Oracle9iAS InterConnect Adapter for CICS

Installation and User’s Guide

Release 2 (9.0.2)

February 2002
Part No. A95442-01

ORACLE

Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide, Release 2 (9.0.2)
Part No. A95442-01
Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

SENA US YOUT COMMENTS ...ttt ettt ettt ettt et ettt ees et e e et et e aeee et eeneeens iX
P I A C ...ttt ettt ettt ettt ettt ettt ettt ettt Xi
a1 (=T g Lo (Lo I AN U o [11 o1 IR Xii
Documentation ACCESSIDIIITYcooiiiiiiiiie bbb Xii
L@ o T=1 2= 11 o] o RSOSSN Xii
Related DOCUMENTALIONcoicueiiiiiie ettt se e et e e st e s s st e e s st e e s st bessebeaessbbaeessbaessbenesssbeneas Xiii
(0000 1VZ=T 01 1o] o 1T Xiv

1 Introduction

RTA = L FS T LSS 1-2
System Requirements and PlatfOrmsS...........ccooviiiiiiie i 1-2
DETINITIONS ...ttt bbb bbb b e b b et e se e b e e b e e bt et e e b e neebe b e 1-2

LOGICAT UNIT (LU .ttt e 1-2
L O ST PRSOPRTSOPRT PSPPSR 1-3

2 Installation and Configuration

INSTAlliNg the CICS AAPLEN ..o et re s re e e 2-2
PreinStallation TASKS ..ottt ettt st besbesbesbe b 2-2

([U F= o o T 1=] P 2-2
CICS Adapter ConfigUIatiONcccooiiiiiiie et s e e reeresresrenes 2-4
Using the Application Parameter....... ..ot 2-5
adapter.ini Initialization Parameter File ... 2-6
HUD NI Lot bbbttt 2-6

AgeNt CoONNECLION ParameterS........cccoiiiieiiiice ettt 2-7
CICS AAPLEr PAramMELETSciiuiiitiietiiete ettt 2-11

CICS and the CICS Adapter

THE CICS AGAPLET ...ttt bbb bbb bbbt b e bbb bt n e 3-2
Message Description Language (IMDL) ... 3-2
L0 F- TS TSSO T UO USRS POUROURUPURPRURUN 3-3
LUG6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLS.........ccccoeevevieivee i 3-4
How the CICS Adapter Communicates With CICS ... 3-5
Using SNA LU 6.2 CPI-C ProtOCOI APc.oooeie et 3-5
UsIiNg the ECIProtOCOI AP ...t 3-6
(01 [N0 F=1 o =] S T=ToT UL | 2SSOSR 3-6
Using the LU 6.2 CPI-C ProtOCO!ccuooiiiee ettt 3-6
USING the ECIH PrOtOCOL.......c.oiiiiiiiite ettt 3-7
Implementing the CICS AdAPLEr ... e sre e 3-7
SNA LU 6.2 CPI-C ProtoCOl APcoiiiiiiieiiisiese ettt 3-7
(O I o] oToTo] 1A o SO 3-8

L3 (O30 o F- 1 o | - SR 3-8
CICS Adapter INformation FIOW ..ot e 3-9
MUIEI-TREEAAING. ...t 3-10

Using the CICS Adapter INDOUNGc.cocviiiie e sre s 3-11
SNA LU 6.2 CPI-C ProtOCOL.......cveiiieiiiiciisieisieesie sttt nne e 3-11
APPHCATION STAIT-UD ...ttt 3-12
Receiving a CICS Adapter Request from Oracle9iAS InterConnect.........cccccccveevvvnne 3-12

ECT PFOTOCOL ...ttt bbb bbb e et ettt e e ne bt 3-12
APPLHCATION STAMT-UD ...ttt 3-13
Receiving a CICS Adapter Request from Oracle9iAS InterConnect.........cccccecvvevvvnnnne 3-13

(DT Lo I I = SR 3-13
RUNTIMIE ¢ ettt bbb b e b et se et et st e e e s e e st e st eneeneeneeneeneenas 3-14
Creating an Implemented ProCeAUIEcoveveieicieece e 3-14
Creating a SUDSCIDEA EVENL........coo it 3-19

Systems Network Architecture Definitions

LU 6.2 CPI-C Protocol Stack and URLS...........cccoiiiiiniiiese e 4-2
CONCEPTS AN TEIMNIS ..ottt b et b et b et b et b et eb et eb e bkt nr bt a b b e sb bt eb e s e abe e ene e 4-3

Advanced Program-to-Program Communication (APPC) ..o 4-4
L0 [O OO 4-5
(O3 T @R TN = (=T o o ISR 4-5
(O3 [OAS T I =10 Y- o £ To] o [OOSR 4-5
CONVEISALION ...ttt ettt ekt b bt s bt s bbbt ettt bbbt nnne 4-5
CPI CommuNicatioNS (CPI-C)....ueiiiiicieeece sttt ne e ne e 4-6
LOGICAT UNIT ..ttt bbbt bbbt b ettt bt 4-7
1Y ToTe (38 NN F= T o =PRSS 4-7
(N[0T o [TSSOSO RSP TOU R PRO USSP PRPR 4-7
N ToTe [T IV o LIS PTU P TP T PSP POPRPRPRPOO 4-7
o)Y T or= UL 1) A O) U 4-8
111 (0] o OSSOSO PR PO PR PRTURPR 4-8
System Management FaCility (SMF) ..o e 4-8
Systems Network ArchiteCture (SNA) ..o 4-8
Systems Network Architecture (SNA) CONtrollers ... 4-9
SYNCNIONIZALION LEVEIS. ..ot e 4-9
SYNCAIONIZALION SEIVICES......uiiiiiieiieiiiieieest ettt se et e s e e e e eneeseaneenesresresnens 4-10
Transaction Program (TP) ...ttt re e ste e sae e e saesraen 4-12
Verh Control BIOCK (WCB)oviiiieiieese ettt e 4-12
VIS ottt bbb bbbtk e b e bbbt bbbt b et be et e 4-13
CICS as a TransacCtion PrOgram..........cccoiiiieiieieii sttt sae et esneenes 4-15

5 Systems Network Architecture Concepts

DALA FIOWV......oec e bbb bbb bbbt h et b e bttt be bbb eae s 5-2
Logical Units and Parallel SESSIONS ..o 5-2
CICS Adapter CONVEISALIONScviviiiieriisieresieieie e e ettt te st st e e e e e esee e sneanesressesrenees 5-2
1ot I | 1 S PSPPSR 5-3
LU 6.2 SECUFTLY ...tttk e bbbttt ettt 5-4
Ty o] T V=] B T= o1) Y 5-4
SesSioN Level Cryptography ... 5-4

LU-LU VErFICALIONoiuiiiieiece ettt ne e e 5-4
CoNVErsation LEVEI SECUTILYccvieiieicieieece sttt sresne e e e 5-5
ENd-USEr VErFICATIONc..oiiiciiice e 5-5
Already-Verified ProtOCOIS ...t e 5-5

PersiStent VEIIFICALIONcocviiiieiie et e s s saa e e s sabaeeaans 5-6

Password EXpiration Management..........cccoeoiiiiiiiiieieieeseees s 5-6

CICS Security IMplementation ... s 5-6
BiNd TIME SECUTNILYvveiiiice ettt ettt e s e e te e e s teeaestaeaenreens 5-7
Security FOr CICS iN GENEIALccoociiiiiiiiiiit bbb 5-7
SeCUTity SPECITIC 10 LU 6.2 ...ocuiiiie et et ne e sne e 5-8
LT 1= Tot U]) Y/ S PUOSROR 5-8
Synchronization OF CHANGES........ccoi bbbt 5-9
T (o] gl o = o | 1T o Vo PSP 5-10

6 Message Description Language Reference

vi

What is Message Description LanQUAGE?.........ccceieueieieieie e e siese e seesiesaeseesesasesassessessesseses 6-2
Message Description Language ClaSSeS.........coii it 6-2
Message Description Language File.. ... 6-3
ClaSS DECIATALIONeviiiiiicie et b et b et b ettt enes 6-3
Typedef DECIAIATIONc.oiiiiiiie i ettt ettt sb b ane 6-5
STUCE DECIATALION ...ttt bttt e et et eebeeneebeere e 6-5
MEthOd DECIAIALION.........ciiieiiiieiiiece bbbttt et 6-5
Return TYPE DECIAratioNcoiiiiiiiiiiiiee e 6-7
ArgumMeNt DECIATATIONScoviuiiiiiiei ettt 6-8

S 0T o] ool g =To DT U W Y/ o 1= RSSO 6-9
o] g T A 1Y o 1L TSP TR TR RSO PRURUPPR 6-10
INTEGIAL TY DS ettt b bbb bbbt bt b bttt b et 6-10
FIOALING POINT TYPES....eitiiiiiiiiiie ittt st sttt se et a et e st e se e e eneerenreaneerennes 6-10

] L] [0 Y/ oL OO TP UO TP SO PPURUPOR 6-11
Length-PrefiXed SIINGS ..o 6-11
DEliMITEA STFINGSvvieiecece ettt sttt e e e e s eneereeneeneerenneaneas 6-12
NUI Terminated STHNGScoveiiee et te s e sre et e sre e 6-12
Fixed-Length Padded STriNgS........ocoiiiiiiiee e e 6-12
L] o Lot] € T o TSP 6-13
(070] 001 o] (=3 1Y/ 1= TSSOSO U U USSP PR PP 6-13
DALE TYPES ..ottt 6-13

N L e oo LI I o =TSSR 6-14
Floating POINt NUMDETScvoiiece ettt 6-14

Fixed Scale, Variable Precision NUMDEIS........coccoiv ittt enee s 6-15

Fixed Scale, Fixed Precision NUMDETScccviiiiiiiieeee ettt s 6-15

PaCKEA DECIMAL ..ottt b bbbt 6-16

F AN VA Y o TR QI 1] 1= R 6-16

[D CTo =T o | I 1= o] =SSR 6-17
Prefixed Variable LENGth TabIES ..o 6-17
Explicitly Delimited Variable Length SeqUences...........ccccoevevevivicciesce s 6-17
Implicitly Delimited Variable Length SEQUENCEScccoviieriiriiieiieceeeecie e 6-18
SEFUCTUNEO TS, ..tttk b etttk b bbbt bbbt bbb 6-19
Message Description Language File Format General Syntax Conventions............cc.cccovve.e. 6-19
TYPE PAFAMELELS ...ttt ettt bbbt e bt bt e bt st e s bt e e e sbeeeesbeenesbeenbenneens 6-19
TYPE MOAITIEIS ..ottt 6-20
(VAT 0T o I 1Y, [o o L) =1 ¢SSP 6-20

Type Declaration MOGITIEESco.oiiiiiiie e 6-20
EXIOIESSION..... ettt bbb bbbt bbb R bbbt 6-21
ATBS . bbbt bbb e bbb 6-21
COMMENT INSEITIONctiitiitiite ettt b bbbt b e e bt b s besbe b 6-21
CASE SENSILIVITY ...ttt b bbbttt 6-22
Message Description Language File EXamPle.........ccoooiiinie v 6-22

7 Using the Configuration Editor

Using the Configuration EQITOr........c.cccveioiiiiicece e 7-2

Configuration EAITOr LOGIN........ccoiiiiiiiie ettt st sttt enreenes 7-3

1T 1= = SO 7-4

1Y ToTe L3 NN F= 1o o= USSP 7-4

SYNCNFONIZALION LEVE ...t st ettt et sae et e ste s 7-5

Configuration EITOF SECUTTLYc.ciuiiiiiiiiiiieie ettt 7-5
Index

Vii

viii

Send Us Your Comments

Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide, Release 2 (9.0.2)
Part No. A95442-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: iasdocs_us@oracle.com

FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
Postal service:

Oracle Corporation

Oracle9i Application Server Documentation

500 Oracle Parkway, M/S 20p3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Preface

Xi

Intended Audience

This guide is intended for those who perform the following tasks:
« install applications

= maintain applications

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: // waw or acl e. com accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

Xii

This document contains:

Chapter 1, "Introduction”

This chapter describes the CICS adapter and the hardware and software
requirements.

Chapter 2, "Installation and Configuration"
This chapter describes installation and configuration of the CICS adapter.

Chapter 3, "CICS and the CICS Adapter"
This chapter describes the concepts for the CICS adapter.

Chapter 4, "Systems Network Architecture Definitions"
This chapter provides system network architecture definitions for the CICS adapter.

Chapter 5, "Systems Network Architecture Concepts”

This chapter provides concepts for the system network architecture for the CICS
adapter.

Chapter 6, "Message Description Language Reference"
This chapter provides a reference to the message description language.

Chapter 7, "Using the Configuration Editor"

This chapter provides information on using the Configuration Editor to configure
the CICS adapter.

Related Documentation
For more information, see these Oracle resources:

« Oracle9iAS InterConnect User Guide in the Oracle9i Application Server
Documentation Library

« Oracle9i Application Server Installation Guide
« Oracle9iAS InterConnect Adapter Configuration Editor User’s Guide
In North America, printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

Xiii

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / menber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. comi docs/ i ndex. ht m

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Microsoft Windows Operating Systems

Xiv

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

| ower case
nonospace
(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-wi dth)
f ont

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and

roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter

values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nent _i d, depar t nent _nane,
and | ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parametertot r ue.

Connect as oe user.

The JRepUti | class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_r el ease. SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

XV

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT user nane FROM dba_users WHERE usernane = ' M GRATE ;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of { ENABLE | DI SABLE}
which is required. Do not enter the
braces.

| A vertical bar represents a choice of two { ENABLE | DI SABLE}

or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

[COMPRESS | NOCOVPRESS]

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
« That you can repeat a portion of the SELECT CO', 1, col2, ..., coln FROM
enpl oyees;
code
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acctbal NUMBER(11, 2);

brackets, braces, vertical bars, and ellipsis

points as shown acct CONSTANT NUMBER(4) : = 3;

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em passwor d

variables for which you must supply _
particular values. DB_NAME = dat abase_narre

XVi

Convention Meaning Example
UPPERCASE Uppercase typeface indicates elements SELECT | ast _name, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish « EROM .
them from terms you define. Unless terms SELECT F USER_TABLES,
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
| ower case Lowercase typeface indicates SELECT | ast _name, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names
of tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements use a CREATE USER njones | DENTI FI ED BY ty3Mb;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.
Convention Meaning Example

Choose Start >

File and directory
names

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (), double
quotation marks (), slash (/), pipe (),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"syst enB2 is the same as
C: \ W NNT\ SYSTEM32

XVii

Convention

Meaning

Example

C\>

HOVE_NANE

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C.\oracl e\ or adat a>

C.\>exp scott/tiger TABLES=enp
QUERY=\ "WHERE j ob=" SALESMAN and
sal <1600\ "

C.\>i np SYSTEM password

FROMUSER=scott TABLES=(enp, dept)

C\> net start Oracl eHOVE_
NAMETNSLI st ener

xviii

Convention

Meaning

Example

ORACLE_HOVE
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOVE directory that by
default used one of the following names:

. C.\ orant for Windows NT
« C:\oraw n95 for Windows 95
. C. \ or awi n98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOVE directory. There is a
top level directory called ORACLE_BASE
that by defaultis C: \ or acl e. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\ oracl e\ or a90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Go to the ORACLE_BASE\ ORACLE _
HOME\ r dbns\ adni n directory.

Xix

XX

1

Introduction

Oracle connects to CICS through the CICS adapter. This book introduces the CICS
environment and any CICS specific information. This chapter discusses the
following topic:

« Whatis CICS?

Introduction 1-1

What is CICS?

What is CICS?

The IBM Customer Information Control System (CICS) allows data exchanges by
sending and receiving buffers to and from an application using the CICS adapter.
The CICS adapter uses the CPI-C LU6.2 SNA (LU6.2) protocol APl and/or the ECI
protocol API. The LU 6.2 protocol communicates with a CICS transaction, while the
ECI protocol communicates with a CICS program. A CICS transaction contains
presentation logic and business logic, while the CICS program contains only the
business logic.

System Requirements and Platforms

Definitions

To use CICS adapter with Oracle9iAS InterConnect, the following requirements
must be met.

For the ECI protocol:

= IBM CICS Universal client

For using CPI-C LU6.2 SNA (LU6.2):

« IBM SNA client or the MS SNA client
The CICS adapter runs on:

« Windows NT

« Windows 2000

The following terms are specific to the CICS adapter:
« Logical Unit (LU)
L] CPI'C

Logical Unit (LU)

A logical unit represents the logical destination of a communication data flow. The
formal definition of a logical unit is the means by which an end user gains entry
into a network. An end user is defined as the ultimate source, or destination, of data
flow in a network. SNA supports several different types of logical units. These are
grouped together in numbered logical unit types, such as logical unit type 2 for 3270
display terminals, and logical unit type 4 for printers. The logical unit type for
CICS-to-CICS communication is logical unit type 6.2, and is frequently referred to

1-2 Oracle9iAS InterConnect Adapter for CICS Installation and User's Guide

What is CICS?

as advanced program-to-program communication (APPC). Each logical unit is
given a unique name that identifies it in the network. There are two types of logical
units 6.2 pertinent to CICS adapter:

« Dependent logical unit 6.2 can have only a single session and therefore only one
conversation at a time.

