
Oracle9iAS Reports Services

Publishing Reports to the Web

Release 9.0

Part No. A92102-01

February 2002

Oracle9iAS Reports Services Publishing Reports to the Web, Release 9.0

Part No. A92102-01

Copyright © 1996, 2001, 2002, Oracle Corporation. All rights reserved.

Primary Author: Joan Carter

Contributing Authors: Robin J. Fisher, Frank Rovitto, and Philipp Weckerle

Contributors: Shaun Lin, Vinay Pamadi, Rajesh Ramachandran, Danny Richardson, Jim Safcik, J. Toby
Shimizu, Jeff Tang, and Vanessa Wang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i and PL/SQL are trademarks or registered trademarks of
Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xvii

Preface.. xix

Intended Audience .. xix
Documentation Accessibility .. xx
Accessibility of Code Examples in Documentation... xx
Structure ... xx
Related Documents.. xxi
Notational Conventions... xxii

Part I Preparing Your Environment

1 Oracle9iAS Reports Services Architecture

1.1 Overview of Oracle9iAS Reports Services... 1-1
1.2 Oracle9iAS Reports Services Components .. 1-4
1.3 Oracle9iAS Reports Services Runtime Process ... 1-6
1.4 Things to Consider When You Set Up Your System.. 1-8
1.4.1 Choosing the Types of Requests You Will Service.. 1-9
1.4.2 Choosing Servlet, JSP, or CGI... 1-9
1.4.3 Choosing Single- Or Multiple-Machine Configurations .. 1-10
1.4.4 Choosing Whether to Cluster Multiple Servers... 1-11
iii

2 Starting and Stopping Oracle9iAS Reports Services

2.1 Starting the Reports Server .. 2-1
2.1.1 Installing and Starting the Reports Server as a Service (Windows NT/2000) 2-2
2.1.2 Starting the Reports Server as a Servlet (Windows and UNIX) 2-3
2.1.3 Starting the Reports Server from a Command Line (Windows and UNIX).......... 2-3
2.2 Verifying the Reports Servlet and Server Are Running... 2-4
2.3 Verifying that the Oracle HTTP Server Is Running.. 2-4
2.4 Stopping the Reports Server .. 2-5

3 Configuring Oracle9iAS Reports Services

3.1 Oracle9iAS Reports Services Configuration Files... 3-1
3.2 Configuring the Oracle9iAS Reports Server.. 3-3
3.2.1 Reports Server Configuration Elements (rwserverconf.dtd) 3-4
3.2.1.1 server... 3-5
3.2.1.2 compatible .. 3-6
3.2.1.3 cache.. 3-7
3.2.1.4 engine.. 3-8
3.2.1.5 security.. 3-11
3.2.1.6 destination.. 3-13
3.2.1.7 job .. 3-14
3.2.1.8 notification ... 3-15
3.2.1.9 log .. 3-17
3.2.1.10 jobStatusRepository .. 3-18
3.2.1.11 trace ... 3-19
3.2.1.12 connection .. 3-21
3.2.1.13 queue... 3-24
3.2.1.14 persistFile ... 3-25
3.2.1.15 identifier ... 3-26
3.2.1.16 pluginParam .. 3-27
3.3 Configuring the Reports Servlet.. 3-28
3.3.1 Specifying the location of the key map file... 3-30
3.3.2 Reloading the Key Map File.. 3-30
3.3.3 Hiding Verbose Error Messages... 3-30
3.3.4 Selecting Login Dialog Boxes.. 3-31
3.3.5 Setting up Trace Options for the Reports Servlet and JSPs.................................... 3-32
iv

3.3.6 Customizing the Appearance of Server Error Messages.. 3-33
3.3.7 Specifying an In-Process Server ... 3-33
3.3.8 Identifying the Default Reports Server ... 3-34
3.3.9 Pointing to Dynamically Generated Images .. 3-34
3.3.10 Setting Expiration for DB Authentication and SYSAUTH Cookies...................... 3-35
3.3.11 Setting an Encryption Key for the DB Authentication Cookie 3-35
3.3.12 Adding Formatting to Diagnostic/Debugging Output ... 3-35
3.3.13 Specifying an SSL Port Number... 3-35
3.3.14 Defining the rwservlet Help File.. 3-36
3.3.15 Specifying the Use of Single Sign-On.. 3-36
3.4 Configuring the URL Engine ... 3-36
3.5 Entering Proxy Information... 3-38
3.6 Configuring the Reports Server for Oracle Enterprise Manager.................................. 3-39

4 Configuring Destinations for Oracle9iAS Reports Services

4.1 Overview of Output Processing.. 4-1
4.2 Registering Destination Types with the Server .. 4-4
4.2.1 Setting Up a Destination Section in the Server Configuration File......................... 4-4
4.2.2 Entering Valid Values for a Destination ... 4-5
4.2.2.1 Destination destypes and classes.. 4-5
4.2.2.2 Destination Property name/value Pairs.. 4-6

5 Controlling User Access

5.1 Introduction to Oracle9iAS Portal .. 5-2
5.2 Defining Portal-Based Security in the Server Configuration File 5-3
5.3 Creating Reports Users and Named Groups in Oracle9iAS Portal 5-4
5.3.1 Default Reports-Related Groups.. 5-5
5.3.1.1 RW_BASIC_USER... 5-5
5.3.1.2 RW_POWER_USER.. 5-5
5.3.1.3 RW_DEVELOPER... 5-6
5.3.1.4 RW_ADMINISTRATOR .. 5-6
5.3.2 Creating Users and Groups .. 5-6
5.4 Setting Up Access Controls.. 5-6
5.4.1 Creating an Availability Calendar... 5-7
5.4.1.1 Creating a Simple Availability Calendar... 5-7
v

5.4.1.2 Creating a Combined Availability Calendar... 5-10
5.4.2 Registering a Printer .. 5-12
5.4.3 Registering a Reports Server... 5-14
5.4.4 Registering a Report... 5-16

6 Reports Server Clusters

6.1 Cluster Overview... 6-1
6.2 Setting Up a Cluster .. 6-2
6.2.1 Renaming a Reports Server... 6-3
6.2.2 Generating New Public and Private Keys .. 6-5
6.2.3 Entering Public and Private Keys in the Server Configuration File 6-5
6.2.4 Restarting the Reports Server ... 6-6
6.2.5 Submitting a Request to a Cluster.. 6-6

7 Data Source Single Sign-On

7.1 SSO Architecture.. 7-2
7.1.1 SSO Components .. 7-2
7.1.2 SSO Transactions .. 7-4
7.2 Methods for Setting Up User Connection Strings .. 7-5
7.2.1 Initial Requirements... 7-5
7.2.2 Method 1: Giving Users Access to the OID .. 7-6
7.2.3 Method 2: Assigning Connection Strings and Letting Users Input at Login 7-6

Part II Sending Requests to the Server

8 Running Report Requests

8.1 The Reports URL Syntax .. 8-1
8.1.1 Servlet... 8-2
8.1.2 JSP ... 8-3
8.1.3 CGI.. 8-4
8.2 Report Request Methods .. 8-5
8.3 Publishing a Report Portlet in Oracle9iAS Portal ... 8-7
8.3.1 Creating a Provider for Your Reports ... 8-7
8.3.2 Creating the Report Definition File Access .. 8-7
vi

8.3.3 Adding the Report Portlet to a Page ... 8-8
8.4 Specifying a Report Request from a Web Browser... 8-9
8.5 Sending a Request to the URL Engine.. 8-10
8.6 Scheduling Reports to Run Automatically .. 8-10
8.7 Additional Parameters.. 8-11
8.8 Reusing Report Output from Cache ... 8-11
8.8.1 Usage Notes .. 8-12
8.9 Using a Key Map File.. 8-13
8.9.1 Enabling Key Mapping ... 8-13
8.9.2 Adding Key Mapping Entries to a Key Map File .. 8-14
8.9.3 Using a Key with Everything but JSPs.. 8-15
8.9.4 Using a Key with a Report Run as a JSP ... 8-15

9 Creating Advanced Distributions

9.1 Distribution Overview.. 9-1
9.2 Introduction to Distribution XML Files ... 9-2
9.2.1 The distribution.dtd File ... 9-2
9.2.2 A Brief Word About Using Variables within Attributes .. 9-2
9.3 Elements of a Distribution XML File .. 9-4
9.3.1 destinations ... 9-4
9.3.2 foreach.. 9-5
9.3.3 mail ... 9-7
9.3.4 body.. 9-10
9.3.5 attach .. 9-11
9.3.6 include ... 9-13
9.3.7 file ... 9-16
9.3.8 printer .. 9-18
9.3.9 destype... 9-19
9.3.10 property ... 9-22
9.4 Distribution XML File Examples... 9-22
9.4.1 foreach examples .. 9-22
9.4.1.1 Single E-Mail with Report Groups as Separate Attachments......................... 9-23
9.4.1.2 Separate E-Mail for Each Group Instance ... 9-23
9.4.1.3 Separate E-Mails with Separate Sections as Attachments............................... 9-23
9.4.1.4 Separate File for Each Section ... 9-24
vii

9.4.1.5 Separate Print Run for Each Report.. 9-24
9.4.1.5.1 Windows ... 9-25
9.4.1.5.2 UNIX .. 9-25
9.4.2 mail examples ... 9-25
9.4.2.1 E-Mail with a Whole Report as the Body .. 9-25
9.4.2.2 E-Mail with a Section of a Report as the Body.. 9-26
9.4.2.3 E-Mail with Two Report Sections as the Body.. 9-26
9.4.2.4 E-Mail with External File as Body and Report as Attachment 9-26
9.4.2.4.1 Windows ... 9-26
9.4.2.4.2 UNIX .. 9-27
9.4.2.5 E-Mail with Whole Report and Grouped Sections Attached.......................... 9-27
9.4.2.6 E-Mail to Relevant Manager and Department.. 9-27
9.4.3 file examples.. 9-28
9.4.3.1 File for Whole Report ... 9-28
9.4.3.1.1 Windows ... 9-28
9.4.3.1.2 UNIX .. 9-28
9.4.3.2 File for Combined Report Sections ... 9-29
9.4.3.3 File for Each Group of Combined Sections ... 9-29
9.4.3.4 File for Each Report Group Instance .. 9-29
9.4.4 printer examples ... 9-29
9.4.4.1 Print Whole Report ... 9-30
9.4.4.1.1 Windows ... 9-30
9.4.4.1.2 UNIX .. 9-30
9.4.4.2 Print Two Sections of a Report .. 9-30
9.4.4.2.1 Windows ... 9-30
9.4.4.2.2 UNIX .. 9-30
9.4.4.3 Print Grouped Report... 9-31
9.4.4.3.1 Windows ... 9-31
9.4.4.3.2 UNIX .. 9-31
9.4.4.4 Print Combined Sections for Each Group Instance.. 9-31
9.4.4.4.1 Windows ... 9-31
9.4.4.4.2 UNIX .. 9-31
9.4.4.5 Print Relevant Instance of a Report to Its Relevant Printer 9-32
9.5 Using a Distribution XML File at Runtime.. 9-32
9.6 XSL Transformation for Custom/Pluggable Destinations.. 9-33
viii

10 Customizing Reports with XML

10.1 Customization Overview ... 10-2
10.2 Creating XML Customizations.. 10-3
10.2.1 Required XML Tags ... 10-4
10.2.2 Changing Styles .. 10-4
10.2.3 Changing a Format Mask.. 10-5
10.2.4 Adding Formatting Exceptions.. 10-5
10.2.5 Adding Program Units and Hyperlinks ... 10-7
10.2.6 Adding a New Query and Using the Result in a New Header Section 10-8
10.3 Creating XML Data Models ... 10-9
10.3.1 Creating Multiple Data Sources ... 10-9
10.3.2 Linking Between Data Sources... 10-10
10.3.3 Creating Group Hierarchies within Each Data Source... 10-11
10.3.4 Creating Cross-Product (Matrix) Groups ... 10-12
10.3.5 Creating Formulas, Summaries, and Placeholders at any Level......................... 10-13
10.3.6 Creating Parameters .. 10-14
10.4 Using XML Files at Runtime.. 10-16
10.4.1 Applying an XML Report Definition at Runtime.. 10-16
10.4.1.1 Applying One XML Report Definition .. 10-16
10.4.1.2 Applying Multiple XML Report Definitions .. 10-17
10.4.1.3 Applying an XML Report Definition in PL/SQL... 10-18
10.4.1.3.1 Applying an XML Definition Stored in a File.. 10-18
10.4.1.3.2 Applying an XML Definition Stored in Memory.................................... 10-18
10.4.2 Running an XML Report Definition by Itself... 10-21
10.4.3 Performing Batch Modifications .. 10-21
10.5 Debugging XML Report Definitions .. 10-22
10.5.1 XML Parser Error Messages ... 10-22
10.5.2 Tracing Options .. 10-23
10.5.3 RWBUILDER .. 10-23
10.5.4 Writing XML to a File for Debugging ... 10-24

11 Event-Driven Publishing

11.1 The Event-Driven Publishing API .. 11-2
11.1.1 Elements of the API ... 11-2
11.1.2 Creating and Manipulating a Parameter List .. 11-2
ix

11.1.2.1 Add_Parameter ... 11-3
11.1.2.2 Remove_Parameter ... 11-3
11.1.2.3 Clear_Parameter_List ... 11-4
11.1.3 How to Submit a Job .. 11-4
11.1.4 How to Check for Status.. 11-5
11.1.5 Using the Servers' Status Record.. 11-6
11.2 Debugging Applications That Use the Event-Driven Publishing API 11-7
11.3 Invoking a Report From a Database Event .. 11-8
11.4 Integrating with Oracle9i Advanced Queuing.. 11-9
11.4.1 Creating a Queue That Holds Messages of Type SRW_PARAMLIST 11-10
11.4.2 Creating the Enqueuing Procedure ... 11-11
11.4.3 Creating the Dequeuing Procedure ... 11-12

Part III National Language Support and Bidirectional Support

12 NLS and Bidirectional Support

12.1 NLS Architecture ... 12-2
12.1.1 Language-Independent Functions ... 12-2
12.1.2 Language-Dependent Data ... 12-2
12.2 NLS Environment Variables .. 12-2
12.2.1 NLS_LANG Environment Variable... 12-3
12.2.1.1 Defining the NLS_LANG Environment Variable .. 12-6
12.2.1.1.1 Windows ... 12-6
12.2.1.1.2 UNIX .. 12-7
12.2.1.2 Character Sets .. 12-7
12.2.1.2.1 Character Set Design Considerations.. 12-7
12.2.1.2.2 Font Aliasing on Windows Platforms... 12-7
12.2.1.3 Language and Territory ... 12-8
12.2.2 DEVELOPER_NLS_LANG and USER_NLS_LANG Environment Variables 12-9
12.3 Specifying a Character Set in a JSP or XML File ... 12-10
12.4 Bidirectional Support .. 12-12
12.5 Unicode ... 12-13
12.5.1 Unicode Support... 12-13
12.5.2 Unicode Font Support.. 12-14
12.5.3 Enabling Unicode Support.. 12-15
x

12.5.4 Using ALTER SESSION .. 12-15
12.6 Translating Applications .. 12-16

Part IV Performance

13 Managing and Monitoring Oracle9iAS Reports Services

13.1 Navigating to Reports Services Information in OEM .. 13-2
13.2 Starting, Stopping, and Restarting Reports Servers ... 13-2
13.3 Viewing and Managing Reports Job Queues .. 13-3
13.3.1 Viewing and Managing the Current Jobs Queue .. 13-4
13.3.1.1 Viewing a Report Server's Current Jobs Queue ... 13-4
13.3.1.2 Cancelling a Current Job.. 13-5
13.3.2 Viewing and Managing the Scheduled Jobs Queue.. 13-5
13.3.2.1 Viewing a Report Server's Scheduled Jobs Queue... 13-5
13.3.2.2 Cancelling a Scheduled Job ... 13-6
13.3.3 Viewing and Managing the Finished Jobs Queue... 13-6
13.3.3.1 Viewing a Report Server's Finished Jobs Queue .. 13-7
13.3.3.2 Viewing a Job’s Trace File.. 13-8
13.3.3.3 Viewing a Result from Cache.. 13-8
13.3.3.4 Rerunning a Finished Job... 13-9
13.3.4 Viewing and Managing the Failed Jobs Queue ... 13-9
13.3.4.1 Viewing a Report Server's Failed Jobs Queue .. 13-9
13.3.4.2 Viewing a Failed Job’s Trace File.. 13-10
13.3.4.3 Rerunning a Failed Job... 13-11
13.4 Monitoring Server Performance.. 13-11
13.5 Viewing and Changing Reports Server Configuration Files 13-12
13.6 Viewing and Linking to Server Cluster Members.. 13-13
13.7 Adding a Reports Server to OEM ... 13-14

14 Tuning Oracle9iAS Reports Services

14.1 Using the In-Process Server ... 14-1
14.2 Tuning the Reports Engine .. 14-2
14.2.1 initEngine .. 14-3
14.2.2 maxEngine... 14-3
xi

14.2.3 minEngine ... 14-4
14.2.4 engLife.. 14-4
14.2.5 maxIdle .. 14-4
14.2.6 callBackTimeOut .. 14-5
14.3 Clustering Multiple Servers ... 14-5
14.4 Optimizing Cache Strategies.. 14-6
14.4.1 Setting Up Cache in the Reports Server Configuration File................................... 14-7
14.4.2 Specifying Cache-Related Options in the Command Line..................................... 14-8
14.4.2.1 TOLERANCE... 14-8
14.4.2.2 EXPIRATION... 14-8
14.4.3 Setting Up Caching Options in a JSP... 14-9
14.5 Monitoring Performance .. 14-10
14.5.1 Monitoring Performance with Oracle Trace... 14-11
14.5.1.1 Trace Overview ... 14-11
14.5.1.2 Additional Sources of Trace Information .. 14-12
14.5.2 The SHOWJOBS Command Keyword .. 14-13
14.5.3 Accessing the RW_SERVER_QUEUE table .. 14-14
14.5.4 Updating the Database with Queue Activity... 14-17

Part V Appendices

A Command Line Arguments

A.1 Command Overview... A-1
A.1.1 rwclient .. A-2
A.1.2 rwrun.. A-2
A.1.3 rwbuilder ... A-3
A.1.4 rwconverter ... A-3
A.1.5 rwservlet .. A-4
A.1.6 rwcgi... A-5
A.1.7 rwserver ... A-6
A.2 Command Line Syntax ... A-6
A.3 General Usage Notes... A-7
A.4 Command Line Arguments ... A-7
A.4.1 ACCESSIBLE... A-7
A.4.2 ARRAYSIZE .. A-8
xii

A.4.3 AUTHID .. A-8
A.4.4 AUTOCOMMIT.. A-9
A.4.5 AUTOSTART .. A-9
A.4.6 BATCH .. A-10
A.4.7 BCC... A-10
A.4.8 BLANKPAGES ... A-11
A.4.9 BUFFERS ... A-12
A.4.10 CACHELOB .. A-12
A.4.11 CC ... A-13
A.4.12 CELLWRAPPER... A-14
A.4.13 CMDFILE .. A-15
A.4.14 CMDKEY... A-16
A.4.15 CONTENTAREA ... A-16
A.4.16 COPIES .. A-17
A.4.17 CUSTOMIZE... A-18
A.4.18 DATEFORMATMASK .. A-19
A.4.19 DELAUTH... A-19
A.4.20 DELIMITED_HDR ... A-20
A.4.21 DELIMITER... A-20
A.4.22 DESFORMAT.. A-21
A.4.23 DESNAME .. A-22
A.4.24 DEST... A-23
A.4.25 DESTINATION... A-24
A.4.26 DESTYPE ... A-25
A.4.27 DISTRIBUTE ... A-26
A.4.28 DTYPE.. A-27
A.4.29 DUNIT ... A-28
A.4.30 EXPIRATION.. A-29
A.4.31 EXPIREDAYS.. A-30
A.4.32 EXPRESS_SERVER... A-30
A.4.33 FORMSIZE .. A-33
A.4.34 FROM ... A-33
A.4.35 GETJOBID ... A-34
A.4.36 GETSERVERINFO ... A-35
A.4.37 HELP .. A-35
xiii

A.4.38 IGNOREMARGIN.. A-36
A.4.39 INSTALL.. A-36
A.4.40 ITEMTITLE.. A-37
A.4.41 JOBNAME ... A-37
A.4.42 JOBTYPE .. A-38
A.4.43 KILLJOBID .. A-38
A.4.44 LONGCHUNK ... A-39
A.4.45 MODE .. A-39
A.4.46 MODULE|REPORT... A-40
A.4.47 NONBLOCKSQL.. A-41
A.4.48 NOTIFYFAILURE .. A-41
A.4.49 NOTIFYSUCCESS .. A-42
A.4.50 NUMBERFORMATMASK.. A-42
A.4.51 ONFAILURE ... A-43
A.4.52 ONSUCCESS... A-44
A.4.53 ORIENTATION .. A-44
A.4.54 OUTPUTFOLDER .. A-45
A.4.55 OUTPUTPAGE ... A-46
A.4.56 OVERWRITE... A-47
A.4.57 P_AVAILABILITY.. A-47
A.4.58 P_DESCRIPTION .. A-48
A.4.59 P_FORMATS .. A-48
A.4.60 P_NAME.. A-49
A.4.61 P_OWNER... A-49
A.4.62 P_PFORMTEMPLATE... A-50
A.4.63 P_PRINTERS ... A-50
A.4.64 P_PRIVILEGE .. A-51
A.4.65 P_SERVERS ... A-52
A.4.66 P_TRIGGER... A-52
A.4.67 P_TYPES .. A-53
A.4.68 PAGEGROUP ... A-53
A.4.69 PAGESIZE ... A-54
A.4.70 PAGESTREAM ... A-55
A.4.71 PARAMFORM .. A-56
A.4.72 PARSEQUERY .. A-56
xiv

A.4.73 PDFCOMP... A-57
A.4.74 PDFEMBED... A-57
A.4.75 PRINTJOB.. A-58
A.4.76 READONLY.. A-59
A.4.77 REPLACEITEM .. A-59
A.4.78 REPLYTO .. A-60
A.4.79 REPORT|MODULE .. A-61
A.4.80 ROLE.. A-61
A.4.81 RUNDEBUG ... A-61
A.4.82 SAVE_RDF .. A-62
A.4.83 SCHEDULE... A-62
A.4.84 SERVER ... A-63
A.4.85 SHOWENV ... A-64
A.4.86 SHOWJOBS ... A-65
A.4.87 SHOWMAP... A-65
A.4.88 SHOWMYJOBS... A-66
A.4.89 SHUTDOWN .. A-66
A.4.90 SITENAME.. A-67
A.4.91 SOURCE .. A-68
A.4.92 SSOCONN... A-69
A.4.93 STATUSFORMAT.. A-70
A.4.94 STATUSFOLDER ... A-71
A.4.95 STATUSPAGE .. A-72
A.4.96 STYPE... A-73
A.4.97 SUBJECT .. A-73
A.4.98 TOLERANCE.. A-74
A.4.99 TRACEFILE... A-75
A.4.100 TRACEMODE... A-76
A.4.101 TRACEOPTS ... A-76
A.4.102 UNINSTALL ... A-78
A.4.103 URLPARAMETER ... A-78
A.4.104 USERID .. A-79
A.4.105 WEBSERVER_DEBUG .. A-80
A.4.106 WEBSERVER_DOCROOT .. A-80
A.4.107 WEBSERVER_PORT.. A-81
xv

B Reports-Related Environment Variables

C Batch Registering Reports in Oracle9iAS Portal

C.1 Batch Registering Report Definition Files .. C-1
C.1.1 Run RWCONVERTER to Generate a SQL Script .. C-1
C.1.2 Run the Script in SQL*Plus ... C-4
C.2 Batch Removing Report Packages... C-5
C.3 PL/SQL Batch Registering Function .. C-5

Index
xvi

Send Us Your Comments

Oracle9iAS Reports Services Publishing Reports to the Web, Release 9.0

Part No. A92102-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find errors or have suggestions for improvement, please indicate the document title and part
number, and the chapter, section, and page number (if available). You can send comments to us via
the Reports discussion group forum on the Oracle Technology Network: http://otn.oracle.com

If you have problems with the software, please contact your local Oracle Support Services.
xvii

xviii

Preface

This manual describes the different options available for publishing reports with
Oracle9iAS Reports Services as well as how to configure the Oracle9iAS Reports
Services software for publishing reports.

Intended Audience
This manual is intended for anyone who is interested in publishing reports with
Oracle9iAS Reports Services. To configure Oracle9iAS Reports Services, it will be
useful for you to have a solid understanding of the following technologies:

� your operating system

� Java

� databases

� CORBA

� JSP files

� XML and DTD files

� Web server configuration

� HTTP

Note: For the latest updates to Oracle9iAS Reports Services
Publishing Reports to the Web, refer to the Oracle Technology
Network (http://otn.oracle.com/products/reports/), then click
Getting Started and use the index to navigate to Oracle9iAS Reports
Services Publishing Reports to the Web.
xix

This manual will guide you through configuring components related to these
technologies.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Structure
This manual contains the following chapters:

Chapter 1 Provides an overview of Oracle9iAS Reports Services architecture.

Chapter 2 Tells you how to start and stop Oracle9iAS Reports Services.

Chapter 3 Describes how to configure the Oracle9iAS Reports Services.

Chapter 4 Explores how Oracle9iAS Reports Services handles output
processing to default and custom destinations.

Chapter 5 Describes how to control user access to reports with Oracle9iAS
Portal.

Chapter 6 Describes how to cluster Reports Servers to enhance performance
and reliability.
xx

Related Documents
For more information on building reports, Oracle9iAS Portal, or Oracle9iAS Reports
Services, refer to the following manuals:

� Oracle9i Reports Developer Tutorial, A90900-01

� Oracle9i Reports Developer Building Reports, A92101-01

� Oracle9iAS Portal Getting Started, accessed through the Oracle Technology
Network (http://portalcenter.oracle.com)

� Oracle9i Reports Developer Getting Started, accessed through the Oracle
Technology Network (http://otn.oracle.com/products/reports/)

Chapter 7 Provides an overview of single sign-on architecture and process
flow and offers tips for getting user resource information into the
Oracle Internet Directory.

Chapter 8 Describes the various methods for running reports, in particular,
how to construct a runtime URL.

Chapter 9 Describes how set up advanced distributions via a distribution
XML file.

Chapter 10 Provides information about customizing reports at runtime with
XML.

Chapter 11 Describes how to use the event-driven publishing to invoke reports
automatically in response to database triggers.

Chapter 12 Provides NLS information for Oracle9iAS Reports Services.

Chapter 13 Describes Oracle9iAS Reports Services integration with Oracle
Enterprise Manager (OEM) and tells you how you can monitor
your Reports Servers with OEM.

Chapter 14 Provides tips for tuning and performance enhancements.

Appendix A Provides information about Reports-related command line
arguments.

Appendix B Provides information about Oracle9iAS Reports Services
environment variables.
xxi

Notational Conventions
The following conventions are used in this book:

Convention Meaning

boldface text Used for emphasis. Also used for menu items,
button names, labels, and other user interface
elements.

italicized text Used to introduce new terms as well as to indicate
configuration elements and their related attributes.

courier font Used for path and file names and for code and text
that you type.

CAPS Used for environment variables, command line
keywords, and built-ins and package names on an
NT platform. The UNIX platform uses lower case.
xxii

Part I

Preparing Your Environment

Part I contains overview information about the Oracle9iAS Reports Services
environment and provides practical information about preparing that environment
for running reports. This includes starting and stopping Oracle9iAS Reports
Services, configuring Reports-related Oracle9iAS components, securing your
environment through Oracle9iAS Portal, clustering multiple Reports Servers, and
setting up data source single sign-on.

Part I includes the following chapters:

� Chapter 1, "Oracle9iAS Reports Services Architecture"

� Chapter 2, "Starting and Stopping Oracle9iAS Reports Services"

� Chapter 3, "Configuring Oracle9iAS Reports Services"

� Chapter 4, "Configuring Destinations for Oracle9iAS Reports Services"

� Chapter 5, "Controlling User Access"

� Chapter 6, "Reports Server Clusters"

� Chapter 7, "Data Source Single Sign-On"

Oracle9iAS Reports Services Archite
1

Oracle9iAS Reports Services Architecture

When you're ready to publish your reports, all the Web server and application
server tools you'll need are available in the Oracle9i Application Server
(Oracle9iAS). This chapter describes the architecture of relevant Oracle9iAS
components in combination with its reports publishing component: Oracle9iAS
Reports Services. It also provides an overview of reports runtime processing and
offers some things to consider when you set up your server environment.

This chapter includes the following sections:

� Overview of Oracle9iAS Reports Services

� Oracle9iAS Reports Services Components

� Oracle9iAS Reports Services Runtime Process

� Things to Consider When You Set Up Your System

1.1 Overview of Oracle9iAS Reports Services
Oracle9iAS is a comprehensive and integrated application server that runs any Web
site, portal, or Internet application. It enables you to make applications available
from Web browsers, mobile devices, and command lines. Oracle9iAS Reports
Services is the reports publishing component of Oracle9iAS. It is an enterprise
reporting service for producing high quality production reports that dynamically
retrieve, format, and distribute any data, in any format, anywhere. You can use
Oracle9iAS Reports Services to publish in both Web-based and non-Web-based
environments.

Oracle9iAS Reports Services provides a scalable, flexible architecture for the
distribution and automated management of report generation engines on the same
server and across multiple servers. Additionally, it caches report outputs for reuse
on similar requests. It integrates into standard Web environments with JSPs, Java
cture 1-1

Overview of Oracle9iAS Reports Services
Servlets, and CGI. It enables you to run reports on both local and remote
application servers and to implement a multi-tiered architecture for running your
reports.

When used in conjunction with servlet, JSP, or CGI (maintained only for backward
compatibility), Oracle9iAS Reports Services enables you to run reports on any
platform from a Web browser using a standard URL syntax. For servlet
implementations, the in-process server is available for faster response and easier
administration. The in-process server cuts down on the communication expense
between processes and consequently increases response times.

Oracle9iAS Reports Services handles client requests to run reports by entering all
requests into a job queue. When one of the server's engines becomes available, the
next job in the queue is dispatched to run. As the number of jobs in the queue
increases, the server can start more engines until it reaches the maximum limit
specified in your server configuration. Similarly, engines are shut down
automatically after having been idle for a period of time that you specify (see
Chapter 3, "Configuring Oracle9iAS Reports Services").

Oracle9iAS Reports Services keeps track of all jobs submitted to the server,
including jobs that are running, scheduled to run, finished, or failed. The Reports
Queue Manager (Windows), the Reports Queue Viewer (UNIX), the showjobs
command (Web), and the Reports Services pages in Oracle Enterprise Manager
(OEM) enable you to view information on when jobs are scheduled, queued,
started, finished, and failed, as well as the job output and the final status of the
report.

With Oracle9iAS Reports Services, job objects are persistent. This means that if the
server is shut down then restarted, all jobs are recovered,1 not just scheduled jobs.

When used in a Web environment, the Oracle9iAS Reports Services architecture
consists of four tiers:

� The client tier (a Web browser)

� The Web server tier

1 Only synchronous jobs and jobs that are currently running are lost in this case.

Note: The term tier refers to the logical location of the components that
comprise the Oracle9iAS Reports Services architecture. Each of the tiers,
though, could reside on the same or different machines.
1-2 Oracle9iAS Reports Services Publishing Reports to the Web

Overview of Oracle9iAS Reports Services
� The Oracle9iAS Reports Services tier

� The data tier, including databases and all other data sources

When used in a non-Web environment, there are three tiers (a Web server being
unnecessary):

� The client tier (a small, proprietary application on each client machine)

� Oracle9iAS Reports Services tier

� The data tier, including databases and pluggable data sources

The way you set up these tiers can range from having all of them on one machine to
having each of them on a separate machine. Additionally, you can have multiple
Web servers on multiple machines as well as multiple application servers on
multiple machines.

If you choose to have your Web server on multiple machines, the Oracle9iAS HTTP
Server provides a load balancing feature to allow sharing of the Web server load
across multiple machines. If you choose to have your application server on multiple
machines, Oracle9iAS Reports Services provides peer-level clustering to allow
sharing of the Reports Server load among multiple machines.

The difference between load balancing and peer clustering is that with load
balancing, one machine manages the traffic across all machines; while with peer
clustering, all machines are aware of the traffic on each machine, and each machine
shares the task of monitoring and responding to requests. The advantage of
peer-level clustering is the elimination of a single point of failure, further
supporting the possibility of a fail-safe environment.

Oracle9iAS Reports Services provides event-based reporting. This uses database
events to trigger the generation of a report. For example, you can define an event
that signals a change in revenue levels above or below a particular watermark. If the
change occurs in the database (the event), a report is automatically generated. This
feature is discussed in detail in Chapter 11, "Event-Driven Publishing".

Oracle9iAS Reports Services includes a distribution module that uses XML to define
unique configurations for the distribution of reports. Call the desired XML file from
the runtime command line or URL to generate one report, and let the server handle
diverse outputs and destinations. Processing time is significantly reduced and

Note: Reports Server clustering is discussed in detail in Chapter 6,
"Reports Server Clusters".
Oracle9iAS Reports Services Architecture 1-3

Oracle9iAS Reports Services Components
configuration changes can all be handled within the XML file. This feature is
discussed in detail in Chapter 9, "Creating Advanced Distributions".

1.2 Oracle9iAS Reports Services Components

Figure 1–1 Oracle9iAS Reports Services Components
1-4 Oracle9iAS Reports Services Publishing Reports to the Web

Oracle9iAS Reports Services Components
Figure 1–1 illustrates the components of a working Oracle9iAS Reports Services
environment. This includes:

1. The Oracle9iAS HTTP Server:

Oracle9iAS provides a Web server called the Oracle9iAS HTTP Server. It
incorporates an OpenSSL module to provide support for Secure Sockets Layer
(SSL) and HTTP Secure Sockets Layer (HTTPS). It also provides a servlet engine
to support the running of Java Servlet applications.

2. The module mod_oc4j. This is used by the Oracle9iAS HTTP Listener to
redirect requests from servlets and JSPs to Oracle9iAS Containers for Java 2
Enterprise Edition (OC4J). OC4J provides a complete J2EE environment that
includes a JSP translator, a JSP servlet engine (OJSP), and an Enterprise
JavaBeans (EJB) container. It provides a fast, lightweight, highly scalable,
easy-to-use, complete J2EE environment. It is written entirely in Java and
executes on the standard Java Development Kit (JDK) Virtual Machine (JVM).

3. The Reports Servlet is a component of Oracle9iAS Reports Services that runs
inside of the Web server's servlet engine; the Reports Servlet translates and
delivers information between HTTP and the Reports Server. It includes:

� The In-Process Server, which reduces the maintenance and administration
of the Reports Server by providing a means for starting the server
automatically, whenever it receives the first request from the client via the
Reports Servlet (rwservlet) or a Reports JSP.

� The Custom Tag Handler, which processes custom Reports tags included in
a JSP file. (In a JSP file, Reports-related custom tags are identified by the
prefix rw:; other custom tags using other prefixes may also be present).

4. The Reports CGI component of the Web server translates and delivers
information between HTTP and the Reports Server.

5. The Reports Server processes client requests, which includes ushering them
through its various services, such as authentication and authorization checking,
scheduling, caching, and distribution (including distribution to custom—or
pluggable—output destinations). Reports Server also spawns runtime engines
for generating requested reports, fetches completed reports from the Reports
cache, and notifies the client that the job is ready.

6. The Reports Cache securely stores completed job outputs.

Note: Reports CGI is maintained only for backward compatibility.
Oracle9iAS Reports Services Architecture 1-5

Oracle9iAS Reports Services Runtime Process
7. The Reports Engine includes components for running SQL- and Pluggable
Data Source-based reports. It fetches requested data from the data source,
formats the report, sends the output to cache, and notifies the Reports Server
that the job is complete.

8. The Pluggable Engines are custom engines that use Java APIs to pass jobs to
the Reports Server, as well as leverage the server's other features, such as
scheduling, distribution, notification, and caching. Oracle9iAS Reports Services
provides an out-of-the-box pluggable engine called the URL engine. The URL
engine enables you to distribute content from any publicly available URL to
such destinations such as e-mail, Oracle9iAS Portal, and WebDav.

1.3 Oracle9iAS Reports Services Runtime Process
Here is how the various components of Oracle9iAS Reports Services contribute to
the process of running a report:

1. The client requests a report by contacting a server through either a URL (Web)
or a non-Web, Reports-related command, such as rwclient.

� The URL goes to JSP, rwservlet, or CGI, all associated with the Oracle HTTP
Listener. The JSP and rwservlet requests go to mod_oc4j. (For jobs run as
JSPs, mod_oc4j uses OJSP to translate the JSP into a servlet.) The CGI
requests go to a CGI component.

The URL may contain runtime parameters or a keyword that refers to a
runtime parameter configuration section within cgicmd.dat, or it may
contain both, though parameters explicitly named in the URL must not also
be present in the relevant keyword section of cgicmd.dat.

� rwclient goes directly to the Reports Server.

The command line may contain runtime parameters. If you have a lot of
runtime parameters, you can create a batch file or shell script that contains
the rwclient command along with a string of parameters.

2. The rwservlet or the Reports CGI (rwcgi, maintained only for backward
compatibility) component translates requests between HTTP and the Reports
Server and sends requests to the Reports Server:

� Server requests from JSP or using rwservlet can by run by the in-process
Reports Server or as a stand-alone Reports Server process, whichever is
specified in the servlet configuration file, rwservlet.properties (ORACLE_
HOME\reports\conf\). An in-process server requires less maintenance
than a stand-alone server because, unlike the stand-alone server, it starts
1-6 Oracle9iAS Reports Services Publishing Reports to the Web

Oracle9iAS Reports Services Runtime Process
automatically in response to requests from the client. Additionally, an
in-process server cuts down on the communication between processes,
increasing the potential for faster performance.

� Server requests using rwcgi go to the stand-alone server.

3. The Reports Server processes the request:

If the request includes a TOLERANCE argument, then the Reports Server
checks its cache to determine whether it already has output that satisfies the
request. If it finds acceptable output in its cache, then it immediately returns
that output rather than rerunning the report.

If the request is the same as a currently running job, then the request will reuse
the output from the current job rather than rerunning the report.

If neither of these conditions is met, the Reports Server processes the request:

a. If configured, the Reports Server initiates an authentication and
authorization check through mod_osso, part of the Oracle HTTP Server.

b. If the report is scheduled, the Reports Server stores the request in the
scheduled job queue, and the report is run according to schedule. If the
report is not scheduled, it is queued in the current job queue for execution
when a Reports Engine becomes available.

Note: For any job request that you send to the Reports Server, you can
include a tolerance argument. Tolerance defines the oldest output that the
requester would consider acceptable. For example, if the requester
specified five minutes as the tolerance, the Reports Server would check its
cache for the last duplicate report output that had been generated within
the last five minutes. An expiration argument defines the point in time
when the report output should be deleted from the cache (for example,
expiration might equal a specific date and time for when the output should
expire). For more information, see Appendix A, "Command Line
Arguments".
Oracle9iAS Reports Services Architecture 1-7

Things to Consider When You Set Up Your System
c. At runtime, the Reports Server spawns a Reports Engine and sends the
request to that engine to be run.

4. The Reports Engine retrieves and formats the data.

5. The Reports Engine populates the Reports cache.

6. The Reports Engine notifies the Reports Server that the report is ready.

7. The Reports Server accesses the cache and sends the report to output according
to the runtime parameters specified in either the URL, the command line, or the
keyword section in the cgicmd.dat file (URL requests only).

Another way to create a report is through event-driven publishing. With
event-driven publishing, the client is the database (rather than the end user). Events
are defined through the Event-Driven Publishing API. The event invokes a database
trigger, an advanced queuing application, or a PL/SQL package that calls the
Event-Driven Publishing API to submit jobs to the Reports Server. Event-Driven
Publishing is discussed in detail in Chapter 11, "Event-Driven Publishing".

1.4 Things to Consider When You Set Up Your System
The way you set up Oracle9iAS Reports Services can vary widely depending upon
the requirements of your system. Before you set up Oracle9iAS Reports Services,
you must make some decisions based upon your requirements. By making these
decisions beforehand, you can greatly simplify the set-up process.

The following subsections discuss some of the decisions involved in:

� Choosing the Types of Requests You Will Service

� Choosing Servlet, JSP, or CGI

� Choosing Single- Or Multiple-Machine Configurations

� Choosing Whether to Cluster Multiple Servers

Note: When you configure the Reports Server (in <server_name>.conf),
you can specify the maximum number of Oracle9iAS Reports Engines it
can use. If the Oracle9iAS Reports Server is under this maximum, then it
can send the job to an idle engine or start a new engine to handle the
request. Otherwise, the request must wait until one of the current
Oracle9iAS Reports Engines completes its current job.
1-8 Oracle9iAS Reports Services Publishing Reports to the Web

Things to Consider When You Set Up Your System
1.4.1 Choosing the Types of Requests You Will Service
Oracle9iAS Reports Services can be configured to accept both Web and non-Web job
requests.

In the Web case, you can run reports by clicking or typing a URL in a Web browser.
Depending on the URL, the report output is then served back to you in your
browser or sent to a specified destination (for example, a printer). To enable users to
launch reports from a browser, you will use either the Oracle9iAS Reports Servlet, a
JSP, or Oracle9iAS Reports CGI components with your Web server. One or the other
of these components must be present on the Web server to enable communications
between it and the Oracle9iAS Reports Server and to enable the processing of report
requests from Web clients.

In the non-Web case, you can send job requests using the rwclient executable,
installed on each of your user's machines.

From the perspective of configuration, these are the key differences between
enabling Web and non-Web requests:

� Enabling Web requests requires that you choose between Reports Servlet, JSP,
or the Reports CGI (maintained only for backward compatibility) for the server
side, but eliminates the need to install any client software beyond a standard
Web browser.

� Enabling non-Web requests requires that you install client software on each
machine that will be used to run requests. This introduces the need to
administer client software on each client machine.

The Web case is clearly the most cost effective because it reduces client maintenance
costs. But there might be cases where launching non-Web requests is a necessity.
Oracle9iAS Reports Services supports the implementation of both Web and
non-Web requests in a single deployment environment.

1.4.2 Choosing Servlet, JSP, or CGI
To use Oracle9iAS Reports Services in a Web environment, you must use a servlet,
JSP, or CGI implementation. Our recommendation is that you choose servlet or JSP.
The CGI implementation in Oracle9iAS Reports Services is being maintained only
for backward compatibility.

Note: For more information, refer to the Section 1.4.2, "Choosing
Servlet, JSP, or CGI".
Oracle9iAS Reports Services Architecture 1-9

Things to Consider When You Set Up Your System
Between servlet and JSP there are additional considerations. A JSP-only
implementation means that you can publish a layout that is optimized for Web
delivery. The servlet enables you to include paper layouts in your report publishing
solution and fully leverage the distribution features of Oracle9iAS Reports Services.

Using the servlet does not imply that you cannot also use JSP files because JSP files
can contain both Web and paper layouts. When you run a report stored in a JSP, you
specify the servlet in the URL and call the JSP with the command line argument:
report=<myreport>.jsp.

For more information on running reports, see Chapter 8, "Running Report
Requests".

1.4.3 Choosing Single- Or Multiple-Machine Configurations
You can place Oracle9iAS Reports Services on the same machine as your Web server
or on a different machine. Both scenarios have pros and cons.

For example, while it's true that having Oracle9iAS Reports Services and the Web
server on the same machine requires more of the machine's memory and disk space,
it's also true that such an implementation reduces network traffic. This is because
requests traveling between the Web server and the application server do not have to
travel across a network, only incoming requests must do so.

If you are using the in-process server (available only with servlet implementations)
you can further amplify the performance advantages of a single machine. The
in-process server speeds up processing time by allowing for faster and more
efficient communication between Oracle9iAS Reports Services components. We
recommend that you use the in-process server unless you will not use the Reports
Servlet to deploy reports.

On the other hand, if you have a single machine configuration and that machine
fails, everything fails.

While there is a greater amount of network traffic when the Web server and the
application server are on different machines, you also benefit from the increase in
system resources, in the form of additional CPUs, more disk space, and more
available memory. Even in a multiple machine configuration, the in-process server
will aid performance by speeding communication between Oracle9iAS Reports
Services components

Another possibility is placing your Web server and your application server each on
multiple machines. This will require additional configuration, but it allows you to
implement load balancing on the Web server.
1-10 Oracle9iAS Reports Services Publishing Reports to the Web

Things to Consider When You Set Up Your System
If you will be deploying reports in multiple languages, you'll want to set up
multiple Reports Servers: one or more for each language.

1.4.4 Choosing Whether to Cluster Multiple Servers
A cluster is a virtual grouping of servers into a community for the purpose of
sharing request processing efficiently across members of the cluster. Unlike in
previous versions, clustering in Oracle9iAS Reports Services is peer-level, rather
than master/slave. Peer-level clustering means that all members of the cluster take
equal responsibility for sharing and processing incoming requests. Incoming
requests are sent to the cluster as a whole rather than any one Reports Server in the
cluster. Thus, if one member is shut down, the other members carry on managing
the request load. There is no single-point-of-failure, where one machine's
malfunction brings the whole system down.

Each cluster member machine must be configured in more or less the same way to
allow a report to run on each server member in the same way. This means that
configuration files should have most of the same settings: a distinction can be
drawn between job-related settings and machine-related settings. Job-related
settings must be the same from cluster member to cluster member. Job-related
settings include settings related to security, data sources, and destination types.
Machine-related settings include such attributes as maxEngine, minEngine, maxIdle,
initEngine, and the like—these can be different from member to member.

Additionally, for cluster members:

� Server-related environment variables should be set to the same values.

� TNS settings should point to the same databases in the same way.

For servers to be members of the same cluster, they must share a cluster name
(appended to each server's server name) and have the same public and private keys.

If your machines require different job-related configuration settings, you will not
benefit from clustering.

If you must set your servers up for different languages, you’ll want to set up
multiple clusters: one or more for each language.
Oracle9iAS Reports Services Architecture 1-11

Things to Consider When You Set Up Your System
1-12 Oracle9iAS Reports Services Publishing Reports to the Web

Starting and Stopping Oracle9iAS Reports Se
2

Starting and Stopping Oracle9iAS Reports

Services

This chapter provides information on starting and stopping Oracle9iAS Reports
Services. It includes the following main sections:

� Starting the Reports Server

� Verifying the Reports Servlet and Server Are Running

� Verifying that the Oracle HTTP Server Is Running

� Stopping the Reports Server

If you plan to run reports on the Web, you must first start the Oracle HTTP Server.
You'll find information on doing this in your Oracle9iAS documentation. When you
follow any of the procedures in this chapter, we assume you have already started
the Oracle HTTP Server.

2.1 Starting the Reports Server
You have these options for running the Reports Server:

� Installing and Starting the Reports Server as a Service (Windows NT/2000)

� Starting the Reports Server as a Servlet (Windows and UNIX)

� Starting the Reports Server from a Command Line (Windows and UNIX)

Note: The examples in this chapter use ORACLE_HOME to denote
where the Oracle9i Application Server is installed. This includes
Oracle9iAS Reports Services.
rvices 2-1

Starting the Reports Server
The following subsections tell you how to set up each of these options.

2.1.1 Installing and Starting the Reports Server as a Service (Windows NT/2000)
By default, the Reports Server is installed as an in-process server, but, if you wish,
you can install the Reports Server as a service on a Windows NT/2000 machine. To
do so, at the command prompt enter:

rwserver -install <server_name> [batch=yes/no] [autostart=yes/no]

For batch, the default is no. Enter yes if you don't want to be prompted for
confirmation during installation. For autostart, the default is no. Enter yes if you
want the service to start automatically at reboot without requiring a user to logon
and manually start the Reports Server.

Add the cluster name to this command if this server will be a member of a cluster.
For example:

rwserver -install <server_name>.<cluster_name> [batch=yes/no] [autostart=yes/no]

To learn more about clustering servers together, see Chapter 6, "Reports Server
Clusters".

To start your Reports Server on Windows NT/2000:

1. On the machine that hosts the Reports Server, choose Start > Settings > Control
Panel and double-click Services in the Control Panel folder.

2. In the Services dialog box, choose Oracle Reports Server [repserver], where
<repserver> is the name of the Reports Server instance, and click Startup.
The Services dialog window displays.

3. In the Services dialog window, select This Account in the Log On As section,
and select an operating system user name and password. This specifies the user
account under which the server process is run.

Note: To remove the Reports Server NT/2000 service, at a
command prompt enter: rwserver -uninstall <server_
name>. Include the cluster name if the server is a member of a
cluster, for example: rwserver -uninstall <server_
name>.<cluster_name>.
2-2 Oracle9iAS Reports Services Publishing Reports to the Web

Starting the Reports Server
4. Set the Startup Type of the service to Automatic when the system is started.

5. Click OK.

6. Click Start.

A Service Control message box indicates when your Reports Server has started.

2.1.2 Starting the Reports Server as a Servlet (Windows and UNIX)
If you are using the Reports Server as an in-process server (the default
configuration), just sending a request starts up the servlet; however, if you are
sending a request via a command line, the servlet must be invoked via a URL first.
When you have successfully started the servlet, this also means you have
successfully started the HTTP Server.

To start the Reports Servlet from a URL, enter the following from your Web
browser:

http://<your_machine_name>:<your_port_num>/reports/rwservlet

2.1.3 Starting the Reports Server from a Command Line (Windows and UNIX)
You can also start the Reports Server as a stand-alone server on Windows NT/2000
using the following command:

rwserver server=<server_name>

Add the BATCH command line keyword to start up the server without displaying
dialog boxes or messages.

rwserver server=<server_name> batch=yes

Note: If you want to output to Postscript or to a printer, then
ensure the user running the Reports Server service has access to a
default printer. Do this by using a specific, real user who has
printer access when you set up the Log On As section of your
NT/2000 service. Typically, the System Account does not have
access to printers.

For that matter, the user running the Reports Server service must
have access to anything the server may need. For example, the
server may need write access to another drive.
Starting and Stopping Oracle9iAS Reports Services 2-3

Verifying the Reports Servlet and Server Are Running
You can run this command on UNIX using the following syntax:

rwserver.sh server=<server_name>

Or:

rwserver.sh server=<server_name> batch=yes

You can run this command from any directory as long as the executable can be
reached in your PATH environment variable.

2.2 Verifying the Reports Servlet and Server Are Running
To verify that the Oracle9iAS Reports Servlet is running, navigate to the following
URL:

http://<your_machine_name>.<domain_name>:<your_port_
number>/reports/rwservlet/help

Note that the URL is case sensitive. If this URL executes successfully, you should get
a help page describing the rwservlet command line arguments.

To verify that the Reports Server is running, navigate to the following URL:

http://<your_machine_name>.<domain_name>:<your_port_
number>/reports/rwservlet/showjobs?server=<server_name>

The server=<server_name> argument is not required if you are using the
default Reports Server name (rep_<machine_name>) or the Reports Server
specified in the servlet configuration file, rwservlet.properties (ORACLE_
HOME\reports\conf\). If this URL executes successfully, you should see a listing
of the job queue for the specified Reports Server.

2.3 Verifying that the Oracle HTTP Server Is Running
To verify that the Oracle HTTP Server is running, in your browser, navigate to the
following URL:

http://<server_name>.<domain>:<port_number>/

Note: You'll find more information about the servlet configuration
file in Chapter 3, "Configuring Oracle9iAS Reports Services".
2-4 Oracle9iAS Reports Services Publishing Reports to the Web

Stopping the Reports Server
2.4 Stopping the Reports Server
This section discusses how to stop the Reports Server on Windows NT/2000 and
UNIX.

� If the Reports Server is running on NT/2000 as a service, stop it through the
Services control panel.

� If the Reports Server running on NT/2000 through a batch file, or on UNIX
through a shell script, click the Shutdown button in the Oracle Reports
Server dialog box.

� Launch Oracle Enterprise Manager, and navigate to the Reports Server you
wish to shut down; click the Stop button on the selected Reports Server’s
home page. For more information about Reports and Oracle Enterprise
Manager, see Chapter 13, "Managing and Monitoring Oracle9iAS Reports
Services".

� If the Reports Server is running as an in-process server via the Reports
Servlet, shut down OC4J through the Oracle Program Manager (OPMN).
See the Oracle9iAS documentation for more information on OPMN.

� If the Reports Server running from a command line on NT/2000 or UNIX,
at the command prompt enter the following command:

For Windows NT/2000 and UNIX (on UNIX use rwserver.sh in lieu of
rwserver):

This shuts down the server normally (i.e., finishes pending jobs and then
stops):

rwserver server=<server> shutdown=normal authid=<admin/pword>

This shuts down the server immediately (i.e., stops without finishing
pending jobs):

rwserver server=<server> shutdown=immediate authid=<admin/pword>

This shuts down the server without displaying any related messages:

rwserver server=<server> shutdown=normal authid=<admin/pword> batch=yes

The keywords used with the rwserver command are described in Appendix A,
"Command Line Arguments".
Starting and Stopping Oracle9iAS Reports Services 2-5

Stopping the Reports Server
2-6 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring Oracle9iAS Reports Se
3

Configuring Oracle9iAS Reports Services

When you install Oracle9i Application Server (Oracle9iAS), Reports Services is
configured automatically for you. There will likely be adjustments you wish to
make to customize your environment, but you will not be required to set up the
entire environment, or even most of it.

This chapter is included largely for reference, should you wish to introduce
customizations or have a better understanding of the default configuration. It lists
services-related configuration files and describes in detail the content of most of
them. It includes the following main sections:

� Oracle9iAS Reports Services Configuration Files

� Configuring the Oracle9iAS Reports Server

� Configuring the Reports Servlet

� Configuring the URL Engine

Another aspect of configuration is the setting of environment variables. These are
set for you automatically during installation. For reference, environment variables
are discussed in Appendix B, "Reports-Related Environment Variables".

3.1 Oracle9iAS Reports Services Configuration Files
This section identifies the various configuration files associated with Oracle9iAS
Reports Services. In most cases, you can leave these files untouched. Because they

Note: The examples in this chapter use ORACLE_HOME to denote
where the Oracle9i Application Server (Oracle9iAS) is installed.
Oracle9iAS includes Oracle9iAS Reports Services.
rvices 3-1

Oracle9iAS Reports Services Configuration Files
control many aspects of your server environment, you could put that environment
at risk if you change a file in some unsupported way. Always keep a back-up of the
current version of any configuration file you plan to change.

The configuration files associated with Oracle9iAS Reports Services relate to the
Reports Server and the Reports Servlet. They are listed and described in Table 3–1:

Note: The paths specified in Table 3–1 are the same for both
Windows and UNIX environments, though they are expressed here
using the Windows backslash convention (\).

Table 3–1 Oracle9iAS Reports Services Configuration Files

Component Configuration File

Reports Server ORACLE_HOME\reports\conf\<server_name>.conf

Use this XML file to define initial values for the Reports Cache, the
Reports Engine, and security; to register valid destination types; to
specify the information to be logged; and to set other server-related
values.

This file is automatically created when you start up the server. If you
want to rename your server and wish to keep custom configuration
settings you've entered into this file, you must first rename this file to
the new server name, then rename the server. Otherwise, the server
will create its own new default configuration file.

You'll find more information about this file in the section
Configuring the Oracle9iAS Reports Server.

Reports Server ORACLE_HOME\reports\dtd\rwserverconf.dtd

This file contains data type definitions for <server_name>.conf and
rwbuilder.conf elements and attributes. Data type definitions lists all
elements allowed in an associated XML file, the attributes associated
with those elements, and default values for those attributes.

You'll find more information about this file in Reports Server
Configuration Elements (rwserverconf.dtd).
3-2 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
3.2 Configuring the Oracle9iAS Reports Server
The Reports Server component of Oracle9iAS Reports Services is configurable via
the XML files <server_name>.conf and rwbuilder.conf, located in the following
directory (on both Windows and UNIX):

ORACLE_HOME\reports\conf\<server_name or rwbuilder>.conf

Both files are supported by the rwserver.template file, which contains default server
configuration values (ORACLE_HOME\reports\conf\rwserver.template on
both Windows and UNIX).

The <server_name>.conf file is the default server configuration file. The
rwbuilder.conf file configures the server instance used in-process by the Reports
Builder. All run requests must go through the Reports Server, meaning that the
Reports Builder requires a server to run reports. When you run a report from the
Builder, the rwbuilder.conf file provides the configuration for the server instance
that is invoked (an in-process server) when it runs in the same process as the
Reports Builder. The <server_name>.conf and rwbuilder.conf files are nearly

Reports Server ORACLE_HOME\reports\conf\rwbuilder.conf

Use this XML file to configure the Reports Server that runs in the
same process as the Builder. All run requests must go through the
Reports Server, meaning that the Reports Builder requires a server to
run reports. The Reports Builder automatically starts a Reports
Server to handle its requests. When you run a report from the
Builder, this file provides the configuration for the in-process server
instance that is invoked. Like the <server_name>.conf file, this file
relies on the rwserverconf.dtd file for its data type definitions,
though several elements do not apply, including the compatible,
persistFile, and security elements.

Because this file shares most configuration elements found in
<server_name>.conf, you'll find the information you need for
configuring this file in Configuring the Oracle9iAS Reports Server.

Reports Servlet ORACLE_HOME\reports\conf\rwservlet.properties

Among other things, this file is where you specify the location and
filename of the Reports key map file (cgicmd.dat) and specify
whether you will use the Reports Servlet's in-process server.

You'll find more information about this file in Configuring the
Reports Servlet.

Table 3–1 Oracle9iAS Reports Services Configuration Files

Component Configuration File
Configuring Oracle9iAS Reports Services 3-3

Configuring the Oracle9iAS Reports Server
identical. The only difference between them is that rwbuilder.conf does not use the
compatible, persistFile, or security configuration elements, described later in this
section, and <server_name>.conf does.

Both of these files are created automatically, under the following circumstances:

� The <server_name>.conf file is created the first time you start the server. It is
based on the rwserver.template file.

� The rwbuilder.conf file is created the first time you run a report through the
Reports Builder. It also is based on the rwserver.template file.

� After you rename the server, a new <server_name>.conf file is created the next
time you start the server. The new configuration file is based on the default
values present in the rwserver.template file. If you wish to retain the
configuration associated with the old server name, you must rename your
<server_name>.conf file to the new server name (<new_server_name>.conf),
before starting the renamed server.

� If you delete one of these files, the deleted file is recreated the next time you
start the server. The new file is based on the default values present in the
rwserver.template file.

To explain the syntax and values allowed in these files we'll look at the
rwserverconf.dtd file, located in the following directory (on both Windows and
UNIX):

ORACLE_HOME\reports\dtd\rwserverconf.dtd

3.2.1 Reports Server Configuration Elements (rwserverconf.dtd)
The rwserverconf.dtd file provides the following elements for configuring the
Reports Server:

� server

� compatible

� cache

� engine

� security

� destination

� job

� notification
3-4 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
� log

� jobStatusRepository

� trace

� connection

� queue

� persistFile

� identifier

� pluginParam

Note that these are XML elements, and XML is case sensitive.

Additionally, when you add any of these elements to the server configuration file
(<server_name>.conf), you'll save yourself potential error messages from any XML
editor you may use if you follow the order in which they are listed in the
rwserverconf.dtd file located in ORACLE_HOME\reports\dtd\ on both Windows
and UNIX. The configuration file will work even if you do not follow this order, but
it will not work if you fail to follow the case specified in rwserverconf.dtd.

These elements along with their related attributes and sub-elements are discussed
in the following subsections.

3.2.1.1 server

EXAMPLE
<server>

[One or more configuration specifications]
</server>

REQUIRED/OPTIONAL
Required. You can have a maximum of one open and close server element in a given
configuration file.

DESCRIPTION
The server element opens and closes the content area of the server configuration file.
In terms of the file's hierarchy, all the other elements are subordinate to the server
element.
Configuring Oracle9iAS Reports Services 3-5

Configuring the Oracle9iAS Reports Server
3.2.1.2 compatible

EXAMPLE
<compatible version="6i"/>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one compatible element in your server
configuration file.

DESCRIPTION
The compatible element is available for backward compatibility with Reports 6i
clients (RWCLI60, RWCGI60, RWQMU60.EXE, RWQM60.EXE, RWQV60.EXE).
When compatible is set to 6i, the Reports Server will make use of an executable file,
named rwproxy, that listens for requests from a 6i client and forwards them to a 9i
server.

Compatible has one attribute: version, described in Table 3–2.

If you use the compatible element, you must also have an entry for the Reports
Server in your tnsnames.ora file, as you would have had for the 6i version of the
Reports Server. For example:

testsvr.world = (ADDRESS=
(PROTOCOL=tcp)
(HOST=testhost.us.oracle.com)
(PORT=1949)
)

You can bypass this requirement by turning compatibility off. To turn compatibility
off, remove the compatibile element from the server configuration file.

Table 3–2 Attributes of the compatible element

Attribute Valid values Description

version 6i Setting version to 6i enables Reports 6i clients to run
under Oracle9iAS. When version is set to 6i, versions
earlier than 6i may also run under Oracle9iAS, but
they are not certified to do so and are not supported by
Oracle.
3-6 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
3.2.1.3 cache

EXAMPLE
<cache class="oracle.reports.cache.RWCache”>

<property name="cacheSize" value="50"/>
<property name="cacheDir" value="D:\orawin\reports\server\cache"/>

</cache>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one cache element in your server
configuration file. If no cache element is specified, the default is used
(oracle.reports.cache.RWCache).

DESCRIPTION
The cache element is available for specifying the Java class that defines the server's
cache implementation. You can use the default cache Java class or develop your
own implementation through the Oracle9iAS Reports Services Cache API.

The cache element has one attribute: class, described in Table 3–3.

Note: If compatible is set to 6i, and you have a TNS entry for the
Reports Server in your tnsnames.ora file, you should include the
cluster name if the server is a member of a cluster. If you use a
cluster name, you should exclude the default domain that was
specified in the sqlnet.ora file. For example:

myserver.world (standalone server with default domain)
myserver.cluster1 (server part of cluster1)
myserver.cluster1.world (invalid entry)

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.
Configuring Oracle9iAS Reports Services 3-7

Configuring the Oracle9iAS Reports Server
You can also enter from zero to multiple properties under the cache element.
Properties are name/value pairs recognized and understood by the implementation
class you register under cache. For example, if you use the default cache Java class
that is provided with Reports Services, your configuration entry might look like
this:

<cache class="oracle.reports.cache.RWCache”>
<property name="cacheSize" value="50"/>
<property name="cacheDir" value="D:\orawin\reports\server\cache"/>

</cache>

In the preceding example, cacheSize is measured in megabytes, and cacheDir, which
points to the location of the cache, is specified for a Windows platform. On UNIX,
use UNIX standards, for example:

<property name="cacheDir" value="/ORACLE_HOME/reports/server/cache"/>

Should your cache implementation require access to additional information specify
the information in the pluginParam element.

3.2.1.4 engine

EXAMPLE
<engine id=”rwEng” class="oracle.reports.engine.EngineImpl” initEngine=”1”
maxEngine=”5” minEngine=”1” engLife=”50” maxIdle=”15” callbackTimeOut=”60000”>

<property name="sourceDir" value="D:\orawin\reports\myReport"/>
<property name=”tempDir” value=”D:\orawin\reports\myTemp”/>

</engine>

REQUIRED/OPTIONAL
Required. You must have at least one engine element in your configuration file, and
you can have more than one.

Table 3–3 Attributes of the cache element

Attribute Valid values Description

class see the Description
column

Default: oracle.reports.cache.RWCache

A fully qualified Java class that implements the
oracle.reports.cache.Cache interface.
3-8 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
DESCRIPTION
The engine element identifies the fully qualified Java class that starts an engine and
provides a number of attributes that set operational controls on the engine. You can
use the default engine provided with Reports Services
(oracle.reports.engine.EngineImpl) or develop your own implementation through
the Oracle9iAS Reports Services Engine API. As an example of a custom engine,
you may have developed an engine to execute an operating system command
should an event occur in your database.

The engine element has several attributes, described in Table 3–4.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Table 3–4 Attributes of the engine element

Attribute Valid values Description

id string A keyword, unique within a given configuration
XML file, that identifies a particular engine
element. This can be a text string or a number, for
example:

id="rwEng"

class see the Description
column

Default: oracle.reports.engine.EngineImpl

A fully qualified Java class that implements two
interfaces: oracle.reports.engine.Engine and
oracle.reports.engine.EngineInterface.

classPath string The directory path to the Java class specified in the
class attribute. To specify the directory, use the
conventions required by the server platform, for
example:

Windows:
classPath=”D:\ORACLE_HOME\myEngine.jar”

UNIX:
classPath=”ORACLE_HOME/myEngine.jar”

initEngine number Default: 1

The number of engines you want the Reports
Server to start at initialization.
Configuring Oracle9iAS Reports Services 3-9

Configuring the Oracle9iAS Reports Server
You can also enter from zero to multiple properties under the engine element. The
only requirement is that they be name/value pairs recognized by the Java class that
implements the Reports engine. For example, if you use the default engine Java
class that is provided with Reports Services, your engine configuration entry might
look like this:

<engine id=”rwEng” class="oracle.reports.engine.EngineImpl” initEngine=”1”
maxEngine=”5” minEngine=”1” engLife=”50” maxIdle=”15” callbackTimeOut=”60000”>

maxEngine number Default: 1

The maximum number of this type of engine that
can run on the server.

minEngine number Default: 0

The minimum number of this type of engine that
is maintained by the server.

engLife number Default: 50

The number of jobs the engine can run before the
engine is terminated, and, if necessary, a new
engine is started. This feature is available to thwart
memory leaks.

maxIdle number Default: 30

The number of minutes of allowable idle time
before the engine is shut down, provided the
current number of engines is higher than
minEngine.

For example, if minEngine is 0, maxIdle is 30, and
one engine has been running but unused for 30
minutes, that engine will shut down. If, under the
same conditions, minEngine is 1, the active engine
will not shut down, even if it has been idle for 30
minutes.

callbackTimeOut number Default: 60000

The number of milliseconds of allowable waiting
time between when the server calls an engine and
the engine calls the server back.

If the machine that hosts the server is very fast,
you can reduce this number for faster
performance.

Table 3–4 Attributes of the engine element

Attribute Valid values Description
3-10 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
<property name="sourceDir" value="D:\orawin\reports\myReport"/>
<property name=”tempDir” value=”D:\orawin\reports\myTemp”/>

</engine>

In this example, sourceDir and tempDir are set up for a Windows environment
(UNIX would be sourceDir=”ORACLE_HOME/reports/myReport” and
tempDir=”ORACLE_HOME/reports/myTemp”). The sourceDir property identifies
the default directory you will use for report definition files. It overrides path
information specified in the REPORTS_PATH environment variable.

