
Oracle® Internet File System�

Developer’s Guide

Release 1.1

September 2000

Part No. A75172-04

Oracle Internet File System Developer’s Guide, Release 1.1

Part No. A75172-04

Release 1.1

Copyright © 2000, Oracle Corporation. All rights reserved.

Primary Author: Dennise Brown

Contributors: Matthew Brandabur, Dennis Dawson, Francine Hyman, Vasant Kumar, Dave Long, Larry Matter,
Sylvia Perez, Josh Sacks, Alison Stokes, Ed Yu

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license agreement
containing restrictions on use and disclosure and is also protected by copyright, patent and other intellectual
property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication and disclosure of the Programs shall be subject to the licensing restrictions set forth
in the applicable Oracle license agreement. Otherwise, Programs delivered subject to the Federal Acquisition
Regulations are "restricted computer software" and use, duplication and disclosure of the Programs shall be subject
to the restrictions in FAR 52.227-14, Rights in Data -- General, including Alternate III (June 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and interMedia, Gist, JDeveloper, Oracle Applications, Oracle Parallel Server,
Oracle Reports, Oracle Workflow, and Oracle8 are trademarks or registered trademarks of Oracle Corporation. All
other company or product names mentioned are used for identification purposes only and may be trademarks of
their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

1 Getting Started

Introducing the Oracle Internet File System ... 1-2
Oracle iFS Advantages for Developers.. 1-2

Oracle iFS System ... 1-3
The Oracle iFS Repository ... 1-3
The Oracle iFS Client Software... 1-3
The Oracle iFS Protocol Servers.. 1-3
An Extensible Document Hierarchy .. 1-3
A Java-based API.. 1-3

Application Development Tools .. 1-4
Customization in Oracle iFS... 1-5

No Customization .. 1-5
Basic Customization... 1-5
Advanced Customization.. 1-5

Overview of Application Tasks.. 1-6
Task Reference... 1-7
iii

2 API Overview

Introducing the Oracle iFS Java API ... 2-2
The Oracle iFS API Packages .. 2-2

The LibraryObject Class .. 2-3
The LibraryObjectDefinition Class... 2-3

The oracle.ifs.beans Class Hierarchy .. 2-4
The PublicObject Class.. 2-6

Characteristics of Public Objects... 2-7
Public Object Attributes... 2-8
Do You Need to Create a Custom Oracle iFS Document?.. 2-9
User-related Classes ... 2-10

Document and Folder Classes .. 2-11
The Document Class... 2-12
The DocumentDefinition Class... 2-12
The ContentObject Class.. 2-13
The Folder Class.. 2-13

Security Classes ... 2-14
The AccessControlList Class ... 2-14
The AccessControlEntry Class.. 2-14

Session Classes .. 2-15
The LibraryService Class ... 2-15
The LibrarySession Class ... 2-16

Tie Classes .. 2-16
Server Classes .. 2-18

3 Working with Documents

How Documents Are Stored in the Repository .. 3-2
Documents and Folders ... 3-2

Connecting to the Repository ... 3-3
Step 1: Create an Instance of LibraryService... 3-3
Step 2: Obtain an Instance of LibrarySession.. 3-3

Creating a New Document .. 3-5
Why Create a Definition First? ... 3-5
Creating PublicObjects... 3-5
Create a Document Definition Object .. 3-6
iv

Create a New Document ... 3-6
Putting a Document in a Folder ... 3-7
Working with Attributes ... 3-7

Getting Attributes... 3-8
Setting Attributes.. 3-9
Defining Explicit Getters and Setters... 3-11

Searching for a Document... 3-12
Sample Code: Hello World ... 3-14

4 Creating Custom Classes

Overview of Creating Custom Classes ... 4-2
Creating a Type Definition File ... 4-2

How Do Type Definitions Work?... 4-2
The Type Definition File: Description Section.. 4-3
The Type Definition File: Attributes Section .. 4-5
Sample Code: Create a Type Definition .. 4-6

Using Compound Attributes .. 4-7
Sample Code: Embedded Attribute Type Definition .. 4-7
Sample Code: ClassDomain Definition... 4-9
Load a Custom Type Definition ... 4-9

Creating an Instance Class Bean .. 4-9
Sample Code: Create an Instance Class Bean... 4-10
Deploy an Instance Class Bean... 4-12

Creating Document Instances ... 4-13
Sample Code: Create Document Instances ... 4-14
Upload Document Instance Files ... 4-14
Limitations on XML Type Definition Files ... 4-15

5 Using Parsers

What Is a Parser? ... 5-2
Standard Oracle iFS Parsers vs. Custom Parsers ... 5-2

Using the Standard Parsers ... 5-3
Parsing Options .. 5-3

Using the ClassSelectionParser... 5-4
Create a Class Definition ... 5-4
v

Register the Extension with the ClassSelectionParser... 5-5
Register the Class.. 5-5

How Does XML Parsing Work?.. 5-6
Using a Custom Parser ... 5-7
Overview of a Parser Application.. 5-7
Writing a Parser Application .. 5-8

Write the Parser Class .. 5-8
Overview of a Custom Parser ... 5-10
Sample Code: A Custom Parser ... 5-10

Deploy the Parser.. 5-15
Register the Parser .. 5-16
Invoke the Parser .. 5-17
Write a ParserCallback... 5-18

6 Using Renderers

What Is a Renderer?.. 6-2
The Oracle iFS Framework for Rendering .. 6-2
A Renderer Does Not Create a Repository Object ... 6-2
What Objects Can Be Rendered? .. 6-3
Using Server-Side Classes with Renderers ... 6-3
Using PolicyPropertyBundles to Register Renderers.. 6-3

Using Standard Renderers .. 6-5
Invoking Renderers .. 6-5

Introduction to Custom Renderers .. 6-8
How Custom Renderers Work ... 6-9

Overview of a Renderer Application .. 6-9
Write the Renderer Class ... 6-9
Deploy the Renderer .. 6-14
Register the Renderer... 6-15
Invoke the Renderer ... 6-17
Output from the Custom Renderer.. 6-23

7 Using JSPs

Using Java Server Pages to Display Documents... 7-2
Preparing to Use JSPs... 7-2
vi

Implementing an Application Using a JSP.. 7-3
Login/Logout Files .. 7-3
Application Files ... 7-4
Registering a JSP ... 7-5
Web Site Security Using HTTP Authentication ... 7-6
Implementing HTTP Authentication... 7-7

Running the Sample Insurance Form Application .. 7-8
Create the Insurance Form Application .. 7-8
Run the Insurance Form Application .. 7-9

Sample Files for the Insurance Form Application ... 7-10
Sample Code: index.html .. 7-11
Sample Code: CreateInsuranceForm.xml ... 7-11
Sample Code: claim1.xml, claim2.xml... 7-12
Sample Code: login.jsp .. 7-12
Sample Code: InsuranceLogin.java.. 7-14
Sample Code: logout.jsp .. 7-18
Registering a Java Server Page Using Oracle iFS Manager .. 7-19
Registering a Java Server Page Using XML.. 7-20
Sample Code: InsuranceForm.jsp... 7-20
Sample Code: InsuranceBean.java ... 7-22

8 Using Agents

What Is an Agent? ... 8-2
What Triggers an Agent’s Action? ... 8-2

How Do Agents Work? .. 8-3
The SalaryFileLog Agent at Work.. 8-3

Classes and Methods for an Event Agent .. 8-4
Writing an Event Agent ... 8-5

Start with Template Code.. 8-6
Declare the Class... 8-6
Create the Constructor... 8-7
Write the run() Method.. 8-7
Handle a Stop Request... 8-11
Handle a Suspend Request ... 8-12
Handle a Resume Request... 8-13
vii

Handle Oracle iFS Events .. 8-13
Registering an Agent with ServerManager ... 8-15

Agent Definition File .. 8-16
Testing the Agent.. 8-17

Event Agent (Complete Code Example) ... 8-17
Sample Code: Event Agent.. 8-17

9 Using Overrides

What Is an Override?.. 9-2
How Pre- Overrides Work... 9-2
Using Pre- Overrides.. 9-2

Before You Begin Working with Overrides ... 9-3
Review of Attributes .. 9-4

Override Methods ... 9-5
Writing an Override.. 9-6

Declare the Server-side Class .. 9-6
Create the Constructor ... 9-7
Implement the Override Method ... 9-8

Sample Code: A PreInsert Override .. 9-9

10 Sending E-mail Programmatically

What Is Sending E-mail Programmatically? .. 10-2
Oracle iFS Infrastructure for Programmatic E-mail... 10-3
Programmatic E-mail Scenario ... 10-3

Writing an Application to Send E-mail Programmatically ... 10-4
Option for Sending Short Messages... 10-4
Create an IfsMessage Object.. 10-5
Construct the Message Header ... 10-6
Construct the Message Body... 10-7
Send the Message.. 10-10

Sample Code: Sending E-Mail Programmatically .. 10-10

A Error Messages

Index
viii

Send Us Your Comments

Developer’s Guide, Release 1.1

Part No. A75172-04

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ E-mail: ifsdocteam@us.oracle.com
■ FAX - 650.605.7104. Attn: Documentation Manager for Product Name
■ Postal service:

Oracle Corporation
Product Name, Attn: Documentation Manager
500 Oracle Parkway, Mailstop 5op4
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
ix

x

Preface

The topics covered in this preface include:

■ Intended Audience

■ Structure of the Developer’s Guide

■ Notation Conventions

■ Related Documents
Preface xi

Intended Audience
The Oracle Internet File System Developer’s Guide is intended for application
developers who create custom file system applications using XML and Java.

Structure of the Developer’s Guide
The Oracle Internet File System Developer’s Guide contains ten chapters and one
appendix:

Chapter 1 Getting Started Introduces the Oracle Internet File System and
provides an overview of customization in
Oracle iFS.

Chapter 2 API Overview Describes the most commonly used classes of
the Oracle iFS Java API.

Chapter 3 Working with
Documents

Describes how to get started using the Oracle
iFS API for basic functionality, such as
connecting to the database and creating
documents.

Chapter 4 Creating Custom
Classes

Describes how to create a custom class using
XML.

Chapter 5 Using Parsers Describes how parsing works in Oracle iFS and
how to write a custom parser.

Chapter 6 Using Renderers Describes how rendering works in Oracle iFS
and how to write a custom renderer.

Chapter 7 Using JSPs Describes how to display an Oracle iFS
document on the Web using a Java Server Page
(JSP).

Chapter 8 Using Agents Describes how to create a custom program
(agent) to perform a specific task.

Chapter 9 Using Overrides Describes how to use an override to alter
server-side functionality.

Chapter 10 Sending E-mail
Programmatically

Describes how to send e-mail from an
application program.

Appendix
A

Error Messages Describes the most common error messages.
xii Oracle Internet File System Developer’s Guide

Notation Conventions
The following conventions are used in this manual:

Related Documents
For more information on Oracle Internet File System, see the following manuals that
are included with Oracle Internet File System:

■ Oracle Internet File System Quick Tour

■ Oracle Internet File System Installation Guide

■ Oracle Internet File System Setup and Administration Guide

■ Oracle Internet File System User’s Guide

For more information on the Oracle8i database, see the documentation for Oracle8i.

The following table lists additional developer documentation available in the
Documentation section of the Oracle iFS listing on OTN (Oracle Technology
Network).

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

monospaced text Monospaced text is used for filenames, pathnames, and code
samples.

Oracle Internet File System Javadoc Describes the packages, classes, and
methods of the Oracle iFS API.

Oracle Internet File System Class Reference Provides a listing of the class
hierarchy and describes the attributes
of the Java classes.

Oracle Internet File System XML Reference Defines and describes the attributes
that may be set when creating objects
using XML.
Preface xiii

xiv Oracle Internet File System Developer’s Guide

Getting S
1

Getting Started

This chapter covers the following topics:

■ Introducing the Oracle Internet File System

■ Oracle iFS System

■ Application Development Tools

■ Customization in Oracle iFS

■ Overview of Application Tasks

■ Task Reference
tarted 1-1

Introducing the Oracle Internet File System
Introducing the Oracle Internet File System
The Oracle Internet File System (Oracle iFS) is a file system in a database. From the
user perspective, Oracle iFS looks exactly like any other networked drive on your
file system. However, because Oracle iFS actually stores documents in a relational
database, rather than on a local hard drive, users can perform many tasks using
Oracle iFS that are not possible using standard file systems.

For example:
■ Files placed into Oracle iFS can be automatically indexed, contents and all, for

complex searching.

■ Complex security models can be implemented with ease: individual or group
access can be granted to files or directories using simple commands.

■ The full functionality of Oracle iFS is available through an array of interfaces
already familiar to most users.

■ Oracle iFS supports an extendible list of 150 different file types, and includes
robust support for sophisticate content management, with or without user
customization.

Oracle iFS Advantages for Developers
For developers, using Oracle iFS offers several specific advantages:

■ Storing all data, including both files and relational data, in a single system
simplifies application development. Rather than having to coordinate two
separate data stores, you now only need to keep track of a single repository.

■ You can customize the behavior and appearance of Oracle iFS using standard
coding tools: XML, HTML, and Java.

■ The Oracle iFS system provides facilities to speed development of custom file
systems, Web-based applications and content management applications.
1-2 Oracle Internet File System Developer’s Guide

Oracle iFS System
Oracle iFS System
As a developer of Oracle iFS applications, you have access to all the components of
Oracle iFS:
■ The Oracle iFS Repository
■ The Oracle iFS Client Software
■ The Oracle iFS Protocol Servers
■ An Extensible Document Hierarchy
■ A Java-based API

The Oracle iFS Repository
The Oracle iFS repository provides a single storage facility for all of your files,
whether they are a standard type, such as XML, or a custom type that you define.
This single storage facility means that files are managed consistently, regardless of
the protocol used to manipulate them.

The Oracle iFS Client Software
You can use standard clients, such as Windows Explorer; out-of-the-box Oracle iFS
clients, such as the Web interface: You can also create a custom client to access
Oracle iFS data. TCP/IP is used for communication between clients and the Oracle
iFS server.

The Oracle iFS Protocol Servers
Out-of-the-box, Oracle iFS ships with a set of standard protocol servers: SMB, HTTP,
FTP, SMTP, and IMAP4. Each Oracle iFS protocol server accepts commands from a
standard client and maps those commands to repository operations.

An Extensible Document Hierarchy
The Oracle iFS document hierarchy may fit your application needs as is. If the
out-of-the-box hierarchy fits your application needs only in part, you can easily
create custom document classes using XML to define custom attributes and Java to
implement custom processing.

A Java-based API
The Oracle iFS Java API consists of a set of classes and methods that custom
applications can use to access the repository and perform file management
operations.
Getting Started 1-3

Application Development Tools
Application Development Tools
To use Oracle iFS in custom application development, you need a few readily
available tools:
■ A Java Integrated Development Environment (IDE)

■ An HTML Editor

■ An XML Editor

Which Tool to Use?
The following table lists common customization tasks and the corresponding tool to
use.

Task Tool

Create a custom type (class). XML Editor

Modify a custom type (class). Oracle iFS Manager

Create a custom Java Bean. JDeveloper or other Java IDE

Create a JSP. HTML editor, JDeveloper or other Java
IDE

Display information using a JSP. Java Web Server or Apache Web Server

Create a custom parser, renderer, or agent. JDeveloper or other Java IDE

Register a parser, renderer, or JSP. Oracle iFS Manager or XML Editor

Register an agent. Oracle iFS Server Manager
1-4 Oracle Internet File System Developer’s Guide

Customization in Oracle iFS
Customization in Oracle iFS
The Oracle Internet File System was built with ease of customization in mind.
Depending on the requirements of your application, you can choose from three
levels of customization:
■ No customization
■ Basic customization
■ Advanced customization

No Customization
For many applications, the file system management and content management
features of Oracle iFS mean that no customization is required. Oracle iFS provides
many out-of-the-box capabilities that you might expect to add with customization
to a standard document-centered application, such as:
■ Versioning
■ Check-in and check-out
■ Locking and unlocking

Basic Customization
For applications that require only adding custom attributes to the existing
Document class, basic customization can be done using XML, with no Java
programming required.

When you use XML to define custom document attributes, you have access to
parsing and rendering facilities provided by the SimpleXmlParser and
SimpleXmlRenderer included with Oracle iFS.

Advanced Customization
For applications with complex requirements, customization can be carried out in
Java, starting with the classes provided in the Oracle iFS Java API.

With Java programming, you can add the following types of customization:
■ Custom agents
■ Custom parsers and renderers
■ Custom overrides
■ JSPs
Getting Started 1-5

Overview of Application Tasks
Overview of Application Tasks
The following table lists common application tasks and the Oracle iFS functionality
you might use to accomplish the task.

Application Requirement Oracle iFS Functionality

Make a database connection. Connect to the repository.

Manage documents and folders. Create, update, and delete repository
objects.

Store files and folders with custom
attributes.

Create a custom document type, defining
custom attributes or methods.

Extract document components and
store them separately.

Write a custom parser.

Change the range, values, or format of a
parsed document when it is reconstructed.

Write a custom renderer.

Display dynamic web content based on
the file system’s contents.

Write a JSP.

Perform a specific task before or after
a given database event.

Write an agent.
Write an override to modify the default
behavior of the repository.
1-6 Oracle Internet File System Developer’s Guide

Task Reference
Task Reference
The Oracle iFS Java API is a set of classes that allow an application developer to
create, update, and delete repository objects. The API classes allow you to perform
in a custom manner the same functions provided through the Oracle iFS protocols
and interfaces. The following table lists these functions and their corresponding
reference in this document.

Task Reference

Become familiar with key classes of the API. Chapter 2, "API Overview"

Connect to the repository. Chapter 3, "Working with Documents"

Create, update, and delete repository objects. Chapter 3, "Working with Documents"

Read and write content. Chapter 3, "Working with Documents"

Extend the API classes. Chapter 4, "Creating Custom Classes"

Create and register a custom parser. Chapter 5, "Using Parsers"

Create and register a custom renderer. Chapter 6, "Using Renderers"

Create and register a JSP. Chapter 7, "Using JSPs"

Create and register an agent. Chapter 8, "Using Agents"

Override the default behavior of the repository. Chapter 9, "Using Overrides"

Send e-mail programmatically. Chapter 10, "Sending E-mail Programmatically"

Note: For reasons of conciseness and clarity, the sample code in
this Developer’s Guide is presented as code fragments pulled from
executable code. For the complete executable version of these files,
download the Oracle iFS Developer Kit from the Software section
of the Oracle iFS listing on OTN (Oracle Technology Network).
Getting Started 1-7

Task Reference
1-8 Oracle Internet File System Developer’s Guide

API Ove
2

API Overview

This chapter covers the following topics:

■ Introducing the Oracle iFS Java API

■ The LibraryObject Class

■ The oracle.ifs.beans Class Hierarchy

■ The PublicObject Class

■ Document and Folder Classes

■ Security Classes

■ Session Classes

■ Tie Classes

■ Server Classes
rview 2-1

Introducing the Oracle iFS Java API
Introducing the Oracle iFS Java API
The Oracle Internet File System Java API provides classes and methods that allow
you to customize all of the functionality included in the out-of-the-box Oracle iFS
interfaces. These classes include:
■ Classes for storing documents and attributes, such as Document and Folder.
■ Classes that provide document management functionality, such as

check-in/check-out and version control.
■ Classes that provide security, such as Users, Groups, and ACLs.

Because the functionality is extensive, the API includes a large number of classes,
which are organized into packages for ease of use. Because the large number of
classes means that the Javadoc is extensive, this chapter provides a quick
introduction to a few of the most frequently used Oracle iFS classes.

A good way to begin the process of familiarization with Oracle iFS would be to:
■ Scan the classes highlighted in this chapter.
■ Consult the Javadoc for each of these key classes.

The Oracle iFS API Packages
The classes of the Oracle iFS API are organized into 25 packages. You can see this
complete structure by going to the Oracle iFS Javadoc and clicking on the link
labelled "Overview." Of these 25 packages, seven contain the classes that are most
frequently used for developing Oracle iFS custom applications. The following table
describes the types of classes included in each of these seven packages.

Package Name Description

oracle.ifs.agents.common Classes used to create and manage agents.

oracle.ifs.beans The most important package. Contains most of
the classes used by application developers.

oracle.ifs.beans.parsers Classes used to create custom parsers.

oracle.ifs.search Classes used for search functionality.

oracle.ifs.server Server-side classes for managing objects in the
database.

oracle.ifs.server.renderers Classes used create custom renderers.

oracle.ifs.common Utility classes used by both bean-side and
server-side classes.
2-2 Oracle Internet File System Developer’s Guide

The LibraryObject Class
The LibraryObject Class
The LibraryObject class forms the highest level of the class hierarchy of the
oracle.ifs.beans package. All classes that represent persistent objects in
oracle.ifs.beans inherit from LibraryObject, so LibraryObject is the base class
for these objects, providing functionality common to all the classes. For example,
the methods that provide the following functions are located in the LibraryObject
class:
■ Updating an object
■ Deleting an object
■ Setting/getting attributes for an object

LibraryObject has three subclasses, which are abstract superclasses for the objects
below them in the hierarchy:
■ PublicObject
■ SystemObject
■ SchemaObject

The following table describes the purpose of the three LibraryObject subclasses.

The LibraryObjectDefinition Class
To create any Oracle iFS object is a two-stage process:
1. Build the definition of the object, using the appropriate Definition class, such as

DocumentDefinition.
2. Pass the Definition object to the createPublicObject() method (or its analogue in

other classes, createSystemObject() or createSchemaObject()).

Class Purpose
Direct Interaction
with End Users?

PublicObject The superclass for all objects that end users
deal with directly, such as documents and
folders.

Yes

SystemObject The superclass for all system-wide utility
classes.
These classes are used to help manage
PublicObjects.

No

SchemaObject The superclass for classes that manage how all
repository information is stored and managed.

No
API Overview 2-3

The oracle.ifs.beans Class Hierarchy
All Definition classes inherit from LibraryObjectDefinition and
PublicObjectDefinition, as shown in the following class hierarchy:
java.lang.Object
+--oracle.ifs.beans.LibraryObjectDefinition

+--oracle.ifs.beans.PublicObjectDefinition
+--oracle.ifs.beans.DocumentDefinition

The oracle.ifs.beans Class Hierarchy
You can use the classes of the oracle.ifs.beans package as-is, if they meet your
requirements. You can also subclass these classes to create custom classes. Deciding
which class you want to subclass is a key decision, because it determines the
functionality your custom class inherits. To make that decision, you need to become
familiar with:
■ The class hierarchy of the oracle.ifs.beans package, which contains the

most frequently used classes.
■ The most commonly used individual classes and their unique attributes.

Most of the application development work you do will use the classes that make up
the three subclasses of LibraryObject. Before you begin working with these classes,
you may find it useful to review this abbreviated class hierarchy, which includes the
three LibraryObject subclasses:
■ PublicObject
■ SystemObject
■ SchemaObject

To provide a starting point, several of the most commonly used classes are
described later in this chapter. All of the classes are described in the Javadoc.