« Independent logical unit 6.2 can have more one session with other logical
units—any conversations can be held simultaneously between two logical units.

CPI-C

CPI (CPI Communications) provides a cross-system-consistent and easy-to-use
programming interface for applications that require program-to-program
communication. From an application's perspective, CPI-C provides the function
necessary to enable this communication. The conversational model is implemented
in two major communications protocols: Advanced Program-to-Program
Communication (APPC) and Open Systems Interconnection Distributed Transaction
Processing (OSI TP). The APPC protocol is also referred to as Logical Unit type 6.2
(logical unit 6.2). CPI-C provides access to both APPC and OSI-TP.

Introduction 1-3

What is CICS?

1-4 Oracle9iAS InterConnect Adapter for CICS Installation and User's Guide

2

Installation and Configuration

This chapter describes installation and configuration of the CICS adapter. This
chapter discusses the following topics:

« Installing the CICS Adapter
« CICS Adapter Configuration

Installation and Configuration 2-1

Installing the CICS Adapter

Installing the CICS Adapter
This section contains these topics:
« Preinstallation Tasks

« Installation Tasks

Preinstallation Tasks
The CICS adapter must be installed in one of the following Oracle homes:

« An existing Oracle9i Application Server Oracle home

« An existing Oracle9i Application Server Infrastructure Database Oracle home
« An existing Oracle9iAS InterConnect Oracle home

« A new Oracle home (the installer creates this for you)

Consult the Oracle9i Application Server Installation Guide before proceeding with the
CICS adapter installation. This guide includes information on:

« CD-ROM mounting
» Oracle Universal Installer startup
« Oracle9iAS InterConnect installation

« Oracle9iAS InterConnect software, hardware, and system requirements

Note: Oracle9iAS InterConnect Hub is installable through the
Oracle9iAS InterConnect Hub installation type. You must install the
Oracle9iAS InterConnect Hub before proceeding with the CICS
adapter installation.

Installation Tasks
To install the CICS adapter:

1. Click Next on the Welcome page.
The File Locations page displays.
2. Enter the following information in the Destination fields:

« Name—The Oracle home name.

2-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Installing the CICS Adapter

« Path—The full path to the Oracle home in which to install the CICS
adapter.

Note: Do not change the path specified in the Source field. This is
the location on the CD-ROM from which to install the CICS
adapter.

3. Click Next.
The Installation Types page displays.
4. Select Oracle9iAS InterConnect Adapters and click Next.
The Available Product Components page displays.
5. Select Oracle9iAS InterConnect CICS Adapter and click Next.

6. If the CICS adapter is not being installed on the same computer as Oracle9iAS
InterConnect Hub and another adapter is not installed in the current Oracle
home, the Oracle9iAS InterConnect Hub Database screen appears. Enter the
following information about the Oracle9iAS InterConnect Hub to use:

» Host Name—The hostname of the computer on which Oracle9iAS
InterConnect Hub is installed.

« Port Number—The port number of the computer.

« Database SID—The system identifier (SID) of the Oracle9iAS InterConnect
Oracle9iAS Metadata Repository.

« Password—The password for the Oracle9iAS Metadata Repository schema.

The Oracle9iAS Metadata Repository stores metadata used by Oracle9iAS
InterConnect to coordinate communication between components.

7. Click Next.
The Oracle9iAS InterConnect CICS Adapter page displays.

8. Enter the name of the application associated with the CICS adapter. White
spaces or blank spaces are not permitted. The default value is myCl CSApp.

9. Click Next.

The Oracle9iAS InterConnect CICS Adapter - Specify CICS client binaries
location page displays.

10. Enter the location for the client binaries location.

Installation and Configuration 2-3

CICS Adapter Configuration

11. Click Next. Complete the fields for any other components selected for
installation, such as other adapters. When finished, the Summary page displays.

12. Click Install to install the CICS adapter and other selected components. The
CICS adapter is installed in the following directory:

Platform Directory
Windows Y%ORACLE_HOVE% oai \ 9. 0. 2\ adapt er s\ Appl i cati on
UNIX $ORACLE_HOME/ oai / 9. 0. 2/ adapt er s/ Appl i cati on

Appl i cati on is the value you specified in Step 8 on page 2-3.

CICS Adapter Configuration

Table 2-2, Table 2-3, and Table 2—4 describe executable files, configuration files, and
directories. These files and directories are accessible from the directory shown in
Table 2-1:

Table 2-1 CICS Adapter Directory

On.. Go to...
UNIX $ORACLE_HOVE/ oai / 9. 0. 2/ adapt er s/ Appl i cati on
Windows YORACLE_HOVE% oai \ 9. 0. 2\ adapt er s\ Appl i cati on

Table 2—-2 Executable Files

File Description

start.bat (Windows) Takes no parameters, starts the adapter.
start (UNIX)

st op. bat (Windows) Takes no parameters; stops the adapter.

st op (UNIX)
i gnoreErrors. bat If an argument is specified, then the given error code will be
(Windows) ignored. If no argument is specified, than all error codes

. specified in the Er r or Codes. i ni will be ignored.
i gnor eError s (UNIX)

2-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

CICS Adapter Configuration

Table 2-3 Configuration Files

File Description

Er r or Codes. i ni Should contain one error code per line.
(Windows and UNIX)

adapt er. i ni Consists of all the initialization parameters which the adapter
(Windows and UNIX) reads at startup. Refer to Appendix A for a typical
adapter.ini file.

Table 2—-4 Directories

File Description

persistence The messages are persisted in this directory. This directory or its
contents should not be edited.

logs The logging of adapter activity is done in subdirectories of the
log directory. Each new run of the adapter creates a new
subdirectory in which logging is done in an oai | og. t xt file.

Using the Application Parameter

Adapters do not have integration logic. The CICS adapter has a generic
transformation engine that processes metadata from the repository as runtime
instructions to do transformations. The application defines for an adapter what its
capabilities are. For example, it can define what messages it can publish, what
messages it can subscribe to, and what are the transformations to perform. The
application parameter allows the adapter to become smart in the context of the
application to which it is connected. It allows the adapter to retrieve from the
repository only that metadata that is relevant to the application. The application
parameter must match the corresponding application that will be defined in iStudio
under the Applications folder.

If you are using pre-packaged metadata, after importing the pre-packaged metadata
into the repository, start up iStudio to find the corresponding application (under the
Applications folder in iStudio) to use as the application for the adapter you are
installing (unless the package you are using provides directions for what the
application should be).

Installation and Configuration 2-5

CICS Adapter Configuration

adapter.ini Initialization Parameter File
This section contains these topics:

Hub.ini
Agent Connection Parameters

CICS Adapter Parameters

Hub.ini

The CICS adapter connects to the hub database using parameters from the

hub. i ni file located in the hub directory. The following table lists the parameter
name, a description for each parameter, the possible and default values, and an
example.

Parameter

Description

Example

hub_user nane

hub_password

hub_host

hub_i nst ance

hub_port

repository_nane

The name of the hub database schema (or username).
Possible values are valid hub database username. There
is no default value.

The password for the hub database user. Possible
values are the valid password for the hub database
user. There is no default value.

The name of the machine hosting the hub database.
Possible values are the valid machine name. There is no
default value.

The valid SID of the hub database. There is no default
value.

The TNS listener port number for the HUB database
instance. There is no default value.

The valid name of the repository this adapter talks to.
There is no default value.

hub_user nane=nyhub

hub_passwor d=nanager

hub_host =npj oshi pc

hub_i nst ance=or cl

hub_port =1521

reposi t ory_nane=nyr epo

2-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

CICS Adapter Configuration

Agent Connection Parameters

The CICS adapter connects to the spoke application using parameters from the
adapt er . i ni file. The following table lists the parameter name, a description for
each parameter, the possible and default values and an example.

Parameter

Description Example

application

partition

i nst ance_nunber

agent _| og_|I evel

agent _
subscri ber _name

agent _nessage_
sel ector

agent _reply_
subscri ber _nane

The name of the application this adapter connects to. appl i cati on=aqapp
This must match with the name specified in iStudio

during creating of metadata. Any alphanumeric string

can be used. There is no default value.

The partition this adapter handles as specified in iStudio. partiti on=ger many
Any alphanumeric string is a possible value. There is no
default value.

To have multiple adapter instances for the given i nstance_nunber =1
application with the given partition, each adapter should

have a unique instance number. Possible values are any

integer greater than 1. There is no default value.

Specifies the amount of logging necessary. Possible agent _| og_I evel =2
values are:

O=errors only

1=status and errors
2=trace, status, and errors
The default value is 1.

The subscriber name used when this adapter registers its agent _subscri ber _
subscription. The possible value is a valid Oracle name=aqapp
Advanced Queuing subscriber name and there is no

default value.

Specifies conditions for message selection when agent _nessage_
registering its subscription with the hub. The possible sel ect or=reci pi ent _
value is a valid Oracle Advanced Queuing message list like '%qapp, %
selector string. There is no default value.

The subscriber name used when multiple adapter If appl i cati on=aqapp,
instances for the given application with the given i nst ance_nunber =2, then,
partition are used. Optional if there is only one instance agent _reply_

running. The possible value is application name subscri ber _name=agapp?2

(par anet er: appl i cati on)concatenated with
instance number (par anet er: i nstance_nunber).
There is no default value.

Installation and Configuration 2-7

CICS Adapter Configuration

Parameter

Description

Example

agent _reply_
nessage_sel ect or

agent _tracking_
enabl ed

agent _

t hr oughput _
neasur enent _
enabl ed

agent _use_
custom hub_dtd

agent _netadata_
caching

Used only if multiple adapter instances for the given
application with the given partition. The possible value
is a string built using concatenating application name
(par anet er: appl i cat i on) with instance number
(par anet er: i nst ance_nunber). There is no default
value.

Specifies if message tracking is enabled. Set to false to
turn off all tracking of messages. Set to true to track
messages with tracking fields set in iStudio. Possible
values aret r ue or f al se. The default value ist r ue.

Specifies if throughput measurement is enabled. Set to
true to turn on all throughput measurements. Possible
values are t rue or f al se. The default value ist r ue.

Specifies if a custom DTD should be used for the
common view message when handing it to the hub. By

default adapters use an Oracle9iAS InterConnect-specific
DTD for all messages sent to the hub as other Oracle9iAS

InterConnect adapters will be retrieving the messages
from the hub and know how to interpret them. Set to
true if for every message, the DTD imported for the

message of the common view is to be used instead of the

Oracle9iAS InterConnect DTD. Only set to true if a
Oracle9iAS InterConnect adapter is not receiving the
messages from the hub. Possible values are t r ue or
f al se. There is no default value.

Specifies the metadata caching algorithm. Possible
values are:

« Startup—Cache everything at startup. This may
take a while if there are a lot of tables in the
repository.

. demand—Cache metadata as it is used.

« none—No caching. This slows down performance.

The default value is demand.

2-8 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

If appl i cat i on=aqapp,

i nst ance_nunber =2, then
agent _reply_nessage_
sel ector=recei pi ent _
list like '% aqgapp2, %

agent _tracking_
enabl ed=t rue

agent _t hr oughput _
measur enment _
enabl ed=true

agent _use_custom hub_
dt d=f al se

agent _netadata_
cachi ng=denand

CICS Adapter Configuration

Parameter

Description

Example

agent _dvm tabl e_
cachi ng

agent _| ookup_
tabl e_caching

agent _del ete_
file_cache_at _
startup

agent _max_ao_
cache_si ze

agent _max_co_
cache_si ze

agent _max_
nessage_

met adat a_cache_
si ze

Specifies the DVM caching algorithm. Possible values
are:

« startup—Cache all DVM tables at startup. This
may take a while if there are a lot of tables in the
repository.

« denmand—Cache tables as they are used.
« none—No caching. This slows down performance.
The default value is dermand.

Specifies the lookup table caching algorithm. Possible
values are:

« startup—Cache all lookup tables at startup. This
may take a while if there are a lot of tables in the
repository.

« demand—Cache tables as they are used.
« none—No caching. This slows down performance.
The default value is denmand.

With any of the agent caching methods enabled,
metadata from the repository is cached locally on the file
system.

Set this parameter to t r ue to delete all cached metadata
on startup.

Note: After changing metadata or DVM tables for this
adapter in iStudio, you must delete the cache to
guarantee access to the new metadata or table
information.

Possible values are t r ue or f al se. The default value is
fal se.

Specifies the maximum number of application objects’
metadata to cache. Possible values are any integer
greater than 1. The default value is 200.

Specifies the maximum number of common objects’
metadata to cache. Possible values are any integer
greater than 1. The default value is 100.

Specifies the maximum number of messages’ metadata
to cache (publish/subscribe and invoke/implement).
Possible values are any integer greater than 1. The
default value is 200.

agent _dvm tabl e_
cachi ng=denand

agent _| ookup_t abl e_
cachi ng=denand

agent _delete file_
cache_at _startup=fal se

agent _nax_ao_cache_
si ze=200

agent _nax_co_cache_
si ze=100

agent _max_nessage_
nmet adat a_cache_
si ze=200

Installation and Configuration 2-9

CICS Adapter Configuration

Parameter

Description

Example

agent _nax_dvm_
t abl e_cache_si ze

agent _max_
| ookup_t abl e_
cache_si ze

agent _max_queue_

size

agent _
persi stence_
queue_si ze

agent _
persi stence_
cl eanup_i nterval

agent _
persi stence_
retry_interval

service_path

service_
cl asspath

service_cl ass

servi ce_max_
java_stack_si ze

2-10 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Specifies the maximum number of DVM tables to cache.
Possible values are any integer greater than 1. The

default value is 200.

Specifies the maximum number of lookup tables to
cache. Possible values are any integer greater than 1. The

default value is 200.

Specifies the maximum size that internal Oracle9iAS
InterConnect message queues can grow. Possible values
are any integer greater than 1. The default value is 1000.

Specifies the maximum size that internal Oracle9iAS
InterConnect persistence queues can grow. Possible
values are any integer greater than 1. The default value is

1000.

Specifies how often the persistence cleaner thread should
run. Possible values are any integer greater than 30000.
The default value is 60000.

Specifies how often the persistence thread should retry
when it fails to push a Oracle9iAS InterConnect message.
Possible values are any integer greater than 5000. The
default value is 60000.

Windows only. The value that the environment variable
PATH should be set to. path is set to the specified value
before forking the Java VM. Typically, all directories
containing all necessary DLLs should be listed here.
Possible values are the valid path environment variable
setting. There is no default value.

The classpath used by the adapter Java VM. If a custom
adapter is developed and as a result, the adapter is to be
used to pick up any additional jars, add the jars to the
existing set of jars being picked up. Possible values are
the valid classpath. There is no default value.

The entry class for the Windows NT service. The possible

value is

oracl e/ oai / agent/ servi ce/ Agent Ser vi ce. There

is no default value.

Windows only. The maximum size to which the Java
VM'’s stack can grow. Possible values are the valid Java
VM maximum native stack size. The default value is the
default for the Java VM.

agent _nax_dvm tabl e_
cache_si ze=200

agent _nax_| ookup_
t abl e_cache_si ze=200

agent _nax_queue_
si ze=1000

agent _per si stence_
queue_si ze=1000

agent _persi stence_
cl eanup_i nt er val =60000

agent _persi stence_
retry_interval =60000

service_
pat h=% REHOVE% bi n; D: \
oracl e\ ora902\ bin

service_

cl asspat h=D: \ or acl e\
or a902\ oai \ 902\ | i b\

oai .jar; %WREHOVE% | i b\
i18n.jar;D:\oracle\ora
902\ j dbc\ cl asses12. zip

service_
cl ass=or acl e/ oai / agent
/ servi ce/ Agent Servi ce

servi ce_max_j ava_
st ack_si ze=409600

CICS Adapter Configuration

Parameter Description Example
service_max_ Windows only. The maximum size to which the Java service_max_native_
native_stack VM'’s native stack can grow. Possible values are the valid si ze=131072
si ze Java VM maximum native stack size. The default value is
the default for the Java VM.
service_mn_ Windows only. Specifies the minimum heap size for the servi ce_m n_heap_
heap_si ze adapter Java VM. Possible values are the valid Java VM si ze=536870912
heap sizes. The default value is the default Java VM heap
size.
service_max_ Windows only. Specifies the maximum heap size for the servi ce_max_heap_
heap_si ze adapter Java VM. Possible values are any valid Java VM si ze=536870912

heap sizes. The default value is 536870912.

service_numvm_ Windows only. The number of servi ce_vm arg<nunber> servi ce_numvm ar gs=1
ar gs parameters specified. Possible values are the number of

servi ce_vm ar g<number > parameters. There is no

default value.

service_vm_ Windows only. Specifies any additional arguments to the servi ce_vm_

ar g<nunber > Java VM. For example, to get line numbers in any of the ar gl=j ava. conpi | er =
stack traces, set servi ce_vm ar gl=j ava. conpi | er =NONE. If NONE
there is a list of arguments to specify, use multiple
parameters as shown in the example by incrementing the
last digit starting with 1. Be sure to set the servi ce_
num_vm ar gs correctly. Possible values are any valid
Java VM arguments. There is no default value.

service_vm_
ar g2=oai . adapt er =. aq

service_jdk_ Windows only. The JDK version the adapter Java VM service_jdk_

ver si on should use. The default valueis 1. 3. 1. version=1.3.1

service_jdk_dl | Windows only. The dll the adapter Java VM should use. service_j dk_
The default valueisj vm dl | . di I =jvmdl |

CICS Adapter Parameters
The following table lists the parameters specific to the CICS adapter.

