Oracle9iAS Containers for J2EE

Services Guide

Release 2 (9.0.2)

January 2002
Part No. A95879-01

ORACLE

Oracle9iAS Containers for J2EE Services Guide, Release 2 (9.0.2)
Part No. A95879-01

Copyright © 2002, Oracle Corporation. All rights reserved.
Contributing Authors: Janis Greenberg and Mark Kennedy

Contributors: Ashok Banerjee, Ellen Barnes, Rachel Chan, Gary Gilchrist, Elizabeth Hanes Perry,
Min-Hank Ho, Sunil Kunisetty, Stella Li, Sastry Malladi, Sheryl Maring, Raymond Ng, Thomas Van
Raalte, Mike Sanko, Anirruddha Thakur, Brian Wright, Irene Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

Portions of this software are copyrighted by MERANT, 1991-2001.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Send Us Your Comments

Oracle9iAS Containers for J2EE Services Guide
Part No. A95191-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Contents

SENA US YOUT COMMENTS ..ot e ettt ettt eee st e e e et ee et et ete et seseeeee e et et aeeeeeens i
PRI AC ...ttt ettt ettt ettt a ettt ettt ettt et et eneenn Xix

1 Introduction

Java Naming and Directory Interface (INDI) ..o oo e 1-1
Remote Method INVOCAtION (RIMI)ooiii ettt e e e 1-2
Java Authorization and Authentication Service (JAAS) ... ivie e e 1-2
JaVa TranSaCTION AP (JTA) . i e ettt st e sae e et ae s te et e ste et aen e es e teeneaseaneannen 1-2
Java MESSAQE SEIVICE (JIMS) ..ottt sttt e ettt ata e saesaaesaearaen e ereenaenes 1-2
Java Connector ArChiteCture (JCA) ... ittt sae st sae s taer e ereeneenes 1-3
=AY 7 WO L oY =T A O To] o 1 T OSSR 1-3
H T T P S ettt ettt ekt bbb H e e eh £ eeea bbb et E ekt btk eh e bbb et en bt s 1-3

DUALA SOUICES ...tttk ettt e e ettt e b e ke et e E s e e b e es e e re e et e n e et an e e e nneeneenre s 1-3

2 Java Naming and Directory Interface

FNEFOAUCTION .. ettt b e s et es ekt b bt h e b et es e se et ene e ene s 2-2
INTEIAT CONTEXT.....oce ettt e b et es bt h ekttt eb e en e bes e see e ane s 2-2
Constructing @ INDI CONTEXL......c.oiieie ettt sttt steeraes e es e e eneanse e e ennes 2-4
The INDIT ENVIFONMENT ..ottt sttt ettt ettt se et seenn et eseeees 2-5
INTTIAL CONTEXE FACTOITES. ...ttt ettt et et ettt ettt eb st sne e ene s 2-6
ApplicationClientInitial CoNteXtFaCIONYcccoiiviiiie e 2-6
ENVIrONMENT PrOPEITIES ...viiieeie ettt sttt et et a e e e snaanae e 2-7
ReMOte CHENt EXAMPIEoiiiiceie ettt st st st n e ere s e 2-8

Y] RV ST [[T O 1T=T o) £ 2-8

Applicationlnitial Context FACL OFY ..o 2-8
e U] o] 1= OSSPSR 2-9
RMITNIIAlCONTEXTFACTOIY .. .ovieiiiiiciie ettt ettt e staer e sraeneeereans 2-10
Remote CHENt EXAMPIEcuiiiiiie ettt sttt sae st e s raen e ene e 2-11

3 Remote Method Invocation

Configuring RMI TUNNEHING.......covii ittt sae st saeer s e ens 3-1
Configuring RMI In server.xml and rmi.XmI ..o e s 3-2
o Ty Yo TEST=T V2T 01 | PSPPSRSO 3-2
o) Yo T4 1 PSSP 3-2

4 Overview of JAAS in Oracle 9IAS

S U] o] o Lo o] gV AN OSSR 4-2
What are Authentication, Authorization, and Delegation?.............cccooveieiiiiiiiiniisc e 4-2
Foundations Of the JAAS PrOVIOENcoiiiiiiiicie et 4-2
JAVAS et h R E R E A8 o8t Rt es £t s st R ettt ee 4-2

JAVA2 SECUNTLY IMOUEL......oieiieie et sttt e e e e snaeneenneas 4-3

Java ApPlication ENVIFONMENTS........c.coc ittt st sttt en e e en e aneeens 4-3

g 0}V AT (- g 1Y/ o LT PSPPSRSO 4-3
LDAP-BaSEA PrOVIiAEN TY P i ciieiiceiie et ist sttt st stestae et aes e ereenteera e e e s asseesseasaesaeaneas 4-3
XML-Based ProVider TYPE ..ottt se ettt a e sr et st snaeseeenaenee e 4-3

What is the Java2 Security MOEI? ... snea 4-4
WWVNAE TS JAA S ettt ettt et ettt et et et £t £ e b e e b et b e e Rt et Re e et e et e erer e rers 4-7
g Lot o =1 SRS PURRPURRSRI 4-8
RS0 T PSSR PR PP 4-8
Login Module AUthENTICAtIONcccviviiiic et s raen e 4-9
ROIES ...ttt bbb e b e e R Rt R E ettt er et ne e enaa 4-9
REAIMIS .. ettt b bttt eh bbb et eh e et ehe bbbt be bt en e 4-10

F AN o] o] [T U o] g 1< PSSP 4-10
POLICIES AN PEIMISSIONS ...ttt ettt ettt sbeeneas 4-10
File-based PoliCY EXaMPIE........ccoiie ettt st st e e ere e 4-11
XML-BaSed EXAMPIE......ciieie ettt ettt sttt et e et esese e sns s e e e e sna e e sneanees 4-11

JAAS ProVIAEI FEATUIES ..ottt ettt b et e et es bttt et ebe e 4-12
JAAS ProVIdEr USEE SEIVICESociiiiii ittt sttt ettt ettt b s bbb st et ebe bt ebe e 4-13

vi

Capability Model of ACCESS CONLIOI ..o e 4-13

Role-Based ACCESS CONLIOI (RBAC) ..ottt st st testaes e re e e e e n e nne e sneas 4-14
o] L= o TT=T = U o] Y2 SPRP 4-14
ROIE ACTIVALION ...ttt ettt bbb s ee st 4-15

JAAS Provider Realm and Policy Managementccvcvevviie e sieie e e asn s seea 4-15

Realm and Policy Management TOOIScc.ccoviiiiiiiiiciiccs st e sn e e 4-16

JAAS Provider Realm FrameWOIKcccouiiiiiiiiiiiie ettt 4-17
Realm Management in LDAP-Based ENVIrONMENtS........cccoccovvvveveeie e se e 4-17
Realm Management in XML-Based ENVIrONMENTS.........cccovevviveseeie e e 4-22

JAAS Provider Policy AdmMINiStratioN..........cccveiiiiiiiiiiiiiiiccsscc s 4-24
Oracle Internet Directory AdmMinistration ..o e 4-26
AdMINPErMISSION CIASSeiiiiiiiie it e 4-26
(o] [1oV == U €1 A o] o1 0o USSP 4-27

Quick Start JAAS Provider Demo

Quick Start JAAS Provider DEemMO OVEIVIEBWc.c.coiviiieiiiie e stiesieeeie s steeseesttesssaeareassteasnaesnnea s 5-2
ST u 1T IO oI 1= 15 1= o o Lo USRS 5-3
Task 1: Modify OC4J Configuration FIleScccieiiiiiiiii e 5-3
Task 2: Change Default Configurations (Optional)...........cccceie i 5-3
(R0 oY a1 T IR d g TIN5 T=T o o o TSP 5-5
Viewing the Results of the callerInfo DEMOccoovviii i 5-6
Testing the JAZN AdMINTOOL.........ooi it st er e ereen e 5-7

Integrating the JAAS Provider with Java2 Applications

Java2 Application ENVIroONMENTS OVEIVIEWccccoviiiiiiiiiiiiee et stesiae e eraes e e s ens e e neanns 6-2
Oracle Components Available on the Java2 Platform.........cccccoovviiiiiiiiccce e 6-2
JAAS Provider Integration in J2SE Application ENVIironments..........cccccovvveiivciinnivennenieseeene 6-2
A Typical Scenario in the J2SE ENVIFONMENTcccviviiiiiie e 6-3
JAAS Provider Integration in J2EE Application ENVIironments..........ccccccovvvenivciinniveneencesenene 6-4
Oracle9iAS Containers for J2EE (OCA). ..ottt st s 6-4
JAZINUSEIIMEABNAGET ettt ettt ettt ettt arte st bt e b eeebe e e sbe e e e es e e abbeenneeabean 6-4
Replacing prinCipalS. XMlcoooiiii e e s st en s 6-4
JAZNUSErManNager FEATUIESoiuiiiiiiiieiie sttt e st s ste et et as 6-5
Authentication ENVIFONMENTSoo.iiiiiii et 6-6
Integrating the JAAS Provider with SSO-Enabled Applications...........cccccovviviviiieviiieins 6-7

vii

SSO-Enabled J2EE Environments: A Typical SCenariocccccevoveevivecivninini i 6-8

Integrating the JAAS Provider with SSL-Enabled Applicationsccccceoviiiiiviiinivcnenn, 6-9
SSL-Enabled J2EE Environments: A Typical SCeNariocccecvvvevienivirvsisseesee s 6-10
Integrating the JAAS Provider with Basic Authentication............c.ccccoovvviiivivniccvc e, 6-12
Basic Authentication J2EE Environments: A Typical Scenario..........ccocevveieiieinennns 6-13

J2EE and JAAS Provider ROIE MapPiNg....c.ccoiviriiiiiiiiie s ctesie e e e e s snaanees 6-14
J2EE SECUNILY ROIBS.....eiiieiiieee e ettt st s te et een et e e ee e e 6-14

JAAS Provider ROIES and USEISccouiiiiiiciie ettt et 6-15

OC4J) Group Mapping to J2EE Security ROIEScccveiviiie e 6-15

HOW DO | GEE STAMEA? ...ttt ettt ettt e sb e e b e ettt et e 6-16

7 Managing the JAAS Provider

JAAS Provider Management OVEIVIEWc.ccviiiiiiiiiiiiieieeieissestae e staesieeseesieessassassessessssssesssessens 7-2
LDAP-Based and XML-Based JAAS ProVidersc.ccccviiiiiiiniieiie e s 7-3
Using the Oracle Enterprise Manager Interface with the JAAS Providerccccccoevvivennnnne. 7-3
ACCESSING the JAAS PrOVIAEN ..ot ettt st sttt teen e e en e aneeens 7-4
Task 1: Managing JAAS POLICYocuiieiie ettt st st et re e e n s 7-6
Searching for and Viewing EXisting Grant ENtriesS.........cccccvvevviiiiiiiiie i 7-7
Deleting Grant ENTIIESccvcie ettt ittt sttt ste st e et s e erees e ere e e e s ass s e e e aneasaesneas 7-8
Creating @ NeW Grant ENTIYccociiiece ettt st e e e sae s nnasnaenaenneas 7-8

Task 2: Managing Java PerMiSSIONSc.ucviiiiieiiieststiestesaes e eaese e e e s e s e sna e sreenaesnaanaes 7-12
Searching for and Viewing EXisting Permissions.........cccccevvviveiiniviiininese s 7-12
Revoking Permissions Assigned to a Principal.........c.ccccoovviiiiiiiis s 7-13

Using the JAZIN AdMINTOOLooiiiiiiic et sa et r e sraen e ene e 7-14
USAQE EXAMPIES ...ttt ettt sttt st sttt et aes e e re e s e se e e e st et e e e nne e e eeeenaes 7-14
(70T a1 gF: 1 Lo @7 o] 1 To] o 30PRSI 7-15
T L IO o 1] = 1[0 o PSSP 7-16
Adding and RemoVving REAIMSc.occiiiiiiise et 7-16
Adding and RemMOVING ROIES..........ciiiieie ettt s 7-17
Adding and ReMOVING USEISccueiiiiieie e ee sttt ste st s te e e ens e e e anne s 7-17
ChECKING PASSWOITueciie ettt ettt sttt sttt s e te s e e e e ns e s e e e saeenaesneanees 7-17
Granting and ReVOKING ROIES.......c.ccv oot sae s 7-17

(IS Lo [(=T L OSSPSR 7-17

LISTING ROIES ..ottt s sttt e te s e e re e e e e e es e e s e eaeesaearaenaeeraenseareans 7-18

LISTING USEIS.. ittt ettt ettt st st s ae et s e e tees e e reas e e ne e ss e e s e eaaesaearaenaeenaenseareans 7-18

viii

SEING @ PASSWOIT ...ttt et s et e e e e e sneenaesnaetaeseeanaen e ens 7-18

(0] [1oV @] o 1=1 =1 { (o] o - TSP RPSRSRN 7-18
Adding and RemoVving PermMiSSIONS..........ccvciviiiiiriiiiseiiessesteetiestiese e ss e seasra s seeas 7-18
Adding and Removing PriNCIPAISccooiiiiiiiiiiie et s 7-19
Granting and ReVOKING PermiSSIONS..........cccoiviie i ettt s 7-19
LiStING PEIMISSIONS . .eoieivieiie et et ettt sttt ste et s e s e e et e e e e e nneeneesnaesaennaas 7-19
Listing Permission INfOrmMation...........coooviiiiiiii et ena 7-19
LiSting PriNCIPAl ClaSSES.....cuiiiiieiciiececiieie et e ettt s s st e steer e sreen e e aneennas 7-20
Listing Principal Class INformation...........c.cociviivie s 7-20

INTErACLIVE SNEIL.... ..o 7-20
Starting the JAZN Admintool Shell............coo o 7-20
Getting XML Configuration Informationccccoce e 7-20

Y To =N a o] N @] o 1-T - U o] o I F RSP SRRPSRRSRN 7-20
Migrating Principals from the principals.xml Fileccccoco i 7-20
(1= L To o [1 o USSR 7-21

JAZIN SHEIl TNTEITACE ...ttt st e e e 7-21

JAZIN Shell COMMEANTS ..ot ettt ettt st en e see e 7-24
Using the cd Command to Navigate JAAS Provider Datacccccoevevvvivvinciivivieece s 7-24
Using the mkdir, mk, or add Command to Create JAAS Provider Data................... 7-24
Using the pwd Command to Display the Current Shell Working Directory............. 7-25
Using the help Command to List JAAS Provider Commandsccccocovvvvivivvvivevninnns 7-25
Using the man Command to Display Detailed JAAS Provider Commands.............. 7-25
Using the clear Command to Clear the SCreenccccviieeeiieeiienieeieesie e 7-25
Using the exit Command to Exit the JAZN Shell ... 7-26

Managing LDAP Provider Data with Java Programscccovvviveiiiie e 7-27

About the SAMPIE JAVA COAE ..ot 7-27

The JAZNContext and JAZNCONFIQ ClaSSeS.......ccvvieiecieie e 7-28

Y =T F= Vo TT o I R {=T= 1L USRS 7-28
REAIM CrEALION ...ttt ettt s ettt eb ettt st srenn s 7-28
Creating an EXternal REAIMccooviiiiii it 7-29
Creating an Application REaIMccooi it 7-31
Dropping @ REAIM ..o s re et et r e era e anaas 7-32

Y =T T= Vo T o IO LT =T SRR 7-32

Y T T= Vo TT o I {0] 1= SRS 7-32
(011] o T R L0 LT PRSPURSON 7-33

GrantiNG ROIES ... ettt es et e e e e e e e e e sa e e e sraanees

(DT eT o] 11 g R (0] [T OSSR

Y =T F= Vo 1T o I =T o ¢ a1 3] o LTSS
Managing JAAS Provider POHICYcooi ittt sttt e
Managing Policy with JAAS Provider PaCkages..........ccciveiviriiiieineiieiieeseseeeiesvesnaneens
Managing XML-Based Provider Data with the XML Schemacccocovvii e
Managing Realms, Users, Roles, and PermiSSiONScccccoveeiieeiierinnieesiessecsee e snesseesveannns
DTD Standard for XML Datafiles.........ccccoiiiiiiiiicc e e
Ot UTHTITIES ...ttt ettt b bt es e bt es e e s e se et eb et
PermissionClassManager INTErfacecccoviiiviiiiiiiccic s e
PrincipalClassManager INTEITaCE.cccvi ettt st et e ere e
(IoTo 111V [oTe (BT =] 1Y, F=Tq = Vo T PSPPSR

Developing Secure J2SE Applications

Developing Secure J2SE Applications OVEIVIEW.........cccciiiiiiiiiiei et se e
Authentication in the J2SE ENVIFONMENT ..o e e
Authorization in the J2SE ENVIFONMENT.........cooiiiiiii e s e e
RS U] oot e [0 Y AN USSR
SecurityManager.CheCKPEIMISSIONc..ooe ittt st en e aneenns
L AV A1 [=To =T AN £ o o I PSPPSRSO
Testing and Executing an APPLICALIONociiii e snea
Starting With RealmLoginMOAUIEcco i
Start Without Using RealmLoginMOodUIE ...
ST 10] o LI PZAS = AN o] o] 1 To= 11 To] o SO
REg] o] [SINMAST SIAN o] o] [oF= 1 d o] o 1 O'o Lo - RS SPRR
Discussion of the J2SE Sample Client Login and Application Code..........cccocvvevveveiinnnnnn,

Developing Secure J2EE Applications

Developing Secure J2EE Applications OVEIVIEW.........cccciiviiiiiiiiiei et se e
Authentication in the J2EE ENVIFONMENT ..o e e
Running with the Permissions and Roles Associated with an Authenticated Identity

(Optional) 9-2

Interception Of ServIlet INVOCAtIONc.oie i e e e

Retrieving Authentication INfOrmation............coco oo
Authorization in the J2EE ENVIFONMENT.........coiiiiiiii i s e

Testing and Executing the J2EE APPHCALIONccviii e 9-4

RS 1 4] o T O o TS 9-4
Task 1: Install ANt (OPLIONAD)........cui i see s 9-5
Task 2: MOAiTY OCA) FIlESeie ettt sttt et et et e e sn e e e snaanaenne s 9-5
Modifying OC4J Files Where OC4J is NOt RUNNING ...ccoooviiiiiiiiicceece e 9-5
Deploying an Application When the OC4J Server is RUNNING........ccccccevvevecvciececienn 9-6
Task 3: Change Default Configurationscccoviviiisiiise s 9-6
Using XML-Based Realms (Default)..........cccce e iiie i 9-6
UsiNg LDAP-Based REAIMSc.ociiiiiiiciccec et ettt st et en e en s 9-7
Using SSL and SSO INtEQrationccviiiiiiie e ettt en s 9-7

L ES] [T 1 TSR 9-7
Task 4: BUII the DIrECLONYccue ittt sttt ettt e et e s e e saesnaenaesne s 9-8
Starting an APPHCALIONcci i e e ettt en e 9-8
ST 10] o] LI P24 =TSN o o] 1 Tor= 1o To] o 0SSP 9-9
Discussion of the J2EE Sample Application Code..........ccooveiiiiiiiiiiiiice e 9-10

10 Java Transaction API

FNEFOAUCTION L.ttt e ettt s ettt b ekttt en e en e ee e ere e 10-1
SiNGIE-Phase COMIMIL........uiiiii e e ettt re e et e sae et saeeraen e e 10-2
ENHiSting @ SINQIE RESOUNCEcvveiie ettt sttt ste st et aes e ere e e e e e s s e sneaneesneas 10-2
Configuring the DataSOUICEcccviviiiiiii ettt st seesnaen e ens 10-3
Retrieving the DataSource CONNECLIONccvcviiiiieriiie s e 10-4
Demarcating the TranSaCtiONc.cciviiiiiiice et sre et saeeraen e e 10-5
Container-Managed Transactional Demarcationcccccevviviveviniicv s 10-6
Bean-Managed TranSaCtiONS..........coieiieie et sttt e e er e sreen e e aneeens 10-8

JTA TFANSACTIONS ...ttt ettt et ettt ettt en et e e 10-8

JDBC TFANSACTIONSviv ittt ettt b et e se et es bbbttt ettt abesn e eneas 10-8
TWO-PRESE COMMIT. ...ttt ettt ettt e bes e se et ere ettt ebesbeenen 10-10
Configuring Two-Phase CoOmMmMIt ENQINE.........ccocveieiieie et e e 10-10
Two-Phase COmMMIt DTD EIEMENTScooiiiiiiiieiiieeiie e e 10-14

11 Java Message Service

OVEIVIBW ..ottt ettt b e b e bt b eh £t es b ee £ ateh b4t bt e bbbt e e beee e st sen e ee e 11-1
THE JMS EXAMPIES. ..ottt ettt ettt et este st e s e et aes e erean e e ne e ne e s eaneenaeareas 11-2
RUNNING JMS-CRAL......oi ittt r et teer e eteen e neaneeans 11-2

xi

RUNNING COffEEMAKET ...ttt st e e e et ee e e 11-2

CONTIGUIALION ISSUEBSeeiiiciiiii ettt sttt st e ettt e e e e sa e et e saeetaeste et aes e aneanreaneenneanes 11-3
Deploying JMS Clients ACrOSS NOAEScc.occviiiiiiiieiiie e steete et et et asr e sre e sraaneas 11-3
MESSAGE-DIIVEN BEANSeciie it ce et ettt er e st sae st et ste et e teenen e ene e teereenne s 11-3

RESOUICE PrOVIAEIS ...ttt et ettt eb et e b e et s bttt en et 11-4
Plugging IN RESOUICE PrOVITEISccuviieciiee ettt sttt st tn e e e en e e 11-4
Configuring MeSSage PrOVIAEIScviciiiiiiceicie ettt aesraeneeeneen 11-5

JNDI ReSoUrce Provider NAMES ..ottt ettt sn e 11-5
ACCESSING MESSAPE QUEUEBSeecvieriectietieeteesesie e et et e e stesaaeseestaataesteasaestees e e ens e seasenneenes 11-6
Using Oracle AQ as a RESOUICE PrOVIUETc.ccvivviie et s 11-6
(O] o) 1T 8T =1 ([0 o PP SPSSSR 11-6
Using MQSeries AS a RESOUICE PrOVIUENcc.ccvivviiie et 11-8
(O] o) T U] ¢ [T PSP SSSSSR 11-9
Using SonicMQ AS A RESOUICE PrOVIAErcvcviiuiiie et 11-9
(@] o) T U] ¢ [T PSSP 11-9

12 Java Connector Architecture

TNTFOAUCTION L.ttt e e et bbb et b ettt et b e en ettt e 12-1
T o U] o= AN o F= o | =] SRS 12-2

PN o] o] FTor- U4 o] s I @] 011 = ox £ PSSR SRSRPR 12-2
Quality Of SENVICE CONTIACTS.......ccuiciiiiie ittt se st saestaen e eraenaeereens 12-3
Deploying Resource Adapters With OCAJ ..o e 12-4
JCA DePIOYMENT DESCIIPLOIS.....uiiiieiiece ettt ettt sttt e e s e eas e as e seesneeneesraanees 12-4
Deploying Stand-Alone Resource Adapter ArChiVes..........cccooceivceiiece e e 12-4
Deployment using Admin command-line toolc.cooviiiiiiii e 12-4

Manual deployment through directory manipulationcccocovviin e iicieseceeens 12-5
Deploying Embedded ReSOUICE AAPLEIS.cccccveiieieiieeee e st sre st saesraeraesraesaneneens 12-5

L U] o 1= RSP PRPSP 12-6
Container-Managed Sign-on vs. Component-Managed Sign-0N..........cccccceveiviiveiveniveneeenenn, 12-6

13 Working With Java Object Cache

NV RO o] =101 O 1ol o LT 0] o (61T o) £ RSP STPP 13-2
Java Object Cache BasiC ArCHITECIUIEcccocviiiieice i e seaenees 13-3
Distributed Object ManagemENTccvvviie it eere e 13-4

How the Java ODbject Cache WOIKS ..ot s 13-5

i

(0= Tod a [N @ {0 - o T 2= [] o USSR 13-6

Java ODbject CaChe FEATUIESc.vcie e ettt st st teer e ereen e e eneenns 13-7
Java Object Cache ODJECT TYPES ...cuiiecie ittt ettt st ste st e ataes e ere e e e s anne s e e sseeneesneas 13-8
V(=T 0T YA @] o] 1= i< PSS 13-8
[T Q@] o[- £ SSR 13-9
STrEAMACCESS ODJECES ..ottt sttt e e e e et e nre e e sreereas 13-10

[0 To] [@] o] =T o1 £ SPSPPR 13-10
Java Object Cache ENVIFONMENT ...ttt st sttt e teen e e e ann e e 13-11
(0= o] g [T == | 0] o 3 PRSP SR SRR 13-11
(0= To] g [T U] o] =T [To o 1SS 13-11
(0= o] a1 I €T (0] U1 o 1SS 13-12
Cache ODJECt AtLIIDULEScci et ettt st sae s raen e ere e 13-12
Using Attributes Defined Before Object Loading........cccoovevviiviiiiiviiiiive e cee e 13-13

Using Attributes Defined Before or After Object Loading........cccoccvvvivevieiecicinenns 13-16
Developing Applications Using Java Object Cacheccccoeviviiiiiiiccicc e 13-19
Importing the Java ODbJect CaChe.........cooiiiiii e e 13-19
Defining @ Cache REQIONc..cciiiiicie e et e sr e st e seesreeneas 13-19
(DL {1 T a Lo I W OF= 1ol o oI €1 o 1 | o ISP 13-20
Defining a Cache SUDIEQION..........cov it sr e nee e enees 13-21
Defining and Using Cache ODJECEScvooiiiiiiiie s anaes 13-21
Implementing @ CaChELOAUELccuiiiiiiiiet et sr e e enees 13-22
Using CacheLoader Methods Within the Load Methodc.cccoocvive e, 13-23
Invalidating Cache ODJECES.cciiie e enees 13-24
Destroying Cache ODjJECES.c..cii et e e 13-25
Setting Cache Configuration Properties. ..o ciee et s e e 13-26
Implementing a Cache EVENt LISTENETccooiiiiiceice et 13-28
Restrictions and Programming POINTErSccooiviiiiiiiiiie e 13-31
WOrking With DiSK ODJECIScviiiiiii ittt st saesraennane e 13-33
Configuring Properties for Using the Disk Cache..........ccccccveiiiiiiiiiii e 13-33
Setting the diskPath Configuration Propertyccccocoeeiiieeiriiiveieniesccsc s 13-33

Local and Distributed Disk Cache ODBJECESccocvviivie it 13-34

[0 Tor= | IO] o] =To] £ S S USSR 13-34
DisStribDULEd ODJECES... ..ottt ere e 13-34
Adding Objects t0 the DisK CaChecc.vcviiecicce e s 13-34
Automatically Adding ODJECLS.......c.ecieieeie et 13-35

Xiii

14

Xiv

EXPlicitly Adding ODJECES.c.viiice et st 13-35

Using Objects That Only Reside on Disk Cacheccccceviveiiiiveiiccivcnecc e 13-36
Working with StreamACCESS ODJECESc.uiiiiiii e 13-38
Creating a StreamACCESS ODJECToiuiiiiiii s e 13-38
WOrKing With POOI ODjJECTS.......ceiiicie ettt ettt nna e e anee e 13-40
Creating POOI ODJECLSiiicie e ettt sttt s e st e s te s es e ere e e aneate e e e ane s e e sneesees 13-40
UsiNg ODbjects from @ POOIcooiiiiiicce et sreereens 13-41
Implementing a Pool Object INStance FACLONYccciv it 13-42
RUNNING 1N LOCAI IMOUE ...ttt s sttt s e re s e e e e ne e 13-43
RUNNINg in DistribUted MOAEccooii ittt 13-43
Configuring Properties for Distributed MOdE..........ccooiiiiiiiviiiie e 13-43
Setting the Distribute Configuration Property........ccccccooveiiiiviniiiesvese e e e e 13-43
Setting the DiscoveryAddress Configuration Property.......ccccccoevvviviiviessesvesnevnnns 13-44
Using Distributed Obijects, Regions, Subregions, and Groupsccccceeeevvivevesiesnannns 13-44
Using the REPLY Attribute with Distributed ODbjects........ccccccovviviiieviiiicie e, 13-44
Using SYNCRONIZE and SYNCHRONIZE_DEFAULT......ccccoviiniiieeieseeseieeeene 13-46
Cached Object CONSISTENCY LEVEISccviiiiii ittt 13-49
(0 LS [o o Tor | @] o] =T i3S PSRPR 13-49
Propagating Changes Without Waiting fora Reply........ccccooviieiive i 13-50
Propagating Changes and Waiting for a Replycccoocvivivviie e 13-50
Serializing Changes Across Multiple Caches..........ccveoveiiiiiiiii e 13-50
Oracle HTTPS for Client Connections
L =T =T o [U TS 1 (=SSP 1-2
AAUTIBIICE ..ottt ettt bt bt btk e e es bbb ee £t eh ekt h e e bbbttt e be e et en e ee e 1-3
ADOUL OFaCle HTTPS ..ttt et ettt b bttt be et see e 1-4
HTTPCONNECHION CIASS ...ttt ettt e et et ettt bbbt sttt sre e 1-4
OracleSSLCIredential ClasScoiueirii ittt e e 1-5
Overview Of Oracle HTTPS FEATUIEScooiiiie ittt s 1-6
SSL Cipher Suites Supported by Oracle HTTPS ... 1-7
Certificate and Key Management with Oracle Wallet Manager............cccoceveeeievivecnsivennnnns 1-8
Access Information About Established SSL CONNECLIONS..........coviiiiiiiiinine e 1-9
Security-Aware AppPlicationNs SUPPOTTocveiiii ittt 1-9
java.net.URL Framework SUPPOITcooiiei ittt st 1-10
Specifying Default SYyStem Properties........coie ittt 1-11

15

[V S Lo] B YA] (0] = RS PRR 1-11

Javax.Net.sSlLKEYSTOrePaSSWOIMccoiiiiiiiiiiicie ettt st e e e re e e e ena e nnens 1-12
Potential Security Risk with Storing Passwords in System Propertiescc.cc...... 1-12
Oracle.ssl.defaultCiPRErSUITES.ccviiiice e e et 1-12
OFACIE HTTPS APIS .ottt ettt e e et s bt b et bbbt bt st en b e e 1-13
Public Class: HTTPCONNECTION.cciiiiii ittt ettt sttt 1-13
Public Class: OracleSSLCredential...........cocooiiiiiiiiiie e s 1-14

(070] 0151 1 8 [o1 (o] TSP U PSP PP UPTPRUPRPRRRTPN 1-14
IMIBENOMS ...ttt et bt et b bbb b e en e e e 1-14

(@1 Tod L= o I I S v T g1 o] =SSP 1-17
INitializing SSL CredentialS...........ccveiiiie e sttt r et en e areeens 1-19
Verifying Connection INfOrmMation...........cc.ooe i e 1-19

LI S =T g g1 [- USSP 1-20

Data Sources

FNEFOAUCTION .. ettt b e s et es ekt b bt h e b et es e se et ene e ene s 1-2
Definition OF DAta SOUICEScoviiiiiriiie ettt et ee e et bttt eb bbb e e enaeees 1-2
Defining Location of the DataSource XML Configuration File............cccccooceivvivininnn, 1-2
DefiNiNg DAta SOUFCESuciiiiiici ittt et et ettt sse st sraesaeeraer e aneeneenes 1-2
Retrieving a Connection From a Data SOUICEcccvvvviieiiiie e ere e e sna e e 1-4
Emulated and Non-Emulated Data SOUICESc.ciiiiiieiiiniee e e 1-5
EMUIALEA DALA SOUICES......oiuieiei ettt ettt et ettt et b e bt en et eeern e s ne e 1-5
NON-EMUIELEA DAt SOUICTES......c.eitiiieiietiitisie ettt ettt ettt ettt er et se e e s s e 1-7
Other Non-Emulated DataSource CIaSSESccceiiriieieiinieieiiisiieee st 1-7

USING DAA SOUICES.eiiuiiiiieiiceietieste st eetaes e ate e et e e s s e sseesaesteesae st ees e stees e ereassesseanseansanseseessasseeneens 1-8
Configuring Data SOUICE ODJECTSicviiiiiireeiie st ettt sae st rae e eneenes 1-8

(70 o) 110 T8 T =[] o TN 1 =TSO 1-9
Data SOUICE ATIFIDULES ...t ettt st e e se e eneeees 1-9
Data SOUICE METNOASc..oiiici e et 1-10
Portable Data SOUFCE LOOKUPccivieie ettt sttt taes et ne e nna e sneas 1-11
UsIiNG Oracle IDBC EXLENSIONScccviiiiiiieie e ciieiie st e e e e e et esn s saesaaasaestaesaesteeneesneenenseansannes 1-12
Behavior of a Non-Emulated Data Source ODJEeCt.........ccovviivivviiiie e 1-13
Retrieving a Connection Outside a Global Transaction.............ccccccveveiiinini s 1-13
Retrieving a Connection Within a Global Transactioncccccoecvive i 1-13
Using Database Caching SCREMES ..ot 1-14

XV

Connection Retrieval Error CONAITIONSc..coocvii ettt ettt st st ae s s 1-15

Using Different Usernames for Two Connections to DataSource...........ccoevvvevevvevee s, 1-15
Mixing Local and Global TranSactioNS...........ccviieiiiiiiriie e s 1-15
USING the OCT IDBC DIIVEIS.....cciiie ettt ettt sttt et st stastaestaes e stees e e as e s e ansaaaesseaneesnaasens 1-16
USING IMEIANT DIIVELS ..ottt ettt st sae st et ae st et e e tees e e es et ae e e naesne e e snaaneas 1-17

JAAS Provider APIs

JAAS ProVider APL OVEIVIEWcoiiiiiiii ettt sttt e et ettt bttt be et e e A-2
Package OraCle.SECUNITY. JAZNcvice e ettt ettt s sttt e s rees e e e e neanseans A-2
INEEITACES ..ottt et st et a e eb ket b ek bbb e e e A-2
PEISISTADIE ...ttt ettt bttt et eneas A-2

CIBSSES ...ttt ettt ettt etk ekt bR b h £t eR e h et E ekt h ek bbb en e er e en e s A-2
A [@] o1 o TSP PSPPSRI A-2

JAZINC ONTEXT. ...ttt ettt ettt et ee e e e bt e eb e s e ebeen e en e e e e nn e e nnenneas A-3
JAZINPEINISSION ...ttt ettt et e et bbbt b e bbbttt et en e ben s A-3

NYAWA \LVAVZ= oY aN o o 10xo] o i To OSSPSR SPUPPPRSRN A-4

D CeT=7 o] Ao 1 PSPPSRSO A-4
YAV \\[@F0] a1 1o | =t(e=] o) { (o] o [PPSR A-4
A4\ | == o | £ o o [P UPUPPPRSRN A-4

AN N\ F 1 111 0T (od-=T o [0 o PR UPSPPRSRN A-4
JAZNNAMINGEXCEPTIONvviiiicir ittt st e e e e e e sna e e e sneeseesneas A-4

NYAWA \\[@] o] [=To1 £ 1] £5] (e =Y o) { o] o [P UPUPPRPRSRN A-4
JAZNODjeCtNOtFOUNAEXCEPLIONcvvcvie ettt sttt sttt nn e nnea A-4
JAZNRUNTIMEEXCEPTION ... vttt st se st as e re e rasne e e eneeseenneas A-4
Package oracle.seCurity.Jazn.lOgin ..ottt st A-5
CIBSSES ...ttt ettt ettt etk ekt b R b E £t eR e e et h bt Rt bbbtk et en e ben e s A-5
LOGINMOAUIEMEANAGETcveeiie ettt ettt st s et te et es e erean e ese e e e s aaseanseaneasaesneas A-5
Package oracle.seCurity. Jazn.POLICY ..o i iie ettt A-6
INEEITACES ...ttt et s et et eh ket b bbbt e en e ee e A-6

L€ (0] o= 1 120] | oy YRS A-6
A | o) T3 PSPPSR A-6
PermisSiONCIaSSIMANAQETviiiriiir it se et e e e ne e e sr e ataesaesraeseeeraenee e A-6

(o] 110341/ F= T T= Vo T PRSP A-7
PrinCIPalCIaSSIMaNAQETccvvieie et ettt st sttt r e etees e e e e neareanes A-7

LR ET= 1L 0] =01 Ty PSSP A-7

(O P T RR A-7

Yo [YT a1 o] T ETS] L] o S SPSP PR A-7

(] - 11T P PO PP UPPUPOPRPPRIN A-8
PermiSSIONCIASSDIESCc.viiieeiiee ettt st st e te e e re e re et e e e e s e e neesnearaesee s A-8
PriNCIPAICIASSDIESC ...ttt ettt sa e et saeataesaeeraen e ereensenes A-8

Y01 LY AN e [VT | o =T o 4 0 T3] (] o S A-8
Package oracle.seCurity.Jazn.realmMcccooviie e e e e A-9
L] 0T Lot PSSR A-9
INItREAIMINTO.REAIMTYPE ..o e et et e re e ens A-9
ST o o USSR A-9

T L T AN o o o] o 1=1 o YRS A-9
REAIMPIINCIPAL ... i e sa et sae st saeetaer e ereenrenes A-9
REAIMROIE.....cei et s te et e e tees e e rees e re et e e e ans e e neeaeearaeaee s A-9
ST 1 O =1 SR A-9

0] 111V, =g = Vo [USSP A-10

O R |V o g =T [T OSSP ORI PPPRPRPRR A-10

L0 F= 1SS A-10
INIEREAIMINTO .ot sra et s teereen e ens A-10
REAIMLOGINMOUUIEcoviiiii ettt sr et e sraen e ens A-10

T L] = T =TT USSP A-10

[T L] =T g 3] [o RS A-10

B JAAS Provider Standards and Samples

Sample Jazn-data. XMl COUEcocue it st e s e te e e e e enns B-2
Supplemental Code SAMPIESc.vociiiiiee e st nen B-7
Supplementary Code Sample: Creating an Application Realmcccccovevvivecce e, B-7
Supplementary Code Sample: Modifying User Permissions........c.ccccoevvvivevvesesveiesneninnns B-9

C Third-Party Licenses

PN o = Tod L= T o N I I YT =T PSSP A-1
The ApPache SOFtWAIE LICENSEccueivieie ettt st st st et et e e ss e e e sreenaenre s A-1
F N o 1= 1o T= T 7= PP A-3
APACHE JSEIV PUDIIC LICENSE ...vviiiiei ettt sttt ettt sa st taes e en e e ene e e e nnn A-3
Index

Xviii

Preface

This Services Guide describes the services provided by Oracle9iAS Containers for
J2EE.

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Organization

« Related Documentation

= Conventions

Intended Audience

This book was written for developers familiar with the J2EE architecture who want
to understand Oracle’s implementation of J2EE Services.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

Xix

htt p: //ww oracl e. comi accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

XX

This document contains:

« Chapter 1, "Introduction”

« Chapter 2, "Java Naming and Directory Interface"

« Chapter 3, "Remote Method Invocation"

« Chapter 4, "Overview of JAAS in Oracle 9iAS"

« Chapter 5, "Quick Start JAAS Provider Demo"

« Chapter 6, "Integrating the JAAS Provider with Java2 Applications"
« Chapter 7, "Managing the JAAS Provider"

« Chapter 8, "Developing Secure J2SE Applications"

« Chapter 9, "Developing Secure J2EE Applications".
« Chapter 10, "Java Transaction API"

« Chapter 11, "Java Message Service"

« Chapter 12, "Java Connector Architecture"

« Chapter 13, "Working With Java Object Cache"

« Chapter 14, "Oracle HTTPS for Client Connections"
« Chapter 15, "Data Sources"

Appendix A, "JAAS Provider APIs"
Appendix B, "JAAS Provider Standards and Samples"
Appendix C, "Third-Party Licenses"

Related Documentation

See the following additional OC4J documents available from the Oracle Java
Platform group:

Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OCA4).

Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OCA4J. It also documents relevant OC4J
configuration files.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

Oracle9i JDBC Developer’s Guide and Reference
Oracle9i SQLJ Developer’s Guide and Reference
Oracle9i JPublisher User’s Guide

XXi

« Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:
« Oracle9i Application Server Administrator’s Guide

« Oracle Enterprise Manager Administrator’s Guide

= Oracle HTTP Server Administration Guide

« Oracle9i Application Server Performance Guide

« Oracle9i Application Server Globalization Support Guide

« Oracle Web Cache Administration and Deployment Guide

« Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x
The following are available from the JDeveloper group:

« Oracle JDeveloper online help

« Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn. oracl e. con product s/ j dev/ cont ent . ht m

The following documents from the Oracle Server Technologies group may also
contain information of interest:

« Oracle9i Application Developer’s Guide - XML

« Oracle9i Application Developer’s Guide - Fundamentals
« Oracle9i Supplied Java Packages Reference

« Oracle9i Supplied PL/SQL Packages and Types Reference
« PL/SQL User’s Guide and Reference

« Oracle9i SQL Reference

« Oracle Net Services Administrator’s Guide

« Oracle Advanced Security Administrator’s Guide

= Oracle9i Database Reference

« Oracle9i Database Error Messages

For information about Oracle9iAS Personalization, which is the foundation of the
Personalization tag library, you can refer to the following documents from the
Oracle9iAS Personalization group:

XXii

« Oracle9iAS Personalization Administrator’s Guide

« Oracle9iAS Personalization Recommendation Engine APl Programmer’s Guide

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: / / waw or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / menber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

htt p://otn. oracl e. com docs/ i ndex. ht m

The following Oracle Technology Network (OTN) resources are available for further
information about OC4J:

« OTN Web site for OC4J:

http://otn.oracle. conitech/javal/ oc4dj/content. ht m

« OTN OC4J discussion forums, accessible through the following address:

htt p: //waw oracl e. cond f or uns/ f orum j sp?i d=486963

Conventions

This book generally uses UNIX syntax for file paths and shell variables. In most
cases file names and directory names are the same for Windows NT, unless
otherwise noted. The notation $ORACLE_HOVE indicates the full path of the Oracle
home directory. It is equivalent functionally to the Windows NT environment
variable %0RACLE_HOVE% though of course the Oracle installation paths are
different between NT and UNIX.

XXiii

XXIV

This Guide uses the following additional conventions.

Convention

Meaning

italicized regular text

code text

%

SQL>

Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

Code text (Courier font) within regular text indicates
class names, object names, method names, variable
names, Java types, Oracle data types, file names, URL or
URI fragments, and directory names.

At the beginning of a command, indicates an operating
system shell prompt.

At the beginning of a command, indicates an Oracle JVM
session shell prompt.

At the beginning of a command, indicates a SQL*Plus
prompt.

1

Introduction

Oracle9iAS Containers for J2EE (OC4)) supports the following technologies, each of
which has its own chapter(s) in this book:

Java Naming and Directory Interface (JNDI)

Java Remote Method Invocation (RMI)

Java Authorization and Authentication Service (JAAS)
Java Transaction APl (JTA)

Java Message Service (JMS)

Java Connector Architecture (JCA)

Java Object Cache

HTTPS

The remainder of this chapter gives a brief overview of each technology in the
above list.

Note: In addition to these technologies, OC4J supports the
JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP); for information about these
technologies, see the Sun J2EE documentation.

Java Naming and Directory Interface (JNDI)

JNDI provides naming and directory functionality for Java applications. JNDI is
defined independently of any specific naming or directory service implementation.
As aresult, INDI enables Java applications to access different, possibly multiple,

Introduction 1-1

Remote Method Invocation (RMI)

naming and directory services using a single API. Different naming and directory
service provider interfaces (SPIs) can be plugged in behind this common API to
handle different naming services. For information about the Oracle implementation,
see Chapter 2, "Java Naming and Directory Interface".

Remote Method Invocation (RMI)

RMI is one Java implementation of the remote procedure call paradigm, in which
distributed applications communicate by invoking procedure calls and interpreting
the return values. OC4J supports invoking RMI over HTTP, a technique known as
“RMI tunneling.” For information about the Oracle implementation, see Chapter 3,
"Remote Method Invocation™.

Java Authorization and Authentication Service (JAAS)

JAAS enables applications to authenticate and enforce access control. Oracle9iAS
supports JAAS by implementing a JAAS provider. The JAAS provider provides
application developers with user authentication, authorization, and delegation
services to integrate into their application environments. Instead of devoting
resources to developing these services, application developers can focus on the
presentation and business logic of their applications.

For information about the Oracle implementation, see Chapter 4, "Overview of
JAAS in Oracle 9iAS", Chapter 5, "Quick Start JAAS Provider Demo", Chapter 6,
"Integrating the JAAS Provider with Java2 Applications"”, Chapter 7, "Managing the
JAAS Provider", Chapter 8, "Developing Secure J2SE Applications”, Chapter 9,
"Developing Secure J2EE Applications"”, Appendix A, "JAAS Provider APIs" and
Appendix B, "JAAS Provider Standards and Samples".

Java Transaction API (JTA)

JTA supplies a standard interface to support communications among the parties to a
distributed transaction. These parties include the resource manager, the application
server, and the transactional applications. For information about the Oracle
implementation, see Chapter 10, "Java Transaction API".

Java Message Service (JMS)

JMS provides a common way for Java programs to access enterprise messaging
products. IMS is a set of interfaces and associated semantics that define how a JMS

1-2 Oracle9iAS Containers for J2EE Services Guide

HTTPS

client accesses the facilities of an enterprise messaging product. For information
about the Oracle implementation, see Chapter 11, "Java Message Service".

Java Connector Architecture (JCA)

JCA defines a standard architecture for connecting the J2EE platform to
heterogeneous Enterprise Information Systems (EISs). Examples of EISs include
ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

For information about the Oracle implementation, see Chapter 12, "Java Connector
Architecture”.

Java Object Cache

HTTPS

The Java Object Cache (formerly OCS4)) is a set of Java classes designed to manage
Java objects within a process, across processes, and on local disk. The primary goal
of the Java Object Cache is to provide a powerful, flexible, easy to use service that
will significantly improve server performance by managing local copies of objects
that are expensive to retrieve or create. There are no restrictions on the type of object
that can be cached or the original source of the object. The management of each
object in the cache is easily customized. Each object has a set of attributes associated
with it to control such things as how the object is loaded into the cache, where the
object is stored, (in memory, on disk or both), how it is invalidated, (based on time
or by explicit request) and who should be notified when the object is invalidated.
Objects can be invalidated as a group or individually.

For information about the Oracle implementation, see Chapter 13, "Working With
Java Object Cache".

HTTPS is vital to securing client-server interactions. Java applications that act as a
clients, such as servlets that initiate connections to other Web servers, need their
own HTTPS implementation to make requests and to receive information securely
from the server. Java application developers who are familiar with the HTTP
package, HTTPCl i ent, or the Sun Microsystems, Inc., j ava. net package can
easily use Oracle HTTPS to secure client interactions with a server. For information
about the Oracle implementation, see Chapter 14, "Oracle HTTPS for Client
Connections".

Introduction 1-3

HTTPS

Data Sources

A data source, which is the instantiation of an object that implements the
javax.sgl.DataSource interface, enables you to retrieve a connection to a database
server. For information about the Oracle implementation, see Chapter 15, "Data
Sources".

1-4 Oracle9iAS Containers for J2EE Services Guide

2

Java Naming and Directory Interface

This chapter describes the Java Naming and Directory Interface (JNDI) service
implemented by Oracle9iAS Containers for J2EE (OC4J) applications. The INDI
chapter covers the following topics:

= Introduction
« Constructing a JNDI Context
= TheJNDI Environment

= Initial Context Factories

Java Naming and Directory Interface 2-1

Introduction

Introduction

JNDI is specified as part of J2EE, and provides naming and directory functionality
for Java applications. JNDI is defined independently of any specific naming or
directory service implementation, so it enables Java applications to access different,
possibly multiple, naming and directory services using a single API. Different
naming and directory service provider interfaces (SPIs) can be plugged in behind this
common API to handle different naming services.

Before reading this chapter, you should be familiar with the basics of INDI and the
JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at

http://java.sun. com products/jndi/index. htm

JNDI, in the form of j ndi . j ar, is available with OCA4J. Your application can take
advantage of the INDI API without having to provide any other libraries or JAR
files. J2EE-compatible applications use JNDI to obtain naming contexts that enable
the application to locate and retrieve objects such as data sources, local and remote
EJBs, IMS services, and many other J2EE objects and services.

Initial Context

Central to JNDI is the concept of the initial context. The two most often-used JNDI
operations in J2EE applications are:

1. Creatinganew | ni tial Cont ext object.
2. Using thel ni ti al Cont ext, looking up a J2EE or other resource.

When OC4]J starts up, it constructs a JNDI initial context for each application by
reading each of the application’s configuration XML files that can contain resource
references. Applications are defined in the ser ver. xm configuration file.

Note: After the initial configuration, the JNDI tree for each
application is purely memory-based. Additions that are made to
the context are not persisted. When OC4J is restarted, any new
bindings that were made in application code are no longer
available.

2-2 Oracle9iAS Containers for J2EE Services Guide

Introduction

The following example shows two lines of Java code that would be used on the
server side in a typical Web or EJB application:

Context ctx = new Initial Context();
nyEJBHome nyhone =
(Hel I oHone) ctx.lookup("java:conp/ env/ ejb/nyEIB");

The first statement creates a new initial context object, using the default
environment. The second statement looks up an EJB home interface reference in the
application’s JNDI tree. In this case, my EJB might be the name of a session bean that
is declared in the ori on- web. xm (or web. xm) configuration file, in an

<ej b-r ef > tag. For example:

<ej b-ref>
<ej b-ref - nane>ej b/ nyEIB</ ej b-ref - name>
<ej b-ref-type>Session</ejb-ref-type>
<home>nyEj b. Hel | oHome</ honme>
<renot e>nyEj b. Hel | oRenot e</ r enot e>
</ejb-ref>

This chapter focuses on setting up the JNDI initial contexts for using JNDI, and on
describing how OC4J performs JNDI look ups. For more information about the
other JNDI classes and methods, see the Javadoc at:

http://java. sun. com products/jndi/1.2/javadoc/index. htm

Java Naming and Directory Interface 2-3

Constructing a JNDI Context

Constructing a JNDI Context

When OC4]J starts up, it constructs a JNDI context for each application that is
deployed in the server (in ser ver . xm). There is always at least one application
for an OC4J server, the global application, which is the default parent for each
application in a server instance. User-written applications inherit properties from
the global application. User-written applications can override property values
defined in the global application, can define new values for properties, and can
define new properties as required.

In the default OC4J server, as shipped, the global application is the default
application, as defined in ser ver . xni . For more information about configuring the
OC4J server and its contained applications, see the Oracle9iAS Containers for J2EE
User’s Guide, in particular the “Advanced Information” chapter.

The environment that OC4J uses to construct a JNDI initial context can be found in
several places. These include:

« System property values, as set either by the OC4J server or possibly by the
application container.

« Ajndi.properties file contained in the application EAR file (as part of
application-client.jar).

« Anenvironment specified explicitly in a Hasht abl e passed to the JNDI initial
context constructor.

2-4 Oracle9iAS Containers for J2EE Services Guide

The JNDI Environment

The JNDI Environment

The JNDI I ni ti al Cont ext has two constructors:

Initial Context()
I nitial Context(Hashtable env)

The first constructor creates a Cont ext object using the default context
environment. If this constructor is used in an OC4J server-side application, the
initial context is created using the default environment for that application, created
by OC4J when the server is started. This constructor is the one typically used in
code that runs on the server side, such as in a JSP, servlet, or EJB.