The tempDir property identifies the name and location of the temporary directory
Reports Services will use for its temporary files. If this value is unspecified for a
default engine, Reports Services will use the temporary directory specified in the
REPORTS_TMP environment variable. If REPORTS_TMP is also not specified,
Reports Services will use your operating system's default temporary directory.

The classPath attribute is not specified because this configuration uses the default
engine class.

Should your engine require access to additional information, such as an outgoing
mail server, specify the additional information in the pluginParam element.

3.2.1.5 security

EXAMPLE
<security id=”rwSec” class="oracle.reports.server.RWSecurity”>

<property name="securityUserid" value="portal_id/portal_password@portal_
schema" confidential=”yes” encrypted="no"/>

</security>

REQUIRED/OPTIONAL
Optional. If you do not enter a security element in the configuration file, the Reports
Server is not secure. You can have from zero to multiple security elements in your
configuration file.

DESCRIPTION
The security element identifies the fully qualified Java class that controls server
access. You can use the default security class provided with Reports Services, which
relies on security features available through Oracle9iAS Portal (included with
Oracle9iAS), or develop your own implementation through the Reports Server
Security API.
Configuring Oracle9iAS Reports Services 3-11

Configuring the Oracle9iAS Reports Server
Security attributes are described in Table 3–5.

You also have the option of entering multiple properties under the security element.
The only requirement is that they be name/value pairs recognized by the Java class
that implements Reports Server security. For example, if you use the default
security Java class that is provided with Reports Services, your security
configuration entry might look like this:

<security id=”rwSec” class="oracle.reports.server.RWSecurity”>
<property name="securityUserid" value="portal_id/portal_password@portal_
schema" confidential=”yes” encrypted="no"/>

</security>

In this example, connect information is provided to enable the Reports Server to
access to Oracle9iAS Portal security features. The property attributes confidential
and encrypted are available for encrypting the information within the property. Once
the confidential="yes" and encrypted="no" attributes are entered, the
property value will be encrypted automatically by the Reports Server after you
restart the server. When you next open the configuration file, the password
information will be scrambled, and encrypted will be set to yes. If you forget the
password you entered in the configuration file, you can delete the property and
reenter it with new values, making sure to set encrypted to no.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Table 3–5 Attributes of the security element

Attribute Valid values Description

id string A keyword, unique within a given
configuration XML file, that identifies a
particular security element. This can be a text
string or a number, for example:

id="rwSec"

class see the Description
column

Default: oracle.reports.server.RWSecurity

A fully qualified Java class that implements the
Reports Server Security Java interface
(oracle.reports.server.Security). The default
relies on security features available through
Oracle9iAS Portal (included with Oracle9iAS).
3-12 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
Should your security implementation require access to additional information
specify the information in the pluginParam element.

When setting up Security in a clustered environment, each cluster member should
use the same security policy to prevent users experiencing unexpected behavior.

3.2.1.6 destination

EXAMPLE
<destination destype=”oraclePortal”
class="oracle.reports.server.DesOraclePortal”>

<property name="portalUserid" value="portal_id/portal_password@portal_
schema" confidential=”yes” encrypted="no"/>

</destination>

REQUIRED/OPTIONAL
Optional. If you do not enter a destination element in the server configuration file,
the provided destination classes will be used (printer, mail, file, cache, and
Oracle9iAS Portal—which is an exception in that it requires an entry in the server
configuration file so that you may specify the userid and password the server will
use to log in to the portal). You can have from zero to multiple destination elements
in your server configuration file.

DESCRIPTION
Use the destination element to register destination types with the server. There is no
need, with the exception of Oracle9iAS Portal, to register provided (default)
destinations, such as printers, e-mail, files, or cache. You must register the
destination types you create through the Oracle9iAS Reports Services Destinations
API.

Destination attributes are listed and described in Table 3–6.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Configuring destinations is discussed in detail in Chapter 4,
"Configuring Destinations for Oracle9iAS Reports Services".
Configuring Oracle9iAS Reports Services 3-13

Configuring the Oracle9iAS Reports Server
You also have the option of entering multiple properties under the destination
element. The only requirement is that they be name/value pairs recognized by the
Java class that is a subclass of the Reports Server Destination Java class. For
example:

<destination destype=”oraclePortal”
class="oracle.reports.server.DesOraclePortal”>

<property name="portalUserid" value="portal_id/portal_password@portal_
schema" confidential=”yes” encrypted="no"/>

</destination>

In this example, the property provides connect information to enable the Reports
Server to access Oracle9iAS Portal. The confidential and encrypted attributes are
included to automatically invoke encryption on the portalUserid value the next time
the Reports Server is started.

Should your destination implementation require additional information, specify the
information in the pluginParam element.

3.2.1.7 job

EXAMPLE
<job jobType=”report” engineId=”rwEng” securityId=”rwSec”/>

REQUIRED/OPTIONAL
Required. You must have at least one job element and can have more than one.

Table 3–6 Attributes of the destination element

Attribute Valid values Description

destype string Identifies the destination type, for example:

destype=”printer”

class See the Description
column

A fully qualified Java class that is a subclass of
the Reports Server Destination Java class
(oracle.reports.server.Destination). Allowable
values include:

� oracle.reports.server.DesMail

� oracle.reports.server.DesFile

� oracle.reports.server.DesPrinter

� oracle.reports.server.DesOraclePortal
3-14 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
DESCRIPTION
The job element works in collaboration with the engine and security elements. Use job
to identify a job type and specify which engine and which security implementation
should be used with that type of job. For example, you may have developed an
engine to execute an operating system command should an event occur in your
database. Using Oracle9iAS Report Service's event-driven publishing API, you
identify the event as a specific job type. When the event occurs, the job type
information is sent to the Reports Server, which looks up the job type under the job
element in its configuration file, and follows the direction provided in the element's
attributes to the engine (and, if applicable, security implementation) specified for
that type of job.

Attributes of the job element are listed and described in Table 3–7.

3.2.1.8 notification

EXAMPLE
<notification id=”tellMe02” class=”oracle.reports.server.MailNotify”/>

Table 3–7 Attributes of the job element

Attribute Valid values Description

jobType string Default: report

Describes the type of job to be processed by the
server. You can enter any type of job, as long as the
Reports Server has an engine to process it.

engineId ID reference References the ID entered for the engine that will
process this job type. Available IDs are specified
under the engine element in the server
configuration file using the id attribute. The id is a
unique keyword (that you devise) within a given
configuration XML file that identifies a particular
engine.

securityId ID reference References the ID entered for the security
mechanism that will be applied to this job type.
Available IDs are specified under the security
element in the server configuration file.
Configuring Oracle9iAS Reports Services 3-15

Configuring the Oracle9iAS Reports Server
REQUIRED/OPTIONAL
Optional. If you do not enter a notification element in the configuration file, the
notification function is disabled. You can have from zero to multiple notification
elements in your configuration file.

DESCRIPTION
Use the notification element to specify a Java class that defines the type of
notification that should be sent when a job succeeds or fails. You can use the default
notification class, which provides for notification via e-mail, or design your own
with the Reports Notification API.

Attributes of the notification element are listed and described in Table 3–8.

If you use the default e-mail notification implementation, use the pluginParam
element to specify the outgoing SMTP mail server to be used to send the mail. Use
the runtime commands notifysuccess and notifyfailure to specify the
e-mail address where notification should be sent (for more information, see
Appendix A, "Command Line Arguments"). For example, you can include these
commands in your runtime URL:

notifysuccess=<recipient's e-mail address>¬ifyfailure=<recipient's e-mail
address>

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Table 3–8 Attributes of the job element

Attribute Valid values Description

id string Default: mailNotify

A keyword, unique within a given configuration
XML file, that identifies a particular notification
element. This can be a text string or a number, for
example:

id="tellMe01"

class ID reference Default: oracle.reports.server.MailNotify

A fully qualified Java class that implements the
Reports Server Notification Java class
oracle.reports.server.Notification.
3-16 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
With the default e-mail implementation, you can specify only one address for each
type of notification. You can specify one or both types of notification. You can send
notification each to the same address or each to a different addresses.

A notification element in the server configuration file might look like this:

<notification id="mailNotify" class="oracle.reports.server.MailNotify"/>
<property name="succNoteFile" value="succnote.txt"/>
<property name=failNoteFile value="failnote.txt"/>

With the default notification implementation, it’s not necessary to specify a path to
the success or failure text files, provided they’re in the default location: ORACLE_
HOME\reports\templates. Otherwise, enter the directory path along with the
filenames according to the requirements of the platform that hosts the server.

3.2.1.9 log

EXAMPLE
<log option=”allJobs”/>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one log element in your server configuration
file.

DESCRIPTION
The log element is available for backward compatibility. It invokes the generation
and population of a Reports log file. The log file is automatically generated and
stored in the following path (the path is the same for Windows and UNIX):

ORACLE_HOME\reports\logs*.log

The log element has one attribute: option, described in Table 3–9.
Configuring Oracle9iAS Reports Services 3-17

Configuring the Oracle9iAS Reports Server
3.2.1.10 jobStatusRepository

EXAMPLE
<jobStatusRepository class=”oracle.reports.server.JobRepositoryDB”>

<property name=”repositoryConn” value=”scott/tiger@ORCL” confidential=”yes”
encrypted="no"/>

</jobStatusRepository>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one jobStatusRepository elements in your
server configuration file.

DESCRIPTION
The jobStatusRepository element specifies the Java class that implements a job status
repository. It provides an additional means (over the persistFile element) of storing
job status information.

The persistFile is a binary file and, therefore, cannot be used to publish job status
information within your application. The jobStatusRepository provides a means of
including status information in your application by providing additional ways of
storing it.

The default class, oracle.reports.server.JobRepositoryDB, stores information in a
database. Use the Reports APIs to create your own implementation of the Reports
Server Job Repository interface (oracle.reports.server.JobRepository) that stores
information wherever you wish.

Table 3–9 Attributes of the log element

Attribute Valid values Description

option allJobs
succeededJobs
failedJobs
noJob

Default: noJob

Describes the type of jobs to be included in the
log, in addition to default server activities that are
logged. Choose from:

� allJobs: all jobs will be logged

� succeededJobs: only jobs that ran
successfully will be logged

� failedJobs: only jobs that failed will be
logged

� noJob: no jobs will be logged
3-18 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
The jobStatusRepository element has one attribute: class, described in Table 3–10.

The jobStatusRepository element allows for zero or multiple properties for passing
arguments into the repository. The only requirement is that the class you specify in
the server configuration file must recognize the name/value pairs you introduce.

The jobStatusRepository element might look like this in your server configuration
file:

<jobStatusRepository class=”oracle.reports.server.JobRepositoryDB”>
<property name=”repositoryConn” value=”scott/tiger@ORCL” confidential=”yes”
encrypted="no"/>

</jobStatusRepository>

In this example, the value for the repositoryConn property is the login for access to
the database that stores the repository. The confidential and encrypted attributes are
used to invoke encryption on the login information once the Reports Server is
restarted.

Should your job status repository require additional information, specify the
information in the pluginParam element.

3.2.1.11 trace

EXAMPLE
<trace traceFile=”neptune.trc” traceOpts=”trace_prf|trace_dbg|trace_wrn”
traceMode=”trace_append”/>

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Table 3–10 Attributes of the jobStatusRepository element

Attribute Valid values Description

class see the Description
column

Default: oracle.reports.server.JobRepositoryDB

A fully qualified Java class that implements the
Reports Server Job Repository Java class
(oracle.reports.server.JobRepository).
Configuring Oracle9iAS Reports Services 3-19

Configuring the Oracle9iAS Reports Server
REQUIRED/OPTIONAL
Optional. You can have a maximum of one trace element in your server
configuration file.

DESCRIPTION
Use the trace element to create a file for tracing your report's execution and to
specify the objects and activities you want to trace. The trace element controls
tracing only for the server and the engine.

Trace attributes are listed and described in Table 3–11.

Note: Tracing for the servlet and JSP are configured in the servlet
configuration file, rwservlet.properties, discussed in Section 3.3.
Tracing for an individual report can be built into the reports
runtime command line, discussed in Appendix A, "Command Line
Arguments".

Table 3–11 Attributes of the trace element

Attribute Valid values Description

traceFile *.trc Default: <server_name>.trc

The filename of the trace file. If no path is specified,
the trace file will be in the following directory on
both Windows and UNIX:

ORACLE_HOME/reports/logs/

traceOpts see Table 3–12 Default: trace_all

This attribute defines the activities that will be traced.
You can have one or more traceOpt values. For
example:

<traceOpts=”trace_prf|trace_brk”>

Separate values with a vertical bar (|).Valid values
are listed and described in Table 3–12.

traceMode trace_replace

trace_append

Default: trace_replace

Defines whether new trace information will either
overwrite the existing trace file (trace_replace), or be
added to the end of the trace, leaving existing trace
information intact (trace_append).
3-20 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
When you specify multiple trace elements, separate them with vertical bars. For
example:

traceOpts=”trace_prf|trace_dbg|trace_wrn”

3.2.1.12 connection

EXAMPLE
<connection maxConnect=”50” idleTimeOut=”20”>

<orbClient id=”RWClient” publicKeyFile=”clientpub.key”/>

Table 3–12 Valid values for the traceOpts attribute

Value Description

trace_prf Logs server and engine profile

trace_brk Lists debug breakpoints

trace_app Logs information on all report objects

trace_pls Logs information on all PL/SQL objects

trace_sql Logs information on all SQL

trace_tms Enters a timestamp for each entry in the trace file

trace_dst Lists distribution lists

Use this value to determine which report section was sent to
which destination.

trace_log Duplicates log information in your trace file

If you have specified a log element in your server configuration
file, in addition to using the trace element, this value will cause
information that is sent to the log file to also be sent to the trace
file.

trace_err Lists server error messages

trace_inf This is a catch-all option that dumps any information not
covered by the other options into the trace file

trace_dbg Logs debug information

trace_wrn Lists server warning messages

trace_sta Provides server and engine state information, such as initialize,
ready, run, and shut-down

trace_all Logs all possible server and engine information in the trace file
Configuring Oracle9iAS Reports Services 3-21

Configuring the Oracle9iAS Reports Server
<cluster publicKeyFile=”ORACLE_HOME\reports\server\serverpub.key”
privateKeyFile=”ORACLE_HOME\reports\server\serverpri.key”/>

</connection>

REQUIRED/OPTIONAL
Optional. If you do not specify a connection element in your server configuration
file, default values will be used (see Table 3–13). You can have a maximum of one
connection element in your server configuration file.

DESCRIPTION
The connection element defines the rules of engagement between the server and the
clients connected to it.

Connection attributes are listed and described in Table 3–13.

In addition to its attributes, connection has two sub-elements: orbClient and cluster.

Use orbClient to provide the name of the public key file that the client will use to
connect to the Reports Server. You can have from zero to multiple orbClient
sub-elements in your server configuration file.

The orbClient element attributes are listed and described in Table 3–14.

Table 3–13 Attributes of the connection element

Attribute Valid values Description

maxConnect Number Default: 20

The maximum number of requests that the server can
service simultaneously. Requests in excess of the
maxConnect value return a Java exception.

idleTimeOut Number Default: 15

Allowable amount of time in minutes the connection
can be idle.
3-22 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
We provide default client public and private key files, clientpub.key and
clientpri.key. These key files are in place for all components of Oracle9iAS Reports
Services. You can regenerate public and private key files to replace the default key
pair. To do this, at the command prompt use the following command:

java oracle.report.utility.KeyManager <path_and_client_public_key_file_name>
<path_and_client_private_key_file_name>

If you regenerate these keys, you can specify the public key file locations with the
publicKeyFile attribute, and replace the private key file in the rwrun.jar file
(ORACLE_HOME\reports\jlib\rwrun.jar). To do this, you must unjar the file,
place the regenerated private key into it, and rejar the file.

Use the cluster sub-element to specify the public and private key files to be used for
all cluster members. You can have zero or one cluster element in your server
configuration file.

For servers to be members of the same cluster, they must share the same extended
cluster name and public and private keys. This means that their extended cluster
names (e.g., serverA.clus, serverB.clus—in this case, .clus is the extended cluster
name) should be the same, and the same public and private key files should be
specified in each cluster member's server configuration file (<server_name>.conf).

Table 3–14 Attributes of the orbClient element

Attribute Valid values Description

id string Default: RWClient

Identifies the reports client to be served by the
public and private key.

You can also specify custom-built clients through
the pluggable clients API. You’ll find more
information about Oracle9iAS Reports Services
APIs on the Oracle Technology Network,
http://otn.oracle.com.

publicKeyFile <filename>.key Default: clientpub.key

Identifies the public key file that the client will use
to connect to the Reports Server. The default file is
stored in the rwrun.jar file.

Note: For more information on server clusters, see Chapter 6,
"Reports Server Clusters".
Configuring Oracle9iAS Reports Services 3-23

Configuring the Oracle9iAS Reports Server
The default server public and private keys are stored in the rwrun.jar file, in the
path ORACLE_HOME\reports\jlib\rwrun.jar on both Windows and UNIX.
However, there is no need to jar the newly-generated public and private keys that
will be used for the cluster. Put them anywhere, and specify the absolute path and
filename for them in the server configuration file.

3.2.1.13 queue

EXAMPLE
<queue maxQueueSize=”1000”/>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one queue element in your server
configuration file. If you have no queue element, the default, 1000, will remain in
effect.

DESCRIPTION
Use the queue element to specify the maximum number of jobs that can be held in
each of the Reports queues. Reports Services has three queue components:

� a queue of scheduled jobs

� a queue of jobs in progress

� a queue of completed jobs

The queue element provides the allowable value for each of these components. If the
number of jobs exceeds the specified maximum of a given queue, that queue will
automatically purge its expired, then its oldest jobs. You can also use the Reports
Queue Manager to manually reduce the number of jobs held in the queue.

The queue element has one attribute: maxQueueSize, described in Table 3–15.

Note: For more information, see the Reports Queue Manager
online help.
3-24 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
3.2.1.14 persistFile

EXAMPLE
<persistFile filename=”neptune.dat”/>

REQUIRED/OPTIONAL
Optional. If you do not specify a file, the server will create one of its own with the
default name <server_name>.dat. You can have a maximum of one persistFile
element.

DESCRIPTION
The persistFile element identifies the file that records all job status. It is used by the
Reports Server to restore the server to the status it held before shutdown.

It is named persistFile because the file remains intact, or persists, even when the
server is brought down and restarted.

The server persistent file is created automatically the first time you start the server
or the first time you start the server after the current server persistent file has been
deleted or renamed. If you want to rename this file but continue using it, enter the
new name in the server configuration file before you actually rename the file, then
restart the server.

The persistFile element has one attribute, fileName, described in Table 3–16.

Table 3–15 Attributes of the queue element

Attribute Valid values Description

maxQueueSize Number Default: 1000

The maximum number of jobs that can be held in a
given Reports job queue.
Configuring Oracle9iAS Reports Services 3-25

Configuring the Oracle9iAS Reports Server
3.2.1.15 identifier

EXAMPLE
<identifier confidential="yes"
encrypted="yes">fpoiVNFvnlkjRPortn+sneU88=NnN</identifier>

REQUIRED/OPTIONAL
Optional. You can have a maximum of one identifier element in your server
configuration file.

DESCRIPTION
The identifier element is automatically written to the configuration file when you
first log in to the Reports Queue Manager as an administrator. The first login sets
the Queue Manager's administrator user ID and password. That information is
encrypted and written to the server configuration file, then used for authentication
for all future Queue Manager logins.

If you forget the Queue Manager login, delete it from the server configuration file,
and reenter the information in the Reports Server configuration file in the following
format:

<identifier confidential="yes" encrypted="no">username/password</identifier>

The next time you run the Queue Manager, the Reports Server will automatically
encrypt the identifier and reset encrypted to yes. It will look something like this:

<identifier confidential="yes"
encrypted="yes">fpoiVNFvnlkjRPortn+sneU88=NnN</identifier>

For more information on the Reports Queue Manager, see the Reports Queue
Manager online help.

Table 3–16 Attributes of the persistFile element

Attribute Valid values Description

fileName string Default: <server_name>.dat

The name and, optionally, the path of the server
persistent file. You can leave the path off if the file is
kept in its default directory:

ORACLE_HOME\reports\server\

The path is the same for Windows or UNIX.
3-26 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Oracle9iAS Reports Server
3.2.1.16 pluginParam

EXAMPLE
<pluginParam name=”mailServer”>smtp01.mycorp.com</pluginParam>

REQUIRED/OPTIONAL
Optional. You can have as many pluginParam elements as you require.

DESCRIPTION
The pluginParam element works in cooperation with all pluggable components of
Oracle9iAS Reports Services. This includes the engine, security, cache, destination,
and jobstatusRepository components. Any one of these may need access to a mail
server, an FTP URL, or some other type of plugin. The pluginParam element
provides a means of specifying plugins that can be used by all pluggable
components. This spares you the task of including this information in the class
definition of the pluggable component and allows you to rapidly and easily change
the source of the plugin.

For example, your custom pluggable engine and destination Java classes may both
need access to a proxy server. Instead of hard-coding access to the server in both of
these classes, you can merely call the type of plugin you need, for example proxy,
and point to its location under pluginParam in the server configuration file.

You can put in any plugin and name it in any way as long as it is a plugin
supported or required by the pluggable component, and the pluggable component
knows its name.

The pluginParam attributes are listed and described in Table 3–17.

Table 3–17 Attributes of the pluginParam element

Attribute Valid values Description

name string The name of the plug-in parameter.
Configuring Oracle9iAS Reports Services 3-27

Configuring the Reports Servlet
3.3 Configuring the Reports Servlet
Configure the Reports Servlet with a file named rwservlet.properties, located in the
following path (Windows and UNIX use the same path):

ORACLE_HOME\reports\conf\rwservlet.properties

You may notice that the servlet uses components you may have become familiar
with if you used to employ a CGI implementation.

Use the Reports Servlet configuration file for:

type text

file

url

Default: text

Describes the type of plugin being specified.

� For text, put in the string that is required to
identify the named plugin, for example, the name
of a mail server. Text means the content of the
pluginParam element is text, so the
getPluginParam() method will return the exact
content specified in the element.

� For file, put in the directory path and filename of
the plugin file. Use the standards for specifying
directory paths appropriate to the Reports
Server's host machine (either Windows or UNIX).
File means that the content of the pluginParam
element is a filename, and the getPluginParam()
method will return the content read from the file
specified.

� For url, put in the full, absolute URL required by
the plugin, for example, the full URL to an FTP
site. URL means the content of the pluginParam
element is a URL, and the getPluginParam(()
method will return the content read from that
URL. The URL you use must reside on the same
side of the firewall as Oracle9iAS Reports
Services.

Note that when you have a default type (text), it is not
necessary to specify it in the pluginParam string. The
example that heads this section doesn't specify a type
because the plugin, a mail server name, is the default
type, text.

Table 3–17 Attributes of the pluginParam element

Attribute Valid values Description
3-28 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Reports Servlet
� Specifying the location of the key map file

� Reloading the Key Map File

� Hiding Verbose Error Messages

� Selecting Login Dialog Boxes

� Setting up Trace Options for the Reports Servlet and JSPs

� Customizing the Appearance of Server Error Messages

� Specifying an In-Process Server

� Identifying the Default Reports Server

� Pointing to Dynamically Generated Images

� Setting Expiration for DB Authentication and SYSAUTH Cookies

� Setting an Encryption Key for the DB Authentication Cookie

� Adding Formatting to Diagnostic/Debugging Output

� Specifying an SSL Port Number

� Defining the rwservlet Help File

� Specifying the Use of Single Sign-On

The entries in this configuration file are not case sensitive.

For Windows, note that the servlet configuration file uses double backslashes (\\)
in lieu of single backslashes to specify a directory path. The first slash "escapes" the
second, which would otherwise have another meaning in this file. For example, in a
Windows-based Reports Servlet file, the path:

d:\orawin\reports\conf\filename.ext

Becomes:

d:\\orawin\\reports\\conf\\filename.ext

For UNIX, use that platform's standard for specifying directory paths, for example:

orawin/reports/conf/filename.ext
Configuring Oracle9iAS Reports Services 3-29

Configuring the Reports Servlet
3.3.1 Specifying the location of the key map file
Your report runtime command line may include information you do not want to
expose to your users. Additionally, it may be comprised of a long string of options
that is difficult to remember or makes for an ungainly URL.

You have the option of entering a report's command line arguments in a key map
file (cgicmd.dat), then limiting the exposed runtime command to the name of the
particular key section in this file that holds the required arguments.

The key map file is discussed in Chapter 8, "Running Report Requests". Use the
Reports Servlet configuration file to list the location of this file.

For example:

KeyMapFile=d:\\orawin\\reports\\conf\\cgicmd.dat

This example uses the default filename and location. An entry for the location and
filename of the key map file doesn't appear by default in the servlet configuration
file because the servlet already knows what to look for and where to look for it. If
you use a file with a different name and/or different location, you must include a
KeyMapFile parameter in your servlet configuration file that includes the
directory path and filename.

3.3.2 Reloading the Key Map File
Use the RELOAD_KEYMAP parameter to specify whether the key map file
(cgicmd.dat) should be reloaded each time the servlet receives a request.

For example:

RELOAD_KEYMAP=yes

This is useful if you frequently make changes to the map file and want the process
of loading your changes to be automatic. Runtime performance will be affected
according to how long it takes to reload the file.

Typically, this parameter is set to no in a production environment and yes in a
testing environment.

3.3.3 Hiding Verbose Error Messages
Should a runtime error occur, the body of the resulting error message can include
the details of the runtime command line. If your runtime command line contains
sensitive information, such as a userid and password, you may not wish to have it
display along with the text of the error message.
3-30 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Reports Servlet
Use the DIAGNOSTIC parameter in the servlet configuration file to specify whether
command line information should be included along with the rest of the error
message.

Enter NO for the DIAGNOSTIC parameter if you don't want command line details
to display. NO is the default value. For example:

DIAGNOSTIC=NO

Enter YES if you prefer that all error messages include the detailed runtime
command line.

3.3.4 Selecting Login Dialog Boxes
The servlet configuration file offers a number of parameters dealing with templates
for userid/password dialog boxes that should open when a user logs in to a
database or runs a secure report. Generally, these parameters point to various
templates to be used for setting up your login screens. You can customize these
templates with your company logo, linked buttons, and/or any other HTML you
care to use.

The DBAUTH and SYSAUTH parameters are for specifying the location and
filename of the HTML templates to be used for individual login screens.

For example, the following entry points to the template for the database login
screen:

DBAUTH=dbauth.htm

SYSAUTH points to a login screen for a secure report. For example:

SYSAUTH=SYSAUTH.HTM

It isn't necessary to enter the path to a template when it is stored in the default
template directory:

ORACLE_HOME\reports\templates

The DB_SYS_DIFFAUTH and DB_SYS_SAMEAUTH templates are for combining
these login screens into one screen. Use DB_SYS_DIFFAUTH when your users must
enter different login information for database and report access.

For example:

DB_SYS_DIFFAUTH=dbsysdif.htm
Configuring Oracle9iAS Reports Services 3-31

Configuring the Reports Servlet
Use DB_SYS_SAMEAUTH template when your users enter the same login
information for both types of access.

For example:

DB_SYS_SAMEAUTH=dbsyssam.htm

In this case, the user is prompted to enter the login information only once, and the
servlet will take care of passing the values to both the database and the Reports
Server.

3.3.5 Setting up Trace Options for the Reports Servlet and JSPs
Trace has been added to the Reports Services environment to allow the logging of
many different types of runtime information on various Reports Services
components.

If you wish to track and log runtime information on the Reports Servlet and JSPs,
use the TRACEOPTS parameter in the servlet configuration file. You can enter from
zero to multiple trace options. Separate each option with a vertical bar.

For example:

TRACEOPTS=trace_prf|trace_pls|trace_dbg

All available trace options are listed and described in Table 3–12.

Additionally, you can use the TRACEFILE and TRACEMODE parameters.

Use TRACEFILE to specify the filename of the trace file. For example:

TRACEFILE=<server_name>.trc

If no path is specified, the trace file will be in the following directory on both
Windows and UNIX:

ORACLE_HOME\reports\logs

Note: Tracing for the Reports Server is configured in the server
configuration file, <server_name>.conf, discussed in Section 3.2.1.11.
Tracing for an individual report can be built into the reports
runtime command line, discussed in Appendix A, "Command Line
Arguments".
3-32 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Reports Servlet
Use TRACEMODE to define whether new trace information will either overwrite
the existing trace file (trace_replace), or be added to the end of the trace, leaving
existing trace information intact (trace_append). For example:

TRACEMODE=trace_append

The default for TRACEMODE is trace_replace.

3.3.6 Customizing the Appearance of Server Error Messages
Reports Services provides a template for server error messages. These messages are
generated automatically, according to cause. The template provides the visual
setting within which the error message is displayed.

You may wish to customize the appearance of error messages, for example with
your company logo, or with an icon you plan to associate with errors. You may
wish to add buttons that link your users to a help system, your company home
page, or back to the last browser window. You can do this by providing your own
HTML framework for automatically generated error messages.

The entry in the servlet configuration file is for pointing to the name and location of
your error message template.

By default, the entry is:

ERRORTEMPLATE=rwerror.htm

It isn't necessary to enter the path to the error message template when it is stored in
the default template directory:

ORACLE_HOME\reports\templates

3.3.7 Specifying an In-Process Server
If you choose to run the Reports Server within the same process as the Reports
Servlet, you indicate that with the SERVER_IN_PROCESS parameter. To run the
Reports Server as an in-process server, specify the following in the servlet
configuration file:

SERVER_IN_PROCESS=yes

Enter no if you do not want the Reports Server to run within the same process as the
Reports Servlet.
Configuring Oracle9iAS Reports Services 3-33

Configuring the Reports Servlet
3.3.8 Identifying the Default Reports Server
The Reports Servlet uses the SERVER parameter to identify the default Reports
Server. If a server name is not specified, for example, in the runtime URL, the
default server specified here is used. Enter the name of your default Reports Server
in the servlet configuration file.

For example:

SERVER=<server_name>

If the default Reports Server is a member of a server cluster, use the cluster name:

SERVER=<cluster_name>

If you use a combination of the server name and cluster name, requests sent to the
default server will go to this specific machine. If this machine is down, an error
message will be returned and the report will not be run. By specifying just the
cluster name, requests will be sent to a random cluster member, and fowarded to
another if the target machine doesn't have an idle engine.

If you don’t specify a SERVER parameter in rwservlet.properties, the default
server name is rep_<machine_name>.

3.3.9 Pointing to Dynamically Generated Images
Use the IMAGE_URL parameter to specify where the Reports dynamically
generated images can be accessed.

For example:

IMAGE_URL=http://<server_or_web_server_name>.<domain_
name>:<port>/reports/rwservlet

This parameter is in place for JSPs that do not run via the Reports Servlet. It ensures
that dynamically generated images, such as charts, will be viewable only by the
person who runs the report. JSPs, and other report types, that run through the
Reports Servlet have this protection automatically.

Note: The pros and cons of running an in-process server are
explored in Chapter 1, "Oracle9iAS Reports Services Architecture".
3-34 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Reports Servlet
3.3.10 Setting Expiration for DB Authentication and SYSAUTH Cookies
Use the COOKIEEXPIRE parameter to set the lifetime (in minutes) of the database
and system authentication cookie. For example:

COOKIEEXPIRE=20

The default is 30.

Cookies save encrypted user names and passwords on the client-side when users
first authenticate themselves. When the server receives a cookie from the client, the
server compares the time saved in the cookie with the current system time. If the
time is longer than the number of minutes defined in COOKIEEXPIRE, the server
rejects the cookie and returns to the client the database authentication form along
with an error message. Users must re-authenticate to run the report.

3.3.11 Setting an Encryption Key for the DB Authentication Cookie
Use ENCRYPTIONKEY to specify the encryption key to be used to encrypt the user
name and password of the DB authentication cookie. The encryption key can be any
character string. For example:

ENCRYPTIONKEY=egbdf

3.3.12 Adding Formatting to Diagnostic/Debugging Output
The DIAGBODYTAGS and DIAGHEADTAGS parameters are available for
including additional HTML encoding in the <body> and <head> tags in the output
files associated with diagnostic and debugging output.

DIAGBODYTAGS defines the entire <body> tag; while DIAGHEADTAGS defines
tags to appear between the open and close <head>/</head> tags.

You can use these to include formatting arguments to make diagnostic and
debugging output easier to read. For example:

DIAGBODYTAGS=<BODY [additional HTML encoding]>

DIAGHEADTAGS=<HEAD>[additional HTML encoding]</HEAD>

3.3.13 Specifying an SSL Port Number
Use SSLPORT if you’re using Secure Sockets Layer (SSL) and you want to use a port
other than the default (443). For example:

SSLPORT=<port number>
Configuring Oracle9iAS Reports Services 3-35

Configuring the URL Engine
3.3.14 Defining the rwservlet Help File
A HELP keyword is available with the rwservlet command for bringing up a
servlet-related help topic. The help file is invoked when you specify the following
URL:

http://yourwebserver/yourservletpath/rwservlet/help

We provide a default help file for the servlet, which will be displayed if you leave
this parameter undefined. (The default information is pulled from code and is not a
file as such.) You may want to supply a help file of your own. To do this, specify the
name and location URL of your servlet help file with the HELPURL parameter in
the servlet configuration file. For example:

HELPURL=http://your_web_server/your_help_file_path/helpfile.htm

3.3.15 Specifying the Use of Single Sign-On
If you plan to take advantage of Oracle9iAS Reports Services single sign-on
capability, you must specify this in the servlet configuration file with the
SINGLESIGNON parameter. Enter YES to indicate that you will use single sign-on
to authenticate users; enter NO if you will not use single sign-on. If you choose NO,
the Reports Server will use its own authentication mechanism to authenticate users
(i.e., as was used in Reports6i).

To specify that you will use single sign-on to authenticate users, enter:

SINGLESIGNON=yes

3.4 Configuring the URL Engine
The Reports Server includes a URL engine that can take the contents of any URL
and distribute them. The URL engine allows you to leverage the powerful
scheduling and distribution capabilities of the Reports Server to distribute content
from any publicly available URL to various destinations such as e-mail, Oracle9iAS
Portal, and WebDav. Since the Reports Server’s destinations are pluggable, you can
also add your own custom destinations for the URL content.

Furthermore, if you use the URL engine in conjunction with the Reports Server’s
event-based APIs, database events can trigger the content distribution. For example,

Note: For more about the HELP keyword, see Appendix A,
"Command Line Arguments".
3-36 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the URL Engine
suppose you have created a JSP report for high fidelity Web publishing of data
stored in a table containing employee expense data. You could then use the URL
engine and the event-based API to e-mail that JSP whenever the expense
application stores new or updated employee expense data in the table.

By default, the URL engine is not activated when you install Oracle9iAS Reports
Services. You can activate the URL engine by doing the following:

1. Add an engine element for the URL engine to the server configuration file. For
example, your engine element might be as follows:

<engine id="rwURLEng"
class="oracle.reports.engine.URLEngineImpl"
initEngine="1"
maxEngine="1"
minEngine="0"
engLife="50"
maxIdle="30"
callbackTimeOut="60000"

/>

2. Add a job element that associates the appropriate job types with the URL
engine to the server configuration file. For example, your job element might be
as follows:

<job jobType="urlEngine"
engineId="rwURLEng"

/>

3. Stop and restart the Reports Server.

To learn about sending requests to the URL engine, refer to Chapter 8, "Running
Report Requests".

Note: When you restart your Reports Server with these new
elements, you should see the number of engines increase
accordingly in the Reports Server status message box. In the above
example, the number of engines would increase by one (the value
of initEngine) when you restart the Reports Server.
Configuring Oracle9iAS Reports Services 3-37

Entering Proxy Information
3.5 Entering Proxy Information
Some features of Oracle9iAS Reports Services support retrieving or sending
information through a firewall. For example, the URL engine, the XML data source,
the Text data source, and the mail destination features all retrieve or send
information through the firewall. For these features to function properly, the
Reports Server requires certain proxy information. In the interests of simplicity, you
store the necessary proxy information in a single location and point to it from the
Reports Server configuration file. To configure your Reports Server with proxy
information, you do the following:

1. Add the pluginParam element to the server configuration file and have it point
to the proxy information file (e.g., proxyinfo.xml). For example, your
pluginParam element might be as follows:

<pluginParam name="proxy" type="file">proxyinfo.xml</pluginParam>

2. Update the proxy information file with the necessary proxy values for your
configuration. For example, proxyinfo.xml might contain the following:

<proxyInfo>
<proxyServers>

<proxyServer name="xyz.abc.com" port="80" protocol="http"/>
<proxyServer name="www-proxy1.xyz.abc.com" port="80" protocol="ftp"/>
<proxyServer name="www-prox21.xyz.abc.com" port="80" protocol="https"/>

</proxyServers>
<bypassProxy>

<domain>*.abc.com</domain>
</bypassProxy>

</proxyInfo>

Note: You can optionally specify a path for the proxy information
file. By default, this file is located in this file is located in
<ORACLE_HOME>/reports/conf.

Note: Refer to the default proxy information file, <ORACLE_
HOME>/reports/conf/proxyinfo.xml, for additional information.
3-38 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring the Reports Server for Oracle Enterprise Manager
3.6 Configuring the Reports Server for Oracle Enterprise Manager
Oracle Enterprise Manager (OEM), included with Oracle9iAS, provides managing
and monitoring services to Oracle9iAS Reports Services. To take advantage of these
services, OEM must be configured to work with the Reports Server. The default
Reports Server instance that is configured and started as part of the Oracle9iAS
installation is automatically configured with OEM. If you add another Reports
Server instance, you must configure it with OEM by running the following
command line:

On Unix:

<ORACLE_HOME>/bin/addNewServerTarget.sh <reports_server_name>

On Windows:

<ORACLE_HOME>\bin\addNewServerTarget.bat <reports_server_name>

For more information about using OEM for the Reports Server, refer to Chapter 13,
"Managing and Monitoring Oracle9iAS Reports Services".

Note: By default, the above script takes the user name and
password for the Oracle9iAS Portal installation as the user name
and password for the OEM-Reports Server integration. If
Oracle9iAS Portal is not installed, the default user name is
repadmin and the password is reports.
Configuring Oracle9iAS Reports Services 3-39

Configuring the Reports Server for Oracle Enterprise Manager
3-40 Oracle9iAS Reports Services Publishing Reports to the Web

Configuring Destinations for Oracle9iAS Reports Se
4

ConfiguringDestinations for Oracle9iAS

Reports Services

Two things to consider when you run a report are how the report should be output
(destination) and who should receive it (distribution). Distribution is discussed in
Chapter 9, "Creating Advanced Distributions". This chapter explores how
Oracle9iAS Reports Services handles output processing to default and custom
destinations. It provides an overview of output processing and information on
registering destination types with the Oracle9iAS Reports Server.

It includes the following sections:

� Overview of Output Processing

� Registering Destination Types with the Server

4.1 Overview of Output Processing
How the report should be output is controlled by the destypes you specify at
runtime, which, in turn, are determined by the destination output types you have
registered in your server configuration file (<server_name>.conf). You can register no
output types and simply use the default types provided by Oracle9iAS Reports
Services:

� Cache (i.e., browser)

� SMTP-compliant e-mail

� File

� Printer

� Oracle9iAS Portal (this is an exception in that, for access to the portal, it requires
the specification of a userid and password in the server configuration file)
rvices 4-1

Overview of Output Processing
You can also define a custom output types, such as fax, FTP, Oracle's Internet File
System (iFS), or any type you care to define through the Oracle9iAS Reports
Services Destinations API. This API enables you to define new destination types
and build handlers to usher your reports to custom destinations.

Oracle9iAS Reports Services architecture standardizes the way output is generated
and delivered. It takes responsibility for delivering report output to the appropriate
destination (via the Reports Server), yet generates output independent of its
destination (via the Reports Engine). This provides a significant improvement in
efficiency by allowing one run of a report to be used in a number of different ways.
It also opens up the output processing architecture to allow for any number of
destination types.

In the past, the Reports runtime engine was totally responsible for delivering the
output. Consequently, it had to know how to communicate with output
destinations. This resulted in a tight coupling between the engine and the
supported destinations.

Oracle9iAS Reports Services eliminates this tight coupling and its attendant
restrictions. The runtime engine now treats all destinations alike. It doesn't need to
know the destination type for which the output is being produced. The server
hands output off to destination handlers that prepare the material for delivery to
their associated destination types. You can use predefined destination types (with
predefined handlers) or create a handler for a custom destination type you intend to
support. Almost any type of destination can be plugged into Reports.

Figure 4–1 illustrates the main components of the Oracle9iAS Reports Services
output processing architecture.

Note: Build a custom destination type via the Oracle9iAS Reports
Services Destinations API. Look for upcoming information about
Reports APIs and destination types for download on the Oracle
Technology Network: http://otn.oracle.com.
4-2 Oracle9iAS Reports Services Publishing Reports to the Web

Overview of Output Processing
Figure 4–1 Main components of destination/distribution architecture

Requests flow through the output processing architecture in the following sequence:

1. The user submits a request from a client or browser to the Reports Server.

2. The server passes it along to the runtime engine.

3. The runtime engine creates/processes the destination objects (which include file
lists for specific destinations as well as any properties related to those
destinations) and the report output; the runtime engine sends the destination
objects to the Reports Server and the report output to cache.

4. The Reports Server sends the destination objects to the Reports Server's
destination component.

5. The destination component of the Reports Server fetches the report output from
cache.
Configuring Destinations for Oracle9iAS Reports Services 4-3

Registering Destination Types with the Server
6. The Reports Server destination component sends the report and the destination
objects (which specify how the destination device should handle the output) to
the appropriate destination handler.

4.2 Registering Destination Types with the Server
Before the Oracle9iAS Reports Server can send a report to a particular destination
type, the type must be a default type (printer, e-mail, cache, or file) or a type
registered in the server's configuration file, <server_name>.conf. The configuration
file contains a destination element for registering destination types that are valid for
your reports. You can register anywhere from zero to any number of destination
types.

Registering a destination type with the server involves:

� Setting Up a Destination Section in the Server Configuration File

� Entering Valid Values for a Destination

These tasks are described in the following sections.

4.2.1 Setting Up a Destination Section in the Server Configuration File
To set up a destination section in the <server_name>.conf file:

1. Open the server configuration file with your preferred text editor.

You'll find the server configuration file in the following directory (Windows and
UNIX use the same path):

ORACLE_HOME\reports\conf\<server_name>.conf

2. If the configuration file does not have a destination section, create one
underneath the element that precedes it in the configuration file's data type
definition file (rwserverconf.dtd) section.

Note: The server configuration file follows the order of elements
defined in the file's related document type definition file (ORACLE_
HOME\reports\dtd\rwserverconf.dtd). Place destination after
the elements that precede it, whichever are present in your server
configuration file.
4-4 Oracle9iAS Reports Services Publishing Reports to the Web

Registering Destination Types with the Server
3. Use the following syntax to register all the destination types you will use for
outputting reports:

<destination destype="output_type_1" class="java_class_1">
<property name="valid_destype_property" value="valid_value"/>
<property name="valid_destype_property" value="valid_value"/>

</destination>
<destination destype="output_type_2" class="java_class_2">

<property name="valid_destype_property" value="valid_value"/>
</destination>

The valid values for these tags are discussed in the following sections.

4.2.2 Entering Valid Values for a Destination

4.2.2.1 Destination destypes and classes
The destype and class attributes are required for valid registration of a non-default
output type. They specify the destination types and their associated Java classes.
The predefined (default) destination types and classes that come with Oracle9iAS
Reports Services are listed in Table 4–1:

Contrary to the other default types, you must register an oraclePortal destype. This
is because the oraclePortal destype requires the specification of a userid and
password for accessing the portal.

You are not limited to the predefined destypes and classes provided with the server.
You can register custom destination types, such as a fax or FTP, once you have
defined a custom handler (through the Destinations API).

Table 4–1 Standard destination types and classes

Destination destype class

Oracle9iAS Portal content area oraclePortal oracle.reports.server.DesOraclePortal

SMTP-compliant e-mail mail oracle.reports.server.DesMail

file file oracle.reports.server.DesFile

cache cache oracle.reports.serverDesCache

printer printer oracle.reports.server.DesPrint
Configuring Destinations for Oracle9iAS Reports Services 4-5

Registering Destination Types with the Server
4.2.2.2 Destination Property name/value Pairs
The server configuration file allows the association of an unlimited number of
properties with a registered destination. Destination properties consist of
name/value pairs that define some aspect of an output type's configuration. They
are expressed in terminology recognized by the destination type. For example, a
destination with a destype of oraclePortal would recognize the name/value pair:

<property name="portalUserid" value="portal_id/portal_password@portal_schema"
confidential="yes" encrypted="no"/>

This example defines the values to be associated with a portal user ID. It includes
the attributes confidential and encrypted: confidential="yes" indicates that the
values within this element should be encrypted; encrypted="no" indicates that
the values are not yet encrypted. The next time the Reports Server starts, it will
automatically encrypt the values and reset encrypted to yes.

What is valid for a destination type's properties depends entirely on the destination
type. These values do not come from Reports and are not put to use by the Reports
Server. They come from the destination type itself and use terms the destination
recognizes. It is up to the developer to understand the requirements of a custom
destination and to know what properties to associate with a given custom output
type.

When we begin to discuss distribution, you may note that within the distribution
XML file, the destype element also allows for the use of property name/value pairs.
It's important to make a distinction between properties entered for a destination
element in the server configuration file and those entered for a destype element in
the distribution XML file:

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.

Note: Elements and attributes allowable in server configuration
file are determined by the syntax defined in the rwserverconf.dtd
file (ORACLE_HOME\reports\dtd\rwserverconf.dtd). This is
discussed in detail in Chapter 3, "Configuring Oracle9iAS Reports
Services".
4-6 Oracle9iAS Reports Services Publishing Reports to the Web

Registering Destination Types with the Server
� Properties entered for a destination element in the server configuration file
should deal only with configuring an output type, for example setting an
allowable number of retries for a destination fax.

� Properties entered for a destype element in the distribution XML file should deal
only with specifying a runtime parameter, for example the identity of the fax's
intended recipient.
Configuring Destinations for Oracle9iAS Reports Services 4-7

Registering Destination Types with the Server
4-8 Oracle9iAS Reports Services Publishing Reports to the Web

Controlling User A
5

Controlling User Access

The celebrated openness of the Internet brings with it concerns about controlling
who has access to what confidential company information. Oracle9iAS Portal
provides a number of security features available to Oracle9iAS Reports Services that
enable you to ensure that the appropriate users are getting important data in a
secure fashion. With Oracle9iAS Portal security features in place, your users see
only the data they’re supposed to see.

Use Oracle9iAS Reports Services to control:

� Who has access to each report

� When a report can be run

� Which servers and printers can be used to run a report

� Which report parameters a user can edit with what range of values

This chapter describes how to use Oracle9iAS Reports Services security and the
out-of-the-box security implementation provided with Oracle9iAS Portal to control
user access to your Reports environment. It includes the following sections:

� Introduction to Oracle9iAS Portal

� Defining Portal-Based Security in the Server Configuration File

� Creating Reports Users and Named Groups in Oracle9iAS Portal

� Setting Up Access Controls

Before you can set up security controls, both Oracle9iAS Portal and Oracle9iAS
Reports Services must be installed and configured. See Chapter 3, "Configuring
Oracle9iAS Reports Services" for information on configuring Reports Services. See
the Oracle9iAS Portal documentation for information on configuring Oracle Portal.
See also the Oracle9iAS Install Guide, for information on installing both
components. You’ll find information about Oracle9iAS and Oracle9iAS Portal on the
ccess 5-1

Introduction to Oracle9iAS Portal
Oracle9iAS documentation CD and on the Oracle Technology Network,
http://otn.oracle.com.

5.1 Introduction to Oracle9iAS Portal
Oracle9iAS Portal is a browser-based, data publishing and developing solution that
offers Web-based tools for publishing information on the Web and building
Web-based, data-driven applications.

Oracle9iAS Portal is tightly integrated with Oracle9iAS Reports Services to create a
robust and secure data publishing environment. Oracle9iAS Portal provides
easy-to-use wizards for setting up Oracle9iAS Reports Services security. These
include wizards for defining user access to reports, Oracle9iAS Reports Servers,
printers, output formats, and report parameters.

Once you define access control information, it's stored in the Oracle9iAS Portal
repository. As an Oracle9iAS Portal user, you can then, optionally, publish
registered RDFs and JSPs to an Oracle9iAS Portal page. As with all Oracle9iAS
Portal functionality, using Portal to deliver your reports is not required. You can
deliver reports through command lines, as you may always have, and still benefit
from the access control features available to you through Oracle9iAS Portal.

Access to Oracle9iAS Reports Services’ security features is not dependent on
whether you also use Portal to publish report links or report content. Even if you
don't publish via Portal, you can still take advantage of the Oracle9iAS Reports
Services’ security features available in Oracle9iAS Portal to control user access to all
of your reports.

When you expose a report as a portlet through Oracle9iAS Portal, Oracle9iAS
Reports Services leverages the Oracle Single Sign-on feature. Oracle Single Sign-on
eliminates the need for users to enter multiple logins, first to the portal then to each
of the applications exposed through portlets within the portal. With Single Sign-On,
when you log in, Oracle9iAS Portal automatically logs you into all registered portlet
providers and subsystems.

Refer to the Oracle9iAS Security Guide for more information about Single Sign-on.
You’ll find this and other related documentation on the Oracle Technology
Network, http://otn.oracle.com.
5-2 Oracle9iAS Reports Services Publishing Reports to the Web

Defining Portal-Based Security in the Server Configuration File
5.2 Defining Portal-Based Security in the Server Configuration File
If you plan to use the security features, you must set up the security element in your
Reports Server configuration file: <server_name>.conf. You'll find this file in the
following directory path on both UNIX and Windows platforms:

ORACLE_HOME\reports\conf\<server_name>.conf

For the out-of-the-box Portal security implementation, the Reports Server
configuration file's security element requires a property that includes a valid Portal
username, password, and database connect string SID. The Reports Server uses this
information to connect the server to Portal and retrieve the access control
parameters you set there. The server's connection to Portal is performed in the
background and does not present any displayed components. A user can run a
report that has access controls without being aware that those controls were
specified in and served up via Oracle9iAS Portal.

In the Reports Server configuration file, your security configuration entry might
look like this:

<security id=”rwSec” class="oracle.reports.server.RWSecurity”>
<property name="securityUserid" value="portal_id/portal_password@portal_
schema" confidential="yes" encrypted="no"/>

</security>

Valid attributes of the security element are described in Table 5–1.

Note: If you implement your own security interface, you need to
implement in Java. Refer to the Oracle Technology Network
(http://otn.oracle.com/products/reports/) for more information
on the Oracle9iAS Reports Services APIs .

Table 5–1 Attributes of the security element

Attribute Valid values
Precondition
or default Description

id string required A keyword, unique within a given
configuration XML file, that identifies a
particular security element. This can be
a text string or a number, for example
id="rwSec".
Controlling User Access 5-3

Creating Reports Users and Named Groups in Oracle9iAS Portal
Additionally, the security element in this example uses the name/value pair:
securityUserid/portal_id/portal_password@portal_schema.
securityUserid is the name of the property, and portal_id/portal_
password@portal_schema describes a valid, administrator-level user id,
password, and SID for entry into Portal. This example also includes the attributes
confidential and encrypted: confidential="yes" indicates that the values within
this element should be encrypted; encrypted="no" indicates that the values are
not yet encrypted. The next time the Reports Server starts, it will automatically
encrypt the values and reset encrypted to yes.

The security configuration element is explained in detail in Section 3.2.1.5, "security"
in Chapter 3.

5.3 Creating Reports Users and Named Groups in Oracle9iAS Portal
If you use the security features in Oracle Portal to control access to your reports,
you must register all of your Reports users in the Oracle Internet Directory (OID)
and assign security privileges to all of them through Oracle9iAS Portal.

class see Description required A fully qualified Java class that
implements the Reports Server Security
Java interface
(oracle.reports.server.Security). The
default value is
oracle.reports.server.RWSecurity, which
relies on security features available
through Oracle Portal (included with
Oracle9iAS).

Note: If you have a large user population already entered into an
LDAP-compatible directory, you can use Oracle Internet Directory
(OID) features to synchronize the directories and save yourself the
effort of entering your users individually. You'll find information
about OID's Directory Integration Server in the OID Administrator’s
Guide.

Table 5–1 Attributes of the security element

Attribute Valid values
Precondition
or default Description
5-4 Oracle9iAS Reports Services Publishing Reports to the Web

Creating Reports Users and Named Groups in Oracle9iAS Portal
In Portal, security privileges can be granted to individual users and to named
groups of users. Named groups are useful for streamlining the process of granting
access privileges. You can assign a set of access privileges to a named group, and
grant the entire set of privileges to an individual simply by adding that person to
the group.

The next sections provide overview information on how to create users and groups
in Oracle9iAS Portal. They include:

� Default Reports-Related Groups

� Creating Users and Groups

5.3.1 Default Reports-Related Groups
When you install Oracle9iAS Portal, Reports-related groups are created for you
automatically. These include the following groups:

� RW_BASIC_USER

� RW_POWER_USER

� RW_DEVELOPER

� RW_ADMINISTRATOR

Every person who will access your reports should belong to one of these groups.
Each of these groups comes with a set of access privileges, which you may
customize if you wish. If users try to run reports without being a member of one of
these groups, by default, they are assigned the privileges of a basic user. The groups
and their privileges are described in the following subsections.

5.3.1.1 RW_BASIC_USER
Basic users have EXECUTE privileges. They can run a report and see the result.
Should the security check fail, they see less detailed error messages than the other
Reports user groups see, such as:

Security Check Error

5.3.1.2 RW_POWER_USER
In addition to the privileges of the RW_BASIC_USER group, the RW_POWER_
USER group sees error messages that are more detailed than those displayed to
basic users. For example, if they are not permitted to run to HTML, but they try
anyway, they might get the message:
Controlling User Access 5-5

Setting Up Access Controls
Cannot run report to HTML

This is more detailed than the message an RW_BASIC_USER would receive for the
same error.

5.3.1.3 RW_DEVELOPER
In addition to the privileges of the RW_POWER_USER and RW_BASIC_USER
groups, the RW_DEVELOPER group can run commands, such as SHOWENV and
SHOWMAP, which show the system environment. You would assign a developer
who needs to do testing and to retrieve detailed error messages to this group.

5.3.1.4 RW_ADMINISTRATOR
Users assigned to this group have MANAGE privileges. They can CREATE,
UPDATE, and DELETE the registered report definition files, servers, and printer
objects in Oracle9iAS Portal. In addition to all the links activated for the developer
user, administrators can navigate to the Access tab on the Component Management
Page, accessible in Oracle9iAS Portal. This is where the administrator can specify
who will have access to this report. People with administrator privileges can assign
security privileges for other people and receive full error messages from Oracle9iAS
Reports Services.

These users also have access to the administrator's functionality in Oracle9iAS
Reports Queue Manager, which means they can manage the server queue, including
rescheduling, deleting, reordering jobs in the server, and shutting down a server.

Refer to the Oracle9iAS Security Guide for information on creating and managing a
user.

5.3.2 Creating Users and Groups
Oracle9iAS Portal uses the Delegated Administration Service (DAS) interface to the
Oracle Internet Directory (OID) to register users for access to Portal. You can enter
the DAS interface through Portal to create new users. The creation of new users and
groups is discussed in the Oracle9iAS Security Guide, available on the Oracle9iAS
documentation CD. Look for the chapter entitled, "Configuring Oracle9iAS Portal
Security."

5.4 Setting Up Access Controls
Before you begin, you must have a sufficient level of privileges in Oracle9iAS Portal
in order to access the portlets and complete the tasks required for setting access
5-6 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
controls. You will find information about joining privileged groups in the
Oracle9iAS Security Guide, available on the Oracle9iAS documentation CD. Look
for the chapter entitled, "Configuring Oracle9iAS Portal Security."

Once you have a sufficient level of privileges, you can use the information in the
following sections to learn about:

� Creating an Availability Calendar

� Registering a Printer

� Registering a Reports Server

� Registering a Report

5.4.1 Creating an Availability Calendar
Defining availability calendars is an optional step that allows you to further restrict
access to reports, servers, and printers by specifying when they can and cannot be
accessed. Availability calendars are not necessary if the reports, the Reports Servers,
and printers are always available for processing.

This section provides information on:

� Creating a Simple Availability Calendar

� Creating a Combined Availability Calendar

You can associate only one availability calendar with a report, a Reports Server, or a
printer. If your production environment requires more than one availability rule,
then you can combine availability calendars.

5.4.1.1 Creating a Simple Availability Calendar
A simple availability calendar defines a single availability rule (for example,
Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).

To create a simple availability calendar:

1. Log in as an administrator to Oracle9iAS Portal.

2. Click the Builder button at top of the Portal main page.

3. On the resulting page, click the Administer tab.

4. Under the Oracle Reports Security portlet, click Create Reports Simple
Calendar Access.
Controlling User Access 5-7

Setting Up Access Controls
5. Specify an internal name, display name, and Portal DB Provider for the
calendar:

� In the Name field, enter a unique name that will identify the availability
calendar internally in Portal, for example, MY_CALENDAR. This name
must follow the Portal rules for a valid component name, specified in the
Portal online help.

� In the Display Name field, enter the name you want to display for this
availability calendar when it is exposed through Portal. Unlike the internal
name, the display name can have spaces in it.

� Select a Portal DB Provider from the provider list of values. All
components added to or created in Portal must belong to a Portal DB
Provider. This list contains the names of only those providers with which
you have privileges to build components.

6. Click the Next button.

7. Optionally, enter a description of the calendar under Description.

8. Click the Next button.

9. On the Date/Time Availability page, define the parameters for the calendar:

Under Duration, specify the length of time that comprises a unit of duration (or
duration period). For example, if you plan to set this calendar up to allow
report access between 9:00 AM to 5:00 PM on a given day, then both Start and
End would be the same month, day, and year, but the hour and minute setting
for Start would be 9:00 AM and for End would be 5:00 PM. In this example, the
duration of availability of a report on a given day is from 9:00 AM to 5:00 PM.

Under Repeat, specify how frequently the duration period is repeated:

� Occurs only once means the duration period does not repeat, and
associated components are no longer available when the period expires. For
example, if you select Occurs only once and set a duration period of one
year, then the associated components cease to be available after one year.

� Yearly means the duration period restarts each year. If you select Yearly
and have the same start and end date in your Duration setting, but your
Start hour is set to 9:00 AM and your End hour is set to 5:00 PM, then the

Note: For information on creating a Portal DB Provider, see the
Oracle9iAS Portal online help.
5-8 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
Reports components associated with this availability calendar will be
available one day a year between 9:00 and 5:00.

� Monthly means the duration period restarts each month between the Start
and End dates specified under Duration. If you select Monthly and have
the same date and year in both Start and End—July 25, 2001—but set the
Start hour for 9:00 AM and the End hour for 5 PM, then the associated
components will be available between 9:00 AM and 5:00 PM on the 25th of
each month.

� The by Date/Day setting applies only to Monthly. With by Date/Day, you
specify whether the duration period is set by the particular date (e.g.,
always on the 25th through the 29th of the month) or by the particular
day(s) (e.g., always on Monday through Friday—which happen this month
to fall on the 25th through the 29th).

� Weekly means the duration period restarts on a weekly basis between the
days specified under Duration.

� Daily means the duration period restarts each day between the hours
specified under Duration.

� Frequency fills in the missing value for the phrase: Repeat every n (years,
months, weeks, days—depending on what you selected under Repeat). For
example, if you set the duration period to repeat weekly, then set
Frequency to 2, the duration period restarts every two weeks, or every
other week.

� Optionally, check Repeat Until and assign a termination date/time for the
calendar. Availability for all associated Reports components ends on the
Repeat Until date/time.

Note that no validation is run on your calendar. If the duration period
exceeds the repetition setting, no error message will be generated. For
example, if you set the duration period for 10 days and the repetition for
weekly, the periods will overlap, but you will not be notified of the overlap.

10. Click the Next button.

11. On the Summary page, click the Show Calendar button to preview your
availability calendar. If you wish to change some settings, click the Previous
button and make your changes.

12. On the Summary page, click the Finish button to complete the availability
calendar.

13. Click the Close button to return to the Oracle Reports Security page.
Controlling User Access 5-9

Setting Up Access Controls
5.4.1.2 Creating a Combined Availability Calendar
A combined availability calendar combines two or more availability calendars into
a single availability calendar. This is useful when you want to set up an availability
period, then exclude specific days, such as holidays, from that period.

When you combine calendars, you can indicate that all the days on one of them be
excluded from all the days on the other. For example, one calendar could describe
availability Monday through Friday; another could describe availability only on
Wednesday. You could combine these, excluding the Wednesday calendar, so that
the combined calendar describes availability Monday, Tuesday, Thursday, Friday.

Conceivably, you could create a simple calendar that covers the weekdays of an
entire year, then multiple additional simple calendars, where one excludes New
Years, another excludes a second holiday, another excludes a third, and so on. You
could combine all these calendars, excluding all the holiday calendars, so that
components were available only on the days your company is open for business,
between certain times of day, throughout the year.

To combine availability calendars:

1. Log in as an administrator to Oracle9iAS Portal.

2. Click the Builder button at the top of the Portal main page.

3. On the resulting page, click the Administer tab.

4. Under the Oracle Reports Security portlet, click Create Reports Combined
Calendar Access.

5. Specify an internal name, display name, and Portal DB Provider for the
calendar:

� In the Name field, enter a unique name that will identify the combined
availability calendar internally in Oracle9iAS Portal, for example, MY_
COMBINED_CALENDAR. This name must follow the Portal rules for a
valid component name set out in the Portal online help.

� In the Display Name field, enter the name you want to display for this
combined availability calendar when it is exposed through Portal. Unlike
the internal name, the display name can have spaces in it.

� Select a Portal DB Provider from the provider list of values. All
components that you add to or create in Portal must belong to a Portal DB
Provider. This list contains the names of only those providers with which
you have privileges to build components.
5-10 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
6. Click the Next button.

7. Optionally, enter a description of the calendar under Description.

8. Click the Next button.

9. On the Selection page, highlight the calendars on the Availability Calendars
list that you want to combine.

On Windows, control-click to select multiple calendars.

On UNIX, click each calendar you want to select.

This page lists the availability calendars that have been defined for the same
Portal DB Provider under which you are creating this combined availability
calendar.

10. Click the right arrow to move the selected calendars to the Selected
Availability Calendars list.

11. Click the Next button.

12. On the Exclude page, highlight the calendar(s) on the Availability Calendars
list whose dates you want to exclude.

On Windows, control-click to select multiple calendars.

On UNIX, click each calendar you want to select.

These are the calendars with dates on which you wish to withdraw availability.

13. Click the right arrow to move the selected calendars to the Excluded
Availability Calendars list.

14. Click the Next button.

15. On the Summary page, click the Show Calendar button to preview your
calendar.

If your exclusion isn't showing up, select a different view. For example, instead
of the monthly view, select the weekly.

If you want to change the combination, close the calendar and click the
Previous button one or more times to return to the desired page.

Note: For information on creating a Portal DB Provider, see the
Oracle9iAS Portal online help.
Controlling User Access 5-11

Setting Up Access Controls
16. Click Finish to complete creation of the combined calendar.

You can combine this calendar with other calendars or apply it "as is" to registered
Reports components.

5.4.2 Registering a Printer
It is not required that you register a printer within the security framework of
Oracle9iAS Portal. You can run a report on any printer as long as it is available to
the Reports Server. However, you might want to confine Oracle9iAS Portal users to
a subset of those printers, constrain the use of a printer for certain periods of time,
or identify a particular printer to be used for printing output of certain reports.

Printer registration with Portal is meaningful for reports that you run through
Portal as well as those you run through a stand-alone URL.

Once printers are registered within Oracle9iAS Portal, you can associate them with
an Oracle9iAS Reports Server. Many printers can be registered. However, only
printers associated with particular Oracle9iAS Reports Servers are available to print
when you register a report with Portal and choose those Reports Servers.

You can choose to restrict even further the registered subset of printers that a
registered report can be sent to. For example, an Oracle9iAS Reports Server might
be connected to the printer in the office of the CEO, but its selection should not be
available to employees running the general ledger report, unless it is the CEO who
is running the report. A subset of printers can be listed to the Oracle9iAS Portal user
running a report request to select where output should be sent.

To register a printer:

1. Log in as an administrator to Oracle9iAS Portal.

2. Click the Builder button at the top of the Portal main page.

3. On the resulting page, click the Administer tab.

4. Under the Oracle Reports Security portlet, click Oracle Reports Security
Settings.

5. Under the Reports Printer Access portlet, click Create Reports Printer Access.

6. On the resulting page, the Name, Display Name, and Portal DB Provider fields
are filled in with default values. Change these to your desired values:

� In the Name field, enter a unique name that will identify the printer
internally in Oracle9iAS Portal, for example, MY_PRINTER. This name
5-12 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
must follow the Portal rules for a valid component name set forth in the
Portal online help.

� In the Display Name field, enter the name you want to display for this
printer when it is exposed to your users through Portal. Unlike the internal
name, the display name can have spaces in it.

� From the Portal DB Provider list of values, choose the Portal DB Provider
that will own the printer. All components you add to or create in Portal
must belong to a Portal DB Provider. This list contains the names of only
those providers with which you have privileges to build components.

7. Click the Next button.

8. On the resulting page, fill in desired values:

� In the OS Printer Name field, enter the operating system printer name, for
example:

UNIX: <printer_name>

Windows: \\<printer_server>\<printer_name> (for a remote printer)
<printer_name> (for a local printer)

This printer must be available to the Reports Server.

� Optionally, in the Description field, type a description of the printer.

9. Click the Next button.

10. Optionally, choose an availability calendar to restrict the days and times the
printer can be used. You'll find more information about availability calendars in
Creating an Availability Calendar.

11. Click the Finish button.

The resulting page summarizes your Portal settings for this printer. On this
page, you can edit your settings, get detailed registration information about the
printer, or delete it from Portal altogether.

12. Click the Close button to close this page and return to Portal's Oracle Reports
Security page.

Note: Printer availability is set via the operating system on the
Report Server's host machine.
Controlling User Access 5-13

Setting Up Access Controls
You have completed registering a printer with Portal. This registration is
meaningful for reports that are run through Portal as well as those run outside of
Portal.

5.4.3 Registering a Reports Server
Before you can define access controls for the Reports Server, you must register your
server within Portal (i.e., this is required). Registration provides Portal with the
information it needs to identify and locate all available Reports Servers. This
becomes particularly important when you register individual reports; during this
process you are required to choose from a list of Reports Servers, and servers must
be registered to appear on this list.

This section describes how to register Reports Servers in Oracle9iAS Portal.

