the pool individually.

The Java Object Cache instantiates objects within a pool using an
application-defined factory object. The size of a pool decreases or increases based on
demand and on the values of the TimeToLive or IdleTime attributes. A
minimum size for the pool is specified when the pool is created. The minimum-size
value is interpreted as a request rather than a guaranteed minimum value. Objects
within a pool object are subject to removal from the cache due to lack of space, so
the pool may decrease below the requested minimum value. A maximum pool size
value can be set that puts a hard limit on the number of objects available in the pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:

■ Cache Regions

■ Cache Subregions

■ Cache Groups

■ Cache Object Attributes

This section describes these Java Object Cache environment constructs.

Cache Regions
Objects that use the Java Object Cache service are managed within a cache region. A
cache region defines a name space within the cache. Each object within a cache
region must be uniquely named, and the combination of the cache region name and
the object name must uniquely identify an object. Thus, cache region names must be
unique from other region names, and all objects within a region must be uniquely

Java Object Cache Environment

13-12 Oracle9iAS Containers for J2EE Services Guide

named relative to the region (multiple objects can have the same name if they are
within different regions or subregions).

You can define as many regions as you need to support your application. However,
most applications only require one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Attributes may be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

Cache Subregions
Objects that use the Java Object Cache are managed within a cache region.
Specifying a subregion within a cache region defines a child hierarchy. A cache
subregion defines a name space within a cache region, or cache subregion. Each
object within a cache subregion must be uniquely named, and the combination of
the cache region name, the cache subregion name, and the object name must
uniquely identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion’s attributes are
inherited by the objects within the subregion. If a subregion’s parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

Cache Groups
A cache group creates an association between objects within the Java Object Cache.
Cache groups allow related objects to be manipulated together. Objects are typically
associated in a cache group because they need to be invalidated together or they use
common attributes. Any set of cache objects within the same region or subregion
can be associated using a cache group, which may in turn, include other cache
groups.

An Java Object Cache object can only belong to one group at any given time. Before
an object can be associated with a group, the group must be explicitly created. A

See Also: "Cache Object Attributes" on page 13-13 and
"Developing Applications Using Java Object Cache" on page 13-19

See Also: "Cache Object Attributes" on page 13-13 and
"Developing Applications Using Java Object Cache" on page 13-19

Java Object Cache Environment

Working With Java Object Cache 13-13

group is defined with a name. A group may have its own attributes, or it may
inherit its attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects. A group defines a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming
purposes; therefore, a region cannot include a group and a memory object with the
same name. Use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Cache Object Attributes
Cache object Attributes (Attributes) affect how the Java Object Cache manages
objects. Each object type, region, subregion, and group has a set of associated
attributes. An object’s applicable attributes contain either the default attribute
values; the attribute values inherited from the object’s parent region, subregion, or
group; or the attribute values that you select for the object.

Attributes fall into two categories:

1. Attributes that must be defined before an object is loaded into the cache.
Table 13–2 summarizes these attributes. Each of the attributes shown in
Table 13–2 does not have corresponding set or get methods, except the LOADER
attribute. Use the Attributes.setFlags() method to set these attributes.

2. Attributes that can be modified after an object is stored in the cache. Table 13–3
summarizes these attributes.

Using Attributes Defined Before Object Loading
The attributes shown in Table 13–2 must be defined on an object before the object is
loaded. These attributes determine an object’s basic management characteristics.

Note: Some attributes do not apply to certain types of objects. See
Object Types sections in the descriptions in Table 13–2 and
Table 13–3.

Java Object Cache Environment

13-14 Oracle9iAS Containers for J2EE Services Guide

The following list shows the methods you can use to set the attributes shown in
Table 13–2 (by setting the values of an Attributes object argument).

■ CacheAccess.defineRegion()

■ CacheAccess.defineSubRegion()

■ CacheAccess.defineGroup()

■ CacheAccess.defineObject()

■ CacheAccess.put()

■ CacheAccess.createPool()

■ CacheLoader.createDiskObject()

■ CacheLoader.createStream()

■ CacheLoader.SetAttributes()

Note: You cannot reset the attributes shown in Table 13–2 by
using the CacheAccess.resetAttributes()method.

Table 13–2 Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

DISTRIBUTE This attribute specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates and
invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the DISTRIBUTE attribute for the objects within the region, subregion, or group,
unless the objects explicitly set their own DISTRIBUTE attribute. Pool objects are always
local, so this attribute does not apply to pool objects.

Default Value: All objects are local.

GROUP_TTL_
DESTROY

This attribute indicates that the associated object, group, or region should be destroyed
when the TimeToLive expires.

Object Types: When set on a region or a group, all the objects within the region or group,
and the region, subregion, or group itself are destroyed when the TimeToLive expires.

Default Value: By default only group member objects are invalidated when the
TimeToLive expires.

Java Object Cache Environment

Working With Java Object Cache 13-15

LOADER This attribute specifies the CacheLoader associated with the object.

Object Types: When set on a region or a group, the specified CacheLoader becomes the
default loader for the region, subregion, or group, the LOADER attribute is individually
specified on objects within the region or the group.

Default Value: By default, no LOADER is set.

ORIGINAL This attribute indicates that the object was created by the application in the cache, rather
than loaded from an external source. ORIGINAL objects are not removed from the cache
when the reference count goes to zero. ORIGINAL objects must be explicitly destroyed
when they are no longer useful.

Object Types: When set on a region or a group, this attribute sets the default value for the
ORIGINAL attribute for the objects within the region, subregion, or group, unless the
objects set their own ORIGINAL attribute.

Default Value: By default, this attribute is not set.

REPLY This attribute specifies whether objects can expect to receive a reply from remote caches
after a request for an object update or invalidation has completed. This attribute should be
set when a high level of consistency is required between cached objects. If the
DISTRIBUTE attribute is not set, or the cache is started in non-distributed mode, REPLY
is ignored.

Object Types: When set on a region or a group, this attribute sets the default value for the
REPLY attribute for the objects within the region, subregion, or group, unless the objects
explicitly set their own REPLY attribute. For memory, StreamAccess, and disk objects, this
attribute only applies when the DISTRIBUTE attribute is set to the value DISTRIBUTE.
Pool objects are always local, so this attribute does not apply for pool objects.

Default Value: By default no reply is sent. When DISTRIBUTE is set to local the REPLY
attribute is ignored.

Table 13–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

Java Object Cache Environment

13-16 Oracle9iAS Containers for J2EE Services Guide

Using Attributes Defined Before or After Object Loading
A set of Java Object Cache attributes can be modified either before or after object
loading. Table 13–3 lists these attributes. These attributes can be set using the

SPOOL This attribute specifies that a memory object should be stored on disk rather than being lost
when the cache system removes it from memory to regain space. This attribute only applies
to memory objects. If the object is also distributed, the object can survive the death of the
process that spooled it. Local objects are only accessible by the process that spools them, so
if the Java Object Cache is not running in distributed mode, the spooled object is lost when
the process dies.

Note: An object must be serializable to be spooled. If this attribute is set on a region,
subregion, or group, all associated objects must implement the
java.io.Serializable interface.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the SPOOL attribute for the objects within the region, subregion, or group, unless
the objects set their own SPOOL attribute.

Default Value: By default, memory objects are not stored to disk.

SYNCHRONIZE This attribute is used to synchronize updates within multiple threads or at multiple
locations within a site. Updates are synchronized by obtaining ownership for objects. Use
the CacheAccess.getOwnership() method to obtain ownership of an object.

Setting the SYNCHRONIZE attribute does not prevent a user from reading or invalidating
the object.

Object Types: When set on a region, subregion, or a group, ownership is applied to the
region, subregion, or group as a whole. Pool objects do not use this attribute.

Default Value: By default updates are not synchronized.

SYNCHRONIZE_
DEFAULT

This attribute indicates that all objects in a region, subregion, or group should be
synchronized. Each user object in the region, subregion, or group is marked with the
SYNCHRONIZE attribute. Ownership of the object must be obtained before the object can
be loaded or updated.

Setting the SYNCHRONIZE_DEFAULT attribute does not prevent a user from reading or
invalidating objects. Thus, ownership is not required for reads or invalidation of objects that
have the SYNCHRONIZE attribute set.

Object Types: When set on a region, subregion, or a group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use this
attribute.

Default Value: By default updates are not synchronized.

Table 13–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

Java Object Cache Environment

Working With Java Object Cache 13-17

methods listed in the list shown before Table 13–2, and can be reset using the
CacheAccess.resetAttributes() method.

Table 13–3 Java Object Cache Attributes

Attribute Name Description

DefaultTimeToLive The DefaultTimeToLive applies only to regions, subregions, and groups. This
attribute establishes a default value for the TimeToLive that is applied to all
objects individually within the region, subregion, or group. This value can be
overridden be setting the TimeToLive on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own TimeToLive.

Default Value: no automatic invalidation.

IdleTime The IdleTime attribute specifies the amount of time an object may remain idle,
with a reference count of 0, in the cache before being invalidated. If the
TimeToLive or DefaultTimeToLive attribute is set, the IdleTime
attribute is ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
individually to each object within the region, subregion, group, or pool, unless the
objects explicitly set IdleTime.

Default Value: no automatic IdleTime invalidation.

CacheEventListener This attribute specifies the CacheEventListener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEventListener becomes the default CacheEventListener for the
region, subregion, or group, unless a CacheEventListener is specified
individually on objects within the region, subregion, or the group.

Default Value: By default, no CacheEventListener is set.

Java Object Cache Environment

13-18 Oracle9iAS Containers for J2EE Services Guide

TimeToLive The TimeToLive attribute establishes the maximum amount of time an object
remains in the cache before being invalidated. If associated with a region, subregion,
or group, all objects in the region, subregion, or group are invalidated when the time
expires. If the region, subregion, or group is not destroyed (that is if, GROUP_TTL_
DESTROY is not set) the TimeToLive value is reset.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to the region, subregion, group, or pool, as a whole, unless the objects explicitly set
their own TimeToLive.

Default Value: no automatic invalidation.

Version An application may set a Version for each instance of an object in the cache. The
Version is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own Version.

Default Value: The default Version is 0.

Table 13–3 (Cont.) Java Object Cache Attributes

Attribute Name Description

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-19

Developing Applications Using Java Object Cache
This section describes how to develop applications that use Java Object Cache. This
section covers the following topics:

■ Importing the Java Object Cache

■ Defining a Cache Region

■ Defining a Cache Group

■ Defining a Cache Subregion

■ Defining and Using Cache Objects

■ Implementing a CacheLoader

■ Invalidating Cache Objects

■ Destroying Cache Objects

■ Setting Cache Configuration Properties

■ Implementing a Cache Event Listener

Importing the Java Object Cache
The Oracle installer installs the Java Object Cache jar file cache.jar in the
directory $ORACLE_HOME/javacache/lib on UNIX or in %ORACLE_
HOME%\javacache\lib on Windows NT.

To use the Java Object Cache, you need to import oracle.ias.cache.

import oracle.ias.cache.*;

Defining a Cache Region
All access to the Java Object Cache is through a CacheAccess object. A
CacheAccess object provides access to the cache through a cache region. You
define a cache region, usually associated with the name of an application, using the
CacheAccess.defineRegion()static method. If the cache has not been
initialized, defineRegion() initializes the Java Object Cache.

When you define the region, you can also set attributes and create a CacheLoader
object. Attributes specify how the Java Object Cache manages objects. The
Attributes.setLoader() method sets the name of CacheLoader.

Developing Applications Using Java Object Cache

13-20 Oracle9iAS Containers for J2EE Services Guide

Attributes attr = new Attributes();
MyLoader mloader = new MyLoader;
attr.setLoader(mloader);
attr.setDefaultTimeToLive(10);

final static String APP_NAME_ = "Test Application";
CacheAccess.defineRegion(APP_NAME_, attr);

The first argument for defineRegion uses a String to set the region name. This
static method creates a private region name within the Java Object Cache. The
second argument defines the attributes for the new region.

Defining a Cache Group
When you want to create an association between two or more objects within the
cache, create a cache group. Objects are typically associated in a cache group
because they need to be invalidated together or because they have a common set of
attributes.

Any set of cache objects within the same region or subregion can be associated
using a cache group, including other cache groups. Before an object can be
associated with a cache group, the cache group must be defined. A cache group is
defined with a name and can use its own attributes, or it can inherit attributes from
its parent cache group, subregion, or region. The following code defines a cache
group within the region named "Test Application".

final static String APP_NAME_ = "Test Application";
final static String GROUP_NAME_ = "Test Group";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a group
caccess.defineGroup(GROUP_NAME_);
// Close the CacheAccess object
caccess.close();

See Also: "Java Object Cache Environment" on page 13-11 and
"Implementing a CacheLoader" on page 13-22

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-21

Defining a Cache Subregion
Define a subregion when you want to create a private name space within a region
or within a previously defined subregion. A subregion’s name space is independent
of the parent name space. A region can contain two objects with the same name, as
long as the objects are within different subregions.

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a
subregion, the subregion must be defined. A cache subregion is defined with a
name and can use its own attributes, or it can inherit attributes from its parent cache
region or subregion. Use the getParent() method to obtain a subregion’s parent.

In the following example, cache subregion is defined within the region named
"Test Application".

final static String APP_NAME_ = "Test Application";
final static String SUBREGION_NAME_ = "Test SubRegion";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a SubRegion
caccess.defineSubRegion(SUBREGION_NAME_);
// Close the CacheAccess object
caccess.close();

Defining and Using Cache Objects
You may sometimes want to describe to the Java Object Cache how an individual
object should be managed within the cache before the object is loaded. Management
options can be specified when the object is loaded, by setting attributes within the
CacheLoader.load() method. However, you can also associate attributes with
an object by using the CacheAccess.defineObject() method. If attributes are
not defined for an object, the Java Object Cache uses the default attributes set for the
region, subregion, or group with which the object is associated.

Example 13–1 shows how to set attributes for a cache object.

Developing Applications Using Java Object Cache

13-22 Oracle9iAS Containers for J2EE Services Guide

Example 13–1 Setting Cache Attributes

import oracle.ias.cache.*;
final static String APP_NAME_ = "Test Application";
CacheAccess cacc = null;
try
{
 cacc = CacheAccess.getAccess(APP_NAME_);
// set the default IdleTime for an object using attributes
 Attributes attr = new Attributes();
// set IdleTime to 2 minutes
 attr.setIdleTime(120);

// define an object and set its attributes
 cacc.defineObject("Test Object", attr);

// object is loaded using the loader previously defined on the region
// if not already in the cache.
 result = (String)cacc.get("Test Object");
} catch (CacheException ex){
 // handle exception
 } finally {
 if (cacc!= null)
 cacc.close();
}

Implementing a CacheLoader
Generally, you should use the Java Object Cache to load objects automatically, as
needed rather than using the application to directly manage objects in the cache.
When an application directly manages objects, it uses the CacheAccess.put()
method to insert objects into the cache. To take advantage of automatic loading, you
use a CacheLoader object and implement a load() method to insert objects into
the cache.

A CacheLoader can be associated with a region, subregion, a group, or an object.
Using a CacheLoader allows the Java Object Cache to schedule and manage object
loading, and handle the logic for, “if the object is not in cache then load.”

When an object is not in the cache, when an application calls CacheAccess.get()
or CacheAccess.preLoad(), the CacheLoader executes the load method.
When the load method returns, the Java Object Cache inserts the returned object
into the cache. Using CacheAccess.get(), if the cache is full the object is returned
from the loader and the object is immediately invalidated in the cache (therefore,

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-23

using CacheAccess.get() with a full cache does not generate a
CacheFullException).

When a CacheLoader is defined for a region, subregion, or group, it is taken to be
the default loader for all objects associated with the region, subregion, or group. A
CacheLoader that is defined for an individual object is used only to load the
object.

Using CacheLoader Methods Within the Load Method
The Java Object Cache supports several CacheLoader methods that you can use
within a load() method implementation. Table 13–4 summarizes the available
CacheLoader methods.

Note: A CacheLoader that is defined for a region, subregion, or
group or for more than one cache object needs to be written with
concurrent access in mind. The implementation should be
thread-safe, since the CacheLoader object is shared.

Table 13–4 CacheLoader Methods for Use in a Load Method

Method Description

setAttributes() Sets the attributes for the object being loaded.

netSearch() Searches other available caches for the object to load. Objects are
uniquely identified by the region name, subregion name, and
the object name.

getName() Returns the name of the object being loaded.

getRegion() Returns the name of the region associated with the object being
loaded

createStream() Creates a StreamAccess object

createDiskObject(
)

Creates a disk object

exceptionHandler(
)

Converts noncache exceptions into CacheExceptions, with
the base set to the original exception

log() Records a messages in the cache service log

Developing Applications Using Java Object Cache

13-24 Oracle9iAS Containers for J2EE Services Guide

Example 13–2 shows a CacheLoader using the cacheLoader.netSearch()
method to check if the object being loaded is available in distributed Java Object
Cache caches. If the object is not found using netSearch(), the load method uses
a more expensive call to retrieve the object (an expensive call might involve an
HTTP connection to a remote Web site or a connection to the Oracle9i Database
Server). For this example, the Java Object Cache stores the result as a String.

Example 13–2 Implementing a CacheLoader

import oracle.ias.cache.*;
class YourObjectLoader extends CacheLoader{
 public YourObjectLoader () {
 }
 public Object load(Object handle, Object args) throws CacheException
 {
 String contents;
 // check if this object is loaded in another cache
 try {
 contents = (String)netSearch(handle, 5000);// wait for up to 5 scnds
 return new String(contents);
 } catch(ObjectNotFoundException ex){}

 try {
 contents = expensiveCall(args);
 return new String(contents);
 } catch (Exception ex) {throw exceptionHandler("Loadfailed", ex);}
 }

 private String expensiveCall(Object args) {
 String str = null;
 // your implementation to retrieve the information.
 // str = ...
 return str;
 }
 }

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-25

Invalidating Cache Objects
An object can be removed from the cache either by setting the TimeToLive
attribute for the object, group, subregion, or region; or by explicitly invalidating or
destroying the object.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or a group invalidates all the individual objects from the region,
subregion, or group, leaving the environment, including all groups, loaders, and
attributes available in the cache. Invalidating an object does not undefine the object.
The object loader remains associated with the name. To completely remove an
object from the cache, destroy the object using the CacheAccess.destroy()
method.

An object may be invalidated automatically based on the TimeToLive or
IdleTime attributes. When the TimeToLive or IdleTime expires, objects are by
default, invalidated and not destroyed.

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region use
CacheAccess.invalidate().

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.invalidate("Test Object"); // invalidate an individual object
cacc.invalidate("Test Group"); // invalidate all objects associated with a group
cacc.invalidate(); // invalidate all objects associated with the region cacc
cacc.close(); // close the CacheAccess access

Destroying Cache Objects
An object can be removed from the cache either by setting the TimeToLive
attribute for the object, group, subregion, or region; or by explicitly invalidating or
destroying the object.

Destroying an object marks the object and the associated environment, including
any associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the
region, subregion, or group for removal, including the associated environment.