The second constructor takes an environment parameter. The second form of the

I ni tial Cont ext constructor is normally used in client applications, where it is
necessary to specify the JINDI environment. The env parameter in this constructor is
a Hasht abl e that contains properties required by JNDI. These properties are:

I NI TI AL_CONTEXT_FACTORY A value for the java. naming. factory.initial
property that specifies which initial context
factory to use when creating a new initial
context object.

PROVI DER_URL The URL that application client code uses to
look up objects on the server. Also used by the
RM I ni ti al Cont ext Fact ory to search for
objects in different applications.

SECURI TY_PRI NCI PAL The user name. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

SECURI TY_CREDENTI AL The password. Required in application client
code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

See "Remote Client Example" on page 2-11 for a code example that sets these
properties and gets a new JNDI initial context.

Java Naming and Directory Interface 2-5

Initial Context Factories

Initial Context Factories

There are three JNDI initial context factories that are available for use by application
code. They are

« ApplicationCientlnitial ContextFactory
« Applicationlnitial ContextFactory
« RMInitial ContextFactory

The following sections describe each of these factories and their uses in OC4J
applications.

ApplicationClientInitialContextFactory

When an application client needs to look up a resource that is available in a J2EE
server application, the client uses

ApplicationClientlnitial ContextFactory asto construct the initial
context.

Consider an application client that consists of Java code running outside the OC4J
server, but that is part of a bundled J2EE application. For example, the client code
running on a workstation and might connect to a server object, such as an EJB, to
perform some application task. In this case, the environment accessible to JINDI
must specify the value of the property j ava. nam ng. factory.initial as
ApplicationCientlnitial ContextFactory. Thiscan be done in client code,
or it can be specified in the j ndi . properti es that is part of the application’s
application-client.jar filethatisincluded inthe EAR file.

In order to have access to remote objects that are part of the application,
ApplicationClientlnitial ContextFactory readsthe

META- | NF/ appl i cation-client.xm and

META- | NF/ ori on-application-client.xm filesinthe <application_
name>-client.jar file.

Using the Appl i cati onClientlnitial ContextFactory toconstruct JNDI
initial contexts means that the client can look up local objects (objects contained in
the immediate application, or in its parent application) using the j ava: conp/ env
mechanism, and can use ORMI to look up remote objects.

2-6 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories

Environment Properties

ApplicationClientlnitial ContextFactory invokes
RM I ni ti al Cont ext Fact ory to read the following properties from the
environment:

dedi cat ed. connecti on Each JNDI lookup retrieves a connection to the
server. Each subsequent JNDI lookup for this
same server uses the connection returned by
the first INDI lookup. That is, all requests are
forwarded over and share the same connection.

The dedi cat ed. connect i on JNDI property
overrides this default behavior. If you set

dedi cat ed. connect i on to true before you
retrieve an | ni ti al Cont ext , you will
retrieve a separate physical connection for each
lookup, each with its own designated
username/password.

dedi cat ed. connect i on defaults to false.
Reset to true if:

1. You want to connect using a different
username/password each time. ORMI
connections are associated with an
authenticated ID; setting this property to true
will open a new connection instead of reusing a
cached connection. If this property is set to
false, the first username/password is used for
all subsequent connections, even when an
alternate username/password is supplied.

2. You want to make a remote connection, look up
an object on the remote connection, then look up
the same object locally.

j ava. nam ng. provi der.url The URL to use when looking for local or
remote objects. The format is
[http: |
https:]orm ://<host nane>/ <app_nane>
Multiple hosts can be supplied in a
comma-separated list, for failover.

Java Naming and Directory Interface 2-7

Initial Context Factories

http.tunnel. path Specifies an alternative
RM Ht t pTunnel Ser vl et path. The default
pathis/ servl et/ rm ,as bound to the target
site’s web-app.

cont ext. SECURI TY_ The user name. Required in application client

PRI NCI PAL code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

cont ext. SECURI TY_ The password. Required in application client

CREDENTI AL code to authenticate the client. Not required for
server-side code, since the authentication has
already been done.

Remote Client Example

The following example code shows how JNDI properties can be specified in a client
application:

Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
“com evermind. server. ApplicationCientlnitial ContextFactory");
env. put (Cont ext . PROVIDER_URL, "ormi://<hostnanme>/ enpl oyee");
env. put (Cont ext. SECURI TY_PRI NCl PAL, "admi n");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel corme");

Context context = new Initial Context(env);
/1do the | ookups...

Server-Side Clients

Server-side clients need not specify an | ni t i al Cont ext Fact ory in order to look
up resources defined within the client application. By default, server-side clients
havel ni ti al Cont ext Fact ory setto Appl i cationlniti al Cont ext Factory.
This allows clients to perform lookups using hames in the style j ava: conp: / env.

To look up resources that are not defined within the client application, clients must
setthel ni ti al Context FactorytoRM I niti al Cont ext Fact ory and look up
the resources or EJB using an explicit URL.

2-8 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories

Applicationlnitial ContextFactory

When code is running in a server, it is by definition part of an application. So as part
of an application, OC4J can establish defaults for properties that INDI uses. For the
java. nam ng. factory.initial property, OC4Jsets

Applicationlnitial ContextFactory asthe default value for this system
property.

When this context factory is being used, the Appl i cat i onCont ext is specific to
the current application, so all of the references specified in files such as web. xni ,
orion-web. xm ,orej b-jar. xm forthat application are available. This means
that a lookup using j ava: conp/ env works for any resource that the application
has specified. Lookups using this factory are done locally in the same virtual
machine.

However, using the default Appl i cati onl ni ti al Cont ext Fact or y means that
only application-local resources are available using the j ava: conp/ env lookup
mechanism. If your application needs to look up a remote reference, either a
resource in another J2EE application or perhaps a resource external to any J2EE
application, then you must use RM | ni ti al Cont ext Fact ory.

Example

As a concrete example, consider a servlet that needs to get a data source to do a
JDBC operation on a database. The data source reference is mapped in
ori on-web. xm as

<resource-ref-nmappi ng nane="j dbc/ Oracl eDS1" | ocation="jdbc/ pool /O acl eCache" />

The data source location is specified in dat a- sour ces. xnl as:

<dat a- sour ce

cl ass="oracl e.j dbc. pool . Oracl eConnecti onCachel mpl "

| ocati on="j dbc/ pool / Or acl eCache"

usernanme="hr"

passwor d="hr"

url="jdbc: oracl e: thin; @host nane>:; <TTC port>: <DB | D>"
/>

In this case, the following code in the servlet returns the correct reference to the data
source object:
try {

Initial Context ic = new Initial Context();

ds = (DataSource) ic.lookup("java: conp/env/jdbc/ O acl ebDS1");

Java Naming and Directory Interface 2-9

Initial Context Factories

}
catch (Nam ngException ne) {
t hrow new Servl et Excepti on(ne);

}

No initial context factory specification is needed, as OC4J sets
Applicationlnitial ContextFactory asthe default value of the system
property j ava. nam ng. factory. i nitial when the application starts.

There is no need to supply a provider URL in this case, as no URL is required to
look up an object contained within the same application or under j ava: conp/ .

Note: Some versions of the JDK on some platforms automatically
set the system property j ava. nam ng. factory. url. pkgs to
include com sun. j ava. * . You should check this property and
remove com sun. j ava. * if present.

Note that an application can use the j ava: conp/ env mechanism to look up
resources that are specified not only in its own name space, but also in the name
spaces of any declared parent applications, or in the global application (which is the
default parent if no specific parent application was declared).

RMIInitialContextFactory

Using either the default server-side Appl i cati onl ni ti al Cont ext Fact ory, or
specifying Appl i cati onClientlnitial ContextFactory, will work for most
application purposes.

There are some cases, however, in which an additional context factory must be
used:

1. When looking up an object that is part of another J2EE application, and for
which a resource reference either cannot be or is not specified in the current
application’s appl i cati on-client.xnl file.

2. When doing a general lookup for external INDI objects, that may or may not be
part of a J2EE application. A generalized JNDI object browser would be an
example of this usage.

3. When accessing the entire remote JNDI namespace, as opposed to a specific
application context. For further details, see:

2-10 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories

http://ww. orionserver. coni docs/renote-access/renot e-access
. xm
The RM | ni ti al Cont ext Fact ory uses the same environment properties that are
used by ApplicationC ientlnitial ContextFactory, namely:

« dedicated. connection

« java. nanmi ng. provider. url
« http.tunnel.path

« SECURI TY_PRI NCI PAL

« SECURI TY_CREDENTI ALS

Remote Client Example

The following code could be used to look up a remote object using
RM I ni ti al Cont ext Factory:

Hasht abl e env = new Hashtabl e();
env. put ("java.namng.factory.initial",
“com evermnd. server.rm.RMInitial ContextFactory");

env. put ("java.nam ng.provider.url","orm ://local host/ejbsanples");

env. put ("java.nam ng.security.principal","admn");

env. put ("java. nam ng.security.credentials","wel come");

Context context = new Initial Context(env);

/**

* Lookup the Cart home object. The reference should be retrieved fromthe
* application-local context (java:conmp/env, the variable is

* specified in the assenbly descriptor; META-INF/ application-client.xm)
* but for sinplicity this exanple uses a global variable.

*/

Systemout.println("Context = " + context);

oj ect homeCbj ect = context. | ookup("MCart");
Hasht abl e envl = new Hasht abl e();
envl. put ("java.nam ng.factory.initial",
“com evermnd. server.rm.RMInitial ContextFactory");

envl. put ("java.nam ng.provider.url","orm://local host/ejbsanpl esl");

envl. put ("java.nam ng.security.principal","admn");
envl. put ("java.nam ng.security.credential s", "wel come");
Context contextl = new Initial Context(envl);

oj ect homeChj ectl = contextl.lookup("MProduct");

Systemout. println("HomeQbjectl = " + homeQbjectl);

Java Naming and Directory Interface 2-11

Initial Context Factories

2-12 Oracle9iAS Containers for J2EE Services Guide

3

Remote Method Invocation

Remote Method Invocation (RMI) is Java’s implementation of the remote procedure
call paradigm, in which distributed applications communicate by invoking
procedure calls and interpreting the return values. This chapter discusses how to
configure Oracle9iAS Containers for J2EE (OC4J) to support invoking RMI over
HTTP, a technique known as “RMI tunneling.”

Configuring RMI Tunneling

To configure OC4J to support RMI tunneling, do the following:

1.

Modify the INDI provider URL. The JNDI provider URL for accessing the OC4J
EJB server takes the form:

orm://<hostnanme> <orm _port >/ <t he_app>
You should change the URL to:

http:orm ://<host nane>: <HTTP_PORT>/ <t he_app>

Note: If omitted, <HTTP_PORT> defaults to 80. The argument port
number is your HTTP port, not your ORMI port.

If your HTTP traffic goes through a proxy server, you must specify the
pr oxyHost and (optionally) pr oxyPor t in the command line when starting
the EJB client. If you do not supply a value for pr oxyPor t , it defaults to 80.

-Dht t p. pr oxyHost =<pr oxy_host > - Dhttp. pr oxyPort =<proxy_port>

Remote Method Invocation 3-1

Configuring RMI In server.xml and rmi.xml

Configuring RMI In server.xml and rmi.xml

In order to use RMI from OC4J, you must edit the server. xm andrm . xm files.

Editing server.xml

Your server. xm file must specify the pathname of the RMI configuration file.
The syntax is:

<rm-config path="<RM _PATH>" />
The usual <RM _PATH>is ./ rm . xm ; you can name the file whatever you like.

Editing rmi.xml

The file r m . xm must specify which host, port, and user information will be used
to connect to (and accept connections from) remote RMI servers. Your file must
contain an <r ni - ser ver > element describing possible connections. An

<rm - server > element looks like:

<rm-server host="hostnane" port="port">

<server host="hostnane" username="username" port="port"
passwor d="passwor d" http-pat h="pat hnane"/>

<l og>
<file path="1ogfil epathnane" />

</l og>

</rm-server>

<rm -server> has the following attributes:

hostname is the host or IP name from which your server will accept RMI requests.

host nane can be a particular hostname or “[ALL] “. If you specify a host name, the OC4J
server will only accept RMI requests from that particular host. If host nane is “[ALL] “or
you omit the host attribute, the OC4J server will accept RMI requests from any host.

port is the port number on which your server listens for RMI requests. If you omit
this attribute, it defaults to 23791.

An <rm - server > element can contain zero or multiple <ser ver > elements and
zero or one <l og> elements.

Each <server > element specifies a server that your application can contact over
RMI. A <ser ver > element takes the form:

<server host="host name" username="user name" port="port"
passwor d="password"/>
The host attribute is required; the remaining attributes are optional.

3-2 Oracle9iAS Containers for J2EE Services Guide

Configuring RMI In server.xml and rmi.xm|

hostname the name or IP address of the server you will contact over RMI.
username the username of a valid principal on the remote server
port the port number on which the remote server listens for RMI requests

password the password used by the principal user nane

The <I og> element contains the pathname of a log file to which the server will
write all RMI requests.

Remote Method Invocation 3-3

Configuring RMI In server.xml and rmi.xml

3-4 Oracle9iAS Containers for J2EE Services Guide

A

Overview of JAAS in Oracle 91AS

This chapter introduces support for Java Authentication and Authorization (JAAS),
in Oracle9iAS Containers for J2EE (OC4J). JAAS enables application developers to
integrate authentication, authorization, and delegation services with their
applications.

This chapter contains these topics:

Support for JAAS

What are Authentication, Authorization, and Delegation?
What is the Java2 Security Model?

What is JAAS?

JAAS Provider Features

JAAS Provider User Services

JAAS Provider Realm and Policy Management

Overview of JAAS in Oracle 9iIAS 4-1

Support for JAAS

Support for JAAS

JAAS is a Java package which enables applications to authenticate and enforce
access control.

Oracle9iAS supports JAAS by implementing a JAAS provider. The JAAS provider
provides application developers with user authentication, authorization, and
delegation services to integrate into their application environments. Instead of
devoting resources to developing these services, application developers can focus
on the presentation and business logic of their applications.

Note: Some class and component names contain the word
“JAZN”, which is the internal code name for “JAAS provider*.

What are Authentication, Authorization, and Delegation?

Authentication is the process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to granting this entity access to
resources in a system. For example, when a user enters a username and password to
access resources on a computer, such as a database, the user must first be
authenticated (verified) by means of the login information before being permitted
access to these resources.

Once a user’s username and password have been authenticated, the authorization
process occurs. Authorization is the process of determining the following for the
authenticated user: Who has the right to perform an operation on an object (such as
updating a table in a database)?

Delegation provides support for impersonation of a specified user. An application
can be configured to run with the permissions associated with specified user by
means of the r un- as element.

Foundations of the JAAS Provider

The JAAS framework and the Java2 Security model form the foundation of the
JAAS provider. That is, the JAAS provider implements JAAS and integrates with
J2SE and J2EE applications that use the Java2 Security model.

JAAS

The JAAS provider implements support for JAAS policies. Policies contain the rules
(permissions) that authorize a user to use resources, such as reading a file. JAAS
enables services to authenticate and enforce access control upon users of these
resources.

4-2 Oracle9iAS Containers for J2EE Services Guide

What are Authentication, Authorization, and Delegation?

Java2 Security Model

The JAAS provider integrates with J2SE and J2EE applications that use the Java2
Security Model. Unlike the original Java security model, under Java2 security,
many levels of restrictions can be configured.

See Also:
« "What is JAAS?" on page 4-7
« "What is the Java2 Security Model?" on page 4-4

Java Application Environments

Developers can easily integrate the JAAS provider with these applications for quick
development and deployment:

« Stand-alone Java applications in Java2 Platform, Standard Edition (J2SE)
environments

« Web-based applications in Java2 Platform, Enterprise Edition (J2EE)
See Also:

Section , "Integrating the JAAS Provider with Basic Authentication”
for additional information on the J2SE and J2EE environments

Provider Types

The JAAS provider supports two types of repository providers, referred to as
provider types.

These provider types are repositories for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and
JAAS policy (permissions) information.

Use the provider type appropriate to your environment.

LDAP-Based Provider Type

The LDAP-based provider type is based on the Lightweight Directory Access
Protocol (LDAP) for centralized storage of information in a directory. Oracle9iAS
only uses the LDAP-based Oracle Internet Directory.

Use this provider type if you are using Oracle9iAS and Oracle Internet Directory.

Overview of JAAS in Oracle 9iIAS 4-3

What is the Java2 Security Model?

XML-Based Provider Type
The XML-based provider type is used for lightweight storage of information in
XML files.

Use this provider type if you are using an XML file, such as j azn- dat a. xm , to
store your user and realm information.

Note: Don’t confuse the XML-based provider type with XML files
in general. XML files are used as property and configuration files in
both LDAP-based and XML-based provider types or environments.
If an XML file such as j azn- dat a. xm is used to store realm and
user information, then the provider type is called XML-based.

See Also:

"JAAS Provider Realm and Policy Management" on page 4-15

What is the Java2 Security Model?
Sun’s Java2 Security Model is fundamental to the JAAS provider.

The Java2 Security Model enables configuration of security at all levels of
restriction. This provides developers and administrators with increased control over
many aspects of enterprise applet, component, servlet, and application security.

The Java2 Security Model is capability-based and enables you to establish
protection domains, and set security policies for these domains. When the JAAS
provider is integrated with applications developed for the J2SE or J2EE
environments, these environments use the Java2 Security Model to different
degrees.

Permissions are the basis of the Java2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission
represents a specific access to a particular resource. Table 4-1 identifies the elements
that comprise a Java permission instance:

Table 4-1 Java Permission Instance Elements

Element Description Example
Class name The permission class java.io. Fil ePerm ssion
Target The target name (resource) to which Directory / homre/ *

this permission applies

4-4 Oracle9iAS Containers for J2EE Services Guide

What is the Java2 Security Model?

AC class

File class

0, CESS

3, CE5S

e Domain B o Parmissions g Pratection Domain B

Table 4-1 Java Permission Instance Elements

Element Description Example

Actions The actions associated with this target Read, write, and execute permissions
on directory / hone/ *

Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group
of permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call
to either:

« SecurityManager. checkPermn ssion()
» AccessController.checkPerm ssion()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 4-1 shows the basic model for authorization checking at runtime.

Figure 4-1 Java2 Security Model

Securily Policy

Protection Domain A

i th read / write permissions
L H™ v o L 5
CDiomain A Parmissions an a ke named salarles)

(wiith read only permissions
on a file named salaries)

Table 4-2 describes the permission classes provided by the JAAS provider that
enables you to enforce access upon users of resources.

Overview of JAAS in Oracle 9iIAS 4-5

What is the Java2 Security Model?

Table 4-2 JAAS Provider Permission Classes

Permission Part of Package... Description See Also...
Adm nPer m ssi on oracl e. security. Representsthe righttoadminister "AdminPermission"on
jazn. policy a permission (that is, grant or page A-7 for specific

revoke another user’s permission
assignment)

syntax examples

Rol eAdmi nPerni ssion oracl e. security. Thegrantee of this permission is
jazn. policy granted the right to further
grant/revoke the target role.

JAZNPer m ssi on oracl e. security. Forauthorization permissions.
jazn JAZNPer m ssi on contains a
name (also called a target name),
but no actions list; you either have
or do not have the named

"AdminPermission" on
page A-7

"JAZNPermission" on
page A-3 for a list of
target names for
JAZNPer mi ssi on,
what the permissions

permission. allow, and the risks of

granting the permission
Real nPer m ssi on oracl e. security. Represents permission actions for "RealmPermission"on
jazn.realm arealm (suchascreateReal m page A-10 for a list of

dr opReal m and so on).

Real nPer m ssi on extends from
java. security. Perm ssion,

and is used like any regular Java

permission.

permission actions

See Also:

- "JAAS Provider Integration in J2SE Application Environments"

on page 6-2

- "JAAS Provider Integration in J2EE Application Environments

on page 6-4
. Chapter 7, "Managing the JAAS Provider"

- SunJava documentation by visiting the following URL.:

http://java.sun.com security/

4-6 Oracle9iAS Containers for J2EE Services Guide

What is JAAS?

What is JAAS?

The JAAS interface is implemented by the JAAS provider. JAAS is a Java package
that enables applications to authenticate and enforce access controls upon users.

JAAS is designed to complement the existing code-based security in JDK 1.3. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authorization, authentication,
and user community (realm) features. Some of these features are fully supported in
this release of JAAS, while others are not explicitly defined. The JAAS provider
provides enhancements to some of these features.

« Principals

« Subjects

« Login Module Authentication
« Roles

« Realms

=« Policies and Permissions

See Also:

- "JAAS Provider Realm and Policy Management" on page 4-15
for information on how the JAAS provider enhances JAAS to
more explicitly define key authorization, authentication, and
user community (realm) features

- JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun. com products/jaas/

Overview of JAAS in Oracle 9iIAS 4-7

What is JAAS?

Principals

A principal is a specific identity, such as a user named f r ank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service.

A principal is represented by an instance of a concrete class that implements the
java.security. Principal interface. Each class defines a namespace for its
instances, within which each principal instance has a unique name. The name and
class of a principal instance uniquely describes the instance.

For LDAP-based environments, an X500Pr i nci pal class is defined that accepts the
X.500 style name as the name of the principal.

Subjects

A subject represents a grouping of related information for a single user of a
computing service, such as a person, computer, or process. Such information
includes the subject's identities and security-related attributes (such as passwords
and cryptographic keys).

Subjects can have multiple identities, where principals represent identities in the
subject. A subject becomes associated with a principal (user f r ank) upon successful
authentication to a computing service, that is, the subject provides evidence (such as
a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user f r ank, may
have two principals;

« One binds the principal f rank doe (name on his driver license) to the subject

« Another binds the identification principal 999- 99- 9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are
stored in a private credential set. Credentials intended to be shared, such as public
key certificates or Kerberos server tickets are stored in a public credential set.
Different permissions are required to access and modify different credential sets.

Subjects are represented by the j avax. securi ty. aut h. Subj ect class.

To perform work as a particular subject, an application invokes the method

Subj ect . doAs(Subj ect, Privil egedActi on) (or one of its variations). This
method associates the subject with the current thread's AccessCont r ol Cont ext ,
and then executes the specified request.

4-8 Oracle9iAS Containers for J2EE Services Guide

What is JAAS?

Login Module Authentication

Roles

To associate a principal (such as f r ank) with a subject, a client attempts to log into
an application. In login module authentication, the Logi nCont ext class provides
the basic methods used to authenticate subjects such as users, roles, or computing
services. The Logi nCont ext class consults configuration settings to determine
whether the authentication modules (known as login modules) are configured for
use with the particular application that the subject is attempting to access. Different
login modules can be configured with different applications.

Since the Logi nCont ext separates the application code from the authentication
services, a different login module can be plugged in under an application without
affecting the application code.

Actual authentication occurs with the method Logi nCont ext . | ogi n() . If
authentication succeeds, the authenticated subject can be retrieved by invoking

Logi nCont ext . get Subj ect () . The real authentication process can involve multiple
login modules. JAAS defines a two-phase authentication process to coordinate the
login modules configured for an application.

After retrieving the subject from the Logi nCont ext, the application then performs
work as the subject by invoking Subj ect . doAs().
See Also:

- "Authentication in the J2SE Environment" on page 8-2
- "Authentication in the J2EE Environment" on page 9-2

JAAS does not explicitly define roles or groups. Instead, roles or groups are
implemented as concrete classes that use interface j ava. security. Princi pal .

JAAS does not define how to support the RBAC role hierarchy (granting a role to a
role). The Sun provider of j avax. securi ty. aut h. Pol i cy recognizes a special type
of principal, as defined by the Pri nci pal Conpar at or interface. However,

Pri nci pal Conpar at or is not fully integrated with the JAAS provider, and is
therefore not supported.

For LDAP-based environments, an X500G oupPri nci pal class is defined that
accepts an X.500 style name as the name of the group.

Overview of JAAS in Oracle 9iIAS 4-9

What is JAAS?

Realms

Applications

JAAS does not explicitly define user communities. However, the J2EE reference
implementation (RI) defines a similar concept of user communities called realms. A
realm provides access to users and roles (groups) and optionally provides
administrative functionality. A user community instance is essentially a realm that
is maintained internally by the authorization system. The J2EE RI Realm API
supports user-defined realms through subclassing. The J2EE Rl Realm API,
however, is:

« Not as fully developed as the JAAS provider realm framework
« Not being proposed as a standard

« Expected to undergo further changes to be integrated with JAAS

See Also:

- "JAAS Provider Realm Framework" on page 4-17 for JAAS
provider enhancements to realms

.= "XML-Based Realm and Policy Information Storage" on
page 4-23

JAAS does not explicitly define an application or subsystem for partitioning
authorization rules. However, JAAS meets many of the requirements for the
subsystem concept. For example, JAAS defines the notion of a codebase (plus a
signer) as the target and grantee of a grant statement. This enables permissions to be
granted application-specific code. The Java notion of namespace partitioning
through packages also allows for partitioning of permission classes in an
application-specific manner.

Policies and Permissions

A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are
the granted permissions of the grantee?

Policy information is supplied by the JAAS provider. JAAS does not define an
administrative API for policy administration. The administrative APl is
implementation specific.

Table 4-3 describes Sun’s implementation of policy file parameters.

4-10 Oracle9iAS Containers for J2EE Services Guide

What is JAAS?

Table 4-3 Policy File Parameters

Where... Is Defined As... Example
subject one or more principal(s) duke
codesource codebase, signer http://ww. foo.com foo

File-based Policy Example
The following example shows a typical entry in the JAAS policy file as
implemented by Sun’s implementation of the JAAS file-based policy provider:

grant CodeBase "http://ww. foo. cont,
Principal comsun.security.auth. SolarisPrincipal "duke"

{
b

perm ssion java.io.FilePermssion "/home/duke", "read, wite";

Code from ww. f 0o. com signed by f oo, and running as a Sol ari sPri nci pal with
the username duke, has the permission that permits the executing code to read and
write files in / home/ duke.

XML-Based Example

The JAAS provider also provides an XML file to store policy information. In the
following example, a segment of the j azn- dat a. xm file grants the j azn. com
/ admi ni strators various permissions:

<!--JAZN Policy Data -->
<j azn- pol i cy>
<grant >
<gr ant ee>
<principal s>
<princi pal >
<real npj azn. com real np
<type>rol e/ type>
<class>oracl e. security.jazn. spi.xm .XMReal nRol e
</cl ass>
<nanme>j azn. conl admi ni strat ors/ name>
</ principal >
</ princi pal s>
</ grantee>
<perni ssi ons>
<perm ssi on>
<class>oracl e. security.jazn.policy.AdninPerm ssion</class>
<name>or acl e.security.jazn.realm
Real mPer mi ssi on$j azn. con$nodi f yr eal nmet adat a</ nane>

Overview of JAAS in Oracle 9iIAS 4-11

JAAS Provider Features

</ perm ssi on>
<per ni ssi on>
<cl ass>oracl e. security.jazn.policy.Adn nPernission</class>
<nane>oracl e.security.jazn.realm
Real nPer mi ssi on$j azn. contsdr opr eal mx/ name>
</ perm ssi on>
<per ni ssi on>
<cl ass>oracl e. security.jazn.policy.Adn nPernission</class>
<name>or acl e. securi ty. jazn.real m Real nPerm ssi on$j azn.
confcr eat er ol e</ nane>
</ perm ssion>
<per ni ssi on>
<cl ass>oracl e. security.jazn.real m Real mPerni ssion</cl ass>
<nane>j azn. conx/ nane>
<actions>creat er eal nx/ acti ons>
</ perm ssi on>
</ per mi ssi ons>
</ grant>
</jazn-policy>

See Also:

« "Sample jazn-data.xml Code" on page B-2 to view a complete
j azn- dat a. xm file.

« "JAAS Provider Policy Administration" on page 4-24 for
information on JAAS provider enhancements to policies

JAAS Provider Features

Table 4-4 lists the JAAS features provided by Oracle9iAS.

Table 4-4 JAAS Provider Features

Feature

Description See Also...

Realms

Realms provide access to user and role information. An Oracle "Realms" on page 4-10
proprietary Realm API package (or acl e. security.jazn. " .

r eal n is provided to support user and role management. This FJrAaQEVI\D/:)?’\IQ'd(fr: Realm
APl includes a Real nPri nci pal interface that extends from

java. security. Principal and associates a realm with page 4-17
users and roles
Role-based access Support is provided for secure, centralized, and customizable "Role-Based Access
control (RBAC) RBAC management Control (RBAC)" on
page 4-14

4-12 Oracle9iAS Co

ntainers for J2EE Services Guide

JAAS Provider User Services

Table 4-4 JAAS Provider Features

Feature Description See Also...
Login Module « Provides a Real nLogi nModul e class for non-SSO Chapter 8, "Developing
Authentication environments Secure J2SE
. Integrates with Oracle9iAS Single Sign-On (SSO) for SSO Applications
login authentication in J2EE application environments Chapter 9, "Developing
Secure J2EE
Applications"

JAAS provider type Several methods for managing JAAS provider type information "JAAS Provider Policy
management are available: Administration” on

« An Admintool command line tool that supports page 4-24

management of information in both provider types Chapter 7, "Managing

« An Oracle Enterprise Manager graphical user interface the JAAS Provider

(GUI) tool that supports management of information in
LDAP-based Oracle Internet Directory

« Programmatic level management of both provider types

JAZNUser Manager JAZNUser Manager is an implementation of the OC4J "JAAS Provider
User Manager that integrates with both LDAP-based and Integration in J2SE
XML-based provider types. Application
Environments" on
page 6-4

Chapter 9, "Developing
Secure J2EE
Applications"

JAAS Provider User Services

The Oracle9iAS implementation of JAAS provides these user services for
application developers to integrate into their applications. This section describes
several JAAS provider authorization features.

« Capability Model of Access Control
« Role-Based Access Control (RBAC)

Capability Model of Access Control

The capability model is essentially a method for organizing authorization
information. The JAAS provider is based on the Java2 Security Model, which uses
the capability model of access control to control access to permissions. With the
capability model, authorization is associated with the principal (a user named

fr ank in the following example). Table 4-5 shows the permissions that user f r ank
is authorized to use:

Overview of JAAS in Oracle 9iIAS 4-13

JAAS Provider User Services

Table 4-5 User Permissions

User Has These File Permissions...

frank Read and write permissions on a file named sal ari es. t xt inthe
/ home/ user directory

When user f r ank logs in and is successfully authenticated, the permissions
described in Table 4-5 are retrieved from the JAAS provider (whether the LDAP-
based Oracle Internet Directory or XML-based provider type) and granted to user
frank. User f r ank is then free to execute the actions permitted by these
permissions.

See Also:

- "What is the Java2 Security Model?" on page 4-4
- "Principals" on page 4-8
- "JAAS Provider Policy Administration" on page 4-24

Role-Based Access Control (RBAC)

RBAC enables you to assign permissions to roles. Users are then granted their
permissions by being made members of appropriate roles. Support for RBAC is a
key JAAS provider feature. This section describes the following RBAC features:

« Role Hierarchy

= Role Activation

Role Hierarchy

RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially
a major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a
role, and users are granted their permissions by being made members of that role.
Multiple roles can be granted to a user. A role can also be granted to another role,
thus forming a role hierarchy that provides administrators with a tool to model
enterprise security policies. Figure 4-2 provides an example.

4-14 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Figure 4-2 Role-Based Access Control

The HR role includes the following:
- Read and wrile permissons on a Hie named

HR role] sakaries in the homefuser’ direciony

— Usars frank, bob, and mary are granbad the

Usar frank

parmissions and privieges included with the

Llsar bob L] sar rrli-'."',ff .
HR role bacause thay are mambars of

the rola.

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that
individual user.

For example, if multiple users no longer require write permissions on a file named
sal ari es in the/ home/ user directory, those privileges are removed from the HR
role. All members of the HRrole then have their permissions and privileges
automatically updated.

Role Activation

A user is typically granted multiple roles. However, not all roles are enabled by
default. The user can selectively enable the required roles to accomplish a specific
task in a user session with the r un- as security identity and Subj ect . doAS() . This
ensures the principle of least privilege. This way, the user is not enabling
permissions or privileges unnecessary for the task. This limits the damage that can
potentially result from an accident or error.

See Also: SunJava documentation by visiting the following URL.:

http://java.sun.com security/

JAAS Provider Realm and Policy Management

The JAAS provider supports two types of repository providers, referred to as
provider types:

« The LDAP-based provider type used with Oracle Internet Directory (OiD)
« The XML-based provider type used with an XML file, typically j azn- dat a. xm

Overview of JAAS in Oracle 9iIAS 4-15

JAAS Provider Realm and Policy Management

OiD and j azn- dat a. xm are repositories used to store realm (users and roles) and
policy (permissions) information. This section discusses the following topics in
relation to the two different provider types:

« Realm and Policy Management Tools

= JAAS Provider Realm Framework

« JAAS Provider Policy Administration

Realm and Policy Management Tools

Several tools are provided for managing realm and policy information. Table 4-6
describes these tools and indicates the environment in which they operate.

Table 4-6 Realm and Policy Management Tools

Method/Environment Description

See Also...

Oracle Enterprise
Manager

LDAP-based only

A graphical user interface tool that enables you
to create principals (known as grantees) and
assign permissions to these grantees.

"Using the Oracle
Enterprise
Manager
Interface with the
JAAS Provider"
on page 7-3

JAZN Admintool

Both LDAP and
XML-based
environments

A command line interface tool that enables
administrators to create and manage users,
realms, roles, and policies. The JAZN
Admintool:

« Uses the JAAS ProviderAPI packages
described in Appendix A, "JAAS Provider
APIs" to perform functions

« Can be executed from the operating system
command line

The JAZN Admintool has the same capabilities
and limitations as the JAAS Provider APIs. For
example, you cannot create users with the
JAZN Admintool if your provider type is
LDAP-based Oracle Internet Directory.
However, you can create users if your provider
type is XML-based.

"Using the JAZN
Admintool” on
page 7-15

4-16 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

See Also:

- “What JAAS Provider Components Do You Need to Install?” in
the Oracle9i Application Server Installation Guide for information
on installing the provider type you want to use

- "Realms" on page 4-10
. "Package oracle.security.jazn.realm" on page A-9

JAAS Provider Realm Framework

The J2EE environment defines the concept of user communities. A user community
instance is essentially a realm maintained internally by the authorization system.

The API package or acl e. security.jazn. real mis provided to support realms.
This API package is an enhancement to the JAAS policy provider.

Realms can be managed in both provider type environments:
« LDAP-based Oracle Internet Directory

Provides for centralized storage of realms and JAAS policy in a directory
« XML-based

Provide a lightweight form of storage for realms and JAAS policy

Realm Management in LDAP-Based Environments
A realm provides user and role management. An LDAP-based realm's data can be
managed:

« Internally by creating and managing user information with the JAAS provider.
See Chapter 7, "Managing the JAAS Provider".

« Externally by creating and managing user and role information with Oracle
Internet Directory, and then integrating it with the JAAS provider.

LDAP-Based Realm Types The JAAS provider supports three types of realms for
LDAP-based environments. Each realm provides different user and role
management capabilities. Table 4-7 describes these realms.

Overview of JAAS in Oracle 9iIAS 4-17

JAAS Provider Realm and Policy Management

Table 4-7 Implementation of Realm Types
Realms Type Description Use This Realm... See Also...
External « Supports external, read-only For non-hosting Figure 4-3 on
Realm user and role management environments page 4-19
. Integrates existing user "Creating an
communities with the JAAS External Realm"
provider on page 7-29
Subscriber « Created through In a hosting Figure 4-4 on
Realm provisioning tools environment (with page 4-20
. . subscriber-based
- Usedin hosting customers) where
environments .
multiple customers
« Supports external, read-only or companies
user and role management subscribe to shared
services
Application .« Supports external, read-only If you want to use Figure 4-5 on
Realm user management the JAAS provider page 4-21
. role management " .
« Supports internal roles f Creating an
eature R
management Application
Realm" on
page 7-31

Each realm type consists of;

« Arole manager for role management

. A user manager for user management

User and role managers internally perform their duties (through JAAS provider
permissions) or externally (through OiD Delegated Administration Service (DAS)).

Note:

The JAAS provider does not provide an internal user

manager for creating users. Instead, you can create users with DAS
or a command line tool such as | dapadd.

Figure 4-3 shows a sample LDAP directory information tree (DIT) containing an
External Realm that is registered as an instance with the JAAS provider. The realm
type is created below a Realms container.

4-18 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Figure 4-3 Simplified Directory Information Tree for the External Realm

Default Omacle
External users and roles Context
outside of JATFN Context
Abc.com JAFM Contaxt
Uzers Fealms
i Extemnal Realm
Holas < (abcRealm)

Table 4-8 describes the user and role management responsibilities of the External
Realm.

Table 4-8 External Realm Responsibilities

External Realm Name Role Management User Management
abcReal m Retrieves external, read-only Retrieves external, read-only
roles users

Figure 4-4 shows a sample LDAP directory information tree (DIT) containing a
Subscriber Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

Overview of JAAS in Oracle 9iIAS 4-19

JAAS Provider Realm and Policy Management

Figure 4-4 Simplified Directory Information Tree for the Subscriber Realm

Default Omacle
External users and roles Context
outside of JATFN Context
Subscribers JAFM Contaxt
BastCOM.com Fealms

AR /

Rolas

Subscriber Bealm
Users (BestCOMRaalm)

Table 4-9 describes the user and role management responsibilities of the Subscriber

Realm.

Table 4-9 Subscriber Realm Responsibilities

Best COVReal m

Subscriber Realm Name Role Management User Management
Retrieves external, Retrieves external, read-only users
read-only roles of a of a subscriber
subscriber

4-20 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Figure 4-5 shows a sample LDAP directory information tree (DIT) containing an
Application Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

Figure 4-5 Simplified Directory Information Tree for the Application Realm

Default Oracle
Context

JAZMN Contaxt

cev.com Realms

v /

Application Raalm
(devRealm)

v

Holas

Uzers

Table 4-10 describes the user and role management responsibilities of the
Application Realm.

Table 4-10 Application Realm Responsibilities

Application Realm Name Role Management User Management

devReal m Internally creates and Retrieves external, read-only
manages modifiable roles users

LDAP-Based Realm Data Storage The realm framework provides a means for
registering realm instances with the JAAS Provider and managing their
information.

Overview of JAAS in Oracle 9iIAS 4-21

JAAS Provider Realm and Policy Management

A Realms container object is created under the site-wide JAAS context. (For
example, see the Realms container in Figure 4-3 on page 4-19.) For each registered
realm instance, a corresponding realm entry is created under the Realms container
that stores the realm's attributes. This directory hierarchy is known to the JAAS
provider, which enables the JAAS provider to create new realm instances in the
desirable directory location and find all the registered realms in runtime.

For example, the distinguished name (DN) for a realm called or acl e can be
"cn=or acl e, cn=r eal ns, cn=JAZNCont ext, cn=site root".

Upon successful installation of the JAAS provider, a default realm (External Realm)
instance is installed. Predefined realm properties are configured for starting the
default realm. Any realm type must provide concrete implementations for the
system defined Java interfaces User Manager and Rol eManager. In runtime, the
JAAS provider finds all the registered realms and their attributes (name, user
manager implementation class, role manager implementation class, and their
properties) from the provider type (Oracle Internet Directory) and instantiates the
realm's implementation class with the properties for initialization.

LDAP-Based Realm Permissions A Real nPer mi ssi on class is defined to represent
realm permissions. Real nPer ni ssi on extends from j ava. security. Perni ssion.
It is used like any regular Java permission. Real nPer ni ssi on has the following
characteristics:

« Realm name, also known as target name
« List of actions (permissions applicable to the realm, such as creating a realm,
dropping a role, and so on)
See Also:

- "RealmPermission” on page A-10

- The JAAS Provider API Reference (Javadoc) is located in the
Oracle9i Application Server Documentation Library on the
J2EE & Internet Applications tab

Realm Management in XML-Based Environments

A realm provides user and role management. For XML-based environments, realm
management is less restrictive and faster: a more lightweight implementation than
LDAP-based realm management.

XML-Based Realm Types The JAAS provider enables you to create a single realm type
for an XML-based environment.

4-22 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

See Also: "Using the JAZN Admintool” on page 7-15 for
instructions on creating realm types.
XML-Based Realm and Policy Information Storage An XML-based realm enables you to:
« Create realms, users, and roles
« Grantroles to users and to other roles
« Assign permissions to specific users and roles (principals)

This information is stored in an XML file, typically, j azn- dat a. xn1 . The following
example shows the structure used in aj azn- dat a. xni file to create realms, users,
and roles.

<I'--JAZN Real m Data -->

<jazn-real n»

<real n»
<name>j azn. conx/ nane>
<users>
<user >
<nanme>adnm n</ name>
<di spl ayNanme>Real m Admi ni strat or </ di spl ayNane>
<description>Admi ni strator for this real n/description>
<credential s>Q +w7NJul LM=</ cr edenti al s>
</ user>
<user >
<name>anonynous</ nane>
<description>The default guest/anonynous
user </ descri ption>
</ user>
</ users>
<rol es>
<rol e>
<nanme>guest s</ nane>
<nenber s>
<nenber >
<type>user</type>
<nanme>adm n</ name>
</ menber >
<nmenber >
<type>user</type>
<name>anonynous</ nane>
</ menber >
</ menber s>
</rol e>

Overview of JAAS in Oracle 9iIAS 4-23

JAAS Provider Realm and Policy Management

<rol e>
<name>adni ni strat or s</ nane>
<di spl ayName>Real m Admi n Rol e</ di spl ayNane>
<description>Admi ni strative role for this
real nx/ descri pti on>
<nenber s>
<nenber >
<type>user</type>
<nanme>adm n</ name>

</ menmber >
</ menber s>
<[rol e>
<rol e>
<nane>user s</ name>
<nmenber s>
<nmenber >
<type>user</type>
<nane>adm n</ name>
</ menmber >
</ menber s>
<[rol e>
</rol es>

</real n»
</jazn-real n»

See Also: "Sample jazn-data.xml Code" on page B-2 for a
completed j azn- dat a. xni file.

Note: Setting the <cr edent i al s>element as follows enables you
to use clear (readable) passwords in the j azn- dat a. xm file the first
time.

« <credentials clear="true">wel cone</credenti al s>

« <credential s>!wel come</credential s>

This enables the administrator to directly edit j azn- data. xm with
a text editor. When the file is read and persistence occurs, the

password in j azn- dat a. xnl is obfuscated and becomes
unreadable.

JAAS Provider Policy Administration

The JAAS provider implementation of j avax. security. auth. Pol i cy uses either
an LDAP-based Oracle Internet Directory or XML-based provider type for storing

4-24 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

policy (authorization rules). The JAAS provider administrator uses various grant
and revoke methods of the JAZNPol i cy class to create authorization policies for
principals.

The provider must be administered in a secure manner. There are several ways to
administer the JAAS provider policy:

« Oracle Enterprise Manager (LDAP environments only)
« JAZN Admintool
« Oracle Internet Directory Administration

« AdminPermission Class

See Also: Table 4-6 on page 4-16 for information on Oracle
Enterprise Manager and "Using the JAZN Admintool" on page 7-15
for information on the JAZN Admintool

Overview of JAAS in Oracle 9iIAS 4-25

JAAS Provider Realm and Policy Management

Oracle Internet Directory Administration

For LDAP-based application environments, you manage realm and policy data as
Oracle Internet Directory entries through:

« The OiD DAS and Oidadmin administrative tools
« Definition of access control lists in Oracle Internet Directory
Two possible administrative groups can manage the data:

« A JAAS provider site-wide administrative group that is granted permissions to
access and modify the site-wide JAZNCont ext and any subscriber-specific
JAZNCont ext

« A realm-specific administrative group for each realm instance or administrative
user

In hosted application environments, part of the policy data may be partitioned
along subscriber boundaries and thus stored in a subscriber subtree. That policy
data cannot be administered by the realm-specific administrative group. The same
is true with role information.

With the JAAS provider policy data (including realm data), only users that belong
to JAZNCl i ent Group or JAZNAdm nGr oup have read-access capabilities on provider
data.

The LDAP-based environment caches provider policy data; for details, see
“Managing JAAS Provider Policy” on page 36.

See Also: Oracle Internet Directory Administrator’s Guide

AdminPermission Class

The Adni nPer ni ssi on class can be used in either LDAP-based or XML-based
environments.

The Adni nPer ni ssi on class represents the right to administer a permission. This
enables a grantee (such as a user named f r ank) to further grant and revoke the
granted right/permission to other grantees. Instances of this permission class
include instances of other permissions. Since this is a permission about permission,
it varies slightly from the permission definition, which includes a simple name,
actions pair. This variation is resolved by encoding a permission instance as a string
and using that as the name of the Admi nPer mi ssi on instance. Table 4-11 provides
an example:

4-26 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Table 4-11 ADMIN Option Example

If User... Then User...

f rank is granted the Adni nPer mi ssi on for f r ank can further grant and revoke
java.io. FilePerm ssion("/tnmp/*","read, any permissionimplied by the
wite") embedded permission (that is,

Fi | ePer m ssi on in this instance).

When expressed in the format recognized by the policy provider, this results in the
following:

grant Principal comoracle.security.jazn. JAZNPrincipal "frank"

{

permi ssion comoracle.security.jazn.policy. Adm nPerm ssion
“class=java.io.FilePermssion, name=\"/tnp/*\", actions=\"read, wite\""

b

Note that another permission instance is encoded in the target name for this
Adni nPer nmi ssi on instance.

Recursive embedding of Admi nPer ni ssi on (that is, an Adni nPer ni ssi on instance
embedded within another Adni nPer ni ssi on instance) is not supported. In the
initial policy, the JAAS user is granted Adni nPer ni ssi on to

java.security. Al'l Permi ssi on, enabling the JAAS user to grant and revoke all
permissions to anyone.

A Rol eAdni nPer mi ssi on class is defined for roles. This means that when role hr is
granted to f r ank, f r ank is granted both role hr and a Rol eAdni nPer i ssi on that
enables f r ank to further grant and revoke role hr.

See Also: "Policies and Permissions" on page 4-10 for an example
of an XML-based policy file

Policy Partitioning
The JAAS provider supports policy partitioning among realms (that is, each realm

has its own realm-specific policy). This realm-specific policy is administered by the
realm-specific administrative group.

In a hosted environment, a subscriber is represented by a realm and the
subscriber-specific information subtree is stored under a subscriber-specific
JAZNCont ext . This subscriber-specific subtree, however, is primarily administered
by the JAAS Provider administrative group from the perspective of the LDAP
server (Oracle Internet Directory).

Overview of JAAS in Oracle 9iIAS 4-27

JAAS Provider Realm and Policy Management

4-28 Oracle9iAS Containers for J2EE Services Guide

D

Quick Start JAAS Provider Demo

This chapter describes how to quickly configure and run a sample Java2 Platform,
Enterprise Edition (J2EE) application that uses the JAAS Provider, the Oracle9iAS
Containers for J2EE (OC4J) user authentication, authorization, and delegation
service.

This chapter contains these topics:

« Quick Start JAAS Provider Demo Overview
« Setting Up the Demo

« Running the Demo

« Testing the JAZN Admintool

Notes: For the purpose of this Quick Start demonstration, many
terms and concepts in this chapter are described at a high level.
Where appropriate, references are provided to other sections in this
and other guides for specific information on these terms and
concepts.

This example provides instructions for use with the standalone
version of OCA4lJ. Please refer to the OC4J User’s Guide for
instructions on using the example with the complete Oracle9AS
installation.

Quick Start JAAS Provider Demo 5-1

Quick Start JAAS Provider Demo Overview

Quick Start JAAS Provider Demo Overview

This Quick Start demo is designed to get you up and running with JAAS provider
using the sample demo application, cal | er | nf o. It also demonstrates the use of
the JAZN Admintool.

The cal | er | nf o demo indicates whether or not the user attempting to log into the
application has succeeded and with which roles and permissions.

The cal | er I nf o demo application demonstrates use of the following features:

« OC4Jasthe HTTP listener that listens for user login requests and functions as
the Web container that stores the cal | er | nf o0 application

« Basic authentication for validating the login credentials of the user attempting
to access the cal | er | nf o demo application (authentication)

« The JAAS provider for enforcing the roles and permissions assigned to the
authenticated user (authorization)

« The XML-based provider type as the JAAS provider repository provider for
storing users, roles, and permissions

« TheJ2EE environment to run the application
See Also: The following sections for more detailed information
on the concepts covered in this Quick Start demo:

= Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

« Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

« "Integrating the JAAS Provider with Basic Authentication" on
page 6-13 for further information on Basic authentication

« "Realm Management in XML-Based Environments" on
page 4-22 for further information on using XML files as the
JAAS Provider environment type

« "JAAS Provider Integration in J2SE Application Environments"
on page 6-2 for further information on the J2EE environment

« http://jazn.us. oracl e. comforadditional JAAS provider
information

5-2 Oracle9iAS Containers for J2EE Services Guide

Setting Up the Demo

Setting Up the Demo
These are the basic tasks you must perform to set up the Quick Start demo:
« Task 1: Modify OC4J Configuration Files
« Task 2: Change Default Configurations (Optional)

Task 1: Modify OC4J Configuration Files

In order to use the cal | er | nf 0 demo, you must modify two OC4J files in
$ORACLE_HOVE/ j 2ee/ home/ confi g/ .

1. Modify the server. xnl file by removing the comments around :

<application name="call erlnfo" path="../jazn/deno/callerlinfo/callerinfo.ear" />

2. Modify the def aul t - web-site. xm file by removing the comments around :

<web-app application="callerlnfo" name="callerlnfo-web" root="/jazn" />

See Also:

= Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

« Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

Task 2: Change Default Configurations (Optional)

The sample cal | er | nf o application is installed with several default configuration
settings that enable you to immediately run the JAAS provider. If you want to run
the JAAS provider using these default settings, you can skip this section and go to
"Running the Demo" on page 5-5.

If you make any changes to the default configurations, rebuild the directory with jar
or Ant.

For the purpose of this demo, two different realms are available for
experimentation. Realms provide access to users and roles. The two realms are
contained inj azn- dat a. xm files located in the directory

j 2eel/ hone/j azn/ confi g/ :

« Asample realm, sanpl e_subr eal m is defined in the j azn- dat a. xm file.
sanpl e_subr eal mand thej azn- dat a. xm file are the current defaults.

Quick Start JAAS Provider Demo 5-3

Setting Up the Demo

« A more complex sample realm, j azn. com is defined in the j azn- dat al. xm
file.

To use a realm other than the default sanpl e_subr eal m you must modify the
j azn element of the OC4J ori on- appl i cati on. xm (inthe directory
jazn/ deno/ cal | eri nfo/ etc/) as follows:

« Change the realm, def aul t - r eal m from the default value,
sanpl e_subreal mtoj azn. comor any realm that you have created.

« Changel ocat i on from the default value, j azn- dat a. xni , to
j azn-dat al. xm or any properly configured data file that you have created.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 7-37 for further information on the
j azn-dat a. xnl file

5-4 Oracle9iAS Containers for J2EE Services Guide

Running the Demo

Running the Demo

To start OC4J and connect to the demo application:
1. Start OC4J with the JAAS provider as follows:

java -jar ocdj.jar
For the purposes of this Quick Start demo, an insecure and simple manner for

starting OC4J is presented. For more information about starting OC4J in secure
mode, see "Starting an Application" on page 9-8.

2. Runthe cal | er | nf o application from a Web browser:

http://hostname: 8888/ jazn

3. Follow instructions on the Web page.
4. Log in with either of the following usernames and passwords:
« adm n/ wel cone

Username admi n is assigned the role manager, which is mapped to
Sr_nmanager.