PublicObject
AccessControlList

SystemAccessControlList
ClassAccessControlList

ApplicationObject
ContentQuota
PropertyBundle

PolicyPropertyBundle
ValueDefaultPropertyBundle
ValueDomainPropertyBundle
ServerDetail
ServerRequest

ServerSubClass
Category
2-4 Oracle Internet File System Developer’s Guide

The oracle.ifs.beans Class Hierarchy
MountPoint
DirectoryObject

DirectoryGroup
AdministrationGroup

DirectoryUser
Document

MailDocument
Family
Folder

Mailbox
Message
MailFolder

SearchObject
SelectorObject
Template
UserProfile

PrimaryUserProfile
ExtendedUserProfile

EmailExtendedUserProfile
VersionSeries
VersionDescription

SystemObject
AccessControlEntry
AuditEntry
AuditRule
ContentObject
ExtendedPermission
Format
Media

MediaFile
MediaLob

MediaBlob
MediaReference

PermissionBundle
Policy
Property
Relationship

BranchRelationship
FolderRelationship

FolderPathRelationship
BodyPartPathRelationship

GroupMemberRelationship
NamedRelationship
API Overview 2-5

The PublicObject Class
SchemaObject
Attribute
ClassDomain
ClassObject
ValueDomain
ValueDefault

Three groups of special classes are closely related to corresponding PublicObject
classes, so they are not included in this list:
■ Definition classes are used to group attributes before creating a PublicObject.
■ Tie classes are used to add behavior to all subclasses of a specific PublicObject.
■ Server classes (preceded with an S_) are used to work with objects inside the

Oracle iFS respository.

This list of classes is also abbreviated to include only the more commonly used
classes. For a complete Oracle iFS class hierarchy, see the Oracle Internet File System
Class Reference, which provides a listing of the class hierarchy and describes the
attributes of the Java classes. Access the Class Reference in the Documentation
section of the Oracle iFS listing on OTN (Oracle Technology Network).

The PublicObject Class
Of all the classes in the Oracle iFS API, PublicObject is the most significant.
PublicObject is the abstract superclass for all user-related classes and thus defines
the attributes and methods that are common to all of these classes. Oracle iFS
maintains all of the attributes defined by PublicObject automatically. For example,
Oracle iFS will ensure that each file has a Name attribute. For a list of these
attributes, see"Public Object Attributes".

These attributes are important because you can use them, as-is, in your custom type
definition files. That means that the names of these pre-defined attributes are Oracle
iFS keywords, so you cannot use them for custom attributes. For example, Name
and Description are PublicObject attributes, so if you need to define a custom class
that has a similar attribute, you must call that attribute something other than Name
or Description, such as ApproverName or DocumentDescription.

Because PublicObject is an abstract class, it is never directly instantiated. Rather, the
user-related classes are subclasses of PublicObject. Two general types of user-related
classes are subclassed from PublicObject:
■ Classes that end users deal with directly, such as Document and Folder objects.
■ Classes that play a supporting role, such as Groups and Access Control Lists.
2-6 Oracle Internet File System Developer’s Guide

The PublicObject Class
Characteristics of Public Objects
Because the repository is based on a single inheritance tree, each class inherits
attributes and methods from PublicObject. Thus, all classes that inherit from
PublicObject share some common characteristics:

■ Public objects are the only objects that appear in folders.
■ Foldering is not required: A public object can exist as an unfoldered object.
■ In addition, a public object can appear in multiple folders.

■ Public objects are access-controlled. Methods implemented on this class can be
used to grant, revoke, set, and inquire on permissions.

■ Public objects have a large set of attributes, some of which you must set and
others that are set automatically:

■ Some attributes are system-set, such as the CreateDate and LastModifyDate
attributes.

■ Other attributes can be set from the API, such as the Owner, Description,
and ACL (Access Control List) attributes.

■ Public objects are the only objects that can be versioned.

These subclasses inherit all the attributes of the PublicObject class, as well as a set of
attributes specific to the subclass. For example, the Document class has two sets of
attributes:

■ Inherited: The Document class inherits a set of common attributes from the
PublicObject class, such as Owner and CreateDate.

■ Class-specific: The Document class also includes attributes specific to the
Document class, such as ContentObject and ReadByOwner.
API Overview 2-7

The PublicObject Class
Public Object Attributes
The following table lists the attributes of the PublicObject class. Use this list for two
purposes:

■ To find out if there is an attribute defined "out-of-the-box" that will meet your
needs.

■ To choose a unique name for any custom attributes. Because attribute names
must be unique within Oracle iFS, names of all pre-defined attributes of classes
in the Oracle iFS API are reserved words, and may not be used to identify
custom attributes.

Attribute Datatype Comments

Name String (700) Name of the document. Required.

Description String (2000) Detailed description of the document.

Owner DirectoryObject Owner of the document. Set by system.
(Can also be set explicitly.)

ACL PublicObject ACL assigned to this document.

Family PublicObject The Family related to this document.
Used in connection with versioned
document.
For non-versioned documents, value is
NULL.

ResolvedPublicObject PublicObject Used by non-document objects. Not relevant
to documents.

CreateDate Date Date the document was created.

Creator DirectoryObject User who created the document.

LastModifyDate Date Date the document was modified.

LastModifier DirectoryObject User who modified the document.

Deletor PublicObject Reserved for future use.

PolicyBundle PublicObject Can be used to control any behavior
overrides for this object. Used to map the
desired renderer.

PropertyBundle PublicObject Used for storing ad hoc name/value pairs.

SecuringPublicObject PublicObject Not relevant for documents. Indicates that
security for this object is based on the ACL
for another object.
2-8 Oracle Internet File System Developer’s Guide

The PublicObject Class
*An intrinsic identifier, not a PublicObject attribute. Included in this list because this
identifier name is also a reserved word, and may not be used for custom attributes.

Do You Need to Create a Custom Oracle iFS Document?
Assuming that your goal as a developer is to create custom applications quickly, the
first question to consider is, "Will a standard Oracle iFS document meet the needs of
my application?"

The answer depends on whether the attributes of your document are adequately
described in the list of standard attributes defined for the Oracle iFS Document
class.

To decide whether your document is a "standard Oracle iFS document," consult the
list of "Public Object Attributes". If your document can be defined using only these
standard attributes:
■ It is a standard Oracle iFS document.
■ You do not need to define a custom document class to store this document in

Oracle iFS.

If your document has custom attributes that need to be specifically defined, see
Chapter 4, "Creating Custom Classes".

In special circumstances, you may need to create a custom subclass even though
your application does not require defining any custom attributes. For example, if
your application requires identifying all files of a certain type, such as Word files or

ExpirationDate Date Date the document will be deleted.

LockState Integer Indicates that document has some type of
lock. Locks can be set on a permanent or
session basis.

Flags Integer Reserved for system use. Used by protocol
servers to store miscellaneous status bits.

LockedForSession Long Indicates that the document is locked for the
current session. Attribute holds the session
identifier.

ID* Long Unique numeric identifier for current object.
Set by system.

ClassID* Long Unique numeric identifier for class of current
object. Set by system.

Attribute Datatype Comments
API Overview 2-9

The PublicObject Class
HTML files, and then manipulating the file contents or attributes in specific way,
you would need to define that type as a custom class.

User-related Classes
Another way to quickly familiarize yourself with some of the key classes of the
Oracle iFS Java API is to consider the key user-related classes by function. The
following table lists the key classes that belong to each group and the purpose of the
group. (This table includes some classes that are not described in this chapter. For
more information about these classes, consult the Javadoc.)

Function Key Classes Purpose

Hold Content Document Holds content data.

DocumentDefinition Used to build a document in memory.

Note that all classes used to create objects, such
Folder and Family, also have corresponding
Definition classes.

ContentObject Holds a reference to the actual document content.

Organization Folder Groups objects together.

Versioning Family Groups a series of related versioned public
objects.

VersionSeries Groups a series of related versioned public
objects within a family. A family can have more
than one series.

VersionDescription Creates an individual versioned public object
within a VersionSeries object.

Security AccessControlList
(and subclasses)

Contains a list of security entries called Access
Control Entries (ACEs) that grant or revoke
privileges on the object to a user or group.

AccessControlEntry An entry in an Access Control List (ACL),
specifying access privileges for a single user or
group.

Support Objects ApplicationObject Acts as superclass for custom objects.
2-10 Oracle Internet File System Developer’s Guide

Document and Folder Classes
Javadoc for User-Related Classes

To understand a given user-related class, consult the Javadoc for these three classes
related to whichever class you choose:
■ Start with the PublicObject class, because it is the abstract class from which

all user-related classes inherit.
■ Then check the subclass of PublicObject that you are interested in, such as the

Document class.
■ To familiarize yourself with the attributes of the class, see the related Definition

class, such as the DocumentDefinition class.

Document and Folder Classes
Four classes are used to work with folders, documents (files), and their contents:

■ The Document Class
■ The DocumentDefinition Class
■ The ContentObject Class
■ The Folder Class

If your application deals with a document (file), you will need to create three
objects:
■ A Document object to store the attributes and a reference to the ContentObject

in the repository.
■ A DocumentDefinition object to hold the attributes of the file. The

DocumentDefinition object is transitory and is used to create the Document
object.

■ A ContentObject to store the actual content of a Document object.

In addition, if you want to place the file in a folder, you will need to create a Folder
object.

PropertyBundle Used for managing custom lists of name/value
pairs.

Function Key Classes Purpose
API Overview 2-11

Document and Folder Classes
The Document Class
Package Name: oracle.ifs.beans

Class Name: Document

ParentClass: PublicObject

Purpose: Adds the ability to store and manage the content of a file.

Methods: The Document class provides a number of methods specific to getting
and setting the associated ContentObject.

Uses: Use the Document class to store a document or file.

Attributes: The following attributes are unique to the Document class:

The DocumentDefinition Class
Package Name: oracle.ifs.beans

Class Name: DocumentDefinition

ParentClass: PublicObjectDefinition

Purpose: The DocumentDefinition class is used to construct a Document object.
This subclass of PublicObjectDefinition sets the default ClassObject to
"DOCUMENT". An instance of a DocumentDefinition is passed to
LibrarySession.createDocument() to actually construct the new document.

Methods: The DocumentDefinition class provides a number of methods specific to
storing and manipulating content.

Uses: Use the DocumentDefinition class to create a transient, in-memory object to
hold the attributes of a Document object while you are creating it. Once the
Document Definition is passed to the createDocument() method, the definition
object is discarded.

Attributes: The attributes for the DocumentDefinition class are the same as those
for the Document class.

Attribute Datatype Description

ContentObject ContentObject The ObjectID of the ContentObject that holds the
content for this document.

ReadByOwner Boolean A flag that indicates whether the document owner has
read the current content. Used by IMAP to indicate
whether the text of a message has been read.
2-12 Oracle Internet File System Developer’s Guide

Document and Folder Classes
The ContentObject Class
Package Name: oracle.ifs.beans

Class Name: ContentObject

ParentClass: SystemObject

Purpose: Stores the actual content of a document.

Methods: The ContentObject class provides a number of methods specific to getting
and setting its attributes, including content, content size, and format.

Attributes: The following attributes are unique to the ContentObject class:

The Folder Class
Package Name: oracle.ifs.beans

Class Name: Folder

ParentClass: PublicObject

Purpose: Adds the ability to manage references to other files.

Methods: The Folder class provides methods to manipulate items in a folder, such
as getItems().

Uses: Create a custom subclass of the Folder class if you need an object that
manages references to other objects.

Attributes: The Folder class does not contain any unique attributes.

Attribute Datatype Description

CharacterSet String Character set used to represent the language for this
ContentObject.

Content Long A pointer to the actual content of the document.

ContentSize Long Size of content in bytes.

Format SystemObject Format/MIME type for this ContentObject.

Language String Language for this ContentObject.
API Overview 2-13

Security Classes
Security Classes
Security in Oracle iFS is provided by AccessControlLists (ACLs), which provide
security information for a specific object through a collection of
AccessControlEntries (ACEs). Each ACE grants or revokes specific permissions
related to that object toa user or group.

The AccessControlList Class
Package Name: oracle.ifs.beans

Class Name: AccessControlList

ParentClass: PublicObject

Purpose: Used to specify access rights to documents.

Methods: The AccessControlList class provides specific methods to manipulate
AccessControlEntries.

Uses: Use the AccessControlList class to acquire information about a group of
AccessControlEntries.

Attributes: The following attributes are unique to the AccessControlList class:

The AccessControlEntry Class
Package Name: oracle.ifs.beans

Class Name: AccessControlEntry

ParentClass: SystemObject

Purpose: Used to specify access rights for a specific user or group.

Methods: The AccessControlEntry class provides specific methods to obtain
information from AccessControlEntries.

Uses: Use the AccessControlEntry class to acquire information about a specific
AccessControlEntry.

Attribute Datatype Description

Shared Boolean Indicates whether this ACL is shared. Default value is
TRUE.
2-14 Oracle Internet File System Developer’s Guide

Session Classes
Attributes: The following attributes are unique to the AccessControlEntry class:

Session Classes
If a user wants to add data to or retrieve data from the Oracle iFS repository, that
user must have a working session to create the connection to the repository.
Creating this session is the first task of every Oracle iFS application, and requires
the following classes:
■ The LibraryService Class
■ The LibrarySession Class

The LibrarySession class is a lynch-pin class in Oracle iFS. All persistent objects, that
is, objects stored in the Oracle iFS repository, are created from the LibrarySession
class.

The LibraryService Class
Package Name: oracle.ifs.beans

Class Name: LibraryService

ParentClass: java.lang.Object

Purpose: The LibraryService class is used for connecting to the Oracle iFS server
and launching sessions via the LibrarySession object.

Attribute Datatype Description

AccessLevel Long Required.

Acl PublicObject ACL with which this ACE is associated.
Required.

ExtendedPermissions SystemObject
Array

Optional.

Granted Boolean Indicates whether this grantee has this
permission. Default is TRUE. Required.

Grantee DirectoryObject DirectoryUser object for person or group
this permission is for. Required.

PermissionBundles SystemObject
Array

Optional.

SortSequence Long Required.
API Overview 2-15

Tie Classes
Methods: The LibraryService class is a factory class for LibrarySession. The
LibraryService class has a public constructor and one method, the connect()
method. The connect() method either returns a LibrarySession or throws an
exception indicating a connect failure.

Uses: Use the LibraryService class to create an instance of LibrarySession.

The LibrarySession Class
Package Name: oracle.ifs.beans

Class Name: LibrarySession

ParentClass: java.lang.Object

Purpose: Each instance of LibrarySession represents an authenticated user session,
that is, a repository connection.

Methods: The LibrarySession class provides the key methods used to create and
free repository objects.

Uses: Use the LibrarySession class to manipulate all persistent objects.

Tie Classes
Tie classes allow you to alter the out-of-the-box behavior of the Oracle iFS classes by
"tie-ing" into the hierarchy at any level. Each Tie class provides an implementation
class for its corresponding Oracle iFS class. Thus, the implementation class for
Document is TieDocument. Because Tie classes provide the implementation classes
for Oracle iFS classes, the way to alter the behavior of Document and all its
subclasses is to extend TieDocument. Tie classes allow you to insert changed
behavior in a single place, which leads to cleaner code and ease of maintenance.

Tie classes are "empty" classes that hold a place in the Oracle iFS hierarchy so you
can customize the behavior of existing Oracle iFS classes and have the new behavior
become part of the inheritance structure. When you write Java code to change the
functionality of the Document class, your new class extends not Document, but
TieDocument.

To understand Tie classes, you need to know that the Tie classes come below their
corresponding classes in the Oracle iFS class hierarchy. For example, consider the
following hierarchy for TieDocument:

java.lang.Object
+--oracle.ifs.beans.LibraryObject

+--oracle.ifs.beans.TieLibraryObject
2-16 Oracle Internet File System Developer’s Guide

Tie Classes
+--oracle.ifs.beans.PublicObject
+--oracle.ifs.beans.TiePublicObject

+--oracle.ifs.beans.Document
+--oracle.ifs.beans.TieDocument

Suppose that you want to subclass the Document class, creating three new classes:
Reports, Specs, and Memos. Assume that there is common functionality you want
to include in Document itself, so that all three new classes, as well as all future
subclasses of Document, will inherit that behavior. This common functionality
could be that the Description field should always contain the company name
followed by name of the user who is creating or modifying the document. One
approach would be to place the code for the common Description functionality in
each of the new subclasses. However, this would mean the code would be in three
places (and possibly more, in the future), which would add complexity and increase
future maintenance requirements.

For clarity and ease of maintenance, it would be preferable to alter the behavior of
the base Document class, so that all three new subclasses, as well as any future
subclasses, would inherit the behavior. However, because the Document class is
part of the Oracle iFS API, you cannot extend it directly. Tie classes are provided for
this purpose. Tie classes provide the implementation classes for the Oracle iFS
classes, so the way to alter the behavior of Document and all its subclasses is to
extend TieDocument.

Returning to our example, the way to achieve the preferred implementation is to
add the new Description functionality in one place: the TieDocument class. Then, if
Reports, Specs, and Memos all subclass TieDocument, they will automatically
inherit the new behavior. For an example of a class that extends TieDocument, see
"Sample Code: Create an Instance Class Bean", in Chapter 4, "Creating Custom
Classes".

Tie classes are provided for both bean-side and server-side classes, so there is both a
TieDocument and an S_TieDocument class.

Tie classes are only relevant to existing Oracle iFS classes. When you extend your
own custom classes, you have access to your original code, and can extend the base
API Overview 2-17

Server Classes
class. For example, to create a custom StatusReports class that inherits functionality
from your custom class Reports, simply extend Reports.

Server Classes
In the Oracle iFS Java class hierarchy each Oracle iFS object has two representations:
■ The bean-side representation, known by the object name, such as "Document."

The bean-side classes are stored in the oracle.ifs.beans package.
■ The server-side representation, known by the object name preceded with "S_",

such as "S_Document." The server-side classes are stored in the
oracle.ifs.server package.

Most application work is done with the bean-side classes. However, two types of
customization require working with objects in the database and need to use the
server-side classes:
■ Renderers
■ Overrides
Until you work with renderers or overrides, you only need to be concerned with the
bean-side classes. Behind the scenes, however, Oracle iFS uses the S_ classes, such
as S_Document, for processing that must be carried out on the document in the
database. When you encounter S_ classes in the sample code, you know that you
are dealing with the server-side representation of the object.

For more information on using server-side classes for specific types of
customization, see:
■ Chapter 6, "Using Renderers", "Using Server-Side Classes with Renderers".
■ Chapter 9, "Using Overrides", "Attributes and Server-Side Classes".

Note: If you place custom code directly in TieDocuments, be sure
to alter your CLASSPATH so the reference to the customized class
precedes the reference to the repository .jar file.
2-18 Oracle Internet File System Developer’s Guide

Working with Docum
3

Working with Documents

This chapter covers the following topics:

■ How Documents Are Stored in the Repository

■ Connecting to the Repository

■ Creating a New Document

■ Putting a Document in a Folder

■ Working with Attributes

■ Searching for a Document

■ Sample Code: Hello World
ents 3-1

How Documents Are Stored in the Repository
How Documents Are Stored in the Repository
The Internet File System repository provides persistent storage for all of your
documents (files) in database tables. Documents are stored in the repository in two
parts:

■ Document attributes are stored in one database table.

The attributes are stored in their appropriate datatypes as a set of columns in
that database table.

■ Document content is stored in a separate table.

The content table stores the physical byte stream for document content as a
LOB.

Documents and Folders
In Oracle iFS, documents are stored independently from folders. No single database
table contains a folder and its associated documents. Conceptually, picture three
separate tables:

■ A table that stores documents (actually, one table for attributes and one for
content)

■ A table that stores folders

■ A table that stores relationships between documents and folders

Oracle iFS uses the "reference model" rather than the "containership model." The
"reference model" architecture allows multiple folders to include references to the
same document, while only one copy of the document is actually stored. (This
approach is also known as "multiple parents.") In the "containership model," if three
folders contain the same document, there may be three copies of the document.
3-2 Oracle Internet File System Developer’s Guide

Connecting to the Repository
Connecting to the Repository
Before a program can perform any function in Oracle iFS, the current user must
have a working session to provide a connection to the repository. This session
allows the application to create and save documents to the repository. Creating this
session is the first task of every Oracle iFS application.

Connecting to the repository is a two-step process:
1. Create an Instance of LibraryService.
2. Obtain an Instance of LibrarySession.

LibraryService is a factory class for LibrarySession. That is, LibraryService provides
a method you can invoke to create a LibrarySession. The LibraryService.connect()
method returns an instance of the class oracle.ifs.beans.LibrarySession. Each
instance of LibrarySession represents an authenticated user session. The
LibrarySession class provides the method used to create repository objects.

Step 1: Create an Instance of LibraryService
To create an instance of LibraryService, use the LibraryService constructor, which
expects no parameters.

LibraryService ifsService = new LibraryService();

Step 2: Obtain an Instance of LibrarySession
To obtain an instance of LibrarySession, use the LibraryService.connect() method.
The arguments for the connect() method are a Credential object and a
ConnectOptions object, which must be created before invoking connect().

CleartextCredential credentials = new CleartextCredential(username, password);
ConnectOptions connectOpts = new ConnectOptions();
connectOpts.setLocale(Locale.getDefault());
connectOpts.setServiceName(servicename);
connectOpts.setServicePassword(servicepassword);

LibrarySession ifs = ifsService.connect(credentials,connectOpts);
Working with Documents 3-3

Connecting to the Repository
where:

The connect() Method
The connect() method is overloaded to allow Oracle iFS to use other types of
credentials to validate Oracle iFS users. If the arguments provided to the connect()
method are accepted, connect() returns an instance of LibrarySession.

The most common form of the connect() method, shown above, uses the Cleartext
credential manager for user authentication.

Javadoc Reference
For more information about connecting to the repository, see the Oracle iFS Javadoc:
■ oracle.ifs.beans.LibraryService
■ oracle.ifs.beans.LibrarySession
■ oracle.ifs.common.CleartextCredential
■ oracle.ifs.common.ConnectOptions

Parameter Name Datatype Description

credentials CleartextCredential Object containing the user name and password.
- username is the Oracle iFS user name.

- password is the Oracle iFS user password.

connectOpts ConnectOptions Object containing the locale, service name, and
service password.
- Locale is the standard Java Locale object.

- servicename is the name of the Oracle iFS
service to which the user is being connected.
The properties file is located in the package
oracle.ifs.server.properties. The
properties file name must be of the form
Service.properties.

- servicepassword is the database password
for the owner of the Oracle iFS schema.
3-4 Oracle Internet File System Developer’s Guide

Creating a New Document
Creating a New Document
Once you have a valid connection, you can create a new document and insert it into
the repository.

Creating a document is a two-step process:

1. Create a Document Definition Object.
2. Create a New Document.

The method used to create a new repository object is
LibrarySession.createPublicObject. This method expects a single argument, a
definition object defining the object that is being created.

A LibraryObjectDefinition object is created using the LibraryObjectDefinition
constructor. This constructor expects a single argument, which is a valid
LibrarySession object. Instances of LibraryObjectDefinition are transient; they do
not map to repository objects. A LibraryObjectDefinition object specifies:

■ The class of object being created.
■ Initial values for some or all attributes of the new object.

Why Create a Definition First?
In Oracle iFS, you create a Definition object prior to creating any PublicObject.
The Oracle iFS architecture requires that you create the Definition object for reasons
of efficiency and speed. The definition object is a transient, in-memory object. Once
the object has been created in the repository, the definition object is discarded. By
assembling the definition object in its entirety first, before creating the actual
document object, you may save many trips to the repository. By creating the
definition object, you "build" the object in memory first. Then, when the object is
complete, you pass all the attributes in a single database call.

