
Oracle9 iAS Containers for J2EE

Enterprise JavaBeans Developer’s Guide and Reference

Release 2 (9.0.2)

January 2002

Part No. A95881-01

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and Reference, Release 2 (9.0.2)

Part No. A95881-01

Release 2 (9.0.2)

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Sheryl Maring

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Portions of this software are copyrighted by MERANT, 1991-2001. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

1 EJB Overview

Invoking Enterprise JavaBeans .. 1-2
Implementing an EJB ... 1-3

Bean Implementation ... 1-4
Parameter Passing .. 1-4
Parameter Objects... 1-5

Types of EJBs ... 1-5
Session Beans... 1-5
Entity Beans ... 1-10
Message-Driven Beans... 1-17

Difference Between Session and Entity Beans ... 1-19

2 An EJB Primer For OC4J

Develop EJBs ... 2-2
Create the Development Directory .. 2-2
Implement the Enterprise JavaBeans... 2-3
Create the Deployment Descriptor .. 2-9
Archive the EJB Application ... 2-10

Prepare the EJB Application for Assembly.. 2-11
Modify Application.XML .. 2-11
iii

Create the EAR File .. 2-12
Deploy the Enterprise Application to OC4J .. 2-13

Using ADMIN.JAR To Modify SERVER.XML... 2-13
Updating SERVER.XML Manually .. 2-14
Verifying Deployment ... 2-14

3 CMP Entity Beans

Creating Entity Beans... 3-2
Home Interface.. 3-3
Remote Interface ... 3-4
Entity Bean Class .. 3-4
Persistent Data .. 3-7
Primary Key... 3-8
Deploying the Entity Bean .. 3-10

Advanced CMP Entity Beans.. 3-11
Advanced Finder Methods.. 3-11
Object-Relational Mapping of Persistent Fields... 3-13

4 BMP Entity Beans

Creating BMP Entity Beans .. 4-2
Remote and Home Interface ... 4-3
BMP Entity Bean Implementation .. 4-3

The ejbCreate Implementation ... 4-3
The ejbFindByPrimaryKey Implementation... 4-6
Other Finder Methods.. 4-7
The ejbStore Implementation.. 4-8
The ejbLoad Implementation.. 4-8
The ejbPassivate Implementation .. 4-9
The ejbActivate Implementation .. 4-9
The ejbRemove Implementation .. 4-10

Modify XML Deployment Descriptors .. 4-10
Create Database Table and Columns for Entity Data .. 4-11
iv

5 Message-Driven Beans

Creating Message Driven Beans .. 5-2
Bean Class Implementation... 5-3
Configuring XML Files .. 5-4
Deploying the Entity Bean .. 5-8

Client Accessing MDB... 5-9

6 Advanced EJB Subjects

Accessing EJBs... 6-2
EJB Reference Information .. 6-2
Setting JNDI Properties.. 6-3
Using the Initial Context Factory Classes ... 6-5
Accessing an EJB in a Remote Server .. 6-6

Reusing or Dedicating Connections ... 6-6
Location of Commonly-Used Classes Through Parent ... 6-7
Changing XML Files After Deployment .. 6-7
Entity Bean Concurrency and Database Isolation Modes .. 6-8

Database Isolation Modes ... 6-8
Entity Bean Concurrency Modes.. 6-10
Exclusive Write Access to the Database .. 6-11
Effects of the Combination of Isolation and Concurrency Modes 6-11
Affects of Concurrency Modes on Clustering .. 6-12

Configuring Pool Sizes For Entity Beans ... 6-12
Techniques for Updating Persistence ... 6-14
Configuring Environment References .. 6-14
Configuring Security .. 6-26

Users, Groups, and Roles .. 6-26
Default Role Mapping.. 6-30
Authenticating EJB Clients.. 6-30

Common Errors ... 6-32
NamingException Thrown.. 6-32
Deadlock Conditions.. 6-32
v

7 EJB Clustering

EJB Clustering Overview... 7-2
Stateless Session Bean Clustering... 7-4
Stateful Session Bean Clustering .. 7-4
Entity Bean Clustering ... 7-4
Combination of HTTP and EJB Clustering ... 7-5

Enabling Clustering For EJBs ... 7-5
Configure Nodes With Multicast Address and Identifier .. 7-5
EJB Replication Configuration .. 7-7
Deploy EJB Application To All Nodes .. 7-8
Application Client Retrieval Of Clustered Nodes ... 7-8

Load Balancing Options .. 7-9

8 Active Components For Java

Future Needs of Business Applications ... 8-2
Current Programming Models ... 8-3

Remote Procedure Call Model .. 8-3
Database Transactional Queuing Model ... 8-5
AC4J Framework .. 8-6

AC4J Architecture ... 8-8
Introduction to AC4J Components .. 8-8
Active EJBs... 8-10
Interactions .. 8-11
Processes .. 8-12
Reactions .. 8-13
Data Tokens ... 8-16
Databus... 8-17

Set Up Oracle Database For AC4J Support .. 8-20
AC4J Databus XML Configuration .. 8-21

AC4J Example .. 8-23
Asynchronous Request to An Active EJB.. 8-25
Active EJB processes the Client’s Request .. 8-30
Asynchronous Response to the Requesting Active EJB .. 8-33
Asynchronous Response to the Client... 8-34
Receive Response by the Client .. 8-35
vi

AC4J Active EJB Deployment ... 8-37

A OC4J-Specific DTD Reference

OC4J-Specific Deployment Descriptor for EJBs ... A-2
Enterprise Beans Section.. A-3
Assembly Descriptor Section .. A-8

DTD Listing ... A-9
Element Description... A-12

B Third Party Licenses

Apache HTTP Server.. B-2
The Apache Software License... B-2

Apache JServ.. B-4
Apache JServ Public License ... B-4

Index
vii

viii

Send Us Your Comments

Oracle9 iAS Containers for J2EE

Enterprise JavaBeans Developer’s Guide and Reference, Release 2 (9.0.2)

Part No. A95881-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomment_us@oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
ix

x

Preface

This guide gets you started building Enterprise JavaBeans for OC4J. It includes code

examples to help you develop your application.

Who Should Read This Guide?
Anyone developing Enterprise JavaBeans for OC4J will benefit from reading this

guide. Written especially for programmers, it will also be of value to architects,

systems analysts, project managers, and others interested in EJB applications. To use

this guide effectively, you must have a working knowledge of J2EE.

Prerequisite Reading
Before consulting this Guide, you should read the following:

■ Any J2EE book that enables you to understand the basics of J2EE programming.

■ The Oracle9iAS Containers for J2EE User’s Guide. This guide helps you to

understand the minimum requirements for a J2EE application in the OC4J

environment.

■ The Sun Microsystems EJB 1.1 specification as a supplement to this guide. This

guide assumes that you already have a base understanding of the EJB 1.1

specification details.
xi

Suggested Reading

Books
■ Professional Java Server Programming, J2EE Edition, Wrox Press Ltd, 2000.

■ Mastering Enterprise JavaBeans and the Java2 Platform Enterprise Edition, by Ed

Roman. Wily Computer Publishing, 1999.

■ Designing Enterprise Applications with the Java2 Platform, Enterprise Edition,

Addison-Wesley, 2000.

■ Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall,

1997) demonstrates several Java concepts relevant to EJBs.

■ The Developer’s Guide to Understanding Enterprise JavaBeans, an overview of EJBs,

is available at http://www.Nova-Labs.com.

Online Sources
There are many useful online sources of information about Java. For example, you

can view or download guides and tutorials from the Sun Microsystems home page

on the Web:

http://www.sun.com

The current 1.1 EJB specification is available at:

http://java.sun.com/products/ejb/docs.html

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

How This Guide Is Organized
This guide consists of the following:

Chapter 1, "EJB Overview", presents a brief overview of EJBs.

Chapter 2, "An EJB Primer For OC4J", discusses a stateless session bean

development for the OC4J server.
xii

Chapter 3, "CMP Entity Beans", discusses a CMP entity bean and advanced issues

connected with CMP entity beans.

Chapter 4, "BMP Entity Beans", discusses a BMP entity bean.

Chapter 5, "Message-Driven Beans", discusses an MDB entity bean.

Chapter 6, "Advanced EJB Subjects", discusses advanced issues for EJBs.

Chapter 7, "EJB Clustering", discusses how to cluster EJBs across OC4J nodes.

Chapter 8, "Active Components For Java", introduces a new methodology to merge

the advantages of both asynchronous and request/response communication.

Appendix A, "OC4J-Specific DTD Reference" describes the OC4J-specific

deployment descriptor.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xiii

Notational Conventions
This guide follows these conventions:

Java code examples follow these conventions:

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.
xiv

EJB Ove
1

EJB Overview

This chapter discusses EJB concepts that are specified fully in the J2EE specification.

The remainder of the chapters in this book show only the tasks necessary to develop

your EJBs.

For more details and examples of the concepts presented in this chapter, refer to

books written by Sun Microsystems that discuss EJBs and J2EE Blueprint

Architecture recommendations.

This chapter includes the following topics:

■ Invoking Enterprise JavaBeans

■ Implementing an EJB

■ Types of EJBs

■ Difference Between Session and Entity Beans
rview 1-1

Invoking Enterprise JavaBeans
Invoking Enterprise JavaBeans
Enterprise JavaBeans (EJBs) can be one of three types: session beans, entity beans, or

message-driven beans.

■ Session beans can be stateful or stateless and are used for business logic

functionality.

– Stateless session beans are used for business services. They do not retain

client state across calls.

– Stateful session beans do maintain state across client calls. Thus, these

beans manage business functions for a specific client for the life of that

client.

■ Entity beans are normally used for managing persistent data.

■ Message-driven beans are used for receiving messages from a JMS queue or

topic.

An EJB has two client interfaces:

■ Remote interface—The remote interface specifies the business methods that the

clients of the object can invoke.

■ Home interface—The home interface defines EJB life cycle methods, such as a

method to create and retrieve a reference to the bean object.

The client uses both of these interfaces when invoking a method on a bean.

Figure 1–1 Events In A Stateless Session Bean

myapp EJB

Home
Interface

Remote
Interface

Bean
Instance

setX(...) {}
getX(...) {}

Servlet

mBean x=home.create();
.
.
.
setX(42, "hiya");
r3=getX();

create

ejbCreate

invoke
methods
1-2 Enterprise JavaBean Developer’s Guide and Reference

Implementing an EJB
Figure 1–1 demonstrates a stateless session bean and corresponds to the following

steps:

1. The client, which can be a standalone Java client, servlet, JSP, or an applet,

retrieves the home interface of the bean—normally through JNDI.

2. The client invokes the create method on the home interface reference (home

object). This creates the bean instance and returns a reference to the remote

interface of the bean.

3. The client invokes a method defined in the remote interface, which delegates

the method call to the corresponding method in the bean instance (through a

stub).

4. The client can destroy the bean instance by invoking the remove method that is

defined in the remote interface. Some beans, such as stateless session beans,

cannot call the remove method. In this case, the container removes the bean.

Implementing an EJB
You must create the following four major components to develop an EJB:

■ the home interface

■ the remote interface

■ the implementation of the bean

■ a deployment descriptor for each EJB

Component Description

The home interface Specifies the interface to an object that the container itself
implements: the home object. The home interface contains the life
cycle methods, such as the create() methods that specify how
a bean is created.

The remote interface Specifies the business methods that you implement in the bean.
The bean must also implement additional container service
methods. The EJB container invokes these methods at different
times in the life cycle of a bean.

The bean
implementation

Contains the Java code that implements the methods defined in
the home interface (life cycle methods), remote interface
(business methods), and the required container methods
(container callback functions).
EJB Overview 1-3

Implementing an EJB
Bean Implementation
Your bean implements the methods within either the SessionBean , EntityBean ,

or MessageDrivenBean interface. The implementation contains logic for lifecycle

methods defined in the home interface, business methods defined in the remote

interface, and container callback functions defined in the SessionBean , Entity-
Bean, or MessageDrivenBean interface.

Parameter Passing
When you implement an EJB or write the client code that calls EJB methods, you

must be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method—or a return value from a bean

method—can be any Java type that is serializable. Java primitive types, such as int ,

double , are serializable. Any non-remote object that implements the

java.io.Serializable interface can be passed. A non-remote object that is

passed as a parameter to a bean or returned from a bean is passed by value, not by

reference. So, for example, if you call a bean method as follows:

public class theNumber {
 int x;
}
...
bean.method1(theNumber);

then method1() in the bean receives a copy of theNumber . If the bean changes the

value of theNumber object on the server, this change is not reflected back to the

client, because of pass-by-value semantics.

If the non-remote object is complex—such as a class containing several fields—only

the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is

passed. A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean, and remote objects as

return values.

The deployment
descriptor

Specifies attributes of the bean for deployment. These designate
configuration specifics, such as environment, interface names,
transactional support, type of EJB, and persistence information.

Component Description
1-4 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
Parameter Objects
The EmployeeBean getEmployee method returns an EmpRecord object, so this

object must be defined somewhere in the application. In this example, an

EmpRecord class is included in the same package as the EJB interfaces.

The class is declared as public and must implement the

java.io.Serializable interface so that it can be passed back to the client by

value, as a serialized remote object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;
}

Types of EJBs
There are three types of EJBs: session beans, entity beans, and message-driven beans.

■ Session Beans

■ Entity Beans

■ Message-Driven Beans

Session Beans
A session bean implements one or more business tasks. A session bean might

contain methods that query and update data in a relational table. Session beans are

often used to implement services. For example, an application developer might

implement one or several session beans that retrieve and update inventory data in a

database.

Session beans are transient because they do not survive a server crash or a network

failure. If, after a crash, you instantiate a bean that had previously existed, the state

of the previous instance is not restored. State can be restored only to entity beans.

Note: The java.io.Serializable interface specifies no

methods; it just indicates that the class is serializable. Therefore,

there is no need to implement extra methods in the EmpRecord
class.
EJB Overview 1-5

Types of EJBs
A session bean implements the javax.ejb.SessionBean interface, which has

the following definition:

public interface javax.ejb.SessionBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();
public abstract void ejbPassivate();
public abstract void ejbRemove();
public abstract void setSessionContext(SessionContext ctx);

}

At a minimum, an EJB must implement the following methods, as specified in the

javax.ejb.SessionBean interface:

Using setSessionContext
You use this method to obtain a reference to the context of the bean. Session beans

have session contexts that the container maintains and makes available to the beans.

The bean may use the methods in the session context to make callback requests to

the container.

ejbCreate() The container invokes this method right before it

creates the bean. Stateless session beans must do

nothing in this method. Stateful session beans can

initiate state in this method.

ejbActivate() The container invokes this method right after it

reactivates the bean.

ejbPassivate() The container invokes this method right before it

passivates the bean.

ejbRemove() A container invokes this method before it ends the

life of the session object. This method performs any

required clean-up—for example, closing external

resources such as file handles.

setSessionContext
(SessionContext ctx)

This method associates a bean instance with its

context information. The container calls this method

after the bean creation. The enterprise bean can store

the reference to the context object in an instance

variable, for use in transaction management. Beans

that manage their own transactions can use the

session context to get the transaction context.
1-6 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
The container invokes setSessionContext method, after it first instantiates the

bean, to enable the bean to retrieve the session context. The container will never call

this method from within a transaction context. If the bean does not save the session

context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionCon-
text object to the bean. The bean can then store the reference for later use. The fol-

lowing example shows the bean saving the session context in the sessctx variable.

import javax.ejb.*;
import oracle.oas.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in

// instance variable
}
// other methods in the bean

}

The javax.ejb.SessionContext interface has the following definition:

public interface SessionContext extends javax.ejb.EJBContext {
 public abstract EJBObject getEJBObject();
}

And the javax.ejb.EJBContext interface has the following definition:

public interface EJBContext {
 public EJBHome getEJBHome();
 public Properties getEnvironment();
 public Principal getCallerPrincipal();
 public boolean isCallerInRole(String roleName);
 public UserTransaction getUserTransaction();
 public boolean getRollbackOnly();
 public void setRollbackOnly();
}

A bean needs the session context when it wants to perform the operations listed in

Table 1–1.
EJB Overview 1-7

Types of EJBs
There are two types of session beans:

■ Stateless Session Beans—Stateless session beans do not share state or identity

between method invocations. They are useful mainly in middle-tier application

servers that provide a pool of beans to process frequent and brief requests.

■ Stateful Session Beans—Stateful session beans are useful for conversational

sessions, in which it is necessary to maintain state, such as instance variable

values or transactional state, between method invocations. These session beans

are mapped to a single client for the life of that client.

Stateless Session Beans
A stateless session bean does not maintain any state for the client. It is strictly a

single invocation bean. It is employed for reusable business services that are not

connected to any specific client, such as generic currency calculations, mortgage

rate calculations, and so on. Stateless session beans may contain client-independent,

read-only state across a call. Subsequent calls are handled by other stateless session

beans in the pool. The information is used only for the single invocation.

The EJB container maintains a pool of these stateless beans to service multiple

clients. An instance is taken out of the pool when a client sends a request. There is

no need to initialize the bean with any information. There is implemented only a

single create/ejbCreate with no parameters—containing no initialization for

the bean within these methods. There is no need to implement any actions within

the remove/ejbRemove , ejbPassivate , ejbActivate , and

setSessionContext methods. In addition, there is no need for the intended use

Table 1–1 SessionContext Operations

Method Description

getEnvironment() Get the values of properties for the bean.

getUserTransaction() Get a transaction context, which allows you to demarcate

transactions programmatically. This is valid only for beans

that have been designated transactional.

setRollbackOnly() Set the current transaction so that it cannot be committed.

getRollbackOnly() Check whether the current transaction has been marked for

rollback only.

getEJBHome() Retrieve the object reference to the corresponding EJBHome
(home interface) of the bean.
1-8 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
for these methods in a stateless session bean. Instead, these methods are used

mostly for EJBs with state—for stateful session beans and entity beans. Thus, these

methods should be empty or extremely simple.

Stateful Session Beans
A stateful session bean maintains its state between method calls. Thus, there is one

instance of a stateful session bean created for each client. Each stateful session bean

contains an identity and a one-to-one mapping with an individual client. The state

of this type of bean is maintained across several calls through serialization of its

state, called passivation. This is why the state that you passivate must be

serializable. However, this information does not survive system crashes.

To maintain state for several stateful beans in a pool, it serializes the conversational

state of the least recently used stateful bean to a secondary storage. When the bean

instance is requested again by its client, the state is activated to a bean within the

pool. Thus, all resources are used performantly, and the state is not lost.

The type of state that is saved does not include resources. The container invokes the

ejbPassivate method within the bean to provide the bean with a chance to clean

up its resources, such as sockets held, database connections, and hash tables with

static information. All these resources can be reallocated and recreated during the

ejbActivate method.

If the bean instance fails, the state can be lost—unless you take action within your

bean to continually save state. However, if you must make sure that state is

persistently saved in the case of failovers, you may want to use an entity bean for

your implementation. Alternatively, you could also use the

SessionSynchronization interface to persist the state transactionally.

Implementation Methods

Home Interface Extends javax.ejb.EJBHome and requires a single create()
factory method, with no arguments, and a single remove()
method.

Remote Interface Extends javax.ejb.EJBObject and defines the business logic
methods, which are implemented in the bean implementation.

Bean implementation Implements SessionBean . This class must be declared as
public, contain a public, empty, default constructor, no
finalize () method, and implements the methods defined in
the remote interface. Must contain a single ejbCreate method,
with no arguments, to match the create () method in the home
interface. Contains empty implementations for the container
service methods, such as ejbRemove , and so on.
EJB Overview 1-9

Types of EJBs
For example, a stateful session bean could implement the server side of a shopping

cart on-line application, which would have methods to return a list of objects that

are available for purchase, put items in the customer’s cart, place an order, change a

customer’s profile, and so on.

Entity Beans
An entity bean is a complex business entity. An entity bean models a business entity

or models multiple actions within a business process. Entity beans are often used to

facilitate business services that involve data and computations on that data. For

example, an application developer might implement an entity bean to retrieve and

perform computation on items within a purchase order. Your entity bean can

manage multiple, dependent, persistent objects in performing its necessary tasks.

An entity bean is a remote object that manages persistent data, performs complex

business logic, potentially uses several dependent Java objects, and can be uniquely

identified by a primary key. Entity beans are normally coarse-grained persistent

objects, because they utilize persistent data stored within several fine-grained

persistent Java objects.

Entity beans are persistent because they do survive a server crash or a network

failure. When an entity bean is re-instantiated, the state of previous instances is

automatically restored.

Implementation Methods

Home Interface Extends javax.ejb.EJBHome and requires one or more
create() factory methods, and a single remove() method.

Remote Interface Extends javax.ejb.EJBObject and defines the business logic
methods, which are implemented in the bean implementation.

Bean implementation Implements SessionBean . This class must be declared as
public, contain a public, empty, default constructor, no
finalize () method, and implement the methods defined in the
remote interface. Must contain ejbCreate methods equivalent
to the create () methods defined in the home interface. That is,
each ejbCreate method is matched—by its parameter
signature—to a create method defined in the home interface.
Implements the container service methods, such as ejbRemove ,
and so on. Also, implements the SessionSynchronization
interface for Container-Managed Transactions, which includes
afterBegin , beforeCompletion , and afterCompletion .
1-10 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
Uniquely Identified by a Primary Key
Each entity bean has a persistent identity associated with it. That is, the entity bean

contains a unique identity that can be retrieved if you have the primary key—given

the primary key, a client can retrieve the entity bean. If the bean is not available, the

container instantiates the bean and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

Managing Persistent Data
The persistence for entity bean data is provided both for saving state when the bean

is passivated and for recovering the state when a failover has occurred. Entity beans

are able to survive because the data is stored persistently by the container in some

form of data storage system, such as a database. Entity beans persist business data

using one of the two following methods:

■ Automatically by the container using a container-managed persistent (CMP)

entity bean.

■ Programmatically through methods implemented in a bean-managed persistent

(BMP) entity bean. These methods use JDBC or SQLJ to manage persistence.

An entity bean manages its data persistence through callback methods, which are

defined in the javax.ejb.EntityBean interface. When you implement the

EntityBean interface in your bean class, you develop each of the callback

functions as designated by the type of persistence that you choose: bean-managed

persistence or container-managed persistence. The container invokes the callback

functions at designated times.

The javax.ejb.EntityBean interface has the following definition:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();

 public abstract void ejbLoad();
public abstract void ejbPassivate();
public abstract void ejbRemove();

 public abstract void ejbStore();
public abstract void setEntityContext(EntityContext ctx);

 public abstract voic unsetEntityContext();
}

The container expects these methods to have the following functionality:
EJB Overview 1-11

Types of EJBs
■ ejbCreate You must implement an ejbCreate method

corresponding to each create method declared in

the home interface. When the client invokes the

create method, the container first invokes the

constructor to instantiate the object, then it invokes

the corresponding ejbCreate method. The

ejbCreate method performs the following:

■ creates any persistent storage for its data, such

as database rows

■ intializes a unique primary key and returns it

■ ejbPostCreate The container invokes this method after the

environment is set. For each ejbCreate method,

an ejbPostCreate method must exist with the

same arguments. This method can be used to

initialize parameters within or from the entity

context.

■ ejbRemove The container invokes this method before it ends

the life of the session object. This method can

perform any required clean-up, for example

closing external resources such as file handles.

■ ejbStore The container invokes this method right before a

transaction commits. It saves the persistent data to

an outside resource, such as a database.

■ ejbLoad The container invokes this method when the data

should be reinitialized from the database. This

normally occurs after activation of an entity bean.

■ setEntityContext Associates the bean instance with context

information. The container calls this method after

the bean creation. The enterprise bean can store the

reference to the context object in an instance

variable, for use in transaction management. Beans

that manage their own transactions can use the

session context to get the transaction context.

You can also allocate any resources that will exist

for the lifetime of the bean within this method. You

should release these resources in

unsetEntityContext .
1-12 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
Using ejbCreate and ejbPostCreate An entity bean is similar to a session bean because

certain callback methods, such as ejbCreate , are invoked at specified times. Entity

beans use callback functions for managing its persistent data, primary key, and

context information. The following diagram shows what methods are called when

an entity bean is created.

Figure 1–2 Creating the Entity Bean

Using setEntityContext An entity bean instance uses this method to retain a reference

to its context. Entity beans have contexts that the container maintains and makes

available to the beans. The bean may use the methods in the entity context to

retrieve information about the bean, such as security, and transactional role. Refer to

the Enterprise JavaBeans specification from Sun Microsystems for the full range of

information that you can retrieve about the bean from the context.

The container invokes the setEntityContext method, after it first instantiates

the bean, to enable the bean to retrieve the context. The container will never call this

■ unsetEntityContext Unset the associated entity context and release any

resources allocated in setEntityContext .

■ ejbActivate The container calls this method directly before it

activates an object that was previously passivated.

Perform any necessary reaquisition of resources in

this method.

■ ejbPassivate The container calls this method before it passivates

the object. Release any resources that can be easily

re-created in ejbActivate , and save storage

space. Normally, you want to free resources that

cannot be passivated, such as sockets or database

connections. Retrieve these resources in the

ejbActivate method.

Client Entity Bean

create

<Bean> constructor
ejbCreate(...)
 primary key constructor
ejbSetEntityContext()
ejbPostCreate(...){{
EJB Overview 1-13

Types of EJBs
method from within a transaction context. If the bean does not save the context at

this point, the bean will never gain access to the context.

When the container calls this method, it passes the reference of the EntityCon-
text object to the bean. The bean can then store the reference for later use. The fol-

lowing example shows the bean saving the context in the this.ctx variable.

public void setEntityContext(EntityContext ctx) { this.ctx = ctx; }

Using ejbRemove When the client invokes the remove method, the container invokes

the methods shown in Figure 1–3.

Figure 1–3 Removing the Entity Bean

Using ejbStore and ejbLoad In addition, the ejbStore and ejbLoad methods are

called for managing your persistent data. These are the most important callback

methods—for bean-managed persistent beans. Container-managed persistent beans

can leave these methods empty, because the persistence is managed by the

container.

■ The ejbStore method is called by the container before the object is passivated

or whenever a transaction is about to end. Its purpose is to save the persistent

data to an outside resource, such as a database.

■ The ejbLoad method is called by the container before the object is activated or

whenever a transaction has begun, or when an entity bean is instantiated. Its

purpose is to restore any persistent data that exists for this particular bean

instance.

Note: You can also use the setEntityContext and

unsetEntityContext methods to allocate and destroy any

resources that will exist for the lifetime of the instance.

Client Entity Bean

remove
ejbUnsetEntityContext()
ejbRemove(){
1-14 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
Container-Managed Persistence
You can choose to have the container manage your persistent data for the bean. You

do not have to implement some of the callback methods to manage persistence for

your bean’s data, because the container stores and reloads your persistent data to

and from the database. When you use container-managed persistence, the container

invokes a persistence manager class that provides the persistence management

business logic. In addition, you do not have to provide management for the primary

key: the container provides this key for the bean.

■ Callback methods—The container still invokes the callback methods, so you can

add logic for other purposes. At the least, you must provide an empty

implementation for all callback methods.

■ Primary key—The primary key fields in a CMP bean must be declared as

container-managed persistent fields in the deployment descriptor. All fields

within the primary key are restricted to be either primitive, serializable, and

types that can be mapped to SQL types.

The following table details the implementation requirements for the callback

functions of the bean class:

Callback Method Functionality Required

ejbCreate You must initialize all container-managed persistent fields,
including the primary key.

ejbPostCreate You have the option to provide any additional initialization,
which can involve the entity context.

ejbRemove No functionality for removing the persistent data from the
outside resource is required. You must at least provide an
empty implementation for the callback, which means that
you can add logic for performing any cleanup functionality
you require.

ejbFindByPrimaryKey No functionality is required for returning the primary key to
the container. The container manages the primary key—after
it is initialized by the ejbCreate method. You still must
provide an empty implementation for this method.

ejbStore No functionaltiy is required for saving persistent data within
this method. The persistent manager saves all persistent data
to the database for you. However, you must provide at least
an empty implementation.
EJB Overview 1-15

Types of EJBs
Differences Between Bean and Container-Managed Persistence
There are two methods for managing the persistent data within an entity bean:

bean-managed (BMP) and container-managed persistence (CMP). The main

difference between BMP and CMP beans is defined by who manages the persistence

of the entity bean’s data. With CMP beans, the container manages the

persistence—the bean deployment descriptor specifies how to map the data and

where the data is stored. With BMP beans, the logic for saving the data and where it

is saved is programmed within designated methods. These methods are invoked by

the container at the appropriate moments.

In practical terms, the following table provides a definition for both types, and a

summary of the programmatic and declarative differences between them:

ejbLoad No functionality is required for restoring persistent data
within this method. The persistence manager restores all
persistent data for you. However, you must provide at least
an empty implementation.

setEntityContext Associates the bean instance with context information. The
container calls this method after the bean creation. The
enterprise bean can store the reference to the context object
in an instance variable, for use in transaction management.
Beans that manage their own transactions can use the session
context to get the transaction context.

You can also allocate any resources that will exist for the
lifetime of the bean within this method. You should release
these resources in unsetEntityContext .

unsetEntityContext Unset the associated entity context and release any resources
allocated in setEntityContext .

Callback Method Functionality Required
1-16 Enterprise JavaBean Developer’s Guide and Reference

Types of EJBs
Message-Driven Beans
Message-Driven Beans (MDB) provide an easier method to implement asychronous

communication than using straight JMS. MDBs were created to receive

asynchronous JMS messages. The container handles much of the setup required for

JMS queues and topics. It sends all messages to the interested MDB.

Previously, EJBs could not send or receive JMS messages. It took creating MDBs for

an EJB-type object to receive JMS messages. This provides all of the asynchronous

and publish/subscribe abilities to an enterprise object that is able to be synchronous

with other Java objects.

The purpose of an MDB is to exist within a pool and to receive and process

incoming messages from a JMS queue. The container invokes a bean from the queue

to handle each incoming message from the queue. No object invokes an MDB

Bean-Managed Persistence Container-Managed Persistence

Persistence management You are required to implement the
persistence management within the
ejbStore , ejbLoad , ejbCreate , and
ejbRemove EntityBean methods.
These methods must contain logic for
saving and restoring the persistent data.

For example, the ejbStore method
must have logic in it to store the entity
bean’s data to the appropriate database.
If it does not, the data can be lost.

The management of the persistent data
is done for you. That is, the container
invokes a persistence manager on behalf
of your bean.

You use ejbStore and ejbLoad for
preparing the data before the commit or
for manipulating the data after it is
refreshed from the database. The
container always invokes the ejbStore
method right before the commit. In
addition, it always invokes the ejbLoad
method right after reinstating CMP data
from the database.

Finder methods allowed The findByPrimaryKey method and
other finder methods are allowed.

The findByPrimaryKey method and
other finder methods clause are allowed.

Defining CMP fields N/A Required within the EJB deployment
descriptor. The primary key must also
be declared as a CMP field.

Mapping CMP fields to
resource destination

N/A Required. Dependent on persistence
manager.

Definition of persistence
manager

N/A Required within the Oracle-specific
deployment descriptor. See the next
section for a description of a persistence
manager.
EJB Overview 1-17

Types of EJBs
directly: all invocation for an MDB comes from the container. After the container

invokes the MDB, it can invoke other EJBs or Java objects to continue the request.

A MDB is similar to a stateless session bean because it does not save conversational

state and is used for handling multiple incoming requests. Instead of handling

direct requests from a client, MDBs handle requests placed on a queue. Figure 1–4

demonstrates this by showing how clients place requests on a queue. The container

takes the requests off of the queue and gives the request to an MDB in its pool.

