
Oracle9i Application Server

Oracle HTTP Server powered by Apache Performance Guide

Release 1.0.2 for Windows NT

November 2000

Part No. A86676-01

Oracle9i Application Server Oracle HTTP Server powered by Apache Performance Guide, Release 1.0.2

Part No. A86676-01

Copyright © 2000, Oracle Corporation. All rights reserved.

Contributors: Sharon Malek, Carol Orange, Leela Rao

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.
If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:
Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject
to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.
Oracle is a registered trademark, and the Oracle Logo, Oracle9i Application Server, Oracle8i, Oracle9i, Oracle
Enterprise Manager, Oracle Internet Directory, and PL/SQL are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only and
may be trademarks of their respective owners.
This product includes software developed by the Apache Group for use in the Apache HTTP server project
(http://www.apache.org/).
This product includes software developed by the OpenSSL project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).
This product includes software developed by Ralf S. Engelschall (rse@engelschall.com) for use in the mod_ssl
project (http://www.modssl.org/).

Contents

Send Us Your Comments .. vii

Preface.. ix

Audience .. x
Organization.. x
Related Documentation .. xi
Conventions... xii

1 Performance Overview

Performance Terms ... 1-2
What is Performance Tuning? .. 1-3

 System Throughput... 1-4
Wait Time... 1-5
Critical Resources ... 1-5
Effects of Excessive Demand... 1-7
Adjustments to Relieve Problems .. 1-7

Setting Performance Targets ... 1-8
Setting User Expectations.. 1-8
Evaluating Performance .. 1-8
Performance Methodology.. 1-9

Factors in Improving Performance .. 1-10
Architecture.. 1-11
iii

2 Monitoring Your Web Server

Monitoring Network Activity... 2-2
Collecting Performance Data with the Performance Monitor ... 2-2

Starting the Performance Monitor.. 2-3
Creating a chart of Process Activity... 2-3
Logging Performance Statistics .. 2-4
Creating a Report or Chart of Log File Data... 2-5

Monitoring the Web Server... 2-7
Using the mod_status Utility to Monitor the Web Server .. 2-7

Monitoring JServ Processes .. 2-11

3 Sizing and Configuration

Sizing your Hardware and Resources... 3-2
Determining CPU Requirements... 3-3
Determining Memory Requirements.. 3-4

Determining Memory Requirements for the Oracle HTTP Server.. 3-4
Determining Memory Requirements for JServ... 3-4
Determining Java Heap Size ... 3-4
Determining Memory Requirements for Servlets and OracleJSP pages 3-5
Determining the Number of JServ Processes per CPU ... 3-6

4 Optimizing HTTP Server Performance

Network Tuning .. 4-2
Configuring the ThreadsPerChild Parameter.. 4-3

Configuring ThreadsPerChild for Servlet Requests .. 4-3
Configuring ThreadsPerChild for Static Page Requests ... 4-3

Enabling SSL Session Caching .. 4-4
Understanding Performance Implications of Logging .. 4-4
Benefits of the HTTP/1.1 Protocol .. 4-5

Supporting Persistent Connections.. 4-5

5 Optimizing Apache JServ

Overview of JServ ... 5-2
Optimizing Servlet Performance ... 5-3
iv

Loading Servlet Classes ... 5-3
Reloading Servlet Classes Automatically ... 5-3
How to Perform Load Balancing.. 5-4
Using Single Thread Model Servlets.. 5-7

What is OracleJSP? ... 5-8
Tuning OracleJSP Pages for Performance .. 5-8

Impact of Session Management.. 5-8
Developer Mode ... 5-8
Buffering .. 5-9
OracleJSP Performance Tips ... 5-9

Index
v

vi

Send Us Your Comments

Oracle9i Application Server Release 1.0.2, Oracle HTTP Server powered by Apache Perfor-
mance Guide

Part No. A86676-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

� Electronic mail - iasdocs_us@oracle.com
� Fax - (650) 654-6206 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation Manager
500 Oracle Parkway, M/S 6op4
Redwood Shores, CA 94065 USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This guide discusses configuration and performance tuning of the Oracle HTTP
Server powered by Apache.

There are many sources of information on configuring and tuning web servers,
Apache in particular. This guide refers to those sources when expedient, and, where
practical, quantifies the performance gains resulting from configuration actions
found in those sources. Any recommendations not validated by Oracle in-house
testing are cited as such, with attribution to the original source.

All in-house tests detailed in this guide were run on a dedicated 100 Mbps network,
in order to achieve repeatable test results. Your results will vary based on network
configuration and contention characteristics.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions
ix

Audience
This guide is written for Oracle9i Application Server developers and system
administrators who are responsible for configuring and tuning the Oracle HTTP
Server powered by Apache.

To use this document, you need a working knowledge of web server administration
and performance tuning concepts.

Organization
This document contains:

Chapter 1, "Performance Overview"

Describes performance and tuning concepts and terminology, with a description of
the Oracle HTTP Server components in the Oracle9i Application Server architecture.

Chapter 2, "Monitoring Your Web Server"

Discusses the importance of monitoring to performance tuning, and describes tools
and processes for gathering information about the web server and operating system
software.

Chapter 3, "Sizing and Configuration"

Provides guidelines and approaches to sizing and configuration to meet
performance goals.

Chapter 4, "Optimizing HTTP Server Performance"

Discusses tuning parameters to improve HTTP server performance and the effects
of caching and logging on performance.

Chapter 5, "Optimizing Apache JServ"

Discusses performance and load balancing for Apache JServ, and optimizing the
performance of OracleJSP pages.
x

Related Documentation
For more information, see these Oracle resources:

� Oracle9i Application Server Overview Guide

� OracleJavaServer Pages Developer’s Guide and Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

The following sources provide additional information on topics found in this guide:

� Windows NT Performance Tuning and Optimization by Kenton Gardinier,
Berkeley: Osborne/McGraw-Hill, 1998

� For information on the mod_status utility, see

http://www.oreillynet.com/pub/a/apache/2000/04/21/wrangler.html
http://www.apache.org/docs/mod/mod_status.html

� For information on the LogLevel directive, see

http://www.apache.org/docs/mod/core.html#loglevel

� For information on Apache web server performance, see Dale Gaudet’s Apache
Performance Notes at

http://www.apache.org/docs/misc/perf-tuning.html
xi

� For information about performance and the HTTP/1.1 protocol, see

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

� For more information on the FIN_WAIT_2 state, see

http://apache.put.poznan.pl/misc/fin_wait_2.html

Conventions
This section describes the conventions used in the text and code examples of the
this documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle8i Concepts

You can specify the parallel_clause.

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.
xii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates variables for
which you must supply particular values.

CONNECT SYSTEM/system_password
xiii

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

Convention Meaning Example
xiv

Perform
1

Performance Overview

This chapter discusses performance and tuning concepts, and briefly describes
Oracle9i Application Server architecture.

This chapter contains the following sections:

� Performance Terms

� What is Performance Tuning?

� Setting Performance Targets

� Setting User Expectations

� Evaluating Performance

� Performance Methodology

� Architecture
ance Overview 1-1

Performance Terms
Performance Terms
Following are performance terms used in this book:

concurrency The ability to handle multiple requests simultaneously.
Threads and processes are examples of concurrency
mechanisms.

contention Competition for resources.

hash A number generated from a string of text with an
algorithm. The hash value is substantially smaller than
the text itself. Hash numbers are used for security and for
faster access to data.

latency The time that one system component spends waiting for
another component in order to complete the entire task.
Latency can be defined as wasted time. In networking
contexts, latency is defined as the travel time of a packet
from source to destination.

response time The time between the submission of a request and the
receipt of the response.

scalability The ability of a system to provide throughput in
proportion to, and limited only by, available hardware
resources.