Creating PublicObjects
The PublicObject class is the superclass for all the objects that end users manipulate
directly. These objects include both frequently used objects, such as Document and
Folder objects, and supporting objects, such as Access Control lists. This topic
focuses on creating a Document object by passing a DocumentDefinition to the
createPublicObject() method. However, the same process is used for all
PublicObjects. For example, to create a folder, you would create a Folder Definition
and pass it to the createPublicObject() method.
Working with Documents 3-5

Creating a New Document
Create a Document Definition Object
To create a Document Definition object:

1. Create a new instance of DocumentDefinition, passing in the current session.
2. Specify the object’s attributes.

Sample: Create a Document Definition Object
DocumentDefinition newDocDef = new DocumentDefinition(ifsSession);

newDocDef.setAttribute("NAME", AttributeValue.newAttributeValue
("Hello_World.txt"));

newDocDef.setContent("Hello World");

For more information about setting attributes, see "Setting Attributes".

Create a New Document
To create a new document (or other PublicObject), call the
ifsSession.createPublicObject() method, passing the DocumentDefinition as a
parameter.

Sample: Create a Document Object
Document doc = (Document) ifsSession.createPublicObject(newDocDef);

Note that the return from the createPublicObject() method is cast to the appropriate
object type (in this example, a Document object).

The createPublicObject method() method takes one parameter:

Parameter Name Datatype Description

newDocDef LibraryObjectDefinition Definition of the attributes of the object
that is being created.
3-6 Oracle Internet File System Developer’s Guide

Working with Attributes
Putting a Document in a Folder
By default, new instances of PublicObject and its subclasses, such as Document, are
created unfoldered. If you want users to be able to navigate to an object, the object
must be foldered, so it is important to folder new documents as soon as they have
been created. (Users can use the Find function to find foldered objects only.)

To add an item to a folder, use the Folder.addItem() method, which takes a single
argument: the object to be added to the folder. You also need to specify which folder
or folders the object should be added to. Frequently, an application requires that a
document be placed in a user’s home folder. To do this, you need to access the
current user’s home folder, using the getHomeFolder() method, which is a
three-step process:

1. Use theLibrarySession.getDirectoryUser() method to obtain the DirectoryUser
object for the current user.

2. Once you have obtained the DirectoryUser object, pass it to the
getPrimaryUserProfile() method.

3. Once you have obtained the PrimaryUserProfile object, invoke the
getHomeFolder() method on it.

Sample: Putting a Document in a Folder
DirectoryUser thisUser = ifsSession.getDirectoryUser();
PrimaryUserProfile userProfile = ifsSession.getPrimaryUserProfile(thisUser);
Folder homeFolder = userProfile.getHomeFolder();

homeFolder.addItem(doc);

Working with Attributes
Working with attributes includes three functions:
■ Getting Attributes
■ Setting Attributes
■ Defining Explicit Getters and Setters

Note that while the standard convention is to call methods that access attribute
values "accessor methods" and methods that change attribute values "mutator
methods," the more common terms, "getter" and "setter" methods, are used here.
Working with Documents 3-7

Working with Attributes
Getting Attributes
In Oracle iFS, you can get attribute values in two ways:
■ Using an Explicit Getter Method
■ Using the Generic getAttribute() Method

Using an Explicit Getter Method
Explicit getter methods are often provided by the definition object to simplify
getting attribute values. If the attribute you want to set has an explicit getter
method defined for it, using that method is the easiest and most efficient way to get
the value of an attribute.

In the following example, an explicit getter method is used to get the value of
Dateofbirth.

Date dob = getDateofbirth();

Using the Generic getAttribute() Method
Generically, the LibraryObject.getAttribute() method is used to get an attribute. The
method takes one parameter, the name of the required attribute. This argument
should be supplied using the static variable defined in the instance Bean.

The getAttribute() method returns an instance of the class
oracle.ifs.common.AttributeValue. The AttributeValue class provides a set of
getDataType() methods that return the value of the attribute in the required format.
To use the getDataType() methods, you must pass in a valid LibrarySession.

In the following example, the getString() method is used to get the value of
Fullname from the AttributeValue object returned by getAttribute().

AttributeValue av = getAttribute(FULLNAME_ATTRIBUTE);
String fullName = av.getString(ifsSession);
3-8 Oracle Internet File System Developer’s Guide

Working with Attributes
Setting Attributes
When you create a Definition object, you can specify initial values for some or all
attributes of the new object. In Oracle iFS, you can set attribute values in two ways:
■ Using an Explicit Setter Method
■ Using the Generic setAttribute() Method

Using an explicit setter method is the simplest approach. However, explicit setters
are provided only for tricky attributes. For all other attributes, you must use the
generic approach. In the example of creating a DocumentDefinition object, you saw
both ways in action:
■ Setting the Name attribute required the generic approach, setAttribute().
■ Setting the Content used an explicit setter method, setContent().

Using an Explicit Setter Method
Explicit setters are occasionally provided by the Definition object to simplify setting
attribute values. If the attribute you want to set has a setter defined for it, using that
method is the easiest and most efficient way to set an attribute.

The following sample code demonstrates using an explicit setter method,
setDateofbirth().

Date now = new Date();
def.setDateofbirth(now);

Using the Generic setAttribute() Method
Because specific setter methods are not available for all attributes, there is a generic
setAttribute() method to fall back on.

To set the value of an attribute, use the LibraryObject.setAttribute() method. This
method takes two arguments:
■ The name of the required attribute. This argument should be supplied using the

static variable defined in the instance Bean.
■ An instance of oracle.ifs.common.AttributeValue that contains the new value

for the attribute.
Working with Documents 3-9

Working with Attributes
To create the AttributeValue object, use the static method
AttributeValue.newAttributeValue(). This method is overloaded to allow it to
handle each of the possible Oracle iFS datatypes.

Using setAttribute() is a two-step process:

1. Create an attribute object containing the new value of the attribute using the
AttributeValue.newAttributeValue() method.

The newAttributeValue() method is overloaded to handle each of the possible
Oracle iFS datatypes.

2. Pass the attribute name and the attribute object to the setAttribute() method.

The following sample code demonstrates the two steps:

AttributeValue av = AttributeValue.newAttributeValue("blue");
setAttribute(FAVORITECOLOR_ATTRIBUTE,av);

As a matter of good coding practice, you can supply the attribute name using a
static variable defined in the instance Bean, as demonstrated by FAVORITECOLOR_

ATTRIBUTE in the example above.

Both setAttribute() and newAttributeValue() can throw oracle.ifs.common.
IfsException.
3-10 Oracle Internet File System Developer’s Guide

Working with Attributes
Defining Explicit Getters and Setters
It is good programming practice to always provide getter and setter methods for
each attribute defined by a custom type. These methods are simply wrappers for the
generic getAttribute() and setAttribute() method. When defining explicit getter and
setter methods in an instance Bean, access the current LibrarySession using the
inherited method PublicObject.getSession().

Sample Code: Defining an Explicit Getter Method
public String getFullname()
throws IfsException

{
AttributeValue av = getAttribute(FULLNAME_ATTRIBUTE);
return av.getString(getSession());

}

public Date getDateofbirth()
throws IfsException

{
AttributeValue av = getAttribute(DATEOFBIRTH_ATTRIBUTE);
return (Date) av.getDate(getSession());

}

Sample Code: Defining an Explicit Setter Method
public void setFullname(String newValue)
throws IfsException

{
AttributeValue av = AttributeValue.newAttributeValue(newValue);
setAttribute(FULLNAME_ATTRIBUTE,av);

}

public void setDateofbirth(Date newValue)
throws IfsException

{
AttributeValue av = AttributeValue.newAttributeValue(newValue);
setAttribute(DATEOFBIRTH_ATTRIBUTE,av);

}

Working with Documents 3-11

Searching for a Document
Searching for a Document
To perform a simple attribute-based search of the repository, use an instance of the
class oracle.ifs.bean.Selector. The Selector class creates and executes simple searches.
That is, Selectors search only one class (no joins are supported).

To perform a search:

1. Specify the search criteria.

The search selection takes the form of a SQL WHERE clause (without the word
"WHERE"). For example, to search based on the Name attribute, use the
following criteria:

NAME_ATTRIBUTE + "= ’" + name + "’"

To search for Owner or Creator, you need the DirectoryUserID:

OWNER_ATTRIBUTE + "=" + directoryUser.getId();

2. Construct a Selector object, passing in the class to be searched and the search
criteria.

3. Call the getItems() method to run the query.

Note that instances of this class do not persist, but must be created for each search.

A Selector object is created using the constructor defined in the Selector class. This
constructor expects three arguments:

The search is performed the first time a method is invoked that accesses the result
set.

Name Datatype Description

session LibrarySession Current instance of LibrarySession.

name String Name of the class containing the
attributes being searched on.

search String Search criteria.
3-12 Oracle Internet File System Developer’s Guide

Searching for a Document
Specific Search Methods
To specify additional information about the search, use the following methods:

Sample Code: Attribute-based Search

public static void findMatchingFiles(LibrarySession ifsSession, String name)
throws IfsException

{
String search = PublicObject.NAME_ATTRIBUTE

+ "= ’" + name +"’";
Selector mySelector = new Selector (ifsSession, Document.CLASS_NAME, search);
LibraryObject[] objs = mySelector.getItems();
int count = (objs == null) ? 0 :objs.length;
if (count == 0)
{
System.out.println("Search did not find any documents.");

}
else
{
for (int i = 0; i < count; i++)
{

Document myDocument = (Document)objs[i];
String path = myDoc.getAnyFolderPath();
System.out.println("Found a document at: " + path);

}
}

}

Method Description

Selector.setRecursiveSearch() Use to specify that the search should include
objects of this class and also objects of its
subclasses.

Selector.setSearchSelection() Use to change the search criteria.
This method expects to be passed a single
argument that defines the new search
criterion.

Selector.setSortSpecification() Use to control the ordering of search results.
Working with Documents 3-13

Sample Code: Hello World
Sample Code: Hello World
The following code example demonstrates:

■ Connecting to the repository.
■ Constructing a new DocumentDefinition.
■ Creating a new Document.
■ Obtaining the current user’s home folder.
■ Adding the new Document to the home folder.
■ Disconnecting from the repository.

public static void HelloWorld() throws IfsException
{
//Connect to the repository.
LibraryService ifsService = new LibraryService();

CleartextCredential me = new CleartextCredential(username, password);
ConnectOptions connectOpts = new ConnectOptions();
connectOpts.setServiceName(servicename);
connectOpts.setServicePassword(servicepassword);

LibrarySession ifsSession = ifsService.connect(me,connectOpts);

//Create a new DocumentDefinition and a new Document.
DocumentDefinition newDocDef = new DocumentDefinition(ifsSession);
newDocDef.setAttribute("NAME", AttributeValue.newAttributeValue

("Hello_World.txt"));
newDocDef.setContent("Hello World");
Document doc = (Document) ifsSession.createPublicObject(newDocDef);

//Obtain the user’s home folder and add the new Document to it.
DirectoryUser thisUser = ifsSession.getDirectoryUser();

PrimaryUserProfile userProfile = ifsSession.getPrimaryUserProfile(thisUser);
Folder homeFolder = userProfile.getHomeFolder();

homeFolder.addItem(doc);

//Disconnect from the repository.
ifsSession.disconnect();

}

3-14 Oracle Internet File System Developer’s Guide

Creating Custom Cl
4

Creating Custom Classes

This chapter covers the following topics:

■ Overview of Creating Custom Classes

■ Creating a Type Definition File

■ Using Compound Attributes

■ Load a Custom Type Definition

■ Creating an Instance Class Bean

■ Creating Document Instances
asses 4-1

Overview of Creating Custom Classes
Overview of Creating Custom Classes
The most frequent customization within Oracle iFS involves adding custom
attributes to the existing Document class. If an application requires only such basic
customization, you can use XML to define a custom type. Creating a type definition
file in XML corresponds roughly to subclassing the Document class in Java. Because
creating "custom classes" is a familiar concept, we have used that term as well as the
less familiar "custom types." (Note this slight distinction: in XML, the Superclass
reference is to "Document", while in Java, the instance Bean extends "TieDocument."
For more information, see "Tie Classes" in Chapter 2, "API Overview".)

Creating a custom class is the most basic Oracle iFS customization. Other ways to
customize Oracle iFS include writing custom parsers, renderers, JSPs, and agents.

In Oracle iFS, custom classes (custom types) work as follows:
1. The developer creates a custom class and loads it into Oracle iFS.

The custom class must be loaded before any document instances can be created.
2. Users create and load instances of the newly defined class into Oracle iFS.
3. Oracle iFS automatically parses the instances of the custom class and stores

their elements as attributes.
Once instances are stored in the repository, end users can execute queries on the
attributes.

Creating a Type Definition File
If you have a group of documents with custom attributes that you want Oracle iFS
to recognize and manipulate, you need to be able to describe these documents to
Oracle iFS. To describe a custom document to Oracle iFS, use XML to create a type
definition file.

How Do Type Definitions Work?
A type definition is based on a simple inheritance model in which a new type (class)
inherits the attributes and behavior associated with its superclass. The Oracle iFS
class hierarchy is based on a single inheritance tree:
LibraryObject //The root class for all of iFS.

PublicObject //The root class for all user-related classes.
Document //The subclass of PublicObject that includes content.
4-2 Oracle Internet File System Developer’s Guide

Creating a Type Definition File
Because the Document class is used for all objects that include content, Document is
the most frequently used superclass. For a complete listing of the Oracle iFS API
class hierarchy, see the Oracle Internet File System Setup and Administration Guide.

You can think of a type definition as consisting of two logical parts:
■ Description: The first section describes the new content type, specifying its

name and superclass.

■ Attributes: The second section lists the attributes of the new content type,
including one entry for each attribute defined. Each entry specifies the attribute
label and data type.

The Type Definition File: Description Section
The Description section of the type definition includes six tags:
■ The <ClassObject> Tag
■ The <Name> Tag
■ The <Description> Tag
■ The <Superclass> Tag
■ The <BeanClassPath> Tag
■ The <ServerClassPath> Tag

This code fragment consists of a Description section, followed by information about
each tag:

<ClassObject>
<Name>InsuranceForm</Name>
<Description>Claim Form</Description>
<Superclass Reftype ="name">Document</Superclass>
.
.
.
</ClassObject>

The <ClassObject> Tag
The first tag in a type definition file must be <ClassObject>. The <ClassObject> and
</ClassObject> tags encapsulate the type definition and specify to Oracle iFS that
you are creating a new repository object of the ClassObject class. The ClassObject
class contains a registration entry for each class in the Oracle iFS API. For example,
there are ClassObject objects defined for the Document class and the Folder class.
The ClassObject is used internally to manage instances of the class. Thus, for each
custom type definition, a new ClassObject entry is created.
Creating Custom Classes 4-3

Creating a Type Definition File
The <Name> Tag
When you insert the type definition into the repository, Oracle iFS uses the data you
provide to define a table in the repository to store information about documents of
the custom type. The value of the <Name> tag is used to construct the table name,
so it must not include spaces.

The <Description> Tag
Optional. The <Description> tag provides a multi-word description of the custom
type.

The <Superclass> Tag
A type definition file creates a new class in the repository by subclassing an existing
class, usually the Document class. Use the <Superclass> tag to specify the name of
the superclass.

The <Superclass> tag requires a RefType parameter to specify that you are going to
provide the name of the superclass, rather than referencing it in any other way, such
as by using an object ID. Here is an example of the <Superclass> tag in use:

<Superclass RefType=’name’>Document</Superclass>

The <BeanClassPath> Tag
Optional. The <BeanClassPath> tag specifies the fully qualified path to the instance
class Bean. Required only if a custom instance Bean is written.

The <ServerClassPath> Tag
Optional. The <ServerClassPath> tag specifies the fully qualified path to the server
class Bean, which by convention is an S_ class. Required only if a custom server-side
override is written.
4-4 Oracle Internet File System Developer’s Guide

Creating a Type Definition File
The Type Definition File: Attributes Section
The second section of the type definition is the Attributes section, enclosed by a pair
of <Attributes> </Attributes> tags. The Attributes section consists of custom
attribute definition entries. The Attributes section contains one element for each
attribute that is unique to this type. Each attribute definition entry is enclosed by a
pair of <Attribute> </Attribute> tags, and may include three tags:

■ The Attribute <Name> Tag
■ The <DataType> Tag
■ The <DataLength> Tag
■ The <ClassDomain> Tag

Here is an attribute definition entry for the ClaimNumber attribute:

<Attribute>
<Name>ClaimNumber</Name>
<DataType>Long</DataType>

</Attribute>

The Attribute <Name> Tag
The attribute <Name> tag specifies the name of the attribute being defined. This is
the name of the variable that will be used in the getter and setter methods in the
corresponding instance class Bean. Internally, Oracle iFS converts all attribute
names to uppercase, so you can use any combination of case that you choose, but
you cannot have two names that differentiate only by case. Thus, FullName,
FULLNAME, fullname, and fullName are all legal, but having two attributes
called FullName and FULLNAME is not.

The <DataType> Tag
The <DataType> tag specifies the type of data stored in the attribute. For example,
"String" and "integer" are common datatypes.

The <DataLength> Tag
Optional, used for String values only. The <DataLength> tag specifies the maximum
length in bytes for String attributes. Values greater than this number will result in
an error message.
Creating Custom Classes 4-5

Creating a Type Definition File
The <ClassDomain> Tag
The <ClassDomain> tag is used to restrict the types of objects that can be stored in
an attribute whose datatype is PublicObject. For more information, see "Sample
Code: ClassDomain Definition".

Sample Code: Create a Type Definition
The completed type definition looks like this:

<?xml version = '1.0' standalone = 'yes'?>
<!-- CreateInsuranceForm.xml -->
<ClassObject>

<Name>InsuranceForm</Name>
<Description>Claim Form</Description>
<Superclass Reftype ="name">Document</Superclass>
<Attributes>

<Attribute>
<Name>ClaimNumber</Name>
<DataType>Long</DataType>

</Attribute>

<Attribute>
<Name>ClaimType</Name>
<DataType>String</DataType>
<DataLength>50</DataLength>

</Attribute>

<Attribute>
<Name>InsuranceFormStreetAddress</NAME>
<DataType>PublicObject</DataType>
<ClassDomain RefType="Name">InsuranceFormStreetAddressDomain
</ClassDomain>

</Attributes>
</ClassObject>

In this example, the attribute, InsuranceFormStreetAddress, is an embedded
attribute defined as datatype PublicObject and restricted to containing objects of the
class InsuranceFormStreetAddressDomain.
4-6 Oracle Internet File System Developer’s Guide

Using Compound Attributes
Using Compound Attributes
An attribute in an XML file can be:

■ A simple value, such as a person’s name.
■ A compound value, such as an address, with its elements of Street, City, and

State, which is derived from another object and embedded in the parent object
as a component.

To handle simple values, use the database datatypes, such as String, Integer, Long,
Date.

To handle compound values, follow these steps:

1. Create a separate type definition for each compound attribute. For example,
you could create an Address object that defined attributes for Street, City, State,
Zip, and Country. Typically, you would subclass the ApplicationObject class,
which inherits from PublicObject. See "Sample Code: Embedded Attribute Type
Definition".

2. Define a ClassDomain object based on the type that was just created. See
"Sample Code: ClassDomain Definition".

3. In the parent type definition, define the compound attribute as datatype
PublicObject and use the ClassDomain object to restrict the kind of
PublicObjects this attribute can contain to instances of the
InsuranceFormStreetAddress class. See "Sample Code: Create a Type
Definition".

Sample Code: Embedded Attribute Type Definition
In this example, a new class object, InsuranceFormStreetAddress, defines the
elements of a compound attribute that includes Street, City, State, Zip, and Country.

<?xml version = '1.0' standalone = 'yes'?>
<!-- InsuranceFormStreetAddress.xml -->
<ClassObject>

<Name>InsuranceFormStreetAddress</Name>
<Description>Insurance Form Address Definition</Description>
<Superclass Reftype ="name">ApplicationObject</Superclass>

<Attributes>
<Attribute>

<Name>AddressType</Name>
<DataType>String</DataType>
<DataLength>64</DataLength>
Creating Custom Classes 4-7

Using Compound Attributes
</Attribute>

<Attribute>
<Name>StreetLine1</Name>
<DataType>String</DataType>
<DataLength>64</DataLength>

</Attribute>

<Attribute>
<Name>StreetLine2</Name>
<DataType>String</DataType>
<DataLength>64</DataLength>

</Attribute>

<Attribute>
<Name>StreetLine3</Name>
<DataType>String</DataType>
<DataLength>64</DataLength>

</Attribute>

<Attribute>
<Name>City</Name>
<DataType>String</DataType>
<DataLength>64</DataLength>

</Attribute>

<Attribute>
<Name>State</Name>
<DataType>String</DataType>
<DataLength>32</DataLength>

</Attribute>

<Attribute>
<Name>Zip</Name>
<DataType>String</DataType>
<DataLength>16</DataLength>

</Attribute>

<Attribute>
<Name>Country</Name>
<DataType>String</DataType>
<DataLength>32</DataLength>

</Attribute>

</Attributes>
4-8 Oracle Internet File System Developer’s Guide

Creating an Instance Class Bean
</ClassObject>

Sample Code: ClassDomain Definition
This class domain restricts entries to be the ClassObject defined in
InsuranceFormStreetAddress.xml.

<?xml version="1.0" standalone="yes"?>
<!--InsuranceFormStreetAddressDomain.xml-->
<ClassDomain>
<Name>InsuranceFormStreetAddressDomain</Name>
<DomainType>1</DomainType>
<Classes>
<ArrayElement reftype="name">InsuranceFormStreetAddress</ArrayElement>

</Classes>
</ClassDomain>

Load a Custom Type Definition
To load a custom document type, log in as an administrator and upload the type
definition file into Oracle iFS. You can load a type definition file to any appropriate
folder in Oracle iFS; no special location is required.

Creating an Instance Class Bean
Once you’ve created a custom type definition, (although not required) that you
create a corresponding instance class Bean to implement custom behavior and
convenience methods for getting and setting custom attributes.

The instance class Bean is recommended for coding convenience, as it provides the
expected getter and setter methods for the custom attributes. However, it is not
required unless you need to provide unique functionality for this type.

The instance class Bean should include:
■ A standard constructor, consisting of a call to "super" (the superclass,

Document).

■ Getter and setter methods for attributes defined in the type definition file.

■ Any methods needed to provide functionality unique to the type.

Note the following connections between the type definition file and the instance
class Bean:
Creating Custom Classes 4-9

Creating an Instance Class Bean
■ The instance class Bean extends the implementation class of the superclass
specified in the type definition file. Tie classes provide implementation classes
for all Oracle iFS classes. Thus, because the CreateInsuranceForm.xml type
definition file defines Document as the superclass, the
CreateInsuranceForm.java instance class Bean extends TieDocument, which is
the implementation class for Document.

■ For more information about using Tie classes, see "Tie Classes" in Chapter 2,
"API Overview".

■ The name and package of the instance class Bean must match the value of the
<BeanClassPath> attribute in the type definition file, if one is present.

