
Oracle9 i™ Application Server

Oracle HTTP Server powered by Apache Performance Guide

Release 1.0.2 for Sun SPARC Solaris

October 2000

Part No. A86059-01

Oracle 9i Application Server Oracle HTTP Server powered by Apache Performance Guide, Release 1.0.2

Part No. A86059-01

Copyright © 2000, Oracle Corporation. All rights reserved.

Primary Author: Julia Pond

Contributors: Alice Chan, Gary Hallmark, Bruce Irvin, Alexander Hoefling, Sharon Malek, Carol
Orange, Mukul Paithane, Leela Rao, Joan Silverman, Sanjay Singh, Eddy So

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject
to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and the Oracle Logo, Internet Application Server, Oracle8i, Oracle Enterprise
Manager, Oracle Internet Directory, and PL/SQL are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only and
may be trademarks of their respective owners.

This product includes software developed by the Apache Group for use in the Apache HTTP server project
(http://www.apache.org/).

This product includes software developed by the OpenSSL project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

This product includes software developed by Ralf S. Engelschall (rse@engelschall.com) for use in the mod_ssl
project (http://www.modssl.org/).

iii

Contents

1 Performance Overview

Performance Terms ... 1-2
What is Performance Tuning? .. 1-2

Response Time .. 1-3
System Throughput.. 1-4
Wait Time... 1-4
Critical Resources ... 1-5
Effects of Excessive Demand... 1-6
Adjustments to Relieve Problems .. 1-6

Setting Performance Targets ... 1-7
Setting User Expectations.. 1-7
Evaluating Performance .. 1-7
Performance Methodology.. 1-8

Factors in Improving Performance .. 1-9
Architecture.. 1-10

2 Monitoring Your Web Server

Monitoring Processor Use ... 2-2
Using the sar Utility .. 2-2
Using the mpstat Utility .. 2-3

Monitoring Network Traffic ... 2-4
Using the snoop Utility.. 2-4

Monitoring the Web Server .. 2-6
Using the mod_status Utility .. 2-6

iv

Logging Server Statistics to a File... 2-9
Monitoring JServ Processes .. 2-10

3 Sizing and Configuration

Sizing your Hardware and Resources... 3-1
Understanding Concurrent Users and User Population.. 3-1
 Determining CPU Requirements.. 3-3

Secure Sockets Layer Impact on CPU Requirements .. 3-4
Determining Memory Requirements.. 3-4

Memory for Non-HTTP Server Software and Operating System ... 3-5
HTTP Server Memory Requirements .. 3-5
JServ Memory Requirements .. 3-5
Determining Java Heap Size ... 3-5
Servlet and OracleJSP pages Memory Requirements.. 3-6
Number of JServ Processes.. 3-7

4 Optimizing HTTP Server Performance

TCP Tuning .. 4-2
MaxClients ... 4-6
SSL Session Caching .. 4-7
Impact of Logging ... 4-7
HTTP/1.1 ... 4-8

Persistent Connections ... 4-8
Apache Versions .. 4-11

5 Optimizing Apache JServ

JServ Overview.. 5-2
Optimizing Servlet Performance ... 5-3

Loading Servlet Classes ... 5-3
Automatic Class Reloading ... 5-3
Load Balancing.. 5-4
Using Single Thread Model Servlets.. 5-7

What is OracleJSP? ... 5-8
OracleJSP Page Performance Tuning .. 5-8

v

Impact of Session Management.. 5-8
Developer Mode ... 5-9
Buffering .. 5-9
Enhancing OracleJSP Performance .. 5-9

vi

vii

Send Us Your Comments

Oracle HTTP Server powered by Apache Performance Guide, Release 1.0.2

Part No. A86059-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - iasdocs_us@oracle.com

■ Postal service:

Oracle Corporation

500 Oracle Parkway, M/S 6op4

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

viii

ix

Preface

Audience
This guide is written for Oracle 9i Application Server developers and system

administrators who are responsible for configuring and tuning the Oracle HTTP

Server powered by Apache.

Assumptions
There are many sources of information on configuring and tuning web servers,

Apache in particular. This guide refers to those sources when expedient, and, where

practical, quantifies the performance gains resulting from configuration actions

found in those sources. Any recommendations not validated by our in-house testing

are cited as such, with attribution to the original source.

All of our in-house tests were run on a dedicated 100 Mbps network, in order to

achieve repeatable test results. Your results will vary based on network

configuration and contention characteristics. Sun Performance and Tuning: Java and
the Internet by Adrian Cockroft and Richard Petit provides a good discussion of the

impact of different network configurations on performance.

Conventions
This manual uses the following typographical conventions:

x

The term, Oracle Server, refers to the database server product from Oracle

Corporation.

The term, oracle, refers to an executable or account by that name.

The term, oracle, refers to the owner of the Oracle software.

Oracle Services and Support
A wide range of information about Oracle products and global services is available

from:

■ http://www.oracle.com

The sections below provide URLs for selected services.

Oracle Support Services
Technical Support contact information worldwide is listed at:

■ http://www.oracle.com/support

Convention Example Explanation

bold tnsnames.ora
runInstaller
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this
place holder with a specific value or string.

courier ./httpd -d . Text or a command to be entered exactly as it
appears. Also used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each
separated by a vertical bar (|), any one
option can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

xi

Templates are provided to help you prepare information about your problem before

you call. You will also need your CSI number (if applicable) or complete contact

details, including any special project information.

Product and Documentation
For U.S.A customers, Oracle Store is at:

■ http://store.oracle.com

Links to Stores in other countries are provided from this site.

Product documentation can be found at:

■ http://docs.oracle.com

Customer Service
Global Customer Service contacts are listed at:

■ http://www.oracle.com/support

Education and Training
Training information and worldwide schedules are available from:

■ http://education.oracle.com

Oracle Technology Network
Register with the Oracle Technology Network (OTN) at:

■ http://technet.oracle.com

OTN delivers technical papers, code samples, product documentation, self-service

developer support, and Oracle key developer products to enable rapid

development and deployment of application built on Oracle technology.

xii

Performance Overview 1-1

1
Performance Overview

This chapter discusses performance and tuning concepts, and briefly describes

Oracle 9i Application Server architecture.

Contents
■ Performance Terms

■ What is Performance Tuning?

■ Setting Performance Targets

■ Setting User Expectations

■ Evaluating Performance

■ Performance Methodology

■ Architecture

Performance Terms

1-2 Oracle HTTP Server powered by Apache Performance Guide

Performance Terms
Following are performance terms used in this book:

What is Performance Tuning?
Performance must be built in. You must anticipate performance requirements

during application analysis and design, and balance the costs and benefits of

optimal performance (see "Setting Performance Targets" on page 1-7). This section

introduces some fundamental concepts:

■ Response Time

■ System Throughput

concurrency The ability to handle multiple requests simultaneously.

Threads and processes are examples of concurrency

mechanisms.

latency The time that one system component spends waiting for

another component in order to complete the entire task.

Latency can be defined as wasted time. In networking

discussions, latency is defined as the travel time of a

packet from source to destination.

response time The time between the submission of a request and the

completion of the response.

scalability The ability of a system to provide throughput in

proportion to, and limited only by, available hardware

resources.

A scalable system is one that can handle increasing

numbers of requests without adversely affecting response

time and throughput.

service time The time between the initiation and completion of the

response to a request.

think time The time the user is not engaged in actual use of the

processor.

throughput The number of requests processed per unit of time.

wait time The time between the submission of the request and

initiation of the response.

What is Performance Tuning?

Performance Overview 1-3

■ Wait Time

■ Critical Resources

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Response Time
Because response time equals service time plus wait time, you can increase

performance in this area by:

■ Reducing wait time

■ Reducing service time

Figure 1–1 illustrates ten independent tasks competing for a single resource.

Figure 1–1 Sequential processing of independent tasks

In this example, only task 1 runs without waiting. Task 2 must wait until task 1 has

completed; task 3 must wait until tasks 1 and 2 have completed, and so on.

(Although the figure shows the independent tasks as the same size, the size of the

tasks will vary.)

What is Performance Tuning?

1-4 Oracle HTTP Server powered by Apache Performance Guide

In parallel processing with multiple resources, more resources are available to the

tasks. Each independent task executes immediately using its own resource: no wait

time is involved.

System Throughput
System throughput is the amount of work accomplished in a given amount of time.

You can increase throughput by:

■ Reducing service time

■ Reducing overall response time by increasing the amount of scarce resources

available. For example, if the system is CPU bound, and you can add more

CPUs.