An object may be destroyed automatically based on the TimeToLive or IdleTime
attributes. By default, objects are invalidated and are not destroyed. If the objects
need to be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region
also closes the CacheAccess object used to access the region.

Developing Applications Using Java Object Cache

13-26 Oracle9iAS Containers for J2EE Services Guide

To destroy an object, group, subregion, or region use the
CacheAccess.destroy() method.

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.destroy("Test Object"); // destroy an individual object
cacc.destroy("Test Group"); // destroy all objects associated with
 // the group "Test Group"

cacc.destroy(); // destroy all objects associated with the region
 // including groups and loaders

Setting Cache Configuration Properties
During initialization, the Java Object Cache sets values for configuration properties.
Table 13–5 lists the configuration properties for Java Object Cache. By default, the
first time a region is created, or the default region is accessed, the Java Object Cache
initializes the configuration properties. When the Java Object Cache is installed, the
installer updates values for certain administrative properties and places the
updated values in the javacache.properties configuration file, in the directory
$ORACLE_HOME/javacache/admin on UNIX or in %ORACLE_
HOME\javacache\admin on Windows NT.

You can modify the javacache.properties file to use values other than the
default configuration property values. For configuration property values that are
not specified in javacache.properties, the Java Object Cache uses the default
values included in Table 13–5.

When the Java Object Cache is initialized, it uses either the default administration
property values, or values specified in javacache.properties. No explicit
method calls are required to configure the administrative properties using this
initialization technique. The Java Object Cache also supports other initialization
techniques (see the Cache object methods in the Javadoc for details).

The format for the values in the properties javacache.properties file is:

property=value

A # character in a configuration file starts a comment. When the # is in the first
column, the entire line is a comment. When the # is occurs after a property value
specification, it applies to the remainder of the line.

Table 13–5 lists the valid property names and lists the valid types for each property.

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-27

Table 13–5 Java Object Cache Configuration Properties

Configuration Property Description Type

cleanInterval Specifies the time, in seconds, between each cache cleaning. At the
cache-cleaning interval, the Java Object Cache checks for objects that have
been invalidated by the TimeToLive or IdleTime attributes associated
with the object.

Default value: 60

int

discoveryAddress Specifies the address that the Java Object Cache initially contacts to join the
caching system, when using distributed caching. The value is in the form,
hostname:port. If the hostname is omitted, localhost is used. If the
Java Object Cache spans systems, a comma separated list of hostnames and
ports should be included, with one hostname:port pair specified for each
node.

Default Value: :12345 (this is equivalent to localhost:12345).

String

diskPath Specifies the absolute path to the root for the disk cache (a directory). If this
attribute is not set, disk caching is not available.

Default value: null

String

distribute Indicates whether the cache is distributed. Updates and invalidation for
objects that have the distribute property set are propagated to other
caches known to the Java Object Cache. If the distribute property is
set to false, all objects are treated as local, even when the attributes set
on objects are set to distribute.

Default value: false

boolean

logFileName Specifies the log file name for the default logger implementation.

Default value: $ORACLE_
HOME/javacache/admin/logs/javacache.log on UNIX or
%ORACLE_HOME%\javacache\admin\logs\javacache.log
on Windows NT

String

logger Specifies the class name for the object that implements the CacheLogger
interface. The object is instantiated when the Java Object Cache is
initialized.

Default value: oracle.ias.cache.DefaultCacheLogger

String

Developing Applications Using Java Object Cache

13-28 Oracle9iAS Containers for J2EE Services Guide

Implementing a Cache Event Listener
There are a number of events that can occur in the life cycle of a cached object,
including object creation and object invalidation. This sections shows how an
application can be notified when cache events occur.

To receive notification of an object’s creation, implement event notification as part of
the cacheLoader. For notification of invalidation or updates, implement a
CacheEventListener and associate the CacheEventListener with an object,
group, region, or subregion using Attributes.setCacheEventListener().

CacheEventListener is an interface that extends java.util.EventListener.
The cache event listener provides a mechanism to establish a callback method that

logSeverity Specifies the logging severity level used for initializing the logger. The
valid values are:

■ -1 CacheLogger.OFF

■ 0 CacheLogger.FATAL

■ 3 CacheLogger.ERROR

■ 4 CacheLogger.DEFAULT

■ 6 CacheLogger.WARNING

■ 7 CacheLogger.TRACE

■ 10 CacheLogger.INFO

■ 15 CacheLogger.DEBUG

Default value: CacheLogger.DEFAULT

int

maxObjects Specifies the maximum number of in-memory objects that are allowed in
the cache. The count does not include group objects, or objects that have
been spooled to disk and are not currently in memory.

Default value: 5000

int

maxSize Specifies the maximum size of the memory, in megabytes, available to the
Java Object Cache.

Default value: 10

int

Note: Configuration properties are distinct from the Java Object
Cache attributes that you specify using the Attributes class.

Table 13–5 (Cont.) Java Object Cache Configuration Properties

Configuration Property Description Type

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-29

is registered, and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If
an event listener is associated with a group, region, or subregion, the listener only
runs when the group, region, or subregion itself is invalidated. Invalidating a
member does not trigger the event. Attributes.setCacheEventListener()
takes a boolean argument, that if true, applies the event listener to each member of
the region, subregion, or group, rather than to the region, subregion, or group itself.
In this case, the invalidation of an object within the region, subregion, or group
triggers the event.

The CacheEventListener interface has one method, handleEvent(). This
method takes a single argument, a CacheEvent object that extends
java.util.EventObject. This object has two methods getID(),which returns
the type of event (OBJECT_INVALIDATION or OBJECT_UPDATED), and
getSource(), which returns the object being invalidated. For group objects, the
getSource() method returns the name of the group.

The handleEvent() method is executed in the context of a background thread
that the Java Object Cache manages. Avoid using JNI code in this method, as the
expected thread context may not be available.

Example 13–3 shows how a CacheEventListener is implemented and associated
with an object or a group.

Example 13–3 Implementing a CacheEventListener

import oracle.ias.cache.*;
 // A CacheEventListener for a cache object
 class MyEventListener implements
 CacheEventListener {

 public void handleEvent(CacheEvent ev)
 {
 MyObject obj = (MyObject)ev.getSource();
 obj.cleanup();
 }

Developing Applications Using Java Object Cache

13-30 Oracle9iAS Containers for J2EE Services Guide

 // A CacheEventListener for a group object
 class MyGroupEventListener implements CacheEventListener {
 public void handleEvent(CacheEvent ev)
 {
 String groupName = (String)ev.getSource();
 app.notify("group " + groupName + " has been invalidated");

 }
 }

Use the Attributes.listener attribute to specify the CacheEventListener
for a region, subregion, group, or object.

Example 13–4 shows how to set a cache event listener on an object. Example 13–5
shows how to set a cache event listener on a group.

Example 13–4 Setting a Cache Event Listener on an Object

import oracle.ias.cache.*;

 class YourObjectLoader extends CacheLoader
 {
 public YourObjectLoader () {
 }

 public Object load(Object handle, Object args) {
 Object obj = null;
 Attributes attr = new Attributes();
 MyEventListener el = new MyEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, el);

 // your implementation to retrieve or create your object

 setAttributes(handle, attr);
 return obj;
 }
}

Developing Applications Using Java Object Cache

Working With Java Object Cache 13-31

Example 13–5 Setting a Cache Event Listener on a Group

import oracle.ias.cache.*;
try
{
 CacheAccess cacc = CacheAccess.getAccess(myRegion);
 Attributes attr = new Attributes ();

 MyGroupEventListener listener = new MyGroupEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, listener);

 cacc.defineGroup("myGroup", attr);
 //....
 cacc.close();

}catch(CacheException ex)
{
 // handle exception
}

Restrictions and Programming Pointers
This section covers restrictions and programming pointers to keep in mind when
using the Java Object Cache.

1. The CacheAccess object should not be shared between threads. This object
represents a user to the caching system. The CacheAccess object contains the
current state of the user's access to the cache: what object is currently being
accessed, what objects are currently owned, and so on. Trying to share the
CacheAccess object is unnecessary and can result in nondeterministic
behavior.

2. A CacheAccess object only holds a reference to one cached object at a time. If
multiple cached objects are being accessed concurrently, multiple
CacheAccess objects should be used. For objects stored in memory, the
consequences of not doing this are minor since Java prevents the cached object
from being garbage collected even if the cache believes it is not being
referenced. For disk objects, if the cache reference is not maintained, the
underlying file could be removed by another user or by time-based
invalidation, causing unexpected exceptions. To optimize resource
management, you should keep the cache reference open as long as the cached
object is being used.

Developing Applications Using Java Object Cache

13-32 Oracle9iAS Containers for J2EE Services Guide

3. A CacheAccess object should always be closed when it is no longer being
used. The CacheAccess objects are pooled. They acquire other cache resources
on behalf of the user. If the access object is not closed when it is not being used,
these resources are not returned to the pool and are not cleaned up until they
are garbage collected by the Java VM. If CacheAccess objects are continually
allocated and not closed, available resources and a consequent degradation in
performance may occur.

4. When local objects (objects that do not set the Attributes.DISTRIBUTE
attribute) are saved to disk using the CacheAccess.save() method they do
not survive the termination of the process. By definition, local objects are only
visible to the cache instance where they were loaded. If that cache instance goes
away for any reason, the objects it manages, including on disk, are lost. If an
object needs to survive process termination, both the object and the cache need
to be defined DISTRIBUTE.

5. The cache configuration, also called the cache environment, is local to a cache,
this includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. The cache
configuration should be defined during the initialization of the application.

6. If a CacheAccess.waitForResponse() or
CacheAccess.releaseOwnership() method call times out, it must be
called again until it returns successfully. Call these methods with a -1 timeout
value to free up resources, and eliminate waits.

7. When a group is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, all objects
in the group will be invalidated or destroyed across the entire cache system
even if the individual objects or associated groups are defined as local. If the
group is defined as local, local objects within the group are invalidated locally,
while distributed objects are invalidated throughout the entire cache system.

8. When an object or group is defined with the SYNCHRONIZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

9. In general, objects stored in the cache should be loaded by the system class
loader defined in the CLASSPATH when the Java VM is initialized, rather than
by a user defined class loader. Specifically, any objects that are shared between
applications or may be saved or spooled to disk need to be defined in the
system CLASSPATH. Failure to do so may result in
ClassNotFoundExceptions or ClassCastExceptions.

Working with Disk Objects

Working With Java Object Cache 13-33

10. On some systems, the open file descriptors may be limited by default. On these
systems, you may need to change system parameters to improve performance.
On UNIX systems, for example, a value of 1024 or greater may be an
appropriate value for the number of open file descriptors.

11. When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a Java VM process (that is, in the program
running in the Java VM that uses the Java Object Cache API).

Working with Disk Objects
The Java Object Cache can manage objects on disk as well as in memory.

This section covers the following topics:

■ Configuring Properties for Using the Disk Cache

■ Local and Distributed Disk Cache Objects

■ Adding Objects to the Disk Cache

Configuring Properties for Using the Disk Cache
To configure the Java Object Cache to use a disk cache, set the value of the
diskPath configuration property in the javacache.properties file.

Setting the diskPath Configuration Property
To configure the Java Object Cache to use a disk cache, the diskPath property in
the configuration properties file should be set to the path of the root directory for
the disk cache. The default value for diskPath is null, which specifies that the Java
Object Cache should not enable the disk cache.

Note: when operating in distributed mode. To share disk cache
files, all caches cooperating in the same cache system must specify
values for the diskPath property that represent the same physical
disk. However, the values specified for the diskPath do not need
to be the same.

If you configure the diskPath properties to represent different
locations on the same or different physical disks, the disk cache
objects are not shared.

Working with Disk Objects

13-34 Oracle9iAS Containers for J2EE Services Guide

Local and Distributed Disk Cache Objects
This section covers the following topics:

■ Local Objects

■ Distributed Objects

Local Objects
When operating in local mode, all objects are treated as local objects (even when the
DISTRIBUTE attribute is set for an object). In local mode, all objects in the disk
cache are only visible to the Java Object Cache cache that loaded them, and they do
not survive after process termination. In local mode, objects stored in the disk cache
are lost when the process using the cache dies.

Distributed Objects
When operating in distributed mode, disk cache objects are shared by all caches that
have access to the file system hosting the disk cache. This configuration allows for
better utilization of disk resources and allows disk objects to persist beyond the life
of the Java Object Cache process. Distributed memory objects are not shared by all
caches since individual copies of each memory object reside in the individual caches
across the system.

Objects stored in the disk cache are identified using the concatenation of the path
specified in the diskPath configuration property and an internally generated
String representing the remaining path to the file. Thus, caches that share a disk
cache can have a different directory structure, as long as the diskPath represents
the same directory on the physical disk and is accessible to the Java Object Cache
processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

See Also: "Setting Cache Configuration Properties" on page 13-26

See Also: "Automatically Adding Objects" on page 13-35 for
information on using the SPOOL attribute

Working with Disk Objects

Working With Java Object Cache 13-35

Adding Objects to the Disk Cache
There are several ways to use the disk cache with the Java Object Cache, including:

■ Automatically Adding Objects

■ Explicitly Adding Objects

■ Using Objects That Only Reside on Disk Cache

Automatically Adding Objects
The Java Object Cache automatically adds certain objects to the disk cache. Such
objects may reside either in the memory cache or in the disk cache. If an object in
the disk cache is needed, it is copied back to the memory cache. The action of
spooling to disk occurs when the Java Object Cache determines that it requires free
space in the memory cache. The Java Object Cache automatically moves objects
from the memory cache to the disk cache in two cases.

■ When space is running out in the memory cache, the Java Object Cache searches
through the cache, looking for memory objects that are not currently accessed.
These memory objects may be removed from the cache. If the memory object is
defined with the SPOOL attribute set, the memory object is written to disk
before it is removed. Spooling saves the memory object to the disk cache, and
avoids re-creating the object when or if it is needed again. You should set the
SPOOL attribute for objects that are expensive to create, especially if the time
required to create the object is greater than the cost of loading the object from
disk.

■ StreamAccess objects are automatically loaded to disk cache. StreamAccess
objects give the Java Object Cache latitude as to how the object is accessed.
Smaller StreamAccess objects can be accessed from memory or the disk cache,
while larger StreamAccess objects are streamed directly from disk. The Java
Object Cache determines how to store the StreamAccess object based on the size
of the object and the capacity of the cache.

Explicitly Adding Objects
In some situations, you may want to force one or more objects to be written to the
Java Object Cache disk cache. Using the CacheAccess.save() method, a region,
subregion, group, or object is synchronously written to the disk cache (if the object
or objects are already in the disk cache, they are not written again).

See Also: "Cache Object Attributes" on page 13-13 and "Working
with StreamAccess Objects" on page 13-38

Working with Disk Objects

13-36 Oracle9iAS Containers for J2EE Services Guide

Calling CacheAccess.save() on a region, subregion, or group saves all the
objects within the region, subregion, or group to the disk cache. During a
CacheAccess.save() method call, if an object is encountered that cannot be
written to disk, either because it is not serializable, or for other reasons, the event is
recorded in the Java Object Cache log and the save operation continues with the
next object.

Using Objects That Only Reside on Disk Cache
Objects that you only access directly from disk cache are loaded into the disk cache
by calling CacheLoader.createDiskObject() from the
CacheLoader.load() method. The createDiskObject() method returns a
File object that the application can use to load the disk object. If the disk object’s
attributes are not defined for the disk object, set them using the
createDiskObject() method. The system manages local and distributed disk
objects differently; the determination of local or distributed is made when the
system creates the object, based on the specified attributes.

When CacheAccess.get() is called on a disk object, the full path name to the file
is returned, and the application can open the file, appropriate to its needs.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DISTRIBUTE attribute (and the mode the Java Object Cache is
running in, either distributed, or local).

Example 13–6 shows a loader object that loads a disk object into the cache.

Note: Using CacheAccess.save() saves an object to disk even
when the SPOOL attribute is not set for the object.

Note: If you want to share a disk cache object between distributed
caches in the same cache system, you must define the DISTRIBUTE
attribute when the disk cache object is created. This attribute cannot
be changed for the disk cache object after the object is created.

See Also: "Implementing a CacheLoader" on page 13-22 and "Java
Object Cache Environment" on page 13-11

Working with Disk Objects

Working With Java Object Cache 13-37

Example 13–6 Creating a Disk Object in a CacheLoader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 File file;
 FileOutputStream = out;
 Attributes attr = new Attributes();

 attr.setFlags(Attributes.DISTRIBUTE);
 try
 {
 file = createDiskObject(handle, attr);
 out = new FileOutputStream(file);

 out.write((byte[])getInfofromsomewhere());
 out.close();
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in file handling", ex)
 }
 return file;
 }
 }

Example 13–7 shows application code that uses an Java Object Cache disk object.
This example assumes the region named "Stock-Market" is already defined with
the "YourObjectLoader" loader set up in Example 13–6 as the default loader for
the region.

Working with StreamAccess Objects

13-38 Oracle9iAS Containers for J2EE Services Guide

Example 13–7 Application Code That Uses a Disk Object

import oracle.ias.cache.*;

try
{
 FileInputStream in;
 File file;
 String filePath;
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");

 filePath = (String)cacc.get("file object");
 file = new File(filePath);
 in = new FileInputStream(filePath);
 in.read(buf);

// do something interesting with the data
 in.close();
 cacc.close();
}
catch (Exception ex)
{
// handle exception
}

Working with StreamAccess Objects
StreamAccess objects are objects that are accessed as a stream and are automatically
loaded to the disk cache. The object is loaded as an OutputStream and read as an
InputStream. Smaller StreamAccess objects can be accessed from memory or from
the disk cache, while larger StreamAccess objects are streamed directly from disk.
The Java Object Cache automatically determines where to access the StreamAccess
object based on the size of the object and the capacity of the cache.

The user is always presented with a stream object, an InputStream for reading
and an OutputStream for writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.

Working with StreamAccess Objects

Working With Java Object Cache 13-39

Creating a StreamAccess Object
To create a StreamAccess object, call the CacheLoader.createStream() method
from the CacheLoader.load() method when the object is loaded into the cache.
The createStream() method returns an OutputStream object. The
OutputStream object can be used to load the object into the cache.

If the attributes have not already been defined for the object, they should be set
using the createStream() method. The system manages local and distributed
disk objects differently; the determination of local or distributed is made when the
system creates the object, based on the attributes.

Example 13–8 shows a loader object that loads a StreamAccess object into the cache.

Example 13–8 Creating a StreamAccess Object in a Cache Loader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 OutputStream = out;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);

 try
 {
 out = createStream(handle, attr);
 out.write((byte[])getInfofromsomewhere());
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in write", ex)
 }
 return out;
 }
}

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, you must define the
DISTRIBUTE attribute when the StreamAccess object is created.
This attribute cannot be changed after the object is created.

Working with Pool Objects

13-40 Oracle9iAS Containers for J2EE Services Guide

Working with Pool Objects
A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, stored as a static across the entire cache instance, while the objects within the
pool object are private objects that the Java Object Cache manages. Users access
individual objects within the pool with a check out, using a pool access object, and
then return the objects to the pool when they are no longer needed.