Figure 1–4 Message Driven Beans

MDBs implement the javax.ejb.MessageDrivenBean interface, which also

inherits the javax.jms.MessageListener methods. Within these interfaces, the

following methods must be implemented:

Method Description

onMessage(msg) The container dequeues a message from the JMS
queue associated with this MDB and gives it to this
instance by invoking this method. This method
must have an implementation for handling the
message appropriately.

setMessageDrivenContext(ctx) After the bean is created, the
setMessageDrivenContext method is invoked.
This method is similar to the EJB
setSessionContext and setEntityContext
methods.

ejbCreate() This method is used just like the stateless session
bean ejbCreate method. No initialization should
be done in this method. However, any resources
that you allocate within this method will exist for
this object.

Pool of MDBs

EJB ContainerJMS Queue

clients
1-18 Enterprise JavaBean Developer’s Guide and Reference

Difference Between Session and Entity Beans
The container handles JMS message retrieval and acknowledgment. Your MDB does

not have to worry about JMS specifics. The MDB is associated with an existing JMS

queue. Once associated, the container handles dequeuing messages and sending

acknowledgments. The container communicates the JMS message through the

onMessage method.

Difference Between Session and Entity Beans
The major differences between session and entity beans are that entity beans

involve a framework for persistent data management, a persistent identity, and

complex business logic. The following table illustrates the different interfaces for

session and entity beans. Notice that the difference between the two types of EJBs

exists within the bean class and the primary key. All of the persistent data

management is done within the bean class methods.

ejbRemove() Delete any resources allocated within the
ejbCreate method.

Entity Bean Session Bean

Remote interface Extends
javax.ejb.EJBObject

Extends
javax.ejb.EJBObject

Home interface Extends javax.ejb.EJBHome Extends javax.ejb.EJBHome

Bean class Extends
javax.ejb.EntityBean

Extends
javax.ejb.SessionBean

Primary key Used to identify and retrieve
specific bean instances

Not used for session beans.
Stateful session beans do have
an identity, but it is not
externalized.

Method Description
EJB Overview 1-19

Difference Between Session and Entity Beans
1-20 Enterprise JavaBean Developer’s Guide and Reference

An EJB Primer For
2

An EJB Primer For OC4J

After you have installed OC4J and configured the base server and default Web site,

you can start developing J2EE applications. This chapter assumes that you have a

working familiarity with simple J2EE concepts and a basic understanding for EJB

development.

This chapter demonstrates simple EJB development with a basic OC4J-specific

configuration and deployment. Download the stateless session bean example

(stateless.jar) from the OC4J sample code page at

http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
on the OTN site.

Developing and deploying EJB applications with OC4J includes the following:

■ Develop EJBs—Developing and testing an EJB module within the standard J2EE

specification.

■ Prepare the EJB Application for Assembly—Before deploying, you must modify

an XML file that acts as a manifest file for the enterprise application.

■ Deploy the Enterprise Application to OC4J—Archive the enterprise Java

application into an Enterprise ARchive (EAR) file and deploy it to OC4J.
OC4J 2-1

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Develop EJBs
Develop EJBs
The development of EJB components for the OC4J environment is identical to

development in any other standard J2EE environment. The steps for developing

EJBs are as follows:

1. Create the Development Directory—Create a development directory for the

enterprise application (as shown in Figure 2–1).

2. Implement the Enterprise JavaBeans—Develop your EJB with its home

interface, remote interface, and bean implementation.

3. Create the Deployment Descriptor—Create the standard J2EE EJB deployment

descriptor for all beans in your EJB application.

4. Archive the EJB Application—Archive your EJB files into a JAR file.

Create the Development Directory
You can develop your application in any manner. We encourage you to use

consistent naming for locating your application easily. One method would be to

implement your enterprise Java application under a single parent directory

structure, separating each module of the application into their own sub-directories.

Our employee example was developed using the directory structure mentioned in

the OC4J User’s Guide. Notice in Figure 2–1 that the EJB and Web modules exist

under the employee application parent directory and are developed separately in

their own directory.
2-2 Enterprise JavaBean Developer’s Guide and Reference

Develop EJBs
Figure 2–1 Employee Directory Structure

Implement the Enterprise JavaBeans
When you implement an EJB, create the following:

1. A home interface for the bean. The home interface extends

javax.ejb.EJBHome . It defines the create method for your bean. If the bean

is an entity bean, it also defines the finder method(s) for that bean.

2. A remote interface for the bean. The remote interface declares the methods that

a client can invoke. It extends javax.ejb.EJBObject .

3. The bean implementation that includes the following:

a. the implementation of the business methods that are declared in the remote

interface

Note: For EJB modules, the top of the module (ejb_module)

represents the start of a search path for classes. As a result, classes

belonging to packages are expected to be located in a nested

directory structure beneath this point. For example, a reference to a

package class ’myapp.Employee.class ’ is expected to be located

in "...employee/ejb_module/myapp/Employee.class ".

.../employee/

META-INF/
application.xml

<ejb_module>
EJB classes (Employee.class, ...)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

lib/
dependent libraries

/

 (EmployeeServlet.class)
An EJB Primer For OC4J 2-3

Develop EJBs
b. the container callback methods that are inherited from either the

javax.ejb.SessionBean or javax.ejb.EntityBean interfaces

c. the ejbCreate method with parameters matching those of the create
method as defined in the home interface

Creating the Home Interface
The home interface is used to create and destroy the bean instance; thus, it defines

the create method for your bean. Each type of EJB can define the create method

in the following ways:

For each create method, a corresponding ejbCreate method is defined in the

bean implementation. The client invokes the create method that is declared

within the home interface. The container turns around and calls the ejbCreate
method—with the appropriate parameter signature—within your bean

implementation. You can use the parameter arguments to initialize the state of the

new EJB object.

1. The home interface must extend the javax.ejb.EJBHome interface.

2. All create methods must throw the following exceptions:

■ javax.ejb.CreateException

■ either java.rmi.RemoteException or javax.ejb.EJBException

EJB Type Create Parameters

Stateless Session Bean Can have only a single create method, with no parameters.

Stateful Session Bean One or more create methods, each with its own defined
parameters.

Entity Bean Zero or more create methods, each with its own defined
parameters. All entity beans must define one or more finder
methods, where at least one is a findByPrimaryKey method.
2-4 Enterprise JavaBean Developer’s Guide and Reference

Develop EJBs
Example
The following code sample shows a home interface for a session bean called

EmployeeHome .

package employee;

import javax.ejb.*;
import java.rmi.*;

public interface EmployeeHome extends EJBHome
{
 public Employee create()
 throws CreateException, RemoteException;
}

Creating the Remote Interface
The remote interface defines the business methods of the bean that the client can

invoke.

1. The remote interface of the bean must extend the javax.ejb.EJBObject
interface and its methods must throw the java.rmi.RemoteException
exception.

2. You must declare the remote interface and its methods as public , because

clients that invoke these methods are remote.

3. The remote interface, all its method parameters, and return types must be

serializable. In general, any object that is passed between the client and the EJB

must be serializable, because RMI marshals and unmarshals the object on both

ends.

4. Any exception can be thrown to the client, as long as it is serializable. Runtime

exceptions, including EJBException and RemoteException , are transferred

back to the client as remote runtime exceptions.
An EJB Primer For OC4J 2-5

Develop EJBs
Example
The following code sample shows a remote interface called Employee with its

defined methods, each of which will be implemented in the stateless session bean.

package employee;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

public interface Employee extends EJBObject
{
 public Collection getEmployees()
 throws RemoteException;

 public EmpRecord getEmployee(Integer empNo)
 throws RemoteException;

 public void setEmployee(Integer empNo, String empName, Float salary)
 throws RemoteException;

 public EmpRecord addEmployee(Integer empNo, String empName,
Float salary)

 throws RemoteException;

 public void removeEmployee(Integer empNo)
 throws RemoteException;
}

Implementing the Bean
The bean contains the business logic for your application. It implements the

following methods:

1. The bean methods defined in the remote interface. The signature for each of

these methods must match the signature in the remote interface.

The bean in the example application consists of one class, EmployeeBean , that

retrieves an employee’s information.

2. The methods defined in the home interface are inherited from the

SessionBean or EntityBean interface. The container uses these methods for
2-6 Enterprise JavaBean Developer’s Guide and Reference

Develop EJBs
controlling the life cycle of the bean. These include the ejb<Action> methods,

such as ejbActivate , ejbPassivate , and so on.

3. The ejbCreate methods that correspond to the create method(s) that are

declared in the home interface. The container invokes the appropriate

ejbCreate method when the client invokes the corresponding create
method.

4. Any methods that are private to the bean or package used for facilitating the

business logic. This includes private methods that your public methods use for

completing the tasks requested of them.

Accessing the Bean
All EJB clients—including standalone clients, servlets, JSPs, and

JavaBeans—perform the following steps to instantiate a bean, invoke its methods,

and destroy the bean:

1. Look up the bean home interface through a JNDI lookup, which is used for the

life cycle management. Follow JNDI conventions for retrieving the bean

reference, including setting up JNDI properties if the bean is remote to the

client.

2. Narrow the returned object from the JNDI lookup to the home interface through

the PortableRemoteObject.narrow method.

3. Create instances of the bean in the server through the home interface. Invoking

the create method on the home interface causes a new bean to be instantiated.

This returns a bean reference to the remote interface.

4. Invoke business methods that are defined in the remote interface.

5. After you are finished, invoke the remove method. This either will remove the

bean instance or return it to a pool. The container controls how to act on the

remove method.

Example The following example is executed from a servlet, which can also be

executed from a JSP or JavaBean, that is co-located in the same container with the

stateless session bean. Thus, the JNDI lookup does not require JNDI properties,

such as the factory, location, or security parameters.

Note: For entity beans that are already instantiated, you can

retrieve the bean reference through one of its finder methods.
An EJB Primer For OC4J 2-7

Develop EJBs
This code should be executed within a TRY block for catching errors, but the TRY

block was removed to show the logic clearly. See the downloadable example for the

full exception coverage.

public class EmployeeServlet extends HttpServlet
{
 EmployeeHome home;
 Employee empBean;

 public void init() throws ServletException
 {
 //Retrieve the initial context for JNDI
 Context context = new InitialContext();

 //Retrieve the home interface using a JNDI lookup using
 // the java:comp/env bean environment variable specified in web.xml
 Object homeObject =
 context.lookup("java:comp/env/EmployeeBean");

 //Narrow the returned object to be an EmployeeHome object
 home =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

 // Create the remote Employee bean instance and return a reference
 // to the remote interface to this bean.
 empBean =
 (Employee) PortableRemoteObject.narrow(home.create(), Employee.class);
 }

Note: The JNDI name is specified in the <ejb-ref> element in

the EJB client XML configuration file—in this case, the servlet

web.xml file—as follows:

 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 </ejb-ref>
2-8 Enterprise JavaBean Developer’s Guide and Reference

Develop EJBs
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();

 //Invoke a method on the remote interface reference.
 Collection emps = empBean.getEmployees();

 out.println("<html>");
 out.println("<head><title>Employee Bean</title></head>");
 out.println("<body>");
 out.println("<table border='2'>");
 out.println("<tr><td>" + "EmployeeNo"
 + "</td><td>" + "EmployeeName"
 + "</td><td>" + "Salary"
 + "</td></tr>");

 Iterator iterator = emps.iterator();

 while(iterator.hasNext()) {
 EmpRecord emp = (EmpRecord)iterator.next();
 out.println("<tr><td>" + emp.getEmpNo()
 + "</td><td>" + emp.getEmpName()
 + "</td><td>" + emp.getSalary()
 + "</td></tr>");
 }

 out.println("</table>");
 out.println("</body>");
 out.println("</html>");
 out.close();
 }
}

Create the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE

EJB deployment descriptor for all beans in the module. The XML deployment

descriptor (defined in the ejb-jar.xml file) describes the application components
An EJB Primer For OC4J 2-9

Develop EJBs
and provides additional information to enable the container to manage the

application. The structure for this file is mandated in the DTD file, which is

provided at " http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd ".

The following example shows the sections that are necessary for the Employee
example.

Example 2–1 XML Deployment Descriptor for Employee Bean

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Session Bean Employee Example</description>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

Archive the EJB Application
Once you have finalized your implementation and have created the deployment

descriptors, archive your EJB application into a JAR file. The JAR file should include

all EJB application files and the deployment descriptor.

Note: If you have included a Web application as part of this

enterprise Java application, follow the instructions for building the

Web application in the Oracle9iAS Containers for J2EE User’s Guide.

Then, modify the *-web-site.xml file, and archive all Web

application files into a WAR file.
2-10 Enterprise JavaBean Developer’s Guide and Reference

Prepare the EJB Application for Assembly
For example, to archive your compiled EJB class files and XML files for the

Employee example into a JAR file, perform the following in the

../employee/ejb_module directory:

% jar cvf Employee-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the

JAR file.

Prepare the EJB Application for Assembly
Before deploying, perform the following:

1. Modify the application.xml file with the modules of the enterprise Java

application.

2. Archive all elements of the application into an EAR file.

Modify Application.XML
The application.xml file acts as the manifest file for the application and

contains a list of the modules that are included within your enterprise application.

You use each <module> element defined in the application.xml file to

designate what comprises your enterprise application. Each module describes one

of three things: EJB JAR, Web WAR, and any client files. Respectively, modify the

<ejb> , the <web>, and the <java> elements in separate <module> elements.

■ The <ejb> element specifies the EJB JAR filename.

■ The <web> element specifies the Web WAR filename in the <web-uri> element

and its context in the <context> element.

■ The <java> element specifies the client JAR filename, if any.

As indicated in Figure 2–2, the application.xml file is located under a

META-INF directory under the parent directory for the application. The JAR, WAR,

and client JAR files should be contained within this directory. Because of this

proximity, the application.xml file only refers to the JAR and WAR files by

name and relative path—and not by full directory path. If these files were located in

subdirectories under the parent directory, then these subdirectories must be

specified in addition to the filename.
An EJB Primer For OC4J 2-11

Prepare the EJB Application for Assembly
Figure 2–2 Archive Directory Format

For example, the following example modifies the <ejb> and <web> module

elements within application.xml for the Employee EJB application that also

contains a servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_
2.dtd">
<application>
 <module>
 <ejb>Employee-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>Employee-web.war</web-uri>
 <context-root>/employee</context-root>
 </web>
 </module>
</application>

Create the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.

Note that the application.xml file serves as the EAR manifest file.

To create the Employee.EAR file, execute the following in the employee directory

that is shown in Figure 2–2:

% jar cvfM Employee.EAR .

This archives the application.xml , the Employee-ejb.jar , and the

Employee-web.war files into the Employee.ear file.

employee/

META-INF/
application.xml

Employee-ejb.jar

Employee-web.war
2-12 Enterprise JavaBean Developer’s Guide and Reference

Deploy the Enterprise Application to OC4J
Deploy the Enterprise Application to OC4J
OC4J is aware of and deploys your application when it is configured within the

server.xml file. There are three methods to provide application information

within the server.xml file:

■ modify configuration using OEM—this is the recommended procedure

■ using admin.jar to modify the server.xml file

■ updating the server.xml file manually

Oracle recommends the following:

■ Use OEM if you are executing in a production environment. The DCM

component of OEM must know about your application configuration.

■ Use admin.jar or update the XML file manually only if you are executing in

standalone mode. If you do update the XML files through either of these

methods and your OC4J instance is part of the OEM managed environment,

you must notify DCM of the XML changes through the following command:

dcmctl updateConfig -ct oc4j

The sections below describe the OC4J methods. See Oracle9i Application Server
Administrator’s Guide and Oracle Enterprise Manager Administrator’s Guide for

information on OEM.

Using ADMIN.JAR To Modify SERVER.XML
OC4J contains a command-line deployment tool for deploying J2EE

applications—the admin.jar command. The options for this command are listed

in the Oracle9iAS Containers for J2EE User’s Guide.

To deploy a J2EE application with the EAR file to a remote node, execute

admin.jar , as follows:

java -jar admin.jar ormi://<host><:port>
<username> <password> -deploy -file <path/filename>
-deploymentName <appname> -targetpath <path/destination>

where

■ The <host><:port> is the host and port of the OC4J server.

■ The <username><password> is the administration username and password

for the OC4J server.
An EJB Primer For OC4J 2-13

Deploy the Enterprise Application to OC4J
■ The -file <path/filename> indicates the local directory and filename for

the EAR file.

■ The -deploymentName <appname> variable is the name of the application.

■ The -targetpath <path/destination> indicates what path on the server

node to deploy the EAR file into. The default path is the applications/
directory. Oracle recommends that you provide a target path.

Updating SERVER.XML Manually
In server.xml , add a new or modify the existing <application name=...
path=... auto-start="true" /> entry for each J2EE application. The path

should be the full directory path and EAR filename. For our employee example, add

the following to the server.xml file:

<application name="employee"
path="/private/applications/Employee.EAR"
auto-start="true" />

If you included a Web application portion, you must do the following to bind the

Web application to the Web server. In *-web-site.xml , add a <web-app ...>

entry for each Web application. The <application> variable should be the same

value as provided in the server.xml file. The <name> should be the WAR file,

without the WAR extension, for the Web application.

For Web application binding for the employee Web application, add the following:

<web-app application="employee" name="Employee-web"
root="/employee" />

Verifying Deployment
OC4J detects the addition of your application to server.xml . The OC4J server

displays a message that your application has been deployed. This is the extent of

installation in OC4J.

If the server does not notice your application in a timely manner, simply start (or

restart) OC4J, and it will locate your application immediately.

Note: If you have a Web application within the EAR file, bind the

Web application using the admin.jar -bindWebApp option.
2-14 Enterprise JavaBean Developer’s Guide and Reference

Deploy the Enterprise Application to OC4J
If you modified server.xml using admin.jar or manual edit, and you are not

executing OC4J in standalone mode, notify the DCM component within OEM of

your XML file changes by executing the following:

dcmctl updateConfig -ct oc4j

For more information on DCM, see the DCM Appendix in the Oracle9i Application
Server Administrator’s Guide.
An EJB Primer For OC4J 2-15

Deploy the Enterprise Application to OC4J
2-16 Enterprise JavaBean Developer’s Guide and Reference

CMP Entity B
3

CMP Entity Beans

An entity bean manages persistent data in one of two manners: container-managed

persistence and bean-managed persistence. The primary difference between the two

is as follows:

■ Container-managed persistence—The EJB container manages data by saving it

to a designated resource, which is normally a database. For this to occur, you

must define the data that the container is to manage, within the deployment

descriptors. The container manages the data by saving it to the database.

■ Bean-managed persistence—The bean implementation manages the data within

callback methods. All the logic for storing data to your persistent storage must

be included in the ejbStore method and reloaded from your storage in the

ejbLoad method. The container invokes these methods when necessary.

This chapter demonstrates simple CMP EJB development with a basic configuration

and deployment. Download the CMP entity bean example (cmpapp.jar) from the

OC4J sample code page at

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4js
amplecode/oc4j-demo-ejb.html on the OTN site.

This chapter demonstrates the following:

■ Creating Entity Beans—Demonstrates how to create a simple

container-managed persistent entity bean.

■ Advanced CMP Entity Beans—Demonstrates advanced configuration for finder

methods, object-relational mapping, and so on.

See Chapter 4, "BMP Entity Beans", for an example of how to create a simple

bean-managed persistent entity bean.
eans 3-1

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Creating Entity Beans
Creating Entity Beans
To create an entity bean, perform the following steps:

1. Create a remote interface for the bean. The remote interface declares the

methods that a client can invoke. It must extend javax.ejb.EJBObject .

2. Create a home interface for the bean. The home interface must extend

javax.ejb.EJBHome . It defines the create and finder methods, including

findByPrimaryKey , for your bean.

3. Define the primary key for the bean. The primary key identifies each entity

bean instance. The primary key must be either a well-known class, such as

java.lang.String , or defined within its own class.

4. Implement the bean. This includes the following:

a. The implementation for the methods that are declared in your remote

interface.

b. The methods that are defined in the javax.ejb.EntityBean interface.

c. The methods that match the methods that are declared in your home

interface. This includes the following:

* the ejbCreate and ejbPostCreate methods with parameters

matching the associated create method defined in the home interface

* an ejbFindByPrimary key method, which corresponds to the

findByPrimaryKey method of the home interface

* any other finder methods that were defined in the home interface

5. Create the bean deployment descriptor. The deployment descriptor specifies

properties for the bean through XML elements. This step is where you identify

the data within the bean that is to be managed by the container.

6. If the persistent data is saved to or restored from a database and you are not

using the defaults provided by the container, then you must ensure that the

correct tables exist for the bean. In the extreme default scenario, the container

will actually create the table and columns for your data based on deployment

descriptor and datasource information.

7. Create an EJB JAR file containing the bean, the remote and home interfaces, and

the deployment descriptor. Once created, configure the application.xml file,

create an EAR file, and install the EJB in OC4J.
3-2 Enterprise JavaBean Developer’s Guide and Reference

Creating Entity Beans
The following sections demonstrate a simple CMP entity bean. This example

continues the use of the employee example, as in other chapters—without adding

complexity.

Home Interface
The home interface must contain a create method, which the client invokes to

create the bean instance. Each create method can have a different signature. For

an entity bean, you must develop a findByPrimaryKey method. Optionally, you

can develop other finder methods for the bean, which are named find< name>.

Example 3–1 Entity Bean Employee Home Interface

To demonstrate an entity bean, this example creates a bean that manages a purchase

order. The entity bean contains a list of items that were ordered by the customer.

The home interface extends javax.ejb.EJBHome and defines the create and

findByPrimaryKey methods.

package employee;

import javax.ejb.*;
import java.rmi.*;

public interface EmployeeHome extends EJBHome
{

 public Employee create(Integer empNo)
 throws CreateException, RemoteException;

 // Find an existing employee
 public Employee findByPrimaryKey (Integer empNo)
 throws FinderException, RemoteException;

 //Find all employees
 public Collection findAll()
 throws FinderException, RemoteException;
}

CMP Entity Beans 3-3

Creating Entity Beans
Remote Interface
The entity bean remote interface is the interface that the customer sees and invokes

methods upon. It extends javax.ejb.EJBObject and defines the business logic

methods. For our employee entity bean, the remote interface contains methods for

adding and removing employees, and retrieving and setting employee information.

package employee;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

public interface Employee extends EJBObject
{
 // getter remote methods
 public Integer getEmpNo() throws RemoteException;
 public String getEmpName() throws RemoteException;
 public Float getSalary() throws RemoteException;

 // setter remote methods
 public void setEmpName(String newEmpName) throws RemoteException;
 public void setSalary(Float newSalary) throws RemoteException;
}

Entity Bean Class
The entity bean class must implement the following methods:

■ the target methods for the methods that are declared in the home interface,

which includes the ejbCreate method and any finder methods, including

ejbFindByPrimaryKey

■ the business logic methods that are declared in the remote interface

■ the methods that are inherited from the EntityBean interface

However, with container-managed persistence, the container manages most of the

target methods and the data objects. This leaves little for you to implement.

package employee;

import javax.ejb.*;
import java.rmi.*;

public class EmployeeBean extends Object implements EntityBean
{

3-4 Enterprise JavaBean Developer’s Guide and Reference

Creating Entity Beans
 public Integer empNo;
 public String empName;
 public Float salary;
 public EntityContext entityContext;

 public EmployeeBean()
 {
 // Constructor. Do not initialize anything in this method.
 // All initialization should be performed in the ejbCreate method.
 }

 public Integer getEmpNo()
 {
 return empNo;
 }

 public String getEmpName()
 {
 return empName;
 }

 public Float getSalary()
 {
 return salary;
 }

 public void setEmpName(String empName)
 {
 this.empName = empName;
 }

 public void setSalary(Float salary) {
 this.salary = salary;
 }

 public Integer ejbCreate(Integer empNo)
 throws CreateException, RemoteException
 {
 this.empNo = empNo;
 return empNo;
 }

 public void ejbPostCreate(Integer empNo)
 throws CreateException, RemoteException
CMP Entity Beans 3-5

Creating Entity Beans
 {
 // Called just after bean created; container takes care of implementation
 }

 public void ejbStore()
 {
 // Called when bean persisted; container takes care of implementation
 }

 public void ejbLoad()
 {
 // Called when bean loaded; container takes care of implementation
 }

 public void ejbRemove()
 {
 // Called when bean removed; container takes care of implementation
 }

 public void ejbActivate()
 {
 // Called when bean activated; container takes care of implementation.
 // If you need resources, retrieve them here.
 }

 public void ejbPassivate()
 {
 // Called when bean deactivated; container takes care of implementation.
 // if you set resources in ejbActivate, remove them here.
 }

 public void setEntityContext(EntityContext entityContext)
 {
 this.entityContext = entityContext;
 }

 public void unsetEntityContext()
 {
 this.entityContext = null;
 }
}

3-6 Enterprise JavaBean Developer’s Guide and Reference

Creating Entity Beans
Persistent Data
In CMP entity beans, you define the persistent data both in the bean instance and in

the deployment descriptor. The declaration of the data fields in the bean instance

creates the resources for the fields. The deployment descriptor defines these fields

as persistent.

In our employee example, the data fields are defined in the bean instance, as

follows:

public Integer empNo;
public String empName;
public Float salary;

These fields are defined as persistent fields in the ejb-jar.xml deployment

descriptor within the <cmp-field><field-name> element, as follows:

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
...
</enterprise-beans>

In most cases, you map the persistent data fields to columns in a table that exists in

a designated database. However, you can accept the defaults for these fields—thus,

avoiding more deployment descriptor configuration.

OC4J contains some defaults for mapping these fields to a database and its table.

■ Database—The default database is the first database that is defined in the

data-sources.xml file. The JNDI name that is used for a pooled database is

defined in the <ejb-location> element.
CMP Entity Beans 3-7

Creating Entity Beans
Upon installation, the default database is a locally installed Oracle database that

must be listening on port 5521 with a SID of ORACLE.

To customize the default database, change the first configured database

(including its <ejb-location>) within the data-sources.xml to point to

your database.

■ Table with correct column names—The container creates a default table with

the same name as the bean name (defined in <ejb-name>), with columns

having the same name as the <cmp-field> elements in the designated

database. The data types for the database, translating Java data types to

database data types, are defined in the specific database XML file, such as

oracle.xml .

If you want to designate another database or generate a table that has a different

naming convention, see "Object-Relational Mapping of Persistent Fields" on

page 3-13 for a description of how to customize your database, table, and column

names.

Primary Key
Each entity bean instance has a primary key that uniquely identifies it from other

instances. You must declare the primary key (or the fields contained within a

complex primary key) as a container-managed persistent field in the deployment

descriptor. All fields within the primary key are restricted to either primitive,

serializable, or types that can be mapped to SQL types. You can define your primary

key in one of two ways:

■ Define the type of the primary key to be a well-known type. The type is defined

in the <prim-key-class> in the deployment descriptor. The data field that is

identified as the persistent primary key is identified in the <primkey-field>
element in the deployment descriptor. The primary key variable that is declared

within the bean class must be declared as public .

■ Define the type of the primary key as a serializable object within a <name>PK
class that is serializable. This class is declared in the <prim-key-class>
element in the deployment descriptor. This is an advanced method for defining

Note: Unfortunately, you must change the "default" database

configuration in the data-sources.xml file to coordinate with

the default installation for an Oracle database. The default port and

SID for an Oracle database are 1521 and ORCL, respectively.
3-8 Enterprise JavaBean Developer’s Guide and Reference

Creating Entity Beans
a primary key, so it is discussed in "Defining the Primary Key in a Class" on

page 3-9.

For a simple CMP, you can define your primary key to be a well-known type by

defining the data type of the primary key within the deployment descriptor.

The employee example defines its primary key as a java.lang.Integer and uses

the employee number (empNo) as its primary key.

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
...
</enterprise-beans>

Defining the Primary Key in a Class
If your primary key is more complex than a simple data type, your primary key

must be a class that is serializable of the name <name>PK. You define the primary

key class within the <prim-key-class> element in the deployment descriptor.

The primary key variables must adhere to the following:

■ Be defined within a <cmp-field><field-name> element in the deployment

descriptor. This enables the container to manage the primary key fields.

■ Be declared within the bean class as public and restricted to be either

primitive, serializable, or types that can be mapped to SQL types.

Within the primary key class, you implement a constructor for creating a primary

key instance. Once defined in this manner, the container manages the primary key,

as well as storing the persistent data.

The following example is a complex primary key made up of employee number and

country code. Our company is so large that it reuses employee numbers in different
CMP Entity Beans 3-9

Creating Entity Beans
countries. Thus, the combination of both the employee number and the country

code uniquely identifies each employee.

package employee;

public class EmpPK implements java.io.Serializable
{
 public Integer empNo;
 public String countryCode;

 //constructor
 public EmpPK () { }
}

The primary key class is declared within the <prim-key-class> element and its

variables, each within a <cmp-field><field-name> element in the XML

deployment descriptor, as follows:

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>

 <prim-key-class>employee.EmpPK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>countryCode</field-name></cmp-field>
 </entity>
 ...
</enterprise-beans>

Deploying the Entity Bean
Archive your EJB into a JAR file. You deploy the entity bean in the same way as the

session bean, which "Prepare the EJB Application for Assembly" on page 2-11 and

"Deploy the Enterprise Application to OC4J" on page 2-13 explain in detail.
3-10 Enterprise JavaBean Developer’s Guide and Reference

Advanced CMP Entity Beans
Advanced CMP Entity Beans
This section discusses how to implement your bean beyond the simple CMP entity

bean. It includes the following sections:

■ Advanced Finder Methods

■ Object-Relational Mapping of Persistent Fields

Advanced Finder Methods
Specifying the findByPrimaryKey method is easy to do in OC4J. All the fields for

defining a simple or complex primary key are specified within the ejb-jar.xml
deployment descriptor. However, if you want to define other finder methods in a

CMP entity bean, you must do the following:

1. Add the finder method to the home interface.

2. Add the finder method definition to the OC4J-specific deployment

descriptor—the orion-ejb-jar.xml file.

Add the Finder Method to Home Interface
You must first add the finder method to the home interface. For example, with the

employee entity bean, if we wanted to retrieve all employees, the findAll method

would be defined within the home interface, as follows:

public Collection findAll() throws FinderException, RemoteException;

Add the Finder Method Definition to OC4J-Specific Deployment Descriptor
After specifying the finder method in the home interface, modify the

orion-ejb-jar.xml file with the finder method specifics. The container

identifies the correct query necessary for retrieving the required fields.

The <finder-method> element defines all finder methods—excluding the

findByPrimaryKey method. The simplest finder method to define is the

findByAll method. The query attribute in the <finder-method> element

specifies the WHERE clause for the query. If you want all rows retrieved, then an

empty query (query="") returns all records.

The following example retrieves all records from the EmployeeBean . The method

name is findAll , and it requires no parameters because it returns a Collection
of all employees.

<finder-method query="">
CMP Entity Beans 3-11

Advanced CMP Entity Beans
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findAll</method-name>
 <method-params></method-params>
 </method>
</finder-method>

After deploying the application with this bean, OC4J adds the following statement

of what query it invokes as a comment in the finder method definition:

<finder-method query="">
<!-- Generated SQL: "select EmployeeBean.empNo, EmployeeBean.empName,
 EmployeeBean.salary from EmployeeBean" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findAll</method-name>
 <method-params></method-params>
 </method>
</finder-method>

Verify that it is the type of query that you expect.

To be more specific, modify the query attribute with the appropriate WHEREclause.

This clause refers to passed in parameters using the ’$’ symbol: the first parameter

is denoted by $1, the second by $2. All <cmp-field> elements that are used within

the WHERE clause are denoted by $<cmp-field> name.

The following example specifies a findByName method (which should be defined

in the home interface) where the name of the employee is given as in the method

parameter, which is substituted for the $1. It is matched to the CMP name,

"empName". Thus, our query attribute is modified to contain the following for the

WHERE clause: "$empname=$1".