« user/456
Username user is assigned the role devel oper, which is mapped to
sr_devel oper.
See Also:

. Oracle9iAS Containers for J2EE User's Guide

. "Testing and Executing the J2EE Application" on page 9-4 for
further information on starting OC4J with the JAAS provider

- Chapter 9, "Developing Secure J2EE Applications" to view the
code for the cal | er | nf o demo used in this Quick Start demo

Quick Start JAAS Provider Demo 5-5

Running the Demo

Viewing the Results of the callerinfo Demo

When the call to the cal | er | nf o demo application is successful, with the
username user, for example, the browser displays a message similar to the
following:

Time stanp: Fri Aug 24 19:11:37 PDT 2001 request. get RenoteUser =
sanpl e_subreal m user

request.isUserlnRol e(' FOO) = fal se

request.isUserlnRol e('ar_manager') = fal se

request.isUserlnRol (' ar_devel oper') = true
request.getUserPrincipal = ([JAZNUser Adapt or: user=[XM_Real mJser:
sanpl e_subreal m user])

In summary, this Quick Start demo performed the following:

« Thelogin request from username user used basic authentication to access the
cal | er I nf o demo application.

« The OC4J listener listened for the login request from username user.

« The JAAS provider enforced the roles and permissions assigned to the
authenticated user user.

« The users, roles, and permissions were retrieved from the XML-based JAAS
provider type.

5-6 Oracle9iAS Containers for J2EE Services Guide

Testing the JAZN Admintool

Testing the JAZN Admintool

The JAZN Admintool is a Java console application that manages provider data from
the command prompt.

You can invoke the JAZN Admintool from the UNIX command line interface as
follows:

java -jar jazn.jar -listusers sanple_subrealm

These are a few of the command options that you can experiment with from a
command-line interface.

-listusers [realm[-role role|-perm pernission]]
-listroles [real m[user|-role role]|-perm pernission]
-listreal ns

-listperms {real muser |-role role|-realmrealn
-hel p

The JAZN Admintool also includes a shell. The following screen listing shows how
to access the JAZN Admintool shell and some basic shell commands that you can
run, with results.

> java -jar jazn.jar -shel

JAZN. > |'s

real ms pol i cy
JAZN. > cd real ns
JAZN. > |'s

sanpl e_subreal m

JAZN. > cd sanpl e_subreal m
JAZN: sampl e_subreal n» |'s
users rol es

JAZN: sanmpl e_subreal m> cd users
JAZN: sanmpl e_subreal n» |'s
admi n

rachel

nar esh

ray

stella

anonynous

JAZN: sampl e_subreal n» add scott tiger
JAZN: sanmpl e_subreal n» |'s

anonynous

rachel

Quick Start JAAS Provider Demo 5-7

Testing the JAZN Admintool

ray
scott
stella
adm n
nar esh

JAZN: sanmpl e_subreal n> rm scott
JAZN: sampl e_subreal n» |'s

admi n

rachel

nar esh

ray

stella

anonynous

JAZN: sanmpl e_subreal n> exit
JAZN: sanmpl e_subr eal n»

See Also: "Using the JAZN Admintool" on page 7-15

5-8 Oracle9iAS Containers for J2EE Services Guide

S

Integrating the JAAS Provider with Java2
Applications

This chapter describes how the JAAS provider is integrated with applications
developed for Java2 environments in Oracle9iAS Containers for J2EE (OC4)).

This chapter contains these topics:

« Java2 Application Environments Overview

« JAAS Provider Integration in J2SE Application Environments
« JAAS Provider Integration in J2EE Application Environments

« How Do | Get Started?

Integrating the JAAS Provider with Java2 Applications 6-1

Java2 Application Environments Overview

Java2 Application Environments Overview

The JAAS provider integrates into applications developed for several Java2
environments:

« Java2 Platform, Standard Edition (J2SE)

For developing, deploying, and managing standalone Java applications
See Also: "JAAS Provider Integration in J2SE Application
Environments" on page 6-2
« Java2 Platform, Enterprise Edition (J2EE)
For developing, deploying, and managing multi-tier, Web-based applications

See Also: "JAAS Provider Integration in J2EE Application
Environments" on page 6-4

Oracle Components Available on the Java2 Platform

When the JAAS provider is integrated with applications developed for the Java2
Platform, the following Oracle components are available to developers:

« The JAAS provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The JAAS provider supports two possible repositories or
provider types:

« LDAP-based Oracle Internet Directory (available only with Oracle9iAS
Infrastructure installation)

« XML-Based Provider Type
« Login modules, such as the JAAS provider Real nmLogi nModul e

See Also:

« "Provider Types" on page 4-3 for further information about
provider types

« Chapter 7 of the Oracle9i Application Server Security Guide for
required components

JAAS Provider Integration in J2SE Application Environments

Figure 6-1 provides an overview of an application running in a J2SE environment.

6-2 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2SE Application Environments

Figure 6-1 Oracle Component Integration in J2SE Environment

Client

JDK VM

Java Application

JAAS | RoaimLoginModule

CrrackSins JAAS
Palicy

OracleSAsS JAAS Provider

— (for storing realm information
(usars and roles) and policy
information (parmissions))

I I Orac e
Internet
D Directory

XML Files IjDIj Ij Ij

A Typical Scenario in the J2SE Environment

The following section describes the responsibilities of the Oracle components
illustrated in Figure 6-1 when a client request is initiated.

1. Aclient attempts to access a local, desktop application.

2. Real nLogi nModul e or other Logi nModul e authenticates the client’s login

attempt.

3. ThelJava virtual machine (JVM) examines the authorization context associated
with the current thread, consults the JAAS provider policy, determines that the
current subject has the required permission to write to the file, and returns
checkPer m ssi on() safely.

See Also:

Your Sun Java documentation for more information on

J2SE by visiting the following URL.:

http://java. sun.com j 2se/

Integrating the JAAS Provider with Java2 Applications 6-3

JAAS Provider Integration in J2EE Application Environments

JAAS Provider Integration in J2EE Application Environments

When the JAAS provider is integrated with applications developed for the J2EE
environment, the functionality of the J2SE environment extends to the enterprise
level. Additional features in the J2EE environment include:

« Oracle9iAS Containers for J2EE (OC4J)
« JAZNUserManager

Oracle9iAS Containers for J2EE (0C4J)

OC4J is a key component of the JAAS provider integration in the J2EE environment.
OC4J is a Web container that accepts HTTP and RMI client connections. These
connections permit access to servlets, Java Server Pages (JSPs), and Enterprise
JavaBeans (EJBS).

J2EE containers separate business logic from resource and lifecycle management.
This enables developers to focus on writing business logic, rather than writing
enterprise infrastructure. For example, Java servlets simplify Web development by
providing an infrastructure for component, communication, and session
management in a Web container integrated with a Web server.

The JAAS provider is also integrated with OC4J to enhance application security.
This integration provides the following benefits:

« Integration with either single sign-on (SSO) and mod_osso or secure socket
layer (SSL) and nod_ossl

« Fine-grained access control through Java2 permissions

« run-as identity support, delegation support (from servlet to Enterprise
JavaBeans)

« Secure file-based storage of passwords

JAZNUserManager

Another key component of JAAS provider integration in the J2EE environment is
JAZNUser Manager. JAZNUser Manager is an implementation of the OC4J
User Manager interface.

Replacing principals.xml

JAZNUser Manager permits secure replacement for or migration from the OC4J
pri nci pal s. xm file with the following:

« Secure storage of obfuscated passwords

6-4 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

« Full role-based access control (RBAC), including hierarchical roles
« Full support for the Java2 permission model and JAAS

« Secure implementation based on the Java2 permission model, to allow
untrusted (or partially trusted) code to run in the same JVM as the JAAS
provider

See Also: For information on using the JAZN Admintool to
migrate from pri nci pal s. xnm , "Migrating Principals from the
principals.xml File" on page 7-22

JAZNUserManager Features

In addition to the features mentioned in "Replacing principals.xml" on page 6-4,
JAZNUser Manager provides many other features, including:

« Single Sign-On (SSO) integration with OC4J

« Real mLogi nModul e integration in non-SSO environments

« ldentity propagation

« Location, read, edit, removal, and management of user and group objects
« Enforcement of security constraints

« Afilter for changing the content of HTTP requests, responses, and header
information.

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on the JaznUser Manager

Integrating the JAAS Provider with Java2 Applications 6-5

JAAS Provider Integration in J2EE Application Environments

Figure 6-2 provides an overview of an application running in a J2EE environment.

Figure 6-2 J2EE Application Model

Firsl T e T

—-lI I Baurass Loge
I il W YA
| T ot -

1
1
1

)

T (e
Charri &7 | i

!

DS AR Prowsider |

x woreg mak nlormaica
o] P]
bawah u (wararms

lI I o
— L] wrvtenrem
(= =y
o

Authentication Environments

The JAAS provider integrates with three different login authentication
environments in a J2EE applications.

« SSO
Uses Oracle9iAS Single Sign-On to authenticate logins
« SSL

« Uses Secure Socket Layers, the industry standard protocol for managing the
security of message transmission on the Internet

« Uses alogin module (for example, Real m_ogi nMbdul e) to authenticate
logins

= Basic Authentication

« Prompts user directly for username and password, without going through
Oracle9iAS Single Sign-On

6-6 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

Uses a login module (for example, Real mLogi nModul e) to authenticate
logins

The following sections discuss how the JAAS provider integrates with each of these
authentication types.

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on configuring authentication methods

Integrating the JAAS Provider with SSO-Enabled Applications

SSO lets a user access multiple accounts and applications with a single set of login
credentials. Figure 6-3 shows JAAS provider integration in an application running

in an SSO-enabled J2EE environment.

Figure 6-3 Oracle Component Integration in SSO-Enabled J2EE Environments

Hua
130 o b B e i -
ke JBEE | 0% ..hu&-'-
e At
e =
A i
| Li} | = R
—
Fatdem A
['.'-'AT.-
[1]
HETP
o bR LR
| A M g 1
T
Oremcinlid S
AR Folcy
Ol SAAE S ovece
T Ly gl I i
—_— | (mEEn el wis Ered poicy
FEETRANE [T A |
l Iﬂ'th
= —lwun-l
| — |' | Drecizry
I g T
—— 000 gfc
AL Fien L I-I-'-I

Integrating the JAAS Provider with Java2 Applications 6-7

JAAS Provider Integration in J2EE Application Environments

SSO-Enabled J2EE Environments: A Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSO-enabled J2EE environment.

1.

An HTTP client attempts to access a Web application (named WebApp Al)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

mod_osso/Oracle HTTP Server receives the request and:

« Determines that WebApp Al application requires Web-based SSO for
authenticating HTTP clients

« Redirects the HTTP client request to the Web-based SSO Oracle9iAS Single
Sign-On (since it has not yet been authenticated).

The HTTP client is authenticated by Oracle9iAS Single Sign-On through HTTP
or public key infrastructure (PKI) Authentication. Oracle9iAS Single Sign-On
then:

« Validates the user's stored login credentials

« Sets the SSO cookie (including the user’s distinguished name and realm)
« Redirects back to the WebApp Al application (in OC4J)

The JAAS provider retrieves the SSO user.

The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:
a. Thetargetservlet is invoked.
If the r unas- node is set to true, then the following happens:

a. TheJAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs(). The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
get Per mi ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per mi ssi ons() .

6-8 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

b. The servlet's code runs under the AccessCont r ol Cont ext of the SSO
user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Securi t yManager . checkPer m ssi on().

d. TheJVM then:
— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermn ssion() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with SSL-Enabled Applications

SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 6-4 shows the JAAS provider integration in an
application running in an SSL-enabled J2EE environment.

Integrating the JAAS Provider with Java2 Applications 6-9

JAAS Provider Integration in J2EE Application Environments

Figure 6-4 Oracle Component Integration in SSL-Enabled J2EE Environments

HITPS
Chari

WTT &
'1—"!--

sar G-
Ba S} e -
BN
—

= =]

Comcin@lis kR

s il
LRt b
SAAE Py
v
Dom S SRR Pros b

01 BN AT TR
A i 1] R g
e e i

8 o=

6-10 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

SSL-Enabled J2EE Environments: A Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSL-enabled J2EE environment. In this environment,
Oracle9iAS Single Sign-On is not used. A login module (for example,

Real m_Logi nModul e) is used.

1.

An HTTP client attempts to access a Web application (named WebApp Al)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp Al application requires SSL server authentication for HTTP clients.

If a server and/or client wallet certificate is configured, the HTTP client is
prompted to accept the server certificate and provide the client certificate.

The JAAS provider retrieves the SSL client certificate.
The JAAS provider retrieves the SSL user.

The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:
a. Thetargetservlet is invoked.
If the r unas- node is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs(). The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults for permissions
associated with the SSL user through the get Per m ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per mi ssi ons() .

b. The servlet's code runs under the AccessCont r ol Cont ext of the SSL
user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Secur i t yManager . checkPer m ssi on().

d. TheJVM then:

Integrating the JAAS Provider with Java2 Applications 6-11

JAAS Provider Integration in J2EE Application Environments

— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPerm ssi on() returns safely and the client
HTTP request proceeds.

6-12 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with Basic Authentication

Basic authentication bypasses Oracle9iAS Single Sign-On. Figure 6-5 shows specific

JAAS provider integration in an application configured for Basic authentication in a
J2EE environment.

Figure 6-5 Oracle Component Integration in J2EE Environment

v e | SR
M| et &1 -
(=]
==
Wby 83
S
[<]

Caveieaahl WAL

b L iy g

WAE

O il 5
AT Py

D i JARE Prosicde
P Wl B W o W
vy @ roden | e ooy
miT I AT |

LR -

— i
Cawcicry

I|1
—— (00 00

o0

Integrating the JAAS Provider with Java2 Applications 6-13

JAAS Provider Integration in J2EE Application Environments

Basic Authentication J2EE Environments: A Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment configured for Basic authentication.
In this environment, Oracle9iAS Single Sign-On is not used. A login module (for
example, Real mLogi nMbodul e) is used.

Note: If you have configured BASIC authentication, OC4J invokes
the RealmLoginModule whenever the user credentials are required.
For example, when a request hits a protected page, OC4J will ask
the JAAS provider to authenticate the user, then the
RealmLoginModule will be invoked to authenticate the user, using
the credentials sent by the user via the browser over HTTP.

1. An HTTP client attempts to access a Web application (named WebApp Al)
hosted by OC4J (the Web container for executing servlets). The OC4J listener
handles the request.

2. The JAAS provider retrieves the user.

3. The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:
a. Thetargetservlet is invoked.
If the r unas- node is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs(). The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
get Per mi ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per mi ssi ons() .

6-14 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

b. The servlet's code runs under the AccessCont r ol Cont ext of the user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Securi t yManager . checkPer m ssi on().

d. TheJVM then:
— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

e. SecurityManager. checkPermn ssion() returns safely and the client
HTTP request proceeds.

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL.:

http://java. sun.com j 2ee/

J2EE and JAAS Provider Role Mapping

Two distinct roles types are available to application developers creating JAAS
provider-integrated applications in J2EE environments: J2EE roles and JAAS
provider roles. When these role types are mapped together using OC4J group
mappings, users can access an application with a defined set of role permissions for
as long as the user is mapped to this role.

This section describes these role types and how which they are mapped together.
« J2EE Security Roles

= JAAS Provider Roles and Users

« OC4J) Group Mapping to J2EE Security Roles

J2EE Security Roles

The J2EE development environment includes a portable security roles feature
defined in the web. xm file for servlets and Java Server Pages (JSPs). Security roles
define a set of resource access permissions for an application. Associating a
principal (in this case, a JAAS provider user or role) with a security role assigns the
defined access permissions to that principal for as long as they are mapped to the
role. For example, an application defines a security role called sr _devel oper:

<security-rol e>
<rol e- nane>sr _devel oper </ r ol e- nane>
</security-role>

You also define the access permissions for the sr _devel oper role.

Integrating the JAAS Provider with Java2 Applications 6-15

JAAS Provider Integration in J2EE Application Environments

<security-constraint>
<web-r esource-col | ecti on>
<web-resour ce- name>access to the entire application</web-resource-name>
<url-pattern>/*</url-pattern>
</ web- r esour ce- col | ecti on>
<l-- authorization -->
<aut h- constrai nt >
<rol e-nane>sr _devel oper </rol e- nane>
</ auth-constraint>
<[/security-constraint>

JAAS Provider Roles and Users

JAAS provider roles and Users are defined depending on the provider type,
LDAP-based Oracle Internet Directory or XML-based.

For example, with the XML-based provider type, devel oper is listed as a
role element in the jazn-data.xnm file:

<rol e>
<nanme>devel oper </ nane>
<nmenber s>
<menber >
<type>user <t ype>
<nanme>j ohn<name>
</ menmber >
</ menber s>
</rol e>

0C4J Group Mapping to J2EE Security Roles
OC4J enables you to map portable J2EE security roles defined in the J2EE web. xm
file to groups in an ori on- appl i cati on. xm file.

The roles and users defined in your provider environment are mapped to the OC4J
devel oper group roleinthe ori on-application. xm file.

For example, the sr _devel oper security role is mapped to the group named
devel oper.

<security-rol e-mappi ng name="sr_devel oper">
<group name="devel oper" />
</ security-rol e- mappi ng>

6-16 Oracle9iAS Containers for J2EE Services Guide

How Do | Get Started?

This association permits the devel oper group to access the resources allowed for
the sr _devel oper security role.

User j ohn is listed as a member of the devel oper role. Because the devel oper
group is mapped to the J2EE security role sr _devel oper inthe
orion-application.xm file,j ohn has access to the application resources
defined by the sr _devel oper role.

How Do | Get Started?

You are now ready to get started with the JAAS Provider. To get started quickly,
follow the sections in Table 6-1 in the exact order listed:

Table 6-1 Getting Started with the JAAS Provider

To... See...

Identify and install the JAAS The Oracle9i Application Server Installation Guide for your
provider components required operating system

for applications developed in

the J2SE and J2EE environments

Configure the JAAS provider Chapter 7 of the Oracle9i Application Server Security Guide
after installation

Create realms and associated Chapter 7, "Managing the JAAS Provider"
components with the provider

Create secure J2SE and J2EE Chapter 8, "Developing Secure J2SE Applications"
applications with the JAAS

provider Chapter 9, "Developing Secure J2EE Applications"

Integrating the JAAS Provider with Java2 Applications 6-17

How Do | Get Started?

6-18 Oracle9iAS Containers for J2EE Services Guide

v

Managing the JAAS Provider

This chapter describes how to manage the Oracle9iAS Containers for J2EE (OC4J)
JAAS Provider in Java2 Platform, Standard Edition (J2SE) and Java2 Platform,
Enterprise Edition (J2EE) environments.

This chapter contains these topics:

JAAS Provider Management Overview

Using the Oracle Enterprise Manager Interface with the JAAS Provider
Using the JAZN Admintool

Managing LDAP Provider Data with Java Programs

Managing XML-Based Provider Data with the XML Schema

Other Utilities

Managing the JAAS Provider 7-1

JAAS Provider Management Overview

JAAS Provider Management Overview

Managing the JAAS provider in the J2SE and J2EE environments involves creating

and managing realms, users, roles, permissions, and policy.

How you manage the JAAS provider depends on two things:

« Whether your provider is XML-based or LDAP-based Oracle Internet Directory

« Which of the available tools (alone or in combination) you are using:

Table 7-1 describes the general functionality of each tool in both XML-based and

Oracle Enterprise Manager (OEM) (policy and permission management,

only with this release)

JAZN Admintool, a command line interface tool

Java Programs for LDAP Management, based on the JAAS Provider APIs

Other Utilities including:
- Per mi ssi onCl assManager
- Princi pal O assManager

- Logi nModul eManager

Note: Based on the provider type you are using, these tools are
used in slightly different contexts and are not necessarily directly
parallel in function. For example, the JAZN Admintool enables you
to create users if your provider type is the XML-Based Provider
Type, but not if your provider type is LDAP-based.

Therefore, if you are planning to rely on either the Oracle
Enterprise Manager or the JAZN Admintool, also read the
appropriate section, "Managing LDAP Provider Data with Java
Programs" on page 7-27 or "Managing XML-Based Provider Data
with the XML Schema" on page 7-37, for a fuller understanding of
the functions available in each environment.

LDAP-based provider type environments.

7-2 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Table 7-1 Tools for Managing XML-Based and LDAP-Based Provider Environments

Using This Tool...

With LDAP-Based provider
type

With XML-Based provider typ

e

Oracle Enterprise
Manger

JAZN Admintool

Java Programs for
LDAP Management

You can create principals
(known as grantees) and assign
permissions to these grantees.

A broad range of functions is
available, including several not
included in the API.

You have access to all the JAAS
Provider API functionality
available in an LDAP
environment.

This tool is not available.

A broad range of functions is
available, including several not
included in the API.

This tool is not available.

LDAP-Based and XML-Based JAAS Providers

XML-based and LDAP-based JAAS providers enable different functionalities as
described in Table 7-2.

Table 7-2 JAAS Provider Management

JAAS Provider

Description

See Also...

LDAP-based
Available with the

Enables you to:

. Create realms

Oracle9iAS Infrastructure

installation type)

. Manage roles (in an External
Realm or Subscriber Realm)

. Manage or create roles (in

an Application Realm)
« Assign permissions

"Realm Management in
LDAP-Based Environments"
on page 4-17

"Managing Realms" on
page 7-28

XML-based

(Available with all
installation types

Enables you to:

« Create and manage realms,

users, and roles

« Assign permissions

"Realm Management in
XML-Based Environments"
on page 4-22

"Managing XML-Based
Provider Data with the XML
Schema" on page 7-37

Using the Oracle Enterprise Manager Interface with the JAAS Provider

You can use Oracle Enterprise Manager to perform two JAAS provider tasks:

Managing the JAAS Provider

7-3

Using the Oracle Enterprise Manager Interface with the JAAS Provider

« Manage JAAS Policy

« Manage Java Permissions

See Also: Your Oracle Enterprise Manager documentation for
instructions on starting Oracle Enterprise Manager

Oracle Enterprise Manager functionality for the JAAS provider is currently only
available for the LDAP provider environment and only for policy management
tasks.

Note: Oracle Enterprise Manager windows use Add buttons that
operate as follows: You enter or select items to be acted upon or
searched for, add them to a list using the Add button, and finally
process the items.

Accessing the JAAS Provider

To use the Oracle Enterprise Manager to perform JAAS provider tasks, navigate to
the Oracle9i Application Server entry, then to the OC4J system component, and
select the application default as follows:

To access the JAAS Provider:

1. Choose the appropriate Oracle9i Application Server entity in the Application
Servers Name column.

2. Choose OC4J in the System Components list.

The System Components panel appears:

7-4 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Svetegn Coggronegis

Sulind Comnrasanl il | &)i Btop LI Fesurt)
7 [reh Cachs TAFD e]
£ :l:lll:h Irbemn i Dimsctary Sacenr ?' | | |
™ |apehs TIIT HTTF Seovei Rl F as 11544
r _“_E:rd.rru.lm HQarver _E:mr.l.:ll.u'nEHrrll ?
O Ugew 7 e #l
" 4 Ol ...-"hI

Targeis | Breferinees | Help
Copyright 7801, recl Corp Prreury Statwrnari

3. Choose Oracle9i Application Server from the list of Application Defaults.

The main window for the JAAS provider appears:

Managing the JAAS Provider 7-5

Using the Oracle Enterprise Manager Interface with the JAAS Provider

DRACLE

Freteidrcar Hily

Enterprise Manager Tugats

ﬁ

I

JAAS Palicy

i P siorns

L il

= i~ = - 1 =
JAAL Policy Managemeent The JARS Palicy

cawdning & list af Gy
Entries, Exch (i

4-‘"" el DL Enbry sathorizes a sed of

Seanch (@) Jarea Permissions fas

one a1 meere Java
Frincipiaks,

. Hew Grant)

Rezults Dbl :I

[1-50f25 ®] Muas

Sabecs Grane Eairy

&

==
=
=
=

C ik 2001, Ok Ll

gt Forn P s

v iFTi nga s
i
(551

{emidm el E:E! -]

Tamgel= | Preferences | Help

Fiiviedy St ani

Task 1: Managing JAAS Policy

Policies, which store JAAS authorization rules, consist of one or more grants or
grant entries. Grant entries are grantees (principals and codesource (optional)) and
their assigned permissions.

Managing JAAS Policy enables you to:

« Search for existing grant entries and view grant entry data

« Delete grant entries

« Create new grant entries by assigning JAAS provider permissions to principals

7-6 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Note: To manage JAAS policy, the policy cache must be disabled.
This is the default setting.

Searching for and Viewing Existing Grant Entries
To search for and view grant entry data:

1.

Choose JAAS Policy from the tab on the left of the main window.

The JAAS Policy Management window appears. This is the same as the main
JAAS provider window. See "Accessing the JAAS Provider" on page 7-4.

The window immediately displays a results list that you can modify by entering
a search phrase or using arrows that guide you to subsequent sections of the
results list.

Enter the codesource URL, if any.

If the grant name you are searching for does not appear immediately on the
results list, enter it.

Wild cards are implied, that is, if you enter several letters, the results list shows
all entries that begin with those letters, assuming the case is the same.

Choose Go or press Enter.

When the grant name you are searching for appears in the results list, click the
name to view the grant entry data.

For the grant name you have entered, the following data appears:
« Principal Names and classes
« Permission Names and classes

« The codesource, if any, assigned to the grant entry

Managing the JAAS Provider 7-7

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Deleting Grant Entries
To delete grant entry data:

1. Perform the search functions as described "Searching for and Viewing Existing
Grant Entries" on page 7-7.

2. Select the grant entry from the results list by choosing the radio button besides
the name.

3. Choose Delete.

Creating a New Grant Entry
To create a new grant entry:

1. Choose JAAS Policy from the tab on the left.
The JAAS Policy Management window appears.
2. Choose New Grant.

The New Grant: Name/ CodeSource window appears, and enables you to enter
a name for the new grant entry and define a codesource. The codesource is the
code associated with the policy entry.

7-8 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

E":'ﬂ:‘-:-«__LE . Pudbresr HHp
Enterprise Manager Targat:
883 Palicy . G C'

Maine Lalo Seibca (1] P
Jrda Parisakne

Hew Grant-Mame/Code Sowce

Hame'Gode Souroe

* Graml Mare: | ganyEeark

URL: |hitpoifwesbus ulr-rll Lam

[cance) Etapl of 3| Ml |
Torgets | Preferances | Help

o n et S0, Cvaas Cage Pl iy Liss ek

3. Enter a grant name and codesource.

4. Choose Next.

See Also: "Policies and Permissions"” on page 4-10 for information
on codesources

The New Grant: Principal(s) window appears and enables you to select the
principal type and enter one or more principals to define the grant entry.
The available principal types are:

« Solaris User

« LDAP User

= Realm User

Managing the JAAS Provider 7-9

Using the Oracle Enterprise Manager Interface with the JAAS Provider

ORACLE

Exisyregy Hylp

I-'.ntcririfac ‘*-.-1ar1:11i=cr e

AA8S Policy

Jmwm Pemizsipne
_

Lo g M 2001, Qs Corp

Fringipuik= Frmrr T
Meye ramt: Principali s)
dd Franci
Typec |Solars Teer =) Mama: fagichel Adg
Frinaipalish Remove
I-1:f1 &
SelecrPrincipal Clares Principal Haime

F com.mpn secusly s SalansPencigal |ggichs

. ancal 1] E:ml tep 2 of 5| B

Targals | Peafimesces | Helg

Select the type and enter the name of a principal.

If you have selected the LDAP type, the name must be an X.500 distinguished
name. Although the system accepts other names, they will be rejected when
you finish. For other types, you can enter any name.

Choose Add to add this principal to the list of principals being added to this
grant.

Repeat Steps 5 and 6 until all principals are added to the list of principals.
Choose Next to add all principals on the list to the grant.

The New Grant: Permission window appears and enables you to enter the
permission class, target, and action for the grant entry. These are essentially
what the user is authorized to do with your application.

7-10 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

« Theclass is the Java permission being assigned to the policy (for example,
java.io. Fil ePern ssion).

« The target is the resource to which this permission applies (for example,
files in a directory named / horre/ *).

« Theaction is the actions associated with this target (for example, read and
write privileges on all files in/ homre/ *).

CRACLE Ewiyyreqr Halp

Enterprise Manager

Frea pris nisii s

Cliris |]=l!]?'!rrrissr'~n ""| [men.in FleP ermission

Target |<<pLll FILES=> =] }tamaiiag b
Actiar [read = e
| Add
Farmissions) Remuve
|1-1ﬂt’1 "I
Salact Pasimission Class Tayjat Acism
= s FlsPemisson Thomests sl arp {at ra o]

kl'.il'rc'il] | E:au.rl tap 3 of 3 | Finkh }

9. Select the class, target, and action from the drop-down list boxes on the left or
enter the names directly in the fields on the right.

10. Choose Add to add this permission to the list of permissions to be added the
grant.

11. Repeat Steps 9 and 10 until all permissions have been added to the list of
permissions.

Managing the JAAS Provider 7-11

Using the Oracle Enterprise Manager Interface with the JAAS Provider

12. Choose Finish.

The entry is now granted these permissions on the designated target. The grant
entry is complete.

Task 2: Managing Java Permissions

The Java Permissions task enables you to search for and view the permissions of a
principal on a given codesource and revoke these permissions. You can search by
principal class or principal name.

Searching for and Viewing Existing Permissions
To search for permissions on a principal:

1. Choose Java Permissions from the tab on the left.

The Permission Management window appears:

7-12 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

CHY AT

Enterprise Manager Taigues

Finsseas Hil

——_

ABRS Baley

SEIYIawW

= b)
Permissian Management i A

Principats n the Princpals
table and ssanch lsi
[. _— . . nin] i Favmdssioms g amsad i e
Search Permissions granted to Princlpals JAAS Paliy, Opteasiin,
the ssarch may ke rilinsl
10 Paniin Paimskslois il
WRL F are granied fer & parmiculee
Cada Satice URL, Ve
Ny Dl dny o iivial
Principali Parmimmliag fan e

wlecied e Principsbs).
Tapi: [Eclans Ueer #] Hara: | [Med] Fermees)

D0 FOUTLE

.'EIH:I:F'lh.l'JpH [Pidmeip il Miiia
e gl Eaiinfly e EolariaFrincipal S g
] 1P IS]

Rusiay | Femke)
[1-1ar1 5]

|bemlinri " armmalun 1l (Parmimainn Larges Aclises
F jes o FilsPermissipn k]| FLESS> wime

Enter the codesource URL.

Select the principal type from the drop-down list.
The available principal types are:

= Solaris User

= LDAP User

= Realm User

Enter the name of a principal from the principal type.

Choose Add to add a principal to the search list. You can search for multiple
principals at once.

Managing the JAAS Provider 7-13

Using the Oracle Enterprise Manager Interface with the JAAS Provider

6. Repeat Steps 4 and 5 until all principals have been added to the search list.
7. Choose Search.

The results display on-screen including permission class, permission target, and
permission actions, but the codesource does not appear.

Revoking Permissions Assigned to a Principal
To revoke permissions assigned to a principal:

1. Perform the search function as described in "Searching for and Viewing Existing
Permissions" on page 7-12.

2. Revoke permissions by selecting the radio button of an appropriate permission.
You can only revoke one permission at a time.

3. Choose Revoke.

7-14 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Using the JAZN Admintool

The JAZN Admintool can manage both XML-based and LDAP-based JAAS
provider data from the command prompt.

The JAZN Admintool is a flexible Java console application, with functions that can
be called directly from the command line or through the shell interface of the
Admintool. The shell uses UNIX-derived commands to perform specific JAAS
provider functions.

This section includes the following topics:
« Usage Examples

« Command Options

« Realm Operations

« JAZN Shell Interface

=« JAZN Shell Commands

Usage Examples

The following examples illustrate the different ways that the JAZN Admintool
commands can be used.

To list all users in realm foo:
From the UNIX command line:

java -jar jazn.jar -listusers foo

From the shell interface of the Admintool (using command-line options):

JAZN. > |istusers foo

From the shell interface of the Admintool (through modified UNIX commands):
JAZN > cd /real ms/f ool users
JAZN foo> |'s

To add the role fooRole to realm foo:
From the UNIX command line:

java -jar jazn.jar -addrole foo fooRole

Managing the JAAS Provider 7-15

Using the JAZN Admintool

From the shell interface of the Admintool (using command-line options):

JAZN. > addrol e foo fooRole

From the JAAS provider shell (through modified UNIX commands):

JAZN. > cd /real ns/f ool users
JAZN: f 00> nkdir fooRole

Command Options

The JAZN Admintool provides the following command options, which are
described in greater detail in the following sections. The JAZN Admintool
command options can be invoked several different ways as described in "Usage
Examples" on page 7-15. Error messages display if the syntax or parameters
specified are incorrect.

Realm Operations

-addreal mreal m adm n {adm npwd adni nrol e| admi nrol e
userbase rol ebase real ntype}

-addrole realmrole

-adduser real m username password

-checkpasswd real m user [-pw password]

-grantrole role realm{user|-role to_role}

-listreal nms

-listroles [realm[user|-role role]|-perm pernission]

-listusers [real m[-role role|-perm permnssion]]

-renrealmrealm

-renrole realmrole

-renuser real muser

-revokerole role realm{user|-role to_role}

-setpasswd real muser ol d_pwd new pwd

Policy Operations

-addperm pernission perm ssion_class action target [description]
-addprncpl principal _name prncpl _cl ass parans [description]
-grantpermreal m{user|-role rol e} perm ssion_class
per m ssion_actions
-listperms real m{user |-role role|-realmrealnt
-1 i stperm perm ssion
-listprncpls
-listprncpl principal _nanme
-renperm perni ssion
-renprncpl principal _nane

7-16 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

-revokeperm real m{user|-role role} pernission_class
perm ssion_actions

Interactive Shell
-shel |

Configuration Operations
-getconfig default_real madmin password

Migration Operations
-convert filename realm

Miscellaneous

-hel p
-version

Realm Operations

Adding and Removing Realms

-addreal mreal m adm n {adm npwd adninrole | adm nrol e userbase rol ebase
real ntype}
-renrealmrealm

The - addr eal moption creates a realm of the specified type with the specified
name, and - r ent eal mdeletes a realm.

Valid realm types are:
« LDAP Environment: external and application
« XML Environment: XML
The user must provide the following:
« Foran XML provider type:
« realm name
« administrator username
« administrator password
« administrator role

« For LDAP:

Managing the JAAS Provider 7-17

Using the JAZN Admintool

« realm name

« administrator name

« administrator role

« user search base in the directory
« role search base in the directory

« realm type

Adding and Removing Roles

-addrole realmrole
-remole realmrole

The - addr ol e option creates a role in the specified realm, and - r ent ol e deletes a
role from the realm.

Adding and Removing Users

-adduser real musername password
-renuser real muser

The - adduser option adds a user to a specified realm, and - r erruser deletes a
user from the realm.

Checking Password
-checkpasswd [real Ml user [-pw password]

The - checkpasswd option indicates whether the given user requires a password
for authentication. If - pwis used, it displays a message indicating whether the
specified password authenticates the user.

Granting and Revoking Roles

-grantrole role realm{user|-role to_role}
-revokerol e role realm{user|-role to_rol e}

The - gr ant r ol e option grants the specified role to a user (when called with a user
name) or a role (when called with - r ol). The - r evoker ol e option revokes the
specified role from a user or role.

7-18 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Listing Realms
-listreal ms

The - Ii streal ns option displays all realms in the current JAAS provider
environments.

Listing Roles
-listroles [real m[user|-role role|-permperm ssion]]

The - i strol es option displays a list of roles that match the list criteria. This
option lists the following:

« Allrolesin all realms, when called without any parameters
« Allroles granted to a user, when called with a realm name and user name

« Roles that are granted the specified r ol e, when called with a realm name and
the option-rol e

« Roles that are granted the specified per m ssi on, when called with a realm
name and the option - per m

Listing Users
-listusers [realm[-role role|-perm pernission]]

The - i st user s option displays a list of users that match the list criteria. This
option lists the following:

« Allusersin all realms, when called without any parameters
« All usersin arealm, when called with a realm name

« Users that are granted a certain role or permission, when called with a realm
name and the option -rol e or - perm

Setting a Password
-setpasswd real muser ol d_pwd new_pwd

The - set passwd option allows administrators to reset the password of a user
given the old password.

Managing the JAAS Provider 7-19

Using the JAZN Admintool

Policy Operations

Adding and Removing Permissions

-addperm perm ssion pernission_class action target [description]
-renperm permn ssion

The - addper moption registers a permission with the JAAS provider

Per m ssi onCl assManager. The - r enper moption unregisters the specified
permission class. per mi ssi on and descri pti on can be multiple words if
enclosed by quotation marks ("").

Adding and Removing Principals
-addprncpl principal _name prncpl _class parans [description]
-renprncpl principal _nanme

The - addpr ncpl option registers a principal with the JAAS Provider

Pri nci pal Cl assManager. The - r enpr ncpl option unregisters the specified
principal class. pri nci pal _name and descri pti on can be multiple words if
enclosed by quotation marks ("").

Granting and Revoking Permissions

-grantpermrealm{user|-role role} perm ssion_class permission_actions
-revokepermreal m{user|-role rol e} pernission_class pernission_actions

The - gr ant per moption grants the specified permission to a user (when called
with a username) or a role (when called with - r ol e€). The - r evokeper moption
revokes the specified permission from a user or role. A permission is denoted by its
explicit class name (for example, or acl e. security.jazn.real m

Real mPer mi ssi on) and its action and target parameters (for Real nPer mi ssi on,
r eal mane act i on). Note that there may be multiple action and target
parameters.

Listing Permissions
-listperms realm{user |-role role| realmrealnt

The - I i st per nms option displays all permissions that match the list criteria. This
option lists the following:

« All permissions registered with the JAAS Provider
Per m ssi onCl assManager

« Permissions that are granted a role, when called with a realm name and the
option-rol e

7-20 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Listing Permission Information
-1i st perm permi ssion

The - I i st per moption displays detailed information about the specified

permission, including the permission’s display name, class, description, actions,
and targets.

Listing Principal Classes
-listprncpls

The - Ii st prncpl s option lists all principal classes registered with the
Pri nci pal Cl assManager.

Listing Principal Class Information
-listprncpl principal _name

The-1istprncpl option displays detailed information about the specified
principal, including the display name, class, description, and actions.

Interactive Shell

Starting the JAZN Admintool Shell

-shel |
The - shel | option starts an JAAS provider interface shell. The JAAS Provider shell

provides interactive administration of JAAS provider principals and policies
through a UNIX-derived interface.

Configuration Operations

Getting XML Configuration Information
-getconfig default_real madm n password

The - get conf i g option displays the current configuration settinginj azn. xni .

Managing the JAAS Provider 7-21

Using the JAZN Admintool

Migration Operations

Migrating Principals from the principals.xml File
-nigrates filenane real nf

The - mi gr at e option migrates the OC4J pri nci pal s. xm file into the specified
realm of the current JAAS provider. f i | ename specifies the name and location of
the OC4J principals file (typically stored in

j 2ee/ hone/ confi g/ pri nci pal s. xnl).

The migration converts pri nci pal s. xm users to JAAS Provider Real mJser s
and princi pal s. xm groups to JAAS Provider roles. All permissions previously
granted to apri nci pal s. xm group are mapped to the JAAS Provider role. All
users that were deactivated at the time of migration are not migrated. This is to
ensure that no users can inadvertently gain access through the migration.

An error is returned if the specified file contains errors.

See Also: "Replacing principals.xml" on page 6-4 for additional
information on migration and replacement of pri nci pal s. xm

Miscellaneous

Getting Help
-hel p

The - hel p option displays a list of command options available with the JAZN
Admintool.

JAZN Shell Interface

The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN
shell provides an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure 7-1 shows the node structure:

7-22 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Figure 7-1 JAZN Shell Directory Structure

permission-
claszes

Usars

principal permission

mlge

uEer

rokes *’ PErmIission s
l panmssions
o permission user ke permission

In this structure, the user and r ol e nodes are linked together. Consequently, if you
are at/ real ns/ real nf user s/ user/rol es inthe tree and type cd r ol e, you
are takento/real ms/real mrol es/rol e.

Another way to look at this, is that r ol e 1 is a symbolic link of r ol e 2.

Managing the JAAS Provider 7-23

Using the JAZN Admintool

Figure 7-2 shows nodes of the xm Real mcreated by the j azn- dat a. xm filein
"Sample jazn-data.xml Code" on page B-2.

Figure 7-2 lllustrated Shell Directory Structure

PEIMiSSHoN-
classes

.

ichin.singh

pErmissions

MENSgEr role penTission
ava, o Fike, Permisson

The JAZN shell can be recognized by the shell prompt JAZN: >. At any point in
time, the prompt indicates which realm the administrator is managing. The
following is an example:

JAZN. > cd foo
JAZN. foo> |'s

To start the shell, invoke the JAZN Admintool with the - shel | option, as follows:

java -jar jazn.jar -shell

7-24 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

JAZN Shell Commands

Shell commands consists of the command options in "Realm Operations" on
page 7-17 and the following series of UNIX derived commands for viewing the
principals and policies in the structured way. Relative and absolute paths are
supported for all relevant commands.

Using the Is Command to List JAAS Provider Data
I's [path]

The | s command mirrors its UNIX counterpart and lists the contents of the current
directory or node. For example, if the current directory is the root, | s lists all
realms. If the current directory is/ r eal ml user s, then | s lists all users in the
realm. The results of the listing depends on the current directory. The | s command
can operate with the * wildcard.

Using the cd Command to Navigate JAAS Provider Data
cd path

The cd command, mirroring its UNIX counterpart, allows users to navigate the
directory tree. Relative and absolute path names are supported. To exit a directory,
typecd ... Entering cd / returns the user to the root node. An error message is
displayed if the specified directory does not exist.

Using the mkdir, mk, or add Command to Create JAAS Provider Data

nkdir directory_name [other_parameter]
nk directory_name [other_parameter]
add directory_name [other_paraneter]

The nkdi r, mk, and add commands are synonyms of a command that creates a new
subdirectory or node in the current directory. For example, if the current directory is
the root, it creates a realm. If the current directory is/ r eal nf user s, it creates a
user. The effect of nkdi r depends upon the current directory. Some commands
require additional parameters in addition to the name.

Managing the JAAS Provider 7-25

Using the JAZN Admintool

Using the rm Command to Remove JAAS Provider Data
rmdirectory_name

The rm command mirrors its UNIX counterpart and removes the directory or node
in the current directory. For example, if the current directory is the root, it removes
the specified realm. If the current directory is/ r eal ml user s, it removes the
specified user. The effect of r mdepends on the current directory. An error message
is displayed if the specified directory does not exist.

The r mcommand can operate with the * wildcard.

Using the pwd Command to Display the Current Shell Working Directory
pwd

The pwd command displays the current location of the user through the UNIX
directory format. Undefined values are left blank in this listing.

Using the help Command to List JAAS Provider Commands
hel p
The hel p command displays a list of all valid commands.

Using the man Command to Display Detailed JAAS Provider Commands

man comand_opti on
man shel | _command

The man command mirrors its UNIX counterpart and displays more detailed usage
information for the specified shell command or JAZN Admintool command option.
Where information presented by the man page and this document conflict, this
document contains the correct usage for the command.

Using the clear Command to Clear the Screen
cl ear

The cl ear command clears the terminal screen by displaying 80 blank lines.

Using the exit Command to Exit the JAZN Shell

exit

The exi t command exits the JAZN shell.

7-26 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

Managing LDAP Provider Data with Java Programs

You can manage JAAS provider data by creating Java programs using the JAAS
Provider APIs.

This section discusses the JAAS provider in LDAP environments. The emphasis is
on Java programming, but it also provides useful information for those using Oracle
Enterprise Manager or the JAZN Admintool.

This section contains the following topics:

« About the Sample Java Code

« The JAZNContext and JAZNConfig Classes
« Managing Realms

« Managing Users

« Managing Roles

« Managing Permissions

« Managing JAAS Provider Policy

About the Sample Java Code

Some sample Java programs for managing LDAP environments are provided for
you. In the sample code, objects to be modified are presented in bold.

For some of the samples in the following chapters, relationships between samples
are discussed after the sample code:

« Chapter 7, "Managing the JAAS Provider" (this chapter)

« Chapter 8, "Developing Secure J2SE Applications"

« Chapter 9, "Developing Secure J2EE Applications"

« Appendix B, "JAAS Provider Standards and Samples"

The types of code sample relationships discussed include the following:

« Asample code example demonstrates creating a realm type, such as an
Application Realm. A later sample contains the code for dropping that same
Application Realm.

« Asample code example demonstrates setting permissions on a specific
application. In a later section, the user granted those permissions is shown
starting and running that application.

Managing the JAAS Provider 7-27

Managing LDAP Provider Data with Java Programs

The JAZNContext and JAZNConfig Classes

The JAZNCont ext and JAZNConf i g classes of the package or acl e. security.
j azn serve as a starting point for the JAAS provider. The JAZNCont ext and
JAZNConf i g classes contain methods such as get Pol i cy, get Property, and
get Real mivanager that automatically retrieve information specific to the current
JAAS provider instance.

The JAZNConf i g class is designed for use with multiple instances of the JAAS
provider.

The following code sample illustrates how JAZNCont ext or JAZNConf i g are used
in creating a realm in an LDAP-based environment:

Real mvenager real mvgr = JAZNCont ext . get Real mMvanager ();

real m = real mVvyr. creat eReal m("abcReal nf', real m nfo);

Managing Realms

After you have installed and configured the required components, you must create
realms. A realm is a user community instance maintained by the authorization
system. Realms consist of a user manager and role manager, and provides access to
an LDAP-based provider environment of users and roles (groups).

This section contains the following topics:
« Realm Creation

« Creating an External Realm

« Creating an Application Realm

« Dropping a Realm

Realm Creation

Realms are created using the cr eat eReal n{) method of the Real mivanager class,
which requires the following information:

« Therealm name

« Therole name (adni nRol e) given to the administrator. This role can then be
granted to others, giving them administrative privileges

« Other properties in name/value pairs, including the location that contains the
users and roles of the realm’s organization in Oracle Internet Directory

7-28 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

« A user’s searchbase property for locating the administrator and any user of the
realm. This is required for External Realm and Application Realm.

« Avrole’s searchbase property for locating the administrative role and any role
for the realm. This is required for External Realm.

« Optional properties:

« The administrator name (adm nUser), a user with administrative
privileges

« A user object class to use as a filter to search for users

« Arrole object class to use as a filter to search for roles

See Also:

"Role-Based Access Control (RBAC)" on page 4-14

"Realms" on page 4-10

"JAAS Provider Realm and Policy Management" on page 4-15
"The JAZNContext and JAZNConfig Classes" on page 7-28
"Package oracle.security.jazn.realm" on page A-9

"LDAP-Based Realm Types" on page 4-17 for definitions of
realm types

Creating an External Realm

An External Realm is an LDAP-based realm that integrates existing user
communities (user and role information not currently stored under the JAAS
Provider context) with the JAAS provider.

User and role management in an External Realm must be handled by an Oracle
Internet Directory tool.

Managing the JAAS Provider 7-29

Managing LDAP Provider Data with Java Programs

The following code sample creates an External Realm with the objects shown in
Table 7-3. The objects to be modified are presented in bold.

Table 7-3 Objects in Sample External Realm Creation Code

Objects Names

sample organization abc.com
adm nUser (optional) John. Si ngh
adm nRol e adm ni strator

sample realm name abcReal m

Example 7-1 External Realm Creation Code

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;
inport oracle.security.jazn.realm?*;

inport java.util.*;

/**

* Creates an external realm
*/

public class CreateReal mextends oject

{
public CreateRealm) {};

public static void main (String[] args) {
CreateReal mtest = new CreateReal m();
test.creat eExt Real m();

}

voi d createExtReal m() {
Real m real menul | ;

try {
Hasht abl e prop = new Hashtabl e();

prop. put (Real m LDAPPr operty. USERS_SEARCHBASE, "cn=user s, o=abc. cont');
prop. put (Real m LDAPPr operty. ROLES_SEARCHBASE, "cn=r ol es, o=abc. cont');

/'l specifying the following LDAP directory object class

7-30 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

/1l is optional. When specified, it will
/1 be used as a filter to search for users
prop. put (Real m LDAPPr operty. USERS_OBJ_CLASS, "orcl User");

/1 adminUser is optional
String adm nUser = "John. Singh";

String adminRole = "administrator”;
Real mvenager real mvgr = JAZNCont ext . get Real mMvanager ();

InitReal mMnfo realmnfo = new
| ni t Real m nfo(lnitReal m nfo.Real nType. EXTERNAL_REALM admi nUser,
adm nRol e, prop);

real m= real m\vyr. creat eReal m("abcReal n', real m nfo);

}

catch (Exception e) {

}

e.printStackTrace();
}

Creating an Application Realm

An Application Realm is an LDAP-based realm that supports external read-only
users and internal role management.

The code for creating an Application Realm is similar to the code for creating an
External Realm, with the following exceptions:

The property name for | ni t Real m nf 0. Real mType is APPLI CATI ON_
REALM

An Application Realm does not need to include the setting to search for roles as
defined in pr op. put (Real m LDAPPr operty. ROLES SEARCHBASE,
"cn=rol es, o=def aul t Organi zati on");

See Also: "Supplementary Code Sample: Creating an Application
Realm" on page B-7 for a complete code sample

Note: If bothadm nUser and adm nRol e exist, then adni nRol e
is granted to adm nUser, using RBAC.

Managing the JAAS Provider 7-31

Managing LDAP Provider Data with Java Programs

Dropping a Realm

The Real mvanager class of package or acl e. security.jazn.real menables
you to drop a realm.

The following code sample shows how to drop a realm:

Real mvanager real mvgr = JAZNCont ext . get Real mvanager ();
real mvgr. dropReal m("abcReal ni');

The JAAS provider administrator and the realm administrator both have
permission to drop a realm.

Managing Users

You cannot create or manage users directly in the JAAS provider if you are using an
LDAP-based provider type. For those tasks, use an Oracle Internet Directory tool.

You can add users to a realm using the realm’s User Manager interface, as shown in
the following code:

User Manager userngr = real m get User Manager () ;
Real mser user = userngr. getUser("Chitra. Kumar");

See Also: Oracle Internet Directory Administrator’s Guide for
information on using Oracle Internet Directory tools

Managing Roles

The Rol eManager interface provides methods to manage roles. Table 7-4 describes
some of the methods available with the Rol eManager interface.

Table 7-4 RoleManager Methods

Available to These

Method Description Realms
creat eRol e Creates a role in a realm Application Realm
grant Rol e Grantsaroletoa Application Realm

Real nPri nci pal

7-32 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

Table 7-4 RoleManager Methods

Available to These

Method Description Realms

dropRol e Drops either named roles or a role Application Realm
given in the instance

get Rol es Gets roles in a realm All realms

revokeRol e Revokes a role from a Application Realm

Real nPri nci pal

Managing roles requires getting the realm from the Real mvanager as described in
"The JAZNContext and JAZNConfig Classes" on page 7-28. After that, you get an
instance of the Rol eManager interface with the method you are calling.

This section contains these topics:
« Creating Roles
« Granting Roles

« Dropping Roles

Note: You can internally create, grant, drop, and revoke roles in
an Application Realm using the Rol eManager interface.

However, in an External Realm, you cannot use the Rol eManager
interface. Roles can be created, granted, dropped, and revoked with
an Oracle Internet Directory tool.

Creating Roles

Roles are created either externally in an External Realm with an Oracle Internet
Directory tool or internally in an Application Realm with Rol eManager.

The following code sample shows how to create a role with Rol eManager :

Rol eManager rol engr = real m get Rol eManager () ;
Real nRol e rol e = rol engr. creat eRol e("devManager _rol e");

Granting Roles
You can grant roles in an Application Realm, but not in an External Realm.