To register a Reports Server:

1. Log in as an administrator to Oracle9iAS Portal.

2. Click the Builder button at the top of the Portal main page.

3. On the resulting page, click the Administer tab.

4. Under the Oracle Reports Security portlet, click Oracle Reports Security
Settings.

5. Click Create Reports Server Access.

6. On the resulting page, the Name, Display Name, and Portal DB Provider fields
are filled in with default values. Change these to your desired values:

� In the Name field, enter a unique name that will identify the Reports Server
internally in Oracle9iAS Portal, for example, MY_REPORTS_SERVER. This
name must follow the Portal rules for a valid component name set forth in
the Portal online help.

� In the Display Name field, enter the name you want to display for this
server when it is exposed to your users through Portal. Unlike the internal
name, the display name can have spaces in it.

� From the Portal DB Provider list of values, choose the Portal DB Provider
that will own the server. All components you add to or create in Portal must
belong to a Portal DB Provider. This list contains the names of only those
providers with which you have privileges to build components.

7. Click the Next button.

8. On the Server Definition page:
5-14 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
� In the Reports Server Name field, enter the name of the Reports Server.
This is the unique name you gave the server when you installed it,
provided you haven’t changed that name. (If so, enter the new name.)

� In the Description field, optionally, enter a description of this Reports
Server.

� In the Oracle Reports Web Gateway URL for JSP reports field, enter the
URL that points to the location of your JavaServer Page (JSP) files. For
example:

http://<your_web_server>.<domain>:<port>/<virtual_path_to_JSPs>/

� In the Oracle Reports Web Gateway URL for RDF reports field, Enter the
URL that points to the location of the Reports Servlet. For example:

http://<your_web_server>.<domain>:<port>/<virtual_path_to_
rwservlet>/rwservlet

� If you want only the report definition files that are registered in Portal to
run when requested, check the Run Only Registered Report Definition
Files check box.

Leave this box unchecked if you want this Reports Server to accept any
report definition file, including those not registered in Portal, as long as the
user who submits the report request has access privileges to this Reports
Server.

� From the Printers list, select the printer(s) that you want to make available
to this Reports Server. Multiple selections are possible:

On Windows, control-click the printers you want to select.

On UNIX, click the printers you want to select.

9. Click the Next button.

Note: For information on specifying the virtual path, see
Chapter 3, "Configuring Oracle9iAS Reports Services".

Note: For information on specifying the virtual path, see
Chapter 3, "Configuring Oracle9iAS Reports Services".
Controlling User Access 5-15

Setting Up Access Controls
10. On the Destination Types page, enter custom destination types for this Reports
Server. Note that default destinations that come with your Oracle9iAS
installation need no further configuration in Portal.

11. Click the Next button.

12. On the Availability Calendar page, optionally choose an availability calendar
to control the days and times this Reports Server is available to accept report
requests.

13. Click the Finish button.

14. Click the Close button.

This returns you to the Oracle Reports Security Setting page.

You have registered an Oracle9iAS Reports Server. Now you can register a report.

5.4.4 Registering a Report
Registering a report is a required step that allows you to define who can run a
report, when a report is available to run, which server(s) can be used to process
report requests, how a report is delivered, and the printer(s) to which a report can
be sent.

In addition to using registration to designate which users have access to a report,
you can also specify, via a Portal parameter form, how users are to interact with the
report.

In the Reports Builder, users create user parameters. Then, in Portal, users specify
the names of these parameters, enabling end users to select or enter values for these
parameters when they run the report. At runtime, the Reports Server disregards
parameters you set in Portal that were not also defined in the Reports Builder at
design time.

Use the parameter settings available through Portal to duplicate or create a subset
of those parameters defined in the Reports Builder at design time. This way you get
parameter coverage when you run the report via Oracle9iAS Portal.

Registering a report within Oracle9iAS Portal creates an Oracle9iAS Portal
component that can be deployed as a portlet through Portal. We recommend that

Note: For information on custom destination types, see Chapter 4,
"Configuring Destinations for Oracle9iAS Reports Services".
5-16 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
you register only one instance of a report file in Portal. If you define multiple Portal
Reports objects for one report, all are given security checks at runtime. If any of
them fail the security check, then all fail it, and the job will not run.

To register a report:

1. Log in as an administrator to Oracle9iAS Portal.

2. Click the Builder button at the top of the Portal main page.

3. On the resulting page, click the Administer tab.

4. Under the Oracle Reports Security portlet, click Oracle Reports Security
Settings.

5. Under the Reports Definition File Access portlet, click Create Reports
Definition File Access.

6. The Name, Display Name, and Portal DB Provider fields are filled in with
default values. Change these to your desired values:

� In the Name field, enter a unique name that will identify the report
internally in Portal, for example, MY_REPORT. This name must follow the
Portal rules for a valid component name set forth in the Portal online help.

� In the Display Name field, enter the name you want to display for this
report when it is exposed through Portal. Unlike the internal name, the
display name can have spaces in it.

� From the Portal DB Provider list of values, choose the Portal DB Provider
that will own the report. All components added to or created in Portal must
belong to a Portal DB Provider. This list contains the names of only those
providers with which you have privileges to build components.

7. Click the Next button.

8. Enter or select information as follows:

� From the Reports Servers list of values, select the Reports Server(s) to be
available to run this report.

To select multiple servers:

On Windows, control-click each server.

On UNIX, click each server.

� In the Oracle Reports File Name field, enter the name you gave the report
in the Builder, including its extension.
Controlling User Access 5-17

Setting Up Access Controls
The report definition file can be an .rdf, .jsp, or .xml file. If the path to this
file is included in your REPORTS_PATH environment variable, do not enter
it here. If the path is not included in REPORTS_PATH, include it here along
with the filename. Do this for all report definition files except those you will
run as stand-alone JSPs.

� Optionally, type a description of this report in the Description field.

� In the Execute field, choose between via servlet and as JSP.

Choose via servlet if you plan to run the report via the Reports Servlet.
Choose as JSP if you will run a JSP report stand-alone, without going
through the Reports Servlet.

The selection you make here will affect the choices that are available on the
next wizard page.

9. Click the Next button.

10. On the Required Parameters page set required runtime information. These
settings are only applicable if running through the Reports Servlet. At runtime,
anywhere you have indicated multiple selections, using control-click, a list of
values will be offered to your users, from which they can set their own runtime
information:

� Types specifies the destination types acceptable for this report. Choose
among Cache, File, Mail, OraclePortal, Printer, or custom destination types.
If the server you associate with this report supports custom destination
types, which you indicated when you registered the Reports Server in
Portal, the types you indicated will display on this list.

� Formats defines the acceptable output format(s) for this report. Choose
among HTML, HTMLCSS, PDF, XML, RTF, Delimited, PostScript, and
Character

� Printers specifies the registered printer(s) to which this report can be sent.
The printers that appear on this list are determined by those you chose
when you set up access to the Reports Server(s) you are associating with
this report. All registered printers are listed. When users choose a Reports
Server on the runtime parameter form, only those printers that are
associated with the selected Reports Server and that are accessible to those
users are listed.

� Parameter Form Template specifies the template that will define the look
and feel of the Portal parameter form from which you will run the report.
This value is used only when the report is exposed through the Portal.
5-18 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
Choose a template from the list of values. Click Preview Template to see
what the selected template looks like.

11. Click the Next button.

12. On the Optional Parameters page define limits for the report’s existing
parameters.

� Name is the name of the system or user parameter on which you wish to
restrict the values available to users, for example, SALES_REGION or
COPIES.

� Display Name is the name used to identify the parameter on the runtime
parameter form.

� LOV is the name of a predefined list of values to be included in the
parameter form. The list must already exist. For information on creating a
list of values, see the Portal online help.

� Low Value is the lowest value you wish to set for a range of values.

� High Value is the highest value you wish to set for a range of values.

� Click More Parameters if you wish to add more rows for additional
parameters and values.

13. Click the Next button.

14. Optionally, enter the name of the availability calendar (or choose from a list of
calendars).

Use the availability calendar to limit the days and times this report can be run.
For more information, see Section 5.4.1, "Creating an Availability Calendar".

15. Click the Next button.

16. Optionally, enter a validation trigger to create a programmatic restriction.

Use validation triggers to create conditional restrictions that cannot be defined
on either the Required Parameters page or the Optional Parameters page.
Validation triggers are PL/SQL functions.

Note: For information about adding your own templates to this
list, see the Oracle9iAS Portal online help.
Controlling User Access 5-19

Setting Up Access Controls
The function that you specify as a validation trigger must return a boolean
value (TRUE or FALSE). If the function returns TRUE, the job is run. If the
function returns FALSE, an error message is displayed and the job is not run.

17. Click Finish to close the wizard and complete report registration.

The resulting page summarizes your registration information and provides the
opportunity to perform additional actions on your report.

� Click Customize to view the report’s runtime parameter form.

Table 5–2 summarizes the options available on this page.

Table 5–2 Options on the runtime parameter form

Option Description

Run Report Click to run this report with the specified parameter values.

Save Parameters Click to save the parameter value selections.

Server Choose the Oracle Reports Server that you want to receive this
report request. Only the servers you chose from the Report Name
and Servers page are displayed in this list box.

Printer Choose the printer that you want to print your report output.
Only the printers you chose from the Required Parameters page
are displayed in this list box.

Destype Choose the destination type. Only the destination types you
chose from the Required Parameters page are displayed in this
list box.

Desformat Choose the destination format. Only the destination formats you
chose from the Required Parameters page are displayed in this
list box.

Desname Enter the name of the output file when Destype is FILE, or enter
the e-mail addresses when the Destype is MAIL. Separate
multiple addresses with commas. The destination name is
required when you choose FILE or MAIL as the Destype.

SSOCONN Enter one or more SSO connection strings. Separate multiple
strings with a comma (but no spaces).

Visible to user Check each parameter that you want to make available in the
runtime parameter form when users run this report request. If the
box in not checked, then the parameter is not displayed to users.

CGI/Servlet Command
Key

Optionally, enter the key from the cgicmd.dat file that identifies
the command line to run for this report.
5-20 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up Access Controls
Additional User
Parameters

Use this field to enter additional user parameters. For example,
you can use this field to enter the path and name of the
distribution XML file that defines how this report should be
distributed.

Use the same syntax you would use to specify these values in a
command line request or within the cgicmd.dat file. If you wish
to enter multiple additional parameters, simply separate each
entry with a space.

For more information about the distribution XML file, see
Chapter 9, "Creating Advanced Distributions".

Table 5–2 Options on the runtime parameter form

Option Description
Controlling User Access 5-21

Setting Up Access Controls
5-22 Oracle9iAS Reports Services Publishing Reports to the Web

Reports Server Clu
6

Reports Server Clusters

A cluster is a virtual grouping of servers into a community for the purpose of
sharing request processing efficiently across members of the cluster. Clustering in
Oracle9iAS Reports Services is peer-level, which means that all members of the
cluster take equal responsibility for sharing and processing incoming requests. If
one member is shut down, the other members carry on managing the request load.
If the output is present in one member’s cache, another member can use it. There is
no single-point-of-failure, where one machine's malfunction brings the whole
system down.

This chapter contains information about enrolling a server in a cluster and benefits
of clustering servers together. It contains the following sections:

� Cluster Overview

� Setting Up a Cluster

6.1 Cluster Overview
Assume you have the following servers:

serverA.cluster1
serverB
serverC.cluster1

ServerA.cluster1 and serverC.cluster1 are members of the same cluster
called cluster1. They cooperate to process requests from a client. If a client sends
a synchronous request to serverA.cluster1 and it does not have an idle engine
of the specific job type, then it checks to see if serverC.cluster1 does. If
serverC.cluster1 does have an idle engine, then serverA.cluster1 passes
the request to serverC.cluster1 for processing.
sters 6-1

Setting Up a Cluster
In this example, ServerB is a stand-alone server and cannot receive processing
requests from other servers, nor can it send processing requests to other servers.

You can have an unlimited number of servers in a cluster. If a cluster member is
shut down, then it redistributes its pending synchronous jobs to another server in
the cluster. As long as one server in the cluster is running, the cluster is working.

When the cluster is making its decision as to where an upcoming scheduled or
immediate request should be processed, it prioritizes according to the following
criteria:

1. Does any server in the cluster have information in cache that matches the
request?

2. Is there a current, similar job in the queue?

3. Is an idle engine of the particular job type available?

4. Is the number of currently active engines less then the MAXENGINE number
specified for the server for that job type?

Both stand-alone and clustered servers share the same, basic configuration. The
cluster has no special configuration requirements, beyond needing to share a
common cluster name and common public and private keys. There are no
limitations on the platform used, the number of servers in the cluster, or the location
of the server. There is no requirement to share resources within the cluster servers.

Engine output is locally cached in a particular Reports Server within the cluster, but
it is also known and available to the entire cluster. If a server is down, that server's
cached files are no longer available for reuse. This means that another server within
the cluster must rerun the request to obtain the output. When the server is running
again, all of the cached files become available due to the persistent state of the
cache.

6.2 Setting Up a Cluster
Clustering in Oracle9iAS Reports Services is as easy as naming all member servers
with the same "dot extension," for example <server_name>.cluster or <server_
name>.xyz, and ensuring that all member clusters share the same public and private
key.

This section covers renaming your Reports Server, creating and specifying public
and private keys, and submitting requests to a cluster. It contains the following
sections:

� Renaming a Reports Server
6-2 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up a Cluster
� Generating New Public and Private Keys

� Entering Public and Private Keys in the Server Configuration File

� Restarting the Reports Server

� Submitting a Request to a Cluster

6.2.1 Renaming a Reports Server
It is likely that you are reading this material after you've already set up at least one
Reports Server. If this is the case, you'll need to change the name of your server to
add the cluster name to the server name.

To rename a Reports Server:

1. If the server is running, shut it down:

� If it's running on NT as a service, stop it through the Services control panel.

� If it's running on NT through a server executable, or on UNIX through a
shell script, click the Shutdown button in the Oracle Reports Server dialog
box.

� If it's running from a command line on NT or UNIX, at the command
prompt enter the following command for Windows or UNIX:

This shuts down the server normally:

rwserver server=<server> shutdown=normal authid=<admin/pword>

This shuts down the server immediately:

rwserver server=<server> shutdown=immediate authid=<admin/pword>

This shuts down the server without displaying any related messages:

rwserver server=<server> shutdown=normal authid=<admin/pword> batch=yes

The keywords used with the rwserver command are described in Appendix A,
"Command Line Arguments".

Note: If you haven't yet installed your servers, when you do
install them you must give them all different server names but the
same cluster name, for example servernameA.cluster1,
servernameB.cluster1.
Reports Server Clusters 6-3

Setting Up a Cluster
2. If you have custom configuration settings in your Reports Server configuration
file (<server_name>.conf), rename this file to the new cluster name (<server_
name>.<cluster_name>.conf).

You'll find the configuration file in the following path on UNIX and Windows:

ORACLE_HOME\reports\conf\<server_name>.conf

If you don’t have custom configuration settings in your Reports Server
configuration file, a new configuration file with the new name will be generated
automatically when you restart the renamed server(s).

3. Rename the Reports Server in all affected files, giving each cluster member the
same cluster name.

� Open the servlet configuration file (rwservlet.properties) and respecify the
server name to include the name of your cluster. For example:

SERVER=<server_name>.<cluster_name>

You'll find the servlet configuration file on both Windows NT and UNIX in
the same path:

ORACLE_HOME\reports\conf\rwservlet.properties

� If you run the server as an NT service, to rename the server you must
uninstall and reinstall the service:

To uninstall the NT service, at the command prompt enter:

rwserver -uninstall <server_name>

To reinstall the NT service, at the command prompt enter:

rwserver -install <server_name>.<cluster_name>

Before you restart your Reports Server(s), you may generate server public and
private keys and enter the resulting information in each member server's
configuration file. How to do this is discussed in the next sections.

Note: Reinstalling the server also starts it up. You may want to
shut it down until you have renamed all server cluster members,
then start them all up together once you’ve set up your cluster.
You’ll find information on shutting the server down in Chapter 2,
"Starting and Stopping Oracle9iAS Reports Services".
6-4 Oracle9iAS Reports Services Publishing Reports to the Web

Setting Up a Cluster
6.2.2 Generating New Public and Private Keys
The server public and private key files aid with message encryption and
authentication between cluster members. The default files are stored in the
rwrun.jar file in the following path (on both UNIX and Windows):

ORACLE_HOME\reports\jlib\rwrun.jar

Each member of a cluster must have the same public and private key files specified
in their configuration files (<server_name>.<cluster_name>.conf). To ensure that your
cluster members share exclusive public and private key files, generate new versions
of them when you set up your cluster. Servers that will not be members of the
cluster can go on using the default keys provided with Oracle9iAS Reports Services.

To generate new public and private key files, at the command prompt, enter the
following command:

java oracle.report.utility.KeyManager <public_key_file_name> <private_key_file_
name>

You can generate these files to specific directories by specifying the desired path in
the command line along with the new public and private key file names. If you just
specify the file name in the command line, the key files will be generated in the
current directory.

6.2.3 Entering Public and Private Keys in the Server Configuration File
Once you generate new public and private key files, you must enter that
information into all cluster members' Reports Server configuration files. You'll find
each cluster member's version of this file in the following path for both UNIX and
Windows on each server's host machine:

ORACLE_HOME\reports\conf\<server_name>.<cluster_name>.conf

To change public and private key files, go to the connection element in the server
configuration file, and change (or add) entries for the cluster sub-element as follows:

<cluster publicKeyFile="path and filename of new public key"
privateKeyFile="path and filename of new private key">

You'll find more information about the connection element in Chapter 3,
"Configuring Oracle9iAS Reports Services".
Reports Server Clusters 6-5

Setting Up a Cluster
6.2.4 Restarting the Reports Server
Once you have renamed your cluster members and respecified a common public
and private key for each, you may start up your Reports Servers to activate the
cluster.

To start up a Reports Server:

� If you're starting the Reports Server as an NT service, open the Service control
panel, and start the service.

� If you're starting the Reports Server from a command line, at the command
prompt, enter the following command:

On Windows NT:

rwserver server=<server_name>.<cluster_name>

On UNIX:

rwserver.sh server=<server_name>.<cluster_name>

Once you've renamed your cluster members, respecified your public and private
keys, and restarted your Reports Servers, you've completed the process of setting
up your cluster.

6.2.5 Submitting a Request to a Cluster
To submit a request to a cluster:

In the Reports Servlet or JSP, specify:

server=<cluster_name>

For example, if you have two cluster members—one named mercury.cluster1, the
other named venus.cluster1—then your server entry would be:

server=cluster1

The Reports Servlet or JSP will find a running Reports Server in the cluster and
send the request to that Reports Server. Depending on the cache match or the server
load, that Reports Server will either handle the request or redirect it to another
server in the cluster.
6-6 Oracle9iAS Reports Services Publishing Reports to the Web

Data Source Single Sig
7

Data Source Single Sign-On

Now that pluggable data sources are part of the benefits offered to you through
Oracle9iAS Reports Services, you may want to spare your users having to log in to
multiple data sources in order to run one job. You can do this through single sign-on
(SSO).

SSO enables you to establish unique identities for each user that are tied to
resources unique to that user. The user’s resources contain key-identified
connection strings for accessing different data sources. The user is uniquely
identified through his or her once-per-session login, and the login references the
user’s resources to ensure that he or she has access to the appropriate data sources,
without users having to enter this information themselves.

SSO is made possible through the partnership of Oracle9iAS Reports Services,
Oracle Internet Directory, and the Oracle Login Server, all delivered through the
Oracle9i Application Server.

SSO can be implemented only in a secure server environment. This means that you
must have a security policy in place in your Reports Server configuration file before
you can consider implementing SSO with Reports.

Note: Security settings are discussed in the following places:
Chapter 3, "Configuring Oracle9iAS Reports Services" tells you
how to specify the Java class that defines the security policy for the
server; Chapter 5, "Controlling User Access" tells you how to apply
security settings to servers, printers, and reports through
Oracle9iAS Portal; Appendix A, "Command Line Arguments"
provides information about the SSOCONN command line argument.
n-On 7-1

SSO Architecture
With SSO, your administrator establishes a user identity for each user. The
administrator does this in the Oracle Internet Directory (OID), through its user
interface, the Delegated Administration Service (DAS), or through Oracle9iAS
Portal (once you register a user in Portal, that information is saved to the OID).

The user identity is comprised of the user name and password. Once users are
established, the administrator can assign resources to them, comprised of
connection strings to different data sources. At login, users will enter their user
names and passwords (their user identities), which will in turn have access to all
resources associated with those identities. The Oracle Login Server issues a session
cookie that effectively acts as a key that opens all authorized doorways for that
session.

This chapter discusses data source SSO. It includes information about the
architecture of the SSO environment and helpful tips for setting up user resources
(connection strings) for SSO.

This chapter contains the following main sections:

� SSO Architecture

� Methods for Setting Up User Connection Strings

7.1 SSO Architecture

7.1.1 SSO Components
Figure 7–1 provides an overview of SSO component architecture.

Note: For detailed information about the requirements and
procedures required for setting up SSO-related components, such
as the Oracle Internet Directory, see the Oracle Internet Directory
Administrator's Guide and the Oracle HTTP Server Administrator's
Guide on the Oracle9iAS documentation CD and on the Oracle
Technology Network (http://otn.oracle.com).
7-2 Oracle9iAS Reports Services Publishing Reports to the Web

SSO Architecture
Figure 7–1 SSO architecture

The components of the SSO environment include:

� A client Web browser

� Oracle HTTP Server

Within the context of SSO, the Oracle HTTP server acts as an intermediary
between the client and mod_osso.

� The mod_osso module

The mod_osso module is an Oracle Login Server partner application that
provides authentication support. In the Reports environment, it acts as an
intermediary between the Reports Servlet and the Oracle Login Server.

� The Reports Servlet

The Reports Servlet is a component of Oracle9iAS Reports Services that runs
inside of the Oracle HTTP Server's Oracle9iAS Containers for Java 2 Enterprise
Edition (OC4J). Within the SSO context, the Reports Servlet acts as an
intermediary between mod_osso and the Reports Server.
Data Source Single Sign-On 7-3

SSO Architecture
� The Reports Server

The Reports Server processes client requests, which includes ushering them
through authentication and authorization checking, scheduling, caching, and
distribution. Within the context of SSO, the Reports Server informs the Reports
Servlet whether or not the Reports Server is secure.

� The Oracle Single Sign-on (SSO Server)

The Oracle SSO Server is responsible for managing users' single sign-on
sessions. The mod_osso module is the intermediary between the Reports Servlet
and the SSO Server. The mod_osso module passes authentication requests to
the server. The server verifies users' login credentials by looking them up in the
Oracle Internet Directory (OID).

� The Oracle Internet Directory (OID)

OID is a repository for user information. This includes personal information,
such as home address, e-mail, and telephone number, as well as access
information, such as user IDs and connection strings. OID is Oracle's native
Lightweight Directory Access Protocol version 3 (LDAPv3) service. It's built as
an application on top of the Oracle9i relational database. All LDAP-enabled
products that Oracle produces, including Oracle9i, Oracle9iAS, and Oracle9iAS
Portal, ship as supported Oracle Internet Directory clients.

� Oracle Delegated Administration Service (DAS)

DAS provides the user interface service for management of users and groups in
OID. You use the DAS interface to enter user and connection string information
into OID. DAS is a servlet written as an OID client. You access it through a
browser, through a URL you set up during installation.

7.1.2 SSO Transactions
A transaction in an SSO environment follows these steps:

1. A request is sent through the client browser to the Oracle HTTP Server.

2. The HTTP Server passes the request to the Reports Servlet (with the job’s
runtime URL), which, in turn, calls the Reports Server to verify that the Reports
Server is secure.

3. The Reports Server responds to the servlet: if yes, the Reports Servlet sends
message 401 back to mod_osso, requesting authentication; if no, the Reports
Servlet processes the request.
7-4 Oracle9iAS Reports Services Publishing Reports to the Web

Methods for Setting Up User Connection Strings
4. The mod_osso module gets message 401, connects with the Oracle Login Server,
and checks whether the user has already been authenticated.

5. The Login Server responds: if no, the Login Server sends a login screen to the
client; if yes, the original URL request goes through along with the user’s
identity, and the request is handled by the Reports Servlet.

6. The client sends login information to the Login Server, which checks it against
information in the Oracle Internet Directory.

7. If the login information is accurate, the original URL request goes through and
the process is complete. If the login information is not accurate, an error is
returned, and the client is either prompted to retry or the process stops. The
allowable number of retries is specified through SSO Server configuration.

7.2 Methods for Setting Up User Connection Strings
Although the Oracle Internet Directory (OID) provides tools that enable you to
batch load users from an LDAP source to the OID, there currently are no tools for
doing the same for those users' connection strings (the passwords and schema IDs
that allow users to access data sources). Consequently, this information must be
entered manually, or a procedure must be developed to handle it. (A knowledgeable
LDAP programmer can create a procedure that will populate the resources in OID.)

In the presence of a large user base, this task can be daunting.

Fortunately, there are a couple of methods wherein each user enters his or her own
connection string information. This section provides an overview of those methods.

7.2.1 Initial Requirements
To begin with, both methods require that your users are already entered into the
OID. If you are new to the OID, and you have your user base entered in some other
LDAP data source, you can use the tools OID provides to batch load your users.

If you do not have users in an LDAP data source, you must enter them manually.

Note: See the Oracle Internet Directory Administrator's Guide for
information on batch loading. You'll find it on the Oracle9iAS
documentation CD and on the Oracle Technology Network
(http://otn.oracle.com).
Data Source Single Sign-On 7-5

Methods for Setting Up User Connection Strings
7.2.2 Method 1: Giving Users Access to the OID
The first method for getting users to enter their own connection string information
is to give them access to OID. The user interface into OID is called Oracle Delegated
Administration Service, or DAS.

During Oracle9iAS installation, you specify the location of DAS. When you provide
users access to DAS, you do so by giving them a URL that points to this location.

Once in DAS, users can enter their own information via the Resource Assignment
section of the Extended Preferences tab. One possible hitch with this scenario is that,
for the Extended Preferences tab to appear to users, there must already be a
resource in place.

You could enter default resources for your user base, but this might also prove too
time consuming.

7.2.3 Method 2: Assigning Connection Strings and Letting Users Input at Login
The second method is probably more secure and more efficient. It's more secure in
that it does not require that users make a direct entry into DAS. It's more efficient in
that the information entry is just an integral part of sending a report request.

This method involves letting users enter their own information the first time they
log in to a data source.

The OID administrator sends an e-mail to each user with a URL to a report. Each
e-mail includes a unique password and schema connection string for the recipient
and contains instructions to the user to use that connection string.

Note: Before users can access DAS, an administrator must have
already entered a user identity in the OID for each user. This can be
done by batch loading information that is already entered into an
LDAP directory in some other source.

See the Oracle Internet Directory Administrator's Guide for
information on batch loading. You'll find it on the Oracle9iAS
documentation CD and on the Oracle Technology Network
(http://otn.oracle.com).
7-6 Oracle9iAS Reports Services Publishing Reports to the Web

Methods for Setting Up User Connection Strings
The URL includes the SSOCONN command line option, which calls a connection key
or keys that do not yet exist. For example:

ssoconn=mykey1/DB,mykey2/PDSApp

Each URL can call the same connection key (e.g., mykey1). Because, rather than the
key name, the unique information is the data that each user enters.

The user enters the connection information when prompted, and that information is
automatically saved in the OID.

In the future, when users run reports, they'll be prompted for their user identity,
that is, their user name and password. The resulting cookie will contain the user
identity, which will be sent to the Reports Servlet to get connection string
information (resources) in OID.

Note: For reports that make use of multiple data sources, multiple
connection strings should be provided. Using the technique
described in this section, you can send one e-mail with multiple
connection strings or one e-mail per connection string.
Data Source Single Sign-On 7-7

Methods for Setting Up User Connection Strings
7-8 Oracle9iAS Reports Services Publishing Reports to the Web

Part II

Sending Requests to the Server

Part II provides detailed, practical information about publishing reports, including
how to run requests; how to set up sophisticated, automatic report distributions;
how to customize reports at runtime via XML customization files, and how to use
database triggers to automatically invoke reports.

Part II includes the following chapters:

� Chapter 8, "Running Report Requests"

� Chapter 9, "Creating Advanced Distributions"

� Chapter 10, "Customizing Reports with XML"

� Chapter 11, "Event-Driven Publishing"

Running Report Req
8

Running Report Requests

This chapter discusses various ways to send report requests to the Reports Server. It
includes the following sections:

� The Reports URL Syntax

� Report Request Methods

� Publishing a Report Portlet in Oracle9iAS Portal

� Specifying a Report Request from a Web Browser

� Sending a Request to the URL Engine

� Scheduling Reports to Run Automatically

� Reusing Report Output from Cache

� Using a Key Map File

8.1 The Reports URL Syntax
This section provides quick reference information on formulating a URL for
publishing a report. It covers three deployment types:

� Servlet

� JSP

� CGI (for backward compatibility only)

The information is largely the same for both Windows and UNIX environments.
Differences are noted.
uests 8-1

The Reports URL Syntax
8.1.1 Servlet
The syntax for the URL of a report run via the Reports Servlet is:

http://<web_server>.<domain_name>:<port>/<alias>/rwservlet?<parameters>

Table 8–1 lists and describes the components of the servlet URL.

The URL that calls the Reports Servlet could look like this:

http://neptune.world.com:80/reports/rwservlet?keyname

Keyname refers to a command line listed under a unique header (the key name) in
the cgicmd.dat file. Note that this works differently for JSP files, which use the
keyword/value pair cmdkey=value to specify key names for command lines that
are stored in the cgicmd.dat file. You'll find more information about using key
mapping in Section 8.9, "Using a Key Map File".

Using the servlet does not mean that you cannot also use Reports JSP files, if the JSP
files contain both Web and paper layouts. When you run the report, specify the
servlet in the URL and call the JSP with the command line argument:
report=<myreport>.jsp.

For example:

http://neptune.world.com:80/reports/rwservlet?report=myreport.jsp&destype=cache&
desformat=html

Table 8–1 Components of a URL that calls the Reports Servlet

Component Description

<web_server> The name you gave the Oracle HTTP Server when you installed
it.

<domain_name> Your organization's domain name.

<port> The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).

<alias> The virtual path that stands in for the absolute path to the files a
URL will access.

rwservlet Invokes the Oracle9iAS Reports Services servlet.

? Identifies the beginning of the command line arguments.

<parameters> All the command line arguments, or the key to the key map file
where command line arguments are specified.
8-2 Oracle9iAS Reports Services Publishing Reports to the Web

The Reports URL Syntax
You'll find more information about command lines in Appendix A, "Command Line
Arguments".

8.1.2 JSP
The syntax for a JSP-based report URL is:

http://<web_server>.<domain_name>:<port>/<alias>/myreport.jsp?<parameters>

Table 8–2 lists and describes the components of the JSP-based report URL.

The URL used to invoke a JSP-based report could look like this:

http://neptune.world.com:80/jsp/myreport.jsp?

You can specify a key in the URL that refers to a command line in the cgicmd.dat
file that contains additional command line parameters. In this case, you must use
the name value pair: cmdkey=keyname. This can appear anywhere in your URL,
provided it follows the start of the query string (marked by a question mark). For
example:

http://neptune.world.com:80/jsp/myreport.jsp?userid=scott/tiger@hrdb&cmdkey=key1

Note: Yo can also supply these parameters within the JSP file
itself.

Table 8–2 Components of a JSP-based report URL

Component Description

<web_server> The name you gave the Oracle HTTP Server when you installed
it.

<domain_name> Your organization's domain name.

<port> The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).

<alias> The virtual path that stands in for the absolute path to the files a
URL will access.

myreport.jsp The report *.jsp file you want this URL to execute.

? Identifies the beginning of the command line arguments.

<parameters> All the command line arguments, and/or the key to the key
map file where command line arguments are specified.
Running Report Requests 8-3

The Reports URL Syntax
In your URL, use an ampersand (&) with no spaces to string parameters together.

Using a JSP does not mean that you cannot also use the Reports Servlet. When you
run the report, specify the servlet in the URL and call the JSP with the command
line argument: report=<myreport>.jsp.

For example:

http://neptune.world.com:80/reports/rwservlet?report=myreport.jsp&destype=cache&
desformat=html

You'll find more information about command line keywords in Appendix A,
"Command Line Arguments". You'll find more information about the cgicmd.dat
file in Section 8.9, "Using a Key Map File". For information on choosing whether to
use the Reports Servlet to run JSP reports, refer to Chapter 1, "Oracle9iAS Reports
Services Architecture".

8.1.3 CGI

The syntax for the URL of a report run via the Reports CGI on Windows is:

http://<web_server>.<domain_name>:<port>/<alias>/rwcgi.exe?<parameters>

And on UNIX is:

http://<web_server>.<domain_name>:<port>/<alias>/rwcgi.sh?<parameters>

Table 8–3 lists and describes the components of a CGI-based report URL.

Note: The Reports CGI is included in Oracle9iAS Reports Services
for backward compatibility. We strongly recommend that you
deploy your reports with either a servlet or JSP implementation.

Table 8–3 Components of a URL that calls the Reports CGI

Component Description

<web_server> The name you gave the Oracle HTTP Server when you installed
it.

<domain_name> Your organization's domain name.

<port> The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).
8-4 Oracle9iAS Reports Services Publishing Reports to the Web

Report Request Methods
The URL used to invoke a CGI implementation could look like this on Windows:

http://neptune.world.com:80/CGI-BIN/rwcgi.exe?key2

And like this on UNIX:

http://neptune.world.com:80/CGI-BIN/rwcgi.sh?key2

If Reports Services is installed on a UNIX machine, use ".sh" in lieu of ".exe". For
example:

http://neptune.world.com:80/CGI-BIN/rwcgi/sh?key2

8.2 Report Request Methods
There are a number of request methods available to you for running your report
requests. These include:

� The rwclient command line

The rwclient command line (rwclient.sh on UNIX) is available for
running report requests from a command line in a non-Web architecture. It
references an executable file that parses and transfers the command line to the
specified Oracle9iAS Reports Server. It can use command line arguments
similar to those used with the Oracle9iAS Reports Runtime executable file,
rwrun (rwrun.sh on UNIX).

On Windows, a typical rwclient command line request looks like this:

rwclient report=<my_report>.rdf userid=<username>/<password>@<my_db>
server=<server_name> destype=html desformat=cache

<alias> The virtual path that stands in for the absolute path to the files a
URL will access.

rwcgi.exe The executable file that invokes the CGI component of
Oracle9iAS Reports Services. If Reports Services is installed on a
UNIX machine, use ".sh" in lieu of ".exe".

? Identifies the beginning of the command line arguments.

<parameters> All the command line arguments, or the key to the key map file
where command line arguments are specified.

Table 8–3 Components of a URL that calls the Reports CGI

Component Description
Running Report Requests 8-5

Report Request Methods
On UNIX, the same command would look like this:

rwclient.sh report=<my_report>.rdf userid=<username>/<password>@<my_db>
server=<server_name> destype=html desformat=cache

See Appendix A, "Command Line Arguments" for more information about
command line arguments.

� A URL

To run a report from a browser, use the URL syntax.The Oracle9iAS Reports
Servlet (and CGI, for backward compatibility) converts the URL syntax into an
rwclient command line request that is processed by Oracle9iAS Reports
Services. You can give your users the URL syntax needed to make the report
request from their browser, or you can add the URL syntax to a Web site as a
hyperlink. The remainder of this chapter discusses this method in more detail.

� Via Oracle9iAS Portal

The Oracle9iAS Portal component enables you to add a link to a report in an
Oracle9iAS Portal page or portlet, or to output report results directly into a
portlet. Each report link points to a packaged procedure that contains
information about the report request. Oracle9iAS Reports Services system
administrators use Oracle9iAS Portal wizards to create the packaged procedure
making it more convenient and secure to publish the report via the Web.
Authorized users accessing the Oracle9iAS Portal page group simply click the
link to run the report. System administrators can run the report directly from
the wizard. See the Oracle9iAS Portal online help for more information.

Refer to Publishing a Report Portlet in Oracle9iAS Portal for more information
about how to publish your report as a portlet.

� A packaged procedure

SRW.RUN_REPORT is a built-in that runs an Oracle9iAS Reports Runtime
command. When you specify SRW.RUN_REPORT, set the SERVER argument to
the Oracle9iAS Reports Services server name to cause the SRW.RUN_REPORT
command to behave as though you executed an rwclient command.

Refer to the Oracle9i Developer Suite (Oracle9iDS) Reports Builder online help
for more information.
8-6 Oracle9iAS Reports Services Publishing Reports to the Web

Publishing a Report Portlet in Oracle9iAS Portal
8.3 Publishing a Report Portlet in Oracle9iAS Portal
One of the best ways to publish your reports is through the declarative, secure
interface of Oracle9iAS Portal. To a expose a report in a portal, you must do the
following:

1. Create a provider for your reports. This step defines a provider to contain the
reports you wish to make available to users in the portal.

2. Create the report definition file access. This step makes the report available as
a portlet to page designers within the portal by defining the reports properties,
in particular the provider that contains it.

3. Add the report portlet to a page and optionally customize it. This step makes
the report available to users in a portlet on a page and enables the page
designer to set the report parameters and schedule it to run automatically.

8.3.1 Creating a Provider for Your Reports
If you do not already have a provider defined to contain your reports, you need to
create one. For more information on creating a provider, see the Oracle9iAS Portal
online help.

8.3.2 Creating the Report Definition File Access
To make your report available as a portlet, you must do the following:

1. From the Oracle9iAS Portal home page, click the Corporate Documents tab.

2. Click Builder.

3. Click the Administer tab.

4. In the Oracle Reports Security portlet, click Oracle Reports Security Settings.

Note: The provider that contains your reports must be a database
provider and must have the Expose as Provider setting selected on
its Access page.

Note: If you need to create report definition file access for a
number of reports, it may be more efficient to batch register them.
For more information, see Appendix C, "Batch Registering Reports
in Oracle9iAS Portal".
Running Report Requests 8-7

Publishing a Report Portlet in Oracle9iAS Portal
5. In the Reports Definition File portlet, click Create Reports Definition File
Access.

6. Follow the steps in the wizard and click the question mark in the upper right
corner for additional information about the available settings. At the end of the
wizard, click Finish.

7. Click the Access tab.

8. Click Publish to Portal.

9. Click Apply. Your report has now been added to the Portlet Repository and you
can add it to a page.

8.3.3 Adding the Report Portlet to a Page
Once the portlet for your report is in the Portlet Repository, you may add it to any
page just as you would any other portlet.

1. From the Oracle9iAS Portal home page, click the Corporate Documents tab.

2. Click Builder.

3. Click the Build tab.

4. In the Page Groups portlet, enter the Page Group Name of the page group in
which you want to place your report portlet.

5. Create a new page by clicking Create a Page or edit an existing page by
entering the name of an existing page and clicking Edit.

6. If you are creating a new page, follow the steps in the wizard and click the
question mark in the upper right corner for additional information about the
available settings. Click Finish when you are done. If you are editing an
existing page, skip to the next step.

7. In the page region where you wish to add your report portlet, click the Add
Portlet tool. (Tip: Hints for each tool will display when you roll your mouse
over them.)

8. Drill down through the Portlet Repository to the provider that contains the
report portlet. The report portlet is listed in the Portlet Repository under the
Portal DB provider to which it belongs. The location of the provider depends on
how the Portlet Repository has been organized. If the Portal DB provider is a
fairly new provider, it may be under the New page of the Portlet Repository.

9. Click the name of your report portlet to add it to the Selected Portlets list.
8-8 Oracle9iAS Reports Services Publishing Reports to the Web

Specifying a Report Request from a Web Browser
10. Click OK.

11. Click Customize in the upper right corner of your report portlet.

12. Enter parameter values in the Parameter tab and, if desired, schedule the job to
run automatically in the Schedule tab.

8.4 Specifying a Report Request from a Web Browser
You can provide the user with the URL syntax needed to make a report request, or
you can add the URL syntax to a Web page as a hyperlink.

URL syntax can be presented in the following forms:

� Full URL request, for example:

http://<your_webserver>.<domain_name>:<port>/<alias>/rwservlet?
report=myreport.rdf&USERID=<username>/<password>@<my_db>
&SERVER=<server_name>&DESFORMAT=html&DESTYPE=cache

If you require additional command line arguments, then refer to Appendix A,
"Command Line Arguments" for a list of valid rwclient command line
arguments.

� Simplified URL request using key mapping, for example:

http://<your_webserver>.<domain_name>:<port>/<alias>/rwservlet?key1

To add the URL syntax to a Web page as a hyperlink:

1. Set up an HREF tag on the host Web page, for example:

<A HREF="http://<web_server>.<domain_name>:<port>/<alias>/rwservlet?key1>
Employee Directory

2. Point users to the Web page that hosts the link.

3. Users click the link to run the report.

Note: Another way to publish reports on a Web site is to create an
Oracle9iAS Portal component. For more information, refer to
Oracle9iAS Portal online help.
Running Report Requests 8-9

Sending a Request to the URL Engine
8.5 Sending a Request to the URL Engine
If you have activated the Reports Server’s URL engine, you can send job requests to
the URL engine by using the following command line arguments:

� urlParameter identifies the URL to be placed in the cache. For example,
http://www.oracle.com or a JSP report.

� jobType is the name of a job type (e.g., urlEngine) in the server configuration
file that is associated with a URL engine.

For example, a request that specifies an external URL for urlParameter might look
like the following:

http://localhost.com/servlet/RWServlet?server=ReportsServer
+jobType=urlEngine+urlParameter="http://www.oracle.com"
+destype=mail+desname=foo@bar.com+desformat=htmlcss

Alternatively, a request that specifies a JSP report for urlParameter would look like
the following:

http://<localhost>/servlet/RWServlet?server=ReportsServer+jobType=rwurl
+destype=cache+urlParameter="http%3A%2F%2F<localhost>%2Ffoo.jsp%3Fuserid
%3Dscott%2Ftiger@v815%3Fserver%3DreportsServer

8.6 Scheduling Reports to Run Automatically
You can use the server to run reports automatically from the Oracle9iAS Reports
Queue Manager, Oracle9iAS Portal, or with the SCHEDULE command line
argument. The scheduling feature enables you to specify a time and frequency for
the report to run.

Refer to the Oracle9iAS Reports Queue Manager online help for more information
about scheduling your reports.

If you publish a report as a Portal component on an Oracle9iAS Portal page, then
you can schedule the report request to run automatically and push the resulting

Note: For information on activating the URL engine, refer to
Chapter 3, "Configuring Oracle9iAS Reports Services".

Note: If the URL has special characters, they must be encoded as
per the x-www-form-urlencoded format.
8-10 Oracle9iAS Reports Services Publishing Reports to the Web

Reusing Report Output from Cache
reports to specified pages. Refer to Oracle9iAS Portal online help for more
information.

The SCHEDULE keyword is available for use with the rwclient, rwservlet, and rwcgi
commands. See Appendix A, Section A.4.83, "SCHEDULE" for more information.

8.7 Additional Parameters
When you send a request to the Reports Server, the following additional
parameters, the values of which you cannot change, are implicitly passed along
with your request:

8.8 Reusing Report Output from Cache
When you run a report, a copy of the report output is saved in the Oracle9iAS
Reports Services cache. Subsequently, if an identical report is run (that is, with the
same cache key), then the current request is recognized as a duplicate job.

There are several scenarios where Reports caching takes effect:

� When a new job request "A" comes to the Reports Server, and there is another
job "B" that has the same cache key in the Current Jobs Queue (where it is

Table 8–4 Additional parameters passed with a report request

Name Description

ACCEPT_LANGUAGE The comma separated list of languages accepted by the
browser/user.

REMOTE_ADDR The remote IP address from which the user is making the
request.

REMOTE_HOST The remote host name from which the user is making the
request.

SCRIPT_NAME The virtual path of the script being executed.

SERVER_NAME The host name or IP address of the server on which the Reports
Server is running.

SERVER_PORT The port number of the server on which the Reports Server is
running.

SERVER_PROTOCOL The name and revision of the information protocol with which
the request was sent.

USER_AGENT The description of the remote client’s browser.
Running Report Requests 8-11

Reusing Report Output from Cache
waiting for an available engine or is in the middle of execution), then job "A"
will use the output from job "B".

The job cache key excludes the destype, desname, server, and tolerance
parameters, and includes almost all other parameters.

This level of cache happens automatically. You don’t need to specify any other
parameters in the command line for it to work.

� If the user specifies tolerance=n (where n is a number in units of minutes) in
the new job request "A", and it doesn’t happen, then the Reports Server will try
to find a job in the Finished Jobs Queue which was successfully completed
within n minutes. If the Reports Server can find such a job, then the new job
request "A" will return the output of job "B".

� In a clustered environment, duplicate job checking (i.e., jobs with the same
cache key) is executed across cluster members. If a duplicate job is found in
another server in the same cluster, the job request will be transferred to that
server to retrieve the cached result.

Oracle9iAS Reports Services cache results are persistent. If the Reports Server is
shut down, once it is up again all the previous cache results are recovered and
ready to use again.

8.8.1 Usage Notes
� You can set the cache size through the Oracle9iAS Reports Queue Manager or

via the cache element in the server configuration file (<server_name>.conf).The
Oracle9iAS Reports Server attempts to keep the total size of cache files below
the set limit, deleting the least recently used files from the cache first. In
addition, you can empty the cache through the Oracle9iAS Reports Queue
Manager.

For more information on setting the cache, refer to the Oracle9iAS Reports
Queue Manager online help, and see Chapter 3, "Configuring Oracle9iAS
Reports Services".

� If a report is being processed when an identical job is submitted, then
Oracle9iAS Reports Services reuses the output of the currently running job even

Note: Refer to Appendix A, "Command Line Arguments" for
more information about the TOLERANCE command line
argument.
8-12 Oracle9iAS Reports Services Publishing Reports to the Web

Using a Key Map File
if TOLERANCE is not specified or is equal to zero. For example, suppose that
job_1 is currently being run and someone submits job_2, which has the same
cache key as job _1. Oracle9iAS Reports Services uses the output from job_1
for job_2. In this case, processing job_2 is significantly faster since job_2 is
fetched from cache rather than run in its own right.

8.9 Using a Key Map File
If you choose to provide users with a URL or add a hyperlink to a Web site, then
you can use a key map file to simplify or hide parameters in your URL requests.

The key map file contains command strings for running reports, each headed by a
unique key identifier. Except when you run a report as a JSP, you reference only this
key in the runtime URL. The server or servlet sends the key value to the map file
(cgicmd.dat), which in turn returns the command associated with the specified key
to the server or servlet for processing. By using key mapping, the command line
arguments are all hidden from the user.

Key mapping is useful for:

� Shortening the URL, making it more convenient to use

� Remapping the runtime commands without having to change the original URL

� Standardizing several typical run configurations for your company

� Hiding certain parameters from users (for example, the database connect string)

� Restricting the parameters users can use to run a report

When you specify a key name from the key map file (cgicmd.dat), it must always be
at the beginning of the query string (after the question mark) in a report request
URL. An exception to this is if you use the cmdkey command line keyword, and
express the key name as its value: cmdkey=keyname. In this case, you can place the
key name anywhere in the query string within the report request URL. The cmdkey
keyword can be used with jobs run as JSPs and with the rwservlet command.

8.9.1 Enabling Key Mapping
Key mapping is enabled when any of these conditions are met:

Note: You’ll find more information about the cmdkey keyword in
Appendix A, "Command Line Arguments".
Running Report Requests 8-13

Using a Key Map File
� A valid file with the standard file name, cgicmd.dat, is present in the default
location: the ORACLE_HOME\reports\conf\ directory on the Web server
machine (on either Windows or UNIX).

� A valid key map file is entered in the Reports Servlet configuration file
(rwservlet.properties) under the KEYMAPFILE parameter.

� When rwcgi is used, when the REPORTS_CGIMAP environment variable on
the Web server machine specifies the name of a valid key map file. See
Appendix B, "Reports-Related Environment Variables" for more information.

Usage Notes
� In rwcgi URLs, the first argument (that is the first information after the

question mark) is treated as a key if it is not otherwise a part of a name/value
pair. If the first argument is a name/value pair (i.e., keyword=value), then the
whole command line is used in lieu of a cgicmd.dat key entry.

8.9.2 Adding Key Mapping Entries to a Key Map File
To add key mapping entries to a key map file:

1. Navigate to the cgicmd.dat file on the machine that hosts your Reports Server,
and open it with a text editor.

You'll find this file in the following directory on both Windows and UNIX:

ORACLE_HOME\reports\server\conf\cgicmd.dat

2. Add a key mapping entry. For example:

key1: report=<your_report.rdf> USERID=<username>/<password>@<my_db>
DESFORMAT=html SERVER=<server_name>.<cluster_name (if present)>
DESTYPE=cache

In this example, key1 is the name of the key.

Except for the special parameters that are described in the file itself, the
command line arguments follow the syntax rules of rwclient. See
Appendix A, "Command Line Arguments" for more information.

3. Add or update the hyperlinks on your Web page.

For more information, see Section 8.4, "Specifying a Report Request from a Web
Browser".
8-14 Oracle9iAS Reports Services Publishing Reports to the Web

Using a Key Map File
8.9.3 Using a Key with Everything but JSPs
When you place a key name in a report request URL, it must always be the first
value within the query string (immediately after the question mark). For example:

http://…/rwservlet?keyname

Below is an example of a key mapping for a restricted run with a parameter form.

The URL might be:

http://<web_server>.<domain_name>:<port>/CGI-BIN/rwcgi.exe?key&par1&par2&parN

The key mapping file might contain:

KEY: REPORT=<myreport> DEPTNO=%1 MYPARAM=%2 %*

This would generate the equivalent of the following command line request:

rwclient REPORT=<myreport> DEPTNO=par1 MYPARAM=par2 parN

8.9.4 Using a Key with a Report Run as a JSP
When you run a report as a JSP and want to call a command key in the cgicmd.dat
file, you must use the cmdkey keyword in your URL. For example, your JSP URL
might look like this:

http://…/myreport.jsp?cmdkey=key

When you use cmdkey with a JSP or rwservlet, you can place it anywhere within
the query string. For example:

http://…/example.jsp?parameter1=value1&cmdkey=keyname
http://…/rwservlet?parameter1=value1&cmdkey=keyname

Note: You can also use cmdkey with the rwservlet command.
Running Report Requests 8-15

Using a Key Map File
8-16 Oracle9iAS Reports Services Publishing Reports to the Web

Creating Advanced Distribu
9

Creating Advanced Distributions

When you wish to define an advanced distribution for your report, you can design
the distribution by developing a distribution XML file. This file can specify which
section or sections of a report should go to what destination via what format of
output. In one distribution XML file, you can specify many different destinations,
including custom (pluggable) destinations you design.

This chapter provides information on creating a distribution XML file and some
example use cases. It includes the following main sections:

� Distribution Overview

� Introduction to Distribution XML Files

� Elements of a Distribution XML File

� Distribution XML File Examples

� XSL Transformation for Custom/Pluggable Destinations

9.1 Distribution Overview
Although distribution XML files are not required for specifying the distribution of
report output, they are useful for complex distributions. For example, there may be
times when you want to publish the output of one report in a variety of ways. You
might want to send an executive summary of a report to senior management while
mailing detailed breakdowns to individual managers. In this case, you might
produce a single report with two report sections: a portrait-sized summary section
and a landscape-sized detail section. You would associate the detail section with a
data model group that lists the managers, then alter the destination on each instance
of the group to send each department's output to its related manager.
tions 9-1

Introduction to Distribution XML Files
The distribution XML file tames distribution complexity by enabling you to define
multiple outputs for a given report in one XML file, then call that file from a
command line or URL.

9.2 Introduction to Distribution XML Files

9.2.1 The distribution.dtd File
When you create a distribution XML file, you follow the syntax defined in the
distribution.dtd file located in the following directory (Windows and UNIX
use the same path):

ORACLE_HOME\reports\dtd

As you look through the following sections, it may be useful to you to print the
distribution.dtd file and refer to it as various elements and attributes are described.

The distribution.dtd file lists all elements that are valid within a distribution XML
file. Each of these elements have attributes. Attributes that come with default values
need not be specified, unless you wish to override the default.

You can create a dynamic distribution by introducing variable values into many
different attributes. Variable values reference columns that are present in the report
that is using the distribution XML file.

9.2.2 A Brief Word About Using Variables within Attributes
Use variables within attributes by entering &column_name or
&<column_name> in the place of a static value.

Note: information provided in distribution XML file is case
sensitive. The user must preserve case of various elements and
attributes as specified in the distribution.dtd file.
9-2 Oracle9iAS Reports Services Publishing Reports to the Web

Introduction to Distribution XML Files
The variable syntax you use depends on whether the value is expressed by itself or
in combination with other values or strings. For example, a value for a "to" attribute
in a mail element might be expressed as either:

<mail id="a2" to="&email" …>

OR

<mail id="a3" to="&<first_name>.&<last_name>@myco.com …>

In the first example (id="a2"), the variable's referenced column (email) contains a
full e-mail address and does not require additional information. The second
example (id="a3") uses a combination of variable values (first_name and last_
name) and static text to construct an e-mail address (static text is the period after
first_name and @myco.com). In both cases, you will get dynamic e-mail addressing.
The example you use will depend on whether the variable contains all the
information you need or requires additional information in order to be complete.

For even more complex layouts, you can also reference report columns you created
with PL/SQL formulas. For example, in your report you may define the PL/SQL
column:

Note: The ampersand (&) and less-than symbol (<) have specific
meanings in XML, but they are also required symbols for certain
Oracle9i Reports Developer command line arguments (for example,
lexical parameters require the ampersand symbol). To avoid
conflict with the XML meanings of these symbols when you set up
variables, specify the encoded version of the ampersand (&)
and less-than and greater-than symbols (< and >). For
example:

Here is what the variable looks like improperly coded in an XML file:

<mail id="a1" to="&<manager>@mycompany.com" …

Here is what the variable looks like properly coded in an XML file:

<mail id="a1" to="&<manager>@mycompany.com" …>

There is no special requirement for the greater-than symbol (>)
used with variables, but for consistency, we recommend that you
use the encoded version (>).
Creating Advanced Distributions 9-3

Elements of a Distribution XML File
PL/SQL formula CF_MAILID: return(:first_name||'.'||:last_name)

You'd reference this column in the distribution XML file as:

to="&<CF_MAILID>@mycompany.com"

9.3 Elements of a Distribution XML File
The elements of a distribution XML file include:

� destinations

� foreach

� mail

� body

� include

� file

� printer

� destype

� attach

� property

Most of these elements have attributes that define the behavior of the element. The
following sections describe the distribution XML file elements and their associated
attributes. Section 9.4 provides use cases that demonstrate the distribution XML file
elements and attributes in action.

9.3.1 destinations

Example
<destinations>

[One or more distribution specifications]
</destinations>

Required/Optional
Required. You must have no more or less than one destinations element in your
distribution XML file.
9-4 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
Description
The destinations element opens and closes the content area of the distribution XML
file. In terms of the distribution XML file's tagging hierarchy, all the other elements
are subordinate to the destinations element.

The destinations element has the following sub-elements:

� foreach

� mail

� file

� printer

� destype

Each of these is discussed in the following subsections.

9.3.2 foreach

Example
<foreach>

<mail id="a1" to="my_addressee@mycompany.com" subject="Fourth Quarter
Results">

<attach format="pdf" name="dept_&department_ID>.pdf"
srcType="report" instance="this">

<include src="mainSection"/>
</attach>

</mail>
</foreach>

OR

<mail id="a4" to="recipient@mycompany.com" subject="Regional Results">
<foreach>

<attach format="pdf" name="report.pdf" srcType="report" instance="all">
<include src="mainSection"/>

</attach>
</foreach>

</mail>

Required/Optional
Optional. You can have as many foreach elements as you require.
Creating Advanced Distributions 9-5

Elements of a Distribution XML File
Description
Use the foreach element to burst your distribution against a repeating group. You
can use foreach only when the associated report definition file (either RDF, JSP, or
XML) has its "Repeat On" property for the section that will be burst set to an
appropriate group. The foreach element specifies that the distribution defined
between its open and close parameters should be performed for each repeating
group.

The foreach element has the following sub-elements:

� mail

� file

� printer

� destype

� attach

Each of these is discussed in the following subsections.

You can also use the foreach element as a sub-element of the mail element, as
depicted in the second example provided at the start of this section. (In this
example, assuming that mainSection repeats on G_DEPARTMENT_ID, the example
will produce a single attachment with all the instances of the report's mainSection in
a single file.)

The foreach element works closely with the instance attribute of the attach and file
elements. While foreach specifies that the distribution should be performed
according to record groups, instance specifies whether the burst groups should be
distributed in one file (instance="all") or distributed as separate files: one file
for each group instance (instance="this").

When used with the mail element, foreach can mean different things according to its
position relative to the mail element:

� When foreach precedes the mail element and instance="this", each group
instance is dispatched as a separate mail. For example:

<foreach>
<mail id="a1" to="managers@mycompany.com" subject="results">

<attach name="department_&<department_id>.pdf"
instance="this">
<include src="mainSection" />
</attach>

</mail>
</foreach>
9-6 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
If the report is grouped according to department_id, and there are four
departments, then there are four group instances. This means four e-mails per
recipient, each e-mail with its own group instance attached: one e-mail has
department 10's report attached; another e-mail has department 20's report
attached; and so on. Each recipient receives all four e-mails.

� When foreach follows the mail element and instance="this", each group
instance is attached to one e-mail going to each recipient. For example:

<mail id="a1" to="managers@mycompany.com" subject="results">
<foreach>

<attach name="department_&<department_id>.pdf"
instance="this">
<include src="mainSection" />
</attach>

</foreach>
</mail>

9.3.3 mail

Example
<mail id="a1" to="jsmith@foo.com" subject="Results">

<body srcType="text">
Attached are quarterly results.

</body>
<attach srcType="report">

<include src="headerSection"/>
<include src="mainSection"/>

</attach>
</mail>

OR

<mail id="a4" to="recipient@mycompany.com" subject="Regional Results">
<foreach>

<attach format="pdf" name="report.pdf" srcType="report" instance="this">
<include src="mainSection"/>

</attach>
</foreach>

</mail>
Creating Advanced Distributions 9-7

Elements of a Distribution XML File
Required/Optional
Optional. You can have as many mail elements as you require.

Description
Use the mail element to specify distributions via an outgoing SMTP-based mail
server. Use it to specify the recipients, the subject, and the priority of the e-mail.

The mail element has three sub-elements:

� body

� attach

� foreach

Between an open and close mail element, there can be only one body sub-element
and anywhere from zero to multiple attach and foreach sub-elements.

The mail element also has a set of related attributes. These are expressed within the
mail tag. For example, the id, to, and subject attributes are expressed:

<mail id="a1" to="jsmith@foo.com" subject="Recent Hires">

Table 9–1 lists and describes the attributes associated with the mail element.

Table 9–1 Attributes of the mail element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a
particular mail element. This can be a
combination of a text string and one or more
numbers, for example id="a1". The id value
must always start with an alpha character.

to string Required. Variable values allowed. The
recipient(s) of the e-mail. Contains the full,
formal e-mail address, for example:
to="jsmith@foo.com". Multiple recipients
must be separated with commas.

Can also contain variable values that reference
columns used in the associated report. See
Section 9.2.2 for more information.

cc string Optional. Variable values allowed. The
recipient(s) to receive a copy of the e-mail.
9-8 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
bcc string Optional. Variable values allowed. The
recipient(s) to receive a blind copy of the
e-mail.

from string Optional. Variable values allowed. The sender
of the e-mail.

replyTo string Optional. Variable values allowed. The e-mail
account where replies should be sent.

subject string Default: Mail Sent from &Report

Optional. Variable values allowed. The subject
of the e-mail. In the absence of a specified
subject, the subject line will read: Mail Sent
from [Name of Report]

priority highest|high|normal|
low|lowest

Default: normal

The e-mail's delivery priority.

returnReceipt true|false Default: false

Indication of whether the replyto individual or
account should be notified when the e-mail is
received.

organization string Optional. Variable values allowed. The name
of the organization distributing the e-mail, for
example:

organization="Region 10 Sales"

Or

organization="&department_name"

Note: For the mail element to work properly, the Reports Server
must know which outgoing SMTP mail server to send mail to. You
specify this information in the Reports Server configuration file
(<server_name>.conf). This file has a pluginParam element where you
can enter the name of a mail server. For example:

<pluginParam name=mailServer>smtp01.mycorp.com</pluginParam>

For more information, see Chapter 3, "Configuring Oracle9iAS
Reports Services".

Table 9–1 Attributes of the mail element

Attribute Valid values Description
Creating Advanced Distributions 9-9

Elements of a Distribution XML File
9.3.4 body

Example

On Windows <mail id="a1" to="jsmith@foo.com" subject="Results">
<body srcType="file">

<include src="c:\mail\body.html"/>
</body>

</mail>

On UNIX <mail id="a1" to="jsmith@foo.com" subject="Results">
<body srcType="file">

<include src="/mail/body.html"/>
</body>

</mail>

Required/Optional
Optional. You can have a maximum of one body element associated with a given
mail element.

Description
The body element acts as a sub-element to the mail element. It specifies the content
(or body) of the e-mail. With body, you can type a text string between the open and
close body tag or use an include sub-element to specify either an external file, a
report, or a section of a report. For example:

<mail id="a1" to="jsmith@foo.com" subject="Results">
<body srcType="text">

Attached are quarterly results.
</body>
…

Or

<mail id="a1" to="jsmith@foo.com" subject="Results">
<body srcType="file">

<include src="d:\reports\admin\results.html"/>
</body>
…

Or

<mail id="a1" to="&<first_name>.&<last_name>@myco.com"
9-10 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
subject="Quarterly Results">
<body srcType="report" format="html">

<include src="headerSection"/>
</body>
…

Body has three attributes: srcType, format, and instance. They are described in
Table 9–2.

9.3.5 attach

Example
<mail id="a1" to="jsmith@foo.com" subject="Results">

<body srcType="text">
Attached are quarterly results.

</body>
<foreach>

<attach format="html" name="contacts.htm" srcType="report"
instance="all">

<include src="headerSection"/>
<include src="mainSection"/>

</attach>
</foreach>

Table 9–2 Attributes of the body sub-element of mail

Attribute Valid values Description

srcType file|report|text Default: report

The source for content of an e-mail. The content is
displayed in the body of the e-mail. In the absence
of a specified srcType, the default is used.

format html|htmlcss|ascii Default: html

Required when srcType is report with a format other
than html, the default; otherwise format is optional.
The format of the content.

instance this|all Default: all

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups will
be broken into separate content according to each
group instance (this) or all contained within the
same content (all).
Creating Advanced Distributions 9-11

Elements of a Distribution XML File
</mail>

Required/Optional
Optional. You can have as many attach elements as you require with a mail element.
Note that attach is also a sub-element of foreach, and foreach requires that at least one
of its sub-elements be used (out of mail, file, printer, destype, and attach).

Description
Attach specifies attachments to the e-mail. Additionally, attach must have at least
one include sub-element, and can have more than one if srcType="report". Attach
attributes are listed and described in Table 9–3.

Using these attributes in conjunction with the foreach element, you can design a
destination that will repeat on a group instance and generate an e-mail for each
group attachment. For example:

<foreach>

Table 9–3 Attributes of the attach sub-element of mail

Attribute Valid values Description

format pdf|html|htmlcss|rtf|
ascii|xml|dflt

Default: pdf

Required when srcType is report and the report
format is other than pdf, the default; otherwise
format is optional. The format of the attached
material, for example format="htmlcss".

name string Optional. Variable values allowed. The filename of
the attached material. Can also contain variable
values that reference columns used in the
associated report. See Section 9.2.2 for more
information.

srcType file|report|text Default: report

The source of the attachment, either a file, a report,
or text.

instance this|all Default: all

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups will
be broken into separate content according to each
group instance (this) or all contained within the
same content (all).
9-12 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
<mail id="a2" to="first.name@myco.com,second.name@myco.com,
third.name@myco.com, fourth.name@myco.com" subject="Department Summaries">

<body srcType="text">
Attached is the breakdown of department summaries for the last
quarter.

</body>
<attach format="htmlcss" name="deptsum.html" srcType="report"
instance="this">

<include src="report"/>
</attach>

</mail>
</foreach>

By moving the location of the foreach element, you can generate one e-mail with
multiple attachments: a separate one for each group instance.

<mail id="a2" to="first.name@myco.com,second.name@myco.com, third.name@myco.com,
fourth.name@myco.com" subject="Department Summaries">

<body srcType="text">
Attached is the breakdown of department summaries for the last
quarter.

</body>
<foreach>

<attach format="htmlcss" name="deptsum.html" srcType="report"
instance="this">

<include src="report"/>
</attach>

</foreach>
</mail>

9.3.6 include

Example
<mail id="a1" to="jsmith@foo.com" subject="Q4">

<body srcType="text">
Attached are quarterly results.

</body>
<attach srcType="report" format="pdf">

<include src="report"/>
</attach>

</mail>

Or
Creating Advanced Distributions 9-13

Elements of a Distribution XML File
<mail id="a1" to="jsmith@foo.com" subject="Q4">
<body srcType="text">

Attached are quarterly results.
</body>
<attach srcType="report" format="htmlcss">

<include src="headerSection"/>
</attach>

</mail>

Or

<mail id="a1" to="jsmith@foo.com" subject="Q4">
<body srcType="text">

Attached are quarterly results.
</body>
<attach srcType="file">

<include src="c:\management\reports\current\Q4.htm"/>
</attach>

</mail>

Required/Optional
Required when used with body and attach when srcType is report or file, but not when
srcType is text. Also required for file, printer, and destype. In the instances where it is
required, you must have one and can have more than one includes.

Description
The include element is available for use with the body, attach, file, printer, and destype
elements. It specifies the file, report, or report section to be included in the body of
an e-mail, as an attachment to an e-mail, in the content of a file, in the printer
output, or in the content of a custom destination type.

If you want to specify more than one section, but not the entire report, enter an
include for each required section. For example:

<mail id="a1" to="jsmith@foo.com" subject="Results">
<body srcType="text">

Attached are quarterly results.
</body>
<attach srcType="report" format="htmlcss">

<include src="headerSection"/>
<include src="mainSection"/>

</attach>
</mail>
9-14 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
If the preceding body or attach element has srcType of file, the subsequent include can
specify the file either with a directory path and filename or with just the filename,
provided the file is located in a directory listed in the REPORTS_PATH environment
variable. For example:

<mail id="a1" to="jsmith@foo.com">
<body srcType="file">

<include src="q4sales.pdf"/>
</body>

</mail>

If you do specify a path, use the appropriate standard for your platform. For
example:

On Windows: <include src="c:\management\reports\current\Q4.htm"/>

On UNIX: <include src="/management/reports/current/Q4.htm"/>

No other XML elements are placed between an include element’s open and close
tags; however, include does have one attribute: src, described in Table 9–4.

Table 9–4 Attributes of the include sub-element when used with mail's body or attach

Attribute Valid values Description

src (path and) filename

report

headerSection

mainSection

trailerSection

Required. The source of material specified in the
preceding attach, body, file, printer, or destype element.

Because the distribution XML file is called when you
run a specific report, there is no need to specify the
report's name or location in the src attribute when
src="report".