<finder-method query="$empname = $1">
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>
3-12 Enterprise JavaBean Developer’s Guide and Reference

Advanced CMP Entity Beans
If you have more than one method parameter, each parameter type is defined in

successive <method-param> elements and referred to in the query statement by

successive $n, where n represents the number.

If you wanted to specify a full query and not just the section after the WHERE

clause, specify the partial attribute to FALSE and then define the full query in the

query attribute. The default value for partial is true, which is why it is not

specified on the previous finder-method example.

<finder-method partial="false"
 query="select * from EMP where $empName = $1">
 <!-- Generated SQL: "select * from EMP where EMP.ENAME = ?" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>

Specifying the full SQL query is useful for complex SQL statements.

Object-Relational Mapping of Persistent Fields
As "Persistent Data" on page 3-7 discusses, your persistent data can be

automatically mapped to a database table by the container. However, if the data

represented by your bean is more complex or you do not want to accept the defaults

that OC4J provides for you, then map the CMP designated fields to an existing

database table and its applicable rows within the orion-ejb-jar.xml file. Once

mapped, the container provides the persistence storage of the CMP data to the

indicated table and rows.

Before configuring the object-relational mapping, add the DataSource used for the

destination within the <resource-ref> element in the ejb-jar.xml file.

Mapping CMP Fields to a Database Table and Its Columns
Configure the following within the orion-ejb-jar.xml file:

Note: You can also specify a SQL JOIN in the query attribute.
CMP Entity Beans 3-13

Advanced CMP Entity Beans
1. Configure the <entity-deployment> element for every entity bean that

contains CMP fields that will be mapped within it.

2. Configure a <cmp-field-mapping> element for every field within the bean

that is mapped. Each <cmp-field-mapping> element must contain the name

of the field to be persisted.

a. Configure the primary key in the <primkey-mapping> element contained

within its own <cmp-field-mapping> element.

b. Configure simple data types (such as a primitive, simple object, or

serializable object) that are mapped to a single field within a single

<cmp-field-mapping> element. The name and database field are fully

defined within the element attributes.

c. Configure complex data types using one of the many sub-elements of the

<cmp-field-mapping> element. These can be one of the following:

* If you define an object as your complex data type, then specify each

field or property within the object in the <fields> or <properties>
element.

* If you specify a field defined in another entity bean, then define the

home interface of this entity bean in the <entity-ref> element.

* If you define a List , Collection , Set , or Map of fields, then define

these fields within the <list-mapping> , <collection-mapping> ,

<set-mapping> , <map-mapping> elements.

Examples for simple and complex O-R mappings are shown in the following

sections:

■ One-to-One Mapping Example

■ One-to-Many Mapping Example

One-to-One Mapping Example The following example demonstrates how to map

persistent data fields in your bean instance to database tables and columns by

mapping the employee persistence data fields to the Oracle database table EMP.

■ The bean is identified in the <entity-deployment> name attribute. The JNDI

name for this bean is defined in the location attribute.

■ The database table name is defined in the table attribute. And the database is

specified in the data-source attribute, which should be identical to the

<ejb-location> name of a DataSource defined in the

data-sources.xml file.
3-14 Enterprise JavaBean Developer’s Guide and Reference

Advanced CMP Entity Beans
■ The bean primary key, empNo, is mapped to the database table column, EMPNO,
within the <primkey-mapping> element.

■ The bean persistent data fields, empName and salary , are mapped to the

database table columns ENAME and SAL within the <cmp-field-mapping>
element.

<entity-deployment name="EmpBean" location="emp/EmpBean"
wrapper="EmpHome_EntityHomeWrapper2" max-tx-retries="3"
table="emp" data-source="jdbc/OracleDS" >
<primkey-mapping>

<cmp-field-mapping name="empNo" persistence-name="empno" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ename" />
<cmp-field-mapping name="salary" persistence-name="sal" />

 ...
</entity-deployment>

After deployment, OC4J maps this to the following:

One-to-Many Mapping Example If you have two beans that access two tables for their

data, you must map the persistent data from both beans to the respective tables.

We added a department number to our employee example. Each employee belongs

to a department; each department has multiple employees. The container will

handle this object-relational mapping; however, you must specify how the data is

stored.

The employee data maps to the employee database table; the department data is

mapped to the database department table. The employee database table also

contains a foreign key of the department number to link this information together.

The XML configuration for the employee bean, EmpBean, is as follows:

Bean Database

emp/EmpBean EMP table, located at jdbc/OracleDS in the
data-sources.xml file

empNo EMPNO column as primary key

empName ENAME column

salary SAL column
CMP Entity Beans 3-15

Advanced CMP Entity Beans
■ Same XML configuration details for the employee bean as stated above, with

the addition of the definition of the department number as part of the employee

entity bean.

■ The department number is defined in the bean instance as deptno , which

relates to the department number defined in the DeptBean . Thus, the

DeptBean , its deptno field, and its mapping to the database column, deptno ,

is configured within a <cmp-field-mapping><entity-ref> element, as

follows:

 <entity-deployment name="EmpBean" location="emp/EmpBean"
wrapper="EmpHome_EntityHomeWrapper2" max-tx-retries="3" table="emp"
data-source="jdbc/OracleDS">

 <primkey-mapping>
 <cmp-field-mapping name="empNo" persistence-name="empno" />
 </primkey-mapping>
 <cmp-field-mapping name="empName" persistence-name="ename" />
 <cmp-field-mapping name="salary" persistence-name="sal" />
 <cmp-field-mapping name="dept">
 <entity-ref home="dept/DeptBean">
 <cmp-field-mapping name="dept" persistence-name="deptno" />
 </entity-ref>
 </cmp-field-mapping>
 <finder-method query="">
 <!-- Generated SQL: "select EMP.empno, EMP.ename, EMP.sal,
 EMP.deptno from EMP" -->
 <method>
 <ejb-name>EmpBean</ejb-name>
 <method-name>findAll</method-name>
 <method-params></method-params>
 </method>
 </finder-method>
 </entity-deployment>

The XML configuration for the department bean, DeptBean , is as follows:

■ The bean is identified in the <entity-deployment> name attribute. The JNDI

name for this bean is defined in the location attribute.

■ The database table name is defined in the table attribute. And the database is

specified in the data-source attribute, which should be identical to the

Note: This definition within the EmpBean configuration refers to

the definition of the deptno within the DeptBean configuration.
3-16 Enterprise JavaBean Developer’s Guide and Reference

Advanced CMP Entity Beans
<ejb-location> name of a DataSource defined in the

data-sources.xml file.

■ The bean primary key, deptNo , is mapped to the dept database table in its

DEPTNO column within the <primkey-mapping> element.

■ The bean persistent data field, deptName , is mapped to the DEPT database

table in its DNAME column within a <cmp-field-mapping> element.

■ The bean persistent data field, employees , is actually a bean—the employee

bean. Thus, the example uses the <collection-mapping> element to specify

all fields within the employee bean. A Collection containing the employee

information is returned. See the bold text in the example below.

– The employees field maps to the EmpBean entity bean. Its home interface

reference is defined in the home attribute of the <entity-ref> element.

– The primary key used to retrieve the employees is defined as deptNo
within the <primkey-mapping> element and is mapped to the database

column DEPTNO.

– All fields that are of interest to the department bean are defined within

<cmp-field-mapping> elements. The bean instance fields within the

EmpBean that are of interest are empNo, empName, and salary . Their

respective database columns are also specified: EMPNO, ENAME, and SAL.
The database table itself is defined in the EmpBean
<entity-deployment> definition.

<entity-deployment name="DeptBean" location="dept/DeptBean"
wrapper="DeptHome_EntityHomeWrapper2" max-tx-retries="3" table="dept"
data-source="jdbc/OracleDS">
 <primkey-mapping>
 <cmp-field-mapping name="deptNo" persistence-name="deptno" />
 </primkey-mapping>
 <cmp-field-mapping name="deptName" persistence-name="dname" />
 <cmp-field-mapping name="employees">
 <collection-mapping table="emp">
 <primkey-mapping>
 <cmp-field-mapping name="deptNo" persistence-name="deptno" />
 </primkey-mapping>
 <value-mapping type="emp.Emp">
 <cmp-field-mapping>
 <entity-ref home="emp/EmpBean">
 <cmp-field-mapping name="empNo" persistence-name="empno"/>
 <cmp-field-mapping name="empName" persistence-name="ename"/>
 <cmp-field-mapping name="salary" persistence-name="sal"/>
CMP Entity Beans 3-17

Advanced CMP Entity Beans
 </entity-ref>
 </cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 </cmp-field-mapping>
 ...
 </entity-deployment>
3-18 Enterprise JavaBean Developer’s Guide and Reference

BMP Entity B
4

BMP Entity Beans

You must implement the storing and reloading of data in a bean-managed

persistent (BMP) bean. The bean implementation manages the data within callback

methods. All the logic for storing data to your persistent storage is included in the

ejbStore method, and reloaded from your storage in the ejbLoad method. The

container invokes these methods when necessary.

This chapter demonstrates simple BMP EJB development with a basic configuration

and deployment. Download the BMP entity bean example (bmpapp.jar) from the

OC4J sample code page at http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html on

the OTN site.

The following sections discuss how to implement data persistence:

■ Creating BMP Entity Beans

■ Remote and Home Interface

■ BMP Entity Bean Implementation

■ Create Database Table and Columns for Entity Data
eans 4-1

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Creating BMP Entity Beans
Creating BMP Entity Beans
As Chapter 3, "CMP Entity Beans" indicates, the steps for creating an entity bean are

as follows:

1. Create a remote interface for the bean. The remote interface declares the

methods that a client can invoke. It must extend javax.ejb.EJBObject .

2. Create a home interface for the bean. The home interface must extend

javax.ejb.EJBHome . It defines the create and finder methods, including

findByPrimaryKey , for your bean.

3. Define the primary key for the bean. The primary key identifies each entity

bean instance. The primary key must be either a well-known class, such as

java.lang.String , or defined within its own class.

4. Implement the bean. This includes the following:

a. The implementation for the methods declared in your remote interface.

b. The methods that match the methods that are declared in your home

interface. This includes the following:

* The ejbCreate , which must create the persistent data, and

ejbPostCreate methods with parameters matching each of the

create methods defined in the home interface.

* An ejbFindByPrimary key method, which corresponds to the

findByPrimaryKey method of the home interface, retrieves the

primary key and validates that it exists.

* Any other finder methods that were defined in the home interface.

c. The methods defined in the javax.ejb.EntityBean interface. The

ejbCreate , ejbPostCreate , and ejbFindByPrimaryKey are already

mentioned above. The other methods are as follows:

* Persistent saving of the data within the ejbStore method.

* Restoring the persistent data to the bean within your implementation of

the ejbLoad method.

* Passivation of the bean instance within the ejbPassivate method.

* Activation of the passivated bean instance within the ejbActivate
method.

5. If the persistent data is saved to or restored from a database, you must ensure

that the correct tables exist for the bean.
4-2 Enterprise JavaBean Developer’s Guide and Reference

BMP Entity Bean Implementation
6. Create the bean deployment descriptor. The deployment descriptor specifies

properties for the bean through XML properties.

7. Create an EJB JAR file containing the bean, the remote and home interfaces, and

the deployment descriptor. Once created, configure application.xml , create

an EAR file, and install the EJB in OC4J.

Remote and Home Interface
The BMP entity bean definition of the remote and home interfaces are identical to

the CMP entity bean. For examples of how the remote and home interface are

implemented, see "Creating Entity Beans" on page 3-2.

BMP Entity Bean Implementation
Because the container is no longer managing the primary key nor the saving of the

persistent data, the bean callback functions must include the implementation logic

for these functions. The container invokes the ejbCreate ,

ejbFindByPrimaryKey , other finder methods, ejbStore , and ejbLoad methods

when it is appropriate.

The ejbCreate Implementation
The ejbCreate method is responsible primarily for the creation of the primary

key. This includes creating the primary key, creating the persistent data

representation for the key, initializing the key to a unique value, and returning this

key to the container. The container maps the key to the entity bean reference.

The following example shows the ejbCreate method for the employee example,

which initializes the primary key, empNo. It should automatically generate a

primary key that is the next available number in the employee number sequence.

However, for this example to be simple, the ejbCreate method requires that the

user provide the unique employee number.

In addition, because the full data for the employee is provided within this method,

the data is saved within the context variables of this instance. After initialization, it

returns this key to the container.

// The create methods takes care of generating a new empNo and returns
// its primary key to the container
public Integer ejbCreate (Integer empNo, String empName, Float salary)

throws CreateException, RemoteException
{

BMP Entity Beans 4-3

BMP Entity Bean Implementation
 this.empNo = empNo;
 this.empName = empName;
 this.salary = salary;
 return (empNo);
}

The deployment descriptor defines only the primary key class in the

<prim-key-class> element. Because the bean is saving the data, there is no

definition of persistence data in the deployment descriptor. Note that the

deployment descriptor does define the database the bean uses in the

<resource-ref> element. For more information on database configuration, see

"Modify XML Deployment Descriptors" on page 4-10.

<enterprise-beans>
 <entity>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 </entity>
</enterprise-beans>

Alternatively, you can create a complex primary key based on several data types.

You define a complex primary key within its own class, as follows:

package employee;

public class EmployeePK implements java.io.Serializable
{
 public Integer empNo;
 public String empName;
 public Float salary;

 public EmployeePK(Integer empNo)
 {
 this.empNo = empNo;
4-4 Enterprise JavaBean Developer’s Guide and Reference

BMP Entity Bean Implementation
 this.empName = null;
 this.salary = null;
 }

 public EmployeePK(Integer empNo, String empName, Float salary)
 {
 this.empNo = empNo;
 this.empName = empName;
 this.salary = salary;
 }

}

For a primary key class, you define the class in the <prim-key-class> element,

which is the same for the simple primary key definition.

<enterprise-beans>
 <entity>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 </entity>
</enterprise-beans>

The employee example requires that the employee number is given to the bean by

the user. Another method would be to generate the employee number by

computing the next available employee number, and use this in combination with

the employee’s name and office location.

After defining the complex primary key class, you would create your primary key

within the ejbCreate method, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
 throws CreateException, RemoteException
{

BMP Entity Beans 4-5

BMP Entity Bean Implementation
 pk = new EmployeePK(empNo, empName, salary);
 ...
}

The other task that the ejbCreate (or ejbPostCreate) should handle is

allocating any resources necessary for the life of the bean. For this example, because

we already have the information for the employee, the ejbCreate performs the

following:

1. Retrieves a connection to the database. This connection remains open for the life

of the bean. It is used to update employee information within the database. It

should be released in ejbPassivate and ejbRemove , and reallocated in

ejbActivate .

2. Updates the database with the employee information.

This is executed, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
 throws CreateException, RemoteException
{
 pk = new EmployeePK(empNo, empName, salary);
 conn = getConnection(dsName);
 ps = conn.prepareStatement(INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES (this.empNo.intValue(), this.empName, this.salary.floatValue());
 ps.close();
 return pk;
}

The ejbFindByPrimaryKey Implementation
The ejbFindByPrimaryKey implementation is a requirement for all BMP entity

beans. Its primary responsibility is to ensure that the primary key is valid. Once it is

validated, it returns the primary key to the container, which uses the key to return

the remote interface reference to the user.

This sample verifies that the employee number is valid and returns the primary key,

which is the employee number, to the container. A more complex verification would

be necessary if the primary key was a class.

public Integer ejbFindByPrimaryKey(Integer empNoPK)
 throws FinderException, RemoteException
{
 if (empNoPK == null) {
 throw new FinderException("Primary key cannot be null");
 }
4-6 Enterprise JavaBean Developer’s Guide and Reference

BMP Entity Bean Implementation
 ps = conn.prepareStatement(SELECT EMPNO FROM EMPLOYEEBEAN
WHERE EMPNO = ?);

 ps.setInt(1, empNoPK.intValue());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if (rs.next()) {
 /*PK is validated because it exists already*/
 } else {
 throw new FinderException("Failed to select this PK");
 }

 ps.close();

 return empNoPK;
}

Other Finder Methods
You can create other finder methods beyond the single ejbFindByPrimaryKey .

To create other finder methods, do the following:

1. Add the finder method to the home interface.

2. Implement the finder method in the BMP bean implementation.

These finder methods need only to gather the primary keys for all of the entity

beans that should be returned to the user. The container maps the primary keys to

references to each entity bean within either a Collection (if multiple references

are returned) or to the single class type.

The following example shows the implementation of a finder method that returns

all employee records.

public Collection ejbFindAll() throws FinderException, RemoteException
{
 Vector recs = new Vector();

 ps = conn.prepareStatement(SELECT EMPNO FROM EMPLOYEEBEAN);
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();

 int i = 0;

 while (rs.next())
BMP Entity Beans 4-7

BMP Entity Bean Implementation
 {
 retEmpNo = new Integer(rs.getInt(1));
 recs.add(retEmpNo);
 }

 ps.close();
 return recs;
}

The ejbStore Implementation
The container invokes the ejbStore method when the persistent data should be

saved to the database. This includes whenever the primary key is "dirtied", or

before the container passivates the bean instance or removes the instance. The BMP

bean is responsible for ensuring that all data is stored to some resource, such as a

database, within this method.

public void ejbStore() throws RemoteException
{
 //Container invokes this method to instruct the instance to
 //synchronize its state by storing it to the underlying database
 ps = conn.prepareStatement(UPDATE EMPLOYEEBEAN SET EMPNAME=?,

 SALARY=? WHERE EMPNO=?);
 ps.setString(1, this.empName);
 ps.setFloat(2, this.salary.floatValue());
 ps.setInt(3, this.empNo.intValue());
 if (ps.executeUpdate() != 1) {
 throw new RemoteException("Failed to update record");
 }
 ps.close();
}

The ejbLoad Implementation
The container invokes the ejbLoad method after activating the bean instance. The

purpose of this method is to repopulate the persistent data with the saved state. For

most ejbLoad methods, this implies reading the data from a database into the

instance data variables.

public void ejbLoad() throws RemoteException
{
 //Container invokes this method to instruct the instance to
 //synchronize its state by loading it from the underlying database
 this.empNo = ctx.getPrimaryKey();
 ps = conn.prepareStatement(SELECT EMP_NO, EMP_NAME, SALARY WHERE EMPNAME=?");
4-8 Enterprise JavaBean Developer’s Guide and Reference

BMP Entity Bean Implementation
 ps.setInt(1, this.empNo.intValue());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if (rs.next()) {
 this.empNo = new Integer(rs.getInt(1));
 this.empName = new String(rs.getString(2));
 this.salary = new Float(rs.getFloat(3));
 } else {
 throw new FinderException("Failed to select this PK");
 }
 ps.close();
}

The ejbPassivate Implementation
The ejbPassivate method is invoked directly before the bean instance is

serialized for future use. Normally, this is invoked when the instance has not been

used in a while. It will be re-activated, through the ejbActivate method, the next

time the user invokes a method on this instance.

Before the bean is passivated, you should release all resources and release any static

information that would be too large to be serialized. Any large, static information

that can be easily regenerated within the ejbActivate method should be released

in this method.

In our example, the only resource that cannot be serialized is the open database

connection. It is closed in this method and reopened in the ejbActivate method.

public void ejbPassivate()
{
 // Container invokes this method on an instance before the instance
 // becomes disassociated with a specific EJB object
 conn.close();
}

The ejbActivate Implementation
As the ejbPassivate method section states, the container invokes this method

when the bean instance is reactivated. That is, the user has asked to invoke a

method on this instance. This method is used to open resources and rebuild static

information that was released in the ejbPassivate method.

Our employee example opens the database connection where the employee

information is stored.
BMP Entity Beans 4-9

Modify XML Deployment Descriptors
public void ejbActivate() throws RemoteException
{
 // Container invokes this method when the instance is taken out
 // of the pool of available instances to become associated with
 // a specific EJB object
 conn = getConnection(dsName);
}

The ejbRemove Implementation
The container invokes the ejbRemove method before removing the bean instance

itself or by placing the instance back into the bean pool. This means that the

information that was represented by this entity bean should be removed—both by

the instance being destroyed and removed from within persistent storage. The

employee example removes the employee and all associated information from the

database before the instance is destroyed. Close the database connection.

public void ejbRemove() throws RemoveException, RemoteException
{
 //Container invokes this method befor it removes the EJB object
 //that is currently associated with the instance
 ps = conn.prepareStatement(DELETE FROM EMPLOYEEBEAN WHERE EMPNO=?);
 ps.setInt(1, this.empNo.intValue());
 if (ps.executeUpdate() != 1) {
 throw new RemoteException("Failed to delete record");
 }
 ps.close();
 conn.close();
}

Modify XML Deployment Descriptors
In addition to the configuration described in "Creating Entity Beans" on page 3-2,

you must modify and add the following to your ejb-jar.xml deployment

descriptor:

1. Configure the persistence type to be "Bean" in the <persistence-type>
element.

2. Configure an resource reference for the database persistence storage in the

<resource-ref> element.

Our employee used the database environment element of "jdbc/OracleDS ".

This is configured in the <resource-ref> element as follows:
4-10 Enterprise JavaBean Developer’s Guide and Reference

Create Database Table and Columns for Entity Data
<resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The database specified in the <res-ref-name> element maps to a

<ejb-location> element in the data-sources.xml file. Our

"jdbc/OracleDS " database is configured in the data-sources.xml file, as

shown below:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="Oracle"
 location="jdbc/OracleCoreDS"
 pooled-location="jdbc/pool/OraclePoolDS"
 ejb-location="jdbc/OracleDS"
 xa-location="jdbc/xa/OracleXADS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 url="jdbc:oracle:thin:@localhost:5521:orcl"
 username="scott"
 password="tiger"
 max-connections="300"
 min-connections="5"
 max-connect-attempts="10"
 connection-retry-interval="1"
 inactivity-timeout="30"
 wait-timeout="30"
/>

Create Database Table and Columns for Entity Data
If your entity bean stores its persistent data within a database, you need to create

the appropriate table with the proper columns for the entity bean. This table must

be created before the bean is loaded into the database. The container will not create

this table for BMP beans, but it will create it automatically for CMP beans.

In our employee example, you must create the following table in the database

defined in the data-sources.xml file:
BMP Entity Beans 4-11

Create Database Table and Columns for Entity Data
The following shows the SQL commands that create these fields.

CREATE TABLE EMPLOYEEBEAN (
 EMPNO NUMBER NOT NULL,
 EMPNAME VARCHAR2(255) NOT NULL,
 SALARY FLOAT NOT NULL,
 CONSTRAINT EMPNO PRIMARY KEY
)

Table Columns

EMPLOYEEBEAN ■ employee number (EMPNO)

■ employee name (EMPNAME)

■ salary (SALARY)
4-12 Enterprise JavaBean Developer’s Guide and Reference

Message-Driven B
5

Message-Driven Beans

A Message-Driven Bean (MDB) is a JMS message listener that can reliably consume

messages from a queue or a durable subscription. The advantage of using an MDB

instead of a JMS message listener is because you can use the asynchronous nature of

a JMS listener with the advantages that the EJB container does the following for

you:

■ The consumer is created for the listener. That is, the appropriate

QueueReceiver or TopicSubscriber is created by the container.

■ The MDB is registered with the consumer. The container registers the MDB with

the QueueReceiver or TopicSubscriber and its factory at deployment

time.

■ The message acknowledgment mode is specified.

An MDB is an easy method for creating a JMS message listener.

This chapter discusses the tasks involved in creating an MDB in OC4J and

demonstrates simple MDB development with a basic configuration and

deployment. Download the MessageLogger MDB example

(messagelogger.ear) from the OC4J sample code page at

http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
on the OTN site.
eans 5-1

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

Creating Message Driven Beans
Creating Message Driven Beans
To create an MDB, you perform the following steps:

1. Implement the bean. This includes the following:

a. The bean class must implement the javax.ejb.MessageDrivenBean
and javax.jms.MessageListener interfaces, which includes the

following:

* the onMessage method in the MessageListener interface

* the setMessageDrivenContext method in the

MessageDrivenBean interface

b. Container callback methods that normally match methods in the EJB home

interface. A remote and home interface are not implemented with an MDB.

However, some of the callback methods required for these interfaces are

implemented in the bean implementation. These include the following:

* an ejbCreate method

* an ejbRemove method

2. Create the MDB deployment descriptors.

3. Configure the JMS Destination type (queue or topic) in the OC4J JMS XML

file—jms.xml .

4. Map the JMS Destination type to the MDB in the OC4J-specific deployment

descriptor—orion-ejb-jar.xml .

5. If you involve a database in your MDB application, configure the DataSource

that represents your database in data-sources.xml .

6. Create an EJB JAR file containing the bean and the deployment descriptor. Once

created, configure the application.xml file, create an EAR file, and install

the EJB in OC4J.

The following sections demonstrates a simple MDB.

■ Bean Class Implementation

■ MDB Deployment Descriptor

■ JMS XML Configuration

■ DataSource XML Configuration

■ Deploying the Entity Bean
5-2 Enterprise JavaBean Developer’s Guide and Reference

Creating Message Driven Beans
Bean Class Implementation
Most MDBs receive messages from a queue or a topic, then invoke an entity bean to

process the request contained within the message.

The following example is a MessageLogger MDB prints the message it receives,

and invokes an entity bean, LogMessage , to process the message.

As an MDB, it is responsible for the following:

■ implements the javax.ejb.MessageDrivenBean and

javax.jms.MessageListener interfaces

■ defined as public (not final or abstract)

■ implements a constructor and the following methods:

setMessageDrivenContext , ejbCreate , onMessage , and ejbRemove .

package com.evermind.logger;

import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;
import java.util.*;

public class MessageLogger implements MessageDrivenBean
{
 private MessageDrivenContext messageContext;

 public void ejbCreate()
 {
 /* no implementation is necessary for this MDB */
 /* An MDB does not carry state for an individual client. However, you can
 retrieve state for use across many calls for multiple clients - state
 such as an entity bean reference or a database connection. If so, retrieve
 these within the ejbCreate and remove them in the ejbRemove method. */
 }

 public void ejbRemove()
 {
 /* no implementation is necessary for this MDB*/
 }

 public void onMessage(Message message)
 {
 /* The whole point for this message logger MDB is to receive and print
 messages. It is not complicated, but it shows how MDBs are set up to
Message-Driven Beans 5-3

Creating Message Driven Beans
 receive JMS messages from queues and topics. */

 /*print the message*/
 System.out.println("Received message: " + message);

 try
 {
 /* retrieve the initial context for the lookup */
 Context ic = new InitialContext();

 /*invoke the LogMessage entity bean to process the message*/
 /* retrieve the home interface of the LogMessage bean*/
 /* making sure to narrow the returned object to LogMessageHome*/
 LogMessageHome home = (LogMessageHome)
 javax.rmi.PortableRemoteObject.narrow(

 ic.lookup("java:comp/env/logMessages"),
 LogMessageHome.class);

 /* Retrieve the remote interface and instantiate the bean through
 the home.create method. The LogMessage create method requires
 three parameters: the time of the message, the subject of the
 message, and the actual message */
 home.create(
 new Date(message.getLongProperty("time")),
 message.getStringProperty("subject"),
 message.getStringProperty("message"));
 }
 catch(Exception e)
 {
 throw new EJBException(e);
 }
 }

 public void setMessageDrivenContext(MessageDrivenContext context)
 {
 /* As with all EJBs, you must set the context in order to be
 able to use it at another time within the MDB methods. */
 this.messageContext = context;
 }
}

Configuring XML Files
You need to create both of the MDB deployment descriptors and the JMS

Destination configuration.
5-4 Enterprise JavaBean Developer’s Guide and Reference

Creating Message Driven Beans
■ The JMS Destination configuration defines the queue or topic—The queue or

topic itself is configured in the jms.xml file.

■ The EJB deployment descriptor defines the MDB—The deployment descriptor

(ejb-jar.xml) specifies whether a queue or a topic is used.

■ The OC4J-specific deployment descriptor informs the container which JMS

Destination to associate with the MDB—The container understands which

JMS Destination to associate the MDB by the definition in the OC4J-specific

deployment descriptor (orion-ejb-jar.xml).

MDB Deployment Descriptor
Within the EJB deployment descriptor, define the MDB name, class, JNDI reference,

and JMS Destination type (queue or topic) in the <message-driven> element.

If a queue is specified, you must also define whether it is durable or not.

The following is the deployment descriptor for the entire EJB application. It

includes the deployment information for both the MessageLogger MDB and the

LogMessage entity bean. The MessageLogger MDB invokes the LogMessage
entity bean.

The MessageLogger MDB is defined in the <message-driven> element, as

follows:

■ MDB name specified in the <ejb-name> element

■ MDB class defined in the <ejb-class> element

■ JMS Destination type is a Topic that is specified in the

<message-driven-destination><jms-destination-type> element

■ JNDI reference information for the entity bean that this MDB invokes is defined

in the <ejb-ref> element

ejb-jar.xml
<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
<enterprise-beans>

<message-driven>
<ejb-name>com.evermind.logger.MessageLogger</ejb-name>
<ejb-class>com.evermind.logger.MessageLogger</ejb-class>
<message-driven-destination>
Message-Driven Beans 5-5

Creating Message Driven Beans
<jms-destination-type>javax.jms.Topic</jms-destination-type>
</message-driven-destination>
<ejb-ref>

<ejb-ref-name>logMessages</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.evermind.logger.LogMessageHome</home>
<remote>com.evermind.logger.LogMessage</remote>

</ejb-ref>
</message-driven>
<entity>

<ejb-name>com.evermind.logger.LogMessage</ejb-name>
<home>com.evermind.logger.LogMessageHome</home>
<remote>com.evermind.logger.LogMessage</remote>
<ejb-class>com.evermind.logger.LogMessageEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<reentrant>False</reentrant>
<cmp-field><field-name>id</field-name></cmp-field>
<cmp-field><field-name>time</field-name></cmp-field>
<cmp-field><field-name>subject</field-name></cmp-field>
<cmp-field><field-name>message</field-name></cmp-field>
<cmp-field><field-name>category</field-name></cmp-field>
<primkey-field>id</primkey-field>
<ejb-ref>

<ejb-ref-name>counter</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.evermind.ejb.CounterHome</home>
<remote>com.evermind.ejb.Counter</remote>

</ejb-ref>
</entity>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>com.evermind.logger.LogMessage</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>
5-6 Enterprise JavaBean Developer’s Guide and Reference

Creating Message Driven Beans
OC4J-Specific Deployment Descriptor
Once you have configured the MDB and the JMS Destination type, you must

inform the container which JMS Destination to associate with the MDB. You

could have several topics and queues defined in your jms.xml file. For information

on defining these JMS Destination types in jms.xml , see the JMS chapter in

Oracle9iAS Containers for J2EE Services Guide.

In order to identify the Destination that is to be associated with the MDB, you

map the Destination location and connection factory to the MDB through the

<message-driven-deployment> element in the orion-ejb-jar.xml file.

The following is the orion-ejb-jar.xml deployment descriptor for the

MessageLogger example. It maps a JMS Topic to the MessageLogger MDB,

providing the following:

■ MDB name, as defined in the <ejb-name> in the EJB deployment descriptor, is

specified in the name attribute.

■ JMS Destination , as defined in the jms.xml file, is specified in the

destination-location attribute.

■ JMS Destination Connection Factory , as defined in the jms.xml file, is

specified in the connection-factory-location attribute.

Once all of these are specified in the <message-driven-deployment> element,

the container knows how to map the MDB to the correct JMS Destination .

<enterprise-beans>
 <message-driven-deployment
 name="com.evermind.logger.MessageLogger"
 destination-location="jms/theTopic"
 connection-factory-location="jms/theTopicConnectionFactory">
 <ejb-ref-mapping name="logMessages" />
 </message-driven-deployment>
 ...
</enterprise-beans>

JMS XML Configuration
Configure the topic or queue that the client sends all messages to that are destined

for the MDB. The name, location, and connection factory for either Destination
type must be specified.