Wait Time
While the service time for a task may stay the same, wait time will lengthen with

increased contention. If many users are waiting for a service that takes one second,

the tenth user must wait 9 seconds. Figure 1–2 shows the relationship between wait

time and resource contention.

Figure 1–2 Wait time rising with increased contention for a resource

What is Performance Tuning?

Performance Overview 1-5

Critical Resources
Resources such as CPU, memory, I/O capacity, and network bandwidth are key to

reducing service time. Adding resources increases throughput and reduces

response time. Performance depends on these factors:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows that as the number of units requested rises, the time to service

completion rises.

Figure 1–3 Time to service completion vs. demand rate

To manage this situation, you have two options:

■ Limit demand rate to maintain acceptable response times

■ Add resources

What is Performance Tuning?

1-6 Oracle HTTP Server powered by Apache Performance Guide

Effects of Excessive Demand
Excessive demand increases response time and reduces throughput, as shown in

Figure 1–4. If there is any possibility of the demand rate exceeding the achievable

throughput, a demand limiter (such as MaxClients in the Oracle HTTP Server and

security.maxConnections in JServ) is essential. Look at the possible demands that

may be placed on the system and design the application or configure the system

with these constraints in mind.

Figure 1–4 Increased Demand/Reduced Throughput

Adjustments to Relieve Problems
Performance problems can be relieved by making adjustments in the following

areas:

unit consumption Reducing the resource (CPU, memory)
consumption of each request can improve
performance. This might be achieved by
pooling and caching.

functional demand Rescheduling or redistributing the work
will relieve some problems.

capacity Increasing or reallocating resources (e.g.,
CPUs) relieves some problems.

Evaluating Performance

Performance Overview 1-7

Setting Performance Targets
Whether you are designing or maintaining a system, you should set specific

performance goals so that you know how and what to optimize. If you alter

parameters without a specific goal in mind, you can waste time tuning your system

without significant gain.

An example of a specific performance goal is an order entry response time under

three seconds. If the application does not meet that goal, identify the cause (for

example, I/O contention), and take corrective action. During development, test the

application to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. Once you have determined the

bottlenecks, you may have to modify performance in some other areas to achieve

the desired results. For example, if I/O is a problem, you may need to purchase

more memory or more disks. If a purchase is not possible, you may have to limit the

concurrency of the system to achieve the desired performance. However, if you

have clearly defined goals for performance, the decision on what to trade for higher

performance is simpler because you have identified the most important areas.

Setting User Expectations
Application developers, database administrators, and system administrators must

be careful to set appropriate performance expectations for users. When the system

carries out a particularly complicated operation, response time may be slower than

when it is performing a simple operation. Users should be made aware of which

operations might take longer.

Evaluating Performance
With clearly defined performance goals, you can readily determine when

performance tuning has been successful. Success depends on the functional

objectives you have established with the user community, your ability to measure

whether or not the criteria are being met, and your ability to take corrective action

to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.

Keeping a history of the application’s performance over time enables you to make

useful comparisons. With data about actual resource consumption for a range of

loads, you can conduct objective scalability studies and from these predict the

resource requirements for anticipated load volumes.

Performance Methodology

1-8 Oracle HTTP Server powered by Apache Performance Guide

Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and

periodic adjustment. The first step in performance tuning is to determine the goals

you need to achieve and to design effective usage of available technology into your

applications. After implementing your system, it is necessary to periodically

monitor and adjust your system For example, you might want to ensure that 90% of

the users experience response times no greater than 5 seconds and the maximum

response time for all users is 20 seconds. Usually, it’s not that simple. Your

application may include a variety of operations with differing characteristics and

acceptable response times. You will need to set measurable goals for each of these.

Figure 1–5 Adjusting Capacity and Functional Demand

You will also need to determine variances in the load. For example, users might

access the system heavily between 9:00am and 10:00am and then again between

1:00pm and 2:00pm. If your peak load occurs on a regular basis, for example, daily

or weekly, the conventional wisdom is to configure and tune systems to meet your

peak load requirements. The lucky users who access the application in off-time will

typically achieve better response times than your peak-time users. If your peak load

is infrequent, you may be willing to tolerate higher response times at peak loads for

the cost savings of smaller hardware configurations.

Performance Methodology

Performance Overview 1-9

Factors in Improving Performance
Performance spans several areas:

■ Application design: Designing applications that efficiently utilize hardware

resources and handle increasing numbers of users effectively.

■ Sizing and configuration: Determining the type of hardware needed to support

your performance goals. See Chapter 3, "Sizing and Configuration".

■ Parameter tuning: Setting configurable parameters to achieve the best

performance for your application. See Chapter 5, "Optimizing Apache JServ"

and Chapter 4, "Optimizing HTTP Server Performance".

■ Performance monitoring: Determining what hardware resources are being used

by your application and what response time your users are experiencing. See

Chapter 2, "Monitoring Your Web Server".

■ Troubleshooting: Diagnosing why an application is using excessive hardware

resources, or why the response time exceeds the desired limit.

Architecture

1-10 Oracle HTTP Server powered by Apache Performance Guide

Architecture
Figure 1–6 shows the architecture of Oracle 9i Application Server.

This guide addresses the performance and configuration of these components:

■ Oracle HTTP Server powered by Apache

■ Apache JServ

■ OracleJSP

See the Oracle 9i Application Server Overview Guide for a list of publications that

describe other components.

Figure 1–6 Oracle 9i Application Server architecture

Monitoring Your Web Server 2-1

2
Monitoring Your Web Server

This chapter describes utilities and processes you can use to gather information

from your system. This information helps you to determine the best use of your

resources.

Contents
■ Monitoring Processor Use

■ Monitoring Network Traffic

■ Monitoring the Web Server

■ Monitoring JServ Processes

Monitoring Processor Use

2-2 Oracle HTTP Server powered by Apache Performance Guide

Monitoring Processor Use
To determine process utilization, you should gather CPU statistics. You should also

monitor system scalability by adding users and increasing the system workload.

Use utilities such as sar (System Activity Reporter) and mpstat to monitor process

use.

Using the sar Utility
You can use sar to sample cumulative activity counters in the operating system at

specified intervals.

Report CPU Utilization
To determine process use, use the following sar command:

$ sar -u 5 5

This command samples CPU usage five times, in five second intervals, as shown

below:

$ sar -u 5 5
SunOS dummy-sun 5.5.1 Generic_103640-03 sun4u 03/02/99

15:30:25 %usr %sys %wio %idle
15:30:30 49 36 0 14
15:30:35 52 41 0 7
15:30:40 46 45 0 8
15:30:45 46 44 0 10
15:30:50 50 41 0 9

Average 46 41 0 9

The statistics above show that the CPU was only 9% idle for the given time interval.

If your performance criteria specify that CPU usage must be below a certain

percentage, you can use sar to sample usage at a chosen interval during peak load

times.

Monitoring Processor Use

Monitoring Your Web Server 2-3

The sar command (-u option) provides the following statistics:

Using the mpstat Utility
The mpstat utility is similar to sar in that its first argument is the polling interval

time in seconds. The second argument to mpstat is the number of iterations.

The mpstat command:

$ mpstat 1 3

reports three processor statistics in one second intervals. For example:

$ mpstat 1 3
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 1 0 0 268 64 148 11 0 0 0 33 3 5 0 92
 0 5 0 0 250 49 157 13 0 1 0 357 2 0 0 98
 0 0 0 0 247 47 134 8 0 0 0 326 0 0 0 100

The mpstat utility reports the statistics per processor, as shown in Table 2–2.

Table 2–1 CPU statistics, as reported by the sar utility

CPU Statistics Description

%usr percentage of time in which the processor is running in user
mode

%sys percentage of processes running in system time

%wio percentage the processor spends waiting on I/O requests

%idle percentage that the processor is idle

Table 2–2 CPU statistics, as reported by the mpstat utility

Statistic Description

CPU processor ID

minf number of minor faults

mjf number of major faults

xcal number of inter-processor cross calls

Intr number of interrupts

ithr number of interrupts as threads

Monitoring Network Traffic

2-4 Oracle HTTP Server powered by Apache Performance Guide

Monitoring Network Traffic
You can use network monitoring tools, such as snoop on Solaris or Network

Monotor on Windows NT, to verify the status of a request as it is being transmitted

across the network.