Parameter Description Example
bri dge_cl ass This indicates the entry class for the CICS adapter. Do bridge_
not modify this value. A possible value is cl ass=com acti onal . oai .

com act i onal . oai . Agent . There is no default value. Agent

Installation and Configuration 2-11

CICS Adapter Configuration

2-12 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

3

CICS and the CICS Adapter

This chapter discusses the following:

The CICS Adapter

Message Description Language (MDL)

Classes

LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs
How the CICS Adapter Communicates With CICS

CICS Adapter Security

Implementing the CICS Adapter

Using the CICS Adapter Inbound

Creating an Implemented Procedure

Creating a Subscribed Event

CICS and the CICS Adapter 3-1

The CICS Adapter

The CICS Adapter

In CICS, both partners (CICS and the CICS adapter) must define the content of the
CICS buffer. When this is done, it is possible to exchange data.

The CICS adapter provides the Oracle9iAS InterConnect system with the ability to
interact with CICS. To make the CICS buffer description visible to Oracle9iAS
InterConnect, the adapter specifies how to format data (representing a call) on a
communication line by describing the format of the data being passed. The format
is described in an Message Description Language (MDL) file. It abstracts a method
call as input and output messages. A hormal method call has arguments passed
from the Agent (caller) to CICS (callee) represented as synchronous or
asynchronous messages going up and back from arbitrary services.

Individual message reply and request pairs (each request message can have a reply
message) describe interactions between clients and servers.

The CICS adapter represents a method call as a pair of messages:
« Arequest message containing all input arguments.

« Areply message containing all output arguments.

Message Description Language (MDL)

Message-oriented technology does not have any type description which
object-technologies require. A language specification, the Message Description
Language, describes the internal data format of each message buffer.

The CICS adapter uses the Message Description Language to describe the CICS
buffer.

Message Description Language elements are message buffers, sent or received by
the CICS adapter, mapped as Message Description Language method arguments.
The mapping allows object-oriented technologies to have a familiar view of the
message buffers; with each message treated as a single argument or separated into
multiple arguments. The CICS adapter automatically concatenates the arguments at
run-time. The request and reply messages are grouped as a single method with
input and output arguments. One Message Description Language interface groups
Message Description Language methods (performing similar tasks) for a specific
message queue.

3-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Classes

Classes

To make CICS servers visible as components to Oracle9iAS InterConnect
applications, you first describe a set of methods using adapter’s message formats. A
method call translates into a request message and a reply message. The request
message contains all the input arguments and the reply message contains all the
output arguments.

The CICS adapter uses Message Description Language *. cl s files as the
representation of component interfaces with methods having elements as
arguments. For example, the message definition:

met hod Get Bal ance
i n BankNanme bank
in CustName cust oner
out Bal ance bal ance
out CustStatus status
end net hod

defines a method containing four arguments with the type defined using Message
Description Language fixed length string types:

typedef string(54,' ',tail) BankNane
typedef string(30,' ',tail) CustNane
typedef string(20,' ',head) Bal ance
typedef string(20,' ',tail) CustStatus

The following is an example of a Message Description Language file for CPI-C
LU6.2 SNA protocol. This file must be named ci cs62b. cl s (this is the class name
and the cls extension):

#cics62b. CLS
Cass for CICS A62B transaction invoking ACTB62P1 Program
Note the ACTB62P1 programis invoking (ClCS LINK) ACTBNKP1 Program

class cics62b (1 u62cpic://Cl CSVIET)

struct df hcommarea
string(8,"' ',tail) transCode
nunber (5,0, none) in string(5,'0', head) acctNumber
string(20,' ",tail)clientName

(
(
nunber (6, 2, none) in string(8,'0', head)Anount
nunber (8, 2, none) in string(10,'0", head)Bal ance
string(3,' ',tail) ReturnCode
string(80," ',tail) Information
end struct

CICS and the CICS Adapter 3-3

LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs

met hod AB62
return void
i nout df hcomrarea prograndat a
end net hod
end cl ass
01 | QAREA.
05 TRANSACTI ON- CODE PI C X(8).
05 ACCOUNT- NUMBER PI C 9(5).
05 CLI ENT- NAME Pl C X(20).
05 TRANSACTI ON- AMODUNT PI C 9(6) V99.
05 ACCOUNT- BALANCE Pl C 9(8) V99.
05 APPL- RETURN- CODE PI C X(3).
05 APPL- ERROR- MESSAGE PI C X(80).

LUG.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLS

At run-time, the CICS adapter interacts with the communication framework to pass
along data over the adapter CPI-C protocol stack or the ECI protocol API. You can
use either of these protocol stacks with the CICS adapter.

Both the ECI protocol API and the CPI-C protocol stack (CPI-C LU6.2 SNA protocol
API) defines the transport layer used to communicate data between CICS
applications and adapter. Just as the metadata describes how to format documents,
the protocol stack defines the shipping mechanism.

Message Description Language class files must specify a URL in the class definition.
URLSs specify routing information when describing destinations within the CICS
world. The URL contains CPI-C transport, ECI transport, and protocol under the
form of a protocol stack identifier, as well as transport specific server identification.
The following is an example using the CPI-C LU6.2 SNA protocol API:

l'u62cpic:/ /1 unanme/ t pname

where:
« lub2cpic—Specifies the IBM snalu62 protocol stack, using the CPI-C API.
« Luname—Alias of the remote location unit name of the destination.

« tpname—CICS transaction name.

3-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

How the CICS Adapter Communicates With CICS

The following is an example using the ECI protocol API:

eci://cicsservernane/ ci csprogramane

where:
« eci—Specifies the ECI protocol API.
« cicsservername—Specifies the CICS server name.

« cicsprogramname—Specifies the CICS program name.

How the CICS Adapter Communicates With CICS

The CICS adapter uses either a SNA LU62 CPI-C interface or ECI protocol
application to communicate with CICS.

Using SNA LU 6.2 CPI-C Protocol API

To achieve the communication, install the CICS adapter on a machine that has the
IBM eNetwork communication server or the IBM eNetwork communication client,
or on a machine having a Microsoft SNA server or Microsoft SNA client.

Install all the required definitions in the following locations:
« Local SNA Server

« Remote SNA Server (Virtual Telecommunications Access Method/Network
Program Control)

« CICStables
To communicate with CICS, the CICS adapter needs two pieces of information:

1. Remote LU alias—The name defined in the local SNA server. Usually it is the
same name as the remote LU name (this name is often also the name of the
CICS in VTAM (VTAM ACB)).

2. transaction program Name—The name of the CICS transaction. Its length is
usually four characters.

The URL specified in the Message Description Language class definition provides
this information.

CICS and the CICS Adapter 3-5

CICS Adapter Security

Using the ECI Protocol API

To achieve the communication, install the CICS adapter on a machine that has the
IBM CICS Universal Client. This software may require one of the following pieces
of software to communicate with the CICS server:

« TCP/PI—This protocol can be used with non-mainframe CICS server.

« TCP62—This protocol can be used with all CICS servers. It requires IBM
Personal Communication software installed on the computer running ACB with
the CICS adapter using the ECI protocol.

« SNA LUG6.2—This protocol can also be used with all CICS servers. It requires
IBM eNetwork Communication Server client or server software installed on the
computer running ACB with the CICS adapter using the ECI protocol.

To communicate with CICS, the CICS adapter needs two pieces of information:

1. CICS server name—The name defined in the CICS Universal Client
configuration. It is the server name.

2. CICS program name—The name of the CICS program. Its length can be up to
eight characters. This is the name of the program as defined in the CICS region

The URL specified in the Message Description Language class definition provides
this information.

CICS Adapter Security

Security is provided by the CICS adapter and by the different software needed by
the protocols.

Using the LU 6.2 CPI-C Protocol

There are different levels of security when using the CICS adapter with the SNA LU
6.2 CPI-C protocol. Security may be optional, but it is almost always used in
mainframe applications. You may also have security between the SNA Client and
the SNA server (if you are using a SNA client) and security between SNA servers
(the mainframe SNA server and the SNA server used by the CICS adapter to
communicate. For more details refer to your system administrator or to the SNA
(Microsoft or IBM) books for the CICS LU6.2 CPI-C protocol and to the IBM SNA
and CICS mainframe books.

3-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Implementing the CICS Adapter

Security can be specified in the user profile. If you are using security, you must
provide a user identification and a password that your mainframe application
accepts.

See Also: "Using the Configuration Editor" on page 7-1

Using the ECI Protocol

There are different levels of security when using the CICS adapter with the ECI
protocol. Security may be optional, but it is almost used in mainframe applications.
The security used in the CICS Universal agent depends on which communication
protocol is used. For more details, refer to your system administrator or to the CICS
Universal Agent documentation.

Security can be specified in the user profile. If you are using security, you must
provide a user identification and a password that your mainframe application
accepts.

See Also: "Using the Configuration Editor" on page 7-1

Implementing the CICS Adapter
There are two parts in the implementation:
« LU 6.2 protocol or the ECI protocol API
« CICS adapter

SNA LU 6.2 CPI-C Protocol API

LU 6.2 provides the services required to establish a conversation with the Remote
partner of the CICS adapter, the Mainframe CICS region. The services related to a
transaction program are:

« Start transaction program (identify to LU 6.2 a transaction program that can
issue ALLOCATE or MC_ALLOCATE).

« Stop the transaction program.

«» Datarelated to a transaction program—transaction program identification and
transaction program behavior (dead or alive).

« Services related to a Conversation:

« Receive_Allocate (start an invoked transaction program)

CICS and the CICS Adapter 3-7

Implementing the CICS Adapter

« Send Data
« Receive data
« All the other APPC conversation verbs

« Data related to a conversation—Conversation Identification, conversation
behavior (dead or alive), and conversation states (reset, receive, or send state).

ECI Protocol API

ECI provides the service requires to establish a Distributed Program Link (DPL) call
to a CICS program running in a CICS region, through the Commarea. The services
related to a Distributed Program Link call are:

« Provides security information if required.

« Establish contact with the CICS Universal Agent.

« Do the call to a remote CICS program, by passing to the CICS Universal agent:
= Name of the CICS server.
« Name of the CICS program.
« Commarea containing the application data.

« User Id and password, if required.

CICS Adapter
The CICS adapter in inbound mode does the following:

« Uses services provided by the SNA LU 6.2 CPI-C protocol or by the ECI
protocol.

« Provides UserlD and Password for security (at data communication message
level).

« Builds from the metadata and the request received messages sent to the CICS
region.

If using services provided by the SNA LU 6.2 CPI-C protocol, the following is
achieved:

« Allocates a conversation with the remote Transaction Program (CICS region).

« Sends the required data and security.

3-8 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Implementing the CICS Adapter

« Receives reply (replies) from the CICS program.

« Converts the data to the original format.

If using services provide by the ECI protocol:

« Connect with the CICS Universal Agent (using the CICS server Name and
security).

« Sends the required data using to the CICS program.

« Receives reply (replies) from the CICS region.

« Converts the data to the original format.

CICS Adapter Information Flow
The following is the CICS adapter information flow:

« Receives a request from the Oracle9iAS InterConnect application.

« Transforms the component (in a CICS transaction and in procedures to obtain
what it is required).

« ForSNA LU 6.2 CPI-C:

Transaction definition

Transaction code and input data (format) (fields position + type: binary,
ASCII, EBCDIC)

Transaction output data format
Transaction destination and protocols
LU name (Transaction destination)
Protocol used (LU 6.2 CPI-C)

Security (application level—logical to be mapped in configuration data
(logonids or others)

« ForECI:

Commarea definition

Program name and input data (format (fields position & type: binary,
ASCII, EBCDIC)

Message Destination (CICS Server name)

CICS and the CICS Adapter 3-9

Implementing the CICS Adapter

« Security (application level—logical to be mapped in configuration data
logonlds or others)

« Sends the result of the transformation to the Communication layer.
« Receives transaction responses from the Communication layer.

« Transforms the transaction response.

« Sends the response to the Oracle9iAS InterConnect application.

« Uses functions library for sending/receiving data (CPI-C and/or APPC or ECI
Protocol API).

The Communication Layer manages physical communication with the mainframe
(physical links, PUs and logical units activation/deactivation, and link security). It
sends and receives data received from the CICS adapter.

Multi-Threading
The following are multi-threaded for SNA LU62 CPI-C:

« CICS
« SNA servers (VTAM and Windows NT)

The SNA API DLLs support multiple calls from a program using APPC or CPI-C
SNA APIs.

More than one instance of the CICS adapter are possible:
= Onetoone

« one to two or plus

« two or plus to one

« two or plus to two or plus

It is possible for one instance of the CICS adapter to have more than one
conversation with multiple remote transaction programs.

Note: Implementation of security and/or implementation of
multi-threading is specific to the SNA server and to the functions
provided by the API. For example, Microsoft provides a Windows
standard APPC where they allow asynchronous APPC calls on
Windows 3.1.

3-10 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Using the CICS Adapter Inbound

The following are multi-threaded for ECI:
« CICS

« The CICS Universal Agent

« Windows NT

The CICS Universal Agent DLLs support multiple calls from a program using ECI
API.

More than one instance of the CICS adapter is possible. The possibilities are:
« onetoone

« oneto two or plus

« two or plustoone

« two or plus to two or plus

It is possible for one instance of the CICS adapter to have more than one program
call to multiple CICS regions.

Implementation of security and/or implementation of multi-threading is specific to
the CICS Universal Agent and to the functions provided by the API.

Using the CICS Adapter Inbound

Sending messages inbound means that the CICS adapter is the client and CICS is
the server. To send messages to CICS using the CPI-C LU 6.2 SNA protocol, ensure
that the SNA client and the adapter configuration settings are setup properly. To use
an ECI protocol, ensure that the IBM Universal client and adapter settings are set up

properly.

SNA LU 6.2 CPI-C Protocol

Before using the CICS adapter, you must prepare your environment. For example:
=« SNA controllers are up and running.
» CICS at the mainframe is up and running.

« Session(s) between LUs are either active or inactive. If sessions are active, the
Bind security was done at session activation.

CICS and the CICS Adapter 3-11

Using the CICS Adapter Inbound

Application Start-up

Launch the CICS adapter. In its initialization process, the CICS adapter sends a
TP_START APPCverb. The SNA returns a TP_i d. All conversations and
commands sent to the SNA controller use this TP_i d. It is valid until the adapter
issues a TP_END later in the allocation of a conversation.

Receiving a CICS Adapter Request from Oracle9iAS InterConnect
When the CICS adapter receives a request, complete the following:

1. Extract the data required to build the CICS transaction.

2. Getand set all related settings for the conversation:

Security information—User | Dand Passwor d.
ModeName—Characteristics of the session between the 2 LUs.
Synchronization level of the conversation—NONE or CONFI RM

Remote LU name—The SNA name of the CICS region.

Remote transaction program name—~For CICS, he CICS transaction name.

Start (allocate) the conversation—The protocol obtains from SNA a
conversion identifier. This identifier is used on each subsequent call to the
SNA LUG62 CPI-C API for this conversation.

Data is sent to the CICS region through SNA.

3. Issueaconfirmati oncommand if CONFI RMis set as synchronization level.

4. lIssue arecei ve command to receive the reply from the CICS transaction.

When all the data is received, the session will be de-allocated and the CICS
adapter receives notification. With the data, the CICS adapter builds back a
reply to the requestor.

ECI Protocol

Before using the CICS adapter, you must prepare your environment. For example:

» CICS Universal agent is up and running.

« Communications software used by CICS agent is up and running.

» CICS at the mainframe is up and running.