A scalable system is one that can handle increasing
numbers of requests without adversely affecting response
time and throughput.

service time The time between the receipt of a request and the
completion of the response to the request.

think time The time the user is not engaged in actual use of the
processor.

throughput The number of requests processed per unit of time.

wait time The time between the submission of the request and
initiation of the request.
1-2 Oracle HTTP Server powered by Apache Performance Guide

What is Performance Tuning?
What is Performance Tuning?
Performance must be built in. You must anticipate performance requirements
during application analysis and design, and balance the costs and benefits of
optimal performance. This section introduces some fundamental concepts:

� Response Time

� System Throughput

� Wait Time

� Critical Resources

� Effects of Excessive Demand

� Adjustments to Relieve Problems

� Response Time

Because response time equals service time plus wait time, you can increase
performance in this area by:

� Reducing wait time

� Reducing service time

Figure 1–1 illustrates ten independent tasks competing for a single resource.

See Also: “Setting Performance Targets” on page 1-8 for a
discussion on performance requirements and determining what
parts of the system to tune.
Performance Overview 1-3

What is Performance Tuning?
Figure 1–1 Sequential processing of independent tasks

In this example, only task 1 runs without waiting. Task 2 must wait until task 1 has
completed; task 3 must wait until tasks 1 and 2 have completed, and so on.
(Although the figure shows the independent tasks as the same size, the size of the
tasks will vary.)

In parallel processing with multiple resources, more resources are available to the
tasks. Each independent task executes immediately using its own resource: no wait
time is involved.

 System Throughput
System throughput is the amount of work accomplished in a given amount of time.
You can increase throughput by:

� Reducing service time

� Reducing overall response time by increasing the amount of scarce resources
available. For example, if the system is CPU bound, and you can add more
CPUs.
1-4 Oracle HTTP Server powered by Apache Performance Guide

What is Performance Tuning?
Wait Time
While the service time for a task may stay the same, wait time will lengthen with
increased contention. If many users are waiting for a service that takes one second,
the tenth user must wait 9 seconds. Figure 1–2 shows the relationship between wait
time and resource contention.

Figure 1–2 Wait time rising with increased contention for a resource

Critical Resources
Resources such as CPU, memory, I/O capacity, and network bandwidth are key to
reducing service time. Adding resources increases throughput and reduces
response time. Performance depends on these factors:

� How many resources are available?

� How many clients need the resource?

� How long must they wait for the resource?

� How long do they hold the resource?

Figure 1–3 shows that as the number of units requested rises, the time to service
completion rises.
Performance Overview 1-5

What is Performance Tuning?
Figure 1–3 Time to service completion vs. demand rate

To manage this situation, you have two options:

� Limit demand rate to maintain acceptable response times

� Add resources
1-6 Oracle HTTP Server powered by Apache Performance Guide

What is Performance Tuning?
Effects of Excessive Demand
Excessive demand increases response time and reduces throughput, as shown in
Figure 1–4. If there is any possibility of the demand rate exceeding the achievable
throughput, then determine which parameters should be adjusted (such as
ThreadsPerChild in the Oracle HTTP Server and security.maxConnections
in JServ) and change the configuration accordingly.

Figure 1–4 Increased Demand/Reduced Throughput

Adjustments to Relieve Problems
Performance problems can be relieved by making adjustments in the following
areas:

unit consumption Reducing the resource (CPU, memory)
consumption of each request can improve
performance. This might be achieved by
pooling and caching.

functional demand Rescheduling or redistributing the work
will relieve some problems.

capacity Increasing or reallocating resources (such
as CPUs) relieves some problems.
Performance Overview 1-7

Setting Performance Targets
Setting Performance Targets
Whether you are designing or maintaining a system, you should set specific
performance goals so that you know how and what to optimize. If you alter
parameters without a specific goal in mind, you can waste time tuning your system
without significant gain.

An example of a specific performance goal is an order entry response time under
three seconds. If the application does not meet that goal, identify the cause (for
example, I/O contention), and take corrective action. During development, test the
application to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. Once you have determined the
bottlenecks, you may have to modify performance in some other areas to achieve
the desired results. For example, if I/O is a problem, you may need to purchase
more memory or more disks. If a purchase is not possible, you may have to limit the
concurrency of the system to achieve the desired performance. However, if you
have clearly defined goals for performance, the decision on what to trade for higher
performance is simpler because you have identified the most important areas.

Setting User Expectations
Application developers, database administrators, and system administrators must
be careful to set appropriate performance expectations for users. When the system
carries out a particularly complicated operation, response time may be slower than
when it is performing a simple operation. Users should be made aware of which
operations might take longer.

Evaluating Performance
With clearly defined performance goals, you can readily determine when
performance tuning has been successful. Success depends on the functional
objectives you have established with the user community, your ability to measure
whether or not the criteria are being met, and your ability to take corrective action
to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of
loads, you can conduct objective scalability studies and from these predict the
resource requirements for anticipated load volumes.
1-8 Oracle HTTP Server powered by Apache Performance Guide

Performance Methodology
Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjustment. The first step in performance tuning is to determine the goals
you need to achieve and to design effective usage of available technology into your
applications. After implementing your system, it is necessary to periodically
monitor and adjust your system For example, you might want to ensure that 90% of
the users experience response times no greater than 5 seconds and the maximum
response time for all users is 20 seconds. Usually, it’s not that simple. Your
application may include a variety of operations with differing characteristics and
acceptable response times. You will need to set measurable goals for each of these.

You will also need to determine variances in the load. For example, users might
access the system heavily between 9:00am and 10:00am and then again between
1:00pm and 2:00pm, as shown in Figure 1–5. If your peak load occurs on a regular
basis, for example, daily or weekly, the conventional wisdom is to configure and
tune systems to meet your peak load requirements. The lucky users who access the
application in off-time will experience better response times than your peak-time
users. If your peak load is infrequent, you may be willing to tolerate higher
response times at peak loads for the cost savings of smaller hardware
configurations.

Figure 1–5 Adjusting Capacity and Functional Demand
Performance Overview 1-9

Performance Methodology
Factors in Improving Performance
Performance spans several areas:

� Application design: Designing applications that efficiently utilize hardware
resources and handle increasing numbers of users effectively.

� Sizing and configuration: Determining the type of hardware needed to support
your performance goals. See Chapter 3, "Sizing and Configuration".

� Parameter tuning: Setting configurable parameters to achieve the best
performance for your application. See Chapter 5, "Optimizing Apache JServ"
and Chapter 4, "Optimizing HTTP Server Performance".

� Performance monitoring: Determining what hardware resources are being used
by your application and what response time your users are experiencing. See
Chapter 2, "Monitoring Your Web Server".

� Troubleshooting: Diagnosing why an application is using excessive hardware
resources, or why the response time exceeds the desired limit.

See Also:

� Chapter 3, "Sizing and Configuration", for more information on
sizing and configuration

� Chapter 4, "Optimizing HTTP Server Performance", and
Chapter 5, "Optimizing Apache JServ", for more information on
parameter tuning

� Chapter 2, "Monitoring Your Web Server", for more information on
performance monitoring
1-10 Oracle HTTP Server powered by Apache Performance Guide

Architecture
Architecture
Figure 1–6 shows the architecture of Oracle9i Application Server.