Using the snoop Utility
Following are examples of how you can use the snoop utility to examine network

packets. Using snoop in conjunction with netstat provides a good picture of

network activity.

csw number of context switches

icsw number of involuntary context switches

migr number of thread migrations to another processor

smtx number of spins for a mutex lock, which means the lock was not obtained on
the first attempt

srw number of spins on reader-writer lock, which means the lock was not
obtained on the first attempt

syscl number of system calls

usr percentage of time the processor spent in user mode

sys percentage that the processor spent in system time

wt percentage that the processor spent in wait time (waiting on an event)

idl percentage that the processor spent in idle time

Command Result

snoop Captures and displays all packets as they are
received.

snoop Athena Captures and displays all incoming and
outgoing packets from host Athena.

snoop -o Gods Athena Zeus Captures all incoming and outgoing packets
between hosts Athena and Zeus, and saves
them to a file named Gods.

Table 2–2 CPU statistics, as reported by the mpstat utility

Statistic Description

Monitoring Network Traffic

Monitoring Your Web Server 2-5

You can use different command options to view packets captured in a file. For

example, the command below displays the contents of the Gods file with

timestamps relative to the first packet displayed.

prompt>snoop -i Gods -t r | more

Below is an example of using snoop to diagnose a suspected problem related to the

FIN_WAIT_2 state:

prompt>snoop -i Gods | grep FIN

The first column of the output contains the packet numbers; you can get detailed

information about a packet by typing:

prompt>snoop -i Gods -v -p <packet number>

A good reference source for the snoop utility is Solaris Performance
Administration: Performance Measurement, Fine Tuning, and Capacity Planning for
Releases 2.5.1 and 2.6 by H. Frank Cervone.

Monitoring the Web Server

2-6 Oracle HTTP Server powered by Apache Performance Guide

Monitoring the Web Server
Monitoring is essential to performance tuning. The Oracle HTTP Server provides

server side status information, including current server statistics, via the mod_
status module. To obtain these server status reports, you must configure the web

server as described below.

Using the mod_status Utility
To enable monitoring, edit the httpd.conf file to replace your_domain.com with

the hostname of the server you want to monitor.

<Location /server-status>
 SetHandler server-status
 Order deny, allow
 Deny from all
 Allow from your_domain.com
</Location>

Ensure that the ExtendedStatus directive is set to On, so that the maximum

amount of information is displayed.

When you allow access from all domains, instead of just your_domain.com , you

can monitor the server from machines outside of your domain, but be aware of the

security implications of this: your server status is accessible from any site. It is

probably best to specify the domain(s) from which you want to monitor your

system.

With monitoring enabled, you can view current statistics from

http://hostname:port/server-status. These statistics help you to gain insight on how

busy your system is.

The display includes:

■ Hostname for which status is displayed

■ Server version

■ Date server was built

■ Current time, restart time, uptime

■ Number of requests currently being processed

■ Number of httpd processes serving requests

■ Number of idle httpd processes

Monitoring the Web Server

Monitoring Your Web Server 2-7

■ Current server state (e.g., waiting for connection, reading request, sending

reply, etc.

Figure 2–1 is a screen capture of a server status page with ExtendedStatus
turned on.

Figure 2–1 Server status page

Interpreting Server Status Information
The display (with ExtendedStatus enabled) shows that 6 requests are being

processed and four servers are idle. You can determine what stage of processing

Monitoring the Web Server

2-8 Oracle HTTP Server powered by Apache Performance Guide

each server is in from the value in the M (Mode column). In Figure 2–1, 6 servers are

sending replies and 4 servers are waiting for connections.

If your system has poor response times, or you suspect that httpd processes have

stopped responding, look at the Req (request) column. It shows the number of

milliseconds required to process the most recent request. Check to see if this

number is greater than the time expected to service the request. If, after a request

has been completed, there is a W in the M (mode) column for the process, the

process is probably not responding.

Another situation that is important to monitor is that of the system being CPU

bound, where CPU utilization is around 90%. The server status page displays CPU

usage and the number of processes spawned. If the system is approaching the httpd

process limit (the MaxClients directive’s setting in httpd.conf), performance is

poor, and the processes are all always busy, you may need to change your

MaxClients setting. See "MaxClients" on page 4-6.

Customizing the Server Status display
Figure 2–1 is a snapshot of a server for a moment in time. You can get updated

server statistics at any interval you choose by including the refresh parameter in the

server-status URL:

http://servername:port/server-status?refresh=x

where x is an integer representing the number of seconds after which the data is

refreshed. For example, specify refresh=3 to update statistics every 3 seconds.

You may also find it useful to have the statistics displayed in a machine-readable

format, for processing in a data analysis or spreadsheet program. To do this, add

auto to the end of the URL, as shown below:

http://servername:port/server-status?auto

Figure 2–2 Server statistics display

Monitoring the Web Server

Monitoring Your Web Server 2-9

Logging Server Statistics to a File
The Apache Group provides a Perl script, logstatus.pl, to automate server

monitoring. It is included in the $ORACLE_HOME/Apache/Apache/bin/ directory.

The script is designed to be run by cron (or an equivalent daemon that executes

commands at intervals). To use the script, you must modify the following

configuration variables:

Enabling server status is very useful if an httpd process is not responding, and you

need to identify that process. Operating system utilities such as ps, top, or pmap do

not identify which process is not responding.

For more information on mod_status, see:

http://www.oreillynet.com/pub/a/apache/2000/04/21/wrangler.html

http://www.apache.org/docs/mod/mod_status.html

Table 2–3 Log status script variables

Variable Value

$wherelog The pathname of the log file location, for example:

/private/admin/logs/

The script creates a file name, such as: 20010945.

$port Port number of the server to monitor. The default is 80.

$server The server host name. The default is localhost.

$request The server status request with the auto parameter as entered in
the browser, for example:

http://servername:port/server-status?auto

Monitoring JServ Processes

2-10 Oracle HTTP Server powered by Apache Performance Guide

Monitoring JServ Processes
After you start the Oracle Internet Application Server, you can check to ensure that

all JServ processes have started normally.

1. Remove the comments in the JServ status handler section of the jserv.conf file to

enable monitoring and specify the host(s) that can access JServ status (the

default is localhost). Be aware of security implications when selecting the hosts

that will be allowed to access status information on your system.

<Location /jserv/>
 SetHandler jserv-status
 order deny, allow
 deny from all
 allow from oracle .com
</Location>

2. Type the following into your browser:

http://hostname:port/jserv/

The port must be the port on which the web server listens (found in the

httpd.conf file). Always include the trailing slash (/) in this URL. A “not

found” error occurs if you omit the trailing slash.

A Configured Hosts column displays links to hosts.

3. Click the host to monitor.

The JServ status information for the host displays as shown in Figure 2–3.

Note: The JServ status monitor shows all of the JServ processes

that are configured in the jserv.conf file, but not all of these may

have been started. For example, Figure 2–3 shows four processes,

but only two have a Status of Up (indicating that the process is able

to service requests).

Monitoring JServ Processes

Monitoring Your Web Server 2-11

Figure 2–3 JServ status display

The Status column shows the current shared memory (shm) state of each

process.

Monitoring JServ Processes

2-12 Oracle HTTP Server powered by Apache Performance Guide

The symbols that appear in parentheses after the word Up or Down have the

following meanings:

Note: The Status column is populated only for processes that are

started in manual mode. It is not populated for a single process

started in automatic mode.

Symbol Meaning

+ The process is running.

- The process is stopped.

X The process was terminated in a harsh shutdown.

/ The process was terminated in a graceful shutdown
(existing requests were handled before the process was
terminated).

Sizing and Configuration 3-1

3
Sizing and Configuration

This chapter provides guidelines for sizing and configuration which can help you

meet performance goals. It also discusses performance factors, such as memory

consumption, I/O issues, and network and software constraints.

Contents
■ Sizing your Hardware and Resources

■ Understanding Concurrent Users and User Population

■ Determining CPU Requirements

■ Determining Memory Requirements

Sizing your Hardware and Resources
In addition to the minimum installation recommendations, your hardware

resources need to be adequate for the requirements of your specific applications. To

avoid hardware-related performance bottlenecks, each hardware component should

operate at no more than 80% of capacity. See "Using the sar Utility" on page 2-2 for

information on measuring CPU utilization.

Processor and memory resources in particular should be allocated generously, for

the maximum user load expected.

Understanding Concurrent Users and User Population
The amount of hardware resources required varies based on the application. A

common mistake is to use resource estimates that do not incorporate user think

time and network latencies. In sizing applications, you must have some idea of the

Understanding Concurrent Users and User Population

3-2 Oracle HTTP Server powered by Apache Performance Guide

relationship between the number of potential users and the number of concurrent

users. This is determined by the think time and the average response time for your

application.