When the preceding body or attach element specifies
a file srcType, provide the directory path and
filename or just a filename, provided the file is
located in a directory listed in the REPORTS_PATH
environment variable.

When the preceding body or attach element specifies
a report srcType, specify the entire report (report) or
provide the section(s) of the report to be included in
the body or to be attached (e.g., headerSection,
mainSection, and/or trailerSection).
Creating Advanced Distributions 9-15

Elements of a Distribution XML File
9.3.7 file

Example

On Windows <file name="c:\management\reports\report.pdf" format="pdf">
<include src="report"/>

</file>

On UNIX <file name="/management/reports/report.pdf" format="pdf">
<include src="report"/>

</file>

Or

<foreach>
<file name="section&<department_id>.pdf" format="pdf"
instance="this">

<include src="mainSection"/>
</file>

</foreach>

Required/Optional
Optional. You can have as many file elements as you require.

Description
Use the file element to specify distributions to a file. File elements have one
sub-element: include. There must be at least one include sub-element and there may
be more between an open and close file element.

When used with the foreach element and the instance="this" attribute, the file
element can distribute each group instance of a grouped report to separate files. For
example, if you group a report on department_id, and there are four departments,
you can use the foreach/file/instance="this" combination to generate four files, each
with a separate department's report. In this case, the file entry in the distribution
XML file might look like this:

<foreach>
<file id="a3" name="dept_&<department_id>.pdf" format="pdf"
instance="this">

<include="report"/>
</file>

</foreach>
9-16 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

File elements also have a set of related attributes. These are expressed within the file
tag. For example, the "id" and "name" file attributes are expressed:

Windows: <file id="a7" name="d:\reports\2001\q4sales.pdf">

UNIX: <file id="a7" name="/reports/2001/q4sales.pdf">

Table 9–5 lists and describes the attributes associated with a file element.

Table 9–5 Attributes of the file element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="a1". The id value must always start with an
alpha character.

name string Required. Variable values allowed. The location
and filename of the destination file. Enter a
directory path. Include the filename. For example:

Windows: name="d:\reports\file.pdf"
UNIX: name="reports/file.pdf

Can also contain variable values that reference
columns used in the associated report. See
Section 9.2.2 for more information.

format pdf|html|htmlcss|rtf|
ascii|xml|bitmap

Default: pdf

The destination file format, for example:

format="htmlcss"

instance this|all Default: all

Used when the foreach element is also present. With
a grouped report that is burst into separate reports,
instance specifies whether the groups will be
broken into separate files according to each group
instance (this) or all contained within the same file
(all).
Creating Advanced Distributions 9-17

Elements of a Distribution XML File
9.3.8 printer

Example

On Windows
<printer id="a1" name="\\server_name\printer_name" copies="5">

<include src="report"/>
</printer>

On UNIX
<printer id="a1" name="alias_to_registered_printer" copies="5" instance="all">

<include src="report"/>
</printer>

Required/Optional
Optional. You can have as many printer elements as you require.

Description
Use the printer element to specify distributions to a printer. Printer elements have
one sub-element: include. There must be at least one include sub-element and there
may be more between an open and close printer element.

When used with the foreach element and the instance="this" attribute, the printer
element can distribute each group instance of a grouped report to a separate print
job. For example, if you group a report on department_id, and there are four
departments, you can use the foreach/printer/instance="this" combination to
generate four printed reports, each containing a separate department's report. In
this case, the printer entry in the distribution XML file might look like this:

<foreach>
<printer id="a7" name="\\server_name\printer_name" instance="this">

<include="report"/>
</printer>

</foreach>

In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

Table 9–6 lists and describes the attributes associated with a printer element.
9-18 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
9.3.9 destype

Example
<destype id="acustom1" name="fax">

<include src="headerSection"/>
<property name="number" value="914925551212"/>

</destype>

Table 9–6 Attributes of the printer element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="a1". The id value must always start with an
alpha character.

name string Required. Variable values allowed. The destination
printer. How you enter this information differs
between Windows and UNIX.

For Windows, specify the printer server name and
the printer name. For example:

name="\\server_name\printer_name"

For UNIX, specify the alias assigned to a registered
printer. For example:

name="sales_printer"

Can also contain variable values that reference
columns used in the associated report. See
Section 9.2.2 for more information.

copies string Default: 1

Number of copies of each report or each report
group instance to print.

instance this|all Default: all

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups will
be broken into separate printed reports according
to each group instance (this) or all contained
within the same printed report (all).
Creating Advanced Distributions 9-19

Elements of a Distribution XML File
Required/Optional
Optional. You can have as many destype elements as you require.

Description
Use the destype element to specify distribution to a custom destination, such as to a
fax machine or an FTP site. You also use destype to specify distribution to a portal
created with Oracle9iAS Portal. The destype element allows for the use of two
sub-elements: property and include. At least one include is required.

The inclusion of a custom destination type requires that you have a defined
distribution handler in place to usher report content to the custom output
destination.

When used with the foreach element and the instance="this" attribute, the destype
element can distribute each group instance of a grouped report to a separate
destype instance (e.g., a separate fax). For example, if you group a report on
department_id, and there are four departments, you can use the
foreach/printer/instance="this" combination to generate four destype instances, each
containing a separate department's report. In this case, the destype entry in the
distribution XML file might look like this:

<foreach>
<destype id="a9" name="fax" instance="this">

<include="report"/>
<property name="number" value="&<fax_number>"/>

</destype>
</foreach>

In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

Custom destination types also have a set of related attributes. These are expressed
within the destype tag. For example, the "id", "name", and "instance" destype
attributes are expressed:

<foreach>
<destype id="a1" name="name_of_destination_type" instance="all">

Note: Build a custom destination type via the Oracle9iAS Reports
Services Destinations API. Look for upcoming information about
Reports APIs on the Oracle Technology Network:
http://otn.oracle.com.
9-20 Oracle9iAS Reports Services Publishing Reports to the Web

Elements of a Distribution XML File
</foreach>

Table 9–7 lists and describes the attributes associated with a destype element.

Oracle9iAS Reports Services supports the creation and use of custom destination
types (pluggable destinations) in the Reports Services environment. One way it
does this is by allowing you to include calls to custom destinations in your
distribution XML file. The distribution XML file provides a way to define custom
destinations through property name/value pairs used in conjunction with the
destype element.

Table 9–7 Attributes of the destype element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="a1". The id value must always start with an
alpha character.

name string Required. The name of the custom destination. For
example, for a fax, this might be:

name="fax"

For a portal built with Oracle9iAS Portal:

name="oraclePortal"

instance this|all Default: all

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups will
be broken into separate destype instances
according to each group instance (this) or all
contained within the same destype instance (all).

For example, if you custom destination type is a
fax, instance="this" would mean a separate
fax for each group instance, and
instance="all" would mean one fax for all
groups.
Creating Advanced Distributions 9-21

Distribution XML File Examples
9.3.10 property

Example
<foreach>

<destype id="custom1" name="fax" instance="all">
<include src="headerSection"/>
<property name="number" value="914925551212"/>

</destype>
</foreach>

Required/Optional
Optional. You can have as many properties as you require under a destype element.

Description
The property element allows for the inclusion of name/value pairs expressed in
terms recognized by a custom destination type (destype). Properties are merely
passed along to the destination handler. They serve no function within Reports
Services. How you specify properties is entirely dependent on the requirements of
your custom destination.

9.4 Distribution XML File Examples
This section provides examples, from simple to complex, of distribution XML
elements. They are organized according to the main distribution.dtd elements:

� foreach examples

� mail examples

� file examples

� printer examples

9.4.1 foreach examples
The examples in this section include:

� Single E-Mail with Report Groups as Separate Attachments

� Separate E-Mail for Each Group Instance

� Separate E-Mails with Separate Sections as Attachments

� Separate File for Each Section
9-22 Oracle9iAS Reports Services Publishing Reports to the Web

Distribution XML File Examples
� Separate Print Run for Each Report

9.4.1.1 Single E-Mail with Report Groups as Separate Attachments
In this example, each attachment contains the corresponding instance from the
header, main, and trailer sections. That is, if the report is grouped on department_
id, and the first department is department 10, the first attachment will be a report
with header, main, and trailer sections all containing department 10 information.
This example is valid only if the header, main, and trailer sections repeat on the
same group instance, in this case department_id.

<mail id="a1" to="managers@mycompany.com" subject="New Hires">
<foreach>

<attach format="html" srcType="report" instance="this">
<include src="report"/>

</attach>
</foreach>

</mail>

First of all, assume in this example that "managers@mycompany.com" goes to a
mailing list that distributes to each department manager. If there are four
departments: 10, 20, 30, and 40, the first attachment will contain header, main, and
trailer sections corresponding to department 10; the second to 20; and so on. This
example will yield one e-mail per recipient, each with four attachments.

9.4.1.2 Separate E-Mail for Each Group Instance
In this example, each recipient will receive a separate e-mail for each grouped
report. For example, if the report is grouped on department_id, and there are four
departments, one recipient will receive four e-mails, each with a separate
department's report attached.

<foreach>
<mail id="weeklies" to="managers@mycompany.com">

<attach format="htmlcss" srcType="report" instance="this">
<include src="mainSection"/>

</attach>
</mail>

</foreach>

9.4.1.3 Separate E-Mails with Separate Sections as Attachments
In this example, different sections repeat on different groups. The distribution is set
up so that each recipient will receive a separate e-mail with attachment for each
grouped main section and for each grouped trailer section.
Creating Advanced Distributions 9-23

Distribution XML File Examples
<foreach>
<mail id="a6" to="managers@mycompany.com" subject="Personnel Reports">

<attach format="pdf" name="attach.pdf" srcType="report" instance="this">
<include src="mainSection"/>

</attach>
<attach format="rtf" name="attach.rtf" srcType="report" instance="this">

<include src="trailerSection"/>
</attach>

</mail>
</foreach>

9.4.1.4 Separate File for Each Section
In this example, a separate file is generated for each group instance. Groups repeat
on department_id. Each file is named with the relevant department ID.

<foreach>
<file id="a10" name="department_&<department_id>.pdf"
instance="this">

<include src="mainSection"/>
</file>

</foreach>

Assuming that there are four departments, 10 through 40, this example will result in
the creation of four files, named in turn department_10.pdf, department_20.pdf,
and so on.

The format attribute is not included in the file element because it is not required
when the srcType is file or text. It is required when the srcType is report.

9.4.1.5 Separate Print Run for Each Report
The way you specify a printer name differs between Windows and UNIX. The first
example is for Windows. The second is for UNIX.

Note: If you do not specify unique filenames through the use of
variable values (see Section 9.2.2), in this example, each
successively created file will overwrite the previously created file.
That is, the department.pdf file for department 20 will overwrite
the department.pdf file for department 10, and so on, until there is
only one file left, department.pdf, with information from the last
department report created (e.g., department 40).
9-24 Oracle9iAS Reports Services Publishing Reports to the Web

Distribution XML File Examples
9.4.1.5.1 Windows In this example, assuming that the report is grouped on
department_id, a report will be printed for each department.

<foreach>
<printer id="a7" name="\\server_name\printer_name" instance="this">

<include src="report"/>
</printer>

</foreach>

9.4.1.5.2 UNIX In this example, assuming that the report is grouped on department_
id, a report will be printed for each department.

<foreach>
<printer id="a7" name="printer_alias" instance="this">

<include src="report"/>
</printer>

</foreach>

9.4.2 mail examples
The examples in this section include:

� E-Mail with a Whole Report as the Body

� E-Mail with a Section of a Report as the Body

� E-Mail with Two Report Sections as the Body

� E-Mail with External File as Body and Report as Attachment

� E-Mail with Whole Report and Grouped Sections Attached

� E-Mail to Relevant Manager and Department

9.4.2.1 E-Mail with a Whole Report as the Body
The report will comprise the content of this e-mail. That is, when recipients open
this e-mail, they will see the report.

<mail id="a5" to="managers@mycompany.com" subject="Quarterly Report">
<body srcType="report" format="html">

<include src="report"/>
</body>

</mail>
Creating Advanced Distributions 9-25

Distribution XML File Examples
9.4.2.2 E-Mail with a Section of a Report as the Body
A section of a report will comprise the content of this e-mail. That is, when
recipients open this e-mail, they will see a section of the report.

<mail id="a6" to="employees@mycompany.com">
<body srcType="report" format="html">

<include src="mainSection"/>
</body>

</mail>

The subject attribute is not included in this mail element, so the default subject will
be used: Mail Sent From &Report. At runtime, the variable
&Report will be replaced with the name of the report.

9.4.2.3 E-Mail with Two Report Sections as the Body
Two sections of a report will comprise the body of this e-mail. That is, when
recipients open this e-mail, they'll see two sections, headerSection and mainSection,
joined together in one report.

<mail id="emp_addresses" to="employees@mycompany.com" subject="Employee Address
List">

<body srcType="report" format="html">
<include src="headerSection"/>
<include src="mainSection"/>

</body>
</mail>

9.4.2.4 E-Mail with External File as Body and Report as Attachment
The contents of the body for this email will be an external file, and the report will go
along as an attachment. The path to the file is expressed differently for Windows
and UNIX.

9.4.2.4.1 Windows

<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries"
<body srcType="file">

<include src="c:\mail\body.html"/>
</body>
<attach format="pdf" name="salaries.pdf" srcType="report">

<include src="report"/>
</attach>

</mail>
9-26 Oracle9iAS Reports Services Publishing Reports to the Web

Distribution XML File Examples
9.4.2.4.2 UNIX
<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries"

<body srcType="file">
<include src="/mail/body.html"/>

</body>
<attach format="pdf" name="salaries.pdf" srcType="report">

<include src="report"/>
</attach>

</mail>

9.4.2.5 E-Mail with Whole Report and Grouped Sections Attached
In this example, recipients receive one e-mail with multiple attachments: one
attachment for each group instance and an additional attachment that contains the
entire report. If the report is grouped on department_id and there are four
departments, recipients will receive five attachments: one for each department and
one whole report.

<mail id="grx90" to="sales@mycompany.com">
<body srcType="text">
Attached you will find the summary report and breakdown by department of
weekly totals.
</body>
<attach format="rtf" name="myAttach.rtf" srcType="report">

<include src="report"/>
</attach>
<foreach>

<attach format="pdf" name="myattach.pdf" srcType="report"
instance="this">

<include src="mainSection"/>
</attach>

</foreach>
</mail>

9.4.2.6 E-Mail to Relevant Manager and Department
In this example, the manager for department 10 gets department 10's report; the
manager for department 20 gets department 20's report; and so on. For this tag set
to be valid, the variable must refer to a column that is included in the "repeat on"
group used with the attached section. That is, if the section repeats on G_
department_id, manager must be a column in that group.

<foreach>
<mail id="mgr1090" to="&<manager>@mycompany.com">

<attach format="pdf" name="attach.pdf" srcType="report" instance="this">
Creating Advanced Distributions 9-27

Distribution XML File Examples
<include src="mainSection"/>
</attach>

</mail>
</foreach>

9.4.3 file examples
Whenever you burst and distribute grouped reports to files, be sure to specify
filenames with variable values based on the repeating group or some other variable
information. Otherwise, you run the risk of having each successive file that is
created overwrite the previously created file. For example, if you specify an output
filename of department.pdf, and you output separate instances of each
department's report, the second department.pdf file will overwrite the first
department.pdf file; the third will overwrite the second; an so on. You will end up
with only one report, that of the final department to be output. Instead, with
grouped reports that you want to output separately according to each group
instance, use variable values to specify filenames, for example:
name="department_&<department_id>.pdf".

The examples in this section include:

� File for Whole Report

� File for Combined Report Sections

� File for Each Group of Combined Sections

� File for Each Report Group Instance

9.4.3.1 File for Whole Report
This example will yield one file named report.pdf that contains the entire report.

9.4.3.1.1 Windows

<file id="a1" name="c:\reports\report.pdf" format="pdf">
<include src="report"/>

</file>

9.4.3.1.2 UNIX

<file id="a1" name="/reports/report.pdf" format="pdf">
<include src="report"/>

</file>
9-28 Oracle9iAS Reports Services Publishing Reports to the Web

Distribution XML File Examples
9.4.3.2 File for Combined Report Sections
This example will yield one file named sections.pdf that contains a report consisting
of the header section and the main section of the report.

<file id="a2" name="sections.pdf" format="pdf">
<include="headerSection"/>
<include="mainSection"/>

</file>

9.4.3.3 File for Each Group of Combined Sections
In this example, a separate file will be created for each repeating group. Each file
will contain a report that combines the relevant group main and trailer sections. The
main and trailer sections must repeat on the same group, and the variable file name
must refer to a column contained within the "repeat on" group. That is, if the report
repeats on department_id, and you have four departments, 10 through 40, then one
file will contain the main and trailer sections of department 10; the next will contain
the main and trailer sections of department 20; and so on. The variable value under
name must refer to a column that is within the G_department_id group.

<foreach>
<file id="file9" name="department_&<department_id>.pdf"
instance="this">

<include src="mainSection"/>
<include src="trailerSection"/>

</file>
</foreach>

9.4.3.4 File for Each Report Group Instance
In this example, assuming the report is grouped on department_id and there are
four departments, 10 through 40, you will end up with four files respectively
named: department_10.pdf, department_20.pdf, department_30.pdf, and
department_40.pdf.

<foreach>
<file id="a20" name="department_&<department_id>.pdf"
instance="this">

<include src="report"/>
</file>

</foreach>

9.4.4 printer examples
The examples in this section include:
Creating Advanced Distributions 9-29

Distribution XML File Examples
� Print Whole Report

� Print Two Sections of a Report

� Print Grouped Report

� Print Combined Sections for Each Group Instance

� Print Relevant Instance of a Report to Its Relevant Printer

The way printer names are specified, differs between Windows and UNIX. Each
example demonstrates both ways.

9.4.4.1 Print Whole Report
In this example, the entire report will be sent to the specified printer.

9.4.4.1.1 Windows

<printer id="a80" name="\\neptune\prtr20">
<include src="report"/>

</printer>

9.4.4.1.2 UNIX

<printer id="a80" name="10th_floor_printer">
<include src="report"/>

</printer>

9.4.4.2 Print Two Sections of a Report
In this example, two sections of a report will be sent to the printer.

9.4.4.2.1 Windows

<printer id="a1" name="\\neptune\prtr20">
<include src="headerSection"/>
<include src="mainSection"/>

</printer>

9.4.4.2.2 UNIX

<printer id="a1" name="10th_floor_printer">
<include src="headerSection"/>
<include src="mainSection"/>

</printer>
9-30 Oracle9iAS Reports Services Publishing Reports to the Web

Distribution XML File Examples
9.4.4.3 Print Grouped Report
In this example, one report will be printed. The report will be grouped by, for
example, department_id. For this to work, all sections of the report must repeat on
the same group.

9.4.4.3.1 Windows

<foreach>
<printer id="prt20" name="\\neptune\prtr20" instance="all">

<include src="report"/>
</printer>

</foreach>

9.4.4.3.2 UNIX

<foreach>
<printer id="prt20" name="10th_floor_printer" instance="all">

<include src="report"/>
</printer>

</foreach>

9.4.4.4 Print Combined Sections for Each Group Instance
This example will yield a number of print jobs: one for each group instance. The
combined sections must repeat on the same group. If the report repeats on
department_id, and you have four departments, 10 through 40, you will end up
with four print jobs: one for department 10; one for department 20; and so on. The
main and trailer sections must both repeat on department_id.

9.4.4.4.1 Windows

<foreach>
<printer id="prt20" name="\\neptune\prtr20" instance="this">

<include src="mainSection"/>
<include src="trailerSection"/>

</printer>
</foreach>

9.4.4.4.2 UNIX

<foreach>
<printer id="prt20" name="10th_floor_printer" instance="this">

<include src="mainSection"/>
<include src="trailerSection"/>

</printer>
Creating Advanced Distributions 9-31

Using a Distribution XML File at Runtime
</foreach>

9.4.4.5 Print Relevant Instance of a Report to Its Relevant Printer
For this example to work, the "repeat on" group must contain a column of printer
names appropriate to the host platform (e.g., the printer_name column must
contain an appropriate printer alias on UNIX and a printer server/name
combination on Windows). For example, if the report is grouped by department_id,
then G_department_id must also have a printer_name column. Assuming the
printer_names are tied to departments, then department 10's report would be
printed on department 10's printer; department 20's report would be printed on
department 20's printer; and so on.

<foreach>
<printer id="a60" name="&printer_name" instance="this">

<include src="mainSection"/>
</printer>

</foreach>

Each group instance equals a separate print job. Each print job goes to the relevant
department's printer

9.5 Using a Distribution XML File at Runtime
The method for using a distribution XML file at runtime is essentially the same
whether you use it in a URL or a command line. Use the commands:

distribute=yes destination=filename.xml

Where filename is the name of the distribution XML file. You are required to
specify either the relative or absolute path of the XML file. For example, for
Windows, you might specify:

distribute=yes destination=c:\ORACLE_HOME\reports\distribution\filename.xml

For UNIX, you might specify:

distribute=yes destinations=ORACLE_HOME/reports/distribution/filename.xml

The paths in these examples are used for illustrative purposes only. There is no
requirement for where you store your distribution XML files. You can store them
wherever you like.
9-32 Oracle9iAS Reports Services Publishing Reports to the Web

XSL Transformation for Custom/Pluggable Destinations
9.6 XSL Transformation for Custom/Pluggable Destinations
The distribution.xsl file is an XML style sheet, located on both Windows and UNIX
at ORACLE_HOME\reports\conf\distribution.xsl. You can modify this file
by adding a template for translating your destype tag format to the required format
defined in the distribution.dtd file.

Use the distribution.xsl file to transform user-defined custom tags in the
distribution XML file to a format required by Reports runtime. Reports can
understand only the generic destype tag structure for any pluggable destination. The
user can specify the custom destination in accordance with the generic destype tag
structure for a pluggable destination. Alternatively, for ease of use, the user can
specify a custom, more specific tag structure. These tags are unknown to the
distribution.dtd, so they need to be mapped to the generic destype tag structure as
specified in the distribution.dtd.

The following examples illustrate a fax destination. The user can specify the
destination as per the generic tag structure in the distribution XML file as follows:

<destype id="faxdest" name="fax">
<property name="number" value="123456789"/>
<include src="report"/>

</destype>

A more user-friendly example:

<fax id="faxdest" number="123456789">
<include src="report"/>

</fax>

Reports runtime cannot process the <fax> tag structure as illustrated here because
the <fax> tag is not a standard destination specified in the distribution.dtd
file. The following tag structure must therefore be converted to the generic format
as shown in the first example.

To achieve this, you must specify a template for the fax destination in the
distribution.xsl file. The template will be used to convert the <fax> tag

Note: For detailed information on running reports from command
lines and URLs and using the cgicmd.dat file, see Chapter 8,
"Running Report Requests".
Creating Advanced Distributions 9-33

XSL Transformation for Custom/Pluggable Destinations
structure to the generic destype structure. Your distribution.xsl entry might
look like this:

<xsl:output doctype-system="distribution.dtd"/>

<xsl:template match = "/">
<xsl:apply-templates match = "destinations" />

</xsl:template>

<xsl:template match="destinations">
<destinations>

<!--
The Standard mail/file/printer/destype and foreach must be copied to the
transformed xml. The foreach tag must be copied only if it is specified with
file/mail/printer/destype tags.
-->

<xsl:copy-of select="mail"/>
<xsl:copy-of select="file"/>
<xsl:copy-of select="printer"/>
<xsl:copy-of select="destype"/>
<xsl:copy-of select="foreach"/>

<!-- apply template for the sample FAX destination -->
<xsl:apply-templates match = "fax" />

</destinations>
</xsl:template>

<!--
Sample Transformation Template for a FAX destination specified in the
distribution.xml file

<fax id="FAXDEST" number="123456789">
<include src="report"/>

</fax>
-->

<xsl:template match="fax">
<!-- create a new destype element -->
<xsl:element name="destype">

<!--
create an ID attribute and copy the value from the ID given for the fax
destination
-->
9-34 Oracle9iAS Reports Services Publishing Reports to the Web

XSL Transformation for Custom/Pluggable Destinations
<xsl:attribute name="id">
<xsl:value-of select="@id"/>

</xsl:attribute>

<!-- create a Name attribute with a fax as it's value -->
<xsl:attribute name="name">fax</xsl:attribute>
<!--
create a Property Attribute with name / value attribute pairs property tag
is created for number attribute. Similarly create more property tags for any
other attribute you add to the FAX destination
-->
<xsl:element name="property">

<xsl:attribute name="name">number</xsl:attribute>
<xsl:attribute name="value">

<xsl:value-of select="@number"/>
</xsl:attribute>

</xsl:element>

<!-- copy the include tag as it is -->
<xsl:copy-of select="include"/>

</xsl:element>
<!-- end of template -->

</xsl:template>

</xsl:stylesheet>

Note: All you need to do after you modify the XSL file is save it
back to the same location under the same file name. Reports will
automatically look for this XSL file when resolving distributions.
Creating Advanced Distributions 9-35

XSL Transformation for Custom/Pluggable Destinations
9-36 Oracle9iAS Reports Services Publishing Reports to the Web

Customizing Reports wi
10

Customizing Reports with XML

XML customizations enable you to modify reports at runtime without changing the
original report. With the addition of the CUSTOMIZE command to your runtime
command line, you can call a customization file to add to or change a report's
layout or data model. One XML customization file can perform all of these tasks or
any combination of them. You can even use Reports XML to build a report data
model for inclusion in a custom JSP-based report.

By creating and applying different XML customizations, you can alter the report
output on a per user or per user group basis. You can use the same report to
generate different output depending upon the audience.

When you apply an XML customization to a report, you have the option of saving
the combined definition to a file. As a result, you can use XML customizations to
make batch updates to existing reports. You can quickly update a large number of
reports without having to open each file in the Reports Builder.

Oracle9iAS Reports Services extends the possible types of Reports XML
customizations by enabling you to create an entire Reports data model in XML. This
includes the creation of multiple data sources, linking between data sources, and
group hierarchies within each data source. Data model support via Reports XML
customization means that any data model that can be created with the Reports
Builder can now be created by specifying XML. Additionally, all properties that can
be set against data model objects can now be set using XML.

This chapter discusses the ways you can use XML to customize reports on the fly
and to build data models. It includes the following sections:

� Customization Overview

� Creating XML Customizations

� Creating XML Data Models
th XML 10-1

Customization Overview
� Using XML Files at Runtime

� Debugging XML Report Definitions

This chapter lists and provides examples of only some of the elements available in
the reports.dtd file. This is the data type definition file that lists all elements and
attributes associated with Reports XML. If you want more information on elements
and attributes than this chapter provides, you can look in three additional sources:

� The reports.dtd file lists all possible Reports XML elements and attributes and,
where present, the attributes' default values. The reports.dtd file is located in
ORACLE_HOME\reports\dtd\ on both Windows and UNIX platforms. Many
of the sub-elements include symbols that denote usage rules. For example:

� A plus sign (+) means you can have one or more of this type of element in
your XML file.

� An asterisk (*) means you can have from zero to many of this type of
element in your XML file.

� A question mark (?) means you can have either zero or one of this type of
element in your XML file.

� No mark means the element is required, and you can have one and only
one of this type of element in your XML file.

If multiple sub-elements are enclosed in parentheses and followed by a symbol,
the symbol applies to all enclosed sub-elements.

� In the Reports Builder online help, search for the related property or object. For
example, for the XML attribute width, search the Reports Builder online help for
the Width property. Some attributes are taken from Reports internal properties.
Internal properties are read-only and cannot be changed. Internal properties are
not documented in the online help.

� Build a report that includes the type of customization you are trying to build,
save the report as XML, and view the saved file in a text editor. This provides
an excellent means of seeing Reports XML in action and provides you with
examples of the more complex models you may wish to build.

10.1 Customization Overview
Anything you can create using the Reports Builder, you can also create using
Reports XML tags. Consequently you have the capability of performing
customization on any conceivable Reports object you may care to.
10-2 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Customizations
Creating and applying an XML customization is a three-step process:

1. Create a customization file using Reports XML tags.

You can create this customization by building a report using the Oracle9iAS
Reports Builder then saving your report as XML. You can also build the
customization manually, with any sort of text editor or a sophisticated XML
editor, as long as you include the XML tags that are required for the particular
Reports customization.

2. Store the XML customization in a location that is accessible to Oracle9iAS
Reports Services.

3. Apply the XML customization to another report with the CUSTOMIZE
command line argument or the PL/SQL built-in SRW.APPLY_DEFINITION, or
run the XML customization by itself (if it contains a complete report definition)
with the REPORT (or MODULE) command line argument.

10.2 Creating XML Customizations
This section provides examples of various report customizations. It includes
examples of:

� Required XML Tags

� Changing Styles

� Changing a Format Mask

� Adding Formatting Exceptions

� Adding Program Units and Hyperlinks

� Adding a New Query and Using the Result in a New Header Section

Note: Although it is possible to create an entire report manually
using the Reports XML tags, only manually created customizations
and data models are documented and supported.

Note: For information on using these command line arguments,
see Appendix A, "Command Line Arguments".
Customizing Reports with XML 10-3

Creating XML Customizations
10.2.1 Required XML Tags
Every XML customization must contain the following required tag pair:

<report></report>

For example, the following is the most minimal XML customization possible:

<report name="emp" DTDVersion="9.0.2.0.0">
</report>

This XML customization would have a null effect if applied to a report because it
contains nothing. It can be parsed because it has the needed tags, but it is useful
only as an example of the required tags.

The <report> tag indicates the beginning of the report customization, its name,
and the version of the Data Type Dictionary (DTD) file that is being used with this
XML customization. The </report> tag indicates the end of the report
customization.

The report element's name attribute can be any name you wish, either the name of
the report the XML file will customize, or any other name.

This example represents a minimal use of the <report> tag. The <report> tag
also has many attributes, most of which are implied and need not be specified. The
only required <report> attribute is DTDVersion.

A full report definition requires both a data model and a layout and therefore also
requires the following tags and their contents:

� <data></data>

� <layout></layout>

The data element has no accompanying attributes. The layout element has two
attributes, both of which are required: panelPrintOrder and direction. If you use the
default values for these attributes (respectively acrossDown and default), you don't
need to specify them. Examples of the data and layout elements are provided in the
following sections.

10.2.2 Changing Styles
The example in this section demonstrates the use of XML to change the fill and line
colors used for report fields F_Mincurrent_pricePersymbol and
FMaxcurrent_pricePersymbol.

<report name="anyName" DTDVersion="9.0.2.0.0">
10-4 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Customizations
<layout>
<section name="main">

<field name="F_Mincurrent_pricePersymbol"
source="Mincurrent_pricePersymbol"
lineColor="black"
fillColor="r100g50b50"/>
<field name="F_Maxcurrent_pricePersymbol"
source="Maxcurrent_pricePersymbol"
lineColor="black"
fillColor="r100g50b50"/>

</section>
</layout>

</report>

We assume in this example that the section and field elements' name attributes match
the names of fields in the Main section of the report this XML file will customize. In
keeping with this assumption, the other attributes of the field element will be
applied only to the fields of the same name in the report's Main section.

10.2.3 Changing a Format Mask
The example in this section demonstrates the use of XML to change the format
mask used for a report field f_trade_date.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>

<section name="main"
<field name="f_trade_date"
source="trade_date"
formatMask="MM/DD/RR"/>

</section>
</layout>

</report>

Notice that the field element provides its own closure (/>). If the field element used
additional sub-elements, you would close it with </field>.

10.2.4 Adding Formatting Exceptions
The example in this section demonstrates the use of XML to add a formatting
exception to highlight values greater than 10 in a report's f_p_e and f_p_e1 fields.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>
Customizing Reports with XML 10-5

Creating XML Customizations
<section name="main">
<field name="f_p_e" source="p_e">

<exception textColor="red">
<condition source="p_e" operator="gt" operand1="10"/>

</exception>
</field>
<field name="f_p_e1" source="p_e">

<exception textColor="blue">
<condition source="p_e" operator="gt" operand1="10"/>

</exception>
</field>

</section>
</layout>

</report>

In this example, the value for operator is gt, for greater than. Operators include those
listed in Table 10–1:

Notice also that, unlike the previous example, the field element in this example uses
sub-elements, and, consequently, closes with </field>, rather than a
self-contained closure (/>).

Table 10–1 Values for the operator attribute

Operator Usage

eq equal

lt less than

lteq less than or equal to

neq not equal to

gt greater than

gteq greater than or equal to

btw between

notBtw not between

like like

notLike not like

null null

notNull not null
10-6 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Customizations
10.2.5 Adding Program Units and Hyperlinks
The example in this section demonstrates the use of XML to add a program unit to a
report, which in turn adds a hyperlink from the employee social security number
(:SSN) to employee details.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>

<section name="header">
<field name="F_ssn1"
source="ssn1"
formatTrigger="F_ssn1FormatTrigger"/>

</section>
<section name="main">

<field name="F_ssn"
source="ssn"
formatTrigger="F_ssnFormatTrigger"/>

</section>
</layout>
<programUnits>

<function name="F_ssn1FormatTrigger">
<textsource>
<![CDATA[

function F_ssn1FormatTrigger return boolean is
begin

SRW.SET_HYPERLINK('#EMP_DETAILS_&<' || LTRIM(TO_CHAR(:SSN))
|| '>');
return (TRUE);

end;
]]>
</function>
<function name="F_ssnFormatTrigger">
<![CDATA[

function F_ssnFormatTrigger return boolean is
begin

SRW.SET_LINKTAG('EMP_DETAILS_&<' || LTRIM(TO_CHAR(:SSN)) ||
'>');
return (TRUE);

end;
]]>
</textsource>
</function>

</programUnits>
</report>
Customizing Reports with XML 10-7

Creating XML Customizations
A CDDATA tag is used around the PL/SQL to distinguish it from the XML. Use the
same tag sequence when you embed HTML in your XML file. In this example, the
functions are referenced by name from the formatTrigger attribute of the field
element.

10.2.6 Adding a New Query and Using the Result in a New Header Section
The example in this section demonstrates the use of XML to add a new query to a
report and a new header section that makes use of the query result.

<report name="ref" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_summary">
<select>select portid ports, locname locations from portdesc
</select>

</dataSource>
</data>
<layout>

<section name="header">
<tabular name="M_summary" template="BLAFbeige.tdf">

<labelAttribute font="Arial"
fontSize="10"
fontStyle="bold"
textColor="white"/>

<field name="F_ports"
source="ports"
label="Port IDs"
font="Arial"
fontSize="10"/>

<field name="F_locations"
source="locations"
label="Port Names"
font="Arial"
fontSize="10"/>

</tabular>
</section>

</layout>
</report>

This example XML can be run by itself because it has both a data model and a
complete layout.

Use aliases in your SELECT statements to ensure the uniqueness of your column
names. If you do not use an alias, then the default name of the report column is
used and could be something different from the name you expect (for example,
10-8 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Data Models
portid1 instead of portid). This becomes important when you must specify the
source attribute of the field element, which requires you to supply the correct name
of the source column (the field).

The labelAttribute element defines the formatting for the field labels in the layout.
Because it lies outside of the open and close field element, it applies to all the labels
in the tabular layout. If you wanted it to pertain to only one of the fields, then you
place it inside the <field></field> tag pair. If there is both a global and local
labelAttribute element (one outside and one inside the <field></field> tag pair),
the local overrides the global.

10.3 Creating XML Data Models
Oracle9iAS Reports Services introduces a greater level of sophistication in the types
of data models you can create using Reports XML tags. Use Reports XML for:

� Creating Multiple Data Sources

� Linking Between Data Sources

� Creating Group Hierarchies within Each Data Source

� Creating Cross-Product (Matrix) Groups

� Creating Formulas, Summaries, and Placeholders at any Level

� Creating Parameters

This section provides examples of these uses of Reports XML.

In addition to these data model types, Oracle9iAS Reports Services provides
support for using PL/SQL in your Reports XML. This includes support for local
program units, report-level triggers, and attached PL/SQL libraries.

10.3.1 Creating Multiple Data Sources
The <data> tag now supports the creation of multiple data sources as well as the
new pluggable data sources. Each data source is enclosed within its own
<dataSource> tag. The data type definition for the dataSource element is:

<!ELEMENT dataSource
((select|plugin|plsql),
comment?,
displayInfo?,
formula*,
group*)>
Customizing Reports with XML 10-9

Creating XML Data Models
<!ATTLIST dataSource
name CDATA #IMPLIED
defaultGroupName CDATA #IMPLIED
maximumRowsToFetch CDATA #IMPLIED>

The following example creates two SQL data sources and names them Q_1 and Q_2.
It also creates all the necessary columns for the data sources and the default
group—giving the group the specified defaultGroupName or defaulting its own name
if defaultGroupName is not specified.

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_1" defaultGroupName="G_DEPARTMENTS">
<select>

select * from departments
</select>

</dataSource>
<dataSource name="Q_2" defaultGroupName="G_EMPLOYEES">

<select>
select * from employees

</select>
</dataSource>

</data>
</report>

10.3.2 Linking Between Data Sources
In the presence of multiple data sources, it may be desirable to link the data sources
together to create the appropriate data model. Reports data model link objects have
also been exposed through Reports XML. They support both group- and
column-level links. You can specify any number of links to create the required data
model.

The data type definition for the link element is:

<!ELEMENT link EMPTY>
<!ATTLIST link

name CDATA #IMPLIED
parentGroup CDATA #IMPLIED
parentColumn CDATA #IMPLIED
childQuery CDATA #IMPLIED
childColumn CDATA #IMPLIED
condition (eq|lt|neq|gt|gteq|like|notLike) "eq"
sqlClause (startWith|having|where) "where">
10-10 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Data Models
The link element is placed within a data element and can link any two dataSource
objects defined within the data element. For example:

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_1" defaultGroupName="G_DEPARTMENTS">
<select>

select * from departments
</select>

</dataSource>
<dataSource name="Q_2" defaultGroupName="G_EMPLOYEES">

<select>
select * from employees

</select>
</dataSource>
<link name="L_1" parentGroup="G_DEPARTMENTS"

parentColumn="DEPARTMENT_ID" childQuery="Q_2"
childColumn="DEPARTMENT_ID1" condition="eq" sqlClause="where"/>

</data>
</report>

Within the link element, the Reports defaulting mechanism recognizes
DEPARTMENT_ID1 as an alias to the DEPARTMENT_ID column in the EMPLOYEES
table without your having to explicitly create such an alias.

10.3.3 Creating Group Hierarchies within Each Data Source
With Oracle9iAS Reports Services, the complete group hierarchy is available to you.
You can specify all the columns within each group and break the order of those
columns. You can use formulas, summaries, and placeholders to further customize
the objects within groups.

The data type definition for the group element is:

<!ELEMENT group
(field|exception|rowDelimiter|xmlSettings|displayInfo|dataItem|formula|
summary|placeholder|filter|comment)*>

<!ATTLIST group
name CDATA #IMPLIED
fillColor CDATA #IMPLIED
lineColor CDATA #IMPLIED
formatTrigger CDATA #IMPLIED>

The following example demonstrates the use of a group element to create a break
group under a data source.
Customizing Reports with XML 10-11

Creating XML Data Models
<report name="anyname" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_1">
<select>

select * from employees
</select>
<group name="G_DEPARTMENTS">

<dataItem name="DEPARTMENT_ID"/>
</group>
<group name="G_EMPLOYEES">

<dataItem="EMPLOYEE_ID"/>
<dataItem="FIRST_NAME"/>
<dataItem="LAST_NAME"/>
<dataItem="JOB_ID"/>
<dataItem="MANAGER_ID"/>
<dataItem="HIRE_DATE"/>
<dataItem="SALARY"/>
<dataItem="COMMISSION_PCT"/>

</group>
</dataSource>

</data>
</report>

10.3.4 Creating Cross-Product (Matrix) Groups
Cross-product groups allow you to define a matrix of any number of groups in the
data model. The dimension groups in a cross product may exist in the same data
source or may be combined from different data sources to create a matrix. In
support of this flexibility, the <crossProduct> tag is placed within the <data>
tag after all the data sources and groups have been created.

The data type definition for the crossProduct element is:

<!ELEMENT crossProduct
(xmlSettings|displayInfo|dimension|(formula|summary|placeholder)*|comment)*>

<ATTLIST crossProduct
name CDDATA #IMPLIED
mailText CDDATA #IMPLIED>

The following example demonstrates the creation of a single-query matrix.

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_1">
<select>
10-12 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Data Models
select * from employees
</select>
<group name="G_DEPARTMENTS">

<dataItem name="DEPARTMENT_ID"/>
</group>
<group name="G_JOB_ID>

<dataItem name="JOB_ID"/>
</group>
<group name="G_MANAGER_ID">

<dataItem name="MANAGER_ID"
</group>
<group name="G_EMPLOYEE_ID">

<dataItem name="EMPLOYEE_ID"/>
<dataItem name="FIRST_NAME"/>
<dataItem name="LAST_NAME"/>
<dataItem name="HIRE_DATE"/>
<dataItem name="SALARY"/>
<dataItem name="COMMISSION_PCT"/>

</group>
</dataSource>
<crossProduct name="G_Matrix">

<dimension>
<group name="G_DEPARTMENTS">

</dimension>
<dimension>

<group name="G_JOB_ID">
</dimension>
<dimension>

<group name="G_MANAGER_ID">
</dimension>

</crossProduct>
</data>

</report>

10.3.5 Creating Formulas, Summaries, and Placeholders at any Level
You can place formulas, summaries, and placeholders at any level within the data
model. Additionally, you have complete control over all the attributes for each of
these objects.

The following example demonstrates the creation of a report-level summary whose
source is based on a group-level formula column.

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>
Customizing Reports with XML 10-13

Creating XML Data Models
<dataSource name="Q_1">
<select>

select * from employees
</select>
<group name="G_EMPLOYEES">

<dataItem="EMPLOYEE_ID"/>
<dataItem name="EMPLOYEE_ID"/>
<dataItem name="FIRST_NAME"/>
<dataItem name="LAST_NAME"/>
<dataItem name="HIRE_DATE"/>
<dataItem name="SALARY"/>
<dataItem name="COMMISSION_PCT"/>
<dataItem name="DEPARTMENT_ID"/>
<formula name="CF_REMUNERATION" source="cf_1formula"

datatype="number" width="20" precision="10"/>
</group>

</dataSource>
<summary name="CS_REPORT_LEVEL_SUMMARY" function="sum" width="20"

precision="10" reset="report" compute="report"/>
</data>
<programUnits>

<function name="cf_1formula" returnType="number">
<textSource>

<![CDATA[
function CF_1Formula return Number is
begin

return (:salary + nvl(:commission_pct,0));
end;
]]>

</textSource>
</function>

</programUnits>
</report>

10.3.6 Creating Parameters
In Reports XML, the parameter element is placed between open and close data
elements. The data type definition for the parameter element is:

<!ELEMENT parameter (comment?|listOfValues?)>
<!ATTLIST parameter

name CDATA #REQUIRED
datatype (number|character|date) "number"
width CDATA "20"
scale CDATA "0"
10-14 Oracle9iAS Reports Services Publishing Reports to the Web

Creating XML Data Models
precision CDATA "0"
initialValue CDATA #IMPLIED
inputMask CDATA #IMPLIED
validationTrigger CDATA #IMPLIED
label CDATA #IMPLIED
defaultWidth CDATA #IMPLIED
defaultHeight CDATA #IMPLIED>

The following example demonstrates a dynamic list of values (LOV), an initial
value, and a validation trigger.

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>

<dataSource name="Q_1" defaultGroupName="G_DEPARTMENTS">
<select>

select * from departments
</select>

</dataSource>
<parameter name="P_LAST_NAME" datatype="character" precision="10"

initialValue="SMITH" validationTrigger="p_last_namevalidtrigger"
defaultWidth="0" defaultHeight="0">
<listOfValues restrictToList="yes">

<selectStatement hideFirstColumn="yes">
<![CDATA[select last_name, 'last_name||'-'||employee_id'

from employees]]>
</selectStatement>

</listOfValues>
</parameter>

</data>
<programUnits>

<function name="p_last_namevalidtrigger" returnType="character">
<textSource>

<![CDATA[function P_LAST_NAMEValidTrigger return boolean is last_name
char(20);
begin

select count(*) into last_name from employees
where upper(last_name)=upper(:p_last_name);

exception when OTHERS then return(FALSE);
end;

return(TRUE);
end;
]]>

</textSource>
</function>

</programUnits>
Customizing Reports with XML 10-15

Using XML Files at Runtime
</report>

10.4 Using XML Files at Runtime
Once you have created your Reports XML customization file, you can use it in the
following ways:

� You can apply XML report definitions to RDF or other XML files at runtime by
specifying the CUSTOMIZE command line argument or the SRW.APPLY_
DEFINITION built-in. Refer to "Applying an XML Report Definition at
Runtime" for more information.

� You can run an XML report definition by itself (without another report) by
specifying the REPORT (or MODULE) command line argument. Refer to "Running
an XML Report Definition by Itself" for more information.

� You can use RWCONVERTER to make batch modifications using the CUSTOMIZE
command line argument. Refer to "Performing Batch Modifications" for more
information.

The following sections describe each of the cases in more detail and provide
examples.

10.4.1 Applying an XML Report Definition at Runtime
To apply an XML report definition to an RDF or XML file at runtime, you can use
the CUSTOMIZE command line argument or the SRW.APPLY_DEFINITION built-in.
CUSTOMIZE can be used with RWCLIENT, RWRUN, RWBUILDER, RWCONVERTER, and
URL report requests.

10.4.1.1 Applying One XML Report Definition
The following command line sends a job request to Oracle9iAS Reports Services and
applies an XML report definition, EMP.XML, to an RDF file, EMP.RDF. In this
example, the CUSTOMIZE command refers to a file located in a Windows directory
path. For UNIX, specify the path according to UNIX standards (i.e.,
myreports/emp.xml).

RWCLIENT REPORT=emp.rdf CUSTOMIZE=\myreports\emp.xml
USERID=<username>/<password>@<my_db> DESTYPE=file DESNAME=emp.pdf

Note: Refer to "Performing Batch Modifications" for more
information about using CUSTOMIZE with RWCONVERTER.
10-16 Oracle9iAS Reports Services Publishing Reports to the Web

Using XML Files at Runtime
DESFORMAT=PDF SERVER=<server_name>

When you use RWRUN, the Oracle9iAS Reports Services runtime command, the
equivalent command line would be:

RWRUN USERID=<username>/<password>@<my_db> REPORT=emp.rdf
CUSTOMIZE=\myreports\emp.xml DESTYPE=file DESNAME=emp.pdf
DESFORMAT=PDF

When testing your XML report definition, it is sometimes useful to run your report
requests with additional arguments to create a trace file. For example:

TRACEFILE=emp.log TRACEMODE=trace_replace TRACEOPT=trace_app

The trace file provides a detailed listing of the creation and formatting of the report
objects.

10.4.1.2 Applying Multiple XML Report Definitions
You can apply multiple XML report definitions to a report at runtime by providing
a list with the CUSTOMIZE command line argument. The following command line
sends a job request to Oracle9iAS Reports Services that applies two XML report
definitions, EMP0.XML and EMP1.XML, to an RDF file, EMP.RDF:

RWCLIENT REPORT=emp.rdf
CUSTOMIZE="(D:\CORP\MYREPORTS\EMP0.XML,D:\CORP\MYREPORTS\EMP1.XML)"
USERID=<username>/<password>@<my_db> DESTYPE=file DESNAME=emp.pdf
DESFORMAT=PDF SERVER=<server_name>

If you were using Oracle9iAS Reports Services Runtime, then the equivalent
command line would be:

RWRUN REPORT=emp.rdf

Note: Unless you care to change the default, it isn't necessary to
include a trace in the command line if you have specified a default
trace option in the Reports Server configuration file.

Note: In this example, the CUSTOMIZE command entry
demonstrates a directory path to files stored on a Windows
platform. For UNIX, use that platform's standard for specifying
directory paths (i.e., forward slashes instead of backward).
Customizing Reports with XML 10-17

Using XML Files at Runtime
CUSTOMIZE="(D:\CORP\MYREPOORTS\EMP0.XML,D:\CORP\MYREPORTS\EMP1.XML)"
USERID=<username>/<password>@<my_db> DESTYPE=file DESNAME=emp.pdf
DESFORMAT=PDF

10.4.1.3 Applying an XML Report Definition in PL/SQL
To apply an XML report definition to an RDF file in PL/SQL, use the SRW.APPLY_
DEFINITION and SRW.ADD_DEFINITION built-ins in the BeforeForm or
AfterForm trigger. The following sections provide examples of these built-ins.

10.4.1.3.1 Applying an XML Definition Stored in a File To apply XML that is stored in the
file system to a report, use the SRW.APPLY_DEFINITION built-in in the BeforeForm
or AfterForm triggers of the report.

On Windows:

SRW.APPLY_DEFINITION ('\<ORACLE_HOME>\TOOLS\DOC\US\RBBR\COND.XML');

On UNIX:

SRW.APPLY_DEFINITION ('<ORACLE_HOME>/TOOLS/DOC/US/RBBR/COND.XML');

When the report is run, the trigger executes and the specified XML file is applied to
the report.

10.4.1.3.2 Applying an XML Definition Stored in Memory To create an XML report
definition in memory, you must add the definition to the document buffer using
SRW.ADD_DEFINITION before applying it using SRW.APPLY_DEFINITION.

The following example illustrates how to build up and apply several definitions in
memory based upon parameter values entered by the user. The PL/SQL in this
example is used in the AfterParameterForm trigger of a report called videosales_
custom.rdf.

The videosales_custom.rdf file contains PL/SQL in its AfterParameterForm
trigger that does the following:

� Conditionally highlights fields based upon parameter values entered by the
user at runtime.

� Changes number format masks based upon parameter values entered by the
user at runtime.

The following tips are useful when looking at this example:
10-18 Oracle9iAS Reports Services Publishing Reports to the Web

Using XML Files at Runtime
� Each time you use SRW.APPLY_DEFINITION, the document buffer is flushed
and you must begin building a new XML report definition with SRW.ADD_
DEFINITION.

� Notice the use of the parameters hilite_profits, hilite_costs, hilite_
sales, and money_format to determine what to include in the XML report
definition. The hilite_profits, hilite_costs, and hilite_sales
parameters are also used in the formatting exceptions to determine which
values to highlight.

� Because of the upper limit on the size of VARCHAR2 columns (4000 bytes), you
might need to spread very large XML report definitions across several columns.
If so, then you might have to create several definitions in memory and apply
them separately rather than creating one large definition and applying it once.

function AfterPForm return boolean is
begin
SRW.ADD_DEFINITION('<report name="vidsales_masks"
author="Generated" DTDVersion="9.0.2.0.0">');
IF :MONEY_FORMAT='$NNNN.00' THEN SRW.ADD_DEFINITION('<layout>');

SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT"
formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('<field name="F_TOTAL_SALES" source="TOTAL_SALES"
formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('<field name="F_TOTAL_COST" source="TOTAL_COST"
formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_PROFITPerCITY" source="SumTOTAL_
PROFITPerCITY"

formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_SALESPerCITY" source="SumTOTAL_
SALESPerCITY"

formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_COSTPerCITY" source="SumTOTAL_
COSTPerCITY"

formatMask="LNNNNNNNNNNN0D00"/>');
SRW.ADD_DEFINITION('</section>');
SRW.ADD_DEFINITION('</layout>');

ELSIF :MONEY_FORMAT='$NNNN' THEN SRW.ADD_DEFINITION('<layout>');
SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT"
formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('<field name="F_TOTAL_SALES" source="TOTAL_SALES"
formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('<field name="F_TOTAL_COST" source="TOTAL_COST"
Customizing Reports with XML 10-19

Using XML Files at Runtime
formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_PROFITPerCITY" source="SumTOTAL_
PROFITPerCITY" formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_SALESPerCITY" source="SumTOTAL_
SALESPerCITY" formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_COSTPerCITY" source="SumTOTAL_
COSTPerCITY" formatMask="LNNNNNNNNNNN0"/>');
SRW.ADD_DEFINITION('</section>');
SRW.ADD_DEFINITION('</layout>');

END IF;
SRW.ADD_DEFINITION('</report>');
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION('<report name="vidsales_hilite_costs" author="Generated"
DTDVersion="9.0.2.0.0">');
IF :HILITE_COSTS <> 'None' THEN SRW.ADD_DEFINITION('<layout>');

SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION('<field name="F_TOTAL_COST" source="TOTAL_COST">');
SRW.ADD_DEFINITION('<exception textColor="red">');
SRW.ADD_DEFINITION('<condition source="TOTAL_COST" operator="gt"
operand1=":hilite_costs"/>');
SRW.ADD_DEFINITION('</exception>');
SRW.ADD_DEFINITION('</field>');
SRW.ADD_DEFINITION('</section>');
SRW.ADD_DEFINITION('</layout>');

END IF;
SRW.ADD_DEFINITION('</report>');
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION('<report name="vidsales_hilite_sales" author="Generated"
DTDVersion="9.0.2.0.0">');
IF :HILITE_SALES <> 'None' THEN SRW.ADD_DEFINITION('<layout>');

SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION('<field name="F_TOTAL_SALES" source="TOTAL_SALES">');
SRW.ADD_DEFINITION('<exception textColor="red">');
SRW.ADD_DEFINITION('<condition source="TOTAL_SALES" operator="gt"
operand1=":hilite_sales"/>');
SRW.ADD_DEFINITION('</exception>');
SRW.ADD_DEFINITION('</field>');
SRW.ADD_DEFINITION('</section>');
SRW.ADD_DEFINITION('</layout>');

END IF;
SRW.ADD_DEFINITION('</report>');
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION('<report name="vidsales_hilite_profits" author="Generated"
DTDVersion="9.0.2.0.0">');
IF :HILITE_PROFITS <> 'None' THEN SRW.ADD_DEFINITION('<layout>');
10-20 Oracle9iAS Reports Services Publishing Reports to the Web

Using XML Files at Runtime
SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT">');
SRW.ADD_DEFINITION('<exception textColor="red">');
SRW.ADD_DEFINITION('<condition source="TOTAL_PROFIT" operator="gt"
operand1=":hilite_profits"/>');
SRW.ADD_DEFINITION('</exception>');
SRW.ADD_DEFINITION('</field>');
SRW.ADD_DEFINITION('</section>');
SRW.ADD_DEFINITION('</layout>');

END IF;
SRW.ADD_DEFINITION('</report>');
SRW.APPLY_DEFINITION;
return (TRUE);
end;

10.4.2 Running an XML Report Definition by Itself
To run an XML report definition by itself, you send a request with an XML file
specified in the REPORT (or MODULE) argument. The following command line sends
a job request to Oracle9iAS Reports Services to run a report, emp.xml, by itself:

RWCLIENT USERID=<username>/<password>@<my_db>
REPORT=C:\CORP\MYREPORTS\EMP.XML
DESTYPE=file DESNAME=emp.pdf DESFORMAT=PDF
SERVER=<server_name>

When you use RWRUN, the Oracle9iAS Reports Services runtime command, the
equivalent command line would be:

RWRUN USERID=<username>/<password>@<my_db>
REPORT=C:\CORP\MYREPORTS\EMP.XML
DESTYPE=file DESNAME=emp.pdf DESFORMAT=PDF

When you run an XML report definition in this way, you must specify an XML file
extension. You could also apply an XML customization file to this report using the
CUSTOMIZE argument.

10.4.3 Performing Batch Modifications
If you have a large number of reports that need to be updated, then you can use the
CUSTOMIZE command line argument with RWCONVERTER to perform modifications
in batch. Batch modifications are particularly useful when you must make a
repetitive change to a large number of reports (for example, changing a field's
format mask). Rather than opening each report and manually making the change in
Customizing Reports with XML 10-21

Debugging XML Report Definitions
the Reports Builder, you can run RWCONVERTER once and make the same change to
a large number of reports at once.

The following example applies two XML report definitions, translate.xml and
customize.xml, to three RDF files, INVEN1.RDF, INVEN2.RDF, and MANU.RDF, and
saves the revised definitions to new files, INVEN1_NEW.RDF, INVEN2_NEW.RDF,
and MANU_NEW.RDF.

RWCONVERTER <username>/<password>@<my_db>
STYPE=rdffile
SOURCE="(inven1.rdf, inven2.rdf, manu.rdf)"
DTYPE=rdffile
DEST="(inven1_new.rdf, inven2_new.rdf, manu_new.rdf)"
CUSTOMIZE="(D:\APPS\TRANS\TRANSLATE.XML,D:\APPS\CUSTOM\CUSTOMIZE.XML)"
BATCH=yes

10.5 Debugging XML Report Definitions
The following features are available to help you debug your XML Report files:

� XML Parser Error Messages

� Tracing Options

� RWBUILDER

� Writing XML to a File for Debugging

These features are discussed in the following sections.

10.5.1 XML Parser Error Messages
The XML parser is part of Oracle's XML Development Kit (XDK), which is delivered
with the core Oracle Database release. The XML parser is a Java package that checks
the validity of XML syntax. The JAR files that contain the XML parser are
automatically set up on install and are available to Reports.

The XML parser catches most syntax errors and displays an error message. The
error message contains the line number in the XML where the error occurred as well
as a brief description of the problem.

Note: In this example, the CUSTOMIZE command entry
demonstrates a directory path to files stored on a Windows
platform. For UNIX, use that platform's standard for specifying
directory paths (i.e., forward slashes instead of backward).
10-22 Oracle9iAS Reports Services Publishing Reports to the Web

Debugging XML Report Definitions
For more information on the XML parser, see the Oracle Technology Network
(http://otn.oracle.com). Search for XML parser or XDK. Information is also
available in the documentation that came with your Oracle Database.

10.5.2 Tracing Options
When testing your XML report definition, it can be useful to run your report along
with additional arguments to create a trace file. For example:

RWRUN <username>/<password>@<my_db>
REPORT=\CORP\MYREPORTS\EMP.XML
TRACEFILE=emp.log
TRACEMODE=trace_replace
TRACEOPT=trace_app

The last three arguments in this command line generate a trace file that provides a
detailed listing of report processing. The default location for trace file logs is the
same on Windows and UNIX platforms:

ORACLE_HOME\reports\logs\

10.5.3 RWBUILDER
When designing an XML report definition, it is sometimes useful to open it in the
Reports Builder. In Reports Builder, you can quickly determine if the objects are
being created or modified as expected. For example, if you are creating summaries
in an XML report definition, then opening the definition in the Reports Builder
enables you to quickly determine if the summaries are being placed in the
appropriate group in the data model.

To open a full report definition in the Reports Builder, use the REPORT (or MODULE)
keyword. For example:

RWBUILDER USERID=<username>/<password>@<my_db>
REPORT=C:\CORP\MYREORTS\EMP.XML

Note: In this example, the REPORT command entry and the path
to the trace log demonstrate directory paths to files stored on a
Windows platform. For UNIX, use that platform's standard for
specifying directory paths (i.e., forward slashes instead of
backward).
Customizing Reports with XML 10-23

Debugging XML Report Definitions
To open a partial report definition in Oracle9iDS Reports Services Builder, use the
CUSTOMIZE keyword. For example:

RWBUILDER USERID=<username>/<password>@<my_db> REPORT=EMP.RDF
CUSTOMIZE=C:\MYREPORTS\EMP.XML

In both cases, the Reports Builder is opened with the XML report definition in
effect. You can then use the various views of the Oracle9iAS Reports Services Editor
to determine if the report is being created or modified as you expected.

10.5.4 Writing XML to a File for Debugging
If you are using SRW.ADD_DEFINTION to build an XML report definition in
memory, then it can be helpful to write the XML to a file for debugging purposes.
The following example demonstrates a procedure that writes each line that you pass
to it to the document buffer in memory and, optionally, to a file that you specify.

PROCEDURE addaline (newline VARCHAR, outfile Text_IO.File_Type) IS
BEGIN

SRW.ADD_DEFINITION(newline);
IF :WRITE_TO_FILE='Yes' THEN

Text_IO.Put_Line(outfile, newline);
END IF;

END;

For this example to work, the PL/SQL that calls this procedure would need to
declare a variable of type TEXT_IO.File_Type. For example:

custom_summary Text_IO.File_Type;

You would also need to open the file for writing and call the addaline procedure,
passing it the string to be written and the file to which it should be written. For
example:

custom_summary := Text_IO.Fopen(:file_directory || 'vid_summ_per.xml', 'w');
addaline('<report name="video_custom" author="Generated"
DTDVersion="9.0.2.0.0">',

custom_summary);

Note: In this example, the REPORT command entry demonstrates
a directory path to files stored on a Windows platform. For UNIX,
use that platform's standard for specifying directory paths (i.e.,
forward slashes instead of backward).
10-24 Oracle9iAS Reports Services Publishing Reports to the Web

Event-Driven Pub
11

Event-Driven Publishing

Modern business processes often require the blending of automation into the work
environment through the invocation of behind-the-scenes functions and procedures.
Behind-the-scenes tasks can include the automatic production of output such as an
invoice that prints automatically when an order is processed, a Web site that is
automatically updated with current data, or an automatic e-mail with fresh report
output when a transaction is completed.

Automatic output in response to events used to be a fairly complicated effort,
particularly if you wished to produce the same results possible through interactive,
RAD development tools, such as Oracle9i Reports Developer.

To address the requirement of automatic output, Oracle introduced a scheduling
mechanism in Oracle9iAS Reports Services that enabled the invocation of reports on
a scheduled basis without requiring additional user interaction. But this left one
requirement unresolved: the ability to automatically run a report in response to an
event in the database, such as the insertion of a record or the change of a value.

With the Oracle9iAS Reports Services Event-Driven Publishing API, you can
automatically run a report in response to an event in the database, such as the
insertion of a record or the change of a value. The Event-Driven Publishing API is a
PL/SQL API that allows for the automatic submission of jobs to Oracle9iAS Reports
Services from within the database.

This chapter provides a look at the Event-Driven Publishing API and includes
examples of its use. It includes the following sections:

� The Event-Driven Publishing API

� Debugging Applications That Use the Event-Driven Publishing API

� Invoking a Report From a Database Event

� Integrating with Oracle9i Advanced Queuing
lishing 11-1

The Event-Driven Publishing API
11.1 The Event-Driven Publishing API
The Event-Driven Publishing API is a PL/SQL Package that provides the basic
functions required for the development of procedures that respond to events in the
database. Event-driven jobs are submitted using the HTTP protocol. The server
assigns a unique job_ident record to every call, useful for tracking the status of the
job.

11.1.1 Elements of the API
The API consists of several key elements:

� The SRW-Package contains all relevant functions and procedures for
submitting jobs, checking job status, and cancelling jobs, as well as
manipulating parameter lists.

� The ParamList-Type defines a parameter list. A parameter list is the main
vehicle for passing values when submitting a job. A parameter list is required
for each job submission. It must contain several key parameters.

� The ParamList-Object is required for such features as Advanced Queuing,
where a parameter list must be stored in the database so that it may be passed
along with a message.

These API elements are discussed in more detail in the following sections.

The API is installed together with Oracle9iAS Reports Services Security and
Oracle9iAS Portal, but neither is required. Installation scripts are also available
separately should you want to install the API into a database that does not also hold
Oracle Portal:

� srwAPIins.sql installs the Events-Driven Publishing API.

� srwAPIgrant.sql grants access privileges to the API. Run this script for each
user to whom you will grant access to the API. If everyone may have access,
you can run this once and grant access to PUBLIC.

� srwAPIdrop.sql removes the API.

11.1.2 Creating and Manipulating a Parameter List
A parameter list is a PL/SQL variable of type SRW_PARAMLIST. A variable of this
type is an array of 255 elements of type SRW_PARAMETER, which itself consists of
two attributes: NAME and VALUE. The API provides procedures for manipulating
parameter lists, including:
11-2 Oracle9iAS Reports Services Publishing Reports to the Web

The Event-Driven Publishing API
� Add_Parameter

� Remove_Parameter

� Clear_Parameter_List

These procedures allow you to manipulate your parameter lists. They are discussed
briefly in this section. You'll find more information in the Oracle9iAS Reports API
documentation.

11.1.2.1 Add_Parameter
Whenever you use a parameter list for the first time, it must be initialized before
you can add parameters to it. For example:

DECLARE
myPlist SRW_PARAMLIST;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');

END;

Both attributes of a parameter (NAME and VALUE) are of type VARCHAR2 and
may not exceed a length of 80 characters for the NAME and 255 characters for the
value.

The ADD_PARAMETER function has a third—optional—attribute, called MODE.
MODE determines whether a parameter will be overwritten or an error raised in the
event that a parameter with the same name already exists. To specify that an error
will be raised in the event of duplicate names, use the constant CHECK_FOR_
EXISTANCE. This is the default value for the MODE attribute. To specify that a
parameter will be overwritten in the event of duplicate names, use the constant
OVERWRITE_IF_EXISTS.

11.1.2.2 Remove_Parameter
Use REMOVE_PARAMETER to remove a parameter from a parameter list. Call the
procedure, and pass the parameter list from which you want to remove a parameter
along with the name of the parameter you want to remove.

For example:

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.
Event-Driven Publishing 11-3

The Event-Driven Publishing API
DECLARE
myPlist SRW_PARAMLIST;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');
srw.remove_parameter(myPlist,'myParameter');

END;

11.1.2.3 Clear_Parameter_List
To remove ALL parameters from your list, use CLEAR_PARAMETER_LIST. For
example:

DECLARE
myPlist SRW_PARAMLIST;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');
srw.clear_parameter_list(myPlist);

END;

This will remove all parameters from your list.

11.1.3 How to Submit a Job
A parameter list contains all vital parameters for submitting a job. The job type
determines which parameters are required on the list to enable the Reports Server to
process the request.

The listed parameters are the same ones that you must specify when you submit a
job from a browser to the Reports Servlet. In such a case, if the job is a report you
will need at least the following parameters but may have more:

� GATEWAY provides the URL to the Reports Servlet you will use to process the
request.

� SERVER identifies the Reports Server to be used in conjunction with the
servlet.

� REPORT identifies the report file to be run.

� USERID identifies the name and user ID of the person running the report.

� AUTHID provides authorization information in the event you are running
against a secured server.
11-4 Oracle9iAS Reports Services Publishing Reports to the Web

The Event-Driven Publishing API
Each request returns a job_ident record that holds the information required to
identify the job uniquely. This information is stored in variable of type SRW.JOB_
IDENT. Be aware that this is a PACKAGE-TYPE and must be referenced SRW.JOB_
IDENT; while the parameter list is an OBJECT-TYPE and must be referenced SRW_
PARAMLIST.

For example:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','mySVR');
srw.add_parameter(myPlist,'REPORT','myReport.RDF');
srw.add_parameter(myPlist,'USERID','me/secret');
myIdent := srw.run_report(myPlist);

END;

The API method RUN_REPORT takes a parameter list that contains all vital
information as input (via ADD_PARAMETER), creates and submits the request, and
returns the job_ident record.