Sample Code: Create an Instance Class Bean
/*---CreateInsuranceForm.java---*/
package ifsdevkit.sampleapps.insurance;

import oracle.ifs.beans.ClassObject;
import oracle.ifs.beans.DirectoryUser;
import oracle.ifs.beans.FolderPathResolver;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.beans.PublicObject;
import oracle.ifs.common.AttributeValue;
import oracle.ifs.common.IfsException;

public class InsuranceBean
{
/**
* The name for the claim.
*/
protected String m_name;

/**
* The type of the claim.
*/
protected String m_claimType;

/**
* The claim number.
*/
protected Long m_claimNumber;

/**
* Constructor
4-10 Oracle Internet File System Developer’s Guide

Creating an Instance Class Bean
*/
public InsuranceBean()
{
}

/**
* Initialize the bean and populate the necessary fields.
*
* @param session The <code>LibrarySession</code> object.
*
* @param resolver The <code>FolderPathResolver</code> object.
*
* @param path The path to the insurance object.
*
* @exception IfsException Thrown if operation failed.
*/
public void init(LibrarySession session, FolderPathResolver resolver, String

path)
throws IfsException
{
try
{
PublicObject insuranceObj = resolver.findPublicObjectByPath(path);
ClassObject co = insuranceObj.getClassObject();

m_name = insuranceObj.getName();
AttributeValue av = insuranceObj.getAttribute("CLAIMTYPE");
if (!av.isNullValue())
{
m_claimType = av.getString(session);

}
av = insuranceObj.getAttribute("CLAIMNUMBER");
if (!av.isNullValue())
{
m_claimNumber = new Long(av.getLong(session));

}
}
catch (IfsException e)
{
e.printStackTrace();
throw e;

}
}

/**
Creating Custom Classes 4-11

Creating an Instance Class Bean
* Return name for the claim.
*
* @return The claim name.
*/
public String getName()
{
return m_name;

}

/**
* Return the claim type.
*
* @return The claim type in a <code>String</code>.
*/
public String getClaimType()
{
return m_claimType;

}

/**
* Return the claim number.
*
* @return The claim number as a <code>Long</code>.
*/
public Long getClaimNumber()
{
return m_claimNumber;

}
}

Deploy an Instance Class Bean
For the protocol servers and other standard Oracle iFS components to access your
custom instance class Bean, the folder tree containing the class for the Bean must
reside in the Oracle iFS CLASSPATH. Oracle iFS includes a special directory for this
purpose. This directory, called custom_classes, is already in the CLASSPATH
environment variable that the Oracle iFS server software uses.

To deploy an instance class Bean:

1. Compile the instance class Bean, creating a .class file.
4-12 Oracle Internet File System Developer’s Guide

Creating Document Instances
2. Place the folder tree that contains the resulting .class file in the directory
$ORACLE_HOME/ifs/custom_classes on the server where Oracle iFS is
installed.

For example, if the compiled Bean, InsuranceForm.class, is stored in the
package ifs.examples, the entire folder tree, from /ifs on, must be stored in the
custom_classes directory.

Creating Document Instances
Once you have created the custom type file to define the custom class for the
insurance form document and stored it in Oracle iFS, you can create document
instance files to instantiate the class. These document instances can be either in a
custom format or in XML.
When you upload document instance files into Oracle iFS, Oracle iFS parses the files
and creates the appropriate objects, which are stored in the Oracle iFS repository.
The specific parser called varies according to the way the files are loaded, as shown
in the following table. For more information about using and registering parsers,
see Chapter 5, "Using Parsers".

Note: The compiled Java Bean must be copied to the native file
system of the server, not to the Oracle iFS repository.

Document Instance
Format Loaded By Parsed By

XML Any Oracle iFS protocol or user
interface

Automatically parsed by the
SimpleXmlParser.

XML Application program SimpleXmlParser must be explicitly
called by the application.

Custom Any means: protocol, user
interface, or application program

Custom parser must be written and
registered for use by protocols and
user interfaces, or explicitly called by
the application.
Creating Custom Classes 4-13

Creating Document Instances
Sample Code: Create Document Instances
These two files, claim1.xml and claim2.xml, are the document files that create
two specific instances of the InsuranceForm class.

<?xml version = '1.0’ standalone = 'yes'?>
<!-- claim1.xml -->
<InsuranceForm>

<Name>Juana Angeles</Name>
<ClaimNumber>35093</ClaimNumber>
<ClaimType>Car Accident</ClaimType>
<FolderPath>/public/examples/insuranceApp/claims</FolderPath>

</InsuranceForm>

<?xml version = '1.0’ standalone = 'yes'?>
<!-- claim2.xml -->
<InsuranceForm>

<Name>Kevin Chu</Name>
<ClaimNumber>41111</ClaimNumber>
<ClaimType>Car Accident</ClaimType>
<FolderPath>/public/examples/insuranceApp/claims</FolderPath>

</InsuranceForm>

Upload Document Instance Files
Use one of these options to upload document instance files:
■ Use a standalone FTP product.
■ In the Oracle iFS Web interface, use either:

■ Upload via Drag and Drop or
■ Upload via Browse with Parse on Upload selected.

Note: Once Oracle iFS creates objects from the document instance
files, the document instance files themselves are not stored in the
Oracle iFS repository. If you think you may need further access to
the document instance files (for example, to modify them to create
new document instances), you may want to keep copies of the
instance files on your local drive.
4-14 Oracle Internet File System Developer’s Guide

Creating Document Instances
Limitations on XML Type Definition Files
If you are creating XML type definition files, you should be aware of the following
limitations:

■ Although you can use XML to create custom type files, you cannot use XML
to delete or modify custom type files.

■ Use Oracle iFS Manager to delete or modify custom type files.

For information about using Oracle iFS Manager, see the Internet File System Setup
and Administration Guide.
Creating Custom Classes 4-15

Creating Document Instances
4-16 Oracle Internet File System Developer’s Guide

Using Pa
5

Using Parsers

This chapter covers the following topics:

■ What Is a Parser?

■ Using the Standard Parsers

■ Using the ClassSelectionParser

■ How Does XML Parsing Work?

■ Using a Custom Parser

■ Writing a Parser Application

■ Overview of a Custom Parser

■ Sample Code: A Custom Parser
rsers 5-1

What Is a Parser?
What Is a Parser?
A parser is a Java class that extracts attributes from a local file and stores the
information in the repository. More specifically, in the case of a document, a parser:
■ Takes in an InputStream or Reader object.
■ Processes the character input, extracting attributes as it goes.
■ Produces one or more iFS objects, such as a Document or a Folder.

Standard Oracle iFS Parsers vs. Custom Parsers
Whether your application requires a custom parser depends upon the format of the
documents produced by the application:

Whether or not you must explicitly invoke a parser depends on how the documents
produced by your application are entered into the Oracle Internet File System:
■ If the documents are uploaded using the protocol servers, the Oracle iFS XML

parser will be invoked automatically by the protocol servers.

■ If the documents are uploaded by an application, you must explicitly invoke a
parser, either the Oracle iFS XML parser or a custom parser. Otherwise, the
documents will be read in as raw data, rather than parsed into objects.

If your application defines a custom class that produces documents in a special
format that is not XML, you will need to create a custom parser using the classes
and methods provided as part of the Oracle iFS Java API. This custom parser will
create Oracle iFS repository objects of your custom class. For example, assume you
have defined a Memo class that subclasses the Document class. The Memo class
includes the following custom attributes: To, From, Date, and Text (the content of
the memo). To store Memo objects in Oracle iFS requires a parser. If the Memo
documents are in XML, you can use the Oracle iFS SimpleXmlParser to extract the

Note: Significant improvements have been made to the XML
parsing capabilities of Oracle iFS for version 1.1. For more
information, see What’s New in Oracle iFS 1.1.

Document Format
Produced Parser Options

Standard XML documents Use the Oracle iFS standard XML parser out-of-the-box.

Custom format Write a custom parser.
5-2 Oracle Internet File System Developer’s Guide

Using the Standard Parsers
attributes. If the Memo documents are stored in a special format, you will need to
create a custom parser and specify how it is to extract the attributes.

Using the Standard Parsers
Out-of-the-box, Oracle iFS includes several standard parsers that will meet most
needs of developers creating new applications in Oracle iFS.

The following table lists the Oracle iFS standard parser classes.

Parsing Options
To understand the parsing options provided by Oracle iFS, consider XML files in 3
categories:

XML files meant to configure Oracle iFS

XML files to be parsed

XML files to be stored without parsing

Using the SimpleXmlParser
If your customization requirements are minimal, you can define a custom class
using XML to add custom attributes. Once you create the type definition file,
including any custom attributes, the SimpleXmlParser automatically recognizes the
custom attributes and parses them correctly.

When custom XML documents are added to Oracle iFS using any of the protocols or
user interfaces, those documents are automatically parsed by the SimpleXmlParser,
without any further custom coding.

Specifically, the SimpleXmlParser works as described above for FTP, SMB, the
Windows interface, and the Oracle iFS Web interface using Upload via Drag

Class Description

SimpleXmlParser Creates an object in the Oracle iFS repository from an XML
document body. Used as the default parser for all XML
documents stored in Oracle iFS. SimpleXmlParser extends
XmlParser.

XmlParser A base class for custom XML parser development.

ClassSelectionParser Adds custom attributes to all files of a specified format.
Performs no actual parsing.
Using Parsers 5-3

Using the ClassSelectionParser
and Drop. If you prefer to use the Oracle iFS Web interface Upload via Browse
facility, you need to also click the checkbox for Parse File on Upload.

If your XML documents are added to Oracle iFS by an application, the application
must explicitly invoke the SimpleXmlParser.

The ClassSelectionParser
The ClassSelectionParser is unique in that it does not perform any actual parsing.
Rather, the ClassSelectionParser allows you to add one or more custom attributes to
files with a specific file extension, such as all .doc files, before the files are stored in
the repository. The ClassSelectionParser provides the mechanism for mapping a
class to a specific file format. For more information, see "Using the
ClassSelectionParser".

Using the ClassSelectionParser
Implementing a ClassSelectionParser is a three-step process:

1. Create a Class Definition
2. Register the Extension with the ClassSelectionParser
3. Register the Class

Create a Class Definition
The first step in implementing a ClassSelectionParser is to create the custom class
definition. This example defines a custom class for presentation slides, and
describes one additional attribute, "NumberOfSlides," to be added to all files with
the file extension .ppt.

<?xml version = '1.0' standalone = 'yes'?>
<!--Presentation.xml-->
<ClassObject>
<Name>Presentation</Name>
<Superclass RefType='Name'>Document</Superclass>
<Description>Custom Class for Presentations</Description>
<Attributes>
<Attribute>
<Name>NumberOfSlides</Name>
<DataType>INTEGER</DataType>

</Attribute>
</Attributes>

</ClassObject>
5-4 Oracle Internet File System Developer’s Guide

Using the ClassSelectionParser
Register the Extension with the ClassSelectionParser
Once the custom class has been created, associate the file extension (ppt) with the
parser (ClassSelectionParser) by the usual registration process. You can
register the parser using Oracle iFS Manager or XML.
<?xml version = '1.0' standalone = 'yes'?>
<!--RegisterPPTParser.xml-->
<PropertyBundle>
<Update Reftype='ValueDefault'>ParserLookupByFileExtension</Update>
<Properties>
<Property Action = 'add'>
<Name>ppt</Name>
<Value Datatype='String'>

oracle.ifs.beans.parsers.ClassSelectionParser
</Value>

</Property>
</Properties>

</PropertyBundle>

Register the Class
Once the parser has been registered, you must register the custom class by adding
an entry to the IFS.PARSER.ObjectTypeLookupByFileExtension PropertyBundle.
Just as registering a parser requires adding an entry to a PropertyBundle, so
registering a class also requires adding an entry to a PropertyBundle. In this case,
the registration process associates the file extension (.ppt) with the custom class
(Presentation). You only need to specify the actual class name, not the fully
qualified path name.

Registering the class completes the process necessary to invoke the
ClassSelectionParser. If this step is omitted, the class associated with the
ClassSelectionParser defaults to Document; no parsing will occur.
<?xml version = '1.0' standalone = 'yes'?>
<!--RegisterPPTObjectType.xml-->
<PropertyBundle>
<Update Reftype='ValueDefault'>IFS.PARSER.ObjectTypeLookupByFileExtension

</Update>
<Properties>
<Property Action = 'Add'>
<Name>ppt</Name>
<Value Datatype='String'>Presentation</Value>

</Property>
</Properties>

</PropertyBundle>
Using Parsers 5-5

How Does XML Parsing Work?
How Does XML Parsing Work?
When you place an XML representation of a document in Oracle iFS, the
SimpleXmlParser is called to create the document object. The following table
provides an overview of how parsing an XML document works.

To illustrate this sequence, consider the following example.

1. An end user drags a document instance, such as claim3.xml, into an Oracle
iFS folder, /ifs/system/claims.

2. SMB performs a parser lookup based on the file extension, .xml. Because this is
an XML file, the parser lookup finds a match and invokes the SimpleXmlParser.

3. Because the claim custom class definition file was previously stored in Oracle
iFS, and because the XML file’s Root Element has the same name as the name of
the claim custom type, the SimpleXmlParser recognizes claim2.xml as an
instance of claim.xml. The SimpleXmlParser parses claim2.xml, creating an
object called claim2.

Step Who Does What Result

1. User Loads a local file using any iFS
interface or supported
protocol.

MyDocument.xml is loaded into
iFS.

2. Interface or
Protocol

Performs parser lookup based
on the file extension.

If there is no corresponding
parser, the document is simply
stored "as is," with the content and
attributes from Step 1.

Or, if there is a parser defined for
the file extension, that parser is
invoked.

3. SimpleXmlParser Parses the XML file. Creates an object of the type
defined in the XML file’s
<ClassName> tag:
- A new class, if the value is
ClassObject.

- An instance of an Oracle iFS
standard

class, such as Document.
- An instance of a custom class.
5-6 Oracle Internet File System Developer’s Guide

Overview of a Parser Application
Using a Custom Parser
If you want to parse non-XML documents, such as .doc or .xls documents, you
must write a custom parser to create database objects from these documents. To
create a custom parser, you can either subclass an existing Oracle iFS parser or
create a custom class from scratch, implementing the
oracle.ifs.beans.parsers.Parser interface.

The Parser class creates one or more objects. In most cases, the Parser class is used
to create the following objects:
■ Documents
■ Folders
■ A combination of documents and folders

A parser determines which type of object to create based on the InputStream or
Reader object passed to it. If the InputStream or Reader describes more than one
type of object, the parser can either:
■ Create each object as soon as it is complete.
■ Create all objects upon reaching the end of the stream.

Overview of a Parser Application
A parser application includes four components:
■ The application that calls the parser (the "parser application").
■ The parser itself.
■ The ParserCallback (optional).
■ The mechanism for registering a parser, the ParserLookupByFileExtension

PropertyBundle.
Using Parsers 5-7

Writing a Parser Application
The following table describes each component.

Writing a Parser Application
Writing a parser application include the following stages:

1. Write the Parser Class
2. Deploy the Parser
3. Invoke the Parser (in the parser application)
4. Write a ParserCallback (optional)

For a short parser example, see "Sample Code: A Custom Parser", in this chapter.

For more information about parsers, see the following classes in the Oracle iFS
Javadoc:
■ oracle.ifs.beans.parsers.SimpleXmlParser
■ oracle.ifs.beans.parsers.XmlParser
■ oracle.ifs.beans.parsers.SimpleTextParser

Write the Parser Class
The purpose of a parser is to identify the properties in a file, and use the properties
to create a database object.

When creating a custom parser, you can choose from two approaches:
■ If one of the existing Oracle iFS parsers partially meets the needs of your

application, you can subclass an existing parser. (SimpleXmlParser extends

Component Description/Sample

Application The application creates an instance of the parser required, then calls
the parser, specifying the document representation (required), the
name of the ParserCallback object (optional), and the Options object
(optional).

Parser The parser executes whatever custom code is needed to create the
parsed object, then stores the parsed object in the repository.

ParserCallback The application may optionally specify a ParserCallback object. The
ParserCallback object’s preOperation() or postOperation() methods
specify additional processing that is executed before, after, or both
before and after the parsing operation takes place.

ParserLookupBy
FileExtension
PropertyBundle

Oracle iFS looks up the name of the parser for this document class in
the ParserLookupByFileExtension PropertyBundle.
5-8 Oracle Internet File System Developer’s Guide

Writing a Parser Application
XmlParser, which implements the oracle.ifs.beans.parsers.Parser
interface.)

■ If you cannot use an existing Oracle iFS parser as a starting point, you must
create a custom class from scratch, directly implementing the interface
oracle.ifs.beans.parsers.Parser.

Whichever approach you choose, writing a custom parser means implementing the
Parser interface, either directly or indirectly. The Parser interface includes one
overloaded method, parse(), which accepts two types of input:
■ An InputStream object
■ A Reader object

Once the parse() method has been called, the balance of the code of the parser itself
examines each line and places its content into the appropriate attribute of the object
the parser is creating. The syntax and arguments for parse() are described below.

To write a custom parser, you must write two methods:
■ A constructor
■ A parse() method

Write a Constructor
Every parser must implement the standard constructor for a parser. The standard
constructor takes one parameter, as shown in the following table.

Sample Code: A Constructor
public SimplestParser(LibrarySession lib) throws IfsException

Parameter Datatype Description

session LibrarySession The LibrarySession of the current user.
Using Parsers 5-9

Overview of a Custom Parser
Write a parse() Method
The following table describes the parameters of the parse() method.

For sample code for the parse() method, see "Sample Code: A Custom Parser" in this
chapter.

Overview of a Custom Parser
For a custom parser, see "Sample Code: A Custom Parser". This SimplestParser
extracts the text between the <TITLE> tags of an HTML document and stores that
information in a custom field. This requires that a subclass of Document, named
CUSTOM with the the attribute TITLE, be registered on the server with the file
extension .cus. Customizing the file extension is for illustration purposes, only;
you could register the file extension as .htm to use a similar parser for real HTML
documents.
This is a simplified example and does not take into consideration versioned
documents, nor does it address issues concerning local character sets.

Sample Code: A Custom Parser
package simparser;

// These classes provide the building blocks for an iFS document.

import oracle.ifs.beans.Attribute;
import oracle.ifs.beans.Document;

Parameter Datatype Description

stream InputStream An InputStream for the parser to read. Use an
InputStream for data that is not character-based, such as
audio and video data.

reader Reader Alternatively, a Reader for the parser to read. A Reader
should be used for character-based data.

callback ParserCallback Optional parameter. May be null. If specified, the
ParserCallback object includes methods that specify
processing to be implemented before parsing, after
parsing, or both.

options Hashtable Optional parameter. May be null. If specified, the
Options parameter further controls the behavior of the
parser through a set of optional name/value pairs.
Commonly used to specify character encoding.
5-10 Oracle Internet File System Developer’s Guide

Sample Code: A Custom Parser
import oracle.ifs.beans.DocumentDefinition;
import oracle.ifs.beans.Format;
import oracle.ifs.beans.LibraryObject;
import oracle.ifs.common.Collection;
import oracle.ifs.common.AttributeValue;

// These classes are used to instantiate a folder object to store the document.

import oracle.ifs.beans.Folder;
import oracle.ifs.beans.FolderPathResolver;

// These classes are used to obtain information about the user at runtime.

import oracle.ifs.beans.DirectoryUser;
import oracle.ifs.beans.PrimaryUserProfile;
import oracle.ifs.beans.LibrarySession;

// These classes are the base classes for creating a parser.

import oracle.ifs.beans.parsers.Parser;
import oracle.ifs.beans.parsers.ParserCallback;
import java.util.Hashtable;

// These are standard Java objects used to process the document content.

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.io.BufferedReader;

// This class is used to report exceptions to iFS methods.

import oracle.ifs.common.IfsException;

public class SimplestParser implements Parser
{
private String title;
private LibrarySession m_librarySession;
private Document newDoc;
private Folder currentFolder;
private Folder homeFolder;

// The constructor argument captures the current library session, which is
// used to pass information about the user and environment at runtime.
Using Parsers 5-11

Sample Code: A Custom Parser
public SimplestParser(LibrarySession lib) throws IfsException
{
m_librarySession = lib;

}

/* This parser is called by the host protocol at runtime, passing a Reader
* object with the contents of the document being parsed. The callback is
* an optional argument that enables the parser to respond to the calling
* method. The Hashtable is used to store three key parameters:
* CURRENT_PATH_OPTION: the current working directory.
* CURRENT_NAME_OPTION: the name of the file being parsed.
* UPDATE_OBJECT_OPTION: indicates if the document being parsed is
* replacing an object that already exists.
*/
public LibraryObject parse(Reader htmlStream, ParserCallback callback,

Hashtable options) throws IfsException
{
try
{

/* Instantiate a FolderPathResolver, then pass it the CURRENT_PATH_OPTION as
* a string. Set the currentFolder variable to the path where the document
* to be parsed was inserted.
*/

FolderPathResolver fpr = new FolderPathResolver(m_librarySession);
fpr.setRelativePath(options.get(CURRENT_PATH_OPTION).toString());
currentFolder = fpr.getCurrentDirectory();

/* Instantiate the string variable documentContent.
* Instantiate a BufferedReader object named dataStream and populate it
* with the document content passed in to the method.
*/

String documentContent = "";
BufferedReader dataStream =

new BufferedReader(htmlStream);

// Read the buffered data into the documentContent variable one line at a time.

for (String line = dataStream.readLine();line != null;
line = dataStream.readLine())

{
documentContent = documentContent + line + "\n";

}

5-12 Oracle Internet File System Developer’s Guide

Sample Code: A Custom Parser
// Send the resulting string to the parseTitle method to extract the title.

String docTitle = parseTitle(documentContent);

// Instantiate a DocumentDefinition object.

DocumentDefinition docDef = new DocumentDefinition(m_librarySession);

// Instantiate a Collection object and populate it with the list of
// format extensions. Set the format in the document definition.

Collection allFormats = m_librarySession.getFormatExtensionCollection();
docDef.setFormat((Format) allFormats.getItems("cus"));

// The Classname is the name of the subclass we've defined (CUSTOM).

docDef.setClassname("Customer");

// Set the Name attribute in the document definition to the variable passed
// to the parser in the options Hashtable.

docDef.setAttribute("NAME", AttributeValue.newAttributeValue
(options.get(CURRENT_NAME_OPTION)));

// Set the custom attribute "TITLE" to the docTitle variable returned by the
// parseTitle method.

docDef.setAttribute("TITLE", AttributeValue.newAttributeValue(docTitle));

// Set the content of the document to the String documentContent.

docDef.setContent(documentContent);

// Instantiate a new Document using the DocumentDefinition just defined.