This guide addresses the performance and configuration of these components:

� Oracle HTTP Server powered by Apache

� Apache JServ

� OracleJSP

Figure 1–6 Oracle9i Application Server architecture

See Also: The Oracle9i Application Server Overview Guide for a
list of publications that describe other components.
Performance Overview 1-11

Architecture
1-12 Oracle HTTP Server powered by Apache Performance Guide

Monitoring Y
2

Monitoring Your Web Server

This chapter explains how to gather performance information from your system.
This information helps you to determine the best use of your resources.

This chapter contains the following sections:

� Monitoring Network Activity

� Collecting Performance Data with the Performance Monitor

� Monitoring the Web Server

� Monitoring JServ Processes
our Web Server 2-1

Monitoring Network Activity
Monitoring Network Activity
You can monitor network traffic using the Network Monitor. The Network Monitor
must be installed on the Windows NT Server, and the Network Monitor Agent must
be installed on the workstation (client) that is to be monitored. The Network
Monitor tracks and analyzes network packets transmitted between the two
computers.

For information on installing and using the Network Monitor, see the Microsoft
website.

Collecting Performance Data with the Performance Monitor
The Performance Monitor is a Windows utility that gathers performance statistics
from your operating system and the Oracle HTTP Server. You can use it to:

� Determine resource usage

� Identify performance bottlenecks

� Display statistics from the current activity, or a log file

� Observe the effects of configuration changes on performance

Performance Monitor consumes a small amount of system resources; the amount
depends on the frequency, size and location of the data being collected. On average,
Performance Monitor uses 2-5 MB of memory and 1-5% CPU time.

The components you can monitor, such as physical disk, logical disk, and memory,
are called objects in Performance Monitor. Each object has its own set of counters,
performance indicators specific to the object. For example, to monitor the HTTP
Server or a Java process, you would select the Process object and counters of
interest, such as % Processor Time, % User Time, Page Faults/sec, and
Working Set.

You can configure any number or combination of objects to monitor. Every system
has the following objects:

� System

� Memory

� Cache

� Physical disk

� Logical disk
2-2 Oracle HTTP Server powered by Apache Performance Guide

Collecting Performance Data with the Performance Monitor
� Paging file

� Process

� Thread

� Server

� Processor

� Network objects, such as the browser and server

Starting the Performance Monitor
To start the Performance Monitor utility:

1. From the Start menu, select Select Programs.

2. From the Administrative Tools menu, select Performance Monitor.

The Performance Monitor window opens.

Creating a chart of Process Activity
The Performance Monitor Chart view displays the performance counter values in
real time, on a strip chart.

To create a chart of process activity:

1. From the View menu, select Chart.

2. From the Edit menu, select Add to Chart.

The Add to Chart dialog box opens.

3. Enter or select the hostname of the computer to monitor in the Computer field.
(The default is the local computer.)

4. From the Object drop-down list, select Process.

5. From the Instance list, select a process. (To monitor the HTTP Server, select the
second Apache process. This is the child process; it contains the threads that
handle requests).

6. From the Counter list, select the counters you want. (To select multiple
counters, hold down the Ctrl key as you click the counter name.)

7. Click Add.

8. Click Done.
Monitoring Your Web Server 2-3

Collecting Performance Data with the Performance Monitor
The Performance Monitor window opens with the objects and counters you
selected. Figure 2–1 shows a chart view of HTTP Server (Apache) processes on
two computers.

Figure 2–1 Performance Monitor chart view

Logging Performance Statistics
The chart view displays the performance statistics in real time, but you can enable
logging to save them to a log file.

To enable logging:

1. From the View menu, select Log.

2. From the Edit menu, select Add to Log.

The Add to Log dialog box opens.

3. Enter or select the hostname of the computer to monitor in the Computer field.

4. Select the objects to monitor. (To select multiple objects, hold down the Ctrl key
as you click the object name.)

5. Click Add.

6. Click Done.
2-4 Oracle HTTP Server powered by Apache Performance Guide

Collecting Performance Data with the Performance Monitor
7. From the Options menu, select Log.

8. Select the path and enter the filename of the log file to use.

9. Select the Update Time and Interval.

10. Click Start Log.

Creating a Report or Chart of Log File Data
You can view logged performance data in chart or report format. This procedure
assumes that Performance Monitor is running, with a log file status of Collecting
(you have to stop the log before you can access the log file).

To create a report or chart from a log file you have saved from a prior logging
session, start with Step 3.

To select data from the log file:

1. From the Options menu, select Log.

2. Click Stop Log.

The display area of the window is cleared and the status changes to Closed.

3. From the View menu, select Chart or Report.

4. From the Options menu, select Data From.

The Data From dialog box appears.

5. Click the Log File radio button, and use the browse button to navigate to your
log file.

The Open Input Log File dialog box opens.

6. Select your file and click Open.

7. Click OK.

8. From the Edit menu, select Time Window.

The Input Log File Timeframe dialog box opens.

Note: Because the Performance Monitor log files grow quickly,
watch the file size and change to another log file before it becomes
unmanageably large. Performance Monitor has no mechanism to
monitor file sizes.
Monitoring Your Web Server 2-5

Collecting Performance Data with the Performance Monitor
9. Specify the start and stop times of the interval of time you are interested in,
using bookmarks or the scroll bar.

10. Click OK.

11. From the Edit menu, select Add to Chart or Add to Report and select the objects
and counters to display.

12. Click Add.

13. Click Done.

The data from the selected time period appears in the chart or report.
2-6 Oracle HTTP Server powered by Apache Performance Guide

Monitoring the Web Server
Monitoring the Web Server
Monitoring activity on the system is essential to performance tuning. The Oracle
HTTP Server provides server side status information, including current server
statistics, via the mod_status module. To obtain these server status reports, you
must configure the web server as described in the following sections.

Using the mod_status Utility to Monitor the Web Server
To enable monitoring, edit the httpd.conf file to replace your_domain.com with
the hostname of the computer from which you want to monitor.

<Location /server-status>
 SetHandler server-status
 Order deny, allow
 Deny from all
 Allow from your_domain.com
</Location>

Ensure that the ExtendedStatus directive is set to On, so that the maximum
amount of information is displayed.

When you allow access from all domains, instead of just your_domain.com, you
can monitor the server from machines outside of your domain, but be aware of the
security implications of this: your server status is accessible from any site. It is
probably best to specify the domain(s) from which you want to monitor your
system.

With monitoring enabled, you can view current statistics from
http://hostname:port/server-status where hostname:port is the
hostname and port you want to monitor. These statistics help you to gain insight on
how busy your system is.

The display includes:

� Hostname for which status is displayed

� Server version

� Date server was built

� Current time, restart time, uptime

� Number of requests currently being processed

� Number of idle servers
Monitoring Your Web Server 2-7

Monitoring the Web Server
� Current server state (e.g., waiting for connection, reading request, sending
reply, etc.

Figure 2–2 is a screen capture of a server status page with ExtendedStatus
turned on.
2-8 Oracle HTTP Server powered by Apache Performance Guide

Monitoring the Web Server
Figure 2–2 Server status page
Monitoring Your Web Server 2-9

Monitoring the Web Server
Interpreting Server Status Information
The display (with ExtendedStatus enabled) shows that 1 server is sending a
reply. ThreadsPerChild is set to 50, so there are 49 idle servers (the busy server is
responding to the server-status request). You can determine what stage of
processing each server is in from the value in the M (Mode column).