This section covers the following topics:

■ Creating Pool Objects

■ Using Objects from a Pool

■ Implementing a Pool Object Instance Factory

Creating Pool Objects
To create a pool object, use CacheAccess.createPool(). The CreatePool()
method takes as arguments a PoolInstanceFactory, and an Attributes
object, plus two integer arguments. The integer arguments specify the maximum
pool size and the minimum pool size. By supplying a group name as an argument
to CreatePool(), a pool object is associated with a group.

Attributes, including TimeToLive or IdleTime may be associated with a pool
object. These attributes can be applied to the pool object itself, when specified in the
attributes set with CacheAccess.createPool(), or they can be applied to the
objects within the pool individually.

Using CacheAccess.createPool(), specify minimum and maximum sizes with
the integer arguments. The minimum is specified first. It sets the minimum number
of objects to create within the pool. The minimum size is interpreted as a request
rather than a guaranteed minimum. Objects within a pool object are subject to
removal from the cache due to lack of resources, so the pool may decrease the
number of objects below the requested minimum value. The maximum pool size
puts a hard limit on the number of objects available in the pool.

Note: Pool objects, and the objects within a pool object are always
treated as local objects.

Working with Pool Objects

Working With Java Object Cache 13-41

Example 13–9 shows how to create a pool object.

Example 13–9 Creating a Pool Object

import oracle.ias.cache.*;

 try
 {
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");
 Attributes attr = new Attributes();
 QuoteFactory poolFac = new QuoteFactory();

 // set IdleTime for an object in the pool to three minutes
 attr.setIdleTime(180);
 // create a pool in the "Stock-Market" region with a minimum of
 // 5 and a maximum of 10 object instances in the pool
 cacc.createPool("get Quote", poolFac, attr, 5, 10);
 cacc.close();
 }
 catch(CacheException ex)
 {
 // handle exception
 }
}

Using Objects from a Pool
To access objects in a pool, use a PoolAccess object. The
PoolAccess.getPool() static method returns a handle to a specified pool. The
PoolAccess.get() method returns an instance of an object from within the pool
(this checks out an object from the pool). When an object is no longer needed, return
it to the pool, using the PoolAccess.returnToPool() method, which checks the
object back into the pool. Finally, call the PoolAccess.close() method when the
pool handle is no longer needed.

Example 13–10 shows the calls required to create a PoolAccess object, check an
object out of the pool, and then check the object back in and close the PoolAccess
object.

See Also:

■ "Implementing a Pool Object Instance Factory" on page 13-42

■ "Java Object Cache Environment" on page 13-11

Working with Pool Objects

13-42 Oracle9iAS Containers for J2EE Services Guide

Example 13–10 Using a PoolAccess Object

PoolAccess pacc = PoolAccess.getPool("Stock-Market", "get Quote");
//get an object from the pool
GetQuote gq = (GetQuote)pacc.get();
// do something useful with the gq object
// return the object to the pool
pacc.returnToPool(gq);
pacc.close();

Implementing a Pool Object Instance Factory
The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object, a PoolInstanceFactory. The
PoolInstanceFactory is an abstract class with two methods that you must
implement, createInstance() and destroyInstance().

The Java Object Cache calls createInstance() to create instances of objects
being accumulated within the pool. The Java Object Cache calls
destroyInstance() when an instance of an object is being removed from the
pool (object instances from within the pool are passed into destroyInstance()).

The size of a pool object, that is the number of objects within the pool, is managed
using these PoolInstanceFactory() methods. The system decreases or
increases the size and number of objects in the pool, based on demand, and based
on the values of the TimeToLive or IdleTime attributes. Example 13–11 shows
the calls required when implementing a PoolInstanceFactory.

Example 13–11 Implementing Pool Instance Factory Methods

import oracle.ias.cache.*;
 public class MyPoolFactory implements PoolInstanceFactory
 {
 public Object createInstance()
 {
 MyObject obj = new MyObject();
 obj.init();
 return obj;
 }
 public void destroyInstance(Object obj)
 {
 ((MyObject)obj).cleanup();
 }
 }

Running in Distributed Mode

Working With Java Object Cache 13-43

Running in Local Mode
When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same machine or
remotely across the network. Local mode provides a decentralized architecture that
supports a very efficient cache system, with very limited overhead. Object
persistence across system shutdowns or program failures is not supported when
running in local mode.

By default, the Java Object Cache runs in local mode and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DISTRIBUTE attribute for all objects.

Running in Distributed Mode
In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same machine or remotely across the
network. Object updates and invalidations are propagated between communicating
caches. Distributed mode supports object persistence across system shutdowns and
program failures. Running in distributed mode has possible disadvantages.
Specifically, significant system resources may be required when a large number of
distributed objects need to be invalidated, when very large objects are updated, or
when updates must be performed rapidly.

This section covers the following topics:

■ Configuring Properties for Distributed Mode

■ Using Distributed Objects, Regions, Subregions, and Groups

■ Cached Object Consistency Levels

Configuring Properties for Distributed Mode
To configure the Java Object Cache to run in distributed mode, set the value of the
distribute and discoveryAddress configuration properties in the
javacache.properties file.

Running in Distributed Mode

13-44 Oracle9iAS Containers for J2EE Services Guide

Setting the Distribute Configuration Property
To start the Java Object Cache in distributed mode, the distribute property
should be set to true in the configuration file.

Setting the DiscoveryAddress Configuration Property
In distributed mode, invalidations, destroys, and replaces are propagated through
the cache's messaging system. The messaging system requires a known hostname
and port address to allow a cache to join the cache system when it is first initialized.
Use the discoveryAddress property in the javacache.properties file to
specify a list of hostname and port addresses.

By default, Java Object Cache sets the discoveryAddress to the value :12345
(this is equivalent to localhost:12345). To eliminate conflicts with other
software on the site, you should have your system administrator set the
discoveryAddress.

If the Java Object Cache spans systems, a comma separated list of hostname and
port pairs should be included as the value for discoveryAddress, with one
hostname:port pair specified for each node. This avoids any dependency on a
particular machine being available or on the order the processes are started.

Using Distributed Objects, Regions, Subregions, and Groups
When the Java Object Cache runs in distributed mode, individual regions,
subregions, groups, and objects can be either local, or distributed. By default,
objects, regions, subregions, and groups are defined as local. To change the default
local value, set the DISTRIBUTE attribute when the object, region, or group is
defined.

A distributed cache may contain both local and distributed objects.

See Also: "Setting Cache Configuration Properties" on page 13-26

See Also: "Setting Cache Configuration Properties" on page 13-26

Note: All caches cooperating in the same cache system must
specify the same set of hostname and port addresses. The address
list, set with the discoveryAddress property defines the caches
that make up a particular cache system. If the address lists vary, the
cache system could be partitioned into distinct groups resulting in
inconsistencies between caches.

Running in Distributed Mode

Working With Java Object Cache 13-45

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the
caches.

Using the REPLY Attribute with Distributed Objects
When updating, invalidating, or destroying objects across multiple caches, it is
useful to know when the action has completed at all the participating sites. Setting
the REPLY attribute causes all participating caches to send a reply to the sender
when a requested action has completed for the object with the REPLY attribute set.
This also enables the wait for response feature for object updates, invalidates, or
destroys, and requires the use of the blocking method
CacheAcces.waitForResponse().

To wait for a distributed action to complete across multiple caches, use
CacheAccess.waitForResponse(). To ignore responses, use the
CacheAccess.cancelResponse() method, which frees the cache resources used
to collect the responses.

Both CacheAccess.waitForResponse() and
CacheAccess.cancelResponse() apply to all objects accessed by the
CacheAccess object. This allows the application to update a number of objects,
then wait for all the replies.

Example 13–12 illustrates how to set an object as distributed and handle replies
when the REPLY attribute is set. In this example, the attributes may also be set for
the entire region. Attributes could also be set for a group or individual object, as
appropriate for your application.

Example 13–12 Distributed Caching Using Reply

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and have a reply generated
// by the remote caches when the change is completed

attr.setFlags(Attributes.DISTRIBUTE|Attributes.REPLY);
attr.setLoader(loader);

See Also: "Cached Object Consistency Levels" on page 13-49

Running in Distributed Mode

13-46 Oracle9iAS Containers for J2EE Services Guide

CacheAccess.defineRegion("testRegion",attr);
cacc = CacheAccess.getAccess("testRegion"); // create region with
 //distributed attributes

obj = (String)cacc.get("testObject");
cacc.replace("testObject", obj + "new version"); // change will be
 // propagated to other caches

cacc.invalidate("invalidObject"); // invalidation is propagated to other caches

try
{
// wait for up to a second,1000 milliseconds, for both the update
// and the invalidate to complete
 cacc.waitForResponse(1000);

catch (TimeoutException ex)
{
 // tired of waiting so cancel the response
 cacc.cancelResponse();
}
cacc.close();
}

Using SYNCRONIZE and SYNCHRONIZE_DEFAULT
When updating objects across multiple caches, or when multiple threads access a
single object, you may coordinate the update action. Setting the SYNCHRONIZE
attribute enables synchronized updates and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONIZE attribute also applies to regions, subregions, and groups. When
the SYNCHRONIZE attribute is applied to a region, subregion, or group, ownership
of the region, subregion, or group must be obtained before an object can be loaded
or replaced in the region, subregion, or group.

Setting the SYNCHRONIZE_DEFAULT attribute on a region, subregion, or group
applies the SYNCHRONIZE attribute to all of the objects within the region,
subregion, or group. Ownership must be obtained for the individual objects within
the region, subregion, or group before they can be loaded or replaced.

Running in Distributed Mode

Working With Java Object Cache 13-47

To obtain ownership of an object, use CacheAccess.getOwnership(). Once
ownership is obtained, no other CacheAccess instance is allowed to load or
replace the object. Reads and invalidation of objects are not affected by
synchronization.

Once ownership has been obtained and the modification to the object is completed,
call CacheAccess.releaseOwnership() to release the object.
CacheAccess.releaseOwnership() waits up to the specified time for the
updates to complete at the remote caches. If the updates complete within the
specified time, ownership is released, otherwise a TimeoutException is thrown.
If the method times out, call CacheAccess.releaseOwnership() again.
CacheAccess.releaseOwnership()must return successfully for ownership to
be released. If the time out value is -1, ownership is released immediately without
waiting for the responses from the other caches.

Example 13–13 Distributed Caching Using SYNCRHONIZE and SYNCHRONIZE_DEFAULT

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE);
attr.setLoader(loader);

//create region
CacheAccess.defineRegion("testRegion");
cacc = CacheAccess.getAccess("testRegion");
cacc.defineGroup("syncGroup", attr); //define a distributed synchronized group
cacc.defineObject("syncObject", attr); // define a distributed synchronized object
attr.setFlagsToDefaults() // reset attribute flags

// define a group where SYNCHRONIZE is the default for all objects in the group
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE_DEFAULT);

Note: You can also use the SYNCHRONIZE and SYNCHRONIZE_
DEFAULT attributes with objects that are not distributed to control
updates for the objects from multiple threads, where each thread
uses the Java Object Cache.

Running in Distributed Mode

13-48 Oracle9iAS Containers for J2EE Services Guide

cacc.defineGroup("syncGroup2", attr);
try
{
// try to get the ownership for the group don't wait more than 5 seconds
 cacc.getOwnership("syncGroup", 5000);
 obj = (String)cacc.get("testObject", "syncGroup"); // get latest object
 // replace the object with a new version
 cacc.replace("testObject", "syncGroup", obj + "new version");
 obj = (String)cacc.get("testObject2", "syncGroup"); // get a second object
 // replace the object with a new version
 cacc.replace("testObject2", "syncGroup", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for group");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncGroup",5000);
}
catch (TimeoutException ex)
{
 // tired of waiting so just release ownership
 cacc.releaseOwnership("syncGroup", -1));
}
try
{
 cacc.getOwnership("syncObject", 5000); // try to get the ownership for the object
 // don't wait more than 5 seconds
 obj = (String)cacc.get("syncObject"); // get latest object
 cacc.replace("syncObject", obj + "new version"); // replace the object with a new version
}
catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncObject", 5000);
}

Running in Distributed Mode

Working With Java Object Cache 13-49

catch (TimeoutException ex)
{
 cacc.releaseOwnership("syncObject", -1)); // tired of waiting so just release ownership
}
try
{
 cacc.getOwnership("Object2", "syncGroup2", 5000); // try to get the ownership for the object
 // where the ownership is defined as the default for the group don't wait more than 5 seconds
 obj = (String)cacc.get("Object2", "syncGroup2"); // get latest object
 // replace the object with new version
 cacc.replace("Object2", "syncGroup2", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("Object2", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("Object2", -1)); // tired of waiting so just release ownership
}
 cacc.close();
}

Cached Object Consistency Levels
Within the Java Object Cache, each cache manages its own objects locally within its
Java VM process. In distributed mode, when using multiple processes or when the
system is running on multiple sites, a copy of an object may exist in more than one
cache.

The Java Object Cache allows you to specify the consistency level required between
copies of objects that are available in multiple caches. The consistency level you
specify depends on the application and the objects being cached. The supported
levels of consistency vary, from none, to all copies of objects being consistent across
all communicating caches.

Running in Distributed Mode

13-50 Oracle9iAS Containers for J2EE Services Guide

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

■ No consistency requirements – Using Local Objects

■ Propagating Changes Without Waiting for a Reply

■ Propagating Changes and Waiting for a Reply

■ Serializing Changes Across Multiple Caches

Using Local Objects
If there are no consistency requirements between objects in distributed caches, an
object should be defined as a local object (when Attributes.DISTRIBUTE is
unset, this specifies a local object). Local is the default setting for objects. For local
objects, all updates and invalidation are only visible to the local cache.

Propagating Changes Without Waiting for a Reply
To distribute object updates across distributed caches, an object should be defined
as distributed by setting the DISTRIBUTE attribute. All modifications to distributed
objects are broadcast to other caches in the system. Using this level of consistency
does not control or specify when an object is loaded into the cache or updated, and
does not provide notification as to when the modification has completed in all
caches.

Propagating Changes and Waiting for a Reply
To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object’s DISTRIBUTE and REPLY attributes.
Using these attributes, notification occurs when a modification has completed in all
caches. When Attributes.REPLY is set for an object, replies are sent back to the
modifying cache when the modification has been completed at the remote site.
These replies are returned asynchronously; that is, the CacheAccess.replace()
and CacheAccess.invalidate() methods do not block. Use the
CacheAccess.waitForResponse() method to wait for replies and block.

Serializing Changes Across Multiple Caches
To use Java Object Cache’s highest level of consistency set the appropriate attributes
on the region, subregion, group, or object to make objects act as synchronized
objects.

Running in Distributed Mode

Working With Java Object Cache 13-51

On a region, subregion, or group, setting Attributes.SYNCHRONIZE_DEFAULT
sets the SYNCHRONIZE attribute for all of the objects within the region, subregion,
or group.

On an object, setting Attributes.SYNCHRONIZE forces applications to obtain
ownership of the object before the object can be loaded or modified. Setting this
attribute effectively serializes write access to objects. To obtain ownership of an
object, use the CacheAccess.getOwnership() method. Using the
Attributes.SYNCHRONIZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess.releaseOwnership() to block until
any outstanding updates have completed, and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

When using this level of consistency, with Attributes.SYNCHRONIZE, the
CacheLoader.load() method should call CacheLoader.netSearch() before
loading the object from an external source. Calling CacheLoader.netSearch()
in the load method tells the Java Object Cache to search all other caches for a copy
of the object. This prevents different versions of the object from being loaded into
the cache from an external source.

Note: Setting Attributes.SYNCHRONIZE for an object does not
effectively synchronize. With Attributes.SYNCHRONIZE set, the
Java Object Cache forces the cache to synchronize its updates of the
object, but does not prevent the Java programmer from obtaining a
reference to the object and then modifying the object.

Running in Distributed Mode

13-52 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS for Client Connections 14-1

14
Oracle HTTPS for Client Connections

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) implementation
of HTTPS that provides SSL functionality to client HTTP connections. The following
topics are included:

■ Prerequisites

■ About Oracle HTTPS

■ Overview of Oracle HTTPS Features

■ Specifying Default System Properties

■ Oracle HTTPS APIs

■ Oracle HTTPS Example

Prerequisites

14-2 Oracle9iAS Containers for J2EE Services Guide

Prerequisites
Please perform the following tasks before you attempt to use Oracle HTTPS:

■ Install JDK version 1.2 or later.

■ Ensure that the CLASSPATH environment variable includes the following jar
files:

– javax-ssl-1_1.jar

– jssl-1_1.jar

■ Add the Java SSL shared library to the shared library path:

– For UNIX: libnjss18.so must be included in the library path specified
by the LD_LIBRARY_PATH environment variable.

– For Windows NT: njss18.dll must be included in the path specified by
the PATH environment variable.

■ Set the following Java security property so Oracle HTTPS can use Oracle Java
SSL sockets:

ssl.SocketFactory.provider=oracle.security.ssl.OracleSSLSocketFactoryImpl

See Also: Platform-specific documentation.

See Also: Sun Microsystems, Inc., JSSE (Java Secure Socket
Extension) documentation for more information about setting
system properties at:

http://www.java.sun.com

Prerequisites

Oracle HTTPS for Client Connections 14-3

Audience
To effectively use Oracle HTTPS, application developers should understand the
basics of Java sockets programming and JSSE (Java Secure Socket Extension). They
should also be familiar with the Sun Microsystems, Inc., java.net package, which
supports network programming and the open source HTTPClient package that
Oracle HTTPS is based on.

In addition, it is important for developers who use Oracle HTTPS to understand the
fundamental concepts of public key infrastructure digital certificates and keys.

See Also:

■ Oracle9iAS Security Guide for information about Oracle Wallet
Manager, PKI, and security fundamentals.

■ Documentation for the open source HTTPClient package
which is available at:

http://www.innovation.ch/java/HTTPCli
ent

■ Documentation for JSSE and the java.net packages which is
available at:

http://www.java.sun.com

About Oracle HTTPS

14-4 Oracle9iAS Containers for J2EE Services Guide

About Oracle HTTPS
HTTPS is vital to securing client-server interactions. For many server applications
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the
server. Java application developers who are familiar with either the HTTP package,
HTTPClient, or who are familiar with the Sun Microsystems, Inc., java.net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnection class of the open source HTTPClient
package, which provides a complete HTTP client library. To support client HTTPS
connections, several methods have been added to the HTTPConnection class that
use the Oracle Java SSL class, OracleSSLCredential.

The following sections describe these components in further detail:

■ HTTPConnection Class

■ OracleSSLCredential Class

HTTPConnection Class
The HTTPConnection class is used to create new connections that use HTTP and
related protocols such as HTTPS. To provide support for PKI (Public Key
Infrastructure) digital certificates and wallets, the methods described in "Oracle
HTTPS APIs" on page 14-13 have been added to this class.

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the methods that have been added to the HTTPConnection class.

See Also: Documentation for the open source HTTPClient
package which is available at:

http://www.innovation.ch/java/HTTPClient

About Oracle HTTPS

Oracle HTTPS for Client Connections 14-5

OracleSSLCredential Class
Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, OracleSSLCredential, to load
user certificates, trusted certificates (trust points), and private keys from base64 or
der encoded certificates.