Managing the JAAS Provider 7-33

Managing LDAP Provider Data with Java Programs

Roles are granted by an instance of Rol eManager .
These lines show how to grant a role:

Rol eManager rol engr = real m get Rol eManager () ;
rol engr. grant Rol e(user, director_role);

These lines are key to the sample code show in Example 7-2 on page 7-34.

This sample code demonstrates granting a role, manager _r ol e, to another role,

di rect or _rol e,and granting the di rect or _r ol e toauser, Chitra. Kumar.
Consequently, Chi tr a is granted the di r ect or _r ol e directly, and the manager _
r ol e indirectly.

The objects to be modified are presented in bold.

Table 7-5 Objects in Sample Granting Roles Code

Objects Names Comments

Real m devReal m devReal mappears in this code and in
the creation of the sample Application
Realm which can be viewed in
Example 15-3 on page B-8.

Real mJser user Chi t ra. Kunar

Real nmRol e director_role

Real nmRol e manager _rol e

sample organization dev.com dev. comdoes not appear in this code

directly, but was acted upon in the
creation of the sample Application
Realm which can be viewed in
Example 15-3 on page B-8.

Example 7-2 Granting Roles Code Sample

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;

inport oracle.security.jazn.realm?*;
inport java.util.?*;

public class GantRol e extends bject

{
public GrantRole() {}

public static void main (String[] args)

{

7-34 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

GrantRole test = new GrantRol e();
test.grantRol e();

void grantRole() {
try {

Real mvenager real mvgr = JAZNCont ext . get Real mvanager () ;

Real m real m = real m\Wr. get Real n("devReal ni');

Rol eManager rol engr = real m get Rol eManager () ;

Real nRol e manager _role = rol emgr. get Rol (" manager _role");
Real mRol e director_role = rol engr.getRole("director_role");
User Manager userngr = real m get User Manager () ;

Real mUser user = userngr.getUser("Chitra. Kumar");

/* grants manager _role to director_role */
rolengr.grantRole(director_role, manager_role);

/* grants director_role to Chitra */
rol engr.grantRol e(user, director_role);

}

catch (JAZNException e) {
Systemout. println("Exception "+e.get Message());

}
}
}

Dropping Roles
The following code sample shows how to drop a role with Rol eManager :

Rol eManager rol engr = real m get Rol eManager () ;
rol engr. dropRol e("devManager _role");

Managing Permissions

Permissions are extended from the j ava. security. Perni ssi on class. The JAAS
provider provides four classes of permissions representing types of actions that can
be performed. See Table 4-2 on page 4-6 for the list of permissions.

Managing the JAAS Provider 7-35

Managing LDAP Provider Data with Java Programs

Permissions are all created with constructors such as the following
Real mPer ni ssi on:

Real nPerm ssi on Pernl = new Real nPer ni ssion("devReal n', "createRole");

See Also: The following for further information on permissions:
« "What is the Java2 Security Model?" on page 4-4
« "What is the Java2 Security Model?" on page 4-4

« Java Security documentation by visiting the following URL.:
http://java. sun.com j2se/ 1. 3/ docs/ gui de/ security/

Managing JAAS Provider Policy

JAAS provider policy grants permissions to principals, such as users and roles. The
policy can be modified after initialization to grant and revoke permissions to
grantees.

Managing Policy with JAAS Provider Packages

These lines of code are key to the sample class shown in "Modifying User
Permissions Code" on page B-10.

final JAZNPolicy policy = JAZNContext.getPolicy();

policy.grant(new G antee(propset, cs), new
FilePerm ssion("report.data", "read"));

7-36 Oracle9iAS Containers for J2EE Services Guide

Managing XML-Based Provider Data with the XML Schema

Managing XML-Based Provider Data with the XML Schema

You can manage JAAS provider data by modifying XML files used by the JAAS
Provider APIs.

This section discusses the JAAS provider in XML-based provider environments. The
emphasis is on data files that you create yourself based on the XML schema, but it
also provides useful information for those using the JAZN Admintool.

The XML-based environment provides fast, simple, lightweight JAAS provider
management. You can use an XML file (named j azn- dat a. xm in this example) to
manage the JAAS provider realm and policy information. Table 7-6 describes the
sections of the j azn- dat a. xm file.

Table 7-6 Description of jazn-data.xml File

Section This section enables you to:

Realm data . Create realms, users, and roles

. Grant roles to users and to other roles

Policy data Assign permissions to users and roles defined in the realm data
section of the file

Thej azn-dat a. xm file is specified as follows:
« ForJ2SE:inthej azn. xm configuration file

« ForJ2EE:intheorion-application. xm configuration file

See Also: Oracle9i Application Server Security Guide for
configuration information on these two XML files

Managing Realms, Users, Roles, and Permissions
XML realm and provider information is stored in an XML file typically named
j azn-dat a. xnl . To work correctly, the XML file must conform to specific policy
schema and DTD standards.
See Also:

« "Sample jazn-data.xml Code" on page B-2 to view an XML
Schema and a sample j azn- dat a. xmi file

Managing the JAAS Provider 7-37

Managing XML-Based Provider Data with the XML Schema

DTD Standard for XML Datafiles
The XML data file must conform to the following DTD:

< ELEMENT jazn-data (jazn-real n?, jazn-policy?, jazn-perm ssion-classes?,
jazn-principal -classes?, jazn-loginconfig?)>

<I-- RealmData -->

<I ELEMENT jazn-real m (real nt) >

< ELEMENT real m (name, users?, roles?, jazn-policy?)>

<! ELEMENT users (user*)>

<! ELEMENT user (nane, display-nane?, description?, credentials?)>
<I ELEMENT name (#PCDATA) >

<! ELEMENT di spl ay- nanme (#PCDATA) >

<! ELEMENT descri ption (#PCDATA) >

<! ELEMENT credential s (#PCDATA)>

<! ELEMENT rol es (role*)>

< ELEMENT rol e (nanme, display-nane?, description?, nmenbers)>
<! ELEMENT nenbers (nember*)>

<! ELEMENT nenber (type, nane)>

<I ELEMENT type (#PCDATA)>

<I-- Policy Data -->

<I ELEMENT jazn-policy (grant*)>

< ELEMENT grant (grantee, pernissions?)>

< ELEMENT grantee (display-nane?, principals?, codesource?)>
<! ELEMENT princi pal s (principal *)>

< ELEMENT pri nci pal (real mnane?, type?, class, name)>
<I ELEMENT real m name (#PCDATA)>

<! ELEMENT codesource (url)>

<I ELEMENT ur| (#PCDATA) >

<! ELEMENT per i ssions (pernissiont)>

<! ELEMENT pernission (class, name, actions?)>

<I ELEMENT cl ass (#PCDATA)>

< ELEMENT actions (#PCDATA)>

<l-- Principal Class Data -->

< ELEMENT jazn-principal -classes (principal-class*)>

<l ELEMENT pri nci pal -cl ass (name, description?, type, class,
name- descri ption-nmap?) >

<! ELEMENT name-description-map (name-description-pair*)>

<! ELEMENT name-description-pair (name, description?)>

7-38 Oracle9iAS Containers for J2EE Services Guide

Other Utilities

<I-- Permssion Cass Data -->

<! ELEMENT j azn- perm ssi on-cl asses (perm ssion-class*)>

<l ELEMENT per ni ssi on-class (nane, description?, type, class, target-descriptors,
action-descriptors?)>

< ELEMENT target-descriptors (target-descriptor*)>

<! ELEMENT target-descriptor (name, description?)>

<! ELEMENT action-descriptors (action-descriptor*)>

<! ELEMENT action-descriptor (name, description?)>

<l-- Login Mdule Data -->

<l ELEMENT jazn-| ogi nconfig (application*)>

<! ELEMENT application (name, |ogin-nmodul es)>

<! ELEMENT | ogi n- nodul es (I ogi n- modul e+) >

<! ELEMENT | ogi n-nodul e (class, control-flag, options?)>
<I ELEMENT control -flag (#PCDATA)>

<! ELEMENT options (option+)>

<! ELEMENT option (nane, value)>

<! ELEMENT val ue (#PCDATA)>

Other Utilities

There are three additional utilities for managing the JAAS provider. These classes
work with both LDAP-based and XML-based provider types. The classes can be
used and managed programmatically. Additionally, two can be managed through
the JAZN Admintool.

« Perm ssi onCl assManager - Integrates with the JAZN Admintool
« Principal C assManager - Integrates with the JAZN Admintool

« Logi nModul eManager - Works only with J2EE applications and is not
activated with the JAZN Admintool

PermissionClassManager Interface

The Per mi ssi onCl assManager is a repository of all registered Permission classes
and a utility to help manage them. Registering a permission class allows access to
stored metadata that provides specific information about a given permission's
target, action, and/or description. Failure to register a given permission class does
not affect the JAAS provider's ability to use the permission class. That is, the JAAS

Managing the JAAS Provider 7-39

Other Utilities

provider does not limit permission grants or revocations to those classes registered
with the Per ni ssi onCl assManager.

Works with the JAZN Admintool to perform these functions:
« "Adding and Removing Permissions" on page 7-20

« "Listing Permissions" on page 7-20

See Also:

« "PermissionClassManager" on page A-6 to view the API

PrincipalClassManager Interface

Pri nci pal Cl assManager represents the repository of all registered Principal
classes and a utility to help manage them. Registering a principal class allows access
to stored metadata that provides specific information about a given principal's
name and description. Failure to register a given principal class will not affect the
JAAS provider’s ability to use the principal class. That is, the JAAS provider
recognizes all principal classes whether or not they've been registered with the

Pri nci pal Cl assManager.

The Pri nci pal G assManager works with the JAZN Admintool to perform these
functions:

« "Adding and Removing Principals" on page 7-20
« "Listing Principal Classes" on page 7-21

See Also:

« "PrincipalClassManager" on page A-7 to view the API

LoginModuleManager

Logi nMbdul eManager is the JAAS Provider implementation of the JAAS
Configuration class and provides login configuration support to applications. The
Configuration class is a registry of applications and corresponding login modules
used by a given application and the order they are to be used. There are both
LDAPLogi nModul eManager and XM_Logi nModul eManager implementations of
the Logi nModul eManager.

7-40 Oracle9iAS Containers for J2EE Services Guide

8

Developing Secure J2SE Applications

This chapter describes how to develop secure Java2 Platform, Standard Edition
(J2SE) applications using the Oracle9iAS Containers for J2EE (OC4J) JAAS Provider.

This chapter contains these topics:

« Developing Secure J2SE Applications Overview
« Authentication in the J2SE Environment

« Authorization in the J2SE Environment

« Testing and Executing an Application

« Sample J2SE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 8, "Developing Secure J2SE
Applications".

Developing Secure J2SE Applications 8-1

Developing Secure J2SE Applications Overview

Developing Secure J2SE Applications Overview

J2SE application developers develop, deploy, and manage Java applications on local
desktops or servers. Using the JAAS provider enables developers to make these
applications secure.

After the creation of realms and related components described in Chapter 6,
"Integrating the JAAS Provider with Java2 Applications", the JAAS provider can be
integrated into J2SE applications to provide the following services:

= Authentication in the J2SE Environment

=« Authorization in the J2SE Environment

See Also:

- "JAAS Provider Integration in J2SE Application Environments"
on page 6-2

. "Sample J2SE Application" on page 8-5 for a J2SE application
demonstration

Authentication in the J2SE Environment

Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2SE environment is performed with the following:

« AJAAS Logi nCont ext class

« A JAAS Provider Real nLogi nModul e class or another login module that can
be configured as the default login module

« A callback handler that you must create, following the JAAS model in
j avax. security. auth. cal | back

The constructor for the Logi nCont ext class requires the name of the client login
and a new instance of a callback handler, an object you must implement. The
callback handlers, which are described in JAAS documentation, are required by the
login module to communicate with users.

The user of the computing service is the Subj ect . The Subj ect is passed to the
Logi nCont ext class. The Logi nCont ext . | ogi n() method compares the
Subj ect to configuration settings in the JAAS Provider Real nLogi nModul e or
other login module. If I ogi n() is successful, the login module associates the

Pri nci pal (aspecific identity) and credentials with the Subj ect .

8-2 Oracle9iAS Containers for J2EE Services Guide

Authorization in the J2SE Environment

This authenticates the Subj ect, which can then be retrieved by invoking
Logi nCont ext . get Subj ect in the authorization process.

See Also: JAAS documentation at the following Web site for more
information about authentication, login modules, and callback
handlers:

http://java. sun. com products/j aas/

Authorization in the J2SE Environment

Subject.doAs

Once a user is successfully authenticated, the authorization policy is enforced upon
the user. Authorization is achieved through the following methods and interface
based on the Java2 and JAAS Security Model:

« javax.security.auth. Subject.doAs() method in the client
« java.l ang. SecurityManager. checkPer m ssi on method in the server

« ThePrivil egedActi on interface of j ava. securi ty in the application

After retrieving the authenticated Subj ect from the Logi nCont ext , the client
invokes Subj ect . doAs with the application as a parameter. The application starts,
which activates security checking in the server. An AccessCont r ol Excepti onis
thrown if security checking fails.

SecurityManager.checkPermission

Security checking in J2SE applications requires the use of the JDK 1.3 or greater
j ava. |l ang. Securit yManager in the server.

The security manager determines whether to permit operations. The classes in Java
packages cooperate with the security manager by asking the application's security
manager for permission to perform certain operations. Each Java application can
have its own security manager object that acts as a full-time security guard.

The Securi t yManager. checkPer ni ssi on method performs security checking.

Developing Secure J2SE Applications 8-3

Testing and Executing an Application

PrivilegedAction

The application must implement the interface Pri vi | egedAct i on.

See Also: Java security architecture at the following Web site:

http://java. sun.com j2se/ 1. 3/ docs/ gui de/ security/

Testing and Executing an Application

In order to test or execute the application, you must start the Securi t yManager at
the command line and, if using a login module to start an application, call it.

This is the first real test of the JAAS provider.

Note: The security manager is automatically started in JAAS
provider-based J2EE applications.

Starting With RealmLoginModule

To start the application using the RealmLoginModule:
1. Go to the computer on which the J2SE application is installed.

2. Start the security manager and test the application at the command prompt:

java - D ava.security.mnager -Djava.security.policy=java2.policy
-Dj ava. security. aut h. policy=jazn. xm
-Dj ava. security. auth.login.config=jaas. config MApp

where the client, My App, calls your application. The j azn. xm file is the
property file that identifies the provider type you are using (Oracle Internet
Directory or XML-Based Provider Type). The j aas. confi g file indicates that
Real mLogi nModul e is required for authentication.

This command can be used with the sample code shown in "Sample J2SE
Application" on page 8-5.

Start Without Using RealmLoginModule

It is possible to start J2SE applications without using authentication and the
Real m_Logi nMbdul e or any login module, but that is not the preferred method. To
do so and use the sample code provided in this chapter, you need to modify the

8-4 Oracle9iAS Containers for J2EE Services Guide

Sample J2SE Application

My App code in Example 8-1, "Client Login Code" on page 8-6 so that it does not
require the objects described in "Authentication in the J2SE Environment" on
page 8-2.

After you have modified the My App code, you can start it.

To start the application without using the RealmLoginModule:
1. Go to the computer that the J2SE application is installed on.

2. Start the security manager and execute the application at the command prompt:
For example, to test a sample application, enter:

java - D ava.security.mnager -Djava.security.policy=java2.policy
-Dj ava. security. aut h. policy=jazn. xm MApp

where the client, My App, calls your application. The type of JAAS provider you
are using (LDAP-based or XML-based) is identified in the j azn. xnl file.

Sample J2SE Application

This section shows a sample client login, My App, and a brief test application using
the JAAS provider in a J2SE environment.

Table 8-1 Sample Client Login Code

Objects Names Comments

Cal | backHandl er nyCal | backHandl er nyCal | backHandl er is a callback handler
that you must implement.

sample application AccessTest 1 AccessTest 1 is the application that
the user wants to start. The code for
AccessTest 1 is show in Example 8-2

on page 8-7.
sample external realm abcReal m abcReal mwas created in Example 7-1
on page 7-30.
client user Jane. Smithor The client user added in Example 7-1 on
unknown page 7-30. Since Jane. Smi t h is the

only user added; that is, the only name
returned to Pr i nci pal p.

The following is executed using the commands described in "Testing and Executing
an Application" on page 8-4.

Developing Secure J2SE Applications 8-5

Sample J2SE Application

Example 8-1 Client Login Code
MyApp Code

inport java.io.*;

inport java.util.?*;

inport java.security.Principal;

inport javax.security.auth.*;

inport javax.security.auth.callback.*;
inport javax.security.auth.login.*;
inport javax.security.auth.spi.?*;

i nport comsun.security.auth.*;

inport oracle.security.jazn.*;
inport oracle.security.jazn.realm?*;

public class MApp {
public static void main(String[] args) {

LoginContext lc = null;
try {
/1 you nust create a Call backHandl er class
| ¢ = new Logi nCont ext ("M/App", new nyCal | backHandl er());
} catch (Logi nException le) {
le.printStackTrace();
Systemexit(-1);

}
try {
/1 attenpt authentication
Ic.login();
} catch (Account ExpiredException aee) {
Systemout. println("Your account has expired. " +

“Please notify your administrator.");
Systemexit(-1);

/1 other exceptions
/1 Credential Expi redException
/1 Fail edLogi nException

}

/1 checking what Principals the user has
Iterator principallterator = Ic.getSubject().getPrincipals().iterator();

8-6 Oracle9iAS Containers for J2EE Services Guide

Sample J2SE Application

System out. println("Authenticated user has the following Principals:");
while (principallterator.hasNext()) {
Principal p = (Principal)principallterator.next();
Systemout.printin("\t" + p.toString());

}

Systemout.println("User has " +
| c. get Subj ect (). getPublicCredentials().size() +
" Public Credential (s)");

/1 nowtry to execute the sanple application as the authenticated Subject
Subj ect. doAs(| c. get Subj ect (), new AccessTest1());

Systemexit(0);
}
}

Sample J2SE Application Code

This is the sample application that is executed when a successfully authenticated
principal runs My App.

Table 8-2 Objects in Sample Application Code

Objects Names

file report.data

Example 8-2 Sample Application Code

inport java.lang.*;
inport java.security.*;
inport java.io.*;

public class AccessTestl inplements Privil egedAction {
public Qbject run() {
File f = new File("report.data");
/1 Security checking is invoked
if (f.exists()) {

Systemout.printIn("*** report.data accessed ***");

}

return null;

Developing Secure J2SE Applications 8-7

Sample J2SE Application

Discussion of the J2SE Sample Client Login and Application Code

In the My App client, once the authentication process is completed, Subj ect . doAs
starts the sample application AccessTest 1.

AccessTest 1 starts and requests to read the r epor t . dat a file. This request
invokes security checking in the server, which determines if the user has permission
on AccessTest 1 toread thereport. dat afile.

Permission has been granted previously to Jane. Smi t h in Example 7-1 on
page 7-30. If Jane. Smi t h is the user logging in, AccessTest 1 runs.

If the user is not Jane. Smi t h, the authorization fails because no other users have
been granted this permission.

8-8 Oracle9iAS Containers for J2EE Services Guide

9

Developing Secure J2EE Applications

This chapter describes how to develop secure Java2 Platform, Enterprise Edition
(J2EE) applications using the JAAS Provider and Oracle9iAS Containers for J2EE
(OC4)).

This chapter contains these topics:

« Developing Secure J2EE Applications Overview
« Authentication in the J2EE Environment

« Authorization in the J2EE Environment

« Testing and Executing the J2EE Application

« Sample J2EE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 7, "Managing the JAAS
Provider".

Developing Secure J2EE Applications 9-1

Developing Secure J2EE Applications Overview

Developing Secure J2EE Applications Overview

J2EE application developers develop, deploy, and manage Web enabled,
server-centric, enterprise level Java applications that are deployed in multiple tier
environments. Using the JAAS provider enables developers to make these
applications secure.

In J2EE applications, the JAAS provider is integrated with OC4J and provides the
JAZNUser Manager, an implementation of the OC4J User Manager.

After the creation of realms and related components described in Chapter 7,
"Managing the JAAS Provider", the JAAS Provider can be integrated into J2EE
applications to provide the following services:

= Authentication in the J2EE Environment

=« Authorization in the J2EE Environment

See Also: "Oracle9iAS Containers for J2EE (OC4J)" on page 6-4

Authentication in the J2EE Environment

Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2EE environment is performed with the following:

« Oracle9iAS Single Sign-On (for SSO environments) or the JAAS provider
Real mLogi nModul e or other login module (for non-SSO environments)

« JAZNUser Manager for OC4J (Required)

Before HTTP requests can be dispatched to the target servlet, the
JAZNUser Manager gets the authenticated user information (set by mod_o0sso)
from the HTTP request object and sets the JAAS subject in OC4J.

Running with the Permissions and Roles Associated with an Authenticated Identity
(Optional)
You can choose to configure the JAZNUser Manager so that a filter enables the
target servlet to run with the permissions and roles associated with an

authenticated identity or run-as identify. To do this, configure the j azn- web- app
element.

9-2 Oracle9iAS Containers for J2EE Services Guide

Authentication in the J2EE Environment

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide and "JAZNUserManager" on page 6-4 for further information
on options and configuration of the JAZNUser Manager filter,
including the j azn- web- app element

Interception of Servlet Invocation

The JAZNUser Manager intercepts calls from Oracle9iAS Single Sign-On or the
JAAS Provider Real nmLogi nModul e and retrieves authentication information to
identify the username and role.

Retrieving Authentication Information

The following j avax. servl et. Ht t pSer vl et Request APIs retrieve
authentication information within the servlet:

« get Renot eUser for the authenticated username

« get Aut hType for the authentication scheme

« getUserPrincipal forthe authenticated principal object

« getAttribute("java.security.cert.X509certificate") forthe SSL
client certificate.

(Optional if the Filter Element Has Been Set)

If the filter element has been set, JAZNUser Manager performs the following when
doFil ter (Servl et Request request, Servl et Response response,

Fi I t er Chai n chai n) is invoked:

« For SSO or Basic authentication, the filter relies on JAZNUser Manager to
retrieve the authenticated user and the corresponding principal object.

« Foran SSL client certificate, the filter performs the following:

1.
2.

Retrieves SSL client certificate from the request object, if it is available

Instantiates java. security. cert. X509Certi fi cat e object x509cert
based on the client certificate

Creates an array of typej ava. security. cert. X509Certificateand
adds objects to the array

Sets the attribute on the request object ("j ava. security. cert
. X509Certificate", x509cert)

Developing Secure J2EE Applications 9-3

Authorization in the J2EE Environment

5. Gets the SSL principal name by invoking or acl e. security.jazn.
util. CertHash. get Hash(x509cert)

6. Gets the SSL principal object ssl Pri nci pal ,a Real nPri nci pal object,
from the default realm using the JAAS Provider API

The filter element constructs an or acl e. security.jazn. oc4j.
JAZNSer vl et Request request for the HTTP request.

(End of Optional Section)
Authorization begins with a call to Subj ect . doAs() .

Authorization in the J2EE Environment

Authorization is the process of granting the permissions and privileges entitled to
the user.

Once the user is authenticated, the JAZNUser Manager invokes the target serviet
within a Subj ect . doAs() block to enable JAAS-based authorization in the target
servlets.

Authorization is achieved through the following:
« JAZNUser Manager
« Methods based on the Java2 Security Model:
« Servlet.service() intheserviet
« Subj ect. doAs() inthe client

« SecurityManager. checkPer m ssi on() in the server

Testing and Executing the J2EE Application

After completing all configuration tasks, follow these steps to test or execute the
JAAS Provider within OC4J. These steps assume the following:

= The current directory is $ORACLE_HOVE/ j 2ee/ hone
« nod_oc4j isconfigured

To build and configure your application, a sample application, cal | er | nf o, has
been provided. Chapter 5, "Quick Start JAAS Provider Demo" describes how to
quickly run this sample application. This chapter elaborates on the information in
Chapter 5 and discusses available configuration options.

9-4 Oracle9iAS Containers for J2EE Services Guide

Testing and Executing the J2EE Application

See Also: Chapter 7 of the Oracle9i Application Server Security Guide
for detailed configuration information

Setting Up
You must perform the following tasks to test and run a J2EE application:
« Task 1: Install Ant (Optional)
« Task 2: Modify OC4J Files
« Task 3: Change Default Configurations
« Task 4: Build the Directory

Task 1: Install Ant (Optional)

You can install Ant, an XML-based build tool (similar to make), from Apache's
Jakarta Project or plan to use jar directly. If you do not have Ant installed, you can
download it from:

http://jakarta. apache.org/ant/index. htm

Once you have installed Ant, and before running it, you must configure files as
described in the next section, "Task 2: Modify OC4J Files".

Task 2: Modify OC4J Files

In order to run a servlet, you need to modify several OC4J Files.

Modifying OC4J Files Where OC4J is Not Running

= Modify the OC4Jserver. xm filein $ORACLE_HOVE/ j 2ee/ hone/ confi g/
by adding the following line:

<appl i cation name="nmyAppl" path="../jazn/ deno/ myAppl/
nyAppl.ear" />

For the cal | er | nf o demo, the line is as follows:

<application name="cal |l erl nfo" path="../jazn/deno/callerlnfo/
callerinfo.ear" />

« Modify the OC4J) def aul t - web-si te. xm filein
$ORACLE_HOVE/ j 2ee/ hone/ confi g/ by adding the following line:

Developing Secure J2EE Applications 9-5

Testing and Executing the J2EE Application

<web-app application="myAppl" name="nyAppl-web" root="/jazn" />

For the cal | er | nf o demo, the line is as follows:

<web-app application="callerlnfo" name="callerlnfo-web" root="/jazn" />

Deploying an Application When the OC4J Server is Running

If the OC4J server is already up and running, you can perform the following steps
to deploy your application.

java -jar $J2EE_HOWE admin.jar

orm://ocdj _host:rm _port adm n_user adm n_password
-deploy -file $J2EE_HOWE j azn/ deno/ nyAppl/ nyAppl. ear -depl oyment Nane cal | erlnfo

java -jar $J2EE_HOWE admin.jar
orm://ocdj _host:rm _port adm n_user adm n_password
- bi ndWebApp nyAppl nyAppl-web defaul t-web-site /jazn

For the cal | er I nf o demo, enter the following:

java -jar $J2EE_HOWE admin.jar

orm://ocdj _host:rm _port adm n_user adm n_password
-file $J2EE_HOWE/ j azn/ deno/ cal l erInfo/cal | erlnfo. ear
- depl oyment Narme cal I erlnfo

java -jar $J2EE_HOWE admin.jar
orm://ocdj _host:rm _port adm n_user adm n_password
- bi ndWebApp cal l erlnfo cal l erlnfo-web defaul t-web-site /jazn

See Also:

= Oracle9iAS Containers for J2EE User's Guide for further
information on OC4J configuration

« Chapter 7 of the Oracle9i Application Server Security Guide for
further information on JAAS Provider configuration

Task 3: Change Default Configurations

The default realm is set to sanpl e_subr eal m To change to another realm, you
must modify the j azn element of the OC4Jori on-application. xm (inthe
directory j azn/ deno/ cal | eri nf o/ et c/) as follows:

9-6 Oracle9iAS Containers for J2EE Services Guide

Testing and Executing the J2EE Application

Using XML-Based Realms (Default)

« Change the realm, def aul t - r eal m from the default value,
sanpl e_subr eal m to any realm that you have created.

« Changel ocat i on from the default value, j azn- dat a. xnl , to any properly
configured data file that you have created. Conversely, you can also use
j azn-dat a. xnl as a template for your own file.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 7-37 for further information on the
j azn-dat a. xnl file

Using LDAP-Based Realms

Since the installation defaults to the XML-based provider type, you need to modify
certain files if you are using the LDAP provider type environment.

Note: You must use the Oracle9iAS Infrastructure installation type
if you use the LDAP provider type environment.

Inthe ori on-application.xm fileindirectoryjazn/ deno/
cal | eri nfo/ et c/, make the following changes:

« Change the JAAS Provider type to LDAP.

« Enter your LDAP | ocat i on URL (for example,
| dap://nyoi d. us. oracl e. com)

Using SSL and SSO Integration

If you are using SSO or SSL integration, make the following addition to the
nod_oc4j . conf file to add redirection information.

Ccdj Mount /jazn/* ajpl3_worker
Ccdj Mount /jazn aj pl3_worker

Assuming that aj p13_wor ker is a defined worker in the oc4j . conf file, this
directs any request matching/ j azn/ * to be handled by aj p13_wor ker. Any
request matching / j azn/ is to be handled by aj p13_wor ker.

Developing Secure J2EE Applications 9-7

Testing and Executing the J2EE Application

Using SSO
If you are using SSO integration, make the following change in the
ori on-web. xm :

Set the aut h- net hod in thej azn- web- app element file to “SSO’as in the
following example:

<j azn- web- app
aut h- net hod="SSO' (optional - default to null)
runas- node="fal se" (optional - default to fal se)
doasprivil eged- node="true" (optional - default to true)
/>

Task 4: Build the Directory

To build the directory, either use jar or Ant to create a new directory (bui | d)
containing the .EAR and .WAR files for your application.

To build the directory using Ant:
1. Open acommand line shell.
2. Gotothejazn/ myAppl/ myAppl directory
Forthe cal | er I nf o demo, gotoj azn/ deno/ cal | er | nf o directory,

3. Type: ant

Starting an Application
This is the first real JAAS provider test.

To start your application:
1. Start the Oracle HTTP Server listener as follows:
« formod_osso (SSO environments), enter apachect| start

« formod_ossl (SSL environments) apachect| start ssl

Note: SKip this step if you are using Basic Authentication.

2. Start OC4J with the JAAS provider by entering the following:

9-8 Oracle9iAS Containers for J2EE Services Guide

Sample J2EE Application

java -jar ocdj.jar
Or start OC4J with the JAAS provider in secure mode (assuming that you have
configured your j ava2. pol i cy) with the Securi t yManager :
java -Djava.security. mnager.
-Dj ava. security. policy=/jazn/config/java2.policy -jar ocdj.jar
3. Runthe serviet from a Web browser using:

http://hostname: 1234/ my Appl/ myAppl

Or to run the sample application, use:

http://hostname: 1234/ azn/ cal l erl nfo
where 1234 is the port configured for your HTTP listener.

See Also: Oracle9iAS Containers for J2EE User's Guide

Sample J2EE Application

This sections shows the sample J2EE application, cal | er | nf o, which you can run
using the commands described in "Testing and Executing the J2EE Application” on
page 9-4 or in Chapter 5, "Quick Start JAAS Provider Demo".

Sample J2EE Application callerinfo
package oracl e.security.jazn.sanmples.http;

inport java.io.lOException;
inport java.util.Date;
inport java.util.Properties;
i nport javax.namng.*;
inport javax.servlet.*;
inport javax.servlet.http. *;

/**

* A sinple deno that exercises the Servlet security APIs.
*

* @uthor rkng
*/
public class Callerinfo extends HttpServlet {

public Callerlnfo()

Developing Secure J2EE Applications 9-9

Sample J2EE Application

{
super();

}

public void init(ServletConfig config)
throws ServletException

{

super.init(config);

}

public void doGet(HttpServletRequest request, HtpServletResponse response)

throws ServletException, |OException

{
Servl et Qut put Stream out = response. get Qut put Strean();

response. set Cont ent Type(“text/htm");

out. println("<HTM.><BODY bgcol or=\"#FFFFFF\">");
out.println("Time stanp: " + new Date().toString());
out.println("request.getRenmoteUser ="
("

+ request. get RemoteUser () + "
");

out.println("request.isUserinRole('FOO) =" + request.isUserlnRol e("FOQ') +
“
");

out.println("request.isUserlnRole('ar_manager') = " +

request.isUserlnRol e("ar_manager") + "
");
out.println("request.isUserlinRole('ar_developer') =" +

request.isUserlnRol e("ar_devel oper") + "
");
out.println("request.getUserPrincipal ="
“
");
out.println("</BODY>");
out.println("</HTM>");

}
}

Discussion of the J2EE Sample Application Code

+ request. get User Principal () +

When the call to cal | er | nf o is successful, the browser displays a message similar

to the following:

Time stanp: Fri Aug 24 19:11:37 PDT 2001 request. get RenoteUser =
sanpl e_subreal m user

request.isUserlnRol e(' FOO) = fal se

request.isUserlnRol (' ar_manager') = fal se

request.isUserlnRol e('ar_devel oper') = true
request.getUserPrincipal = ([JAZNUser Adapt or: user=[XM.Real mJser:
sanpl e_subreal m user])

9-10 Oracle9iAS Containers for J2EE Services Guide

Sample J2EE Application

Developing Secure J2EE Applications 9-11

Sample J2EE Application

9-12 Oracle9iAS Containers for J2EE Services Guide

10

Java Transaction API

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) Transaction API.
This chapter covers the following topics:

= Introduction

« Single-Phase Commit

= Two-Phase Commit

Introduction

Enterprise JavaBeans use Java Transaction API (JTA) 1.0.1 for managing
transactions. This chapter discusses the method for using JTA in OC4J. It does not
cover JTA concepts—you must understand how to use and program global
transactions before reading this chapter. See the Sun Microsystems Web site for
more information. Code examples are available for download from the OC4J
sample code site off OTN.

JTA involves enlisting resources and demarcating the transaction.

Java Transaction APl 10-1

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Single-Phase Commit

Enlisting resources: The complexity of your transaction is determined by how
many resources your application enlists.

Single-Phase Commit (1pc): If only a single resource (database) is enlisted in the
transaction, you can use single-phase commit.

Two-Phase Commit (2pc): If more than one resource is enlisted, you must use
two-phase commit, which is more difficult to configure.

Demarcating transactions: Your application demarcates the transaction through
either bean-managed or container-managed transactions.

Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

Container-managed transactions are controlled by the container. That is, the
container either joins an existing transaction or starts a new transaction for the
application—as defined within the deployment descriptor—and ends the newly
created transaction when the bean method completes. It is not necessary for
your implementation to provide code for managing the transaction.

Single-Phase Commit

Single-phase commit (1pc) is a transaction that involves only a single resource. JTA
transactions consist of enlisting resources and demarcating transactions.

Enlisting a Single Resource
To enlist the single resource in the single-phase commit, you must do the following:

1.

Configure the Dat aSour ce in dat a- sour ces. xni . For single-phase commit,
use an emulated data source.

Retrieve a connection to this Dat aSour ce in your bean implementation after
the transaction has begun.

a. After the transaction has begun (demarcated), lookup the Dat aSour ce
from the JINDI name space.

b. Retrieve a connection off this Dat aSour ce object using the
get Connect i on method.

10-2 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

Configuring the DataSource

Use an emulated data source for a single phase commit. Refer to the Chapter 15,
"Data Sources" for information on emulated and non-emulated data source types.

Use the default Dat aSour ce object if you can for the single-phase commit JTA
transaction. After modifying this data source ur | attribute with your database URL
information, retrieve the data source in your code using a JNDI lookup with the
JNDI name configured in the ej b-1 ocat i on attribute. Configure a Dat aSour ce
for each database involved in the transaction.

<dat a- sour ce
cl ass="com evernind. sql . Dri ver Manager Dat aSour ce"
name="0Or acl eDS"
| ocation="j dbc/ Or acl eCor eDS"
xa- | ocation="j dbc/ xa/ Oracl eXADS"
ej b-location="jdbc/ O acl eDS"
connection-driver="oracle.jdbc.driver.CO acleDriver"
user name="scott"
passwor d="tiger"
url="jdbc: oracl e: thin: @nyhost: myport: nySI D'
i nactivity-timeout="30"
/>

The following are the expected attribute definitions:

« Theejb-1ocation attribute is the INDI name that this data source is bound to
within the JNDI namespace. You use the ej b- 1 ocat i on JNDI nhame in the
JNDI lookup for retrieving this data source.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identify the database, its username, and
password. Modify this example with the URL, username, and password of your
intended database. These are used to retrieve the data source session and
database schema that will be used to access and modify the database.

« Thecl ass attribute defines what type of data source class to bind in the
namespace. The emulated data sources are defined using the
com everm nd. sql . Dri ver Manager Dat aSour ce class, as shown above.

Java Transaction APl 10-3

Single-Phase Commit

Retrieving the DataSource Connection

Before executing any SQL statements against tables in the database, you must
retrieve a connection to that database. For these updates to be included in the JTA
transaction, you must do one of the following:

1. After the transaction has begun (demarcated), lookup the Dat aSour ce from
the JNDI name space. You can use one of two methods for the retrieval.

2. Retrieve a connection off this Dat aSour ce object using the get Connecti on
method.

There are two methods for retrieving the Dat aSour ce out of the INDI namespace,
as follows:

« Perform JNDI Lookup on DataSource Definition

« Perform JNDI Lookup Using Environment

Perform JNDI Lookup on DataSource Definition You can perform a lookup on the JNDI
name bound to the Dat aSour ce definition in the dat a- sour ces. xnl file and
retrieve a connection, as follows:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/OracleDS");
Connection conn = ds. get Connection();

Perform JNDI Lookup Using Environment You can perform a lookup on a logical name
defined in the environment of the bean container. For more information, see the
Dat aSour ce chapter in the Oracle9iAS Containers for J2EE Services Guide. Basically,
define the logical name in the J2EE deployment descriptor as follows:

<resource-ref>
<res-ref -nane>j dbc/ Or acl eMappedDS</res-ref - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

Map the <r es- r ef - nane> in the OC4J-specific deployment descriptor to the JNDI
name bound in the dat a- sour ces. xm file as follows:

<resource-ref - mappi ng nane="j dbc/ Oracl eMappedDS" | ocation="jdbc/ O acl eDS" />

where “j dbc/ Or acl eDS” is the INDI name defined in the dat a- sour ces. xm
file.

10-4 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

Then retrieve the data source using the environment JNDI lookup and create a
connection, as shown below:

Initial Context ic = new Initial Context();
Dat aSource ds = ic.lookup("java:conp/env/jdbc/ Oracl eMappedDS");
Connection conn = ds. get Connection();

Example 10-1 Retrieving A Connection Using Portable JNDI Lookup

If you are using JDBC, you can start preparing and executing statements against the
database. If you are using SQLJ, create a default context to specify in the #sql
statement.

The following shows a small portion of an employee session bean that uses
container-managed transactions and uses SQLJ for updating the database.

int enpno = 0;
doubl e salary = 0.0;
Dat aSour ce renot eDS;
Context ic;

/I'Retrieve the initial context. No JNDI properties are necessary here
ic =newlnitial Context ();

/' Lookup the DataSource using the <resource-ref> definition
remot eDS = (DataSource)ic. | ookup ("java:conp/env/jdbc/ O acl eMappedDS");

/I'Retrieve a connection to the database represented by this DataSource
Connection renoteConn = renot eDS. get Connection ("SCOTT", "TIGER');

/1Since this inplementation uses SQLJ, create a default context for this
/I connect i on.
Def aul t Cont ext dc = new Defaul t Context (renoteConn);

/I'Performthe SQL statement against the database, specifying the default
/Icontext for the database in brackets after the #sgl statenent.
#sql [dc] { select empno, sal fromenp where ename = :name };

Demarcating the Transaction

With JTA, you can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional.
Container-managed transaction is available oﬂy to entity beans and stateful beans.

Java Transaction APl 10-5

Single-Phase Commit

Note: Currently, the client cannot demarcate the transaction.
Propagation of the transaction context cannot cross OC4J instances.
Thus, neither a remote client nor a remote EJB can initiate or join
the transaction.

You specify the type of demarcation in the bean deployment descriptor. The
following shows a session bean that is declared as container-managed transactional
by defining the <t r ansact i on-t ype> element as “Cont ai ner . To configure the
bean to use bean-managed transactional demarcation, define this element to be
“Bean”.

<sessi on>
<description>no description</description>
<ej b- name>nyEnpl oyee</ ej b- name>
<home>cnt xn. ej b. Enpl oyeeHome</ hone>
<renot e>cnt xn. ej b. Enpl oyee</renot e>
<ej b-cl ass>cnt xn. ej b. Enpl oyeeBean</ ej b-cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transaction-type>Contai ner</transaction-type>
<resource-ref>
<res-ref-name>j dbc/ Or acl eMappedDS</r es- r ef - nane>
<res-type>javax. sql . Dat aSour ce</res-type>
<res-aut h>Application</res-aut h>
</resource-ref>
</ sessi on>

Container-Managed Transactional Demarcation

If you define your bean to use container-managed transactions (CMT), then you
must specify how the container manages the JTA transaction for this bean in the
<trans-attribut e>elementin the deployment descriptor. The following table
briefly describes the transaction attribute types that you should specify in the
deployment descriptor:

Table 10-1 Transaction Attributes

Transaction Attribute Description

Not Support ed The bean is not involved in a transaction. If the bean invoker
calls the bean while involved in a transaction, the invoker’s
transaction is suspended, the bean executes, and when the bean
returns, the invoker’s transaction is resumed.

10-6 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

Transaction Attribute

Description

Requi r ed

The bean must be involved in a transaction. If the invoker is
involved in a transaction, the bean uses the invoker’s
transaction. If the invoker is not involved in a transaction, the
container starts a new transaction for the bean.

Supports

Whatever transactional state that the invoker is involved in is
used for the bean. If the invoker has begun a transaction, the
invoker’s transaction context is used by the bean. If the invoker
is not involved in a transaction, neither is the bean.

Requi r esNew

Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself. If the
invoker calls while involved in a transaction, the invoker’s
transaction is suspended until the bean completes.

Mandat ory

The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker’s transaction context.

Never

The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean. If the invoker is involved in a transaction, a

Renpt eExcept i on is thrown.

The following <cont ai ner -t ransact i on> portion of the deployment descriptor
demonstrates how this bean specifies the Requi r esNewtransaction attribute for all
(*) methods of the myEnpl oyee EJB.

<assenbl y- descri pt or >

<contai ner-transacti on>
<descri ption>no description</description>

<net hod>

<ej b- name>nyEnpl oyee</ ej b- name>
<net hod- name>* </ net hod- nane>

</ net hod>

<trans-attribute>Requi resNew</trans-attribute>
</ cont ai ner-transaction>
</ assenbl y- descri ptor>

No bean implementation is necessary to start, commit, or rollback the transaction.
The container handles all of these functions based on the transaction attribute
specified in the deployment descriptor.

Java Transaction APl 10-7

Single-Phase Commit

Bean-Managed Transactions

If you declare the bean as bean-managed transactional (BMT) within the

<t ransacti on-type>, then the bean implementation must demarcate the start,
commit, or rollback for the global transaction. In addition, you must be careful to
retrieve the Dat aSour ce connection after you start the transaction and not before.

Programmatic transaction demarcation For programmatic transaction demarcation, the
bean writer can use either JTA’s user transaction interface or JDBC’s connection
interface methods. The bean writer must explicitly start and commit or rollback
transactions within the timeout interval.

Programmatic transaction demarcation must be used by Web components (JSP,
Servlets) and Stateless Session beans; Stateful Session beans may use it; entity beans
must use declarative transaction demarcation.

Client-side transaction demarcation This form of transaction demarcation is not
required by the J2EE specification, and is not recommended for performance and
latency reasons. OC4J does not support client-side transaction demarcation.

JTA Transactions

The Web component or bean writer must explicitly issue begin, commit and
rollback methods of the User Tr ansact i on interface as follows:

Context initCtx = new lInitial Context();
ut = (UserTransaction) initCtx.lookup(“java:conp/env/UserTransaction”);

ut. begin();
/1 Commit the transaction started in ejbCreate.

Try {
ut.comit();

} catch (Exception ex) { ...}

JDBC Transactions

Thej avax. sql . Connect i on class provides commit and rollback methods. JDBC
transactions implicitly begin with the first SQL statement that follows the most
recent commit, rollback, or connect statement.

The following code example, which is available for download from the OC4J
sample code OTN siteassumes that there are no errors.

This example demonstrates the combination of demarcating a transaction and
enlisting the database resources in the following manner:

10-8 Oracle9iAS Containers for J2EE Services Guide

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Single-Phase Commit

1. Retrieves the User Tr ansact i on object from the bean context.
2. Starts the transaction with the begi n method.

3. Enlists the database as "Retrieving the DataSource Connection" section on
page 10-4 describes.

This example is the same as listed in the "Retrieving the DataSource Connection”
section, but it is surrounded by User Tr ansacti on begi n and comi t methods.

Dat aSour ce renot eDS;
Context ic;

int enpno = 0;
doubl e salary = 0.0;

/I Retrieve the User Transaction object. Its methods are used for txn demarcation
User Transaction ut = ctx.getUserTransaction ();

//Start the transaction
ut. begin();

/IRetrieve the initial context. No JNDI properties are necessary here
ic =newlnitial Context ();

/1 Lookup the Ori onCMIDataSource that was specified in the data-sources.xm
remot eDS = (DataSource)ic. | ookup ("java:conmp/env/jdbc/ O acl eCMIDS");

/I Retrieve a connection to the database represented by this DataSource
Connection renoteConn = renot eDS. get Connection ("SCOTT", "TIGER');

/1Since this inplementation uses SQLJ, create a default context for this
/I connecti on.
Def aul t Cont ext dc = new Defaul t Context (renoteConn);

/I'Performthe SQL statement against the database, specifying the default
/lcontext for the database in brackets after the #sgl statenent.
#sql [dc] { select empno, sal fromenp where ename = :name };

/1 Assuning everything went well, comit the transaction.
ut.comit();

Java Transaction APl 10-9

Two-Phase Commit

Two-Phase Commit

The main focus of JTA is to declaratively or programmatically start and end simple
and global transactions. When a global transaction is completed, all changes are
either committed or rolled back. The difficulty in implementing a two-phase
commit transaction is in the configuration details. To understand this section, you
must understand non-emulated data sources. See the non-emulated Dat aSour ce
section in the Oracle9iAS Containers for J2EE Services Guide.

Figure 10-1 shows an example of a two-phase commit

engine—j dbc/ Or acl eConmm t DS—coordinating two databases in the global
transaction—j dbc/ Or acl eDS1 and j dbc/ Or acl eDS2. Refer to this example
when going through the steps for configuring your JTA two-phase commit
environment.

Figure 10-1 Two-Phase Commit Example

JTA database 1
OracleDS1

user: SCOTT

two-phase commit
engine:

OracleCommitDS

user: SCOTT

JTA database 2
OracleDS2

user:SCOTT

Configuring Two-Phase Commit Engine

When a global transaction involves multiple databases, the changes to these
resources must all be committed or rolled back at the same time. That is, when the
transaction ends, the transaction manager contacts a coordinator—also known as a
two-phase commit engine—to either commit or roll back all changes to all included
databases. The two-phase commit engine is an Oracle9i database that is configured
with the following:

10-10 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit

Fully-qualified database links from itself to each of the databases involved in
the transaction. When the transaction ends, the two-phase commit engine
communicates with the included databases over their fully-qualified database
links.

A user that is designated to create sessions to each database involved and is
given the responsibility of performing the commit or rollback. The user that
performs the communication must be created on all involved databases and be
given the appropriate privileges.

To facilitate this coordination, you must configure the following:

1.

Designate and configure an Oracle9i database as the two-phase commit engine.
When you have defined the database that is to act as the two-phase commit
engine, configure it as follows:

a. Define a non-emulated data source, using Or i onCMTI'Dat aSour ce, for the
two-phase commit engine database in the dat a- sour ces. xm file. The
following code defines the two-phase commit engine
Ori onCMTDat aSour ce in the dat a- sour ces. xm file.

<dat a- source
cl ass="com evernind. sql . Ori onCMIDat aSour ce"
name="0Cr acl eCommi t DS"
| ocation="j dbc/ O acl eConmi t DS"
connection-driver="oracle.jdbc.driver.COacleDriver"
user nanme="coor dusr"
passwor d="coor dpwd"
url="jdbc: oracl e: thin: @ysun; 5521:jis"
i nactivity-timeout="30"

/>

b. Refer to the two-phase commit engine Dat aSour ce in either the global or
local ori on-appl i cation. xnl file. The global XML file exists in the
confi g/ directory. The local XML file exists in the application EAR file.

Configure the two-phase commit engine in the ori on- appl i cati on. xm
as follows:

<commi t - coor di nat or >
<commit-class class="com evernind. server. Oracl eTwoPhaseCommi t Driver" />
<property nane="datasource" val ue="jdbc/ Oracl eCommi t DS" />
<property nane="usernane" val ue="coordusr" />
<property nane="password" val ue="coordpwd" />
</ conmi t - coor di nat or >

Java Transaction APl 10-11

Two-Phase Commit

The parameters are as follows:

*

Specify the INDI name of "j dbc/ Or acl eComni t DS" for the
Ori onCMTDat aSour ce defined in the dat a- sour ces. xm . This
identifies the Dat aSour ce to use as the two-phase commit engine.

Specify the two-phase commit engine username and password. This
step is optional, because you can alternatively specify it in the

Dat aSour ce configuration. This is the username and password to use
as the login authorization to the two-phase commit engine. This user
must have the privileges previously mentioned in step 4.

Note: The container prioritizes the username and password
defined in the ori on- appl i cati on. xm file over the username
and password defined in the dat a- sour ces. xm file.

*

Specify the <comi t - cl ass>. This class is always
Oracl eTwoPhaseConmi t Dri ver for two-phase commit engines.

The following example defines the two-phase commit engine in the
<conmi t - coor di nat or > element in the appl i cati on. xm file.

*

The O acl eTwoPhaseComm t Dx i ver class is defined in the
<conmi t - cl ass> element.

The JNDI name for the Ori onCMTIDat aSour ce is identified in the
<pr opert y> element whose nane is "dat asour ce".

The username is identified in the <pr oper t y> element whose name is
"user nane".

The password is identified in the <pr oper t y> element whose name is
"password".

Create the user on the two-phase commit engine that facilitates the transaction.
First, the user opens a session from the two-phase commit engine to each of the
involved databases. Second, it must be granted the CONNECT, RESOURCE,
CREATE SESSI ON privileges to be able to connect to each of these databases.
The FORCE ANY TRANSACTI ON privilege allows the user to commit or roll back
the transaction.

Additionally, create this user and grant these permissions on all databases
involved in the transaction.

10-12 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit

For example, if the user that is needed for completing the transaction is
COORDUSR, you would do the following on the two-phase commit engine and
EACH database involved in the transaction:

CONNECT SYSTEM MANACGER,

CREATE USER COCORDUSR | DENTI FI ED BY COCRDUSR;

GRANT CONNECT, RESOURCE, CREATE SESSI ON TO COORDUSR;
GRANT FORCE ANY TRANSACTI ON TO COORDUSR,

Configure fully-qualified public database links (using the CREATE PUBLI C
DATABASE LI NK command) from the two-phase commit engine to each
database that may be involved in the global transaction. This is necessary for
the two-phase commit engine to communicate with each database at the end of
the transaction. The COORDUSR must be able to connect to all participating
databases using these links.

This example has two databases involved in the transaction. The database link
from the two-phase commit engine to each database is provided on each

Ori onCMTDat aSour ce definition in a <pr opert y> element in the

dat a- sour ces. xm file. See the next step for the "dbl i nk" <pr operty>
element.

Configure non-emulated data source objects of type Ori onCMTIDat aSour ce
for each database involved in the transaction with the following information:

a. The JNDI bound name for the object.
b. The URL for creating a connection to the database.

c. The fully-qualified database link from the two-phase commit engine to this
database. This is provided in a <pr oper t y> element within the
Dat aSour ce definition in the dat a- sour ces. xm file.

The following Or i onCMTIDat aSour ce objects specify the two databases
involved in the global transaction. Notice that each of them has a <pr operty>
element with the name "dbl i nk" that denotes the database link from the
two-phase commit engine to itself.