Customizing the Server Status display
Figure 2–2 is a snapshot of a server for a moment in time. You can get updated
server statistics at any interval you choose by including the refresh parameter in the
server-status URL:

http://servername:port/server-status?refresh=x

where servername:port is the name of the server and port number you are
monitoring, and x is an integer representing the number of seconds after which the
data is refreshed. For example, specify refresh=3 to update statistics every 3
seconds.

You may also find it useful to have the statistics displayed in a machine-readable
format, for processing in a data analysis or spreadsheet program. To do this, add
auto to the end of the URL, as shown below:

http://servername:port/server-status?auto

Figure 2–3 Server statistics display
2-10 Oracle HTTP Server powered by Apache Performance Guide

Monitoring JServ Processes
Monitoring JServ Processes
After you start the Oracle9i Application Server, you can check to ensure that all
JServ processes have started normally. If performance is degraded during operation,
you can quickly determine if this is because JServ processes have terminated by
looking at the Status column (each configured process has a status of Up or Down).

1. Remove the comments in the JServ status handler section of the jserv.conf
file to enable monitoring and specify the host(s) that can access JServ status (the
default is localhost). Be aware of security implications when selecting the
hosts that will be allowed to access status information on your system.

<Location /jserv/>
SetHandler jserv-status

order deny, allow
deny from all
allow from hostname_1.com
allow from hostname_2.com

</Location>

2. Type the following into your browser:

http://hostname:port/jserv/

The port must be the port on which the web server listens (found in the
httpd.conf file).A Configured Hosts column displays links to hosts.

3. Click the host to monitor.

The JServ status information for the host displays as shown in Figure 2–4.
Monitoring Your Web Server 2-11

Monitoring JServ Processes
Figure 2–4 JServ status display
1

2-12 Oracle HTTP Server powered by Apache Performance Guide

Monitoring JServ Processes
The symbols that appear in parentheses after the word Up or Down have the
following meanings:

Note: The JServ status monitor shows all of the JServ processes
that are configured in the jserv.conf file, but not all of these
may have been started, or any of them could be terminated. For
example, 4 JServ processes are shown in Figure 2–4; all have a
status of Up. If one or more had a status of Down, all 4 would still be
displayed.

Note: The Status column is populated only for processes that are
started in manual mode. It is not populated for a single process
started in automatic mode.

Symbol Meaning

+ The process is running.

- The process is stopped.

X The process was terminated in a harsh shutdown.
(existing requests were not handled before the process was
terminated).

/ The process was terminated in a graceful shutdown
(existing requests were handled before the process was
terminated).
Monitoring Your Web Server 2-13

Monitoring JServ Processes
2-14 Oracle HTTP Server powered by Apache Performance Guide

Sizing an
3

Sizing and Configuration

This chapter provides guidelines for sizing and configuration which can help you
meet performance goals. It also discusses performance factors such as CPU and
memory consumption.

This chapter contains the following sections:

� Sizing your Hardware and Resources

� Understanding Concurrent Users and User Population

� Determining CPU Requirements

� Determining Memory Requirements
d Configuration 3-1

Sizing your Hardware and Resources
Sizing your Hardware and Resources
In addition to the minimum installation recommendations, your hardware
resources need to be adequate for the requirements of your specific applications. To
avoid hardware-related performance bottlenecks, each hardware component should
operate at no more than 80% of capacity.

Processor and memory resources in particular should be allocated generously, for
the maximum user load expected.

Understanding Concurrent Users and User Population
The amount of hardware resources required varies based on the application. A
common mistake is to use resource estimates that do not incorporate user think
time and network latencies. In sizing applications, you must have some idea of the
relationship between the number of potential users and the number of concurrent
users. This is determined by the think time and the average response time for your
application.

To determine memory requirements, you also need to consider the number of
concurrent executing users (not the total user population) times the cost per user.

Note: The ThreadsPerChild setting in your httpd.conf file
limits the number of concurrently executing users.
3-2 Oracle HTTP Server powered by Apache Performance Guide

Determining CPU Requirements
Table 3–1 provides an example of the impact of think time and service time on the
concurrency and resulting performance of a system.

Determining CPU Requirements
For most applications, the majority of the CPU utilization is spent in processing the
application’s code. The CPU requirement of any application depends on its
complexity and workload, as shown in Table 3–2.

You will need to monitor the CPU requirements of applications throughout the
development cycle. See Chapter 2, "Monitoring Your Web Server" for information
on how to do this.

Table 3–1 Concurrent executing users

User
population1

1 User population - total users.

Think
time
(sec)2

2 Think time - the time the user is not engaged in actual use of the processor (the time between
requests).

Service
time
(sec)3

3 Service time (seconds) - elapsed time to complete the operation measured for a single user.

Range of
concurrent
users4

4 Range of concurrent users - the number of users measured on the server, taken in snapshots from the
server-status display (requests currently being processed). See "Using the mod_status Utility to
Monitor the Web Server" on page 2-7 for information on server-status.

Average
response
Time
(sec)5

5 Average response time - response time measured at the client under load.

Requests per
second
(throughput)6

6 Requests per second (throughput) - number of requests processed.

CPU
utilization
(%)7

7 CPU utilization - average total CPU utilization as a percentage.

100 0 0.3 100 5.2 19 99

100 1 0.3 65-100 4.2 19 99

100 10 0.3 0-32 0.9 9 48

100 10 0.6 0-53 2.9 8 80

Table 3–2 Application CPU requirements on a 400 MHz x86 processor

Application
CPU requirement
(per request)

Static page, 20KB 5 msec

Simple servlet, JDK (Java Developer’s Kit) release
1.2

50 msec
Sizing and Configuration 3-3

Determining Memory Requirements
Determining Memory Requirements
This section discusses the following memory requirements:

� Determining Memory Requirements for the Oracle HTTP Server

� Determining Memory Requirements for JServ

� Determining Java Heap Size

� Determining Memory Requirements for Servlets and OracleJSP pages

� Determining the Number of JServ Processes per CPU

Determining Memory Requirements for the Oracle HTTP Server
The parent HTTP server process consumes up to 6 MB in the resident set. The child
process, which handles the requests, consumed up to 12 MB in in-house tests.

Determining Memory Requirements for JServ
 A JServ process using JDK 1.2 requires about 7 MB in the resident set at startup.
The process will grow to use up to 12MB physical memory. While the memory
required may grow to be much larger, it is important to note that NT limits the
amount that can be kept in the working set in physical memory. If the process
grows quite large, then there may be a large number of page faults in the JServ
process, and the paging that results will cause reduced throughput and increased
response times. If there is sufficient memory on the host, however, the process will
be allowed to cache pages in the system file cache, thereby reducing the necessity to
fetch pages from disk. The system file cache memory will be reclaimed by the
system if necessary. This means that the most important counter to watch for in the
Apache and Jserv processes is the number of page faults (see the Processes tab in
the Task Manager). If this is consistently higher than 5 faults per second, and there
is little or no system memory available (see the Performance tab in the Task
Manager), then adding physical memory is likely to improve performance.

Determining Java Heap Size
 For JDK release 1.2, the default maximum heap size is 67 MB.