Document newDoc = (Document) m_librarySession.createPublicObject(docDef);

/* Check to see if the UPDATE_OBJECT_OPTION variable is set. If so, update
* the document (update). If not, create a new document (addItem).
*/

if(options.get(UPDATE_OBJECT_OPTION) != null)
{
Document currentDoc = (Document) currentFolder.findPublicObjectByPath

(docDef.getAttribute("NAME").toString());
Using Parsers 5-13

Sample Code: A Custom Parser
currentDoc.update(docDef);
}
else
{
currentFolder.addItem(newDoc);

}
}

// Catch any exceptions. Set VerboseMessage to true to get a more complete
// report of the methods that threw the exception.

catch (IfsException ifsExceptionCaught)
{
ifsExceptionCaught.setVerboseMessage(true);
ifsExceptionCaught.printStackTrace();

}
catch (Exception exceptionCaught)
{
exceptionCaught.printStackTrace();

}
return newDoc;
}

/* parse method called when the protocol sends the file content as an
* InputStream. This method converts the InputStream to a BufferedReader
* and forwards it to the first parse method (keeps code concise).
*/

public LibraryObject parse(InputStream htmlStream, ParserCallback callback,
Hashtable options)

{

// Convert the InputStream htmlStream to the BufferedReader named redirect.

BufferedReader redirect =
new BufferedReader(new InputStreamReader(htmlStream));

// Send the resulting BufferedReader to the first parse method.

try {
Document newDoc = (Document) parse(redirect,callback,options);

}

// Catch and report (in verbose mode) any exceptions.
5-14 Oracle Internet File System Developer’s Guide

Sample Code: A Custom Parser
catch (IfsException ifsExceptionCaught)
{
ifsExceptionCaught.setVerboseMessage(true);
ifsExceptionCaught.printStackTrace();

}
catch (Exception exceptionCaught)
{
exceptionCaught.printStackTrace();

}
return newDoc;

}

/* This is the actual custom parsing routine. It searches the text String
* for the tag <TITLE>, starts at the 7th character (the length of the
* <TITLE> tag and extracts a substring of all the information through
* the last character before the </TITLE> tag.
*/

private String parseTitle (String parseString){
try
{
title = parseString.substring((parseString.indexOf("<TITLE>")+ 7),

parseString.indexOf("</TITLE>"));
}
catch (Exception e)
{
title = "Untitled";
e.printStackTrace();

}
return title;

}
}

Deploy the Parser
For the protocol servers and other standard Oracle iFS components to access your
custom parser, the folder tree containing the class for the parser must reside in the
Oracle iFS CLASSPATH. Oracle iFS includes a special directory for this purpose.
This directory, called custom_classes, is already in the CLASSPATH
environment variable that the Oracle iFS server software uses.
Using Parsers 5-15

Sample Code: A Custom Parser
To deploy a parser:

1. Compile the parser, creating a .class file.

2. Place the folder tree that contains the resulting .class file in the directory
$ORACLE_HOME/ifs/custom_classes on the server where Oracle iFS is
installed.

Register the Parser
The purpose of registering a parser is to map a certain file extension to a specific
parser. Once this mapping is created, whenever a file with that extension is
imported by an Oracle iFS client or protocol, the file will be passed to the custom
parser before it is stored in the repository. You can register a parser in either of two
ways:

Each registered parser has two attributes:

The underlying mechanism for storing the mappings between file extensions and
parsers is a PropertyBundle object called "ParserLookupByFileExtension." A
PropertyBundle is a list of name/value pairs stored as an array of Property objects.
Each Property object stores the mapping between a file extension and a parser as a
Name/Value pair:

Note: The compiled Java code must be copied to the native file
system of the server, not to the Oracle iFS repository.

Facility Advantages/Restrictions

Oracle iFS Manager Use Oracle iFS Manager for simplicity and ease-of-use. Using
Oracle iFS Manager, you can only register a parser that exists
on the same instance of Oracle iFS as the Oracle iFS Manager
facility.

XML Use XML if you prefer to register a parser using a script, or if
you need to deploy the parser on a separate Oracle iFS
instance.

Attribute Datatype Description Example

Extension String File extension. cus

ClassName String Fully qualified classname of
the parser.

ifs.demo.SimplestParser
.parser.
SimplestParser
5-16 Oracle Internet File System Developer’s Guide

Sample Code: A Custom Parser
■ The Name attribute of the Property stores the Extension attribute, such as cus.
■ The Value attribute of the Property stores the ClassName of the parser, such as

ifs.demo.SimplestParser.parser.SimplestParser.

Registering a Parser Using Oracle iFS Manager
To register a parser using Oracle iFS Manager, follow these steps:

1. From the Oracle iFS Manager Object menu, choose Register.

2. From the Select Object Type window, choose Parser Lookup.

3. From the Parser Lookup Registry window, choose Add.

4. In the Parser Lookup Entry window, fill in the text boxes for the attributes.

5. Click OK.

Registering a Parser Using XML
To register a parser using XML, write an XML file to add a new Property object to
the ParserLookupByFileExtension PropertyBundle, specifying the file extension and
class name of the parser.

<?xml version="1.0" standalone="yes"?>
<!--SimplestParser.xml-->
<PROPERTYBUNDLE>

<UPDATE RefType="valuedefault">ParserLookupByFileExtension</UPDATE>
<PROPERTIES>

<PROPERTY ACTION="add">
<NAME>po</NAME>
<VALUE

DataType="String">ifs.demo.SimplestParser.parser.SimplestParser</VALUE>
</PROPERTY>

</PROPERTIES>
</PROPERTYBUNDLE>

Invoke the Parser
When an application program inserts content into the repository, the application is
responsible for invoking the appropriate parser, either a standard Oracle iFS parser
or a custom parser. (The protocols automatically call an Oracle iFS parser when they
are used to insert documents into the repository.)
Using Parsers 5-17

Sample Code: A Custom Parser
In order to parse a document, an application must:
■ Instantiate the appropriate parser.
■ Invoke the parse() method.

Write a ParserCallback
When a custom application calls a parser, the application may, optionally, pass in a
ParserCallback object. A ParserCallback allows an application to provide additional
processing before or after the actual parsing. The parser must, therefore, check to
see if this optional parameter has been passed in.

The ParserCallback interface specifies three methods that allow an application to
interact with a parser:

■ The preOperation() Method
■ The postOperation() method
■ The signalException() method

The preOperation() Method
The application can use preOperation() to alter the LibraryObjectDefinition before
the parser uses it to update the repository, in the following ways:
■ To use the existing LibraryObjectDefinition, return the Definition as is.

■ To change the object that will be parsed, construct a different Definition or
modify the Definition before returning it.

■ To prevent the parser from updating the repository, return a Definition value of
"null".

Sample Code: preOperation()
public LibraryObjectDefinition preOperation (LibraryObject lo,

LibraryObjectDefinition def)
throws IfsException

Parameter Name Datatype Description

lo LibraryObject The object that will be updated by the parse
operation. Value is "null" if the operation will
create a new object.

def LibraryObjectDefinition The LibraryObjectDefinition that will be used
to update the object, lo.
5-18 Oracle Internet File System Developer’s Guide

Sample Code: A Custom Parser
The postOperation() method
The application can use postOperation() to access the repository object that was
created or updated by the parser, or to perform operations after the creation of a
LibraryObject.

Sample Code: postOperation()
public void postOperation (LibraryObject lo)

throws IfsException

The signalException() method
The application can implement signalException() to intercept any exceptions that
occur during parsing. The options are:
■ Throw the exception, in which case, parsing ceases.
■ Simply return, in which case, parsing continues.

Sample Code: signalException()
public void signalException(IfsException e)

throws IfsException

Parameter Name Datatype Description

lo LibraryObject The LibraryObject that was created or
updated by the parse operation.

Parameter Name Datatype Description

e IfsException The potential exception.
Using Parsers 5-19

Sample Code: A Custom Parser
Sample Code: ParserCallback Implementation
The following sample code provides a brief example of implementing the
ParserCallback interface:
■ Using the preOperation() method to create a folder before the object is parsed.
■ Using the postOperation() method to add the parsed object to the folder after

the object is parsed.

/*---FolderParsedObject.java---*/
private static class FolderParsedObject implements ParserCallback
{

private Folder m_TargetFolder;
public FolderParsedObject(Folder f)
{

m_TargetFolder = f;
}
public LibraryObjectDefinition preOperation(LibraryObject parm1,

LibraryObjectDefinition parm2)
throws IfsException

{
return parm2;

}
public void postOperation(LibraryObject newObject)

throws IfsException
{

m_TargetFolder.addItem((PublicObject) newObject);
}
public void signalException(IfsException e)

throws IfsException
{

throw e;
}

}

5-20 Oracle Internet File System Developer’s Guide

Using Rende
6

Using Renderers

This chapter covers the following topics:

■ What Is a Renderer?

■ Using Standard Renderers

■ Introduction to Custom Renderers

■ Overview of a Renderer Application
rers 6-1

What Is a Renderer?
What Is a Renderer?
A renderer takes an object stored in the repository and outputs its content in a
specific format. In a sense, a renderer is the opposite of a parser. While the
information output by a renderer may be identical to the document as it was input,
it doesn’t have to be. You can use a renderer to:
■ Reconstruct a parsed file and display it in its original format.
■ Reconstruct a parsed file and display it in a different file format.
■ Filter only certain file components for display.
■ Calculate values from file components.

Once information in the original document has been parsed and stored as an object
in the Oracle Internet File System, the object can be rendered in a variety of formats
and layouts.

The Oracle iFS Framework for Rendering
The Oracle iFS rendering framework allows a developer to:

■ Create a custom renderer by writing a class that implements the renderer
interface.

■ Register a custom renderer with the repository using XML files.

■ Invoke a renderer using the methods inherited from LibraryObject. These
methods can be used to invoke both out-of-the-box and custom renderers.

As a developer, you have two options to render a repository object:

■ You can use the standard renderers provided by Oracle iFS. For more
information, see "Using Standard Renderers".

■ If the standard renderers do not meet the needs of your application, you can
write a custom renderer in Java. For more information, see "Overview of a
Renderer Application".

A Renderer Does Not Create a Repository Object
The output from a renderer is read-only and is not persistent. A renderer does not
automatically create a Document object in the repository or a data file stored locally.
If an application requires that the rendered output be available for later use, it is a
post-rendering step to create a Document object or to save a data file locally.
6-2 Oracle Internet File System Developer’s Guide

What Is a Renderer?
What Objects Can Be Rendered?
Any LibraryObject can be rendered. For example, you might write an application
that calls an XML renderer to display the following:

■ If the object is a folder or an ACL, or other LibraryObject that does not contain
content, the rendered output consists of attributes only.

■ If the object contains content (that is, the object is a Document object or a
subclass of Document), the rendered output could consist of attributes only,
content only, or both.

Although, in general, any LibraryObject can be rendered, a custom renderer is likely
to be written for the purpose of rendering specific kinds of objects. For example,
while the SimpleXmlRenderer can render any LibraryObject, a PurchaseOrder
renderer can render only PurchaseOrder objects, and throws an exception if
requested to render an object that it cannot handle.

Because Document objects are the most commonly rendered objects, we will refer to
documents for the balance of this discussion.

Using Server-Side Classes with Renderers
In the Oracle iFS Java class hierarchy each Oracle iFS object has two representations:
■ The bean-side representation, known by the object name, such as Document.
■ The server-side representation, known by the object name preceded with "S_",

such as S_Document.

Because rendering is a server-side operation, you must use the S_ classes.

Using PolicyPropertyBundles to Register Renderers
The process of registering a renderer is, at the basic level, a matter of mapping a
connection between a class of objects and a specific renderer. The underlying
mechanism for storing these mappings is a PolicyPropertyBundle object.

A PolicyPropertyBundle is a specific type of PropertyBundle object. In general,
PropertyBundles are used to store name/value pairs. In the case of a
PolicyPropertyBundle, a Policy is stored in each Property of the PropertyBundle.
Each Policy contains the mapping between a class and a renderer for a specific
protocol.

Each class in Oracle iFS has an associated PolicyPropertyBundle. When an object of
a class is retrieved from the repository, Oracle iFS checks the associated
Using Renderers 6-3

What Is a Renderer?
PolicyPropertyBundle to determine which renderer to use to display the object,
based on the protocol making the request for the object.

Because Oracle iFS includes multiple protocols (FTP, HTTP, SMB), a specific Policy
must be registered for each protocol; that is, one Policy each for HTTP, FTP, and
SMB.

When a Property is used to store a Policy:

■ The Name attribute of the Property object is specified first. The Property Name
attribute must be the value of the Policy Operation attribute.

■ The Value attribute of the Property object comes next. The Property Value
attribute holds the Object ID of the Policy object.

Each Policy object stores the following attributes:

For the procedures to register a renderer, see "Registering a Renderer Using Oracle
iFS Manager". For an XML code sample of a PolicyPropertyBundle, see "Registering
a Renderer Using XML".

Attribute Datatype Description Example

Name String Name of this custom
renderer. Must be unique.
Must be one word, no spaces.

POSmbRenderer

Operation String The name of the Property
object. Operation specifies the
key to the PolicyBundle
hashtable, so it must precisely
match the name used in the
hashtable.

SmbRenderer

Implementation
Name

String Fully-qualified classname of
the custom renderer, starting
with package name.

ifs.demo.po.
renderer.PoRenderer
6-4 Oracle Internet File System Developer’s Guide

Using Standard Renderers
Using Standard Renderers
Out-of-the-box, Oracle iFS includes two standard renderers that will meet the needs
of most developers creating new applications in Oracle iFS.

Note: A renderer must be registered before you can use it. The standard renderers
are registered by default.

Invoking Renderers
Whether your application invokes an Oracle iFS standard renderer or a custom
renderer, the process is the same. Applications invoke renderers using the
appropriate renderAsXxxx() method defined in oracle.ifs.beans.LibraryObject. The
renderer application must invoke the appropriate method for the type of output
desired.

■ An InputStream object (a series of bytes)
■ A Reader object (a series of characters)

To use any renderer, invoke one of the following methods inherited from the
LibraryObject class on the object you want to render:
public java.io.InputStream renderAsStream

(String rendererType,
String rendererName,
Hashtable options)

throws IfsException

public java.io.Reader renderAsReader
(String rendererType,
String rendererName,
Hashtable options)

throws IfsException

Class Description

SimpleXMLRenderer Generates a complete XML document body based on properties in a
particular document.

SimpleTextRenderer Provided as a starting point example for developers who need to
create a custom renderer.
Using Renderers 6-5

Using Standard Renderers
The following table lists the parameters for the renderAsXxxx() methods. These
parameters are used to determine which renderer is invoked and to pass options to
the target renderer.

The rendererType and rendererName arguments differ as follows:
■ The rendererType argument is a String value that specifies the name of a

Policy’s Operation attribute.
■ The rendererName argument is a String value that specifies the Name

attribute of the Policy that contains the Operation specified by rendererType.

The rendererType and rendererName arguments together determine which
renderer is to be used. The determination is made as follows:

■ If rendererName is not null:
■ The custom Policy object called rendererName for the Operation specified

by rendererType is obtained. This custom Policy object contains the
fully-qualified classname of the renderer in its ImplementationName
attribute.

■ If rendererName is null:

■ The default Policy object for this LibraryObject for the operation specified by
rendererType is obtained. This default Policy object contains the
fully-qualified classname of the renderer in its ImplementationName
attribute.

Parameter Datatype Description Example

rendererType String Value of the Operation
attribute of the Policy.
Non-unique.

SmbRenderer

rendererName String Name of the Policy object.
Must be unique.

VcardSmbRenderer

options Hashtable Contains values for each
specific renderer to use.

Renderer-specific options.
Values in this Hashtable
must be serializable.
6-6 Oracle Internet File System Developer’s Guide

Using Standard Renderers
Choosing a Renderer
You can use the renderAs() methods in two ways:
■ Explicit specification: The application explicitly specifies a certain renderer.
■ Default selection: The repository chooses a default renderer.

The following table shows the method signatures that correspond to each use:
‘

Example: Explicit Choice of Renderer
To choose a specific renderer, specify the rendererName attribute. The following
example shows how an application can explicitly specify the SimpleTextRenderer,
assuming Stream input:

renderAsStream("RenderAsText", "SimpleTextRenderer", myOptions)

The options argument passes additional information to the specified renderer,
such as character encoding. The available options, their settings, and the meanings
of each option/setting pair are renderer-specific. In this example, the
SimpleTextRenderer uses the myOptions Hashtable to obtain additional
information. Consult the Javadoc for each standard renderer for more information
about the options available.

Use Method Signatures

Explicit renderAsStream (String rendererType,String rendererName,
Hashtable options)

renderAsReader (String rendererType,String rendererName,
Hashtable options)

Default renderAsStream (String rendererType, null,
Hashtable options)

renderAsReader (String rendererType, null,
Hashtable options)
Using Renderers 6-7

Introduction to Custom Renderers
Example: Accepting the Default Renderer
To accept the default renderer specified by Oracle iFS, substitute null for the
rendererName attribute. The following example shows how an application can
allow the repository to select the default renderer for this Document object,
assuming that this Document object can have two default renderers:

■ A default text renderer
■ A default XML renderer

renderAsStream("RenderAsText", null, myOptions)
renderAsStream("RenderAsXML",null, myOptions)

Introduction to Custom Renderers
The only reason for creating a custom renderer is if one of the standard renderers
provided with Oracle iFS does not allow you to render a repository object in the
format required by a particular application.

Custom renderers can be used for many purposes:

■ To render a repository object in the format required by an application. For
example, a Vcard needs to be rendered in the format required by the Windows
Addressbook application.

■ To convert documents from one MIME type to another (for example, to convert
from image/jpeg to image/gif).

■ To create virtual documents based on calculation and manipulation of
information in the repository.

■ To construct compound documents, combining data from more than one
source.

Note: The sample application and code used in this chapter are
taken from the "XSL Custom Renderer Sample Application
Technical Brief," downloadable from the Oracle Internet File System
page of the Oracle Technology Network.
6-8 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
How Custom Renderers Work
To develop a custom renderer you need to understand how the information flows
from the custom application to the custom renderer.

Overview of a Renderer Application
When you plan a custom renderer application, include the following stages:

1. Write the Renderer Class.
2. Deploy the Renderer.
3. Invoke the Renderer.

Write the Renderer Class
When creating a custom renderer, you can choose from two approaches:

■ If one of the existing Oracle iFS renderers partially meets the needs of your
application, you can subclass an existing renderer. (Each of the existing Oracle
iFS renderers implements the oracle.ifs.server.renderers.Renderer
interface.)

■ If you cannot use an existing Oracle iFS renderer as a starting point, you must
create a custom class from scratch, directly implementing the
oracle.ifs.server.renderers.Renderer interface.

Step Area Description/Sample

1. Client The application requests that the object be rendered by calling the
appropriate renderAsXxx() method.

Example:
Document.renderAsStream(rendererType, rendererName,
options)

2. Server The server uses the rendererType and rendererName arguments
to determine which renderer to invoke. The server invokes the
renderer, passing the server-side representation of the object to be
rendered and any options that were provided by the client.

Example:
Renderer.renderAsStream(S_Document, options)

3. Renderer The renderer receives the document representation and the options.
The renderer then executes whatever custom code is needed to render
the object in the format requested by the client.
Using Renderers 6-9

Overview of a Renderer Application
Whichever approach you choose, writing a custom renderer means implementing
the Renderer interface, either directly or indirectly. The Renderer interface defines
the following two methods:

■ renderAsStream()
■ renderAsReader()

These renderAsXxxx() methods allow the Oracle iFS clients or a custom application
to render documents in the required format.

The syntax and arguments for each method are described below.

To write a custom renderer:
■ Write a constructor.
■ Write a renderAsXxxx() method.

Write a Constructor
Every renderer must implement the standard constructor for a renderer. The
standard constructor takes one parameter, as shown in the following table.

Sample: Write a Constructor
public AirportDynamicRenderer(S_LibrarySession ifs) throws IfsException
{
m_IfsSession = ifs;

}

Parameter Datatype Description

session S_LibrarySession The server-side representation of the
current user’s LibrarySession.
6-10 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
Write a renderAsXxxx() Method
The following table describes the parameters of the two renderAsXxxx() methods:
■ renderAsStream()
■ renderAsReader()

Example: Write the renderAsXxxx() Methods
The example builds up a string containing the required content and uses the
StringBufferInputStream class to convert the string to an InputStream, which is the
object this method returns.

The overall structure of this example is:
1. The renderAsStream() method calls renderAsString().

The renderAsStream() method renders the specified LibraryObject as an
InputStream.

2. The renderAsString() method calls renderAirport().
3. The renderAirport() method creates a String containing the required

representation of the airport.

Sample Code: The renderAsStream() method
public InputStream renderAsStream(S_LibraryObject lo,

Hashtable options)
throws IfsException

{
InputStream in = null;
String stream = renderAsString(lo, options);
in = new ByteArrayInputStream(stream.getBytes());
return in;

}

Parameter Datatype Description

lo S_LibraryObject The object to be rendered.

options Hashtable Optional parameter. May be null. If
specified, the options parameter
further controls the behavior of the
renderer through a set of optional
name/value pairs. Commonly used to
specify character encoding.
Using Renderers 6-11

Overview of a Renderer Application
Sample Code: The renderAsString() method
The renderAsString() method calls the renderAirport method and returns the result
as a string.

public String renderAsString(S_LibraryObject lo,
Hashtable options)

throws IfsException
{
String documentBody = null;
documentBody = renderAirport(lo, options);
return documentBody;

}

Sample Code: The renderAirport() method
This method:

1. Renders an iFS object as XML with the iFS out-of-the-box SimpleXmlRenderer.

2. Obtains the XSL (stylesheet) passed in through parameter options.

3. Does the XSL transformation on the XML document from Step 1.

4. Returns the generated result.

public String renderAirport(S_LibraryObject lo,
Hashtable options)

{

String resultOutput = "";
String xmlDoc = "";

DOMParser parser = new DOMParser();

try
{
//Retrieve the result from the SimpleXmlRenderer
//This call is referencing the SimpleXMLRenderer, as defined
//in the file AirportDefinitionPolicyBundle.xml.
Reader reader = lo.renderAsReader("RenderXmlAirportDefinition",

"AirportDefinitionXmlRenderer",
null);

BufferedReader r = new BufferedReader(reader);
for (String nextLine = r.readLine(); nextLine != null; nextLine =

r.readLine())
xmlDoc += nextLine;
6-12 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
//Turn the XML String into an XML Document
XMLDocument xml = ParseDocument(xmlDoc, parser);

XMLDocument xsl = null;
//Retrieves the XSL Style Sheet in a String format
//from the Hashtable parameter (named options) passed in to the Renderer.
String xslContent = (String)options.get("xsl");

if (xslContent != null && xslContent.length() > 0 &&
!xslContent.toUpperCase().equals("NONE"))

{
try
{
//Turn XSL String into an XML Document
xsl = ParseDocument(xslContent, parser);

}
catch (Exception e)
{
System.err.println("XSL : " + e.toString());

}
}

if (xsl != null)
{
//Do the XSL Transformation.
resultOutput = ProcessXML(xml, xsl, parser);

}
else
{
resultOutput = xmlDoc;

}
}
catch (IfsException e)
{
resultOutput += ("<errorInRenderer type=\"IFS\">" + e.toString() +

"</errorInRenderer>");
}
catch (IOException e)
{
resultOutput += ("<errorInRenderer type=\"IO\">" + e.toString() +

"</errorInRenderer>");
}
//Return the result
return resultOutput;

}

Using Renderers 6-13

Overview of a Renderer Application
Javadoc References
For more information about renderers, see the following classes in the Oracle iFS
Javadoc.