To determine memory requirements, you also need to consider the number of

concurrent executing users (not the total user population) times the cost per user.

Note: The MaxClients setting in your httpd.conf file limits the

number of concurrently executing users. See "MaxClients" on

page 4-6 for information on the MaxClients directive.

Determining CPU Requirements

Sizing and Configuration 3-3

Table 3–1 provides an example of the impact of think time and service time on the

concurrency and resulting performance of a system.

 Determining CPU Requirements
For most applications, the majority of the CPU utilization is spent in processing the

application’s code. The CPU requirement of any application depends on its

complexity and workload, as shown in Table 3–2.

You will need to monitor the CPU requirements of applications throughout the

development cycle. See Chapter 2, "Monitoring Your Web Server" for information

on how to do this.

Table 3–1 Concurrent executing users

User
population 1

1 User population - total users.

Think
time
(sec)2

2 Think time - the time the user is not engaged in actual use of the processor (the time between
requests).

Service
time
(sec)3

3 Service time (seconds) - elapsed time to complete the operation measured for a single user.

Range of
concurrent
users 4

4 Range of concurrent users - the number of users measured on the server, taken in snapshots from the
server-status display (requests currently being processed). See "Using the mod_status Utility" on
page 3-4 for information on server-status.

Average
response
Time
(sec)5

5 Average response time - response time measured at the client under load.

Requests per
second
(throughput) 6

6 Requests per second (throughput) - number of requests processed.

CPU
utilization
(%)7

7 CPU utilization - average total CPU utilization as a percentage.

100 0 0.3 100 5.2 19 99

100 1 0.3 65-100 4.2 19 99

100 10 0.3 0-32 0.9 9 48

100 10 0.6 0-53 2.9 8 80

Table 3–2 Application CPU requirements on a 336 MHz SPARC processor

Application
CPU requirement
(per request)

Static page, 20K 5 ms

Simple servlet, JDK 1.2 20 ms

Simple servlet, JDK 1.1.8 40 ms

Determining Memory Requirements

3-4 Oracle HTTP Server powered by Apache Performance Guide

Secure Sockets Layer Impact on CPU Requirements
Secure Sockets Layer (SSL) is a protocol used for transmitting documents securely

over the Internet. URLs for Web pages that require an SSL connection begin with

https instead of http.

Establishing an SSL connection is costly in terms of response time and CPU

utilization. For example, a request with a response time of 0.5 seconds without SSL

generated a response time of 1.7 seconds with SSL (measured on an internal 100

Mbps network). Most of the performance cost in using SSL is in establishing the

connection (approximately 125 ms of CPU time per connection on a 336 Mhz

processor).

The high connection cost is incurred for the first connection in a client’s SSL session,

because the HTTP Server can cache the SSL session information, reducing the

overhead for subsequent connections. For more information, see "SSL Session

Caching" on page 4-7.

Determining Memory Requirements
This section discusses memory requirements for the following components:

■ Memory for Non-HTTP Server Software and Operating System

■ HTTP Server Memory Requirements

■ JServ Memory Requirements

■ Determining Java Heap Size

■ Servlet and OracleJSP pages Memory Requirements

■ Number of JServ Processes

Medium application 100-200 ms

Complex application 400-600 ms

Table 3–2 Application CPU requirements on a 336 MHz SPARC processor

Application
CPU requirement
(per request)

Determining Memory Requirements

Sizing and Configuration 3-5

Memory for Non-HTTP Server Software and Operating System
In an idle system with memory resources freely available, your operating system

statistics may indicate that the resident memory usage is close to the virtual size. As

users place more load on the system, the operating system reclaims unneeded

memory from these processes, and the amount of resident memory they consume

decreases. If you are monitoring your own system, take snapshots of processes at

varying usage levels.

Refer to your operating system hardware and software documentation for more

information on measuring and tuning operating system memory usage. You can

monitor memory usage and processor statistics with standard operating system

tools. See Chapter 2, "Monitoring Your Web Server" for more information.

Sun recommends reserving 15% of the overall real memory on the system for the

kernel and other system overhead.

For a discussion on memory usage in Solaris, see the white paper entitled “The

Solaris Memory System: Sizing, Tools and Architecture” at:

http://www.sun.com/sun-on-net/performance/vmsizing.pdf

HTTP Server Memory Requirements
In a series of tests of listener memory usage, each HTTP listener used (at startup)

approximately 400K of resident memory. This size increased by 500-600K per

process when the listener was active. When it was dormant, the operating system

reduced the listener’s memory usage back to the startup size.

Using standard operating system tools, you can examine resident memory sizes. If

you look at a listener process, you will see that it is larger than the figure above

because the displayed size includes shared memory.

JServ Memory Requirements
A JServ process using JDK 1.2 requires 12-15 MB at startup. Using JDK 1.1.8, it

requires 10 MB.

Determining Java Heap Size
For JDK 1.1.8, the default maximum heap size is 16MB. For JDK 1.2, it is 24MB.

To maximize performance, set the maximum heap size to accommodate application

requirements. To determine how much Java heap you need, include calls in your

program to the Runtime.getRuntime().totalMemory() and

Determining Memory Requirements

3-6 Oracle HTTP Server powered by Apache Performance Guide

Runtime.getRuntime().freeMemory methods in the java.lang package.

Subtract free memory from total memory; the difference is the amount of heap that

the application consumed.

Suppose you determine that you need 128MB of heap. To change the heap size, you

would set the maximum Java heap size in the jserv.properties file for automatic

mode:

wrapper.bin.parameters=-mx 128m

In manual mode, if more than one JServ process is running, the heap size must be

set on the command line for each JServ process.

When a JServ process exceeds its maximum heap size, the process terminates. In

automatic mode, a new process is started, but performance is degraded

significantly. In manual mode, a terminated process will not be restarted, so ensure

that the heap size is sufficient.

Servlet and OracleJSP pages Memory Requirements
OracleJSP pages (Oracle’s implementation of Sun’s JavaServer Pages) and servlets

require different amounts of memory, depending on the version of the JDK used.

The chart below compares memory requirements for a simple servlet and an Oracle

JSP page under load with 10-30 active threads. The servlet did not use sessions. The

OracleJSP page had sessions on (the default).

The amount of memory needed depends on whether sessions are used; a session

consumes about 0.5KB. For maximum performance, if sessions are not being used,

turn them off in the OracleJSP application as follows:

Note: The process size reported by utilities such as top or ps will

be larger than the maximum heap size, because private memory is

added to the maximum heap size.

Table 3–3 Servlet and OracleJSP pages memory

Component JDK 1.1.8 JDK 1.2

Servlet 10MB 24MB

OracleJSP page 10MB 32MB

Determining Memory Requirements

Sizing and Configuration 3-7

<%@ page session=”false” %>
<html><body>
HelloWorld
</body></html>

As a starting point, figure that each active user consumes at least 150K to 200K for

Java applications, plus the size of the server processes. For Java applications, the

base process is approximately 12-15 MB.

An application’s memory needs also depend on its size, the amount of data cached,

and other factors.

See the OracleJSP Developer’s Guide and Reference in the Oracle 9i Application Server

documentation library for more information on OracleJSP pages.

Number of JServ Processes
Oracle recommends about 2 JServ processes per CPU as a starting point. The default

thread setting (security.maxConnections=50) in the JServ configuration file is

also a good starting point. (See "Load Balancing" on page 5-4 for instructions on

changing parameters in the configuration files.)

If your application code performs a lot of synchronization, or creates many new

Java objects, then you should consider increasing the number of JServ processes,

while limiting the number of threads per process to between 10 and 20. In this way

you avoid increased queuing and processing required for object synchronization in

the JVM. This is because the httpd process (mod_jserv) sends incoming requests to

the JServ processes in a distributed fashion. See "Load Balancing" on page 5-4 for

details on how the requests are distributed among the available JServ engines.

(Readers familiar with the Oracle Application Server will recall that requests are

sent to a servlet engine until its thread limit is reached, and subsequent requests are

sent to the next servlet engine.)

Determining Memory Requirements

3-8 Oracle HTTP Server powered by Apache Performance Guide

Figure 3–1 Request distribution

Optimizing HTTP Server Performance 4-1

4
Optimizing HTTP Server Performance

This chapter provides information on improving the Oracle HTTP Server’s

performance, including tuning TCP parameters, the effects of changing the

MaxClients parameter, SSL caching, and logging.