The job_ident record contains the following parameters:

� MyIdent.GatewayURL

� MyIdent.ServerName

� MyIdent.JobID

� MyIdent.AuthID

These parameters are needed by the SRW.REPORT_STATUS function to get status
information for a submitted job.

11.1.4 How to Check for Status
The Event-Driven Publishing API provides a two-way communication with the
Reports Server. You submit a job to the server, and you can query the status of this
job from the server using the SRW.REPORT_STATUS function.

This function will return a record of type SRW.STATUS_RECORD that holds the
same information you would see in the job-status display if you were using the
Reports Servlet's SHOWJOBS command.
Event-Driven Publishing 11-5

The Event-Driven Publishing API
For example:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;
myStatus SRW.Status_Record;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','mySVR');
srw.add_parameter(myPlist,'REPORT','MyReport.RDF');
srw.add_parameter(myPlist,'USERID','me/secret');
myIdent := srw.run_report(myPlist);
myStatus := srw.report_status(myIdent);

END;

You can use the returned status record for fetching information about the status of
your job.

11.1.5 Using the Servers' Status Record
The status record contains processing information about your job. It contains the
same information found in the server queue (SHOWJOBS). Additionally, it contains
information about the files produced for finished jobs and the lineage for scheduled
jobs.

The most important information in the status record is the current job status and the
status text, used in turn to check for runtime errors and their causes.

You can use timing information to determine if a job is subject to cancellation
because it has exceeded its predicted time for completion.

One way to use the status record is to cancel a job. The Event-Driven Publishing
API offers a method for cancelling a job that has been submitted to the server. This
might be handy if you want to remove a job that has exceeded its allowed time to
run or if you simply have scheduled jobs you want to cancel.

To cancel a job, use the following procedure:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;
myStatus SRW.Status_Record;

BEGIN
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
11-6 Oracle9iAS Reports Services Publishing Reports to the Web

Debugging Applications That Use the Event-Driven Publishing API
srw.add_parameter(myPlist,'SERVER','mySVR');
srw.add_parameter(myPlist,'REPORT','myReport.RDF');
srw.add_parameter(myPlist,'USERID','me/secret');
myIdent := srw.run_report(myPlist);
srw.cancel_report(myIdent);

END;

As evident in this example, you cancel a report by calling the CANCEL_REPORT
procedure (srw.cancel_report) and passing it the job_ident record of the job you
want to cancel. The procedure takes an optional parameter list to enable you to pass
any additional parameters you might need.

11.2 Debugging Applications That Use the Event-Driven Publishing API
Because these processes all run behind the scenes, there is no actual place where
debugging information is produced during normal execution. Therefore, the API
has two procedures that toggle a special debugging mode that produces extensive
debugging information via DBMS_OUTPUT:

� SRW.START_DEBUGGING

� SRW.STOP_DEBUGGING

To switch on debugging mode simply call SRW.START_DEBUGGING and to stop it
call SRW.STOP_DEBUGGING. The debugging-mode must be started immediately
before you run your actual logic. It stays on as long as the current instance of the
package is loaded.

One way you can display this information is by setting SERVEROUT to ON in
SQL*PLUS before you run your script.

In addition to this method of debugging, the API has a set of pre-defined exceptions
to be used for error handling. You'll find examples of these exceptions in the srw_
test.sql script provided with your Oracle9iAS Reports Services installation.
Additionally, see the Reports API reference documentation for a detailed
explanation of these exceptions.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network: http://otn.oracle.com.
Event-Driven Publishing 11-7

Invoking a Report From a Database Event
11.3 Invoking a Report From a Database Event
Database triggers are the primary mechanism for invoking reports using the
Event-Driven Publishing API. The Oracle database allows you to define various
scopes of triggers that fire in response to various events. To submit a
database-driven job, you use the code described in the previous sections within a
database trigger.

There are many ways to use event-driven publishing. One way is to create security
protocols using a trigger that fires whenever a grant is done or a user logs on or off.
Another way is to create automated processes that respond to certain types of
changes to data in a table. For example, a database trigger could fire when the
status of an expense report changes to DONE; in turn, a report could automatically
be sent to an employee's manager.

For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

BEGIN
IF (:new.ExpStat = 'DONE') THEN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','fooSVR');
srw.add_parameter(myPlist,'REPORT','foo.RDF');
srw.add_parameter(myPlist,'USERID','foo/bar');
srw.add_parameter(myPlist,'ExpenseID',:new.ExpID);
myIdent := srw.run_report(myPlist);

END IF;
END;

This trigger will fire after each update on the EXP_REP table. In the event the status
changes to DONE, the report request is run.

If you want your request to run against a key specified in the cgicmd.dat file,
specify the CMDKEY parameter in lieu of the REPORT parameter. If the key contains
user ID information, you can omit the USERID parameter as well. For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

BEGIN
IF (:new.ExpStat = 'DONE') THEN
11-8 Oracle9iAS Reports Services Publishing Reports to the Web

Integrating with Oracle9i Advanced Queuing
myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','fooSVR');
srw.add_parameter(myPlist,'CMDKEY','keyvalue');
srw.add_parameter(myPlist,'ExpenseID',:new.ExpID);
myIdent := srw.run_report(myPlist);

END IF;
END;

Additionally, if you have defined an advanced distribution model via a distribution
XML file, you can specify that file with the DIST parameter. For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

BEGIN
IF (:new.ExpStat = 'DONE') THEN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','fooSVR');
srw.add_parameter(myPlist,'REPORT','foo.RDF');
srw.add_parameter(myPlist,'USERID','foo/bar');
srw.add_parameter(myPlist,'DISTRIBUTE','YES');
srw.add_parameter(myPlist,'DESTINATION','filename.xml');
srw.add_parameter(myPlist,'ExpenseID',:new.ExpID);
myIdent := srw.run_report(myPlist);

END IF;
END;

This is one way to move this kind of logic from your application into the database
and use the database as a central storage for business processes.

11.4 Integrating with Oracle9i Advanced Queuing
Oracle Advanced Queuing is a means for building an asynchronous
request/response mechanism around a so-called queue and two processes:
ENQUEUE, which puts MESSAGES into a queue, and DEQUEUE, which reads the
queue.

Note: You'll find additional examples of the Event-Driven
Publishing API in action in the demo script srw_test.sql,
included with your Oracle9iAS Reports Services installation.
Event-Driven Publishing 11-9

Integrating with Oracle9i Advanced Queuing
Advanced queuing provides sophisticated mechanisms for distributing messages
across queues and for queue subscription. These mechanisms are all built on top of
these basic elements (ENQUEUE, DEQUEUE, and MESSAGES).

With the Event-Driven Publishing API you can use these queues to store and
transmit report jobs. You can even build your own queuing mechanism if the one
provided with Oracle9iAS Reports Services does not fit your needs.

11.4.1 Creating a Queue That Holds Messages of Type SRW_PARAMLIST
A queue is a table in the database that holds, along with several administrative
columns, an object column that represents a message. In our case the message is the
parameter list.

The dbms_AQadm package, provided with Advanced Queuing, contains all the
administrative functions required for setting up an advanced queuing system.

Use dbms_AQadm.Create_Queue_Table to create the physical table in the
database. You must pass it a name for the table and a name for the object type that
will define the message for this queue.

For example:

…
execute dbms_AQadm.Create_Queue_Table

(queue_Table=>'queuename._tab',
queue_Payload_Type=>'SRW_ParamList_Object',
compatible=>'9.0');

In earlier examples, we created the object type SRW_PARAMLIST_OBJECT that
encapsulates the SRW_PARAMLIST type in object notation so it can be used as a
message.

After creating the queue table, you must create the queue with dbms_
AQadm.Create_Queue and start the queue with dbms_AQadm.Start_Queue.

For example:

…
execute dbms_AQadm.Create_Queue

(Queue_Name=>'queuename',Queue_Table=>'queuename._tab');
prompt … starting queue
execute dbms_AQadm.Start_Queue

(Queue_Name=>'queuename');
…

11-10 Oracle9iAS Reports Services Publishing Reports to the Web

Integrating with Oracle9i Advanced Queuing
Having created and started the queue, what you need now is a procedure that
creates a message in this queue and a procedure that reads out the queue and
submits the job to the server. These are discussed in the following sections.

11.4.2 Creating the Enqueuing Procedure
The enqueuing procedure is responsible for putting a message into the queue. This
procedure can be part of your application, called by a database-trigger, or provided
via an external mechanism. In this section, we will provide an example of creating a
stored procedure that puts a simple message in this queue.

Because our message is the parameter list itself, the procedure is fairly easy. We use
the same code we used in earlier sections to create a parameter list. In addition to
the variables we used, we define an object variable to hold the message we will
put into the queue.

…
plist_object SRW_ParamList_Object;

…

After creating the parameter list we create the actual message object using the object
constructor.

…
plist_object := SRW_ParamList_Object(plist);
…

Then we enqueue the message using the enqueue procedure provided by Advanced
Queuing.

…
dbms_aq.enqueue(queue_name => 'myQueue',

enqueue_options => enqueue_options,
message_properties => message_properties,
payload => PList_Object,
msgid => message_handle);

…

Note: You'll find a complete example for setting up, creating, and
starting a simple queue in the demo file srwAQsetup.sql,
included with your Oracle9iAS Reports Services installation.
Event-Driven Publishing 11-11

Integrating with Oracle9i Advanced Queuing
The message is put into the queue. Because we did not set up any message
distribution, the message will stay in the queue until it is fetched by a
dequeuing-procedure, which is discussed in the next section.

11.4.3 Creating the Dequeuing Procedure
A dequeuing procedure reads out all available messages in a queue and processes
them. In our case, we want to read out the message and submit a job to the server
using the parameter list that was attached to the message.

To accomplish this, we follow this example:

BEGIN
dequeue_options.wait := 1;

loop
DBMS_AQ.DEQUEUE(queue_name => 'myQueue',

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => PList_Object,
msgid => message_handle);

COMMIT;
plist := plist_object.params;
r_jid := SRW.run_report(plist);

end loop;
exception when aq_timeout then

begin
NULL;

end;
END;

This code example will read out the queue until all messages have been processed.
Time allowed for processing is determined by the time-out defined in the second
line of code. This time-out defines the amount of seconds the dequeue procedure
should wait for a message before creating a time-out exception.

Note: For the exact syntax of dbms_aq.enqueue refer to the
Advanced Queuing API Reference document.

You'll find additional examples in the srwAQsetup.sql file
included with your Oracle9iAS Reports Services installation.

Look for upcoming information about Reports APIs on the Oracle
Technology Network: http://otn.oracle.com.
11-12 Oracle9iAS Reports Services Publishing Reports to the Web

Integrating with Oracle9i Advanced Queuing
The DBMS_AQ.DEQUEUE built-in is provided by Advanced Queuing for reading out
messages. It puts the payload of the message, the object that holds the information,
into the object defined by the payload parameter.

Using plist, we extract the information from the payload object. As mentioned
before, our object holds a parameter list. It is stored in the attribute PARAMS inside
the object. The extracted parameter list is then handed over to SRW.RUN_REPORT
for submitting the job.

If you want to avoid the need for invoking this dequeuing procedure by hand, you
can run it as a job inside the database.
Event-Driven Publishing 11-13

Integrating with Oracle9i Advanced Queuing
11-14 Oracle9iAS Reports Services Publishing Reports to the Web

Part III

National Language Support and

Bidirectional Support

Part III provides information about Reports-related National Language Support
settings and bidirectional support. It includes the following chapter:

� Chapter 12, "NLS and Bidirectional Support"

NLS and Bidirectional S
12

NLS and Bidirectional Support

When you design reports to be deployed to different countries, you must consider
such things as character sets and text reading order. Oracle9iAS Reports Services
includes the support you need to address any issues related to these considerations:
National Language Support (NLS) for character sets and bidirectional support for
text reading order.

Oracle NLS makes it possible to design applications that can be deployed in several
different languages. Oracle supports most European, Middle Eastern, and Asian
languages. NLS enables you to:

� Use international character sets (including multibyte character sets)

� Display data according to the appropriate language and territory conventions

� Extract strings that appear in your interface and translate them

Bidirectional support enables you to display data in either a left-to-right or
right-to-left orientation, depending on the requirements of your audience.

This chapter provides a look at NLS architecture, including NLS settings relevant to
Reports; explains how to specify character sets in a JSP; and offers information on
bidirectional, Unicode, and translation support available through Oracle9i. It
includes the following main sections:

� NLS Architecture

� NLS Environment Variables

� Specifying a Character Set in a JSP or XML File

� Bidirectional Support

� Unicode

� Translating Applications
upport 12-1

NLS Architecture
12.1 NLS Architecture
Oracle NLS architecture consists of two parts:

� Language-Independent Functions

� Language-Dependent Data

12.1.1 Language-Independent Functions
Language-independent functions handle manipulation of data in an appropriate
manner, depending on the language and territory of the runtime operator. Data is
automatically formatted according to local date and time conventions.

12.1.2 Language-Dependent Data
With language-dependent data, you can isolate your data. This enables your
application to deal only with translating strings that are unique to your application.

Because the language-dependent data is separate from the code, the operation of
NLS functions is governed by the data supplied at runtime. New languages can be
added and language-specific application characteristics can be altered without
requiring code changes. This architecture also enables language-dependent features
to be specified for each session.

12.2 NLS Environment Variables
NLS environment variables are automatically set to default values during
Oracle9iAS installation.

Table 12–1 lists and describes NLS-related environment variables that are
particularly relevant to Oracle9iAS Reports Services.

Note: On a given Oracle9iAS Reports Services host machine, you
can specify only one language. If you are providing application
server services to a multilingual audience, you must have a
separate host machine for each language.
12-2 Oracle9iAS Reports Services Publishing Reports to the Web

NLS Environment Variables
12.2.1 NLS_LANG Environment Variable
The NLS_LANG environment variable specifies the language, territory, and
character set settings to be used by Oracle9iAS Reports Services. Specifically:

� The language for messages displayed to the user

� The default format masks used for DATE and NUMBER data types

� The sorting sequence

� The character set

The syntax for NLS_LANG is:

NLS_LANG=<language_territory>.<charset>

The values are defined as follows:

� language

Note: For more information on all NLS environment variables, see
the Oracle9i Globalization Support Guide on the Oracle Technology
Network (http://otn.oracle.com).

Table 12–1 Environment variables particularly related to Oracle9iAS Reports Services

Variable Description

NLS_LANG Relevant to Oracle9iAS Reports Services. The
language settings used by Oracle9iAS Reports
Services.

DEVELOPER_NLS_LANG The language for the Oracle9iDS Reports Builder.

USER_NLS_LANG The language for the Oracle9iAS Reports Runtime
component.

Note: This environment variable is set automatically when you
install Oracle9iAS. Refer to Section 12.2.1.1, "Defining the NLS_
LANG Environment Variable" for more information about
changing the environment variable after installing Oracle9iAS.
NLS and Bidirectional Support 12-3

NLS Environment Variables
Specifies the language and its conventions for displaying messages (including
error messages) as well as day and month names. If language is not specified,
then the value defaults to American.

� territory

Specifies the territory and its conventions for default date format, decimal
character used for numbers, currency symbol, and calculation of week and day
numbers. If territory is not specified, then the value defaults to America.

� charset

Specifies the character set in which data is displayed. This should be a character
set that matches your language and platform. This argument also specifies the
character set used for displaying messages.

Table 12–2 lists commonly used language, territory, and character values for NLS_
LANG:

Table 12–2 Commonly used NLS_LANG values

Language Language_Territory.Character Set

American AMERICAN_AMERICA.US7ASCII

Arabic ARABIC_UNITED ARAB EMIRATES.AR8ISO8859P6

Brazilian Portuguese BRAZILIAN PORTUGUESE_BRAZIL.WE8DEC

Bulgarian BULGARIAN_BULGARIA.CL8ISO8859P5

Canadian French CANADIAN FRENCH_CANADA.WE8ISO8859P1

Catalan CATALAN_CATALONIA.WE8ISO8859P1

Croatian CROATIAN_CROATIA.EE8ISO8859P2

Czech CZECH_CZECH REPUBLIC.WE8ISO8859P1

Danish DANISH_DENMARK.WE8ISO8859P1

Dutch DUTCH_THE NETHERLANDS.WE8ISO8859P1

Egyptian ARABIC_UNITED ARAB EMIRATES.AR8ISO8859P6

English (American) See American

English (United Kingdom) ENGLISH_UNITED KINGDOM.WE8DEC

Estonian ESTONIAN_ESTONIA.BLT8MSWIN1257

Finnish FINNISH_FINLAND.WE8ISO8859P1
12-4 Oracle9iAS Reports Services Publishing Reports to the Web

NLS Environment Variables
French FRENCH_FRANCE.WE8ISO8859P1

German GERMAN_GERMANY.WE8ISO8859P1

Greek GREEK_GREECE.EL8ISO8859P7

Hebrew HEBREW_ISRAEL.IW8ISO8859P8

Hungarian HUNGARIAN_HUNGARY.EE8ISO8859P2

Icelandic ICELANDIC_ICELAND.WE8ISO8859P1

Indonesian INDONESIAN_INDONESIA.WE8ISO8859P1

Italian ITALIAN_ITALY.WE8DEC

Japanese JAPANESE_JAPAN.JA16EUC

Korean KOREAN_KOREA.KO16KSC5601

Latin America Spanish LATIN AMERICAN SPANISH_AMERICA.WE8DEC

Latvian LATVIAN_LATVIA.NEE8ISO8859P4

Lithuanian LITHUANIAN_LITHUANIA.NEE8ISO8859P4

Mexican Spanish

(see also Spanish)

MEXICAN SPANISH_MEXICO.WE8DEC

Norwegian NORWEGIAN_NORWAY.WE8DEC

Polish POLISH_POLAND.EE8ISO8859P2

Portuguese PORTUGUESE_PORTUGAL.WE8DEC

Romanian ROMANIAN_ROMANIA.EE8ISO8859P2

Russian RUSSIAN_CIS.RU8PC855

Simplified Chinese SIMPLIFIED CHINISE_CHINA.ZHS16CGB231280

Slovak SLOVAK_SLOVAKIA.EE8ISO8859P2

Spanish

(see also Mexican Spanish)

SPANISH_SPAIN.WE8DEC

Swedish SWEDISH_SWEDEN.WE8DEC

Thai THAI_THAILAND.TH8TISASCII

Traditional Chinese TRADITIONAL CHINESE_TAIWAN.ZHT32EUC

Table 12–2 Commonly used NLS_LANG values

Language Language_Territory.Character Set
NLS and Bidirectional Support 12-5

NLS Environment Variables
Your NLS_LANG setting should take into account regional differences between
countries that use (basically) the same language. For example, if you want to run in
French (as used in France), then you set the NLS_LANG environment variable:

NLS_LANG=FRENCH_FRANCE.WE8ISO8859P1

If you want to run in French, but this time as used in Switzerland, you would set
the NLS_LANG environment variable:

NLS_LANG=FRENCH_SWITZERLAND.WE8ISO8859P1

12.2.1.1 Defining the NLS_LANG Environment Variable
You define the NLS_LANG environment variable in the same way you define other
environment variables on your Windows or UNIX operating system.

12.2.1.1.1 Windows To define the NLS_LANG environment variable on Windows,
do the following:

4. Open the Windows registry.

5. Expand the HKEY_LOCAL_MACHINE node, then expand the SOFTWARE
node.

6. Click ORACLE to display the Oracle environment variables in the right panel
of the Registry Editor.

7. Double-click the NLS_LANG environment variable.

8. Type the new value for NLS_LANG in the Value data text box.

9. Click OK.

Turkish TURKISH_TURKEY.WE8ISO8859P9

Ukrainian UKRAINIAN_UKRAINE.CL8ISO8859P5

Vietnamese VIETNAMESE_VIETNAM.VN8VN3

Note: Back up your registry before you edit it.

Table 12–2 Commonly used NLS_LANG values

Language Language_Territory.Character Set
12-6 Oracle9iAS Reports Services Publishing Reports to the Web

NLS Environment Variables
12.2.1.1.2 UNIX To define the NLS_LANG environment variable on the UNIX
platform, set it in the shell script rwrun.sh, located in your ORACLE_HOME/bin
directory.

12.2.1.2 Character Sets
The character set component of the NLS environment variables specifies the
character set in which data is represented in your environment. When data is
transferred from a system using one character set to a system using another
character set, it is processed and displayed correctly on the second system, even
though some characters might be represented by different binary values in the
character sets.

12.2.1.2.1 Character Set Design Considerations If you are designing a multilingual
application, or even a single-language application that runs with multiple character
sets, you need to determine the character set most widely used at runtime and then
generate with the NLS environment variable set to that particular character set.

If you design and generate an application in one character set and run it in another
character set, performance can suffer. Furthermore, if the runtime character set does
not contain all the characters in the generate character set, then question marks
appear in place of the unrecognized characters.

Portable Document Format (PDF) supports multibyte character sets.

12.2.1.2.2 Font Aliasing on Windows Platforms There might be situations where you
create an application with a specific font but find that a different font is being used
when you run that application. You would most likely encounter this when using
an English font (such as MS Sans Serif or Arial) in environments other than Western
European. This occurs because Oracle9iAS Reports Services checks to see if the
character set associated with the font matches the character set specified by the
language environment variable. If the two do not match, Oracle9iAS Reports
Services automatically substitutes the font with another font whose associated
character set matches the character set specified by the language environment
variable. This automatic substitution assures that the data being returned from the
database gets displayed correctly in the application.

Note: If you enter local characters using an English font, then
Windows does an implicit association with another font.
NLS and Bidirectional Support 12-7

NLS Environment Variables
There might be cases, however, where you do not want this substitution to take
place. You can avoid this substitution by mapping all desired fonts to the
WE8ISO8859P1 character set in the font alias file (uifont.ali). For example, if
you are unable to use the Arial font in your application, you can add the following
line to your font alias file (located at ORACLE_HOME\TOOLS\COMMON\):

ARIAL.....=ARIAL.....WE8ISO8859P1

Each line in the uifont.ali file takes the following syntax:

<Face>.<Size>.<Style>.<Weight>.<Width>.<CharSet>=<Face>.<Size>.<Style>.<Weight>.
<Width>.<CharSet>

In this example, you’re saying that any ARIAL font should be mapped to the same
value, but with the WE8ISO8859P1 character set.

Refer to Section 12.2, "NLS Environment Variables" for more information about the
language environment variables.

12.2.1.3 Language and Territory
While the character set ensures that the individual characters needed for each
language are available, support for national conventions provides correct localized
display of data items.

The specified language determines the default conventions for the following
characteristics:

� Language for server messages

� Language for day and month names and their abbreviations (specified in the
SQL functions TO_CHAR and TO_DATE)

� Symbol equivalents for AM, PM, AD, and BC

� Default sorting sequence for character data when ORDER BY is specified
(GROUP BY uses a binary sort unless ORDER BY is specified)

� Writing direction (both right to left and left to right)

� Affirmative and negative response strings

For example, if the language is set to French, then the following messages in English
are converted to French:

English:
ORA-00942: table or view does not exist
FRM-10043: Cannot open file.
12-8 Oracle9iAS Reports Services Publishing Reports to the Web

NLS Environment Variables
French:
ORA-0092: table ou vue inexistante
FRM-10043: Ouverture de fichier impossible

The specified territory determines the conventions for the following default date
and numeric formatting characteristics:

� Date format

� Decimal character and group separator

� Local currency symbol

� ISO currency symbol

� Week start day

� Credit and debit symbol

� ISO week flag

� List separator

For example, if the territory is set to France, then the numbers are formatted using a
comma as the decimal character.

12.2.2 DEVELOPER_NLS_LANG and USER_NLS_LANG Environment Variables
If you must use two sets of resource and message files at the same time, then two
other language environment variables are available. These can be used after
Oracle9iAS installation is completed.

� DEVELOPER_NLS_LANG

� USER_NLS_LANG

The syntax for DEVELOPER_NLS_LANG and USER_NLS_LANG is the same as for
the NLS_LANG environment variable. That is:

DEVELOPER_NLS_LANG=<language_territory>.<charset>
USER_NLS_LANG=<language_territory>.<charset>

Use these environment variables in lieu of the NLS_LANG environment variable in
the following situations:

� You prefer to use the Reports Builder in English, but you are developing an
application for another language. DEVELOPER_NLS_LANG and USER_NLS_
NLS and Bidirectional Support 12-9

Specifying a Character Set in a JSP or XML File
LANG environment variables allow you to use different language settings for
the Reports Builder and Reports Runtime.

� You are creating an application to run in a language for which a local language
version of Oracle9iDS Reports Builder is not currently available.

If these environment variables are not specifically set, then NLS_LANG default
values will be used.

12.3 Specifying a Character Set in a JSP or XML File
If you are producing HTML with your JSP, then you may need to add a character set
to your JSP file using the following syntax (this one specifies a Japanese character
set):

<META http-equiv="Content-Type" content="text/html;charset=shift_jis”>

Additionally, if you plan on outputting a report to XML, you may wish to include a
character set in the XML Prolog Value property in the Builder's Property Inspector,
following this syntax:

<?xml version=”1.0” encoding=”shift_jis” ?>

In both instances, the values expressed for the character set should call a character
set that is compatible with the one specified for the host environment. The values
for character sets used on the Web are different from the values expressed in the
NLS_LANG environment variable. Table 12–3 lists commonly used values for the
charset or encoding parameter:

Note: The values for charset and encoding are not case
sensitive. You can enter them in lower- or uppercase.

Note: to set the character set in a .rdf file that you plan to use to
generate HTML, you must ensure that the Before Report Escape
property includes the following:

charset="text/html;charset=&encoding"

&encoding is then replaced at runtime with the appropriate
setting.
12-10 Oracle9iAS Reports Services Publishing Reports to the Web

Specifying a Character Set in a JSP or XML File
Table 12–3 Valid values for a charset or encoding parameter

Language Valid Character Set(s)

Afrikaans iso-8859-1, windows-1252

Albanian iso-8859-1, windows-1252

Arabic iso-8859-6

Basque iso-8859-1, windows-1252

Bulgarian iso-8859-5

Byelorussian iso-8859-5

Catalan iso-8859-1, windows-1252

Croatian iso-8859-2

Czech iso-8859-2

Danish iso-8859-1, windows-1252

Dutch iso08859-1, windows-1252

English iso-8859-1, windows-1252

Esperanto iso-8859-3 (not widely supported in browsers)

Estonian iso-8859-15

Faroese iso-8859-1, windows-1252

Finnish iso-8859-1, windows-1252

French iso-8859-1, windows-1252

Galician iso-8859-1, windows-1252

German iso-8859-1, windows-1252

Greek iso-8859-1

Hebrew iso-8859-8

Hungarian iso-8859-2

Icelandic iso-8859-1, windows-1252

Inuit languages iso-8859-10 (not widely supported in browsers)

Irish iso-8859-1

Italian iso-8859-1

Japanese shift_jis, iso-2202-jp, euc-jp
NLS and Bidirectional Support 12-11

Bidirectional Support
12.4 Bidirectional Support
Bidirectional support enables you to design applications in Middle Eastern and
North African languages whose natural writing direction is right to left.
Bidirectional support enables you to control:

� Layout direction, which includes displaying items with labels at the right of the
item and correct placement of check boxes and radio buttons

� Reading order, which includes text direction (e.g., right to left or left to right)

Korean euc-kr

Lapp iso-8859-10 (not widely supported in browsers)

Latvian iso-8859-13, windows-1257

Lithuanian iso-8859-13, windows-1257

Macedonian iso-8859-5

Maltese iso-8859-3 (not widely supported in browsers)

Norwegian iso-8859-1, windows-1252

Polish iso-8859-2

Portuguese iso-8859-1, windows-1252

Romanian iso-8859-2

Russian koi-8-r, iso-8859-5

Scottish iso-8859-1, windows-1252

Serbian iso-8859-5

Slovak iso-8859-2

Slovenian iso-8859-2

Spanish iso-8859-1, windows-1252

Swedish iso-8859-1, windows-1252

Turkish iso-8859-9, windows-1254

Ukrainian iso-8859-5

Table 12–3 Valid values for a charset or encoding parameter

Language Valid Character Set(s)
12-12 Oracle9iAS Reports Services Publishing Reports to the Web

Unicode
� Alignment, which includes switching point-of-origin from upper left to upper
right

� Initial keyboard state, which controls whether local or Roman characters are
produced automatically when the user begins data entry in forms (the end user
can override this setting)

When you are designing bidirectional applications, you might want to use the NLS
environment variables DEVELOPER_NLS_LANG and USER_NLS_LANG rather
than NLS_LANG. For example, if you want to use an American interface while
developing an Arabic application in a Windows environment, then set these
environment variables as follows:

DEVELOPER_NLS_LANG=AMERICAN_AMERICA.AR8MSWIN1256
USER_NLS_LANG=ARABIC_UNITED ARAB EMIRATES.AR8MSWIN1256

Note that, in this example, the DEVELOPER_NLS_LANG environment variable
uses an Arabic character set. Refer to "NLS Environment Variables" for more
information about environment variables.

12.5 Unicode
Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables multinational corporations to develop a single
multilingual application and deploy it worldwide.

Global markets require a character set that:

� Allows a single implementation of a product for all languages, yet is simple
enough to be implemented everywhere

� Contains all major living scripts

� Supports multilingual users and organizations

� Enables worldwide interchange of data via the Internet

12.5.1 Unicode Support
Oracle9iAS Reports Services provides Unicode support. If you use Unicode, you are
able to display multiple languages, both single-byte languages such as Western
Europe, Eastern Europe, Bidirectional Middle Eastern, and multibyte Asian
languages such as Chinese, Japanese, and Korean (CJK) in the same application.
NLS and Bidirectional Support 12-13

Unicode
Use of a single character set that encompasses all languages eliminates the need to
have various character sets for various languages. For example, to display a
multibyte language such as Japanese, the NLS_LANG environment variable must
be set to the following:

NLS_LANG=JAPAN_JAPANESE.JA16SJIS

To display a single-byte language such as German, NLS_LANG must be set to the
following:

NLS_LANG=GERMAN_GERMANY.WE8ISO8859P1

The obvious disadvantage of this scheme is that applications can only display
characters from one character set at a time. Mixed character set data is not possible.

With the Unicode character set, you can set the character set portion of NLS_LANG
to UTF8 instead of a specific language character set. This allows characters from
different languages and character sets to be displayed simultaneously. For example,
to display Japanese and German together on the screen, the NLS_LANG variable
must be set to one of the following:

NLS_LANG=JAPAN_JAPANESE.UTF8

NLS_LANG=GERMAN_GERMANY.UTF8

Unicode capability gives the application developer and end user the ability to
display multilingual text in a form. This includes text from a database containing
Unicode, multilingual text, text in graphical user interface (GUI) objects (for
example, button labels), text input from the keyboard, and text from the clipboard.
Oracle9iAS Reports Services currently supports Unicode on Windows.

12.5.2 Unicode Font Support
Oracle9iAS Reports Services relies on the operating system for the font and input
method for different languages. To enter and display text in a particular language,
you must be running a version of the operating system that supports that language.
Font support is limited but not restricted to the operating system font.

Windows NT release 4.0 provides True Type Big Fonts. These fonts contain all the
characters necessary to display or print multilingual text. If you try to type, display,

Note: If you develop applications for the Web, then you can use
Unicode because of the Unicode support provided by Java through
the browser.
12-14 Oracle9iAS Reports Services Publishing Reports to the Web

Unicode
or print multilingual text and see unexpected characters, then you are probably not
using a Big Font. Big Fonts provided by Microsoft under Windows NT release 4.0
are as follows:

� Arial

� Courier New

� Lucida Console

� Lucida Sans Unicode

� Times New Roman

Third-party Unicode fonts are also available.

12.5.3 Enabling Unicode Support
To enable Unicode support, set the NLS_LANG environment variable as follows:

NLS_LANG=<language_territory>.UTF8

Refer to "NLS Environment Variables" for more information about environment
variables.

12.5.4 Using ALTER SESSION
You can use the SQL command ALTER SESSION to override some NLS defaults, if
you are connected to an Oracle database via the USERID keyword or have
connected via the Connect dialog in the Reports Builder. For example, suppose you
are building a report against an Oracle database that will publish data to different
geographic locations. You might want to change the currency symbol, thousands
grouping, and decimal indicator that the Oracle database uses when it formats a
currency field depending on a user parameter. You could accomplish this task in
several ways, but one method is to alter the Oracle database session NLS_LANG
variable in a Before Report trigger.

Note: ALTER SESSION does not apply to pluggable data source
queries (for example, JDBC and XML).

Note: For more information on the ALTER SESSION command,
see the Oracle9i SQL Reference, available on the Oracle Technology
Network (http://otn.oracle.com).
NLS and Bidirectional Support 12-15

Translating Applications
12.6 Translating Applications
In any Oracle9iAS Reports Services application, you see many types of messages,
including:

� Error messages from the database

� Runtime error messages produced by Oracle9iAS Reports Services

� Messages and boilerplate text defined as part of the application

If the NLS environment variable is set correctly and the appropriate message files
are available, then translation of messages for the first two items is done for you. To
translate messages and boilerplate text defined as part of the application, you can
use the Oracle translation tool, TranslationHub, and you might also find it useful to
use PL/SQL Libraries for strings of code.

Manual translation is required for constant text within a PL/SQL block because that
text is not clearly delimited, but is often built up from variables and pieces of
strings. To translate these strings, you can use PL/SQL libraries to implement a
flexible message structure.

You can use attachable PL/SQL libraries to implement a flexible message function
for messages that are displayed programmatically by the built-in routine
SRW.MESSAGE, or by assigning a message to a display item from a trigger or
procedure. The library can be stored on the host and dynamically attached at
runtime. At runtime, based on a search path, you can pull in the attached library.
For example, a library might hold only the Italian messages:

FUNCTION nls_appl_mesg(inexe_no NUMBER)
RETURN CHAR
IS

msg CHAR(80):
BEGIN

IF index_no = 1001 THEN
msg := 'L' 'impiegato che Voi cercate non esiste...';

ELSEIF index_no = 1002 THEN
msg := 'Lo stipendio non puo essere minore di zero.':

ELSEIF ...
.

Note: You'll find information about using TranslationHub on the
Oracle9iDS documentation CD and on the Oracle Technology
Network (http://otn.oracle.com).
12-16 Oracle9iAS Reports Services Publishing Reports to the Web

Translating Applications
.
ELSE

msg := 'ERRORE: Indice messaggio inesistente.';
END IF;
RETURN msg;

END;

A routine like this could be used anywhere a character expression would normally
be valid. For example, to display text with the appropriately translated application
message, you might include the following code:

Change_Alert_Message('My_Error_Alert', nls_appl_mesg(1001));
n := Show_Alert('My_Error_Alert');

To change the application to another language, simply replace the PL/SQL library
containing the nls_appl_mesg function with a library of the same name
containing the nls_appl_mesg function with translated text.
NLS and Bidirectional Support 12-17

Translating Applications
12-18 Oracle9iAS Reports Services Publishing Reports to the Web

PartIV

Performance

Part IV provides information on managing, monitoring, and tuning your
Oracle9iAS Reports Services environment. It includes the following chapters:

� Chapter 13, "Managing and Monitoring Oracle9iAS Reports Services"

� Chapter 14, "Tuning Oracle9iAS Reports Services"

Managing and Monitoring Oracle9iAS Reports S
13

Managing and Monitoring Oracle9iAS

Reports Services

Oracle Enterprise Manager (OEM), included with Oracle9iAS, provides managing
and monitoring services to Oracle9iAS Reports Services.

Use OEM to:

� Start, stop, and restart Reports Servers

� View and manage the Reports job queues (scheduled, current, failed, and
finished)

� Monitor server performance

� View and change Reports Server configuration files

� View and link to all members of a server cluster

Oracle9iAS installation automatically identifies Reports Servers and registers them
with OEM. All you do is start OEM and start managing. If you add Reports Servers
to your environment after you have installed Oracle9iAS, you must manually add
the new Reports Server(s) to OEM's targets.xml file.

This chapter describes the managing and monitoring capabilities of OEM as they
relate to Oracle9iAS Reports Services and tells you how to add a Reports Server to
OEM's targets.xml file. It includes the following main sections:

� Navigating to Reports Services Information in OEM

Note: For more information on Oracle Enterprise Manager, see
Oracle9i Application Server Administrator’s Guide, available on the
Oracle9iAS documentation CD.
ervices 13-1

Navigating to Reports Services Information in OEM
� Starting, Stopping, and Restarting Reports Servers

� Viewing and Managing Reports Job Queues

� Monitoring Server Performance

� Viewing and Changing Reports Server Configuration Files

� Viewing and Linking to Server Cluster Members

� Adding a Reports Server to OEM

13.1 Navigating to Reports Services Information in OEM
To navigate to Reports Services Information in OEM:

1. Launch the Enterprise Manager Console. For more information on how to
launch the console, refer to your Enterprise Manager documentation.

2. In the Console, click the Oracle9iAS node.

3. On the Oracle9iAS home page, click a Reports Server node to open its OEM
main page.

13.2 Starting, Stopping, and Restarting Reports Servers
Once a Reports Server is registered in OEM, you can go through OEM to stop, start,
and restart a given server.

Note: The Reports Server pages in OEM include context sensitive
online help topics that offer information about the items that
appear on each page. In OEM, click the Help link to display help.

Note: Before you launch the Enterprise Manager Console, you
must first install and configure a management server. For
instructions on how to do this, see Chapter 3 of the Oracle Enterprise
Manager Configuration Guide, available on the Oracle9iAS
documentation CD and on the Oracle Technology Network
(http://otn.oracle.com).
13-2 Oracle9iAS Reports Services Publishing Reports to the Web

Viewing and Managing Reports Job Queues
To start, stop, or restart a Reports Server:

1. In OEM, navigate to the Reports Server you want to manage.

2. On the Reports Server's main OEM page:

� Click the Start button to start the server.

� Click the Stop button to stop the server.

� Click the Restart button to restart the server.

These buttons appear on a Reports Server's main OEM page according to the
server's current state:

� When the server is down, the Start and Stop buttons display.

� When the server is up, the Restart and Stop buttons display.

13.3 Viewing and Managing Reports Job Queues
OEM provides a page for viewing and managing Reports job queues. Each queue,
Current, Scheduled, Failed, and Finished Jobs, has its own page. With some of the
information, you can drill down to a greater level of detail. For example, on the
Finished Jobs page, you can drill down to trace information or a Web view of report
output (obtained from the Reports Server cache).

The following sections describe:

� Viewing and Managing the Current Jobs Queue

� Viewing and Managing the Scheduled Jobs Queue

� Viewing and Managing the Finished Jobs Queue

� Viewing and Managing the Failed Jobs Queue

Note: Reports Servers are automatically registered with OEM
during installation of Oracle9iAS. If you add any Reports Servers
after installing Oracle9iAS, you must register the new server(s)
manually in OEM's targets.xml file. For more information, see
Section 13.7, "Adding a Reports Server to OEM".
Managing and Monitoring Oracle9iAS Reports Services 13-3

Viewing and Managing Reports Job Queues
13.3.1 Viewing and Managing the Current Jobs Queue
The Reports Current Jobs queue lists all jobs currently running on a particular
Reports Server.

Use OEM for:

� Viewing a Report Server's Current Jobs Queue

� Cancelling a Current Job

13.3.1.1 Viewing a Report Server's Current Jobs Queue
To view a Current Jobs Queue:

1. In OEM, navigate to the Reports Server you want to manage.

2. On the Reports Server's main page, scroll down to the Response and Load
section and click the number next to Current Jobs.

If there are no current jobs in the Current Jobs Queue, there will be no link, and
you will not be able to view the empty queue.

Table 13–1 lists and describes information provided in the Current Jobs Queue.

Table 13–1 Information provided in the Current Jobs Queue

Item Description

Select Use this radio button to select a particular job. On the Current
Jobs Queue page, this function is most useful when you wish
to cancel a job. Click the Select radio button next to a job you
wish to cancel, then click the Cancel button near the top of the
page.

Id This displays a unique job identifier assigned to this job by the
Reports Server. This number is strictly under the server's
control and cannot be reset by a user.

Job Name If you specified a job name in the command line you used to
run this job, that name is listed here; otherwise, it is the name
of the job provided for the "report=" or "module=" parameter
of the job request.

Owner This displays the user ID under which this job is running.

Output Type Lists the destination type (destype) specified for this job at
runtime.

Output Format Lists the output format (desformat) specified for this job at
runtime.
13-4 Oracle9iAS Reports Services Publishing Reports to the Web

Viewing and Managing Reports Job Queues
13.3.1.2 Cancelling a Current Job
To cancel a current job:

1. On the Current Jobs Queue page, click the Select radio button next to the job
you want to cancel.

2. Click the Cancel Job button.

This button does not display in OEM if there are no currently running jobs.

If you wish to rerun the job, you can do so from the Finished Jobs queue.

13.3.2 Viewing and Managing the Scheduled Jobs Queue
The Reports Scheduled Jobs Queue lists all jobs scheduled to run on a particular
Reports Server.

Use OEM for:

� Viewing a Report Server's Scheduled Jobs Queue

� Cancelling a Scheduled Job

13.3.2.1 Viewing a Report Server's Scheduled Jobs Queue
To view a Scheduled Jobs Queue:

1. In OEM, navigate to the Reports Server you want to manage.

2. On the Reports Server's main page, scroll down to the Response and Load
section and click the number next to Scheduled Jobs.

If there are no scheduled jobs in the Scheduled Jobs Queue, there will be no
link, and you will not be able to view the empty queue.

Table 13–2 lists and describes information provided in the Scheduled Jobs Queue.

Queued At Lists the date and time this request was placed in the job
queue.

Started At Lists the data and time this job started running.

Table 13–1 Information provided in the Current Jobs Queue

Item Description
Managing and Monitoring Oracle9iAS Reports Services 13-5

Viewing and Managing Reports Job Queues
13.3.2.2 Cancelling a Scheduled Job
To cancel a scheduled job:

1. On the Scheduled Job Queue page, click the Select radio button next to the job
you want to cancel.

2. Click the Cancel Job button.

This button does not display in OEM if there are no scheduled jobs.

If you wish to rerun the job, you can do so from the Finished Jobs queue.

13.3.3 Viewing and Managing the Finished Jobs Queue
The Reports Finished Jobs queue lists all successfully completed jobs on a particular
Reports Server.

Table 13–2 Information provided in the Scheduled Jobs Queue

Item Description

Select Use this radio button to select a particular job. On the
Scheduled Job Queue page, this function is most useful when
you wish to cancel a job. Click the Select radio button next to a
job you wish to cancel, then click the Cancel button near the
top of the page.

Id This displays a unique job identifier assigned to this job by the
Reports Server. This number is strictly under the server's
control and cannot be reset by a user.

Job Name If you specified a job name in the command line you used to
run this job, that name is listed here; otherwise, it is the name
of the job provided for the "report=" or "module=" parameter
of the job request.

Owner This displays the user ID under which this job is scheduled to
run.

Output Type Lists the destination type (destype) specified for this job.

Output Format Lists the output format (desformat) specified for this job.

Queued At Lists the date and time this request was placed in the job
queue.

Interval The frequency at which the job will be run, for example, daily,
monthly, and so on.
13-6 Oracle9iAS Reports Services Publishing Reports to the Web

Viewing and Managing Reports Job Queues
Use OEM for:

� Viewing a Report Server's Finished Jobs Queue

� Viewing a Job’s Trace File

� Viewing a Result from Cache

� Rerunning a Finished Job

13.3.3.1 Viewing a Report Server's Finished Jobs Queue
To view a Finished Jobs Queue:

1. In OEM, navigate to the Reports Server you want to manage.

2. On the Reports Server's main page, scroll down to the Response and Load
section and click the number next to Finished Jobs.

If there are no finished jobs in the Finished Jobs Queue, there will be no link,
and you will not be able to view the empty queue.

Table 13–3 lists and describes information provided in the Finished Jobs Queue.

Table 13–3 Information provided in the Finished Jobs Queue

Item Description

Select Use this radio button to select a particular job. On the Finished
Job Queue page, this function is most useful for selecting a job
and:

� Viewing its output

Click the Select radio button next to a job you want to
view, then click the View Result button near the top of the
page.

� Viewing its trace results, provided that you included a
trace command in the runtime command.

Click the Select radio button next to a job with trace
results you want to view, then click the View Trace button
near the top of the page.

� Rerunning it

Click the Select radio button next to a job you want to
rerun, then click the Rerun Report button near the top of
the page.
Managing and Monitoring Oracle9iAS Reports Services 13-7

Viewing and Managing Reports Job Queues
13.3.3.2 Viewing a Job’s Trace File
To view a job’s trace file:

1. In the Select column on a Finished Jobs Queue page, click the radio button next
to the finished job whose trace file you want to view.

2. Click the View Trace button near the top of the page.

13.3.3.3 Viewing a Result from Cache
To view a job result from the Report Server cache:

1. In the Select column on a Finished Jobs Queue page, click the radio button next
to the finished job you want to view.

2. Click the View Result button near the top of the page.

The result opens in a second browser window.

Id This displays a unique job identifier assigned to this job by the
Reports Server. This number is strictly under the server's
control and cannot be reset by a user.

Job Name If you specified a job name in the command line you used to
run this job, that name is listed here; otherwise, it is the name
of the job provided for the "report=" or "module=" parameter
of the job request.

Owner This displays the user ID under which this job was run.

Output Type Lists the destination type (destype) specified for this job.

Output Format Lists the output format (desformat) specified for this job.

Queued At Lists the date and time this request was placed in the job
queue.

Started At Lists the date and time this job started running.

Finished At Displays the date and time this job completed.

Status Displays the finished status of the job. In the Finished Jobs
Queue, status is always Finished Successfully.

Table 13–3 Information provided in the Finished Jobs Queue

Item Description
13-8 Oracle9iAS Reports Services Publishing Reports to the Web

Viewing and Managing Reports Job Queues
13.3.3.4 Rerunning a Finished Job
To rerun a job:

1. In the Select column on a Finished Jobs Queue page, click the radio button next
to the finished job you want to rerun.

2. Click the Rerun Report button near the top of the page.

13.3.4 Viewing and Managing the Failed Jobs Queue
The Reports Failed Jobs queue lists all jobs that were cancelled or terminated with
error on a particular Reports Server.

Use OEM for:

� Viewing a Report Server's Failed Jobs Queue

� Viewing a Failed Job’s Trace File

� Rerunning a Failed Job

13.3.4.1 Viewing a Report Server's Failed Jobs Queue
To view a Failed Jobs Queue:

1. In OEM, navigate to the Reports Server you want to manage.

2. On the Reports Server's main page, scroll down to the Response and Load
section and click the number next to Failed Jobs.

If there are no failed jobs in the Failed Jobs Queue, there will be no link, and
you will not be able to view the empty queue.

Table 13–4 lists and describes information provided in the Failed Jobs Queue.
Managing and Monitoring Oracle9iAS Reports Services 13-9

Viewing and Managing Reports Job Queues
13.3.4.2 Viewing a Failed Job’s Trace File
To view a failed job’s trace file:

Table 13–4 Information provided in the Failed Jobs Queue

Item Description

Select Use this radio button to select a particular job. On the Failed
Jobs Queue page, this function is most useful for selecting a job
and:

� Viewing its trace results, provided that you included a
trace command in the runtime command.

Click the Select radio button next to a job with trace
results you want to view, then click the View Trace button
near the top of the page.

� Rerunning it

Click the Select radio button next to a job you want to
rerun, then click the Rerun Report button near the top of
the page.

Id This displays a unique job identifier assigned to this job by the
Reports Server. This number is strictly under the server's
control and cannot be reset by a user.

Job Name If you specified a job name in the command line you used to
run this job, that name is listed here; otherwise, it is the name
of the job provided for the "report=" or "module=" parameter
of the job request.

Owner This displays the user ID under which this job was run.

Output Type Lists the destination type (destype) specified for this job.

Output Format Lists the output format (desformat) specified for this job.

Queued At Lists the date and time this request was placed in the job
queue.

Started At Lists the date and time this job started running.

Finished At Displays the date and time this job was cancelled or terminated
with error.

Status Displays the finished status of the job. It informs you whether
a job was cancelled by the user or terminated with error. In
instances where a job was terminated with error, a brief error
message is provided to indicate the cause of termination.
13-10 Oracle9iAS Reports Services Publishing Reports to the Web

Monitoring Server Performance
1. In the Select column on a Failed Jobs Queue page, click the radio button next to
the failed job whose trace file you want to view.

2. Click the View Trace button near the top of the page.

13.3.4.3 Rerunning a Failed Job
To rerun a failed job:

1. In the Select column on a Failed Jobs Queue page, click the radio button next to
the failed job you want to rerun.

2. Click the Rerun Report button near the top of the page.

13.4 Monitoring Server Performance
Each Reports Server registered in OEM has its own home page that summarizes
general information about the server's status and performance. The sections that
provide information about performance are Reports Server, Performance, and
Administration:

� The Reports Server section is subdivided into General, Configuration, Status,
and Response and Load:

� General provides information on the Reports Server's installed version
number, whether the server is up or down, and, if it's up, the date and time
the server was started. It includes buttons for stopping, starting, and
restarting the server. Which buttons show depends on whether the server is
up or down.

� Configuration provides the selected Reports Server's cluster name, if it is a
member of a cluster; the trace option and mode specified in its
configuration file; and the maximum number of jobs that can be held at one
time in the Reports Server queue (this includes the total of the current,
scheduled, and finished and failed jobs queues). All of these are
configurable values.

� Status lists the current number of active engines on the selected Reports
Server, the amount of the host machine's CPU and RAM the selected server
is currently using, and the average number of milliseconds is takes for the
selected Reports Server to process a request from the client.

� Response and Load provides information about the number of current,
failed, finished, and scheduled jobs.
Managing and Monitoring Oracle9iAS Reports Services 13-11

Viewing and Changing Reports Server Configuration Files
� The Performance section provides links to detailed performance information.
Each link takes you to a different section of the same Performance page:

� Response Metrics provides details about average response time; scheduled,
finished, current, and failed jobs in the Job Queue; and the number of jobs
transferred from one server to another in a clustered environment.

� Engine Information lists the types and numbers of currently running
engines on the selected Reports Server.

� System Usage Metrics provides the percentage of CPU and number of
megabytes of RAM currently being used by the selected Reports Server.

� The Administration section provides links to detailed information about the
selected Reports Server’s current configuration properties and views of the
server’s trace and log files:

� Server Configuration leads to an editable view of the selected Reports
Server's configuration file. Here you can alter the file, check file syntax, and
save your changes. Changes take effect after the next server restart. (For
more information, see Section 13.5, "Viewing and Changing Reports Server
Configuration Files". See also Chapter 3, "Configuring Oracle9iAS Reports
Services".

� Server Trace leads to the results of any trace you ran on the selected
Reports Server. Specify whether you will use the Trace option in the Reports
Server's configuration file, available through the Server Configuration link.

� Server Log leads to a log of general server events, such as when the selected
Reports Server was started and stopped.

13.5 Viewing and Changing Reports Server Configuration Files
To view and change a Reports Server's configuration file through OEM:

1. On a selected Reports Server's home page, click the Server Configuration link
under the Administration heading.

2. Make your changes in the display window.

3. Click the Check Syntax button to check your XML syntax.
13-12 Oracle9iAS Reports Services Publishing Reports to the Web

Viewing and Linking to Server Cluster Members
4. Click the Save Changes button to save your changes.

Changes take effect after the next server startup or restart.

13.6 Viewing and Linking to Server Cluster Members
When you cluster Reports Servers together, it's reflected on each cluster member's
home page in OEM under the Other Servers Running in This Cluster heading.
Each listed cluster member links to the home page for that member.

Table 13–5 lists and describes the information the Other Servers … section provides
for each cluster member:

Note: Clicking this button does not validate the values you enter
for configuration elements. For example, if an element requires that
you specify a directory path, syntax checking does not validate the
accuracy of your path. It just validates the XML syntax.

Note: For detailed information on the attributes and values in the
Reports Server configuration file, see Chapter 3, "Configuring
Oracle9iAS Reports Services".

Table 13–5 Information under the Other Servers Running in this Cluster Heading

Row Description

Server Name Lists the names of each of the other Reports Servers that are
members of the same cluster that the selected Reports Server
belongs to. Click a server name to hyperlink to the cluster
member's home page in OEM.

Finished Jobs Provides the total number of finished jobs currently in the
listed Reports Server's Job Queue.

Current Jobs Provides the total number of currently running jobs in the
listed Reports Server's Job Queue.

Scheduled Jobs Provides the total number of scheduled jobs currently in the
listed Reports Server's Job Queue.

Failed Jobs Provides the total number of jobs for the listed Reports Server
that were stopped before completion. This includes jobs that
were user-terminated or terminated with error.
Managing and Monitoring Oracle9iAS Reports Services 13-13

Adding a Reports Server to OEM
13.7 Adding a Reports Server to OEM
During Oracle9iAS installation, Reports Servers are automatically registered with
OEM. If you add a Reports Server after you have installed Oracle9iAS, you must
manually register the server with OEM if you want OEM to manage it. This section
describes how to edit the targets.xml file that contains registration information
for OEM targets.

To register a target with OEM:

1. Open the targets.xml file in your XML editor of choice.

You'll find targets.xml in the following directory path on both Windows and
UNIX:

ORACLE_HOME\sysman\emd\targets.xml

2. Using the following syntax, enter information for the Reports Server you are
adding:

<target type=”oracle_repserv” name=”Reports_Server_name”
<property name=”password” value=”password_value” encrypted=”false”/>
<property name=”server” value=”Reports_Server_name”/>
<property name=”servlet” value=”http_URL_to_Reports_Servlet/rwservlet”/>
<property name=”userName” value=”default_userid”/>
<property name=”oracleHome” value=”ORACLE_HOME”/>
<property name=”host” value=”domain_of_host_machine”/>
<compositeMembership>

<memberOf type=”oracle_ias” name=”ias-1” association=”null”/>
</compositeMembership>

</target>

For example:

Average Response Time Lists the average number of milliseconds it takes for the listed
Reports Server to process a request from the client.

Note: A target in OEM is a component that OEM manages. For
example, a Reports Server that is registered in OEM is considered
an OEM target.

Table 13–5 Information under the Other Servers Running in this Cluster Heading

Row Description
13-14 Oracle9iAS Reports Services Publishing Reports to the Web

Adding a Reports Server to OEM
<target type=”oracle_repserv” name=”rep_disun1813”
<property name=”password” value=”tiger” encrypted=”false”/>
<property name=”server” value=”rep_disun1813”/>
<property name=”servlet”
value=”http://machinename-pc2.us.oracle.com/servlet/rwservlet”/>
<property name=”userName” value=”scott”/>
<property name=”oracleHome” value=”d:\ora11”/>
<property name=”host” value=”dlsun1813.us.oracle.com”/>
<compositeMembership>

<memberOf type=”oracle_ias” name=”ias-1” association=”null”/>
</compositeMembership>

</target>

3. Save the targets.xml file, and restart OEM to make your changes take effect.

Note: The user name and password are for the Reports Services
administrator account. In a non-secure environment, the user name
and password correspond to the <identifier> element in the
Reports Server configuration file, <server_name>.conf. In a secure
environment, they correspond to the Reports Services
administrator account created in Oracle9iAS Portal or Oracle
Internet Directory (OID), which belongs to the RW_
ADMINISTRATOR group.

Initially, the password entry in the targets.xml file should be
set to encrypted="false". OEM will encrypt the value and reset
encrypted to "true".
Managing and Monitoring Oracle9iAS Reports Services 13-15

Adding a Reports Server to OEM
13-16 Oracle9iAS Reports Services Publishing Reports to the Web

Tuning Oracle9iAS Reports S
14

Tuning Oracle9iAS Reports Services

Oracle9iAS Reports Services offers a number of fine-tuning options to adjust the
level of service and performance it provides. This chapter discusses tuning
considerations and offers you ways to optimize your server environment to fit the
needs of your user base. It includes the following topics:

� Using the In-Process Server

� Tuning the Reports Engine

� Clustering Multiple Servers

� Optimizing Cache Strategies

� Monitoring Performance

14.1 Using the In-Process Server
The in-process server is a component of Oracle9iAS Reports Services that resides
within the Reports Servlet (rwservlet). It requires less maintenance than a
stand-alone server because, unlike the stand-alone server, it starts automatically
whenever it receives the first request from the client via the Reports Servlet or
JSP-based report URL. Additionally, an in-process server cuts down on the
communication between processes, increasing the potential for faster performance.

To indicate that you want to run the Reports Server within the same process as the
Reports Servlet, use the SERVER_IN_PROCESS parameter in the Reports Servlet
configuration file (rwservlet.properties).

It takes the following syntax:

SERVER_IN_PROCESS=yes
ervices 14-1

Tuning the Reports Engine
Enter no (the default value) if you do not want the Reports Server to run within the
same process as the Reports Servlet.

The Reports Servlet configuration file is located in the following path on both
Windows and UNIX:

ORACLE_HOME\reports\conf\rwservlet.properties

14.2 Tuning the Reports Engine
The Reports Engine has a number of configuration parameters that relate to
performance tuning, including:

� initEngine

� maxEngine

� minEngine

� engLife

� maxIdle

� callBackTimeOut

These parameters are attributes of the engine element in the Reports Server
configuration file, <server_name>.conf, located in the following path on both
Windows and UNIX:

ORACLE_HOME\reports\conf\<server_name>.conf

The engine element takes the following syntax:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl" initEngine="1"
maxEngine="5" minEngine="1" engLife="50" maxIdle="15" callbackTimeOut="10000">

<property name="sourceDir" value="D:\orawin\reports\server\cache"/>
<property name="tempDir" value="D:\orawin\reports\server\temp"/>

</engine>

In the following subsections, each of the relevant attributes of the engine element is
discussed separately. But another part of this story is how they work together. For
example, the initEngine attribute works together with maxEngine and minEngine to

Note: You'll find detailed information about the Reports Server
configuration file in Chapter 3, "Configuring Oracle9iAS Reports
Services".
14-2 Oracle9iAS Reports Services Publishing Reports to the Web

Tuning the Reports Engine
set the number of Reports Engines that are always available to users, provided the
server is up. These are also affected by engLife, which specifies how many jobs an
engine will process before it shuts down. Additionally, to prevent engines from
starting up then shutting down in high-volume situations, you may try setting a
relatively high value for engLife.

Finally, there is no optimal setting for any of these attributes—the best settings
differ based on factors such as how heavy your request load is and whether the
request load is constant or fluctuates throughout the day.

The following subsections examine the benefits of high and low attribute values in
conjunction with constant and variable request loads and how response time may
be affected.

14.2.1 initEngine
The initEngine attribute defines the number of engines you want the Reports Server
to start at initialization. Its default value is 1. The initEngine attribute is influential
only when the server first comes up.

Within the Reports Server configuration file, initEngine takes the following syntax:

initEngine="1"

The more engines you initialize at server startup, the longer the Reports Server
takes to start and the more memory it requires to sustain them. Higher numbers of
user requests coupled with a constant request load will likely benefit from a higher
initEngine value. The benefit to be gained from having engines at the ready should
outweigh the potential disadvantage of higher memory use. On the other hand, if
an engine is not available when a request comes in, time to start up the engine is
added to the response overhead.

14.2.2 maxEngine
The maxEngine attribute specifies the maximum number of a given type of engine
that can run on the server at the same time. If the number of requests exceeds the
number specified for maxEngine, the spillover requests are sent to the Reports
Queue and are run as engines become available. The default value is 1.

Within the Reports Server configuration file, maxEngine takes the following syntax:

maxEngine="4"
Tuning Oracle9iAS Reports Services 14-3

Tuning the Reports Engine
14.2.3 minEngine
The minEngine attribute specifies the minimum number of a given type of engine
that should be kept running in spite of the maxIdle value (which would otherwise
tell an engine to shut down after x number of idle minutes). The default value is 0.

Within the Reports Server configuration file, minEngine takes the following syntax:

minEngine="0"

In an environment with a low request volume or a high tolerance in the user base
for less-than-optimal response times, the default value is a good way of preserving
memory (by not tying it up with unnecessary engines). In a high request volume
environment, where the request load is constant, a higher value should yield
quicker response. This is because engines that are already running when requests
come in save engine startup time.

14.2.4 engLife
The engLife attribute specifies the number of jobs an engine can run before the
engine is terminated, and, if necessary, a new engine is started. This feature is
available to clean up memory structures. The default value is 50.

Within the Reports Server configuration file, engLife takes the following syntax:

engLife="120"

A low value shuts engines down sooner and consequently frees up memory. In this
way, it also allows resources to be recycled. A high value keeps the engine alive for
a longer period. This could be valuable in environments that sustain a high-volume
of requests throughout the day and where memory use is of lesser concern.

14.2.5 maxIdle
The maxIdle attribute specifies the number of minutes of allowable idle time before
an engine is shut down, provided the current number of engines is higher than the
value specified for minEngine.

Note: Make sure the value you enter for minEngine does not
exceed the value you entered for maxEngine or initEngine. A
minEngine value that is higher than a maxEngine or initEngine value
will result in an error.
14-4 Oracle9iAS Reports Services Publishing Reports to the Web

Clustering Multiple Servers
For example, if minEngine is 0, maxIdle is 30, and one engine has been running but
unused for 30 minutes, that engine will shut down.

The default value is 30 (minutes).

Within the Reports Server configuration file, maxIdle takes the following syntax:

maxIdle="30"

When you specify this value, you must balance your desire to save engine startup
time against your desire to prevent unnecessary use of memory (by idle engines).

14.2.6 callBackTimeOut
The callBackTimeOut attribute specifies the number of milliseconds of allowable
waiting time between when the server calls an engine and the engine calls the
server back. The default value is 60000 (milliseconds). If the callBackTimeOut value is
exceeded before communication is established, an exception is raised, an error
message is displayed, and the process is stopped.

Within the Reports Server configuration file, callBackTimeOut takes the following
syntax:

callBackTimeOut="60000"

If the server host machine is very fast, you can reduce this number. If it is very slow,
you may want to keep this number high to ensure there is sufficient time for the
server and the engine to communicate. This value is dependent more on the
capabilities of your hardware than on the requirements of your user base.

14.3 Clustering Multiple Servers
A cluster is a virtual grouping of servers into a community for the purpose of
sharing request processing efficiently across members of the cluster. Clustering in
Oracle9iAS Reports Services is peer-level, rather than master/slave. Peer-level
clustering means that all members of the cluster take equal responsibility for
sharing and processing incoming requests. If one member is shut down, the other
members carry on managing the request load. There is no single-point-of-failure,
where one machine's malfunction brings the whole system down.

The advantages of clustering are the increased processing power through the
pooling of multiple CPUs on multiple machines, the fail-safe environment, and
faster response times through request sharing.
Tuning Oracle9iAS Reports Services 14-5

Optimizing Cache Strategies
Each cluster member machine must be configured in more or less the same way to
allow a report to run on each server member in the same way. This means that
configuration files should have most of the same settings: a distinction can be
drawn between job-related settings and machine-related settings. Job-related
settings must be the same from cluster member to cluster member. Job-related
settings include settings related to security, data sources, and destination types.
Machine-related settings include such attributes as maxEngine, minEngine,
maxIdle, initEngine, and the like—these can be different from member to member.

Additionally, for cluster members:

� Server-related environment variables should be set to the same values.

� TNS settings should point to the same databases in the same way.
For example, a clustered group of servers must share a common NLS setting to provide a uniform service across the cluster. Conse quently, all requests going to a cluster must require a common language.If you must set your servers up for different languages, you won't want to cluster
them together. Additionally, if your machines require different job-related
configuration settings, you will not benefit from clustering.

For servers to be members of the same cluster, they must share a cluster name
(appended to each server's server name) and have the same public and private keys.

14.4 Optimizing Cache Strategies
A cache is a temporary storage space for recently accessed data that can return data
more rapidly than the data's original storage space. When data is fetched from
cache, it saves time otherwise required to arrive at and search the original storage
space, and it spares the network the burden of additional traffic.

In Oracle9iAS Reports Services you have three opportunities for getting the most
out of your cache:

� In the Reports Server configuration file, where you set up the Reports Cache

� Via the command line, where you can specify the rules defining how long a
particular report's output can be reused and when it should be removed from
cache

� In the JSP file, where you use ojsp tags that make use of the JSP Web Object
Cache

These opportunities are discussed in the following subsections:

Note: You'll find more information about enrolling a server in a
cluster in Chapter 3, "Configuring Oracle9iAS Reports Services".
14-6 Oracle9iAS Reports Services Publishing Reports to the Web

Optimizing Cache Strategies
� Setting Up Cache in the Reports Server Configuration File

� Specifying Cache-Related Options in the Command Line

� Setting Up Caching Options in a JSP

14.4.1 Setting Up Cache in the Reports Server Configuration File
The Reports Server configuration file (ORACLE_HOME\reports\conf\<server_
name>.conf) contains a cache element for specifying the Java class that defines the
server's cache as well as the cache size and location.

When you use the default Java class provided with the Reports Server, the cache
element's syntax is:

<cache class="oracle.reports.cache.RWCache">
<property name="cacheSize" value="50"/>
<property name="cacheDir" value="ORACLE_HOME\reports\server\cache"/>

</cache>

Working in conjunction with the TOLERANCE and EXPIRATION command line
options, the Reports Server cache speeds report request response times by storing
the latest report results and serving them up to subsequent matching requests.
Response is faster because a completed report can be fetched from the cache faster
than fresh data can be fetched from the database and the display version of the
report can be assembled.

The property relevant to tuning is cacheSize. For this value, you enter the number of
megabytes of disk space you wish to dedicate to the Reports cache. The default
value is 50 (megabytes).

The disk space set aside for cache is available only for caching and cannot be used
for any other purpose. The Reports Server keeps track of and protects this space.
Outside of restrictions that may have been imposed on a report via the
EXPIRATION command, the Reports cache operates on a first-in-first-out principle
(FIFO), where, when the cache is full, the oldest data in the cache is overwritten by
incoming data.

Higher values allow for storage of more data, but might take longer to search.
Lower values provide faster cache hits, but may not be adequate for the amount of
data you want to keep on hand, so more duplicate requests are run. Another
consideration is the amount of disk space you can reasonably remove from general
use. The value you specify for cacheSize should balance these considerations and
provide you with the optimal result for your hardware resources and the
requirements of your user base.
Tuning Oracle9iAS Reports Services 14-7

Optimizing Cache Strategies
14.4.2 Specifying Cache-Related Options in the Command Line
Oracle9iAS Reports Services provides two command line options for defining how
long a particular report that is stored in cache can be used for similar requests
(TOLERANCE) and how long a report can remain in cache before it is deleted
(EXPIRATION). TOLERANCE and EXPIRATION are essential for effective use of
cache because, if they are not defined, your opportunities for reusing cached report
results is significantly diminished.

14.4.2.1 TOLERANCE
Use TOLERANCE to set the maximum acceptable time for reusing a report's cached
output when a duplicate job is detected. Setting the time tolerance on a report
reduces the processing time when duplicate jobs are found.

You can use TOLERANCE with the rwclient, rwservlet, and rwcgi commands.