3-12 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Using the CICS Adapter Inbound

Design Time

Application Start-up
To start the application, launch the CICS adapter.

Receiving a CICS Adapter Request from Oracle9iAS InterConnect
When the CICS adapter receives a request, complete the following:

1. Extract the data required to build the CICS program Commarea.
2. Initialize and set all the control information, such as:

« CICS Server Name—Name of the CICS server, as known by the CICS
Universal Agent.

« CICS Program Name—Name of the CICS program, as known by the CICS
region.

« Ifrequired, enter the User Id and Password.
3. Send the data to the CICS region.

4. The CICS program in the CICS Region receive data in a memory buffer called
Commarea. It processes the data and puts back output data in the same buffer.
When finished, control returns to the CICS Server.

5. The CICS server sends back the Commarea to the CICS Universal Agent.
6. The CICS Universal Agent passes the buffer back to the CICS adapter.

Create an Message Description Language *. cl s file describing the messages buffer
format to send and receive as Message Description Language method argument
parameters.

See Also:
« "Message Description Language Reference” on page 6-1

« "Classes" on page 3-3 for an example of an Message
Description Language class file

Create a new sub-directory under config/CICS and copy the Message Description
Language class file into the new directory. After the Message Description Language
files have been copied into the directory, the interfaces are visible to Oracle9iAS
InterConnect. Now iStudio can be used in the normal manner to create definitions,
procedures, and events.

CICS and the CICS Adapter 3-13

Creating an Implemented Procedure

Runtime

You use the CICS adapter to:
1. Expose the Message Description Language interface in iStudio.

2. Define application views in iStudio.

Performing a call requires a bidirectional exchange of information with the CICS
servers. On performing a call, the CICS adapter extracts all input information from
the passed in arguments; it uses information within the Message Description
Language to format these arguments into an input message. The CICS adapter uses
the URL provided in the Message Description Language file to connect to the
service.

Creating an Implemented Procedure

To create an implemented procedure using iStudio:
1. StartiStudio.

2. Open your project.

3. Expand the Applications folder.

3-14 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Creating an Implemented Procedure

4. Right-click Implemented Procedures and select New.

Figure 3-1 iStudio - New Implemented Procedure

w1 0racle iStudio - myWorkspace.iws

File Edit Procedure Ewent Help
D<o N % @ /6 B bd

Design l Deplay

Z-Project
B Common Views
-7 Applications
- cics

/M Application Data Types
3 Published Events
7 subscribed Events
7 Invoked Procedures
EI Implemented Proc

28] wWarkflow

®-[& Enabling Infrastructure

Edit
L] o)
[elete

CICS and the CICS Adapter 3-15

Creating an Implemented Procedure

The Implement Wizard—Select a Procedure dialog displays.

Figure 3-2 Selecting a Procedure

ilﬂlmplement Wizard - Select a Procedure

Application |cics

Message Type [CICS

Select a Procedure

BusinessObject
CICs
Cu

DeleteCustomer
QueryCustomer
UpdateCustamer
UpdateCustomerStatus

5. Select the Application and Message Type from the dropdown lists.

3-16 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Creating an Implemented Procedure

6. Select a procedure and click Next. The Implement Wizard—Define Application
View dialog displays.

Figure 3-3 Implement Wizard - Define Application View - Importing CICS

ilﬂlmplement Wizard - Define Application Yiew

Modify Fields

Ohject Mame |

~Attribute

Mame |Type |OwnerI...|Array |Defau|t |INIOU... |

Commaon Yiew
Application Data Type
Commaon Data Type

CICS_BIND

CICS and the CICS Adapter 3-17

Creating an Implemented Procedure

7. Click Import and select CICS from the dropdown list. The Component Selector
dialog displays.

Figure 3-4 Component Selector

[&1 cics
[+ P_—I cicsB2h - luBZepicHCICSVIET
15] 52

it Bind
£ P_—I CICS_BasicTypes - luB2epiciS39CICS
&7 CICS_Date - IUBZepicfSECICS
£ P_—I CICES_Mainframe - [UBZcpicifS9CICS
£ P_—I CICS_Mumber - [UBZcpicifS9CICS
£ P_—I CICES_Sequence - luB2cpicS8CICE
[P_—I CIGE_String - lUBZcpicfS9CICS

oK | Cancel | ACthﬂa]

8. Expand the CICS tree to display the component for selection.

3-18 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Creating a Subscribed Event

9. Select a component and click OK. The populated Define Applications View
dialog displays.

Figure 3-5 Implement Wizard - Define Application View Dialog

ilﬂlmplement Wizard - Define Application Yiew

Modify Fields

Ohject Mame |CICS:IIcIaSS:cicsSEbIAEIGE

Attributes

Mame Type Oweners... | Array Default | IN/OLL..
exception String [MULL
®programdata cicsh2h_| USERSM [MULL

.| Agd| Delste| Clear|

Cross Reference... Event Map Status Fields

10. Click Next to define the mappings.
The Define Mappings dialog displays.
11. Click New to define mappings and click Finish.
The new populated event displays in the right panel of iStudio.

Creating a Subscribed Event
To create a subscribed event in iStudio:
1. StartiStudio.
2. Open your project.
3. Expand the Applications folder.

CICS and the CICS Adapter 3-19

Creating a Subscribed Event

4. Right-click Subscribed Events and select New.

Figure 3-6 iStudio—Creating a Subscribed Event

w1 0racle iStudio - myWorkspace.iws

File Edit Procedure Ewent Help
O S$raoN% @0 L

Design l Deplay

G-CICE
B Common Views
-7 applications

- cics
/M Application Data Types
3 Published Events

7 Invoked
P_—I Implemented Proce
28] wiarkflow Edit
. Copy.
£ l_? Enabling Infrastructure
[elete

__]

3-20 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Creating a Subscribed Event

The Subscribe Wizard—Select an Event dialog displays.

Figure 3-7 Select an Event

w1 Subscribe Wizard - Select an Event E2

Application cics

Message Type [CICB

Select an Event

Z—Business Objects

BusinessObject

5. Select the Application and Message Type from the dropdown lists.

6. Select an event and click Next.

CICS and the CICS Adapter 3-21

Creating a Subscribed Event

The Define Application View dialog displays.

Figure 3-8 Subscribe Wizard - Define Application View - Importing CICS

ilﬂlmplement Wizard - Define Application Yiew

Modify Fields

Ohject Mame |

~Attribute

Mame |Type |OwnerI...|Array |Defau|t |INIOU... |

Commaon Yiew
Application Data Type
Commaon Data Type

CICS_BIND

3-22 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Creating a Subscribed Event

7. Click Import and select CICS. The Component Selector dialog displays.

Figure 3-9 Component Selector

[&1 cics

[+ P_—I cicsB2h - luBZepicHCICSVIET
1fe Bind
£ P_—I CICS_BasicTypes - luB2epiciS39CICS
w0 CICE_Date - luB2cpicfS8CICE

£ P_—I CICES_Mainframe - [UBZcpicifS9CICS
£ P_—I CICS_Mumber - [UBZcpicifS9CICS

£ P_—I CICES_Sequence - luB2cpicS8CICE
[P_—I CIGE_String - lUBZcpicfS9CICS

[}

oK | Cancel | ACthﬂa]

8. Expand the CICS tree to display the correct component for selection.

CICS and the CICS Adapter 3-23

Creating a Subscribed Event

9. Select a component and click OK. The populated Define Applications View
dialog displays.

Figure 3-10 Subscribe Wizard - Define Application View

E'Implement Wizard - Define Application ¥iew

hodify Fields

COhject Name |CICS:rIcIass:ciCSBEbJAEISE

~Aftribute

Mame Tipe Ownerr.. | Array Default |INOU.. |
exception String MULL ouT
® programdata cicsb2h_| USERS) MULL INOUT

EJ Delete M

Cross Reference...] EventMap] Status Fields

10. Click Next to define the mappings.
The Define Mappings dialog displays
11. Click New to define mappings and click Finish.
The new populated event displays in the right panel of iStudio.

3-24 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

A

Systems Network Architecture Definitions

This chapter describes the terms commonly used when referring to systems
network architecture. This chapter discusses the following topics:

« LU 6.2 CPI-C Protocol Stack and URLs

« Concepts and Terms

Systems Network Architecture Definitions 4-1

LU 6.2 CPI-C Protocol Stack and URLs

LU 6.2 CPI-C Protocol Stack and URLs

At run-time, the CICS adapter interacts with the communication framework to pass
along data over the CPI-C protocol stack.

The CPI-C protocol stack (CPI-C LU 6.2 SNA protocol API) defines the transport
layer used to communicate data between CICS applications and the CICS adapter.
Just as the meta-data describes how to format documents, the protocol stack defines
the shipping mechanism.

URLSs specify routing information when describing destinations within CICS. The
URL contains CPI-C transport and protocol under the form of a protocol stack
identifier, as well as transport specific server identification. The following is an
example using the CPI-C LU 6.2 SNA protocol API:

| u62cpic:/ /1 unane/ t pname

where:

« | u62cpi c—Specifies the IBM snalu62 protocol stack, using the CPI-C API.
« Luname—Alias of the remote logical unit name of the destination.

« t pname—CICS transaction name.

A default URL must be specified on the class definition. It must contain the protocol
name (logical unit name) for the CPI-C LU 6.2 SNA protocol. If the t pnane
(lué2cpic) is not specified, then the method name is used.

For example:

class Cl CS_BasicTypes(lu62cpic://S9CI CS) ascii littleendian
Met hod test si gned8
return void
in signed8 inArg
out signed8 outArg
end net hod

4-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

Concepts and Terms

This section describes the following concepts:

ABEND

Advanced Program-to-Program Communication (APPC)

CICS

CICS Region

CICS Transaction

Conversation

CPI Communications (CPI-C)

Logical Unit

Mode Name

Node

Node Type

Physical Unit (PU)

Session

System Management Facility (SMF)
Systems Network Architecture (SNA)
Systems Network Architecture (SNA) Controllers
Synchronization Levels
Synchronization Services

Transaction Program (TP)

Verb Control Block (VCB)

Verbs

CICS as a Transaction Program

Systems Network Architecture Definitions 4-3

Concepts and Terms

ABEND

In OS/390, it is an abnormal termination of a program task (thread) or an address
space (process). There are two types of abends: system and user. A system abend is
done by the system because a system request (this is a supervisor call, usually done
by a SVC) cannot be completed; therefore, the program that issued it cannot
continue to work. Examples are unconditional requests for memory or problem
accessing files. A user abend is an abend generated by the application program.
This occurs when issuing a SVC number 13 instruction in the executable code. A
system abend is prefixed by the letter S and followed by three hexadecimal digits,
for example, S80A (missing memory). A User abend is prefixed by the letter U
followed by four decimal digit, for example, abend U1001.

Note: These abends can be trapped (caught) by user written
programs.

In CICS, it is an abnormal termination of a transaction. When CICS has an OS/390
abend, the entire CICS region is not available. When a CICS transaction abends,
only that transaction is terminated. A CICS abend code is usually made up of 4
characters, for example, abend ASRA. This abend is usually a program exception
(for example, divides by zero, invalid addressing, non decimal data in a packed
decimal field, and so forth). These types of errors are “trapped” by CICS and
converted in a CICS abend ASRA. If, for example, the packed decimal error is not
trapped, the whole CICS region abends with a OS/390 system abend code SOC?7.

Advanced Program-to-Program Communication (APPC)

Advanced Program-to-Program Communication is the general facility
characterizing the LU 6.2 architecture and its various implementations in products.

APPC is sometimes used to refer to the LU 6.2 architecture and its product
implementations as a whole, or to a LU 6.2 product feature in particular, such as an
APPC application program interface. In this document, APPC is referred to as the
API, which allows a program to communicate with another program viaa LU 6.2.
This API is implemented as APPC verbs. Transaction programs can directly use
these verbs to communicate with the LU 6.2 or they can use another layer of API,
such as CICS. CPI-C is an example of a higher layer-programming interface.

4-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

CICS

CICS Region

CICS is a transaction-oriented system. Basically, a transaction is entered via a
terminal or programmatically. The data entered contains a transaction ID, which
enables CICS to recognize the program to be executed. CICS provides this data as
input to the called program. Processing includes calls to databases, to other
programs, or even to other systems. Next, a reply is built and the data is sent back
via CICS. The receiving program reads the data and proceeds with it. If it is a
terminal, control characters may have been embedded with the data to display the
data correctly.

To communicate with other terminals, programs, or both, CICS can use a large
number of protocols, including TCP/IP and systems network architecture
protocols. In this case, LU 6.2 is a peer-to-peer protocol used to transmit messages
between programs.

The CICS region refers to CICS and ESA only. In MVS (or OS/390), a variable-size
subdivision of virtual storage that is allocated to a job step or system task.
CICS/ESA runs in an MVS/ESA region, usually referred to as the CICS region.

A named collection of resources controlled by CICS as a unit. The collection
includes programs, BMS map sets, transactions, terminals, files, transient data
gueues, temporary storage queues, journals, products, and users. One installation of
CICS can run a number of regions on the one processor. Regions are likely to be
application-specific, but one clear distinction is between a production region and a
test region.

CICS Transaction

Conversation

A CICS transaction is a unit of application data processing, consisting of one or
more application programs, initiated by a single request, often from a terminal.

In systems network architecture, conversation describes the communication
between two transaction programs. That is, when two APPC transaction programs
are in communication, they are said to be holding a conversation. Conversations
flow on LU-LU sessions. Each conversation is allocated a session for its own private
use. When the conversation ends, the session is free to be used by another
conversation. There can only be one conversation between any two transaction
programs, but one transaction program could have multiple conversations with

Systems Network Architecture Definitions 4-5

Concepts and Terms

different transaction programs. LU 6.2 transaction programs may select either
two-way alternate (half-duplex) or two-way simultaneous (full-duplex)
conversations, if both the local and remote logical units support full-duplex
conversations. In a full-duplex conversation, each transaction programs can send
data simultaneously. In half-duplex, the transaction program doing the allocation is
in send state at the beginning and the other transaction program is in a receive
state. There are 2 types of conversation:

« APPC mapped conversation—The systems provide and interpret protocol
headers, and the application programs deal only with user data.

« APPC basic conversation—The sending application must prefix the data with
the header required by the communications protocol. The receiving application
must interpret this header.

In CICS, the communication commands you code in your application depend on
whether you intend to use basic or mapped conversations. CICS-to-CICS
applications need only use mapped conversations. Basic conversations (also
referred to as unmapped) are useful only when communicating with systems that
do not support mapped conversations. These include some APPC devices.

The two conversation types are similar. The main difference is in the way user data
is formatted for transmission:

« In mapped conversations, the application sends the data to the partner.

« Inbasic conversations, the application has to add a few control bytes to convert
the data into an systems network architecture-defined format called a
generalized data stream (GDS).

CPI Communications (CPI-C)

CPI Communications provides a cross-system-consistent and easy-to-use
programming interface for applications that require program-to-program
communication. From an application's perspective, CPI-C provides the function
necessary to enable this communication. The conversational model is implemented
in two major communications protocols: Advanced Program-to-Program
Communication (APPC) and Open Systems Interconnection Distributed Transaction
Processing (OSI TP). The APPC protocol is also referred to as logical unit type 6.2
(LU 6.2). CPI-C provides access to both APPC and OSI-TP.

4-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

Logical Unit

Mode Name

Node

Node Type

A logical unit represents the logical destination of a communication data flow. The
formal definition of an logical unit is that it is the means by which an end user gains
entry into a network, and an end user is defined as the ultimate source, or
destination, of data flow in a network. Systems network architecture supports
several different types of logical units. These are grouped together in numbered
logical unit types, such as logical unit type 2 for 3270 display terminals, and logical
unit type 4 for printers. The logical unit type for CICS-to-CICS communication is
logical unit type 6.2, and is frequently referred to as advanced program-to-program
communication (APPC). Each logical unit is given a unique name that identifies it
in the network, and this is referred to as the logical unit name. There are two types
of LU 6.2 pertinent to CICS adapter:

« Dependent LU 6.2—Can have only a single session and, therefore, only one
conversation at a time.

« Independent LU 6.2—Can have more than one session with other logical units.
Therefore, many conversations can be held simultaneously between 2 logical
units.

A mode name is the name used by the initiator of a session to designate the
characteristics desired for the session, such as traffic pacing values, message-length
limits, synchronization point and cryptography options, and the class of service
within the transport network.

A node is any device attached to a network that transmits and receives data.

An endpoint of a link or a junction common to two or more links in a network.
Nodes can be processors, communication controllers, cluster controllers, or
terminals, and can vary in routing and other functional capabilities.

A designation of a node according to the protocols it supports or the role it plays in
a network. Node type was originally denoted numerically (as 1, 2.0, 2.1, 4, and 5)
but is now characterized more specifically by protocol type (APPN network node,
LEN node, subarea node, and interchange node, for example) because type 2.1
nodes and type 5 nodes support multiple protocol types and roles.