Contents
■ TCP Tuning

■ MaxClients

■ SSL Session Caching

■ Impact of Logging

■ HTTP/1.1

■ Apache Versions

TCP Tuning

4-2 Oracle HTTP Server powered by Apache Performance Guide

TCP Tuning
Correctly tuned TCP parameters can improve performance dramatically. This

section contains recommendations for TCP tuning and a brief explanation of each

parameter. A comprehensive discussion of TCP tuning can be found in Sun
Performance and Tuning: Java and the Internet by Adrian Cockcroft and Richard Pettit,

Sun Microsystems Press, 1998.

The table below contains recommended TCP parameter settings.

Setting TCP parameters
To set the connection table hash parameter, you must add the following line to your

/etc/system file, and then restart the system:

set tcp:tcp_conn_hash_size=32768

A sample script, tcpset.sh, that changes TCP parameters to the settings

recommended here, is included in the

$ORACLE_HOME/Apache/Apache/bin/ directory.

Table 4–1 Recommended TCP parameter settings

Parameter Setting Comments

tcp_conn_hash_size
32768

See "Increasing TCP Connection Table Access
Speed" on page 4-3.

tcp_close_wait_interval 60000 Parameter name in Solaris 2.6. See "Specifying
Retention time for Connection Table entries" on
page 4-3.

tcp_time_wait_interval 60000 Parameter name in Solaris 2.7. See "Specifying
Retention time for Connection Table entries" on
page 4-3.

tcp_conn_req_max_q 1024 See "Increasing the Handshake Queue Length" on
page 4-4.

tcp_conn_req_max_q0 1024 See "Increasing the Handshake Queue Length" on
page 4-4.

tcp_slow_start_initial 2 See "Changing the Data Transmission Rate" on
page 4-5.

tcp_xmit_hiwat 32768 See "Changing the Data Transfer Window Size"
on page 4-5.

tcp_recv_hiwat 32768 See "Changing the Data Transfer Window Size"
on page 4-5.

TCP Tuning

Optimizing HTTP Server Performance 4-3

If your system is restarted after you run the script, the default settings will be

restored and you will have to run the script again. To make the settings permanent,

enter them in your system startup file.

Increasing TCP Connection Table Access Speed
If you have a large user population, you should increase the hash size for the TCP

connection table. The hash size is the number of hash buckets used to store the

connection data. If the buckets are very full, it takes more time to find a connection.

Increasing the hash size will reduce the connection lookup time, but increases

memory consumption.

Suppose your system performs 100 connections per second. If you set tcp_close_
wait_interval to 60000, then there will be about 6000 entries in your TCP

connection table at any time. Increasing your hash size to 2048 or 4096 will improve

performance significantly.

On a system servicing 300 connections per second, changing the hash size from the

default of 256 to a number close to the number of connection table entries decreases

the average round trip time by three to four seconds. The maximum hash size is

262144. Ensure that you increase memory as needed.

To set the tcp_conn_hash_size , add the line shown below to your /etc/system
file. The parameter will take effect when the system is restarted.

set tcp:tcp_conn_hash_size=32768

Specifying Retention time for Connection Table entries
The TCP connection table maintains data associated with connections. The server

maintains a TCP connection table entry for some time after a connection is closed,

so that it can identify and properly dispose of any leftover incoming packets from

the client.

Access speed to this table impacts performance; the access speed depends on the

number of entries in the table, and on its hash size. The number of entries in the

table depends on the rate of incoming requests, and the lifetime of each connection.

You can control the length of time that TCP connection table entries are maintained

with the tcp_close_wait_interval parameter (renamed tcp_time_wait_
interval on Solaris 2.7). This parameter is commonly set to 60,000 ms. Use the

following command to set it (note the difference in parameter name for Solaris 2.6

and 2.7).

In Solaris 2.6:

TCP Tuning

4-4 Oracle HTTP Server powered by Apache Performance Guide

prompt>/usr/sbin/ndd -set /dev/tcp tcp_close_wait_interval 60000

In Solaris 2.7:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

Increasing the Handshake Queue Length
During the TCP connection handshake, the server, after receiving a request (SYN)

from a client, sends a reply, and waits to hear back from the client. The client

responds to the server’s message and the handshake is complete. Upon receiving

the first request from the client, the server makes an entry in the listen queue. After

the client responds to the server’s message, it is moved to the queue for messages

with completed handshakes. The second queue makes it possible for the server to

continue servicing requests for which the handshake has been completed.

The maximum length of the queue for incomplete handshakes is governed by tcp_
conn_req_max_q0 , which by default is 1024. The maximum length of the queue

for requests with completed handshakes is defined by tcp_conn_req_max_q
(default is 128).

On most web servers, the defaults will be sufficient, but if you have more than 1024

concurrent users, these settings may be too low. In that case, connections will be

dropped in the handshake state because the queues are full. You can determine

whether this is a problem on your system by inspecting the values for

tcpListenDrop , tcpListenDropQ0 , and tcpHalfOpenDrop with

netstat -s . If either of the first two values are nonzero, you should increase the

maximums.

The defaults are probably sufficient, but Oracle recommends that you increase the

value of tcp_conn_req_max_q to 1024. You can set these parameters with:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 1024
prompt>/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 1024

Note: If your user population is widely dispersed (with respect to

Internet topology), you may want to set this parameter to a higher

value. You can improve access time to the TCP connection table

with the tcp_conn_hash_size parameter.

TCP Tuning

Optimizing HTTP Server Performance 4-5

Changing the Data Transmission Rate
Typically, all packets in a data transfer are sent at once. TCP implements a slow

starting data transfer to prevent overloading a busy segment of the Internet. With

slow start, one packet is sent, an acknowledgment is received, then two packets are

sent. The number sent to the server continues to be doubled after each

acknowledgment, until the TCP transfer window limits are reached.

Some versions of Microsoft Windows (including NT 4.0 and 95) do not

acknowledge receipt of a single packet when a connection is initiated, but if two

packets are received, an acknowledgment is sent immediately. Because Solaris sends

only one packet when initiating a connection (per the TCP standard), this can

increase the connection startup time. This is especially apparent on fast local

networks, where the latency is expected to be low.

You can configure Solaris to start with two packets when initiating a data transfer:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_slow_start_initial 2

Changing the Data Transfer Window Size
The size of the TCP transfer windows for sending and receiving data determine

how much data can be sent without waiting for an acknowledgment. The default

window size is 8192 bytes. Unless your system is memory constrained, these

windows should be increased to the maximum size of 32768. This can speed up

large data transfers significantly. Use these commands to enlarge the window:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 32768

prompt>/usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 32768

Because the client typically receives the bulk of the data, it would help to enlarge

the TCP receive windows on end users’ systems.

MaxClients

4-6 Oracle HTTP Server powered by Apache Performance Guide

MaxClients
The MaxClients directive limits the number of clients that can simultaneously

connect to your web server, and thus the number of httpd processes. You can

configure this parameter in the httpd.conf file up to a maximum of 1024 in Oracle 9i
Application Server v. 1.0.2 (in the previous version, the maximum was 256). The

default is 150, which should be adequate for most uses. If the MaxClients setting

is too low, and the limit is reached, clients will be unable to connect.

Our tests of static page requests (average size 20K) on a 2 processor, 168 MHz Sun

UltraSparc on a 100 Mbps network showed that:

■ The default MaxClients setting of 150 was sufficient to saturate the network.

■ Approximately 60 httpd processes were required to support 300 users (no think

time).

On the system described above, and on 4 and 6-processor, 336 MHz systems, there

was no significant performance improvement in increasing the MaxClients setting

from 150 to 256, based on static page and servlet tests with up to 1000 users.

Increasing MaxClients when system resources are saturated does not improve

performance. When there are no httpd processes available, connection requests are

queued in the TCP/IP system until a process becomes available, and eventually

clients terminate connections.

Note: If you are using persistent connections, you may require

more concurrent httpd server processes. See "httpd Process

Availability" on page 4-10 for a discussion of the relationship

between persistent connections and the number of server processes.

Impact of Logging

Optimizing HTTP Server Performance 4-7

For dynamic requests, if the system is heavily loaded, it might be better to allow the

requests to queue in the network (thereby keeping the load on the system

manageable). The question for the system administrator is whether a timeout error

and retry is better than a long response time. In this case, the MaxClients setting

could be reduced, to act as a throttle on the number of concurrent requests on the

server.