<dat a- source
cl ass="com evernind. sql . Ori onCMIDat aSour ce"
name="Cr acl eCMIDS1"
| ocation="j dbc/ Oracl eDS1"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="driver"
url="jdbc: oracl e: thin: @ysun; 5521:jis"

Java Transaction APl 10-13

Two-Phase Commit

i nactivity-timeout="30"
<property nane="dbl i nk"
val ue="LI NK. REGRESS. RDBM5. DEV. US. ORACLE. COM'/ >
</ dat a- source>

<dat a- source
cl ass="com evernind. sql . Ori onCMIDat aSour ce"
name="0Cr acl eCMIDS2"
| ocation="j dbc/ Oracl eDS2"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="driver"
url="jdbc: oracl e: thin: @ysun; 6521:jis"
i nactivity-timeout="30"
<property nane="dbl i nk"
val ue="LI NK. REGRESS. RDBMS. DEV. US. ORACLE. COM'/ >
</ dat a- sour ce>

Note: If you change the two-phase commit engine, you must
update all database links—both within the new two-phase commit
engine as well as within the Ori onCMI'Dat aSour ce <pr operty>
definitions.

Once the two-phase commit engine and all the databases involved in the
transaction are configured, you can start and stop a transaction in the same manner
as the single-phase commit. See "Single-Phase Commit" on page 10-2 for more
information.

Two-Phase Commit DTD Elements

The following code example contains the elements in the
orion-application.xm filethat are relevant to the two-phase commit engine:

<! ELEMENT ori on-application

(ej b-modul e*, web- nodul e*, cl i ent-nodul e*, securi ty-rol e-mappi ng*,
persistence?, library*, principals?, mail-session*, user-nanager?,
| og?, data-sources?, commit-coordinator?, namespace-access?)>

<I-- Transaction co-ordinator for the server. -->
<! ELEMENT conmit-coordinator (commit-class, property*)>

< ELEMENT commit-cl ass (#PCDATA)>

10-14 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit

<I ATTLI ST cl ass name CDATA #| MPLI ED>

<I-- A property to set when using a custont3rd-party DataSource. -->
<I ELEMENT property (#PCDATA)>

<I ATTLI ST property name CDATA #l MPLI ED

val ue CDATA #| MPLI ED

>

Java Transaction APl 10-15

Two-Phase Commit

10-16 Oracle9iAS Containers for J2EE Services Guide

1

Java Message Service

This chapter describes the Java Message Service (JMS) provided as part of
Oracle9iAS Containers for J2EE (OC4)). This chapter contains these topics:

« Overview
« The JMS Examples
« Configuration Issues

= Resource Providers

Overview

Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. The Java Message Service (JMS) provides a common way for
Java programs to access these systems. JMS is the standard messaging API for
passing data asynchronously between application components, allowing business
integration in heterogeneous and legacy environments.JMS provides two
programming models;

. Point-to-Point (Queue) —messages are sent to one consumer only.

. Publish and Subscribe (Topics) —messages are broadcast to all registered
listeners.

JMS queues and topics are bound to the INDI environment and made available to
J2EE applications.

The OC4J JMS implementation is fast, lightweight, and fully compliant with the
JMS 1.0.1 specification. OC4J applications (application-client programs, servlets,
EJBs, and so on) can access queues and topics using the IMS API. OC4J applications
can also use an OC4J-specific INDI namespace to look up JIMS

Connecti onFact ori es and Dest i nati ons.

Java Message Service 11-1

The JMS Examples

OC4J defines a Resour cePr ovi der interface for plugging in message providers
and provides the implementation classes for Oracle’s Advanced Queuing (a.k.a.
OracleJMS), as well as for third-party messaging systems such as MQSeries,
SonicMQ and SwiftMQ. The implementation classes and the connection factories
make the message providers known in the OC4J namespace

(ava: comp/ env/ j s) for JIMS consumers such as Java clients and
Message-Driven Beans. OC4J's Resour cePr ovi der interface allows switching
between message providers transparently to the JMS client.

The JMS Examples

The OC4J JMS implementation comes with two examples, IMS-Chat and
Coffeemaker. JIMS-Chat demonstrates topics; Coffeemaker demonstrates queues.

Running JMS-Chat
JMS-Chat is a small chat example that demonstrates topics.
To run the example:

1. If JMS is not activated, activate it by editing ser ver . xm to remove the
comments around <j ms-config ... />,

2. Start the OC4J server. Change to the $J2EE_HOVE directory and issue the
command:
java -jar océ4j.jar
3. Change to the $J2EE_HOVE/ denvo/ j ns directory and start two chat clients in
different console windows. In each window, issue the command

java - D ava. nami ng. security. credential s=<adnmi n password> -jar jnschat.jar
4. Type a message into one console window and press RETURN; the message
appears in the other window.

Running Coffeemaker

The coffeemaker example demonstrates queues. Each service is a coffee machine,
which takes approximately 25 seconds to make a cup of coffee. You can plug in as
many makers and as many order units as you wish.

To run the example:

1. If JMS is not activated, edit ser ver . xml and uncomment the <j ns-config
/ > tag to activate the JMS service.

11-2 Oracle9iAS Containers for J2EE Services Guide

Configuration Issues

2. Start the OC4J server. Change to the $J2EE_HOVME directory and issue the
command:

java -jar océ4j.jar
3. Change to the $J2EE_HOME/ denvo/ j nms directory and start the coffee maker.

java -jar cof feemaker.jar
4. Change to the $J2EE_HOVE/ deno/ j s directory and start the coffee requester.

java - D ava. nam ng. security.credential s=<adm n password> -jar cof f eemaker.jar -order
5. The coffee requestor prompts Br and? Type in a brand of coffee and press
RETURN. The coffee maker prints “Maki ng your brand coffee...*

Configuration Issues

This section discusses configuring OC4J to support various deployment methods
and messaging systems.

Deploying JMS Clients Across Nodes

To deploy clients across multiple nodes, you must edit the j ms. xm file for the
client. For example, you would edit the queue- connect i on-f act ory property
to look like:

<queue- connection-factory host="host name. domai n. con| 123. 124. 125. 126| [ALL] "
| ocati on="] nms/ QueueConnect i onFact ory" password="123" port="9127"

username="nyUser" />

The attribute values for this property are:

« host - The host/IP this factory connects to. By default, host is the local server.
« | ocation-TheJNDI name the client should bind to.

« passwor d - The password for the specified user nane.

« port —The target port. The default is 9127.

= user nane — The username the client should use to connect.

Message-Driven Beans

OC4J JMS supports message-driven beans (EJBs that process JIMS messages
asynchronously), as specified in EJB2.0. Message-driven beans can either use
container-managed transactions (commit only) or bean-managed transactions. For
details, see the documentation for the messagelogger example.

Java Message Service 11-3

Resource Providers

Resource Providers

The Resour cePr ovi der interface allows you to plug in third-party message
providers (such as Oracle Advanced Queuing, MQSeries and SonicMQ) as JMS
resource providers. This allows EJBs, servlets, and OC4J clients to access many
different queue implementations. The third-party message providers are accessed
through the Resour cePr ovi der interface.

Note: Except as noted here, you configure OC4J JMS as you
would any other JMS implementation.

Plugging In Resource Providers

To add a custom resource provider to OC4J, you must add the
<resource-provi der>tagtoori on-application. xnl . Thissection describes
how to add one such Resour cePr ovi der.

An example Resour cePr ovi der, Cont ext Scanni ngResour cePr ovi der, is
bundled with OC4J. To use this Resour cePr ovi der, you would add the following
tagto ori on-application. xm:

<resource- provi der
class="com everni nd. server. del oyment . Cont ext Scanni ngResour ceProvi der”
di spl ay- name="Swi ft MY’ >
<descri pti on>
Swi ft MQ resource provider.
</ description>
<property name="java.namng.factory.initial”
val ue="com swi ftmg. j ndi . I ni tial Cont ext Factoryl npl ">
<property name="java.nam ng. provi der.url”
val ue="smp: / /| ocal host : 4001" >
</resource-provi der >

This example makes SwiftMQ the default Resour cePr ovi der for IMS
connections -- the first <r esour ce- provi der >taginori on-application. xm
becomes the default resource provider for the types it handles. Adding this tag
makes the resource available in the Orion JNDI under j ava: conp/ r esour ce/ , as
well as making SwiftMQ the default JMS resource for such actions as deploying a
message-driven bean.

11-4 Oracle9iAS Containers for J2EE Services Guide

Resource Providers

Configuring Message Providers

1.

Install and configure the message provider according to the instructions in its
documentation, then verify the installation by running any examples or tools
supplied by the vendor.

Register the message provider in some JNDI-accessible store (a file system, an
LDAP OiD, or the like.) Use JMS provider tools to configure and populate this
JNDI store with, for instance, the provider's QueueConnect i onFact ory and
the queues of interest.

Make the JNDI store accessible to OC4J by adding a <r esour ce- provi der >
entity to ori on- appli cati on. xm pointing to the JNDI store. This example
demonstrates using SonicMQ as the message provider and the file system as the
JNDI store:

<resource-provi der
cl ass="com everm nd. server. depl oynent. Cont ext Scanni ngResour cePr ovi der "
name="Soni cJMS"'>
<property nane="java.nam ng.factory.initial"
val ue="com sun. j ndi. f scont ext. Ref FSCont ext Fact ory" />
<property nane="java. nam ng. provider.url"
value="file:/private/jndi-directory" />
</resource-provi der >
Copy the required JNDI files (for a file-system JNDI, f scont ext . j ar and
providerutils.jar)to$J2EE HOVE/ | i b.

Restart OC4J. Whenever you add, delete, or reconfigure a resource provider,
you must restart OC4J.

JNDI Resource Provider Names

OCA4J resource provider extensions create resources under the
j ava: conp/ resour ce JNDI name tree. OJMS resource names take the form:

java: conp/ resour ce/ Provi der Nane/ Resour ceType/ Resour ceNarme
where:

ProviderName is the user-chosen name of the resource provider.

ResourceType (required for Oracle AQ/OJMS resource providers only) is a fixed string
that can take one of four values: QueueConnect i onFact ori es,

Topi cConnecti onFact ori es, Queues, or Topi cs. The specified value identifies
the JMS resource as being of the appropriate administered object type.

Java Message Service 11-5

Resource Providers

ResourceName is a user-chosen name for a JMS connection factory or a valid AQ
gueue name for a JMS destination. Valid Oracle AQ names conform to the
[schema.] queue_nane scheme.

Accessing Message Queues

OC4J applications can now access the message queues. Message queues can be
accessed in one of two ways:

1. Through their names, as in

java: conp/ resour ce/ <Pr ovi der _Name>/ <Queue_Nane>
An application would access the queue like this:

queueConnect i onFact or y=(QueueConnect i onFact ory)
j ndi Cont ext. | ookup("]java: conp/ resour ce/ Soni cJMS/ QueueConnectionFactory");

2. By binding message-driven beans to queues in ori on-ej b-j ar. xm

To bind message-driven beans to queues in ori on- ej b-j ar, you would add a
tag like:

<nmessage- dri ven- depl oyment

connection-factory-1ocation="java: conp/resource/ Soni cJMS/ QueueConnecti onFactory"

destination-|ocation="java: conp/ resour ce/ Soni cJMS/ Sanpl eQL"
name="MessageBean" >

Using Oracle AQ as a Resource Provider

To access Oracle AQ queues through JMS, you must do the following:

1. Create an RDBMS user through which the JMS application will connect to the
back-end database. The user should have the necessary privileges to perform
AQ operations. AQ allows any database user to access queues in any schema,

provided the user has and the schema exports the appropriate access privileges.

2. Configure an OC4J resource provider with information about the back-end
database. Create data sources or LDAP directory entries, if needed.

3. Access the resource using Oracle AQ/OJMS resource names, which include the
ResourceName name component.

Configuration

The OC4J resource provider for OJMS is implemented by the class
oracl e.jms. g nsCont ext . Each OJMS resource provider instance is a

11-6 Oracle9iAS Containers for J2EE Services Guide

Resource Providers

<resource-provi der ...> XML element (achild element of the
orion-application element) in the $J2EE_HOVE/ confi g/ appl i cati on. xml file.

There are 3 ways of configuring the OJMS resource provider.

1. Inline configuration (all relevant information for accessing the back-end
database is specified within the resource-provider element in
application. xm).

2. Data Source configuration (the resource-provider element in
application. xm referstoa data-source element configured in
dat a- sour ces. xm which contains information on accessing the back-end
database).

3. LDAP configuration (the resource provider contains information to access an
OID/LDAP directory which contains information on accessing the back-end
database).

This section describes only the inline and data source configuration methods.

Inline Configuration An inline resource provider configuration consists of a resource
provider instance name (user-chosen, but unique among all resource providers
configured in OC4J), a JDBC URL to connect to the back-end database, and the
user/password to connect as. For example:

<resource-provi der class="oracle.jnms.Q nsContext" name="MCont ext 1">
<description>QIM5 Context using thin JDBC</description>
<property nane="url"
val ue="j dbc: oracl e: t hi n: @yhost. f 0o. com 1521: mydb" ></ property>
<property nane="usernane" val ue="nyuser"></property>
<property nane="password" val ue="nypass"></property>
</ resource-provi der >

<resource-provi der class="oracle.jnms.Q nsContext" name="MCont ext2">
<description>QIM5 Context using OCl JDBC</description>
<property nane="url" val ue="j dbc: oracl e: oci: @vydb. f 00. com' ></ property>
<property nane="usernane" val ue="nyuser"></property>
<property nane="password" val ue="nypass"></property>
</ resource-provi der >
This creates 2 resource providers, MyCont ext 1 and MyCont ext 2, that log in as
myuser/ nypass to the back-end database mydb using the thin and OCI JDBC
drivers respectively.

Data Source Configuration A data source resource provider configuration consists of a
resource provider instance name (user-chosen, but unique among all resource

Java Message Service 11-7

Resource Providers

providers configured in OC4)), a data source name, and the data source
configuration (in dat a- sour ces. xm). For example:

<resource-provi der class="oracle.jns.Q nsContext" name="MCont ext 3">
<description>QIM5 Context using a datasource</description>
<property nane="datasource" val ue="jdbc/ MyDS3"></ property>

</ resource-provi der >

<resource-provi der class="oracle.jns.Q nsContext" name="MCont ext 4">
<description>QIM5 Context using a datasource</description>
<property nane="datasource" val ue="jdbc/ MyDS4" ></ pr operty>

</ resource-provi der >

inappl i cati on. xm and the following data sources in dat a- sour ces. xni :

<dat a- sour ce
class="oracl e.j dbc. pool . Oracl eDat aSour ce"
name="M/DS3"
| ocati on="j dbc/ MyDS3"
xa- | ocation="jdbc/ xa/ MyXADS3"
ej b-1ocation="j dbc/ MyEj bDS3"
url="jdbc: oracl e:thin: @uvyhost.foo.com 1521; nydb"
user nanme="myuser"
passwor d="nyuser"
inactivity-timeout="30"
/>

<dat a- source
class="oracl e.j dbc. pool . Oracl eDat aSour ce"
name="M/DS4"
| ocati on="j dbc/ MyDS4"
xa- | ocation="jdbc/ xal MyXADS4"
ej b-1ocation="j dbc/ MyEj bDS4"
url="jdbc: oracl e: oci: @ydb. f oo. cont
user nane="myuser"
passwor d="nyuser"
inactivity-timeout="30"
/>
This creates 2 resource providers, MyCont ext 3 and MyCont ext 4, that use the data
sources j dbc/ MyDS3 and j dbc/ MyDS4 respectively to connect to the back-end
database. The data sources themselves contain the appropriate JDBC
driver/connect information.

11-8 Oracle9iAS Containers for J2EE Services Guide

Resource Providers

Using MQSeries As a Resource Provider

The Resource Provider interface provides support for plugging in third-party JIMS
implementations. This example demonstrates how to make MQSeries the default
Resource Provider for IMS connections. The MQSeries resources are available in
OC4Junder j ava: conp/ resour ce/ MSer i es/ as well as from deployed
message-driven beans.

Configuring
1. Install and configure MQSeries on your system, then verify the installation by
running any examples or tools supplied by the vendor.

2. Usethe <resource-provi der>taginorion-application.xn toadda
custom Resource Provider. You can find an example of using this tag for
SonicMQ integration in
$J2EE_HOVE/ r es_provi der/ soni crg/ ori on-appl i cation. xm .

3. Add the following MQSeries JMS client jar files to $J2EE_HOVE/ | i b:

comibmnmy.jar
com i bm ngbi nd. j ar
comibmngjms.jar
nyji.properties
4. Addac<library>elementto $J2EE_HOVE/ confi g/ server. xmnl , forcing
the OC4J class loader to load the third party JMS client jar files:

<library path="../lib" />
5. Add $J2EE_HOVE/ oc4j . j ar, $J2EE_HOME/ j ndi . j ar, and
$J2EE_HOVE/ ej b. j ar to your CLASSPATH.

Using SonicMQ As A Resource Provider

SonicMQ is a Messaging Broker with a complete implementation of the IMS 1.0.1
Specification. The Resource Provider interface provides support for plugging in
third-party JMS implementations. This example describes how to make SonicMQ
the default Resource Provider for JIMS connections. The SonicMQ resources will be
available in OC4J under j ava: conp/ r esour ce/ Soni cMQ, as well as when a
message-driven Bean is deployed.

Java Message Service 11-9

Resource Providers

Configuring

Note: SonicMQ broker does not embed a JNDI service. Instead, it
relies on an external directory server to register the administered
objects. Administered objects, such as queues, are either created by
an administrator using SonicMQ Explorer or programmatically
using the Sonic Management API. We have arbitrarily chosen to
register the administered objects from SonicMQ Explorer using the
file system JNDI.

Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor.

In<instal |l -di r>/ Soni cMY bi n/ expl orer. sh, append the file system
JNDI jar files to $SONI CMQ_CLASSPATH.

Start the SonicMQ Explorer by invoking
<install-dir>/Soni cMY bi n/ expl orer. sh.

Create a connection to SonicMQ broker by clicking on Message Brokers in the
Explorer tree with Broker Host 'l ocal host: 2506'. Click JIMS Administered
Object Stores and enter the following two properties under JNDI Directory
Service section:

java. nam ng.factory.initial=comsun.jndi.context.Ref FSCont ext Factory,
java.nam ng.provider.utl=file:/private/jndi

Under the Queue tab, create 'Sanpl eQL"' and create

'‘QueueConnecti onFact ory'with URLtcp:/ /1 ocal host: 2506.

Use the <r esour ce- provi der>taginori on-application.xnl toadda
custom Resource Provider.

Add the SonicMQ JMS client jar file, $J2EE_HOVE/ j ars/ client.jar,to
$J2EE_HOVE/ | i b.

Addac<li brary>element to$J2EE_HOVE/ confi g/ server. xm so that the
third party JMS client jar files will be loaded by the OC4J class loader, as in:

<library path="../lib" />
Add $J2EE_HOVE/ oc4j . j ar, $J2EE_HOMWE/ j ndi . j ar, and
$J2EE_HOVE/ ej b. j ar to your CLASSPATH.

11-10 Oracle9iAS Containers for J2EE Services Guide

21

Java Connector Architecture

This chapter describes how the Java Connector Architecture (JCA) can be used in an
Oracle9iAS Containers for J2EE (OC4J) application. This chapter covers the
following topics:

« Introduction
« Deploying Resource Adapters with OC4J

« Container-Managed Sign-on vs. Component-Managed Sign-on

Introduction

The J2EE Connector Architecture (JCA) is a required J2EE 1.3 API defining a
standard architecture for connecting the J2EE platform to heterogeneous Enterprise
Information Systems (EISs). Examples of EISs include ERP, mainframe transaction
processing, database systems, and legacy applications not written in the Java
programming language.

Java Connector Architecture 12-1

Introduction

Figure 12-1 JCA Architecture

e ~ppicabon Contract i
Componsnt As . St

System Cantracts
|:|_'.I.;_|,5l|l.'} ol asraTE]

DA Enderprise

Information
Byslam

Resource Adapter

A resource adapter is a driver used by an application server or an application client
to connect to a specific EIS. Examples of resource adapters are JDBC or SQLJ drivers
to connect to a relational database, an ERP resource adapter to connect to an ERP
system, and a TP resource adapter to connect to a TP monitor. J2EE 1.3 requires
application servers to support both stand-alone and embedded resource adapters.

A stand-alone resource adapter, materialized by a stand-alone Resource Adapter
Archive (RAR) file, is available to all deployed applications in the application server
instance.

Here is an example of files found in a RAR file. The list of files can vary.

[META- I NF/ ra. xm

/ META- | NF/ oc4j -ra. xm

/howt 0. htm

/i mages/icon.jpg

/ra.jar

/cci.jar

/win.dl

/solaris.so

An embedded resource adapter, bundled within an enterprise application archive
(EAR), is available only to the J2EE application with which it is packaged.

12-2 Oracle9iAS Containers for J2EE Services Guide

Introduction

Application Contracts

The client API furnished by a resource adapter can either be the standard Common
Client Interface (CCl), or a client API specific to the type of a resource adapter and
its underlying EIS. For example, the JDBC API is the client API specific to relational
database accesses. The EIS side of the contract is implemented by the resource
adapter, transparently to the application components.

Quality of Service Contracts

JCA also defines three “Quality of Service” (QoS) contracts between an application
server and an EIS.

« Connection Pooling: enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS.

« Transaction Management: enables an application server to use a transaction
manager (JTA XAResource) to manage transactions across multiple resource
managers.

« Security management: provides authentication, authorization, and secure
communication between the J2EE server and the EIS.

All resource adapters must support their side of the QoS contracts to be pluggable
into application servers.

Java Connector Architecture 12-3

Deploying Resource Adapters with OC4J

Deploying Resource Adapters with OC4J

This section discusses creating deployment descriptors, deploying stand-alone
resource adapters, and deploying embedded resource adapters.

JCA Deployment Descriptors
OCA4J provides the following deployment descriptors:

ra.xml standard J2EE deployment descriptor for developing against resource
adapters

oc4j-raxml contains deployment configurations for deploying resource adapters to
OCA4J. It contains EIS connection information as specified in the deployment
descriptor of the resource adapter (r a. xni), INDI name to be used, connection
pooling parameters, and resource principal mappings (security-confi g

el enent)

oc4j-connectors.xml In an OC4J instance with stand-alone resource adapters
deployed, there should be one oc4j - connect or s. xni file in the
$0OC4J_HOVE/ conf i g directory, which contains a list of stand-alone resource
adapters that have been deployed in this OC4J instance.

Example:

<oc4j - connect or s>
<connect or name="nyEl S" path="eis.rar">
<native-library>lib</native-library>
</ connect or >
</ oc4j - connect or s>

Deploying Stand-Alone Resource Adapter Archives

Stand-alone resource adapter archives can be deployed in OC4J. During
deployment, each stand-alone resource adapter should be given a unique name for
future operations such as undeployment of the resource adapter. Deployment of
resource adapters in OC4J can be done in one of the following ways:

Deployment using Admin command-line tool

A - depl oyconnect or switch should be added to the admin command-line tool
(admin.jar) to allow deployment of stand-alone resource adapters:

- depl oyconnect or

12-4 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters with OC4J

-file [path] - path to the .rar file

- name [name] - a name given to this resource adapter
OC4J should decompress the . r ar file into
$0OC4J_HOVE/ <connect or - di r ect or y>/ <connect or - nane> directory. If the
directory does not already exist, it will be created. A new attribute
connector-directory should be added to the <appl i cati on-server>elementin
appl i cati on-server. dt d to specify the path used for the storage of stand-alone
resource adapters. connector-directory defaultsto. . / connect or s.

For example, a certain resource adapter is deployed using the following values in
the - depl oyconnect or switch:

java -jar admin.jar ... -depl oyconnector -name nyname -file path/myconnector.rar
OC4J will uncompress nyconnect or. r ar and store the files in
$0OC4J_HOVE/ connect or s/ nynane directory.

The deployment tool should verify that the transaction level and authentication
mechanism specified in the deployment descriptor of the resource adapter

(ra. xm) are supported by OC4J. Otherwise, the resource adapter cannot be
deployed into OC4J and an error message should be displayed.

Manual deployment through directory manipulation

Stand-alone resource adapter archives should also allowed to be deployed
manually by creating a <connect or - name> directory under

$0C4J_HOWVE/ <connect or - di r ect or y>, copying the . rar file into that
directory, and adding an entry to the oc4j - connect or s. xm file for the new
resource adapter.

Deploying Embedded Resource Adapters

For each application deployed in an OC4J instance that contains resource adapter(s),
there should be one oc4j - connect ors. xm file under
$0C4J_HOVE/ appl i cati on- depl oynent s/ <app- name>/ .

The oc4j - connect ors. xm file contains the list of resource adapters for a Web
application packaged within an EAR file (one entry for each resource adapter).

The name and path of this file is defined in a new element called <connectors>
under the <orion-application> element in ori on- appl i cati on. xnml . (If no
<connectors> element is specified inori on- appl i cati on. xm , the default file is
oc4j - connect ors. xm).

Java Connector Architecture 12-5

Container-Managed Sign-on vs. Component-Managed Sign-on

Example

A resource adapter archive, myPackaged. r ar, is packaged within the EAR file
my App. ear. The application is then deployed with OC4J, under
$0OC4J_HOVE/ appl i cati ons/ myapp/ nyPackaged_r ar.

If an oc4j - connect or s. xm , which specifies a deployment name " myRA" | is
included in the . ear file; the generated oc4j -ra. xm file will be located in
$0OC4J_HOVE/ appl i cati on-depl oynment / nyapp/ myRA/ . An

oc4j - connect ors. xm file will be created under the

$OC4J_HOVE/ appl i cati on-depl oynment / myapp/ directory.

Let's assume that a stand-alone resource adapter connection is configured in
oc4j -ra. xnl tobe bound to the location ei s/ nyEl S. An application
component would look up its connection factory using the JNDI name

"java: conmp/ env/ ei s/ myEl S". The application component should have the
resource-ref element defined in its deployment descriptor in web. xni or

ej b-jar. xm , which may look like the following example:

<resource-ref>
<res-ref-nane>ei s/ nyEl S</res-ref-name>
<res-type>j avax. resource. cci . Connecti onFactory</res-type>
<res-aut h>Appl i cation</res-aut h>
<res-sharing- scope>Shar eabl e</r es- shari ng- scope>
</resource-ref>
try
{
Context ic = new Initial Context();
user = (String) ic.lookup(“java: comp/env/user”);
password = (String) ic.lookup (“java:conp/env/password”);
c¢f = (ConnectionFactory)
i c.lookup(“java: conp/env/eis/nyEl S");
} catch (Nami ngException ex) {
ex. printStackTrace();

}

Container-Managed Sign-on vs. Component-Managed Sign-on

The sign-on to the EIS system through a resource adapter can be managed either by
the application component or by the application server, OC4J. This can be specified
through the <r es- aut h> deployment descriptor element for EJB or web
components. If the <r es- aut h> element is set to “Application”, the application

12-6 Oracle9iAS Containers for J2EE Services Guide

Container-Managed Sign-on vs. Component-Managed Sign-on

component would sign on to the EIS programmatically. The application component
is responsible for providing explicit security information for the sign-on. If the

<r es- aut h>element is set to “Container”, OC4J will provide the resource
principal and credentials required for signing on to the EIS.

Example of application code:

Context initctx = new Initial Context();
/1 perform JNDI | ookup to obtain a connection factory
j avax. resource. cci . ConnectionFactory cxf =

(javax.resource. cci . ConnectionFactory)initctx.|ookup("java: com env/eis/ WEIS");

/1 For container-nanaged sign-on, no security information is passed in the
get Connection call

j avax. resource. cci.Connection cx = cxf.getConnection();

/1 1f component - managed sign-on is specified, the code should instead
provide explicit security

/1 information in the getConnection call

/1 W need to get a new ConnectionSpec inplenentation instance for setting
| ogin

/'l attributes

com nyei s. Connecti onSpecl npl connSpec = ...

connSpec. set User Narme(" El Suser");

connSpec. set Passwor d(" El Spassword");

j avax. resource. cci.Connection cx = cxf.getConnection(connSpec);
In either case, the cr eat eManagedConnect i on method in the resource adapter's
implementation of j avax. resour ce. spi . ManagedConnect i onFact ory
interface will be called to create a physical connection to the EIS.

In the case of component-managed sign-on, OC4J will invoke the
cr eat eManagedConnect i on method with a null Subject and the
Connecti onRequest | nf 0 object passed in from the application component code.

If container-managed sign-on is specified, OC4J will provide a

j avax. security. aut h. Subj ect object to the cr eat eManagedConnecti on
method. The content of the Subject object is different depending on the value in the
<authentication-mechanism-type> and <credential-interface> elements in the
resource adapter deployment descriptor.

If the <authentication-mechanism-type> is Basi cPasswor d and the
<credential-interface> is

j avax. resource. spi.security. PasswordCredenti al , the Subject object
should contain j avax. resource. spi . security. PasswordCr edenti al
objects in the private credential set.

Java Connector Architecture 12-7

Container-Managed Sign-on vs. Component-Managed Sign-on

On the other hand, if the <authentication-mechanism-type> is Kerbv5 or any other
non-password based authentication mechanism that OC4J will support in the
future, and the <credential-interface> is

j avax. resource. spi.security. Generi cCredenti al , the Subject object
should contain credentials represented by instances of implementers of the

j avax. resource. spi.security. GenericCredenti al interface. The
Ceneri cCredenti al interface is used for resource adapters that support non
password-based authentication mechanism types such as Kerberos.

12-8 Oracle9iAS Containers for J2EE Services Guide

3L

Working With Java Object Cache

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) Java Object
Cache, including its architecture and programming features.

This chapter covers the following topics:

« Java Object Cache Concepts

« Java Object Cache Object Types

« Java Object Cache Environment

« Developing Applications Using Java Object Cache
« Working with Disk Objects

« Working with StreamAccess Objects

« Working with Pool Objects

« Running in Local Mode

« Running in Distributed Mode

Working With Java Object Cache 13-1

Java Object Cache Concepts

Java Object Cache Concepts

Oracle9iAS offers the Java Object Cache to help e-businesses manage Web-site
performance issues for dynamically generated content. The Java Object Cache
improves the performance, scalability, and availability of Web sites running on
Oracle9iAS.

By storing frequently accessed or expensive-to-create objects in memory or on disk,
the Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle9iAS cache architecture includes the following cache components:

Oracle9iAS Web Cache. The Web Cache sits in front of the application servers
(Web servers), caching their content and providing that content to Web
browsers that request it. When browsers access the Web site, they send HTTP
requests to the Web Cache. The Web Cache, in turn, acts as a virtual server to
the application servers. If the requested content has changed, the Web cache
retrieves the new content from the application servers.

The Web Cache is an HTTP-level cache, maintained outside the application,
providing very fast cache operations. It is a pure, content-based cache, capable
of caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such
as servlet or JSP results). Given that it exists as a flat content-based cache
outside the application, it cannot cache objects (such as Java objects or XML
DOM obijects) in a structured format. In addition, it offers relatively limited
post-processing abilities on cached data.

Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects may contain generated pages or may
provide support objects within the program to assist in creating new content.
The Java Object Cache automatically loads and updates objects as specified by
the Java application.

Web Object Cache. The Web Object Cache is a web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically using API calls (for servlets) or custom tag libraries (for JSPs).
The Web Object Cache is generally used as a complement to the Web cache. By
default, the Web Object Cache uses the Java Object Cache as its repository.

13-2 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

A custom tag library or API allows you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or
XML text fragments, XML DOM obijects, or Java serializable objects. These
objects can be cached conveniently in association with HTTP semantics.
Alternatively, they can be reused outside HTTP, such as in outputting cached
XML objects through Simple Mail Transfer Protocol (SMTP), Java Messaging
Service (JMS), Advanced Queueing (AQ), or Simple Object Access Protocol
(SOAP).

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Java Object Cache Basic Architecture

For a programmer using the Java Object Cache, information has one of three
characteristics:

1.

Static information that never changes. The programmer handles the data
efficiently using a Java Hasht abl e.

Dynamic information that is unique. The programmer must generate data each
time the information is requested.

Variable information that is sometimes static and sometimes is generated. The
programmer uses the Java Object Cache.

Figure 13-1 shows the basic architecture for the Java Object Cache. The cache
delivers information to a user process. The process could be a servlet
application that generates HTML pages or any other Java application.

Working With Java Object Cache 13-3

Java Object Cache Concepts

Figure 13—-1 Java Object Cache Basic Architecture

U=ar U=ar U=ar
t /t 1
I Ceche I

T

Dete Sounce Dete Sounco

Distributed Object Management

For simplicity, availability, and performance, the Java object cache is specific to each
process (object creation is not centrally controlled). However, using distributed
object management, the Java Object Cache provides coordination of updates and
invalidations between processes. If an object is updated or invalidated in one
process, it is also updated or invalidated in all other associated processes. This
distributed management allows a system of processes to stay synchronized, without
the overhead of centralized control.

Figure 13-2 shows the architecture for the Java Object Cache, using distributed
object management. The cache delivers information to a user process. The user
process could be a servlet application that generates HTML pages or any other Java
application. Using the distributed object management message layer, the
application uses the Java Object Cache to share the information across processes
and between caches.

13-4 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

Figure 13—-2 Java Object Cache Distributed Architecture

U=ar U=ar U=ar
T f / \I f T
| Cepche | | Ceche |
| | | |
T Mezsage Leyer T
Dete Sounce Dete Sounco

How the Java Object Cache Works

The Java Object Cache manages Java objects within a process, across processes, or
on a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of
Java objects. There are very few restrictions on the types of Java objects that can be
cached or on the original source of the objects. Programmers use the Java Object
Cache to manage obijects that, without cache access, are expensive to retrieve or to
create.

The Java Object Cache is easy to integrate into new and existing applications.
Objects can be loaded into the object cache, using a user-defined object, the
CachelLoader, and can be accessed through a CacheAccess object. The
CacheAccess object supports local and distributed object management. Most of
the functionality of the Java Object Cache does not require administration or
configuration. Advanced features support configuration using administration
application programming interfaces (APIs) in the Cache class. Administration
includes setting configuration options, such as naming local disk space or defining
network ports. The administration features allow applications to fully integrate the
Java Obiject Cache.

Working With Java Object Cache 13-5

Java Object Cache Concepts

Each cached Java object has a set of associated attributes that control how the object
is loaded into the cache, where the object is stored, and how the object is
invalidated. Cached objects are invalidated based on time or an explicit request
(notification can be provided when the object is invalidated). Objects can be
invalidated by group or individually.

Figure 13-3 shows the basic Java Object Cache APIs. Figure 13-3 does not show

distributed cache management.

Figure 13—-3 Java Object Cache Basic APIs

U=ar

$

Admin

$

Cecho.cless

I_ CacheArcess.class
T

Attributes.cless | Ceche |

|
I— Cechelorder.cless

T

CecheAttributes.clres

Dete Sounce

13-6 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

Cache Organization
The Java Object Cache is organized as follows:

Cache Environment. The cache environment includes cache regions,
subregions, groups, and attributes. Cache regions, subregions, and groups
associate objects and collections of objects. Attributes are associated with cache
regions, subregions, groups, and individual objects. Attributes affect how the
Java Object Cache manages objects.

Cache Object Types. The cache object types include memory objects, disk
objects, pooled objects, and St r eamAccess obijects.

Table 13-1 provides a summary of the constructs in the cache environment and the
cache object types.

See Also:
« Java Object Cache Object Types on page 13-8

« Java Object Cache Environment on page 13-11

Table 13-1 Cache Organizational Construct

Cache Construct

Description

Attributes

Cache region

Cache subregion

Cache group

Memory object

Disk object
Pooled object

StreamAccess object

Functionality associated with cache regions, groups, and individual objects.
Attributes affect how the Java Object Cache manages objects.

An organizational name space for holding collections of cache objects within Java
Object Cache.

An organizational name space for holding collections of cache objects within a parent
region, subregion, or group.

An organizational construct used to define an association between objects. The objects
within a region can be invalidated as a group. Common attributes can be associated
with objects within a group.

An object that is stored and accessed from memory.
An object that is stored and accessed from disk.

A set of identical objects that the Java Object Cache manages. The objects are checked
out of the pool, used, and then returned.

An object that is loaded using a Java Qut put St r eamand accessed using a Java
I nput St r eam The object can be accessed from memory or disk, depending on the
size of the object and the cache capacity.

Working With Java Object Cache 13-7

Java Object Cache Object Types

Java Object Cache Features
The Java Object Cache provides the following features:

Objects can be updated or invalidated.

Objects can be invalidated either explicitly, or with an attribute specifying the
expiration time or the idle time.

Objects can be coordinated between processes.

Object loading and creation can be automatic.

Object loading can be coordinated between processes.

Objects can be associated in cache regions or groups with similar characteristics.
Cache event notification provides for event handling and special processing.

Cache management attributes can be specified for each object or applied to
cache regions or groups.

Java Object Cache Object Types

This section describes the object types that the Java Object Cache manages,
including:

Memory Objects
Disk Objects
StreamAccess Objects

Pool Objects

13-8 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Object Types

Restriction on Identifying Objects:

Obijects are identified by a name that can be any Java object.
Usually, the name is represented with a St ri ng. The Java object
used for the identifying name must override the default Java object
equal s method, and the default Java object hashcode method.
The St ri ng class provides implementations for both of these
methods.

If you provide an object to use as the Java Object Cache name, you
need to provide implementations for the equal s and hashcode
methods for the object. If the object is distributed, then the

Seri al i zabl e interface must also be implemented.

Memory Objects

Memory objects are Java objects that the Java Object Cache manages. Memory
objects are stored in the Java VM’s heap space as Java objects. Memory objects can
hold HTML pages, the results of a database query, or any information that can be
stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object may be controlled
externally (for example, using data in a table on the Oracle9i Database Server). The
application supplied loader accesses the source and either creates or updates the
memory object. Without the Java Object Cache, the application would be
responsible for accessing the source directly, rather than using the loader.

You can update memory objects by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using CacheAccess. repl ace()).

The CacheAccess. def i neCbj ect () method associates attributes with an object.
If attributes are not defined, the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using
the SPOQL attribute). Setting this attribute allows the Java Object Cache to handle
memory objects that are large, or costly to re-create and seldom updated. When the
disk cache is set up to be significantly larger than the memory cache, objects on disk
usually stay in the disk cache longer than objects in memory.

Working With Java Object Cache 13-9

Java Object Cache Object Types

Disk Objects

Combining memory objects that are spooled to a local disk with the distributed
feature from the DI STRI BUTE attribute provides object persistence (when the Java
Object Cache is running in distributed mode). Object persistence allows you to
re-create objects when the system or the Java VM is restarted after the process fails
or shuts down.

There are very few restrictions on Java Object Cache memory objects. Memory
objects can contain any Java object.

See Also: "Developing Applications Using Java Object Cache"
on page 13-19

Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DI STRI BUTE attribute (and whether the Java Object Cache is
running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the Ti meToLi ve or

| dl eTi nme attributes. Disk objects can be updated by obtaining a private copy of
the disk object (file). When the Java Object Cache requires additional space, disk
objects that are not being referenced may be removed from the cache.

There are very few restrictions on disk objects in the Java Object Cache.

See Also: "Developing Applications Using Java Object Cache"
on page 13-19

StreamAccess Objects

StreamAccess objects are objects that are accessed as a stream, and are automatically
loaded to the disk cache. The object is loaded as an Qut put St r eamand read as an

I nput St r eam The Java Object Cache determines how to access the StreamAccess
object based on the size of the object and the capacity of the cache. Smaller objects
are accessed from memory, while larger objects are streamed directly from disk.

The cache user’s access to the StreamAccess object is through an | nput St r eam All
the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not provide a mechanism to
manage a stream; for example, StreamAccess objects cannot manage socket
endpoints. | nput St r eamand Qut put St r eamobijects are available to access fixed
sized, potentially very large objects.

13-10 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

The Java Object Cache places some restrictions on StreamAccess objects.

Pool Objects

A pool object is a special class of objects that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, while the objects within the pool are private objects. Individual objects
within the pool can be checked out to be used and then returned to the pool when
they are no longer needed.

Attributes, including Ti neToLi ve or | dl eTi ne may be associated with a pool
object. These attributes apply to the pool object as a whole, or they can be applied to
the objects within the pool individually.

The Java Object Cache instantiates objects within a pool using an
application-defined factory object. The size of a pool decreases or increases based on
demand and on the values of the Ti neToLi ve or | dl eTi me attributes. A
minimum size for the pool is specified when the pool is created. The minimum-size
value is interpreted as a request rather than a guaranteed minimum value. Objects
within a pool object are subject to removal from the cache due to lack of space, so
the pool may decrease below the requested minimum value. A maximum pool size
value can be set that puts a hard limit on the number of objects available in the pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:
« Cache Regions
« Cache Subregions
« Cache Groups
« Cache Object Attributes

This section describes these Java Object Cache environment constructs.

Cache Regions

Objects that use the Java Object Cache service are managed within a cache region. A
cache region defines a name space within the cache. Each object within a cache
region must be uniquely named, and the combination of the cache region name and
the object name must uniquely identify an object. Thus, cache region names must be
unique from other region names, and all objects within a region must be uniquely

Working With Java Object Cache 13-11

Java Object Cache Environment

named relative to the region (multiple objects can have the same name if they are
within different regions or subregions).

You can define as many regions as you need to support your application. However,
most applications only require one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Attributes may be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

See Also: "Cache Obiject Attributes" on page 13-13 and
"Developing Applications Using Java Object Cache" on page 13-19

Cache Subregions

Objects that use the Java Object Cache are managed within a cache region.
Specifying a subregion within a cache region defines a child hierarchy. A cache
subregion defines a name space within a cache region, or cache subregion. Each
object within a cache subregion must be uniquely named, and the combination of
the cache region name, the cache subregion name, and the object name must
uniquely identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion’s attributes are
inherited by the objects within the subregion. If a subregion’s parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

See Also: "Cache Object Attributes" on page 13-13 and
"Developing Applications Using Java Object Cache" on page 13-19

Cache Groups

A cache group creates an association between objects within the Java Object Cache.
Cache groups allow related objects to be manipulated together. Objects are typically
associated in a cache group because they need to be invalidated together or they use
common attributes. Any set of cache objects within the same region or subregion
can be associated using a cache group, which may in turn, include other cache
groups.

An Java Object Cache object can only belong to one group at any given time. Before
an object can be associated with a group, the group must be explicitly created. A

13-12 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

group is defined with a name. A group may have its own attributes, or it may
inherit its attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects. A group defines a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming
purposes; therefore, a region cannot include a group and a memory object with the
same name. Use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Cache Object Attributes

Cache object Attributes (Attributes) affect how the Java Object Cache manages
objects. Each object type, region, subregion, and group has a set of associated
attributes. An object’s applicable attributes contain either the default attribute
values; the attribute values inherited from the object’s parent region, subregion, or
group; or the attribute values that you select for the object.

Attributes fall into two categories:

1. Attributes that must be defined before an object is loaded into the cache.
Table 13-2 summarizes these attributes. Each of the attributes shown in
Table 13-2 does not have corresponding set or get methods, except the LOADER
attribute. Use the At t ri but es. set Fl ags() method to set these attributes.

2. Attributes that can be modified after an object is stored in the cache. Table 13-3
summarizes these attributes.

Note: Some attributes do not apply to certain types of objects. See
Object Types sections in the descriptions in Table 13-2 and
Table 13-3.

Using Attributes Defined Before Object Loading

The attributes shown in Table 13-2 must be defined on an object before the object is
loaded. These attributes determine an object’s basic management characteristics.

Working With Java Object Cache 13-13

Java Object Cache Environment

The following list shows the methods you can use to set the attributes shown in
Table 13-2 (by setting the values of an At t r i but es object argument).

« CacheAccess. defi neRegi on()

« CacheAccess. defi neSubRegi on()
« CacheAccess. defi neG oup()

« CacheAccess. defi neCbj ect ()

« CacheAccess. put ()

« CacheAccess. creat ePool ()

« CachelLoader. creat eDi skObj ect ()
« CachelLoader. createStrean()

« CachelLoader. Set Attri butes()

Note: You cannot reset the attributes shown in Table 13-2 by
using the CacheAccess. reset Attri but es() method.

Table 13-2 Java Object Cache Attributes—Set at Object Creation

Attribute Name

Description

DI STRI BUTE

GROUP_TTL_
DESTROY

This attribute specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates and
invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the DI STRI BUTE attribute for the objects within the region, subregion, or group,
unless the objects explicitly set their own DI STRI BUTE attribute. Pool objects are always
local, so this attribute does not apply to pool objects.

Default Value: All objects are local.

This attribute indicates that the associated object, group, or region should be destroyed
when the Ti meToLi ve expires.

Object Types: When set on a region or a group, all the objects within the region or group,
and the region, subregion, or group itself are destroyed when the Ti neToLi ve expires.

Default Value: By default only group member objects are invalidated when the
Ti meToLi ve expires.

13-14 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

Table 13-2 (Cont.) Java Object Cache Attributes—Set at Object Creation

Attribute Name

Description

LOADER

ORI G NAL

REPLY

This attribute specifies the CachelLoader associated with the object.

Object Types: When set on a region or a group, the specified CachelLoader becomes the
default loader for the region, subregion, or group, the LOADER attribute is individually
specified on objects within the region or the group.

Default Value: By default, no LOADER is set.

This attribute indicates that the object was created by the application in the cache, rather
than loaded from an external source. ORI G NAL objects are not removed from the cache
when the reference count goes to zero. ORI G NAL objects must be explicitly destroyed
when they are no longer useful.

Object Types: When set on a region or a group, this attribute sets the default value for the
ORI G NAL attribute for the objects within the region, subregion, or group, unless the
objects set their own ORI G NAL attribute.

Default Value: By default, this attribute is not set.

This attribute specifies whether objects can expect to receive a reply from remote caches
after a request for an object update or invalidation has completed. This attribute should be
set when a high level of consistency is required between cached objects. If the

DI STRI BUTE attribute is not set, or the cache is started in non-distributed mode, REPLY
is ignored.

Object Types: When set on a region or a group, this attribute sets the default value for the
REPLY attribute for the objects within the region, subregion, or group, unless the objects
explicitly set their own REPLY attribute. For memory, StreamAccess, and disk objects, this
attribute only applies when the DI STRI BUTE attribute is set to the value DI STRI BUTE.
Pool objects are always local, so this attribute does not apply for pool objects.

Default Value: By default no reply is sent. When DI STRI BUTE is set to local the REPLY
attribute is ignored.

Working With Java Object Cache 13-15

Java Object Cache Environment

Table 13-2 (Cont.) Java Object Cache Attributes—Set at Object Creation

Attribute Name

Description

SPOCL

SYNCHRONI ZE

SYNCHRONI ZE_
DEFAULT

This attribute specifies that a memory object should be stored on disk rather than being lost
when the cache system removes it from memory to regain space. This attribute only applies
to memory objects. If the object is also distributed, the object can survive the death of the
process that spooled it. Local objects are only accessible by the process that spools them, so
if the Java Object Cache is not running in distributed mode, the spooled object is lost when
the process dies.

Note: An object must be serializable to be spooled. If this attribute is set on a region,
subregion, or group, all associated objects must implement the
java.io. Serializabl e interface.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the SPOCOL attribute for the objects within the region, subregion, or group, unless
the objects set their own SPOOL attribute.

Default Value: By default, memory objects are not stored to disk.

This attribute is used to synchronize updates within multiple threads or at multiple
locations within a site. Updates are synchronized by obtaining ownership for objects. Use
the CacheAccess. get Owner shi p() method to obtain ownership of an object.

Setting the SYNCHRONI ZE attribute does not prevent a user from reading or invalidating
the object.

Object Types: When set on a region, subregion, or a group, ownership is applied to the
region, subregion, or group as a whole. Pool objects do not use this attribute.

Default Value: By default updates are not synchronized.

This attribute indicates that all objects in a region, subregion, or group should be
synchronized. Each user object in the region, subregion, or group is marked with the
SYNCHRONI ZE attribute. Ownership of the object must be obtained before the object can
be loaded or updated.

Setting the SYNCHRONI ZE_DEFAULT attribute does not prevent a user from reading or
invalidating objects. Thus, ownership is not required for reads or invalidation of objects that
have the SYNCHRONI ZE attribute set.

Object Types: When set on a region, subregion, or a group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use this
attribute.

Default Value: By default updates are not synchronized.

Using Attributes Defined Before or After Object Loading

A set of Java Object Cache attributes can be modified either before or after object
loading. Table 13-3 lists these attributes. These attributes can be set using the

13-16 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

methods listed in the list shown before Table 13-2, and can be reset using the
CacheAccess. reset Attri but es() method.

Table 13-3 Java Object Cache Attributes

Attribute Name

Description

Def aul t Ti meToLi ve

I dl eTi ne

CacheEvent Li st ener

The Def aul t Ti meToLi ve applies only to regions, subregions, and groups. This
attribute establishes a default value for the Ti meToLi ve that is applied to all
objects individually within the region, subregion, or group. This value can be
overridden be setting the Ti neToLi ve on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own Ti meToLi ve.

Default VValue: no automatic invalidation.

The | dl eTi ne attribute specifies the amount of time an object may remain idle,
with a reference count of 0, in the cache before being invalidated. If the

Ti meToLi ve or Def aul t Ti meToLi ve attribute is set, the | dl eTi e
attribute is ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
individually to each object within the region, subregion, group, or pool, unless the
objects explicitly set | dl eTi ne.

Default Value: no automatic | dl eTi me invalidation.

This attribute specifies the CacheEvent Li st ener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEvent Li st ener becomes the default CacheEvent Li st ener for the
region, subregion, or group, unless a CacheEvent Li st ener is specified
individually on objects within the region, subregion, or the group.

Default Value: By default, no CacheEvent Li st ener isset.

Working With Java Object Cache 13-17

Java Object Cache Environment

Table 13-3 (Cont.) Java Object Cache Attributes

Attribute Name

Description

Ti meTolLi ve

Ver si on

The Ti meToLi ve attribute establishes the maximum amount of time an object
remains in the cache before being invalidated. If associated with a region, subregion,
or group, all objects in the region, subregion, or group are invalidated when the time
expires. If the region, subregion, or group is not destroyed (that is if, GROUP_TTL _
DESTROY is not set) the Ti meToLi ve value is reset.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to the region, subregion, group, or pool, as a whole, unless the objects explicitly set
their own Ti neToLi ve.

Default Value: no automatic invalidation.
An application may set a Ver si on for each instance of an object in the cache. The

Ver si on is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own Ver si on.

Default Value: The default Ver si on is 0.

13-18 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Developing Applications Using Java Object Cache

This section describes how to develop applications that use Java Object Cache. This
section covers the following topics:

« Importing the Java Object Cache

« Defining a Cache Region

« Defining a Cache Group

« Defining a Cache Subregion

« Defining and Using Cache Objects

« Implementing a CacheLoader

« Invalidating Cache Objects

« Destroying Cache Objects

« Setting Cache Configuration Properties

« Implementing a Cache Event Listener

Importing the Java Object Cache

The Oracle installer installs the Java Object Cache jar file cache. j ar in the
directory $ORACLE_HOVE/ j avacache/ | i b on UNIX or in %40RACLE_
HOME% j avacache\ | i b on Windows NT.

To use the Java Object Cache, you need to import or acl e. i as. cache.

i mport oracle.ias.cache.*;

Defining a Cache Region

All access to the Java Object Cache is through a CacheAccess object. A
CacheAccess object provides access to the cache through a cache region. You
define a cache region, usually associated with the name of an application, using the
CacheAccess. def i neRegi on() static method. If the cache has not been
initialized, def i neRegi on() initializes the Java Object Cache.