Systems Network Architecture Definitions 4-7

Concepts and Terms

Physical Unit (PU)

Session

A Physical Unit (PU) is the hardware and software components in a device that
manages its network resources. Logical units reside within a physical unit, and one
physical unit may hold many logical units. There are several different types of
physical units: Virtual Telecommunications Access Method (VTAM) running in a
mainframe host is a physical unit type 5, and Network Program Control (NCP)
running in a 37x5 network controller (physical unit type 4). When workstations
connect together in a peer-to-peer manner they act as physical unit type 2.1. When a
workstation connects to a mainframe host in a hierarchical manner, it acts as a
physical unit type 2.0. The physical unit type 2.1 is described as an independent
node (because it is independent of a mainframe host), and the physical unit type 2.0
is a dependent node.

Systems network architecture uses the term session to refer to various types of data
flow in a network. To avoid ambiguity, it should always be qualified by a
description of the type of data flow, for example CP-CP session. However, when
used by CICS for APPC, it can be assumed to refer to data flow between logical
units, and therefore is a LU-LU session. There are usually several sessions between
any two (independent) logical units, and these are known as parallel sessions. CICS
uses the term connection to refer to a group of sessions that connect two CICS
systems (or a CICS with the CICS adapter logical unit).

System Management Facility (SMF)

A System Management Facility (SMF) is a standard feature of OS/390 that collects
and records a variety of system and job-related information.

Systems Network Architecture (SNA)

Systems Network Architecture (SNA), in the mainframe work, are commonly used
to:

« Enable the reliable transfer of data between end users.

« Provide protocols for controlling the resources of any specific network
configuration.

4-8 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

Systems Network Architecture (SNA) Controllers

In this document, the systems network architecture controller represents the type
2.1 node (or physical unit) when on the CICS adapter side as well as the type 5
node, when at the mainframe site. Examples of systems network architecture
controller include:

Type 2.1—Microsoft SNA Server. The LU 6.2 is also part of Microsoft SNA
Server.

Type 5—VTAM. This is the software running at the mainframe. For some
telecommunications, VTAM requires a Type 4 physical unit. This is hardware
equipment (the IBM 37x5 families).

Synchronization Levels

In synchronization levels, CICS defines three levels of synchronization for
conversation using the APPC protocol:

Level 0—None. There is no CICS support for synchronization of remote
resources on connected systems. However, it is still possible, under the control
of the application to achieve some degree of synchronization by interchanging
data, using the SEND and RECEI VE commands.

Level 1—Confirm. Special commands for communication between the two
conversation partners can be used. One transaction can confirm the continued
presence and readiness of the other. Both transactions are responsible for
preserving the data integrity of recoverable resources by issuing
synchronization point requests a the appropriate times.

Level 2—Sync point. (Sync level 2 is not supported on single-session
connections). All synchronization point requests are automatically propagated
across multiple systems. CICS implies a synchronization point when it starts a
transaction; that is, it initiates logging of changes to recoverable resources, but
no control flows take place. CICS takes a synchronization point when one of the
transactions terminates normally.

One abending transaction causes all to rollback. The transactions themselves
can initiate synchronization point or rollback requests. However, a
synchronization point or rollback request is propagated to another transaction
only when the originating transaction is in conversation with the other
transaction, and synchronization level 2 has been selected.

Systems Network Architecture Definitions 4-9

Concepts and Terms

Sync point and rollback are not limited to any one conversation within a
transaction. They are propagated on every conversation currently active at
synchronization level 2.

APPC provides support for the three levels of synchronization by providing
synchronization verbs and resynchronization services. Synchronization level 2
services is an option for many systems network architecture communication
servers.

Synchronization Services

When a failure occurs, an application transaction program may be accessing
multiple resources that may be local or remote, which causes synchronization
services to happen. Local resources reside on the same node as the application
transaction program. Remote resources may or may not be on the same node as the
application transaction program. The function of logical unit synchronization point
services is to ensure that selected local and distributed resources are in consistent
states at defined synchronization points even if failures occur. Resources within
such a set have consistent states if all the actions affecting them since the last
synchronization point persist or if none persist. If all persist, the changes are said to
be committed at all resources. If none persist, the changes are said to be backed out,
for example, all the resources are returned to their states at the last synchronization
point. Resources that are kept consistent by using the synchronization point
protocols are called protected resources. Following a transaction program, session,
logical unit, or other protected resource failures, that occur during synchronization
point protocols, protected resources are returned to consistent states by the LU 6.2
partners using resynchronization (resynchronization) protocols.

Full support of synchronization point services in actual implementations includes
provisions for synchronizing local resources as well as distributed resources
accessed through conversations. An application transaction program may use
synchronization point services when it is not using protected conversations. For
completeness, this section describes general synchronization point services. Details
of synchronization point services, including resynchronization services, for
resources other than LU 6.2 conversations are not defined in this document.

A transaction program selects the synchronization point service for a conversation
by specifying the SYNCPT value of the SYNC_LEVEL parameter on the ALLOCATE
verb. With other values of the SYNC_LEVEL parameter (NONE and CONFI RM),
maintaining resource consistency is up to the application transaction program.

If a transaction program has conversations using a synchronization level of SYNCPT,
it may use the SYNCPT and BACKQOUT verbs to establish synchronization points. The

4-10 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

BACKQOUT verb undoes all changes made to protected resources since the last
synchronization point. The SYNCPT verb invokes two-phase commit protocols to
commit changes to local and distributed resources. Two outcomes to the SYNCPT
verb are possible:

« The changes may all be committed, establishing a new synchronization point.
« The changes may all be backed out, restoring the old synchronization point.

Application transaction programs execute a sequence of logical units of work
(LUWSs), with each unit of work consisting of some changes to the resources under
the control of the transaction programs. If a synchronization level other than
SYNCPT is used, a transaction consists of one logical units of work. In this case,
recovery from a failure can be done by undoing the work accomplished up to the
point of the failure and running the transaction again from the beginning. By using
synchronization point services, a transaction can consist of multiple logical units of
work that are delimited by the start-up of a transaction program and by the
execution of each SYNCPT or BACKQOUT verb. At the beginning of each logical units
of work, all resources are in consistent states. As a result, the amount of work
required to recover from a failure can be limited using synchronization point
services.

The following failures are addressed by synchronization point services:

« Transaction program failures happen when transaction programs end
abnormally. LU 6.2 synchronization point services return protected resources to
consistent states following a transaction program failure.

« Conversation failures happen when conversations fail as a result of failure of
the underlying sessions caused by the failures of physical components over
which the sessions are carried. If protected resources are used by the transaction
program, the transaction program can issue (and sometimes must issue) the
BACKQOUT verb to put resources into consistent states following a conversation
failure. If a synchronization point operation was in progress when the
conversation failed, resynchronization returns protected resources to consistent
states.

« Logical unit failures happen sometimes by themselves or as a result of the
failure of underlying hardware or software. The logical unit failure appears to
another logical unit as failures of all sessions connecting the two logical units.
After the logical unit recovers and sessions are established, resynchronization
may be needed to return protected resources to consistent states.

Systems Network Architecture Definitions 4-11

Concepts and Terms

Local resource failures (files). Some implementations may reduce the frequency
of these failures by having dual-copy file support. If the local resource is
protected by the synchronization point service, recovery is managed by
synchronization point services cooperating with the local resource manager.

Transaction Program (TP)

Transaction program (TP), in systems network architecture, the transaction program
refers to the application program in an APPC environment. The transaction
program uses the LU 6.2 (APPC) to gain access to the network.

CICS provides a choice of two application programming interfaces (APIs) for
coding your DTP conversations on APPC sessions;

CICS API, the programming interface of the CICS implementation of the APPC
architecture. It consists of EXEC CICS commands. These CICS commands are
converted in APPC verbs (as defined below).

Common Programming Interface Communications (CPI Communications) is
the communications interface defined by the Systems Application Architecture
(SAA). It consists of a set of defined functions in the form of program calls, that
are adapted for the language being used.

Verb Control Block (VCB)

Verb Control Block (VCB) is a structure passed to the APPC function. All the calls
done to APPC require only one parameter: a pointer to a verb control block. The
verb control block is different depending on the type of the call, but the first
parameter is the operation code, telling APPC which APPC verb the CICS adapter
wants to perform, and, at the same time, the format of this verb control block. There
are two types of APPC verbs:

Blocking Verb—Does not return before the completion.

Nonblocking Verb Support—Enables the transaction program to issue a
conversation verb and return control prior to the completion of the verb. The
verb whose execution is left incomplete becomes an outstanding verb. A
conversation can have more than one verb outstanding at a time. The
completion of the verb can be checked later with a WAl T_FOR_COWPLETE verb.
WAI T_FOR_COWPLETI ONwaits for posting to occur on one or more
nonblocking operations represented in the specified list of wait objects. Posting
of a nonblocking operation occurs when the logic unit has completed the
associated nonblocking verb and filled all the return values.

4-12 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

Verbs

APPC Verb is the mechanism by which a program accesses APPC. Each verb
supplies parameters to APPC. There are three types of APPC verbs:

Management Verbs—Provide the following management functions:
« ACTIVATE_SESSION

« CNOS (Change Number of Sessions)

« DEACTIVATE_SESSION

« DISPLAY

Transaction program (TP)—Transaction program verbs start and end
transaction programs and get and set transaction program properties. The
following are transaction program verbs:

« GET_TP_PROPERTIES
« SET_TP_PROPERTIES
« TP_ENDED

« TP_STARTED

Conversation Verb—Enable transaction programs to allocate and deallocate
conversations, send and receive data, and change conversation states. The
conversation verbs are listed in the following table.

There are two groups of conversation verbs:

« Mapped conversation verbs—Intended for programs that use the
conversation directly.

« Basic conversation verbs—Intended for more complex programs that
provide services to other users.

In typical situations, end-user transaction programs use mapped conversations
and service transaction programs use basic conversations. Mapped
conversation verbs can only be issued by a transaction program in mapped
conversations, while basic conversation verbs are reserved for basic
conversations. There is one exception to this rule: ALLOCATE can be used to
start either a basic or a mapped conversation.

Systems Network Architecture Definitions 4-13

Concepts and Terms

Table 4-1 Conversion Table

Mapped conversation verbs

Basic conversation verbs

MC_ALLOCATE ALLOCATE
MC_CONFI RM CONFI RM
MC_CONFI RVED CONFI RVED
MC_DEALLOCATE DEALLOCATE
MC_FLUSH FLUSH

MC_GET_ATTRI BUTES

GET_ATTRI BUTES

MC_POST_ON_RECEI PT

POST_ON_RECEI PT

MC_PREPARE_TO RECEI VE

PREPARE_TO_RECEI VE

RECEI VE_ALLOCATE

RECEI VE_ALLOCATE

MC_RECEI VE_AND_PCST

RECEl VE_AND_POST

MC_RECEI VE_AND_WAI T

RECEl VE_AND_ WAI T

MC_RECEI VE_| MVEDI ATE

RECEI VE_| MVEDI ATE

MC_RECEI VE_LOG _DATA

RECE| VE_LOG DATA

MC_REQUEST_TO_SEND

REQUEST_TO_SEND

MC_SEND_CONVERSATI ON

SEND_CONVERSATI ON

MC_SEND_DATA SEND_DATA
MC_SEND_ERROR SEND_ERROR
MC_TEST_RTS TEST_RTS

Other conversation verbs (mapped or basic) include:

. GET_LU_STATUS
. GET_STATE
. GET_TYPE

Mapped and basic verbs have the same function in their respective types of
conversation. For example, MC_CONFI RMperforms the same function in a mapped
conversation that CONFI RMperforms in a basic conversation.

4-14 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Concepts and Terms

CICS as a Transaction Program
CICS can utilize the following APIs to issue APPC verbs:

« EXEC CICS Command Interface—CICS is “mapping” the CICS command to an
APPC verb.

« CPI-C interface.

When CICS is using its CICS command interface, the CICS adapter should use the
APPC verb to communicate with the CICS transaction. It is not mandatory, the idea

is to try to use interface (or API) that supports all the functions the other transaction
program support.

Systems Network Architecture Definitions 4-15

Concepts and Terms

4-16 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

D

Systems Network Architecture Concepts

This chapter describes typical data flows between two systems network architecture
transaction programs. The following topics are discussed:

« Data Flow

« Logical Units and Parallel Sessions
« CICS Adapter Conversations

« Security

« Synchronization of Changes

« Error Handling

Systems Network Architecture Concepts 5-1

Data Flow

Data Flow

Figure 5-1 displays a simple exchange of data between the following two
transaction programs:

« The CICS adapter

« A CICS transaction on the mainframe

Figure 5-1 Windows NT Platform to Mainframe Flow

MT Platfarm Mainframe
TP Transaction with data —e
(Transaction Program) TP
[CICS Service [CICS Transaction)

———F eply with data

Frowider)

Logical Units and Parallel Sessions

LU 6.2 can provide more than one session (used by the conversation). These
sessions are:

« Long-lived—Activated on demand by a command or automatically when a
there is request to start a conversation. They can also be called when an
Al | ocat e command is received.

« The maximum number of sessions is a parameter—The maximum session is
32767 (for VTAM) for a LU 6.2.

There is a limitation of 999 sessions for the mainframe CICS LU 6.2. CICS can
receive up to 999 conversations concurrently from one to n other LU 6.2 connection.
The session can be reused by conversations.

CICS Adapter Conversations

Since it is possible that a request from an adapter may require more than one
transaction, it is possible to reuse the same conversation (by not de-allocating the
session). By definition, sessions are long-lived connections between the two logical
units and a conversation should be allocated and deallocated as soon as possible, to
allow other conversations to start. For example a terminal operator who forgot to
close a session may hold a conversation open.

5-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Security

Security

It is possible for the CICS adapter to use the same conversation (without
de-allocating it and reallocating it again). Therefore, similar credentials from
different source use the same one. Modification must be made in the CICS
application (application written using CICS as APPC API). If the application in
CICS issues a EXEC CICS SEND LAST command, it tells CICS that it will
deallocate the session (by an EXEC CICS FREE) later.

If the application instead loops backs to an EXEC CICS RECEIVE and waits for new
data, then the conversation could be reused if the program supports the new
transaction code.

One of the ways to know if a CICS program loops back is to define it in the
metadata. This allows the CICS adapter to know if it can issue more than one
transaction without reallocating a conversation. Also, the CICS transaction may
deallocate the session when:

« The CICS adapter has no choice.
« It must deallocate locally the session and re-allocate one for a new transaction.

Reusing the same conversation drives more complexity in the CICS adapter because
it knows when it can use an already open conversation. In addition, there are
security issues. If the same User | Dis not used, it starts a new conversation and
there are conversations management issues.

On the other hand, if the application on the mainframe was designed to be called
from a concentrating server, it may expect several transactions to be sent on the
same conversation, to increase efficiency.

Security has always been an important matter in mainframe. Almost every resource
in a mainframe can be protected. While in the past, applications programs were
doing their own security, you can now use software packages that help to protect
almost all types of mainframe resources. IBM integrated a security interface in the
operating system and different vendors (including IBM) uses that interface for
implementation. CICS is using the same interface. In short, defining it and allowing
users, with the correct profile, can protect resources. VTAM (systems network
architecture controller) is also using it. CICS, like the others packages, is using its
own security scheme. However, since CICS version 9.0.2, it is using an External
Security Manager (ESM) to protect resources. The ESM used in CICS mainframe
documentation is RACF, the IBM ESM.

Systems Network Architecture Concepts 5-3

Security

LU 6.2 Security

The LU 6.2 architecture defines a number of conversation-level security option sets
that include passwords, UserIDs, and profiles in allocation requests. The LU 6.2
architecture also defines a session-level security option set. The architecture requires
that session-level LU-LU verification be allowed when conversation-level security
option sets are enabled and when the logical units that make up the network are not
physically secure (as determined by installation management). In an IBM
mainframe using OS/390 for example, VTAM, in essence, is part of the systems
network architecture Server and is primarily responsible for handling the LU 6.2
security. It supports session-level security and offers pass-through support for
conversation-level security. the application programs are responsible for
implementing conversation-level security. In this case, the application program is
CICS at the mainframe.

Session Level Security
Session level security includes the following:

« Session Level Cryptography
« LU-LU Verification

Session Level Cryptography

Session level cryptography refers to the enciphering of all or selected user data, at
the source logical unit, and the later deciphering that occur at the target logical unit.
The encryption algorithm uses a cryptographic key, supplied by the control point,
and a session seed, generated by one of the logical units when the session is started.
These parameters are exchanged at session activation.

LU-LU Verification

The identity of a logical unit’s partner is verified by using a LU-LU password and
the Data Encryption Standard (DES) algorithm.