If TOLERANCE is not specified, then Oracle9iAS Reports Services reruns the report
even if a duplicate report is found in the cache.

If a report is being processed (that is, it’s in the current job queue) when an identical
job is submitted, then Oracle9iAS Reports Services reuses the output of the
currently running job even if TOLERANCE is not specified or is set to zero.

The syntax of the TOLERANCE command is:

TOLERANCE=[number {unit}] or [{Mon DD, YYYY} hh:mi:ss AM/PM {timezone}]

Number can be any whole value from 0 up. Unit can be minute(s), hour(s), or day(s).
The default unit is minute(s). Date is optional. If the date is not specified, today's
date is assumed. Timezone is also optional. If the time zone is not specified, the
Report Server's time zone is assumed.

14.4.2.2 EXPIRATION
Use EXPIRATION to define how long the report output can exist in cache before it is
deleted.

You can use EXPIRATION with the rwclient, rwservlet, and rwcgi commands.

Note: If no TOLERANCE or EXPIRATION is specified at runtime
(or if their values are 0), the only job output reused from cache is
that which matches a request that is already in the Reports Current
Job Queue.
14-8 Oracle9iAS Reports Services Publishing Reports to the Web

Optimizing Cache Strategies
If a report is in the current job queue when an identical job is submitted, then the
server reuses the output of the currently running job even if EXPIRATION is not
specified or is set to zero.

The syntax of the EXPIRATION command is:

EXPIRATION=[number {unit}] or [{Month DD, YYYY} hh:mi:ss am/pm {timezone}]

Number can be any whole value from 0 up. Unit can be minute(s), hour(s), or day(s).
The default unit is minute(s). Date is optional. If the date is not specified, today's
date is assumed. Timezone is also optional. If the time zone is not specified, the
Report Server's time zone is assumed.

14.4.3 Setting Up Caching Options in a JSP
The Oracle9iAS Components for Java 2 Enterprise Edition (OC4J) Web Object Cache
is a mechanism that allows Web applications written in Java to capture, store, reuse,
post-process, and maintain the partial and intermediate results generated by a
dynamic Web page, such as a JSP or servlet. For programming interfaces, it provides
a tag library (for use in JSPs) and a Java API (for use in servlets).

This section introduces cache-related ojsp tags and points you to documentation
that explains how to use these tags, including how to configure your environment
to use them.

The Web Object Cache tag library is a convenient wrapper, using JSP custom tag
functionality, for the Web Object Cache API. Use custom tags in a JSP to control
caching. The API is called through the underlying tag handler classes.

Although we are referring to these tags as "ojsp" tags, which use the ojsp prefix, you
can specify any desired prefix in the taglib directive in your JSP file.

You can have one or more of these tags in a given JSP file. The open and close tags
surround the data (cache blocks) you want to cache. Multiple cache blocks are
distinguished from one another through unique name attributes.

Table 14–1 lists and describes the cache tags available through OC4J.

Table 14–1 Cache tag descriptions

Tag Description

ojsp:cache This is for general, character-based caching of HTML or XML
fragments.
Tuning Oracle9iAS Reports Services 14-9

Monitoring Performance
For detailed information on the OC4J Web Object Cache, see the Oracle Technology
Network (http://otn.oracle.com). One useful source is Oracle9iAS Containers for
J2EE JSP Tag Libraries and Utilities Reference. This includes tag syntax and examples
as well as information for configuring your environment to use ojsp:cache tags.

14.5 Monitoring Performance
Oracle9iAS Reports Services provide a number of means for monitoring
performance that enable you to identify areas that might benefit from additional
tuning. The most frequently used means for monitoring server performance
include:

� The Reports Services-related pages in Oracle Enterprise Manager, discussed in
detail in Chapter 13, "Managing and Monitoring Oracle9iAS Reports Services"

� The Oracle Trace feature, available through the Reports Server configuration
file, the Reports Servlet configuration file, the Reports Server pages in Oracle
Enterprise Manager (OEM), and through trace-related command line options

� The SHOWJOBS command line option

� The RW_SERVER_QUEUE table, which provides another window (aside from
that available through OEM) into the Reports Server job queues

Server performance monitoring is discussed in the following subsections:

ojsp:cacheXMLObj This is for caching XML objects; its parameters comprise a
superset of the cache tag parameters. The Web Object Cache
is particularly useful when post-processing XML documents.

ojsp:useCacheObj This is for general caching of Java serializable objects. Some
of the semantics and syntax are patterned after the standard
jsp:useBean tag.

ojsp:cacheInclude This tag combines the functionality of the cache tags cache
and cacheXMLObj and the standard JSP include tag.

ojsp:invalidateCache Use this tag to explicitly invalidate a cache block through
program logic.

It is important not to confuse the ojsp:invalidateCache
tag with the invalidateCache attribute of the other cache tags.
The attribute is for more limited use—to invalidate the
pre-existing cache object.

Table 14–1 Cache tag descriptions

Tag Description
14-10 Oracle9iAS Reports Services Publishing Reports to the Web

Monitoring Performance
� Monitoring Performance with Oracle Trace

� The SHOWJOBS Command Keyword

� Accessing the RW_SERVER_QUEUE table

� Updating the Database with Queue Activity

14.5.1 Monitoring Performance with Oracle Trace
Oracle Trace is a tool for collecting performance and resource utilization data, such
as SQL Parse, Execute, Fetch statistics, and Wait statistics. Whether you are having
problems, or simply want to assess server performance for potential tuning
opportunities, you can use Oracle Trace to gather information about server
performance and use it to inform any decisions you are making concerning your
server configuration as well as to inform technical support specialists of recent
server activity.

This section provides an overview of Trace, information on the places in Oracle9iAS
Reports Services where tracing features are available, and points you to easily
accessible sources of additional information.

14.5.1.1 Trace Overview
When you generate a trace file via rwbuilder or rwrun, the resulting trace file
contains traces of the whole builder session. Tracing options can be specified from
the command line or the Reports Builder configuration file (ORACLE_
HOME\reports\conf\rwbuilder.conf).

For example, from the command line, you can specify:

tracefile=trace.trc traceopts=trace_all tracemode=trace_replace

The trace file location is relative to the current working directory or is an absolute
location, if specified as such.

In the Reports Builder configuration file, you can specify:

<trace traceFile="trace.trc" traceOpts="trace_all" traceMode="trace_replace"/>

Note: Oracle Trace is discussed fairly extensively in other sections
of this manual. This section is a pointer to the locations of that
information.
Tuning Oracle9iAS Reports Services 14-11

Monitoring Performance
The trace file location is relative to the server log directory (ORACLE_
HOME\reports\logs) or is an absolute location, if specified as such. If the trace
file is not specified, the default trace file name is used:
<hostname>-rwbuilder.trc in the server logs directory.

Command line tracing options override those specified in the Reports Builder
configuration file.

When you generate a trace file for the Reports Server, separate trace files are
generated for the Reports Server and the Reports Engine(s). Specify server tracing
options in the server configuration file (ORACLE_
HOME\reports\conf\<server_name>.conf).

For example:

<trace traceFile="trace.trc" traceOpts="trace_all" traceMode="trace_replace"/>

With a server trace, trace file location is relative to the server logs directory. If a
trace file name is not specified, the default server trace file name is used: <server_
name>-<engine_name><engine_number>.trc.

With a servlet trace, tracing options can be specified from the rwservlet
configuration file (ORACLE_HOME\reports\conf\rwservlet.properties).
For example:

TRACEOPTS=TRACE_ALL
TRACEFILE=rwservlet.trc
TRACEMODE=TRACE_REPLACE

With a servlet trace, trace file location is relative to the server log directory
(ORACLE_HOME\reports\logs).

14.5.1.2 Additional Sources of Trace Information
Oracle9iAS Reports Services offers a number of ways to set up a trace and view
trace results:

� You can set default trace values in the Reports Server configuration file
(ORACLE_HOME\reports\conf\server_name.conf). This is discussed in
Chapter 3, Section 3.2.1.11, "trace".

� If you wish to track and log runtime information on the Reports Servlet and
JSPs, use the TRACEOPTS parameter in the servlet configuration file (ORACLE_
HOME\reports\conf\rwservlet.properties). This is discussed
Section 3.3.5, "Setting up Trace Options for the Reports Servlet and JSPs".
14-12 Oracle9iAS Reports Services Publishing Reports to the Web

Monitoring Performance
� Use Oracle Enterprise Manager to view trace results, either server-wide or for
individual jobs. This is discussed in Chapter 13, "Managing and Monitoring
Oracle9iAS Reports Services".

� Specify desired trace options for individual jobs in the runtime command line.
This is discussed in Appendix A, starting with Section A.4.101, "TRACEOPTS".

14.5.2 The SHOWJOBS Command Keyword
The showjobs command keyword is useful for displaying a Web view of Reports
Server queue status. Use it only with the rwservlet command. It uses the
following syntax:

Reports_URL/rwservlet/showjobs?server=server_name&statusformat=desired_format

Table 14–2 lists and describes valid values for SHOWJOBS parameters.

Note: How to define a runtime command line via a URL is
discussed in Chapter 8, "Running Report Requests".

Table 14–2 Valid values for SHOWJOBS parameters

Parameter Valid Values Description

server server_name The name of the Reports Server that processed the
jobs you wish to view in the job queue.

Required. However, if you specified a default
server in the servlet configuration file (ORACLE_
HOME\reports\conf\rwservlet.properties) you
can omit this parameter, and showjobs will use
the default.
Tuning Oracle9iAS Reports Services 14-13

Monitoring Performance
14.5.3 Accessing the RW_SERVER_QUEUE table
When you move to centralized reporting, your user base may require certain
operational information. For example:

� Your users may request the status of a report they have submitted.

� Your administrators may request how many concurrent users there are on the
Oracle9iAS Reports Server. This is useful for both sizing the environment and
ensuring license compliance.

The Oracle9iAS Reports Server makes it possible to answer both of these questions
by posting the current report queue to the database each time a job request is
submitted. This information is inserted into a RW_SERVER_QUEUE table that
includes the following data:

� The name of the job

� Who submitted it

� What output format was chosen

� The job's current status

� When it was queued, started, and subsequently finished

statusformat html|xml|xmldtd Default: html

� Use html to view an HTML version of the
Current, Past, and Scheduled Jobs queues in
your browser. This provides the most visually
accessible version of these queues.

� Use xml to view an XML version of the
Current, Past, and Scheduled Jobs queues in
your browser. This provides output useful for
programmatic passing of job status
information, which can be used by other
applications.

� Use xmldtd to view an XML plus in-line data
type dictionary (DTD) version of the jobs
queues in your browser. This also provides
output useful for programmatic passing of job
status information, which can be used by
other applications.

Table 14–2 Valid values for SHOWJOBS parameters

Parameter Valid Values Description
14-14 Oracle9iAS Reports Services Publishing Reports to the Web

Monitoring Performance
Table 14–3 lists and describes the information contained in the RW_SERVER_
QUEUE table:

Table 14–3 Structure of the RW_SERVER QUEUE Table

Column Name Description

JOB_TYPE States whether the job listed is CURRENT, PAST, or SCHEDULED.

JOB_ID System generated job identification number.

JOB_NAME Job submission name (or file name if no value for JOBNAME is
specified).

STATUS_CODE Current status of job. See Table 14–4, " Job Submission Status
Codes" for more information about status codes.

STATUS_MESSAGE Full message text relating to status code (includes Oracle9iAS error
messages if report is terminated).

COMMAND_LINE Complete command line submitted for this job submission.

OWNER User who submitted the job. On the Web, the default user is the OS
user who owns the Web server.

DESTYPE Format of the report output.

DESNAME Name of the report output if not going to the Oracle9iAS Reports
Server cache.

SERVER Oracle9iAS Reports Server to which the report was submitted.

QUEUED Date and time the job submission was received and queued by the
given Oracle9iAS Reports Server.

STARTED Date and time the job submission was run.

FINISHED Date and time the submitted job completed.

LAST_RUN Date and time a scheduled job was last run.

NEXT_RUN Date and time a scheduled job will run.

REPEAT_INTERVAL Frequency on which to run a job.

REPEAT_PATTERN Repeat pattern (for example, every minute, every hour, or every
day).

CACHE_HIT Indicates whether the job result was fetched from cache instead of
running itself.
Tuning Oracle9iAS Reports Services 14-15

Monitoring Performance
Users can view this table if you grant them SELECT access. This will enable them to
query the job submission of interest and determine the job's current status. You can
also give them a view of this data by implementing an Oracle9iAS Reports Server
Queue screen. You can implement such a screen by creating a report based directly
on this table. Doing so displays the queue report as a job submission by the user.

Conversely, the real-time update of the table with the status of job submissions
makes it very easy for administrators to know exactly how many concurrent users
have requested jobs to be run on the Reports Server.

CACHE_KEY Indicates the cache key used to compare a request with an already
cached result. The key is a string that uniquely indicates a report
output result without considering the time the job was run. For
example, if two requests have the same key, it means they will both
generate the same output if they are running at the same time,
although the outputs may be used for different purposes (e.g., send
to e-mail or save to a file).

Table 14–4 Job Submission Status Codes

Status Code Defined PL/SQL Constant Description for Status Code

0 UNKNOWN No such status

1 ENQUEUED Job is waiting in queue

2 OPENING Server is opening report definition

3 RUNNING Report is currently running

4 FINISHED Job submission has completed successfully.

5 TERMINATED_W_ERR Job has ended with an error

6 CRASHED Engine has crashed during execution of the
job.

7 CANCELED Job was canceled by user request

8 SERVER_SHUTDOWN Job was canceled due the Oracle9iAS
Reports Server shutting down.

9 WILL_RETRY Job failed and is queued for RETRY

10 SENDING_OUTPUT Job has completed and is returning output

Table 14–3 Structure of the RW_SERVER QUEUE Table

Column Name Description
14-16 Oracle9iAS Reports Services Publishing Reports to the Web

Monitoring Performance
By counting the number of entries in the RW_SERVER_QUEUE table that have a
status code indicating that the job has been queued but not completed, it is possible
to return an accurate number of the current active users on the server. For example,
you could use the following query:

SELECT Count(*)
FROM RW_SERVER_QUEUE
WHERE STATUS_CODE IN (1, -- ENQUEUED

2, -- OPENING
3) -- RUNNING

AND JOB_TYPE != 'Scheduled'

14.5.4 Updating the Database with Queue Activity
The Reports Server job queue is implemented through the use of a PL/SQL case
API. It functions to update the queue table with the queue information as requests
are made. This implementation is defined in the following path:

ORACLE_HOME\reports\admin\sql\RW_SERVER.SQL

To implement the queue, take the following required steps:

1. Load the rw_server.sql file to a database (this file is included with your
Oracle9iAS Reports Services installation: ORACLE_
HOME\reports\admin\sql).

This creates a schema that owns the report queue information and has execute
privileges on the server queue API.

2. Set the REPOSITORYCONN attribute of the jobStatusRepository element in the
Oracle9iAS Reports Server configuration file (located in ORACLE_
HOME\reports\conf\server_name.conf) to the connection string of the
schema that owns the queue data.

When the server starts, it connects as the defined user and logs job submissions.

Note: While the table contains the date and time a report was
queued, run, and finished, it is not a good idea to use a query based
on the fact that a job has a defined QUEUED and STARTED time
but no FINISHED value. If a report ends due to an unexpected
error, such as invalid input, then the FINISHED column remains
NULL. However, the STATUS_CODE and STATUS_MESSAGE both
indicate there has been a failure and list the cause of that failure.
Tuning Oracle9iAS Reports Services 14-17

Monitoring Performance
Note: If the Oracle9iAS Reports Server and the Oracle database
have been installed on a single, stand-alone Windows NT machine,
then the definition of REPOSITORYCONN can prevent the
automatic startup of the Oracle9iAS Reports Services as
Windows NT boots up. Because the Oracle database service might
not have been started, this prevents the Oracle9iAS Reports Server
from performing the required login. Once the Oracle database has
started, the Oracle9iAS Reports Server can be started manually.
14-18 Oracle9iAS Reports Services Publishing Reports to the Web

Part V

Appendices

Part V contains appendices that provide additional, detailed information about
functioning in the Oracle9iAS Reports Services environment. It includes
information about Reports commands and their associated command line
arguments as well as details about Reports-related environment variables.

Part V contains the following appendices:

� Appendix A, "Command Line Arguments"

� Appendix B, "Reports-Related Environment Variables"

Command Line Argum
A

Command Line Arguments

This appendix contains descriptions and examples of command line arguments that
can be used with one or more of the following commands: rwclient, rwrun,
rwbuilder, rwconverter, rwservlet, rwcgi, and rwserver. Each argument
description includes a table that indicates which commands can use which
argument keywords.

The following topics are discussed in this appendix:

� Command Overview

� Command Line Syntax

� General Usage Notes

� Command Line Arguments

A.1 Command Overview
This section provides a brief description of the commands whose
keywords/arguments are discussed in this appendix, including:

� rwclient

� rwrun

� rwbuilder

� rwconverter

Note: For examples of using command line arguments in your
runtime URL, see Chapter 8, "Running Report Requests".
ents A-1

Command Overview
� rwservlet

� rwcgi

� rwserver

Each command description includes a list of the keywords that can be used with it.
In the command line, you must use the keyword along with its argument. When
you enter a command line, you can use the keywords in any order.

A.1.1 rwclient
The rwclient command parses and transfers a command line to the specified (or
default) Reports Server.

Keywords used with rwclient
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwclient [ACCESSIBLE] [ARRAYSIZE] [AUTHID] [AUTOCOMMIT] [BCC] [BLANKPAGES]
[BUFFERS] [CACHELOB] [CC] [CELLWRAPPER] [CMDFILE] [COPIES] [CUSTOMIZE]
[DATEFORMATMASK] [DELIMITED_HDR] [DELIMITER] [DESFORMAT] [DESNAME] [DESTINATION]
[DESTYPE] [DISTRIBUTE] [EXPIRATION] [EXPRESS_SERVER] [FROM] [IGNOREMARGIN]
[JOBNAME] [JOBTYPE] [LONGCHUNK] [MODE] [MODULE|REPORT] [NONBLOCKSQL]
[NOTIFYFAILURE] [ONFAILURE] [ONSUCCESS] [ORIENTATION] [PAGESIZE] [PDFCOMP]
[PDFEMBED] [READONLY] [REPLYTO] [REPORT|MODULE] [ROLE] [RUNDEBUG] [SCHEDULE]
[SERVER] [SUBJECT] [TOLERANCE] [TRACEMODE] [TRACEOPTS] [USERID]

A.1.2 rwrun
The rwrun command runs a report using the Oracle9iAS Reports Services
in-process server. When you run a .rep file, the PL/SQL is already compiled and
will not be recompiled. If you are running an .rdf file, the PL/SQL is automatically
recompiled, if necessary. It becomes necessary if the report wasn't compiled and
saved from the Reports Builder or the platform or version on which you were
running the report is incompatible with the platform on which it was last compiled
and saved.

Keywords used with rwrun
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwrun [ACCESSIBLE] [ARRAYSIZE] [AUTHID] [AUTOCOMMIT] [BCC] [BLANKPAGES]
[BUFFERS] [CACHELOB] [CC] [CELLWRAPPER] [CMDFILE] [COPIES] [CUSTOMIZE]
A-2 Oracle9iAS Reports Services Publishing Reports to the Web

Command Overview
[DATEFORMATMASK] [DELIMITED_HDR] [DELIMITER] [DESFORMAT] [DESNAME] [DESTINATION]
[DESTYPE] [DISTRIBUTE] [EXPRESS_SERVER] [FROM] [IGNOREMARGIN] [LONGCHUNK] [MODE]
[MODULE|REPORT] [NONBLOCKSQL] [NOTIFYFAILURE] [ONFAILURE] [ONSUCCESS]
[ORIENTATION] [PAGESIZE] [PAGESTREAM] [PDFCOMP] [PDFEMBED] [PRINTJOB] [READONLY]
[REPLYTO] [REPORT|MODULE] [ROLE] [RUNDEBUG] [SAVE_RDF] [SUBJECT] [TRACEFILE]
[TRACEMODE] [TRACEOPTS] [USERID]

A.1.3 rwbuilder
The rwbuilder command invokes the Reports Builder. When you include a
REPORT|MODULE keyword with the rwbuilder command at the command
prompt, then press Enter, the Reports Builder opens with the specified report
highlighted in the Reports Builder Navigator. When no report is specified, the
Reports Builder opens with a Welcome dialog offering you the choice of opening an
existing report or creating a new one.

Keywords used with rwbuilder
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwbuilder [ACCESSIBLE] [ARRAYSIZE] [AUTOCOMMIT] [BLANKPAGES] [BUFFERS]
[CACHELOB] [CMDFILE] [EXPRESS_SERVER] [LONGCHUNK] [MODULE|REPORT] [NONBLOCKSQL]
[ONFAILURE] [ONSUCCESS] [PAGESIZE] [PRINTJOB] [READONLY] [REPORT|MODULE]
[RUNDEBUG] [SAVE_RDF] [TRACEFILE] [TRACEMODE] [TRACEOPTS] [USERID] [WEBSERVER_
DEBUG] [WEBSERVER_DOCROOT] [WEBSERVER_PORT]

A.1.4 rwconverter
The rwconverter command enables you to convert one or more report definitions
or PL/SQL libraries from one storage format to another. For example, you can use
rwconverter to:

� Combine a report file with an XML file to create a new report

� Convert a report stored in an .rdf file to .rep or .rex files, or a .tdf file

� Convert a report stored in a .rex file to an .rdf or .tdf file

Note: When a report is converted to a template, only objects in the
report's header and trailer sections and margin area are used in the
template. Objects in the main section are ignored.
Command Line Arguments A-3

Command Overview
� Convert a library stored in the database to a .pld or .pll file

� Convert a library stored in a .pld file into a database library or a .pll file

� Convert a library stored in a .pll file into a database library of a .pld file

� Batch create a PL/SQL script that batch registers reports in Oracle9iAS Portal

In some cases, rwconverter will automatically compile the report's PL/SQL as
part of the conversion process. Provided your conversion destination is not a .rex
file, rwconverter automatically compiles PL/SQL under the following
conditions:

� Converting a .rep file

� Using a .rex file as the source

� Using a report created on another platform as the source

In all other situations, you must compile the report's PL/SQL yourself (e.g., using
Program > Compile > All in the Reports Builder).

Keywords used with rwconverter
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwconverter [BATCH] [CMDFILE] [CUSTOMIZE] [DEST] [DTYPE] [DUNIT] [FORMSIZE]
[NOTIFYFAILURE] [OVERWRITE] [PAGESIZE] [SOURCE] [STYPE] [USERID] [P_OWNER] [P_
SERVERS] [P_NAME] [P_DESCRIPTION] [P_PRIVILEGE] [P_AVAILABILITY] [P_TYPES] [P_
FORMATS] [P_PRINTERS] [P_PFORMTEMPLATE] [P_TRIGGER]

A.1.5 rwservlet
The rwservlet command translates and delivers information between HTTP and
the Reports Server.

Note: When you convert a report that has an attached library,
convert the .pll files attached to the report before converting the
.rdf/.rex file.

Note: Fonts are mapped when a report is opened by the Reports
Builder or Reports Runtime, not during the conversion.
A-4 Oracle9iAS Reports Services Publishing Reports to the Web

Command Overview
Keywords used with rwservlet
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwservlet [ACCESSIBLE] [ARRAYSIZE] [AUTHID] [AUTOCOMMIT] [BCC] [BLANKPAGES]
[BUFFERS] [CACHELOB] [CC] [CELLWRAPPER] [CMDKEY] [CONTENTAREA] [COPIES]
[CUSTOMIZE] [DATEFORMATMASK] [DELAUTH] [DELIMITED_HDR] [DELIMITER] [DESFORMAT]
[DESNAME] [DESTINATION] [DESTYPE] [DISTRIBUTE] [EXPIRATION] [EXPIREDAYS]
[EXPRESS_SERVER] [FROM] [GETJOBID] [GETSERVERINFO] [HELP] [IGNOREMARGIN]
[ITEMTITLE] [JOBNAME] [JOBTYPE] [KILLJOBID] [LONGCHUNK] [MODE] [MODULE|REPORT]
[NONBLOCKSQL] [NOTIFYFAILURE] [NOTIFYSUCCESS] [NOTIFYFAILURE] [ONFAILURE]
[ONSUCCESS] [ORIENTATION] [OUTPUTFOLDER] [OUTPUTPAGE] [PAGEGROUP] [PAGESIZE]
[PAGESTREAM] [PARAMFORM] [PARSEQUERY] [PDFCOMP] [PDFEMBED] [READONLY]
[REPLACEITEM] [REPLYTO] [REPORT|MODULE] [ROLE] [RUNDEBUG] [SCHEDULE] [SERVER]
[SHOWENV] [SHOWENV] [SHOWMAP] [SHOWJOBS] [SHOWMYJOBS] [SITENAME] [STATUSFORMAT]
[STATUSFOLDER] [STATUSPAGE] [SSOCONN] [SUBJECT] [TOLERANCE] [TRACEMODE]
[TRACEOPTS] [URLPARAMETER] [USERID]

A.1.6 rwcgi
Like rwservlet, the rwcgi command translates and delivers information between
HTTP and the Reports Server. Between rwservlet and rwcgi, the rwservlet
command is the recommend choice. Reports CGI is maintained only for backward
compatibility.

Note: When you use the rwservlet command to run a JSP, you
can use all keywords applicable to rwservlet. For more
information on running a JSP with rwservlet, see Chapter 8,
"Running Report Requests".

Note: The following keywords are commands rather than
keyword-value pairs, i.e., commands are entered by themselves
without a corresponding value: showenv, showjobs, showmap,
showmyjobs, showjobid, killjobid, parsequery, showauth,
delauth, getjobid, and getserverinfo. Refer to the syntax description
for each of these keywords for more information.
Command Line Arguments A-5

Command Line Syntax
Keywords used with rwcgi
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

rwcgi [ACCESSIBLE] [ARRAYSIZE] [AUTHID] [AUTOCOMMIT] [BCC] [BLANKPAGES]
[BUFFERS] [CACHELOB] [CC] [CELLWRAPPER] [CONTENTAREA] [COPIES] [CUSTOMIZE]
[DATEFORMATMASK] [DELIMITED_HDR] [DELIMITER] [DESFORMAT] [DESNAME] [DESTINATION]
[DESTYPE] [DISTRIBUTE] [EXPIRATION] [EXPIREDAYS] [EXPRESS_SERVER] [FROM]
[IGNOREMARGIN] [ITEMTITLE] [JOBNAME] [JOBTYPE] [LONGCHUNK] [MODE]
[MODULE|REPORT] [NONBLOCKSQL] [NOTIFYFAILURE] [NOTIFYSUCCESS] [NOTIFYFAILURE]
[ONFAILURE] [ONSUCCESS] [ORIENTATION] [OUTPUTFOLDER] [OUTPUTPAGE] [PAGEGROUP]
[PAGESIZE] [PAGESTREAM] [PARAMFORM] [PDFCOMP] [PDFEMBED] [READONLY]
[REPLACEITEM] [REPLYTO] [REPORT|MODULE] [ROLE] [RUNDEBUG] [SCHEDULE] [SERVER]
[SITENAME] [STATUSFOLDER] [STATUSPAGE] [SUBJECT] [TOLERANCE] [TRACEMODE]
[TRACEOPTS] [USERID]

A.1.7 rwserver
The rwserver command invokes the Reports Server. The Reports Server processes
client requests, which includes ushering them through its various services, such as
authentication and authorization checking, scheduling, caching, and distribution
(including distribution to custom—or pluggable—output destinations). Reports
Server also spawns runtime engines for generating requested reports, fetches
completed reports from the Reports cache, and notifies the client that the job is
ready.

Keywords used with rwserver
The brackets surrounding each keyword in this list are there to create a separation
between keywords and has no other significance.

[AUTHID] [AUTOSTART] [BATCH] [SERVER] [SHUTDOWN] [TRACEOPTS] [INSTALL]
[UNINSTALL]

A.2 Command Line Syntax
Following is the syntax for a command line, where keyword=value is a valid
command line argument:

rwclient REPORT|MODULE=runfile USERID=username/password@database
[[keyword=]value|(value1, value2, ...)] SERVER=server_name

Keywords must be specified and can be used in any order following the command.
A-6 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.3 General Usage Notes
� All file names and paths specified in the client command line refer to files and

directories on the server machine, except for any file specified for the command
file keyword (CMDFILE=). In this case, the CMDFILE specified will be read and
appended to the original command line (of which CMDFILE is a part) before
being sent to the Reports Server. The runtime engine will not re-read the
CMDFILE.

� If you don’t specify a path for a keyword value that includes a file name, The
Reports Server will try to find the file from the REPORTS_PATH environment
variable.

� If the command line contains CMDFILE=, then the command file is read and
appended to the original command line before being sent to Oracle9iAS Reports
Server. The Oracle9iAS Reports Engine does not reread the command file. (See
CMDFILE.)

A.4 Command Line Arguments

A.4.1 ACCESSIBLE
Table A–1 indicates which commands can use the ACCESSIBLE keyword.

Description Use ACCESSIBLE to specify whether accessibility-related features
offered through Reports are enabled (YES) or disabled (NO) for PDF output. No
means it isn’t.

Syntax ACCESSIBLE={YES|NO}

Values YES means accessibility feature is enabled for Reports PDF output.

Default NO

Table A–1 Commands that can use ACCESSIBLE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
Command Line Arguments A-7

Command Line Arguments
A.4.2 ARRAYSIZE
Table A–2 indicates which commands can use the ARRAYSIZE keyword.

Description Use ARRAYSIZE to specify the size (in kilobytes) for use with
ORACLE array processing. Generally, the larger the array size, the faster the report
will run.

Syntax ARRAYSIZE=n

Values A number from 1 through 9999 (note no comma is used with thousands).
This means that Oracle9iAS Reports Runtime can use this number of kilobytes of
memory per query in your report.

Default 10

Usage Notes ARRAYSIZE can also be used with jobs run as JSPs.

A.4.3 AUTHID
Table A–3 indicates which commands can use the AUTHID keyword.

Description Use AUTHID to specify the user name and, optionally, the password
to be used to authenticate users to the restricted Oracle9iAS Reports Server. User
authentication ensures that the users making report requests have access privileges
to run the requested report.

Syntax AUTHID=username[/password]

Values Any valid user name and, optionally, password created in Oracle9iAS
Portal. See your DBA to create new users accounts in Oracle9iAS Portal.

Table A–2 Commands that can use ARRAYSIZE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–3 Commands that can use AUTHID

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes yes
A-8 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Default None

Usage Notes AUTHID can also be used with jobs run as JSPs.

If you have a single sign-on environment, then the Oracle Single Sign-on Server will
perform the authentication step and pass only the user name to the Reports Server
in AUTHID.

A.4.4 AUTOCOMMIT
Table A–4 indicates which commands can use the AUTOCOMMIT keyword.

Description Use AUTOCOMMIT to specify whether database changes (for
example, CREATE) should be automatically committed to the database. Some
non-Oracle databases (for example, SQL Server) require that AUTOCOMMIT=YES.

Syntax AUTOCOMMIT={YES|NO}

Values YES or NO

Default NO

Usage Notes AUTOCOMMIT can also be used with jobs run as JSPs.

A.4.5 AUTOSTART
Table A–5 indicates which commands can use the AUTOSTART keyword.

Description Use AUTOSTART to specify that the Reports Server will
automatically start after initial installation and after a reboot, without requiring a
user logon.

Table A–4 Commands that can use AUTOCOMMIT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–5 Commands that can use AUTOSTART

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no no no yes
Command Line Arguments A-9

Command Line Arguments
Syntax AUTOSTART={YES|NO}

Values YES or NO

Default NO

Usage Notes The AUTOSTART keyword is only recognized on Microsoft
Windows platforms.

A.4.6 BATCH
Table A–6 indicates which commands can use the BATCH keyword.

Description With rwconverter, BATCH suppress all terminal input and output
in order to convert reports/libraries without user intervention. With rwserver,
BATCH turns the server window dialog off (YES) or on (NO) to display or suppress
process messages.

For all relevant commands, the BATCH option tells the server to run in no-UI mode.
How it is used across commands is similar in that no UI is produced by the
application when running from a command line that includes BATCH=YES. For
example, for rwserver this allows the server to be run from scripts and remote
agents so that no server dialog comes up while it is running.

Syntax BATCH={YES|NO}

Default NO

A.4.7 BCC
Table A–7 indicates which commands can use the BCC keyword.

Table A–6 Commands that can use BATCH

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no yes

Table A–7 Commands that can use BCC

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-10 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use BCC to specify e-mail recipient(s) of a blind courtesy copy.

Syntax BCC=someone@foo.com OR BCC="someone@foo.com,sometwo@foo.com"

Values Any one or more valid e-mail addresses.

Default None

Usage Notes To specify more than one e-mail address, enclose the list of addresses
in quotation marks and separate each address in the list with a comma.

Related keywords include BCC, CC, FROM, REPLYTO, and SUBJECT. Note that
DESNAME is used to specify the main recipient(s) of the e-mail.

BCC can also be used with jobs run as JSPs.

A.4.8 BLANKPAGES
Table A–8 indicates which commands can use the BLANKPAGES keyword.

Description Use BLANKPAGES to specify whether to suppress blank pages when
you print a report. Use this keyword when there are blank pages in your report
output that you do not want to print.

Syntax BLANKPAGES={YES|NO}

Values YES means print all blank pages. NO means do not print blank pages.

Default YES

Usage Notes BLANKPAGES is especially useful if your logical page spans
multiple physical pages (or panels), and you wish to suppress the printing of any
blank physical pages.

Note: A blind copy is one in which the names of specified
recipients are not visible (published) to other recipients.

Table A–8 Commands that can use BLANKPAGES

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
Command Line Arguments A-11

Command Line Arguments
A.4.9 BUFFERS
Table A–9 indicates which commands can use the BUFFERS keyword.

Description Use BUFFERS to specify the size of the virtual memory cache in
kilobytes. You should tune this setting to ensure that you have enough space to run
your reports, but not so much that you are using too much of your system's
resources.

Syntax BUFFERS=n

Values A number from 1 through 9999 (note that thousands are not expressed
with any internal punctuation, e.g., a comma or a decimal point). For some
operating systems, the upper limit might be lower.

Default 640

Usage Notes If this setting is changed in the middle of your session, then the
change does not take effect until the next time the report is run.

BUFFERS can also be used with jobs run as JSPs.

A.4.10 CACHELOB
Table A–10 indicates which commands can use the CACHELOB keyword.

Description Use CACHELOB to specify whether to cache retrieved Oracle8 large
object or objects in the temporary file directory on the Reports Server (specified in
the environment variable REPORTS_TMP or by the tempDir property of the engine
element in the Reports Server configuration file, <server_name>.conf>; note that a
tempDir setting overrides a REPORTS_TMP setting.).

Table A–9 Commands that can use BUFFERS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–10 Commands that can use CACHELOB

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
A-12 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Syntax CACHELOB=NO

Values YES means to cache the LOB in the temporary file directory. NO means to
not cache the LOB in the temporary file directory.

Default YES

Usage Notes

� You can only set this option on the command line.

� If the location of the temporary file directory on the server does not have
sufficient available disk space, then it is preferable to set this value to NO.
Setting the value to NO, however, might decrease performance, as the LOB
might need to be fetched from the database multiple times.

� CACHELOB can also be used with jobs run as JSPs.

A.4.11 CC
Table A–12 indicates which commands can use the CC keyword.

Description Use CC to specify e-mail recipient(s) of a courtesy copy.

Syntax CC=someone@foo.com OR CC="someone@foo.com,sometwo@foo.com"

Values Any one or more valid e-mail addresses.

Default None

Usage Notes To specify more than one e-mail address, enclose the list of addresses
in quotation marks and separate each address in the list with a comma.

Related keywords include BCC, CC, FROM, REPLYTO, and SUBJECT. Note that
DESNAME is used to specify the main recipient(s) of the e-mail.

Table A–11 Commands that can use CC

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-13

Command Line Arguments
A.4.12 CELLWRAPPER
Table A–12 indicates which commands can use the CELLWRAPPER keyword.

Description Use CELLWRAPPER to specify the character or characters that
should be placed both before and after the cells in a delimited report output.

Syntax CELLWRAPPER=value

Values Any alphanumeric character or string of alphanumeric characters.

You can also use these reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default None

Usage Notes

� This keyword can only be used if you have specified
DESFORMAT=DELIMITED.

� The cell wrapper is different from the actual delimiter. The cell wrapper
specifies what character appears around delimited data. The delimiter indicates
the boundary or break point between two pieces of data.

Table A–12 Commands that can use CELLWRAPPER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

" means a double quotation mark is placed on each side of the cell

' means a single quotation mark is placed on each side of the cell

tab means a tab is placed on each side of the cell

space means a single space is placed on each side of the cell

return means a new line is placed on each side of the cell

none means no cell wrapper is used

\t means a tab is placed on each side of the cell

\n means a new line is placed on each side of the cell
A-14 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.13 CMDFILE
Table A–13 indicates which commands can use the CMDFILE keyword.

Description Use CMDFILE to call a file that contains one report's command line
arguments. The file called must be an ASCII file, either .txt or any other ASCII-type
file.

CMDFILE differs from the cgicmd.dat file, in that CMDFILE can contain one
command line for one report, where the cgicmd.dat file can contain multiple
key-identified commands for multiple reports.

The CMDFILE keyword enables you to run a report without specifying a large
number of arguments each time you invoke a run command.

Syntax CMDFILE=cmdfile

Values Any valid command file.

Default None

Usage Notes

� With rwservlet and rwcgi, use the key argument to refer to a key in the
cgicmd.dat file in lieu of using the CMDFILE keyword.

� A command file can reference another command file.

� The syntax for a command line you specify in the command file is identical to
that used on the command line.

� Values entered on the command line override values specified in command
files. For example, suppose you specify rwclient from the command line with
COPIES set to 1 and CMDFILE set to RUNONE (a command file). The
RUNONE file also specifies a value for COPIES, but it is set to 2. The value
specified for COPIES in the command line (1) overrides the value specified for
COPIES in the RUNONE file (2). Only one copy of the report will be generated.

� The value for this keyword might be operating system-specific.

Table A–13 Commands that can use CMDFILE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes yes no no no
Command Line Arguments A-15

Command Line Arguments
A.4.14 CMDKEY
Table A–14 indicates which commands can use the CMDKEY keyword.

Description Use CMDKEY to call a key-identified command line in the
cgicmd.dat file. For example:

http:// …/reports/rwservlet?cmddkey=key& …

Syntax CMDKEY=key

Values The name of any key associated with a command line specified in the
cgicmd.dat file.

Default None

Usage Notes When you use CMDKEY with rwservlet, you can use it in any order
in the command line (or the URL, following the question mark). With rwservlet,
you can use additional command line keywords along with CMDKEY.

CMDKEY can also be used with jobs run as JSPs.

A.4.15 CONTENTAREA
Table A–15 indicates which commands can use the CONTENTAREA keyword.

Table A–14 Commands that can use CMDKEY

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes no no

Note: You can also use CMDKEY with modules run as JSPs. For
more information, see Chapter 8, "Running Report Requests".

Table A–15 Commands that can use CONTENTAREA

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-16 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use CONTENTAREA to specify the content area within Oracle Portal
to which report output should be pushed. This keyword is maintained for
backward compatibility with earlier versions of Oracle Portal (i.e., 3.0.9). For
Oracle9iAS Portal, use PAGEGROUP. (See also SITENAME.)

Syntax CONTENTAREA="Name of Portal content area"

Values The name of any valid Oracle Portal content area.

Default None

Usage Notes Use of this keyword is required to push Reports output to Oracle
Portal. Put quotation marks around the value if the value has any character spaces
in it or you are specifying the argument in the cgicmd.dat file.

Relevant keywords include CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP, REPLACEITEM, SCHEDULE,
SITENAME, STATUSFOLDER, STATUSPAGE.

Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.16 COPIES
Table A–16 indicates which commands can use the COPIES keyword.

Description Use COPIES to specify the number of copies of the report output to
print.

Syntax COPIES=n

Table A–16 Commands that can use COPIES

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-17

Command Line Arguments
Values Any valid integer from 1 through 9999 (note that thousands are not
expressed with any internal punctuation, e.g., a comma or a decimal point).

Default Taken from the Initial Value property of the COPIES parameter (the Initial
Value was defined in the Reports Builder at design time).

Usage Notes

� This keyword is ignored if DESTYPE is not PRINTER.

� If COPIES is left blank on the Runtime Parameter Form, then it defaults to one.

A.4.17 CUSTOMIZE
Table A–17 indicates which commands can use the CUSTOMIZE keyword.

Description Use CUSTOMIZE to specify a Reports XML file to be run against the
current report. The Reports XML file contains customizations (for example, changes
to the layout or data model) that change the report definition in some way.

Syntax CUSTOMIZE=filename.xml | (filename1.xml, filename2.xml, …)

Values A file name or list of file names that contain a valid XML report definition,
with path information prefixed to the file name or file names if necessary. (Affixing
paths becomes necessary if the files are not located in a path specified in the
REPORTS_PATH registry or SourceDir property for the engine element).

Default None

Usage Notes CUSTOMIZE can also be used with jobs run as JSPs.

Table A–17 Commands that can use CUSTOMIZE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no yes yes yes no

Note: For more information on customizing reports at runtime
with XML customization files, see Chapter 10, "Customizing
Reports with XML".
A-18 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.18 DATEFORMATMASK
Table A–18 indicates which commands can use the DATEFORMATMASK keyword.

Description Use DATEFORMATMASK to specify how date values display in
your delimited report output.

Syntax DATEFORMATMASK=mask

Values Any valid date format mask.

Default None

Usage Notes This keyword can only be used if you have specified
DESFORMAT=DELIMITED

DATEFORMATMASK can also be used with jobs run as JSPs.

A.4.19 DELAUTH
Table A–19 indicates which commands can use the DELAUTH keyword.

Description Use DELAUTH to delete rwservlet or rwcgi userid cookies.

Syntax http://yourwebserver/yourservletpath/rwservlet/DELAUTH[?]
[server=servername][&authid=username/password]

Table A–18 Commands that can use DATEFORMATMASK

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Note: For valid DATEFORMATMASK values see the Reports
Builder online help topic, "Date and Time Format Mask Syntax."

Table A–19 Commands that can use DELAUTH

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
Command Line Arguments A-19

Command Line Arguments
Values See Syntax.

Default None

Usage Notes Related keywords are SERVER and AUTHID.

A.4.20 DELIMITED_HDR
Table A–20 indicates which commands can use the DELIMITED_HDR keyword.

Description Use DELIMITED_HDR to switch off all boilerplate (such as the Report
header) when running a report with DESFORMAT=DELIMITED.

Syntax DELIMITED_HDR={YES|NO}

Values YES means to turn off all boilerplate text in the delimited output file. NO
means to leave boilerplate text as is in the delimited output file.

Default YES

Usage Notes This keyword can be used only if you have specified
DESFORMAT=DELIMITED.

A.4.21 DELIMITER
Table A–21 indicates which commands can use the DELIMITER keyword.

Description Use DELIMITER to specify the character or characters to use to
separate the cells in your report output.

Syntax DELIMITER=value

Table A–20 Commands that can use DELIMITED_HDR

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–21 Commands that can use DELIMITER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-20 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Values Any alphanumeric character or string of alphanumeric characters, such as:

You can also use these reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default Tab

Usage Notes This keyword can be used only if you have specified
DESFORMAT=DELIMITED.

A.4.22 DESFORMAT
Table A–22 indicates which commands can use the DESFORMAT keyword.

Description Specifies the format for the job output. In bit-mapped environments,
use DESFORMAT to specify the printer driver to be used when DESTYPE is FILE.
In character-mode environments, use it to specify the characteristics of the printer
named in DESNAME.

Syntax DESFORMAT=desformat

, means a comma separates each cell

. means a period separates each cell

tab means a tab separates each cell

space means a space separates each cell

return means a new line separates each cell

none means no delimiter is used

\t means a tab separates each cell

\n means a new line separates each cell

Table A–22 Commands that can use DESFORMAT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-21

Command Line Arguments
Values Any valid destination format not to exceed 1 kilobyte in length. Examples
of valid values for this keyword are listed and described in Table A–23.

Default Taken from the Initial Value property of the DESFORMAT parameter (the
Initial Value was defined in the Reports Builder at design time). When you run a
report via the Reports Builder and DESFORMAT is blank or dflt, then the current
printer driver (specified in File > Choose Printer) is used. If nothing has been
selected in Choose Printer, then Postscript is used by default.

Usage Notes The value or values for this keyword might be case sensitive,
depending on your operating system.

A.4.23 DESNAME
Table A–24 indicates which commands can use the DESNAME keyword.

Table A–23 Valid values for DESFORMAT

Value Description

CHARACTER When the MODE is CHARACTER, the DESFORMAT specifies a
printer definition, such as hpl, hplwide, dec, decwide, decland,
dec180, dflt, or wide.

DELIMITED This report output is sent to a file that can be read by standard
spreadsheet utilities, such as Microsoft Excel. If you do not choose a
delimiter, then the default delimiter is a TAB.

HTML This report output is sent to a file that is in HTML format.

HTMLCSS This report output is sent to a file that includes style sheet extensions.

PDF This report output is sent to a file that is in PDF format and can be
read by a PDF viewer, such as Adobe Acrobat.

POSTSCRIPT This report output is sent to a file that is in Postscript format.

RTF Rich Text Format. This report output is sent to a file that can be read by
word processors (such as Microsoft Word). When you open the file in
MS Word, you must choose View > Page Layout to view all the
graphics and objects in your report.

XML This report output is saved as an XML file. This report can be opened
and read in an XML-supporting browser, or your choice of XML
viewing application.
A-22 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use DESNAME to specify the name of the cache, file, printer,
Oracle9iAS Portal, or e-mail ID (or distribution list) to which the report output will
be sent. To send the report output by e-mail, specify the e-mail ID as you do in your
e-mail application (any SMTP-compliant application). You can specify multiple user
names by separating them with commas, and without spaces. For example:

name,name,name

Syntax DESNAME=desname

Values Any valid cache destination, file name, printer name, e-mail ID, or
OraclePortal, not to exceed 1K in length. For printer names, you can optionally
specify a port. For example:

DESNAME=printer,LPT1:
DESNAME=printer,FILE:

Default Taken from the Initial Value property of the DESNAME parameter (the
Initial Value was defined in the Reports Builder at design time). If DESTYPE=FILE
and DESNAME is an empty string, then it defaults to reportname.lis at
runtime.

Usage Notes The argument(s) for this keyword might be case sensitive,
depending on your operating system.

A.4.24 DEST
Table A–25 indicates which commands can use the DEST keyword.

Description Use DEST to specify the name(s) of the converted reports or libraries.

Syntax DEST={dname|(dname1, dname2, …)|pathname}

Table A–24 Commands that can use DESNAME

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–25 Commands that can use DEST

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
Command Line Arguments A-23

Command Line Arguments
Values Any valid report/library name or filename, or a list of valid report/library
names of filenames enclosed in parentheses and separated by commas (e.g.,
(qanda, text, dmast)).

Default If the DEST keyword is not specified, rwconverter uses the following
default names:

� If DTYPE is PLDFILE, then the DEST default name is source.pld.

� If DTYPE is PLLFILE, then the DEST default name is source.pll.

� If DTYPE is RDFFILE, then the DEST default name is source.rdf.

� If DTYPE is REPFILE, then the DEST default name is source.rep.

� If DTYPE is REXFILE, then the DEST default name is source.rex.

� If DTYPE is XMLFILE, then the DEST default name is source.xml.

� If DTYPE is REGISTER, then the DEST default name is the name of the
SQL*Plus script output file (e.g., output.sql).

Usage Notes

� A list of report/library names of filenames must be enclosed in parentheses
with commas separating each entry. For example:

(qanda,test,dmast) or (qanda, test, dmast)

� If you have more destination names than there are source names, the extra
destination names are ignored. If you have fewer destination names than there
are source names, default names will be used after the destination names run
out.

� The value(s) for the DEST keyword may be operating system-specific.

� When DTYPE=REGISTER, multiple destinations are not required. If you list
more than one SQL*Plus script file name for DEST, only the first one is
recognized. The others are ignored.

A.4.25 DESTINATION
Table A–26 indicates which commands can use the DESTINATION keyword.
A-24 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use the DESTINATION keyword to specify the name of an XML file
that defines the distribution for the current run of the report.

Syntax DESTINATION=filename.xml

Values The name of an XML file that defines a report or report section
distribution.

Default None

Usage Notes To enable the DESTINATION keyword, you must specify
DISTRIBUTE=YES on the command line. If both these keywords are specified,
DESTYPE, DESNAME, and DESFORMAT are ignored if they are also specified.

A.4.26 DESTYPE
Table A–27 indicates which commands can use the DESTYPE keyword.

Description Use DESTYPE to specify the type of device that will receive the
report output. If you have created your own pluggable destination via the Reports
Destination API, this is how the destination you created gets called.

Syntax DESTYPE={cache|localFile|file|printer|sysout|mail|oraclePortal|
name_of_pluggable_destination}

Values Table A–28 lists and describes the valid values for the DESTYPE keyword.

Table A–26 Commands that can use DESTINATION

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Note: For more information about creating advanced
distributions, see Chapter 9, "Creating Advanced Distributions".

Table A–27 Commands that can use DESTYPE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-25

Command Line Arguments
Default Taken from the Initial Value property of the DESTYPE parameter (the
Initial Value was defined in the Reports Builder at design time).

A.4.27 DISTRIBUTE
Table A–29 indicates which commands can use the DISTRIBUTE keyword.

Description Use DISTRIBUTE to enable or disable distributing the report output
to multiple destinations, as specified by the distribution list defined in the report
distribution definition (defined in the Reports Builder at design time) or a
distribution XML file.

Table A–28 Valid values for the DESTYPE keyword

Value Description

cache Sends the output directly to Oracle9iAS Reports cache.

localFile Valid only for rwclient, rwcgi, and rwservlet. Sends the
output to a file on the client machine, synchronously or
asynchronously.

file Sends the output to the file on the server named in DESNAME.

printer Sends the output to the printer on the server named in
DESNAME. You must have a printer that the Oracle9iAS
Reports Server can recognize installed and running.

mail Sends the output to the mail users specified in DESNAME. You
can send mail to any mail system that works with SMTP.

OraclePortal Sends the output to Oracle Portal. Relevant keywords include
CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP,
REPLACEITEM, SCHEDULE, SITENAME, STATUSFOLDER,
STATUSPAGE.

sysout Valid only for rwcgi. Sends the output to the client machine's
default output device and forces a synchronous call.

name_of_pluggable_
destination

If you have created your own pluggable destination via the
Reports Destination API, this is what you use to call the
destination you created.

Table A–29 Commands that can use DISTRIBUTE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-26 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Syntax DISTRIBUTE={YES|NO}

Values YES means to distribute the report to the distribution list. NO means to
ignore the distribution list and output the report as specified by the DESNAME,
DESTYPE, and DESFORMAT parameters. NO is fundamentally a debug mode to
allow running a report set up for distribution without actually executing the
distribution.

Default NO

Usage Notes The DISTRIBUTE keyword works in close association with the
DESTINATION keyword. DISTRIBUTE must have a value of YES for the
DESTINATION keyword to take effect. If both these keywords are specified,
DESTYPE, DESNAME, and DESFORMAT are ignored if they are also specified.

A.4.28 DTYPE
Table A–30 indicates which commands can use the DTYPE keyword.

Description Use DTYPE to specify the format to which to convert the reports or
libraries.

Syntax DTYPE={PLDFILE|PLLFILE|RDFFILE|REPFILE|TDFFILE|XMLFILE|JSPFILE
|REGISTER}

Values The following values apply:

� PLDFILE means the converted PL/SQL libraries will be stored in files in ASCII
format.

� PLLFILE means the converted PL/SQL libraries will be stored in files
containing source code and P-code (compiled PL/SQL).

Note: For more information about creating advanced
distributions, see Chapter 9, "Creating Advanced Distributions".

Table A–30 Commands that can use DTYPE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
Command Line Arguments A-27

Command Line Arguments
� RDFFILE means the converted report(s) will be stored in one or more report
definition files (files with the .rdf extension).

� REPFILE means the converted report(s) will be stored in one or more binary
runfiles (files with the .rep extension).

� REXFILE means the converted report(s) will be stored in one or more text files
(files with the .rex extension).

� TDFFILE means the report will be converted to a template file (files with the
.tdf extension).

� XMLFILE means the converted report(s) will be stored in an XML file (files with
the .xml extension).

� JSPFILE means the converted report(s) will be stored in a JSP file (files with the
.jsp extension).

� REGISTER means that a script file is created to load each report specified by
SOURCE into Oracle9iAS Portal with the RWWWVREG.REGISTER_REPORT
function. Each load function is populated with the necessary information to
register the report in Oracle9iAS Portal. By running the resulting script file in
SQL*Plus against the Oracle9iAS Portal schema, you can batch register multiple
reports in Oracle9iAS Portal.

Default REPFILE

Usage Notes When you try to create a .rep file using rwconverter, the source
report's PL/SQL is automatically compiled. If there are compile errors, an error
message is displayed and the .rep file is not created. To avoid this problem, make
sure you compile the source report's PL/SQL using File > Compile, in the Reports
Builder, before you try to create a .rep file.

When converting a report to a template, only objects in the report's header and
trailer sections and the margin area are used in the template. Objects in the main
section are ignored.

A.4.29 DUNIT
Table A–31 indicates which commands can use the DUNIT keyword.

Table A–31 Commands that can use DUNIT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
A-28 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use DUNIT to specify the destination unit of measurement to which
the report should be converted. If specified, DUNIT must differ from the SOURCE
report's unit of measurement. If unspecified, the SOURCE report's unit of
measurement is used.

Syntax DUNIT={CENTIMETER|CHARACTER|INCH|POINT}

Values

� CENTIMETER means the converted reports will initially use centimeters as the
unit of measurement

� CHARACTER means the converted reports will initially use characters as the
unit of measurement.

� INCH means the converted reports will initially use inches as the unit of
measurement.

� POINT means the converted reports will initially use points as the unit of
measurement

Default Null

A.4.30 EXPIRATION
Table A–32 indicates which command can use the EXPIRATION keyword.

Description Use EXPIRATION to define how long report output can exist in
cache before it is deleted.

See Section 8.8, "Reusing Report Output from Cache" (in Chapter 8) for more
information on duplicate job detection.

Syntax EXPIRATION=time_string

Default None

Values The time string can be in one of two formats:

Table A–32 Commands that can use EXPIRATION

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
Command Line Arguments A-29

Command Line Arguments
� n{unit}, for a number with an optional unit. The unit can be minute(s),
hour(s), or day(s). The default unit is minute(s) if no unit is specified.

� {Mon DD, YYYY} hh:mi:ss am|pm {timezone}, for a date/time format.
Date information is optional. If it isn’t specified, today is assumed. Time zone is
also optional. If it isn’t specified, the Reports Server’s timezone is used. The
date/time is always in a US locale. This format is the same as defined in the
Java DateFormat.MEDIUM type.

A.4.31 EXPIREDAYS
Table A–33 indicates which commands can use the EXPIREDAYS keyword.

Description Use EXPIREDAYS to specify the number of days after which the
reports output pushed to Oracle Portal should be expired.

Syntax EXPIREDAYS={PERMANENT|1 day|2 days|3 days|7 days|14 days|31 days|
60 days|90 days|120 days}

Values PERMANENT (does not expire)|1 day|2 days|3 days|7 days|14 days|
31 days|60 days|90 days|120 days.

Default None

Usage Notes Use of this keyword is optional when you are pushing Reports
output to Oracle Portal. Relevant keywords include CONTENTAREA,
EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP,
REPLACEITEM, SCHEDULE, SITENAME, STATUSFOLDER, STATUSPAGE.

A.4.32 EXPRESS_SERVER
Table A–34 indicates which commands can use the EXPRESS_SERVER keyword.

Table A–33 Commands that can use EXPIREDAYS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no

Table A–34 Commands that can use EXPRESS_SERVER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
A-30 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use EXPRESS_SERVER to specify the Express Server to which you
want to connect.

Syntax EXPRESS_SERVER="server=[server]/domain=[domain]/user=[userid]/
password=[passwd]"

Syntax with RAM EXPRESS_SERVER="server=[server]/domain=[domain]/
user=[userid]/password=[passwd]/ramuser=[ramuserid]/
rampassword=[rampasswd]/ramexpressid=[ramexpid]/
ramserverscript=[ramsscript]/rammasterdb=[ramdb]/
ramconnecttype=[ramconn]"

Values A valid connect string enclosed in double quotes (") where:

server is the Express Server string (for example, ncacn_ip_
tcp:olap2-pc/sl=x/st=x/ct=x/sv=x/). See below
for more details on the server string.

domain is the Express Server domain.

user is the user ID to log on to the Express Server.

password is the password for the user ID.

ramuser is the user ID to log into the RDBMS.

rampassword is the password for the RDBMS.

ramexpressid is the Oracle Sales Analyzer database user ID. This is
required for Oracle Sales Analyzer databases only.

ramserverscript is the complete file name (including the full path) of the
remote database configuration file (RDC) on the server.
This file specifies information such as the location of code
and data databases. Using UNC (Universal Naming
Convention) syntax allows multiple users to use the same
connection to access the data without having to map the
same drive letter to that location. UNC syntax is
\\ServerName\ShareName\ followed by any subfolders
or files.
Command Line Arguments A-31

Command Line Arguments
Parameters The server value contains four parameters that correspond to settings
that are made in the Oracle Express Connection Editor and stored in connection
(XCF) files. All four parameters are required and can be specified in any order.
Table A–35 describes the parameters and their settings:

Default None

Usage Notes

rammasterdb is the name of the Relational Access Manager database to
attach initially. You must specify only the database file
name. This database must reside in a directory that is
included in the path list in ServerDBPath for Express
Server. You can check the ServerDBPath in the File I/O tab
of the Express Configuration Manager dialog box.

ramconnecttype is the type of Express connection. Always specify 0 for a
direct connection.

Table A–35 Settings for parameters used with EXPRESS_SERVER’s server value

Parameter Description Setting

sl Server Login -2: Host (Domain Login)

-1: Host (Server Login)

0: No authentication required

1: Host (Domain Login) and Connect security

2: Host (Domain Login) and Call security

3: Host (Domain Login) and Packet security

4: Host (Domain Login) and Integrity security

5: Host (Domain Login) and Privacy security

Note: Windows NT uses all the settings. UNIX systems
use only the settings 0, -1, and -2. See the Express
Connection Editor Help system for information on these
settings.

st Server Type :1: Express Server

ct Connection
Type

0: Express connection

sv Server Version 1: Express 6.2 or greater
A-32 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
� You can have spaces in the string if necessary (for example, if the user ID is John
Smith) because the entire string is enclosed in quotes.

� If a forward slash (/) is required in the string, then you must use another
forward slash as an escape character. For example, if the domain were tools or
reports, then the command line should be as follows:

EXPRESS_SERVER="server=ncacn_ip_tcp:olap2-pc/sl=0/
st=1/ct=0/sv=1/domain=tools//reports"

� You can use single quotes within the string. They are not treated specially
because the entire string is enclosed in double quotes.

A.4.33 FORMSIZE
Table A–36 indicates which commands can use the FORMSIZE keyword.

Description Use FORMSIZE to specify the size of the Runtime Parameter Form for
the converted report in terms of the destination unit of measurement (DUNIT).

Syntax FORMSIZE=width x height

Values Any valid values in the specified unit of measurement.

Default None

Usage Notes For non-character DUNITs, you can use a decimal to specify
fractions (e.g., 8.5 x 11).

A.4.34 FROM
Table A–37 indicates which commands can use the FROM keyword.

Table A–36 Commands that can use FORMSIZE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

Note: For more information on the Runtime Parameter Form, see
the PARAMFORM keyword.
Command Line Arguments A-33

Command Line Arguments
Description Use FROM to specify the e-mail address of the sender of an e-mail.

Syntax FROM=someone@foo.com

Values Any valid e-mail address.

Default loginid@machine_name

Usage Notes Related keywords include BCC, CC, FROM, REPLYTO, and
SUBJECT. Note that DESNAME is used to specify the main recipient(s) of the
e-mail.

A.4.35 GETJOBID
Table A–38 indicates which commands can use the GETJOBID keyword.

Description Use GETJOBID to get the result output of the Reports Server job with
job ID [n].

Syntax http://yourwebserver/reports/rwservlet/getjobid[n][?]
[server=server_name][&authid=username/password][&statusformat={html|xml|xmldtd}]

Values See Syntax.

Default None

Usage Notes Job must be successfully finished and present in the Reports Server
cache. Use SHOWJOBS to see the current list of jobs. The status format can be html,
xml, or xmldtd to return status in that format. The default is html.

Related keywords are SERVER, AUTHID, and STATUSFORMAT.

Table A–37 Commands that can use FROM

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–38 Commands that can use GETJOBID

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
A-34 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
The STATUSFORMAT parameter is only valid for rwservlet, not for rwcgi.

A.4.36 GETSERVERINFO
Table A–39 indicates which commands can use the GETSERVERINFO keyword.

Description Use GETSERVERINFO to display Reports Server information.

Syntax http://yourwebserver/reports/rwservlet/getserverinfo[?]
[server=server_name][&authid=username/password]

Values See Syntax.

Default None

Usage Notes Related keywords are SERVER and AUTHID.

A.4.37 HELP
Table A–40 indicates which commands can use the HELP keyword.

Description Use HELP to show a help topic that lists the additional commands
you can use with the rwservlet command.

Syntax http://yourwebserver/reports/rwservlet/help

Values See Syntax.

Default None

Table A–39 Commands that can use GETSERVERINFO

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes no no

Table A–40 Commands that can use HELP

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
Command Line Arguments A-35

Command Line Arguments
A.4.38 IGNOREMARGIN
Table A–41 indicates which commands can use the IGNOREMARGIN keyword.

Description Use IGNOREMARGIN to specify whether Reports ignores the printer’s
hardware margin and uses one specified in the report definition’s physical page
margin.

Syntax IGNOREMARGIN={YES|NO}

Values YES means Reports will ignore the printer’s hardware margin and use the
one specified by the report’s physical page margin. NO means Reports will add the
printer’s hardware margin with the report’s physical page margin when it prints
out the report.

Default NO

A.4.39 INSTALL
Table A–42 indicates which commands can use the INSTALL keyword

Table A–42 Commands that can use INSTALL

Description Use INSTALL to configure an instance of the Reports Server on
Microsoft Windows as a service. This argument does not work on UNIX platforms.

Syntax INSTALL REPORTS_SERVER_NAME

Values A valid name for the Reports Server instance

Default none

Table A–41 Commands that can use IGNOREMARGIN

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no no no yes
A-36 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Usage Notes If you use the AUTOSTART keyword with INSTALL, the Reports
Server service will be started automatically after installation and whenever the
system is restarted.

If you use BATCH=YES with INSTALL, then none of the prompts and dialogs that
normally display during installation will appear.

A.4.40 ITEMTITLE
Table A–43 indicates which commands can use the ITEMTITLE keyword.

Description Use ITEMTITLE to specify the display name Oracle Portal should use
for report output. The name will display in Oracle Portal and link to Reports
output.

Syntax ITEMTITLE="Your output title"

Values Any text.

Default The report filename

Usage Notes Use of this keyword is optional when you are pushing Reports
output to Oracle Portal. Put quotation marks around the value if the value has any
character spaces in it or you are specifying the argument in the cgicmd.dat file.

Relevant keywords include CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP, REPLACEITEM, SCHEDULE,
SITENAME, STATUSFOLDER, STATUSPAGE.

A.4.41 JOBNAME
Table A–44 indicates which commands can use the JOBNAME keyword.

Table A–43 Commands that can use ITEMTITLE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–44 Commands that can use JOBNAME

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
Command Line Arguments A-37

Command Line Arguments
Description Use JOBNAME to specify the name for a job to appear in the
Oracle9iAS Reports Queue Manager. It is treated as a comment and has nothing to
do with running the job. If JOBNAME is not specified, then the Oracle9iAS Reports
Queue Manager shows the report name as the job name.

Syntax JOBNAME=string

Values Any job name.

Default None

Usage Notes JOBNAME can also be used with jobs run as JSPs.

A.4.42 JOBTYPE
Table A–45 indicates which commands can use the JOBTYPE keyword.

Description Use JOBTYPE to specify the type of job to be processed by the server. You
can enter any type of job, as long as the Reports Server has an engine to process it.

Syntax JOBTYPE={a job for which the Reports Server has an engine}

Default REPORT

A.4.43 KILLJOBID
Table A–46 indicates which commands can use the KILLJOBID keyword.

Description Use KILLJOBID to kill a Reports Server job with the specified job ID
[n].

Table A–45 Commands that can use JOBTYPE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no

Table A–46 Commands that can use KILLJOBID

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
A-38 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Syntax http://yourwebserver/reports/rwservlet/killjobid[n][?]
[server=server_name][&authid=username/password][&statusformat={html|xml|xmldtd}]

Values See Syntax.

Default None

Usage Notes The job must be current (enqueued or scheduled). Use SHOWJOBS to
see the current list of jobs. The STATUSFORMAT can be set to html, xml, or xmldtd to
return status in that format. The default is html.

Related keywords are SHOWJOBS, SERVER, AUTHID, and STATUSFORMAT.

The STATUSFORMAT parameter is only valid for rwservlet, not for rwcgi.

A.4.44 LONGCHUNK
Table A–47 indicates which commands can use the LONGCHUNK keyword.

Description LONGCHUNK is the size (in kilobytes) of the increments in which
Oracle9iDS Reports Builder retrieves a LONG column value. When retrieving a
LONG value, you might want to retrieve it in increments rather than all at once
because of memory size restrictions. LONGCHUNK applies only to Oracle databases.

Syntax LONGCHUNK=n

Values A number from 1 through 9999 (note that thousands are not expressed
with any internal punctuation, e.g., a comma or a decimal point). For some
operating systems, the upper limit might be lower.

Default 10

Usage Notes LONGCHUNK can also be used with jobs run as JSPs.

A.4.45 MODE
Table A–48 indicates which commands can use the MODE keyword.

Table A–47 Commands that can use LONGCHUNK

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
Command Line Arguments A-39

Command Line Arguments
Description Use MODE to specify whether to run the report in character mode or
bitmap.

Syntax MODE={BITMAP|CHARACTER|DEFAULT}

Values The following values apply:

� BITMAP

� CHARACTER

� DEFAULT means BITMAP.

Default DEFAULT

A.4.46 MODULE|REPORT
Table A–49 indicates which commands can use the MODULE|REPORT keyword.

Description Use MODULE or REPORT to specify the name of the report to run.

Syntax REPORT|MODULE=runfile

Values Any valid runfile (that is, a file with an extension of REP, RDF, JSP, or
XML). If you do not enter a file extension, then the Oracle9iAS Reports Runtime
searches first for a file with extension REP, then extension RDF, then JSP, and then
no extension. Oracle9iAS Reports Runtime uses its REPORTS_PATH search order to
find the file, if the directory path is not prefixed to the file name.