When you define the region, you can also set attributes and create a CacheLoader
object. Attributes specify how the Java Object Cache manages objects. The
Attributes. set Loader () method sets the name of CacheLoader.

Working With Java Object Cache 13-19

Developing Applications Using Java Object Cache

Attributes attr = new Attributes();
M/Loader nl oader = new MyLoader;
attr.setLoader(nl oader);
attr.setDefaul t Ti meToLi ve(10);

final static String APP_NAME_ = "Test Application”;
CacheAccess. defi neRegi on(APP_NAME_, attr);

The first argument for def i neRegi on uses a St ri ng to set the region name. This
static method creates a private region name within the Java Object Cache. The
second argument defines the attributes for the new region.

See Also: "Java Object Cache Environment" on page 13-11 and
"Implementing a CachelLoader" on page 13-22

Defining a Cache Group

When you want to create an association between two or more objects within the
cache, create a cache group. Objects are typically associated in a cache group
because they need to be invalidated together or because they have a common set of
attributes.

Any set of cache objects within the same region or subregion can be associated
using a cache group, including other cache groups. Before an object can be
associated with a cache group, the cache group must be defined. A cache group is
defined with a name and can use its own attributes, or it can inherit attributes from
its parent cache group, subregion, or region. The following code defines a cache
group within the region named "Test Application".

final static String APP_NAME_ = "Test Application”;

final static String GROUP_NAME_ = "Test G oup";

/1 obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess. get Access(APP_NAME) ;

/1 Create a group

caccess. defi neG oup(GROUP_NAME) ;

/1 O ose the CacheAccess object

caccess. cl ose();

13-20 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Defining a Cache Subregion

Define a subregion when you want to create a private name space within a region
or within a previously defined subregion. A subregion’s name space is independent
of the parent name space. A region can contain two objects with the same name, as
long as the objects are within different subregions.

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a
subregion, the subregion must be defined. A cache subregion is defined with a
name and can use its own attributes, or it can inherit attributes from its parent cache
region or subregion. Use the get Par ent () method to obtain a subregion’s parent.

In the following example, cache subregion is defined within the region named
"Test Application".

final static String APP_NAME_ = "Test Application”;

final static String SUBREG ON_NAME_ = "Test SubRegion";

/1 obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess. get Access(APP_NAME) ;

/1 Create a SubRegi on

caccess. defi neSubRegi on(SUBREG ON_NAME) ;

/1 O ose the CacheAccess object

caccess. cl ose();

Defining and Using Cache Objects

You may sometimes want to describe to the Java Object Cache how an individual
object should be managed within the cache before the object is loaded. Management
options can be specified when the object is loaded, by setting attributes within the
CachelLoader . | oad() method. However, you can also associate attributes with
an object by using the CacheAccess. def i neObj ect () method. If attributes are
not defined for an object, the Java Object Cache uses the default attributes set for the
region, subregion, or group with which the object is associated.

Example 13-1 shows how to set attributes for a cache object.

Working With Java Object Cache 13-21

Developing Applications Using Java Object Cache

Example 13-1 Setting Cache Attributes

inport oracle.ias.cache.*;

final static String APP_NAME_ = "Test Application";
CacheAccess cacc = null;

try

{
cacc = CacheAccess. get Access(APP_NAME) ;

/1 set the default IdleTime for an object using attributes
Attributes attr = new Attributes();

/] set ldleTime to 2 mnutes
attr.setldl eTinme(120);

/1 define an object and set its attributes
cacc. defineQbject("Test Chject", attr);

/1 object is loaded using the |oader previously defined on the region
/1 if not already in the cache.
result = (String)cacc.get("Test Object");
} catch (CacheException ex){
/1 handl e exception

} finally {

if (cacc!= null)

cacc. cl ose();

Implementing a CacheLoader

Generally, you should use the Java Object Cache to load objects automatically, as
needed rather than using the application to directly manage objects in the cache.
When an application directly manages objects, it uses the CacheAccess.put ()
method to insert objects into the cache. To take advantage of automatic loading, you
use a CachelLoader object and implement al oad() method to insert objects into
the cache.

A CachelLoader can be associated with a region, subregion, a group, or an object.
Using a CacheLoader allows the Java Object Cache to schedule and manage object
loading, and handle the logic for, “if the object is not in cache then load.”

When an object is not in the cache, when an application calls CacheAccess. get ()
or CacheAccess. preLoad(), the CacheLoader executes the | oad method.
When the | oad method returns, the Java Object Cache inserts the returned object
into the cache. Using CacheAccess. get (), if the cache is full the object is returned
from the loader and the object is immediately invalidated in the cache (therefore,

13-22 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

using CacheAccess. get () with a full cache does not generate a
CacheFul | Excepti on).

When a CachelLoader is defined for a region, subregion, or group, it is taken to be
the default loader for all objects associated with the region, subregion, or group. A
CacheLoader that is defined for an individual object is used only to load the

object.

Note: A CachelLoader that is defined for a region, subregion, or
group or for more than one cache object needs to be written with
concurrent access in mind. The implementation should be
thread-safe, since the CacheLoader object is shared.

Using CacheLoader Methods Within the Load Method

The Java Object Cache supports several CacheLoader methods that you can use
within al oad() method implementation. Table 13-4 summarizes the available
CacheLoader methods.

Table 13-4 CachelLoader Methods for Use in a Load Method

Method

Description

setAttributes()

net Sear ch()

get Nane()
get Regi on()

createStream)

creat eDi skObj ect (
)

excepti onHandl er (

)
I'og()

Sets the attributes for the object being loaded.

Searches other available caches for the object to load. Objects are
uniquely identified by the region name, subregion name, and
the object name.

Returns the name of the object being loaded.

Returns the name of the region associated with the object being
loaded

Creates a StreamAccess object

Creates a disk object

Converts noncache exceptions into CacheExcept i ons, with
the base set to the original exception

Records a messages in the cache service log

Working With Java Object Cache 13-23

Developing Applications Using Java Object Cache

Example 13-2 shows a CacheLoader using the cachelLoader . net Sear ch()
method to check if the object being loaded is available in distributed Java Object
Cache caches. If the object is not found using net Sear ch() , the load method uses
a more expensive call to retrieve the object (an expensive call might involve an
HTTP connection to a remote Web site or a connection to the Oracle9i Database
Server). For this example, the Java Object Cache stores the resultasa St ri ng.

Example 13-2 Implementing a CacheLoader

inport oracle.ias.cache.*;
class Your Cbj ect Loader extends Cacheloader {
public YourChject Loader () {

}
public Cbject |oad(Object handle, Cbject args) throws CacheException

{
String contents;
/1 check if this object is |oaded in another cache
try {
contents = (String)netSearch(handl e, 5000);// wait for up to 5 scnds
return new String(contents);
} catch(Obj ect Not FoundException ex){}

try {
contents = expensiveCall(args);

return new String(contents);
} catch (Exception ex) {throw exceptionHandl er("Loadfailed", ex);}

}

private String expensiveCall(oject args) {
String str = null;
/1 your inplenentation to retrieve the information.
Il str = ...
return str;

13-24 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Invalidating Cache Objects

An object can be removed from the cache either by setting the Ti neToLi ve
attribute for the object, group, subregion, or region; or by explicitly invalidating or
destroying the obiject.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or a group invalidates all the individual objects from the region,
subregion, or group, leaving the environment, including all groups, loaders, and
attributes available in the cache. Invalidating an object does not undefine the object.
The object loader remains associated with the name. To completely remove an
object from the cache, destroy the object using the CacheAccess. destroy()
method.

An object may be invalidated automatically based on the Ti meToLi ve or
I dl eTi ne attributes. When the Ti meToLi ve or | dl eTi e expires, objects are by
default, invalidated and not destroyed.

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region use
CacheAccess. i nval i date().

CacheAccess cacc = CacheAccess. get Access("Test Application");
cacc.invalidate("Test Object"); // invalidate an individual object
cacc.invalidate("Test Goup"); // invalidate all objects associated with a group
cacc.invalidate(); /1 invalidate all objects associated with the region cacc
cacc. cl ose(); /1 close the CacheAccess access

Destroying Cache Objects

An object can be removed from the cache either by setting the Ti neToLi ve
attribute for the object, group, subregion, or region; or by explicitly invalidating or
destroying the obiject.

Destroying an object marks the object and the associated environment, including
any associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the
region, subregion, or group for removal, including the associated environment.

An object may be destroyed automatically based on the Ti meToLi ve or | dl eTi e
attributes. By default, objects are invalidated and are not destroyed. If the objects
need to be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region
also closes the CacheAccess object used to access the region.

Working With Java Object Cache 13-25

Developing Applications Using Java Object Cache

To destroy an object, group, subregion, or region use the
CacheAccess. destroy() method.

CacheAccess cacc = CacheAccess. get Access("Test Application");

cacc. destroy("Test bject"); // destroy an individual object

cacc. destroy("Test Goup"); // destroy all objects associated with
/1 the group "Test Group"

cacc. destroy(); /'l destroy all objects associated with the region
/1 including groups and |oaders

Setting Cache Configuration Properties

During initialization, the Java Object Cache sets values for configuration properties.
Table 13-5 lists the configuration properties for Java Object Cache. By default, the
first time a region is created, or the default region is accessed, the Java Object Cache
initializes the configuration properties. When the Java Object Cache is installed, the
installer updates values for certain administrative properties and places the
updated values in the j avacache. properti es configuration file, in the directory
$ORACLE_HOVE/ j avacache/ adm n on UNIX or in %0RACLE_

HOME\ j avacache\ adni n on Windows NT.

You can modify the j avacache. pr operti es file to use values other than the
default configuration property values. For configuration property values that are
not specified in j avacache. properti es, the Java Object Cache uses the default
values included in Table 13-5.

When the Java Object Cache is initialized, it uses either the default administration
property values, or values specified in j avacache. properti es. No explicit
method calls are required to configure the administrative properties using this
initialization technique. The Java Object Cache also supports other initialization
techniques (see the Cache object methods in the Javadoc for details).

The format for the values in the properties j avacache. properti es fileis:
property=val ue
A # character in a configuration file starts a comment. When the # is in the first

column, the entire line is a comment. When the # is occurs after a property value
specification, it applies to the remainder of the line.

Table 13-5 lists the valid property names and lists the valid types for each property.

13-26 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Table 13-5 Java Object Cache Configuration Properties

Configuration Property Description

Type

cl eanl nterval

di scover yAddr ess

di skPat h

di stribute

| ogFi | eNane

| ogger

Specifies the time, in seconds, between each cache cleaning. At the
cache-cleaning interval, the Java Object Cache checks for objects that have
been invalidated by the Ti meToLi ve or | dl eTi ne attributes associated
with the object.

Default value: 60

Specifies the address that the Java Object Cache initially contacts to join the
caching system, when using distributed caching. The value is in the form,
host nane: port. If the host nane is omitted, | ocal host is used. If the
Java Object Cache spans systems, a comma separated list of hostnames and
ports should be included, with one host nane:port pair specified for each
node.

Default Value: : 12345 (this is equivalentto | ocal host : 12345).

Specifies the absolute path to the root for the disk cache (a directory). If this
attribute is not set, disk caching is not available.

Default value: nul |

Indicates whether the cache is distributed. Updates and invalidation for
objects that have the di st ri but e property set are propagated to other
caches known to the Java Object Cache. If the di st ri but e property is
setto f al se, all objects are treated as local, even when the attributes set
on objects are set to distribute.

Default value: f al se

Specifies the log file name for the default logger implementation.

Default value: $ORACLE

HOME/ j avacache/ adni n/ | ogs/j avacache. | og on UNIX or
%ORACLE_HOVE% j avacache\ adni n\ | ogs\j avacache. | og
on Windows NT

Specifies the class name for the object that implements the CacheLogger
interface. The object is instantiated when the Java Object Cache is
initialized.

Default value: or acl e. i as. cache. Def aul t CacheLogger

i nt

String

String

bool ean

String

String

Working With Java Object Cache 13-27

Developing Applications Using Java Object Cache

Table 13-5 (Cont.) Java Object Cache Configuration Properties

Configuration Property Description Type

| ogSeverity Specifies the logging severity level used for initializing the logger. The i nt
valid values are:

-1 CachelLogger. OFF
0 CachelLogger. FATAL
CachelLogger . ERROR
CachelLogger . DEFAULT
CachelLogger . WARNI NG
CachelLogger. TRACE

10 CachelLogger. | NFO

15 CachelLogger . DEBUG
Default value: CachelLogger . DEFAULT

N o A~ W

maxQObj ect s Specifies the maximum number of in-memory objects that are allowed in i nt
the cache. The count does not include group objects, or objects that have
been spooled to disk and are not currently in memory.

Default value: 5000

maxSi ze Specifies the maximum size of the memory, in megabytes, available to the i nt
Java Object Cache.

Default value: 10

Note: Configuration properties are distinct from the Java Object
Cache attributes that you specify using the At t r i but es class.

Implementing a Cache Event Listener

There are a number of events that can occur in the life cycle of a cached object,
including object creation and object invalidation. This sections shows how an
application can be notified when cache events occur.

To receive notification of an object’s creation, implement event notification as part of
the cacheLoader. For notification of invalidation or updates, implement a
CacheEvent Li st ener and associate the CacheEvent Li st ener with an object,
group, region, or subregion using At tri but es. set CacheEvent Li st ener ().

CacheEvent Li st ener is an interface that extendsj ava. uti |l . Event Li st ener.
The cache event listener provides a mechanism to establish a callback method that

13-28 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

is registered, and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If
an event listener is associated with a group, region, or subregion, the listener only
runs when the group, region, or subregion itself is invalidated. Invalidating a
member does not trigger the event. At tri but es. set CacheEvent Li st ener ()
takes a boolean argument, that if t r ue, applies the event listener to each member of
the region, subregion, or group, rather than to the region, subregion, or group itself.
In this case, the invalidation of an object within the region, subregion, or group
triggers the event.

The CacheEvent Li st ener interface has one method, handl eEvent (). This
method takes a single argument, a CacheEvent object that extends

java. util.Event Qbj ect . This object has two methods get | D() ,which returns
the type of event (OBJECT _| NVALI DATI ON or OBJECT_UPDATED) , and

get Sour ce(), which returns the object being invalidated. For group objects, the
get Sour ce() method returns the name of the group.

The handl eEvent () method is executed in the context of a background thread
that the Java Object Cache manages. Avoid using JNI code in this method, as the
expected thread context may not be available.

Example 13-3 shows how a CacheEvent Li st ener isimplemented and associated
with an object or a group.

Example 13-3 Implementing a CacheEventListener

inport oracle.ias.cache.*;
/1 A CacheEventListener for a cache object
class MyEvent Li stener inplenents
CacheEvent Li stener {

public void handl eEvent (CacheEvent ev)

{
M/Obj ect obj = (My/Object)ev. getSource();
obj . cl eanup();

}

Working With Java Object Cache 13-29

Developing Applications Using Java Object Cache

/1 A CacheEventListener for a group object
class MyG oupEventLi stener inmplements CacheEventListener {
public void handl eEvent (CacheEvent ev)

{
String groupName = (String)ev.getSource();

app.notify("group " + groupNane + " has been invalidated");

}

Usethe Attri butes. |i st ener attribute to specify the CacheEvent Li st ener
for a region, subregion, group, or object.

Example 13-4 shows how to set a cache event listener on an object. Example 13-5
shows how to set a cache event listener on a group.

Example 13-4 Setting a Cache Event Listener on an Object

inport oracle.ias.cache.*;

class Your Cbj ect Loader extends CachelLoader

{

public YourChject Loader () {

}

public Cbject |oad(Object handle, Cbject args) {
Cbject obj = null;
Attributes attr = new Attributes();
MWEvent Li stener el = new MyEventListener();
attr.set CacheEventLi st ener(CacheEvent . OBJECT | NVALI DATED, el);
/1 your inplenmentation to retrieve or create your object
setAttributes(handle, attr);
return obj;

}

13-30 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Example 13-5 Setting a Cache Event Listener on a Group

inport oracle.ias.cache.*;

try

{

CacheAccess cacc = CacheAccess. get Access(myRegion);
Attributes attr = new Attributes ();

M/GroupEvent Li stener |istener = new MyG oupEventListener();
attr.set CacheEvent Li st ener (CacheEvent. OBJECT | NVALI DATED, |istener);

cacc. defineG oup("nyGoup", attr);
...
cacc. cl ose();

}cat ch(CacheExcepti on ex)

{
}

/1 handl e exception

Restrictions and Programming Pointers

This section covers restrictions and programming pointers to keep in mind when
using the Java Object Cache.

1.

The CacheAccess object should not be shared between threads. This object
represents a user to the caching system. The CacheAccess object contains the
current state of the user's access to the cache: what object is currently being
accessed, what objects are currently owned, and so on. Trying to share the
CacheAccess object is unnecessary and can result in nondeterministic
behavior.

A CacheAccess object only holds a reference to one cached object at a time. If
multiple cached objects are being accessed concurrently, multiple
CacheAccess objects should be used. For objects stored in memory, the
consequences of not doing this are minor since Java prevents the cached object
from being garbage collected even if the cache believes it is not being
referenced. For disk objects, if the cache reference is not maintained, the
underlying file could be removed by another user or by time-based
invalidation, causing unexpected exceptions. To optimize resource
management, you should keep the cache reference open as long as the cached
object is being used.

Working With Java Object Cache 13-31

Developing Applications Using Java Object Cache

3. A CacheAccess object should always be closed when it is no longer being
used. The CacheAccess objects are pooled. They acquire other cache resources
on behalf of the user. If the access object is not closed when it is not being used,
these resources are not returned to the pool and are not cleaned up until they
are garbage collected by the Java VM. If CacheAccess objects are continually
allocated and not closed, available resources and a consequent degradation in
performance may occur.

4. When local objects (objects that do not set the At tri but es. DI STRI BUTE
attribute) are saved to disk using the CacheAccess. save() method they do
not survive the termination of the process. By definition, local objects are only
visible to the cache instance where they were loaded. If that cache instance goes
away for any reason, the objects it manages, including on disk, are lost. If an
object needs to survive process termination, both the object and the cache need
to be defined DI STRI BUTE.

5. The cache configuration, also called the cache environment, is local to a cache,
this includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. The cache
configuration should be defined during the initialization of the application.

6. IfaCacheAccess. wait For Response() or
CacheAccess. rel easeOwner shi p() method call times out, it must be
called again until it returns successfully. Call these methods witha- 1t i neout
value to free up resources, and eliminate waits.

7. When a group is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, all objects
in the group will be invalidated or destroyed across the entire cache system
even if the individual objects or associated groups are defined as local. If the
group is defined as local, local objects within the group are invalidated locally,
while distributed objects are invalidated throughout the entire cache system.

8. When an object or group is defined with the SYNCHRONI ZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

9. Ingeneral, objects stored in the cache should be loaded by the system class
loader defined in the CLASSPATHwhen the Java VM is initialized, rather than
by a user defined class loader. Specifically, any objects that are shared between
applications or may be saved or spooled to disk need to be defined in the
system CLASSPATH. Failure to do so may result in
Cl assNot FoundExcept i ons or Cl assCast Excepti ons.

13-32 Oracle9iAS Containers for J2EE Services Guide

Working with Disk Objects

10. On some systems, the open file descriptors may be limited by default. On these
systems, you may need to change system parameters to improve performance.
On UNIX systems, for example, a value of 1024 or greater may be an
appropriate value for the number of open file descriptors.

11. When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a Java VM process (that is, in the program
running in the Java VM that uses the Java Object Cache API).

Working with Disk Objects

The Java Object Cache can manage objects on disk as well as in memory.
This section covers the following topics:

« Configuring Properties for Using the Disk Cache

« Local and Distributed Disk Cache Objects

« Adding Obijects to the Disk Cache

Configuring Properties for Using the Disk Cache

To configure the Java Object Cache to use a disk cache, set the value of the
di skPat h configuration property in the j avacache. properti es file.

Setting the diskPath Configuration Property

To configure the Java Object Cache to use a disk cache, the di skPat h property in
the configuration properties file should be set to the path of the root directory for
the disk cache. The default value for di skPat h is null, which specifies that the Java
Object Cache should not enable the disk cache.

Note: when operating in distributed mode. To share disk cache
files, all caches cooperating in the same cache system must specify
values for the di skPat h property that represent the same physical
disk. However, the values specified for the di skPat h do not need
to be the same.

If you configure the di skPat h properties to represent different
locations on the same or different physical disks, the disk cache
objects are not shared.

Working With Java Object Cache 13-33

Working with Disk Objects

See Also: "Setting Cache Configuration Properties" on page 13-26

Local and Distributed Disk Cache Objects

This section covers the following topics:
« Local Objects
« Distributed Objects

Local Objects

When operating in local mode, all objects are treated as local objects (even when the
DI STRI BUTE attribute is set for an object). In local mode, all objects in the disk
cache are only visible to the Java Object Cache cache that loaded them, and they do
not survive after process termination. In local mode, objects stored in the disk cache
are lost when the process using the cache dies.

Distributed Objects

When operating in distributed mode, disk cache objects are shared by all caches that
have access to the file system hosting the disk cache. This configuration allows for
better utilization of disk resources and allows disk objects to persist beyond the life
of the Java Object Cache process. Distributed memory objects are not shared by all
caches since individual copies of each memory object reside in the individual caches
across the system.

Obijects stored in the disk cache are identified using the concatenation of the path
specified in the di skPat h configuration property and an internally generated

St ri ng representing the remaining path to the file. Thus, caches that share a disk
cache can have a different directory structure, as long as the di skPat h represents
the same directory on the physical disk and is accessible to the Java Object Cache
processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

See Also: "Automatically Adding Objects" on page 13-35 for
information on using the SPOCL attribute

13-34 Oracle9iAS Containers for J2EE Services Guide

Working with Disk Objects

Adding Obijects to the Disk Cache

There are several ways to use the disk cache with the Java Object Cache, including:
« Automatically Adding Objects

« Explicitly Adding Objects

« Using Objects That Only Reside on Disk Cache

Automatically Adding Objects

The Java Object Cache automatically adds certain objects to the disk cache. Such
objects may reside either in the memory cache or in the disk cache. If an object in
the disk cache is needed, it is copied back to the memory cache. The action of
spooling to disk occurs when the Java Object Cache determines that it requires free
space in the memory cache. The Java Object Cache automatically moves objects
from the memory cache to the disk cache in two cases.

« When space is running out in the memory cache, the Java Object Cache searches
through the cache, looking for memory objects that are not currently accessed.
These memory objects may be removed from the cache. If the memory object is
defined with the SPOOL attribute set, the memory object is written to disk
before it is removed. Spooling saves the memory object to the disk cache, and
avoids re-creating the object when or if it is needed again. You should set the
SPOQL attribute for objects that are expensive to create, especially if the time
required to create the object is greater than the cost of loading the object from
disk.

« StreamAccess objects are automatically loaded to disk cache. StreamAccess
objects give the Java Object Cache latitude as to how the object is accessed.
Smaller StreamAccess objects can be accessed from memory or the disk cache,
while larger StreamAccess objects are streamed directly from disk. The Java
Object Cache determines how to store the StreamAccess object based on the size
of the object and the capacity of the cache.

See Also: "Cache Object Attributes” on page 13-13 and "Working
with StreamAccess Objects" on page 13-38

Explicitly Adding Objects

In some situations, you may want to force one or more objects to be written to the
Java Object Cache disk cache. Using the CacheAccess. save() method, aregion,
subregion, group, or object is synchronously written to the disk cache (if the object
or objects are already in the disk cache, they are not written again).

Working With Java Object Cache 13-35

Working with Disk Objects

Note: Using CacheAccess. save() saves an object to disk even
when the SPOOL attribute is not set for the object.

Calling CacheAccess. save() on aregion, subregion, or group saves all the
objects within the region, subregion, or group to the disk cache. During a
CacheAccess. save() method call, if an object is encountered that cannot be
written to disk, either because it is not serializable, or for other reasons, the event is
recorded in the Java Object Cache log and the save operation continues with the
next object.

Using Objects That Only Reside on Disk Cache

Objects that you only access directly from disk cache are loaded into the disk cache
by calling CacheLoader . creat eDi skObj ect () from the

CachelLoader .| oad() method. The cr eat eDi skObj ect () method returns a
Fi | e object that the application can use to load the disk object. If the disk object’s
attributes are not defined for the disk object, set them using the

creat eDi skObj ect () method. The system manages local and distributed disk
objects differently; the determination of local or distributed is made when the
system creates the object, based on the specified attributes.

Note: If you want to share a disk cache object between distributed
caches in the same cache system, you must define the DI STRI BUTE
attribute when the disk cache object is created. This attribute cannot
be changed for the disk cache object after the object is created.

When CacheAccess. get () is called on a disk object, the full path name to the file
is returned, and the application can open the file, appropriate to its needs.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DI STRI BUTE attribute (and the mode the Java Object Cache is
running in, either distributed, or local).

Example 13-6 shows a loader object that loads a disk object into the cache.

See Also: "Implementing a CacheLoader" on page 13-22 and "Java
Object Cache Environment" on page 13-11

13-36 Oracle9iAS Containers for J2EE Services Guide

Working with Disk Objects

Example 13-6 Creating a Disk Object in a CachelLoader

inport oracle.ias.cache.*;

class Your Cbj ect Loader extends CachelLoader

{
public Cbject |oad(Object handle, Cbject args) {

File file;
Fi | eQut put Stream = out;
Attributes attr = new Attributes();

attr.setFlags(Attributes. Dl STRI BUTE);

try

{
file = createDi skQoj ect (handle, attr);

out = new FileCQutputStrean(file);

out.wite((byte[])getlnfofronmsonmewhere());
out. close();

}
catch (Exception ex) {
/1 translate exception to CacheException, and |og exception

throw exceptionHandl er ("exception in file handling", ex)

}

return file;

}

Example 13-7 shows application code that uses an Java Object Cache disk object.
This example assumes the region named " St ock- Mar ket " is already defined with
the "Your Obj ect Loader " loader set up in Example 13-6 as the default loader for

the region.

Working With Java Object Cache 13-37

Working with StreamAccess Objects

Example 13-7 Application Code That Uses a Disk Object

inport oracle.ias.cache.*;

try
{
Fil el nput Streamin;
File file;
String fil ePath;
CacheAccess cacc = CacheAccess. get Access("Stock- Market");

filePath = (String)cacc.get("file object");
file = new File(filePath);

in = new FilelnputStrean(filePath);

in read(buf);

/1 do something interesting with the data
in. close();
cacc. cl ose();

}

catch (Exception ex)

{

/1 handl e exception

}

Working with StreamAccess Objects

StreamAccess objects are objects that are accessed as a stream and are automatically
loaded to the disk cache. The object is loaded as an Qut put St r eamand read as an
I nput St r eam Smaller StreamAccess objects can be accessed from memory or from
the disk cache, while larger StreamAccess objects are streamed directly from disk.
The Java Object Cache automatically determines where to access the StreamAccess
object based on the size of the object and the capacity of the cache.

The user is always presented with a stream object, an | nput St r eamfor reading
and an Qut put St r eamfor writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.

13-38 Oracle9iAS Containers for J2EE Services Guide

Working with StreamAccess Objects

Creating a StreamAccess Object

To create a StreamAccess object, call the CachelLoader . cr eat eSt r ean() method
from the CachelLoader . | oad() method when the object is loaded into the cache.
The creat eSt ream) method returns an Qut put St r eamobject. The

Qut put St r eamobject can be used to load the object into the cache.

If the attributes have not already been defined for the object, they should be set
using the cr eat eSt r ean{) method. The system manages local and distributed
disk objects differently; the determination of local or distributed is made when the
system creates the object, based on the attributes.

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, you must define the
DI STRI BUTE attribute when the StreamAccess object is created.
This attribute cannot be changed after the object is created.

Example 13-8 shows a loader object that loads a StreamAccess object into the cache.

Example 13-8 Creating a StreamAccess Object in a Cache Loader

inport oracle.ias.cache.*;

class Your hj ect Loader extends CachelLoader
{
public Cbject |oad(Object handle, Cbject args) {
Qut put Stream = out;
Attributes attr = new Attributes();
attr.set Flags(Attributes. D STR BUTE);

try
{

out = createStream(handl e, attr);
out.wite((byte[])getlnfofromsonmewhere());

}

catch (Exception ex) {
/1 translate exception to CacheException, and |og exception
t hrow exceptionHandl er("exception in wite", ex)

}

return out;

}

Working With Java Object Cache 13-39

Working with Pool Objects

Working with Pool Objects

A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, stored as a static across the entire cache instance, while the objects within the
pool object are private objects that the Java Object Cache manages. Users access
individual objects within the pool with a check out, using a pool access object, and
then return the objects to the pool when they are no longer needed.

This section covers the following topics:
« Creating Pool Objects
« Using Objects from a Pool

« Implementing a Pool Object Instance Factory

Creating Pool Objects

To create a pool object, use CacheAccess. cr eat ePool (). The Cr eat ePool ()
method takes as arguments a Pool | nst anceFactory,andan Attri but es
object, plus two integer arguments. The integer arguments specify the maximum
pool size and the minimum pool size. By supplying a group name as an argument
to Cr eat ePool (), a pool object is associated with a group.

Attributes, including Ti neToLi ve or | dl eTi ne may be associated with a pool
object. These attributes can be applied to the pool object itself, when specified in the
attributes set with CacheAccess. cr eat ePool (), or they can be applied to the
objects within the pool individually.

Using CacheAccess. cr eat ePool (), specify minimum and maximum sizes with
the integer arguments. The minimum is specified first. It sets the minimum number
of objects to create within the pool. The minimum size is interpreted as a request
rather than a guaranteed minimum. Objects within a pool object are subject to
removal from the cache due to lack of resources, so the pool may decrease the
number of objects below the requested minimum value. The maximum pool size
puts a hard limit on the number of objects available in the pool.

Note: Pool objects, and the objects within a pool object are always
treated as local objects.

13-40 Oracle9iAS Containers for J2EE Services Guide

Working with Pool Objects

See Also:
« "Implementing a Pool Object Instance Factory" on page 13-42

« "Java Object Cache Environment" on page 13-11

Example 13-9 shows how to create a pool object.

Example 13-9 Creating a Pool Object

inport oracle.ias.cache.*;

try
{

CacheAccess cacc = CacheAccess. get Access("Stock- Market");
Attributes attr = new Attributes();
Quot eFactory pool Fac = new Quot eFactory();

/1 set ldleTine for an object in the pool to three m nutes
attr.setldl eTinme(180);

/1 create a pool in the "Stock-Mirket" region with a mninum of
/15 and a maximum of 10 object instances in the pool

cacc. cr eat ePool ("get Quote", pool Fac, attr, 5, 10);

cacc. cl ose();

}
cat ch(CacheException ex)
{
/1 handl e exception
}

Using Objects from a Pool

To access objects in a pool, use a Pool Access object. The

Pool Access. get Pool () static method returns a handle to a specified pool. The
Pool Access. get () method returns an instance of an object from within the pool
(this checks out an object from the pool). When an object is no longer needed, return
it to the pool, using the Pool Access. r et ur nToPool () method, which checks the
object back into the pool. Finally, call the Pool Access. cl ose() method when the
pool handle is no longer needed.

Example 13-10 shows the calls required to create a Pool Access object, check an
object out of the pool, and then check the object back in and close the Pool Access
object.

Working With Java Object Cache 13-41

Working with Pool Objects

Example 13-10 Using a PoolAccess Object

Pool Access pacc = Pool Access. get Pool (" St ock- Market", "get Quote");
/1get an object fromthe pool

Cet Quote gg = (Get Quote)pacc. get();

/1 do something useful with the gq object

/1 return the object to the pool

pacc. returnToPool (gq);

pacc. cl ose();

Implementing a Pool Object Instance Factory

The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object, a Pool | nst anceFact ory. The

Pool | nst anceFact ory is an abstract class with two methods that you must
implement, cr eat el nst ance() and dest royl nst ance().

The Java Object Cache calls cr eat el nst ance() to create instances of objects
being accumulated within the pool. The Java Object Cache calls

dest royl nst ance() when an instance of an object is being removed from the
pool (object instances from within the pool are passed into dest r oyl nst ance()).

The size of a pool object, that is the number of objects within the pool, is managed
using these Pool | nst anceFact or y() methods. The system decreases or
increases the size and number of objects in the pool, based on demand, and based
on the values of the Ti neToLi ve or |l dl eTi ne attributes. Example 13-11 shows
the calls required when implementing a Pool | nst anceFact ory.

Example 13-11 Implementing Pool Instance Factory Methods

inport oracle.ias.cache.*;
public class MyPool Factory inplenents Pool | nstanceFactory

{

public Cbject createlnstance()

{
Wbj ect obj = new MyQbj ect();
obj.init();
return obj;

}

public void destroylnstance(Object obj)

{
}

((MyQbj ect)obj).cleanup();

13-42 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

Running in Local Mode

When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same machine or
remotely across the network. Local mode provides a decentralized architecture that
supports a very efficient cache system, with very limited overhead. Object
persistence across system shutdowns or program failures is not supported when
running in local mode.

By default, the Java Object Cache runs in local mode and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DI STRI BUTE attribute for all objects.

Running in Distributed Mode

In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same machine or remotely across the
network. Object updates and invalidations are propagated between communicating
caches. Distributed mode supports object persistence across system shutdowns and
program failures. Running in distributed mode has possible disadvantages.
Specifically, significant system resources may be required when a large number of
distributed objects need to be invalidated, when very large objects are updated, or
when updates must be performed rapidly.

This section covers the following topics:

« Configuring Properties for Distributed Mode

« Using Distributed Objects, Regions, Subregions, and Groups
« Cached Object Consistency Levels

Configuring Properties for Distributed Mode

To configure the Java Object Cache to run in distributed mode, set the value of the
di stri but e and di scover yAddr ess configuration properties in the
j avacache. properti es file.

Working With Java Object Cache 13-43

Running in Distributed Mode

Setting the Distribute Configuration Property

To start the Java Object Cache in distributed mode, the di st ri but e property
should be setto t r ue in the configuration file.

See Also: "Setting Cache Configuration Properties" on page 13-26

Setting the DiscoveryAddress Configuration Property

In distributed mode, invalidations, destroys, and replaces are propagated through
the cache's messaging system. The messaging system requires a known hostname
and port address to allow a cache to join the cache system when it is first initialized.
Use the di scover yAddr ess property in the j avacache. properti es file to
specify a list of hostname and port addresses.

By default, Java Object Cache sets the di scover yAddr ess to the value : 12345
(this is equivalent to | ocal host : 12345). To eliminate conflicts with other
software on the site, you should have your system administrator set the

di scover yAddr ess.

If the Java Object Cache spans systems, a comma separated list of hosthame and
port pairs should be included as the value for di scover yAddr ess, with one
host nane: port pair specified for each node. This avoids any dependency on a
particular machine being available or on the order the processes are started.

See Also: "Setting Cache Configuration Properties" on page 13-26

Note: All caches cooperating in the same cache system must
specify the same set of hostname and port addresses. The address
list, set with the di scover yAddr ess property defines the caches
that make up a particular cache system. If the address lists vary, the
cache system could be partitioned into distinct groups resulting in
inconsistencies between caches.

Using Distributed Objects, Regions, Subregions, and Groups

When the Java Object Cache runs in distributed mode, individual regions,
subregions, groups, and objects can be either local, or distributed. By default,
objects, regions, subregions, and groups are defined as local. To change the default
local value, set the DI STRI BUTE attribute when the object, region, or group is
defined.

A distributed cache may contain both local and distributed objects.

13-44 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the
caches.

See Also: "Cached Object Consistency Levels" on page 13-49

Using the REPLY Attribute with Distributed Objects

When updating, invalidating, or destroying objects across multiple caches, it is
useful to know when the action has completed at all the participating sites. Setting
the REPLY attribute causes all participating caches to send a reply to the sender
when a requested action has completed for the object with the REPLY attribute set.
This also enables the wait for response feature for object updates, invalidates, or
destroys, and requires the use of the blocking method

CacheAcces. wai t For Response() .

To wait for a distributed action to complete across multiple caches, use
CacheAccess. wai t For Response() . To ignore responses, use the
CacheAccess. cancel Response() method, which frees the cache resources used
to collect the responses.

Both CacheAccess. wai t For Response() and

CacheAccess. cancel Response() apply to all objects accessed by the
CacheAccess object. This allows the application to update a number of objects,
then wait for all the replies.

Example 13-12 illustrates how to set an object as distributed and handle replies
when the REPLY attribute is set. In this example, the attributes may also be set for
the entire region. Attributes could also be set for a group or individual object, as
appropriate for your application.

Example 13-12 Distributed Caching Using Reply

inport oracle.ias.cache.*;

CacheAccess cacc;

String obj ;

Attributes attr = new Attributes ();
M/Loader | oader = new MyLoader();

/1 mark the object for distribution and have a reply generated
/1 by the remote caches when the change is conpleted

attr.setFlags(Attributes. Dl STRI BUTE| Attributes. REPLY);
attr.setLoader (| oader);

Working With Java Object Cache 13-45

Running in Distributed Mode

CacheAccess. defi neRegi on("test Regi on", attr);
cacc = CacheAccess. get Access("testRegion"); // create region with
[Idistributed attributes

obj = (String)cacc.get("testObject");
cacc.replace("testObject", obj + "new version"); // change will be
/'l propagated to other caches

cacc.invalidate("invalidGbject"); // invalidation is propagated to other caches

try
{

/1 wait for up to a second, 1000 milliseconds, for both the update
/1 and the invalidate to conplete
cacc. wai t For Response(1000) ;

catch (Timeout Exception ex)

{

/1 tired of waiting so cancel the response
cacc. cancel Response();

}

cacc. cl ose();

}

Using SYNCRONIZE and SYNCHRONIZE_DEFAULT

When updating objects across multiple caches, or when multiple threads access a
single object, you may coordinate the update action. Setting the SYNCHRONI ZE
attribute enables synchronized updates and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONI ZE attribute also applies to regions, subregions, and groups. When
the SYNCHRONI ZE attribute is applied to a region, subregion, or group, ownership
of the region, subregion, or group must be obtained before an object can be loaded
or replaced in the region, subregion, or group.

Setting the SYNCHRONI ZE_DEFAULT attribute on a region, subregion, or group
applies the SYNCHRONI ZE attribute to all of the objects within the region,
subregion, or group. Ownership must be obtained for the individual objects within
the region, subregion, or group before they can be loaded or replaced.

13-46 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

Note: You can also use the SYNCHRONI ZE and SYNCHRONI ZE
DEFAULT attributes with objects that are not distributed to control
updates for the objects from multiple threads, where each thread
uses the Java Object Cache.

To obtain ownership of an object, use CacheAccess. get Owner shi p() . Once
ownership is obtained, no other CacheAccess instance is allowed to load or
replace the object. Reads and invalidation of objects are not affected by
synchronization.

Once ownership has been obtained and the modification to the object is completed,
call CacheAccess. r el easeOwner shi p() to release the object.

CacheAccess. rel easeOwner shi p() waits up to the specified time for the
updates to complete at the remote caches. If the updates complete within the
specified time, ownership is released, otherwise a Ti neout Except i on is thrown.
If the method times out, call CacheAccess. r el easeOaner shi p() again.
CacheAccess. rel easeOwner shi p() must return successfully for ownership to
be released. If the time out value is - 1, ownership is released immediately without
waiting for the responses from the other caches.

Example 13-13 Distributed Caching Using SYNCRHONIZE and SYNCHRONIZE_DEFAULT

inport oracle.ias.cache.*;

CacheAccess cacc;

String obj;

Attributes attr = new Attributes ();
M/Loader | oader = new MyLoader();

/1 mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes. Dl STRI BUTE| Attri butes. SYNCHRONI ZE) ;
attr.setLoader (| oader);

/lcreate region

CacheAccess. def i neRegi on("test Regi on");

cacc = CacheAccess. get Access("testRegion");

cacc. defineG oup("syncGoup", attr); //define a distributed synchronized group
cacc. defineQbject ("syncoject", attr); // define a distributed synchroni zed object
attr.setFlagsToDefaults() // reset attribute flags

/1 define a group where SYNCHRONI ZE is the default for all objects in the group
attr.setFl ags(Attributes. Dl STRI BUTE| Attri butes. SYNCHRONI ZE_DEFAULT) ;

Working With Java Object Cache 13-47

Running in Distributed Mode

cacc. defineG oup("syncGoup2", attr);
try
{

/1 try to get the ownership for the group don't wait more than 5 seconds
cacc. get Owmer shi p("syncG oup", 5000);
obj = (String)cacc.get("testCbject", "syncGroup"); // get |atest object
/'l replace the object with a new version
cacc.replace("testChject"”, "syncGroup", obj + "new version");
obj = (String)cacc.get("testChject2", "syncGoup"); // get a second object
/1 replace the object with a new version
cacc.replace("testChject2", "syncGoup", obj + "new version");

}
catch (Timeout Exception ex)
{
Systemout. println("unable to acquire ownership for group");
cacc. cl ose();
return;
try
{
cacc. rel easeOaner shi p("syncG oup", 5000);
}
catch (Timeout Exception ex)
{
/1 tired of waiting so just release ownership
cacc. rel easeOmner shi p("syncGoup", -1));
try
{
cacc. get Owmer shi p("synchj ect", 5000); // try to get the ownership for the object
/] don't wait more than 5 seconds
obj = (String)cacc.get("syncObject"); [/ get |atest object
cacc.replace("syncCbject", obj + "new version"); // replace the object with a new version
}
catch (Timeout Exception ex)
{
Systemout. println("unable to acquire ownership for object");
cacc. cl ose();
return;
try
{
cacc. rel easeOmner shi p("syncbj ect", 5000);
}

13-48 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

catch (Timeout Exception ex)

{
cacc. rel easeOwnershi p("syncCbject", -1)); // tired of waiting so just rel ease ownership
try
{
cacc. get Owmer shi p("Obj ect2", "syncG oup2", 5000); // try to get the ownership for the object
/1 where the ownership is defined as the default for the group don't wait nore than 5 seconds
obj = (String)cacc.get("Chject2", "syncGoup2"); // get |atest object
/'l replace the object with new version
cacc.replace("Cbject2", "syncGroup2", obj + "new version");
}
catch (Timeout Exception ex)
{
Systemout. println("unable to acquire ownership for object");
cacc. cl ose();
return;
try
{
cacc. rel easeOnaner shi p(" oj ect 2", 5000);
}
catch (Timeout Exception ex)
{
cacc. rel easeOwnershi p("oject2", -1)); // tired of waiting so just release ownership
}
cacc. cl ose();
}

Cached Object Consistency Levels

Within the Java Object Cache, each cache manages its own objects locally within its
Java VM process. In distributed mode, when using multiple processes or when the
system is running on multiple sites, a copy of an object may exist in more than one
cache.

The Java Object Cache allows you to specify the consistency level required between
copies of objects that are available in multiple caches. The consistency level you
specify depends on the application and the objects being cached. The supported
levels of consistency vary, from none, to all copies of objects being consistent across
all communicating caches.

Working With Java Object Cache 13-49

Running in Distributed Mode

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

« No consistency requirements — Using Local Objects
« Propagating Changes Without Waiting for a Reply
« Propagating Changes and Waiting for a Reply

« Serializing Changes Across Multiple Caches

Using Local Objects

If there are no consistency requirements between objects in distributed caches, an
object should be defined as a local object (when At t ri but es. DI STRI BUTE is
unset, this specifies a local object). Local is the default setting for objects. For local
objects, all updates and invalidation are only visible to the local cache.

Propagating Changes Without Waiting for a Reply

To distribute object updates across distributed caches, an object should be defined
as distributed by setting the DI STRI BUTE attribute. All modifications to distributed
objects are broadcast to other caches in the system. Using this level of consistency
does not control or specify when an object is loaded into the cache or updated, and
does not provide notification as to when the modification has completed in all
caches.

Propagating Changes and Waiting for a Reply

To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object’s DI STRI BUTE and REPLY attributes.
Using these attributes, notification occurs when a modification has completed in all
caches. When At t ri but es. REPLY is set for an object, replies are sent back to the
modifying cache when the modification has been completed at the remote site.
These replies are returned asynchronously; that is, the CacheAccess. repl ace()
and CacheAccess. i nval i dat e() methods do not block. Use the
CacheAccess. wai t For Response() method to wait for replies and block.

Serializing Changes Across Multiple Caches

To use Java Object Cache’s highest level of consistency set the appropriate attributes
on the region, subregion, group, or object to make objects act as synchronized
objects.

13-50 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

On a region, subregion, or group, setting At t ri but es. SYNCHRONI ZE_DEFAULT
sets the SYNCHRONI ZE attribute for all of the objects within the region, subregion,
or group.

On an object, setting At t ri but es. SYNCHRONI ZE forces applications to obtain
ownership of the object before the object can be loaded or modified. Setting this
attribute effectively serializes write access to objects. To obtain ownership of an
object, use the CacheAccess. get Omer shi p() method. Using the

Attri but es. SYNCHRONI ZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess. r el easeOnner shi p() to block until
any outstanding updates have completed, and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

Note: Setting Attri but es. SYNCHRONI ZE for an object does not
effectively synchronize. With At t ri but es. SYNCHRONI ZE set, the
Java Object Cache forces the cache to synchronize its updates of the
object, but does not prevent the Java programmer from obtaining a
reference to the object and then modifying the object.

When using this level of consistency, with At t ri but es. SYNCHRONI ZE, the
CacheLoader .| oad() method should call CacheLoader . net Sear ch() before
loading the object from an external source. Calling CachelLoader . net Sear ch()
in the load method tells the Java Object Cache to search all other caches for a copy
of the object. This prevents different versions of the object from being loaded into
the cache from an external source.

Working With Java Object Cache 13-51

Running in Distributed Mode

13-52 Oracle9iAS Containers for J2EE Services Guide

4

Oracle HTTPS for Client Connections

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) implementation
of HTTPS that provides SSL functionality to client HTTP connections. The following
topics are included:

Prerequisites

About Oracle HTTPS

Overview of Oracle HTTPS Features
Specifying Default System Properties
Oracle HTTPS APIs

Oracle HTTPS Example

Oracle HTTPS for Client Connections 14-1

Prerequisites

Prerequisites

Please perform the following tasks before you attempt to use Oracle HTTPS:

Install JDK version 1.2 or later.

Ensure that the CLASSPATH environment variable includes the following jar
files:

— javax-ssl-1_1.jar
— jssl-1_1.jar
Add the Java SSL shared library to the shared library path:

— For UNIX: li bnj ss18. so must be included in the library path specified
by the LD_LIBRARY_PATH environment variable.

— For Windows NT: nj ss18. dl | must be included in the path specified by
the PATH environment variable.

See Also: Platform-specific documentation.

Set the following Java security property so Oracle HTTPS can use Oracle Java
SSL sockets:

ssl . Socket Fact ory. provi der =oracl e. security. ssl. O acl eSSLSocket Fact oryl npl
See Also: Sun Microsystems, Inc., JSSE (Java Secure Socket

Extension) documentation for more information about setting
system properties at:

http://ww.java. sun.com

14-2 Oracle9iAS Containers for J2EE Services Guide

Prerequisites

Audience

To effectively use Oracle HTTPS, application developers should understand the
basics of Java sockets programming and JSSE (Java Secure Socket Extension). They
should also be familiar with the Sun Microsystems, Inc., j ava. net package, which
supports network programming and the open source HTTPO i ent package that
Oracle HTTPS is based on.

In addition, it is important for developers who use Oracle HTTPS to understand the
fundamental concepts of public key infrastructure digital certificates and keys.

See Also:

« Oracle9iAS Security Guide for information about Oracle Wallet
Manager, PKI, and security fundamentals.

« Documentation for the open source HTTPCl i ent package
which is available at:

http://ww. innovation.ch/java/ HTTPO i
ent

« Documentation for JSSE and the j ava. net packages which is
available at:

http://ww.java. sun.com

Oracle HTTPS for Client Connections 14-3

About Oracle HTTPS

About Oracle HTTPS

HTTPS is vital to securing client-server interactions. For many server applications
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the
server. Java application developers who are familiar with either the HTTP package,
HTTPC i ent, or who are familiar with the Sun Microsystems, Inc., j ava. net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnect i on class of the open source HTTPC i ent
package, which provides a complete HTTP client library. To support client HTTPS
connections, several methods have been added to the HTTPConnect i on class that
use the Oracle Java SSL class, Or acl eSSLCr edent i al .

The following sections describe these components in further detail:
« HTTPConnection Class
« OracleSSLCredential Class

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the methods that have been added to the HTTPConnect i on class.

HTTPConnection Class

The HTTPConnect i on class is used to create new connections that use HTTP and
related protocols such as HTTPS. To provide support for PKI (Public Key
Infrastructure) digital certificates and wallets, the methods described in "Oracle
HTTPS APIs" on page 14-13 have been added to this class.

See Also: Documentation for the open source HTTPC i ent
package which is available at;

http://ww.innovation.ch/java/ HTTPO i ent

14-4 Oracle9iAS Containers for J2EE Services Guide

About Oracle HTTPS

OracleSSLCredential Class

Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, Or acl eSSLCr edenti al , to load
user certificates, trusted certificates (trust points), and private keys from base64 or

der encoded certificates.

The API for Oracle Java SSL requires that security credentials be passed to the
HTTP connection before the connection is established. The OracleSSLCredential
class is used to store these security credentials. Typically, a wallet generated by
Oracle Wallet Manager is used to populate the OracleSSLCredential object.
Alternatively, individual certificates can be added by using an OracleSSLCredential
class API. After the credentials are complete, they are passed to the connection with
the set Cr edent i al s method.

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the Or acl eSSLCr edent i al class.

Oracle HTTPS for Client Connections 14-5

Overview of Oracle HTTPS Features

Overview of Oracle HTTPS Features

Oracle HTTPS, based on the open source HTTP package, HTTPClient 3.2, supports
HTTP 1.0 and HTTP 1.1 connections between a client and a server. To provide SSL
functionality, new methods have been added to the HTTPConnect i on class of this
package. These methods are used in conjunction with Oracle Java SSL to support
cipher suite selection, security credential management with Oracle Wallet Manager,
security-aware applications, and other features that are described in the following
sections.

In addition to the functionality included in the HTTPCl i ent package, Oracle
HTTPS supports the following:

« Multiple cryptographic algorithms

« Certificate and key management with Oracle Wallet Manager
« Limited support for the j ava. net . URL framework

In addition, Oracle HTTPS uses the HTTPCl i ent package to support
« HTTP tunneling through proxies

« HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

« SSL Cipher Suites Supported by Oracle HTTPS

« Certificate and Key Management with Oracle Wallet Manager
= Access Information About Established SSL Connections

« Security-Aware Applications Support

« java.net.URL Framework Support

14-6 Oracle9iAS Containers for J2EE Services Guide

Overview of Oracle HTTPS Features

SSL Cipher Suites Supported by Oracle HTTPS

Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection
establish the appropriate level for their communications.

Oracle HTTPS supports cipher suites with the following options:

« Key exchange of 512, 768, or 1024 bit asymmetric keys using the following
algorithms:

- RSA
— Diffie-Hellman

« NULL encryption, or symmetric key encryption with 40 and 128 bit symmetric
keys using the following algorithms:

— RC4 stream cipher
— DES, DES40, and 3DES-EDE, in Cipher Block Chaining (CBC) mode

Note: With NULL encryption, SSL is only used for authentication
and data integrity purposes.

« Message Authentication Code using MD5 or SHA1 data integrity.
Table 14-1 lists all of the cipher suites that are supported by Oracle HTTPS.