The following JMS configuration specifies a topic (theTopic) that is used by the

MessageLogger example:

<?xml version="1.0"?>
Message-Driven Beans 5-7

Creating Message Driven Beans
<!DOCTYPE jms-server PUBLIC "Orion JMS server" "http://www.orionserver.com/dtds/
jms-server.dtd">

<jms-server port="9127">
 <topic name="jms/theTopic" location="jms/theTopic">
 <description>Employee topic</description>
 </topic>

 <topic-connection-factory location="jms/theTopicConnectionFactory"
username="admin" password="welcome" />

 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

DataSource XML Configuration
If you use a database in your application, you should configure the DataSource
for that database. Full details for DataSource configuration is provided in the

Oracle9iAS Containers for J2EE Services Guide.

The database that the MessageLogger example uses is configured in the

data-sources.xml file, as follows:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@mysun:8852:orcl"
 inactivity-timeout="30"
/>

Deploying the Entity Bean
Archive your EJB into a JAR file. You deploy the MDB the same way as the session

bean, which is detailed in "Prepare the EJB Application for Assembly" on page 2-11

and "Deploy the Enterprise Application to OC4J" on page 2-13.
5-8 Enterprise JavaBean Developer’s Guide and Reference

Client Accessing MDB
Client Accessing MDB
The client sends a message to the MDB through a JMS Destination . The MDB is

associated with the JMS Destination by the container. The following is a JNDI

lookup of the JMS Destination for the MessageLogger MDB.

Context ic - new InitialContext();
Queue msgQueue = (javax.jms.Queue) ic.lookup("java:comp/env/jms/msgQueue");

For example, the following JSP sends a message to the MessageLogger MDB Topic:

<%@ page import="javax.jms.*, javax.naming.*, java.util.*" %>
<%
 TopicConnectionFactory connectionFactory =
 (TopicConnectionFactory)new InitialContext().lookup
 ("java:comp/env/jms/theTopicConnectionFactory");
 TopicConnection connection = connectionFactory.createTopicConnection();
 connection.start();
 TopicSession topicSession =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 topicSession.start();
 Topic topic =
 (Topic)new InitialContext().lookup("java:comp/env/jms/theTopic");
 TopicPublisher publisher = topicSession.createPublisher(topic);
 Message message = topicSession.createMessage();
 message.setJMSType("logMessage");
 message.setLongProperty("time", System.currentTimeMillis());
 message.setStringProperty("subject", request.getParameter("subject"));
 message.setStringProperty("message", request.getParameter("message"));
 publisher.publish(message);
 publisher.close();
 topicSession.close();
 connection.close();
%>
Message sent!
Message-Driven Beans 5-9

Client Accessing MDB
5-10 Enterprise JavaBean Developer’s Guide and Reference

Advanced EJB Su
6

Advanced EJB Subjects

This chapter discusses how to extend beyond the basics mentioned in each of the

previous chapters. This chapter covers the following subjects:

■ Accessing EJBs

■ Reusing or Dedicating Connections

■ Location of Commonly-Used Classes Through Parent

■ Changing XML Files After Deployment

■ Entity Bean Concurrency and Database Isolation Modes

■ Configuring Pool Sizes For Entity Beans

■ Techniques for Updating Persistence

■ Configuring Environment References

■ Configuring Security

■ Common Errors
bjects 6-1

Accessing EJBs
Accessing EJBs
You must retrieve an EJB reference to the target bean in order to execute methods on

that bean. In OC4J, you use JNDI to retrieve this reference. Most of the time, you

must specify the target bean in an <ejb-ref > element in the originator’s XML

configuration file that is used in the java:comp/env logical name to designate the

target bean to JNDI.

The method for accessing EJBs depends on where your client is located relative to

the bean it wants to invoke. Consider the following when implementing the JNDI

retrieval of the EJB reference of the bean:

1. Do you want to set up a logical name for the target bean?

– Yes: Modify the XML configuration file to set up the <ejb-ref> element

with the target bean information. The logical name specified in the

<ejb-ref-name> element is used in the JNDI lookup.

– No: The actual name of the bean is used in the JNDI lookup. This name has

been specified in the target bean’s XML deployment descriptors in the

<ejb-name> element.

2. Where does the client exist relative to the target bean?

– Within the same application as the target bean? Or is the target bean part of

an application that is this client’s parent? You do not need to set up any

JNDI properties.

– Otherwise, you must set up JNDI properties. There are two methods for

setting up JNDI properties. See "Setting JNDI Properties" on page 6-3 for

more information.

EJB Reference Information
Specify the EJB reference information for the remote EJB in the <ejb-ref> element

in the application-client.xml , ejb-jar.xml , or web.xml files. A full

description or how to set up the <ejb-ref> element is given in "Configuring

Environment References" on page 6-14.

For example, the following specifies the reference information for the employee

example:

<?xml version="1.0"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">
6-2 Enterprise JavaBean Developer’s Guide and Reference

Accessing EJBs
<application-client>
 <display-name>EmployeeBean</display-name>
 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 </ejb-ref>
</application-client>

OC4J maps the logical name to the actual JNDI name on the client-side. The

server-side receives the JNDI name and resolves it within its JNDI tree.

Setting JNDI Properties
If the client exists within the same application as the target or the target exists

within its parent, you do not need a JNDI properties file. If not, you must initialize

your JNDI properties either within a jndi.properties file, in the system

properties, or within your implementation, before the JNDI call. The following

sections discuss these three options:

■ No JNDI Properties

■ JNDI Properties File

■ JNDI Properties Within Implementation

No JNDI Properties
A servlet that exists in the same application with the target bean automatically

accesses the JNDI properties for the node. Thus, accessing the EJB is simple: no

JNDI properties are required.

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object empObject = ic.lookup("java:comp/env/employeeBean");

This is also true if the target bean is in an application that has been deployed as this

application’s parent. To specify parents, use the -parent option of the admin.jar

command when deploying the originating application.
Advanced EJB Subjects 6-3

Accessing EJBs
JNDI Properties File
If setting the JNDI properties within the jndi.properties file, set the properties

as follows. Make sure that this file is accessible from the CLASSPATH.

Factory
java.naming.factory.initial=
com.evermind.server.ApplicationClientInitialContextFactory

Location
The ORMI default port number is 23791, which can be modified in

config/rmi.xml . Thus, set the URL in the jndi.properties , in one of the two

ways:

java.naming.provider.url=ormi://<hostname>/<application-name>

or

java.naming.provider.url=ormi://<hostname>:23791/<application-name>

Security
When you access EJBs in a remote container, you must pass valid credentials to this

container. Stand-alone clients define their credentials in the jndi.properties file

deployed with the client’s code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

JNDI Properties Within Implementation
Set the properties with the same values, just with different syntax. For example,

JavaBeans running within the container pass their credentials within the

InitialContext , which is created to look up the remote EJBs.

To pass JNDI properties within the Hashtable environment, set these as shown

below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://localhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
6-4 Enterprise JavaBean Developer’s Guide and Reference

Accessing EJBs
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

Using the Initial Context Factory Classes
For most clients, set the initial context factory class to

ApplicationClientInitialContextFactory . If you are not using a logical

name defined in the <ejb-ref> in your XML configuration file, then you must

provide the actual JNDI name of the target bean. In this instance, you must use a

different initial context factory class, the

com.evermind.server.RMIInitialContextFactory class.

Example 6–1 Servlet Accessing EJB in Remote OC4J Instance

The following servlet uses the JNDI name for the target bean:

/cmpapp/employeeBean . Thus, this servlet may provide the JNDI properties in

an RMIInitialContext object, instead of the

ApplicationClientInitialContext object. The environment is initialized as

follows:

■ The INITIAL_CONTEXT_FACTORY is initialized to a

RMIInitialContextFactory .

■ Instead of creating a new InitialContext , it is retrieved. ’

■ The actual JNDI name is used in the lookup.

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "ormi://localhost/cmpapp");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.evermind.server.rmi.RMIInitialContextFactory ");

Context ic =
new com.evermind.server.rmi.RMIInitialContextFactory().
getInitialContext(env);

Object homeObject = ic.lookup("/cmpapp/employeeBean");
Advanced EJB Subjects 6-5

Reusing or Dedicating Connections
// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

Accessing an EJB in a Remote Server
If an application is installed in the OC4J server with a JSP or servlet that wants to

invoke an EJB in a remote server, do the following:

1. Deploy the intended EJB with the JSP/servlet in the same application.

2. Set "remote=true " attribute in the <ejb-module> element in

orion-application.xml for the EJB module deployed in the local

application. The local EJB will be ignored.

3. Configure the remote server where the remote EJB has been deployed in the

<server> element in rmi.xml . You provide the hostname, port number,

username, and password, as follows:

<server host=<remote_host> port=<remote_port> user=<username>
password=<password>

If multiple servers are configured, the OC4J container will search all remote servers

for the intended EJB application. Thus, the JSP or servlet in one OC4J container will

invoke an EJB deployed in another OC4J container.

Reusing or Dedicating Connections
When you execute a JNDI lookup, you retrieve a connection to the server. Each

subsequent JNDI lookup for this same server uses the connection returned on the

first JNDI lookup. That is, all requests are forwarded over and share the same

connection. However, if you want to use a dedicated connection for each

connection, specify the "dedicated.connection " JNDI property to be true

before you retrieve the InitialContext , as follows:

env.put("dedicated.connection", "true");

One of the reasons for using this is if you need to retrieve multiple connections,

where each uses a different username/password. If dedicated.connection is false

(which is the default), the first username/password is used for all subsequent

connections, even if an alternate username/password is supplied. If you want to
6-6 Enterprise JavaBean Developer’s Guide and Reference

Changing XML Files After Deployment
connect using a different username/password for each connection, you must set

dedicated.connection to true. Thus, you will retrieve a separate physical connection,

each with its own designated username/password. It opens a new connection

instead of reusing a cached connection.

Location of Commonly-Used Classes Through Parent
If you have classes that can be used by more than one EJB, you can centralize these

classes in one of the following ways:

■ If two EJBs use the same classes, include these classes in one of the EJBs. Place

both EJBs in the same JAR file. After deployment, both EJBs will be able to use

the common classes.

■ Place the commonly-used class files in a JAR file, which you place in the

$J2EE_HOME/lib directory. Then, all classes deployed in OC4J can use these

supporting classes.

■ Since "child" applications can access classes that exist within a "parent"

application, place the commonly-used classes in a parent application. All EJBs

that use these classes should define the application that contains the common

classes as its parent by adding the parent attribute to its <application>
element in the server.xml file as follows:

<application ... parent="applicationWithCommonClasses" .../>

The parent attribute defines an optional ’parent’ application, where the

default is the global application. The children see the namespace of its parent

application. This is used in order to share services such as EJBs among multiple

applications.

Changing XML Files After Deployment
Whenever you deploy an application, OC4J automatically generates the

OC4J-specific XML files with the default elements. If you want to change these files

or add to the existing XML files, you must copy the XML files to where your

original development directory for the application and change it in this location. If

you change the XML file within the deployed location, OC4J simply overwrites

these changes when the application is deployed again. The changes only stay

constant when changed in the development directories.

For all OC4J-specific XML files, you can add these files within the recommended

development structure as shown in Figure 6–1.
Advanced EJB Subjects 6-7

Entity Bean Concurrency and Database Isolation Modes
Figure 6–1 Development Application Directory Structure

Entity Bean Concurrency and Database Isolation Modes
In order to avoid resource contention and overwriting each others changes to

database tables while allowing concurrent execution, entity bean concurrency and

database isolation modes are provided.

■ Database Isolation Modes

■ Entity Bean Concurrency Modes

Database Isolation Modes
The java.sql.Connection object represents a connection to a specific database.

Database isolation modes are provided to define protection against resource

contention. When two or more users try to update the same resource, a lost update

can occur. That is, one user can overwrite the other user’s data without realizing it.

applications/<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml

classes/
Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

 (my.Servlet to /my/Servlet)

orion-ejb-jar.xml

orion-web.xml

orion-application-client.xml
6-8 Enterprise JavaBean Developer’s Guide and Reference

Entity Bean Concurrency and Database Isolation Modes
The java.sql.Connection standard provides four isolation modes, of which

Oracle only supports two of these modes. These are as follows:

■ TRANSACTION_READ_COMMITTED: Dirty reads are prevented; non-repeatable

reads and phantom reads can occur. This level only prohibits a transaction from

reading a row with uncommitted changes in it.

■ TRANSACTION_SERIALIZABLE: Dirty reads, non-repeatable reads and

phantom reads are prevented. This level includes the prohibitions in

TRANSACTION_REPEATABLE_READ and further prohibits the situation where

one transaction reads all rows that satisfy a WHERE condition, a second

transaction inserts a row that satisfies that WHERE condition, and the first

transaction rereads for the same condition, retrieving the additional "phantom"

row in the second read.

You can configure one of these database isolation modes for a specific bean. That is,

you can specify that when the bean starts a transaction, the database isolation mode

for this bean be what is specified in the OC4J-specific deployment descriptor.

Specify the isolation mode on what is important for the bean: parallel execution or

data consistency. The isolation mode for this bean is set for the entire transaction.

The isolation mode can be set for each entity bean in the <entity-deployment>
element in the isolation attribute. The values can be committed or

serializable . The default is committed . To change it to serializable ,

configure the following in the orion-ejb-jar.xml for the intended bean:

<entity-deployment ... isolation="serializable"
 ...
</entity-deployment>

There is always a trade-off between performance and data consistency. The

serializable isolation mode provides data consistency; the committed
isolation mode provides for parallel execution.
Advanced EJB Subjects 6-9

Entity Bean Concurrency and Database Isolation Modes
If you do not set an isolation mode, you receive the mode that is configured in the

database. Setting the isolation mode within the OC4J-specific deployment

descriptor temporarily overrides the database configured isolation mode for the life

of the global transaction for this bean. That is, if you define the bean to use the

serializable mode, then the OC4J container will force the database to be

serializable for this bean only until the end of the transaction.

Entity Bean Concurrency Modes
OC4J also provides concurrency modes for handling resource contention and

parallel execution within container-managed persistence (CMP) entity beans.

Bean-managed persistence entity beans manage the resource locking within the

bean implementation themselves. The concurrency modes configure when to block

to manage resource contention or when to execute in parallel.

The concurrency modes are as follows:

■ PESSIMISTIC : This manages resource contention and does not allow parallel

execution. Only one user at a time is allowed to execute the entity bean at a

single time.

■ OPTIMISTIC : Multiple users can execute the entity bean in parallel. It does not

monitor resource contention; thus, the burden of the data consistency is placed

on the database isolation modes.

■ READ-ONLY: Multiple users can execute the entity bean in parallel. The

container does not allow any updates to the bean’s state.

To enable the CMP entity bean concurrency mode, add the appropriate concurrency

value of "pessimistic ", "optimistic ", or "read-only " to the locking-mode
attribute of the <entity-deployment> element in the OC4J-specific deployment

Note: There is a danger of lost updates with the serializable
mode if the max-tx-retries element in the OC4J-specific

deployment descriptor is greater than zero. The default for this

value is three. If this element is set to greater than zero, then the

container retries the update if a second blocked client receives a

ORA-8177 exception. The retry would find the row unlocked and

the update would occur. Thus, the second client’s update succeeds

and overwrites the first client’s update. If you use serializable ,

you should consider setting the max-tx-retries element to zero

for data consistency.
6-10 Enterprise JavaBean Developer’s Guide and Reference

Entity Bean Concurrency and Database Isolation Modes
descriptor (orion-ejb-jar.xml). The default is "optimistic ". To modify the

concurrency mode to pessimistic , do the following:

<entity-deployment ... locking-mode="pessimistic"
 ...
</entity-deployment>

These concurrency modes are defined per bean and the effects of locking apply on

the transaction boundaries.

Parallel execution requires that the pool size for wrapper and bean instances are set

correctly. For more information on how to configure the pool sizes, see "Configuring

Pool Sizes For Entity Beans" on page 6-12.

Exclusive Write Access to the Database
The exclusive-write-access attribute of the <entity-deployment>
element states that this is the only bean that accesses its table in the database and

that no external methods are used to update the resource. It informs the OC4J

instance that any cache maintained for this bean will only be dirtied by this bean.

Essentially, if you set this attribute to true, you are assuring the container that this is

the only bean that will update the tables used within this bean. Thus, any cache

maintained for the bean does not need to constantly update from the back-end

database.

This flag does not prevent you from updating the table; that is, it does not actually

lock the table. However, if you update the table from another bean or manually, the

results are not automatically updated within this bean.

The default for this attribute is false. Because of the effects of the entity bean

concurrency modes, this element is only allowed to be set to true for a read-only
entity bean. OC4J will always reset this attribute to false for pessimistic and

optimistic concurrency modes.

<entity-deployment ... exclusive-write-access="true"
 ...
</entity-deployment>

Effects of the Combination of Isolation and Concurrency Modes
For the pessimistic and read-only concurrency modes, the setting of the

database isolation mode does not matter. These isolation modes only matter if an

external source is modifying the database.
Advanced EJB Subjects 6-11

Configuring Pool Sizes For Entity Beans
If you choose optimistic with committed , you have the potential to lose an

update. If you choose optimistic with serializable , you will never lose an

update. Thus, your data will always be consistent. However, you can receive an

ORA-8177 exception as a resource contention error.

Differences Between Pessimistic and Optimistic/Serializable
An entity bean with the pessimistic concurrency mode does not allow multiple

clients to execute the bean instance. Only one client is allowed to execute the

instance at any one moment. An entity bean with the optimistic concurrency

mode allows multiple instances of the bean implementation to execute in parallel.

Setting the database isolation mode to serializable does not allow these

multiple bean implementation instances to update the same row at the same time.

Thus, the only difference between a pessimistic concurrency bean and an

optimistic /serializable bean is where the blocking occurs. A pessimistic
bean blocks at the bean instance; the other blocks at the database row.

Affects of Concurrency Modes on Clustering
All concurrency modes behave in a similar manner whether they are used within a

standalone or a clustered environment. This is because the concurrency modes are

locked at the database level. Thus, even if a pessimistic bean instance is clustered

across nodes, the instant one instance tries to execute, the database locks out all

other instances.

Configuring Pool Sizes For Entity Beans
You can set the minimum and maximum number of both the following instance

pools:

■ The bean instance pool contains EJB implementation instances that currently do

not have assigned state. While the bean instance is in pool state, it is generic

and can be assigned to a wrapper instance.

■ The wrapper instance is OC4J-generated wrapper code that provides for the

services requested in the deployment descriptor. Before the bean instance is

invoked, the client retrieves a handle to the wrapper instance. When the client

invokes the bean, the wrapper is associated with a bean instance.

You can set the pool number of each instance type with the following attributes of

the <entity-deployment> element.
6-12 Enterprise JavaBean Developer’s Guide and Reference

Configuring Pool Sizes For Entity Beans
■ The max-instances attribute sets the maximum entity bean instances to be

allowed in the pool. An entity bean is set to a pooled state if not associated with

a wrapper instance. Thus, it is generic.

The default is 10. Set the maximum bean implementation instances as follows:

<entity-deployment ... max-instances="20"
 ...
</entity-deployment>

Or the minimum number allowed in the pool as follows:

<entity-deployment ... min-instances="2"
 ...
</entity-deployment>

■ The max-instances-per-pk attribute sets the maximum entity bean

wrapper instances allowed in its pool for a given primary key. An entity bean’s

wrapper code can be pooled if it is not used by a client.

The default maximum value is 50. Set the maximum wrapper instances as

follows:

<entity-deployment ... max-instances-per-pk="20"
 ...
</entity-deployment>

Set the minimum wrapper instances as follows:

<entity-deployment ... min-instances-per-pk="2"
 ...
</entity-deployment>

■ The disable-wrapper-cache attribute disables the wrapper instance pool if

true. The default is false. If it is better to create the wrapper instances on

demand, then set this attribute to true. To do so, configure the following:

<entity-deployment ... disable-wrapper-cache="true"
 ...
</entity-deployment>

Note: If you set this attribute to true, the

min/max-instances-per-pk attribute is ignored.
Advanced EJB Subjects 6-13

Techniques for Updating Persistence
Techniques for Updating Persistence
By default, the container persists only the modified fields in the bean. At the end of

each call, a SQL command is created to update these fields. However, if you want to

have all of your persistence fields updated, set the following attribute to false:

<entity-deployment ... update-changed-fields-only="false"
 ...
</entity-deployment>

If you choose to have all fields updated, the SQL parsing cache is used. The same

SQL command is used for each update.

Configuring Environment References
You can create three types of environment elements that are accessible to your bean

during runtime: environment variables, EJB references, and resource managers.

These environment elements are static and can not be changed by the bean.

ISVs typically develop EJBs that are independent from the EJB container. In order to

distance the bean implementation from the container specifics, you can create

environment elements that map to one of the following: defined variables, entity

beans, or resource managers. This indirection enables the bean developer to refer to

existing variables, EJBs, and a JDBC DataSource without specifying the actual

name. These names are defined in the deployment descriptor and are linked to the

actual names within the OC4J-specific deployment descriptor.

Environment variables
You can create environment variables that your bean accesses through a lookup on

the InitialContext . These variables are defined within an <env-entry>
element and can be of the following types: String , Integer , Boolean , Double ,

Byte , Short , Long , and Float . The name of the environment variable is defined

within <env-entry-name> , the type is defined in <env-entry-type> , and its

initialized value is defined in <env-entry-value> . The <env-entry-name> is

relative to the "java:comp/env" context.

For example, the following two environment variables are declared within the XML

deployment descriptor for java:comp/env/minBalance and

java:comp/env/maxCreditBalance .

<env-entry>
 <env-entry-name>minBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
6-14 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
 <env-entry-value>500</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>maxCreditBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10000</env-entry-value>
</env-entry>

Within the bean’s code, you would access these environment variables through the

InitialContext , as follows:

InitialContext ic = new InitialContext();
Integer min = (Integer)ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each

environment element with "java:comp/env/ ", which is the location that the

container stored the environment variable.

If you wanted the value of the environment variable to be defined in the

OC4J-specific deployment descriptor, you can map the <env-entry-name> to the

<env-entry-mapping> element in the OC4J-specific deployment descriptor. This

means that the value specified in the orion-ejb-jar.xml file overrides any

value that may be specified in the ejb-jar.xml file. The type specified in the EJB

deployment descriptor stays the same.

Figure 6–2 shows how the minBalance environment variable is defined as 500

within the OC4J-specific deployment descriptor.

Figure 6–2 Environment Variable Mapping

Environment References To Other Enterprise JavaBeans
You can define an environment reference to an EJB within the deployment

descriptor. If your bean calls out to another bean, you can enable your bean to

invoke the second bean using a reference defined within the deployment

EJB Deployment Descriptor OC4J-specific Deployment Descriptor

<env-entry>

 <env-entry-name>minBalance</env-entry-name>

 .

 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>300</env-entry-value>

 <env-entry-mapping
 name="minBalance">
 500</env-entry-mapping>

.

.

 </env-entry>
Advanced EJB Subjects 6-15

Configuring Environment References
descriptors. You create a logical name within the EJB deployment descriptor, which

is mapped to the concrete name of the bean within the OC4J-specific deployment

descriptor.

Declaring the target bean as an environment reference provides a level of

indirection: the originating bean can refer to the target bean with a logical name.

To define a reference to another EJB within the JAR or in a bean declared as a

parent, you provide the following:

1. Name—provide a name for the target bean. This name is what the bean uses

within the JNDI URL for accessing the target bean. The name should begin with

"ejb/ ", such as "ejb/myEmployee ", and will be available within the

"java:comp/env/ejb " context.

– This name can be the actual name of the bean; that is, the name defined

within the <ejb-name> element in the <session> or <entity>
elements.

– This name can be a logical name that you want to use in your

implementation. But it is not the actual name of the bean. If you use a

logical name, the actual name must either be specified in the <ejb-link>
element in this <ejb-ref> element or in the <ejb-ref-mapping>
element in the OC4J-specific deployment descriptor.

These options are discussed below.

2. Type—define whether the bean is a session or an entity bean. Value should be

either "Session " or "Entity ".

3. Home—provide the fully qualified home interface name.

4. Remote—provide the fully qualified remote interface name.

5. Link —provide a name that links this EJB reference with the actual JNDI URL.

This is optional.

If you have two beans in the JAR: BeanA and BeanB. If BeanB creates a reference to

BeanA, you can define this reference in one of three methods:

■ Provide the actual name of the bean. BeanB would define the following

<ejb-ref> within its definition:

<ejb-ref>
 <ejb-ref-name>myBeans/BeanA</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
6-16 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
</ejb-ref>

No <ejb-link> is necessary for this method. However, the BeanB
implementation must refer to BeanA in the JNDI retrieval, which would use

java:comp/env/myBeans/BeanA for retrieval within an EJB or Java client

and use "myBeans/BeanA " within a Servlet.

■ Provide the actual name of the bean in the <ejb-link> element. This method

allows you to use any logical name in your bean implementation for the JNDI

retrieval:

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-ref>

BeanB would use java:comp/env/ejb/nextVal in the JNDI retrieval of

BeanA.

■ Provide the logical name of the bean in the <ejb-ref-name> and the actual

name of the bean in the <ejb-ref-mapping> element in the OC4J-specific

deployment descriptor.

The reference in the EJB deployment descriptor would be as follows:

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

The "ejb/nextVal " logical name is mapped to an actual name in the

OC4J-deployment descriptor as follows:

Note: Servlets do not require the prefix of "java:comp/env " in

the JNDI lookup. Thus, they will always either reference just the

actual JNDI name or the logical name of the EJB.
Advanced EJB Subjects 6-17

Configuring Environment References
<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

BeanB would use java:comp/env/ejb/nextVal in the JNDI retrieval of

BeanA.

As shown in Figure 6–3, the logical name for the bean is mapped to the JNDI name

by providing the same name, "ejb/nextVal ", in both the <ejb-ref-name> in the

EJB deployment descriptor and the name attribute within the

<ejb-ref-mapping> element in the OC4J-specific deployment descriptor.

Figure 6–3 EJB Reference Mapping

Example 6–2 Defining an EJB Reference Within the Environment

The following example defines a reference to the Hello bean, as follows:

1. The logical name used for the target bean within the originating bean is

"java:comp/env/ejb/HelloWorld ".

2. The target bean is a session bean.

3. Its home interface is hello.HelloHome ; its remote interface is hello.Hello .

4. The link to the JNDI URL for this bean is defined in the OC4J-specific

deployment descriptor under the "HelloWorldBean " name.

As shown in Figure 6–3, the <ejb-link> is mapped to the name attribute within

the <ejb-ref-mapping> element in the OC4J-specific deployment descriptor by

providing the same logical name in both elements. The Oracle-specific deployment

EJB Deployment Descriptor OC4J-specific Deployment Descriptor

<ejb-ref>

 <ejb-ref-name>ejb/nextVal</ejb-ref-name>

</ejb-ref>

 <ejb-ref-mapping
 name="ejb/nextVal"
 location="myBeans/BeanA" />

.

EJB
Deployment
Descriptor

<ejb-ref>
 <description>Hello World Bean</description>
 <ejb-ref-name> ejb/HelloWorld </ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
</ejb-ref>
6-18 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
descriptor would have the following definition to map the logical bean name of

"java:comp/env/ejb/HelloWorld " to the JNDI URL "/test/myHello ".

To invoke this bean from within your implementation, you use the

<ejb-ref-name > defined in the EJB deployment descriptor. In EJB or pure Java

clients, you prefix this name with "java:comp/env/ejb/ ", which is where the

container places the EJB references defined in the deployment descriptor. Servlets

only require the logical name defined in the <ejb-ref-name> .

The following is a lookup from an EJB client:

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

The following is a lookup from a Servlet, if the Servlet defines the logical name of

"ejb/HelloWorld " in <ejb-ref> in its web.xml file and maps it to the actual

name of "/test/myHello " within the orion-web.xml file.

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

Environment References To Resource Manager Connection Factory References
The resource manager connection factory references can include resource managers

such as JMS, Java mail, URL, and JDBC DataSource objects. Similar to the EJB

references, you can access these objects from JNDI by creating an environment

element for each object reference. However, these references can only be used for

retrieving the object within the bean that defines these references. Each is fully

described in the following sections:

■ JDBC DataSource

■ Mail Session

■ URL

OC 4J-specific
Deployment
Descriptor

 <ejb-ref-mapping>
 name="ejb/HelloWorld"

location="/test/myHello"/>
Advanced EJB Subjects 6-19

Configuring Environment References
JDBC DataSource
You can access a database through JDBC either using the traditional method or by

creating an environment element for a JDBC DataSource . In order to create an

environment element for your JDBC DataSource , you must do the following:

1. Define the DataSource in the data-sources.xml file.

2. Create a logical name within the <res-ref-name> element in the EJB

deployment descriptor. This name should always start with "jdbc ". In the bean

code, the lookup of this reference is always prefaced by

"java:comp/env/jdbc ".

3. Map the logical name within the EJB deployment descriptor to the JNDI name,

created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "java:comp/env/jdbc "

preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 6–4, the JDBC DataSource uses the JNDI name

"test/OrderDataSource ". The logical name that the bean knows this resource as

is "jdbc/OrderDB ". These names are mapped together within the OC4J-specific

deployment descriptor. Thus, within the bean’s implementation, the bean can

retrieve the connection to OrderDataSource by using the

"java:comp/env/jdbc/OrderDB " environment element.

Figure 6–4 JDBC Resource Manager Mapping

Example 6–3 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by

providing the logical name, "jdbc/OrderDB ", its type of

javax.sql.DataSource , and the authenticator of "Application ".

EJB Deployment Descriptor

OC4J-specific Deployment Descriptor
<enterprise-beans>
 .
<resource-ref>
 <res-ref-name>jdbc/OrderDB </res-ref-name>
 <res-type>javax.sql.DataSource</res-type>

 <resource-ref-mapping
 name="jdbc/OrderDB"
 location="test/OrderDataSource"/>

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>
6-20 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
The environment element of "jdbc/OrderDB " is mapped to the JNDI bound name

for the connection, "test/OrderDataSource " within the Oracle-specific

deployment descriptor.

Once deployed, the bean can retrieve the JDBC DataSource as follows:

javax.sql.DataSource db;
java.sql.Connection conn;
.
.
.
db = (javax.sql.DataSource)
initCtx.lookup("java:comp/env/jdbc/OrderDB");
conn = db.getConnection();

Mail Session
You can create an environment element for a Java mail Session object through the

following:

1. Bind the javax.mail.Session reference within the JNDI name space in the

application.xml file using the <mail-session> element, as follows:

<mail-session location="mail/MailSession"
 smtp-host="mysmtp.oraclecorp.com">
 <property name="mail.transport.protocol" value="smtp"/>

Note: This example assumes that a DataSource is specified in

the data-sources.xml file with the JNDI name of

"/test/OrderDataSource ".

EJB
Deployment
Descriptor

<resource-ref>
 <res-ref-name> jdbc/OrderDB </res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

OC4J-specific
Deployment
Descriptor

 <resource-ref-mapping
 name=" jdbc/OrderDB "
 location="/test/OrderDataSource"/>
Advanced EJB Subjects 6-21

Configuring Environment References
 <property name="mail.smtp.from" value="emailaddress@oracle.com"/>
</mail-session>

The location attribute contains the JNDI name specified in the location attribute of

the <resource-ref-mapping> element in the OC4J-specific deployment

descriptor.

2. Create a logical name within the <res-ref-name> element in the EJB

deployment descriptor. This name should always start with "mail ". In the bean

code, the lookup of this reference is always prefaced by

"java:comp/env/mail ".