The API for Oracle Java SSL requires that security credentials be passed to the
HTTP connection before the connection is established. The OracleSSLCredential
class is used to store these security credentials. Typically, a wallet generated by
Oracle Wallet Manager is used to populate the OracleSSLCredential object.
Alternatively, individual certificates can be added by using an OracleSSLCredential
class API. After the credentials are complete, they are passed to the connection with
the setCredentials method.

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the OracleSSLCredential class.

Overview of Oracle HTTPS Features

14-6 Oracle9iAS Containers for J2EE Services Guide

Overview of Oracle HTTPS Features
Oracle HTTPS, based on the open source HTTP package, HTTPClient 3.2, supports
HTTP 1.0 and HTTP 1.1 connections between a client and a server. To provide SSL
functionality, new methods have been added to the HTTPConnection class of this
package. These methods are used in conjunction with Oracle Java SSL to support
cipher suite selection, security credential management with Oracle Wallet Manager,
security-aware applications, and other features that are described in the following
sections.

In addition to the functionality included in the HTTPClient package, Oracle
HTTPS supports the following:

■ Multiple cryptographic algorithms

■ Certificate and key management with Oracle Wallet Manager

■ Limited support for the java.net.URL framework

In addition, Oracle HTTPS uses the HTTPClient package to support

■ HTTP tunneling through proxies

■ HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

■ SSL Cipher Suites Supported by Oracle HTTPS

■ Certificate and Key Management with Oracle Wallet Manager

■ Access Information About Established SSL Connections

■ Security-Aware Applications Support

■ java.net.URL Framework Support

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 14-7

SSL Cipher Suites Supported by Oracle HTTPS
Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection
establish the appropriate level for their communications.

Oracle HTTPS supports cipher suites with the following options:

■ Key exchange of 512, 768, or 1024 bit asymmetric keys using the following
algorithms:

– RSA

– Diffie-Hellman

■ NULL encryption, or symmetric key encryption with 40 and 128 bit symmetric
keys using the following algorithms:

– RC4 stream cipher

– DES, DES40, and 3DES-EDE, in Cipher Block Chaining (CBC) mode

■ Message Authentication Code using MD5 or SHA1 data integrity.

Table 14–1 lists all of the cipher suites that are supported by Oracle HTTPS.

Note: With NULL encryption, SSL is only used for authentication
and data integrity purposes.

Overview of Oracle HTTPS Features

14-8 Oracle9iAS Containers for J2EE Services Guide

Certificate and Key Management with Oracle Wallet Manager
You can use Oracle Wallet Manager to generate public/private key pairs and
certificate requests. A signed certificate request and the appropriate trusted
certificates must be added to produce a complete Oracle wallet.

You can export a complete wallet with a certificate in Ready status, in a
BASE64-formatted file, using the menu option Operation ->ExportWallet. This file
can be used to add SSL credentials in a Java SSL-based program.

Table 14–1 Cipher Suites Supported by Oracle HTTPS

Cipher Suite Authentication Encryption Data Integrity

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

See Also: Oracle9i Application Server Security Guide for information
about Oracle Wallet Manager.

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 14-9

Access Information About Established SSL Connections
Users can access information about established SSL connections using the
getSSLSession method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

Security-Aware Applications Support
Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows
them to perform their own validation letting the handshake complete successfully
only if a complete certificate chain is sent by the peer. With Oracle HTTPS, the
connection completes successfully when no trust points are set if the server sends
the client a complete certificate chain that starts from the root CA (Certifying
Authority) and ends with the server certificate. This feature is useful when there is a
large number of trust points stored in a database, and the application is constrained
from passing all of them to the SSL layer.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the application.

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the getSSLSession method.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

Overview of Oracle HTTPS Features

14-10 Oracle9iAS Containers for J2EE Services Guide

java.net.URL Framework Support
The HTTPClient package provides basic support for the java.net.URL
framework with the HTTPClient.HttpUrlConnection class. However,
many of the Oracle HTTPS features are supported through system properties
only. Features that are only supported through system properties are

– cipher suites selection option

– confidentiality only option

– server authentication option

– mutual authentication option

– security credential management with Oracle Wallet Manager

Note: If the java.net.URL framework is used, then set the
java.protocol.handler.pkgs system property to select the
HTTPSConnection package as a replacement for the JDK client as
follows:

java.protocol.handler=HTTPClient

See Also:

■ "Specifying Default System Properties" on page 14-11 for
information about setting Java system properties.

■ Documentation for the java.net.URL framework at

http://java.sun.com

Specifying Default System Properties

Oracle HTTPS for Client Connections 14-11

Specifying Default System Properties
For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the java.lang.System class. These
properties are the only way for users of the java.net.URL framework to set
security credential information. Oracle HTTPS recognizes the following properties:

■ javax.net.ssl.KeyStore

■ javax.net.ssl.KeyStorePassword

■ Oracle.ssl.defaultCipherSuites

The following sections describe how to set these properties.

javax.net.ssl.KeyStore
This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection.
For example:

javax.net.ssl.KeyStore=/etc/ORACLE/WALLETS/Default/default.txt

where default.txt is name of the text wallet file that contains the credentials.

If no other credentials have been set for the HTTPS connection, then the file set by
this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an IOException is thrown.

See Also: Documentation that describes setting Java system
properties at

 http://www.java.sun.com

Specifying Default System Properties

14-12 Oracle9iAS Containers for J2EE Services Guide

javax.net.ssl.KeyStorePassword
This property can be set to the password that is necessary to open the wallet file. For
example:

javax.net.ssl.KeyStorePassword=welcome1

where welcome1 is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties
Storing the wallet file password as a Java system property can result in a security
risk in some environments. To avoid this risk, use one of the following alternatives:

■ If mutual authentication is not required for the application, then a text wallet
that contains no private key should be used instead. To open these wallets, no
password is necessary.

■ If a password is necessary, then do not store it in a cleartext file. Instead, load
the property dynamically before the HTTPConnection is started by using
System.setProperty(). Unset the property after the handshake is
completed.

Oracle.ssl.defaultCipherSuites
This property can be set to a comma-delimited list of cipher suites. For example:

Oracle.ssl.defaultCipherSuites=
SSL_RSA_WITH_DES_CBC_SHA,\
SSL_RSA_EXPORT_WITH_RC4_40_MD5,\
SSL_RSA_WITH_RC4_128_MD5

The cipher suites that you set this property to are used as the default cipher suites
for new HTTPS connections.

See Also: Table 14–1 on page 14-8 for a complete list of the cipher
suites that are supported by Oracle HTTPS.

Oracle HTTPS APIs

Oracle HTTPS for Client Connections 14-13

Oracle HTTPS APIs
This section describes the public classes and interfaces used by Oracle HTTPS.
Oracle HTTPS uses the Oracle Java SSL class, OracleSSLCredential, and it
extends the HTTPConnection class of the open source HTTPClient package. The
following sections describe these packages:

■ Public Class: HTTPConnection

■ Public Class: OracleSSLCredential

Public Class: HTTPConnection
Because Oracle HTTPS extends the HTTPConnection class, only the methods that
are added to that package are described in the following:

public void connect()

Initiates a connection with the host, but does not perform any data transfer.

public String[] getSSLEnabledCipherSuites()

Returns a list of cipher suites enabled for this connection.

public javax.net.ssl.SSLSession getSSLSession()

Returns an SSLSession containing the information about the current
connection.

public javax.net.ssl.SSLSocketFactory getSSLSocketFactory()

Returns the SSLSocketFactory used by the HTTPConnection to create
SSLSockets.

public oracle.security.ssl.OracleSSLCredential get
SSLCredential()

Returns the SSL credentials used by this connection.

public void setSSLCredential
(oracle.security.ssl.OracleSSLCredential)

Sets the authentication context for the connection.

Oracle HTTPS APIs

14-14 Oracle9iAS Containers for J2EE Services Guide

Parameters: credential - Authentication context contains the private key,
certificate chains, and trusted certificates that are to be used in the SSL
connection.

public void setSSLEnabledCipherSuites(String[] suites) throws
IllegalArgumentException

Controls which particular cipher suites are enabled for use on this connection.
The cipher suites must have been listed by
SSLSocketFactory.getSupportedCipherSuites() as being supported.
The method throws an IllegalArgumentException when one of the
ciphers named by the parameter is not supported.

Parameters: suites - List of cipher suites.

Public Class: OracleSSLCredential
This public class extends java.lang.Object.

Credentials are used to authenticate the server and the client to each other.
OracleSSLCredential is used to load user certificates, trusted certificates (trust
points), and private keys from base64 or der encoded certificates.

Constructor
public OracleSSLCredential()

Creates an empty OracleSSLCredential. An empty credential lets the socket
connect to any peer that sends a complete certificate chain during the
handshake.

Methods
public void addTrustedCert(java.lang.String b64TrustedCert)

Adds a trusted certificate to the credential.

Parameters: b64TrustedCert - A Base64 encoded X509 certificate.

public void addTrustedCert(byte[] trustedCert)

Adds a trusted certificate to the credential.

Parameters: trustedCert - A der encoded X509 trusted certificate.

Oracle HTTPS APIs

Oracle HTTPS for Client Connections 14-15

public void setPrivateKey(java.lang.String b64PvtKey,
 java.lang.String password)

Adds a private key to the credential.

Parameters: b64PvtKey - A Base64 encoded X509 Private Key

 password - The password needed to decipher the private key.

public void setPrivateKey(byte[] pvtKey,
 java.lang.String password)

Adds a private key to the credential.

Parameters: b64PvtKey - A der encoded X509 Private Key

 password - The password needed to decipher the private key.

public void addCertChain(java.lang.String b64certChainCert)

Adds a certificate to the certificate chain. The certificate chain is sent along with
the user certificate during the SSL handshake. It is used by the peer to verify the
user certificate. The first certificate added to the certificate chain must be the
Root CA certificate. Each subsequent certificate added must be signed by its
immediate predecessor.

Parameters: b64certChainCert - A Base64 encoded X509 certificate.

public void addCertChain(byte[] certChainCert)

Adds a certificate to the certificate chain.

Parameters: certChainCert - A der encoded X509 certificate.

public void setWallet(java.lang.String wltPath,
 java.lang.String password) throws java.io.IOException

If Oracle Wallet Manager is used to create a wallet, the wallet can be exported in
text format and used by JavaSSL. The text file must contain the user certificate,
followed by the private key, the certificate chain, and any other trusted

Oracle HTTPS APIs

14-16 Oracle9iAS Containers for J2EE Services Guide

certificates. The method throws a java.io.IOException if the wallet cannot
be opened.

Parameters: wltPath - The pathname of the wallet

 password - The password needed to decrypt the private key

Oracle HTTPS Example

Oracle HTTPS for Client Connections 14-17

Oracle HTTPS Example
The following is a simple program that uses Oracle HTTPS to connect to a Web
server, send a GET request, and fetch a Web page. The complete code for this
program is presented here followed by sections that explain how Oracle HTTPS is
used to set up secure connections.

import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import oracle.security.ssl.OracleSSLCredential;
import java.io.IOException;

public class HTTPSConnectionExample
{

public static void main(String[] args)
{

if(args.length < 4)
{

System.out.println(
"Usage: java HTTPSConnectionTest [host] [port] " +
"[wallet] [password]");
System.exit(-1);

}

String hostname = args[0].toLowerCase();
int port = Integer.decode(args[1]).intValue();
String walletPath = args[2];
String password = args[3];

HTTPConnection httpsConnection = null;
OracleSSLCredential credential = null;

try
{

httpsConnection = new HTTPConnection("https", hostname, port);
}
catch(IOException e)
{

System.out.println("HTTPS Protocol not supported");
System.exit(-1);

}

try
{

credential = new OracleSSLCredential();

Oracle HTTPS Example

14-18 Oracle9iAS Containers for J2EE Services Guide

credential.setWallet(walletPath, password);
}
catch(IOException e)
{

System.out.println("Could not open wallet");
System.exit(-1);

}
httpsConnection.setSSLCredential(credential);

try
{

httpsConnection.connect();
}
catch (IOException e)
{

System.out.println("Could not establish connection");
e.printStackTrace();
System.exit(-1);

}

javax.security.cert.X509Certificate[] peerCerts = null;
try
{

peerCerts =
 (httpsConnection.getSSLSession()).getPeerCertificateChain();

}
catch(javax.net.ssl.SSLPeerUnverifiedException e)
{

System.err.println("Unable to obtain peer credentials");
System.exit(-1);

}

String peerCertDN =
 peerCerts[peerCerts.length -1].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();
if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
{

System.out.println("Certificate for " + hostname + " is issued to "
 + peerCertDN);
System.out.println("Aborting connection");
System.exit(-1);

}

try
{

Oracle HTTPS Example

Oracle HTTPS for Client Connections 14-19

HTTPResponse rsp = httpsConnection.Get("/");
System.out.println("Server Response: ");
System.out.println(rsp);

}
catch(Exception e)
{

System.out.println("Exception occured during Get");
e.printStackTrace();
System.exit(-1);

}
}

}

Initializing SSL Credentials
This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded
using

credential = new OracleSSLCredential();
credential.setWallet(walletPath, password);

After the credentials are created, they are passed to HTTPSConnection using

httpsConnection.setSSLCredential(credential);

The private key, user certificate, and trust points located in the wallet can now be
used for the connection.

Verifying Connection Information
Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their hostname.
Then it is the responsibility of the client to perform this validation after the SSL
connection is established.

To perform this validation in this sample program, HTTPSConnectionExample
establishes a connection to the server without transferring any data using

httpsConnection.connect();

Oracle HTTPS Example

14-20 Oracle9iAS Containers for J2EE Services Guide

After the connection is established, the connection information, in this case the
server certificate chain, is obtained with

peerCerts = (httpsConnection.getSSLSession()).getPeerCertificateChain();

Finally the server certificate’s common name is obtained with

String peerCertDN = peerCerts[peerCerts.length -1].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with

if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
{

System.out.println("Certificate for " + hostname + " is issued to " +
peerCertDN);

System.out.println("Aborting connection");
System.exit(-1);

}

Transferring Data
It is important to verify the connection information before data is transferred from
the client or from the server. The data transfer is performed in the same way for
HTTPS as it is for HTTP. In this sample program a GET request is made to the server
using

HTTPResponse rsp = httpsConnection.Get("/");

Data Sources 15-1

15
Data Sources

This chapter describes how to configure and use data sources in your Oracle9iAS
Containers for J2EE (OC4J) application. A data source, which is the instantiation of
an object that implements the javax.sql.DataSource interface, enables you to
retrieve a connection to a database server.

 This chapter covers the following topics:

■ Introduction

■ Definition of Data Sources

■ Retrieving a Connection From a Data Source

■ Emulated and Non-Emulated Data Sources

■ Using Data Sources

■ Using Oracle JDBC Extensions

■ Behavior of a Non-Emulated Data Source Object

■ Using Database Caching Schemes

■ Connection Retrieval Error Conditions

■ Using the OCI JDBC Drivers

■ Using Merant Drivers

Introduction

15-2 Oracle9iAS Containers for J2EE Services Guide

Introduction
A data source is a Java object that has the properties and methods specified by the
javax.sql.DataSource interface. Data sources offer a portable,
vendor-independent method for creating JDBC connections. Data sources are
factories that return JDBC connections to a database. J2EE applications use JNDI to
look up DataSource objects. Each JDBC 2.0 driver provides its own
implementation of a DataSource object, which can be bound into the JNDI
namespace. Once bound, you can retrieve this data source object through a JNDI
lookup.

Because they are vendor-independent, we recommend that J2EE applications
retrieve connections to data servers using data sources.

Definition of Data Sources
You define OC4J data sources in an XML file known as data-sources.xml.

Defining Location of the DataSource XML Configuration File
Your application can know about the data sources defined in this file only if the
application.xml file knows about it. The path attribute in the
<data-sources> tag in the application.xml file must contain the name and
path to your data-sources.xml file, as follows:

<data-sources
 path = "data-sources.xml"
/>

The path attribute of the <data-sources> tag contains both path and name of
the data-sources.xml file. The path can be fixed, or it can be relative to where
the application.xml is located. Both the application.xml and
data-sources.xml files are located in $J2EE_
HOME/config/application.xml. Thus, the path contains only the name of the
data-sources.xml file.

Defining Data Sources
The $J2EE_HOME/config/data-sources.xml file is pre-installed with a default
data source. For most uses, this default is all you will need. However, you can also
add your own customized data source definitions.

The default data source is an emulated data source. That is, it is a wrapper around
Oracle data source objects. You can use this data source for applications that access

Definition of Data Sources

Data Sources 15-3

and update only a single data server. If you need to update more than one database,
you must use a non-emulated data source. See "Non-Emulated Data Sources" on
page 15-7 for more information.

This data source is extremely fast and efficient, because it does not require any JTA
or XA operations. These would be necessary if you were to manage more than a
single database.

The following is the default data source definition that you can use for most
applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

■ The class attribute defines the type of data source you want to use.

■ The location, xa-location, and ejb-location attributes are JNDI names
that this data source is bound to within the JNDI namespace. We recommend
that you use only the ejb-location JNDI name in the JNDI lookup for
retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

■ The URL, username, and password identify the database, its username, and
password.

"Using Data Sources" on page 15-8 fully describes all attributes.

Retrieving a Connection From a Data Source

15-4 Oracle9iAS Containers for J2EE Services Guide

Retrieving a Connection From a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you use data source objects in your
JDBC operations.

Do the following to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source
definition in the data-sources.xml file.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ejb-location tag in the
data-sources.xml file.

You must always cast or narrow the object that JNDI returns to the
DataSource, because the JNDI lookup() method returns a Java object.

2. Create a connection to the database represented by the DataSource object.

Once you have the connection, you can construct and execute JDBC statements
against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Use the following methods of the DataSource object in your application code to
retrieve the connection to your database:

■ getConnection();

The username and password are those defined in the data source definition.

■ getConnection(String username, String password);

This username and password overrides the username and password defined in
the data source definition.

You can cast the connection object returned on the getConnection method to
oracle.jdbc.OracleConnection and use all the Oracle extensions. This is
shown below:

oracle.jdbc.OracleConnection conn =
(oracle.jdbc.OracleConnection) ds.getConnection();

Emulated and Non-Emulated Data Sources

Data Sources 15-5

Once retrieved, you can execute SQL statements against the database either through
SQLJ or JDBC.

Emulated and Non-Emulated Data Sources
There are several types of data sources. The data sources that are used the most are
emulated and non-emulated.

■ Emulated Data Sources—The pre-installed default data source is an emulated
data source. Emulated data sources are wrappers around Oracle data sources.
Used primarily by applications that access only a single database.

■ Non-Emulated Data Sources—Non-emulated data sources are pure Oracle data
sources. Used by applications that want to coordinate access to multiple
sessions within the same database or to multiple databases within a global
transaction.