SSL Session Caching
The Oracle HTTP server caches a client’s SSL session information by default. With

session caching, only the first connection to the server incurs high latency. For

example, in a simple test to connect and disconnect to an SSL-enabled server, the

elapsed time for 5 connections was 11.4 seconds without SSL session caching. With

SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The SSLSessionCacheTimeout directive in httpd.conf determines how long the

server keeps a session alive (the default is 300 seconds). The session information is

kept in a file. You can specify where to keep the session information using the

SSLSessionCache directive; the default location is the $ORACLE_
HOME/Apache/Apache/logs/ directory. The file can be used by multiple Oracle

HTTP Server processes.

The duration of an SSL session is unrelated to the use of HTTP persistent

connections.

Impact of Logging
This section discusses types of logging, log levels, and the performance implications

for using them.

Access Logging
For static page requests, access logging of the default fields results in a 2-3%

performance cost.

HostNameLookups
By default, the HostNameLookups directive is set to off. The server writes the IP

addresses of incoming requests to the log files. When HostNameLookups is set to

on, the server queries the DNS system on the Internet to find the host name

associated with the IP addresses of each request, then writes the host names to the

log.

HTTP/1.1

4-8 Oracle HTTP Server powered by Apache Performance Guide

Performance degraded by about 3% (best case) in Oracle in-house tests with

HostNameLookups set to on. Depending on the server load and the network

connectivity to your DNS server, the performance cost of the DNS lookup could be

high. Unless you really need to have host names in your logs in real time, it is best

to log IP addresses. You can resolve IP addresses to host names off-line, with the

logresolve utility (found in the $ORACLE_HOME/Apache/Apache/bin/ directory).

For more information, see Dale Gaudet’s Apache Performance Notes at:

http://www.apache.org/docs/misc/perf-tuning.html

Error logging
The server notes unusual activity in an error log. The ErrorLog and LogLevel
directives identify the log file and the level of detail of the messages recorded. The

default level is warn . There was no difference in static page performance on a

loaded system between the warn , info , and debug levels.

For more information on the LogLevel directive, see:

http://www.apache.org/docs/mod/core.html#loglevel

HTTP/1.1
The Oracle HTTP server can use HTTP/1.1. Netscape Navigator 4.0 still uses

HTTP/1.0, with some 1.1 features, such as persistent connections. Internet Explorer

uses HTTP/1.1. The performance benefit of persistent connections comes from

reducing the overhead of repeatedly establishing and tearing down connections

(one per request). A persistent connection accepts multiple requests from a user.

For a small static page request, the connection latency can equal or exceed the

response latency (the time to fulfill the request after the connection is established),

so using persistent connections can result in major performance gains.

For more information about performance and the HTTP/1.1 protocol, see:

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

Persistent Connections
If your users’ browsers support persistent connections (the default behavior of

HTTP/1.1), you can support them on the server using the KeepAlive directives in

Apache. (Some browsers that do not support all HTTP/1.1 features do support

persistent connections; for example, recent versions of Netscape.)

HTTP/1.1

Optimizing HTTP Server Performance 4-9

Shorter Response Times
Persistent connections can improve total response time for a web interaction that

involves multiple HTTP requests, because the delay of setting up a connection only

happens once.

Consider the total time required, without persistent connections, for a client to

retrieve a web page with three images from the server.

With persistent connections, the response time for the same request is reduced:

 Activity Seconds

Establish connection 1

Produce and send the text

portion of the page

5

Establish connection 1

Transfer first image file 2

Establish connection 1

Transfer second image file 2

Establish connection 1

Transfer third image file 2

Total 15

 Activity Seconds

Establish connection 1

Produce and send the text

portion of the page

5

Transfer first image file 2

Transfer second image file 2

Transfer third image file 2

Total 12

HTTP/1.1

4-10 Oracle HTTP Server powered by Apache Performance Guide

This is a 20% reduction in service time. When the system is under load, the benefit

of reducing connection time with persistent connections is even greater, due to the

corresponding reduction of the TCP queue.

Reduction in Server Workload
Another benefit of persistent connections is reduction of the work load on the

server. Because the server need not repeat the work to set up the connection with a

client, it is free to perform other work. For a very inexpensive servlet (Hello World),

the CPU ms per request was reduced by approximately 10% when the same client

made 4 requests per connection. (The impact would be far less significant for a

realistic servlet application that does more work.)

httpd Process Availability
There are some serious drawbacks to using persistent connections with Apache. In

particular, because httpd processes are single threaded, one client can keep a

process tied up for a significant period of time (the amount of time depends on your

KeepAlive settings). If you have a large user population, and you set your

KeepAlive limits too high, clients could be turned away because of insufficient

httpd deamons.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 15

These settings allow enough requests per connection and time between requests to

reap the benefits of the persistent connections, while minimizing the drawbacks.

You should consider the size and behavior of your own user population in setting

these values on your system. For example, if you have a large user population and

the users make small infrequent requests, you may want to reduce the above

settings, or even set KeepAlive to off. If you have a small population of users that

return to your site frequently, you may want to increase the settings.

FIN_WAIT_2
There is a known problem with some browsers which will leave the server with a

TCP connection in the FIN_WAIT_2 state. If too many connections are left in this

state, the system will run out of the memory allocated for storing TCP connections,

and stop.

Apache Versions

Optimizing HTTP Server Performance 4-11

The problem is that when a connection becomes idle, and the server closes it

because the keep alive time limit has expired, the client host may not perform the

TCP protocol steps required to complete the closure of the connection. The host,

having sent the close request, is left with the connection in the FIN_WAIT_2 state

taking up memory until it gets the appropriate packets back from the client, or until

an internal flush occurs. If a connection is left in the FIN_WAIT_2 state, the httpd

process with which the connection is associated is freed to service other requests as

indicated, so this problem won’t tie up web server processes.

On Solaris, the parameter tcp_fin_wait_2_flush_interval dictates the

frequency with which these connections will be cleaned up. In general, the default

setting is sufficient, and should not be modified unless the system is failing. For

more information on FIN_WAIT_2, see:

http://apache.put.poznan.pl/misc/fin_wait_2.html

Apache Versions
The difference between Apache versions 1.3.9 and 1.3.12 was primarily corrected

bugs. With static page and servlet performance measurements, there was no

performance difference measured between the versions.

Note: The FIN_WAIT_2 state can also occur due to a system bug

unrelated to use of KeepAlive . The bug is fixed by the Solaris

cluster patch 105181-20.

Apache Versions

4-12 Oracle HTTP Server powered by Apache Performance Guide

Optimizing Apache JServ 5-1

5
Optimizing Apache JServ

This chapter describes the JServ architecture, and discusses ways you can improve

its performance. It also includes performance information on OracleJSP pages (the

Oracle implementation of Sun Microsystems’ JavaServer Pages 1.1.)

Contents
■ JServ Overview

■ Optimizing Servlet Performance

■ What is OracleJSP?

■ OracleJSP Page Performance Tuning

JServ Overview

5-2 Oracle HTTP Server powered by Apache Performance Guide

JServ Overview
Apache JServ is made up of an Apache module called mod_jserv, which runs in the

httpd process, and a servlet engine, which runs in a Java process. mod_jserv, which

is implemented in C, functions as a dispatcher, routing each servlet request to a

JServ process for execution.

The servlet engine runs in its own JVM and is solely responsible for parsing the

request and generating a response. As Figure 5–1 shows, multiple JServs can service

requests. The HTTP server process and the JServ process communicate using the

Apache JServ Protocol 1.2.

Figure 5–1 Apache JServ components

Optimizing Servlet Performance

Optimizing Apache JServ 5-3

Optimizing Servlet Performance
This section discusses strategies for optimizing JServ performance: loading servlets

when starting the JVM, and load balancing.

The terms “repository” and “zone” are used in this discussion. Servlets,

repositories, and zones are analogous to files, directories and virtual hosts. A servlet

is a single unit, a repository is a collection of servlets, and a zone is a collection of

repositories.

Loading Servlet Classes
Apache JServ allows you to load servlet classes when the JVM is started. To do this,

put the servlets to load in the servlets.startup directive in the servlet zone

properties file. When the servlet is loaded, its init() method is called. All other

servlets (those not listed in servlets.startup) are loaded and initialized on first

request.

Using this facility increases the start-up time for your JServ process, but improves

first-request latency for servlets.

Pre-Loading with JSPs
If you are using a JSP as the servlet (your code does not extend HttpServlet), you

will be unable to use this pre-load option, but you could pre-load the JSP runner by

including the oracle.jsp.jspServlet in servlets.startup .

If the first-request latency for your initialization routines is really a performance

issue, you can achieve some of the results described above by creating a dummy

servlet to call your one-time initialization routines in its init() method. You must

add the name of the dummy servlet to servlets.startup .