Oracle HTTPS for Client Connections 14-7

Overview of Oracle HTTPS Features

Table 14-1 Cipher Suites Supported by Oracle HTTPS

Cipher Suite Authentication Encryption Data Integrity
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1
SSL_RSA_WITH_RC4_128 SHA RSA RC4 128 SHA1
SSL_RSA_WITH_RC4 128 MD5 RSA RC4 128 MD5
SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1
SSL_DH_anon_WITH_RC4 128 MD5 DH anon RC4 128 MD5
SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1
SSL_RSA_EXPORT_WITH_RC4 40 _MD5 RSA RC4 40 MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1
SSL_DH_anon_EXPORT WITH_RC4 40_MD5 DH anon RC4 40 MD5
SSL_DH_anon_EXPORT WITH_DES40 CBC_SHA DH anon DES40 CBC SHA1
SSL_RSA_WITH_NULL_SHA RSA NULL SHA1
SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Certificate and Key Management with Oracle Wallet Manager

You can use Oracle Wallet Manager to generate public/private key pairs and
certificate requests. A signed certificate request and the appropriate trusted

certificates must be added to produce a complete Oracle wallet.

You can export a complete wallet with a certificate in Ready status, in a
BASE64-formatted file, using the menu option Operation ->ExportWallet. This file

can be used to add SSL credentials in a Java SSL-based program.

See Also:

about Oracle Wallet Manager.

14-8 Oracle9iAS Containers for J2EE Services Guide

Oracle9i Application Server Security Guide for information

Overview of Oracle HTTPS Features

Access Information About Established SSL Connections

Users can access information about established SSL connections using the

get SSLSessi on method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

See Also: "Oracle HTTPS APIs" on page 14-13 for a description of
the get SSLSessi on method.

Security-Aware Applications Support

Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows
them to perform their own validation letting the handshake complete successfully
only if a complete certificate chain is sent by the peer. With Oracle HTTPS, the
connection completes successfully when no trust points are set if the server sends
the client a complete certificate chain that starts from the root CA (Certifying
Authority) and ends with the server certificate. This feature is useful when there is a
large number of trust points stored in a database, and the application is constrained
from passing all of them to the SSL layer.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the application.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

Oracle HTTPS for Client Connections 14-9

Overview of Oracle HTTPS Features

java.net.URL Framework Support

The HTTPCl i ent package provides basic support for the j ava. net . URL
framework with the HTTPCl i ent . Ht t pUr | Connect i on class. However,
many of the Oracle HTTPS features are supported through system properties
only. Features that are only supported through system properties are

— cipher suites selection option
— confidentiality only option

— server authentication option
— mutual authentication option

— security credential management with Oracle Wallet Manager

Note: If thej ava. net . URL framework is used, then set the

j ava. prot ocol . handl er. pkgs system property to select the
HTTPSConnection package as a replacement for the JDK client as
follows:

java. prot ocol . handl er=HTTPO i ent

See Also:

« "Specifying Default System Properties" on page 14-11 for
information about setting Java system properties.

« Documentation for the j ava. net . URL framework at

http://java.sun.com

14-10 Oracle9iAS Containers for J2EE Services Guide

Specifying Default System Properties

Specifying Default System Properties

For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the j ava. | ang. Syst emclass. These
properties are the only way for users of the j ava. net . URL framework to set
security credential information. Oracle HTTPS recognizes the following properties:

« javax.net.ssl.KeyStore

« javax.net.ssl.KeyStorePassword

« Oracle.ssl.defaultCipherSuites

The following sections describe how to set these properties.
See Also: Documentation that describes setting Java system
properties at

http://ww.java. sun.com

javax.net.ssl.KeyStore

This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection.
For example:

javax. net.ssl . KeySt ore=/ et ¢/ ORACLE/ WALLETS/ Def aul t/ defaul t. t xt

where def aul t . t xt is name of the text wallet file that contains the credentials.

If no other credentials have been set for the HTTPS connection, then the file set by
this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an | OExcept i on is thrown.

Oracle HTTPS for Client Connections 14-11

Specifying Default System Properties

javax.net.ssl.KeyStorePassword

This property can be set to the password that is necessary to open the wallet file. For
example:

javax. net. ssl . KeySt or ePasswor d=wel conel

where wel conel is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties

Storing the wallet file password as a Java system property can result in a security
risk in some environments. To avoid this risk, use one of the following alternatives:

« If mutual authentication is not required for the application, then a text wallet
that contains no private key should be used instead. To open these wallets, no
password is necessary.

« Ifapassword is necessary, then do not store it in a cleartext file. Instead, load
the property dynamically before the HTTPConnect i on is started by using
Syst em set Property().Unset the property after the handshake is
completed.

Oracle.ssl.defaultCipherSuites
This property can be set to a comma-delimited list of cipher suites. For example:

Oracl e. ssl. defaul t Ci pher Suites=
SSL_RSA W TH_DES_CBC_SHA, \
SSL_RSA_EXPORT_W TH_RCA4_40_MD5, \
SSL_RSA W TH_RC4_128 MD5

The cipher suites that you set this property to are used as the default cipher suites
for new HTTPS connections.

See Also: Table 14-1 on page 14-8 for a complete list of the cipher
suites that are supported by Oracle HTTPS.

14-12 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS APIs

Oracle HTTPS APIs

This section describes the public classes and interfaces used by Oracle HTTPS.
Oracle HTTPS uses the Oracle Java SSL class, Or acl eSSLCr edent i al , and it
extends the HTTPConnect i on class of the open source HTTPCl i ent package. The
following sections describe these packages:

=« Public Class: HTTPConnection
= Public Class: OracleSSLCredential

Public Class: HTTPConnection

Because Oracle HTTPS extends the HTTPConnect i on class, only the methods that
are added to that package are described in the following:

public void connect ()

Initiates a connection with the host, but does not perform any data transfer.

public String[] getSSLEnabl edCi pher Suites()

Returns a list of cipher suites enabled for this connection.

public javax. net.ssl.SSLSessi on get SSLSessi on()

Returns an SSLSessi on containing the information about the current
connection.

public javax. net.ssl.SSLSocket Factory get SSLSocket Factory()

Returns the SSLSocket Fact or y used by the HTTPConnect i on to create
SSLSocket s.

public oracle.security.ssl.Oacl eSSLCredential get
SSLCredenti al ()

Returns the SSL credentials used by this connection.

public void set SSLCredenti al
(oracl e.security.ssl.Oacl eSSLCredenti al)

Sets the authentication context for the connection.

Oracle HTTPS for Client Connections 14-13

Oracle HTTPS APIs

Parameters: cr edent i al - Authentication context contains the private key,
certificate chains, and trusted certificates that are to be used in the SSL
connection.

public void set SSLEnabl edCi pher Suites(String[] suites) throws
Il egal Argument Excepti on

Controls which particular cipher suites are enabled for use on this connection.
The cipher suites must have been listed by

SSLSocket Fact ory. get Support edCi pher Sui t es() as being supported.
The method throws an | | | egal Ar gunent Except i on when one of the
ciphers named by the parameter is not supported.

Parameters: sui t es - List of cipher suites.

Public Class: OracleSSLCredential

This public class extends java.lang.Object.

Credentials are used to authenticate the server and the client to each other.
OracleSSLCredential is used to load user certificates, trusted certificates (trust
points), and private keys from base64 or der encoded certificates.

Constructor
public Oracl eSSLCredenti al ()

Creates an empty OracleSSLCredential. An empty credential lets the socket
connect to any peer that sends a complete certificate chain during the
handshake.

Methods
public void addTrustedCert(java.lang. String b64TrustedCert)

Adds a trusted certificate to the credential.

Parameters: b64Tr ust edCert - A Base64 encoded X509 certificate.
public void addTrustedCert (byte[] trustedCert)

Adds a trusted certificate to the credential.

Parameters: t r ust edCert - A der encoded X509 trusted certificate.

14-14 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS APIs

public void setPrivateKey(java.lang.String b64Pvt Key,
java.l ang. String password)

Adds a private key to the credential.
Parameters: b64Pvt Key - A Base64 encoded X509 Private Key

passwor d - The password needed to decipher the private key.

public void setPrivateKey(byte[] pvtKey,
java.l ang. String password)

Adds a private key to the credential.
Parameters: b64Pvt Key - A der encoded X509 Private Key

passwor d - The password needed to decipher the private key.

public void addCert Chai n(java.l ang. String b64cert Chai nCert)

Adds a certificate to the certificate chain. The certificate chain is sent along with
the user certificate during the SSL handshake. It is used by the peer to verify the
user certificate. The first certificate added to the certificate chain must be the

Root CA certificate. Each subsequent certificate added must be signed by its
immediate predecessor.

Parameters: b64cert Chai nCert - A Base64 encoded X509 certificate.

public void addCert Chai n(byte[] certChainCert)
Adds a certificate to the certificate chain.

Parameters: cer t Chai nCert - A der encoded X509 certificate.

public void setWallet(java.lang. String W tPath,
java.l ang. String password) throws java.io.| OException

If Oracle Wallet Manager is used to create a wallet, the wallet can be exported in
text format and used by JavaSSL. The text file must contain the user certificate,
followed by the private key, the certificate chain, and any other trusted

Oracle HTTPS for Client Connections 14-15

Oracle HTTPS APIs

certificates. The method throws aj ava. i 0. | OExcept i on if the wallet cannot
be opened.

Parameters: W t Pat h - The pathname of the wallet

passwor d - The password needed to decrypt the private key

14-16 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS Example

Oracle HTTPS Example

The following is a simple program that uses Oracle HTTPS to connect to a Web
server, send a GET request, and fetch a Web page. The complete code for this
program is presented here followed by sections that explain how Oracle HTTPS is
used to set up secure connections.

i nport HTTPC i ent. HTTPConnect i on;

i nport HTTPC ient. HTTPResponse;

inport oracle.security.ssl.OacleSSLCredential;
inport java.io.lOException;

public class HTTPSConnecti onExanmpl e

{
public static void main(String[] args)
{
if(args.length < 4)
{
System out. println(
"Usage: java HTTPSConnectionTest [host] [port] " +
“[wal | et] [password]");
Systemexit(-1);
}

String hostname = args[0].toLower Case();

int port = Integer.decode(args[1]).intValue();
String walletPath = args[2];

String password = args[3];

HTTPConnection httpsConnection = nul | ;
Oracl eSSLCredential credential = null;
try
{
htt psConnecti on = new HTTPConnection("https", hostname, port);
}
cat ch(| OException e)
{
System out. println("HTTPS Protocol not supported");
Systemexit(-1);
}
try
{

credential = new Oracl eSSLCredential ();

Oracle HTTPS for Client Connections 14-17

Oracle HTTPS Example

credential.set\llet(walletPath, password);

}
cat ch(| OException e)
{
Systemout. println("Could not open wallet");
Systemexit(-1);
}
htt psConnecti on. set SSLCredenti al (credential);
try
{
htt psConnecti on. connect () ;
}
catch (1OException e)
{
Systemout. println("Could not establish connection");
e.printStackTrace();
Systemexit(-1);
}
javax.security.cert.X509Certificate[] peerCerts = null;
try
{
peerCerts =
(htt psConnecti on. get SSLSession()). get PeerCertificateChain();
}
cat ch(javax. net. ssl.SSLPeer Unveri fiedException e)
{

Systemerr.printin("Unable to obtain peer credentials");
Systemexit(-1);
}

String peerCertDN =

peer Certs[peerCerts.length -1]. get Subject DN(). get Name();
peer Cert DN = peer Cert DN. t oLower Case();
i f(peerCertDN. | astlndexOf ("cn="+host name) == -1)

{

Systemout.printin("Certificate for + hostnane + " is issued to
+ peerCertDN);
System out. println("Aborting connection");

Systemexit(-1);

try

14-18 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS Example

HTTPResponse rsp = httpsConnection. Get("/");
Systemout. println("Server Response: ");
Systemout. println(rsp);

1

cat ch(Exception e)

{
System out. println("Exception occured during Get");
e.printStackTrace();
Systemexit(-1);

}

Initializing SSL Credentials

This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded
using

credential = new OracleSSLCredential ();

credential.set\llet(walletPath, password);

After the credentials are created, they are passed to HTTPSConnect i on using
htt psConnecti on. set SSLCredenti al (credential);

The private key, user certificate, and trust points located in the wallet can now be
used for the connection.

Verifying Connection Information

Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their hostname.
Then it is the responsibility of the client to perform this validation after the SSL
connection is established.

To perform this validation in this sample program, HTTPSConnect i onExanpl e
establishes a connection to the server without transferring any data using

htt psConnecti on. connect () ;

Oracle HTTPS for Client Connections 14-19

Oracle HTTPS Example

After the connection is established, the connection information, in this case the
server certificate chain, is obtained with

peerCerts = (httpsConnection. get SSLSession()). get PeerCertificateChain();

Finally the server certificate’s common name is obtained with

String peerCertDN = peerCerts[peerCerts.length -1].get Subject DN(). get Nane();
peer Cert DN = peer CertDN. t oLower Case();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with

i f(peerCertDN. | astlndexOf ("cn="+host name) == -1)
{

Systemout.printin("Certificate for " + hostname + " is issued to " +
peer Cert DN) ;

System out. println("Aborting connection");

Systemexit(-1);

Transferring Data

It is important to verify the connection information before data is transferred from
the client or from the server. The data transfer is performed in the same way for
HTTPS asitis for HTTP. In this sample program a GET request is made to the server
using

HTTPResponse rsp = httpsConnection. Get("/");

14-20 Oracle9iAS Containers for J2EE Services Guide

b

Data Sources

This chapter describes how to configure and use data sources in your Oracle9iAS
Containers for J2EE (OC4J) application. A data source, which is the instantiation of
an object that implements the j avax. sql . Dat aSour ce interface, enables you to
retrieve a connection to a database server.

This chapter covers the following topics:

= Introduction

= Definition of Data Sources

« Retrieving a Connection From a Data Source
» Emulated and Non-Emulated Data Sources
« Using Data Sources

« Using Oracle JDBC Extensions

« Behavior of a Non-Emulated Data Source Object
« Using Database Caching Schemes

= Connection Retrieval Error Conditions

« Using the OCI JDBC Drivers

« Using Merant Drivers

Data Sources 15-1

Introduction

Introduction

A data source is a Java object that has the properties and methods specified by the

j avax. sql . Dat aSour ce interface. Data sources offer a portable,
vendor-independent method for creating JDBC connections. Data sources are
factories that return JDBC connections to a database. J2EE applications use JNDI to
look up Dat aSour ce objects. Each JDBC 2.0 driver provides its own
implementation of a Dat aSour ce object, which can be bound into the JNDI
namespace. Once bound, you can retrieve this data source object through a JNDI
lookup.

Because they are vendor-independent, we recommend that J2EE applications
retrieve connections to data servers using data sources.

Definition of Data Sources

You define OC4J data sources in an XML file known as dat a- sour ces. xni .

Defining Location of the DataSource XML Configuration File

Your application can know about the data sources defined in this file only if the
application. xm file knows about it. The pat h attribute in the

<dat a- sour ces>tag in the appl i cati on. xm file must contain the name and
path to your dat a- sour ces. xm file, as follows:

<dat a- sour ces
path = "dat a-sources.xm"
/>

The pat h attribute of the <dat a- sour ces> tag contains both path and name of
the dat a- sour ces. xm file. The path can be fixed, or it can be relative to where
the appl i cati on. xm is located. Both the appl i cati on. xm and

dat a- sour ces. xm files are located in $J2EE

HOME/ confi g/ appl i cati on. xml . Thus, the path contains only the name of the
dat a- sour ces. xm file.

Defining Data Sources

The $J2EE_HOVE/ conf i g/ dat a- sour ces. xm file is pre-installed with a default
data source. For most uses, this default is all you will need. However, you can also
add your own customized data source definitions.

The default data source is an emulated data source. That is, it is a wrapper around
Oracle data source objects. You can use this data source for applications that access

15-2 Oracle9iAS Containers for J2EE Services Guide

Definition of Data Sources

and update only a single data server. If you need to update more than one database,
you must use a non-emulated data source. See "Non-Emulated Data Sources" on
page 15-7 for more information.

This data source is extremely fast and efficient, because it does not require any JTA
or XA operations. These would be necessary if you were to manage more than a
single database.

The following is the default data source definition that you can use for most
applications:

<dat a- source
cl ass="com evernind. sql . Dri ver Manager Dat aSour ce"
name="0Or acl eDS"
| ocation="j dbc/ Or acl eCor eDS"
xa- | ocation="j dbc/ xa/ Oracl eXADS"
ej b-location="jdbc/ Oracl eDS"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="tiger"
url="jdbc: oracl e: thin: @ocal host: 5521: oracl e"
i nactivity-timeout="30"
/>

« Thecl ass attribute defines the type of data source you want to use.

« Thelocation,xa-location,andejb-| ocati on attributes are JNDI names
that this data source is bound to within the INDI namespace. We recommend
that you use only the ej b-1 ocat i on JNDI name in the JNDI lookup for
retrieving this data source.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identify the database, its username, and
password.

"Using Data Sources" on page 15-8 fully describes all attributes.

Data Sources 15-3

Retrieving a Connection From a Data Source

Retrieving a Connection From a Data Source

One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you use data source objects in your
JDBC operations.

Do the following to modify data within your database:

1. Retrieve the Dat aSour ce object through a JNDI lookup on the data source
definition in the dat a- sour ces. xm file.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ej b- 1 ocat i on tag in the
dat a- sour ces. xm file.

You must always cast or narrow the object that JNDI returns to the
Dat aSour ce, because the INDI | ookup() method returns a Java obj ect .

2. Create a connection to the database represented by the Dat aSour ce object.

Once you have the connection, you can construct and execute JDBC statements
against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/OracleDS");
Connection conn = ds. get Connection();

Use the following methods of the Dat aSour ce object in your application code to
retrieve the connection to your database:
« getConnection();
The username and password are those defined in the data source definition.
« getConnection(String usernane, String password);

This username and password overrides the username and password defined in
the data source definition.

You can cast the connection object returned on the get Connect i on method to
oracl e. jdbc. Oracl eConnecti on and use all the Oracle extensions. This is
shown below:

oracle.jdbc. Oracl eConnection conn =
(oracle.jdbc. Oracl eConnection) ds. get Connection();

15-4 Oracle9iAS Containers for J2EE Services Guide

Emulated and Non-Emulated Data Sources

Once retrieved, you can execute SQL statements against the database either through
SQLJ or JDBC.

Emulated and Non-Emulated Data Sources

There are several types of data sources. The data sources that are used the most are
emulated and non-emulated.

« Emulated Data Sources—The pre-installed default data source is an emulated
data source. Emulated data sources are wrappers around Oracle data sources.
Used primarily by applications that access only a single database.

« Non-Emulated Data Sources—Non-emulated data sources are pure Oracle data
sources. Used by applications that want to coordinate access to multiple
sessions within the same database or to multiple databases within a global
transaction.

Emulated Data Sources

Emulated data sources are wrappers around Oracle data sources. If you use these
data sources, your connections are extremely fast, because they do not provide full
XA or JTA global transactional support. We recommend that you use these data
sources for local transactions or when your application requires access or update to
a single database. You can use emulated data sources for Oracle or non-Oracle
databases. For efficiency, any JNDI retrieved connection to the same emulated data
sources share the same connection with the first identified username within the
same transaction.

You can use the emulated data source to obtain connections to different databases
by changing the values of ur | and connecti on-dri ver. The following is a
definition of an emulated data source:

<dat a- source
cl ass="com evernind. sql . Dri ver Manager Dat aSour ce"
name="0Or acl eDS"
| ocation="j dbc/ Or acl eCor eDS"
xa- | ocation="j dbc/ xa/ Oracl eXADS"
ej b-location="jdbc/ Oracl eDS"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="tiger"
url="jdbc: oracl e: thin: @ocal host: 5521: oracl e"
i nactivity-timeout="30"
/>

Data Sources 15-5

Emulated and Non-Emulated Data Sources

When creating the Dat aSour ce object, use the ej b-1 ocat i on logical name, as
follows:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/OracleDS");
Connection con = ds. get Connection();

This creates a Dat aSour ce session for SCOTT/ Tl GER

Note: In the past, you could use thel ocati on and

xa- | ocat i on attributes for retrieving data source objects.
Currently, we recommend that you only use the ej b-1 ocat i on
JNDI name in emulated data source definitions for retrieving the
data source.

You can use local transactions only with a connection retrieved from an emulated
data source. The XAResour ce that you enlist with the transaction manager is an
emulated XAResour ce, so the Oracle database is unaware of global transactions. It
provides only local transactional support. If you want to use global transactions,
you must use a non-emulated data source.

Connections retrieved within a single transaction from a data source using the same
username and password causes the logical connections to share a single physical
connection. The following code shows two connections—connl and conn2—that
share a single physical connection. They are both retrieved off the same data source
object. They also authenticate with the same username and password.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");
Connection connl = ds. getConnection("scott", "tiger");
Connection conn2 = ds. get Connection("scott", "tiger");

If you provide different a different username and password for the second
connection from this data source, an error condition occurs. You can avoid this
problem by using the "dedi cat ed. connect i on" JNDI property. This is described
in "Using Different Usernames for Two Connections to DataSource" on page 15-15.

15-6 Oracle9iAS Containers for J2EE Services Guide

Emulated and Non-Emulated Data Sources

Non-Emulated Data Sources

Non-emulated data sources are pure Oracle data sources. Non-emulated data
sources provide XA and JTA global transactional support. Thus, if you want to
coordinate modifications in a global transaction, you should use this data source.
Thus, you can use only these data sources for global two-phase commit
transactions.

We recommend that you use these data sources for distributed database
communications, recovery, and reliability. Non-emulated data sources share
physical connections for several logical connections to the same database for the
same user.

The following is an example of a non-emulated data source definition.

<dat a- sour ce
cl ass="com evernind. sql . Ori onCMIDat aSour ce"
name="0Or acl eDS"
| ocation="j dbc/ Oracl eCMIDS1"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="tiger"
url ="jdbc: oracl e: thin: @host name>: <TTC port nunber >: <DB S| D>"
i nactivity-timeout="30"
/>

The following are the expected attribute definitions:

« Thel ocati on attribute is the INDI name that this data source is bound to
within the JNDI namespace. You use the | ocat i on JNDI name in the JNDI
lookup for retrieving this data source.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identifies the database, its username, and
password.

« Thecl ass attribute defines what type of data source class to bind in the
namespace. For example, you can define a non-emulated data source with the
com everm nd. sql . Oi onCMIDat aSour ce class, as shown above.

Data Sources 15-7

Using Data Sources

Other Non-Emulated DataSource Classes

However, you can also define other non-emulated data sources. You can use any of
the Oracle Dat aSour ce objects listed in the Oracle9i JDBC Developer’s Guide. The
following shows an example of one of these DataSources:

To define a non-emulated data source with the Or acl eXADat aSour ce class,
configure the following in the dat a- sour ces. xnl file:

<dat a- sour ce

/>

class="oracl e. xa. client. O acl eXADat aSour ce"

name="Cr acl eXADS"

| ocation="j dbc/ O acl e XADS"
connection-driver="oracle.jdbc.driver.CO acleDriver"

user name="scott"

password="tiger"

url="jdbc: oracl e: thin: @host name>: <TTC port nunber >: <DB S| D>"
i nactivity-timeout="30"

Using Data Sources

The following sections describe the data sources that your application can use and
how to access them:

Configuring Data Source Objects
Configuration Files

Data Source Attributes

Data Source Methods

Portable Data Source Lookup

Configuring Data Source Objects

For most purposes, you can use the data sources that are already defined in the
server dat a- sour ces. xm configuration file.

15-8

To define a new data source object, there are three ways that you can do this.

1.

2.
3.

using the -i nst al | Dat aSour ce option inthe adm n. j ar administrative
command-line tool

using Oracle Enterprise Manager

directly editing the configuration files

Oracle9iAS Containers for J2EE Services Guide

Using Data Sources

To find out how to use the Administrative tools, see the Oracle9iAS Containers for
J2EE User’s Guide. For Oracle Enterprise Manager information, see Oracle Enterprise
Manager Administrator’s Guide. This chapter explains how to set up and manage data
sources by editing the configuration files directly.

Configuration Files

One main configuration file establishes data sources at the OC4J server level:
$J2EE_HOVE/ confi g/ dat a- sour ces. xml . You can add new data sources to
that file by editing it, following the guidelines in the next sections.

OCA4J parses the dat a- sour ces. xm file when it starts, instantiates data source
objects, and binds them into the server INDI namespace. So if you add a new data
source specification to this file, you must restart the OC4J server to make the new
data source available for lookup.

Each application also has a separate JNDI namespace. The files web. xni ,

ej b-jar.xm ,orion-ejb-jar.xm,andtheori on-web. xm contain entries
that you can use to map application INDI names to data sources, as the next section
describes.

Data Source Attributes

A data source can take many attributes. Some are mandatory, but most are optional.
The attributes are specified in a <dat a- sour ce> tag. Table 15-1 lists the attributes
and their meaning.

Table 15-1 Data Source Attributes

Attribute Name

cl ass

| ocati on

Meaning of Value Default Value

Names the class that implements the data source. Thisis N/A
a mandatory attribute. For non-emulated, the class

attribute can be

"com everm nd. sql . Ori onCMIDat aSour ce". For
emulated, the class attribute should be

"com everm nd. sql . Dri ver Manager Dat aSour ce".

The JNDI logical name for the data source object. OC4] N/A
binds the class instance into the application JNDI

namespace with this name. This is a mandatory

attribute. This JNDI lookup name is used for

non-emulated data sources.

Data Sources 15-9

Using Data Sources

Table 15-1 Data Source Attributes (Cont.)

name

connection-driver

user nane
password

URL

xa- | ocation

ej b-location

i nactivity-timeout
connection-retry-
i nterval

max- connect i ons

m n- connections

15-10 Oracle9iAS Containers for J2EE Services Guide

The optional name of the data source. Must be unique

within the application.

The JDBC-driver classname for this data source, which is
needed by some data sources that deal with
j ava. sgl . Connect i on. For most data sources, the

driver should be

"oracle.jdbc.driver.OacleDriver".
The optional name of the schema to connect to.
The optional password for the schema.

The URL for database connections. Must be supplied for
Oracle database connections.

The logical name of an XA data source. Use this attribute
only for emulated data sources. However, we
recommend that you use ej b- 1 ocat i on for your JNDI

lookup.

A logical name of an EJB data source. Use this attribute if
you are using JTA for single-phase commit transactions
or if you are looking up emulated data sources. If you
use it to retrieve the data source, you can map the

returned connection to

oracl e. jdbc. Oracl eConnecti on.

Time (in seconds) to cache unused connections before

closing them.

The interval to wait (in seconds) before retrying a failed

connection attempt.

The maximum number of open connections for a pooled

data source.

If this name is
not supplied,
thel ocati on
is used as the
name.

None.

None.
None.

None.

None.

None.

60 seconds

1 second

Depends on the
data source

type.

The minimum number of open connections for a pooled 0

data source. The first time min-connections is initiated is
after the first Dat aSour ce. get Connect i on method is

invoked.

Using Data Sources

Table 15-1 Data Source Attributes (Cont.)

wai t -t i meout

The number of seconds to wait for a free connection if 60
the pool is used up (that is, has reached max-connections
used).

max- connect -attenpts The number of times to retry making a connection. This 3

property

is useful when the network is not stable or the
environment is unstable for any other reason that will
sometimes make connection attempts fail.

This element is used to specify either a database link for None
two-phase commit transactions (dbl i nk) or a database
caching scheme (cache_schene).

Data Source Methods

You can call the following methods on a Dat aSour ce object:

getConnection();
Attempt to establish a database connection.

getConnection(String uid, String password);
Attempt to retrieve a database connection, specifying the username and password.

getLoginTimeout();

Retrieve the maximum time in seconds that this data source can wait while
attempting to connect to a database

setLoginTimeout(int seconds);

Set the maximum time in seconds that this data source will wait while attempting to
connect to a database.

getLogWriter();

Retrieve the log writer for this data source. Returns a java.io.Printwriter object.

setLogWriter(PrintWriter out);
Set the log writer for this data source.

Portable Data Source Lookup

When the OC4J server starts, the data sources in the dat a- sour ces. xmri file in the
j 2eel/ hone/ conf i g directory are added to the OC4J JNDI tree. When you lookup
a data source using JNDI, you specify the JNDI lookup as follows:

Data Sources 15-11

Using Data Sources

Dat aSource ds = ic.|ookup("jdbc/Oracl eCMIDS1");

The OC4J server looks in its own internal INDI tree for this data source.

However, it is recommended—and much more portable—for an application to look
up a data source in the application JNDI tree, using the portablej ava: conp/ env
mechanism. Place an entry pointing to the data source in the application web. xm
orej b-jar.xm files, using the <r esour ce- r ef > tag. For example:

<resource-ref>
<res-ref -name>j dbc/ Or acl eDS</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

where <r es- r ef - nanme> can be one of the following:

1. The actual INDI name—such as "j dbc/ Or acl eDS"—that is defined in the
dat a- sour ces. xm . In this situation, no mapping is necessary. This is
demonstrated by the above code example. The <r es- r ef - nane> is the same
as the INDI name bound in the dat a- sour ces. xm file. You would retrieve
this data source without using "j ava: conp/ env" as shown by the following
JNDI lookup:

Initial Context ic = new Initial Context();
Dat aSource ds = ic.|ookup("jdbc/OracleDS");

2. Alogical name that is mapped to the actual INDI name in the OC4J-specific
files, ori on-web. xm orori on-ej b-jar.xnl . The OC4J-specific XML files
then define a mapping from the logical name in the web. xm orej b-j ar. xm
file to the actual INDI name defined in the dat a- sour ces. xmi file.

Example 15-1 Mapping Of Logical JNDI Name To Actual JNDI Name

The following demonstrates option #2 above. If you want to choose a logical name
of "j dbc/ Or acl eMappedDS" to be used within your code for the JNDI retrieval.
Then you would have the following in your web. xm orej b-j ar. xm files:

<resource-ref>
<res-ref -nane>j dbc/ Or acl eMappedDS</res-ref - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

In order for the actual INDI name to be found, you must have a
<resour ce-ref - mppi ng> element that maps the "j dbc/ Or acl eMappedDS" to

15-12 Oracle9iAS Containers for J2EE Services Guide

Behavior of a Non-Emulated Data Source Object

the actual INDI name in the dat a- sour ces. xnl file. If we are using the default
emulated data source, then the ej b- | ocat i on would be defined with

"I dbc/ Or acl eDS" as the actual INDI name. Thus, the following line would be
contained in the OC4J-specific XML file:

<resource-ref-mappi ng nane="j dbc/ Oracl eMappedDS" | ocation="jdbc/ O acl eDS" />

You can then look up the data source in the application JNDI namespace using the
Java statements:

Initial Context ic = new Initial Context();
Dat aSource ds = ic.|ookup("java:conp/env/jdbc/ Oracl eMappedDS');

Using Oracle JDBC Extensions

To use Oracle JDBC extensions, cast the returned connection to
oracl e. jdbc. Oracl eConnecti on, as follows:

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");
oracle.jdbc. Oracl eConnection conn =

(oracl e.jdbc. Oracl eConnection) ds.getConnection();

You can use any of the Oracle extensions on the returned connection, "conn".

/1 you can create oracle.jdbc.* objects using this connection
oracle.jdbc. Statenment orcl Stmt =

(oracl e.jdbc. Oracl eStat enent) conn. creat eSt at ement () ;

/1 assune table is varray_table

oracle.jdbc. Oracl eResul tSet rs =

orcl St . executeQuery("SELECT * FROM " + t abl eNane);

while (rs.next())

{
oracle. sgl. ARRAY array = rs.get ARRAY(1);

Behavior of a Non-Emulated Data Source Object

The physical behavior of a non-emulated data source object changes depending on
whether you retrieve a connection off the data source within a global transaction or
not. The following discusses these differences:

« Retrieving a Connection Outside a Global Transaction

Data Sources 15-13

Behavior of a Non-Emulated Data Source Object

« Retrieving a Connection Within a Global Transaction

Retrieving a Connection Outside a Global Transaction

If you retrieve a connection from a non-emulated data source and you are not
involved in a global transaction, every get Connect i on method returns a logical
handle. When the connection is used for work, a physical connection is created for
each connection created. Thus, if you create two connections outside of a global
transaction, both connections use a separate physical connection. When you close
each connection, it is returned to a pool to be used by the next connection retrieval.

Retrieving a Connection Within a Global Transaction

If you retrieve a connection from the non-emulated data source and you are
involved in a global JTA transaction, all physical connections retrieved off of the
same Dat aSour ce object by the same user within the transaction share the same
physical connection.

For example, if you start a transaction and retrieve two connections off of the

"i dbc/ Or acl eCMIDS1" Dat aSour ce with the "scot t " user, both connections
share the physical connection. In the following example, both connl and conn2
share the same physical connection.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");
[/start txn
txn.start();
Connection connl
Connection conn2

ds. get Connection("scott", "tiger");
ds. get Connection("scott", "tiger");

However, separate physical connections are retrieved for connections retrieved from
separate Dat aSour ce objects. The following example shows both connl and
conn?2 retrieved from different Dat aSour ce objects—"j dbc/ Or acl eCMIDS1" and
"I dbc/ Oracl eCMIDS2". Both connl and conn2 will exist upon a separate
physical connection.

Context ic = new Initial Context();

Dat aSource dsl = (DataSource) ic.lookup("jdbc/OracleCMIDSL");
Dat aSource ds2 = (DataSource) ic.|ookup("jdbc/OracleCMIDS2");
//start txn
txn.start();
Connection connl
Connection conn2

ds1. get Connection();
ds2. get Connection();

15-14 Oracle9iAS Containers for J2EE Services Guide

Connection Retrieval Error Conditions

Using Database Caching Schemes

You can define the database caching scheme to use within the data source
definition. There are three types of caching schemes: DYNAM C_SCHEME, FI XED _
WAI T_SCHEME, and FI XED_RETURN_NULL_SCHEME. To define one of these
schemes, provide a <pr opert y> element, as follows:

<dat a- sour ce
cl ass="com evernind. sql . Ori onCMIDat aSour ce"
name="0Or acl eDS"
| ocation="j dbc/ Oracl eCMIDS1"
connection-driver="oracle.jdbc.driver.COacleDriver"
user name="scott"
passwor d="tiger"
url="jdbc: oracl e: thi n: @host name>: <TTC port nunber >: <DB S| D>"
i nactivity-timeout="30"
<property nane="cacheSchene"
val ue="DYNAM C SCHEME'/ >
/>

Connection Retrieval Error Conditions
The following creates an error condition:
« Using Different Usernames for Two Connections to DataSource

« Mixing Local and Global Transactions

Using Different Usernames for Two Connections to DataSource

When you retrieve a connection from the a Dat aSour ce object with a username
and password, this username and password is used on all subsequent connection
retrievals within the same transaction. This error condition is valid for all data
source types. For example, you retrieve the "j dbc/ Or acl e CMIDS1" data source
with the "scot t " user. In retrieving a second connection off of the same data source
with a different username, such as "adans", the username provided is ignored.
Instead, the "scot t " user is used.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");
[lstart txn
txn.start();
Connection connl
Connection conn2

ds. get Connection("scott", "tiger"); //uses scott/tiger
ds. get Connecti on("adanms", "wood"); //uses scott/tiger also

Data Sources 15-15

Using the OCI JDBC Drivers

Thus, you cannot authenticate using two different users to the same data source. If
you try to access the tables as "adans/ wood", you enter into an error condition.

You can bypass this behavior by specifying the dedi cat ed. connect i on JNDI
property as true before retrieving the InitialContext. This property states that every
connection retrieval uses a separate connection, even if to the same resource. Thus,
you can specify different users to the same data source.

env. put ("dedi cat ed. connection", "true");

Mixing Local and Global Transactions

You cannot mix local and global transactions. You must use either one or the other.
This error condition applies only to non-emulated data sources. The following code
shows an invalid mixture of local and global transactions:

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");

Connection connl = ds. getConnection("scott", "tiger");

connl.work(); //performwork on connl in a local transaction

/Istart global transaction

txn.start();

connl. morework(); //performwork on connl within a global transaction ERROR!

Another mode of mixing transactional types is as follows:

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eCMIDS1");

Connection connl = ds. getConnection("scott", "tiger");

/Istart global transaction

txn.start();

connl.work(); //performwork on connl in a global transaction
txn.commit();

connl. morework(); //performwork on connl within a | ocal transacti on ERROR!

Even though you have committed the global transaction, you are still mixing global
and local transactional work within the same bean.

Using the OCI JDBC Drivers

The examples of Oracle data source definitions in this chapter use the Oracle JDBC
thin driver. However, you can use the Oracle JDBC OCI (thick) driver as well. Set
the following before you start the OC4J server:

15-16 Oracle9iAS Containers for J2EE Services Guide

Using Merant Drivers

« install the Oracle Client on the same machine on which OC4J is installed
« set the ORACLE_HOME variable

« setLD LI BRARY_PATH (or the equivalent environment variable for your OS) to
$ORACLE_HOVE/ i b

« set TNS_ADM Nto a valid Oracle administration directory with a valid
t nsnanes. or a file

The URL to use in the ur | attribute of the <dat a- sour ce> element definition can
have any of these forms:

« jdbc:oracl e: oci 8: @this TNS entry is for a database on the same system as
the client, and the client connects to the database in IPC mode

« jdbc:oracle:oci8: @TNS servi ce name>: where the TNS service name
is an entry in the instance t nsnanes. or a file

« jdbc:oracle:oci8: @full _TNS |istener_description>:the
complete TNS service specification, as described in the Oracle Net
Administrator’s Guide

Using Merant Drivers

When your application must connect to heterogeneous databases, use Merant JDBC
drivers. Merant JDBC drivers are not meant to be used with an Oracle database but
for connecting to non-Oracle databases, such as Microsoft, SQLServer, Sybase and
DB2. If you want to use Merant drivers with OC4J, add corresponding entries for
each database in the dat a- sour ces. xm file.

Please see the Merant documentation for information on installing the Merant JDBC
drivers.

The following is an example of a data source entry for SQLServer. For more detailed
information, see the Merant DataDirect Connect JDBC User's Guide and Reference.

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="Mer ant DS"
| ocati on="j dbc/ Mer ant Cor eSSDS"
xa- | ocation="j dbc/ xa/ Mer ant SSXADS"
ej b-1ocation="j dbc/ Merant SSDS"
connection-driver="com nerant. datadirect.jdbc.sql server. SQ.ServerDriver"
username="test"
passwor d="secret"
url ="j dbc: sqgl server//hostname: port; User =t est; Passwor d=secret"

Data Sources 15-17

Using Merant Drivers

inactivity-timeout="30"
/>

For a DB2 database, here is a data source configuration sample:

<dat a- sour ce
cl ass="com evernind. sql . Dri ver Manager Dat aSour ce"
name="Merant DS"
| ocation="j dbc/ Mer ant Cor eDB2DS"
xa- | ocation="j dbc/ xa/ Mer ant DB2XADS"
ej b-location="j dbc/ Merant DB2DS"
connection-driver="com nerant. datadirect.jdbc.db2. DB2Driver"
user name="t est"
passwor d="secret"
url="jdbc: sql server//hostnane: port; Locat i onNane=j dbc; Col | ecti onl d=defaul t;
i nactivity-timeout="30"
/>

For a Sybase database, here is a data source configuration sample:

<dat a- sour ce
cl ass="com evernind. sql . Dri ver Manager Dat aSour ce"
name="Merant DS"
| ocati on="j dbc/ Mer ant Cor eSybaseDS"
xa- | ocation="j dbc/ xa/ Mer ant SybaseXADS"
ej b-location="j dbc/ Merant SybaseDS"
connection-driver="com merant. datadirect.jdbc.sybase. SybaseDriver"
user name="t est"
passwor d="secret"
url="jdbc: sql server//hostnane: port; User =t est ; Passwor d=secret"
i nactivity-timeout="30"
/>

You can also use vendor-specific data sources in the class attribute directly. That is,
you do not need to use an OC4J-specific data source in the class attribute.

15-18 Oracle9iAS Containers for J2EE Services Guide

A

JAAS Provider APIs

This appendix describes the JAAS Provider public packages.
This appendix contains these topics:

= JAAS Provider API Overview

« Package oracle.security.jazn

« Package oracle.security.jazn.policy

« Package oracle.security.jazn.realm

JAAS Provider APIs A-1

JAAS Provider API Overview

JAAS Provider APl Overview

This appendix provide brief descriptions of the JAAS Provider APIs. For detailed
information on these APIs, see the JAAS Provider Javadoc available in the OC4J
section of the Oracle9i Application Server Documentation Library.

Package oracle.security.jazn

Interfaces

Classes

Package or acl e. security.jazn provides the classes and interfaces for Oracle's
authorization/policy provider for the Java Authentication and Authorization
Service (JAAS).

Besides providing a full implementation of j avax. securi ty. aut h. Pol i cy, the
JAAS provider enhances JAAS in the following ways:

« Defines a realm-based user and role management API

« Defines an administrative API for administering the following aspects of the
authorization policy:

« Permission-to-user assignment
« Permission-to-role assighment
« User-to-role assignment

« Provides role-based access control (RBAC) support through the realm
framework, with full support for role hierarchies.

Persistable
Per si st abl e defines the basic behavior for a persistable object.

JAZNConfig

JAZNConf i g provides a starting point for obtaining JAAS Provider-related objects
and a centralized place for managing JAAS Provider properties

JAZNConf i g enables you to run multiple JAAS provider instances. You can deploy
several different applications using JAAS provider in the same Java virtual machine
(JVM), each with different configurations. For example, you can have one

A-2 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn

application using JAAS provider with LDAP-based Oracle Internet Directory as the
provider type and another application using JAAS provider with XML-Based
Provider Type as the provider type in the same JVM.

JAZNContext

JAZNCont ext provides a starting point for obtaining JAAS Provider-related
objects and a centralized place for managing the JAAS provider properties.
JAZNCont ext is essentially a single-instance version of JAZNConfi g.

JAZNPermission

JAZNPer mi ssi on is for authorization permissions. A JAZNPer ni ssi on contains
a name (also referred to as a target name), but no actions list; you either have the
named permission or you do not.

The target name is the name of the JAAS provider permission.

Table 15-2 lists the possible target names for a JAZNPer m ssi on, describes what
the permission allows, and describes the risks of granting the permission.

Table 15-2 JAZNPermission Target Names

Permission Name

The Permission
Allows

Risks of Allowing this Permission

getPolicy

The caller to retrieve

the JAZNPol i cy object

This enables someone to retrieve a
JAZNPol i cy object. Since the

JAZNPol i cy object can modify the JAAS
Provider type, grant this permission only
to the administrators.

get Real mvanager

The caller to retrieve
the Real mvanager
object

This enables someone to retrieve a

Real mvanager object. Since the

Real mvanager object can create, drop,
and modify realms, grant this permission
only to the administrators.

get Property.
{propertyNane}

The caller to retrieve
the value of the JAAS
provider property
named
{propertyNane}

Depending on the particular key for
which access has been granted, the code
may have access to the location of the
backend server as well as security
credentials used to access the backend
server. Carefully protect this permission
and grant it only to administrators.

set Property.
{propertyNane}

The caller to set the
value of the JAAS
provider property
named
{propertyNane}

This can include setting a new backend
server and new credentials to access the
backend server. Since this can bypass the
enterprise policy, carefully protect this
permission and grant it only to
administrators.

JAAS Provider APIs A-3

Package oracle.security.jazn

JAZNWebAppConfig
JAZNWebAppConf i g represents a <j azn- web- app> Configuration instance.

Exceptions

JAZNConfigException
JAZNConf i gExcept i on represents an authorization exception.

JAZNEXxception
JAZNEXxcept i on represents an authorization exception.

JAZNInitException
JAZNI ni t Except i on is thrown when an initialization error occurs.

JAZNNamingException
JAZNNam ngExcepti on is used to wrap aj avax. nanm ng. Nam ngExcepti on.

JAZNObjectExistsException

JAZNObj ect Exi st sExcepti on is thrown when an attempt is made to create an
object that already exists.

JAZNObjectNotFoundException

JAZNObj ect Not FoundExcept i on is thrown when an attempt is made to access
an object that does not already exist.

JAZNRuntimeException
JAZNRunt i meExcept i on represents an authorization exception.

A-4 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.login

Package oracle.security.jazn.login

Package or acl e. security.jazn. | ogi n provides the classes and interfaces for
administering Login Modules.

Classes

LoginModuleManager

Logi nMbdul eManager extends j avax. security. auth. | ogin.
Conf i gur at i on by defining management methods (add/remove
AppConfi gurati onEntry).

JAAS Provider APIs A-5

Package oracle.security.jazn.policy

Package oracle.security.jazn.policy

Package or acl e. security.jazn. policy provides the classes and interfaces for
administering the authorization policy.

Interfaces

GlobalPolicy
d obal Pol i cy represents the Global JAAS Provider Policy.

JAZNPolicy

JAZNPol i cy represents the repository of authorization policies. More specifically,
JAZNPol i cy deals with the assignment of permissions or privileges to grantees
(these can be users or roles or any valid grantee).

In order for a grant or revocation to succeed, the grantor or revoker (represented by
the current subject) must have the relevant permissions granted to them.

In general, the methods that return a list or set represent a snapshot of a
JAZNPol i cy provider at the time of the query. If the JAAS provider is further
modified, the returned set of permissions and roles may no longer be valid.

In general, JAZNPol i cy implementation should cache the policy information, so
that repeated calls using the same parameters do not result in repeated network
round trips to the backing store.

JAZNPol i cy also defines methods that change the persistent state of the JAAS
Provider type (for example, grant or revoke xx methods). The implementation must
ensure that whenever a grant or revoke is attempted, the relevant cache entries are
invalidated.

PermissionClassManager
The Per ni ssi onCl assManager is an utility to help manage permission classes.

Per m ssi onCl assManager represents the repository of all registered Permission
classes. Registering a permission class allows access to stored metadata that
provides specific information about a given permission's target, action, and/or
description. Failure to register a given permission class will not affect JAAS
provider's ability to use the permission class. That is, JAAS does not limit
permission grants or revocations to those classes registered with the

Per mi ssi onCl assManager.

A-6 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.policy

Classes

PolicyManager
Pol i cyManager defines basic methods for managing JAAS Provider policies.

PrincipalClassManager
The Pri nci pal G assManager is an utility to help manage principal classes.

Pri nci pal Cl assManager represents the repository of all registered Principal
classes. Registering a principal class allows access to stored metadata that provides
specific information about a given principal's name and description. Failure to
register a given principal class will not affect the JAAS provider's ability to use the
principal class. That is, the JAAS provider recognizes all principal classes whether
or not they have been registered with the Pri nci pal Cl assManager.

RealmPolicy
Real nPol i cy is a Realm-specific Policy.

AdminPermission

Adnmi nPer m ssi on represents the right to administer a permission. Given a
Permission p, the grantee of Adni nPer nmi ssi on(p) is granted the right to:

« Grant or revoke permissions implied by p (say p')
« Grant or revoke Adni nPer ni ssi on(p')
For example:
p = java.io.FilePermssion("/home/frank/-","read, wite");
If grantee f r ank is granted Admi nPer mi ssi on(p), then f r ank is granted the
following rights:

« Theright to further grant or revoke p' (that is, read and write privileges for any
file in the file system under / hone/ f r ank) to and from other grantees

« Theright to further grant or revoke Adm nPer m ssi on(p')
Consider the following information:

« AnAdm nPer ni ssi on embedding another Admi nPer m ssi on is not
supported. There is no need to do so, since granting a grantee

JAAS Provider APIs A-7

Package oracle.security.jazn.policy

Adm nPer mi ssi on(p) implies that the grantee can further grant/revoke
Adm nPerm ssion(p')

« Granting a grantee Adm nPer m ssi on(p) does not imply granting the
grantee. That must be granted separately.

Grantee
Gr ant ee represents a grantee in a policy entry.

PermissionClassDesc
Per m ssi onCl assDesc defines the descriptor (metadata) for a Permission class.

PrincipalClassDesc
Pri nci pal Cl assDesc defines the descriptor (metadata) of a Principal class.

RoleAdminPermission

The grantee of Rol eAdm nPer mi ssi on is granted the right to further grant or
revoke the target role.

A-8 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.realm

Package oracle.security.jazn.realm

Interfaces

Package or acl e. security.jazn.real mprovides the classes and interfaces for
the realm framework.

InitRealmInfo.RealmType

I ni t Real ml nf 0. Real mlype defines the different realm types supported by JAAS
Provider.

Realm

Real mprovides access to a store of roles and users. The JAAS provider separates
role management from user management by providing each realm instance with its
own User Manager for user management and Rol eManager for role management.

Real mdefines methods for managing realm's metadata (properties) and getting its
User Manager and Rol eManager.

Realm.LDAPProperty

Real m LDAPPr oper t y defines the LDAP properties applicable for creating a
realm (user manager and role manager) using an LDAP directory as a backing store.

RealmPrincipal

Real nPri nci pal extends fromj ava. security. Princi pal . Itisa principal
associated with a realm instance.

RealmRole

Real mRol e is a role associated with a realm. It can be associated with a group of
privileges or roles.

RealmUser

Real mUser is a user associated with a realm. This is an empty interface for tagging
objects as being Real nmser objects. It differs from Real nRol e in that it cannot
contain other roles.

JAAS Provider APIs A-9

Package oracle.security.jazn.realm

RoleManager
Rol eManager defines the APIs for managing roles in a realm.

UserManager
User Manager defines the APIs for managing users in a realm.

Classes

InitRealmInfo

I ni t Real nl nf o is a placeholder for specifying realm properties when creating a
new realm.

RealmLoginModule
Real nmLogi nModul e is a realm-based login module.

RealmManager
Real mvanager manages realms.

RealmPermission

Real mPer nmi ssi on is defined to represent permissions for a realm. It extends from
java. security. Perni ssion, and is used like any regular Java permission.
Real mPer nmi ssi on consists of the name of the realm (also known as permission
target name) and a set of actions specifying privileges applicable to that realm. The
target name of a Real mPer i ssi on instance is the name of the realm in question.
The individual action name is specific to the realm in question and is
system-defined.

Table 15-3 lists all the system-defined Real mPer ni ssi on action names.

Table 15-3 RealmPermission Action Names

Permission Action The Permission Action Enables You To...

creat eReal m Create realms

dropReal m Drop realms

creat eUser Create users in the target realm
dr opUser Drop users in the target realm

A-10 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.realm

Table 15-3 RealmPermission Action Names

Permission Action The Permission Action Enables You To...

creat eRol e Create roles in the target realm

dr opRol e Drop roles in the target realm
nodi f yRol e Modify roles in the target realm
grant Rol e Grant roles in the target realm
revokeRol e Revoke roles from the target realm

JAAS Provider APIs A-11

Package oracle.security.jazn.realm

A-12 Oracle9iAS Containers for J2EE Services Guide

B

JAAS Provider Standards and Samples

This appendix provides supplemental samples and standards.
This appendix contains these topics:
Sample jazn-data.xml Code

Supplemental Code Samples

JAAS Provider Standards and Samples B-1

Sample jazn-data.xml Code

Sample jazn-data.xml Code

B-2

This section presents a sample j azn- dat a. xm file which illustrates the specific
DTD standards that XML files must conform to. Thisj azn- dat a. xml file contains
one realm, j azn. com four users (three with obfuscated passwords) and three roles.