Emulated Data Sources
Emulated data sources are wrappers around Oracle data sources. If you use these
data sources, your connections are extremely fast, because they do not provide full
XA or JTA global transactional support. We recommend that you use these data
sources for local transactions or when your application requires access or update to
a single database. You can use emulated data sources for Oracle or non-Oracle
databases. For efficiency, any JNDI retrieved connection to the same emulated data
sources share the same connection with the first identified username within the
same transaction.

You can use the emulated data source to obtain connections to different databases
by changing the values of url and connection-driver. The following is a
definition of an emulated data source:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

Emulated and Non-Emulated Data Sources

15-6 Oracle9iAS Containers for J2EE Services Guide

When creating the DataSource object, use the ejb-location logical name, as
follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection con = ds.getConnection();

This creates a DataSource session for SCOTT/TIGER.

You can use local transactions only with a connection retrieved from an emulated
data source. The XAResource that you enlist with the transaction manager is an
emulated XAResource, so the Oracle database is unaware of global transactions. It
provides only local transactional support. If you want to use global transactions,
you must use a non-emulated data source.

Connections retrieved within a single transaction from a data source using the same
username and password causes the logical connections to share a single physical
connection. The following code shows two connections—conn1 and conn2—that
share a single physical connection. They are both retrieved off the same data source
object. They also authenticate with the same username and password.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

If you provide different a different username and password for the second
connection from this data source, an error condition occurs. You can avoid this
problem by using the "dedicated.connection" JNDI property. This is described
in "Using Different Usernames for Two Connections to DataSource" on page 15-15.

Note: In the past, you could use the location and
xa-location attributes for retrieving data source objects.
Currently, we recommend that you only use the ejb-location
JNDI name in emulated data source definitions for retrieving the
data source.

Emulated and Non-Emulated Data Sources

Data Sources 15-7

Non-Emulated Data Sources
Non-emulated data sources are pure Oracle data sources. Non-emulated data
sources provide XA and JTA global transactional support. Thus, if you want to
coordinate modifications in a global transaction, you should use this data source.
Thus, you can use only these data sources for global two-phase commit
transactions.

We recommend that you use these data sources for distributed database
communications, recovery, and reliability. Non-emulated data sources share
physical connections for several logical connections to the same database for the
same user.

The following is an example of a non-emulated data source definition.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDS"
 location="jdbc/OracleCMTDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@<hostname>:<TTC port number>:<DB SID>"
 inactivity-timeout="30"
/>

The following are the expected attribute definitions:

■ The location attribute is the JNDI name that this data source is bound to
within the JNDI namespace. You use the location JNDI name in the JNDI
lookup for retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

■ The URL, username, and password identifies the database, its username, and
password.

■ The class attribute defines what type of data source class to bind in the
namespace. For example, you can define a non-emulated data source with the
com.evermind.sql.OrionCMTDataSource class, as shown above.

Using Data Sources

15-8 Oracle9iAS Containers for J2EE Services Guide

Other Non-Emulated DataSource Classes
However, you can also define other non-emulated data sources. You can use any of
the Oracle DataSource objects listed in the Oracle9i JDBC Developer’s Guide. The
following shows an example of one of these DataSources:

To define a non-emulated data source with the OracleXADataSource class,
configure the following in the data-sources.xml file:

<data-source
 class="oracle.xa.client.OracleXADataSource"
 name="OracleXADS"
 location="jdbc/OracleXADS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@<hostname>:<TTC port number>:<DB SID>"
 inactivity-timeout="30"
/>

Using Data Sources
The following sections describe the data sources that your application can use and
how to access them:

■ Configuring Data Source Objects

■ Configuration Files

■ Data Source Attributes

■ Data Source Methods

■ Portable Data Source Lookup

Configuring Data Source Objects
For most purposes, you can use the data sources that are already defined in the
server data-sources.xml configuration file.

To define a new data source object, there are three ways that you can do this.

1. using the -installDataSource option in the admin.jar administrative
command-line tool

2. using Oracle Enterprise Manager

3. directly editing the configuration files

Using Data Sources

Data Sources 15-9

To find out how to use the Administrative tools, see the Oracle9iAS Containers for
J2EE User’s Guide. For Oracle Enterprise Manager information, see Oracle Enterprise
Manager Administrator’s Guide. This chapter explains how to set up and manage data
sources by editing the configuration files directly.

Configuration Files
One main configuration file establishes data sources at the OC4J server level:
$J2EE_HOME/config/data-sources.xml. You can add new data sources to
that file by editing it, following the guidelines in the next sections.

OC4J parses the data-sources.xml file when it starts, instantiates data source
objects, and binds them into the server JNDI namespace. So if you add a new data
source specification to this file, you must restart the OC4J server to make the new
data source available for lookup.

Each application also has a separate JNDI namespace. The files web.xml,
ejb-jar.xml, orion-ejb-jar.xml, and the orion-web.xml contain entries
that you can use to map application JNDI names to data sources, as the next section
describes.

Data Source Attributes
A data source can take many attributes. Some are mandatory, but most are optional.
The attributes are specified in a <data-source> tag. Table 15–1 lists the attributes
and their meaning.

Table 15–1 Data Source Attributes

Attribute Name Meaning of Value Default Value

class Names the class that implements the data source. This is
a mandatory attribute. For non-emulated, the class
attribute can be
"com.evermind.sql.OrionCMTDataSource". For
emulated, the class attribute should be
"com.evermind.sql.DriverManagerDataSource".

N/A

location The JNDI logical name for the data source object. OC4J
binds the class instance into the application JNDI
namespace with this name. This is a mandatory
attribute. This JNDI lookup name is used for
non-emulated data sources.

N/A

Using Data Sources

15-10 Oracle9iAS Containers for J2EE Services Guide

name The optional name of the data source. Must be unique
within the application.

If this name is
not supplied,
the location
is used as the
name.

connection-driver The JDBC-driver classname for this data source, which is
needed by some data sources that deal with
java.sql.Connection. For most data sources, the
driver should be
"oracle.jdbc.driver.OracleDriver".

None.

username The optional name of the schema to connect to. None.

password The optional password for the schema. None.

URL The URL for database connections. Must be supplied for
Oracle database connections.

None.

xa-location The logical name of an XA data source. Use this attribute
only for emulated data sources. However, we
recommend that you use ejb-location for your JNDI
lookup.

None.

ejb-location A logical name of an EJB data source. Use this attribute if
you are using JTA for single-phase commit transactions
or if you are looking up emulated data sources. If you
use it to retrieve the data source, you can map the
returned connection to
oracle.jdbc.OracleConnection.

None.

inactivity-timeout Time (in seconds) to cache unused connections before
closing them.

60 seconds

connection-retry-
interval

The interval to wait (in seconds) before retrying a failed
connection attempt.

1 second

max-connections The maximum number of open connections for a pooled
data source.

Depends on the
data source
type.

min-connections The minimum number of open connections for a pooled
data source. The first time min-connections is initiated is
after the first DataSource.getConnection method is
invoked.

0

Table 15–1 Data Source Attributes (Cont.)

Using Data Sources

Data Sources 15-11

Data Source Methods
You can call the following methods on a DataSource object:

getConnection();
Attempt to establish a database connection.

getConnection(String uid, String password);
Attempt to retrieve a database connection, specifying the username and password.

getLoginTimeout();
Retrieve the maximum time in seconds that this data source can wait while
attempting to connect to a database

setLoginTimeout(int seconds);
Set the maximum time in seconds that this data source will wait while attempting to
connect to a database.

getLogWriter();
Retrieve the log writer for this data source. Returns a java.io.Printwriter object.

setLogWriter(PrintWriter out);
Set the log writer for this data source.

Portable Data Source Lookup
When the OC4J server starts, the data sources in the data-sources.xml file in the
j2ee/home/config directory are added to the OC4J JNDI tree. When you lookup
a data source using JNDI, you specify the JNDI lookup as follows:

wait-timeout The number of seconds to wait for a free connection if
the pool is used up (that is, has reached max-connections
used).

60

max-connect-attempts The number of times to retry making a connection. This
is useful when the network is not stable or the
environment is unstable for any other reason that will
sometimes make connection attempts fail.

3

property This element is used to specify either a database link for
two-phase commit transactions (dblink) or a database
caching scheme (cache_scheme).

None

Table 15–1 Data Source Attributes (Cont.)

Using Data Sources

15-12 Oracle9iAS Containers for J2EE Services Guide

DataSource ds = ic.lookup("jdbc/OracleCMTDS1");

The OC4J server looks in its own internal JNDI tree for this data source.

However, it is recommended—and much more portable—for an application to look
up a data source in the application JNDI tree, using the portable java:comp/env
mechanism. Place an entry pointing to the data source in the application web.xml
or ejb-jar.xml files, using the <resource-ref> tag. For example:

<resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

where <res-ref-name> can be one of the following:

1. The actual JNDI name—such as "jdbc/OracleDS"—that is defined in the
data-sources.xml. In this situation, no mapping is necessary. This is
demonstrated by the above code example. The <res-ref-name> is the same
as the JNDI name bound in the data-sources.xml file. You would retrieve
this data source without using "java:comp/env" as shown by the following
JNDI lookup:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("jdbc/OracleDS");

2. A logical name that is mapped to the actual JNDI name in the OC4J-specific
files, orion-web.xml or orion-ejb-jar.xml. The OC4J-specific XML files
then define a mapping from the logical name in the web.xml or ejb-jar.xml
file to the actual JNDI name defined in the data-sources.xml file.

Example 15–1 Mapping Of Logical JNDI Name To Actual JNDI Name

The following demonstrates option #2 above. If you want to choose a logical name
of "jdbc/OracleMappedDS" to be used within your code for the JNDI retrieval.
Then you would have the following in your web.xml or ejb-jar.xml files:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

In order for the actual JNDI name to be found, you must have a
<resource-ref-mapping> element that maps the "jdbc/OracleMappedDS" to

Behavior of a Non-Emulated Data Source Object

Data Sources 15-13

the actual JNDI name in the data-sources.xml file. If we are using the default
emulated data source, then the ejb-location would be defined with
"jdbc/OracleDS" as the actual JNDI name. Thus, the following line would be
contained in the OC4J-specific XML file:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

You can then look up the data source in the application JNDI namespace using the
Java statements:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("java:comp/env/jdbc/OracleMappedDS");

Using Oracle JDBC Extensions
To use Oracle JDBC extensions, cast the returned connection to
oracle.jdbc.OracleConnection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
oracle.jdbc.OracleConnection conn =
(oracle.jdbc.OracleConnection) ds.getConnection();

You can use any of the Oracle extensions on the returned connection, "conn".

// you can create oracle.jdbc.* objects using this connection
oracle.jdbc.Statement orclStmt =
(oracle.jdbc.OracleStatement)conn.createStatement();
// assume table is varray_table
oracle.jdbc.OracleResultSet rs =
orclStmt.executeQuery("SELECT * FROM " + tableName);
while (rs.next())
{
 oracle.sql.ARRAY array = rs.getARRAY(1);
...
}

Behavior of a Non-Emulated Data Source Object
The physical behavior of a non-emulated data source object changes depending on
whether you retrieve a connection off the data source within a global transaction or
not. The following discusses these differences:

■ Retrieving a Connection Outside a Global Transaction

Behavior of a Non-Emulated Data Source Object

15-14 Oracle9iAS Containers for J2EE Services Guide

■ Retrieving a Connection Within a Global Transaction

Retrieving a Connection Outside a Global Transaction
If you retrieve a connection from a non-emulated data source and you are not
involved in a global transaction, every getConnection method returns a logical
handle. When the connection is used for work, a physical connection is created for
each connection created. Thus, if you create two connections outside of a global
transaction, both connections use a separate physical connection. When you close
each connection, it is returned to a pool to be used by the next connection retrieval.

Retrieving a Connection Within a Global Transaction
If you retrieve a connection from the non-emulated data source and you are
involved in a global JTA transaction, all physical connections retrieved off of the
same DataSource object by the same user within the transaction share the same
physical connection.

For example, if you start a transaction and retrieve two connections off of the
"jdbc/OracleCMTDS1" DataSource with the "scott" user, both connections
share the physical connection. In the following example, both conn1 and conn2
share the same physical connection.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
//start txn
txn.start();
Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

However, separate physical connections are retrieved for connections retrieved from
separate DataSource objects. The following example shows both conn1 and
conn2 retrieved from different DataSource objects—"jdbc/OracleCMTDS1" and
"jdbc/OracleCMTDS2". Both conn1 and conn2 will exist upon a separate
physical connection.

Context ic = new InitialContext();
DataSource ds1 = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
DataSource ds2 = (DataSource) ic.lookup("jdbc/OracleCMTDS2");
//start txn
txn.start();
Connection conn1 = ds1.getConnection();
Connection conn2 = ds2.getConnection();

Connection Retrieval Error Conditions

Data Sources 15-15

Using Database Caching Schemes
You can define the database caching scheme to use within the data source
definition. There are three types of caching schemes: DYNAMIC_SCHEME, FIXED_
WAIT_SCHEME, and FIXED_RETURN_NULL_SCHEME. To define one of these
schemes, provide a <property> element, as follows:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDS"
 location="jdbc/OracleCMTDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@<hostname>:<TTC port number>:<DB SID>"
 inactivity-timeout="30"
 <property name="cacheScheme"

 value="DYNAMIC_SCHEME"/>
/>

Connection Retrieval Error Conditions
The following creates an error condition:

■ Using Different Usernames for Two Connections to DataSource

■ Mixing Local and Global Transactions

Using Different Usernames for Two Connections to DataSource
When you retrieve a connection from the a DataSource object with a username
and password, this username and password is used on all subsequent connection
retrievals within the same transaction. This error condition is valid for all data
source types. For example, you retrieve the "jdbc/OracleCMTDS1" data source
with the "scott" user. In retrieving a second connection off of the same data source
with a different username, such as "adams", the username provided is ignored.
Instead, the "scott" user is used.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
//start txn
txn.start();
Connection conn1 = ds.getConnection("scott", "tiger"); //uses scott/tiger
Connection conn2 = ds.getConnection("adams", "wood"); //uses scott/tiger also

Using the OCI JDBC Drivers

15-16 Oracle9iAS Containers for J2EE Services Guide

Thus, you cannot authenticate using two different users to the same data source. If
you try to access the tables as "adams/wood", you enter into an error condition.

You can bypass this behavior by specifying the dedicated.connection JNDI
property as true before retrieving the InitialContext. This property states that every
connection retrieval uses a separate connection, even if to the same resource. Thus,
you can specify different users to the same data source.

env.put("dedicated.connection", "true");

Mixing Local and Global Transactions
You cannot mix local and global transactions. You must use either one or the other.
This error condition applies only to non-emulated data sources. The following code
shows an invalid mixture of local and global transactions:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
Connection conn1 = ds.getConnection("scott", "tiger");
conn1.work(); //perform work on conn1 in a local transaction
//start global transaction
txn.start();
conn1.morework(); //perform work on conn1 within a global transaction ERROR!

Another mode of mixing transactional types is as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
Connection conn1 = ds.getConnection("scott", "tiger");
//start global transaction
txn.start();
conn1.work(); //perform work on conn1 in a global transaction
txn.commit();
conn1.morework(); //perform work on conn1 within a local transaction ERROR!

Even though you have committed the global transaction, you are still mixing global
and local transactional work within the same bean.

Using the OCI JDBC Drivers
The examples of Oracle data source definitions in this chapter use the Oracle JDBC
thin driver. However, you can use the Oracle JDBC OCI (thick) driver as well. Set
the following before you start the OC4J server:

Using Merant Drivers

Data Sources 15-17

■ install the Oracle Client on the same machine on which OC4J is installed

■ set the ORACLE_HOME variable

■ set LD_LIBRARY_PATH (or the equivalent environment variable for your OS) to
$ORACLE_HOME/lib

■ set TNS_ADMIN to a valid Oracle administration directory with a valid
tnsnames.ora file

The URL to use in the url attribute of the <data-source> element definition can
have any of these forms:

■ jdbc:oracle:oci8:@: this TNS entry is for a database on the same system as
the client, and the client connects to the database in IPC mode

■ jdbc:oracle:oci8:@<TNS service name>: where the TNS service name
is an entry in the instance tnsnames.ora file

■ jdbc:oracle:oci8:@<full_TNS_listener_description>: the
complete TNS service specification, as described in the Oracle Net
Administrator's Guide

Using Merant Drivers
When your application must connect to heterogeneous databases, use Merant JDBC
drivers. Merant JDBC drivers are not meant to be used with an Oracle database but
for connecting to non-Oracle databases, such as Microsoft, SQLServer, Sybase and
DB2. If you want to use Merant drivers with OC4J, add corresponding entries for
each database in the data-sources.xml file.

Please see the Merant documentation for information on installing the Merant JDBC
drivers.

The following is an example of a data source entry for SQLServer. For more detailed
information, see the Merant DataDirect Connect JDBC User's Guide and Reference.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSSDS"
 xa-location="jdbc/xa/MerantSSXADS"
 ejb-location="jdbc/MerantSSDS"
 connection-driver="com.merant.datadirect.jdbc.sqlserver.SQLServerDriver"
 username="test"
 password="secret"
 url="jdbc:sqlserver//hostname:port;User=test;Password=secret"

Using Merant Drivers

15-18 Oracle9iAS Containers for J2EE Services Guide

 inactivity-timeout="30"
 />

For a DB2 database, here is a data source configuration sample:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreDB2DS"
 xa-location="jdbc/xa/MerantDB2XADS"
 ejb-location="jdbc/MerantDB2DS"
 connection-driver="com.merant.datadirect.jdbc.db2.DB2Driver"
 username="test"
 password="secret"
 url="jdbc:sqlserver//hostname:port;LocationName=jdbc;CollectionId=default;
 inactivity-timeout="30"
/>

For a Sybase database, here is a data source configuration sample:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSybaseDS"
 xa-location="jdbc/xa/MerantSybaseXADS"
 ejb-location="jdbc/MerantSybaseDS"
 connection-driver="com.merant.datadirect.jdbc.sybase.SybaseDriver"
 username="test"
 password="secret"
 url="jdbc:sqlserver//hostname:port;User=test;Password=secret"
 inactivity-timeout="30"
/>

You can also use vendor-specific data sources in the class attribute directly. That is,
you do not need to use an OC4J-specific data source in the class attribute.

JAAS Provider APIs A-1

A
JAAS Provider APIs

This appendix describes the JAAS Provider public packages.

This appendix contains these topics:

■ JAAS Provider API Overview

■ Package oracle.security.jazn

■ Package oracle.security.jazn.policy

■ Package oracle.security.jazn.realm

JAAS Provider API Overview

A-2 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider API Overview
This appendix provide brief descriptions of the JAAS Provider APIs. For detailed
information on these APIs, see the JAAS Provider Javadoc available in the OC4J
section of the Oracle9i Application Server Documentation Library.

Package oracle.security.jazn
Package oracle.security.jazn provides the classes and interfaces for Oracle's
authorization/policy provider for the Java Authentication and Authorization
Service (JAAS).

Besides providing a full implementation of javax.security.auth.Policy, the
JAAS provider enhances JAAS in the following ways:

■ Defines a realm-based user and role management API

■ Defines an administrative API for administering the following aspects of the
authorization policy:

■ Permission-to-user assignment

■ Permission-to-role assignment

■ User-to-role assignment

■ Provides role-based access control (RBAC) support through the realm
framework, with full support for role hierarchies.