3. Map the logical name within the EJB deployment descriptor to the JNDI name,

created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "java:comp/env/mail "

preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 6–5, the Session object was bound to the JNDI name

"/test/myMailSession ". The logical name that the bean knows this resource as

is "mail/testMailSession ". These names are mapped together within the

OC4J-specific deployment descriptor. Thus, within the bean’s implementation, the

bean can retrieve the connection to the bound Session object by using the

"java:comp/env/mail/testMailSession " environment element.

Figure 6–5 Session Resource Manager Mapping

This environment element is defined with the following information:

Element Description

<res-ref-name> The logical name of the Session object to be used within the
originating bean. The name should be prefixed with "mail /". In
our example, the logical name for our ordering database is
"mail/testMailSession ".

EJB Deployment Descriptor

OC4J-specific Deployment Descriptor
<enterprise-beans>
 .
<resource-ref>
 <res-ref-name>mail/testMailSession </res-ref-name>
 <res-type>javax.mail.Session</res-type>

 <resource-ref-mapping
 name="mail/testMailSession"
 location="/test/myMailSession" />

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>
6-22 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
Example 6–4 Defining an environment element for Java mail Session

The environment element is defined within the EJB deployment descriptor by

providing the logical name, "mail/testMailSession ", its type of

javax.mail.Session , and the authenticator of "Application ".

The environment element of "mail/testMailSession " is mapped to the JNDI

bound name for the connection, "test/myMailSession " within the OC4J-specific

deployment descriptor.

Once deployed, the bean can retrieve the Session object reference as follows:

InitialContext ic = new InitialContext();
Session session = (Session)
ic.lookup(" java:comp/env/mail/testMailSession ");

//The following uses the mail session object
//Create a message object
MimeMessage msg = new MimeMessage(session);

//Construct an address array
String mailTo = "whosit@oracle.com";
InternetAddress addr = new InternetAddress(mailto);

<res-type> The Java type of the resource. For the Java mail Session object,
this is javax.mail.Session .

<res-auth> Define who is responsible for signing on to the database. The
value can be "Application " or "Container " based on who
provides the authentication information.

Element Description

EJB
Deployment
Descriptor

<resource-ref>
 <res-ref-name>mail/testMailSession</res-ref-name>
 <res-type>javax.mail.Session</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

OC4J-specific
Deployment
Descriptor

 <resource-ref-mapping
 name="mail/testMailSession"
 location="/test/myMailSession" />
Advanced EJB Subjects 6-23

Configuring Environment References
InternetAddress addrs[] = new InternetAddress[1];
addrs[0] = addr;

//set the message parameters
msg.setRecipients(Message.RecipientType.TO, addrs);
msg.setSubject("testSend()" + new Date());
msg.setContent(msgText, "text/plain");

//send the mail message
Transport.send(msg);

URL
You can create an environment element for a Java URL object through the following:

1. Create a logical name within the <res-ref-name> element in the EJB

deployment descriptor. This name should always start with "url ". In the bean

code, the lookup of this reference is always prefaced by

"java:comp/env/url ".

2. Map the logical name within the EJB deployment descriptor to the URL within

the OC4J-specific deployment descriptor.

3. Lookup the object reference within the bean with the "java:comp/env/url "

preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 6–6, the URL object was bound to the URL "www.myURL.com".

The logical name that the bean knows this resource as is "url/testURL ". These

names are mapped together within the OC4J-specific deployment descriptor. Thus,

within the bean’s implementation, the bean can retrieve the connection to the bound

Session object by using the "java:comp/env/url/testURL " environment

element.

Figure 6–6 URL Resource Manager Mapping

EJB Deployment Descriptor

OC4J-specific Deployment Descriptor
<enterprise-beans>
 .
<resource-ref>
 <res-ref-name>url/testURL </res-ref-name>
 <res-type>java.net.URL</res-type>

 <resource-ref-mapping
 name="url/testURL"
 location="www.myURL.com" />

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>
6-24 Enterprise JavaBean Developer’s Guide and Reference

Configuring Environment References
This environment element is defined with the following information:

Example 6–5 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by

providing the logical name, "url/testURL ", its type of java.net.URL , and the

authenticator of "Application ".

The environment element of "url/testURL " is mapped to the URL

"www.myURL.com" within the OC4J-specific deployment descriptor.

Once deployed, the bean can retrieve the URL object reference as follows:

InitialContext ic = new InitialContext();
URL url = (URL) ic.lookup(" java:comp/env/url/testURL ");

//The following uses the URL object
URLConection conn = url.openConnection();

Element Description

<res-ref-name> The logical name of the URL object to be used within the
originating bean. The name should be prefixed with "url /". In
our example, the logical name for our ordering database is
"url/testURL ".

<res-type> The Java type of the resource. For the Java URL object, this is
java.net.URL .

<res-auth> Define who is responsible for signing on to the database. At this
time, the only value supported is "Application ". The
application provides the authentication information.

EJB
Deployment
Descriptor

<resource-ref>
 <res-ref-name>url/testURL</res-ref-name>
 <res-type>java.net.URL</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

OC4J-specific
Deployment
Descriptor

 <resource-ref-mapping
 name="url/testURL"
 location="www.myURL.com" />
Advanced EJB Subjects 6-25

Configuring Security
Configuring Security
Choosing what security to use is a subject that involves more than the authorization

details that we discuss in this section. For a full description of security, see the OC4J
Services Guide.

This book focuses on EJBs and any XML configuration that belongs within the EJB

deployment descriptors. Within the security spectrum, EJB authorization is

specified within the EJB and OC4J-specific deployment descriptors. It involves

assigning roles that are attached to EJBs to users and groups that are defined in the

principals.xml file. Thus, this section describes assigning roles to EJBs and

mapping these roles to specific users or groups.

You can manage the authorization piece of your security within the deployment

descriptors, as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

■ The OC4J-specific deployment descriptor maps the logical roles to concrete

users and groups, which are defined in principals.xml .

Users, Groups, and Roles
Users and groups are identities known by the container. Roles are the logical
identities each application uses to indicate access rights to its different objects. The

username/passwords can be digital certificates and, in the case of SSL, private key

pairs. The EJB deployment descriptor indicates what roles are needed to access the

different parts of the application. The OC4J-specific deployment descriptor provides

a mapping between the logical roles and the users/groups known by the container.

Defining users, groups, and roles are discussed in the following sections:

■ Specifying Users and Groups

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Mapping Logical Roles to Users and Groups

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed

applications or specific to given applications.

■ Shared users and groups are defined in the config/principals.xml file.
6-26 Enterprise JavaBean Developer’s Guide and Reference

Configuring Security
■ Application-specific users and groups are listed in the application-specific

principals.xml , which path is indicated in the orion-application.xml
file of that application.

The following excerpt from the principals.xml file shows how to define a group

named managers and a user named guest with password, welcome .

<principals>
<groups>

<group name="managers">
<description>Group for all managerial users</description>
<permission name="rmi:login" />
<permission name="com.evermind.server.rmi.RMIPermission" />

</group>
....other groups...

</groups>
<users>

<user username="guest" password="welcome">
<description>purchase order manager</description>
<group-membership group="managers" />

</user>
</users>

</principals>

For a full description of the principals.xml file and how to specify users and

groups, see the OC4J Services Guide.

Specifying Logical Roles in the EJB Deployment Descriptor
Specify the logical roles that your application uses in the EJB deployment

descriptor. The roles are defined within the element named <security-role> .

Example 6–6 EJB JAR Security Role Definition

This example creates a logical role named POMGR in the ejb-jar.xml
deployment descriptor.

1. Define the logical security role, POMGR in the <security-role> element.

<security-role>
<description>Purchase Order Manager</description>
<role-name>POMGR</role-name>

</security-role>
Advanced EJB Subjects 6-27

Configuring Security
2. Define the bean and methods that this role can access in the

<method-permission> element.

<method-permission>
<role-name>POMGR</role-name>
<method>

<ejb-name>PurchaseOrderBean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

Mapping Logical Roles to Users and Groups
Map the logical roles defined in the application deployment descriptors to concrete

users or groups through the <security-role-mapping> element in the

OC4J-specific deployment descriptor.

Example 6–7 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the

orion-ejb-jar.xml file. Any user that can log in as part of this group is

considered to have the POMGR role; thus, it can execute the methods of

PurchaseOrderBean .

<security-role-mapping name="POMGR">
<group name="managers" />

</security-role-mapping>

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />

</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />

<user name="guest" />

Note: You can map a logical role to a single group or to several

groups.
6-28 Enterprise JavaBean Developer’s Guide and Reference

Configuring Security
</security-role-mapping>

As shown in Figure 6–7, the logical role name for POMGR defined in the EJB

deployment descriptor is mapped to SCOTT within the OC4J-specific deployment

descriptor in the <security-role-mapping> element.

Figure 6–7 Security Mapping

Notice that the <role-name> in the EJB deployment descriptor is the same as the

name attribute in the <security-role-mapping> element in the OC4J-specific

deployment descriptor. This is what identifies the mapping.

Thus, the definition and mapping of roles is demonstrated in Figure 6–8.

EJB Deployment Descriptor OC4J-specific Deployment Descriptor

...
 <security-role>
 <role-name>POMGR</role-name>
 </security-role>
 <method-permission>
 <role-name>POMGR</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

 <assembly-descriptor>
 <security-role-mapping name="POMGR">
 <group name="managers">

 </assembly-descriptor>

 </security-role-mapping>
Advanced EJB Subjects 6-29

Configuring Security
Figure 6–8 Role Mapping

Default Role Mapping
To default all methods in EJBs that have not been associated with a method

permission to a security role, use the <default-method-access> element.

 The following example shows how all methods not associated with a method

permission are mapped to the "managers " group:

 <default-method-access>
 <security-role-mapping name="users" impliesAll="true" />
 <group name="managers" />
 </security-role-mapping>
 </default-method-access>

The impliesAll attribute specifies that this includes all users.

Authenticating EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this

container.

■ Stand-alone clients define their credentials in the jndi.properties file

deployed with the EAR file.

■ Servlets or JavaBeans running within the container pass their credentials within

the InitialContext , which is created to look up the remote EJBs.

<security_role>

<security_role_mapping>

<group>

<user> <user><user>

ejb-jar.xml

orion-ejb-jar.xml

principals.xml
6-30 Enterprise JavaBean Developer’s Guide and Reference

Configuring Security
Credentials in JNDI Properties
Indicate the username (principal) and password (credentials) to use when looking

up remote EJBs in the jndi.properties file.

For example, if you want to access remote EJBs as POMGR/welcome, define the

following properties. The factory.initial property indicates that you will use

the Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=
com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost/ejbsamples

In your application program, authenticate and access the remote EJBs, as shown

below:

InitialContext ic = new InitialContext();
CustomerHome =
(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Credentials in the InitialContext
To access remote EJBs from a servlet or JavaBean, pass the credentials in the

InitialContext object, as follows:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://localhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
CustomerHome =
(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean")
Advanced EJB Subjects 6-31

Common Errors
Common Errors
The following are common errors that may occur when executing EJBs:

■ NamingException Thrown

■ Deadlock Conditions

NamingException Thrown
If you are trying to remotely access an EJB and you receive an

javax.naming.NamingException error, your JNDI properties are probably not

initialized properly. See "Accessing EJBs" on page 6-2 for a discussion on setting up

JNDI properties when accessing an EJB from a remote object or remote servlet.

Deadlock Conditions
If the call sequence of several beans cause a deadlock scenario, the OC4J container

notices the deadlock condition and throws a Remote exception that details the

deadlock condition in one of the offending beans.
6-32 Enterprise JavaBean Developer’s Guide and Reference

EJB Clus
7

EJB Clustering

EJB clustering offers improved scalability and high-availability through the

following circumstances:

■ At a certain point, too many incoming client requests can overpower the

abilities of your server. You can set up your environment to balance the load of

incoming client requests among several servers.

■ Servers failing and connections dropping occasionally happens. You can

configure several servers in a cluster, so that communication is rerouted to

another server in a failover situation.

The methods for providing load balancing and clustering for failover are different

for HTTP requests than for EJB communications because Web components use

different protocols than EJB components. This chapter discusses EJB clustering; the

instructions for setting up the HTTP failover and load balancing environment is

detailed in Oracle9i Application Server Performance Guide.

The following is discussed in this chapter:

■ EJB Clustering Overview

■ Enabling Clustering For EJBs
tering 7-1

EJB Clustering Overview
EJB Clustering Overview
To create an EJB cluster, you specify OC4J nodes that are to be involved in the

cluster, configure each of them with the same multicast address, username, and

password, and deploy the EJB to be clustered to each of the nodes in the cluster.

Unlike HTTP clustering, OC4J nodes included in an EJB cluster are not currently

grouped in an island and do not have a load balancer as a front-end. Instead, the

EJB client container stubs discover—either statically or dynamically—all the OC4J

nodes in the EJB cluster, shuffle the destination addresses, and choose one from this

group for the connection. Thus, the only method for load balancing and failover is a

random methodology.

As Figure 7–1 demonstrates, the client container stubs chose server "s1 " for its EJB

connection. However, sometime during the conversation, the connection went

down. At this point, the client container stubs shuffle the remaining OC4J node

addresses and choose another server to connect to for the failover. In this example,

server "s3 " from the OC4J cluster resumes the conversation.

Figure 7–1 EJB Clustering Diagram

The client container stubs discover the OC4J server addresses by one of the

following methods:

■ static cluster discovery method

The JNDI addresses of all OC4J nodes that should be contacted for load

balancing and failover are provided in the lookup URL, and each address is

Client

s1 s2 s3
7-2 Enterprise JavaBean Developer’s Guide and Reference

EJB Clustering Overview
separated by a comma. For example, the following URL definition provides the

client container with three OC4J nodes to use for load balancing and failover.

java.naming.provider.url=ormi://s1:23791/ejbsamples,
ormi://s2:23793/ejbsamples, ormi://s3:23791/ejbsamples;

■ dynamic cluster discovery method

The JNDI addresses of all OC4J nodes that can be contacted for load balancing

and failover are dynamically discovered during the first JNDI lookup. The

client must perform a lookup with a "lookup: " prefix, as follows:

ic.lookup("lookup:ormi://s1:23971/ejbsamples");

During the JNDI lookup, server "s1 " contacts the other OC4J nodes in the

cluster, which are identified as a cluster if they all have the same multicast

address (host/port), and retrieves their ormi addresses. These addresses are

sent back to the client container. From this point forward, the client container

shuffles these addresses for any load balancing or failover needs.

However, the client container never tries to rediscover these addresses.

Therefore, if you remove a node from the cluster and add another one during

the connection, the client container will be unaware of it until the next time the

client re-discovers the cluster nodes through the "lookup: " method.

The state of all beans are replicated at the end of every method call to all nodes in

the cluster. This option is the most reliable in that the state of the bean is replicated

to all nodes in the cluster, using a JMS multicast topic to all nodes in the

cluster—which uses the same multicast address. This state stays in the topic until it

is needed. Then when a method call comes in on the alternate node, the latest state

for the bean is found in the JMS topic, reinstated, and the bean invocation

continues.

These methods have different repercussions for each of the EJB types, which are

discussed in the following sections:

■ Stateless Session Bean Clustering

■ Stateful Session Bean Clustering

■ Entity Bean Clustering

■ Combination of HTTP and EJB Clustering
EJB Clustering 7-3

EJB Clustering Overview
Stateless Session Bean Clustering
Stateless session beans do not require any state to be replicated among nodes in a

cluster. Thus, the only use of the clustering methods that stateless session beans

have is load balancing between nodes. Both the dynamic and state cluster discovery

methods can be used for stateless session beans. Failover defaults to the remote

invocation handler by redirecting a request.

Stateful Session Bean Clustering
Stateful session beans require state to be replicated among nodes. In fact, stateful

session beans must send all their state between the nodes, which can have a

noticeable effect on performance. Thus, the following replication modes are

available to you to decide on how to manage the replication performance cost:

■ JVM termination replication mode—The state of the stateful session bean is

replicated to only one other node in the cluster when the JVM is terminating,

which uses JDK 1.3 shutdown hooks. Thus, you must use JVM version 1.3 or

later. Within the JVM shutdown process, the state of all stateful session beans

within this JVM is replicated to another server on the same multicast address.

This is the most performant option, because the state is replicated only once.

However, it is not very reliable, for the following reasons:

– Your state will not be replicated if the power is shut off unexpectedly.

– The state of the bean exists only on a single node at any time; the depth of

failure is equal to one node.

■ Stateful session context replication model—This is a finer-grain replication

mode. In HTTP clustering, you can manage when and the type of information

that is replicated through the setAttribute method of the HTTPSession
object. Oracle offers a similar method through a new OC4J-specific class:

com.evermind.server.ejb.statefulSessionContext . Although this

option is a performant and reliable mechanism, it does not comply with the

J2EE specification. Thus, if you provide this within your server code, you

cannot port this application to any non-Oracle J2EE server.

Entity Bean Clustering
The state of the entity bean is saved in a persistent storage, such as a database.

Thus, when the client loses the connection to one node in the cluster, it can switch to

another node in the cluster without worrying about replication of the entity bean

state. However, to ensure that the state is updated from the persistent storage when

the load balancing occurs, the entity bean that changes state notifies other nodes
7-4 Enterprise JavaBean Developer’s Guide and Reference

Enabling Clustering For EJBs
that their state is no longer in synch. That is, that their state is "dirty". At this point,

nothing is done. If failover occurs and the client accesses another node for this

entity bean, then the bean notices that its cache is dirty and resynchronizes its cache

to the "READ_COMMITTED" state within the database.

Combination of HTTP and EJB Clustering
If you have a servlet that invokes an EJB, you must include both the HTTP and EJB

clustering. For HTTP clustering options, see the HTTP clustering white paper. The

type of EJB clustering you choose is based on the EJB type. If you do not configure

for both types, you will not have the proper state replication for the type for which

you did not configure.

If the HTTP invokes an EJB that is colocated, the EJBReference cannot be

replicated to another node unless EJB clustering has been enabled. Instead, a null

pointer will be copied to the other node. So, you must provide for both types of

clustering in order for all of the correct information to be replicated.

Enabling Clustering For EJBs
To enable the OC4J nodes for EJB clustering, you must perform the following steps:

1. Configure each node in the cluster with the multicast address and a unique

node identifier.

2. Configure state replication for any stateful session beans or state

synchronization for entity beans.

3. Deploy the EJB to be clustered on all nodes.

4. Modify the client to use either the dynamic or static method for retrieving the

cluster node addresses. The dynamic method is recommended.

Configure Nodes With Multicast Address and Identifier
When you are configuring each OC4J node included in the EJB cluster, you must

configure each node with an identical multicast address (host and port number),

username, and password. However, each node in the cluster should also include its

own unique identifier within the cluster. You can test a network for multicast ability

by pinging the following hosts:

■ To ping all multicast hosts, execute: ping 224.0.0.1 .

■ To ping all multicast routers, execute: ping 224.0.0.2 .
EJB Clustering 7-5

Enabling Clustering For EJBs
Modify the rmi.xml file and add the <cluster> tag to configure the multicast

address, username, password, and identifier for the OC4J node, as follows:

<cluster host=<multi_host> port=<multi_port>
username=<multi_user> password=<multi_pwd> />

where each variable should be the following:

■ multi_host : The multicast host used for the EJB cluster that communicates

among the nodes in the cluster. The IP addresses that you can use for multicast

are between 224.0.0.0 and 239.255.255.255. You must specify this variable.

■ multi_port : The multicast port used for the EJB cluster for communication

among the nodes in the cluster.

■ multi_user/multi_pwd - The username and password used to authenticate

itself to other nodes in the cluster. If the username and password are different

for other nodes in the cluster, they will fail to communicate. You can have

multiple username and password combinations within a multicast address.

Those with the same username/password combinations will be considered a

unique cluster.

For example, the following cluster definition identifies a cluster on mulitcast

address of host=230.0.0.1, port=9127, username=mult1 , and password=hwdr :

<cluster host="230.0.0.1" port="9127"
username="mult1" password="hwdr"/>

You can specify the node identifier number as follows:

■ Specify the node identifier in the server.xml file with the <cluster> tag, as

follows:

<cluster id="123"/>

■ If no identifier is specified, a default identifier consists of the host IP address

and port of the node itself.
7-6 Enterprise JavaBean Developer’s Guide and Reference

Enabling Clustering For EJBs
EJB Replication Configuration
Modify the orion-ejb-jar.xml file to add the configuration for stateful session

beans and entity beans require for state replication. The following sections offer

more details:

■ Stateful Session Bean Replication Configuration

■ Entity Bean Replication Configuration

Stateful Session Bean Replication Configuration
You configure the replication type for the stateful session bean within the bean

deployment descriptor. Thus, each bean can use a different type of replication.

VM Termination Replication Set the replication attribute of the

<session-deployment> tag in the orion-ejb-jar.xml file to

"VMTermination ". This is shown below:

<session-deployment replication="VMTermination" .../>

End of Call Replication Set the replication attribute of the

<session-deployment> tag in the orion-ejb-jar.xml file to "endOfCall ".

This is shown below:

<session-deployment replication="EndOfCall" .../>

Stateful Session Context No static configuration is necessary when using the stateful

session context to replicate information across the clustered nodes. To replicate the

desired state, set the information that you want replicated and execute the

setAttribute method within the StatefulSessionContext class in the server

code. This enables you to designate what information is replicated and when it is

replicated. The state indicated in the parameters of this method is replicated to all

Note: The dynamic peer discovery mechanism uses RMI as the

mechanism for communication. You must have an RMI listener

configured in the rmi.xml file with the following syntax:

<rmi_server host="<hostname>" port="<port>" />

The host name must be the actual name of your node. Do not use

the "localhost " variable.
EJB Clustering 7-7

Enabling Clustering For EJBs
nodes in the cluster that share the same multicast address, username, and

password.

Entity Bean Replication Configuration
Configure the clustering for the entity bean within its bean deployment descriptor.

Modify the orion-ejb-jar.xml file to add the clustering-schema attribute

to the <entity-deployment> tag, as follows:

<entity-deployment ... clustering-schema="asynchronous-cache" .../>

Deploy EJB Application To All Nodes
Deploy the EJB application to all nodes in the cluster. If you do not do so, the client

container shuffles through the nodes in the cluster until it finds a node with the EJB

deployed on it. This will affect your performance.

You can either deploy the application to each node individually using the

-cluster option of the admin.jar tool or you can use Oracle Enterprise Manager

(OEM), which can deploy your application for you to multiple nodes.

Use the following syntax with the admin.jar tool:

java -jar admin.jar ormi://myhost admin welcome
-deploy -file bmpapp.ear -deploymentName bmpapp -cluster

Application Client Retrieval Of Clustered Nodes
The client container designates randomly within the nodes in the cluster where to

direct the client request. As discussed above, the container discovers the nodes

within the cluster through one of the following methods:

■ Static Retrieval

■ Dynamic Retrieval

Static Retrieval
The JNDI addresses of all OC4J nodes that should be contacted for load balancing

and failover are supplied in the lookup URL, and each address is separated by a

comma. For example, the following URL definition provides the client container

with three OC4J nodes to use for load balancing and failover.

java.naming.provider.url=ormi://s1:23791/ejbsamples,
ormi://s2:23793/ejbsamples, ormi://s3:23791/ejbsamples;
7-8 Enterprise JavaBean Developer’s Guide and Reference

Load Balancing Options
Dynamic Retrieval
The JNDI addresses of all OC4J nodes that can be contacted for load balancing and

failover are dynamically discovered during the first JNDI lookup. The client must

perform a lookup with a "lookup: " prefix, as follows:

ic.lookup("lookup:ormi://s1:23971/ejbsamples");

During the JNDI lookup, server "s1 " contacts the other OC4J nodes in the cluster,

which are identified as a cluster if they all have the same multicast address

(host/port), and retrieves their ormi addresses. These addresses are sent back to

the client container. From this point forward, the client container shuffles these

addresses for any load balancing or failover needs.

The client container never tries to rediscover these addresses, though. Therefore, if

you remove a node from the cluster and add another one during the connection, the

client container will be unaware of it until the next JNDI lookup.

Load Balancing Options
If you configure for load balancing, it balances the load at the connection level.

However, if you want load balancing to occur on each JNDI lookup, configure the

LoadBalanceOnLookup property to true in the JNDI properties before retrieving

the InitialContext, as follows:

env.put("LoadBalanceOnLookup", "true");
EJB Clustering 7-9

Load Balancing Options
7-10 Enterprise JavaBean Developer’s Guide and Reference

Active Components Fo
8

Active Components For Java

Active Components for Java (AC4J) enables applications to interact as peers in a

loosely-coupled manner. Two or more applications participating in a business

interaction, exchange information for requesting service and for responding results.

This document describes the architecture needed and the software provided to

manage loosely-coupled, interactions between autonomous applications.

■ Future Needs of Business Applications

■ Current Programming Models

■ AC4J Architecture

■ Active EJBs

■ Interactions

■ Set Up Oracle Database For AC4J Support

■ AC4J Example
r Java 8-1

Future Needs of Business Applications
Future Needs of Business Applications
The future of business applications requires the ability to perform loosely-coupled

interactions. That is, applications should be able to exchange information with other

applications over a long period of time, without limiting resources, and by

surviving system crashes. The following lists the requirements for loosely-coupled

interactions:

1. Autonomous peer—Each application, when interacting with another

application, exists as an autonomous peer. That is, the responding application

may choose to ignore the request, or to execute one or more functions on behalf

of the requestor (possibly different than the one that the requestor asked for),

before responding to the initiating application. As peers, both applications can

make requests to each other, but neither can require submission from the other.

Neither application can assume control over the resources that its peer

application owns.

2. No time constraints—Because the tasks performed sometimes take days, even

months, to complete, the time limits imposed must be longer than what can be

accomplished in a short period of time.

3. Asynchronous exchange of information—Loosely-coupled interactions require

that all exchange of information exists within an asynchronous environment.

The inter-peer interaction can be one of the following:

■ Distribute information interaction—Sometimes applications must be able to

distribute information asynchronously to its peer where no response is

required. However, reliability of the delivery for this message must be

ensured.

■ Request/response interaction between components in an asynchronous

manner—Applications use a request and response mode of communication,

where each entity knows where to respond back to with the results.

4. Reliable, recoverable, and restartable—In order for any application to exist over

such a period of time, the application must be reliable—that is, recoverable and

restartable—in case of system failures during that time.

5. Scalable—The application must be scalable. That is, the long-running

application cannot block execution or lock resources for long periods of time. In

order for the application to execute in a reasonable time frame, the framework

must provide performance enhancements through concurrently executing

computations.
8-2 Enterprise JavaBean Developer’s Guide and Reference

Current Programming Models
6. Tractable—The application must be able to define and track its business

processes and their interaction patterns, as follows:

a. What business processes have started/completed under what business

conditions.

b. What business processes are pending waiting for what business documents.

c. What is the pattern of interaction of the business processes, where processes

can exchange information and what information they are authorized to

push/pull to/from other processes.

d. What is the sequencing of execution of the defined processes.

Current Programming Models
The current architectures available are the following:

■ Remote Procedure Call Model—Provides a tightly-coupled environment that

uses request/response mechanisms in communication.

■ Database Transactional Queuing Model—Provides a loosely-coupled

environment that uses a one-way mechanism for communication.

The following sections briefly describe these models and show why they do not

provide the basis necessary for the five goals presented in "Future Needs of

Business Applications" on page 8-2.

Remote Procedure Call Model
The Remote Procedure Call (RPC) programming model facilitates a tightly-coupled

environment that provides for request/response communication. Transactional RPC

implementations provide for ACID qualities.

Most RPC implementations currently provide two modes of method invocations:

synchronous and deferred synchronous.

Transactional RPC Synchronous Invocation
The client program blocks when a remote invocation is made and waits until the

results arrive or an exception is thrown. Examples of application types that use

transactional RPC implementations are EJB, and most CORBA applications. Web

services are also based on the RPC model, but are not transactional.
Active Components For Java 8-3

Current Programming Models
Advantage This model of communication—also called on-line or connected—is

based on the request/response paradigm, where the requester and responder of the

service are tightly-coupled. Tightly-coupled applications understand how to reply

transparently to the requestor.

Disadvantage The programs must be available and running for the application to

work. In the event of a network or machine failure, or when the application

providing the service is busy, the application is not able to continue forward with its

processing work. In this case, the state is inconsistent and the application must

decide to rollback to a consistent state through JTA. Also, it is not autonomous. One

application can control resources of other applications for a long time.

JTA is based on the two-phase commit specification. Two phase commit protocol

may cause loss of application autonomy in the case of network disconnection,

where the coordinator is unable of making a coherent global decision over the

outcome of the global transaction for a long period of time.

Example If a purchase order is created and the customer wants to purchase 20

widgets, then the transactional RPC application must do two things:

1. Check inventory for 20 widgets and ask for them to be shipped to the customer.

2. Check the customer’s credit to see if the customer has the ability to purchase

these widgets.

In this example, an RPC synchronous application would (within a global

transaction) do the following:

1. Send a request to the inventory database and block until the answer returns.

2. Send a request to the credit bureau and block until the answer returns.

If all request come back with a satisfactory report, then the transaction is committed

and the purchase order is forwarded on to shipping. If one of the two requests fails,

the transaction is rolled back. Granted, the application could have the following

alternatives that prevents the transaction from being rolled back:

■ If the inventory is not available, ask the customer if he/she will wait for a

back-order.

■ If the credit check failed, ask the customer for an alternate method of payment.

If the transaction is rolled back, the purchase order is voided.
8-4 Enterprise JavaBean Developer’s Guide and Reference

Current Programming Models
RPC Deferred Synchronous Invocation
An RPC deferred synchronous invocation is queue-oriented. The client places a

request in a queue and is then able to continue processing without blocking for the

response. An example of this is a CORBA DII application.

Advantages The client does not need to wait for a reply to the request. Instead, it

continues processing. Then when the client wants to receive a response, it blocks or

polls for the availability of the response. A response can only be delivered to the

same process that made the original deferred request. Thus, if multiple deferred

requests are pending, only one response is processed at a time.

Disadvantage If the client is non-existent, then the response is lost. Thus, for deferred

execution to work correctly in the presence of network, machine, and application

failures, the requests must be stored persistently and processed exactly once.

Example In the purchase order example, the requests to the inventory and credit

bureau can be made in parallel. After executing both requests, the client can poll for

both responses. The disadvantages would be the same as listed within the RPC

synchronous invocation example.

Database Transactional Queuing Model
The database transactional queuing model supports a loosely-coupled environment

where applications use one-way communication. Oracle AQ is an implementation

of a database transactional queuing model.

Applications need to process and deliver each message exactly once, even in

presence of multiple failures of the sender or the receiver. Mixing the transactional

ACID construct with queue processing creates a model that enables applications to

reliably process messages with the ACID guarantees.

Applications can be disconnected for long periods of time and occasionally they can

reconnect to communicate, using messages. By de-coupling the applications that

send messages from the applications that receive messages and process them,

queuing facilitates complex scheduling of autonomous applications. Each message

can be durably saved until processed exactly once. Processing of the data is

performed in a time independent fashion, even in a situation where a message

receiver is temporary unavailable.

Advantages Delivers and processes messages exactly once, no matter whether the

network or receiver application is available or not.
Active Components For Java 8-5

Current Programming Models
Disadvantages This model is based on sending and receiving messages. It is not

based on requesting and responding to service requests, which is the foundation of

all business protocols for loosely-coupled applications. To satisfy this requirement,

the application shoulders the burden of creating and parsing each message. Both

sides must know the format, security, and headers required for each message. There

is no automatic mechanism for routing messages and executing business methods.

The implementation of application logic for these mechanisms is the responsibility

of the applications. If a response is called for, the application cannot easily reply,

because there is no context that captures the relationship between a requester and a

responder application, which is the case for RPC. It is not intended for a

request/response environment, so if the client needs a response back from the

destination object, it must receive and parse a separate message off of its own

queue.