5-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Security

Conversation Level Security

Conversation-level security includes end-user verification, already-verified
protocols, persistent verification, and password management. The following terms
are associated with conversation level security:

« End-User Verification
« Already-Verified Protocols
« Persistent Verification

« Password Expiration Management

End-User Verification

End-user verification confirms the identity of the partner end user. When a
transaction program requests access to another transaction program, it must supply
adequate security information in the request to satisfy the security requirements of
the other transaction program, or the request is rejected. Security information, here,
could be the user ID and password supplied by the end user in its ALLOCATE verb
initiating the Attach request between the two logical units. When a user ID and
password are supplied on the request, they are verified by the logical unit that
receives them. If the UserID and password combination is incorrect, the request is
rejected. Also, an authorization list associated with the target transaction program
can be used. The keys to search the authorization list would be combinations of the
UserID and an optional profile supplied on the request, along with the name of the
partner logical unit from which the request originated. The authorization list could
be made up of combinations of UserID, profile, and partner logical unit name. After
the UserID and password combination is verified by the logical unit, the
authorization list may be searched using the received UserID and/or profile for
access rights to the specific transaction program named in the request. If the
additional criterion is not met, the request is rejected.

Already-Verified Protocols

A transaction program in its invocation of partner transaction programs may
represent an end user whose identify has been verified locally and need not be
verified at each remote partner, provided that partner trusts the invoking
transaction program's logical unit. In this case, the Attach invoking the partner
transaction program need not carry the already-verified password of the
represented UserlD. Instead, an already-verified indicator is set in the Attach
request; the UserID and optional profile of the user represented by the invoking
transaction program are supplied in the request. For security reasons, the password

Systems Network Architecture Concepts 5-5

Security

used to initiate the invoking transaction program is never saved. However, the
UserID and optional profile used to initiate the invoking transaction program, are
saved. The already-verified indicator can be used only if the sender of the indicator
is trusted by the receiver of the indicator to have performed the proper verification
of the UserID and password that initiated the sender. This level of trust is
installation defined at the receiver of the indicator and communicated to the sender
of the indicator during session activation in the Bl NDY RSP(Bl ND) exchange.

Persistent Verification

Persistent verification (PV) is one way of reducing the number of password
transmissions, by eliminating the need to provide a UserID and password on each
Attach (Conversation request) during multiple conversations between a user and its
partner at a remote logical unit. The user is verified during a sign-on process
preceding its initial conversation and remains verified until being signed off by the
remote logical unit, which may occur as the result of an explicit request (triggered
by a SI GNOFF verb issued at the remote logical unit), or because no active sessions
remain between the user's logical unit and the remote logical unit.

Password Expiration Management

Password expiration management involves request and reply exchanges between
two programs. The first program is a sign-on requester service transaction program
and the second is a sign-on server service transaction program (called the
Sign-On/Change-Password TP) identified by the registered transaction program
name X' 06F3FOF1'. The requester program invokes the server by an At t ach
carrying this registered transaction program name.

CICS Security Implementation

CICS defines APPC sessions, connections, and partners as resources, all of which
have security requirements. CICS provides the following security mechanisms for
the APPC environment:

« Bind-time security, or in systems network architecture terms session level
security, to prevent an unauthorized connection between two LU 6.2. This
security check is done when a session is opened between the two LU 6.2
sessions.

« Link security defines the authority of the remote system to access transactions
or resources to which the connection itself is not authorized.

« User security checks that a user is authorized both to attach a transaction and to
access all the resources that the transaction is programmed to use.

5-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Security

Link and User security are a CICS implementation of the APPC conversation level
security.

Bind Time Security

An eight character (or 16 hexadecimal digit) passwor d is used by both partners to
authenticate. The check is done when a new session is created. All binds can be
audited, since it is recorded in mainframe SMF files. This type of security is done at
the systems network architecture controller level. This security check is not
associated with a UserID; both ends of the connection must have the same session
key. In CICS, the key is kept in a resource definition in its ESM. On the other end,
the key is defined in the remote APPC logical unit in the Microsoft systems network
architecture server. The Bind security is done at Bind time (when a session is
activated) and it is kept as long as the session is active.

Security For CICS in General

Each link between systems is given an authority defined by a UserID. It is
important to note that users cannot access any transactions or resources over a link
that is itself unauthorized to access. This means that each user's authorization is a
subset of the link's authority as a whole.

To limit the remote system's access to your transactions and resources, you use link
security. Link security is concerned with the single user profile that you assign to
the remote system as a whole. Similar to user security in a single-system
environment, link security governs the following:

« Transaction security—Controls the link's authority to attach specific
transactions.

« Resource security—Controls the link's authority to access specific resources.
This applies to transactions, executing on any of the sessions from the remote
system, that have RESSEC(YES) specified in their transaction definition.

« Command security—Controls the link's authority for the commands that the
attached transaction issues. This applies to transactions, executing on any of the
sessions from the remote system, that have CMDSEC(YES) specified in their
transaction definition.

« Surrogate user security—Controls the link's authority to START transactions
with a new UserlD, and to install resources with an associated User | D.

Systems Network Architecture Concepts 5-7

Security

Security Specific to LU 6.2

Link security further restricts the resources a user can access, depending on the
remote system from which they are accessed. The practical effect of link security is
to prevent a remote user from attaching a transaction or accessing a resource for
which the link UserID has no authority. Link security can be associated with a
connection or a session, depending on whether you want to control the link security
for each group of sessions separately.

« To define link security for a connection as a whole, specify the SECURI TYNANME
parameter in the CONNECTI ON definition (this is a CICS definition equivalent to
the remote LU 6.2).

« To define link security for individual groups of sessions within a connection,
specify the UserID in the SESSI ONS definition as a UserID (SESSI ONS
definition in CICS is the same as SESSI ONS in LU 6.2).

Each link between systems is given an authority defined by a link UserID. A link
UserlD for LU 6.2 is a UserID defined on your session’s definition for this
connection. If not defined, the link UserID is the SECURI TYNAME UserID specified
on the connection definition. If there is no SECURI TYNAME, the link UserID is the
default UserID. The CICS default UserID is the UserID used by CICS when a
resource check has to be done and there is no other UserID that CICS can use.

User Security

User security causes a second check to be made against a user signed onto a
terminal, in addition to the link security described in Link security. A conversation
allocation is related to a CICS transaction and security can apply at that level. Again
a UserID and a password may be used to protect the CICS transactions being
invoked in the conversation. CICS also uses that UserID to protect files and other
resources. The user defined for link security must also have the same access that the
UserlID used in the user security.

User security can be implemented in five different ways however, only one of these
options can be selected:

« LOCAL—Specifies that a UserID is not to be supplied by the remote system,
and if one is received, the attach fails. CICS makes the user security profile
equivalent to the link security profile. You do not need to specify ESMprofiles
for the remote users. LOCAL is the default value.

« IDENTIFY—Specifies that a UserID is expected on every attach request. All
remote users of a system must be identified to the ESM If an attach request with
both a UserID and a password is received on a link with

5-8 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Synchronization of Changes

ATTACHSEC(| DENTI FY) , CICS does not reject the attach request. CICS handles
the attach request as if the connection was defined with ATTACHSEC(VERI FY) .

VERIFY—If a UserID and an invalid password, or a UserID and no password is
received for verification, the attach is rejected. If no UserID is received, CICS
applies the security capabilities of the default user. The rules that apply to the
checking of the UserID for ATTACHSEC(| DENTI FY) also apply for
ATTACHSEC(VERI FY) . If a valid UserlID is received but the password
verification fails then CICS rejects the attach request.

PERSISTENT VERIFICATION—Specifies that a UserID and a user password
are required with the first attach request for a new user, but all following attach
requests for the same user need supply only a UserID. (All remote users of a
system must be identified to the ESM) The first attach signs on the user, even if
the attach request is later unsuccessful because the user is not authorized to
attach the transaction.

MIXIDPE—Specifies that the sign-on level for the remote user is determined by
parameters sent with the attach request. The possibilities are PERSI STENT or
| DENTI FY.

Synchronization of Changes

Systems network architecture defines three levels of synchronization for
conversation using the APPC protocol:

Level 0 - None—At sync level zero (0), there is no CICS support for
synchronization of remote resources on connected systems. However, it is still
possible, under the control of the application to achieve some degree of
synchronization by interchanging data, using the SEND and RECEI VE
commands.

Level 1 - Confirm—At sync level one, you can use special commands for
communication between the two conversation partners. One transaction can
confirm the continued presence and readiness of the other. Both transactions are
responsible for preserving the data integrity of recoverable resources by issuing
synchronization point requests at the appropriate times.

Level 2 - Syncpoint—At sync level 2, all syncpoint requests are automatically
propagated across multiple systems. CICS implies a syncpoint when it starts a
transaction which initiates logging of changes to recoverable resources, but no
control flows take place. CICS takes a syncpoint when one of the transactions
terminates normally. One abending transaction causes all to rollback. The
transactions themselves can initiate syncpoint or rollback requests. However, a

Systems Network Architecture Concepts 5-9

Error Handling

Error Handling

syncpoint or rollback request is propagated to another transaction only when
the originating transaction is in conversation with the other transaction, and
sync level 2 has been selected.

Syncpoint and rollback are not limited to any one conversation within a
transaction. They are propagated on every conversation currently active at sync
level two.

This section describes the types of errors, how to handle them, and how to find
errors. As there are many pieces of hardware and software involved, errors can be
generated from many sources: Application program, CICS, VTAM, NCP, the
systems network architecture Controller, or the CICS adapter. There are two type of
errors;

Application Error—An error detected by the application and reported in a data
message returning to the CICS adapter.

CICS program issues an | ssue Si gnal (APPC verb MC REQUEST TO_
SEND) : this advises the partner that it wants to send data, even if it is still in
Recei ve state. The partner may or may not respond to the request.

The CICS program issues an | ssue error (APPC verb MC SEND
ERROR) : It requires immediate attention from the partner logical unit.

The CICS program issues an | ssue Abend (APPC verb MC DEALLOCATE
TYPE(ABEND_PROG) . This command not only signals a problem but also ends
the conversation. It is a severe error condition.

System Errors—Errors are usually detected by other components than the
application system. Examples of system errors include:

« CICS application program abended. Abend is a term defining a program
which is terminated by a control software instance (CICS for the application
program, or OS/390 for the CICS program). Usually the local LU 6.2 is
advised of the condition and is able to send to the partner logical unit and
application program a message telling the condition.

« CICS itself abended—Causes all the conversations in progress to be
abended).

« VTAM problems (physical unit type five) or NCP problems (physical unit
type four).

= Systems network architecture controller, including the local LU 6.2.

5-10 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

6

Message Description Language Reference

This chapter describes message description language and its concepts. The
following topics are discussed:

What is Message Description Language?

Message Description Language File

Supported Data Types

Message Description Language File Format General Syntax Conventions

Message Description Language File Example

Message Description Language Reference 6-1

What is Message Description Language?

What is Message Description Language?

Message oriented technology does not have any type description which
object-technologies, like Oracle9iAS InterConnect, require. The language
specification describes the internal data format of each message buffer. The CICS
adapter uses the message description language to describe the CICS buffer.

Message description language elements are message buffers sent or received by the
CICS adapter mapped as message description language method arguments. The
mapping allows object-oriented technologies to have a familiar view of the message
buffers, with each message treated as a single argument or separated into multiple
arguments. The CICS adapter automatically concatenates the arguments at
run-time. The request and reply messages are grouped as a single method with
input and output arguments. One message description language interface groups
message description language methods (performing similar tasks) for a specific
message queue.

Message Description Language Classes

To make CICS servers visible as components to Oracle9iAS InterConnect, you must
first describe a set of methods using message description language. A method call
translates into a request message and a reply message. The request message
contains all the input arguments and the reply message contains all the output
arguments.

The CICS adapter uses message description language *. cl s files as the
representation of component interfaces with methods having elements as
arguments. For example, the message definition:

met hod Get Bal ance
i n BankName bank
in Cust Name cust oner
out Bal ance bal ance
out CustStatus status
end net hod

defines a method containing four arguments with the type defined using message
description language fixed length string types:

typedef string(54,' ',tail) BankNane
typedef string(30,' ',tail) CustNane
typedef string(20,' ',head) Bal ance
typedef string(20,' ',tail) CustStatus

6-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Message Description Language File

Message Description Language File

An message description language file is a text file with an * . cl s extension. It
contains four types of declarations:

« Class Declaration
« Typedef Declaration
« Struct Declaration
« Method Declaration

Every message description language file requires a class declaration; it is always the
first declaration in an message description language file. All other declarations are
written within it. The t ypedef and st r uct declarations are optional. All
declarations reside on separate lines, there are no delimiters (such as semi-columns,
or commas) required in any declarations.

Class Declaration

A class describes the set of functions and class specific complex types. Classes are
always the topmost level of a CLS file. They are declared with a cl ass classname

[(default URL)] [endi anness] and[character encodi ng] declarator,
and are terminated with an end cl ass terminator. All class declarations should be
on a separate line and the class declarator and terminator must be defined on
separate lines. Interfaces may not be nested. A single public class declaration may
reside within a CLS file and the name of the file must match the name of the class.
Class definitions may contain:

« Type definitions (typedef declaration):
« Structures definitions (struct declaration)
« Method definitions (method declaration)
« Layout of a class declaration:

class class name [(default URL)] [endianness][character encoding]
struct declarations...
typedef declarations...
nmet hod decl arations. ..

end cl ass

Message Description Language Reference 6-3

Message Description Language File

where:

« cl ass nane—The name of the class. This name must be the same as the
file name.

« (default URL)—Specifies the default URL on the class declaration line.

« [endi anness] —The bi gendi anandlittl eendi an keywords act as
endian convention gat eways, and they specify in which format the CICS
adapter sends the binary integral types. Use these keywords when the CICS
adapter receives integral types regardless of its platform‘s convention. For
example, if all integral types sent to the CICS adapter are always in the
bi gendi an convention, prefix the message description language
endainness with the bi gendi an keyword. Similarly, if all integral types
sent from the CICS adapter are in the bi gendi an convention, declare
message description language endianness on message description language
class declarations such as bi gendi an. I i tt| eendi an modifiers follow
the same logic. In the absence of such keywords, the CICS adapter treats
these types as opaque entities and provides them the same way as it
receives them—which means the CICS adapter always expects to receive
and send integral types using the platform‘s format where the CICS adapter
is running.

See Also: "Integral Types" on page 6-10 for an explanation of
binary integral types

« [character encodi ng] —The ASCII and EBCDIC keywords act as character
encoding convention gat eways. They specify in which format the CICS
adapter sends and receives the string type. Use these keywords when the CICS
adapter receives string types of a certain convention regardless of your
platform’s convention.

« struct declarations—A declaration for a collection of variables grouped together
for convenient handling.

« typedef declarations—Provides a new name for an existing type.

« method declarations—Sends messages through the messaging system and receive
replies by abstracting incoming and outgoing messages as method input and
output parameters.

« end cl ass—The class terminator.

6-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Message Description Language File

Typedef Declaration

Typedef declarations do not create a new type; their purpose is to provide a new
name for an existing type. The following is an example of at ypedef declaration:

typedef conposite type new nane

Struct Declaration
Structures can contain:

« Binary

« String

« Complex Types

= Predefined Structures

Structures are declared with a structure declarator st r uct struct name and a
terminator end struct which must reside on separate lines. Structures may be
nested using predefined structures.

The layout of a struct declaration is as follows:

struct struct name
field declaration
field declaration
end struct

Note: Field declarations are specific to the declared type, and are
identical to the type declarations described in "Supported Data
Types" on page 6-9.

Method Declaration

Methods describe the act of sending a message through the messaging system, and
of receiving replies to those messages. The concatenation of the i n and i nout
parameters form the contents of a message sent to the destination specified by the
URL. Theret urn,out,andi nout parameters form the reply message and thei n
and i nout parameters form the request message. Contextual information that is
part of the requests and reply messages map as i hout parameters. When mapping
the reply message, the return value precedes the out and i nout parameters, in the
same parameter order. Methods map to corresponding methods in other systems as
synchronous calls, which emit a blocking wait for the reply message.

Message Description Language Reference 6-5

Message Description Language File

Methods are described in message description language as method <met hod
nanme>[(et hod properties)] [async] and terminator end method, residing
on different lines. They always contain a return argument description on the next
line (using the keyword return), and a list of argument declarations directly
following the return statement.

The layout of a method declaration is as follows:

met hod <met hod name> [(nethod properties)] [async]
return <return type>
argument decl arations

end met hod

where:
« <met hod name> is the name of the method.

« (nmethod properties) provides the message-oriented server a list of
properties. There is no property for the | u62cpi ¢ protocol.