Interfaces

Persistable
Persistable defines the basic behavior for a persistable object.

Classes

JAZNConfig
JAZNConfig provides a starting point for obtaining JAAS Provider-related objects
and a centralized place for managing JAAS Provider properties

JAZNConfig enables you to run multiple JAAS provider instances. You can deploy
several different applications using JAAS provider in the same Java virtual machine
(JVM), each with different configurations. For example, you can have one

Package oracle.security.jazn

JAAS Provider APIs A-3

application using JAAS provider with LDAP-based Oracle Internet Directory as the
provider type and another application using JAAS provider with XML-Based
Provider Type as the provider type in the same JVM.

JAZNContext
JAZNContext provides a starting point for obtaining JAAS Provider-related
objects and a centralized place for managing the JAAS provider properties.
JAZNContext is essentially a single-instance version of JAZNConfig.

JAZNPermission
JAZNPermission is for authorization permissions. A JAZNPermission contains
a name (also referred to as a target name), but no actions list; you either have the
named permission or you do not.

The target name is the name of the JAAS provider permission.

Table 15–2 lists the possible target names for a JAZNPermission, describes what
the permission allows, and describes the risks of granting the permission.

Table 15–2 JAZNPermission Target Names

Permission Name
The Permission
Allows Risks of Allowing this Permission

getPolicy The caller to retrieve
the JAZNPolicy object

This enables someone to retrieve a
JAZNPolicy object. Since the
JAZNPolicy object can modify the JAAS
Provider type, grant this permission only
to the administrators.

getRealmManager The caller to retrieve
the RealmManager
object

This enables someone to retrieve a
RealmManager object. Since the
RealmManager object can create, drop,
and modify realms, grant this permission
only to the administrators.

getProperty.
{propertyName}

The caller to retrieve
the value of the JAAS
provider property
named
{propertyName}

Depending on the particular key for
which access has been granted, the code
may have access to the location of the
backend server as well as security
credentials used to access the backend
server. Carefully protect this permission
and grant it only to administrators.

setProperty.
{propertyName}

The caller to set the
value of the JAAS
provider property
named
{propertyName}

This can include setting a new backend
server and new credentials to access the
backend server. Since this can bypass the
enterprise policy, carefully protect this
permission and grant it only to
administrators.

Package oracle.security.jazn

A-4 Oracle9iAS Containers for J2EE Services Guide

JAZNWebAppConfig
JAZNWebAppConfig represents a <jazn-web-app> Configuration instance.

Exceptions

JAZNConfigException
JAZNConfigException represents an authorization exception.

JAZNException
JAZNException represents an authorization exception.

JAZNInitException
JAZNInitException is thrown when an initialization error occurs.

JAZNNamingException
JAZNNamingException is used to wrap a javax.naming.NamingException.

JAZNObjectExistsException
JAZNObjectExistsException is thrown when an attempt is made to create an
object that already exists.

JAZNObjectNotFoundException
JAZNObjectNotFoundException is thrown when an attempt is made to access
an object that does not already exist.

JAZNRuntimeException
JAZNRuntimeException represents an authorization exception.

Package oracle.security.jazn.login

JAAS Provider APIs A-5

Package oracle.security.jazn.login
Package oracle.security.jazn.login provides the classes and interfaces for
administering Login Modules.

Classes

LoginModuleManager
LoginModuleManager extends javax.security.auth.login.
Configuration by defining management methods (add/remove
AppConfigurationEntry).

Package oracle.security.jazn.policy

A-6 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.policy
Package oracle.security.jazn.policy provides the classes and interfaces for
administering the authorization policy.

Interfaces

GlobalPolicy
GlobalPolicy represents the Global JAAS Provider Policy.

JAZNPolicy
JAZNPolicy represents the repository of authorization policies. More specifically,
JAZNPolicy deals with the assignment of permissions or privileges to grantees
(these can be users or roles or any valid grantee).

In order for a grant or revocation to succeed, the grantor or revoker (represented by
the current subject) must have the relevant permissions granted to them.

In general, the methods that return a list or set represent a snapshot of a
JAZNPolicy provider at the time of the query. If the JAAS provider is further
modified, the returned set of permissions and roles may no longer be valid.

In general, JAZNPolicy implementation should cache the policy information, so
that repeated calls using the same parameters do not result in repeated network
round trips to the backing store.

JAZNPolicy also defines methods that change the persistent state of the JAAS
Provider type (for example, grant or revoke xx methods). The implementation must
ensure that whenever a grant or revoke is attempted, the relevant cache entries are
invalidated.

PermissionClassManager
The PermissionClassManager is an utility to help manage permission classes.

PermissionClassManager represents the repository of all registered Permission
classes. Registering a permission class allows access to stored metadata that
provides specific information about a given permission's target, action, and/or
description. Failure to register a given permission class will not affect JAAS
provider's ability to use the permission class. That is, JAAS does not limit
permission grants or revocations to those classes registered with the
PermissionClassManager.

Package oracle.security.jazn.policy

JAAS Provider APIs A-7

PolicyManager
PolicyManager defines basic methods for managing JAAS Provider policies.

PrincipalClassManager
The PrincipalClassManager is an utility to help manage principal classes.

PrincipalClassManager represents the repository of all registered Principal
classes. Registering a principal class allows access to stored metadata that provides
specific information about a given principal's name and description. Failure to
register a given principal class will not affect the JAAS provider's ability to use the
principal class. That is, the JAAS provider recognizes all principal classes whether
or not they have been registered with the PrincipalClassManager.

RealmPolicy
RealmPolicy is a Realm-specific Policy.

Classes

AdminPermission
AdminPermission represents the right to administer a permission. Given a
Permission p, the grantee of AdminPermission(p) is granted the right to:

■ Grant or revoke permissions implied by p (say p')

■ Grant or revoke AdminPermission(p')

For example:

 p = java.io.FilePermission("/home/frank/-","read,write");

If grantee frank is granted AdminPermission(p), then frank is granted the
following rights:

■ The right to further grant or revoke p' (that is, read and write privileges for any
file in the file system under /home/frank) to and from other grantees

■ The right to further grant or revoke AdminPermission(p')

Consider the following information:

■ An AdminPermission embedding another AdminPermission is not
supported. There is no need to do so, since granting a grantee

Package oracle.security.jazn.policy

A-8 Oracle9iAS Containers for J2EE Services Guide

AdminPermission(p) implies that the grantee can further grant/revoke
AdminPermission(p')

■ Granting a grantee AdminPermission(p) does not imply granting the
grantee. That must be granted separately.

Grantee
Grantee represents a grantee in a policy entry.

PermissionClassDesc
PermissionClassDesc defines the descriptor (metadata) for a Permission class.

PrincipalClassDesc
PrincipalClassDesc defines the descriptor (metadata) of a Principal class.

RoleAdminPermission
The grantee of RoleAdminPermission is granted the right to further grant or
revoke the target role.

Package oracle.security.jazn.realm

JAAS Provider APIs A-9

Package oracle.security.jazn.realm
Package oracle.security.jazn.realm provides the classes and interfaces for
the realm framework.

Interfaces

InitRealmInfo.RealmType
InitRealmInfo.RealmType defines the different realm types supported by JAAS
Provider.

Realm
Realm provides access to a store of roles and users. The JAAS provider separates
role management from user management by providing each realm instance with its
own UserManager for user management and RoleManager for role management.

Realm defines methods for managing realm's metadata (properties) and getting its
UserManager and RoleManager.

Realm.LDAPProperty
Realm.LDAPProperty defines the LDAP properties applicable for creating a
realm (user manager and role manager) using an LDAP directory as a backing store.

RealmPrincipal
RealmPrincipal extends from java.security.Principal. It is a principal
associated with a realm instance.

RealmRole
RealmRole is a role associated with a realm. It can be associated with a group of
privileges or roles.

RealmUser
RealmUser is a user associated with a realm. This is an empty interface for tagging
objects as being RealmUser objects. It differs from RealmRole in that it cannot
contain other roles.

Package oracle.security.jazn.realm

A-10 Oracle9iAS Containers for J2EE Services Guide

RoleManager
RoleManager defines the APIs for managing roles in a realm.

UserManager
UserManager defines the APIs for managing users in a realm.

Classes

InitRealmInfo
InitRealmInfo is a placeholder for specifying realm properties when creating a
new realm.

RealmLoginModule
RealmLoginModule is a realm-based login module.

RealmManager
RealmManager manages realms.

RealmPermission
RealmPermission is defined to represent permissions for a realm. It extends from
java.security.Permission, and is used like any regular Java permission.
RealmPermission consists of the name of the realm (also known as permission
target name) and a set of actions specifying privileges applicable to that realm. The
target name of a RealmPermission instance is the name of the realm in question.
The individual action name is specific to the realm in question and is
system-defined.

Table 15–3 lists all the system-defined RealmPermission action names.

Table 15–3 RealmPermission Action Names

Permission Action The Permission Action Enables You To...

createRealm Create realms

dropRealm Drop realms

createUser Create users in the target realm

dropUser Drop users in the target realm

Package oracle.security.jazn.realm

JAAS Provider APIs A-11

createRole Create roles in the target realm

dropRole Drop roles in the target realm

modifyRole Modify roles in the target realm

grantRole Grant roles in the target realm

revokeRole Revoke roles from the target realm

Table 15–3 RealmPermission Action Names

Permission Action The Permission Action Enables You To...

Package oracle.security.jazn.realm

A-12 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Standards and Samples B-1

B
JAAS Provider Standards and Samples

This appendix provides supplemental samples and standards.

This appendix contains these topics:

■ Sample jazn-data.xml Code

■ Supplemental Code Samples

Sample jazn-data.xml Code

B-2 Oracle9iAS Containers for J2EE Services Guide

Sample jazn-data.xml Code
This section presents a sample jazn-data.xml file which illustrates the specific
DTD standards that XML files must conform to. This jazn-data.xml file contains
one realm, jazn.com, four users (three with obfuscated passwords) and three roles.

Example 15–2 Sample jazn-data.xml File

<jazn-data

<!--JAZN Realm Data -->

 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>admin</name>
 <displayName>Realm Administrator</displayName>
 <description>Administrator for this realm</description>
 <credentials>Qj+w7NJulLM=</credentials>
 </user>
 <user>
 <name>user</name>
 <description>The default guest</description>
 <credentials>wEE6aA==</credentials>
 </user>
 <user>
 <name>anonymous</name>
 <description>The default guest/anonymous
 user</description>

See Also:

■ "DTD Standard for XML Datafiles" on page 7-38

■ "Realm Management in XML-Based Environments" on
page 4-22

■ "Managing XML-Based Provider Data with the XML Schema"
on page 7-37 for further information on managing JAAS
Provider in XML-based provider environment

■ "Other Utilities" on page 7-39 for further information on the
PermissionClassManager, PrincipalClassManager,
and LoginModuleManager

Sample jazn-data.xml Code

JAAS Provider Standards and Samples B-3

 </user>
 <user>
 <name>SCOTT</name>
 <displayName>SCOTT</displayName>
 <credentials>DppF6Lo4</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>guests</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 <member>
 <type>user</type>
 <name>user</name>
 </member>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 </members>
 </role>
 <role>
 <name>administrators</name>
 <displayName>Realm Admin Role</displayName>
 <description>Administrative role for this
 realm</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>

 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 <member>
 <type>user</type>

Sample jazn-data.xml Code

B-4 Oracle9iAS Containers for J2EE Services Guide

 <name>user</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
</jazn-realm>

<!--JAZN Policy Data -->
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm>jazn.com/realm>
 <type>role/type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole
 </class>
 <name>jazn.com/administrators/name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>modifyrealmmetadata</actions>
 </permission>
 <permission>
 <class>com.evermind.server.AdministrationPermission
 </class>
 <name>administration</name>
 <actions>administration</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 com$modifyrealmmetadata</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$droprealm</name>
 </permission>
 <permission>

Sample jazn-data.xml Code

JAAS Provider Standards and Samples B-5

 <class>oracle.security.jazn.policy.RoleAdminPermission
 </class>
 <name>jazn.com/*</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.policy.
 RoleAdminPermission$jazn.com/*$</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$droprole</name>
 </permission>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>droprealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.
 com$createrole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.
 com$createrealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

<!-- Permission Class Data -->
 <jazn-permission-classes>
 <permission-class>

Sample jazn-data.xml Code

B-6 Oracle9iAS Containers for J2EE Services Guide

 <name>JAZNPermission</name>
 <description>To govern access to JAZN API</description>
 <type>jdk</type>
 <class>oracle.security.jazn.JAZNPermission</class>
 <target-descriptors>
 <target-descriptor>
 <name>*</name>
 <description>Access to ALL of JAZN API</description>
 </target-descriptor>
 </target-descriptors>
 <action-descriptors>
 </action-descriptors>
 </permission-class>
 </jazn-permission-classes>

<!-- Principal Class Data -->
 <jazn-principal-classes>
 <principal-class>
 <name>SolarisPrincipal</name>
 <description>Solaris Principal</description>
 <type>jdk</type>
 <class>com.sun.security.auth.SolarisPrincipal</class>
 <name-description-map>
 <name-description-pair>
 <name>*</name>
 <description>All Principals</description>
 </name-description-pair>
 </name-description-map>
 </principal-class>
 </jazn-principal-classes>

Supplemental Code Samples

JAAS Provider Standards and Samples B-7

<!-- Login Module Data -->
 <jazn-loginconfig>
 <application>
 <name>TestRealmLogin</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>

</jazn-data>

Supplemental Code Samples
The following code samples are intended as supplemental information. This section
presents the following:

■ Supplementary Code Sample: Creating an Application Realm

■ Supplementary Code Sample: Modifying User Permissions

Supplementary Code Sample: Creating an Application Realm
The following code sample creates an Application Realm with the objects shown in
Table 15–4. The objects to be modified are presented in bold.

See Also:

■ "Realm Creation" on page 7-28 for further information on
creating realms

■ "Creating an External Realm" on page 7-29 for further
information on creating application realms

Supplemental Code Samples

B-8 Oracle9iAS Containers for J2EE Services Guide

Example 15–3 Application Realm Creation Code

import oracle.security.jazn.spi.ldap.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;

import java.util.*;

/**
 * Creates an application realm.
 */

public class CreateRealm extends Object
{
 public CreateRealm() {};

 public static void main (String[] args) {
 CreateRealm test = new CreateRealm();
 test.createAppRealm();
 }

 void createAppRealm() {
 Realm realm=null;

 try {
 Hashtable prop = new Hashtable();
 prop.put(Realm.LDAPProperty.USERS_SEARCHBASE,"cn=users,o=dev.com");

 // specifying the following LDAP directory object class
 // is optional. When specified, it will
 // be used as a filter to search for users
 prop.put(Realm.LDAPProperty.USERS_OBJ_CLASS,"orclUser");

 // adminUser is optional

Table 15–4 Objects in Sample Application Realm Creation Code

Objects Names

sample organization dev.com

adminUser (optional) John.Singh

adminRole administrator

sample realm name devRealm

Supplemental Code Samples

JAAS Provider Standards and Samples B-9

 String adminUser = "John.Singh";

 String adminRole = "administrator";

 RealmManager realmMgr = JAZNContext.getRealmManager();

 InitRealmInfo realmInfo = new
 InitRealmInfo(InitRealmInfo.RealmType.APPLICATION_REALM, adminUser,
 adminRole, prop);
 realm = realmMgr.createRealm("devRealm", realmInfo);
 }

catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Supplementary Code Sample: Modifying User Permissions
The following code demonstrates granting java.io.FilePermission to a user
named Jane.Smith. The objects to be modified are presented in bold.

Table 15–5 Objects of Sample Modifying User Permissions Code

Objects Names Comments...

RealmUser user Jane.Smith

codesource cs file:/home/task.jar

File path report.data Path is the pathname of the file.

sample organization abc.com abc.com does not appear in this
code directly, but was acted upon
in the creation of this sample
External Realm in Example 7–1 on
page 7-30.

sample External Realm abcRealm abcRealm appears in this code
and in the creation of this sample
External Realm in External Realm
Creation Code on page 7-30.

Supplemental Code Samples

B-10 Oracle9iAS Containers for J2EE Services Guide

Example 15–4 Modifying User Permissions Code

Code Sample
import oracle.security.jazn.*;
import oracle.security.jazn.policy.*;
import oracle.security.jazn.realm.*;
import java.lang.*;
import java.security.*;
import java.util.*;
import java.net.*;
import java.io.*;

public class Init {

 public static void main(String[] args) {

 try {
 RealmManager realmMgr = JAZNContext.getRealmManager();
 Realm realm = realmMgr.getRealm("abcRealm");
 UserManager userMgr = realm.getUserManager();
 RoleManager roleMgr = realm.getRoleManager();
 final JAZNPolicy policy = JAZNContext.getPolicy();

 final RealmUser user = userMgr.getUser("Jane.Smith");

 AccessController.doPrivileged (new PrivilegedAction() {
 public Object run() {

 try {

 CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);
 HashSet prop = new HashSet();
 prop.add((Principal) user);

 // assign permission to principals
 policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

 return null;
 } catch (JAZNException e1) {
 e1.printStackTrace();
 } catch (java.net.MalformedURLException e2) {
 e2.printStackTrace();

Supplemental Code Samples

JAAS Provider Standards and Samples B-11

 }
 return null;
 }
 }
);

 } catch (JAZNException e) {
 e.printStackTrace();
 }
 }
}

Discussion of Sample Code
The sample code shown in Example 15–4 is preparation for using the sample
application, AccessTest1, discussed in "Sample J2SE Application" on page 8-5.
This sample code grants a user, Jane.Smith, permission to use AccessTest1 as
follows:

The name cs is assigned to the file:/home/task.jar, which includes the
sample application AccessTest1:

CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);

Jane.Smith is the user added to the hashset prop:

HashSet prop = new HashSet();
 prop.add((Principal) user);

Jane.Smith is granted permission, on the Codesource cs, to read the file
report.data.

policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

Supplemental Code Samples

B-12 Oracle9iAS Containers for J2EE Services Guide

Third-Party Licenses C-1

C
Third-Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle9i Application Server. Topics include:

■ Apache HTTP Server

■ Apache JServ

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.