Deploy the Renderer
For the protocol servers and other standard Oracle iFS components to access your
custom renderer, the folder tree containing the class for the renderer must reside in
the Oracle iFS CLASSPATH. Oracle iFS includes a special directory for this purpose.
This directory, called custom_classes, is already in the CLASSPATH
environment variable that the Oracle iFS server software uses.

To deploy a renderer:

1. Compile the renderer, creating a .class file.

2. Place the folder tree that contains the resulting .class file in the directory
$ORACLE_HOME/ifs/custom_classes on the server where Oracle iFS is
installed.

Class Purpose

oracle.ifs.server.renderers.
Renderer

Interface that must be implemented for all
renderers. Contains two key methods:
renderAsStream() and renderAsReader().

oracle.ifs.server.
renderers.XmlRenderer

Base class for creating a custom XML renderer.
XmlRenderer converts an XML Document object
into an InputStream or a Reader.

Extend XmlRenderer to convert any S_
LibraryObject into an XML Document
representation.

oracle.ifs.server.renderers.
SimpleXmlRenderer

Sample of a simple XML renderer based on
XmlRenderer.

oracle.ifs.server.renderers.
SimpleTextRenderer

Sample of a complete renderer for text.

Note: The compiled Java code must be copied to the native file
system of the server, not to the Oracle iFS repository.
6-14 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
Register the Renderer
The process of registering a renderer connects a class of objects with a specific
renderer. You can register a renderer using any of the following facilities:

No matter which facility you use, registering a render includes the following tasks:
■ Create a Policy object.
■ Set the attributes of that Policy object.
■ Associate the Policy object (or the PolicyProperty Bundle containing it) with a

specific class or classes.

For specific information about the attributes of Policy objects, see "Using
PolicyPropertyBundles to Register Renderers".

Registering a Renderer Using Oracle iFS Manager
To register a renderer using Oracle iFS Manager, follow these steps:

1. From the Oracle iFS Manager Object menu, choose Register.

2. From the Select Object Type window, choose Renderer Lookup.

3. From the Renderer Lookup Registry window, choose Add.

4. On the Renderer Lookup Entry window, fill in the text boxes for the attributes.

5. From the Class Association list, select the class to associate with this renderer.

6. Click OK.

Facility Advantages/Restrictions

Oracle iFS Manager Use Oracle iFS Manager for simplicity and ease-of-use. Using
Oracle iFS Manager, you can only register a renderer that exists
on the same instance of Oracle iFS as the Oracle iFS Manager
facility.

XML Use XML if you prefer to register a renderer using a script, or if
you need to deploy the renderer on a separate Oracle iFS
instance.

Java Use Java for special cases:

■ If you need register a renderer for a specific object, instead
of a class.

■ If you need to specify multiple renderers for the same
object. For example, a document might be rendered by two
renderers: one for an SMB application, another for an
HTTP application.
Using Renderers 6-15

Overview of a Renderer Application
Registering a Renderer Using XML
To register a renderer using XML, write an XML file to update the PolicyProperty
bundle, creating a mapping between a specific class (AirportDefinition) and its
associated PolicyPropertyBundle (AirportDefinitionPolicyBundle).

<?xml version = '1.0' standalone = 'yes'?>
<CLASSOBJECT>

<update reftype= 'name'>AirportDefinition</update>
<policybundle reftype='name' classname='PolicyPropertyBundle'>

AirportDefinitionPolicyBundle
</policybundle>

</CLASSOBJECT>

Sample Code: AirportDefinitionPolicyBundle
This sample code creates the PolicyPropertyBundle object, which is a collection of
Property objects. For details about the attributes of Policy objects, see "Using
PolicyPropertyBundles to Register Renderers".

<?xml version="1.0" standalone="yes"?>
<POLICYPROPERTYBUNDLE>
<NAME> AirportDefinitionPolicyBundle </NAME>
<PROPERTIES>
<PROPERTY>
<NAME> RenderXmlAirportDefinition </NAME>
<VALUE Datatype='SystemObject' Classname='Policy' >
<NAME> AirportDefinitionXmlRenderer </NAME>
<IMPLEMENTATIONNAME>
oracle.ifs.server.renderers.SimpleXmlRenderer

</IMPLEMENTATIONNAME>
<OPERATION> RenderXmlAirportDefinition </OPERATION>

</VALUE>
</PROPERTY>
<PROPERTY>
<NAME> CompleteDynamicRenderer </NAME>
<VALUE Datatype='SystemObject' Classname='Policy' >
<NAME> AirportDefinitionCompleteRenderer </NAME>
<IMPLEMENTATIONNAME>
ifs.sampleapps.OlivAirlines.AirportDynamicRenderer

</IMPLEMENTATIONNAME>
<OPERATION> CompleteDynamicRenderer </OPERATION>

</VALUE>
</PROPERTY>

</PROPERTIES>
</POLICYPROPERTYBUNDLE>
6-16 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
Invoke the Renderer
This servlet calls the custom renderer and passes it the appropriate XSL stylesheet
based on which client is making the request, then renders the result to the client.

Sample Code: Invoke the Renderer
package ifs.sampleapps.OlivAirlines;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Hashtable;

import oracle.ifs.common.IfsException;

import oracle.ifs.beans.Document;
import oracle.ifs.beans.LibraryObject;
import oracle.ifs.beans.LibraryService;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.beans.Selector;

import oracle.ifs.search.AttributeQualification;
import oracle.ifs.search.AttributeSearchSpecification;
import oracle.ifs.search.SearchClassSpecification;
import oracle.ifs.search.SearchSortSpecification;

import oracle.ifs.beans.Search;

public class iFSAirportServlet extends HttpServlet
{

private static final boolean DEBUG = false;
private static final int ERRORCODE = 22000;

/**
Using Renderers 6-17

Overview of a Renderer Application
* Constructs the iFSAirportServlet.
*/
public iFSAirportServlet()
{
}

/**
* The servlet container calls the init method exactly once
* after instantiating the servlet. The init method must
* complete successfully before the servlet can receive any requests.
*
* @param ServletConfig config
* @exception An exception a servlet throws when it encounters difficulty.
* @pub
*/

public void init(ServletConfig config)
throws ServletException
{
super.init(config);

}

/**
* Called by the servlet container to allow the servlet to
* respond to a request.
* Calls the printContent method, which does the actual work.
*
* @param req the ServletRequest object that contains the client's request.
* @param res the ServletResponse object that contains the servlet's respond.
*
* @exception ServletException if an exception occurs that interferes with
* the servlet's normal operation
* @exception java.io.IOException if an input or output exception occurs
* @pub
*/
public void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException,

IOException
{
// Retrieve Servlet's output stream
PrintWriter out = new PrintWriter(response.getOutputStream());
try
{

6-18 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
printContent(request, response, out);
}
catch (IfsException e)
{
out.println("<IfsException>" + e.toString() + "</IfsException>");

}
out.close();

}

/**
* Calls the custom renderer and passes in the appropriate XSL
* style sheet to the custom renderer based on which client is
* making a request. Outputs the rendered result to the client.
*
* @param request the ServletRequest object that contains the client's

request.
* @param resonse the ServletResponse object that contains the servlet's

respond.
* @param out for output
* @exception IfsException if operation fails.
* @exception IOException if an input or output exception occurs.
* @pub
*/
private void printContent(HttpServletRequest request,

HttpServletResponse response,
PrintWriter out) throws IOException,

IfsException
{
// Retrieve User-Agent to know which kind of client is making the request.
String userAgent = request.getHeader("User-Agent");

LibraryService service = new LibraryService();

String userName = request.getParameter("userName");
String passWord = request.getParameter("passWord");
String serviceName = request.getParameter("serviceName");
LibrarySession ifs = service.connect(userName, passWord, serviceName);
// Finds the iFS object we are doing to render with a Selector.
Selector mySelector = new Selector(ifs);
// Select the Airportdefinition class based on its attribute: AIRPORTCODE.
mySelector.setSearchClassname("AIRPORTDEFINITION");

// The airport code is passed in as a parameter provide along with the URL.
String code = request.getParameter("code");
mySelector.setSearchSelection("AIRPORTCODE = '" + code + "'");
Using Renderers 6-19

Overview of a Renderer Application
for (int i=0; i<mySelector.getItemCount(); i++)
{
LibraryObject lo = mySelector.getItems(i);
String contentType = "";

Hashtable h = new Hashtable();
// Check if a given string ("HANDHTTP" here) matchs any substring
// of the User-Agent parameter passed in, case insensative.
// If it matches, the corresponding style sheet is read from iFS,
// and put in an Hashtable, to be passed in to the renderer.
if (userAgent.toUpperCase().indexOf("HANDHTTP") > -1)
{

h.put("xsl", getStyleSheetContent(ifs, "apHTML.xsl"));
contentType = "text/html";

}
else if (userAgent.toUpperCase().indexOf("MOZILLA") > -1)
{

h.put("xsl", getStyleSheetContent(ifs, "apHTML.xsl"));
contentType = "text/html";

}
else if (userAgent.toUpperCase().indexOf("UP") > -1)
{

h.put("xsl", getStyleSheetContent(ifs, "apWAP.xsl"));
contentType = "text/x-wap.wml";

}
else if (userAgent.toUpperCase().indexOf("NOKIA") > -1)
{

h.put("xsl", getStyleSheetContent(ifs, "apWAP.xsl"));
contentType = "text/x-wap.wml";

}
else if (userAgent.toUpperCase().indexOf("MOTOROLA") > -1)
{

h.put("xsl", getStyleSheetContent(ifs, "apVox.xsl"));
contentType = "text/html";

}
else
{

h.put("xsl", "none");
}

response.setContentType(contentType);
// Calls the custom renderer. Pass in the Hashtable
// The custom renderer is registered in the
// AirportDefinitionPolicyBundle.xml file.

Readerreader=lo.renderAsReader("CompleteDynamicRenderer",
6-20 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
"AirportDefinitionCompleteRenderer", h);
// Reads results from the Reader, and prints to the Servlet output.
printAirport(reader, out);
} //end for loop

}

/**
* This method seaches and gets the content of an iFS document, the XSL style
* sheet that will be passed to the custom renderer, based on its file name.
**/
private static String getStyleSheetContent(LibrarySession ifs, String xslName)
throws IfsException
{
String retString = "";

String className[] = {"DOCUMENT"};
SearchClassSpecification scs = new SearchClassSpecification(className);
scs.addResultClass("DOCUMENT");
AttributeQualification aq1 = new AttributeQualification();
aq1.setAttribute("DOCUMENT", "NAME");
aq1.setOperatorType(AttributeQualification.LIKE);
aq1.setValue(xslName);
SearchSortSpecification ss = new SearchSortSpecification();
ss.add("NAME" , SearchSortSpecification.ASCENDING);
AttributeSearchSpecification ass = new AttributeSearchSpecification();
ass.setSearchClassSpecification(scs);
ass.setSearchQualification(aq1);
ass.setSearchSortSpecification(ss);
Search srch = new Search(ifs, ass);
srch.open();
try
{ while (true)

{
LibraryObject lo = srch.next().getLibraryObject();
Document d = (Document)lo;
InputStream is = d.getContentStream();
BufferedReader br = new BufferedReader(new InputStreamReader(is));
for (String nextLine = br.readLine(); nextLine != null; nextLine =

br.readLine())
{
retString += nextLine;

}
br.close();

}

Using Renderers 6-21

Overview of a Renderer Application
}
catch (IfsException e)
{
if (e.getErrorCode() == ERRORCODE)
{ [Is this set of braces needed????}
}
else
{
throw e;

}
}
catch (IOException ioe)
{

System.err.println("IOException reading XSL : " + ioe.toString());
}
srch.close();
return retString;

}

/**
* Prints out the renderer output to the client.
*
* @param reader the renderer output passed in
* @param out for output
*/
public static void printAirport(Reader reader,

PrintWriter out)
throws IOException
{

// Dumps the reader on the output.
BufferedReader r = new BufferedReader(reader);
for (String nextLine = r.readLine(); nextLine != null; nextLine =

r.readLine())
{

out.println(nextLine);
}

}

}

6-22 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
Output from the Custom Renderer
To run the servlet:

1. Open a web browser.

2. Type the following command in the Location window:

Http://machineName:portNumber/XSLRenderer?code=LAX&userName=
yourUserName&passWord=yourPassWord&serviceName=yourServiceName

where:

machineName is the server name where the iFS is running.

portNumber is the port where the Java Web Server is running. Get the port
number by typing http://machineName:9090.

yourUserName is the user you created during this example.

yourPassWord is the password for this user.

serviceName is the Service Name of iFS. The default for the Service Name is
ServerManager.

You should see LAX and Los Angeles in the browser. You can change the code to
SEA or SFO. For example:

http://bsmith-sun:80/XSLRenderer?code=LAX&userName=gking&pa
ssWord=ifs&serviceName=ServerManager

Access the Servlet from Different Devices
Try entering the command from the previous step into different devices to see what
the output looks like.
Using Renderers 6-23

Overview of a Renderer Application
Figure 6–1 Output of AirportDefinition as seen on a desktop HTML Browser

Figure 6–2 Output of AirportDefinition as seen on a cellphone
6-24 Oracle Internet File System Developer’s Guide

Overview of a Renderer Application
Figure 6–3 Output of AirportDefinition as seen on the HTML browser of a personal
digital assistant.

Figure 6–4 Output of AirportDefinition as displayed through a Voice Simulator.
Using Renderers 6-25

Overview of a Renderer Application
6-26 Oracle Internet File System Developer’s Guide

Using
7

Using JSPs

This chapter covers the following topics:

■ Using Java Server Pages to Display Documents

■ Implementing an Application Using a JSP

■ Running the Sample Insurance Form Application

■ Sample Files for the Insurance Form Application

Note: Do not confuse Java Server Pages, commonly known as
"JSPs," with the Oracle Corporation product called Java Stored
Procedures. In the context of this chapter, "JSPs" refers to "Java
Server Pages."
JSPs 7-1

Using Java Server Pages to Display Documents
Using Java Server Pages to Display Documents
One of the advantages of storing documents in the Oracle Internet File System is
that users can display dynamic data via the Web simply by entering a URL. For
example, in an insurance form application, a user would be able to view an
insurance form on the Web.

Java Server Pages (JSPs) are the recommended manner of creating web-based
applications based on Oracle iFS. (In fact, the Oracle iFS Web interface uses JSPs.)
JSPs display information on the Web by generating HTML documents to call Java
Beans. Although JSPs provide a way for users to view and manipulate documents,
providing a functionality parallel to that of renderers, using a JSP is not technically
"rendering" because it does not involve calling a specific renderer.

Note: You can use either the Java Web Server or the Apache Web Server with Oracle
iFS. The Java Web Server included with Oracle iFS 1.1 supports the 1.0 version of
the JSP specification. Developers are advised to avoid the use of tag extensions
defined by the 0.92 specification.

Preparing to Use JSPs
An insurance form application is used to demonstrate how to use JSPs. Assume that
the following preparations have been completed so that there are custom
InsuranceForm objects stored in the repository, ready to be displayed using a JSP:

1. Using XML, create a type definition file, CreateInsuranceForm.xml, to
define the custom attributes of the insurance form. (Creating this type definition
file in XML is the equivalent of subclassing the Document class in Java.)

2. Using Java, create an instance class Bean, InsuranceFormObject.java, to
provide standard getter and setter methods for the custom attributes defined in
the type file. (This step is recommended, but not required. The instance class
Bean file is shown in Chapter 4, "Creating Custom Classes".)

3. Using XML, create the actual insurance form documents, claim1.xml and
claim2.xml, each one created as an instance of the InsuranceForm class. Load
the document instance files into Oracle iFS using either the Web interface or the
Windows interface. The insurance forms will be parsed automatically by the
SimpleXmlParser.
7-2 Oracle Internet File System Developer’s Guide

Implementing an Application Using a JSP
Implementing an Application Using a JSP
An application that uses a JSP to display information consists of four components:

Login/Logout Files
Each application requires a set of files to provide basic security functions:
■ User Login and Validation
■ User Logout

The sample code for these functions, login.jsp and logout.jsp, provides a reliable
starting point for a login/logout mechanism.

For consistent behavior with multiple protocols and sharing login information with
the Oracle iFS Web interface, we recommend using the basic approach to
login/logout demonstrated in the sample code. Specifically, we recommend that
when writing a JSP login facility, you implement the Oracle iFS Java API package
oracle.ifs.adk.security.IfsHttpLogin.

Component Purpose Files/Utility NeededExample

Login files Authenticate the
user.

Login JSP

Corresponding Java
Bean

Sample Code: login.jsp

Sample Code:
InsuranceLogin.java

Logout files Close the session. Logout JSP Sample Code: logout.jsp

Application filesDisplay
information
stored in Oracle
iFS using the
Web.

Application JSP

Corresponding Java
Bean

Sample Code:
InsuranceForm.jsp

Sample Code:
InsuranceBean.java

Registration
using Oracle iFS
Manager

Connect a
document type
with the JSP used
to display it.

Oracle iFS Manager Registering a Java
Server Page Using
Oracle iFS Manager
Using JSPs 7-3

Implementing an Application Using a JSP
User Login and Validation
For an example of a login JSP and its associated Java Bean, see:
■ "Sample Code: login.jsp"
■ "Sample Code: InsuranceLogin.java"

InsuranceLogin.java implements the public interface IfsHttpLogin.

These sample applications store the minimum login and session information
needed by the system to carry user authentication from page to page. Depending on
the requirements of your application, you may decide to create a more complex
login to store user variables or more extensive session information.

User Logout
For an example of a simple logout JSP, see "Sample Code: logout.jsp".

Application Files
The real work of an application is done by one or more JSPs and their
corresponding Java Beans:

■ The JSP calls the Java Bean and creates an HTML page to display the
information from the database.

For a sample JSP file, see "Sample Code: InsuranceForm.jsp". This sample shows
a simple user interface; your application may require a more sophisticated user
interface.

■ The Java Bean retrieves and manipulates information from the database. The
Java Bean contains the business application logic. For example, if your
application requires that all invoices with a total greater than $10,000 be
approved by a specific manager, that logic would go in the Java Bean.

For a sample Java Bean file, see "Sample Code: InsuranceBean.java".

Compiling Java Beans and JSPs
You must compile the Java Bean and then the JSP before Oracle iFS can call the JSP.
Depending on your development environment, the JSP may be automatically
compiled at runtime the first time it is invoked.
7-4 Oracle Internet File System Developer’s Guide

Implementing an Application Using a JSP
Deploying Java Beans and JSPs
All compiled Java Beans must be stored in the directory $ORACLE_
HOME/ifs/custom_classes on the server where Oracle iFS is installed.

The Oracle iFS product comes with a starting-point directory structure. One of the
folders in that structure is reserved for holding JSPs: $ORACLE_
HOME/ifs/jsp-bin. To have your JSP compile and execute properly in Oracle iFS,
you must store the JSP in this folder. JSPs stored elsewhere will not be executed by
the Oracle iFS JSP compiler.

Registering a JSP
Registering a JSP allows the JSP to be used as the default HTML renderer for the
specified class.When a user clicks on a plain XML document, the system
automatically calls the SimpleXmlRenderer supplied with Oracle iFS. When a user
clicks on a custom document for which you have provided a JSP, Oracle iFS needs
to know which JSP to use to display documents of this type. To provide this
information to Oracle iFS, you must register a JSP before it can be used.

You can use Oracle iFS Manager or XML to register a JSP. Once a JSP has been
registered, Oracle iFS automatically invokes that JSP when a user requests a
document of a given class and MIME type. Behind the scenes, registering a JSP adds
an entry to the existing JSPlookup PropertyBundle, associating a JSP with a specific
class and MIME type. For an example, see "Registering a Java Server Page Using
Oracle iFS Manager".

Note: Using the Jsplookup PropertyBundle mechanism will meet the requirements
of most applications. If your application has complicated requirements in this area,
you are free to use a custom method to trigger the use of specific code when a user
accesses custom documents.

The Jsplookup PropertyBundle
To associate a JSP with a specific class, Oracle iFS provides a lookup table
mechanism called the "Jsplookup PropertyBundle." The Jsplookup PropertyBundle
is automatically created during installation.

The Jsplookup PropertyBundle maps a specific class and MIME type to the
corresponding JSP. In the best case, both document class and document MIME type
are available. Depending on the specific document, however, sometimes only
document class or MIME type are available. The Jsplookup PropertyBundle
determines which JSP should be used with which class based on all available
information about the class, assessed in this sequence:
Using JSPs 7-5

Implementing an Application Using a JSP
1. Combination of document class and document MIME type.
2. Document class only.
3. Document MIME type only.

Web Site Security Using HTTP Authentication
HTTP authentication is used to control access to web sites. For example:
■ You may want to limit access to all of your web site.
■ You may want only specific users to be able to access certain parts of the web

site.

Assume, for example, that you have a web site with a "Members Only" section. You
would want everyone to have access to the web site, but only people with a special
password have access to the "Members Only" section.

The HTTP authentication mechanism causes the browser to pop up a dialog
window. This dialog window accepts the following input from the user:
■ User name
■ Password

Once a valid value has been supplied, this user name/password information is kept
with the current session, which allows this user access to all appropriate
documents, based on the security provided by the associated ACLs. Note that this
user’s user name/password information is stored by the browser. Thus, if the user
invokes additional instances of the browser, the authentication is also valid for these
instances. Until the user exits from all instances of the browser, these access rights
are not disabled. This behavior is browser-specific. For example, if a user
authenticates using Netscape Communicator, that user does not need to
authenticate for any more instances of Netscape Communicator, but will need to
provide authentication for an instance of Internet Explorer.

In order to use HTTP authentication, you must substitute your own "index.html" for
the default "index.html" in the root directory, so users will go to your web site rather
than the Oracle iFS Web interface. When users log in through the Web interface, the
Web interface authentication takes precedence over HTTP authentication.
7-6 Oracle Internet File System Developer’s Guide

Implementing an Application Using a JSP
Implementing HTTP Authentication
Oracle iFS implements HTTP authentication using Access Control Lists (ACLs).
Assume that you have a web site where you want to specify the following access for
the "Members Only" section:
■ Everyone should be able to see that the "Members Only" section exists.
■ Read access to the "Members Only" section is restricted to specific users.

To access this restricted section, the user needs to click a "Members Only" button
(members.gif) displayed on the Home page.

To implement HTTP authentication for this web site according the scenario
described above, follow this process.

1. The default index.html file in the root (/) directory points to the Oracle iFS
Web interface. As part of creating your web site, create a file called
index.html and replace the index.html file in the root directory with the
file that points to your web site.

2. As another part of creating your web site, create an HTML document to serve as
the gateway to the "Members Only" section.

This HTML page will serve as the HREF for members.gif.

3. Log in using an administration-enabled account, and create a new ACL to
handle HTTP authorization.

Assume this new ACL is named "HTTP_Auth." Assign the following rights:
■ Guest - Discover access only.
■ Qualified user - Read access.

4. Log in using an administration-enabled account, and apply the HTTP_Auth
ACL to the index.html document created in Step 1.

5. Exit the browser.

Now when a user enters the web site and clicks the "Members Only" button, the
authentication dialog will be displayed. If the user provides the correct user name
and password, that user will gain access to the "Members Only" section.
Using JSPs 7-7

Running the Sample Insurance Form Application
Running the Sample Insurance Form Application
The Insurance Form application includes three JSPs:
■ "Sample Code: login.jsp" allows a user to log in to Oracle iFS.
■ "Sample Code: logout.jsp" allows a user to log out of Oracle iFS.
■ "Sample Code: InsuranceForm.jsp" provides the application logic.
Note: This example includes the recommended mechanism for providing a login
facility to Oracle iFS, which is implementing the IfsHttpLogin interface.