Exception handling describes communication failures and not application

exceptions.

There is no guarantee for the consistency of the business transactions. Instead, the

program itself must guarantee that the application semantic rollbacks occur

appropriately in a failure situation.

Example In the purchase order example, the client would enqueue a message to the

inventory queue and another to the credit bureau queue. Both must be reliably

processed once in order for the transaction to commit. If either the inventory is not

available or the client’s credit is not good, the business transaction cannot be

successfully completed and another message must be created to semantically

rollback the one message that was processed positively.

AC4J Framework
The RPC and transactional database queuing models both have advantages and

disadvantages. The disadvantages within J2EE application types are as follows:

■ The tightly-coupled, synchronous communication of EJBs does not allow

loosely-coupled interactions, nor autonomous peer communication.

■ The loosely-coupled, asynchronous communication of JMS provides no

correlation of messages nor supports application consistency. JMS only

provides a transport with no syntax for one-way messages.

■ The loosely-coupled, asynchronous communication of JMS does not enable

request/response interaction between entities.
8-6 Enterprise JavaBean Developer’s Guide and Reference

Current Programming Models
■ The need for the JTA Coordinator to control all resources involved in the

two-phase commit cannot include autonomous resources in the global

transaction.

The disadvantages prevent each model from solving the business goals laid out in

"Future Needs of Business Applications" on page 8-2. Thus, a new model is

necessary to incorporate the advantages of both models and exclude the

disadvantages.

AC4J is a manager of loosely-coupled interactions between autonomous EJB

applications. You can partition the application into concurrently executing active

units of work—known as Reactions—whose execution is driven by data availability

and its purpose is to execute business logic and produce new data. AC4J

coordinates the flow of data between Reactions. When data become available on

AC4J, the conditions specified by all registered Reactions are checked and if

satisfied, then the execution of the methods of all matched Reactions is triggered.
Active Components For Java 8-7

AC4J Architecture
AC4J Architecture
AC4J allows EJBs to interact in a loosely-coupled fashion. It provides the following

features:

■ Support for reliable Asynchronous, Disconnected, one way or request/response

type of interaction with complexities of JMS programming removed.

It hides queues/topics and related JMS constructs from applications, provides

automatic definition of communication message formats, and packs/unpacks

messages, automatic routing of service requests to the appropriate service

provider, automatic security context propagation, authorization and identity

impersonation, and automatic exception routing and handling, which is

integrated in the EJB framework.

■ Transactional Data Driven execution of EJB applications.

Composite matching on available data based on specified rules, which describe

under which conditions these data can fire which EJB method. Transparent

scheduling and activation of EJBs and execution of their methods.

■ Support for Fork/Join operations: parallel invocation of EJB methods and

synchronization on their results.

■ Automatic Tracking of the work in progress.

Introduction to AC4J Components
AC4J provides a framework for loosely-coupled interactions, which are included in

the following components:

■ Active EJBs: An Active EJB contains the business logic. An Active EJB business

object (stateless session or entity bean) is instantiated and its method is invoked

when a Reaction fires.

■ Interactions: An Interaction is a long-lived unit of work that reflects the

behavior of a business transaction. It groups a series of data exchanges (with

asynchronous, concurrent, and request/response characteristics) between

Processes.

■ Processes: A Process represents a business task. It encapsulates the units of

work—Reactions—which perform the detailed work of a business task.

■ Reactions: A Reaction performs the detailed work of a business task. It is used

to do the following:

– push data to and pull data from the Databus
8-8 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
– process service requests

– request service from other Active EJBs

– return results to the caller Active EJB business task or to the application

client

– enforce business constraints that preserve the consistency of a business

transaction

– provide application restartability in case of failures

■ Data Tokens: A Data Token describes a request for service or a response from a

service request or an exception condition, such as an expiration of a timer.

■ Databus: The Databus is the fundamental component in AC4J. Applications,

attach to the Databus to exchange data and request services. The Databus is

responsible for routing and matching of data tokens with registered Reactions

and enables transparent load-balancing of the attached application.

Figure 8–1 demonstrates the relationship of these components to each other. The

sections following describe each component.
Active Components For Java 8-9

AC4J Architecture
Figure 8–1 Relationship of Databus, Interactions, ActiveEJBs, Processes, Data
Tokens and Reactions

Active EJBs
An EJB provides a natural way for describing business object—such as a customer, a

purchase order, or an invoice. The externally visible business tasks of a business

object, which is accessible by other applications, is separated from their internal

implementation details and are described in the EJB interface.

Traditional EJBs are passive, they must be ready to immediately service a request

from a client and return results quickly. Failure to deliver on these promises causes

an EJB to be unusable. AC4J allows standard stateless session and entity EJBs to

become active. Active EJBs permit requests for service to be de-coupled from the

Interaction 1

DATABUS

takeOrder Process

ReactionData Token

checkINV Process

3) returnTo(takeOrder Process)

1) call(checkINV Process)
2) fireReactionIn(checkINV Process)

4) fireReactionIn(takeOrder Process)

JEMPurchaseOrderBean JEMCheckInventoryBean

ActiveEJBActiveEJB
8-10 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
actual service execution. The policies that control when and which EJB method(s)

are actually invoked are controlled by the service provider EJB. This de-coupling

permits service request and service providers to interact as autonomous peers.

An application can create or lookup a JEMHandle and then request service from a

business task, which is exposed in the EJB interface.

An Active EJB is uniquely identified by a JEMHandle object. A JEMHandle object

encapsulates the Active EJB name, the J2EE application name, the EJB JAR name,

the EJB name, the EJB bean class name, the EJB home interface name, the EJB

remote interface name, the instance name (SID) of the database in which the

Databus resides on, and the primary key of the EJB that is available only for entity

beans.

Interactions
An Interaction is a long-lived unit of work that reflects the behavior of a business

transaction. A business transaction may span multiple applications that reside in

different organizations. Contrary to the life of a local or a global transaction, the

duration of these business transactions in this disconnected environment, can be

long.

The Interaction represents a business goal that you want to complete. For example,

if a customer wants to buy something from a business, the entire actions necessary

to allow the customer to pay for and receive the item he/she wants is characterized

as an Interaction. The Interaction groups a series of business data exchanges by

providing the global execution context of the business transaction.

These applications may run in isolation and commit/rollback their own data

without knowledge of other applications. However these applications should not be

considered as different pieces, because the relationships formed amongst them must

be coordinated and their consistency maintained. When a business transaction

becomes inconsistent, its participating applications may need to recover. The

application recovery can be obtained by registering compensating Reaction(s). For

example, once the supplier has confirmed the purchase order request back to the

buyer, the buyer needs to register a compensating reaction that monitors additional

responses from the supplier that may inform him that the purchase order cannot be

fulfilled because the manufacturing department is running late. If the supplier’s

promise is cancelled, then the buyer’s compensating reaction is matched and then

fired to allow the buyer application to recover its application consistency. This

reaction can pick a new supplier and request the item from him or abandon the

purchase order process completely.
Active Components For Java 8-11

AC4J Architecture
An Interaction is uniquely identified by an Interaction identifier (IID). An

Interaction can contain multiple Processes.

Processes
A Process identifies a business task. In our purchase order example, a Process

would exist for each of the following business tasks: creating a purchase order,

checking inventory, checking customer credit, and shipping the order.

Each Process does the following:

■ Encapsulates the Reactions which perform its detailed work.

■ Encapsulates data tokens, which contain the business task input parameters

and its responses.

■ Maintains the data flow context that determines how to return the response to

the caller business task.

Figure 8–2 demonstrates an Active EJB, Interaction, and two of its Processes.

Figure 8–2 Relationship of Active EJB, Interaction, and its Processes

Interaction 1

takeOrder Process

JEMPurchaseOrderBean

cancelOrder Process

Reaction

D
a

ta
 T

o
ke

n
s

Reaction

D
at

a
To

ke
ns

Reaction

D
at

a
To

ke
ns

String clientName
int creditCardNumber
String itemName
int quantity

EJB Business Object State

EJB Interface
8-12 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
A Process is uniquely identified by a JEMPortHandle object. A JEMPortHandle
object encapsulates the Process Context and the JEMHandle of the Active EJB that

the Process belongs to. The Process Context is an union of an Interaction identifier,

and the Process Activation identifier. AC4J automatically creates the Interaction and

Process Activation identifiers within a call operation. Alternatively, the

application can supply them in the AC4J JEMSession::call operation.

Reactions
A Reaction performs the detailed work of a Process. Using this construct, an

application can specify its persistence interest on the availability of a collection of

correlated data tokens which trigger the execution of an Active EJB method. A

Reaction is a combination of the following:

■ A Reaction Template: A set of rules designating when the Reaction will match,

what data tokens are required to be pulled before firing, and under what

conditions the Reaction is allowed to fire.

■ An Active EJB method: The method is executed when the Reaction fires.

In every Process, there is a base Reaction, which is implicitly created by AC4J when

a Process is created as a result of a AC4J call operation. Additionally, an

application can explicitly create a Reaction at run time using the

JEMReaction::registerReaction operation to synchronize on data tokens.

The implicit or explicit registerReaction operation specifies the Reaction

template and the Active EJB method to be executed when matching succeeds.

Reactions (EJB methods) can access/modify shared database objects. These objects

can be traditional database objects; thus, facilitating coarse grain information sharing
in a transactional manner. Similarly, the Reactions exchange fine grain
information—such as Active EJB method input parameters and return values—using

the AC4J Databus.

The Reaction processes incoming requests, can return results based on the request,

and enforces business constraints to preserve application consistency. When a

Reaction is fired, it can consume one or more input data parameters, process them,

and then possibly produce one or more output data tokens for other Reactions.

Figure 8–3 demonstrates how when all data tokens are available and the conditions

are matched, the Reaction fires, which causes the method to execute. This method

may return results which are converted to data tokens by AC4J infrastructure and

routed to the caller. This method may request additional services from other Active

EJBs to complete the business task. These requests result in the creation of new data

tokens that are pushed and routed by the AC4J Databus.
Active Components For Java 8-13

AC4J Architecture
Figure 8–3 Reaction Pulled Data Tokens, Were Matched, Fired, and had its Active EJB
Method Execute

Reactions inside a Process Context instance can push data tokens to the AC4J

Databus in the following ways:

■ by issuing one or more JEMReaction::call operations that request service

from other Processes in the same or different Interaction context instance

■ by returning or throwing an exception operations to the caller Processes

■ by registering a timer, using the JEMReaction::registerReactionTimer
operation

When the timer expires, AC4J pushes a time-out exception data token in the

current Reaction context instance.

Reactions inside a Process context instance can pull data tokens from the AC4J

Databus by registering one or more Reactions in the current Process Context

instance using JEMReaction::registerReaction method.

One or more Reactions can exist for each business task. A Reaction is used for the

request and another for the response to support the asynchronous nature in a

request/response environment. The number of Reactions depends on the number of

requests and responses necessary.

The following example demonstrates how one can receive an asynchronous

communication between processes, but still have a request/response environment.

Data

all
Data Tokens
are available and conditions
matched, so Reaction
fires and executes

Reactiontoken

Data
token

Data
token

the Active EJB method

R
ea

ct
io

n
M

at
ch

in
g

C
on

di
tio

ns

P
ul

l
P

ul
l

P
ul

l

Data
token Data

token

Data
token

Data
token

Data
token

Pu
sh

Pu
sh

P
us

h
P

us
h

Pu
sh
8-14 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
The takeOrder Process is the business task for creating the purchase order. In

order to create the purchase order, you must check the inventory and the

customer’s credit. Thus, the takeOrder Reaction invokes the following Processes:

■ checkINV —Under the conditions that the customer asks for a new purchase

and provides the data of the items wanted, the checkINV Process is activated

and its JEMInventoryBean Active EJB is instantiated and its base Reaction,

checkINV , reacts. Later, it returns its results to the takeOrder Process and its

JEMPurchaseOrderBean Active EJB.

■ checkCRED—This Process is activated and its JEMCreditBean Active EJB is

instantiated and its base Reaction, checkCRED, reacts to check the customer’s

credit. Later, it returns its results to the takeOrder Process and its

JEMPurchaseOrderBean Active EJB.

After sending the asynchronous requests to the checkINV and checkCRED
Processes, the takeOrder Reaction registers another Reaction in the same

Process—procPO —that waits for the responses back from both the checkCRED and

checkINV Processes. Once all data tokens expected from these Processes are

available, the procPO Reaction fires and processes the responses. As shown in

Figure 8–4, both the takeOrder and procPO Reactions exist in the same process,

as they are components of the same request/response communication.
Active Components For Java 8-15

AC4J Architecture
Figure 8–4 Relationship Of JEMPurchaseOrderBean Interface Methods, Its takeOrder
Process (With Its takeOrder And procPO Reactions) And Its cancelOrder Process (With
Its cancelOrder Reaction)

Data Tokens
The activation of a Reaction is triggered by the availability of data tokens.

Availability is defined by the arrival of one or more data tokens, with the right

conditions, and the right access mode.

Note: In order to satisfy the AC4J requirement of not locking

resources, the call should be an asynchronous AC4J call. However,

you can still perform synchronous EJB calls to another bean.

takeOrder Process
JEMPurchaseOrderBean

takeOrder Reaction

procPO Reaction

public void takeOrder(

String itemName,
int creditCardNumber,
String clientName,

int quantity)

public String procPO(
boolean inventoryExists,
String creditInfo)

cancelOrder Process

cancelOrder Reaction

public void cancelOrder(

String itemName,
int creditCardNumber,
String clientName,

int newQuantity)

EJB Interface
8-16 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
When an application is requesting a service by using an AC4J call operation the

system automatically pushes a request data token, which consists of the following:

■ a Process descriptor, which specifies the service that is requested (such as,

takeOrder)

■ a request JEMPortHandle object of the service provider to whom the request

is destined

■ a response JEMPortHandle object, which contains the Process Context

(Interaction and Process-Activation identifiers) instance and the JEMHandle of

the requester Process that will later receive the results from the service provider

■ business task input arguments, which are used by the service provider to honor

the service

Later when a Reaction returns a response data token that is automatically generated

by AC4J when an active EJB returns or throws an exception, AC4J fills in the routing

information needed for sending the returned information to the caller Process and

fills the port handle object of the response data token. In the case where the caller of

the returning Process is a client and not another Process, then the Databus stores the

response data token to a special Databus area from where the client can retrieve it

using the JEMSession::receiveReactionResponseObjectInstance
operation.

The data types of the objects carried inside an in or out data tokens can be basic

data types (such as Integer, String, Float, Boolean) or constructed class types (such

as Java serializable objects).

Databus
Improving the autonomy, scalability, and availability of applications requires

components requesting services to be unaware of the identity, location, and the

number of components that provide these services. In AC4J, applications are

attached to a Databus before starting their operation. The AC4J Databus is

responsible for routing and matching of data tokens that are pushed and need to be

pulled by registered Reactions. Additionally, it enables scheduling, activation, and

execution of the matched Reactions.

Matching Reactions
The Databus routing subsystem is responsible for making the different types of data

tokens available at the specified destination, Process Context instance that is a

union of { Interaction identifier and Process Activation identifier }, specified by a

JEMPortHandle object.
Active Components For Java 8-17

AC4J Architecture
When data tokens are routed and become available in the Databus inside a Process

Context instance, AC4J tries to match these data tokens with all registered

Reaction(s) available in that context instance. The system tries to match the data

token tags specified in a Reaction template, evaluating all constraint conditions

against the matched data tokens to filter and discard the inappropriate ones.

Availability of some data token(s) does not mean that a registered Reaction will

match immediately. It is only when all data tokens, required by a Reaction, become

available that matching succeeds. For example, inside takeOrder Process the

takeOrder base Reaction has registered the procPO Reaction that is the waiting

for the checkCRED and checkINV Processes to respond. When checkINV Process

responds to the takeOrder Process, procPO Reaction is not matched because it is

also waiting for the checkCRED Process to respond. It is when the checkCRED
Process responds to the takeOrder Process that the procPO Reaction is matched.

Additionally, data token(s) available in the Databus, may be matched with a

Reaction that will be registered in the future. This can be used for sequencing

Processes, where the completion of one Process can enable another Process. Inside

the same Interaction, the takeOrder Process must be completed before

cancelOrder Process can start executing. If takeOrder Process has not

completed but cancelOrder Process is requested from a client, its base Reaction,

which is implicitly created by the system, will not be matched because it is waiting

for the completion data token of the takeOrder Process to be available. If

takeOrder Process has completed (already pushed its completion data token),

then cancelOrder Process is requested from a client and it will be immediately

matched, because the completion data token of the takeOrder Process is already

available.

Matching data tokens with Reactions triggers the activation of zero, one, or more

Reactions, which are executed in parallel if they don’t conflict for shared resources.

Firing Reactions
Each method of the remote interface of an Active EJB implements the application

business logic. When the data tokens become available, and matched with a

Reaction, AC4J verifies that the types (primitive or class types) of the data tokens

matched on the tags, also match the types of the Reaction Active EJB method types.

Then, AC4J verifies that the matched Reaction is authorized to pull the available

matched data tokens. If everything passes successfully, then AC4J schedules the

activation of the Reaction.

When the matched Reaction is fired, the AC4J container begins a JTA transaction

and instantiates the requested Active EJB (stateless session bean or entity EJB) using
8-18 Enterprise JavaBean Developer’s Guide and Reference

AC4J Architecture
the primary key inside the JEMHandle request object. Then the EJB method, of the

fired Reaction, gets executed using the matched data tokens of the Reaction.

AC4J automatically commits the current Reaction at the end of every Active EJB

method. A Reaction commit marks the end of a JTA transaction, so that all its

changes to shared data tokens and all its service requests/responses that have been

sent become visible. The activation of a Reaction has "exactly once" semantics, if the

Reaction commits. If a failure occurs after a commit, then the Reaction cannot be

rolled back and the changes will persist. If a failure occurs before or during a

commit, then the container rolls back the current Reaction. A Reaction rollback

reverses all changes to shared data tokens and the service requests/responses are

never sent to any recipient component. In case of failures, the firing of a Reaction

will be retried by the Databus for a pre-configured number of attempts. The

Reaction is marked as completed, with exception completion status, if the

maximum retry attempts are reached.

In traditional database machines, where the duration of a transaction is short,

abnormal situations cause the whole transaction to be undone, so all performed

work is lost and needs to be submitted again for execution. Since Interactions have

usually long duration and contain a large number of Reaction(s), AC4J provides

additional mechanisms to handling exceptions (such as an Oracle9iAS node crash

or an Oracle database node crash).

A Reaction is automatically persisted in the Databus by AC4J if it completes

successfully. The state that is saved (Process input variable data, Process local

variable data, and data flow context information) can be used to continue the

application with minimum restart time from the last Reaction. When a node

crashes, all Reactions that were running and did not end successfully are rolled

back. Then, the interrupted Reactions will be re-executed by another OC4J instance.

AC4J uses a mechanism to capture, propagate, and match the application state and

control flow information needed for resuming an application after the crash.

Additionally, because Reaction execution is data-driven, there is no need for the

system to keep a volatile or persistent copy of the entire program state (such as

program execution stack) in order to facilitate the storage of the control flow

descriptors or the storage of data variables.

Relationships of Databus, Data Tokens, and Reactions
Figure 8–5 demonstrates how data tokens cause Reactions to fire, and Reactions

send new data tokens to other Reactions over the Databus. The Databus coordinates

and matches the data tokens with its Reactions.
Active Components For Java 8-19

Set Up Oracle Database For AC4J Support
Figure 8–5 Databus, Data Tokens, and Reactions

Once the method completes, the Reaction can send information in the form of a data

token to another Reaction. All data tokens are sent asynchronously from one

Reaction to another over a data channel known as the AC4J Databus. The AC4J

Databus routes the data tokens from a producer Reaction to one or more consumer

Reactions.

Set Up Oracle Database For AC4J Support
Before you can execute any Interactions, you must initialize an Oracle9i database as

a repository for the AC4J Databus. You must configure it to include the following:

■ AC4J connection and session capabilities

■ AC4J system tablespace

■ AC4J super user

■ AC4J Databus’

■ One or more client users

These can be added to your Oracle9i database with scripts that are contained in the

ac4j-sql.jar file that was downloaded with your Oracle9iAS installation. Unzip

this JAR file. This JAR file contains a README.TXT that discusses the different SQL

command options that are available to you. These are also described below:

In order to create AC4J capabilities, you must execute one of the following SQL

scripts as a 'SYS' user on the same machine as the database.

Databus

Data

all
Data Tokens
are available,
so Reaction
fires and

Reaction
token

Data
token

Data
token

Data
tokens Reactions

executes the
EJB method
8-20 Enterprise JavaBean Developer’s Guide and Reference

Set Up Oracle Database For AC4J Support
■ createall : To create all of the defaults including the default Databus, AC4J

super user, default client user (JEMCLIUSER).

■ createjemtablespace : To create the table space for AC4J system, execute

the createjemtablespace SQL script. You must provide the SYS
username/password, the TNSENTRY of this database where the Databus is

created.

■ createjem : To install and create the Databus, execute the createjem SQL

script. This requires the SYS username/password, TNS_ENTRY, and an AC4J

client username.

■ createclient : To create another client on an existing Databus, execute the

createclient SQL script. Provide the SYS username/password, client

username/password, and client tablespace.

■ recreatedatabus : To recreate an existing Databus, which deletes the existing

Databus and all its contents and then re-creates it, execute the

recreatedatabus script. Provide the SYS username/password and

TNSENTRY of the database where the Databus resides.

■ recreateclient : To recreate an existing client, execute the

recreateclient SQL script. Provide the SYS username/password and the

client username/password.

AC4J Databus XML Configuration
The Interaction supports JTA global transactions within the database that the

Databus exists in. Thus, you need a non-emulated data source for the super user to

handle the two-phase commit and a non-emulated data-source for the client to send

its asynchronous requests to the Databus. See the DataSource and JTA Chapters in

the Oracle9iAS Containers for J2EE Services Guide for a full description of this

configuration.

For our purchase order example, the following data sources are configured in the

data-sources.xml file for the two-phase commit.

<!--NON-Emulated DataSource for two-phase commit used by super user-->
<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 location=" jdbc/jemSuperuserDS "
 username=" jemuser "
 password=" jempasswd "
 url="jdbc:oracle:thin:@<host>:<port>:<ORCL-SID>"
Active Components For Java 8-21

Set Up Oracle Database For AC4J Support
 inactivity-timeout="60" >
 <property name="dblink"
 value="JEMLOOPBACKLINK.REGRESS.RDBMS.DEV.US.ORACLE.COM" />
</data-source>

<!--NON-Emulated DataSource for the client user -->
<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 location=" jdbc/jemClientDS "
 username=" jemcliuser "
 password=" jemclipasswd "
 url="jdbc:oracle:thin:@<host>:<port>:<ORCL-SID>"
 inactivity-timeout="60" >
 <property name="dblink"
 value="JEMLOOPBACKLINK.REGRESS.RDBMS.DEV.US.ORACLE.COM" />
</data-source>

Both of these users were created as default with the SQL scripts listed earlier. The

jemuser is the super username and the jemcliuser is the default client

username. The DBLINK is the link to the database that contains the Databus. For the

super user data source, this is a loopback link.
8-22 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
AC4J Example
AC4J is designed for complex applications that interact with each other over long

periods of time. This section illustrates the usage of AC4J with a portion of the

purchase order example listed in Figure 7-6. The code sample does not show error

handling or import statements to simplify the example. Download the full example

at http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
off the OTN site.

Example 8–1 Purchase Order Example

For the purchase order, the POInteraction is created. Within the Interaction,

several business tasks exist as follows:

■ create purchase order (takeOrder Process)

■ check inventory (checkINV Process)

■ check customer credit (checkCRED Process)

■ process responses from previous checks requests (procPO Reaction)

Our example is, as follows:

■ takeOrder Reaction, which pushes 2 data tokens:

– A data token that asks the checkINV Process if the inventory contains the

desired items.

– A data token that asks the checkCRED Process if the credit card given by

the customer is able to make the purchase.

■ procPO , which acts on the responses from the inventory and credit check

Processes. If the inventory is available and the credit check goes well, then the

procPO returns the purchase order confirmation to the client.

Figure 8–6 illustrates the information flow inside an Interaction. Figure 8–6 also

demonstrates how all of the Reactions act on data tokens and provide data tokens to

other Processes. This assumes that the customer data has already been made

available to the takeOrder Process. The numbers designate the order in which

they fire. That is, the procPO is dependent on data tokens from both the checkINV
and checkCRED Processes; thus, it cannot fire until both return their responses back

to the takeOrder Process.
Active Components For Java 8-23

AC4J Example
Figure 8–6 Information Flow Inside An Interaction

The steps involved in processing the Purchase Order example of Figure 8–6 can be

summarized as follows:

1. Client sends an asynchronous request to an Active EJB: The client requests a service

from an Active EJB, JEMPurchaseOrderBean . The client starts a new purchase

order by sending an asynchronous request through the Databus to a takeOrder
Process.

2. Active EJB processes the client’s request: The takeOrder Process starts a

takeOrder base Reaction. This base Reaction starts a new purchase order. To

complete the purchase order, it must do three things:

a. Send an asynchronous request to the checkINV Process of

JEMInventoryBean to verify that the items are in inventory.

b. Send an asynchronous request to the checkCRED Process of

JEMCreditBean to verify that the customer’s credit is satisfactory.

c. Register a procPO Reaction in the current Process to receive the results

from the above two Processes.

checkINV Process

checkCRED Process

takeOrder Process

PurchaseInteraction, IID = "user1"

Client

2a Reaction.call

2b
2
c

3

34

takeOrder Reaction

procPO Reaction

session.call

Reaction.call

re
tu

rn

return

re
g

is
te

rR
ea

ct
io

n

1

session.receiveReactio
nResponse

checkINV Reaction

checkCRED Reaction

Process AID = ”AID_105 _user1”

5

Process AID = AC4J Generated

Process AID = AC4J Generated

return
8-24 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
3. Asynchronous response to the requesting Active-EJB: Both the checkINV and

checkCRED Processes return responses to the takeOrder Process.

4. Asynchronous response to the client: The procPO Reaction, within takeOrder
Process, reacts to the information provided by the checkINV and checkCRED
Processes. If satisfactory, it sends the confirmation to the client through the

AC4J Databus.

5. Client receives the response: Client retrieves the response from the Databus.

Asynchronous Request to An Active EJB
The following code sample shows steps involved in performing loosely-coupled

interactions in AC4J.

Example 8–2 Client Asynchronously Invoking Active EJB

public static void main(String[] args) throws ClassNotFoundException, Exception
{

// 0. create a JNDI context
Context context = new InitialContext();

// 1. lookup a datasource wher Databus exists
DataSource clientDS = (DataSource)
 context.lookup("java:comp/env/jdbc/jemClientDS");
// 2. Get a JDBC-connection to the database where Databus resides
Connection conn = clientDS.getConnection("jemcliuser", "jemclipasswd");

// 3. Create an AC4J connection using the JDBC connection
JEMConnection AC4JConn = new JEMConnection(conn);

// 4. Create an AC4J session over an AC4J connection to the Databus
JEMSession AC4JSess = new JEMSession(jemconn);
// 5. Lookup the Active EJB handle using the jem-name defined
// in the orion-ejb-jar.xml
JEMHandle activeEJBHandle =
(JEMHandle)context.lookup("JEMPurchaseOrderBean");

// 6. Gather the base Reaction input parameters. These input parameters are
// required by the receiving method, takeOrder.
Object[] inputParams = new Object[] { (Object) new String("user1"),
 (Object) new Integer("1234-119"),
 (Object) new String("pens"),
 (Object) new Integer("3") };
Active Components For Java 8-25

AC4J Example
// 7. Create the Process Context, Interaction-ID and Activation ID.
// NOTE: IID = "user1" = requestor’s name
// AID = AID = AID_105_user1 = AID_<PO_number>_<cust_name>

// 8. Make the call over the AC4J session providing the parameters.
JEMEmitToken req = AC4JSess.call("user1", "AID_105_user1",
 activeEJBHandle, "takeOrder",
 null, inputParams, null, 0, 0);

// 9. Commit the changes to the Databus by committing the transaction
conn.commit();

// 10. The client must close the AC4J session and connection because it
// does not exist within an AC4J container, which would normally
// close these.
conn.close();
jemconn.close();
jemsess.close();

}

The client exists outside of an AC4J server and is requesting a service from an

Active EJB through the AC4J Databus. The AC4J Databus is the conduit and

controls the asynchronous communication between the client and all Reactions.

Thus, every client residing outside of an AC4J server must first connect to the AC4J

Databus and create a new session for interaction to occur.

After you have retrieved a connection to the AC4J Databus and created an AC4J

session within it, you can send asynchronous messages to Active EJBs in the same

or other AC4J instances. The AC4J Databus coordinates the asynchronous messages

and acts as a transactional manager for all AC4J beans involved in the transaction.

The steps involved in creating a AC4J-session and completing the client’s request

are described in the following subsection.

Connect To the AC4J Databus
The following steps explain the details of a set of steps involved in creating a AC4J

session on the AC4J Databus. These steps are sub-set of steps shown in Example 8–2

(Numbered 0-to-4).

1. Retrieve an AC4J connection

An AC4J connection exists above a JDBC connection. Perform the following:

a. Retrieve the DataSource defined for the database acting as the AC4J

conduit. The DataSource used should be defined in the
8-26 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
data-sources.xml as a non-emulated datasource with a <dblink>
defined to the database where the AC4J Databus resides. See "AC4J Databus

XML Configuration" on page 8-21 for more information.

Context context = new InitialContext();
DataSource clientDS = (DataSource)
 context.lookup("java:comp/env/jdbc/jemClientDS");

b. Retrieve the JDBC connection off of the DataSource object.

OracleConnection conn = (OracleConnection)clientDS.getConnection();

c. Create an AC4J connection off of the JDBC connection object.

JEMConnection AC4JConn = new JEMConnection(conn);

2. Create an AC4J session in a specified Databus. Using the AC4J connection to the

database and providing the name of the Databus you are interested in, create a

session within the Databus in the indicated Oracle database.

JEMSession AC4JSess = new JEMSession(AC4Jconn);

Executing an Asynchronous Request
After you have created an AC4J session on the AC4J Databus, the client can send

asynchronous messages to Active EJBs. The client must provide the Active EJB

handle, the Process handle, and all of the required input parameters to the base

Reaction. The following steps explain the details of the call that client needs to

make in order to complete the AC4J request.

1. Process Context: To identify the context where the Process exists, you must

provide both the Interaction identifier and the Process Activation identifier. The

combination of both of these identifiers is the Processing Context. There are two

ways of providing a Process Context:

■ CLIENT PROVIDES—The AC4J Databus uses the identifiers provided by the

client to uniquely identify the Processing Context. The client uses the same

identifiers to either retrieve the response to the current request or send

additional parameters to the Process. In the current example, the client

provides the Interaction Identifier (IID) as a customer’s name and Process

Activation Identifier (P-AID) as an union of purchase order number and the

customer’s name as shown:

String iid = "user1"; // = customer_name
String p_aid = "AID_105_user1"; // = AID_<PO_number>_<customer_name>
JEMEmitToken req = AC4JSess.call(iid, p_aid, ..all other parameters..);
Active Components For Java 8-27

AC4J Example
■ AUTOMATIC CONTEXT—The Interaction and Process Activation identifiers

are optional and can be omitted or can be null, in which case the system

automatically creates them. If a client fails to provide either of these

identifiers then the AC4J Databus will create them to uniquely identify a

processing context. However, the client will have to retrieve these

identifiers and use them later to pull the response from the AC4J Databus.