The format of the properties list for the ECI protocol is:

(<property>=<val ue>...)

where:

<property> is the name of the property.
<value> is the value accepted by the property..

Table 6-1 describes method properties, an explanation, and an acceptable value.

Table 6-1 Method Properties

Method Properties Explanation Acceptable Values

conmar ea The size of the commarea used by A number up to 32500
the remote CICS program. The
maximum size is determined by
CICS software, which is 32500 bytes

6-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Message Description Language File

Note: The conmar ea size is calculated at run time. It is the actual
size of thei n and i nout arguments. If the value specified in
conmmar ea is smaller than the computed value a warning message
is included in the CICS adapter log file and the computed value is
used. If a value greater than the acceptable maximum (32500) is
used, a warning is also logged and the maximum is used.

[async] —Indicates the Oracle9iAS InterConnect adapter will not wait for a
server reply message and, in the case of a message Oracle9iAS InterConnect
adapter, the CICS adapter will not send a reply message.

<return type>—Returns a certain supported type or a void argument if is
the method does not return anything.

<ar gunment decl ar at i ons>—Arguments may consist of binary, string, and
complex types, and structures.

End net hod is the method terminator.

Return Type Declaration
Return type arguments may consist of:

void arguments
binary types
string types
complex types

structures

It is recommended to always void for the return argument as most messaging
systems do not have a notion of a return argument. If a method returns a certain
supported type, the return declaration is formulated as the r et ur n keyword,
followed by the type declaration.

See Also: "Supported Data Types" on page 6-9

Message Description Language Reference 6-7

Message Description Language File

For example:

return type declaration

A method that does not return anything must explicitly declare it to include the
voi d keyword. For example:

return void

An EOL delimiter separates return declarations from the rest of the method
declaration.

Argument Declarations
The syntax declaration of an argument declaration is the following:

arg direction_type declaration

where:

« arg directi on—Describes the argument direction and may be either of the
keywords i n, i nout or out . Thei n keyword describes arguments whose
contents are initialized by the client, and are useful to the server. The i nout
keyword describes parameters which may contain information for both the
client and the server (a variable initialized by the client, and which may be
modified by the server). The out parameter describes arguments initialized by
the server and serves as a data recipient for information returned to the caller.

For example:

#describes an "in" parameter which contains data for the server
in type declaration

#describes an "out" paraneter which serves as data recipient for the client
out type declaration

#describes an "inout" parameter which serves as data recipient for both the
server and the client
i nout type declaration

Argument names are significant only to the systems to which the method that is
exposed. An EQL (End of line) delimiter separates argument declarations.

6-8 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Supported Data Types

Note: You can insert comments anywhere in an message
description language file by inserting pound signs “#” at the
beginning of a line. Throughout this chapter comments will
precede the example.

Supported Data Types
An message description language file supports the following data types:
« Binary Types
« String Types
« Complex Types
Table 6-2 identifies the different types belonging to the three supported types:

Table 6-2 Supported Types
BINARY STRING COMPLEX

Floating Point Length Prefixed Date
Integral Delimited Numerical:
« Floating Point
« Fixed Scale, Variable Precision Numbers
. Fixed Scale, Fixed Precision Numbers
« Packed Decimal
Fixed-Length Array (tables):*
Padded « Fixed Length Tables
« Prefixed Length Tables

« Explicitly Delimited Variable Length
Sequences

« Implicitly Delimited Variable Length
Sequences

Null Terminated Structured Types

Implicit

Message Description Language Reference 6-9

Supported Data Types

Binary Types

Supported binary types must be in your system platform endianness, or in that
endianness which is specifically indicated for the class it is used, align on a 1 byte
boundary. They include integer and floating point, up to 32 bits.

See Also: "Class Declaration" on page 6-3

Binary types are all simple types of binary nature separated into two main
subclasses:

« Integral Types—Binary types describing integral numbers.

« Floating Point Types—Real numbers, containing a mantissa and an exponent.

Integral Types

Integral types come in various formats: 8, 16, 32 bits signed or unsigned. They are
always declared as their sign concatenated with their size in bits. For example:

si gned8 aChar

si gned16 aShort

si gned32 along

unsi gned8 aByte

unsi gned16 aWrd

unsi gned32 abDoubl eWrd

Floating Point Types

There are two supported floating point types. 32 bit IEEE binary floating point is
declared with the type specifier si ngl e, and 64 bit IEEE floating point is declared
with the type specifier doubl e. For example:

singl e nyFl oat
doubl e aBi gNunber

The run-time data format of binary floating point types always follow the IEEE
binary standard.

Floating point types are generally mapped to similar (IEEE), binary entities in other
systems.

6-10 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Supported Data Types

String Types

All character types are assumed to be in your native system platform character set
where the CICS adapter is running. The strings can be of fixed or variable length,
with a length prefix or a terminating delimiter. Strings are declared with the
keyword string and may come in five string styles.

Note: The presence of NULL characters in any of the following
string types may cause unwanted behavior when the latter are
mapped into other systems.

Length-Prefixed Strings

Length prefixed strings are variable length strings where a length specifier precedes
the string at run-time. They are declared by following the string type with its length
type specifier. The length specifier may be any of the numerical or integral types,
and should immediately follow the string keyword. Prefixed string types do not
take any parameters. For example:

string prefixed length type declaration_string nanme

where:

I engt h type decl ar ati on may be any of the numerical or integral types, and
consists in a standard type declaration.

For example:

#this string is length prefixed with a binary doubl e-word
string prefixed unsigned32 nyPrefixedString
#this string is length prefixed with a fixed nunerical value
#for which there are 5 digits reserved for the integer part,
#no decimal digits or decinmal separator enclosed in a dot
#del imted string.
string prefixed nunber(5, 0, none) in string(‘.")

myNunPr ef i xedSt ri ng

Length prefixed strings are expected to have their length prefixed with a numerical
type or integral type (as described in the message description language) which
should directly precede the string itself. They map such strings in other systems if
they are available in the target system or as null terminated strings if they are not.
The decimal component of numerical types passed as the string‘s length is always
ignored if present.

Message Description Language Reference 6-11

Supported Data Types

See Also: "Complex Types" on page 6-13

Delimited Strings

Variable length strings for which the length is determined at run-time by the
presence of a delimiter. They are declared the string type and have a type parameter
for delimiter.

string(delimter) string name
Delimiters are not considered part of the displayable string, and are generally

replaced by null terminated strings in other systems, in which the delimiter has
been removed.

For example:

string(‘,") myCommaTer mi natedString

Null Terminated Strings

Delimited strings map in general as null terminated strings, the EOS (End of String)
delimiter is considered as an inherent part of the string and appear in the final data.

For example:

string(0) nyNull Term natedString

Fixed-Length Padded Strings

A fixed string’s maximum length is known in advance. Declared by passing three
parameters to the string type keyword, which are, respectively the size of the string,
the padding character, and the padding convention. The padding convention
parameter consists of the tail, head or none keywords, which indicates where the
padding occurs. The none keyword indicates no padding occurs, and that the string
is always assumed to take up the full fixed length (a date string, for example, may
always contain a certain count of characters).

string(str size, padding char, pad convention) name

For example:

#decl ares an 80 character wide string padded with spaces
string(80, * *, tail) nyString

#decl ares a 40 character string front padded with spaces
string(40, * ‘, head) nyString

6-12 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Supported Data Types

#decl ares a 40 character wide string front padded with zeros
string(40, ‘0, head) nyString

#declares a 40 character wide string with no padding
string(40, none, none) nyString

Fixed length strings map fixed length strings if such notions exist in the target other
system. They may also map into variable length strings for which the maximum
length is the fixed length described in the message description language, and the
actual length is always at maximum.

Implicit Strings

Implicit strings are implicit sequences where the base type is si gned8. The
declaration is string implicit. The CICS adapter assumes that meeting this type
means that the entire data buffer is a string.

Implicit strings have the following limitations:
« Cannot be defined in arrays.
« If defined in a structure, it must be the only field.

« Must be the only in, out, or inout argument defined in a method.

Complex Types

Date Types

Complex types come in as a composition of different or similar sets of string types
and binary types.

Date types are stored in any of the supported string types. The date type represents
the date under the form of a fixed length string. The supported date formats are
respectively DDMWYY, DDVMYYY, MVDDYY and MVDDYYYY. The date type parameter
string defines the date field separators.

date(date format) in string type nyDateVar

For example:

date("DD- MM YY") in string(8, none, none) nyYear2000bug
dat e(" DD/ MM YYYY") in string (10, none, none)
myYear 2000conpl i ant Dat e

Message Description Language Reference 6-13

Supported Data Types

date("MM DD YYYY") in string (10, none, none)

ny SpaceSepY2KConpDat e
date("MM DD. YY") in string(10, none, none) nydot Separ at edY2KBug
Separators are mandatory, although their nature may be of any sort.

When delimited strings are used, the dat e string should exclusively contain the
date and delimiter, or have the date left aligned within the string.

Date types map other system date formats, if any exist. For example, they would
map DATE structures in the case of COM, for example. If no such date formats
exist, they map as variable length strings.

Numerical Types

Numerical types are formatted numbers stored within any of the supported string
types (for example, numerical types are stored in ASCII). They always have a string
declaration following their type declaration. The following lists supported
numerical types:

« Floating Point Numbers
« Fixed Scale, Variable Precision Numbers
« Fixed Scale, Fixed Precision Numbers

« Packed Decimal

Floating Point Numbers
Represented as exponent based ANSI floats. They are declared as follows:

nunber in string type declaration nane

For example:

nunber in string(‘**) MStarTerninatedFl oat
number in string(30,'*, tail) MFixedLengthFl oat
nunber in string unsignedl6 MyPrefixedLengt hFl oat

#This is a number within a prefixed string itself prefixed with a
#nunber within a prefixed string prefixed with a binary byte.

#This is not the best design, but still |egal

nunber in string prefixed nunber in string prefixed signed8 MyNunber

6-14 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Supported Data Types

Fixed Scale, Variable Precision Numbers

Strings in which the decimal separator may freely reside. They are declared as
follows:

nunber (dec separator) in string type_name

where:

« deci mal separat or may be the keyword none, specifying an entirely
integral number.

« nane is the name of the defined type.
For example:

#declaration for the form 398.029
nunber (“.*) in string(‘_") myDot Deci mal Under scor eTer i nat edNb

Note: When the decimal separator is specified, the maximum
number of integral and integral precision is 7 digits. For example,
1234567.1234567

#declaration for the formword | en "98372"
nunber (none) in string prefixed unsignedl6
myl nt egr al Wor dPr ef i xedNunber

A fixed scale, variable precision number is always confined in the limits the string it
resides in imposes. For example:

#This nunber may NOT exceed 20 characters.
#"12345678901234567890"

#The following is the declaration definition
nunber (none) in string(20,‘0', head) my20Char Nunber

Fixed Scale, Fixed Precision Numbers

Strings in which the number integral digits and decimal digit is constant. They are
declared as follows:

nunber (ldigits, Ddigits, dec sep) in string type name

where:

« Idigits andDdi gits respectively represent the count of integer and
decimal digits.

Message Description Language Reference 6-15

Supported Data Types

« deci mal separat or may be the keyword none, indicating that the decimal
separator‘s position is implied in the number‘s format, and not expected in the
run-time string.

name is the name of the defined type

#declaration in the formof "1234567890. 12345 "
number (10, 5, “.‘) in string(‘_") myUnderscoreFi xedNunber

#decl aration of the formof "00000123456789012345" = 1234567890. 12345
nunber (10, 5, none) in string(20, ‘0°, head) nyNumber

As for the preceding Nunber type,thefi xed scal e, fi xed precision
numbers may be bounded by the string type in which case the decimal, then digits,
should be truncated in order to fit inside the string constraints.

#decl aration of the formof "123456789012" = 1234567890. 12
nunber (10, 5, none) in string(12, ‘0‘, head) nyNumber

Packed Decimal

An internal representation of numbers. It is also called BCD (Binary Code Decimal).
The field size is variable and can be determined by the number of digits divided by
two (truncated) plus one. For example, if you have the number +123.45 the internal
representation is 0x12345c and the length is 3 bytes. If you have the number -12.34,
the internal representation is 0x1234D and the length is 3 bytes.

nunber (VYdigits, Zdigits) packed name

where:

« YdigitsandZzdi gits respectively represent the number of integer and
fractional digits.

« nane is the name of the defined type.

Array Types (Tables)

Arrays come in four variants: fixed length, length prefixed, explicitly delimited, and
implicitly delimited. Each element has the same type. Unless the array is explicitly
delimited, there are no special delimiters between the elements of an array itself
since the delimiters of the contained data type act as implicit delimiters. Array types
consist of variable or fixed sequences of a certain type. They are defined with a base
type (the sequence’s element type) and of subscript operators, in the case of fixed
arrays.

6-16 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Supported Data Types

The base type may be any of the structures, binary, string, complex types, or tables:
« Fixed length tables map to bound sequences in other systems.
« All variable length tables map to unbound sequences in other systems.

« Tables may be nested in any given combination provided the inner tables’
definition has been defined.

For example:

#variable length table of bytes length prefixed with a DWrd
typedef table prefixed unsigned32 of unsigned8 varByteThl _t
#fixed length table of the preceding table type

tabl e(80) of varByteThl _t myNestedTabl es

#This is incorrect syntax because a nested array where the inner array must be
predefined cannot use the table keyword table(80) of table prefixed unsigned32
of unsi gned8 nyNest edTabl es

Fixed Length Tables
Fixed length tables do not have any associated run-time data overhead.

tabl e(subscript) of base type declaration table name

For example:

tabl e(30) of signed8 myVari abl eByteTabl e

Prefixed Variable Length Tables

Prefixed variable length tables have an message description language described
length indicator preceding the table at run-time.

table prefixed length type decl of base type decl nane

For example:

#table of prefixed length with a word of null ternminated string
typedef table prefixed unsignedl6 of string(0) nyT

Explicitly Delimited Variable Length Sequences

Explicitly delimited variable length sequences have a delimiter between each
element.

table(cont del , end del) of base type decl name

Message Description Language Reference 6-17

Supported Data Types

For example:

#each el enent has a conmma separator between themuntil
#the last element is reached, where a dot appears.
#declaration for the formdword , dword ... dword .
table(*,",*.") of signed32 nyDWrdThl

#declaration for the formstring(‘.") , string(‘.") " string(‘.") .
#exanpl e: "helloworld., hel | oworl d2., hel | owor| d3.."
table(*,",*.") of string(‘.*) myDelinitedStringTbl

One message description language-specified delimiter is used to indicate the table‘s
continuation while the other indicates a terminator. For example, the run-time
format is:

elmt 1 cont del elmt 2 cont del ... elmt n end del

where:
« elemt 1 isthe first element and elemnt n is the last.
« cont del isthe continuation delimiter (first type parameter).

« end del isthe end delimiter (second type parameter).

Implicitly Delimited Variable Length Sequences

Implicitly delimited variable length sequences terminate at the end of the provided
buffer.

table inplicit of base type decl nane

Example:

#This is the same as a string inplicit
table inplicit of unsigned8 myByteTable

Some of the reply messages have items in a sequence where the length is
determined by how many items are in the message buffer (there is no length prefix).
COM and CORBA arrays and sequences must have a length defined before they can
be filled.

6-18 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

Message Description Language File Format General Syntax Conventions

Structured Types

These are structures or records containing a set of named fields where each field can
have a different type. Field types are binary, string, date, or numerical types. The
syntax of the fields determines the layout of the structure. There are no special
delimiters for fields of a structure itself, the delimiters of the data types of the fields
themselves act as implicit delimiters between fields. Fields are not named within
the message itself; they are intended for systems such as CORBA and COM.

Message Description Language File Format General Syntax
Conventions

This section describes the general syntax conventions for the message description
language file format.

Type parameters

Certain types require fully-defined parameters, such as fixed-length t abl e (array)
types, requiring subscript parameters, or fixed-length strings, requiring a
description of their length and formatting style. Enclose these parameters within
parenthesis “()” or brackets “[]”. Separate the parameters by commas “,” if more
than one parameter qualifies the given type. Type parameters always directly follow

the type they modify. When passing characters as parameters, pass them enclosed

respectively in quotes * * and double quotes “ . If passing non-printable characters,
type their binary values instead. Parameter ordering is specific to the type
concerned.

For example:

The following is a null terminated string:

string(0) nyString

The following declares a fixed array of 40 bytes:
tabl e(40) of signed8 nyCharTabl e

The following is equivalent to the preceding line:
tabl e[40] of signed8 nmyChar Tabl e2

The following is a date declaration:
date(" DD MM YYYY") in string(10,° ‘,tail) nyDate

Message Description Language Reference 6-19

Message Description

Language File Format General Syntax Conventions

Type modifiers

6-20 Oracle9iAS |

There are two different classes of type modifiers, Keyword and Type Declaration
modifiers.