See Also:
« "DTD Standard for XML Datafiles" on page 7-38

« "Realm Management in XML-Based Environments" on
page 4-22

« "Managing XML-Based Provider Data with the XML Schema"
on page 7-37 for further information on managing JAAS
Provider in XML-based provider environment

« "Other Utilities" on page 7-39 for further information on the
Per m ssi onCl assManager, Princi pal Cl assManager,
and Logi nModul eManager

Example 15-2 Sample jazn-data.xml File

<jazn-data
<I'--JAZN Real m Data -->

<jazn-real n»
<real n»
<name>j azn. conx/ nane>
<users>
<user >
<nanme>adni n</ name>
<di spl ayNanme>Real m Admi ni strat or </ di spl ayNane>
<description>Admi ni strator for this real nk/description>
<credential s>Q +w7NJul LM=</ cr edenti al s>
</ user>
<user >
<name>user </ nane>
<description>The default guest</description>
<credenti al s>WwEE6aA==</ credenti al s>
</ user>
<user >
<name>anonynous</ nane>
<descripti on>The default guest/anonynous
user </ descri ption>

Oracle9iAS Containers for J2EE Services Guide

Sample jazn-data.xml Code

</ user>

<user >
<name>SCOTT</ name>
<di spl ayName>SCOTT</ di spl ayNane>
<credenti al s>DppF6Lo4</ credenti al s>

</ user>
</ user s>
<rol es>
<rol e>
<nanme>guest s</ nane>
<menber s>
<nenber >
<type>user</type>
<nane>adm n</ nane>
</ menber >
<nenber >
<type>user</type>
<nane>user </ nane>
</ menmber >
<nenber >
<type>user</type>
<name>anonynous</ nane>
</ menmber >
</ menber s>
<[rol e>
<rol e>

<name>adni ni strat or s</ nane>
<di spl ayName>Real m Admi n Rol e</ di spl ayNane>
<description>Admi ni strative role for this
real nx/ descri pti on>
<nenber s>
<nenber >
<type>user</type>
<nanme>adni n</ name>

</ menmber >
</ menber s>
<[rol e>
<rol e>
<nane>user s</ name>
<nmenber s>
<nenber >

<type>user</type>
<nanme>adm n</ name>
</ menber >
<menber >
<type>user</type>

JAAS Provider Standards and Samples B-3

Sample jazn-data.xml Code

<nane>user </ nane>
</ menmber >
</ menber s>
<[rol e>
</rol es>
</real n»
</jazn-real n»

<!--JAZN Policy Data -->
<j azn- policy>
<grant >
<gr ant ee>
<principal s>
<principal >
<real npj azn. com real np
<type>rol e/ type>
<class>oracl e. security.jazn.spi.xm.XMReal mRol e
</cl ass>
<name>j azn. com admi ni strat ors/ name>
</ principal >
</ princi pal s>
</ grantee>
<perni ssi ons>
<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPermi ssi on</cl ass>
<name>j azn. conx/ nane>
<actions>nodi f yr eal nmet adat a</ acti ons>
</ per m ssi on>
<perm ssi on>
<cl ass>com evermi nd. server. Adm ni strati onPer ni ssion
</class>
<npame>adni ni strat i on</ name>
<actions>admi ni stration</actions>
</ perm ssi on>
<perm ssi on>
<class>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>oracl e. security.jazn.realm
contnodi fyr eal et adat a</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>oracl e. security.jazn.realm
Real nPer mi ssi on$j azn. condr opr eal nx/ nane>
</ perm ssion>
<perm ssi on>

B-4 Oracle9iAS Containers for J2EE Services Guide

Sample jazn-data.xml Code

<class>oracl e. security.jazn.policy.Rol eAdm nPerm ssion
</class>
<name>j azn. com *</ name>
</ perm ssi on>
<perm ssi on>
<class>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>oracl e. security.jazn. policy.
Rol eAdni nPer i ssi on$j azn. com *$</ name>
</ perm ssi on>
<perm ssi on>
<class>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>oracl e. security.jazn.realm
Real mPer mi ssi on$j azn. confsdr opr ol e</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>com evermi nd. server. rm . RM Permi ssi on</cl ass>
<name>| ogi n</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPermi ssi on</cl ass>
<name>j azn. conx/ nane>
<act i ons>dropr eal nx/ acti ons>
</ perm ssi on>
<perm ssi on>
<class>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>or acl e. security.jazn.real m Real nPermi ssi on$j azn.
congcr eat er ol e</ name>
</ perm ssion>
<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adni nPerm ssion</class>
<name>or acl e. security.jazn.real m Real nPermi ssi on$j azn.
congcr eat er eal n</ nane>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPermi ssi on</cl ass>
<name>j azn. conx/ nane>
<act i ons>cr eat er eal nx/ acti ons>
</ perm ssi on>
</ perm ssi ons>
</grant>
</jazn-policy>

<I-- Permission Cass Data -->

<j azn- per m ssi on-cl asses>
<permi ssion-cl ass>

JAAS Provider Standards and Samples B-5

Sample jazn-data.xml Code

<name>JAZNPer ni ssi on</ nane>
<description>To govern access to JAZN APl </ descri ption>
<type>j dk</type>
<cl ass>oracl e. security.jazn. JAZNPer m ssi on</cl ass>
<target-descriptors>
<target-descriptor>
<name>*</ nane>
<description>Access to ALL of JAZN API</description>
</target-descriptor>
</target-descriptors>
<action-descriptors>
</ action-descriptors>
</ per mi ssi on-cl ass>
</jazn-perni ssi on-cl asses>

<I-- Principal Class Data -->
<j azn- pri nci pal - cl asses>
<princi pal - cl ass>
<nanme>Sol ari sPri nci pal </ name>
<description>Sol ari s Principal </description>
<type>j dk</type>
<cl ass>com sun. security. auth. Sol ari sPrinci pal </cl ass>
<nane- descri ption- map>
<nane- descri ption-pair>
<name>* </ nanme>
<description>All Principal s</description>
</ name- descripti on- pai r>
</ nane- descri pti on- map>
</ princi pal - cl ass>
</jazn-principal -cl asses>

B-6 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

<I-- Login Mdule Data -->
<j azn-1ogi nconfi g>
<appl i cation>
<nanme>Test Real nLogi n</ nane>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.real m Real m_ogi nMdul e</ cl ass>
<control -fl ag>required</control -fl ag>
<options>
<option>
<nanme>addRol es</ name>
<val ue>t rue</ val ue>
</ opti on>
</ options>
</l ogi n- nodul e>
</l ogi n- modul es>
</ application>
</jazn-logi nconfig>

</jazn-data>

Supplemental Code Samples

The following code samples are intended as supplemental information. This section
presents the following:

« Supplementary Code Sample: Creating an Application Realm

« Supplementary Code Sample: Modifying User Permissions

See Also:

« "Realm Creation" on page 7-28 for further information on
creating realms

« "Creating an External Realm" on page 7-29 for further
information on creating application realms

Supplementary Code Sample: Creating an Application Realm

The following code sample creates an Application Realm with the objects shown in
Table 15-4. The objects to be modified are presented in bold.

JAAS Provider Standards and Samples B-7

Supplemental Code Samples

Table 15-4 Objects in Sample Application Realm Creation Code

Objects Names

sample organization dev. com
adm nUser (optional) John. Si ngh
adm nRol e adnmi ni strator

sample realm name devReal m

Example 15-3 Application Realm Creation Code

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;
inport oracle.security.jazn.realm?*;

inport java.util.*;

/**

* Creates an application realm
*/

public class CreateReal mextends oject

{
public CreateRealm) {};

public static void main (String[] args) {
CreateReal mtest = new CreateReal m();
test.creat eAppReal m();

}

voi d createAppReal m') {
Real m real menul | ;

try {
Hasht abl e prop = new Hashtabl e();

prop. put (Real m LDAPPr operty. USERS_SEARCHBASE, "cn=user s, o=dev. cont');
/'l specifying the following LDAP directory object class

/1l is optional. When specified, it will

/'l be used as a filter to search for users

prop. put (Real m LDAPPr operty. USERS_OBJ_CLASS, "orcl User");

/1 adminUser is optional

B-8 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

String adm nUser = "John. Si ngh";
String adminRole = "administrator";
Real mvenager real mvgr = JAZNCont ext . get Real mMvanager ();

InitReal mMnfo realmnfo = new
I ni t Real m nfo(I nitReal m nfo.Real nType. APPLI CATI ON_REALM adni nUser,
adm nRol e, prop);

real m= real m\vyr. creat eReal m("devReal nf', real m nfo);

}

catch (Exception e) {
e.printStackTrace();

}
}
}

Supplementary Code Sample: Modifying User Permissions

The following code demonstrates granting j ava. i 0. Fi | ePer ni ssi on to a user
named Jane. Smi t h. The objects to be modified are presented in bold.

Table 15-5 Objects of Sample Modifying User Permissions Code

Objects Names Comments...

Real nser user Jane. Smith

codesource cs file:/home/task.jar

File path report.data Path is the pathname of the file.
sample organization abc. com abc. comdoes not appear in this

code directly, but was acted upon
in the creation of this sample
External Realm in Example 7-1 on
page 7-30.

sample External Realm abcReal m abcReal mappears in this code
and in the creation of this sample
External Realm in External Realm
Creation Code on page 7-30.

JAAS Provider Standards and Samples B-9

Supplemental Code Samples

Example 15-4 Modifying User Permissions Code

Code Sample

inport oracle.security.jazn.*;
inport oracle.security.jazn.policy.*;
inport oracle.security.jazn.realm?*;
inport java.lang.*;

inport java.security.*;

inport java.util.*;

inport java.net.*;

inport java.io.*;

public class Init {

public static void main(String[] args) {

try {
Real mvanager real mvgr = JAZNCont ext . get Real mvanager ();

Real mreal m = real m\Wr. get Real (" abcReal ni');

User Manager userMgr = real m get User Manager () ;

Rol eManager rol eMyr = real m get Rol eManager () ;
final JAZNPolicy policy = JAZNCont ext.getPolicy();

final Real mUser user = userMyr.get User("Jane.Smith");

AccessControl | er. doPrivileged (new PrivilegedAction() {
public Qbject run() {

try {

CodeSour ce c¢s = new CodeSour ce(new URL("
file:/home/task.jar"), null);
HashSet prop = new HashSet ();
prop. add((Princi pal) user);

/1 assign pernission to principals
policy.grant(new G antee(prop, cs), new
Fil ePernmission("report.data", "read"));

return null;
} catch (JAZNException el) {
el.printStackTrace();
} catch (java.net. Mal formedURLException e2) {
e2.printStackTrace();

B-10 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

}

return null;

}
)

} catch (JAZNException e) {
e.printStackTrace();

}

Discussion of Sample Code

The sample code shown in Example 15-4 is preparation for using the sample
application, AccessTest 1, discussed in "Sample J2SE Application" on page 8-5.
This sample code grants a user, Jane. Sni t h, permission to use AccessTest 1 as
follows:

The name cs is assigned tothefi | e: / hone/ t ask. j ar, which includes the
sample application AccessTest 1:

CodeSource ¢s = new CodeSource(new URL("
file:/home/task.jar"), null);

Jane. Sm t h is the user added to the hashset prop:
HashSet prop = new HashSet ();
prop. add((Princi pal) user);
Jane. Sm t h is granted permission, on the Codesour ce cs, to read the file
report. data.

policy.grant(new G antee(prop, cs), new
Fi | ePernission("report.data", "read"));

JAAS Provider Standards and Samples B-11

Supplemental Code Samples

B-12 Oracle9iAS Containers for J2EE Services Guide

C

Third-Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle9i Application Server. Topics include:

« Apache HTTP Server
« Apache JServ

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS 1S" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License

/* bbbt
* The Apache Software License, Version 1.1

*

* Copyright (c) 2000 The Apache Software Foundation. All rights

* reserved.

*

* Redistribution and use in source and binary forms, with or wthout
* nmodification, are pernitted provided that the fol |l owi ng conditions
* are net:

*

* 1. Redistributions of source code nmust retain the above copyright
*

notice, this list of conditions and the fol |l owing disclainer.

Third-Party Licenses C-1

Apache HTTP Server

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the following disclainer in
the docunentation and/or other nmaterials provided with the
distribution.

3. The end-user documentation included with the redistribution,
if any, nust include the follow ng acknow edgment:
“This product includes software devel oped by the
Apache Software Foundation (http://wwmv. apache.org/)."
Al'ternately, this acknow edgment nay appear in the software itself,
if and wherever such third-party acknow edgnents normal |y appear.

4. The names "Apache" and "Apache Software Foundation" must
not be used to endorse or pronote products derived fromthis
software without prior witten permssion. For witten
perm ssion, please contact apache@pache. org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their name, without prior witten
perm ssion of the Apache Software Foundation.

TH S SOFTWARE IS PROVIDED ‘“AS IS’ AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE | MPLI ED WARRANTI ES
OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG BUT NOT
LIMTED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY QUT
OF THE USE OF THI S SOFTWARE, EVEN |F ADVI SED OF THE POSSI BI LI TY OF
SUCH DAMAGE.

kR ok kR 3k R ok Sk kR ok R ok ok ok 3k ok Sk R ok ok ok ok Rk ok k% %k % ok

*

This software consists of voluntary contributions made by many

i ndividual s on behal f of the Apache Software Foundation. For nore
information on the Apache Software Foundation, please see
<http://www. apache. org/ >.

Portions of this software are based upon public domain software
originally witten at the National Center for Superconputing Applications,
University of Illinois, U bana-Chanpaign.

0k ko k% %k % F

*
-~

C-2 Oracle9iAS Containers for J2EE Services Guide

Apache JServ

Apache JServ

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS 1S" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

« Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

« Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

« All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

« The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project” must not be used to endorse or promote products derived from this
software without prior written permission.

« Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

« Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

Third-Party Licenses C-3

Apache JServ

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C-4 Oracle9iAS Containers for J2EE Services Guide

Symbols

<commit-class> element, 10-12
<commit-coordinator> element, 10-12
<container-transaction> element, 10-7
<data-source>

attributes, 1-9
<resource-ref>element, 1-11
<res-ref-name> element, 1-11
<transaction-type> element, 10-6, 10-8

A

access control list model
definition, 4-13
AccessController, 4-5
accessing JAAS provider, 7-4
AccessTestl, 8-7,B-11
actions
definition, 4-4
add button
Oracle Enterprise Manager, 7-4
add command, 7-24
adding and removing realms, 7-16
adding and removing roles, 7-17
adding and removing users, 7-17
addperm options, 7-18
addprncpl option, 7-19
addrealm option, 7-16
addrole option, 7-17
adduser option, 7-17
administrative role, 7-29
AdminPermission class
administering permissions, 4-26

Index

definition, 4-5, A-7
adminRole, 7-28
adminUser, 7-29
Ant build tool, 9-5

Apache
JServ license, A-3
license, A-1

Apache Listener. See Oracle HTTP Server
apachectl start command, 9-8
apachectl startssl command, 9-8
APIs
oracle.security.jazn package, A-2
oracle.security.jazn.policy package, A-6
oracle.security.jazn.realm package, A-9
Application Realm
creation, 7-31
creation code, B-8
definition, 4-18
role management, 4-18, 4-21
sample LDAP directory information tree, 4-21
user management, 4-18, 4-21
ApplicationClientInitialContextFactory, 2-6 to 2-8
ApplicationinitialContextFactory, 2-8to 2-10
applications
executing, 8-4,9-8
in Java2 application environments, 6-2
sample J2SE, 8-5
with JAAS, 4-10
application.xml
designating data-sources.xml, 1-2
assigning permissions, 7-6
attributes
CacheEventListener, 13-17
DefaultTimeToLive, 13-17

Index-1

DISTRIBUTE, 13-14

GROUP_TTL_DESTROY, 13-14

IdleTime, 13-17

LOADER, 13-14

ORIGINAL, 13-14

REPLY, 13-15

SPOOL, 13-15

SYNCHRONIZE, 13-16

SYNCHRONIZE_DEFAULT, 13-16

TimeToLive, 13-18

Version, 13-18
Attributes.setCacheEventListener() method, 13-28
authentication

definition, 4-2

J2EE, 9-2

J2SE, 8-2

using login modules, 4-9

using Oracle9iAS Single Sign-On (SSO), 4-13

using RealmLoginModule class, 4-13

with Basic Authentication, 6-13

with SSL, 6-10

with SSO, 4-13, 6-8
authentication environments, 6-6
authorization

definition, 4-2

J2EE, 9-4

J2SE, 8-3

B

basic authentication, 6-6
callerinfo demo, 5-2

C

Cache

concepts, 13-2
cache environment, 13-6
CacheAccess.createPool() method, 13-40
CacheAccess.get() method, 13-22
CacheAccess.getOwnership() method, 13-46
CacheAccess.preLoad() method, 13-22
CacheAccess.releaseOwnership() method, 13-46
CacheAccess.save() method, 13-35
CacheEventListener attribute, 13-17

Index-2

CacheEventListener interface, 13-28
CachelLoader()
implementing, 13-22
CachelLoader.createStream() method, 13-38
caching scheme, 1-14

callback handler, 8-2,8-5
callerinfo demo, 5-2,9-4
code, 9-9
results, 5-6
capability model
definition, 4-13
cd command, 7-24

checking password, 7-17

checkpasswd
cipher suites

option,

7-17

supported by Oracle HTTPS, 1-7

A-7

0

class names
definition, 4-4

classes
AdminPermission,
Grantee, A-8
InitRealminfo, A-1
JAZNConfig, A-2
JAZNConfigException, A-4
JAZNContext, A-3

JAZNPermission,

A-3

RealmLoginModule, A-10

ager, A-10
RealmPermission,
RoleAdminPermission, A-8

cleaninterval property,

RealmMan

clear comman
codebase, 4-
codesource,
in policy fi
constructing

d, 7-25
10

7-8

les, 4-10

JNDI contexts, 2-4

JNDI InitialContext,
createDiskObject() method, 13-23, 13-36
createlnstance() method, 13-42
CreatePool() method,
createRole, 7-32,7-33
createStream() method,
creating a new grantentry, 7-8

creating roles,

7-33

A-10

13-27

2-5

13-40

13-23

creation code
Application Realm, B-8
External Realm, 7-30
credentials, 4-8, 4-24
cryptographic keys, 4-8

D

data source
configuration, 1-8
configuration file, 1-9
connection sharing, 1-13
default, 1-2
definition, 1-2
emulated, 1-2,1-5to1-6
error conditions, 1-15
mixing transactions, 1-15
username, 1-15
introduction, 1-1
location of XML file, 1-2
non-emulated, 1-7to1-8
behavior, 1-13
JTA transaction, 1-13
Oracle JDBC extensions, 1-12
retrieving connection, 1-4,1-11
using Merant driver, 1-17
using OClI driver, 1-16
data storage
in LDAP-based environments, 4-21
database
caching scheme, 1-14
retrieving connection, 1-4
DataSource object, 10-4,1-4
methods, 1-10
retrieving, 10-4
use in JTA, 10-11
data-sources.xml, 1-9
designating location, 1-2
pre-installed definitions, 1-2
data-sources.xml file, 10-12
use in JTA, 10-2
dedicated.connection JNDI property, 1-15
default configurations
callerInfo demo, 5-3
default realm, 9-6

default-realm, 5-4
DefaultTimeToLive attribute, 13-17
default-web-site.xml file, 5-3, 9-5
defineGroup() method, 13-20, 13-21
defineObject() method, 13-21
defineRegion() method, 13-19
delegation, 4-2

deleting grant entries, 7-8
deployment descriptor

JTA, 10-6
deployment descriptors
JCA, 124

destroy() method, 13-25
destroylnstance() method, 13-42
directory information tree (DIT)

Application Realm, 4-21

External Realm, 4-18

Subscriber Realm, 4-19
discoveryAddress property, 13-27, 13-44
diskPath property, 13-27,13-33
distinguished name (DN), 4-22
DISTRIBUTE attribute, 13-14, 13-43
distribute property, 13-27
doFilter(ServletRequest request, ServletResponse

response,FilterChain chain), 9-3

dropping a realm, 7-29, 7-32
dropping roles, 7-35
dropRole, 7-32,7-35

E

embedded resource adapter, 12-2
environments, 4-3,4-17
examples
stand-alone resource adapters, 12-6
exceptionHandler() method, 13-23
exceptions
JAZNException, A-4
JAZNInitException, A-4
JAZNNamingException, A-4
JAZNObjectExistsException, A-4
JAZNODbjectNotFoundException, A-4
JAZNRuntimeException, A-4
executing an application, 8-4
exitcommand, 7-26

Index-3

External Realm
automatically installed, 4-22
creating, 7-30
creation code, 7-30
definition, 4-17
role management, 4-17,4-19
sample LDAP directory information tree, 4-18
user management, 4-17,4-19

F

features, 4-2
foundations of the JAAS provider, 4-2

G

GROUP_TTL_DESTROQY attribute, 13-14,13-24,
13-25

H

handleEvent() method, 13-28
help command, 7-25
help option, 7-21
hosted application environments, 4-26
hosted environments, 4-27
HTTPClient.HttpUrlConnection, 1-10
HTTPConnection, 1-4

Oracle extensions, 1-13

GenericCredential interface

and Kerberos, 12-8
getAttribute("java.security.cert.X509certificate"), 9-

3

getAuthType, 9-3
getconfig option, 7-20
getConnection method, 10-4, 1-4
getID() method, 13-28
getName() method, 13-23
getOwnership() method, 13-46
getOwnsership() method, 13-50
getParent() method, 13-21
getPolicy, 7-36
getRegion() method, 13-23
getRemoteUser, 9-3
getRoles, 7-33
getSource() method, 13-28
getSubject, 8-3
getting XML configuration information, 7-20
getUserPrincipal, 9-3
grantentry data, 7-7
Grantee class

definition, A-8
granting and revoking permissions, 7-19
granting and revoking roles, 7-17
granting roles, 7-33
grantperm option, 7-19
grantRole, 7-32,7-34
grantrole option, 7-17

Index-4

IdleTime attribute, 13-17
impersonation
delegation, 4-2
import
oracle.ias.cache, 13-19
initial context factories
JNDI, 2-6to2-11
InitialContext
constructing in JNDI, 2-5
InitRealmInfo class
definition, A-10
InitRealmInfo.RealmType interface, 7-31
definition, A-9
installation
Javadoc, A-2
interfaces
InitRealmInfo.RealmType, A-9
JAZNPolicy, A-6
Realm, A-9
Realm.LDAPProperty, A-9
RealmPrincipal, A-9
RealmRole, A-9
RealmUser, A-9
RoleManager, A-10
UserManager, A-10
invalidate() method, 13-24
invoking JAZN Admintool, 7-15

J

J2EE. See Java2 Platform, Enterprise Edition (J2EE)
J2SE environments

JAAS provider integration, 6-2
J2SE. See Java2 Platform, Standard Edition (J2SE)
JAAS, 4-2

definition, 4-7
overview, 1-2
JAAS policy

managing, 7-6

JAAS provider
definition, 4-2
enhancements to realms, 4-15
features, 4-2
integration with Basic authentication, 6-12
integration with J2EE applications, 6-4
integration with J2SE applications, 6-2
integration with SSL-enabled applications, 6-9
integration with SSO-enabled applications, 6-7
management of, 7-2
management tools, 7-2
permission classes, 4-5
policy management, 7-36
running multiple instances, A-2
security role, 6-15

JAAS provider integration
J2SE environments, 6-2

JAAS. See Java Authentication and Authorization

Service (JAAS)

jaas.config, 8-4

Java, 10-1

Java application environments, 4-3

Java Authentication and Authorization Service

(JAAS)
applications, 4-10
definition, 4-7

extending the Java2 Security Model, 4-7
login modules, 4-9
policy files
example, 4-10
principals, 4-8
realms, 4-10
roles, 4-9
subjects, 4-8

support for authorization and authentication
features, 4-7
Java Authorization and Authentication Service. See
JAAS.
Java Connector Architecture
overview, 1-3
Java Message Service. SeeJMS.
Java Object Cache, 13-2
attributes, 13-12
basic architecture, 13-3
basic interfaces, 13-5
cache configuration properties, 13-26
cache consistency levels, 13-49
cache environment, 13-6, 13-11
classes, 13-5
configuration
cleaninterval property, 13-27
discoveryAddress property, 13-27
diskPath property, 13-27
distribute property, 13-27
logFileName property, 13-27
logger property, 13-27
logSeverity property, 13-28
maxObjects property, 13-28
maxSize property, 13-28
consistency levels
distributed with reply, 13-50
distributed without reply, 13-50
local, 13-49
synchronized, 13-50
default region, 13-11
defining a group, 13-20, 13-21
defining a region, 13-19
defining an object, 13-21
destroy object, 13-25
disk cache
adding objects to, 13-34
configuring, 13-33
disk objects, 13-33
definition of, 13-9
distributed, 13-36
local, 13-36
using, 13-36
distribute property, 13-43
distributed cache architecture, 13-4

Index-5

distributed disk objects, 13-34
distributed groups, 13-44
distributed mode, 13-43
distributed objects, 13-44
distributed regions, 13-44
features, 13-7
group, 13-12
invalidating object, 13-24
javacache.log log file, 13-27
local disk objects, 13-34
local mode, 13-43
memory objects
definition of, 13-8
local memory object, 13-8
spooled memory object, 13-8
updating, 13-8
naming objects, 13-8
object types, 13-6, 13-8
overview, 1-3
pool objects
accessing, 13-41
creating, 13-40
definition of, 13-10
using, 13-40
programming restrictions, 13-31
region, 13-11
StreamAccess object, 13-10
subregion, 13-11
Java permissions, 7-4
managing, 7-12
Java Platform, Enterprise Edition (J2EE)
security role, 6-14
Java programming, 7-27
sample code, 7-27
Java Transaction API. See JTA.
Java virtual machine (JVM)
running multiple JAAS provider instances, A-2
Java2 application environments, 6-2
Java2 Platform, Enterprise Edition (J2EE)
application developmentin, 6-2
application development with the JAAS
provider, 4-2
application management, 9-2
application startup, 9-8
creating applications using the Java2 Security

Index-6

Model, 4-4
definition, 6-2, 6-4
integration with JAAS provider, 6-4
integration with JAZNUserManager, 6-4
integration with Oracle components, 6-4
integration with Oracle9iAS Containers for
J2EE, 6-4
Oracle component responsibilities in basic
authentication environments, 6-13
Oracle component responsibilities in SSL-enabled
environments, 6-10
Oracle component responsibilities in
SSO-enabled environments, 6-8
starting applications with SecurityManager, 9-8
starting in SSL environment, 9-8
starting in SSO environments, 9-8
Java2 Platform, Standard Edition (J2SE)
application development in, 6-2
application development with the JAAS
provider, 4-2
authentication, 8-2
authorization, 8-3
creating applications using the Java2 Security
Model, 4-4
definition, 6-2
integration with JAAS provider, 6-2
integration with Oracle components, 6-2
provider types available, 6-2
Java2 Security Model, 4-3,4-7,9-4
definition, 4-4
using access control capability model, 4-13
using with J2EE applications, 4-4
using with J2SE applications, 4-4
using with JAAS, 4-7
javacache.properties file, 13-26
Javadoc
location of, A-2
java.io.FilePermission, B-9
java.lang.SecurityManager.checkPermission, 8-3
java.net.URL framework, 1-10
java.security.cert.X509Certificate, 9-3
java.security.cert.X509Certificate,x509cert, 9-3
java.security.Permission class, 7-35
RealmPermission extends from, A-10
java.security.principal, 4-12

java.security.Principal interface
RealmPrincipal extends from, A-9
using with principals, 4-8
using with roles and groups, 4-9
javax.net.ssl.KeyStore, 1-11
javax.net.ssl.KeyStorePassword, 1-12
javax.security.auth.Policy, A-2
javax.security.auth.Subject.doAs, 8-2, 8-3
javax.servlet.HttpServletRequest, 9-3
JAZN Admintool, 7-2,7-14
administering policy, 4-24
definition, 4-16

for managing JAAS provider types, 4-13

invoking, 7-15
Quick Start, 5-7
shell commands, 7-24

JAZN Admintool commands
usage examples, 7-14

JAZN Admintool options
addperm, 7-18
addprncpl, 7-19
addrealm, 7-16
addrole, 7-17
adduser, 7-17
checkpasswd, 7-17
getconfig, 7-20
getting help, 7-21
grantperm, 7-19
grantrole, 7-17
help, 7-21
listperm, 7-19
listperms, 7-19
listprnepl, 7-20
listrealms, 7-17
listroles, 7-18
listusers, 7-18
remprncpl, 7-19
remrealm, 7-16
remrole, 7-17
remuser, 7-17
revokeperm, 7-19
revokerole, 7-17
setpasswd, 7-18
shell, 7-20

JAZN Admintool shell, 7-14

starting, 7-20
JAZN Admintool shell commands

add, 7-24
cd, 7-24
clear, 7-25
exit, 7-26
help, 7-25
Is, 7-24
man, 7-25
mk, 7-24
mkdir, 7-24
pwd, 7-25
rm, 7-25

jazn element

location, 5-4,9-6
JAZNAdmMInGroup, 4-26
JAZNClientGroup, 4-26
JAZNConfig class, 7-28

definition, A-2
JAZNConfigException class

definition, A-4
JAZNContext class, 7-28

definition, A-3
jazn-data.xml file, 4-11, 4-23, 5-3
JAZNEXxception exception

definition, A-4
JAZNInitException exception

definition, A-4
JAZNNamingException exception

definition, A-4
JAZNObjectExistsException exception

definition, A-4
JAZNObjectNotFoundException exception

definition, A-4
JAZNPermission class

definition, 4-5, 4-6, A-3

target names, A-3
JAZNPolicy interface

definition, A-6
JAZNRuntimeException exception

definition, A-4
JAZNUserManager, 9-2,9-4

definition, 4-13, 6-4

filter element, 6-5, 9-3

integration in J2EE environments, 6-4

Index-7

jazn.xml file, 8-4,8-5
JCA, 12-1to12-8
deployment descriptors, 12-4
QoS contracts, 12-2
resource adapters, 12-2
stand-alone resource adapter
archives, 12-4to12-5
stand-alone resource adapter example, 12-6
JDBC
Oracle extensions, 1-12
retrieving connection, 1-4
DK 1.3, 4-7
JMS, 11-1to11-10
configuring, 11-3to 11-10
examples, 11-2to 11-3
overview, 1-2,11-1to 11-2
IMS
resource providers, 11-10
IMS
resource providers, 11-4
JNDI, 2-1to2-11
constructing contexts, 2-4
environment, 2-5
initial context factories, 2-6to 2-11
initial contexts, 2-2to 2-3
lookup of data source, 1-4
JTA
bean-managed transaction, 10-2, 10-8
code download site, 10-1
container-managed transaction, 10-2, 10-6
demarcation, 10-2, 10-5
deployment descriptor, 10-6
DTD elements, 10-14
overview, 1-2
resource enlistment, 10-2
retrieving data source, 10-4
single-phase commit
configuration, 10-2
definition, 10-2
specification web site, 10-1
two-phase commit, 10-10
configuration, 10-10
definition, 10-2

Index-8

K

Kerberos, 4-8
and GenericCredential interface, 12-8

L

LDAP. See Lightweight Directory Access Protocol
(LDAP)
ldapadd tool
creating users, 4-18
LDAP-based provider type
Oracle Internet Directory, 4-3
licenses
Apache, A-1
Apache JServ, A-3
third-party, A-lto A-4
Lightweight Directory Access Protocol
(LDAP)-based environments
in J2SE environments, 6-2
realm contents, 4-18
realm data storage, 4-21
realm management, 4-17
realm permissions, 4-22
realm types available, 4-17
sample Application Realm directory information
tree, 4-21
sample External Realm directory information
tree, 4-18
sample Subscriber Realm directory information
tree, 4-19
listing permission information, 7-19
listing permissions, 7-19
listing principal class information, 7-20
listing principal classes, 7-20
listing realms, 7-17
listing roles, 7-18
listing users, 7-18
listperm option, 7-19
listperms option, 7-19
listprncpl option, 7-20
listrealms option, 7-17
listroles option, 7-18
listusers option, 7-18
LOADER attribute, 13-14

location
jazn element, 5-4,9-6
log file javacache.log, 13-27
log() method, 13-23
logFileName property, 13-27
logger property, 13-27
login method, 8-2
login modules
available with JAAS provider, 4-13
configuring with different applications, 4-9
definition, 4-9
with JAAS, 4-9
LoginContext class, 4-9, 8-2
authenticating subjects, 4-9
LoginContext.getSubject, 8-3
logSeverity property, 13-28
Iscommand, 7-24

M

man command, 7-25
management

of JAAS provider, 7-2
management tools, 7-2
managing JAAS provider policy, 7-36
managing JAZN

with Java, 7-27
managing permissions, 7-12, 7-35
managing realms, 7-28
managing roles, 7-32
managing users, 7-32
Mandatory transaction attribute, 10-7
maxObjects property, 13-28
maxSize property, 13-28
Merant driver, 1-17
migrating principals, 7-20
mk command, 7-24
mkdir command, 7-24
mod_oc4j, 9-4
mod_oc4j.conf file, 9-7
mod_ossl, 9-8
mod_osso, 9-8
multiple instances

of JAAS provider, A-2
multiple instances of JAZN

JAZNConfig, 7-28

N

namespace partitioning, 4-10
netSearch() method, 13-23, 13-50

Never transaction attribute, 10-7
NotSupported transaction attribute, 10-6

o

obfuscation, 4-24
OBJECT_INVALIDATION event, 13-29
OBJECT_UPDATED event, 13-29
OC4J. See Oracle9iAS Containers for J2EE (OC4J)
OCl driver, 1-16
OID. See Oracle Internet Directory (OID)
Oracle Enterprise Manager (OEM), 7-2,7-3, 7-8
accessing JAAS provider, 7-4
creating a new grantentry, 7-8
creating new grant
permission, 7-10
creating new grants, 7-8,7-9
JAAS provider overview, 4-16
principal classes, 7-9, 7-13
revoking permissions, 7-13
Oracle HTTPS, 1-1to1-20
default system properties, 1-11
example, 1-17
feature overview, 1-6
prerequisites for use, 1-2
supported cipher suites, 1-7
Oracle Internet Directory (OID)
administering policy data, 4-26
creating users, 4-18
location, 7-28
provider type, 4-15
Oracle Wallet Manager
and HTTPS, 1-8
Oracle9iAS Containers for J2EE (OC4J), 9-2
integration in J2EE environments, 6-4
mapping security roles to JAAS provider users
and roles, 6-15
Oracle9iAS Single Sign-On (SSO)
for SSO authentication, 4-13

Index-9

Oracle9iAS Web Cache, 13-2
oracle.ias.cache, 13-19
oracle.security.jazn package

classes, A-2

definition, A-2

exceptions, A-4
oracle.security.jazn.oc4j. JAZNServletRequest, 9-4
oracle.security.jazn.policy package

classes, A-7

definition, A-6

interfaces, A-6
oracle.security.jazn.realm package

classes, A-10

definition, A-9

interfaces, A-9

support for realms, 4-15

use of, 4-12
oracle.security.jazn.util.

CertHash.getHash(x509cert), 9-3
OracleSSLCredential, 1-5,1-14
Oracle.ssl.defaultCipherSuites, 1-12
ORIGINAL attribute, 13-14
orion-application.xml file, 5-4, 9-6, 9-7, 10-11

mapping security roles to JAAS provider users

and roles, 6-15

P

packages
oracle.security.jazn, A-2
oracle.security.jazn.policy, A-6
oracle.security.jazn.realm, A-9
partitioning, 4-10, 4-26
passwords, 4-24
checking, 7-17
setting, 7-18
permissions, 4-14, 7-10
actions, 4-4
administering with AdminPermission
class, 4-26
class definitions, 4-5
class name, 4-4
definition, 4-10
granting and revoking with the JAZN
Admintool, 7-19

Index-10

in Java2 Security Model, 4-4
JAAS provider, 4-5
Java permission instance contents, 4-4
listing with the JAZN Admintool, 7-19
management in LDAP-based
environments, 4-26
management in XML-based environments, 4-23,
4-26
managing, 7-12,7-35
target, 4-4
persistence, 4-24
Pluggable Authentication Module (PAM), 4-7
policies
administering with JAZN Admintool, 4-24
administering with Oracle Internet Directory
(OID), 4-26
administration, 4-24
definition, 4-10
information storage in XML-based provider
type, 4-23
management in LDAP-based
environments, 4-26
management in XML-based environments, 4-23
policy entries, 7-4
policy files
codesource, 4-10
example, 4-10
subject, 4-10
policy partitioning
among realms, 4-27
PoolAccess object, 13-41
PoolAccess.close() method, 13-41
PoolAccess.get() method, 13-41
PoolAccess.getPool() method, 13-41
PoolAccess.returnToPool() method, 13-41
PoollnstanceFactory
implementing, 13-42
principal, 4-8, 8-2
principal classes, 7-9, 7-13
listing information with the JAZN
Admintool, 7-20
principal-based authorization
support for, 4-7
principals, 7-9, 7-36
definition, 4-8

with JAAS, 4-8
principals.xml file, 6-4
converting from, 7-20
PrivilegedAction interface, 8-3, 8-4
privileges, 4-15
protection domain
definition, 4-4
in Java2 Security Model, 4-5
provider types, 4-3, 4-17
in J2SE environments, 6-2
managing, 4-13
Oracle Internet Directory (OID), 4-15, 4-24
retrieving permissions from, 4-13
storing policy information, 4-24
XML-based, 4-15,4-24
public key certificates, 4-8
pwd command, 7-25

Q

QoS contracts, 12-2
guality of service contracts, 12-2
Quick Start, 5-1

R

RAR file
RBAC, 4-9
RBAC. See role-based access control (RBAC)
Realm interface
definition, A-9
realm name, 7-28
realm permissions
management in LDAP-based
environments, 4-22
Realm.LDAPProperty interface
definition, A-9
RealmLoginModule, 4-13
RealmLoginModule class, 9-2
definition, A-10
for SSL and Basic authentication, 4-13
in J2SE environments, 6-2, 8-2
RealmManager class, 7-33
definition, A-10
RealmPermission class, 4-22

action names, A-10
definition, 4-5, 4-6, A-10
RealmPrincipal interface, 4-12,9-3
definition, A-9
RealmRole interface
definition, A-9
realms
adding and removing with the JAZN
Admintool, 7-16

creation of realm container in LDAP-based

environments, 4-21

data storage in LDAP-based environments, 4-21

definition, 4-10, 4-12
dropping, 7-29, 7-32

information storage in XML-based provider

type, 4-23
JAAS provider enhancements, 4-15
JAAS provider framework, 4-17
JAAS provider support, 4-12
listing with the JAZN Admintool, 7-17

managing in LDAP-based environments,

managing in XML-based provider type,
name, 7-28
permission management in LDAP-based
environments, 4-22
policy partitioning, 4-27
realm contents in LDAP-based
environments, 4-18
types available in LDAP-based
environments, 4-17
types available in XML-based provider
type, 4-22
with JAAS, 4-10
RealmUser interface
definition, A-9
release_Ownsership() method, 13-50
releaseOwnership() method, 13-46
Remote Method Invocation. See RMI.
remprncpl option, 7-19
remrealm option, 7-16
remrole option, 7-17
remuser option, 7-17
REPLY attribute, 13-15, 13-44
Required transaction attribute, 10-6
RequiresNew transaction attribute, 10-7

4-17
4-22

Index-11

resource adapter, 12-2 definition, 4-14

Resource Adapter Archive. See RAR. dropping, 7-35
resource providers granting, 7-33
JMS, 11-4to 11-10 granting and revoking with the JAZN
ResourceProvider Admintool, 7-17
JMS, 11-4 listing with the JAZN Admintool, 7-18
retrieving authentication information, 9-3 management in Application Realms, 4-18, 4-21
returnToPool() method, 13-41 management in External Realms, 4-17, 4-19
revokeperm option, 7-19 management in LDAP-based
revokeRole, 7-33 environments, 4-17
revokerole option, 7-17 management in Subscriber Realms, 4-17, 4-20
revoking permissions management in XML-based environments, 4-23
Oracle Enterprise Manager, 7-13 managing, 7-32
rm command, 7-25 using the J2EE security role, 6-14
RMI with JAAS, 4-9
overview, 1-2 run-as element, 4-2, 4-15
RMlInitialContextFactory, 2-10to 2-11
rmixml, 3-2 S
role activation
definition, 4-15 sample application
role hierarchy AccessTestl, B-11
definition, 4-14 sample code, 7-27
role management, 4-18 createRole, 7-33
role manager, 4-18 dropRole, 7-35
role object class, 7-29 grantRole, 7-34
role’s searchbase property, 7-29 Sample J2SE Application, 8-5
RoleAdminPermission class, 4-27 sample_subrealm realm, 5-3
definition, 4-5, A-8 save() method, 13-35
role-based access control (RBAC), 4-12 searching for grantentry data, 7-7
definition, 4-14 searching for permissions, 7-12
JAAS provider support for, 4-12 secure mode, 5-5,9-8
role activation, 4-15 secure socket layer (SSL)
role hierarchy, 4-14 authentication method, 6-6
support for, A-2 integration with Basic authentication, 6-12
RoleManager interface, 4-22, 7-32, 7-33 integration with JAAS provider, 6-9
createRole, 7-32 Secure Socket Layers (SSL), 6-6
definition, A-10 security role
dropRole, 7-32 using in the web.xml file, 6-14
getRoles, 7-33 SecurityManager, 4-5, 8-3, 8-4
grantRole, 7-32 SecurityManager.checkPermission, 8-3, 9-4
revokeRole, 7-33 server.xml, 3-2
roles, 7-36 server.xml file, 5-3,9-5
adding and removing with the JAZN Servlet.service, 9-4
Admintool, 7-17 setAttributes() method, 13-23
creating, 7-33 setCacheEventListener() method, 13-28

Index-12

setpasswd option, 7-18
setting a password, 7-18
shell commands, 7-24
shell option, 7-20
single sign-on (SSO), 6-6,9-2, 9-7
integration with JAAS provider, 6-7
SPOOL attribute, 13-15, 13-34
sslPrincipal, 9-3
stand-alone resource adapter, 12-2
stand-alone resource adapter archives, 12-4to 12-5
stand-alone resource adapters
example, 12-6
starting
JAZN Admintool, 7-15
starting an application, 9-8
StreamAccess object
InputStream, 13-38
OutputStream, 13-38
using, 13-38
Subject.doAS, 4-15
Subject.doAs method, 8-3,9-4
associating a subject with
AccessControlContext, 4-8

invoking, 4-9
subjects, 4-8, 8-2, 8-3
definition, 4-8

with JAAS, 4-8
Subscriber Realm
definition, 4-17
role management, 4-17,4-20
sample LDAP directory information tree, 4-19
user management, 4-17,4-20
Supports transaction attribute, 10-6
SYNCHRONIZE attribute, 13-16, 13-46
SYNCHRONIZE_DEFAULT attribute, 13-16, 13-46

T

target names

definition, 4-4

of JAZNPermission class, A-3
third-party licenses, A-1to A-4
TimeToLive attribute, 13-18
transaction

bean managed, 10-2

container-managed, 10-2
demarcation, 10-2, 10-5
deployment descriptor, 10-6
resource enlistment, 10-2
two-phase commit, 10-10
UserTransaction object, 10-9

U

user communities, 4-10, 4-17

user manager, 4-18

user object class, 7-29

user’s searchbase property, 7-29

UserManager interface, 4-22,7-32
definition, A-10

users, 7-36
adding and removing with the JAZN

Admintool, 7-17
creating with Oracle Internet Directory, 4-18
creating with the Idapadd tool, 4-18
listing with the JAZN Admintool, 7-18
management in Application Realms, 4-18, 4-21
management in External Realms, 4-17, 4-19
management in LDAP-based
environments, 4-17

management in Subscriber Realms, 4-17, 4-20
management in XML-based environments, 4-23
managing, 7-32

UserTransaction object
use in JTA, 10-9

Vv

Version attribute, 13-18
view grant entry data, 7-7
viewing existing permissions, 7-12

w

Web Cache, 13-2
Web Object Cache, 13-2
Web Object cache, 13-2
web.xml file
using the J2EE security role, 6-14

Index-13

X

X.500 distinguished name
Oracle Enterprise Manager, 7-10
creating new grant, 7-10
XML-based provider type, 4-3
jazn-data.xml, 4-23
provider type, 4-15
realm and policy information storage, 4-23
realm management, 4-22
realm type available, 4-22

Index-14

	Send Us Your Comments
	1 Introduction
	Java Naming and Directory Interface (JNDI)
	Remote Method Invocation (RMI)
	Java Authorization and Authentication Service (JAAS)
	Java Transaction API (JTA)
	Java Message Service (JMS)
	Java Connector Architecture (JCA)
	Java Object Cache
	HTTPS
	Data Sources

	2 2 Java Naming and Directory Interface
	Introduction
	Initial Context

	Constructing a JNDI Context
	The JNDI Environment
	Initial Context Factories
	ApplicationClientInitialContextFactory
	ApplicationInitialContextFactory
	RMIInitialContextFactory

	3 3 Remote Method Invocation
	Configuring RMI Tunneling
	Configuring RMI In server.xml and rmi.xml
	Editing server.xml
	Editing rmi.xml

	4 Overview of JAAS in Oracle 9iAS
	Support for JAAS
	What are Authentication, Authorization, and Delegation?
	Foundations of the JAAS Provider
	Java Application Environments
	Provider Types

	What is the Java2 Security Model?
	What is JAAS?
	Principals
	Subjects
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions

	JAAS Provider Features
	JAAS Provider User Services
	Capability Model of Access Control
	Role-Based Access Control (RBAC)

	JAAS Provider Realm and Policy Management
	Realm and Policy Management Tools
	JAAS Provider Realm Framework
	JAAS Provider Policy Administration

	5 Quick Start JAAS Provider Demo
	Quick Start JAAS Provider Demo Overview
	Setting Up the Demo
	Task 1: Modify OC4J Configuration Files
	Task 2: Change Default Configurations (Optional)

	Running the Demo
	Viewing the Results of the callerInfo Demo

	Testing the JAZN Admintool

	6 Integrating the JAAS Provider with Java2 Applications
	Java2 Application Environments Overview
	Oracle Components Available on the Java2 Platform

	JAAS Provider Integration in J2SE Application Environments
	A Typical Scenario in the J2SE Environment

	JAAS Provider Integration in J2EE Application Environments
	Oracle9iAS Containers for J2EE (OC4J)
	JAZNUserManager
	Authentication Environments
	Integrating the JAAS Provider with SSO-Enabled Applications
	Integrating the JAAS Provider with SSL-Enabled Applications
	Integrating the JAAS Provider with Basic Authentication
	J2EE and JAAS Provider Role Mapping

	How Do I Get Started?

	7 Managing the JAAS Provider
	JAAS Provider Management Overview
	LDAP-Based and XML-Based JAAS Providers

	Using the Oracle Enterprise Manager Interface with the JAAS Provider
	Accessing the JAAS Provider
	Task 1: Managing JAAS Policy
	Task 2: Managing Java Permissions

	Using the JAZN Admintool
	Usage Examples
	Command Options
	Realm Operations
	Policy Operations
	Interactive Shell
	Migration Operations
	JAZN Shell Interface
	JAZN Shell Commands

	Managing LDAP Provider Data with Java Programs
	About the Sample Java Code
	The JAZNContext and JAZNConfig Classes
	Managing Realms
	Managing Users
	Managing Roles
	Managing Permissions
	Managing JAAS Provider Policy

	Managing XML-Based Provider Data with the XML Schema
	Managing Realms, Users, Roles, and Permissions
	DTD Standard for XML Datafiles

	Other Utilities
	PermissionClassManager Interface
	PrincipalClassManager Interface
	LoginModuleManager

	8 Developing Secure J2SE Applications
	Developing Secure J2SE Applications Overview
	Authentication in the J2SE Environment
	Authorization in the J2SE Environment
	Subject.doAs
	SecurityManager.checkPermission
	PrivilegedAction

	Testing and Executing an Application
	Starting With RealmLoginModule
	Start Without Using RealmLoginModule

	Sample J2SE Application
	Sample J2SE Application Code
	Discussion of the J2SE Sample Client Login and Application Code

	9 Developing Secure J2EE Applications
	Developing Secure J2EE Applications Overview
	Authentication in the J2EE Environment
	Running with the Permissions and Roles Associated with an Authenticated Identity (Optional)
	Interception of Servlet Invocation
	Retrieving Authentication Information

	Authorization in the J2EE Environment
	Testing and Executing the J2EE Application
	Setting Up
	Task 1: Install Ant (Optional)
	Task 2: Modify OC4J Files
	Task 3: Change Default Configurations
	Task 4: Build the Directory
	Starting an Application

	Sample J2EE Application
	Discussion of the J2EE Sample Application Code

	10 Java Transaction API
	Introduction
	Single-Phase Commit
	Enlisting a Single Resource
	Demarcating the Transaction
	JDBC Transactions

	Two-Phase Commit
	Configuring Two-Phase Commit Engine
	Two-Phase Commit DTD Elements

	11 11 Java Message Service
	Overview
	The JMS Examples
	Running JMS-Chat
	Running Coffeemaker

	Configuration Issues
	Deploying JMS Clients Across Nodes
	Message-Driven Beans

	Resource Providers
	Plugging In Resource Providers
	Configuring Message Providers
	Using Oracle AQ as a Resource Provider
	Using MQSeries As a Resource Provider
	Using SonicMQ As A Resource Provider

	12 12 Java Connector Architecture
	Introduction
	Resource Adapter
	Application Contracts
	Quality of Service Contracts

	Deploying Resource Adapters with OC4J
	JCA Deployment Descriptors
	Deploying Stand-Alone Resource Adapter Archives
	Deploying Embedded Resource Adapters
	Example

	Container-Managed Sign-on vs. Component-Managed Sign-on

	13 13 Working With Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Cache Object Attributes

	Developing Applications Using Java Object Cache
	Importing the Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader
	Invalidating Cache Objects
	Destroying Cache Objects
	Setting Cache Configuration Properties
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Configuring Properties for Using the Disk Cache
	Local and Distributed Disk Cache Objects
	Adding Objects to the Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Using Distributed Objects, Regions, Subregions, and Groups
	Cached Object Consistency Levels

	14 Oracle HTTPS for Client Connections
	Prerequisites
	Audience

	About Oracle HTTPS
	HTTPConnection Class
	OracleSSLCredential Class

	Overview of Oracle HTTPS Features
	SSL Cipher Suites Supported by Oracle HTTPS
	Certificate and Key Management with Oracle Wallet Manager
	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Oracle.ssl.defaultCipherSuites

	Oracle HTTPS APIs
	Public Class: HTTPConnection
	Public Class: OracleSSLCredential

	Oracle HTTPS Example
	Initializing SSL Credentials
	Verifying Connection Information
	Transferring Data

	15 15 Data Sources
	Introduction
	Definition of Data Sources
	Retrieving a Connection From a Data Source
	Emulated and Non-Emulated Data Sources
	Emulated Data Sources
	Non-Emulated Data Sources

	Using Data Sources
	Configuring Data Source Objects
	Configuration Files
	Data Source Attributes
	Data Source Methods
	Portable Data Source Lookup

	Using Oracle JDBC Extensions
	Behavior of a Non-Emulated Data Source Object
	Retrieving a Connection Outside a Global Transaction
	Retrieving a Connection Within a Global Transaction

	Using Database Caching Schemes
	Connection Retrieval Error Conditions
	Using Different Usernames for Two Connections to DataSource
	Mixing Local and Global Transactions

	Using the OCI JDBC Drivers
	Using Merant Drivers

	A JAAS Provider APIs
	JAAS Provider API Overview
	Package oracle.security.jazn
	Interfaces
	Classes
	Exceptions

	Package oracle.security.jazn.login
	Classes

	Package oracle.security.jazn.policy
	Interfaces
	Classes

	Package oracle.security.jazn.realm
	Interfaces
	Classes

	B JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Supplemental Code Samples
	Supplementary Code Sample: Creating an Application Realm
	Supplementary Code Sample: Modifying User Permissions

	C Third-Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