Automatic Class Reloading
If autoreload.classes is set to true for a zone (the default), then each time one

of that zone’s servlets is requested, every class that has been loaded from a

repository in that zone is checked to see if it has been modified. If one of the classes

has changed, then all previously loaded classes from the zone’s repositories are

unloaded, which means that as the classes are needed, they will be loaded from

their class files again.

This is a useful development feature, because you can install new versions or drop

in new class files without restarting the server. For optimal performance in

production environments, however, you should set both automatic class reloading

Optimizing Servlet Performance

5-4 Oracle HTTP Server powered by Apache Performance Guide

parameters to false, since there is a performance cost in checking the repositories on

every execution of a servlet. Change these parameters in the zone properties file:

autoreload.classes=false
autoreload.file=false

Load Balancing
It is often beneficial to spread the servlet application load among multiple JServ

processes, especially when the application is run on a multiprocessor or if the

servlets and HTTP server are run on separate nodes. Running multiple Apache

JServ processes generally results in higher throughput and shorter response time,

even on a single-processor host. (See Chapter 3, "Sizing and Configuration" for

specific recommendations.)

This section explains how to balance incoming requests between two JServ

processes running on the same host as the HTTP server. Examples from the

jserv.properties files are included with the procedures; substitute your own port

numbers and directory locations where needed.

If you use load balancing, you must start and stop processes manually, because

JServ cannot automatically start and stop more than one JServ process. (Sample

scripts for starting and stopping the JServ processes and the Oracle HTTP Server are

included in the $ORACLE_HOME/Apache/Apache/bin/ directory.) This means that

if a process terminates for any reason, JServ will not restart it. To prevent processes

from terminating due to memory shortage, ensure that you have a sufficient

maximum heap size set for your JServ processes. See "Determining Java Heap Size"

on page 3-5.

Configuring the JServ processes
Each JServ process in your load balancing scheme must be configured to listen on

its own port and to log to its own file. If you have a jserv.properties file containing

the parameters needed to run your application, you can duplicate it to create a

properties file for each JServ process.

1. Create a properties file for each JServ process.

prompt>cp jserv.properties jserv1.properties
prompt>cp jserv.properties jserv2.properties

2. Edit jserv1.properties as follows:

port=8001
log.file=/usr/local/jserv/logs/jserv1.log

Optimizing Servlet Performance

Optimizing Apache JServ 5-5

3. Edit jserv2.properties as follows:

port=8002
log.file=/usr/local/jserv/logs/jserv2.log

If JServ is included in your CLASSPATH, you can start the JServ processes with

these commands:

java JServ jserv1.properties
java JServ jserv2.properties

To start and stop the processes and the web server, it is convenient to use scripts.

Samples are included in the $ORACLE_HOME/Apache/Apache/bin/ directory

(startJServ. sh and stopJServ.sh).

Modifying jserv.conf to distribute the load
1. Set the flag to start processes manually.

ApJServManual on

2. Indicate where the servlet request is to be sent.

a. Locate the ApJServMount directive.

ApJServMount /servlets /root

If the user requests http://your.server.com/servlets/testServlet, the

ApJServMount directive above will execute testServlet in the zone called

/root.

b. Change the zone identifier from /root to balance://set/root and

then add the directives needed to describe the processes sharing the load:

ApJServMount /servlets balance://JServ_set/root
ApJServBalance JServ_set JServ1
ApJServBalance JServ_set JServ2 2
ApJServHost JServ1 ajpv12://127.0.0.1:8001

Note: If your HTTP server will be running on a different host than

the JServ processes, you must also add the IP address of the host

running the HTTP server to the security.allowedAddresses
parameter in each jserv.properties file.

Optimizing Servlet Performance

5-6 Oracle HTTP Server powered by Apache Performance Guide

ApJServHost JServ2 ajpv12://127.0.0.1:8002
ApJServRoute JS1 JServ1
ApJServRoute JS2 JServ2
ApJServShmFile /usr/local/apache/logs/jserv_shm

* The ApJServMount directive, with /servlets
balance://set/root , now balances requests for servlets in /servlets
between JServ1 and JServ2.

* The ApJServBalance directive identifies JServ1 and JServ2 as the

processes that share the load. The ’2’ following JServ2 is a weight value.

It specifies that twice as many requests will be sent to JServ2 as would

be otherwise, i.e., that JServ2 will get about 2/3 of all incoming

requests. See "Distribution of JServ Requests" below for details.

* The ApJServHost directive identifies the host and port on which the

processes are listening.

* The ApJServRoute directive associates JServ processes with sessions.

JServ uses this information to keep all of a session’s requests together in

one process. The JServ session mechanism sends the process route

information back to the user (generally in a cookie). You need only

modify it if your application uses sessions.

* The ApJServShmFile directive specifies a shared memory file that the

httpd processes may use to track the state of the JServ processes.

Distribution of JServ Requests
mod_jserv selects the JServ engine to handle a request using the process outlined

below:

1. An httpd process is started.

2. mod_jserv creates a list of available JServs, with extra entries for JServs with a

weight value greater than 1 (for example, JServ2 in our example above, as

specified by ApJServBalance set JServ2 2).

3. An httpd daemon receives a servlet request and hands it to mod_jserv.

4. mod_jserv selects the JServ engine that will handle the request.

a. mod_jserv checks to see if the request is part of a current session. If so, it

uses the ApJServRoute directives to find the JServ that handled the other

requests for that session.

Optimizing Servlet Performance

Optimizing Apache JServ 5-7

b. If the request is not part of a session, mod_jserv selects an engine based on

the process ID of the httpd process and the number of entries in the list of

available JServs, as follows:

JServ_id to handle the request = httpd_pid % number of JServs in the list

This method distributes requests across the available JServ engines fairly

evenly.

Using Single Thread Model Servlets
Oracle recommends that you write your servlets to implement the

SingleThreadModel (STM) interface. An application that was modified to

implement the STM interface demonstrated a 25% improvement in response time,

probably due to a decrease in synchronization bottlenecks.

It is also much easier to manage database connections with STM servlets. The

database connection can be set up in the init() method of the servlet, and closed

in the destroy() method. When executing the servlet’s doGet() or service()
method, you need not be concerned with obtaining a database connection.

Alternatively, you can use JDBC connection caching.

There are three parameters in the zone.properties file that impact the performance

of STM servlets in particular. These govern:

■ The minimum number of servlet object instances that will be generated and

available after the servlet class is loaded

■ The maximum number that can be generated

■ The number that should be generated if the available instances are insufficient

Because it is very costly to generate instances while the system is running, Oracle

recommends that you set your minimum to equal your maximum value. The

optimum value depends somewhat on how many connections your database server

can handle. This should be split among the JServ processes, as follows:

See Chapter 3, "Sizing and Configuration" for suggestions on determining the right

number of JServ processes for your application, and "Load Balancing" on page 5-4

for the steps to configure them. Suppose you’ve determined that you want 10

servlet instances per process. Then, in the properties file for your zone, set:

Total DB connections / Number of JServ processes = Number of STM servlet

instances per process

What is OracleJSP?

5-8 Oracle HTTP Server powered by Apache Performance Guide

singleThreadModelServlet.initialCapacity = 10
singleThreadModelServlet.incrementCapacity = 0
singleThreadModelServlet.maximumCapacity = 10

What is OracleJSP?
OracleJSP 1.1.0.0 is Oracle’s implementation of the Sun Microsystems JavaServer

Pages 1.1 specification. Some of the additional features it includes are custom

JavaBeans for accessing Oracle databases, SQL support, and extended data types.

See the Oracle Internet Application Server 8i Overview Guide in the Oracle Internet

Application Server 8i documentation library for detailed descriptions of the

features.

OracleJSP Page Performance Tuning
This section explains how you can improve OracleJSP pages’ performance.

Impact of Session Management
In general, sessions add performance overhead; they consume about 0.5 KB of

resident memory. You must turn off sessions if you do not want a new session to be

created with each request. By default, sessions are enabled in OracleJSPs, so if they

are not being used, turn them off by including the following line at the top of the

page:

<%@ page session="false" %>

If you are going to use sessions, ensure that you explicitly close them. If you don’t,

they will linger until they time out (the default value for session timeout is 30

minutes). To close a session manually, use the session.invalidate() method.

See the OracleJSP Developer’s Guide and Reference in the Oracle Internet Application

Server 8i documentation library for more information on configuring OracleJSP

pages.