Default None

Table A–48 Commands that can use MODE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–49 Commands that can use MODULE|REPORT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
A-40 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.47 NONBLOCKSQL
Table A–50 indicates which commands can use the NONBLOCKSQL keyword.

Description Use NONBLOCKSQL to specify whether to allow other programs to
execute while Oracle9iAS Reports Runtime is fetching data from the database.

Syntax NONBLOCKSQL={YES|NO}

Values YES means that other programs can run while data is being fetched. NO
means that other programs cannot run while data is being fetched.

Default YES

Usage Notes NONBLOCKSQL can also be used with jobs run as JSPs.

A.4.48 NOTIFYFAILURE
Table A–51 indicates which commands can use the NOTIFYFAILURE keyword.

Description Use NOTIFYFAILURE to specify the recipient(s) of a notification
e-mail should a report request fail. Use this keyword when you configure your
Reports Server to use the notification class. For more information, see the
notification discussion in Chapter 3, "Configuring Oracle9iAS Reports Services".

Syntax NOTIFYFAILURE={name1@mycompany.com,name2@mycompany.com}

Values One or more valid e-mail addresses.

Default None

Table A–50 Commands that can use NONBLOCKSQL

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–51 Commands that can use NOTIFYFAILURE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
Command Line Arguments A-41

Command Line Arguments
Usage Notes The default notification e-mail templates that are used for the body
of the notification e-mail are included with your installation of Oracle9iAS. The
NOTIFYFAILURE template is named failnote.txt, and is located at ORACLE_
HOME\reports\template.

NOTIFYFAILURE can also be used with jobs run as JSPs.

A.4.49 NOTIFYSUCCESS
Table A–52 indicates which commands can use the NOTIFYSUCCESS keyword.

Description Use NOTIFYSUCCESS to specify the recipient(s) of a notification
e-mail should a report request succeed. Use this keyword when you configure your
Reports Server to use the notification class. For more information, see the
notification discussion in Chapter 3, "Configuring Oracle9iAS Reports Services".

Syntax NOTIFYSUCCESS={name1@mycompany.com,name2@mycompany.com}

Values One or more valid e-mail addresses.

Default None

Usage Notes The default notification e-mail templates that are used for the body
of the notification e-mail are included with your installation of Oracle9iAS. The
NOTIFYSUCCESS template is named succnote.txt, and is located at ORACLE_
HOME\reports\template.

NOTIFYSUCCESS can also be used with jobs run as JSPs.

A.4.50 NUMBERFORMATMASK
Table A–53 indicates which commands can use the NUMBERFORMATMASK keyword.

Table A–52 Commands that can use NOTIFYSUCCESS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no

Table A–53 Commands that can use NUMBERFORMATMASK

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-42 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use NUMBERFORMATMASK to specify how number values display
in your delimited report output.

Syntax NUMBERFORMATMASK=mask

Values Any valid number format mask.

Default None

Usage Notes This keyword can only be used if you have specified
DESFORMAT=DELIMITED.

NUMBERFORMATMASK can also be used with jobs run as JSPs.

A.4.51 ONFAILURE
Table A–54 indicates which commands can use the ONFAILURE keyword.

Description Use ONFAILURE to specify whether you want a COMMIT or
ROLLBACK performed if an error occurs and a report fails to complete.

Syntax ONFAILURE={COMMIT|ROLLBACK|NOACTION}

Values COMMIT means perform a COMMIT if a report fails. ROLLBACK means
perform a ROLLBACK if a report fails. NOACTION means do nothing if a report
fails.

Default ROLLBACK, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle9iDS Forms Services) with no USERID
provided.

Note: For valid NUMBERFORMATMASK values see the Reports
Builder online help topic, "Number Format Mask Syntax."

Table A–54 Commands that can use ONFAILURE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
Command Line Arguments A-43

Command Line Arguments
Usage Notes The COMMIT or ROLLBACK for ONFAILURE is performed after
the report fails. Other COMMITs and ROLLBACKs can occur prior to this one. For
more information, see the READONLY command.

ONFAILURE can also be used with jobs run as JSPs.

A.4.52 ONSUCCESS
Table A–55 indicates which commands can use the ONSUCCESS keyword.

Description Use ONSUCCESS to specify that either a COMMIT or ROLLBACK
should be performed when a report is finished running.

Syntax ONSUCCESS={COMMIT|ROLLBACK|NOACTION}

Values COMMIT means perform a COMMIT when a report is done. ROLLBACK
means perform a ROLLBACK when a report is done. NOACTION means do
nothing when a report is done.

Default COMMIT, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle9iDS Forms Services) with no USERID
provided.

Usage Notes The COMMIT or ROLLBACK for ONSUCCESS is performed after
the after-report trigger fires. Other COMMITs and ROLLBACKs can occur prior to
this one. For more information, see the READONLY command.

ONSUCCESS can also be used with jobs run as JSPs.

A.4.53 ORIENTATION
Table A–56 indicates which commands can use the ORIENTATION keyword.

Table A–55 Commands that can use ONSUCCESS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–56 Commands that can use ORIENTATION

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-44 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description ORIENTATION controls the direction in which the pages of the
report will print.

Syntax ORIENTATION={DEFAULT|LANDSCAPE|PORTRAIT}

Values DEFAULT means use the current printer setting for orientation.
LANDSCAPE means landscape orientation (long side at top and bottom).
PORTRAIT means portrait orientation (short side at top and bottom).

Default DEFAULT

Usage Notes

� If ORIENTATION=LANDSCAPE for a character mode report, then you must
ensure that your printer definition file contains a landscape clause.

� Not supported when output to a PCL printer on Motif.

A.4.54 OUTPUTFOLDER
Table A–57 indicates which commands can use the OUTPUTFOLDER keyword.

Description Use OUTPUTFOLDER to specify the name of the Oracle Portal folder
to push Reports output into. This keyword is maintained for backward
compatibility with earlier versions of Oracle Portal (WebDB 2.2 and Oracle Portal
3.0.9). For Oracle9iAS Portal version 2.0, use OUTPUTPAGE.

Syntax OUTPUTFOLDER=Oracle_Reports_Output

Values Any valid folder name used in Oracle9iAS Portal.

Default Oracle_Reports_Output

Usage Notes The value for this keyword is case sensitive. Use of this keyword is
required to push Reports output to Oracle Portal. Put quotation marks around the
value if the value has any character spaces in it or you are specifying the argument
in the cgicmd.dat file.

Table A–57 Commands that can use OUTPUTFOLDER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-45

Command Line Arguments
Relevant keywords include CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP, REPLACEITEM, SCHEDULE,
SITENAME, STATUSFOLDER, STATUSPAGE.

Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.55 OUTPUTPAGE
Table A–58 indicates which commands can use the OUTPUTPAGE keyword.

Description Use OUTPUTPAGE to specify the name of the Oracle Portal page to
push Reports output information into. (For backward compatibility with versions of
Oracle Portal earlier than Oracle9iAS Portal version 2.0, see OUTPUTFOLDER.)

Syntax OUTPUTPAGE=Oracle_Reports_Output

Values Any valid page name used in Oracle Portal.

Default Oracle_Reports_Output

Usage Notes The value for this keyword is case sensitive. Use of this keyword is
optional for pushing Reports output to Oracle Portal. If an output page is not
specified, Oracle9iAS Portal will create a default page named Oracle Reports
Output.

Put quotation marks around the value if the value has any character spaces in it or
you are specifying the argument in the cgicmd.dat file.

Keywords relevant to pushing Reports output to Oracle Portal include
CONTENTAREA, EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER, OUTPUTPAGE,
PAGEGROUP, REPLACEITEM, SCHEDULE, SITENAME, STATUSFOLDER,
STATUSPAGE.

Table A–58 Commands that can use OUTPUTPAGE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-46 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.56 OVERWRITE
Table A–59 indicates which commands can use the OVERWRITE keyword.

Description Use OVERWRITE to specify whether to overwrite existing files with
the converted files.

Syntax OVERWRITE={YES|NO|PROMPT}

Values

� YES means that rwconverter should automatically overwrite any existing files
of the same name.

� NO means not to convert reports and to display a warning message if there are
existing files of the same name.

� PROMPT means to prompt you before overwriting any existing files.

Default NO

A.4.57 P_AVAILABILITY
Table A–60 indicates which commands can use the P_AVAILABILITY keyword.

Table A–60 Commands that can use P_AVAILABILITY

Table A–59 Commands that can use OVERWRITE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
Command Line Arguments A-47

Command Line Arguments
Description P_AVAILABILITY is the name of the availability calendar that
determines when the reports specified will be available for processing. This
keyword is only used when DTYPE=REGISTER.

Syntax P_AVAILABILITY=calendar_name

Values Any valid availability calendar name.

Default none

Usage Notes · The availability calendar must exist in Oracle9iAS Portal before
running the SQL*PLUS script. If it does not, an invalid package may be created.

A.4.58 P_DESCRIPTION
Table A–61 indicates which commands can use the P_DESCRIPTION keyword.

Table A–61 Commands that can use P_DESCRIPTION

Description P_DESCRIPTION is text that provides additional information about
the report. This keyword is only used when DTYPE=REGISTER.

Syntax P_DESCRIPTON=DESCRIPTION_TEXT

Values Any text string.

Default none

A.4.59 P_FORMATS
Table A–62 indicates which commands can use the P_FORMATS keyword. This
keyword is only used when DTYPE=REGISTER.

Table A–62 Commands that can use P_FORMATS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
A-48 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description P_FORMATS is the allowable destination formats for the specified
reports. This keyword is only used when DTYPE=REGISTER.

Syntax P_FORMATS=(HTMLCSS,PDF,...)

Values Any valid destination type (e.g., HTML), or a list of valid destination
types enclosed by parentheses with a comma separating the names (e.g.,
(HTMLCSS,PDF,RTF)).

Default none

A.4.60 P_NAME
Table A–63 indicates which commands can use the P_NAME keyword.

Table A–63 Commands that can use P_NAME

Description P_NAME is the report name displayed in Oracle9iAS Portal. This
keyword is only used when DTYPE=REGISTER.

Syntax P_NAME=REPORT_NAME

Values Any report name.

Default If P_NAME is not specified, the PL/SQL function is populated with the
report definition file name.

Usage Notes Specify P_NAME only when you want to use the same report name
for each report definition file being registered in Oracle9iAS Portal. This argument
is typically left blank.

The report name cannot be prefaced with numeric characters (e.g., 401K_ report is
an invalid file name and my_401K_report is valid).

A.4.61 P_OWNER
Table A–64 indicates which commands can use the P_OWNER keyword.

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
Command Line Arguments A-49

Command Line Arguments
Table A–64 Commands that can use P_OWNER

Description P_OWNER is the Oracle9iAS Portal schema that owns a report's
package, which is created when the report definition files are registered. This
keyword is only used when DTYPE=REGISTER.

Syntax P_OWNER=PORTAL_SCHEMA_NAME

Values Any valid Oracle9iAS Portal schema name.

Default The name of the Oracle9iAS Portal schema to which you are logged on
when you run the SQL*PLUS script file.

A.4.62 P_PFORMTEMPLATE
Table A–65 indicates the commands that can use the P_PFORMTEMPLATE
keyword.

Table A–65 Commands that can use P_PFORMTEMPLATE

Description P_PFORMTEMPLATE is the name of the Oracle9iAS Portal template
that determines the style of the Runtime Parameter Form. This keyword is only
used when DTYPE=REGISTER.

Syntax P_PFORMTEMPLATE=TEMPLATE_NAME

Values Any valid Oracle9iAS Portal template name.

Default none

A.4.63 P_PRINTERS
Table A–66 indicates the commands that can use the P_PRINTERS keyword.

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
A-50 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Table A–66 Commands that can use P_PRINTERS

Description P_PRINTERS is the allowable printers for the specified reports. This
keyword is only used when DTYPE=REGISTER.

Syntax P_PRINTERS=(PRT1,PRT2,...)

Values Any valid printer (e.g., PRT1), or a list of valid printers enclosed by
parentheses with a comma separating the names (e.g., (PRT1,PRT2,PRT3)).

Default none

Usage Note Access to the printer(s) should already exist in Oracle9iAS Portal
before running the SQL*Plus script.

A.4.64 P_PRIVILEGE
Table A–67 indicates which commands can use the P_PRIVILEGE keyword.

Table A–67 Commands that can use P_PRIVILEGE

Description P_PRIVILEGE is the users or roles who have access privileges to run
the specified reports. This keyword is only used when DTYPE=REGISTER.

Syntax P_PRIVILEGE=(SCOTT,JABERS,PMARTIN,...)

Values Any user name or role that Oracle9iAS Portal can recognize (e.g., SCOTT),
or a list of user names or roles enclosed by parentheses with a comma separating
the names (e.g., (SCOTT,JABERS,PMARTIN)).

Default none

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
Command Line Arguments A-51

Command Line Arguments
A.4.65 P_SERVERS
Table A–68 indicates which commands can use the P_SERVERS keyword.

Table A–68 Commands that can use P_SERVERS

Description P_SERVERS is the names of the restricted Reports Servers that can
run the report. This keyword is only used when DTYPE=REGISTER.

Syntax P_SERVERS=(repserver1,repserver2,...)

Values Any valid TNS name of the Reports Server (e.g., repserver), or a list of
valid Reports Server TNS names enclosed by parentheses with a comma separating
the names (e.g., (repserver,acct_server,sales_server)).

Default none

Usage Notes ·Access to the Reports Server(s) should already exist in Oracle9iAS
Portal.

A.4.66 P_TRIGGER
Table A–69 indicates the commands that can use the P_TRIGGERS keyword.

Table A–69 Commands that can use P_TRIGGER

Description P_TRIGGER is a PL/SQL function that is executed when parameter
values are specified on the command line and when users accept the Runtime
Parameter Form. The function must return a boolean value (TRUE or FALSE). For
example:

P_TRIGGER=Is begin IF UPPER(DESTYPE) = 'PRINTER' AND EMPNAME = 'SMITH' THEN
RETURN(TRUE); ELSE RETURN(FALSE); END IF; end;

This keyword is only used when DTYPE=REGISTER.

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
A-52 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Syntax P_TRIGGER=PLSQL_FUNCTION

Values Any valid PL/SQL function that returns a boolean value.

Default none

A.4.67 P_TYPES
Table A–70 indicates which commands can use the P_TYPES keyword.

Table A–70 Commands that can use P_TYPES

Description P_TYPES is the allowable destination types for the specified reports.
This keyword is only used when DTYPE=REGISTER.

Syntax P_TYPES=(CACHE,MAIL,...)

Values Any valid destination type (e.g., CACHE), or a list of valid destination
types enclosed by parentheses with a comma separating the names (e.g.,
(CACHE,MAIL,PRINTER)).

Default none

A.4.68 PAGEGROUP
Table A–93 indicates which commands can use the PAGEGROUP keyword.

Description Use PAGEGROUP to specify the name of the Oracle Portal page group
to push report output to. For WebDB 2.2, use SITENAME instead. For Oracle Portal
3.0, use CONTENTAREA instead. For Oracle9iAS Portal version 2.0 and later, use
PAGEGROUP.

The page group must be created in Oracle Portal before you can use this parameter.

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

Table A–71 Commands that can use PAGEGROUP

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-53

Command Line Arguments
Syntax PAGEGROUP="Name of Oracle Portal page group"

Values Any valid page group used in Oracle Portal.

Default None

Usage Notes Use of this keyword is required to push Reports output to Oracle
Portal. Put quotation marks around the value if the value has any character spaces
in it or you are specifying the argument in the cgicmd.dat file.

Relevant keywords include CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP, REPLACEITEM, SCHEDULE,
SITENAME, STATUSFOLDER, STATUSPAGE.

Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.69 PAGESIZE
Table A–72 indicates which commands can use the PAGESIZE keyword.

Description Use PAGESIZE to set the dimensions of the physical page (that is, the
size of the page that the printer outputs). The page must be large enough to contain
the report. For example, if a frame in a report expands to a size larger than the page
dimensions, then the report is not run.

Syntax PAGESIZE=width x height

Values Any valid page dimensions of the form: page width x page height, where
page width and page height are more than zero. The maximum width and height
depends which unit of measurement was set in the Reports Builder (Edit >

Table A–72 Commands that can use PAGESIZE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes yes yes yes no
A-54 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Preferences > General tab). For inches, the maximum width and height is 512
inches. For centimeters, it is 1312 centimeters. For picas, it is 36,864 picas.

Default For bitmap, 8.5 x 11 inches. For character mode, 80 x 66 characters. If the
report was designed for character mode and is being run or converted on bitmap,
then the following formula is used to determine page size if none is specified:
(default page size * character page size)/default character page size. For example, if
the character page size is 80 x 20, then the bit-mapped page size would be:
((8.5 * 80)/80) x ((11 * 20)/66) = (680/80) x (220/66) = 8.5 x 3.33.

Usage Notes

� On some printers the printable area of the physical page is restricted. For
example, the sheet of paper a printer takes might be 8.5 x 11 inches, but the
printer might only be able to print on an area of 8 x 10.5 inches. If you define a
page width x page height in the Reports Builder that is bigger than the printable
area your printer allows, then clipping might occur in your report output. To
avoid clipping, you can either increase the printable area for the printer (if your
operating system allows it), or you can set the page width x page height to be
the size of the printable area of the page.

� Letter size is 8.5 inches x 11 inches. A4 size is 210mm x 297mm, or 8.25 inches x
11.75 inches.

� If you use the PAGESIZE keyword, then its value overrides the page
dimensions of the report definition.

� A PAGESIZE value entered on the Runtime Parameter Form overrides any
PAGESIZE value entered on the command line.

A.4.70 PAGESTREAM
Table A–73 indicates which commands can use the PAGESTREAM keyword.

Description PAGESTREAM enables or disables page streaming for the report
when formatted as HTML or HTMLCSS output, using the navigation controls set by
either of the following:

Table A–73 Commands that can use PAGESTREAM

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-55

Command Line Arguments
� The Page Navigation Control Type and Page Navigation Control Value
properties in the Report Property Palette.

� PL/SQL in a Before Report trigger (SRW.SET_PAGE_NAVIGATION_HTML)

Syntax PAGESTREAM={YES|NO}

Values YES means to stream the pages. NO means to output the report without
page streaming.

Default NO

A.4.71 PARAMFORM
Table A–74 indicates which commands can use the PARAMFORM keyword.

Description Use PARAMFORM to specify whether to display the Runtime Parameter
Form when you execute a report via CGI or a servlet. PARAMFORM is used only to
supply parameters to paper layout reports, not Web source reports.

Syntax PARAMFORM=YES|NO|HTML

Values YES means the parameter form should be displayed. NO means the
parameter form should not be displayed. HTML means the parameter form should
be displayed in HTML format.

Default NO

Usage Notes Do not use this keyword when running a report in an Oracle Portal
environment. This is because Oracle Portal allows you to set up a Reports runtime
parameter form, which may conflict with a form you specify with the PARAMFORM
keyword.

A.4.72 PARSEQUERY
Table A–75 indicates which commands can use the PARSEQUERY keyword.

Table A–74 Commands that can use PARAMFORM

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
A-56 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use PARSEQUERY to parse an rwservlet query and display the
constructed Reports Server command line.

Syntax http://yourwebserver/reports/rwservlet/parsequery[?]
[server=servername][&authid=username/password]query_string

Values See Syntax.

Default None

A.4.73 PDFCOMP
Table A–76 indicates which commands can use the PDFCOMP keyword.

Description Use PDFCOMP to specify whether PDF output should be compressed.

Syntax PDFCOMP={any value 0 through 9) OR {YES|NO}

Values Any value 0 though 9 or YES (6) or NO (0). A value of 0 means PDF output
will not be compressed. A value of 1 through 9 will compress the PDF output and
permit users to control the compression level. A value of YES equals compression
level 6. A value of NO means compression level 0.

Default 6

A.4.74 PDFEMBED
Table A–77 indicates which commands can use the PDFEMBED keyword.

Table A–75 Commands that can use PARSEQUERY

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no

Table A–76 Commands that can use PDFCOMP

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-57

Command Line Arguments
Description Use PDFEMBED to specify whether Reports will embed the Type1
Postscript font file(s) specified in uifont.ali into PDF output.

Syntax PDFEMBED={YES|NO}

Values YES means that the PDF driver will embed the font(s) specified in the
PDFEMBED parameter of the uifont.ali file into the PDF output. NO means that the
font(s) will not be added to PDF output.

Default YES

A.4.75 PRINTJOB
Table A–78 indicates which commands can use the PRINTJOB keyword.

Description Use PRINTJOB to specify whether the Print Job dialog box should be
displayed before running a report.

Syntax PRINTJOB={YES|NO}

Values YES or NO

Default NO

Usage Notes

� When a report is run as a spawned process (that is, one executable, such as
RWRUN, is called from within another executable, such as RWBUILDER), the
Print Job dialog box does not appear, regardless of PRINTJOB.

� When DESTYPE=MAIL, the Print Job dialog box does not appear, regardless of
PRINTJOB.

Table A–77 Commands that can use PDFEMBED

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–78 Commands that can use PRINTJOB

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no yes no no no no
A-58 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.76 READONLY
Table A–79 indicates which commands can use the READONLY keyword.

Description Use READONLY to request read consistency across multiple queries
in a report. When accessing data from Oracle, read consistency is accomplished by a
SET TRANSACTION READ ONLY statement.

Syntax READONLY={YES|NO}

Values YES requests read consistency. NO means do not provide read consistency.

Default NO

Usage Notes

� This keyword is only useful for reports using multiple queries. Oracle
automatically provides read consistency, without locking, for single query
reports.

� In the Report trigger order of execution, SET TRANSACTION READ ONLY
must be set up before the data fetch occurs.

� READONLY can also be used with jobs run as JSPs.

A.4.77 REPLACEITEM
Table A–80 indicates which commands can use the REPLACEITEM keyword.

Table A–79 Commands that can use READONLY

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Note: Refer to Oracle9i SQL documentation (available on the
Oracle Technology Network: http://otn.oracle.com) for more
information on SET TRANSACTION READ ONLY.

Table A–80 Commands that can use REPLACEITEM

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-59

Command Line Arguments
Description Use REPLACEITEM to specify that the current report output being
pushed to Oracle Portal should replace an earlier version of the same item stored in
the same output target.

Syntax REPLACEITEM={YES|NO}

Values YES specifies that earlier report output should be replaced. NO means do
not replace previous version. In this case, a link to the new output will be added to
a list of links to previous versions of the same report.

Default None

Usage Notes Use of this keyword is optional. Relevant keywords include
CONTENTAREA, EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER, OUTPUTPAGE,
PAGEGROUP, REPLACEITEM, SCHEDULE, SITENAME, STATUSFOLDER,
STATUSPAGE.

A.4.78 REPLYTO
Table A–81 indicates which commands can use the REPLYTO keyword.

Description Use REPLYTO to specify the e-mail address to which replies should
be sent when the sender wants replies to go to someone other than the sender
(specified by the FROM keyword).

Syntax REPLYTO=someone@foo.com

Values Any valid e-mail address.

Default None

Usage Notes Related keywords include BCC, CC, FROM, REPLYTO, and
SUBJECT. Note that DESNAME is used to specify the main recipient(s) of the
e-mail.

Table A–81 Commands that can use REPLYTO

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-60 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.79 REPORT|MODULE
See MODULE|REPORT.

A.4.80 ROLE
Table A–82 indicates which commands can use the ROLE keyword.

Description Use ROLE to specify the database role to be checked for the report at
runtime.

Syntax ROLE={rolename[/rolepassword]}

Values A valid role and (optionally) a role password.

Default None

Usage Notes ROLE can also be used with jobs run as JSPs.

A.4.81 RUNDEBUG
Table A–83 indicates which commands can use the RUNDEBUG keyword.

Description Use RUNDEBUG to turn on error messages/warnings that would
otherwise not be displayed. For example, with RUNDEBUG=YES, you might get
the error message: Frame 1 overlaps but does not contain Frame 2. This situation
may or may not be acceptable, depending on the job being run.

Syntax RUNDEBUG={YES|NO}

Table A–82 Commands that can use ROLE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no

Table A–83 Commands that can use RUNDEBUG

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no
Command Line Arguments A-61

Command Line Arguments
Values YES means display additional error/warning messages. NO means do not
display additional error/warning messages.

Default YES

Usage Notes RUNDEBUG can also be used with jobs run as JSPs.

A.4.82 SAVE_RDF
Table A–84 indicates which commands can use the SAVE_RDF keyword.

Description Use SAVE_RDF to specify a filename for a combined RDF file and
XML customization file. This keyword is useful when you combine an existing RDF
file with a Reports XML customization file using the CUSTOMIZE keyword, and
you wish to save the combination to a new RDF file.

Syntax SAVE_RDF=filename.rdf

Values Any valid file name.

Default None

Usage Notes You can use SAVE_RDF with a JSP file, but only the paper layout
part, not the Web source.

A.4.83 SCHEDULE
Table A–85 indicates which commands can use the SCHEDULE keyword.

Description Use SCHEDULE to set the day, time, and frequency a report should
be run. The default is to run the report once, now. Time values are expressed

Table A–84 Commands that can use SAVE_RDF

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no yes yes no no no no

Table A–85 Commands that can use SCHEDULE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
A-62 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
according to a 24-hour day (i.e., one o'clock is expressed 13:00). To eliminate the
need for quoting the scheduling command, use underscores (_) instead of spaces.
For example, use:

SCHEDULE=every_first_fri_of_month_from_15:53_Oct_23,_1999_retry_3_after_1_hour
SCHEDULE=last_weekday_before_15_from_15:53_Oct_23,_1999_retry_after_1_hour

Or:

SCHEDULE=”every first fri of month from 15:53 Oct 23, 1999 retry 3 after 1 hour”
SCHEDULE=”last weekday before 15 from 15:53 Oct 23, 1999 retry after 1 hour”

Syntax SCHEDULE=string

where the string is:

[FREQ from] TIME [retry {n} + after LEN]

Table A–86 lists and explains the values used in this string.

Default None

A.4.84 SERVER
Table A–87 indicates which commands can use the SERVER keyword.

Table A–86 Values for string used with the SCHEDULE keyword

FREQ hourly | daily | weekly | monthly | {every LEN | DAYREPEAT}} | {last
{WEEKDAYS | weekday | weekend} before {n}+}

LEN {n}+ {minute[s] | hour[s] | day[s] | week[s] | month[s]}

DAYREPEAT {first | second | third | fourth | fifth} WEEKDAYS of month

WEEKDAYS mon | tue | wed | thu | fri | sat | sun

TIME now | CLOCK [DATE]

CLOCK h:m | h:mm | hh:m | hh:mm

DATE today | tomorrow | {MONTHS {d | dd} [,year]}

MONTHS jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
Command Line Arguments A-63

Command Line Arguments
Description Use SERVER to specify the name of the Reports Server you want to
use to run this report.

Syntax SERVER=servername

Values The server name or a TNS service entry name if you're using a 6i
compatible server.

Default The server name specified in the REPORTS_SERVER environment variable
for rwcgi.

Usage Notes For jobs run with rwcgi, you can set the REPORTS_SERVER
environment variable on your Web server machine and omit the SERVER keyword
to process requests using the default server, or you can include the SERVER
keyword to override the default. For jobs run with rwservlet or as a JSP, you can
omit the SERVER keyword if you have specified a default server in the servlet
configuration file, rwservlet.properties; or you can include the SERVER keyword to
override the default.

SERVER can also be used with jobs run as JSPs.

A.4.85 SHOWENV
Table A–88 indicates which commands can use the SHOWENV keyword.

Description Use SHOWENV to display the rwserver configuration file.
(rwservlet.properties).

Syntax http://yourwebserver/reports/rwservlet/showenv[?]
[server=servername][&authid=username/password]

Table A–87 Commands that can use SERVER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes yes

Table A–88 Commands that can use SHOWENV

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
A-64 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Values See Syntax.

Default None

A.4.86 SHOWJOBS
Table A–89 indicates which commands can use the SHOWJOBS keyword.

Description Use SHOWJOBS to display a Web view of Reports Server queue status.

Syntax http://yourwebserver/reports/rwservlet/showjobs[n][?]
[server=server_name][&authid=username/password][&statusformat={html|xml|xmldtd}]

Values See Syntax.

Default None

Usage Notes The name of the Reports Server must be specified implicitly by
environment variable or servlet configuration file, or explicitly in the URL request.
The refresh number [n] is optional. When it is specified, the report’s queue status
will be updated every [n] seconds. The STATUSFORMAT can be set to html, xml, or
xmldtd to return status in that format. The default is html.

Related keywords are SERVER, AUTHID, and STATUSFORMAT.

The STATUSFORMAT parameter is only valid for rwservlet, not for rwcgi.

A.4.87 SHOWMAP
Table A–90 indicates which commands can use the SHOWMAP keyword.

Description Use SHOWMAP to display rwservlet key mappings.

Table A–89 Commands that can use SHOWJOBS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no

Table A–90 Commands that can use SHOWMAP

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes yes no
Command Line Arguments A-65

Command Line Arguments
Syntax http://yourwebserver/reports/rwservlet/showmap[?]
[server=servername][&authid=username/password]

Values See Syntax.

Default None

A.4.88 SHOWMYJOBS
Table A–89 indicates which commands can use the SHOWMYJOBS keyword.

Description Use SHOWMYJOBS to display the Reports Server queue status for a
particular user.

Syntax http://yourwebserver/reports/rwservlet/showmyjobs[?]
[server=server_name][&authid=username/password][&statusformat={html|xml|xmldtd}]

Values See Syntax.

Default None

Usage Notes The STATUSFORMAT can be set to html, xml, or xmldtd to return
status in that format. The default is html.

Related keywords are SERVER, AUTHID, and STATUSFORMAT.

The STATUSFORMAT parameter is only valid for rwservlet, not for rwcgi.

A.4.89 SHUTDOWN
Table A–92 indicates which commands can use the SHUTDOWN keyword.

Table A–91 Commands that can use SHOWMYJOBS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes no no

Table A–92 Commands that can use SHUTDOWN

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no no no yes
A-66 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use SHUTDOWN to shut down a previously running server. You
must also use AUTHID to supply a user name and password.

Syntax SHUTDOWN={NORMAL|IMMEDIATE}

Values NORMAL or IMMEDIATE

Default NORMAL

Usage Notes The user of the SHUTDOWN keyword must be a Reports
Administrative user. If the server has security enabled, it will query the security API
to determine the user’s role eligibility to execute the shutdown (in other words, the
user must be a Reports Administrative user). If security is not enabled, then the user
must nonetheless be a Reports Administrative user defined for that server.

A.4.90 SITENAME
Table A–93 indicates which commands can use the SITENAME keyword.

Description Use SITENAME to specify the name of the site to push report output
to. For Oracle Portal 3.0 users this is the content area name. (See also
CONTENTAREA.) This keyword is maintained for backward compatibility with
earlier versions of Oracle Portal (and WebDB). For Oracle9iAS Portal version 2.0
and later, use PAGEGROUP.

Syntax SITENAME=sitename

Values Any valid site name used in Oracle Portal.

Default None

Usage Notes Use of this keyword is required to push Reports output to Oracle
Portal. Put quotation marks around the value if the value has any character spaces
in it or you are specifying the argument in the cgicmd.dat file.

Table A–93 Commands that can use SITENAME

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-67

Command Line Arguments
Relevant keywords include CONTENTAREA, EXPIREDAYS, ITEMTITLE,
OUTPUTFOLDER, OUTPUTPAGE, PAGEGROUP, REPLACEITEM, SCHEDULE,
SITENAME, STATUSFOLDER, STATUSPAGE.

Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.91 SOURCE
Table A–94 indicates which commands can use the SOURCE keyword.

Description Use SOURCE to specify the report/library or list of reports/libraries
to be converted. The rwconverter command requires that you specify a source
report or library.

Syntax SOURCE={source_name|(source_name1, source_name2, …)}

Values Any valid report/library name or filename, or a list of valid report/library
names or filenames enclosed in parentheses and separated by commas (e.g.,
(qanda, test, dmast)).

Default None

Usage Notes

� SQL wildcard characters (% and _) may be used for reports or libraries that are
stored in the database. For example, R% would fetch all reports stored in the
database that begin with R. All reports that match will be converted.

� A list of report/library names or filenames must be enclosed in parentheses,
with commas separating the names. For example:

(qanda,test,dmast) OR (qanda, test, dmast)

Table A–94 Commands that can use SOURCE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no
A-68 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
� Wildcard characters are invalid for reports/libraries stored in files (i.e., with
extensions of rdf, rep, rex, pld, pll, or xml).

� The value(s) for the SOURCE keyword may be operating system-specific.

� If you are using user-owned Reports Builder tables, reports/libraries from
multiple users must be converted for each user individually.

� To convert reports/libraries, you must have created them or been granted
access to the ones you did not create. If no userid is prefixed to the
report/library name, the userid is assumed to be the current user.

� When DTYPE=REGISTER, you may only want to list report definition files with
common parameters, such as destination types and formats, user access, and
availability calendars.

A.4.92 SSOCONN
Table A–95 indicates which commands can use the SSOCONN keyword.

Description Use SSOCONN to specify one or more connect strings to use to
connect to one or more data sources in a single sign-on environment.

Syntax SSOCONN=key[/type[/conn_str]][,key[/type[/conn_str]]]

For example:

ssoconn=mykey/OracleDB/userid

Values The following information describes the variable values expressed in the
SSOCONN syntax:

� key refers to a connection string value stored in the Oracle Internet Directory
(OID).

� type is a predefined character string that specifies a Reports data source type.
Types provided with your Oracle9iAS installation include OracleDB, JDBCPDS
(Java Database Connectivity Pluggable Data Source), and ExpressPDS (Oracle
Express Pluggable Data Source).

Table A–95 Commands that can use SSOCONN

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes no no
Command Line Arguments A-69

Command Line Arguments
� conn_str is the name of the connection string parameter that rwservlet will
compose to run the report

Default None

Usage Notes

� If multiple data sources are used in the report, use a comma to separate data
source connection strings. For example:

ssoconn=key1/type1/conn_str,key2/type2/conn_str2,key3/type3/conn_str3

� Simplified versions of the SSOCONN argument are also available. Table A–96
provides examples.

� SSOCONN can also be used with jobs run as JSPs.

A.4.93 STATUSFORMAT
Table A–89 indicates which commands can use the STATUSFORMAT keyword.

Table A–96 Simplified versions of the SSOCONN argument

Argument Description

ssoconn=mkey When only the key name is specified, the default type
(Oracle DB) will be used, and the connect parameter is
the USERID keyword.

ssoconn=mkey/PDSApp When both key name and application type are
specified, the connection parameter is the USERID
keyword.

ssoconn=mkey/PDSApp/P_1 When everything is specified, the specified values are
used.

Note: For more information about Reports and single sign-on
(SSO), see Chapter 7, "Data Source Single Sign-On".

Table A–97 Commands that can use STATUSFORMAT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no yes no no
A-70 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Description Use STATUSFORMAT to specify the format for the Web view of
Reports Server queue status.

Syntax Reports_URL/rwservlet/showjobs?
server=server_name&statusformat={html|xml|xmldtd}

Values HTML, XML, or XMLDTD. Use HTML to specify that the Reports queue
status output should be in HTML format. Use XML to specify that it should be in
XML format. Use XMLDTD to specify that it should be in XML format with in-line
Data Type Definition information.

Default HTML

Usage Notes Use STATUSFORMAT in conjunction with the SHOWJOBS and
SHOWMYJOBS keywords.

A.4.94 STATUSFOLDER
Table A–98 indicates which commands can use the STATUSFOLDER keyword.

Description Use STATUSFOLDER to specify the folder to push status information
into. If this is omitted, a new folder is created called "Oracle_Reports_Status." This
value is retained for backward compatibility with earlier versions of Oracle Portal.
For the current version (Oracle9iAS Portal version 2.0 and above, see
STATUSPAGE.)

Syntax STATUSFOLDER=Oracle_Reports_Status

Values Any valid folder name used in Oracle Portal.

Default Oracle_Reports_Status

Usage Notes The value for this keyword is case sensitive. Use of this keyword is
optional.

Put quotation marks around the value if the value has any character spaces in it or
you are specifying the argument in the cgicmd.dat file.

Table A–98 Commands that can use STATUSFOLDER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-71

Command Line Arguments
Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

A.4.95 STATUSPAGE
Table A–99 indicates which commands can use the STATUSPAGE keyword.

Description Use STATUSPAGE to specify the page to push job status information
into. If this is omitted, a new page is created called "Oracle_Reports_Status." Use
this keyword with Oracle9iAS Portal version 2.0 and later. For backward
compatibility, see STATUSFOLDER.

Syntax STATUSPAGE=Oracle_Reports_Status

Values Any valid page name used in Oracle Portal.

Default Oracle_Reports_Status

Usage Notes The value for this keyword is case sensitive. Use of this keyword is
optional.

Put quotation marks around the value if the value has any character spaces in it or
you are specifying the argument in the cgicmd.dat file.

Oracle Portal objects, such as pages, page groups, and the like, have two names: a
display name and an internal name. When you create objects within Oracle Portal
that you will use with Oracle Reports output, keep the internal name and the
display name the same, following the rules for internal naming specified in the
Oracle Portal online help. This way, when you provide a value for a Portal-related
keyword in a Reports command line, you will not run into problems with which
name to specify.

Table A–99 Commands that can use STATUSPAGE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
A-72 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
A.4.96 STYPE
Table A–100 indicates which commands can use the STYPE keyword.

Description Use STYPE to specify the format of the report(s) or libraries to be
converted.

Syntax STYPE={PLDFILE|PLLFILE|RDFFILE|REXFILE|XMLFILE|JSPFILE}

Values Use any one of the following values:

� PLDFILE means the source PL/SQL libraries are stored in files in ASCII format.

� PLLFILE means the source PL/SQL libraries are stored in files containing
source code and P-code (compiled PL/SQL).

� RDFFILE means the source report(s) are stored in one or more report definition
files (files with the rdf extension).

� REXFILE means the source report(s) are stored in one or more text files (files
with the rex extension).

� XMLFILE means the source report(s) are stored in one or more XML files.

� JSPFILE means the source report(s) are stored in one or more JSP files.

Default RDFFILE

Usage Notes When DTYPE=REGISTER, choose RDDFILE, REXFILE, XML, or
JSPFILE for STYPE.

A.4.97 SUBJECT
Table A–101 indicates which commands can use the SUBJECT keyword.

Table A–100 Commands that can use STYPE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no yes no no no

Table A–101 Commands that can use SUBJECT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes no no yes yes no
Command Line Arguments A-73

Command Line Arguments
Description Use SUBJECT to specify the subject line of an e-mail.

Syntax SUBJECT="any text"

Values Any text.

Default None

Usage Notes Enclose subjects that contain character spaces in quotation marks.
Single-word subjects do not require quotation marks.

Related keywords include BCC, CC, FROM, REPLYTO, and SUBJECT. Note that
DESNAME is used to specify the main recipient(s) of the e-mail.

A.4.98 TOLERANCE
Table A–102 indicates which commands can be used with the TOLERANCE keyword.

Description Use TOLERANCE to set the maximum acceptable time (in minutes)
for reusing a report's cached output when a duplicate job is detected. Setting the
time tolerance on a report reduces the processing time when duplicate jobs are
found.

See Section 8.8, "Reusing Report Output from Cache" (in Chapter 8) for more
information on duplicate job detection.

Syntax TOLERANCE=time_string

Values The time string can be in one of two formats:

� n{unit}, for a number with an optional unit. The unit can be minute(s),
hour(s), or day(s). The default unit is minute(s) if no unit is specified.

� {Mon DD, YYYY} hh:mi:ss am|pm {timezone}, for a date/time format.
Date information is optional. If it isn’t specified, today is assumed. Time zone is
also optional. If it isn’t specified, the Reports Server’s timezone is used. The
date/time is always in a US locale. This format is the same as defined in the
Java DateFormat.MEDIUM type.

Table A–102 Commands that can use TOLERANCE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
A-74 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Default None

Usage Notes

� If TOLERANCE is not specified, then Oracle9iAS Reports Services reruns the
report even if a duplicate report is found in the cache.

� If a report is being processed (that is, in the current job queue) when an
identical job is submitted, then Oracle9iAS Reports Services reuses the output of
the currently running job even if TOLERANCE is not specified or is set to zero.

A.4.99 TRACEFILE
Table A–103 indicates which commands can use the TRACEFILE keyword.

Description TRACEFILE is the name of the file in which trace information is
logged.

Syntax TRACEFILE=tracefile

Values Any valid file name.

Default None

Table A–103 Commands that can use TRACEFILE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no yes yes no no no no

Note: In a runtime environment, or when you are monitoring
Reports Services components, you can use all three TRACE
keywords. But for server security, in a server environment you can
use only TRACEOPTS. This is to prevent files from being written
arbitrarily to the Reports Server’s file system.

Tracing for the Reports Server is configured in the server
configuration file, <server_name>.conf (see Chapter 3). Tracing for
the Reports Servlet is configured in the servlet configuration file,
rwservlet.properties (see Chapter 3). Tracing for individual jobs is
specified from the runtime command line, via the TRACEOPTS
command line argument.
Command Line Arguments A-75

Command Line Arguments
Usage Notes See Section 14.5.1.1, "Trace Overview" for additional information
about how tracing works with Reports.

A.4.100 TRACEMODE
Table A–104 indicates which commands can use the TRACEMODE keyword.

Description TRACEMODE indicates whether new trace information should be
appended to existing information in a trace file or overwrite the entire file.

Syntax TRACEMODE={TRACE_APPEND|TRACE_REPLACE}

Values TRACE_APPEND adds the new information to the end of the file. TRACE_
REPLACE overwrites the file.

Default TRACE_APPEND

Usage Notes See Section 14.5.1.1, "Trace Overview" for additional information
about how tracing works with Reports.

A.4.101 TRACEOPTS
Table A–105 indicates which commands can use the TRACEOPTS keyword.

Description TRACEOPTS indicates the tracing information that you want to be
logged in the trace file when you run the report.

Syntax TRACEOPTS={TRACE_ERR|TRACE_PRF|TRACE_APP|TRACE_PLS|TRACE_SQL|TRACE_
TMS|TRACE_DST|TRACE_ALL|TRACE_EXC|(TRACE_ERR, TRACE_PLS, …)}

Values The following values apply:

Table A–104 Commands that can use TRACEMODE

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes no

Table A–105 Commands that can use TRACEOPTS

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes no yes yes yes
A-76 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
� A list of options in parentheses means you want all of the enclosed options to
be used. For example, TRACE_OPTS=(TRACE_APP, TRACE_PRF) means you
want TRACE_APP and TRACE_PRF applied.

� TRACE_ALL logs all possible trace information in the trace file.

� TRACE_APP logs trace information on all the report objects in the trace file.

� TRACE_BRK lists all breakpoints in the trace file.

� TRACE_DBG logs debug information.

� TRACE_DST lists distribution lists in the trace file. You can use this information
to determine which section was sent to which destination.

� TRACE_ERR lists error messages and warnings in the trace file.

� TRACE_EXC lists Reports Server exceptions.

� TRACE_INF is a catch-all option that dumps any information not covered by
the other options into the trace file/

� TRACE_LOG duplicates log information in your trace file. If you have specified
a log element, in addition to a trace element, in your server configuration file,
this value will cause information that is sent to the log file to also be sent to the
trace file.

� TRACE_PLS logs trace information on all the PL/SQL objects in the trace file.

� TRACE_PRF logs performance statistics in the trace file.

� TRACE_SQL logs trace information on all the SQL in the trace file.

� TRACE_STA provides server and engine state information, such as initialize,
ready, run, and shut-down.

� TRACE_TMS enters a timestamp for each entry in the trace file.

� TRACE_WRN lists server warning messages.

Default TRACE_ALL

Usage Notes TRACEOPTS can also be used with jobs run as JSPs.

See Section 14.5.1.1, "Trace Overview" for additional information about how tracing
works with Reports.
Command Line Arguments A-77

Command Line Arguments
A.4.102 UNINSTALL
Table A–106 indicates which commands can use the UNINSTALL keyword

Table A–106 Commands that can use UINSTALL

Description Use UNINSTALL to remove an instance of the Reports Server from
Microsoft Windows. This process removes the Reports Server service from the
system. This keyword is ignored on UNIX.

Syntax UNINSTALL REPORTS_SERVER_NAME

Values The name of an existing Reports Server instance

Default none

Usage Notes If you use BATCH=YES with INSTALL, then none of the prompts
and dialogs that normally display during the removal process will appear.

A.4.103 URLPARAMETER
Table A–107 indicates which commands can use the URLPARAMETER keyword.

Description Use URLPARAMETER to specify the URL that is to be fetched with the
URL engine.

Syntax URLPARAMETER=http://webserver_name/pagename.html

Values Any valid URL.

Default None

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no no no no no yes

Table A–107 Commands that can use URLPARAMETER

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes no no no yes yes no
A-78 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
Usage Notes This keyword is relevant when the jobType parameter of the job
element in the Reports Server configuration file is rwurl, and a URL engine is in
place.

A.4.104 USERID
Table A–108 indicates which commands can use the USERID keyword.

Description Use USERID only if you're not using single sign-on. Use USERID to
specify your Oracle user name and password, with an optional database name for
accessing a remote database. If the password is omitted, then a database logon form
opens automatically before the user is allowed to run the report.

If you want users to log on to the database, then omit the password portion of the
USERID keyword from the report request. If you want users to log on every time
they run report requests, then use the Reports key mapping file, cgicmd.dat, to
specify the runtime command, and include the %D argument in the relevant key
mapping entry.

Syntax userid=username[/password][@database]

Values The logon definition must be in one of the following forms and cannot
exceed 512 bytes in length:

username[/password]
username[/password][@database]

Default None

Usage Notes USERID can also be used with jobs run as JSPs.

Table A–108 Commands that can use USERID

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

yes yes yes yes yes yes no

Note: For information on using the cgicmd.dat file, see Chapter 8,
"Running Report Requests".
Command Line Arguments A-79

Command Line Arguments
A.4.105 WEBSERVER_DEBUG
Table A–109 indicates which commands can use the WEBSERVER_DEBUG keyword.

Description Use WEBSERVER_DEBUG for JSP debugging. It creates the
stderr.log and stdout.log files under the docroot/port# directory, and
leaves JSP temporary files under docroot/port#/default and log files under
docroot/port#/log for your inspection.

Syntax WEBSERVER_DEBUG={YES|NO}

Values Yes means create debugging files. No means do not create debugging files.

Default NO

Usage Notes Use this keyword only when you’re running a job as a JSP. Relevant
keywords include WEBSERVER_DEBUG, WEBSERVER_DOCROOT,
WEBSERVER_PORT.

A.4.106 WEBSERVER_DOCROOT
Table A–110 indicates which commands can use the WEBSERVER_DOCROOT
keyword.

Description Use WEBSERVER_DOCROOT to set the Reports Builder document root
directory. All files you reference in your JSP, such as images, HTML, and the like,
should be relative to this directory. By setting the document root to your working
directory, you avoid having to copy these files around.

Syntax WEBSERVER_DOCROOT=REPORTS_TMP/docroot

For example:

Table A–109 Commands that can use WEBSERVER_DEBUG

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no yes no no no no

Table A–110 Commands that can use WEBSERVER_DOCROOT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no yes no no no no
A-80 Oracle9iAS Reports Services Publishing Reports to the Web

Command Line Arguments
WEBSERVER_DOCROOT=c:/temp/docroot

Values The directory to the document root folder in your Reports temporary
folder.

Default None

Usage Notes Use this keyword only when you’re running a job as a JSP. Relevant
keywords include WEBSERVER_DEBUG, WEBSERVER_DOCROOT,
WEBSERVER_PORT.

A.4.107 WEBSERVER_PORT
Table A–111 indicates which commands can use the WEBSERVER_PORT keyword.

Description Use WEBSERVER_PORT to specify the port number an internal Web
server listens to. You can specify a port number (e.g., 3002) or a range of port
numbers (e.g., 3100-3200). If a single port number is specified, Reports tries to start
the internal Web server listening on that port. If that port is in use, it tries to get the
next available port. If a range of port numbers is specified, Reports tries to look for a
free port in that range.

Syntax WEBSERVER_PORT=port number or range of numbers

Values Any valid port number or range of port numbers.

Default The default port is 3000. The default range of ports is 3000-3010.

Usage Notes Use this keyword only when you’re running a job as a JSP. Relevant
keywords include WEBSERVER_DEBUG, WEBSERVER_DOCROOT,
WEBSERVER_PORT.

Table A–111 Commands that can use WEBSERVER_PORT

rwclient rwrun rwbuilder rwconverter rwservlet rwcgi rwserver

no no yes no no no no
Command Line Arguments A-81

Command Line Arguments
A-82 Oracle9iAS Reports Services Publishing Reports to the Web

Reports-Related Environment Vari
B

Reports-Related Environment Variables

Environment variables are parameters that configure the environment that hosts
Oracle9iAS Reports Services. The Oracle9iAS installer automatically defines default
values for relevant environment variables. If you want something other than the
default environment, you can edit the environment variable settings:

� For Windows NT, edit environment variables through the Registry Editor (Start
> Run > Regedit).

� For UNIX, edit environment variables by revising and running the shell script
that defines the initial default values (reports.sh). If you do this, be sure to
keep a backup of the original, unaltered reports.sh file.

Table B–1 lists and describes the environment variables that pertain to Oracle9iAS
Reports Services.

Note: For more information on all NLS environment variables, see
the Oracle9i Globalization Support Guide on the Oracle Technology
Network (http://otn.oracle.com).

Table B–1 Environment variables relevant to Oracle9iAS Reports Services

Variable Description

DEVELOPER_NLS_LANG The language for the Oracle9iDS Reports Builder.
Chapter 12, "NLS and Bidirectional Support" contains
additional detailed information about this
environment variable, including a table of valid
values.

NLS_CALENDAR The calendar system used.
ables B-1

NLS_CREDIT The string used to indicate a positive monetary value.

NLS_CURRENCY The local currency symbol.

NLS_DATE_FORMAT The default format mask used for dates.

NLS_DATE_LANGUAGE The default language used for dates.

NLS_DEBIT The string used to indicate a negative memory value.

NLS_ISO_CURRENCY The ISO currency symbol.

NLS_LANG The language settings used by Oracle9iAS Reports
Services. Chapter 12, "NLS and Bidirectional Support"
contains additional detailed information about this
environment variable, including a table of valid
values.

NLS_LIST_SEPARATOR The character used to separate items in a list.

NLS_MONETARY_CHARACTERS The decimal character and thousands separator for
monetary values.

NLS_NUMERIC_CHARACTERS The decimal character and grouping separator for
numeric values.

NLS_SORT The type of sort used for character data.

REPORTS_COOKIE_EXPIRE (rwcgi only) Determines the expire time of the cookie
in minutes. The default value is 30.

Cookies save encrypted user names and passwords
on the client-side when users log on to a secured
Oracle9iAS Reports Server to run report requests.
When users successfully log on, their browser is sent
an encrypted cookie. When a cookie expires, users
must re-authenticate to run subsequent requests.

REPORTS_DB_AUTH (rwcgi only) Specifies the database authentication
template to be used for logging on to the database.
The default value is dbauth.htm.

REPORTS_ENCRYPTION_KEY (rwcgi only) Specifies the encryption key used to
encrypt the user name and password for the cookie.
The encryption key can be any character string. The
default value is reports9.0.

Table B–1 Environment variables relevant to Oracle9iAS Reports Services

Variable Description
B-2 Oracle9iAS Reports Services Publishing Reports to the Web

REPORTS_CGIDIAGBODYTAGS (rwcgi only) For the Oracle9iAS Reports CGI.
Specifies HTML tags that are inserted as a <BODY…>
tag in the RWCGI diagnostic and debugging output.
For example, you might want to use this environment
variable to set up text and background color or image.

Reports CGI is maintained for backward
compatibility only.

REPORTS_CGIDIAGHEADTAGS (rwcgi only) For the Oracle9iAS Reports CGI.
Specifies HTML tags to insert between <HEAD>
…</HEAD> tags in the RWCGI diagnostic and
debugging output. For example, you might want to
use this environment variable to set up <TITLE> or
<META> tags.

Reports CGI is maintained for backward
compatibility only.

REPORTS_CGIHELP (rwcgi only) For the Oracle9iAS Reports CGI.
Defines URL and URI of the RWCGI help file that
should display when RWCGI is invoked with the
following empty request:

http://<your_webserver>/RWCGI90?

For example, setting it to http://www.yahoo.com
goes to that URL; setting it to myhelpfile.htm
displays the following file:

http://<your_webserver>/myhelpfile.htm

If this parameter is not defined, then a default help
screen is displayed.

Reports CGI is maintained for backward
compatibility only.

REPORTS_CGIMAP (rwcgi only) For the Oracle9iAS Reports CGI.
Defines fully qualified file name and location of the
RWCGI map file if map file configuration is used. For
example:

ORACLE_HOME\reports\conf\cgicmd.dat

Reports CGI is maintained for backward
compatibility only.

Table B–1 Environment variables relevant to Oracle9iAS Reports Services

Variable Description
Reports-Related Environment Variables B-3

REPORTS_CGINODIAG (rwcgi only) Set to YES or NO. For the Oracle9iAS
Reports CGI. When defined, disables all debugging
and diagnostic output, such as help and showmap,
from RWCGI.

For example, the following request does not work
when REPORTS_CGINODIAG is defined:

http://<your_webserver>/rwcgi/help?

Reports CGI is maintained for backward
compatibility only.

REPORTS_PATH Specifies the directories in which Reports components
will automatically search for any files they require.
Separate directories with semicolons or colons,
depending upon the platform.

If you specify a path for the sourceDir attribute of the
engine element in the Reports Server configuration file
(<server_name>.conf), the sourceDir value will
override the values you set here.

REPORTS_SERVER (rwcgi only) Specifies the default Oracle9iAS Reports
Server.

When this environment variable is set, you can omit
the SERVER command line argument in report
requests if you want to process them with the default
server. Conversely, you can include the SERVER
command line argument to override the default you
specify here.

REPORTS_SSLPORT (rwcgi only) If you are using SSL and you want to
use a port number other than 443, then you can use
this variable to set a different port number.The
default value is 443.

REPORTS_SYS_AUTH (rwcgi only) Specifies the authentication template for
displaying the user name and password request
dialog when users run report request to a restricted
Oracle9iAS Reports Server.

REPORTS_TMP Specifies the temporary directory where Reports
development- and server-related temporary files will
automatically (and temporarily) be stored.

Table B–1 Environment variables relevant to Oracle9iAS Reports Services

Variable Description
B-4 Oracle9iAS Reports Services Publishing Reports to the Web

RW Specifies the reports-specific directory within the
Oracle Home. For example:

Windows: RW=d:\ORACLE_HOME\reports

UNIX: RW=ORACLE_HOME/reports

USER_NLS_LANG The language for the Oracle9iAS Reports Runtime
component. Chapter 12, "NLS and Bidirectional
Support" contains additional detailed information
about this environment variable, including a table of
valid values.

Table B–1 Environment variables relevant to Oracle9iAS Reports Services

Variable Description
Reports-Related Environment Variables B-5

B-6 Oracle9iAS Reports Services Publishing Reports to the Web

Batch Registering Reports in Oracle9iAS P
C

Batch Registering Reports in Oracle9iAS

Portal

If you have a number of reports that you wish to register in Oracle9iAS Portal, it is
often preferable to register them as a group in a batch script rather than
individually in the Oracle9iAS Portal user interface. Likewise, if you have a large
number of reports that you wish to unregister, a batch script is more efficient.

� Batch Registering Report Definition Files

� Batch Removing Report Packages

� PL/SQL Batch Registering Function

C.1 Batch Registering Report Definition Files
To batch register reports in Oracle9iAS Portal, you need to perform the following
steps:

1. Run RWCONVERTER to Generate a SQL Script

2. Run the Script in SQL*Plus

C.1.1 Run RWCONVERTER to Generate a SQL Script
To generate a SQL script that you can execute in SQL*Plus to register your reports,
do the following:

1. From the operating system prompt (DOS or UNIX), enter the RWCONVERTER
command with the keywords to batch register the report definition files. For a
ortal C-1

Batch Registering Report Definition Files
description of RWCONVERTER keywords, refer to Appendix A, "Command
Line Arguments".

Following is an example RWCONVERTER command line on Microsoft
Windows:

rwconverter.exe dtype="register" stype="rdffile"
source="(security.rdf,earnings.rdf,acc_pay.rdf)" dest="(output.sql)"
p_owner="Oracle9iAS Portal" p_servers="(repserver,acct_server)"
p_description="restricted report" p_privilege="(SCOTT,JABERS,ACCT)"
p_availability="production" p_types="(Cache,printer)"
p_formats="(HTMLCSS,PDF)" p_printers="(sales_printer,acct_printer)"
p_pformTemplate="public.finance_template"
p_trigger="Is begin IF UPPER(DESTYPE) = ''PRINTER'' AND
EMPNAME = ''SMITH'' THEN RETURN(TRUE); ELSE RETURN(FALSE); END IF; end;"

The above command line would generate a SQL script file named output.sql
that contains the following:

SET SERVEROUTPUT ON

VAR STATUS NUMBER;

EXEC :STATUS := RWWWVREG.REGISTER_REPORT (P_NAME=>'Security',
P_OWNER=>'Oracle9iAS Portal', P_SERVERS=>'repserver,acct_server',
P_FILENAME=>'security.rdf', P_DESCRIPTION=>'restricted report',
P_PRIVILEGE=>'SCOTT,JABERS,ACCT', P_AVAILABILITY=>'production’
P_TYPES=>'Cache,printer', P_FORMATS=>'HTMLCSS,PDF)',
P_PRINTERS=>'sales_printer,acct_printer
P_PFORMTEMPLATE=>'public.finance_template' P_PARAMETERS=>'(P_LASTNAME)
(P_SSN)', P_TRIGGER=>'Is begin IF UPPER(DESTYPE) = ''PRINTER'' AND
EMPNAME = ''SMITH''THEN RETURN(TRUE); ELSE RETURN(FALSE); END IF; end;');

EXEC :STATUS := RWWWVREG.REGISTER_REPORT (P_NAME=>'Earnings',
P_OWNER=>'Oracle9iAS Portal', P_SERVERS=>'repserver,acct_server',
P_FILENAME=>'earnings.rdf', P_DESCRIPTION=>'restricted report',
P_PRIVILEGE=>'SCOTT,JABERS,ACCT', P_AVAILABILITY=>'production’

Note: To successfully create a script file with the necessary load
functions, you specify the DTYPE, STYPE, SOURCE, and DEST
arguments. To create a functional package in Oracle9iAS Portal,
you will need to specify the P_SERVERS, P_PRIVILEGE, P_TYPES,
P_FORMATS in addition to the arguments used to create the script
file.
C-2 Oracle9iAS Reports Services Publishing Reports to the Web

Batch Registering Report Definition Files
P_TYPES=>'Cache,printer)', P_FORMATS=>'HTMLCSS,PDF)',
P_PRINTERS=>'sales_printer,acct_printer',
P_PFORMTEMPLATE=>'public.finance_template',
P_TRIGGER='Is begin IF UPPER(DESTYPE) = ''PRINTER'' AND EMPNAME = ''JABERS''
THEN RETURN(TRUE); ELSE RETURN(FALSE); END IF; end;');

EXEC :STATUS := RWWWVREG.REGISTER_REPORT (P_NAME=>'Acc_pay',
P_OWNER=>'Oracle9iAS Portal', P_SERVERS=>'repserver,acct_server',
P_FILENAME=>'acc_pay.rdf', P_DESCRIPTION=>'restricted report',
P_PRIVILEGE=>'SCOTT,JABERS,ACCT', P_AVAILABILITY=>'production'
P_TYPES=>'Cache,printer', P_FORMATS=>'HTMLCSS,PDF',
p_printers=>'sales_printer,acct_printer',
P_PFORMTEMPLATE=>'public.finance_template'
P_TRIGGER=>'Is begin IF UPPER(DESTYPE) = ''PRINTER'' AND
EMPNAME = ''JABERS''THEN RETURN(TRUE); ELSE RETURN(FALSE); END IF; end;');

For more information about the contents of this SQL script file, refer to PL/SQL
Batch Registering Function.

2. Check the reports.log file, which is typically written to the current working
directory, for errors that may have occurred during the conversion process. If
the reports.log file was not generated, then no errors were encountered by
RWCONVERTER.

3. You can now optionally edit the system and user parameter values as desired.
For example, the first RWWWVREG function in the sample script above
generated an additional parameter called P_PARAMETERS. This occurred
because the security.rdf file contains two user-defined parameters, P_
LASTNAME and P_SSN:

P_PARAMETERS=>'(P_LASTNAME)(P_SSN)',

In this case, you can optionally define the default, low, and high values, or a list
of values for each user parameter if you want to restrict the values the user may
enter at runtime. Similarly, if you want to restrict system parameters, such as
COPIES, to limit the number of copies a user can make, you do so by using the
P_PARAMETERS parameter. The edited P_PARAMETERS keyword might look
like the following:

P_PARAMETERS=>'(P_LASTNAME, LOV=LASTNAME_LOV)(P_SSN)
(COPIES, DEFAULT=1,LOW=1,HIGH=2)'

This revised code segment imposes the following restrictions on the report:
Batch Registering Reports in Oracle9iAS Portal C-3

Batch Registering Report Definition Files
� The P_LASTNAME user parameter is limited to the values listed in the
LASTNAME_LOV list of values.

� A user-supplied value for P_SSN is required to validate the P_LASTNAME
value.

� The default value of the COPIES system parameter is one and the number
of printed copies must be in a range from 1 to 2.

4. Save and close the output.sql file.

C.1.2 Run the Script in SQL*Plus
To actually register your reports in Oracle9iAS Portal, you must run the script
generated for you by RWCONVERTER:

1. Start SQL*Plus and log in to the Oracle9iAS Portal schema that you want to
own the packaged procedures.

2. From the SQL*Plus command prompt, execute the script you created with
RWCONVERTER:

@ output.sql

The script will execute and create packages in Oracle9iAS Portal for each report
listed in the script with the specified parameters.

3. Log in to Oracle9iAS Portal as a user with RW_ADMINISTRATOR privileges.

4. Click the Corporate Documents tab.

5. Click Builder.

6. Click the Administer tab.

7. In the Oracle Reports Security portlet, click Oracle Reports Security Settings.

8. In the Reports Definition File Access portlet, enter the P_NAME of one of the
reports you batch registered in your SQL script.

9. Click Edit. The Manage Component page is displayed.

10. Click Edit at the bottom of the page to edit the parameters of the report.

11. Review and edit the parameters as desired.

12. Click OK.

13. Click Close.
C-4 Oracle9iAS Reports Services Publishing Reports to the Web

PL/SQL Batch Registering Function
14. Repeat steps 8 through 13 for each report that you batch registered with your
script.

C.2 Batch Removing Report Packages
To remove many reports from Oracle9iAS Portal at once, do the following:

1. In a text editor, create a SQL script file (e.g., rmv_rdfs.sql) that contains one
RWWWVREG.DEREGISTER_REPORT function call for each report definition
file package that you want to remove. For example:

VAR STATUS NUMBER;
EXEC :STATUS := RWWWVREG.DEREGISTER_REPORT (P_NAME=>'Security');
EXEC :STATUS := RWWWVREG.DEREGISTER_REPORT (P_NAME=>'Earnings');
EXEC :STATUS := RWWWVREG.DEREGISTER_REPORT (P_NAME=>'Acc_pay');

2. Start SQL*Plus and log in to the Oracle9iAS Portal schema that owns the
reports’ packaged procedures.

3. From the SQL*Plus command prompt, execute the script you created in the first
step:

@ rmv_rdfs.sql

The script will execute and remove the packages from Oracle9iAS Portal for
each report listed in the script.

C.3 PL/SQL Batch Registering Function
The SQL script that RWCONVERTER generates for you to batch register reports in
Oracle9iAS consists mainly of calls to the rwwwvreg.register_report function. The
syntax of rwwwvreg.register_report is as follows:

Function Rwwwvreg.register_report(

Note: P_NAME is the name of the report definition file package
you want to remove from Oracle9iAS Portal.

Note: This procedure will not remove the report definition files
from the file system. It only unregisters the reports making them
unavailable from Oracle9iAS Portal. If you want to remove the files,
you must delete them from the file system.
Batch Registering Reports in Oracle9iAS Portal C-5

PL/SQL Batch Registering Function
p_owner varchar2,
p_name varchar2,
p_servers varchar2,
p_filename varchar2,
p_description varchar2,
p_privileges varchar2,
p_availability varchar2,
p_types varchar2,
p_formats varchar2,
p_printers varchar2,
p_pdformTemplate varchar2,
p_parameters varchar2,
p_trigger varchar2)
return number;

-- =0 : succeeded;
-- !=0 : failed;

The table below describes each of the parameters taken by rwwwvreg.register_
report.

Table C–1 rwwwvreg.register_report parameters

Parameter Description

P_OWNER Is the owner of the schema. The default is the current
Oracle9iAS Portal schema that you are logged in to when you
start the SQL*PLUS script.

For example:

P_OWNER=>'Oracle9iAS Portal'

P_NAME Is the name used to identify the report in Oracle9iAS Portal.

P_NAME corresponds to the Name field in the Create Report
Definition File Access wizard.

For example:

P_NAME=>'Earnings'
C-6 Oracle9iAS Reports Services Publishing Reports to the Web

PL/SQL Batch Registering Function
P_SERVERS Is the names of the Reports Servers on which the report
definition files defined in the P_FILENAME parameter have
access privileges. The list of Reports Servers is comma
delimited.

P_FILENAME corresponds to the Reports Servers field in the
Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_SERVERS=>'repserver,acct'

Note: The Reports Servers you list for P_SERVERS must
already be registered in Oracle9iAS Portal. For more
information, refer to Chapter 5, "Controlling User Access".

P_FILENAME Is the name of the report definition file that is being registered.

P_FILENAME corresponds to the Oracle Reports File Name in
the Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_FILENAME=>'earnings.rdf'

P_DESCRIPTION Is a description of the report.

P_DESCRIPTION corresponds to the Description field in the
Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_DESCRIPTION=>'restricted report'

P_PRIVILEGE Is the users or roles given privileges to run the report
definition file defined in P_FILENAME. This list is comma
delimited.

P_PRIVILEGE corresponds to the Grantee list on the Access
tab of the Manage Component page for the report. Note that
you must uncheck Inherit Privileges from Portal DB Provider
in order to see the Grantee list.

For example:

P_PRIVILEGE=>'SCOTT,JABERS,PORTAL90'

Table C–1 rwwwvreg.register_report parameters

Parameter Description
Batch Registering Reports in Oracle9iAS Portal C-7

PL/SQL Batch Registering Function
P_AVAILABILITY Is the name of the availability calendar that determines when
the report definition file defined in the P_FILENAME
parameter will be available for processing.