Keyword Modifiers

Modifiers, such as specifying the alignment specifiers for fixed length strings,
always follow the type itself. Type keyword modifiers never have parameters.

The following is a fixed length string, of 34 bytes, aligned to the right and padded
with zeros:

string(34, '0°, head) nyString

Type Declaration Modifiers

Certain types require other types to be defined (declared) in order to be completely
defined, for example, when the primary type aggregates, is contained in, or prefixed
by another type. Insert the keywords of , i n, and pr ef i xed, to describe these
different cases. Define the additional types following the original type declaration.
Tables, for example, contain elements of another type. To fully define the table,
declare the elements within the type declaration.

The following declares an array of 40 bytes:
tabl e(40) of unsigned8

The following declares an array of 40 dot delimited strings:

tabl e(40) of string(‘.")

The following declares a variable length array of (variable length strings prefixed
with dot delimited fixed numbers) length prefixed with a byte:

table of string prefixed nunber(5,5,none) in string
“.“)prefixed signed8

« Types which prefix another are either nuneri cal or bi nary types.
« Types which aggregate (in) another are always string types.

« Types contained in (of) may be of any type.

nterConnect Adapter for CICS Installation and User’s Guide

Message Description Language File Format General Syntax Conventions

Expression

Alias

Expressions are not supported by the message description language parser. For
example, the following expression is valid:

string(25)nyString

The following expression is invalid:
string(10 + 50)nyQher String

To create an alias for a given type, use at ypedef :

typedef type declaration typedef name

For example:

typedef string prefixed nunber(5,0,none) in string('.")
myString_t
struct nyStruct
M/String_t structNane
tabl e(80) of nyString_t nmyAddressList
end struct

Typedef declarations are always global to the file where they are defined. Their
declarations must precede their usage.

Comment Insertion

Insert comments anywhere in the file by inserting pound signs “#” at the beginning
of a line. For example:

#comented |ine
signed16 nyShort this part is NOT commented

Message Description Language Reference 6-21

Message Description Language File Example

Case Sensitivity

The message description language is case sensitive, and its reserved keywords are
always lower cased. Keywords with different case conventions as identifiers are
legal. For example:

#val id statement
signed16 Signedl6
#val id nethod

met hod Met hod

Message Description Language File Example
The following is an example of a message description language file called CLS.

#Wd assNane. CLS
#Tabs (or spaces) and Extra ECLs are here only for readability.
#Keywords are in bol d.
class Myd assNane
typedef string(‘.‘) string_t
typedef nunber(5,5,°.°) in string(11,' ‘,none) number _t
#this structure declaration is private to MyC assNane
struct Account
string_t structNanme
string_t clientNane
unsi gned16 accntlD
nunber _t bal ance
end struct
typedef table(',,".") of Account AccountList _t
struct Banklnfo
string_t structNane
string_t bankNane
Account Li st _t accountLi st
tabl e(80) of string_t debtorNaneLi st
date("DD-MMYY") in string_t |astMdificationDate

end struct
#CGet account info nethod
met hod GET

return void

instring_t clientName
out Account account
end met hod

6-22 Oracle9iAS InterConnect Adapter for CICS Installation and User's Guide

Message Description Language File Example

#Add new account net hod
met hod ADD
return Banklnfo banklnfo
out string_t result
end net hod
end cl ass

Message Description Language Reference 6-23

Message Description Language File Example

6-24 Oracle9iAS InterConnect Adapter for CICS Installation and User’s Guide

v

Using the Configuration Editor

This chapter describes how to use the Configuration Editor to configure the CICS
adapter. The Configuration Editor is only used at runtime. The following topics are
discussed:

« Using the Configuration Editor
« Configuration Editor Login

« Configuration Editor Security

Using the Configuration Editor 7-1

Using the Configuration Editor

Using the Configuration Editor

Using the Configuration Editor, you can customize the settings to specify how the
CICS adapter and Service Provider components interact with your system. You can
change these settings by accessing the Editors through the Configuration Editor.

To configure settings for the CICS adapter you must access the CICS Configuration

Note: Profiles and Deployment are sensitive to the Master Key
setting. If using a shared machine, before accessing the
Configuration Editor, ensure the Master Key is set to either that of
Userl or create a new Master Key for your profiles.

Editor as follows:

1. Change directories to the .

DOS prompt.

2. Type configeditor and press Enter.

The Configuration Editor displays.

3. Click Profile and select iStudio.

4. Double-click on CICS to edit the CICS configuration settings for iStudio profile.

..loai/l9.0.2/ config/configeditor usinga

Note: Under some circumstances you may wish to run your
adapter under a profile other than iStudio. This may be needed, for
example, if you want to run two instances of the CICS adapter on
the same machine. You may want to have two instances of the same
type of adapter if these instances need to connect to different
backend system installations. To accomplish this you need to create
a new profile using the configuration editor and fill in the settings
for this new profile. The name of the new profile should be the
same as the name of the application. For example, if your
application is called APP2, create a profile called APP2. Now APP2
will use the settings in the profile called APP2, whenever it runs.

5. Click to expand the Login node.

7-2 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Configuration Editor Login

6. Click to expand the General node.

Figure 7-1 Configuration Settings Editor - Expanding the General folder

] Configuration Settings Editor
File Profile

1 Global Settings

® Profile |iStudio

C_ategnries
E-Cics
E-Login

Iél---ngeral
B[] Use Global Settings

[«]

Username: |
Password: |

The Default Login to CICS

7. Click to unselect Use Global Settings in both the Login and General dialogs.

Configuration Editor Login

In the CICS adapter, the configuration dialog allows the user to set the login and

password for the CICS region.

Using the Configuration Editor

7-3

Configuration Editor Login

'htl Configuration Settings Editor =] E3
File Profile

To set the login information:

1. Click Login on the Login dialog.

Figure 7-2 Configuration Editor Login Screen

Password in CICS can be up to 8 characters long.

) Global Settings

® Profile |iStutio

Cfﬁegories Uszernarme: ILUginnamE
=-CICE
E!---Lugin Passwiard: Iw'k*'k*'k*‘k
[Use Global Settings
E---General

-] Use Global Settings

General

Mode Name

2. Enter a username in the Username field. A username in CICS can be up to eight
characters long.

3. Enter a password in the Password field. A password in CICS can be up to eight
characters long. The password is stored encrypted in the registry.

General settings only apply to the SNA LU 6.2 protocol. This section will explore
the General settings that need to be set in the Configuration Editor for the CICS
adapter. In the General Setting section, you can define the Synchronization Level
and Security. From the Configuration Settings Editor dialog:

1. Expand the General branch.
2. Expand the Use Global Settings branch.

To use a different Mode Name, enter the name of the Mode Name. The Mode Name
must be defined in both your local and remote system network architecture servers.
If you have any questions, please refer to your communication system
administrator.

7-4 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

Configuration Editor Security

Synchronization Level
In the Synchronization Level section, you can define the type of confirmation the
remote CICS system requires when exchanging buffers with the CICS adapter.

1. Expand the Synchronization Level branch.

Figure 7-3 Configuration Settings Editor - Synchronization Level

w1 Configuration Settings Editor H=] B3
File Profile
1 Global Settings X
® Profile | iStudio :

)

(SR
---Lngin
Iél---ngeral
E-[[] Use Global Settings

E---Synchroniza’cinn Lewel
D L@ NONE
D) CONFIRM
---Secur'rt\,n'

[«]

General settings required by the CICS system

2. Click None if there will be no confirmation when exchanging buffers with the
CICS adapter.

Click Confirm if there will be confirmation.

Configuration Editor Security

In the Security section, you can define the type of security CICS is using to
exchange data with the CICS adapter.

Using the Configuration Editor 7-5

Configuration Editor Security

1. Expand the Security branch.

Figure 7-4 Configuration Settings Editor - Security section

w1 Configuration Settings Editor Hi=] E3
File Profile
) Global Settings
® Profile |iStutio

Login
- General

=[] Use Global Settings

E---Synchrnnizaﬁon Level

L L@ MONE
:) COMFIRM
E---Sgcurﬂy

(@) NONE

------ () PROGRAM

-

Security refers to the type of security CICS is using to exchange data with the CICS adapter.

2. Click None if there will be no security when exchanging data with the CICS
adapter.

Click Program if there will be security when exchanging data.

7-6 Oracle9iAS InterConnect Adapter for CICS Installation and User’'s Guide

A

abend, 4-4
advanced program to program
communication, 4-4
advanced queuing adapter
installation, 2-2
already-verified protocols, 5-5
api
eci protocol, 3-8
sna lu 6.2 cpi-c protocol, 3-7
using the eci protocol api, 3-6
using the sna lu 6.2 cpi-c, 3-5
application
startup, 3-12, 3-13
application parameter, 2-5

B

binary types, 6-10
bind time security, 5-7

C

cics, 4-5
adapter information flow, 3-9
as a transaction program, 4-15
configuration, 2-4
cpi communications, 1-3
definitions, 1-2
how the adapter communicates with cics, 3-5
implementing the adapter, 3-7
installation, 2-2
installation tasks, 2-2

Index

logical unit, 1-2
multi-threading, 3-10
preinstallation, 2-2
security implementation, 5-6
security in general, 5-7
system requirements, supported platforms, 1-2
using the adapter inbound, 3-11
what is, 1-2

cics adapter, 3-2
conversations, 5-2

cics region, 4-5

cics security implementation
bind time security, 5-7

cics transaction, 4-5

classes, 3-3

concepts, 4-3

configuration, 2-4
agent connection parameters, 2-7
cics parameters, 2-11
directories, 2-4,2-5
executable files, 2-4
files, 2-5
hub.ini, 2-6
initialization file settings, 2-6

configuration editor
general, 7-4
login, 7-3
mode name, 7-4
security, 7-5
synchronization level, 7-5
using, 7-2

conversation, 4-5

conversation level security, 5-5
already-verified protocols, 5-5

Index-1

end-user verification, 5-5
password expiration management, 5-6
persistent verification, 5-6
conversations
cics adapter, 5-2
cpi communications, 1-3
cpi communications (cpi-c), 4-6

D

data flow, 5-2

E

end-user verification, 5-5
error handling, 5-10
event
creating a subscribed event, 3-19
explicitly delimited variable length sequences, 6-17

F

fixed length tables, 6-17

fixed precision numbers, 6-15
fixed scale, 6-15

floating point numbers, 6-14
floating point types, 6-10

implicitly delimited variable length
sequences, 6-18
inbound, 3-11
design time, 3-13
eci protocol, 3-12
runtime, 3-14
sna lu 6.2 cpi-c protocol, 3-11
installation, 2-2

tasks, 2-2
integral types, 6-10
istudio

creating a subscribed event, 3-19
creating an implemented procedure, 3-14

Index-2

K

keyword modifiers, 6-20

L

length-prefixed strings, 6-11
logical unit, 1-2,5-2
logical unit (LU), 4-7
lu 6.2

security, 5-8

user security, 5-8
lu 6.2 cpi-c protocol stack, 4-2
lu-lu verification, 5-4

M

MDL Classes
Introducing, 6-2

message description language, 3-2
alias, 6-21
array types (tables), 6-16
case sensitivity, 6-22
class declaration, 6-3
comment insertion, 6-21
complex types, 6-13
date types, 6-13
delimited strings, 6-12
expression, 6-21
file, 6-3
file example, 6-22
fixed-length padded strings, 6-12
implicit strings, 6-13
method declaration, 6-5
null terminated strings, 6-12
numerical types, 6-14
struct declaration, 6-5
structured types, 6-19
supported data types, 6-9
typedef declaration, 6-5
what is, 6-2

message description language file format

general syntax conventions, 6-19
type modifiers, 6-20
type parameters, 6-19

method declarations

argument declarations, 6-8
return type, 6-7
mode name, 4-7

N

node, 4-7
node type, 4-7

P

packed decimal, 6-16

parallel sessions, 5-2

password expiration management, 5-6
persistent verification, 5-6

physical unit, 4-8

prefixed variable length tables, 6-17
preinstallation, 2-2

procedure

creating implemented in istudio, 3-14
protocol

cics adapter, 3-8
protocols

lu6.2 cpi-c stack, eci stack, 3-4

R

receiving
cics adapter request, 3-13

S

security, 5-3
conversation level, 5-5
lu6.2, 5-4
session level, 5-4
using the eci protocol, 3-7
session, 4-8
session level cryptography, 5-4
session level security, 5-4
lu-lu verification, 5-4
string types, 6-11
supported platforms, 1-2
synchronization levels, 4-9
synchronization services, 4-10

system management facility (SMF), 4-8
system network architecture

synchronization of changes, 5-9
system network architecture (SNA), 4-8
system requirements, 1-2

systems network architecture controllers, 4-9
T
terms, 4-3

transaction program (TP), 4-12
type declaration modifiers, 6-20

U

url, 3-4
urls, 4-2
Vv

variable precision numbers, 6-15
verb control block (vcb), 4-12
verbs, 4-13

Index-3

Index-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Introduction
	What is CICS?
	System Requirements and Platforms
	Definitions
	Logical Unit (LU)
	CPI-C

	2 Installation and Configuration
	Installing the CICS Adapter
	Preinstallation Tasks
	Installation Tasks

	CICS Adapter Configuration
	Using the Application Parameter
	adapter.ini Initialization Parameter File
	Hub.ini
	Agent Connection Parameters
	CICS Adapter Parameters

	3 CICS and the CICS Adapter
	The CICS Adapter
	Message Description Language (MDL)
	Classes
	LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs
	How the CICS Adapter Communicates With CICS
	Using SNA LU 6.2 CPI-C Protocol API
	Using the ECI Protocol API

	CICS Adapter Security
	Using the LU 6.2 CPI-C Protocol
	Using the ECI Protocol

	Implementing the CICS Adapter
	SNA LU 6.2 CPI-C Protocol API
	ECI Protocol API
	CICS Adapter
	CICS Adapter Information Flow
	Multi-Threading

	Using the CICS Adapter Inbound
	SNA LU 6.2 CPI-C Protocol
	Application Start-up
	Receiving a CICS Adapter Request from Oracle9iAS InterConnect

	ECI Protocol
	Application Start-up
	Receiving a CICS Adapter Request from Oracle9iAS InterConnect

	Design Time
	Runtime

	Creating an Implemented Procedure
	Creating a Subscribed Event

	4 Systems Network Architecture Definitions
	LU 6.2 CPI-C Protocol Stack and URLs
	Concepts and Terms
	ABEND
	Advanced Program-to-Program Communication (APPC)
	CICS
	CICS Region
	CICS Transaction
	Conversation
	CPI Communications (CPI-C)
	Logical Unit
	Mode Name
	Node
	Node Type
	Physical Unit (PU)
	Session
	System Management Facility (SMF)
	Systems Network Architecture (SNA)
	Systems Network Architecture (SNA) Controllers
	Synchronization Levels
	Synchronization Services
	Transaction Program (TP)
	Verb Control Block (VCB)
	Verbs
	CICS as a Transaction Program

	5 Systems Network Architecture Concepts
	Data Flow
	Logical Units and Parallel Sessions
	CICS Adapter Conversations
	Security
	LU 6.2 Security
	Session Level Security
	Session Level Cryptography
	LU-LU Verification

	Conversation Level Security
	End-User Verification
	Already-Verified Protocols
	Persistent Verification
	Password Expiration Management

	CICS Security Implementation
	Bind Time Security

	Security For CICS in General
	Security Specific to LU 6.2
	User Security

	Synchronization of Changes
	Error Handling

	6 Message Description Language Reference
	What is Message Description Language?
	Message Description Language Classes

	Message Description Language File
	Class Declaration
	Typedef Declaration
	Struct Declaration
	Method Declaration
	Return Type Declaration
	Argument Declarations

	Supported Data Types
	Binary Types
	Integral Types
	Floating Point Types
	String Types
	Length-Prefixed Strings
	Delimited Strings
	Null Terminated Strings
	Fixed-Length Padded Strings
	Implicit Strings
	Complex Types
	Date Types
	Numerical Types
	Floating Point Numbers
	Fixed Scale, Variable Precision Numbers
	Fixed Scale, Fixed Precision Numbers
	Packed Decimal

	Array Types (Tables)
	Fixed Length Tables
	Prefixed Variable Length Tables
	Explicitly Delimited Variable Length Sequences
	Implicitly Delimited Variable Length Sequences

	Structured Types

	Message Description Language File Format General Syntax Conventions
	Type parameters
	Type modifiers
	Keyword Modifiers
	Type Declaration Modifiers

	Expression
	Alias
	Comment Insertion
	Case Sensitivity

	Message Description Language File Example

	7 Using the Configuration Editor
	Using the Configuration Editor
	Configuration Editor Login
	General
	Mode Name
	Synchronization Level

	Configuration Editor Security

	Index