For a brief description of each sample file, see "Sample Files for the Insurance Form
Application".

Create the Insurance Form Application
1. Create these directories:

■ public/examples/insuranceApp
■ public/examples/insuranceApp/src
■ public/examples/insuranceApp/claims

2. Compile these Java programs:
■ InsuranceLogin.java
■ InsuranceBean.java

Place the folder tree containing the resulting .class file in the directory
$ORACLE_HOME/ifs/custom_classes on the server where Oracle iFS is
installed.

3. Use FTP to put the Java source code into
/public/examples/insuranceApp/src.

4. Use FTP to put index.html into /public/examples/insuranceApp.

5. Use FTP to put CreateInsuranceForm.xml into any convenient directory.

6. Using Oracle iFS Manager, register the InsuranceForm.jsp.

7. Use FTP to put the following two document files representing claims into
/public/examples/insuranceApp/claims:
■ claim1.xml
■ claim2.xml

8. Use FTP to put the three JSPs into /ifs/jsp-bin:
■ login.jsp
■ logout.jsp
■ InsuranceForm.jsp
7-8 Oracle Internet File System Developer’s Guide

Running the Sample Insurance Form Application
Run the Insurance Form Application
1. Start the Web Server.

2. Enter the following URL into your favorite web browser:

http://myIfsServer/public/examples/insuranceApp/src/login.jsp

3. Log in to Oracle iFS.

4. To view the claims, log in and click on the claim files:
■ Juana Angeles
■ Kevin Chu

5. To logout, click on logout.jsp.

Requirements for Running the Examples
To run these examples, observe the following requirements:
■ Compile all .java files.
■ To compile, include the following .jar files in the CLASSPATH environment

variable:
■ repos.jar
■ adk.jar

■ Be sure the JSPs are stored in /ifs/jsp-bin.
Using JSPs 7-9

Sample Files for the Insurance Form Application
Sample Files for the Insurance Form Application
This section includes sample code for running the Insurance Form application. The
files included are:

Name Description

index.html An HTML file that is automatically invoked when a
user’s URL navigates to a folder.

CreateInsuranceForm.xml An XML file that creates a custom document type (a
subclass of the Document class).

claim1.xml
claim2.xml

Two XML insurance claim files that create
instances of the InsuranceForm class.

login.jsp A JSP to allow user login and validation. Calls
InsuranceLogin.java.

InsuranceLogin.java A Java Bean called by login.jsp.

logout.jsp A JSP to allow user logout.

RegisterJSP.xml An XML file to register a JSP, thus associating the JSP
with a specific class and MIME type.

Alternatively, you can use Oracle iFS Manager to
register a JSP.

InsuranceForm.jsp A JSP to display application information retrieved by
InsuranceBean.java.

InsuranceBean.java A Java Bean called by InsuranceForm.jsp to
retrieve attributes of a specific insurance form.
7-10 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
Sample Code: index.html
This index.html file is automatically invoked when a user, using a URL,
navigates to the folder where this file resides.

<HTML>
<!-- index.html -->
<HEAD>
<META HTTP-EQUIV=REFRESH CONTENT="0;
URL=/public/examples/insuranceApp/src/login.jsp">

</META>
</HEAD>
<BODY>
</BODY>
</HTML>

Sample Code: CreateInsuranceForm.xml
This CreateInsuranceForm.xml file creates a custom document type with two
custom attributes, ClaimNumber and ClaimType.

<?xml version = '1.0' standalone = 'yes'?>
<!-- CreateInsuranceForm.xml -->
<ClassObject>

<Name>InsuranceForm</Name>
<Superclass Reftype ="name">Document</Superclass>
<Attributes>

<Attribute>
<Name>ClaimNumber</Name>
<DataType>Long</DataType>

</Attribute>
<Attribute>

<Name>ClaimType</Name>
<DataType>String</DataType>
<DataLength>50</DataLength>

</Attribute>
</Attributes>

</ClassObject>
Using JSPs 7-11

Sample Files for the Insurance Form Application
Sample Code: claim1.xml, claim2.xml
These two files, claim1.xml and claim2.xml, are the document files that create
two specific instances of the InsuranceForm class.

<?xml version = '1.0’ standalone = 'yes'?>
<!-- claim1.xml -->
<InsuranceForm>

<Name>Juana Angeles</Name>
<ClaimNumber>35093</ClaimNumber>
<ClaimType>Car Accident</ClaimType>
<FolderPath>/public/examples/insuranceApp/claims</FolderPath>

</InsuranceForm>

<?xml version = '1.0’ standalone = 'yes'?>
<!-- claim2.xml -->
<InsuranceForm>

<Name>Kevin Chu</Name>
<ClaimNumber>41111</ClaimNumber>
<ClaimType>Car Accident</ClaimType>
<FolderPath>/public/examples/insuranceApp/claims</FolderPath>

</InsuranceForm>

Sample Code: login.jsp
This login.jsp file is a JSP that provides for user login and validation. It calls the
InsuranceLogin.java file. Note that "IfsHttpLogin" is the default login Bean
name used for the Oracle iFS Web interface.

<%@ page import = "ifsdevkit.sampleapps.insurance.InsuranceLogin" %>
<%@ page import = "oracle.ifs.adk.security.IfsHttpLogin" %>

<html><head>

<jsp:useBean id="inslogin" scope="session"
class="ifsdevkit.sampleapps.insurance.InsuranceLogin" />
<jsp:setProperty name="inslogin" property="*"/>

<%
String REDIRECT_PATH = "/public/examples/insuranceApp/claims";
boolean loggedIn = false;
if (inslogin.getSession() != null && inslogin.getResolver() != null)
{
// Use existing insurance login
loggedIn = true;

}

7-12 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
else
{
// No existing insurance login
IfsHttpLogin login = (IfsHttpLogin)

request.getSession(true).getValue("IfsHttpLogin");
if (login != null && login.getSession() != null && login.getResolver() !=

null)
{
// Use existing IfsHttpLogin login
inslogin.init(login.getSession(), login.getResolver());
loggedIn = true;

}
}
if (!loggedIn)
{
String username = request.getParameter("username");
String password = request.getParameter("password");
if (username != null && password != null)
{
// Login using username/password
try
{
inslogin.init(username, password, "IfsDefault");
request.getSession(true).putValue("IfsHttpLogin", inslogin);
loggedIn = true;

}
catch (Exception e)
{

%>
<SCRIPT LANGUAGE="JavaScript1.2">

alert("The username or Password was not valid, please try again.");
</SCRIPT>
<%

}
}

}
if (loggedIn)
{
// Redirect to the directory where the claim files reside
response.sendRedirect(REDIRECT_PATH);

}
else
{

%>
<title>Insurance Demo App Login</title>
Using JSPs 7-13

Sample Files for the Insurance Form Application
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF">
<form METHOD=POST NAME="loginform" ACTION="login.jsp">
<table>
<tr>
<td>Username:</td>
<td><input type="text" name="username" value=""></td>

</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="password" value=""></td>

</tr>
<tr>
<td> </td>
<td> </td>

</tr>
<tr>
<td>
<input type="submit" value="Log in">

</td>
<td>
<input type="reset" value="Reset">

</td>
</tr>

</table>
</form>

</body>
</html>

<% } %>

Sample Code: InsuranceLogin.java
This sample file, InsuranceLogin.java, creates the Java Bean that is called by
login.jsp, the corresponding JSP. This Java Bean implements the standard Oracle
iFS login interface, IfsHttpLogin.

/* --InsuranceLogin.java-- */
package ifsdevkit.sampleapps.insurance;

import java.util.Locale;
import javax.servlet.http.HttpSessionBindingEvent;
7-14 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
import oracle.ifs.beans.DirectoryUser;
import oracle.ifs.beans.FolderPathResolver;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.beans.LibraryService;
import oracle.ifs.common.CleartextCredential;
import oracle.ifs.common.ConnectOptions;
import oracle.ifs.common.IfsException;
import oracle.ifs.adk.security.IfsHttpLogin;

/**
* The login bean for the Insurance demo app.
* <p>
* This class provide the login info. The class implements the
* <code>IfsHttpLogin</code> interface so it can share login data with other
* login beans.
*
* @see IfsHttpLogin
*/

public class InsuranceLogin implements IfsHttpLogin
{
/**
* The <code>LibrarySession</code>.
*/
private LibrarySession m_session;

/**
* The <code>FolderPathResolver</code>.
*/
private FolderPathResolver m_resolver;

/**
* Default constructor required by the jsp spec for the USEBEAN tag
*
* @exception IfsException
*/
public InsuranceLogin()
throws IfsException
{
}

/**
* Make a connection to iFS
*
* @param username The username to be used for login.
Using JSPs 7-15

Sample Files for the Insurance Form Application
*
* @param password The password to be used for login.
*
* @param server The server to be used for login.
*
* @exception IfsException if operation failed.
*/
public void init(String username, String password, String serviceName)
throws IfsException
{
LibraryService service = new LibraryService();

CleartextCredential me = new CleartextCredential(username, password);
ConnectOptions connection = new ConnectOptions();
connection.setLocale(Locale.getDefault());
connection.setServiceName(serviceName);
m_session = service.connect(me, connection);

m_resolver = new FolderPathResolver(m_session);

m_resolver.setRootFolder();

DirectoryUser user = m_session.getDirectoryUser();
if (user.isAdminEnabled())
m_session.setAdministrationMode(true);

}

/**
* Initialize the login bean.
* <p>
* The default constructor does not set the necessary fields so it needs
* to be set instantiation.
*
* @param session The <code>LibrarySession</code> object.
*
* @param resolver The <code>FolderPathResolver</code> object.
*
*/
public void init(LibrarySession session, FolderPathResolver resolver)
{
m_session = session;
m_resolver = resolver;

}

/**
7-16 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
* Return the login's session object.
*
* @return The <code>LibrarySession</code> object.
*/
public LibrarySession getSession()
{
return m_session;

}

/**
* Return the login's path resolver.
*
* @return The <code>FolderPathResolver</code> object.
*/
public FolderPathResolver getResolver()
{
return m_resolver;

}

/**
* Called when this object is bound to the HTTP session object.
*
* @param event The event when the object is bound to the Http session.
*/
public void valueBound(HttpSessionBindingEvent event)
{
// do nothing

}

/**
* Called when this object is unbound from the HTTP session object.
*
* @param event The event when the object is unbound to the Http session.
*/
public void valueUnbound(HttpSessionBindingEvent event)
{
m_resolver = null;
try
{
if (m_session != null)
{
m_session.disconnect();

}
}
catch (IfsException e)
Using JSPs 7-17

Sample Files for the Insurance Form Application
{
e.printStackTrace();

}
finally
{
m_session = null; // release the resources

}
}

}

Sample Code: logout.jsp
This sample file, logout.jsp, is a JSP that provides for user logout and a graceful
exit from the program.

<%@ page import = "ifsdevkit.sampleapps.insurance.InsuranceLogin" %>
<%@ page import = "oracle.ifs.adk.security.IfsHttpLogin" %>

<html><head>

<%
Object login = request.getSession(true).getValue("inslogin");
if (login != null)
{
// Remove insurance login
request.getSession(true).removeValue("inslogin");
Object ifsLogin = request.getSession(true).getValue("IfsHttpLogin");
if (ifsLogin != null && ifsLogin == login)
{ // Only remove IfsHttpLogin if it is the same login bean
// Remove IfsHttpLogin login
request.getSession(true).removeValue("IfsHttpLogin");

}
}

%>
<title>Insurance Demo App Logout</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF">
<form METHOD=POST NAME="logout" ACTION="login.jsp">
<table>
<tr>
<td><h3>You are now logged out.</h3></td>

</tr>
<tr>
7-18 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
<td> </td>
</tr>
<tr>
<td>
<input type="submit" value="Log in">

</td>
</tr>

</table>
</form>

</body>
</html>

Registering a Java Server Page Using Oracle iFS Manager
To register a Java Server Page using Oracle iFS Manager, follow these steps:

1. From the Oracle iFS Manager Object menu, choose Register.

2. From the Select Object Type window, choose Java Server Page (JSP) Lookup.

3. From the Java Server Page (JSP) Lookup Registry window, choose Add.

4. In the Java Server Page (JSP) Lookup Entry window, specify the attributes
according the JSP Attributes table.

To register a JSP, specify the following three attributes:

5. Click OK.

Attribute Description Examples

Classname Name of the custom class that
uses this JSP. Case-sensitive.

INSURANCEFORM

Mimetype MIME type and subtype of files
this JSP can render, in the
format:
MyMIMEType1/MyMIMEType2

MyMIMEType1 specifies a main
MIME type, such as "text";
MyMIMEType2 specifies a MIME
subtype, such as "HTML".

text/HTML
video/quicktime

To specify that all MIME types can
be rendered, use */*:

INSURANCEFORM.*/*

JSP pathname Location of the compiled JSP. /ifs/jsp-bin/InsuranceForm.jsp
Using JSPs 7-19

Sample Files for the Insurance Form Application
Registering a Java Server Page Using XML
This sample file, RegisterJSP.xml, registers a JSP, associating the JSP with a
specific classname and MIME type.

To register a JSP using XML, write an XML file to update the JspLookup
PropertyBundle, adding a mapping between a specific classname and MIME type
(INSURANCEFORM.*/*) and its associated JSP (InsuranceForm.jsp).

<?xml version="1.0" standalone="yes"?>
<!--RegisterJSP.xml-->
<PROPERTYBUNDLE>

<UPDATE RefType="valuedefault">JspLookup</UPDATE>
<PROPERTIES>

<PROPERTY ACTION="add">
<NAME>INSURANCEFORM.*/*</NAME>
<VALUE DataType="String">/ifs/jsp-bin/InsuranceForm.jsp</VALUE>

</PROPERTY>
</PROPERTIES>

</PROPERTYBUNDLE>

Sample Code: InsuranceForm.jsp
This sample file, InsuranceForm.jsp, includes the following:
■ HTML code to govern the display of the insurance form.
■ A call to the Java Bean InsuranceBean.java, which provides the

information from the insurance form stored in the repository.

<HTML>
<!-- InsuranceForm.jsp-->
<%@ page import="ifsdevkit.sampleapps.insurance.InsuranceBean" %>
<%@ page import="oracle.ifs.beans.LibrarySession" %>
<%@ page import="oracle.ifs.beans.FolderPathResolver" %>
<%@ page import="oracle.ifs.adk.security.IfsHttpLogin" %>

<jsp:useBean id="ibean" scope="session"
class="ifsdevkit.sampleapps.insurance.InsuranceBean" />
<jsp:useBean id="inslogin" scope="session"
class="ifsdevkit.sampleapps.insurance.InsuranceLogin" />

<HEAD>
<TITLE>Oracle iFS</TITLE>

</HEAD>
<BODY>
<%
7-20 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
LibrarySession sess = null;
FolderPathResolver resolver = null;
if (inslogin != null && inslogin.getSession() != null &&

inslogin.getResolver() != null)
{
sess = inslogin.getSession();
resolver = inslogin.getResolver();

}
else // Not logged in the Insurance App but may be logged in other

application.
{
IfsHttpLogin login =

(IfsHttpLogin)request.getSession(true).getValue("IfsHttpLogin");
if (login != null && login.getSession() != null && login.getResolver() !=

null)
{
sess = login.getSession();
resolver = login.getResolver();

}
}
String path = request.getParameter("path");
if (path == null || sess == null || resolver == null)
{

response.sendRedirect("/ifs/jsp-bin/ifsdevkit/sampleapps/insurance/login.jsp");
}
else
{
ibean.init(sess, resolver, path);

%>
<TABLE>
<TR>
<TH ALIGN="left">Name:</TH><TD ALIGN="left"><%= ibean.getName() %></TD>
</TR>
<TR>
<TH ALIGN="left">ClaimType: </TH><TD ALIGN="left"> <%= ibean.getClaimType() %>
</TD>
</TR>
<TR>
<TH ALIGN="left">ClaimNumber: </TH><TD ALIGN="left"> <%= ibean.getClaimNumber()
%> </TD>
</TR>
</TABLE>

</BODY>
Using JSPs 7-21

Sample Files for the Insurance Form Application
</HTML>

<%
}

%>

Sample Code: InsuranceBean.java
This sample code, InsuranceBean.java, creates the JavaBean that is called by
InsuranceForm.jsp, the corresponding JSP. This JavaBean retrieves three
attributes of the insurance form: Name, ClaimNumber, and ClaimType.
/*---InsuranceBean.java---*/
package ifsdevkit.sampleapps.insurance;

import oracle.ifs.beans.ClassObject;
import oracle.ifs.beans.DirectoryUser;
import oracle.ifs.beans.FolderPathResolver;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.beans.PublicObject;
import oracle.ifs.common.AttributeValue;
import oracle.ifs.common.IfsException;

public class InsuranceBean
{
/**
* The name for the claim.
*/
protected String m_name;

/**
* The type of the claim.
*/
protected String m_claimType;

/**
* The claim number.
*/
protected Long m_claimNumber;

/**
* Constructor
*/
public InsuranceBean()
{

7-22 Oracle Internet File System Developer’s Guide

Sample Files for the Insurance Form Application
}

/**
* Initialize the bean and populate the necessary fields.
*
* @param session The <code>LibrarySession</code> object.
*
* @param resolver The <code>FolderPathResolver</code> object.
*
* @param path The path to the insurance object.
*
* @exception IfsException Thrown if operation failed.
*/
public void init(LibrarySession session, FolderPathResolver resolver, String

path)
throws IfsException
{
try
{
PublicObject insuranceObj = resolver.findPublicObjectByPath(path);
ClassObject co = insuranceObj.getClassObject();

m_name = insuranceObj.getName();
AttributeValue av = insuranceObj.getAttribute("CLAIMTYPE");
if (!av.isNullValue())
{
m_claimType = av.getString(session);

}
av = insuranceObj.getAttribute("CLAIMNUMBER");
if (!av.isNullValue())
{
m_claimNumber = new Long(av.getLong(session));

}
}
catch (IfsException e)
{
e.printStackTrace();
throw e;

}
}

/**
* Return name for the claim.
*
* @return The claim name.
Using JSPs 7-23

Sample Files for the Insurance Form Application
*/
public String getName()
{
return m_name;

}

/**
* Return the claim type.
*
* @return The claim type in a <code>String</code>.
*/
public String getClaimType()
{
return m_claimType;

}

/**
* Return the claim number.
*
* @return The claim number as a <code>Long</code>.
*/
public Long getClaimNumber()
{
return m_claimNumber;

}
}

7-24 Oracle Internet File System Developer’s Guide

Using A
8

Using Agents

This chapter covers the following topics:

■ What Is an Agent?

■ How Do Agents Work?

■ Classes and Methods for an Event Agent

■ Writing an Event Agent

■ Registering an Agent with ServerManager

■ Event Agent (Complete Code Example)
gents 8-1

What Is an Agent?
What Is an Agent?
An agent is a Java program used to automate a task. More specifically, an agent lets
an application respond to specific actions taken within the Oracle Internet File
System environment. For example, an agent may respond when an instance of a
certain document class is inserted, updated, or deleted in the repository.

One common use of agents is to provide notifications. For example, application
design may require that when anyone inserts a document in a certain folder, a
notification should be sent to a specific person, reporting that fact. An example of
using an agent to provide notification is to implement the following business rule:
"Whenever a purchase order is placed in the "Ready for Approval" folder, a message
should be sent to the vice president of the division, who approves all purchase
orders." To implement this functionality in Oracle iFS, write an agent.

What Triggers an Agent’s Action?
You can think of agents as belonging to certain categories, depending on what
triggers their actions. Agents can be triggered by time, events, or both. Because
most custom agents are event-based agents, the remainder of this chapter will focus
on event agents.

Time-Based Agents
The action of a time-based agent is triggered by a timer. A typical use for a
time-based agent is to implement clean-up procedures. An example of a time-based
agent is the Oracle iFS standard Garbage Collector agent, which can be configured
to run one or more times each day. Time-based agents can be used to improve
system performance by scheduling tasks that may be CPU-intensive to run outside
of peak hours.

Event-Based Agents
A typical use for an event-based agent is to provide a log of changes to a sensitive
file. An example of this type of event agent is a custom agent that provides a change
log for accounting records, indicating that a specific file was updated at a certain
time by a certain person.

Combination Agents
A single agent can be written to respond to both time-related and event-based
actions. An example of this type of agent is the Oracle iFS Quota agent. The Quota
agent is designed to perform a quota check based on "New Document" events, and
also to perform periodic timed checks on users who are logged into Oracle iFS.
8-2 Oracle Internet File System Developer’s Guide

How Do Agents Work?
How Do Agents Work?
Agents differ from other programs in that they do not run independently. The
ServerManager is responsible for running the agent. The close interaction between
the ServerManager and the agent program can be summarized as follows:

■ The set of agents is determined by the ServerManager configuration file.

■ Agent programs run under the control of the ServerManager. The
ServerManager is used to start, stop, suspend, or resume agents. The
ServerManager controls three types of agents:
■ Agents that run protocol servers
■ Oracle iFS agents
■ Custom agents

■ When an agent is started, the agent program registers with the Oracle iFS
repository, to receive the events the agent will act upon, and with the
ServerManager to receive timed events.

The SalaryFileLog Agent at Work
To understand the process of using an agent, consider the example of an agent
created to log changes to a sensitive file called CurrentSalary. Assume that:

■ A custom Document subclass called CurrentSalary has been defined.
■ A SalaryFileLog agent has been developed using the iFS agent framework and

API. The SalaryFileLog agent class contains the code for the action this agent
should take. Specifically, the agent adds a line to a logfile whenever a
CurrentSalary object is created, changed, or deleted.

■ The SalaryFileLog agent has been registered with ServerManager by adding it
to the ServerManager configuration file.

Here is the sequence of events that will occur:

1. Once the agent is started and registered, the agent "goes to sleep," waiting for
events from the repository.

2. When the CurrentSalary file is updated, the Oracle iFS repository "wakes up"
the SalaryFileLog agent by notifying the agent that a registered event has
occurred.

3. The SalaryFileLog agent processes the event, adding a line to a log file. When
the agent has completed its action, it "goes to sleep" again until the Oracle iFS
repository notifies it that the next registered event has occurred.
Using Agents 8-3

Classes and Methods for an Event Agent
These three steps repeat until the ServerManager stops the agent.

Classes and Methods for an Event Agent
Because agents interact so closely with the ServerManager, it may be useful to look
at writing a custom agent in terms of providing the items the ServerManager
requires to successfully run the agent. The following table summarizes what the
ServerManager requires and lists the Oracle iFS API classes or methods used to
meet the requirement.

Step Requirement Related Class or Method

1. A Java class that:
- Extends IfsAgent
- Implements

IfsEventHandler

oracle.ifs.agents.common.IfsAgent
oracle.ifs.common.IfsEventHandler

2. To instantiate the class, the
agent
needs a constructor.
The agent must register to
publish status.

registerDetails()

3. A valid Oracle iFS
connection.

connectSession()

4, A method to register this
agent for the object or
objects it will act upon:
- A specific object
- All instances of a specific
class
Corresponding methods

to deregister
the agent.