P_AVAILABILITY corresponds to the Availability Calendar
Name field in the Create Report Definition File Access wizard
and the Edit Report Definition File page.

For example:

P_AVAILABILITY=>'production'

Note: The availability calendar must already exist in
Oracle9iAS Portal. For more information about creating an
availability calendar, see Chapter 5, "Controlling User Access".

P_TYPES Is the destination types to which the report definition file
defined in the P_FILENAME parameter can be sent (e.g., cache,
printer). This list is comma delimited.

P_TYPES corresponds to the Types multiple select box in the
Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_TYPES=>'CACHE,printer'

P_FORMATS The destination formats to which the report definition file
defined in the P_FILENAME parameter can be sent (e.g.,
HTML, PDF). This list is comma delimited.

P_FORMATS corresponds to the Formats multiple select box in
the Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_FORMATS=>'HTMLCSS,PDF'

Table C–1 rwwwvreg.register_report parameters

Parameter Description
C-8 Oracle9iAS Reports Services Publishing Reports to the Web

PL/SQL Batch Registering Function
P_PRINTERS The printers to which the report definition file defined in the
P_FILENAME parameter can print. This list is comma
delimited.

P_PRINTERS corresponds to the Printers multiple select box in
the Create Report Definition File Access wizard and the Edit
Report Definition File page.

For example:

P_PRINTERS=>'sales_printer,acct_printer'

Note: The printers you list for P_PRINTERS must already be
registered in Oracle9iAS Portal. For more information, refer to
Chapter 5, "Controlling User Access".

P_PFORMTEMPLATE Is the parameter form template that determines the page style
of the Runtime Parameter Form.

P_PFORMTEMPLATE corresponds to the Parameter Form
Template field in the Create Report Definition File Access
wizard and the Edit Report Definition File page.

For example:

P_PFORMTEMPLATE=>'public.finance_template'

Table C–1 rwwwvreg.register_report parameters

Parameter Description
Batch Registering Reports in Oracle9iAS Portal C-9

PL/SQL Batch Registering Function
P_PARAMETERS Is the user and system parameters’ default, high, and low
values, or list of values name.

Note: The P_PARAMETERS parameter does not have a
corresponding RWCONVERTER argument. Hence, if you want
to batch import user parameter values, ranges, or lists of
values, you must manually edit the SQL script generated by
RWCONVERTER.

P_PARAMETERS corresponds to the (parameter) Name, LOV,
Low Value, and High Value fields in the Create Report
Definition File Access wizard and the Edit Report Definition
File page.

The default corresponds to the value set in the Runtime
Parameter Form for the specified parameter.

For example:

P_PARAMETERS=>'(P_LASTNAME, LOV=LASTNAME_LOV)
(P_SSN)(COPIES, DEFAULT=1,LOW=1,HIGH=2)'

where:

P_LASTNAME, P_SSN, and COPIES are parameter names.

LOV is the name of the list of values.

DEFAULT is the default value.

LOW is the low value in a range of values.

HIGH is the high value in a range of values.

P_TRIGGER Is the validation trigger written in PL/SQL that returns a
boolean statement (e.g., true (succeeded) or false (failed)).

P_TRIGGER corresponds to the text box in the Create Report
Definition File Access wizard and the Edit Report Definition
File page.

For example:

P_TRIGGER=>'Is begin
IF UPPER(DESTYPE) = ''PRINTER'' AND

EMPNAME = ''SMITH''
THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END IF;
end;'

Table C–1 rwwwvreg.register_report parameters

Parameter Description
C-10 Oracle9iAS Reports Services Publishing Reports to the Web

Index

A
access controls, 5-6 to 5-21

availability calendar, combined, 5-10
availability calendar, simple, 5-7
printer, 5-12
report, 5-16
server, 5-14

accessible command keyword, A-7
Advanced Queuing, 11-2, 11-9, 11-10, 11-11, 11-12

dbms_AQadm package, 11-10
dbms_aq.dequeue, 11-13
DEQUEUE, 11-9
ENQUEUE, 11-9
MESSAGES, 11-9

ALTER_SESSION, 12-15
API

cache, 3-7
clients, 3-23
debugging events, 11-7
destinations, 3-13
engine, 3-9
events, 3-15, 11-1 to 11-13
notification, 3-16
pluggable destinations, 4-2, 9-1, 9-33
repository, 3-18
security, 3-11
Web Object Cache, 14-9

architecture
destination, 4-3
NLS, 12-2
Reports Services, 1-1
single sign-on, 7-2

arraysize command keyword, A-8

attach distribution element, 9-11
format attribute, 9-12
instance attribute, 9-12
name attribute, 9-12
srcType attribute, 9-12

attributes, using variables with, 9-2
authentication cookies, 3-35
authid command keyword, 2-5, A-8
authid parameter, events, 11-4
autocommit command keyword, A-9
autostart command keyword, 2-2, A-9
availability calendar, 5-7 to 5-12

combined, 5-10
simple, 5-7

B
batch command keyword, 2-2, 2-3, 2-5, A-10
batch modifications, XML, 10-21
batch registering reports in Oracle 9iAS Portal, C-1
bcc attribute, mail, 9-9
bcc command keyword, A-10
bidirectional support, 12-1 to 12-17
blankpages command keyword, A-11
body distribution element, 9-10

format attribute, 9-11
instance attribute, 9-11
srcType attribute, 9-11

buffers command keyword, A-12
bursting, 9-6

C
cache, 3-8
Index-1

FIFO, 14-7
ojsp:cache tag, 14-9
ojsp:cacheInclude tag, 14-10
ojsp:cacheXMLObj tag, 14-10
ojsp:invalidateCache tag, 14-10
ojsp:useCacheObj tag, 14-10
setting up in JSP, 14-9
strategies, 14-6 to 14-10
Web Object Cache, 14-6, 14-9

cache configuration element, 3-7, 8-12, 14-7
cacheSize attribute, 14-7
class attribute, 3-8

cache destype, 4-5
cache key, 8-11
cacheDir, 3-8
cachelob command keyword, A-12
cacheSize attribute, 14-7
cacheSize property, 3-8
caching, 8-11
callBackTimeOut attribute, 3-10, 14-5
cancelling a job, 11-6
case sensitivity, 2-4
cc attribute, mail, 9-8
cc command keyword, A-13
cellwrapper command keyword, A-14
CGI, 1-2, 1-5

backward compatibility, 3-6
URL syntax, 8-4

cgicmd.dat, 3-30, 8-13 to 8-15
adding entries, 8-14
using, 8-15

character set
unicode, 12-13 to 12-15
UTF8, 12-14

character sets, 12-1, 12-7
design considerations, 12-7
font aliasing, 12-7

class attribute
cache, 3-8
destination, 3-14
engine, 3-9
jobStatusRepository, 3-19
notification, 3-16
security, 3-12, 5-4

classPath attribute, engine, 3-9

cluster, 3-34
cluster configuration element, 3-23
clustering servers, 3-23
clusters, 6-1 to 6-6, 14-5 to 14-6

duplicate job detection, 8-12
linking to via OEM, 13-13
overview, 6-1
setting up, 6-2
submitting requests to, 6-6
viewing via OEM, 13-13

cmdfile command keyword, A-15
cmdkey command keyword, A-16
cmdkey parameter, events, 11-8
command keywords

accessible, A-7
arraysize, A-8
authid, 2-5, A-8
autocommit, A-9
autostart, 2-2, A-9
batch, 2-2, 2-3, 2-5, A-10
bcc, A-10
blankpages, A-11
buffers, A-12
cachelob, A-12
cc, A-13
cellwrapper, A-14
cmdfile, A-15
cmdkey, A-16
contentarea, A-16
copies, A-17
customize, 10-1, 10-3, 10-16, 10-17, 10-21, 10-24,

A-18
dateformatmask, A-19
delauth, A-19
delimited_hdr, A-20
delimiter, A-20
desformat, A-21
desname, A-22
dest, A-23
destination, A-24
destype, A-25
distribute, A-26
dtype, A-27
dunit, A-28
expiration, 1-7, 14-7, 14-8, A-29
Index-2

expiredays, A-30
express_server, A-30
formsize, A-33
from, A-33
getjobid, A-34
getserverinfo, A-35
help, A-35
ignoremargin, A-36
install, A-36, A-78
itemtitle, A-37
jobname, A-37
jobtype, A-38
killjobid, A-38
longchunk, A-39
mode, A-39
module, 10-16, 10-23, A-40
nonblocksql, A-41
notifyfailure, A-41
notifysuccess, A-42
numberformatmask, A-42
onfailure, A-43
onsuccess, A-44
orientation, A-44
ourputpage, A-46
outputfolder, A-45
overwrite, A-47
p_availability, A-47
p_description, A-48
p_formats, A-48
p_name, A-49
p_owner, A-49
p_pformtemplate, A-50
p_printers, A-50
p_privilege, A-51
p_servers, A-52
p_trigger, A-52
p_types, A-53
pagegroup, A-53
pagesize, A-54
pagestream, A-55
paramform, A-56
parsequery, A-56
pdfcomp, A-57
pdfembed, A-57
printjob, A-58

readonly, A-59
replaceitem, A-59
replyto, A-60
report, 10-16, 10-23, A-40
role, A-61
rundebug, A-61
save_rdf, A-62
schedule, 8-10, A-62
server, 2-3, 2-5, A-63
showenv, A-64
showjobs, 1-2, 11-5, 14-13, A-65
showmap, A-65
showmyjobs, A-66
shutdown, 2-5, A-66
sitename, A-67
source, A-68
ssoconn, A-69
statusfolder, A-71
statusformat, A-70
statuspage, A-72
stype, A-73
subject, A-73
tolerance, 1-7, 8-12, 8-13, 14-7, 14-8, A-74
tracefile, A-75
tracemode, A-76
traceopts, A-76
urlparameter, A-78
used with rwbuilder, A-3
used with rwcgi, A-6
used with rwclient, A-2
used with rwconverter, A-4
used with rwrun, A-2
used with rwserver, A-6
used with rwservlet, A-5
userid, A-79
webserver_debug, A-80
webserver_docroot, A-80
webserver_port, A-81

command lines, specifying, 8-5
commands

overview, A-1
rwbuilder, 10-23, A-3
rwcgi, A-5
rwclient, 10-16, 10-17, 10-21, A-2
rwconverter, 10-16, 10-21, A-3
Index-3

rwrun, 10-17, 10-21, 10-23, A-2
rwserver, A-6
rwservlet, A-4
syntax, A-6

compatible configuration element, 3-3, 3-6
version attribute, 3-6

confidential attribute, 4-6, 5-4
configuration, 3-1 to 3-36

considerations, 1-8
OEM, 3-39
proxy information, 3-38
Reports Services security, 5-4
rwservlet.properties, 14-1
URL engine, 3-36
via OEM, 13-12

configuration elements
cache, 3-7, 8-12, 14-7
cluster, 3-23
compatible, 3-3, 3-6
connection, 3-21
destination, 3-13, 4-5
engine, 3-8
identifier, 3-26
job, 3-14
jobStatusRepository, 3-18, 14-17
log, 3-17
notification, 3-15
orbClient, 3-22
persistFile, 3-3, 3-25
pluginParam, 3-27, 9-9
queue, 3-24
security, 3-11, 5-3
server, 3-5
trace, 3-19

configuration files
Reports Server, 3-2
rwserverconf.dtd, 3-4
rwserver.template, 3-3
rwservlet.properties, 3-3

configuration, Reports Server, 1-8
connection configuration element, 3-21

idleTimeOut attribute, 3-22
maxConnect attribute, 3-22

connection strings, 7-5
contentarea command keyword, A-16

cookie, 7-2
cookieexpire, rwservlet.properties, 3-35
copies attribute

printer, 9-19
copies command keyword, A-17
current jobs queue, 13-4
Custom Tag Handler, 1-5
customize command keyword, 10-1, 10-3, 10-21,

10-24, A-18
customize keyword, 10-17

D
DAS, see Delegation Administration Service
data models, creating, 10-9 to 10-16
data sources

creating via XML, 10-9
group hierarchies via XML, 10-11
linking via XML, 10-10

Data Type Dictionary
distribution.dtd, 9-33

data type dictionary
distribution.dtd, 9-2
reports.dtd, 10-2
rwserverconf.dtd, 3-2, 3-4

data types
DATE, 12-3
NUMBER, 12-3

database authentication cookies, 3-35
database triggers, 11-8
dateformatmask command keyword, A-19
day names, language for, 12-8
db_sys_diffauth, rwservlet.properties, 3-31
db_sys_sameauth, rwservlet.properties, 3-31
dbauth, rwservlet.properties, 3-31
dbms_AQadm package, 11-10
dbms_aq.dequeue, 11-13
debugging events, 11-7
delauth command keyword, A-19
Delegated Administration Service, 5-6, 7-2, 7-4
delimited_hdr command keyword, A-20
delimiter command keyword, A-20
DEQUEUE, 11-9
dequeuing, creating procedure, 11-12
desformat command keyword, A-21
Index-4

desname command keyword, A-22
dest command keyword, A-23
destination

classes, 4-5
destypes, 4-5
valid values, 4-5

destination architecture, 4-3
destination command keyword, A-24
destination configuration element, 3-13, 4-5

class attribute, 3-14
destype attribute, 3-14

destination types, 3-13, 4-4
destinations distribution element, 9-4
destype attribute, 3-14, 4-5

cache, 4-5
file, 4-5
mail, 4-5
oraclePortal, 4-5
printer, 4-5

destype command keyword, A-25
destype distribution element, 9-19

id attribute, 9-21
instance attribute, 9-21
name attribute, 9-21

DEVELOPER_NLS_LANG, 12-9, 12-13, B-1
diagbodytags, rwservlet.properties, 3-35
diagheadtags, rwservlet.properties, 3-35
diagnostic, rwservlet.properties, 3-31
direction, of language, 12-8
dist parameter, events, 11-9
distribute command keyword, A-26
distribution, 9-1 to 9-33

bursting, 9-6
distribution elements

attach, 9-11
body, 9-10
destinations, 9-4
destype, 9-19
file, 9-16
foreach, 9-5
include, 9-13
mail, 9-7
printer, 9-18
property, 9-22

distribution examples, 9-22 to 9-33

file, 9-28
foreach, 9-22
mail, 9-25
printer, 9-29

distribution overview, 9-1 to 9-2
distribution, using XML file, 9-32
distribution.dtd, 9-2, 9-33
distribution.xsl, 9-33
documentation

related documents, xxi
structure of this manual, xx

DTD, see data type dictionary
dtype command keyword, A-27
dunit command keyword, A-28
duplicate job detection, 8-12

E
elements, see distribution, customization, or

configuration
encrypted attribute, 3-12, 4-6, 5-4
encryption, 4-6, 5-4
encryptionkey, rwservlet.properties, 3-35
engine configuration element, 3-8, 14-2

callBackTimeOut attribute, 3-10, 14-5
class attribute, 3-9
classPath attribute, 3-9
engLife attribute, 3-10, 14-4
id attribute, 3-9
initEngine attribute, 3-9, 14-3
maxEngine attribute, 3-10, 14-3
maxIdle attribute, 3-10, 14-4
minEngine attribute, 3-10, 14-4

engine, tuning, 14-2
engineId attribute, 3-15
engLife attribute, 3-10, 14-4
ENQUEUE, 11-9
enqueuing, creating procedure, 11-11
environment variables

DEVELOPER_NLS_LANG, 12-9, B-1
NLS, 12-15
NLS_CALENDAR, B-1
NLS_CREDIT, B-2
NLS_CURRENCY, B-2
NLS_DATE_FORMAT, B-2
Index-5

NLS_DATE_LANGUAGE, B-2
NLS_DEBIT, B-2
NLS_ISO_CURRENCY, B-2
NLS_LANG, 12-3, B-2
NLS_LIST_SEPARATOR, B-2
NLS_MONETARY_CHARACTERS, B-2
NLS_NUMERIC_CHARACTERS, B-2
NLS_SORT, B-2
PATH, 2-4
REPORTS_CGIDIAGBODYTAGS, B-3
REPORTS_CGIDIAGHEADTAGS, B-3
REPORTS_CGIHELP, B-3
REPORTS_CGIMAP, B-3
REPORTS_CGINODIAG, B-4
REPORTS_COOKIE_EXPIRE, B-2
REPORTS_DB_AUTH, B-2
REPORTS_ENCRYPTION_KEY, B-2
REPORTS_PATH, B-4
REPORTS_SERVER, B-4
REPORTS_SSLPORT, B-4
REPORTS_SYS_AUTH, B-4
REPORTS_TMP, B-4
RW, B-5
USER_NLS_LANG, 12-9, B-5

environment variables, editing, B-1
environment variables, NLS, 12-2 to 12-10
error messages, 3-31, 3-33
error messages, XML, 10-22
errortemplate, 3-33
event-driven publishing, 1-8, 11-1 to 11-13
events

authid parameter, 11-4
cancelling a job, 11-6
cmdkey parameter, 11-8
creating a message queue, 11-10
creating dequeuing procedure, 11-12
creating enqueuing procedure, 11-11
debugging, 11-7
dist parameter, 11-9
gateway parameter, 11-4
invoking a report, 11-8
MyIdent.AuthID, 11-5
MyIdent.GatewayURL, 11-5
MyIdent.JobID, 11-5
MyIdent.ServerName, 11-5

ParamList-Object, 11-2
ParamList-Type, 11-2
report parameter, 11-4, 11-8
server parameter, 11-4
SRW_PARAMETER, 11-2
SRW_PARAMLIST, 11-2, 11-5, 11-10
srw_test.sql, 11-7
SRW.ADD_PARAMETER, 11-3
srwAPIdrop.sql, 11-2
srwAPIgrant.sql, 11-2
srwAPIins.sql, 11-2
SRW.CANCEL_REPORT, 11-7
SRW.CLEAR_PARAMETER_LIST, 11-4
SRW.JOB_IDENT, 11-5
SRW-Package, 11-2
SRW.REMOVE_PARAMETER, 11-3
SRW.REPORT_STATUS, 11-5
SRW.START_DEBUGGING, 11-7
SRW.STATUS_RECORD, 11-5
SRW.STOP_DEBUGGING, 11-7
userid parameter, 11-4, 11-8

examples, distribution, 9-22 to 9-33
file, 9-28
foreach, 9-22
mail, 9-25
printer, 9-29

expiration command keyword, 1-7, 14-7, 14-8, A-29
expiredays command keyword, A-30
express_server command keyword, A-30

F
failed jobs queue, 13-9
fail-safe environment via clustering, 14-5
FIFO, 14-7
file destype, 4-5
file distribution element, 9-16

format attribute, 9-17
id attribute, 9-17
instance attribute, 9-17
name attribute, 9-17

fileName attribute, 3-26
finished jobs queue, 13-6
firewall

proxy information, 3-38
Index-6

font aliasing, 12-7
font mapping, 12-8
font support, NLS, 12-14
fonts, true type big, 12-14
foreach distribution element, 9-5
format attribute

attach, 9-12
body, 9-11
file, 9-17

formsize command keyword, A-33
from attribute, mail, 9-9
from command keyword, A-33

G
gateway parameter, events, 11-4
getjobid command keyword, A-34
getserverinfo command keyword, A-35

H
help command keyword, A-35
help, rwservlet.properties, 3-36
HTML

in debugging output, 3-35
in diagnostic output, 3-35

HTTP Secure Sockets Layer, 1-5
HTTP Server, 1-5, 7-3
HTTPS, 1-5
hyperlink job request, 8-9
hyperlinks, adding via XML, 10-7

I
id attribute

destype, 9-21
engine, 3-9
file, 9-17
mail, 9-8
notification, 3-16
orbClient, 3-23
printer, 9-19
security, 3-12, 5-3

identifier configuration element, 3-26
idleTimeOut attribute, 3-22

ignoremargin command keyword, A-36
image_url, rwservlet.properties, 3-34
include distribution element, 9-13

src attribute, 9-15
initEngine attribute, 3-9, 14-3
in-process server, 1-2, 1-5, 3-33, 14-1
install command keyword, A-36, A-78
instance attribute

attach, 9-12
body, 9-11
destype, 9-21
file, 9-17
printer, 9-19

itemtitle command keyword, A-37

J
Java 2 Enterprise Edition, 1-5
Java Servlet, 1-1
job cancelling, 11-6
job configuration element, 3-14

engineId attribute, 3-15
jobType attribute, 3-15
securityId attribute, 3-15

job queues
managing via OEM, 13-3
viewing via OEM, 13-3

jobname command keyword, A-37
jobs queue

current, 13-4
failed, 13-9
finished, 13-6
scheduled, 13-5

jobs, running, 8-1 to 8-15
jobStatusRepository configuration element, 3-18,

14-17
class attribute, 3-19
repositoryconn attribute, 14-17

jobType attribute, 3-15
jobtype command keyword, A-38
JSP, 1-1, 1-5

Afrikaans character set, 12-11
Albanian character set, 12-11
Arabic character set, 12-11
Basque character set, 12-11
Index-7

Bulgarian character set, 12-11
Byelorussian character set, 12-11
Catalan character set, 12-11
Croatian character set, 12-11
Czech character set, 12-11
Danish character set, 12-11
Dutch character set, 12-11
English character set, 12-11
Esperanto character set, 12-11
Estonian character set, 12-11
Faroese character set, 12-11
Finnish character set, 12-11
French character set, 12-11
Galician character set, 12-11
German character set, 12-11
Greek character set, 12-11
Hebrew character set, 12-11
Hungarian character set, 12-11
Icelandic character set, 12-11
images, 3-34
Inuit languages character set, 12-11
Irish character set, 12-11
Italian character set, 12-11
Japanese character set, 12-11
Korean character set, 12-12
Lapp character set, 12-12
Latvian character set, 12-12
Lithuanian character set, 12-12
Macedonian character set, 12-12
Maltese character set, 12-12
NLS, 12-10 to 12-12
Norwegian character set, 12-12
Polish character set, 12-12
Portuguese character set, 12-12
Romanian character set, 12-12
Russian character set, 12-12
Scottish character set, 12-12
Serbian character set, 12-12
setting up cache, 14-9
Slovak character set, 12-12
Slovenian character set, 12-12
Spanish character set, 12-12
specifying character set, 12-10 to 12-12
Swedish character set, 12-12
taglib, 14-9

Turkish character set, 12-12
Ukrainian character set, 12-12
URL syntax, 8-3
using key mapping with, 8-15
Web Object Cache, 14-6, 14-9

K
key map file, 8-13 to 8-15

adding entries, 8-14
benefits, 8-13
enabling, 8-13
mapping URL parameters, 8-14
reloading, 3-30
restricted run with Parameter Form, 8-15
specifying location, 3-30
using, 8-15

KeyMapFile, 3-30
keywords

accessible, A-7
arraysize, A-8
authid, A-8
autocommit, A-9
autostart, A-9
batch, A-10
bcc, A-10
blankpages, A-11
buffers, A-12
cachelob, A-12
cc, A-13
cellwrapper, A-14
cmdfile, A-15
cmdkey, A-16
contentarea, A-16
copies, A-17
customize, 10-1, 10-3, 10-16, 10-17, 10-21, 10-24,

A-18
dateformatmask, A-19
delauth, A-19
delimited_hdr, A-20
delimiter, A-20
desformat, A-21
desname, A-22
dest, A-23
destination, A-24
Index-8

destype, A-25
distribute, A-26
dtype, A-27
dunit, A-28
expiration, 14-7, 14-8, A-29
expiredays, A-30
express_server, A-30
formsize, A-33
from, A-33
getjobid, A-34
getserverinfo, A-35
help, A-35
ignoremargin, A-36
install, A-36, A-78
itemtitle, A-37
jobname, A-37
jobtype, A-38
killjobid, A-38
longchunk, A-39
mode, A-39
module, 10-16, 10-23, A-40
nonblocksql, A-41
notifyfailure, A-41
notifysuccess, A-42
numberformatmask, A-42
onfailure, A-43
onsuccess, A-44
orientation, A-44
outputfolder, A-45
outputpage, A-46
overwrite, A-47
p_availability, A-47
p_description, A-48
p_formats, A-48
p_formtemplate, A-50
p_name, A-49
p_owner, A-49
p_printers, A-50
p_privilege, A-51
p_servers, A-52
p_trigger, A-52
p_types, A-53
pagegroup, A-53
pagesize, A-54
pagestream, A-55

paramform, A-56
parsequery, A-56
pdfcomp, A-57
pdfembed, A-57
printjob, A-58
readonly, A-59
replaceitem, A-59
replyto, A-60
report, 10-16, 10-23, A-40
role, A-61
rundebug, A-61
save_rdf, A-62
schedule, 8-10, A-62
server, A-63
showenv, A-64
showjobs, 11-5, 14-13, A-65
showmap, A-65
showmyjobs, A-66
shutdown, A-66
sitename, A-67
source, A-68
ssoconn, A-69
statusfolder, A-71
statusformat, A-70
statuspage, A-72
stype, A-73
subject, A-73
tolerance, 8-12, 8-13, 14-7, 14-8, A-74
tracefile, A-75
tracemode, A-76
traceopts, A-76
urlparameter, A-78
used with rwbuilder, A-3
used with rwcgi, A-6
used with rwclient, A-2
used with rwconverter, A-4
used with rwrun, A-2
used with rwserver, A-6
used with rwservlet, A-5
userid, A-79
webserver_debug, A-80
webserver_docroot, A-80
webserver_port, A-81

killjobid command keyword, A-38
Index-9

L
languages

Middle Eastern, 12-12
North African, 12-12

languages, see NLS_LANG
LDAP, 5-4, 7-5
listener, 1-5
log configuration element, 3-17

option attribute, 3-18
longchunk command keyword, A-39

M
mail destype, 4-5
mail distribution element, 9-7

bcc attribute, 9-9
cc attribute, 9-8
from attribute, 9-9
id attribute, 9-8
organization attribute, 9-9
priority attribute, 9-9
replyTo attribute, 9-9
returnReciept attribute, 9-9
subject attribute, 9-9
to attribute, 9-8

managing Reports Services, 13-1 to 13-15
map

URL parameters, key map file, 8-14
maxConnect attribute, 3-22
maxEngine attribute, 3-10, 14-3
maxIdle attribute, 3-10, 14-4
maxQueueSize attribute, 3-25
message 401, 7-4
message queue, creating, 11-10
MESSAGES, 11-9
messages, language for, 12-8
Middle Eastern languages, 12-12
minEngine attribute, 3-10, 14-4
mod_oc4j, 1-5
mod_osso, 7-3
modecommand keyword, A-39
module command keyword, 10-23, A-40
module keyword, 10-16
monitoring Reports Services, 13-1 to 13-15

month names, language for, 12-8
multibyte, 12-1, 12-7, 12-13
multilingual text display, 12-14
MyIdent.AuthID, 11-5
MyIdent.GatewayURL, 11-5
MyIdent.JobID, 11-5
MyIdent.ServerName, 11-5

N
name attribute, 3-27

attach, 9-12
destype, 9-21
file, 9-17
printer, 9-19

name/value pairs, destination, 4-6
National Language Support, see NLS
NLS, 12-1 to 12-17

ALTER_SESSION, 12-15
architecture, 12-2
character sets, 12-7
DEVELOPER_NLS_LANG, 12-9
environment variables, 12-2 to 12-10

NLS_LANG, 12-14
font support, 12-14
JSP, 12-10 to 12-12
language-dependent data, 12-2
language-independent functions, 12-2
NLS_LANG, 12-3, 12-14
translating applications, 12-16
unicode, 12-13 to 12-15
USER_NLS_LANG, 12-9

NLS_CALENDAR, B-1
NLS_CREDIT, B-2
NLS_CURRENCY, B-2
NLS_DATE_FORMAT, B-2
NLS_DATE_LANGUAGE, B-2
NLS_DEBIT, B-2
NLS_ISO_CURRENCY, B-2
NLS_LANG, 12-3, 12-14, 12-15, B-2

American language, 12-4
Arabic language, 12-4
Bulgarian language, 12-4
Canadian French language, 12-4
Catalan language, 12-4
Index-10

charset, 12-4
Chinese (Simplified) language, 12-5
Chinese (Traditional) language, 12-5
Croatian language, 12-4
Czech language, 12-4
Danish language, 12-4
defining, 12-6
Dutch language, 12-4
Egyptian language, 12-4
English (American) language, 12-4
English (United Kingdom) language, 12-4
Estonian language, 12-4
Finnish language, 12-4
French language, 12-5
German language, 12-5
Greek language, 12-5
Hebrew language, 12-5
Hungarian language, 12-5
Icelandic language, 12-5
Indonesian language, 12-5
Italian language, 12-5
Japanese language, 12-5
Korean language, 12-5
language, 12-3
language conventions, 12-8
Latvian language, 12-5
Lithuanian language, 12-5
Norwegian language, 12-5
Polish language, 12-5
Portuguese (Brazilian) language, 12-4
Portuguese language, 12-5
Romanian language, 12-5
Russian language, 12-5
Slovak language, 12-5
Spanish (Latin Americal) language, 12-5
Spanish (Mexican) language, 12-5
Spanish language, 12-5
Swedish language, 12-5
syntax, 12-3
territory, 12-4
territory conventions, 12-8
Thai language, 12-5
Turkish language, 12-6
Ukrainian language, 12-6
Vietnamese language, 12-6

NLS_LANG environment variable, 12-14, 12-15
NLS_LIST_SEPARATOR, B-2
NLS_MONETARY_CHARACTERS, B-2
NLS_NUMERIC_CHARACTERS, B-2
NLS_SORT, B-2
nonblocksql command keyword, A-41
North African languages, 12-12
notational conventions, xxii
notification configuration element, 3-15

class attribute, 3-16
id attribute, 3-16

notifyfailure command keyword, A-41
notifysuccess command keyword, A-42
numberformatmask command keyword, A-42

O
OC4J, 2-5, 7-3, 14-9
OEM, 13-1 to 13-15

configuring for Reports Server, 3-39
launching, 13-2
managing job queues, 13-3
navigating to Reports Services, 13-2
performance monitoring, 13-11
reconfiguring Reports Server, 13-12
restarting Reports Servers, 13-2
starting Reports Servers, 13-2
stopping Reports Servers, 13-2
viewing job queues, 13-3

OID, see Oracle Internet Directory
ojsp:cache tag, 14-9
ojsp:cacheInclude tag, 14-10
ojsp:cacheXMLObj tag, 14-10
ojsp:invalidateCache tag, 14-10
ojsp:useCacheObj tag, 14-10
onfailure command keyword, A-43
onsuccess command keyword, A-44
OPMN, 2-5
option attribute, 3-18
Oracle Advanced Queuing, 11-2, 11-9, 11-10, 11-11,

11-12
dbms_AQadm package, 11-10
dbms_aq.dequeue, 11-13
DEQUEUE, 11-9
ENQUEUE, 11-9
Index-11

MESSAGES, 11-9
Oracle Containers for J2EE, 1-5
Oracle Containers for Java 2 Enterprise Edition, 7-3
Oracle Delegated Administration Service, 7-6
Oracle Enterprise Manager, see OEM
Oracle HTTP Server, 7-3
Oracle Internet Directory, 5-4, 7-1, 7-4, 7-5, 7-6
Oracle Login Server, 7-1, 7-4
Oracle Program Manager, 2-5
Oracle Single Sign-on, 5-2
Oracle Technology Network, 5-2
Oracle Trace, 14-11 to 14-13
ORACLE_HOME, 3-1
Oracle9iAS HTTP Server, 1-5, 2-1
Oracle9iAS Portal, 5-1 to 5-21

access controls, 5-6
availability calendar

combined, 5-10
simple, 5-7

batch registering reports, C-1
introduction, 5-2
printer access, 5-12
publishing a report portlet, 8-7
report access, 5-16
report requests, 8-6
runtime parameter form, 5-20
RW_ADMINISTRATOR, 5-5
RW_BASIC_USER, 5-5
RW_DEVELOPER, 5-5
RW_POWER_USER, 5-5
server access, 5-14
users and groups, 5-4

Oracle9iAS Reports Engine, clustering architecture,
load balancing, 6-2

Oracle9iAS Reports Services
intended audience, xix
security configuration, 5-4
single sign-on, 5-2

oraclePortal destype, 4-5
orbClient configuration element, 3-22

id attribute, 3-23
publicKeyFile Attribute, 3-23

organization attribute, mail, 9-9
orientation command keyword, A-44
OTN, see Oracle Technology Network

output
Postscript, 2-3
printer, 2-3

output processing, 4-1 to 4-4
output types, 4-1
outputfoldercommand keyword, A-45
outputpage command keyword, A-46
overwrite command keyword, A-47

P
p_availability command keyword, A-47
p_description command keyword, A-48
p_formats command keyword, A-48
p_name command keyword, A-49
p_owner command keyword, A-49
p_pformtemplate command keyword, A-50
p_printers command keyword, A-50
p_privilege command keyword, A-51
p_servers command keyword, A-52
p_trigger command keyword, A-52
p_types command keyword, A-53
pagegroup command keyword, A-53
pagesize command keyword, A-54
pagestream command keyword, A-55
paramater list (events)

manipulating, 11-2 to 11-4
parameter form, 5-20

key map file, 8-15
parameter list (events)

creating, 11-2 to 11-4
paramform command keyword, A-56
ParamList-Object, 11-2
ParamList-Type, 11-2
parsequery command keyword, A-56
PATH, 2-4
pdfcomp command keyword, A-57
pdfembed command keyword, A-57
performance monitoring, 13-11, 14-10 to 14-14

Oracle Trace, 14-11 to 14-13
persisiFile configuration element

fileName attribute, 3-26
persistance, 1-2, 3-25, 8-12
persistFile configuration element, 3-3, 3-25
PL/SQL
Index-12

ALTER_SESSION, 12-15
SRW_PARAMETER, 11-2
SRW_PARAMLIST, 11-2, 11-5, 11-10
srw_test.sql, 11-7
SRW.ADD_DEFINITION, 10-18, 10-24
SRW.ADD_PARAMETER, 11-3
srwAPIdrop.sql, 11-2
srwAPIgrant.sql, 11-2
srwAPIins.sql, 11-2
SRW.APPLY_DEFINITION, 10-3, 10-16, 10-18
SRW.CANCEL_REPORT, 11-7
SRW.CLEAR_PARAMETER_LIST, 11-4
SRW.JOB_IDENT, 11-5
SRW-Package, 11-2
SRW.REMOVE_PARAMETER, 11-3
SRW.REPORT_STATUS, 11-5
SRW.START_DEBUGGING, 11-7
SRW.STATUS_RECORD, 11-5
SRW.STOP_DEBUGGING, 11-7
translating blocks, 12-16

PL/SQL, and advanced distribution, 9-3
pluggable

cache, 3-7
clients, 3-23
destinations, 3-13, 4-2, 9-1, 9-33
engine, 3-9
events, 3-15
notification, 3-16
repository, 3-18
security, 3-11

pluginParam
used with jobStatusRepository, 3-19
used with notification, 3-16

pluginParam configuration element, 3-27, 9-9
name attribute, 3-27
type attribute, 3-28
used with cache, 3-8
used with destination, 3-14
used with engine, 3-11
used with security, 3-13

Portal, 5-1 to 5-21
access controls, 5-6
availability calendar, combined, 5-10
availability calendar, simple, 5-7
introduction, 5-2

printer access, 5-12
report access, 5-16
report requests, 8-6
runtime parameter form, 5-20
RW_ADMINISTRATOR, 5-5
RW_BASIC_USER, 5-5
RW_DEVELOPER, 5-5
RW_POWER_USER, 5-5
server access, 5-14
users and groups, 5-4

portlet
adding to a page, 8-8
batch registering reports, C-1
creating provider for reports, 8-7
creating report definition file access, 8-7
publishing a report, 8-7

Postscript, output to, 2-3
printer access controls, 5-12
printer destype, 4-5
printer distribution element, 9-18

copies attribute, 9-19
id attribute, 9-19
instance attribute, 9-19
name attribute, 9-19

printer, output to, 2-3
printjob command keyword, A-58
priority attribute, mail, 9-9
private key, 6-5
private key file, generating, 3-23
program units, adding via XML, 10-7
property distribution element, 9-22
provider

creating for reports, 8-7
proxy information

configuring, 3-38
public key, 6-5
public key file, generating, 3-23
publicKeyFile attribute, 3-23

Q
queue configuration element

maxQueueSize attribute, 3-25
queue element, 3-24
queue manager, 1-2, 8-10
Index-13

queue viewer, 1-2
queues

current jobs, 13-4
failed jobs, 13-9
finished jobs, 13-6
managing via OEM, 13-3
RW_SERVER_QUEUE table, 14-14
scheduled jobs, 13-5
viewing via OEM, 13-3

R
reading order, 12-1, 12-12
readonly command keyword, A-59
registry, editing, B-1
registry, Windows, 12-6
reload_keymap, rwservlet.properties, 3-30
replaceitem command keyword, A-59
replyTo attribute, mail, 9-9
replyto command keyword, A-60
report access controls, 5-16
report command keyword, 10-23, A-40
report definitions, XML, 10-1
report keyword, 10-16
report parameter, events, 11-4, 11-8
reports

applying custom XML, 10-16 to 10-22
batch registering in Oracle9iAS Portal, C-1
batch removing from Oracle9iAS Portal, C-5
bursting, 9-6
caching, 8-11
command line requests, 8-5
current jobs queue, 13-4
debugging custom XML, 10-22 to 10-24
failed jobs queue, 13-9
finished jobs queue, 13-6
hyperlinking to, 8-9
invoking via events, 11-8
processing, 1-6
request methods, 8-5
request via packaged procedure, 8-6
requests via Portal, 8-6
running automatically, 8-10
scheduled jobs queue, 13-5
scheduling, 8-10

URL requests, 8-6
URL syntax, 8-1, 8-9
XML customization, 10-3 to 10-9
XML data models, 10-9 to 10-16

Reports Cache, 1-5
Reports CGI, 1-5
Reports Engine, 1-6, 1-8
Reports JSP, 1-5
Reports Queue Manager, 1-2, 8-10
Reports Queue Viewer, 1-2
Reports Server, 1-5, 7-4

access controls, 5-14
adding to OEM, 13-14
clusters, 6-1 to 6-6, 14-5 to 14-6
configuration file, 1-8, 3-2
destination processing, 4-3
in-process server, 14-1
monitoring performance, 13-11
performance monitoring, 14-10 to 14-14
persistance, 3-25, 8-12
reconfiguring via OEM, 13-12
registering destination types, 4-4
renaming, 6-3
restarting, 6-6
restarting via OEM, 13-2
starting as service, 2-2
starting as servlet, 2-3
starting from command line, 2-3
starting via OEM, 13-2
status record, 11-6
stopping via OEM, 13-2
tuning, 14-1 to 14-18

Reports Services
about, 1-1
architecture, 1-1
cache API, 3-7
clients API, 3-23
components, 1-4
destinations API, 3-13, 4-2, 9-1
engine API, 3-9
events API, 3-15
managing, 13-1 to 13-15
monitoring, 13-1 to 13-15
notification API, 3-16
persistance, 1-2
Index-14

Reports Engine, 14-2
repository API, 3-18
security API, 3-11
single sign-on, 5-2
starting and stopping, 2-1

Reports Servlet, 1-5, 3-3, 7-3
URL syntax, 8-2

reports, running, 8-1 to 8-15
REPORTS_CGIDIAGBODYTAGS, B-3
REPORTS_CGIDIAGHEADTAGS, B-3
REPORTS_CGIHELP, B-3
REPORTS_CGIMAP, B-3
REPORTS_CGINODIAG, B-4
REPORTS_COOKIE_EXPIRE, B-2
REPORTS_DB_AUTH, B-2
REPORTS_ENCRYPTION_KEY, B-2
REPORTS_PATH, B-4
REPORTS_SERVER, B-4
REPORTS_SSLPORT, B-4
REPORTS_SYS_AUTH, B-4
REPORTS_TMP, B-4
reports.dtd, 10-2
repositoryconn attribute, 14-17
returnReceipt attribute, mail, 9-9
role command keyword, A-61
rundebug command keyword, A-61
runing a report automatically

from Oracle9iAS Portal, 8-9
running a report, 8-1
running a report automatically, 8-10
runtime parameter form, 5-20
runtime URL, 8-1 to 8-15
runtime URL syntax, 8-1
RW environment variable, B-5
RW_ADMINISTRATOR, 5-5
RW_BASIC_USER, 5-5
RW_DEVELOPER, 5-5
RW_POWER_USER, 5-5
RW_SERVER_QUEUE table, 14-14
rw_server.sql, 14-17
rwbuilder command, 10-23, A-3

keywords used with, A-3
rwbuilder.conf, 3-2
rwcgi command, A-5

keywords used with, A-6

rwclient, 8-5
rwclient command, 10-16, 10-17, 10-21, A-2

keywords used with, A-2
rwconverter

generating a SQL script for batch
registration, C-1

rwconverter command, 10-16, 10-21, A-3
keywords used with, A-4

rwproxy, 3-6
rwrun command, 10-17, 10-21, 10-23, A-2

keywords used with, A-2
rwrun.jar, 6-5
rwserver, 2-5

install, 2-2
server, 2-3

rwserver command, A-6
keywords used with, A-6

rwserverconf.dtd, 3-2, 3-4, 4-4, 4-6
cache element, 3-7
cluster element, 3-23
compatible element, 3-6
connection element, 3-21
destination element, 3-13
engine element, 3-8
identifier element, 3-26
job element, 3-14
jobStatusRepository element, 3-18
log element, 3-17
notification element, 3-15
orbClient element, 3-22
persistFile element, 3-25
pluginParam element, 3-27
queue element, 3-24
security element, 3-11
server element, 3-5
trace element, 3-19

rwserver.template, 3-3
rwservlet, 1-5, 2-3, 14-1
rwservlet command, A-4

keywords used with, A-5
rwservlet.properties, 3-3, 14-1

cookieexpire, 3-35
db_sys_diffauth, 3-31
db_sys_sameauth, 3-31
dbauth, 3-31
Index-15

diagbodytags, 3-35
diagheadtags, 3-35
diagnostic, 3-31
encryptionkey, 3-35
errortemplate, 3-33
help, 3-36
image_url, 3-34
KeyMapFile, 3-30
reload_keymap, 3-30
server, 3-34
server_in_process, 3-33
single sign-on, 3-36
sslport, 3-35
sysauth, 3-31
tracefile, 3-32
tracemode, 3-32
traceopts, 3-32

S
save_rdf command keyword, A-62
schedule command keyword, 8-10, A-62
scheduled jobs queue, 13-5
scripts

rw_server.sql, 14-17
srw_test.sql, 11-7
srwAPIdrop.sql, 11-2
srwAPIgrant.sql, 11-2
srwAPIins.sql, 11-2

Secure Sockets Layer, 1-5
security configuration, 5-4
security configuration element, 3-11, 5-3

class attribute, 3-12
id attribute, 3-12

security element
class attribute, 5-4
id attribute, 5-3

securityId attribute, 3-15
serve parameter, events, 11-4
server

in_process, 3-33
in-process, 1-2, 1-5
rwserver command, A-6

server access controls, 5-14
server cluster, 3-34

server clusters, 3-23
server command keyword, 2-3, 2-5, A-63
server configuration element, 3-5
server, in-process, 14-1
server, rwservlet.properties, 3-34
server, showjobs parameter, 14-13
server_in_process, 3-33
server_name.conf, 3-2
SERVEROUT, 11-7
servlet, 1-1, 1-5, 2-3, 3-3, 7-3

adding custom help, 3-36
rwservlet, 14-1, A-4
rwservlet.properties, 14-1
URL syntax, 8-2

session cookie, 7-2
showenv command keyword, A-64
showjobs command keyword, 1-2, 11-5, 14-13,

A-65
server parameter, 14-13
statusformat parameter, 14-14

showmap command keyword, A-65
showmyjobs command keyword, A-66
shutdown command keyword, 2-5, A-66
single sign-on, 5-2, 7-1 to 7-7

feature, 5-2
process, 7-4
rwservlet.properties, 3-36

single-byte, 12-13, 12-14
sitename command keyword, A-67
SMTP, 3-16, 9-8, 9-9
sorting sequence, of language, 12-8
source command keyword, A-68
specifying a report request

for the URL engine, 8-10
from a Web browser, 8-9
publishing a report portlet, 8-7
scheduling to run automatically, 8-10

SQL*PLUS, 11-7
src attribute, include, 9-15
srcType attribute

attach, 9-12
body, 9-11

SRW_PARAMETER, 11-2
SRW_PARAMLIST, 11-2, 11-5, 11-10
srw_test.sql, 11-7
Index-16

SRW.ADD_DEFINITION, 10-18, 10-24
SRW.ADD_PARAMETER, 11-3
srwAPIdrop.sql, 11-2
srwAPIgrant.sql, 11-2
srwAPIins.sql, 11-2
SRW.APPLY_DEFINITION, 10-3, 10-16, 10-18
SRW.CANCEL_REPORT, 11-7
SRW.CLEAR_PARAMETER_LIST, 11-4
SRW.JOB_IDENT, 11-5
SRW-Package, 11-2
SRW.REMOVE_PARAMETER, 11-3
SRW.REPORT_STATUS, 11-5
SRW.RUN_REPORT, 8-6
SRW.START_DEBUGGING, 11-7
SRW.STATUS_RECORD, 11-5
SRW.STOP_DEBUGGING, 11-7
SSL, 1-5, 3-35
sslport, rwservlet.properties, 3-35
SSO, 3-36
SSO, see single sign-on
ssoconn command keyword, A-69
status record, 11-6
statusfolder command keyword, A-71
statusformat command keyword, A-70
statusformat, showjobs parameter, 14-14
statuspage command keyword, A-72
stype command keyword, A-73
subject attribute, mail, 9-9
subject command keyword, A-73
symbol equivalents, 12-8
syntax, of commands, A-6
syntax, reports URL, 8-1
sysauth, rwservlet.properties, 3-31

T
taglib, 14-9
targets.xml, 13-1, 13-14
templates, rwserver.template, 3-3
text display, multilingual, 12-14
text reading order, 12-1
tnsnames.ora, 3-6
to attribute, mail, 9-8
tolerance command keyword, 1-7, 8-12, 8-13, 14-7,

14-8, A-74

trace configuration element, 3-19
traceFile attribute, 3-20
traceMode attribute, 3-20
traceOpts attribute, 3-20

trace performance monitoring, 14-11 to 14-13
trace_all, 3-21
trace_app, 3-21
trace_brk, 3-21
trace_dbg, 3-21
trace_dst, 3-21
trace_err, 3-21
trace_inf, 3-21
trace_log, 3-21
trace_pls, 3-21
trace_prf, 3-21
trace_sql, 3-21
trace_sta, 3-21
trace_tms, 3-21
trace_wrn, 3-21
traceFile attribute, 3-20
tracefile command keyword, A-75
tracefile servlet parameter, 3-32
traceMode attribute, 3-20
tracemode command keyword, A-76
tracemode servlet parameter, 3-32
traceOpts attribute, 3-20
traceopts command keyword, A-76
traceopts servlet parameter, 3-32
tracing, 10-17
translating applications, 12-16
translation

PL/SQL blocks, 12-16
TranslationHub tool, 12-16

triggers, database, 11-8
true type big fonts, 12-14
type attribute, 3-28

U
uifont.ali, 12-8
unicode, 12-13 to 12-15
URL engine

configuring, 3-36
elements, 3-36
sending a request to, 8-10
Index-17

URL job requests, 8-1 to 8-15
URL syntax, 8-9
URL, runtime syntax, 8-1
urlparameter command keyword, A-78
USER_NLS_LANG, 12-9, 12-13, B-5
userid command keyword, A-79
userid parameter, events, 11-4, 11-8
UTF8, 12-14

V
variables, NLS environment, 12-2 to 12-10
variables, using with XML attributes, 9-2
version attribute, 3-6

W
Web listener, 1-5, 7-3
Web Object Cache, 14-6, 14-9
webserver_debug command keyword, A-80
webserver_docroot command keyword, A-80
webserver_port command keyword, A-81
Windows registry, 12-6
writing direction, of language, 12-8

X
XML

adding a new query, 10-8
adding formatting exceptions, 10-5
adding hyperlinks, 10-7
adding program units, 10-7
applying, 10-16 to 10-22
applying at runtime, 10-16
applying customizations, 10-3
applying definition in PL/SQL, 10-18
applying multiple definitions, 10-17
applying one definition, 10-16
applying via PL/SQL, 10-18
batch modifications, 10-21
changing format masks, 10-5
changing styles, 10-4
creating cross-product groups, 10-12
creating customizations, 10-3, 10-3 to 10-9
creating data models, 10-9 to 10-16

creating formulas, 10-13
creating group hierarchies, 10-11
creating matrix groups, 10-12
creating multiple data sources, 10-9
creating parameters, 10-14
creating placeholders, 10-13
creating summaries, 10-13
customization tracing options, 10-23
debugging, 10-24
debugging customizations, 10-22 to 10-24
distribution.dtd, 9-2, 9-33
interpreting, 10-2
linking data sources, 10-10
opening in Reports Builder, 10-23
parser error messages, 10-22
report customizations, 10-1 to 10-24
reports.dtd, 10-2
required customization tags, 10-4
running by itself, 10-21
targets.xml, 13-1, 13-14
using distribution XML file, 9-32

XML attributes, using variables with, 9-2
XML, advanced distribution, 9-1 to 9-33
XSL, distribution.xsl, 9-33
Index-18

	Contents
	Send Us Your Comments
	Preface
	Part I� Preparing Your Environment
	1 Oracle9iAS Reports Services Architecture
	1.1� Overview of Oracle9iAS Reports Services
	1.2� Oracle9iAS Reports Services Components
	1.3� Oracle9iAS Reports Services Runtime Process
	1.4� Things to Consider When You Set Up Your System
	1.4.1� Choosing the Types of Requests You Will Service
	1.4.2� Choosing Servlet, JSP, or CGI
	1.4.3� Choosing Single- Or Multiple-Machine Configurations
	1.4.4� Choosing Whether to Cluster Multiple Servers

	2 Starting and Stopping Oracle9iAS Reports Services
	2.1� Starting the Reports Server
	2.1.1� Installing and Starting the Reports Server as a Service (Windows NT/2000)
	2.1.2� Starting the Reports Server as a Servlet (Windows and UNIX)
	2.1.3� Starting the Reports Server from a Command Line (Windows and UNIX)

	2.2� Verifying the Reports Servlet and Server Are Running
	2.3� Verifying that the Oracle HTTP Server Is Running
	2.4� Stopping the Reports Server

	3 Configuring Oracle9iAS Reports Services
	3.1� Oracle9iAS Reports Services Configuration Files
	3.2� Configuring the Oracle9iAS Reports Server
	3.2.1� Reports Server Configuration Elements (rwserverconf.dtd)
	3.2.1.1� server
	3.2.1.2� compatible
	3.2.1.3� cache
	3.2.1.4� engine
	3.2.1.5� security
	3.2.1.6� destination
	3.2.1.7� job
	3.2.1.8� notification
	3.2.1.9� log
	3.2.1.10� jobStatusRepository
	3.2.1.11� trace
	3.2.1.12� connection
	3.2.1.13� queue
	3.2.1.14� persistFile
	3.2.1.15� identifier
	3.2.1.16� pluginParam

	3.3� Configuring the Reports Servlet
	3.3.1� Specifying the location of the key map file
	3.3.2� Reloading the Key Map File
	3.3.3� Hiding Verbose Error Messages
	3.3.4� Selecting Login Dialog Boxes
	3.3.5� Setting up Trace Options for the Reports Servlet and JSPs
	3.3.6� Customizing the Appearance of Server Error Messages
	3.3.7� Specifying an In-Process Server
	3.3.8� Identifying the Default Reports Server
	3.3.9� Pointing to Dynamically Generated Images
	3.3.10� Setting Expiration for DB Authentication and SYSAUTH Cookies
	3.3.11� Setting an Encryption Key for the DB Authentication Cookie
	3.3.12� Adding Formatting to Diagnostic/Debugging Output
	3.3.13� Specifying an SSL Port Number
	3.3.14� Defining the rwservlet Help File
	3.3.15� Specifying the Use of Single Sign-On

	3.4� Configuring the URL Engine
	3.5� Entering Proxy Information
	3.6� Configuring the Reports Server for Oracle Enterprise Manager

	4 Configuring Destinations for Oracle9iAS Reports Services
	4.1� Overview of Output Processing
	4.2� Registering Destination Types with the Server
	4.2.1� Setting Up a Destination Section in the Server Configuration File
	4.2.2� Entering Valid Values for a Destination
	4.2.2.1� Destination destypes and classes
	4.2.2.2� Destination Property name/value Pairs

	5 Controlling User Access
	5.1� Introduction to Oracle9iAS Portal
	5.2� Defining Portal-Based Security in the Server Configuration File
	5.3� Creating Reports Users and Named Groups in Oracle9iAS Portal
	5.3.1� Default Reports-Related Groups
	5.3.1.1� RW_BASIC_USER
	5.3.1.2� RW_POWER_USER
	5.3.1.3� RW_DEVELOPER
	5.3.1.4� RW_ADMINISTRATOR

	5.3.2� Creating Users and Groups

	5.4� Setting Up Access Controls
	5.4.1� Creating an Availability Calendar
	5.4.1.1� Creating a Simple Availability Calendar
	5.4.1.2� Creating a Combined Availability Calendar

	5.4.2� Registering a Printer
	5.4.3� Registering a Reports Server
	5.4.4� Registering a Report

	6 Reports Server Clusters
	6.1� Cluster Overview
	6.2� Setting Up a Cluster
	6.2.1� Renaming a Reports Server
	6.2.2� Generating New Public and Private Keys
	6.2.3� Entering Public and Private Keys in the Server Configuration File
	6.2.4� Restarting the Reports Server
	6.2.5� Submitting a Request to a Cluster

	7 Data Source Single Sign-On
	7.1� SSO Architecture
	7.1.1� SSO Components
	7.1.2� SSO Transactions

	7.2� Methods for Setting Up User Connection Strings
	7.2.1� Initial Requirements
	7.2.2� Method 1: Giving Users Access to the OID
	7.2.3� Method 2: Assigning Connection Strings and Letting Users Input at Login

	Part II� Sending Requests to the Server
	8 Running Report Requests
	8.1� The Reports URL Syntax
	8.1.1� Servlet
	8.1.2� JSP
	8.1.3� CGI

	8.2� Report Request Methods
	8.3� Publishing a Report Portlet in Oracle9iAS Portal
	8.3.1� Creating a Provider for Your Reports
	8.3.2� Creating the Report Definition File Access
	8.3.3� Adding the Report Portlet to a Page

	8.4� Specifying a Report Request from a Web Browser
	8.5� Sending a Request to the URL Engine
	8.6� Scheduling Reports to Run Automatically
	8.7� Additional Parameters
	8.8� Reusing Report Output from Cache
	8.8.1� Usage Notes

	8.9� Using a Key Map File
	8.9.1� Enabling Key Mapping
	8.9.2� Adding Key Mapping Entries to a Key Map File
	8.9.3� Using a Key with Everything but JSPs
	8.9.4� Using a Key with a Report Run as a JSP

	9 Creating Advanced Distributions
	9.1� Distribution Overview
	9.2� Introduction to Distribution XML Files
	9.2.1� The distribution.dtd File
	9.2.2� A Brief Word About Using Variables within Attributes

	9.3� Elements of a Distribution XML File
	9.3.1� destinations
	9.3.2� foreach
	9.3.3� mail
	9.3.4� body
	9.3.5� attach
	9.3.6� include
	9.3.7� file
	9.3.8� printer
	9.3.9� destype
	9.3.10� property

	9.4� Distribution XML File Examples
	9.4.1� foreach examples
	9.4.1.1� Single E-Mail with Report Groups as Separate Attachments
	9.4.1.2� Separate E-Mail for Each Group Instance
	9.4.1.3� Separate E-Mails with Separate Sections as Attachments
	9.4.1.4� Separate File for Each Section
	9.4.1.5� Separate Print Run for Each Report

	9.4.2� mail examples
	9.4.2.1� E-Mail with a Whole Report as the Body
	9.4.2.2� E-Mail with a Section of a Report as the Body
	9.4.2.3� E-Mail with Two Report Sections as the Body
	9.4.2.4� E-Mail with External File as Body and Report as Attachment
	9.4.2.5� E-Mail with Whole Report and Grouped Sections Attached
	9.4.2.6� E-Mail to Relevant Manager and Department

	9.4.3� file examples
	9.4.3.1� File for Whole Report
	9.4.3.2� File for Combined Report Sections
	9.4.3.3� File for Each Group of Combined Sections
	9.4.3.4� File for Each Report Group Instance

	9.4.4� printer examples
	9.4.4.1� Print Whole Report
	9.4.4.2� Print Two Sections of a Report
	9.4.4.3� Print Grouped Report
	9.4.4.4� Print Combined Sections for Each Group Instance
	9.4.4.5� Print Relevant Instance of a Report to Its Relevant Printer

	9.5� Using a Distribution XML File at Runtime
	9.6� XSL Transformation for Custom/Pluggable Destinations

	10 Customizing Reports with XML
	10.1� Customization Overview
	10.2� Creating XML Customizations
	10.2.1� Required XML Tags
	10.2.2� Changing Styles
	10.2.3� Changing a Format Mask
	10.2.4� Adding Formatting Exceptions
	10.2.5� Adding Program Units and Hyperlinks
	10.2.6� Adding a New Query and Using the Result in a New Header Section

	10.3� Creating XML Data Models
	10.3.1� Creating Multiple Data Sources
	10.3.2� Linking Between Data Sources
	10.3.3� Creating Group Hierarchies within Each Data Source
	10.3.4� Creating Cross-Product (Matrix) Groups
	10.3.5� Creating Formulas, Summaries, and Placeholders at any Level
	10.3.6� Creating Parameters

	10.4� Using XML Files at Runtime
	10.4.1� Applying an XML Report Definition at Runtime
	10.4.1.1� Applying One XML Report Definition
	10.4.1.2� Applying Multiple XML Report Definitions
	10.4.1.3� Applying an XML Report Definition in PL/SQL

	10.4.2� Running an XML Report Definition by Itself
	10.4.3� Performing Batch Modifications

	10.5� Debugging XML Report Definitions
	10.5.1� XML Parser Error Messages
	10.5.2� Tracing Options
	10.5.3� RWBUILDER
	10.5.4� Writing XML to a File for Debugging

	11 11 Event-Driven Publishing
	11.1� The Event-Driven Publishing API
	11.1.1� Elements of the API
	11.1.2� Creating and Manipulating a Parameter List
	11.1.2.1� Add_Parameter
	11.1.2.2� Remove_Parameter
	11.1.2.3� Clear_Parameter_List

	11.1.3� How to Submit a Job
	11.1.4� How to Check for Status
	11.1.5� Using the Servers' Status Record

	11.2� Debugging Applications That Use the Event-Driven Publishing API
	11.3� Invoking a Report From a Database Event
	11.4� Integrating with Oracle9i Advanced Queuing
	11.4.1� Creating a Queue That Holds Messages of Type SRW_PARAMLIST
	11.4.2� Creating the Enqueuing Procedure
	11.4.3� Creating the Dequeuing Procedure

	Part III� National Language Support and Bidirectional Support
	12 NLS and Bidirectional Support
	12.1� NLS Architecture
	12.1.1� Language-Independent Functions
	12.1.2� Language-Dependent Data

	12.2� NLS Environment Variables
	12.2.1� NLS_LANG Environment Variable
	12.2.1.1� Defining the NLS_LANG Environment Variable
	12.2.1.2� Character Sets
	12.2.1.3� Language and Territory

	12.2.2� DEVELOPER_NLS_LANG and USER_NLS_LANG Environment Variables

	12.3� Specifying a Character Set in a JSP or XML File
	12.4� Bidirectional Support
	12.5� Unicode
	12.5.1� Unicode Support
	12.5.2� Unicode Font Support
	12.5.3� Enabling Unicode Support
	12.5.4� Using ALTER SESSION

	12.6� Translating Applications

	Part IV� Performance
	13 Managing and Monitoring Oracle9iAS Reports Services
	13.1� Navigating to Reports Services Information in OEM
	13.2� Starting, Stopping, and Restarting Reports Servers
	13.3� Viewing and Managing Reports Job Queues
	13.3.1� Viewing and Managing the Current Jobs Queue
	13.3.1.1� Viewing a Report Server's Current Jobs Queue
	13.3.1.2� Cancelling a Current Job

	13.3.2� Viewing and Managing the Scheduled Jobs Queue
	13.3.2.1� Viewing a Report Server's Scheduled Jobs Queue
	13.3.2.2� Cancelling a Scheduled Job

	13.3.3� Viewing and Managing the Finished Jobs Queue
	13.3.3.1� Viewing a Report Server's Finished Jobs Queue
	13.3.3.2� Viewing a Job’s Trace File
	13.3.3.3� Viewing a Result from Cache
	13.3.3.4� Rerunning a Finished Job

	13.3.4� Viewing and Managing the Failed Jobs Queue
	13.3.4.1� Viewing a Report Server's Failed Jobs Queue
	13.3.4.2� Viewing a Failed Job’s Trace File
	13.3.4.3� Rerunning a Failed Job

	13.4� Monitoring Server Performance
	13.5� Viewing and Changing Reports Server Configuration Files
	13.6� Viewing and Linking to Server Cluster Members
	13.7� Adding a Reports Server to OEM

	14 Tuning Oracle9iAS Reports Services
	14.1� Using the In-Process Server
	14.2� Tuning the Reports Engine
	14.2.1� initEngine
	14.2.2� maxEngine
	14.2.3� minEngine
	14.2.4� engLife
	14.2.5� maxIdle
	14.2.6� callBackTimeOut

	14.3� Clustering Multiple Servers
	14.4� Optimizing Cache Strategies
	14.4.1� Setting Up Cache in the Reports Server Configuration File
	14.4.2� Specifying Cache-Related Options in the Command Line
	14.4.2.1� TOLERANCE
	14.4.2.2� EXPIRATION

	14.4.3� Setting Up Caching Options in a JSP

	14.5� Monitoring Performance
	14.5.1� Monitoring Performance with Oracle Trace
	14.5.1.1� Trace Overview
	14.5.1.2� Additional Sources of Trace Information

	14.5.2� The SHOWJOBS Command Keyword
	14.5.3� Accessing the RW_SERVER_QUEUE table
	14.5.4� Updating the Database with Queue Activity

	Part V� Appendices
	A Command Line Arguments
	A.1� Command Overview
	A.1.1� rwclient
	A.1.2� rwrun
	A.1.3� rwbuilder
	A.1.4� rwconverter
	A.1.5� rwservlet
	A.1.6� rwcgi
	A.1.7� rwserver

	A.2� Command Line Syntax
	A.3� General Usage Notes
	A.4� Command Line Arguments
	A.4.1� ACCESSIBLE
	A.4.2� ARRAYSIZE
	A.4.3� AUTHID
	A.4.4� AUTOCOMMIT
	A.4.5� AUTOSTART
	A.4.6� BATCH
	A.4.7� BCC
	A.4.8� BLANKPAGES
	A.4.9� BUFFERS
	A.4.10� CACHELOB
	A.4.11� CC
	A.4.12� CELLWRAPPER
	A.4.13� CMDFILE
	A.4.14� CMDKEY
	A.4.15� CONTENTAREA
	A.4.16� COPIES
	A.4.17� CUSTOMIZE
	A.4.18� DATEFORMATMASK
	A.4.19� DELAUTH
	A.4.20� DELIMITED_HDR
	A.4.21� DELIMITER
	A.4.22� DESFORMAT
	A.4.23� DESNAME
	A.4.24� DEST
	A.4.25� DESTINATION
	A.4.26� DESTYPE
	A.4.27� DISTRIBUTE
	A.4.28� DTYPE
	A.4.29� DUNIT
	A.4.30� EXPIRATION
	A.4.31� EXPIREDAYS
	A.4.32� EXPRESS_SERVER
	A.4.33� FORMSIZE
	A.4.34� FROM
	A.4.35� GETJOBID
	A.4.36� GETSERVERINFO
	A.4.37� HELP
	A.4.38� IGNOREMARGIN
	A.4.39� INSTALL
	A.4.40� ITEMTITLE
	A.4.41� JOBNAME
	A.4.42� JOBTYPE
	A.4.43� KILLJOBID
	A.4.44� LONGCHUNK
	A.4.45� MODE
	A.4.46� MODULE|REPORT
	A.4.47� NONBLOCKSQL
	A.4.48� NOTIFYFAILURE
	A.4.49� NOTIFYSUCCESS
	A.4.50� NUMBERFORMATMASK
	A.4.51� ONFAILURE
	A.4.52� ONSUCCESS
	A.4.53� ORIENTATION
	A.4.54� OUTPUTFOLDER
	A.4.55� OUTPUTPAGE
	A.4.56� OVERWRITE
	A.4.57� P_AVAILABILITY
	A.4.58� P_DESCRIPTION
	A.4.59� P_FORMATS
	A.4.60� P_NAME
	A.4.61� P_OWNER
	A.4.62� P_PFORMTEMPLATE
	A.4.63� P_PRINTERS
	A.4.64� P_PRIVILEGE
	A.4.65� P_SERVERS
	A.4.66� P_TRIGGER
	A.4.67� P_TYPES
	A.4.68� PAGEGROUP
	A.4.69� PAGESIZE
	A.4.70� PAGESTREAM
	A.4.71� PARAMFORM
	A.4.72� PARSEQUERY
	A.4.73� PDFCOMP
	A.4.74� PDFEMBED
	A.4.75� PRINTJOB
	A.4.76� READONLY
	A.4.77� REPLACEITEM
	A.4.78� REPLYTO
	A.4.79� REPORT|MODULE
	A.4.80� ROLE
	A.4.81� RUNDEBUG
	A.4.82� SAVE_RDF
	A.4.83� SCHEDULE
	A.4.84� SERVER
	A.4.85� SHOWENV
	A.4.86� SHOWJOBS
	A.4.87� SHOWMAP
	A.4.88� SHOWMYJOBS
	A.4.89� SHUTDOWN
	A.4.90� SITENAME
	A.4.91� SOURCE
	A.4.92� SSOCONN
	A.4.93� STATUSFORMAT
	A.4.94� STATUSFOLDER
	A.4.95� STATUSPAGE
	A.4.96� STYPE
	A.4.97� SUBJECT
	A.4.98� TOLERANCE
	A.4.99� TRACEFILE
	A.4.100� TRACEMODE
	A.4.101� TRACEOPTS
	A.4.102� UNINSTALL
	A.4.103� URLPARAMETER
	A.4.104� USERID
	A.4.105� WEBSERVER_DEBUG
	A.4.106� WEBSERVER_DOCROOT
	A.4.107� WEBSERVER_PORT

	B Reports-Related Environment Variables
	C C Batch Registering Reports in Oracle9iAS Portal
	C.1� Batch Registering Report Definition Files
	C.1.1� Run RWCONVERTER to Generate a SQL Script
	C.1.2� Run the Script in SQL*Plus

	C.2� Batch Removing Report Packages
	C.3� PL/SQL Batch Registering Function

	Index