To maximize performance, set the maximum heap size to accommodate application
requirements. To determine how much Java heap you need, include calls in your
program to the Runtime.getRuntime().totalMemory() and
Runtime.getRuntime().freeMemory methods in the java.lang package.
3-4 Oracle HTTP Server powered by Apache Performance Guide

Determining Memory Requirements
Subtract free memory from total memory; the difference is the amount of heap that
the application consumed.

Suppose you determine that you need 128MB of heap. To change the heap size, you
would set the maximum Java heap size in the jserv.properties file for
automatic mode:

wrapper.bin.parameters=-mx128m

In manual mode, if more than one JServ process is running, the heap size must be
set on the command line or in the startup script for each JServ process.

When a JServ process exceeds its maximum heap size, the process terminates. In
automatic mode, a new process is started, but performance is degraded
significantly. In manual mode, a terminated process will not be restarted, so ensure
that the heap size is sufficient.

Determining Memory Requirements for Servlets and OracleJSP pages
In general, OracleJSP pages require more memory than servlets. In in-house tests
using JDK release 1.2, a servlet and an OracleJSP required just under 7 MB at
startup. In the OracleJSP, the JServ process size continued to grow up to about 12
MB, and then a large number of page faults occurred, decreasing throughput and
increasing the average response time.

In the servlet, the JServ process size for a simple "Hello, World" servlet stabilized at
8 MB. The amount of memory needed also depends on whether sessions are being
used. With sessions turned off, the OracleJSP page and the servlet stabilized at
around 8 MB. You can turn sessions off by including the following line at the top of
the page:

<%@ page session="false" %>

You should also set developer mode to false in the jserv.properties file.

See Also: "Determining Memory Requirements for JServ" on
page 3-4.
Sizing and Configuration 3-5

Determining Memory Requirements
Determining the Number of JServ Processes per CPU
Oracle recommends two JServ processes per CPU as a starting point. In-house tests
on a server with four CPUs and one JServ process produced many failed requests
under load. With two JServ processes, there were occasional errors, but the response
time increased dramatically as the load increased.

Using four JServ processes, performance was acceptable. Under heavy load, with 8
JServ processes and the number of concurrent requests per JServ process limited to
10, response time was reduced by 50% and throughput increased.

To limit the number of concurrent requests per JServ process, change the
security.maxConnections parameter in the jserv.properties file. This
parameter specifies the maximum number of JServ requests that can be handled
simultaneously. The default setting of 50 results in exponential increases in response
time under load, unless the overall incoming load is restricted (by reducing the
ThreadsPerChild value in the httpd.conf file). Oracle recommends that you
limit security.maxConnections to 10, to avoid synchronization bottlenecks in
the JServ processes.

Unless a significant number of the requests on your HTTP server are non-JServ,
ensure that the following is true:

Otherwise, under high loads, requests will fail due to connection failures between
the HTTP server and the JServ engine. The HTTP server passes the request to the
next JServ process in the list, but because the security.maxConnections value is
exceeded, response time is degraded significantly in waiting for a connection.

If your application code performs a lot of synchronization, or creates many new
Java objects, then you should consider increasing the number of JServ processes,
while limiting the number of threads per process to between 10 and 20. In this way
you avoid increased queuing and processing required for object synchronization in

Note: If your servlets implement the SingleThreadModel
interface, you must reduce security.maxConnections to a
value less than the
singleThreadModelServlet.maximumCapacity value (the
default is 10).

(number of JServ processes) x
(security.maxConnections)

= (the ThreadsPerChild value) x 2
3-6 Oracle HTTP Server powered by Apache Performance Guide

Determining Memory Requirements
the JVM (Java virtual machine). This is because the httpd process sends incoming
requests to the JServ processes in a distributed fashion.

See Also: "How to Perform Load Balancing" on page 5-4 for
instructions on changing parameters in the configuration files, and
details on how requests are distributed among the available JServ
engines.
Sizing and Configuration 3-7

Determining Memory Requirements
3-8 Oracle HTTP Server powered by Apache Performance Guide

Optimizing HTTP Serv
4

Optimizing HTTP Server Performance

This chapter provides information on improving the Oracle HTTP Server’s
performance, including tuning network parameters, the effects of changing the
ThreadsPerChild parameter, and the performance impacts of logging.

This chapter contains the following sections:

� Network Tuning

� Configuring the ThreadsPerChild Parameter

� Enabling SSL Session Caching

� Understanding Performance Implications of Logging

� Benefits of the HTTP/1.1 Protocol
er Performance 4-1

Network Tuning
Network Tuning
There are a number of things to keep in mind when running the Oracle HTTP
Server.

1. Be certain that you have sufficient memory. System memory usage can be
monitored by watching the display under the performance tab in the Task
Manager.

2. Be certain that only the TPC/IP protocol stack is running. If another protocol is
running, it will be listed in the list under the Protocols tab of the Control
Panel/Network dialog box. To remove it, select it with the mouse, and click
Remove. If you close the Network dialog box, you will be prompted to restart
the system. It will be easier, however, to first continue with step 3.

3. Select the “Maximize Throughput for File Sharing” network optimization
scheme. Under the Services tab of the Control Panel/Network dialog box, you
can examine the Server properties. Select “Server” in the list, and click
Properties. This will bring up a dialog box that allows you to choose the criteria
for which TCP will be optimized. The default setting is “Maximize Throughput
for File Sharing”. We recommend you use the setting. If this has been otherwise
set, reset it to the default and click “OK”. Then close the Control
Panel/Network dialog box. If you changed this setting, you will be prompted
to restart the system, and if you have made any changes in Step 1 above, or in
this box, you should do so.

In addition to the above, one can adjust individual TCP/IP parameters in the
registry. We do not recommend that you do so as it is complex. Unless you have
plenty of time to test the impact for your environment, we recommend you limit
your TCP/IP tuning to the steps above.

Note: The performance is much better when either “Maximize
Throughput for File Sharing” or “Maximize Throughput for
Network Applications” is chosen, than when either of the other
options is chosen. We have also see that the response time under
load is cut in half when we maximize for file sharing rather than for
network applications.
4-2 Oracle HTTP Server powered by Apache Performance Guide

Configuring the ThreadsPerChild Parameter
Configuring the ThreadsPerChild Parameter
The ThreadsPerChild parameter in the httpd.conf file specifies the number of
requests that can be handled concurrently by the HTTP server. Requests in excess of
the ThreadsPerChild parameter value wait in the TCP/IP queue. Allowing the
requests to wait in the TCP/IP queue often results in the best response time and
throughput.

Configuring ThreadsPerChild for Servlet Requests
If the HTTP server will handle servlets exclusively, then the ThreadsPerChild
parameter value must be much smaller than the number of concurrent requests that
the JServ process can service. If a JServ process is handling all the requests it can (as
specified by security.maxConnections in the jserv.properties file), then a
delay occurs when the HTTP server tries to establish a connection to it.

To prevent the corresponding increase in latency, set ThreadsPerChild to half the
number of requests that all of the JServ processes can handle. For example, suppose
you have four JServ processes, and each has a security.maxConnections value
of 10. The total number of requests that the JServ processes can handle is 40, so set
ThreadsPerChild to 20.

Configuring ThreadsPerChild for Static Page Requests
The more concurrent threads you make available to handle requests, the more
requests your server can process. But be aware that with too many threads, under
high load, requests will be handled more slowly and the server will consume more
system resources.