JEMEmitToken req =
 AC4JSess.call (null, null, ...all other parameters...);
JEMPortHandle portHandle = req.getPortHandle();
String iid = portHandle.getIid();
String p_aid = portHandle.getAid();

2. Active EJB handle: In a synchronous EJB environment, you would use a remote

EJB handle for invocation. In an AC4J asynchronous environment, you must

provide a similar handle of class type JEMHandle that identifies an active EJB.

The Active EJB handle can be obtained by looking up the jem-name defined

in the orion-ejb-jar.xml (see Active EJB Deployment pp 7-32).

Context context = new InitialContext();
JMHandle activeEJBHandle =
 (JEMHandle) context.lookup("JEMPurchaseOrderBean");
JEMEmitToken req = AC4JSess. call (...., activeEJBHandle,);

3. Reaction Name and Input parameters: Client provides the base Reaction (Method)

name and all or part of it’s input parameters that it wishes to call. In the current

example, the client provides all the input parameters to complete the AC4J

session call as follows:

// collect input values for the takeOrder method
Object[] inputParams = new Object[] { (Object) new String("user1"),
 (Object) new Integer("1234-123"),
 (Object) new String("pens"),
 (Object) new Integer("3")
 };
JEMEmitToken req = AC4JSess. call (..., "takeOrder", null, inputParams,
 ...);

■ If client provides only a part of the parameters to this Reaction then it must

provide a set of input parameter types and the indexes of the input

parameters as well. In the following example we show how a client can

complete a call by providing the first two parameters for takeOrder Process:
8-28 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
// input parameter types (java-class) for takeOrder method
Class[] takeOrderInputClassTypes =
 new Class[] { String.class, Integer.TYPE,
 String.class, Integer.TYPE };

// indexes of input parameters you wish to provide for takeOrder method
int[] indexOfInputParams = new int[] {0, 1};

// input values corresponding to the indexes for takeOrder method
Object[] inputParams = new Object[] { (Object) new String("user1"),
 (Object) new Integer("1234-123")
 };
// remember the interaction and process-activation ids for this call
JEMEmitToken req =
 AC4JSess. call (iid, p_aid, ..., "takeOrder",
 takeOrderInputClassTypes,
 indexOfInputParams, inputParams, ...);

■ When the client decides to provide the remaining two parameters it must

use the same Process Context (Interaction and Process-Activation

Identifiers) that it used in the first call it made to the Process. During the

second invocation the steps involved will be

// input parameter types (java-class) for takeOrder method
Class[] takeOrderInputClassTypes =
 new Class[] { String.class, Integer.TYPE,
 String.class, Integer.TYPE };

// indexes of input parameters you wish to provide for takeOrder method
// NOTE: now, client provides the last 2-input parameters
int[] indexOfInputParams = new int[] {2, 3};

// input values corresponding to the indexes for takeOrder method
Object[] inputParams = new Object[] { (Object) new String("pens"),
 (Object) new Integer("3")
 };
// use the same interaction and process activation ids as those in the
// previous call
JEMEmitToken req =
 AC4JSess. call (iid, p_aid, ..., "takeOrder",
 takeOrderInputClassTypes,
 indexOfInputParams, inputParams, ...);

4. AC4J Session call: Send all asynchronous requests for any Active EJB to the AC4J

Session using the JEMSession::call method.
Active Components For Java 8-29

AC4J Example
When a Reaction wants to provide data to an active EJB method (to the base

Reaction of the Process), it executes a JEMSession::call with this

information. The JEMSession::call contains the Interaction identifier that

the EJB is involved in, the Process Activation identifier to identify the Process

where the method is instantiated, and the JEMHandle of the active EJB. The

Interaction and Process Activation identifier are optional and can be omitted or

can be null, in which case the system automatically creates them. The Databus

identifies the context where the Process can be found and routes the data tokens

to the intended Process. Thus, all EJB calls are invoked asynchronously through

the mediation of the Databus.

5. Commit Transaction: The client must commit the changes to the AC4J Databus. If

the client forgets to commit the transaction then the request is lost and is not

visible to the AC4J Databus. To make the request visible to the AC4J Databus by

doing the JDBC-commit as follows:

conn.commit() ;

6. Finally, the client must close the JDBC-connection, the AC4J session and

connection because it does not exist within an AC4J container. The AC4J

container would normally close the AC4J session and connection objects.

conn.close(); // client as well an application-code must close
jemconn.close(); // client must close
jemsess.close(); // client must close

Active EJB processes the Client’s Request
Once the client commits the request, the AC4J Databus matches the data-tokens

provided by the client with that of the requested Reaction, and internally schedules

the instantiation of the JEMPurchaseOrderBean Active EJB and activation of the

takeOrder Process. The takeOrder Process starts a takeOrder base Reaction

which starts a new purchase order. As discussed in Figure 7-6, this reaction,

takeOrder , processes the client’s request by invoking additional services from the

other Active EJBs, JEMInventoryBean and JEMCreditBean, as shown in the

following code sample:

Example 8–3 Active EJB Asynchronously Invoking Another Active EJB

public void takeOrder(String clientName, int creditCardNumber,
 String itemName, int quantity)
 throws RemoteException, TestException
{

8-30 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
// 0. create a JNDI context
Context context = new InitialContext();

// 1. Retrieve the current AC4J Reaction.
JEMReaction currentAC4JReaction = (JEMReaction) JEMReaction.getReaction();

// 2. Lookup the Active EJB handle using the jem-name defined
// in the orion-ejb-jar.xml
JEMHandle activeInvHandle = (JEMHandle) context.lookup(" JEMInventoryBean ");

// 3. Gather all input and return parameters for the checkINV Reaction.
// Define input and return parameter types and the parameter values
Object[] checkINVInputParamValues =
 new Object[] { (Object)itemName,
 (Object) new Integer (quantity) };
Class[] checkINVReturnClassType = new Class[] { Boolean.TYPE };

// 4. Request a service from JEMBeancheckINV through Databus
JEMEmitToken inventoryRequest=

currentAC4JReaction.call (activeInvHandle, "checkINV", null,
 checkINVInputParamValues,
 checkINVReturnClassType,
 null, null, 0, 0);
// 5. Repeat Steps 2-4 above to request a service from another
// Active EJB, JEMCreditBean. The returned JEMEmitToken is
// named creditRequest.

// 6. Register a Reaction, procPO, that will be activated when the
// responses from the above two asynchronous calls to the
// active-EJBs return
Class[] procPOInputClassTypes = new Class[] { Boolean.TYPE, String.class };
JEMEmitToken[] requests = new JEMEmitToken[] { inventoryRequest,
 creditRequest };
currentJEMReaction.registerReaction
 ("procPO", procPOInputClassTypes, requests, 1, null, null, 0);

}

The AC4J Databus instantiates the Active EJB, JEMPurchaseOrderBean
(corresponding to the JEMHandle provided by the client), in an AC4J server. The

takeOrder Process starts a takeOrder base Reaction. The steps involved in the

completion of this initiation process are described below:

1. Process Context: The current Reaction, takeOrder , is running in an AC4J server.

Hence, it already has a Process Context and can be used by the application (or
Active Components For Java 8-31

AC4J Example
Active Bean) code. The application code can retrieve the Process Context

through the Demarcation as follows:

// retrieve the current-Reaction context--a static method
JEMReaction currentAC4JReaction = (JEMReaction) JEMReaction.getReaction();
String iid = currentAC4JReaction.getIid();
String p_aid = currentAC4JReaction.getAid();

– The application may use these identifiers to make additional asynchronous

JEMSession::call by co-relating the business transaction.

– Alternatively, the application code may use the currentAC4JReaction to

make the additional calls with request/response characteristics. The AC4J

Databus then creates a new Process Contexts for the next invocation by

using the current Interaction Identifier and a new Process Activation

Identifier. The current example uses this approach by using the

currentAC4JReaction .

2. AC4J handle: The base Reaction, takeOrder, starts the purchase order initiation

process by requesting services from two other Active EJBs,

JEMInventoryBean and JEMCreditBean . The application code needs to

retrieve the AC4J handles to these Active EJBs by doing the following:

Context context = new InitialContext();
// call to JEMInventoryBean
JEMHandle activeInvHandle = (JEMHandle) context.lookup(" JEMInventoryBean ");
JEMEmitToken inventoryRequest=
 currentAC4JReaction.call (activeInvHandle,);

// call to JEMCreditBean
JEMHandle activeCreditHandle = (JEMHandle) context.lookup(" JEMCreditBean ");
JEMEmitToken creditRequest=
 currentAC4JReaction.call (activeCreditHandle,);

3. Reaction Name, Return parameter type and Input parameters: Client (now a

takeOrder Reaction) provides the base Reaction (Method) name, the return

parameter’s java-class type and all or part of it’s input parameters that it wishes

to call. In the current example, the client provides all the input parameters

needed by the called Reactions (checkINV, CheckCRED) as follows:

// collect input values for the checkINV method
Object[] checkINVInputParamValues =
 new Object[] { (Object)itemName,
 (Object) new Integer (quantity)
 };
8-32 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
// state the return Class type of checkINV method
Class[] checkINVReturnClassType = new Class[] { Boolean.TYPE };

// make the call to the checkINV method
JEMEmitToken inventoryRequest=

currentAC4JReaction.call (..., "checkINV", null,
 checkINVInputParamValues,
 checkINVReturnClassType,);

// collect input values for the checkCRED method
Object[] checkCreditInputParamValues =
 new Object[] { (Object) clientName,
 (Object) new Integer (creditCardNumber),
 (Object) new Float (quantity * 1.4) };

// state the return Class type of checkINV method
Class[] checkCreditReturnClassType = new Class[] { String.class };

// make the call ro checkCRED method
JEMEmitToken creditRequest=

currentAC4JReaction.call (..., "checkCRED", null,
 checkCreditInputParamValues,
 checkCreditReturnClassType,);

4. Register a Return Reaction: The application code then registers a new Reaction,

procPO , in the same Process Context of the currentAC4JReaction . This

registration of the Reaction requires the Reaction name, procPO, the input

parameter types of the new procPO reaction and the JEMEmitTokens
retrieved from the call to the currentAC4JReaction. If the new Reaction has

multiple input parameters and is receiving them from different Processes then

the Array of JEMEmitToken must be constructed in proper order. For example,

in the following code the first parameter is waiting for the reply from the

JEMInventoryBean and the second one is waiting for the reply from

JEMCreditBean .

Class[] procPOInputClassTypes = new Class[] { Boolean.TYPE, String.class };
JEMEmitToken[] requests = new JEMEmitToken[] { inventoryRequest,
 creditRequest };
currentJEMReaction.registerReaction
 ("procPO", procPOInputClassTypes, requests, 1, null, null, 0);

Asynchronous Response to the Requesting Active EJB
The takeOrder base Reaction is completed only after the AC4J infrastructure

commits the transaction which includes the calls to the other two Active EJBs and a
Active Components For Java 8-33

AC4J Example
registered Reaction. The “checkINV ” and “checkCRED” Processes receive the

requests from the AC4J Databus as if it were invoked from any other EJB. The

JEMInventoryBean and JEMCreditBean Active EJBs are instantiated. The

checkINV and checkCRED base Reactions are fired when they receive the data

tokens from the AC4J Databus, which were initiated from the takeOrder Reaction.

Both of them receive the request, perform their tasks, and return. The returned

values are forwarded by the AC4J Databus to the registered Reaction—procPO .

The following code sample shows the checkINV method. The checkCRED method

is similar in its AC4J responsibilities.

Example 8–4 checkINV Processes Request

public boolean checkINV(String itemName, int quantity)
 throws RemoteException, TestException
{

boolean inventoryExists = false;
// The logic in the next step is ommitted
inventoryExists = query it’s own database for the item and quantity;
return inventoryExists;

}

Asynchronous Response to the Client
Both checkINV and checkCRED Processes return the responses to the procPO
Reaction through the AC4J Databus. The AC4J Databus makes sure that the return

data-tokens have valid takeOrder Process Context and matches the input

parameter types of the procPO Reaction. When both parameters arrive the procPO
Reaction fires and executes the procPO method of the JEMPurchaseOrderBean
Active EJB, which reacts to the information provided by the checkINV and

checkCRED Processes. It completes the client’s request by posting the result to the

AC4J Databus.

Example 8–5 procPO Reaction Fires

public String procPO(boolean inventoryExists, String creditInfo)
 throws RemoteException, TestException
{

String poStatus = "Not Shipped";
if(creditInfo == null)

return poStatus;
if (inventoryExists)
{

if(creditInfo.equalsIgnoreCase("Credit approved"))
8-34 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
poStatus = "Shipped";
else if (creditInfo.equalsIgnoreCase("Credit failed"))

poStatus = "Credit failed";
}
else

poStatus = "Items unavailable";

return poStatus;
}

Receive Response by the Client
The client needs to know the response to it’s purchase order request. As stated

earlier, each request (or call) is identified by a Process Context (Interaction ID and

Activation ID). Using the Process Context the client can pull the response from the

AC4J Databus.

The received JEMEmitToken from the response can then be parsed by the client. If

the client existed inside the OC4J container, the container would deconstruct the

JEMEmitToken to the required type. Instead, the client must parse out the response

correctly as shown below:

Example 8–6 Client Processes Return

public static void main(String[] args) throws ClassNotFoundException, Exception
{

// 0. create a JNDI context
Context context = new InitialContext();

// 1. lookup a datasource wher Databus exists
DataSource clientDS = (DataSource)
 context.lookup(" java:comp/env/jdbc/jemClientDS ");

// 2. Get a JDBC-connection to the database where Databus resides
Connection conn = clientDS.getConnection("jemcliuser", "jemclipasswd");

// 3. Create an AC4J connection using the JDBC connection
JEMConnection AC4JConn = new JEMConnection(conn);

// 4. Create an AC4J session over an AC4J connection to the Databus
JEMSession AC4JSess = new JEMSession(jemconn);

// 5. Lookup the Active EJB handle using the jem-name defined
// in the orion-ejb-jar.xml
Active Components For Java 8-35

AC4J Example
JEMHandle activeEJBHandle =
 (JEMHandle) context.lookup("JEMPurchaseOrderBean");

// 6. Retrieve the Response using the Process context with which
// the initial request was made.
JEMEmitToken rcvresp = AC4JSess.receiveReactionResponse
 ("user1", "AID_105_user1", activeEJBHandle, "takeOrder", 0);

// 7. The getReactionResponseObjectInstance method parses the returned
// parameter into an java.lang.Object.
Object obj = rcvresp.getReactionResponseObjectInstance ();
// 8. Print out results
if (obj instanceof java.lang.String)

String ret = (String) obj;

// 9. The client must commit the transaction
conn.commit ();

// 10. The client must close the AC4J session and connection because it
// does not exist within an AC4J container, which would normally
// close these.
conn.close();
jemsess.close();
jemconn.close();

}

As seen earlier, procPO reaction reacts to the information provided by the

checkINV and checkCRED Processes. It completes the client’s request by posting

the result to the AC4J Databus. The client must connect to the AC4J Databus to

retrieve it’s response by providing a proper Process Context. The steps involved in

connecting to the AC4J Databus were described earlier. After receiving the response

the client can retrieve a java.lang.Object instance which must be processed

further.

Retrieving an Asynchronous Response
After creating a AC4J session on the AC4J Databus, the client can retrieve the

response by doing the following steps:

1. Process Context: The client must provide a proper Process Context that identifies

where the request was made. The client must provide both the Interaction

identifier and the Process Activation identifier. In the current example the client

provides the Interaction Identifier (IID) as a customer’s name and Process
8-36 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
Activation Identifier (P-AID) as an union of purchase order number and the

customer’s name as shown:

String iid = "user1"; // = customer_name
String p_aid = "AID_105_user1"; // = AID_<PO_number>_<customer_name>
JEMEmitToken rcvresp = AC4JSess.receiveReactionResponse
 (iid, p_aid, ...);

2. Active EJB handle: The client must provide the Active EJB handle to which the

initial request was made. The Active EJB handle can be obtained by looking up

the jem-name defined in the orion-ejb-jar.xml (see "AC4J Active EJB

Deployment" on page 8-37).

Context context = new InitialContext();
JMHandle activeEJBHandle =
 (JEMHandle) context.lookup("JEMPurchaseOrderBean");
JEMEmitToken rcvresp = AC4JSess.receiveReactionResponse
 (..., activeEJBHandle, ...);

3. Reaction Name: Client may need to provide the process name to which it

initiated the call, which, in this case, is the takeOrder Process.

JEMEmitToken rcvresp = AC4JSess.receiveReactionResponse
 (..., "takeOrder", ...);

4. Retrieve Object: The JEMEmitToken received from the

receiveReactionResponse can be used to retrieve the Object instance as

follows:

Object obj = rcvresp.getReactionResponseObjectInstance();

5. Commit Transaction: The client must commit the changes to the AC4J Databus. If

the client forgets to commit the transaction then the client can pull the response

multiple times. However, it is not a recommended mode of operation. To let the

AC4J Databus know that the response was properly retrieved do the following:

conn.commit();

AC4J Active EJB Deployment
The active EJB is developed as any other EJB. The changes that enable the EJB to be

used in an AC4J Interaction is in the OC4J-specific deployment descriptor. These are

discussed below:

Deploy the EJB with AC4J element specifications in the OC4J-specific deployment

descriptor. The following example defines the takeOrder EJB as an active EJB.
Active Components For Java 8-37

AC4J Example
■ The <jem-server-extension> element defines the database with the

Databus that the active EJBs in this JAR file use for their AC4J communication.

<jem-server-extension data-source-location="jdbc/jemSuperuserDS">
 <description>AC4J datasource location</description>
</jem-server-extension>

■ The <jem-deployment> element in the orion-ejb-jar.xml file identifies

the EJB defined in the ejb-jar.xml file as an active EJB. It provides an AC4J

name (jem-name) that is used to identify the bean within the AC4J calls. For

example, this bean is defined as JEMPurchaseOrderBean , which was used in the

JEMHandle creation. The identity of the caller, who is allowed to request

services and retrieve responses from the Active EJB, can be declared in the

called-by tag. This caller tag identifies the user in the Databus. For

example, JEMCLIUSER is the user name that was used to create a

jem-session ,

<jem-deployment jem-name="JEMPurchaseOrderBean"
 ejb-name="PurchaseOrderBean">
 <description>AC4J EJB</description>
 <called-by>
 <caller caller-identity="JEMCLIUSER"/>
 </called-by>
</jem-deployment>

The following is the entire orion-ejb-jar.xml file for the three Active EJBs.

<?xml version="1.0"?>
<!DOCTYPE orion-ejb-jar PUBLIC "-//Evermind//DTD Enterprise JavaBeans 1.1
runtime//EN" "http://www.orionserver.com/dtds/orion-ejb-jar.dtd">

<orion-ejb-jar deployment-version="1.4.5" deployment-time="e60dffcea9">
<enterprise-beans>

<jem-server-extension
data-source-location=" jdbc/nonEmulatedDS "
scheduling-threads="1">
<description>AC4J deployment</description>

</jem-server-extension>

<jem-deployment jem-name =" JEMPurchaseOrderBean "
 ejb-name="PurchaseOrderBean">
<description>Active Purchase Order bean</description>

<called-by>
<caller caller-identity="JEMCLIUSER"/>
8-38 Enterprise JavaBean Developer’s Guide and Reference

AC4J Example
</called-by>

<security-identity>
<description>using the caller identity </description>
<use-caller-identity>true</use-caller-identity>

</security-identity>
</jem-deployment>

<jem-deployment jem-name =" JEMInventoryBean "
 ejb-name="InventoryBean">
<description>Active Inventory bean</description>

<called-by>
<caller caller-identity="JEMCLIUSER"/>

</called-by>

<security-identity>
<description>using the caller identity </description>
<use-caller-identity>true</use-caller-identity>

</security-identity>
</jem-deployment>

<jem-deployment jem-name =" JEMCreditBean "
 ejb-name="CreditBean">
<description>Active Credit bean</description>

<called-by>
<caller caller-identity="JEMCLIUSER"/>

</called-by>

<security-identity>
<description>using the caller identity </description>
<use-caller-identity>true</use-caller-identity>

</security-identity>
</jem-deployment>

</enterprise-beans>
Active Components For Java 8-39

AC4J Example
8-40 Enterprise JavaBean Developer’s Guide and Reference

OC4J-Specific DTD Refer
A

OC4J-Specific DTD Reference

This appendix describes the elements contained within the OC4J-specific EJB

deployment descriptor: orion-ejb-jar.dtd . Some of the elements within this

deployment descriptor are too complex for this appendix, so references to another

source may be mentioned.

The description of this deployment descriptor has been divided into the following

sections:

■ Overall description of section order—The required ordering of this XML file is

described in "OC4J-Specific Deployment Descriptor for EJBs" on page A-2.

■ DTD listing—The official DTD, without comments, is shown in "DTD Listing"

on page A-9. This is printed as a quick reference on the number of elements

required within another element.

■ Element description—An alphabetical listing and description for each element

is discussed in "Element Description" on page A-12.

Whenever you deploy an application, OC4J automatically generates the

OC4J-specific XML file with the default elements. If you want to change these

defaults, you must copy the orion-ejb-jar.xml file to where your original

ejb-jar.xml file is located and change it in this location. If you change the XML

file within the deployed location, OC4J simply overwrites these changes when the

application is deployed again. The changes only stay constant when changed in the

development directories.

Oracle recommends that you add your OC4J-specific XML files within the

recommended development structure as shown in Figure A–1.
ence A-1

OC4J-Specific Deployment Descriptor for EJBs
Figure A–1 Development Application Directory Structure

OC4J-Specific Deployment Descriptor for EJBs
The OC4J-specific deployment descriptor contains extended deployment

information for session beans, entity beans, message driven beans, and security for

these EJBs. The major element structure within this deployment descriptor has the

following structure:

<orion-ejb-jar deployment-time =... deployment-version =...>
 <enterprise-beans>
 <session-deployment ...></session-deployment>
 <entity-deployment ...></entity-deployment>
 <message-driven-deployment ...></message-driven-deployment>
 <jem-deployment ...></jem-deployment>
 <jem-server-extension ...></jem-server-extension>
</enterprise-beans>
 <assembly-descriptor>
 <security-role-mapping ...></security-role-mapping>

applications/<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml

classes/
Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

 (my.Servlet to /my/Servlet)

orion-ejb-jar.xml

orion-web.xml

orion-application-client.xml
A-2 Enterprise JavaBean Developer’s Guide and Reference

OC4J-Specific Deployment Descriptor for EJBs
 <default-method-access></default-method-access>
 </assembly-descriptor>
</orion-ejb-jar>

Each section under the <orion-ejb-jar> main tag has its own purpose. These

are described in the sections below:

■ Enterprise Beans Section

■ Assembly Descriptor Section

Enterprise Beans Section
The <enterprise-beans> section defines additional deployment information for

all EJBs: session beans, entity beans, and message driven beans. There is a section

for each type of EJB.

The following sections describe the elements within <enterprise-beans>
element;

■ Session Bean Section

■ Entity Bean Section

■ Message Driven Bean Section

■ CMP Field Mapping Section

■ Method Definition

Session Bean Section
The <session-bean> section provides additional deployment information for a

session bean deployed within this JAR file. The <session-bean> section contains

the following structure:

<session-deployment call-timeout=... copy-by-value=... location=...
 max-tx-retries=... name=... persistence-filename=... timeout=...
 wrapper=...
 <env-entry-mapping name=...> </env-entry-mapping
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
</session-deployment>
OC4J-Specific DTD Reference A-3

OC4J-Specific Deployment Descriptor for EJBs
Entity Bean Section
The <entity-bean> section provides additional deployment information for an

entity bean deployed within this JAR file. The <entity-bean> section contains the

following structure:

<entity-deployment call-timeout=... clustering-schema=... copy-by-value=...
 data-source=... exclusive-write-access=... isolation=... location=...
 max-tx-retries=... name=... table=... validity-timeout=... wrapper=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...> </cmp-field-mapping>
 <finder-method partial=... query=... >
 <method></method>
 </finder-method>
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
</entity-deployment>

Message Driven Bean Section
The <message-driven-bean> section provides additional deployment

information for a message driven bean deployed within this JAR file. The

<message-driven-bean> section contains the following structure:

<message-driven-deployment connection-factory-location=...
 destination-location=... name=...>
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
</message-driven-deployment>
A-4 Enterprise JavaBean Developer’s Guide and Reference

OC4J-Specific Deployment Descriptor for EJBs
AC4J Active EJB Section
The <jem-server-extension> section defines the JNDI name of the database

where the AC4J Databus is installed. The <jem-server-extension> contains the

following structure:

<jem-server-extension data-source-location=...>
 <description></description>
</jem-server-extension>

The <jem-deployment> section provides additional deployment information for

an active EJB deployed within this JAR file. The <jem-deployment> section

contains the following structure:

 <jem-deployment jem-name=... ejb-name=...>
 <description></description>
 <called-by>
 <caller caller-identity=.../>
 </called-by>
 <security-identity>
 <description></description>
 <use-caller-identity></use-caller-identity>
 </security-identity>
 </jem-deployment>

CMP Field Mapping Section
The mapping of logical names to actual names can be a complex process. See

"Object-Relational Mapping of Persistent Fields" on page 3-13 for a discussion on

mapping CMP data fields.

The following are the XML elements used for CMP persistent data field mapping

within the orion-ejb-jar.xml file:

<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...>
 <fields>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </fields>
 <properties>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </properties>
 <entity-ref home=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
OC4J-Specific DTD Reference A-5

OC4J-Specific Deployment Descriptor for EJBs
 persistence-type=...></cmp-field-mapping>
 </entity-ref>
 <list-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </list-mapping>
 <collection-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 <set-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </set-mapping>
 <map-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <map-key-mapping type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </map-key-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
A-6 Enterprise JavaBean Developer’s Guide and Reference

OC4J-Specific Deployment Descriptor for EJBs
 </map-mapping>
</cmp-field-mapping>

Method Definition
The following structure is used to specify the methods (and possibly parameters of

that method) of the bean.

<method>
 <description></description>
 <ejb-name></ejb-name>
 <method-intf></method-intf>
 <method-name></method-name>
 <method-params>
 <method-param></method-param>
 </method-params>
</method>

The style used can be one of the following:

1. When referring to all the methods of the specified enterprise bean's home and

remote interfaces, specify the methods as follows:

<method>
<ejb-name>EJBNAME</ejb-name>

<method-name>*</method-name>
</method>

2. When referring to multiple methods with the same overloaded name, specify

the methods as follows:

<method>
<ejb-name>EJBNAME</ejb-name>

<method-name>METHOD</method-name>
</method>>

3. When referring to a single method within a set of methods with an overloaded

name, you can specify each parameter within the method as follows:

<method>
<ejb-name>EJBNAME</ejb-name>

<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
OC4J-Specific DTD Reference A-7

OC4J-Specific Deployment Descriptor for EJBs
...
<method-param>PARAM-n</method-param>

</method-params>
<method>

Assembly Descriptor Section
In addition to specifying deployment information for individual beans, you can also

specify addition deployment information for security in the

<assembly-descriptor> section. The <assembly-descriptor> section

contains the following structure:

<assembly-descriptor>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 <default-method-access>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 </default-method-access>
</assembly-descriptor>
A-8 Enterprise JavaBean Developer’s Guide and Reference

DTD Listing
DTD Listing
The following lists the orion-ejb-jar.xml DTD to show the ordering required,

and optional parameters for each element. The definitions for each element is

described in "Element Description" on page A-12.

<!ELEMENT properties (cmp-field-mapping*)>
<!ELEMENT fields (cmp-field-mapping*)>
<!ELEMENT session-deployment (env-entry-mapping*, ejb-ref-mapping*,
 resource-ref-mapping*)>
<!ATTLIST session-deployment call-timeout CDATA #IMPLIED
 copy-by-value CDATA #IMPLIED
 location CDATA #IMPLIED
 max-tx-retries CDATA #IMPLIED
 name CDATA #IMPLIED
 persistence-filename CDATA #IMPLIED
 timeout CDATA #IMPLIED
 wrapper CDATA #IMPLIED
 replication CDATA #IMPLIED>
<!ELEMENT collection-mapping (primkey-mapping, value-mapping)>
<!ATTLIST collection-mapping table CDATA #IMPLIED>
<!ELEMENT resource-ref-mapping (lookup-context?)>
<!ATTLIST resource-ref-mapping location CDATA #IMPLIED
 name CDATA #REQUIRED>
<!ELEMENT method-intf (#PCDATA)>
<!ELEMENT entity-ref (cmp-field-mapping)>
<!ATTLIST entity-ref home CDATA #IMPLIED>
<!ELEMENT enterprise-beans ((session-deployment | entity-deployment |
 message-driven-deployment | jem-deployment)+, jem-server-extension?)>
<!ELEMENT ejb-ref-mapping (#PCDATA)>
<!ATTLIST ejb-ref-mapping location CDATA #IMPLIED
 name CDATA #REQUIRED>
<!ELEMENT primkey-mapping (cmp-field-mapping)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT env-entry-mapping (#PCDATA)>
<!ATTLIST env-entry-mapping name CDATA #IMPLIED>
<!ELEMENT security-role-mapping (group*, user*)>
<!ATTLIST security-role-mapping impliesAll CDATA #IMPLIED
 name CDATA #IMPLIED>
<!ELEMENT method-params (method-param*)>
<!ELEMENT cmp-field-mapping
 (fields|properties|entity-ref|list-mapping|collection-mapping|set-mapping|
 map-mapping|field-persistence-manager)?>
<!ATTLIST cmp-field-mapping ejb-reference-home CDATA #IMPLIED
 name CDATA #IMPLIED
OC4J-Specific DTD Reference A-9

DTD Listing
 persistence-name CDATA #IMPLIED
 persistence-type CDATA #IMPLIED>
<!ELEMENT list-mapping (primkey-mapping, value-mapping)>
<!ATTLIST list-mapping table CDATA #IMPLIED>
<!ELEMENT group (#PCDATA)>
<!ATTLIST group name CDATA #IMPLIED>
<!ELEMENT default-method-access (security-role-mapping)>
<!ELEMENT map-key-mapping (cmp-field-mapping)>
<!ATTLIST map-key-mapping type CDATA #IMPLIED>
<!ELEMENT map-mapping (primkey-mapping, map-key-mapping, value-mapping)>
<!ATTLIST map-mapping table CDATA #IMPLIED>
<!ELEMENT value-mapping (cmp-field-mapping)>
<!ATTLIST value-mapping immutable CDATA #IMPLIED
 type CDATA #IMPLIED>
<!ELEMENT method-param (#PCDATA)>
<!ELEMENT user (#PCDATA)>
<!ATTLIST user name CDATA #IMPLIED>
<!ELEMENT lookup-context (context-attribute+)>
<!ATTLIST lookup-context location CDATA #IMPLIED>
<!ELEMENT context-attribute (#PCDATA)>
<!ATTLIST context-attribute name CDATA #IMPLIED
 value CDATA #IMPLIED>
<!ELEMENT set-mapping (primkey-mapping, value-mapping)>
<!ATTLIST set-mapping table CDATA #IMPLIED>
<!ELEMENT message-driven-deployment (env-entry-mapping*, ejb-ref-mapping*,
 resource-ref-mapping*)>
<!ATTLIST message-driven-deployment cache-timeout CDATA #IMPLIED
 connection-factory-location CDATA #IMPLIED
 destination-location CDATA #IMPLIED
 max-instances CDATA #IMPLIED
 min-instances CDATA #IMPLIED
 name CDATA #IMPLIED>
<!ELEMENT jem-server-extension (description?, data-bus?)>
<!ATTLIST jem-server-extension
 data-source-location CDATA #REQUIRED
 scheduling-threads CDATA #IMPLIED>
<!ELEMENT data-bus EMPTY>
<!ATTLIST data-bus
 data-bus-name CDATA #REQUIRED
 url CDATA #IMPLIED>
<!ELEMENT jem-deployment (description?, data-bus?, called-by,
 security-identity)>
<!ATTLIST jem-deployment
 jem-name CDATA #REQUIRED
 ejb-name CDATA #REQUIRED>
A-10 Enterprise JavaBean Developer’s Guide and Reference

DTD Listing
<!ELEMENT called-by (caller+)>
<!ELEMENT caller EMPTY>
<!ATTLIST caller
 caller-identity CDATA #REQUIRED>
<!ELEMENT security-identity
 (description?,(use-caller-identity|run-as-specified-identity))>
<!ELEMENT use-caller-identity EMPTY>
<!ELEMENT run-as-specified-identity (description?, role-name)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT ejb-name (#PCDATA)>
<!ELEMENT field-persistence-manager (property)>
<!ATTLIST field-persistence-manager class CDATA #IMPLIED>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #IMPLIED
 value CDATA #IMPLIED>
<!ELEMENT finder-method (method)>
<!ATTLIST finder-method partial CDATA #IMPLIED
 query CDATA #IMPLIED>
<!ELEMENT method (description?, ejb-name, method-intf?, method-name,
 method-params?)>
<!ELEMENT entity-deployment (primkey-mapping?, cmp-field-mapping*,
 finder-method*, env-entry-mapping*, ejb-ref-mapping*, resource-ref-mapping*)>
<!ATTLIST entity-deployment call-timeout CDATA #IMPLIED
 clustering-schema CDATA #IMPLIED
 copy-by-value CDATA #IMPLIED
 data-source CDATA #IMPLIED
 exclusive-write-access CDATA #IMPLIED
 instance-cache-timeout CDATA #IMPLIED
 location CDATA #IMPLIED
 isolation (commited | serializable | uncommited | repeatable_reads)
 CDATA #IMPLIED
 locking-mode (pessimistic | optimistic | read-only | old_pessimistic)
 max-instances CDATA #IMPLIED
 min-instances CDATA #IMPLIED
 max-instances-per-pk CDATA #IMPLIED
 min-instances-per-pk CDATA #IMPLIED
 max-tx-retries CDATA #IMPLIED
 update-changed-fields-only (true | false) "true"
 name CDATA #IMPLIED
 pool-cache-timeout CDATA #IMPLIED
 table CDATA #IMPLIED
 validity-timeout CDATA #IMPLIED
 wrapper CDATA #IMPLIED>
<!ELEMENT orion-ejb-jar (enterprise-beans, assembly-descriptor)>
<!ATTLIST orion-ejb-jar deployment-time CDATA #IMPLIED
OC4J-Specific DTD Reference A-11

Element Description
 deployment-version CDATA #IMPLIED>
<!ELEMENT assembly-descriptor (security-role-mapping*, default-method-access?)>
<!ELEMENT method-name (#PCDATA)>

Element Description
<assembly-descriptor>
The mapping of the assembly descriptor elements.