Warning: The value for
singleThreadModelServlet.maximumCapacity in the zone
properties file must be at least as large as the value for
security.maxConnections in the jserv.properties file. If it is not,
and the number of requests sent to the JServ process exceeds the
maximum capacity, requests will fail.

OracleJSP Page Performance Tuning

Optimizing Apache JServ 5-9

Developer Mode
Another parameter that has a significant effect on performance is developer mode.

It is a useful feature for debugging during development, but it degrades

performance. The default value is true, so you will need to set it to false in the

jserv.properties file as follows:

servlet.oracle.jsp.JspServlet.initArgs=developer_mode=false

With developer mode set to true, OracleJSP and the servlet engine examines every

request to determine whether to reload or retranslate the page or application. With

developer mode off, only the first request is examined.

In a test using JDK 1.2 with 50 users, 128 MB heap, and the default TCP settings, the

performance gains with developer mode off were 14% in throughput, and 28% in

average response time.

Buffering
If an OracleJSP page is not using any features that do not require resetting the buffer

(such as error pages, contextType settings, forwards, etc.), disabling the JSP page

buffer will improve performance. This is because memory will not be used in

creating the buffer, and the output can go directly to the browser. Use this page

directive to disable buffering:

<%@ page buffer=”none” %>

The default size of an OracleJSP page buffer is 8 KB.

Enhancing OracleJSP Performance
The Oracle JavaServer Pages Developer’s Guide and Reference provide detailed

information about Oracle JSP pages, implementation guidelines, configuration

issues, and performance tips, listed below:

Caching database connections
Since creating database connections is very expensive, it is more performant to use a

cache of connections. The OracleJSP application can then get a connection from the

pool of database connections and return it when it is finished.

OracleJSP Page Performance Tuning

5-10 Oracle HTTP Server powered by Apache Performance Guide

Update statement batching
The JDBC driver accumulates a number of execution requests (the batch value) and

passes them to the database to be processed at the same time. You can configure the

batch value to control how frequently processing occurs.

JDBC statement caching
Cache executable statements that are repeatedly used, to avoid re-parsing,

statement object recreation, and recalculation of parameter size definitions.

Pre-fetching rows
During a query, pre-fetch multiple rows into the client to reduce round trips

between the database and the server.

Caching rowsets from the database
Cache small sets of data that are accessed frequently and do not change often. This

is not as beneficial for large data sets, since they consume more memory.

Using static includes
To invoke static includes, use the page directive:

<%@ include file=“/jsp/filename.jsp” %>

Static include creates a copy of the file in the JSP, thereby affecting its page size. This

is useful in avoiding trips to the request dispatcher (unlike dynamic includes, which

must go through the request dispatcher each time). However, file sizes should be

small to avoid exceeding the 64K limit of the service method of the generated page

implementation class.

Dynamic include
To invoke dynamic includes, use the page directive

<jsp:include page=”/jsp/filename.jsp” flush="true" />

This directive is analogous to a function call, and therefore does not increase the

page size of the JSP. However, a dynamic include increases the processing overhead

since it must go through the request dispatcher. Dynamic includes are useful for

including other pages without increasing page size.

Index-1

Index
A
Apache JServ Protocol 1.2, 5-2

ApJServBalance, 5-5

ApJServManual, 5-5

ApJServMount, 5-5

ApJServRoute, 5-6

ApJServShmFile, 5-6

architecture

JServ, 5-2

Oracle Internet Application Server 8i, 1-10

C
caching

database connections, 5-9

SSL, 3-4

capacity, 1-6

concurrency

defined, 1-2

limiting, 1-7

concurrent executing users, 3-2

concurrent users, 3-2, 4-4

MaxClients and, 3-2

connection caching, 5-7

contention, 1-4

CPU

insufficient, 1-4

statistics, 2-2, 2-3

usage, 2-2

cron, 2-9

D
database connection, 5-7

demand limiter, 1-6

demand rate, 1-5, 1-6

developer_mode, 5-9

E
ExtendedStatus, 2-7

F
functional demand, 1-6

G
graceful shutdown, 2-12

H
harsh shutdown, 2-12

J
JDBC, 5-7

JServ

described, 5-2

load balancing, 5-4

process start-up time, 5-3

processes per CPU, 3-7

processes, load balancing, 5-4

starting and stopping processes, 5-4

threads per, 3-7

JServ Protocol 1.2, 5-2

Index-2

jserv.conf, 2-10

jserv.properties, 5-4

JSP, 5-8

K
kernel memory requirements, 3-5

L
latency

defined, 1-2

first-request, 5-3

network, 3-1

load balancing, 5-4

load variances, 1-8

logging, 4-7

M
MaxClients

concurrent users and, 3-2

configuring, 4-6

increasing, 2-8

memory usage, 3-5

mod_jserv, 5-2, 5-6

mod_status, 2-6, 2-9

monitoring

CPU usage, 2-2

httpds processes, 2-6, 2-8

JServ processes, 2-10

server, 2-8

server side status, 2-6

server, automating, 2-9

mpstat, 2-2, 2-3

mpstat utility, 2-3

N
netstat, 2-4

Network Monotor, 2-4

O
Oracle Internet Application Server 8i

architecture, 1-10

oracle.jsp.jspServlet, 5-3

P
performance goals, 1-7, 3-1

protocol

Apache JServ 1.2, 5-2

HTTP/1.1, 4-8

SSL, 3-4

R
repository, defined, 5-3

response time, 1-4

defined, 1-2

goal, 1-7

improving, 1-3

peak load, 1-8

sizing and, 3-2

S
sar utility, 2-2

scalability

defined, 1-2

monitoring, 2-2

security.allowedAddresses, 5-5

security.maxConnections, 3-7

server statistics, 2-6

server-side status information, 2-6

server-status, 2-6

service time, 1-3

defined, 1-2

servlet

database connection and, 5-7

engine, 5-2

pre-loading classes, 5-3

SingleThreadModel interface and, 5-7

zone properties file, 5-3

servlets.startup, 5-3

sessions

JServ processes and, 5-6

SSL and, 4-7

SetHandler, 2-6

shutdown, 2-12

Index-3

snoop, 2-4

SSL

defined, 3-4

performance cost, 3-4

session caching, 4-7

statistics

CPU, 2-2

server, 2-6, 2-8

status reports, 2-6

T
think time

defined, 1-2

resources and, 3-1

thread

limit, 3-7

migrations to other processes, 2-4

throughput

defined, 1-2

demand limiter and, 1-6

increasing, 1-4

U
unit consumption, 1-6

uptime, 2-6

users, concurrent, 3-2

utilities

mpstat, 2-3

sar, 2-2

snoop, 2-5

W
wait time

contention and, 1-4

defined, 1-2

parallel processing and, 1-4

percentage of time spent, 2-4

Z
zone, defined, 5-3

zone.properties, 5-7

Index-4

	Oracle HTTP Server powered by Apache Performance Guide
	Contents

	1� Performance Overview
	2� Monitoring Your Web Server
	3� Sizing and Configuration
	4� Optimizing HTTP Server Performance
	5� Optimizing Apache JServ
	1 Performance Overview
	Performance Terms
	What is Performance Tuning?
	Response Time
	System Throughput
	Wait Time
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance
	Performance Methodology
	Factors in Improving Performance

	Architecture

	2 Monitoring Your Web Server
	Monitoring Processor Use
	Using the sar Utility
	Using the mpstat Utility

	Monitoring Network Traffic
	Using the snoop Utility

	Monitoring the Web Server
	Using the mod_status Utility
	Logging Server Statistics to a File

	Monitoring JServ Processes

	3 Sizing and Configuration
	Sizing your Hardware and Resources
	Understanding Concurrent Users and User Population
	Determining CPU Requirements
	Secure Sockets Layer Impact on CPU Requirements

	Determining Memory Requirements
	Memory for Non-HTTP Server Software and Operating System
	HTTP Server Memory Requirements
	JServ Memory Requirements
	Determining Java Heap Size
	Servlet and OracleJSP pages Memory Requirements
	Number of JServ Processes

	4 Optimizing HTTP Server Performance
	TCP Tuning
	MaxClients
	SSL Session Caching
	Impact of Logging
	HTTP/1.1
	Persistent Connections

	Apache Versions

	5 Optimizing Apache JServ
	JServ Overview
	Optimizing Servlet Performance
	Loading Servlet Classes
	Automatic Class Reloading
	Load Balancing
	Using Single Thread Model Servlets

	What is OracleJSP?
	OracleJSP Page Performance Tuning
	Impact of Session Management
	Developer Mode
	Buffering
	Enhancing OracleJSP Performance

	Index