Apache HTTP Server

C-2 Oracle9iAS Containers for J2EE Services Guide

 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Apache JServ

Third-Party Licenses C-3

Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

Apache JServ

C-4 Oracle9iAS Containers for J2EE Services Guide

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Index-1

Index
Symbols
<commit-class> element, 10-12
<commit-coordinator> element, 10-12
<container-transaction> element, 10-7
<data-source>

attributes, 1-9
<resource-ref> element, 1-11
<res-ref-name> element, 1-11
<transaction-type> element, 10-6, 10-8

A
access control list model

definition, 4-13
AccessController, 4-5
accessing JAAS provider, 7-4
AccessTest1, 8-7, B-11
actions

definition, 4-4
add button

Oracle Enterprise Manager, 7-4
add command, 7-24
adding and removing realms, 7-16
adding and removing roles, 7-17
adding and removing users, 7-17
addperm options, 7-18
addprncpl option, 7-19
addrealm option, 7-16
addrole option, 7-17
adduser option, 7-17
administrative role, 7-29
AdminPermission class

administering permissions, 4-26

definition, 4-5, A-7
adminRole, 7-28
adminUser, 7-29
Ant build tool, 9-5
Apache

JServ license, A-3
license, A-1

Apache Listener. See Oracle HTTP Server
apachectl start command, 9-8
apachectl startssl command, 9-8
APIs

oracle.security.jazn package, A-2
oracle.security.jazn.policy package, A-6
oracle.security.jazn.realm package, A-9

Application Realm
creation, 7-31
creation code, B-8
definition, 4-18
role management, 4-18, 4-21
sample LDAP directory information tree, 4-21
user management, 4-18, 4-21

ApplicationClientInitialContextFactory, 2-6 to 2-8
ApplicationInitialContextFactory, 2-8 to 2-10
applications

executing, 8-4, 9-8
in Java2 application environments, 6-2
sample J2SE, 8-5
with JAAS, 4-10

application.xml
designating data-sources.xml, 1-2

assigning permissions, 7-6
attributes

CacheEventListener, 13-17
DefaultTimeToLive, 13-17

Index-2

DISTRIBUTE, 13-14
GROUP_TTL_DESTROY, 13-14
IdleTime, 13-17
LOADER, 13-14
ORIGINAL, 13-14
REPLY, 13-15
SPOOL, 13-15
SYNCHRONIZE, 13-16
SYNCHRONIZE_DEFAULT, 13-16
TimeToLive, 13-18
Version, 13-18

Attributes.setCacheEventListener() method, 13-28
authentication

definition, 4-2
J2EE, 9-2
J2SE, 8-2
using login modules, 4-9
using Oracle9iAS Single Sign-On (SSO), 4-13
using RealmLoginModule class, 4-13
with Basic Authentication, 6-13
with SSL, 6-10
with SSO, 4-13, 6-8

authentication environments, 6-6
authorization

definition, 4-2
J2EE, 9-4
J2SE, 8-3

B
basic authentication, 6-6

callerinfo demo, 5-2

C
Cache

concepts, 13-2
cache environment, 13-6
CacheAccess.createPool() method, 13-40
CacheAccess.get() method, 13-22
CacheAccess.getOwnership() method, 13-46
CacheAccess.preLoad() method, 13-22
CacheAccess.releaseOwnership() method, 13-46
CacheAccess.save() method, 13-35
CacheEventListener attribute, 13-17

CacheEventListener interface, 13-28
CacheLoader()

implementing, 13-22
CacheLoader.createStream() method, 13-38
caching scheme, 1-14
callback handler, 8-2, 8-5
callerInfo demo, 5-2, 9-4

code, 9-9
results, 5-6

capability model
definition, 4-13

cd command, 7-24
checking password, 7-17
checkpasswd option, 7-17
cipher suites

supported by Oracle HTTPS, 1-7
class names

definition, 4-4
classes

AdminPermission, A-7
Grantee, A-8
InitRealmInfo, A-10
JAZNConfig, A-2
JAZNConfigException, A-4
JAZNContext, A-3
JAZNPermission, A-3
RealmLoginModule, A-10
RealmManager, A-10
RealmPermission, A-10
RoleAdminPermission, A-8

cleanInterval property, 13-27
clear command, 7-25
codebase, 4-10
codesource, 7-8

in policy files, 4-10
constructing

JNDI contexts, 2-4
JNDI InitialContext, 2-5

createDiskObject() method, 13-23, 13-36
createInstance() method, 13-42
CreatePool() method, 13-40
createRole, 7-32, 7-33
createStream() method, 13-23
creating a new grant entry, 7-8
creating roles, 7-33

Index-3

creation code
Application Realm, B-8
External Realm, 7-30

credentials, 4-8, 4-24
cryptographic keys, 4-8

D
data source

configuration, 1-8
configuration file, 1-9
connection sharing, 1-13
default, 1-2
definition, 1-2
emulated, 1-2, 1-5 to 1-6
error conditions, 1-15

mixing transactions, 1-15
username, 1-15

introduction, 1-1
location of XML file, 1-2
non-emulated, 1-7 to 1-8

behavior, 1-13
JTA transaction, 1-13

Oracle JDBC extensions, 1-12
retrieving connection, 1-4, 1-11
using Merant driver, 1-17
using OCI driver, 1-16

data storage
in LDAP-based environments, 4-21

database
caching scheme, 1-14
retrieving connection, 1-4

DataSource object, 10-4, 1-4
methods, 1-10
retrieving, 10-4
use in JTA, 10-11

data-sources.xml, 1-9
designating location, 1-2
pre-installed definitions, 1-2

data-sources.xml file, 10-12
use in JTA, 10-2

dedicated.connection JNDI property, 1-15
default configurations

callerInfo demo, 5-3
default realm, 9-6

default-realm, 5-4
DefaultTimeToLive attribute, 13-17
default-web-site.xml file, 5-3, 9-5
defineGroup() method, 13-20, 13-21
defineObject() method, 13-21
defineRegion() method, 13-19
delegation, 4-2
deleting grant entries, 7-8
deployment descriptor

JTA, 10-6
deployment descriptors

JCA, 12-4
destroy() method, 13-25
destroyInstance() method, 13-42
directory information tree (DIT)

Application Realm, 4-21
External Realm, 4-18
Subscriber Realm, 4-19

discoveryAddress property, 13-27, 13-44
diskPath property, 13-27, 13-33
distinguished name (DN), 4-22
DISTRIBUTE attribute, 13-14, 13-43
distribute property, 13-27
doFilter(ServletRequest request, ServletResponse

response,FilterChain chain), 9-3
dropping a realm, 7-29, 7-32
dropping roles, 7-35
dropRole, 7-32, 7-35

E
embedded resource adapter, 12-2
environments, 4-3, 4-17
examples

stand-alone resource adapters, 12-6
exceptionHandler() method, 13-23
exceptions

JAZNException, A-4
JAZNInitException, A-4
JAZNNamingException, A-4
JAZNObjectExistsException, A-4
JAZNObjectNotFoundException, A-4
JAZNRuntimeException, A-4

executing an application, 8-4
exit command, 7-26

Index-4

External Realm
automatically installed, 4-22
creating, 7-30
creation code, 7-30
definition, 4-17
role management, 4-17, 4-19
sample LDAP directory information tree, 4-18
user management, 4-17, 4-19

F
features, 4-2
foundations of the JAAS provider, 4-2

G
GenericCredential interface

and Kerberos, 12-8
getAttribute("java.security.cert.X509certificate"), 9-

3
getAuthType, 9-3
getconfig option, 7-20
getConnection method, 10-4, 1-4
getID() method, 13-28
getName() method, 13-23
getOwnership() method, 13-46
getOwnsership() method, 13-50
getParent() method, 13-21
getPolicy, 7-36
getRegion() method, 13-23
getRemoteUser, 9-3
getRoles, 7-33
getSource() method, 13-28
getSubject, 8-3
getting XML configuration information, 7-20
getUserPrincipal, 9-3
grant entry data, 7-7
Grantee class

definition, A-8
granting and revoking permissions, 7-19
granting and revoking roles, 7-17
granting roles, 7-33
grantperm option, 7-19
grantRole, 7-32, 7-34
grantrole option, 7-17

GROUP_TTL_DESTROY attribute, 13-14, 13-24,
13-25

H
handleEvent() method, 13-28
help command, 7-25
help option, 7-21
hosted application environments, 4-26
hosted environments, 4-27
HTTPClient.HttpUrlConnection, 1-10
HTTPConnection, 1-4

Oracle extensions, 1-13

I
IdleTime attribute, 13-17
impersonation

delegation, 4-2
import

oracle.ias.cache, 13-19
initial context factories

JNDI, 2-6 to 2-11
InitialContext

constructing in JNDI, 2-5
InitRealmInfo class

definition, A-10
InitRealmInfo.RealmType interface, 7-31

definition, A-9
installation

Javadoc, A-2
interfaces

InitRealmInfo.RealmType, A-9
JAZNPolicy, A-6
Realm, A-9
Realm.LDAPProperty, A-9
RealmPrincipal, A-9
RealmRole, A-9
RealmUser, A-9
RoleManager, A-10
UserManager, A-10

invalidate() method, 13-24
invoking JAZN Admintool, 7-15

Index-5

J
J2EE. See Java2 Platform, Enterprise Edition (J2EE)
J2SE environments

JAAS provider integration, 6-2
J2SE. See Java2 Platform, Standard Edition (J2SE)
JAAS, 4-2

definition, 4-7
overview, 1-2

JAAS policy
managing, 7-6

JAAS provider
definition, 4-2
enhancements to realms, 4-15
features, 4-2
integration with Basic authentication, 6-12
integration with J2EE applications, 6-4
integration with J2SE applications, 6-2
integration with SSL-enabled applications, 6-9
integration with SSO-enabled applications, 6-7
management of, 7-2
management tools, 7-2
permission classes, 4-5
policy management, 7-36
running multiple instances, A-2
security role, 6-15

JAAS provider integration
J2SE environments, 6-2

JAAS. See Java Authentication and Authorization
Service (JAAS)

jaas.config, 8-4
Java, 10-1
Java application environments, 4-3
Java Authentication and Authorization Service

(JAAS)
applications, 4-10
definition, 4-7
extending the Java2 Security Model, 4-7
login modules, 4-9
policy files

example, 4-10
principals, 4-8
realms, 4-10
roles, 4-9
subjects, 4-8

support for authorization and authentication
features, 4-7

Java Authorization and Authentication Service. See
JAAS.

Java Connector Architecture
overview, 1-3

Java Message Service. SeeJMS.
Java Object Cache, 13-2

attributes, 13-12
basic architecture, 13-3
basic interfaces, 13-5
cache configuration properties, 13-26
cache consistency levels, 13-49
cache environment, 13-6, 13-11
classes, 13-5
configuration

cleanInterval property, 13-27
discoveryAddress property, 13-27
diskPath property, 13-27
distribute property, 13-27
logFileName property, 13-27
logger property, 13-27
logSeverity property, 13-28
maxObjects property, 13-28
maxSize property, 13-28

consistency levels
distributed with reply, 13-50
distributed without reply, 13-50
local, 13-49
synchronized, 13-50

default region, 13-11
defining a group, 13-20, 13-21
defining a region, 13-19
defining an object, 13-21
destroy object, 13-25
disk cache

adding objects to, 13-34
configuring, 13-33

disk objects, 13-33
definition of, 13-9
distributed, 13-36
local, 13-36
using, 13-36

distribute property, 13-43
distributed cache architecture, 13-4

Index-6

distributed disk objects, 13-34
distributed groups, 13-44
distributed mode, 13-43
distributed objects, 13-44
distributed regions, 13-44
features, 13-7
group, 13-12
invalidating object, 13-24
javacache.log log file, 13-27
local disk objects, 13-34
local mode, 13-43
memory objects

definition of, 13-8
local memory object, 13-8
spooled memory object, 13-8
updating, 13-8

naming objects, 13-8
object types, 13-6, 13-8
overview, 1-3
pool objects

accessing, 13-41
creating, 13-40
definition of, 13-10
using, 13-40

programming restrictions, 13-31
region, 13-11
StreamAccess object, 13-10
subregion, 13-11

Java permissions, 7-4
managing, 7-12

Java Platform, Enterprise Edition (J2EE)
security role, 6-14

Java programming, 7-27
sample code, 7-27

Java Transaction API. See JTA.
Java virtual machine (JVM)

running multiple JAAS provider instances, A-2
Java2 application environments, 6-2
Java2 Platform, Enterprise Edition (J2EE)

application development in, 6-2
application development with the JAAS

provider, 4-2
application management, 9-2
application startup, 9-8
creating applications using the Java2 Security

Model, 4-4
definition, 6-2, 6-4
integration with JAAS provider, 6-4
integration with JAZNUserManager, 6-4
integration with Oracle components, 6-4
integration with Oracle9iAS Containers for

J2EE, 6-4
Oracle component responsibilities in basic

authentication environments, 6-13
Oracle component responsibilities in SSL-enabled

environments, 6-10
Oracle component responsibilities in

SSO-enabled environments, 6-8
starting applications with SecurityManager, 9-8
starting in SSL environment, 9-8
starting in SSO environments, 9-8

Java2 Platform, Standard Edition (J2SE)
application development in, 6-2
application development with the JAAS

provider, 4-2
authentication, 8-2
authorization, 8-3
creating applications using the Java2 Security

Model, 4-4
definition, 6-2
integration with JAAS provider, 6-2
integration with Oracle components, 6-2
provider types available, 6-2

Java2 Security Model, 4-3, 4-7, 9-4
definition, 4-4
using access control capability model, 4-13
using with J2EE applications, 4-4
using with J2SE applications, 4-4
using with JAAS, 4-7

javacache.properties file, 13-26
Javadoc

location of, A-2
java.io.FilePermission, B-9
java.lang.SecurityManager.checkPermission, 8-3
java.net.URL framework, 1-10
java.security.cert.X509Certificate, 9-3
java.security.cert.X509Certificate,x509cert, 9-3
java.security.Permission class, 7-35

RealmPermission extends from, A-10
java.security.principal, 4-12

Index-7

java.security.Principal interface
RealmPrincipal extends from, A-9
using with principals, 4-8
using with roles and groups, 4-9

javax.net.ssl.KeyStore, 1-11
javax.net.ssl.KeyStorePassword, 1-12
javax.security.auth.Policy, A-2
javax.security.auth.Subject.doAs, 8-2, 8-3
javax.servlet.HttpServletRequest, 9-3
JAZN Admintool, 7-2, 7-14

administering policy, 4-24
definition, 4-16
for managing JAAS provider types, 4-13
invoking, 7-15
Quick Start, 5-7
shell commands, 7-24

JAZN Admintool commands
usage examples, 7-14

JAZN Admintool options
addperm, 7-18
addprncpl, 7-19
addrealm, 7-16
addrole, 7-17
adduser, 7-17
checkpasswd, 7-17
getconfig, 7-20
getting help, 7-21
grantperm, 7-19
grantrole, 7-17
help, 7-21
listperm, 7-19
listperms, 7-19
listprncpl, 7-20
listrealms, 7-17
listroles, 7-18
listusers, 7-18
remprncpl, 7-19
remrealm, 7-16
remrole, 7-17
remuser, 7-17
revokeperm, 7-19
revokerole, 7-17
setpasswd, 7-18
shell, 7-20

JAZN Admintool shell, 7-14

starting, 7-20
JAZN Admintool shell commands

add, 7-24
cd, 7-24
clear, 7-25
exit, 7-26
help, 7-25
ls, 7-24
man, 7-25
mk, 7-24
mkdir, 7-24
pwd, 7-25
rm, 7-25

jazn element
location, 5-4, 9-6

JAZNAdminGroup, 4-26
JAZNClientGroup, 4-26
JAZNConfig class, 7-28

definition, A-2
JAZNConfigException class

definition, A-4
JAZNContext class, 7-28

definition, A-3
jazn-data.xml file, 4-11, 4-23, 5-3
JAZNException exception

definition, A-4
JAZNInitException exception

definition, A-4
JAZNNamingException exception

definition, A-4
JAZNObjectExistsException exception

definition, A-4
JAZNObjectNotFoundException exception

definition, A-4
JAZNPermission class

definition, 4-5, 4-6, A-3
target names, A-3

JAZNPolicy interface
definition, A-6

JAZNRuntimeException exception
definition, A-4

JAZNUserManager, 9-2, 9-4
definition, 4-13, 6-4
filter element, 6-5, 9-3
integration in J2EE environments, 6-4

Index-8

jazn.xml file, 8-4, 8-5
JCA, 12-1 to 12-8

deployment descriptors, 12-4
QoS contracts, 12-2
resource adapters, 12-2
stand-alone resource adapter

archives, 12-4 to 12-5
stand-alone resource adapter example, 12-6

JDBC
Oracle extensions, 1-12
retrieving connection, 1-4

JDK 1.3, 4-7
JMS, 11-1 to 11-10

configuring, 11-3 to 11-10
examples, 11-2 to 11-3
overview, 1-2, 11-1 to 11-2

JMS
resource providers, 11-10

JMS
resource providers, 11-4

JNDI, 2-1 to 2-11
constructing contexts, 2-4
environment, 2-5
initial context factories, 2-6 to 2-11
initial contexts, 2-2 to 2-3
lookup of data source, 1-4

JTA
bean-managed transaction, 10-2, 10-8
code download site, 10-1
container-managed transaction, 10-2, 10-6
demarcation, 10-2, 10-5
deployment descriptor, 10-6
DTD elements, 10-14
overview, 1-2
resource enlistment, 10-2
retrieving data source, 10-4
single-phase commit

configuration, 10-2
definition, 10-2

specification web site, 10-1
two-phase commit, 10-10

configuration, 10-10
definition, 10-2

K
Kerberos, 4-8

and GenericCredential interface, 12-8

L
LDAP. See Lightweight Directory Access Protocol

(LDAP)
ldapadd tool

creating users, 4-18
LDAP-based provider type

Oracle Internet Directory, 4-3
licenses

Apache, A-1
Apache JServ, A-3
third-party, A-1 to A-4

Lightweight Directory Access Protocol
(LDAP)-based environments

in J2SE environments, 6-2
realm contents, 4-18
realm data storage, 4-21
realm management, 4-17
realm permissions, 4-22
realm types available, 4-17
sample Application Realm directory information

tree, 4-21
sample External Realm directory information

tree, 4-18
sample Subscriber Realm directory information

tree, 4-19
listing permission information, 7-19
listing permissions, 7-19
listing principal class information, 7-20
listing principal classes, 7-20
listing realms, 7-17
listing roles, 7-18
listing users, 7-18
listperm option, 7-19
listperms option, 7-19
listprncpl option, 7-20
listrealms option, 7-17
listroles option, 7-18
listusers option, 7-18
LOADER attribute, 13-14

Index-9

location
jazn element, 5-4, 9-6

log file javacache.log, 13-27
log() method, 13-23
logFileName property, 13-27
logger property, 13-27
login method, 8-2
login modules

available with JAAS provider, 4-13
configuring with different applications, 4-9
definition, 4-9
with JAAS, 4-9

LoginContext class, 4-9, 8-2
authenticating subjects, 4-9

LoginContext.getSubject, 8-3
logSeverity property, 13-28
ls command, 7-24

M
man command, 7-25
management

of JAAS provider, 7-2
management tools, 7-2
managing JAAS provider policy, 7-36
managing JAZN

with Java, 7-27
managing permissions, 7-12, 7-35
managing realms, 7-28
managing roles, 7-32
managing users, 7-32
Mandatory transaction attribute, 10-7
maxObjects property, 13-28
maxSize property, 13-28
Merant driver, 1-17
migrating principals, 7-20
mk command, 7-24
mkdir command, 7-24
mod_oc4j, 9-4
mod_oc4j.conf file, 9-7
mod_ossl, 9-8
mod_osso, 9-8
multiple instances

of JAAS provider, A-2
multiple instances of JAZN

JAZNConfig, 7-28

N
namespace partitioning, 4-10
netSearch() method, 13-23, 13-50
Never transaction attribute, 10-7
NotSupported transaction attribute, 10-6