In in-house tests of static page requests, a setting of 20 ThreadsPerChild per CPU
produced good response time and throughput results. For example, if you have
four CPUs, set ThreadsPerChild to 80. If, with this setting, CPU utilization does
not exceed 85%, you can increase ThreadsPerChild, but ensure that the available
threads are in use. You can determine this using the mod_status utility.

See Also: "Using the mod_status Utility to Monitor the Web
Server" on page 2-7 for information.
Optimizing HTTP Server Performance 4-3

Enabling SSL Session Caching
Enabling SSL Session Caching
The Oracle HTTP server caches a client’s SSL session information by default. With
session caching, only the first connection to the server incurs high latency. For
example, in a simple test to connect and disconnect to an SSL-enabled server, the
elapsed time for 5 connections was 5.54 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.18 seconds.

The SSLSessionCacheTimeout directive in httpd.conf determines how long
the server keeps a session alive (the default is 300 seconds). The session
information is kept in a file. You can specify where to keep the session information
using the SSLSessionCache directive; the default location is the $ORACLE_
HOME/Apache/Apache/logs/ directory. The file can be used by multiple Oracle
HTTP Server processes.

The duration of an SSL session is unrelated to the use of HTTP persistent
connections.

Understanding Performance Implications of Logging
This section discusses the performance implications of using access logging and the
HostNameLookups directive.

Access Logging
For static page requests, access logging of the default fields results in a 2-7%
performance cost.

HostNameLookups
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to
on, the server queries the DNS system on the Internet to find the host name
associated with the IP address of each request, then writes the host names to the
log.

Performance degraded by about 10-12% (best case) in Oracle in-house tests with
HostNameLookups set to on. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
high. Unless you really need to have host names in your logs in real time, it is best
to log IP addresses.
4-4 Oracle HTTP Server powered by Apache Performance Guide

Benefits of the HTTP/1.1 Protocol
Benefits of the HTTP/1.1 Protocol
The Oracle HTTP server can use HTTP/1.1. Netscape Navigator release 4.0 still uses
HTTP/1.0, with some 1.1 features, such as persistent connections. Internet Explorer
uses HTTP/1.1. The performance benefit of persistent connections comes from
reducing the overhead of establishing and tearing down a connection for each
request. A persistent connection accepts multiple requests from a user.

For a small static page request, the connection latency can equal or exceed the
response latency (the time to fulfill the request after the connection is established),
so using persistent connections can result in major performance gains.

Supporting Persistent Connections
If your users’ browsers support persistent connections (the default behavior of
HTTP/1.1), you can support them on the server using the KeepAlive directives in
the Oracle HTTP Server. (Some browsers that do not support all HTTP/1.1 features
do support persistent connections; for example, recent versions of Netscape.)

How Persistent Connections Improve Response Times
Persistent connections can improve total response time for a web interaction that
involves multiple HTTP requests, because the delay of setting up a connection only
happens once.

Consider the total time required, without persistent connections, for a client to
retrieve a web page with three images from the server.

 Activity Seconds

Establish connection 1

Produce and send the text
portion of the page

5

Establish connection 1

Transfer first image file 2

Establish connection 1

Transfer second image file 2

Establish connection 1

Transfer third image file 2

Total 15
Optimizing HTTP Server Performance 4-5

Benefits of the HTTP/1.1 Protocol
With persistent connections, the response time for the same request is reduced:

This is a 20% reduction in service time.

How Persistent Connections Reduce Server Workload
Another benefit of persistent connections is reduction of the work load on the
server. Because the server need not repeat the work to set up the connection with a
client, it is free to perform other work.

In-house tests using an OracleJSP application (lotto.jsp, one of the samples that
ships with Oracle9i Application Server) and persistent connections showed an
improvement of about 20%, with a single user making 5 requests per connection.
With an increased number of users (10-100), the performance improvement was less
dramatic, but still significant (6% or better).

 Activity Seconds

Establish connection 1

Produce and send the text
portion of the page

5

Transfer first image file 2

Transfer second image file 2

Transfer third image file 2

Total 12
4-6 Oracle HTTP Server powered by Apache Performance Guide

Optimizin
5

Optimizing Apache JServ

This chapter describes the JServ architecture, and discusses ways you can improve
JServ performance. It also includes performance information on OracleJSP pages
(the Oracle implementation of Sun Microsystems’ JavaServer Pages 1.1.)

� Overview of JServ

� Optimizing Servlet Performance

� What is OracleJSP?

� Tuning OracleJSP Pages for Performance
g Apache JServ 5-1

Overview of JServ
Overview of JServ
Apache JServ is made up of an Apache module called mod_jserv, which runs in
the httpd process, and a servlet engine, which runs in a Java process. mod_jserv,
which is implemented in C, functions as a dispatcher, routing each servlet request to
a JServ process for execution.

The servlet engine runs in its own JVM (Java Virtual Machine) and is solely
responsible for parsing the request and generating a response. As Figure 5–1 shows,
multiple JServs can service requests. The HTTP server process and the JServ process
communicate using the Apache JServ Protocol 1.2.

Figure 5–1 Apache JServ components
5-2 Oracle HTTP Server powered by Apache Performance Guide

Optimizing Servlet Performance
Optimizing Servlet Performance
This section discusses strategies for optimizing JServ performance: loading servlets
when starting the JVM, and load balancing.

The terms “repository” and “zone” are used in this discussion. Servlets,
repositories, and zones are analogous to files, directories and virtual hosts. A servlet
is a single unit, a repository is a collection of servlets, and a zone is a collection of
repositories.

Loading Servlet Classes
Apache JServ allows you to load servlet classes when the JVM is started. To do this,
put the servlets to load in the servlets.startup directive in the servlet zone
properties file. When the servlet is loaded, its init()method is called. All other
servlets (those not listed in servlets.startup) are loaded and initialized on first
request.

Using this facility increases the start-up time for your JServ process, but improves
first-request latency for servlets.

Pre-Loading with JSPs
If you are using a JSP as the servlet (your code does not extend HttpServlet), you
will be unable to use this pre-load option, but you could pre-load the JSP runner by
including the oracle.jsp.jspServlet in servlets.startup.

If the first-request latency for your initialization routines is really a performance
issue, you can achieve some of the results described above by creating a dummy
servlet to call your one-time initialization routines in its init() method. You must
add the name of the dummy servlet to servlets.startup.

Reloading Servlet Classes Automatically
If autoreload.classes is set to true for a zone (the default), then each time one
of that zone’s servlets is requested, every class that has been loaded from a
repository in that zone is checked to see if it has been modified. If one of the classes
has changed, then all previously loaded classes from the zone’s repositories are
unloaded, which means that as the classes are needed, they will be loaded from
their class files again.

This is a useful development feature, because you can install new versions or drop
in new class files without restarting the server. For optimal performance in
production environments, however, you should set both automatic class reloading
Optimizing Apache JServ 5-3

Optimizing Servlet Performance
parameters to false, since there is a performance cost in checking the repositories on
every execution of a servlet. Change these parameters in the zone properties file:

autoreload.classes=false
autoreload.file=false

How to Perform Load Balancing
It is often beneficial to spread the servlet application load among multiple JServ
processes, especially when the application is run on a multiprocessor or if the
servlets and HTTP server are run on separate nodes. Running multiple Apache
JServ processes generally results in higher throughput and shorter response time,
even on a single-processor host. (See Chapter 3, "Sizing and Configuration" for
specific recommendations.)

This section explains how to balance incoming requests between two JServ
processes running on the same host as the HTTP server. Examples from the
jserv.properties files are included with the procedures; substitute your own
port numbers and directory locations where needed.