<cmp-field-mapping>
Deployment information for a container-managed persistence field. If no subtags

are used to define different behavior, the field is persisted through serialization or

native handling of "recognized" primitive types.

Attributes:

■ ejb-reference-home - The JNDI-location of the fields remote EJB-home if the

field is an entity EJBObject or an EJBHome.

■ name - The name of the field.

■ persistence-name - The name of the field in the database table.

■ persistence-type - The database type (valid values varies from database to

database) of the field.

<collection-mapping>
Specifies a relational mapping of a Collection type. A Collection consists of n

unordered items (order isnt specified and not relevant). The field containing the

mapping must be of type java.util.Collection.

Attiributes:

■ table - The name of the table in the database.

<context-attribute>
An attribute sent to the context. The only mandatory attribute in JNDI is the

’java.naming.factory.initial ’ which is the classname of the context factory

implementation.

Attributes:

■ name - The name of the attribute.

■ value - The value of the attribute.
A-12 Enterprise JavaBean Developer’s Guide and Reference

Element Description
<default-method-access>
The default method access policy for methods not tied to a method-permission.

<description>
A short description.

<ejb-name>
The ejb-name element specifies an enterprise bean’s name. This name is assigned by

the ejb-jar file producer to name the enterprise bean in the ejb-jar file’s deployment

descriptor. The name must be unique among the names of the enterprise beans in

the same ejb-jar file. The enterprise bean code does not depend on the name;

therefore the name can be changed during the application-assembly process

without breaking the enterprise bean’s function. There is no architected relationship

between the ejb-name in the deployment descriptor and the JNDI name that the

Deployer will assign to the enterprise bean’s home. The name must conform to the

lexical rules for an NMTOKEN.

<ejb-ref-mapping>
The ejb-ref element that is used for the declaration of a reference to another

enterprise bean’s home. The ejb-ref-mapping element ties this to a

JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the EJB home from.

■ name - The ejb-ref’s name. Matches the name of an ejb-ref in ejb-jar.xml.

<enterprise-beans>
The beans contained in this EJB JAR file.

<entity-deployment>
Deployment information for an entity bean.

Attributes:

■ call-timeout - The time (long milliseconds in decimal) to wait for an EJB if it is

busy (before throwing a RemoteException , treating it as a deadlock). This is

also used as a SQL query timeout. If the timeout occurs before the SQL query

finishes, a SQL exception is thrown. If zero, the timeout is disabled. The default

is 90 seconds.

■ clustering-schema - The name of the data-source used if using

container-managed persistence.
OC4J-Specific DTD Reference A-13

Element Description
■ copy-by-value - Whether or not to copy all the incoming/outgoing parameters

for all incoming and outgoing EJB calls. Set to ’false’ if your application does

not assume copy-by-value semantics for these parameters. The default is ’true’.

■ data-source - The name of the data source used if using container-managed

persistence.

■ disable-wrapper-cache - If true, a pool of wrapper instances is not maintained.

The default is false.

■ exclusive-write-access - Whether or not the EJB-server has exclusive write

(update) access to the database backend. This can be used only for entity beans

that use a "read_only " locking mode. In this case, it increases the performance

for common bean operations and enables better caching. The default is false.

■ instance-cache-timeout - The amount of time in seconds that entity wrapper

instances are assigned to an identity. If you specify ’never’, you retain the

wrapper instances until they are garbage collected. The default is 60 seconds.

■ isolation - Specifies the isolation-level for database actions. The valid values for

Oracle databases are ’serializable’ and ’committed’. The default is ’committed’.

Non-Oracle databases can be the following: ’none’, ’committed’, ’serializable’,

’uncommitted’, and ’repeatable_read’.

■ location - The JNDI-name this bean will be bound to.

■ locking-mode - The concurrency modes configure when to block to manage

resource contention or when to execute in parallel. The concurrency modes are

as follows:

– PESSIMISTIC : This manages resource contention and does not allow

parallel execution. Only one user at a time is allowed to execute the entity

bean at a single time.

– OPTIMISTIC : Multiple users can execute the entity bean in parallel. It does

not monitor resource contention; thus, the burden of the data consistency is

placed on the database isolation modes. This is the default.

– READ-ONLY: Multiple users can execute the entity bean in parallel. The

container does not allow any updates to the bean’s state.

■ max-instances - The number of maximum bean implementation instances to be

kept instantiated or pooled. The default is 10.

■ min-instances - The number of minimum bean implementation instances to be

kept instantiated or pooled. The default is 0.
A-14 Enterprise JavaBean Developer’s Guide and Reference

Element Description
■ max-instances-per-pk - The number of maximum wrapper instances to be kept

instantiated or pooled. The default is 50.

■ min-instances-per-pk - The number of minimum wrapper instances to be kept

instantiated or pooled. The default is 0.

■ max-tx-retries - The number of times to retry a transaction that was rolled back

due to system-level failures. The default is 3. Consider setting to zero if using

the serializable isolation level. Within a transaction, the container uses the

max-tx-retries value of the first invoked bean within the transaction

■ name - The name of the bean, this matches the name of a bean in the assembly

descriptor (ejb-jar.xml).

■ pool-cache-timeout - The amount of time in seconds that the bean

implementation instances are to be kept in the "pooled" (unassigned) state,

specifying ’never’ retains the instances until they are garbage collected. The

default is 60.

■ table - The name of the table in the database if using container-managed

persistence.

■ validity-timeout - The maximum amount of time (in milliseconds) that an entity

is valid in the cache (before being reloaded). Useful for loosely coupled

environments where rare updates from legacy systems occur. This attribute is

only valid for entity beans with locking mode of read_only and when

exclusive-write-access="true" (the default).

■ update-changed-fields-only - Specifies whether the container updates only

modified fields or all fields to persistence storage for CMP entity beans when

ejbStore is invoked. The default is true, which specifies to only update

modified fields.

■ wrapper - Name of the OC4J wrapper class for this bean. (internal server

attribute, do not edit)

<entity-ref>
Specified the configuration for persisting an entity reference via it’s primary key.

The child-tag of this tag is the specification of how to persist the primary key.

Attributes:

■ home - JNDI location of the EJBHome to get lookup the beans at.

<env-entry-mapping>
Overrides the value of an env-entry in the assembly descriptor. It is used to keep

the EAR clean from deployment-specific values. The body is the value.
OC4J-Specific DTD Reference A-15

Element Description
Attribute:

■ name - The name of the context parameter.

<fields>
Specifies the configuration of a field-based (java class field) mapping persistence for

this field. The fields that are to be persisted have to be public, non-static, non-final

and the type of the containing object has to have an empty constructor.

<finder-method>
The definition of a container-managed finder method. This defines the selection

criteria in a findByXXX () method in the bean’s home.

Attributes:

■ partial - Whether or not the specified query is a partial one. A partial query is

the ’where’ clause or the ’order’ (if it starts with order) clause of the SQL query.

Queries are partial by default. If partial="false" is specified then the full query is

to be entered as value for the query attribute and you need to make sure that

the query produces a result-set containing all of the CMP fields. This is useful

when doing advances queries involving table joins and similar.

■ query - The query part of an SQL statement. This is the section following the

WHERE keyword in the statement. Special tokens are $number which denotes

an method argument number and $name which denotes a cmp-field name. For

instance the query for "findByAge(int age)" would be (assuming the cmp-field

is named ’age’): "$1 = $age".

<group>
A group that this <security-role-mapping> implies. That is, all members of

the specified group are included in this role.

Attributes:

■ name - The name of the group.

<jem-deployment>
Specifies an active EJB for deployment into the AC4J container.

Attributes:

■ called-by - Provides the user identity of who will call this bean through the

Databus.

■ security-identity - describes if the Databus should use the caller or run-as

identity.
A-16 Enterprise JavaBean Developer’s Guide and Reference

Element Description
<jem-server-extension>
Describes the database server where the Databus is installed

Attributes:

■ data-source-location - Provides the JNDI data source definition of the database

where the Databus exists. The data source is configured in the

data-sources.xml file.

<list-mapping>
Specifies a relational mapping of a List type. A List is a sequential (where

order/index is important) Collection of items. The field containing the mapping

must be of type java.util.List or the legacy types java.util.Vector or Type[].

Attributes:

■ table - The name of the table in the database.

<lookup-context>
The specification of an optional javax.naming.Context implementation used

for retrieving the resource. This is useful when using third party modules, such as a

third party JMS server. Either use the context implementation supplied by the

resource vendor or, if none exists, write an implementation that negotiates with the

vendor software.

Attribute:

■ location - The name looked for in the foreign context when retrieving the

resource.

<map-key-mapping>
Specifies a mapping of the map key. Map keys are always immutable.

Attributes:

■ type - The fully qualified class name of the type of the value. Examples are

com.acme.Product, java.lang.String etc.

<map-mapping>
Specifies a relational mapping of a Map type. A Map consists of n unique keys and

their mapping to values. The field containing the mapping must be of type

java.util.Map or the legacy types java.util.Hashtable or java.util.Properties.

Attributes:

■ table - The name of the table in the database.
OC4J-Specific DTD Reference A-17

Element Description
<message-driven-deployment>
Deployment information for a MDB.

Attributes:

■ connection-factory-location - The JNDI location of the connection factory to use.

■ destination-location - The JNDI location of the destination (queue/topic) to use.

■ max-instances - The maximum number of bean instances to instantiate. The

default is -1, which implies an infinite number.

■ min-instances - The minimum number of bean instances to instantiate.

■ name - The name of the bean, this matches the name of a bean in the assembly

descriptor (ejb-jar.xml).

<method>
Specify the methods (and possibly parameters of that method) of the bean.

<method-intf>
The method-intf element allows a method element to differentiate between the

methods with the same name and signature that are defined in both the remote and

home interfaces. The method-intf element must be one of the following: Home or

Remote.

<method-name>
The method-name element contains a name of an enterprise bean method, or the

asterisk (*) character. The asterisk is used when the element denotes all the methods

of an enterprise bean’s remote and home interfaces.

<method-param>
The method-param element contains the fully-qualified Java type name of a method

parameter.

<method-params>
The method-params element contains a list of the fully-qualified Java type names of

the method parameters.

<orion-ejb-jar>
An orion-ejb-jar.xml file contains the OC4J-specific deployment information

for an EJB. It is used to specify initial deployment properties. After each

deployment the deployment file is reformatted and altered by the server for

additional information.

Attributes:
A-18 Enterprise JavaBean Developer’s Guide and Reference

Element Description
■ deployment-time - The time (long milliseconds in decimal) of the last

deployment, if not matching the last editing date the jar will be redeployed.

(internal server value, do not edit)

■ deployment-version - The version of OC4J this jar was deployed with, if it’s not

matching the current version then it will be redeployed. (internal server value,

do not edit)

<primkey-mapping>
Designates how the primary key is mapped.

<properties>
Specifies the configuration of a property-based (bean properties) mapping

persistence for this field. The properties have to adhere to the usual JavaBeans

specification and the type of the containing object has to have an empty constructor

This is also designated within the EJB specification.

<resource-ref-mapping>
The resource-ref element is used for the declaration of a reference to an external

resource such as a data source, JMS queue, or mail session. The

resource-ref-mapping ties this to a JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the resource factory from.

■ name - The resource-ref name. Matches the name of an resource-ref in

ejb-jar.xml .

<security-role-mapping>
The runtime mapping (to groups and users) of a role. Maps to a security-role of the

same name in the assembly descriptor.

Attributes:

■ impliesAll - Whether or not this mapping implies all users. The default is false.

■ name - The name of the role

<session-deployment>
Deployment information for a session bean.

Attributes:

■ cache-timeout—How long to keep stateless sessions cached in the pool. Only

applies to stateless session beans. The default is 60. Legal values are positive

integer values or ’never ’.
OC4J-Specific DTD Reference A-19

Element Description
■ call-timeout—The time (long milliseconds in decimal) to wait for an EJB if it is

busy. After this times out, a RemoteException is thrown and the EJB is

treated as involved in a deadlock. If value is set to 0, OC4J waits for the EJB

"forever". This is the default.

■ copy-by-value—Whether or not to copy (clone) all the incoming and outgoing

parameters in EJB calls. Set to ’false’ if you are certain that your application

does not assume copy-by-value semantics for a speed-up. The default is ’true’.

■ location—The JNDI-name that this bean will be bound to.

■ max-tx-retries—The number of times to retry a transaction that was rolled back

due to system-level failures. The default is 3. Within a transaction, the container

uses the max-tx-retries value of the first invoked bean within the transaction.

■ name—The name of the bean, which matches the name of a bean in the

assembly section of the EJB deployment descriptor (ejb-jar.xml).

■ persistence-filename—Path to the file where sessions are stored across restarts.

■ timeout—Inactivity timeout in seconds. If the value is zero or negative, then all

timeouts are disabled. The default is 30 minutes.

■ wrapper—Name of the OC4J wrapper class for this bean. This is an internal

server value and should not be edited.

<set-mapping>
Specifies a relational mapping of a Set type. A Set consists of n unique unordered

items (order is not specified and not relevant). The field containing the mapping

must be of type java.util.Set.

Attributes:

■ table - The name of the table in the database.

<user>
A user that this security-role-mapping implies.

Attributes:

■ name - The name of the user.

<value-mapping>
Specified a mapping of the primary key part of a set of fields.

Attributes:

■ immutable - Whether or not the value can be trusted to be immutable once

added to the Collection/Map . Setting this to true will optimize database
A-20 Enterprise JavaBean Developer’s Guide and Reference

Element Description
operations extensively. The default value is "true" for set-mapping and

map-mappings and "false" for collection-mapping and list-mapping.

■ type - The fully qualified class name of the type of the value. Examples are

com.acme.OrderEntry , java.lang.String , and so on.
OC4J-Specific DTD Reference A-21

Element Description
A-22 Enterprise JavaBean Developer’s Guide and Reference

Third Party Lice
B

Third Party Licenses

This appendix includes the Third Party License for all the third party products

included with Oracle9i Application Server. Topics include:

■ Apache HTTP Server

■ Apache JServ
nses B-1

Apache HTTP Server
Apache HTTP Server
Under the terms of the Apache license, Oracle is required toprovide the following

notices. However, the Oracle program license that accompanied this product

determines your right to use the Oracle program, including the Apache software,

and the terms contained in the following notices do not change those rights.

Notwithstanding anything to the contrary in the Oracle program license, the

Apache software is provided by Oracle "AS IS" and without warranty or support of

any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
B-2 Enterprise JavaBean Developer’s Guide and Reference

Apache HTTP Server
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */
Third Party Licenses B-3

Apache JServ
Apache JServ
Under the terms of the Apache license, Oracle is required toprovide the following

notices. However, the Oracle program license that accompanied this product

determines your right to use the Oracle program, including the Apache software,

and the terms contained in the following notices do not change those rights.

Notwithstanding anything to the contrary in the Oracle program license, the

Apache software is provided by Oracle "AS IS" and without warranty or support of

any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must

display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache

Project" must not be used to endorse or promote products derived from this

software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may

"Apache" nor "Apache JServ" appear in their names without prior written

permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following

acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND

ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
B-4 Enterprise JavaBean Developer’s Guide and Reference

Apache JServ
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.
Third Party Licenses B-5

Apache JServ
B-6 Enterprise JavaBean Developer’s Guide and Reference

Index

Symbols
<application> element, 2-14

<ejb> element, 2-11

<ejb-link> element, 6-18

<ejb-location> element, 4-11

<ejb-mapping> element, 6-18

<ejb-name> element, 6-18

<ejb-ref> element, 6-18

<ejb-ref-mapping> element, 6-18

<ejb-ref-name> element, 6-18, 6-19

<ejb-ref-type> element, 6-18

<entity-deployment> element, 6-9, 6-11

<env-entry> element, 6-14

<env-entry-name> element, 6-14

<env-entry-type> element, 6-14

<env-entry-value> element, 6-14

<home> element, 6-18

<java> element, 2-11

<jndi-name> element, 6-18, 6-22, 6-25

<mapping> element, 6-18, 6-22, 6-25

<max-tx-retries> element, 6-10

<message-driven> element, 5-5

<method-permission> element, 6-26

<module> element, 2-11

<persistence-type> element, 4-10

<prim-key-class> element, 3-8, 4-4

<remote> element, 6-18

<res-auth> element, 6-23, 6-25

<resource-ref> element, 4-10

<resource-ref-mapping> element, 6-22, 6-25

<res-ref-name> element, 6-22, 6-25

<res-type> element, 6-23, 6-25

<role-link> element, 6-26

<role-name> element, 6-26

<security-role> element, 6-26

<security-role-mapping> element, 6-29

<security-role-ref> element, 6-26

<web> element, 2-11

A
AC4J, 8-1 to 8-39

Active Components for Java, see AC4J

admin.jar command, 2-13

application.xml file, 2-11, 5-2

example, 2-12

overview, 2-11, 4-3

archiving

directions, 2-11

EAR file, 2-12

EJBs, 2-10

B
bean

accessing remotely, 1-2

activation, 1-6

creating, 2-3, 3-2

environment, 1-8

implementation, 2-6

interface, 1-2

overview, 1-1

passivation, 1-6

removal, 2-7

steps for invocation, 1-3

bean-managed persistent, see BMP

BMP
Index-1

create database tables, 4-11

creation process, 4-2

defined, 4-1

deployment descriptor, 4-10

ejbCreate implementation, 4-3

home and remote interfaces, 4-3

implementation details, 4-3

persistence, 1-14

C
clustering, 7-1 to 7-9

concurrency mode effect, 6-12

deploying application to all nodes, 7-8

CMP

overview, 1-15

persistence update configuration, 6-14

concurrency modes, 6-8

clustering, 6-12

connection

dedicated, 6-6

context

session, 1-8

transaction, 1-8

create method, 2-7, 3-2, 3-3, 4-2

EJBHome interface, 1-3, 2-4

CreateException, 2-4

D
DataSource object, 6-20

data-sources.xml file, 4-11

deadlock

recovery, 6-32

dedicated.connection property, 6-6

deployment

command-line tool, 2-13

deployment descriptor, 1-3, 2-9, 3-2

BMP, 4-3, 4-10

EJB reference, 6-15

entity bean, 3-10

environment variables, 6-14

JDBC DataSource, 6-19

MDB, 5-2

security, 6-26, 6-29

disable-wrapper-cache attribute, 6-13

DTD file, 2-10

dynamic cluster discovery, 7-3

E
EAR file, 2-1

creation, 2-12

EJB

archive, 2-10

clustering, 7-1 to 7-9

creating, 2-2, 2-3, 2-6, 3-2

deployment, 2-13

command-line tool, 2-13

manual, 2-14

deployment descriptor, 2-9

development suggestions, 2-2

difference between session and entity, 1-19

home interface, 2-4

JAR file, 3-2, 4-3, 5-2

overview, 1-1

parameter passing, 1-4

remote interface, 2-5

replication, 7-7

setting pool size, 6-12

ejbActivate method, 1-6, 1-13, 4-2, 4-9

EJBContext interface, 1-7

ejbCreate method, 1-12, 1-13, 1-15, 2-4, 3-2, 4-2, 4-3

initializing primary key, 4-3

MDB, 5-2

SessionBean interface, 1-6

EJBException, 2-4, 2-5

ejbFindByPrimaryKey method, 1-15, 3-2, 4-2, 4-3,

4-6

EJBHome interface, 2-3, 2-4, 3-2

create method, 3-2, 3-3, 4-2

findByPrimaryKey method, 3-2, 3-3, 4-2

ejb-jar.xml file, 2-9, 4-10

ejbLoad method, 1-12, 1-14, 1-15, 1-16, 4-2, 4-8

EJBObject interface, 2-3, 2-5, 3-2, 3-4, 4-2

ejbPassivate method, 1-6, 1-13, 4-2, 4-9

ejbPostCreate method, 1-12, 1-15, 3-2, 4-2

ejbRemove method, 1-6, 1-12, 1-14, 1-15, 4-10

MDB, 5-2

ejbStore method, 1-12, 1-14, 1-15, 4-2, 4-8
Index-2

Enterprise Archive file, see EAR file

Enterprise Java Beans, see EJB

entity bean

class implementation, 3-4

clustering, 7-4

context information, 1-13

creating, 1-13, 3-2, 3-3

deploy, 3-10

finder methods, 3-3, 4-3

home interface, 3-3

overview, 1-5, 1-10

persistent data, 1-11, 1-14

primary key, 1-11

remote interface, 3-4

removing, 1-14

EntityBean interface, 1-4, 1-11, 1-15, 2-4, 3-2

ejbActivate method, 1-13, 4-2

ejbCreate method, 1-12, 1-13, 1-15

ejbFindByPrimaryKey method, 1-15, 3-2, 4-2

ejbLoad method, 1-12, 1-14, 1-15, 1-16, 4-2

ejbPassivate method, 1-13, 4-2

ejbPostCreate method, 1-12

ejbRemove method, 1-12, 1-14, 1-15

ejbStore method, 1-12, 1-14, 1-15, 4-2

setEntityContext method, 1-12, 1-13, 1-16

unsetEntityContext method, 1-13

environment references

URL, 6-24

environment, retrieval, 1-8

exclusive-write-access attribute, 6-11

F
findByPrimaryKey method, 3-2, 4-2

finder methods, 4-3

BMP, 4-7

entity bean, 3-3

findByPrimaryKey method, 3-3

G
getEJBHome method, 1-8

getEnvironment method, 1-8

getRollbackOnly method, 1-8

getUserTransaction method, 1-8

H
home interface

creating, 2-3, 2-7, 3-2, 4-2

example, 2-5

lookup, 2-7

overview, 1-2, 1-3

I
isolation attribute, 6-9

isolation modes, 6-8

J
JAR

archiving command, 2-11

jar command, 2-11

JAR file, 3-2, 4-3, 5-2

EJB, 2-10

Java mail

Session object, 6-21

JMS

handled by MDB, 1-17

jms.xml file, 5-2

JNDI

dedicated connection, 6-6

lookup, 2-7

L
load balancing, 7-9

LoadBalanceOnLookup property, 7-9

locking-mode attribute, 6-11

M
mail

Session object, 6-21

max-instances attribute, 6-13

max-instances-per-pk attribute, 6-13

MDB

configuration, 5-4

creation, 5-2

deployment descriptor, 5-2

overview, 1-5, 1-17, 5-1
Index-3

queue, 5-2

topic, 5-2

Message-Driven Beans, see MDB

MessageDrivenBean interface, 1-18, 5-2

setMessageDrivenContext method, 5-2

MessageListener interface, 1-18, 5-2

onMessage method, 5-2

min-instances attribute, 6-13

min-instances-per-pk attribute, 6-13

N
narrowing, 2-7

O
onMessage method, 1-18, 5-2

optimisitic concurrency mode, 6-10

optimistic concurrency mode, A-14

ORA-8177 exception, 6-12

P
parameters

object types, 1-5

passing conventions, 1-4

pass by reference, 1-4

pass by value, 1-4

persistence

bean-managed, 1-14

container-managed, 1-15

container-managed vs. bean-managed, 1-16

create database tables, 4-11

data management, 1-13

field modification, 6-14

managing, 3-2

managing in BMP, 4-2

overview, 1-11

pessimistic concurrency mode, A-14

pessimistic conncurrency mode, 6-10

pool

setting size, 6-12

PortableRemoteObject

narrow method, 2-7

primary key, 3-2, 4-2

complex class, 4-5

complex definition, 4-4

creating, 4-3

entity bean, 1-15, 3-8

management, 1-13

overview, 1-11, 3-8

simple definition, 4-4

Q
queue

MDB, 5-2

R
read-only concurrency mode, 6-10, A-14

remote interface

business methods, 2-7

creating, 2-3, 2-5, 3-2, 4-2

example, 2-6

overview, 1-2, 1-3

RemoteException, 2-4, 2-5

remove method, 2-7

EJBHome interface, 1-3

S
Serializable interface, 1-5

server.xml file, 2-14

session bean

class implementation, 1-4

context, 1-6

home interface, 2-5

methods, 1-6

overview, 1-5

removing, 1-6

stateful, 1-2, 1-9

stateless, 1-2, 1-8

Session object, 6-21

SessionBean interface, 1-4

EJB, 1-6, 2-4

ejbActivate method, 1-6

ejbCreate method, 1-6

ejbPassivate method, 1-6

ejbRemove method, 1-6
Index-4

setSessionContext method, 1-6

SessionContext

interface, 1-7

setEntityContext method, 1-12, 1-13, 1-16

setMessageDrivenContext method, 1-18, 5-2

setRollbackOnly method, 1-8

setSessionContext method, 1-6, 1-7, 1-13

stateful session bean

clustering, 7-4

overview, 1-9

stateless session bean

clustering, 7-4

overview, 1-8

static cluster discovery, 7-2

T
topic

MDB, 5-2

transaction

commit, 1-8

context propagation, 1-8

retrieve status, 1-8

rollback, 1-8

TRANSACTION_READ_COMMITTED, 6-9

TRANSACTION_SERIALIZABLE, 6-9

U
unsetEntityContext method, 1-13, 1-16

update-changed-fields-only attribute, 6-14

X
XML

BMP, 4-10

deployment descriptor, 3-2, 4-3
Index-5

	Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and Reference, Release 2 (9...
	Send Us Your Comments
	Oracle9iAS Containers for J2EE
	Enterprise JavaBeans Developer’s Guide and Reference, Release 2 (9.0.2)
	Preface
	1 EJB Overview
	Invoking Enterprise JavaBeans
	Implementing an EJB
	Bean Implementation
	Parameter Passing
	Parameter Objects

	Types of EJBs
	Session Beans
	Entity Beans
	Message-Driven Beans

	Difference Between Session and Entity Beans

	2 An EJB Primer For OC4J
	Develop EJBs
	Create the Development Directory
	Implement the Enterprise JavaBeans
	Create the Deployment Descriptor
	Archive the EJB Application

	Prepare the EJB Application for Assembly
	Modify Application.XML
	Create the EAR File

	Deploy the Enterprise Application to OC4J
	Using ADMIN.JAR To Modify SERVER.XML
	Updating SERVER.XML Manually
	Verifying Deployment

	3 CMP Entity Beans
	Creating Entity Beans
	Home Interface
	Remote Interface
	Entity Bean Class
	Persistent Data
	Primary Key
	Deploying the Entity Bean

	Advanced CMP Entity Beans
	Advanced Finder Methods
	Object-Relational Mapping of Persistent Fields

	4 BMP Entity Beans
	Creating BMP Entity Beans
	Remote and Home Interface
	BMP Entity Bean Implementation
	The ejbCreate Implementation
	The ejbFindByPrimaryKey Implementation
	Other Finder Methods
	The ejbStore Implementation
	The ejbLoad Implementation
	The ejbPassivate Implementation
	The ejbActivate Implementation
	The ejbRemove Implementation

	Modify XML Deployment Descriptors
	Create Database Table and Columns for Entity Data

	5 Message-Driven Beans
	Creating Message Driven Beans
	Bean Class Implementation
	Configuring XML Files
	Deploying the Entity Bean

	Client Accessing MDB

	6 Advanced EJB Subjects
	Accessing EJBs
	EJB Reference Information
	Setting JNDI Properties
	Using the Initial Context Factory Classes
	Accessing an EJB in a Remote Server

	Reusing or Dedicating Connections
	Location of Commonly-Used Classes Through Parent
	Changing XML Files After Deployment
	Entity Bean Concurrency and Database Isolation Modes
	Database Isolation Modes
	Entity Bean Concurrency Modes
	Exclusive Write Access to the Database
	Effects of the Combination of Isolation and Concurrency Modes
	Affects of Concurrency Modes on Clustering

	Configuring Pool Sizes For Entity Beans
	Techniques for Updating Persistence
	Configuring Environment References
	Configuring Security
	Users, Groups, and Roles
	Default Role Mapping
	Authenticating EJB Clients

	Common Errors
	NamingException Thrown
	Deadlock Conditions

	7 EJB Clustering
	EJB Clustering Overview
	Stateless Session Bean Clustering
	Stateful Session Bean Clustering
	Entity Bean Clustering
	Combination of HTTP and EJB Clustering

	Enabling Clustering For EJBs
	Configure Nodes With Multicast Address and Identifier
	EJB Replication Configuration
	Deploy EJB Application To All Nodes
	Application Client Retrieval Of Clustered Nodes

	Load Balancing Options

	8 Active Components For Java
	Future Needs of Business Applications
	Current Programming Models
	Remote Procedure Call Model
	Database Transactional Queuing Model
	AC4J Framework

	AC4J Architecture
	Introduction to AC4J Components
	Active EJBs
	Interactions
	Processes
	Reactions
	Data Tokens
	Databus

	Set Up Oracle Database For AC4J Support
	AC4J Databus XML Configuration

	AC4J Example
	Asynchronous Request to An Active EJB
	Active EJB processes the Client’s Request
	Asynchronous Response to the Requesting Active EJB
	Asynchronous Response to the Client
	Receive Response by the Client
	AC4J Active EJB Deployment

	A OC4J-Specific DTD Reference
	OC4J-Specific Deployment Descriptor for EJBs
	Enterprise Beans Section
	Assembly Descriptor Section

	DTD Listing
	Element Description

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