O
obfuscation, 4-24
OBJECT_INVALIDATION event, 13-29
OBJECT_UPDATED event, 13-29
OC4J. See Oracle9iAS Containers for J2EE (OC4J)
OCI driver, 1-16
OID. See Oracle Internet Directory (OID)
Oracle Enterprise Manager (OEM), 7-2, 7-3, 7-8

accessing JAAS provider, 7-4
creating a new grant entry, 7-8
creating new grant

permission, 7-10
creating new grants, 7-8, 7-9
JAAS provider overview, 4-16
principal classes, 7-9, 7-13
revoking permissions, 7-13

Oracle HTTPS, 1-1 to 1-20
default system properties, 1-11
example, 1-17
feature overview, 1-6
prerequisites for use, 1-2
supported cipher suites, 1-7

Oracle Internet Directory (OID)
administering policy data, 4-26
creating users, 4-18
location, 7-28
provider type, 4-15

Oracle Wallet Manager
and HTTPS, 1-8

Oracle9iAS Containers for J2EE (OC4J), 9-2
integration in J2EE environments, 6-4
mapping security roles to JAAS provider users

and roles, 6-15
Oracle9iAS Single Sign-On (SSO)

for SSO authentication, 4-13

Index-10

Oracle9iAS Web Cache, 13-2
oracle.ias.cache, 13-19
oracle.security.jazn package

classes, A-2
definition, A-2
exceptions, A-4

oracle.security.jazn.oc4j. JAZNServletRequest, 9-4
oracle.security.jazn.policy package

classes, A-7
definition, A-6
interfaces, A-6

oracle.security.jazn.realm package
classes, A-10
definition, A-9
interfaces, A-9
support for realms, 4-15
use of, 4-12

oracle.security.jazn.util.
CertHash.getHash(x509cert), 9-3

OracleSSLCredential, 1-5, 1-14
Oracle.ssl.defaultCipherSuites, 1-12
ORIGINAL attribute, 13-14
orion-application.xml file, 5-4, 9-6, 9-7, 10-11

mapping security roles to JAAS provider users
and roles, 6-15

P
packages

oracle.security.jazn, A-2
oracle.security.jazn.policy, A-6
oracle.security.jazn.realm, A-9

partitioning, 4-10, 4-26
passwords, 4-24

checking, 7-17
setting, 7-18

permissions, 4-14, 7-10
actions, 4-4
administering with AdminPermission

class, 4-26
class definitions, 4-5
class name, 4-4
definition, 4-10
granting and revoking with the JAZN

Admintool, 7-19

in Java2 Security Model, 4-4
JAAS provider, 4-5
Java permission instance contents, 4-4
listing with the JAZN Admintool, 7-19
management in LDAP-based

environments, 4-26
management in XML-based environments, 4-23,

4-26
managing, 7-12, 7-35
target, 4-4

persistence, 4-24
Pluggable Authentication Module (PAM), 4-7
policies

administering with JAZN Admintool, 4-24
administering with Oracle Internet Directory

(OID), 4-26
administration, 4-24
definition, 4-10
information storage in XML-based provider

type, 4-23
management in LDAP-based

environments, 4-26
management in XML-based environments, 4-23

policy entries, 7-4
policy files

codesource, 4-10
example, 4-10
subject, 4-10

policy partitioning
among realms, 4-27

PoolAccess object, 13-41
PoolAccess.close() method, 13-41
PoolAccess.get() method, 13-41
PoolAccess.getPool() method, 13-41
PoolAccess.returnToPool() method, 13-41
PoolInstanceFactory

implementing, 13-42
principal, 4-8, 8-2
principal classes, 7-9, 7-13

listing information with the JAZN
Admintool, 7-20

principal-based authorization
support for, 4-7

principals, 7-9, 7-36
definition, 4-8

Index-11

with JAAS, 4-8
principals.xml file, 6-4

converting from, 7-20
PrivilegedAction interface, 8-3, 8-4
privileges, 4-15
protection domain

definition, 4-4
in Java2 Security Model, 4-5

provider types, 4-3, 4-17
in J2SE environments, 6-2
managing, 4-13
Oracle Internet Directory (OID), 4-15, 4-24
retrieving permissions from, 4-13
storing policy information, 4-24
XML-based, 4-15, 4-24

public key certificates, 4-8
pwd command, 7-25

Q
QoS contracts, 12-2
quality of service contracts, 12-2
Quick Start, 5-1

R
RAR file
RBAC, 4-9
RBAC. See role-based access control (RBAC)
Realm interface

definition, A-9
realm name, 7-28
realm permissions

management in LDAP-based
environments, 4-22

Realm.LDAPProperty interface
definition, A-9

RealmLoginModule, 4-13
RealmLoginModule class, 9-2

definition, A-10
for SSL and Basic authentication, 4-13
in J2SE environments, 6-2, 8-2

RealmManager class, 7-33
definition, A-10

RealmPermission class, 4-22

action names, A-10
definition, 4-5, 4-6, A-10

RealmPrincipal interface, 4-12, 9-3
definition, A-9

RealmRole interface
definition, A-9

realms
adding and removing with the JAZN

Admintool, 7-16
creation of realm container in LDAP-based

environments, 4-21
data storage in LDAP-based environments, 4-21
definition, 4-10, 4-12
dropping, 7-29, 7-32
information storage in XML-based provider

type, 4-23
JAAS provider enhancements, 4-15
JAAS provider framework, 4-17
JAAS provider support, 4-12
listing with the JAZN Admintool, 7-17
managing in LDAP-based environments, 4-17
managing in XML-based provider type, 4-22
name, 7-28
permission management in LDAP-based

environments, 4-22
policy partitioning, 4-27
realm contents in LDAP-based

environments, 4-18
types available in LDAP-based

environments, 4-17
types available in XML-based provider

type, 4-22
with JAAS, 4-10

RealmUser interface
definition, A-9

release_Ownsership() method, 13-50
releaseOwnership() method, 13-46
Remote Method Invocation. See RMI.
remprncpl option, 7-19
remrealm option, 7-16
remrole option, 7-17
remuser option, 7-17
REPLY attribute, 13-15, 13-44
Required transaction attribute, 10-6
RequiresNew transaction attribute, 10-7

Index-12

resource adapter, 12-2
Resource Adapter Archive. See RAR.
resource providers

JMS, 11-4 to 11-10
ResourceProvider

JMS, 11-4
retrieving authentication information, 9-3
returnToPool() method, 13-41
revokeperm option, 7-19
revokeRole, 7-33
revokerole option, 7-17
revoking permissions

Oracle Enterprise Manager, 7-13
rm command, 7-25
RMI

overview, 1-2
RMIInitialContextFactory, 2-10 to 2-11
rmi.xml, 3-2
role activation

definition, 4-15
role hierarchy

definition, 4-14
role management, 4-18
role manager, 4-18
role object class, 7-29
role’s searchbase property, 7-29
RoleAdminPermission class, 4-27

definition, 4-5, A-8
role-based access control (RBAC), 4-12

definition, 4-14
JAAS provider support for, 4-12
role activation, 4-15
role hierarchy, 4-14
support for, A-2

RoleManager interface, 4-22, 7-32, 7-33
createRole, 7-32
definition, A-10
dropRole, 7-32
getRoles, 7-33
grantRole, 7-32
revokeRole, 7-33

roles, 7-36
adding and removing with the JAZN

Admintool, 7-17
creating, 7-33

definition, 4-14
dropping, 7-35
granting, 7-33
granting and revoking with the JAZN

Admintool, 7-17
listing with the JAZN Admintool, 7-18
management in Application Realms, 4-18, 4-21
management in External Realms, 4-17, 4-19
management in LDAP-based

environments, 4-17
management in Subscriber Realms, 4-17, 4-20
management in XML-based environments, 4-23
managing, 7-32
using the J2EE security role, 6-14
with JAAS, 4-9

run-as element, 4-2, 4-15

S
sample application

AccessTest1, B-11
sample code, 7-27

createRole, 7-33
dropRole, 7-35
grantRole, 7-34

Sample J2SE Application, 8-5
sample_subrealm realm, 5-3
save() method, 13-35
searching for grant entry data, 7-7
searching for permissions, 7-12
secure mode, 5-5, 9-8
secure socket layer (SSL)

authentication method, 6-6
integration with Basic authentication, 6-12
integration with JAAS provider, 6-9

Secure Socket Layers (SSL), 6-6
security role

using in the web.xml file, 6-14
SecurityManager, 4-5, 8-3, 8-4
SecurityManager.checkPermission, 8-3, 9-4
server.xml, 3-2
server.xml file, 5-3, 9-5
Servlet.service, 9-4
setAttributes() method, 13-23
setCacheEventListener() method, 13-28

Index-13

setpasswd option, 7-18
setting a password, 7-18
shell commands, 7-24
shell option, 7-20
single sign-on (SSO), 6-6, 9-2, 9-7

integration with JAAS provider, 6-7
SPOOL attribute, 13-15, 13-34
sslPrincipal, 9-3
stand-alone resource adapter, 12-2
stand-alone resource adapter archives, 12-4 to 12-5
stand-alone resource adapters

example, 12-6
starting

JAZN Admintool, 7-15
starting an application, 9-8
StreamAccess object

InputStream, 13-38
OutputStream, 13-38
using, 13-38

Subject.doAS, 4-15
Subject.doAs method, 8-3, 9-4

associating a subject with
AccessControlContext, 4-8

invoking, 4-9
subjects, 4-8, 8-2, 8-3

definition, 4-8
with JAAS, 4-8

Subscriber Realm
definition, 4-17
role management, 4-17, 4-20
sample LDAP directory information tree, 4-19
user management, 4-17, 4-20

Supports transaction attribute, 10-6
SYNCHRONIZE attribute, 13-16, 13-46
SYNCHRONIZE_DEFAULT attribute, 13-16, 13-46

T
target names

definition, 4-4
of JAZNPermission class, A-3

third-party licenses, A-1 to A-4
TimeToLive attribute, 13-18
transaction

bean managed, 10-2

container-managed, 10-2
demarcation, 10-2, 10-5
deployment descriptor, 10-6
resource enlistment, 10-2
two-phase commit, 10-10
UserTransaction object, 10-9

U
user communities, 4-10, 4-17
user manager, 4-18
user object class, 7-29
user’s searchbase property, 7-29
UserManager interface, 4-22, 7-32

definition, A-10
users, 7-36

adding and removing with the JAZN
Admintool, 7-17

creating with Oracle Internet Directory, 4-18
creating with the ldapadd tool, 4-18
listing with the JAZN Admintool, 7-18
management in Application Realms, 4-18, 4-21
management in External Realms, 4-17, 4-19
management in LDAP-based

environments, 4-17
management in Subscriber Realms, 4-17, 4-20
management in XML-based environments, 4-23
managing, 7-32

UserTransaction object
use in JTA, 10-9

V
Version attribute, 13-18
view grant entry data, 7-7
viewing existing permissions, 7-12

W
Web Cache, 13-2
Web Object Cache, 13-2
Web Object cache, 13-2
web.xml file

using the J2EE security role, 6-14

Index-14

X
X.500 distinguished name

Oracle Enterprise Manager, 7-10
creating new grant, 7-10

XML-based provider type, 4-3
jazn-data.xml, 4-23
provider type, 4-15
realm and policy information storage, 4-23
realm management, 4-22
realm type available, 4-22

	Send Us Your Comments
	1 Introduction
	Java Naming and Directory Interface (JNDI)
	Remote Method Invocation (RMI)
	Java Authorization and Authentication Service (JAAS)
	Java Transaction API (JTA)
	Java Message Service (JMS)
	Java Connector Architecture (JCA)
	Java Object Cache
	HTTPS
	Data Sources

	2 2 Java Naming and Directory Interface
	Introduction
	Initial Context

	Constructing a JNDI Context
	The JNDI Environment
	Initial Context Factories
	ApplicationClientInitialContextFactory
	ApplicationInitialContextFactory
	RMIInitialContextFactory

	3 3 Remote Method Invocation
	Configuring RMI Tunneling
	Configuring RMI In server.xml and rmi.xml
	Editing server.xml
	Editing rmi.xml

	4 Overview of JAAS in Oracle 9iAS
	Support for JAAS
	What are Authentication, Authorization, and Delegation?
	Foundations of the JAAS Provider
	Java Application Environments
	Provider Types

	What is the Java2 Security Model?
	What is JAAS?
	Principals
	Subjects
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions

	JAAS Provider Features
	JAAS Provider User Services
	Capability Model of Access Control
	Role-Based Access Control (RBAC)

	JAAS Provider Realm and Policy Management
	Realm and Policy Management Tools
	JAAS Provider Realm Framework
	JAAS Provider Policy Administration

	5 Quick Start JAAS Provider Demo
	Quick Start JAAS Provider Demo Overview
	Setting Up the Demo
	Task 1: Modify OC4J Configuration Files
	Task 2: Change Default Configurations (Optional)

	Running the Demo
	Viewing the Results of the callerInfo Demo

	Testing the JAZN Admintool

	6 Integrating the JAAS Provider with Java2 Applications
	Java2 Application Environments Overview
	Oracle Components Available on the Java2 Platform

	JAAS Provider Integration in J2SE Application Environments
	A Typical Scenario in the J2SE Environment

	JAAS Provider Integration in J2EE Application Environments
	Oracle9iAS Containers for J2EE (OC4J)
	JAZNUserManager
	Authentication Environments
	Integrating the JAAS Provider with SSO-Enabled Applications
	Integrating the JAAS Provider with SSL-Enabled Applications
	Integrating the JAAS Provider with Basic Authentication
	J2EE and JAAS Provider Role Mapping

	How Do I Get Started?

	7 Managing the JAAS Provider
	JAAS Provider Management Overview
	LDAP-Based and XML-Based JAAS Providers

	Using the Oracle Enterprise Manager Interface with the JAAS Provider
	Accessing the JAAS Provider
	Task 1: Managing JAAS Policy
	Task 2: Managing Java Permissions

	Using the JAZN Admintool
	Usage Examples
	Command Options
	Realm Operations
	Policy Operations
	Interactive Shell
	Migration Operations
	JAZN Shell Interface
	JAZN Shell Commands

	Managing LDAP Provider Data with Java Programs
	About the Sample Java Code
	The JAZNContext and JAZNConfig Classes
	Managing Realms
	Managing Users
	Managing Roles
	Managing Permissions
	Managing JAAS Provider Policy

	Managing XML-Based Provider Data with the XML Schema
	Managing Realms, Users, Roles, and Permissions
	DTD Standard for XML Datafiles

	Other Utilities
	PermissionClassManager Interface
	PrincipalClassManager Interface
	LoginModuleManager

	8 Developing Secure J2SE Applications
	Developing Secure J2SE Applications Overview
	Authentication in the J2SE Environment
	Authorization in the J2SE Environment
	Subject.doAs
	SecurityManager.checkPermission
	PrivilegedAction

	Testing and Executing an Application
	Starting With RealmLoginModule
	Start Without Using RealmLoginModule

	Sample J2SE Application
	Sample J2SE Application Code
	Discussion of the J2SE Sample Client Login and Application Code

	9 Developing Secure J2EE Applications
	Developing Secure J2EE Applications Overview
	Authentication in the J2EE Environment
	Running with the Permissions and Roles Associated with an Authenticated Identity (Optional)
	Interception of Servlet Invocation
	Retrieving Authentication Information

	Authorization in the J2EE Environment
	Testing and Executing the J2EE Application
	Setting Up
	Task 1: Install Ant (Optional)
	Task 2: Modify OC4J Files
	Task 3: Change Default Configurations
	Task 4: Build the Directory
	Starting an Application

	Sample J2EE Application
	Discussion of the J2EE Sample Application Code

	10 Java Transaction API
	Introduction
	Single-Phase Commit
	Enlisting a Single Resource
	Demarcating the Transaction
	JDBC Transactions

	Two-Phase Commit
	Configuring Two-Phase Commit Engine
	Two-Phase Commit DTD Elements

	11 11 Java Message Service
	Overview
	The JMS Examples
	Running JMS-Chat
	Running Coffeemaker

	Configuration Issues
	Deploying JMS Clients Across Nodes
	Message-Driven Beans

	Resource Providers
	Plugging In Resource Providers
	Configuring Message Providers
	Using Oracle AQ as a Resource Provider
	Using MQSeries As a Resource Provider
	Using SonicMQ As A Resource Provider

	12 12 Java Connector Architecture
	Introduction
	Resource Adapter
	Application Contracts
	Quality of Service Contracts

	Deploying Resource Adapters with OC4J
	JCA Deployment Descriptors
	Deploying Stand-Alone Resource Adapter Archives
	Deploying Embedded Resource Adapters
	Example

	Container-Managed Sign-on vs. Component-Managed Sign-on

	13 13 Working With Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Cache Object Attributes

	Developing Applications Using Java Object Cache
	Importing the Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader
	Invalidating Cache Objects
	Destroying Cache Objects
	Setting Cache Configuration Properties
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Configuring Properties for Using the Disk Cache
	Local and Distributed Disk Cache Objects
	Adding Objects to the Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Using Distributed Objects, Regions, Subregions, and Groups
	Cached Object Consistency Levels

	14 Oracle HTTPS for Client Connections
	Prerequisites
	Audience

	About Oracle HTTPS
	HTTPConnection Class
	OracleSSLCredential Class

	Overview of Oracle HTTPS Features
	SSL Cipher Suites Supported by Oracle HTTPS
	Certificate and Key Management with Oracle Wallet Manager
	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Oracle.ssl.defaultCipherSuites

	Oracle HTTPS APIs
	Public Class: HTTPConnection
	Public Class: OracleSSLCredential

	Oracle HTTPS Example
	Initializing SSL Credentials
	Verifying Connection Information
	Transferring Data

	15 15 Data Sources
	Introduction
	Definition of Data Sources
	Retrieving a Connection From a Data Source
	Emulated and Non-Emulated Data Sources
	Emulated Data Sources
	Non-Emulated Data Sources

	Using Data Sources
	Configuring Data Source Objects
	Configuration Files
	Data Source Attributes
	Data Source Methods
	Portable Data Source Lookup

	Using Oracle JDBC Extensions
	Behavior of a Non-Emulated Data Source Object
	Retrieving a Connection Outside a Global Transaction
	Retrieving a Connection Within a Global Transaction

	Using Database Caching Schemes
	Connection Retrieval Error Conditions
	Using Different Usernames for Two Connections to DataSource
	Mixing Local and Global Transactions

	Using the OCI JDBC Drivers
	Using Merant Drivers

	A JAAS Provider APIs
	JAAS Provider API Overview
	Package oracle.security.jazn
	Interfaces
	Classes
	Exceptions

	Package oracle.security.jazn.login
	Classes

	Package oracle.security.jazn.policy
	Interfaces
	Classes

	Package oracle.security.jazn.realm
	Interfaces
	Classes

	B JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Supplemental Code Samples
	Supplementary Code Sample: Creating an Application Realm
	Supplementary Code Sample: Modifying User Permissions

	C Third-Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