If you use load balancing, you must start and stop processes manually, because
JServ cannot automatically start and stop more than one JServ process. (Sample
scripts for starting and stopping the JServ processes and the Oracle HTTP Server are
included in the $ORACLE_HOME/Apache/Apache/bin/ directory.) This means
that if a process terminates for any reason, JServ will not restart it. To prevent
processes from terminating due to memory shortage, ensure that you have a
sufficient maximum heap size set for your JServ processes. See "Determining Java
Heap Size" on page 3-4.

Configuring the JServ processes
Each JServ process in your load balancing scheme must be configured to listen on
its own port and to log to its own file. If you have a jserv.properties file
containing the parameters needed to run your application, you can duplicate it to
create a properties file for each JServ process.

1. Create a properties file for each JServ process.

copy jserv.properties jserv1.properties
copy jserv.properties jserv2.properties

2. Edit jserv1.properties as follows:

port=8001
log.file=/usr/local/jserv/logs/jserv1.log
5-4 Oracle HTTP Server powered by Apache Performance Guide

Optimizing Servlet Performance
3. Edit jserv2.properties as follows:

port=8002
log.file=/usr/local/jserv/logs/jserv2.log

To start and stop the processes and the web server, it is convenient to use scripts.
Samples are included in the $ORACLE_HOME/Apache/Apache/bin/ directory
(startJServ.bat and stopJServ.bat).

Modifying jserv.conf to distribute the load
1. Set the flag to start processes manually.

ApJServManual on

2. Indicate where the servlet request is to be sent.

a. Locate the ApJServMount directive.

ApJServMount /servlets /root

If the user requests
http://your.server.com/servlets/testServlet, the
ApJServMount directive above will execute testServlet in the zone
called /root.

b. Change the zone identifier from /root to balance://set/root and
then add the directives needed to describe the processes sharing the load:

ApJServMount /servlets balance://JServ_set/root
ApJServBalance JServ_set JServ1
ApJServBalance JServ_set JServ2 2
ApJServHost JServ1 ajpv12://127.0.0.1:8001
ApJServHost JServ2 ajpv12://127.0.0.1:8002
ApJServRoute JS1 JServ1
ApJServRoute JS2 JServ2
ApJServShmFile /usr/local/apache/logs/jserv_shm

Note: If your HTTP server will be running on a different host than
the JServ processes, you must also add the IP address of the host
running the HTTP server to the security.allowedAddresses
parameter in each jserv.properties file.
Optimizing Apache JServ 5-5

Optimizing Servlet Performance
* The ApJServMount directive, with /servlets
balance://set/root, now balances requests for servlets in
/servlets between JServ1 and JServ2.

* The ApJServBalance directive identifies JServ1 and JServ2 as the
processes that share the load. The ’2’ following JServ2 is a weight
value. It specifies that twice as many requests will be sent to JServ2 as
would be otherwise, i.e., that JServ2 will get about 2/3 of all incoming
requests. See "Distribution of JServ Requests" below for details.

* The ApJServHost directive identifies the host and port on which the
processes are listening.

* The ApJServRoute directive associates JServ processes with sessions.
JServ uses this information to keep all of a session’s requests together in
one process. The JServ session mechanism sends the process route
information back to the user (generally in a cookie). You need only
modify it if your application uses sessions.

* The ApJServShmFile directive specifies a shared memory file that the
httpd processes may use to track the state of the JServ processes.

Distribution of JServ Requests
The following process explains how mod_jserv selects the JServ engine to handle
a request:

1. The httpd process is started.

2. mod_jserv creates a list of available JServs, with extra entries for JServs with a
weight value greater than 1 (for example, JServ2 in the example above, as
specified by ApJServBalance set JServ2 2).

3. The httpd daemon receives a servlet request and hands it to mod_jserv.

4. mod_jserv selects the JServ engine that will handle the request.

a. mod_jserv checks to see if the request is part of a current session. If so, it
uses the ApJServRoute directives to find the JServ that handled the other
requests for that session.

b. If the request is not part of a session, mod_jserv selects the next JServ
process in its list (round robin request distribution).
5-6 Oracle HTTP Server powered by Apache Performance Guide

Optimizing Servlet Performance
Using Single Thread Model Servlets
Oracle recommends that you write your servlets to implement the
SingleThreadModel (STM) interface. An application that was modified to
implement the STM interface demonstrated a 25% improvement in response time.

It is also much easier to manage database connections with STM servlets. The
database connection can be set up in the init() method of the servlet, and closed
in the destroy() method. When executing the servlet’s doGet() or service()
method, you need not be concerned with obtaining a database connection. You can
also manage database connections with JDBC connection caching.

There are three parameters in the zone.properties file that impact the
performance of STM servlets in particular. These govern:

� The minimum number of servlet object instances that will be generated and
available after the servlet class is loaded

� The maximum number that can be generated

� The number that should be generated if the available instances are insufficient

Because it is very costly to generate instances while the system is running, Oracle
recommends that you set your minimum to equal your maximum value. The
optimum value depends somewhat on how many connections your database server
can handle. This should be split among the JServ processes, as follows:

See Chapter 3, "Sizing and Configuration" for suggestions on determining the right
number of JServ processes for your application, and "How to Perform Load
Balancing" on page 5-4 for the steps to configure them. Suppose you’ve determined
that you want 10 servlet instances per process. The capacity settings in the
zone.properties file would be:

singleThreadModelServlet.initialCapacity = 10
singleThreadModelServlet.incrementCapacity = 0
singleThreadModelServlet.maximumCapacity = 10

Total DB connections / Number of JServ processes = Number of STM servlet
instances per process
Optimizing Apache JServ 5-7

What is OracleJSP?
What is OracleJSP?
OracleJSP 1.1.0.0 is Oracle’s implementation of the Sun Microsystems JavaServer
Pages 1.1 specification. Some of the additional features it includes are custom
JavaBeans for accessing Oracle databases, SQL support, and extended data types.
See the Oracle9i Application Server Overview Guide in the Oracle9i Application Server
documentation library for detailed descriptions of the features.

Tuning OracleJSP Pages for Performance
This section explains how you can improve OracleJSP pages’ performance.

Impact of Session Management
In general, sessions add performance overhead; they consume about 0.5 KB of
resident memory. You must turn off sessions if you do not want a new session to be
created with each request. By default, sessions are enabled in OracleJSP pages, so if
they are not being used, turn them off by including the following line at the top of
the page:

<%@ page session="false" %>

If you are going to use sessions, ensure that you explicitly close them. If you don’t,
they will linger until they time out (the default value for session timeout is 30
minutes). To close a session manually, use the session.invalidate() method.

See the OracleJSP Developer’s Guide and Reference in the Oracle9i Application Server
documentation library for more information on configuring OracleJSP pages.

Developer Mode
Another parameter that has a significant effect on performance is developer mode.
It is a useful feature for debugging during development, but it degrades

Warning: The value for
singleThreadModelServlet.maximumCapacity in the zone
properties file must be at least as large as the value for
security.maxConnections in the jserv.properties file. If it is not,
and the number of requests sent to the JServ process exceeds the
maximum capacity, requests will fail.
5-8 Oracle HTTP Server powered by Apache Performance Guide

Tuning OracleJSP Pages for Performance
performance. The default value is true, so you will need to set it to false in the
jserv.properties file as follows:

servlet.oracle.jsp.JspServlet.initArgs=developer_mode=false

With developer mode set to true, OracleJSP and the servlet engine examines every
request to determine whether to reload or retranslate the page or application. With
developer mode off, only the first request is examined.

In a test using JDK 1.2 with 50 users, 128 MB heap, and the default TCP settings, the
performance gains with developer mode off were 14% in throughput, and 28% in
average response time.

Buffering
If an OracleJSP page is not using any features that do not require resetting the buffer
(such as error pages, contextType settings, forwards, etc.), disabling the JSP page
buffer will improve performance. This is because memory will not be used in
creating the buffer, and the output can go directly to the browser. Use this page
directive to disable buffering:

<%@ page buffer=”none” %>

The default size of an OracleJSP page buffer is 8 KB.

OracleJSP Performance Tips
The configuration actions below can enhance the performance of your OracleJSP
pages.

Caching database connections
Since the performance cost of creating database connections is high, it is more
performant to use a cache of connections. If you use a cache of database
connections, then the OracleJSP application can get a connection from the cache and
return it when it is finished.

Configuring the statement batch value
The JDBC driver accumulates a number of execution requests (the batch value) and
passes them to the database to be processed at the same time. You can configure the
batch value to control how frequently processing occurs.
Optimizing Apache JServ 5-9

Tuning OracleJSP Pages for Performance
Caching JDBC statements
Cache executable statements that are repeatedly used, to avoid re-parsing,
statement object re-creation, and recalculation of parameter size definitions.

Pre-fetching rows
During a query, pre-fetch multiple rows into the client to reduce round trips
between the database and the server.

Caching rowsets from the database
Cache small sets of data that are accessed frequently and do not change often. This
is not as beneficial for large data sets, since they consume more memory.

Invoking static includes
To invoke static includes, use the page directive:

<%@ include file=“/jsp/filename.jsp” %>

Static include creates a copy of the file in the JSP, thereby affecting its page size. This
is useful in avoiding trips to the request dispatcher (unlike dynamic includes, which
must go through the request dispatcher each time). However, file sizes should be
small to avoid exceeding the 64 KB limit of the service method of the generated
page implementation class.

Invoking Dynamic Includes
To invoke dynamic includes, use the page directive

<jsp:include page=”/jsp/filename.jsp” flush="true" />

This directive is analogous to a function call, and therefore does not increase the
page size of the JSP. However, a dynamic include increases the processing overhead
since it must go through the request dispatcher. Dynamic includes are useful for
including other pages without increasing page size.
5-10 Oracle HTTP Server powered by Apache Performance Guide

Index

A
Apache JServ Protocol 1.2, 5-2
ApJServBalance, 5-5
ApJServManual, 5-5
ApJServMount, 5-5
ApJServRoute, 5-5
ApJServShmFile, 5-5
architecture

JServ, 5-2
Oracle Internet Application Server 8i, 1-11

C
caching

database connections, 5-9
capacity, 1-7
concurrency

defined, 1-2
limiting, 1-8

concurrent executing users, 3-2
concurrent users, 3-2
connection caching, 5-7
contention, 1-5
CPU

application requirements, 3-3
average utilization, 3-3
insufficient, 1-4
Performance Monitor consumption, 2-2

D
database connection, 5-7
demand rate, 1-6, 1-7

developer_mode, 5-9

E
ExtendedStatus, 2-8

F
functional demand, 1-7

G
graceful shutdown, 2-13

H
harsh shutdown, 2-13
hash

defined, 1-2
httpd.conf, 3-6

J
JDBC, 5-7
JServ

described, 5-2
load balancing, 5-4
process start-up time, 5-3
processes, load balancing, 5-4
starting and stopping processes, 5-4

JServ Protocol 1.2, 5-2
jserv.conf, 2-13
jserv.properties, 3-6, 5-4
JSP, 5-8
Index-1

L
latency

defined, 1-2
first-request, 5-3
network, 3-2

load balancing, 5-4
load variances, 1-9

M
mod_jserv, 5-2, 5-6
mod_status, xi, 2-7
monitoring

JServ processes, 2-11
server, 2-10
server side status, 2-7

N
Network Monitor, 2-2

O
Oracle Internet Application Server 8i

architecture, 1-11
oracle.jsp.jspServlet, 5-3

P
performance goals, 1-8, 3-1
protocol

Apache JServ 1.2, 5-2
HTTP/1.1, 4-5

R
repository, defined, 5-3
response time, 1-4

defined, 1-2
goal, 1-8
improving, 1-3
peak load, 1-9
sizing and, 3-2

S
scalability

defined, 1-2
security.allowedAddresses, 5-5
security.maxConnections, 3-6
server statistics, 2-7
server-side status information, 2-7
server-status, 2-7
service time, 1-3

defined, 1-2
servlet

database connection and, 5-7
engine, 5-2
pre-loading classes, 5-3
SingleThreadModel interface and, 5-7
zone properties file, 5-3

servlets.startup, 5-3
sessions

JServ processes and, 5-6
SSL and, 4-4

SetHandler, 2-7
shutdown, 2-13
singleThreadModelServlet.maximumCapacity, 3-6
SSL

session caching, 4-4
statistics

server, 2-7, 2-10
status reports, 2-7

T
think time

defined, 1-2
resources and, 3-2

ThreadsPerChild, 2-10, 3-6, 4-3
throughput

defined, 1-2
demand limiter and, 1-7
increasing, 1-4

U
unit consumption, 1-7
uptime, 2-7
users, concurrent, 3-2
Index-2

W
wait time

contention and, 1-5
defined, 1-2
parallel processing and, 1-4

Z
zone, defined, 5-3
zone.properties, 5-7
Index-3

Index-4

	Oracle HTTP Server powered by Apache Performance Guide
	Send Us Your Comments
	Preface
	1 Performance Overview
	Performance Terms
	What is Performance Tuning?
	System Throughput
	Wait Time
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance
	Performance Methodology
	Factors in Improving Performance

	Architecture

	2 Monitoring Your Web Server
	Monitoring Network Activity
	Collecting Performance Data with the Performance Monitor
	Starting the Performance Monitor
	Creating a chart of Process Activity
	Logging Performance Statistics
	Creating a Report or Chart of Log File Data

	Monitoring the Web Server
	Using the mod_status Utility to Monitor the Web Server

	Monitoring JServ Processes

	3 Sizing and Configuration
	Sizing your Hardware and Resources
	Determining CPU Requirements
	Determining Memory Requirements
	Determining Memory Requirements for the Oracle HTTP Server
	Determining Memory Requirements for JServ
	Determining Java Heap Size
	Determining Memory Requirements for Servlets and OracleJSP pages
	Determining the Number of JServ Processes per CPU

	4 Optimizing HTTP Server Performance
	Network Tuning
	Configuring the ThreadsPerChild Parameter
	Configuring ThreadsPerChild for Servlet Requests
	Configuring ThreadsPerChild for Static Page Requests

	Enabling SSL Session Caching
	Understanding Performance Implications of Logging
	Benefits of the HTTP/1.1 Protocol
	Supporting Persistent Connections

	5 Optimizing Apache JServ
	Overview of JServ
	Optimizing Servlet Performance
	Loading Servlet Classes
	Reloading Servlet Classes Automatically
	How to Perform Load Balancing
	Using Single Thread Model Servlets

	What is OracleJSP?
	Tuning OracleJSP Pages for Performance
	Impact of Session Management
	Developer Mode
	Buffering
	OracleJSP Performance Tips

	Index