LibrarySession.registerEventHandler()
LibrarySession.registerClassEventHandler()

LibrarySession.deregisterEventHandler()
LibrarySession.deregisterClassEventHandler()

5. A method to respond to a
Start request:
- Start the agent and call

its methods

run()

6. Methods to handle the
agent cycle:
- Handle requests
- Process events
- Wait

handleRequests()
processEvents()
waitAgent()
8-4 Oracle Internet File System Developer’s Guide

Writing an Event Agent
Writing an Event Agent
Here is the structure of a typical event agent program:
1. Declare the Class
2. Create the Constructor
3. Write the run() Method
4. Handle a Stop Request
5. Handle a Suspend Request
6. Handle a Resume Request
7. Handle Oracle iFS Events

Once the agent has been created, you must configure the ServerManager to
instantiate and run the agent. For information about this process, see "Registering
an Agent with ServerManager".

The event agent sample code used to illustrate this process is for the ColorAgent,
which is registered to receive notice of events on instances of the class
MyColorObjects.

7. Methods to deal with
event listening:
- To enable event listening
- To disable event

listening

enableEventListening()
disableEventListening()

8. Event handling:
- A method to receive the

event
and queue it.

- A method to process the
event.
- Custom code for

processing

oracle.ifs.common.IfsEventHandler.
handleEvent()
queueEvent()
processEvent()

A custom method, such as logObjectFolderPath()

9. Response to
ServerManager requests:
- Publish detail in

response to a Start
request

- Stop request
- Clean up after the agent

runs
- Suspend request
- Resume request

publishStatusDetail()

handleStopRequest()
postRun()
handleSuspendRequest()
handleStopRequest()

Step Requirement Related Class or Method
Using Agents 8-5

Writing an Event Agent
Start with Template Code
The simplest way to write an agent is to use Oracle iFS sample code as a template.
The Oracle iFS sample code provides a structure to manage interaction with the
ServerManager, allowing you to focus on creating the custom code for your agent’s
specific task.

The agent template sample code, called LoggingAgent.java, is available in the
Documentation section of the Oracle iFS listing on OTN (Oracle Technology
Network).

To aid in planning your custom agent, the following table specifies, for each section,
whether the section:
■ Uses the generic Oracle iFS template code.
■ Requires custom code.

Declare the Class
Every event agent must:
■ Extend the class oracle.ifs.agents.common.IfsAgent.
■ Implement the interface oracle.ifs.common.IfsEventHandler.

The IfsEventHandler interface defines the methods that must be provided for a
custom event agent. Both event agents and combination agents, ones that react to
both class-based and time-based events, must include both the class and the
interface in the class declaration.

Note: The agent name must be one word; no embedded spaces are allowed.

Section
Use Generic
Code As Is

Optionally Override
Generic Code

Custom Code
Required

1. Declare the Class Yes

2. Create a Constructor Yes

3. Write the run() Method Yes

4. Handle a Stop Request Yes

5. Handle a Suspend Request Yes

6. Handle a Resume Request Yes

7. Handle Oracle iFS Event Yes
8-6 Oracle Internet File System Developer’s Guide

Writing an Event Agent
The Class Declaration
This sample provides all of the required code for this section.

Sample Code: The Class Declaration
public class ColorAgent extends IfsAgent implements IfsEventHandler

Create the Constructor
Every agent must implement the standard constructor for an agent.

The Constructor Method
This sample provides all of the required code for this section. Simply replace the
agent name ColorAgentwith the name of your custom agent.

Sample Code: The Constructor Method
public ColorAgent(String name, String[] args, String sectionName,

ServerManager manager) throws IfsException
{

super(name, args, sectionName, manager);
}

Write the run() Method
The following code sample demonstrates registering the agent with the
ServerManager and activating event listening for this agent.
The run() method is closely associated with several other methods, so those code
samples are also shown here:

■ The run() method calls enableEventListening() to register for specific events.
■ When the ServerManager breaks out of the run() loop, postRun() is called.
■ The postRun() method calls disableEventListening() to deregister the agent.

The run() Method
This code sample performs the following tasks:
■ Perform setup tasks:

■ Write a message to the log file for this agent.
■ Perform any agent-specific initialization.
■ Ensure that a connection exists.
Using Agents 8-7

Writing an Event Agent
■ Enable event listening.
■ Call the ServerManager to publish that this agent is available.

■ Start the run() loop by checking whether the agent has been instructed to stop.
(If so, break out at this point.) If the agent is not stopped:
■ Check for any ServerManager requests (Start, Resume, Suspend, Stop).
■ Write a message to the log file when agent status changes.
■ Check for any events to process (a call to the processEvents() method).
■ Once an event is processed, return to a Wait state.

To provide a concise example, this sample does not include exception handling for
the run() method. Because it is particularly serious if errors occur in the run()
method, the full code example includes comprehensive exception processing. To
view the exception handling section, see the full text in the "Event Agent (Complete
Code Example)", at the end of this chapter.

Adding Custom Code The following sample provides the minimum required code for
this section.You can add additional custom code in this section to perform any
agent-specific initialization required.

Sample Code: The run() Method
public void run()
{

try
{

log("Start request");

// perform any agent-specific startup initialization
// (none currently)

// ensure a connection
connectSession();

// enable event listening
enableEventListening();

// declare ourselves up
publishStatusDetail();

while (true)
{

if (!isAlive())
{

8-8 Oracle Internet File System Developer’s Guide

Writing an Event Agent
log("Exiting handle loop");
break;

}

try
{

// handle any status changes first
handleRequests();

// process events
processEvents();

// wait for something to do
waitAgent();

}
}

}
catch (Exception e)
{
}

}

The postRun() Method
The following code sample is automatically executed by the ServerManager when
the agent breaks out of or returns from the run() method. It provides a place to add
code for any required clean-up.
In this code sample, the following tasks are performed:
■ Any special shutdown tasks required by your custom agent.
■ Disable EventListening.
■ Disconnect the session.

Sample Code: The postRun() Method

public void postRun()
{

super.postRun();

log("postRun");

try
{

// Perform any special shutdown tasks (none currently)
Using Agents 8-9

Writing an Event Agent
// Disable event listening
disableEventListening();

// Disconnect our session.
disconnectSession();

}
catch (Exception e)
{
}

}

The enableEventListening() Method
The following code sample registers this agent for events on a specific class by
calling the registerClassEventHandler() method. In this code sample, the following
tasks are performed:
■ The registerClassEventHandler() method is called for the Oracle iFS class of

interest. This section of the code allows the agent to receive events for all new
instances of the registered class.

■ A selector object is created to hold the results of a search for existing objects of
the specified class. This section of the code allows the agent to receive events for
all existing instances of the registered class.

Sample Code: The enableEventListening() Method
public void enableEventListening() throws IfsException
{

try
{

Library Session sess = getSession();
// Register for events on all new MyColorObjects.
Collection c = sess.getClassObjectCollection();
ClassObject myColorClass =

(ClassObject)c.getItems(MyColorObject.CLASS_NAME);
sess.registerClassEventHandler(myColorClass, true, this);

// Also select all existing MyColorObject objects so that we
// get events on them also.
Selector selector = new Selector(sess);
selector.setSearchClassname(MyColorObject.CLASS_NAME);
selector.setSearchSelection(null);
selector.getItems();

}

8-10 Oracle Internet File System Developer’s Guide

Writing an Event Agent
catch (Exception e)
{
}

}

The disableEventListening() Method
The following code performs the corresponding deregistration for this agent by
calling the deregisterClassEventHandler() method.

Sample Code: The disableEventListening() Method
public void disableEventListening()
{

try
{

LibrarySession sess = getSession();
// Deregister for events on all MyColorObjects.
Collection c = sess.getClassObjectCollection();
ClassObject myColorClass =

(ClassObject)c.getItems(MyColorObject.CLASS_NAME);
sess.deregisterClassEventHandler(myColorClass, true, this);

}
catch (Exception e)
{
}

}

Handle a Stop Request
Every agent must handle the three possible requests from the ServerManager:
■ Stop
■ Suspend
■ Resume

The following code sample demonstrates handling a Stop request from the
ServerManager.

The handleStopRequest() Method
This section of the agent program makes the call to the
IfsAgent.handleStopRequest() method, which logs an indication of the agent’s
status change.
Using Agents 8-11

Writing an Event Agent
Adding Custom Code The following sample provides the minimum required code for
this section.You can add additional custom code in this section to perform custom
tasks as part of a Stop request.

Sample Code: The handleStopRequest() Method
protected void handleStopRequest() throws IfsException
{

// the super sets our status to "stopping"
super.handleStopRequest();
log("Stop request");

}

Handle a Suspend Request
The following code sample demonstrates handling a Suspend request from the
ServerManager.

The handleSuspendRequest() Method
This section of the agent program makes the call to the
IfsAgent.handleSuspendRequest() method. In this code sample, the following tasks
are performed:
■ Log an indication of the status change.
■ Disable EventListening.

Adding Custom Code The following sample provides the minimum required code for
this section.You can add additional custom code in this section to perform custom
tasks as part of a Suspend request.

Sample Code: The handleSuspendRequest() Method
protected void handleSuspendRequest() throws IfsException
{

// the super sets our status to "suspended"
super.handleSuspendRequest();

log("Suspend request");

// disable our event listening & timer
disableEventListening();

}

8-12 Oracle Internet File System Developer’s Guide

Writing an Event Agent
Handle a Resume Request
The following code sample demonstrates handling a Resume request from the
ServerManager.

The handleResumeRequest() Method
This section of the agent program responds to a Resume request from the
ServerManager. A Resume request is the opposite of a Suspend request. This section
makes the call to the IfsAgent.handleResumeRequest() method.
In this code sample, the following tasks are performed:
■ Log an indication of the status change.
■ Re-enable event listening.

Adding Custom Code The following sample provides the minimum required code for
this section.You can add additional custom code in this section to perform custom
tasks as part of a Resume request.

Sample Code: The handleResumeRequest() Method
protected void handleResumeRequest() throws IfsException
{

// the super sets our status to "started"
super.handleResumeRequest();

log("Resume request");

// re-enable event listening
enableEventListening();

}

Handle Oracle iFS Events
The Handle Oracle iFS Events section of the agent program consists of two
methods:

■ The handleEvent() method queues the events for processing by the
processEvent() method.

■ The processEvent() method holds the key block of code in the agent program.
Use this method to hold the custom code you write to implement the agent’s
action on an event.
Using Agents 8-13

Writing an Event Agent
The handleEvent() Method
If there is any category of events that you do not want to process, you can use this
method as a filter to exclude those events. In this example, we do not want to
process any MyColorObjects that have been deleted from Oracle iFS.

Sample Code: The handleEvent() Method
public void handleEvent(IfsEvent event)
{

// do not queue any FREE events, but queue all others
if (event.getEventType() != IfsEvent.EVENTTYPE_FREE)
{

queueEvent(event);
notifyAgent();

}
}

The processEvent() Method
The processEvent() method calls the logObjectFolderPath() method to do the actual
work of the agent.

Sample Code: The processEvent() Method
public void processEvent(IfsEvent event) throws IfsException
{

// log the object with its folder path
logObjectFolderPath(event);

}

The logObjectFolderPath() Method
The processEvent() method calls the logObjectFolderPath() method to do the actual
work of the agent, which involves obtaining the pieces of information that make the
message that will be printed to the log file. Because this sample is trivial, we could
have included this code in the processEvent() method. We have shown it as a
separate method because a custom agent might well require several methods to
perform its work.

Because this is sample code, the agent performs the minimal action of printing out
that the agent received the event for the object. However, this is the location where
you should add the code for whatever action you want the agent to take on this
object, such as sending a notification.
8-14 Oracle Internet File System Developer’s Guide

Registering an Agent with ServerManager
Sample Code: The logObjectFolderPath() Method
public void logObjectFolderPath(IfsEvent event) throws IfsException
{

try
{

Long objectId = event.getId();
int eventType = event.getEventType();
MyColorObject colorObject =

(MyColorObject)getSession().getPublicObject(objectId);

// Get any folder path to this object, and log it
String objectPath = colorObject.getAnyFolderPath();
log("Received Event Type " + eventType

+ " on object " + objectPath);
}
catch (Exception e)
{
}

}

Registering an Agent with ServerManager
All agents run within an instance of the Oracle iFS ServerManager. Although the
system administrator will configure definition files for the primary ServerManager,
you as a developer will need to create your own definition (.def) files to test your
custom agents.

During testing, you can run your agent in a standalone mode, using only your
specific .def file. During system integration and for production, you will want to
have the system administrator add your custom agent configuration parameters to
the primary Oracle iFS ServerManager agent definition file.

The following steps present a high-level view of the registration process for running
the agent in standalone mode for testing, assuming that you have already created
and compiled the custom agent class:

1. Log in to the Solaris environment.

2. Create a definition file for your custom agent.

See "Sample Code: Agent Definition File" for a sample definition file,
CustomServerManager.def.

3. Use the following command to run a standalone instance of ServerManager for
your custom agent:
Using Agents 8-15

Registering an Agent with ServerManager
$ ifssvrmgr CustomServerManager.def

In this example, the $ represents the Solaris prompt. At the Solaris prompt,
enter the command ifssvrmgr followed by the name of your .def file.
Substitute the name of your file for CustomServerManager.def in the
example above.

Agent Definition File
The CustomServerManager.def file registers an agent called "ColorAgent" with the
ServerManager. This sample file registers just one custom agent; it could also be
used to register multiple agents. Store this file on the Oracle iFS server machine
wherever .def files for other agents are stored (usually $ORACLE_
HOME/ifs/settings.)

Sample Code: Agent Definition File
; CustomServerManager.def
; This file includes the Color Agent.
;
; ServerManager Configuration Information
ManagerName = CustomServerManager
Interactive = false
Outputfile = /myDirectory/CustomServerManager.log
;
; The name of the agent.
Agents += ColorAgent
;
; Description of the agent.
;
[ColorAgent]
Name = ColorAgent
Class = oracle.ifs.agents.examples.ColorAgent
Start = true

The following table describes the parameters in the agent definition file:

Parameter Description

ManagerName Unique name of this instance of ServerManager.

Interactive Whether or not this instance of ServerManager runs in
interactive mode.
8-16 Oracle Internet File System Developer’s Guide

Event Agent (Complete Code Example)
Testing the Agent
Once the agent is complete and has been registered, your testing scenario will look
something like this:

■ Start ServerManager.
■ Start the custom agent. (In ServerManager, list the agents to verify that your

agent has been started.)
■ Perform a task that your agent should detect.
■ Verify that your agent carries out the prescribed task, such as printing a line to

the log file.

Event Agent (Complete Code Example)
The following agent, ColorAgent, is registered to receive notice of events on objects
of the class MyColorObjects.

Sample Code: Event Agent
/* --ColorAgent.java-- */
/package oracle.ifs.agents.examples;

import oracle.ifs.common.Collection;
import oracle.ifs.common.IfsEvent;
import oracle.ifs.common.IfsEventHandler;
import oracle.ifs.common.IfsException;
import oracle.ifs.common.ParameterTable;

Outputfile Fully qualified pathname for the log file for this instance
of ServerManager.

Name Specifies the name of the agent. Must be one word.

Class Specifies the package hierarchy for the agent .class
file. Verify that there is an entry in the CLASSPATH
environment variable that the system can use to locate
the .class file for the custom agent.

Start Sets whether to start the agent automatically when this
instance of ServerManager is started. If set to false, the
agent must be started manually.

Parameter Description
Using Agents 8-17

Event Agent (Complete Code Example)
import oracle.ifs.beans.ClassObject;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.beans.PublicObject;
import oracle.ifs.beans.Selector;

//This is the custom class this agent deals with.
import ifs.demo.colors.type.MyColorObject;

import oracle.ifs.agents.common.IfsAgent;
import oracle.ifs.agents.manager.ServerManager;

/**
* A ColorAgent logs messages according to events that are raised
* on the class, MyColorObject.
*/
public class ColorAgent extends IfsAgent implements IfsEventHandler
{

/**
* Constructs a ColorAgent.
*/
public ColorAgent(String name, String[] args, String sectionName,

ServerManager manager) throws IfsException
{

super(name, args, sectionName, manager);
}

/**
* Runs this ColorAgent.
*/
public void run()
{

try
{

log("Start request");

// perform any agent-specific startup initialization
// (none currently)

// ensure a connection
connectSession();

// enable event listening
enableEventListening();

// declare ourselves up
8-18 Oracle Internet File System Developer’s Guide

Event Agent (Complete Code Example)
publishStatusDetail();

while (true)
{

if (!isAlive())
{

log("Exiting handle loop");
break;

}

try
{

// handle any status changes first
handleRequests();

// process events
processEvents();

// wait for something to do
waitAgent();

}
catch (IfsException e)
{

log("IfsException" + " in handle loop; continuing:");
log(e.toLocalizedString(getSession()));

}
catch (Exception e)
{

log("Exception" + " in handle loop; continuing:");
log(e.getMessage());

}
}

}
catch (IfsException e)
{

// exception that takes us out of the run loop;
// this will cause a stop.
log("IfsException" + " in run(): ");
log(e.toLocalizedString(getSession()));
printStackTrace(e);

}
catch (Exception e)
{

// exception that takes us out of the run loop;
// this will cause a stop.
Using Agents 8-19

Event Agent (Complete Code Example)
log("Exception" + " in run(): ");
log(e.getMessage());
printStackTrace(e);

}
}

/**
* Handle the Stop request. Subclasses can override this to
* perform custom tasks as part of a Stop request.
*/
protected void handleStopRequest() throws IfsException
{

// the super sets our status to "stopping"
super.handleStopRequest();

log("Stop request");
}

/**
* Handle the Suspend request. Subclasses can override this to
* perform custom tasks as part of a Suspend request.
*/
protected void handleSuspendRequest() throws IfsException
{

// The super sets our status to "suspended"
super.handleSuspendRequest();

log("Suspend request");

// Disable our event listening
disableEventListening();

}

/**
* Handle the Resume request. Subclasses can override this to
* perform custom tasks as part of a Resume request.
*/
protected void handleResumeRequest() throws IfsException
{

// the super sets our status to "started"
super.handleResumeRequest();

log("Resume request");

// re-enable event listening
8-20 Oracle Internet File System Developer’s Guide

Event Agent (Complete Code Example)
enableEventListening();
}

/**
* Performs post-run tasks for this ColorAgent.
*/

public void postRun()
{

super.postRun();

log("postRun");

try
{

// perform any special shutdown tasks (none currently)

// disable event listening
disableEventListening();

// Disconnect our session.
disconnectSession();

}
catch (Exception e)
{

log("Exception" + " in postRun:");
log(e.getMessage());

}
}
/**
* Enable listening for MyColorObject events
*/
public void enableEventListening() throws IfsException
{

try
{

// Register for events on all MyColorObjects
Collection c = getSession().getClassObjectCollection();
ClassObject myColorClass =

(ClassObject)c.getItems(MyColorObject.CLASS_NAME);
getSession().registerClassEventHandler(myColorClass, true, this);

// also select all MyColorObject objects so that we get events
// on any of them
Selector selector = new Selector(getSession());
selector.setSearchClassname(MyColorObject.CLASS_NAME);
Using Agents 8-21

Event Agent (Complete Code Example)
selector.setSearchSelection(null);
selector.getItems();

}
catch (IfsException e)
{

log("IfsException" + " enabling Event Listening; re-throwing:");
log(e.toLocalizedString(getSession()));
printStackTrace(e);
throw e;

}
catch (Exception e)
{

log("Exception" + " enabling Event Listening; re-throwing:");
log(e.getMessage());
printStackTrace(e);

// throw "agent unable to enable event listening"
throw new IfsException(46002, e);

}
}

/**
* Disable listening for MyColorObject events
*/
public void disableEventListening()
{

LibrarySession session = getSession();
try
{

// Deregister for events on all MyColorObjects.
Collection c = getSession().getClassObjectCollection();
ClassObject myColorClass =

(ClassObject)c.getItems(MyColorObject.CLASS_NAME);
session.deregisterClassEventHandler(myColorClass, true, this);

}
catch (Exception e)
{

log("Exception" + " disabling Event Listening:");
log(e.getMessage());

}
}

/**
* Handles events on MyColorObjects. This queues the events for
* processing by the main agent thread.
8-22 Oracle Internet File System Developer’s Guide

Event Agent (Complete Code Example)
*/
public void handleEvent(IfsEvent event)
{

// do not queue any FREE events, but queue all others
if (event.getEventType() != IfsEvent.EVENTTYPE_FREE)
{

queueEvent(event);
notifyAgent();

}
}

/**
* Process the de-queued event. The processing is simply to log
* a message with the object's name and folder path.
*
* @param event The event to log
*
*/
public void processEvent(IfsEvent event) throws IfsException
{

// log the object with its folder path
logObjectFolderPath(event);

}
/**
* log information about an object received as an event.
*
* @param event the event to log
*
*/
public void logObjectFolderPath(IfsEvent event) throws IfsException
{

try
{

Long objectId = event.getId();
int eventType = event.getEventType();
MyColorObject colorObject =

(MyColorObject)getSession().getPublicObject(objectId);

// get any folder path to this object, and log it
String objectPath = colorObject.getAnyFolderPath();
log("Recieved Event Type " + eventType

+ " on object " + objectPath);
}
catch (IfsException e)
{

Using Agents 8-23

Event Agent (Complete Code Example)
// exception getting the information about the obejct
// referred in the event
log("IfsException" + " in processEvent(): ");
log(e.toLocalizedString(getSession()));

}
catch (Exception e)
{

// exception getting the information about the obejct
// referred in the event
log("Exception" + " in processEvent(): ");
log(e.getMessage());

}
}

}
//EOF
8-24 Oracle Internet File System Developer’s Guide

Using Ove
9

Using Overrides

This chapter covers the following topics:

■ What Is an Override?

■ Before You Begin Working with Overrides

■ Override Methods

■ Writing an Override

■ Sample Code: A PreInsert Override
rrides 9-1

What Is an Override?
What Is an Override?
Overrides belong to the category of Oracle Internet File System customization,
which includes:
■ Creating custom classes (types)
■ Parsers and renderers
■ Agents
■ Overrides
Of these four types of customization, overrides present a significant leap in
complexity. Except for renderers, the other types of customization take place on the
client, or "bean-side." These more common types of customization use the extensive
classes found in the oracle.ifs.beans package. With overrides, we tackle
"server-side" processing, using a more limited published API.

An override is a method that allows an application program to intervene in a
predefined way with the standard repository operations:
■ Insert
■ Update
■ Free

Note: For the 1.1 release of Oracle iFS, overrides are applicable only to Insert,
Update, and Free operations. No overrides are available for other database
operations, such as copy, add item to folder, or remove item from folder. This
functionality is planned for future releases of the product.

How Pre- Overrides Work
The Pre- overrides work by allowing you to interrupt the standard flow of
processing on the server side at certain predefined points. At these points, you can
specify custom processing to occur before one or more of the standard database
operations takes place. For example, your custom validation routine might be
incorporated into both PreInsert and PreUpdate overrides.

Using Pre- Overrides
The behavior of the actual Insert, Update, and Free operations is complex, and to
override the actual operations risks producing unintended and unwanted results.

However, in almost every circumstance, application requirements can be met quite
safely by using Pre- methods to interact with the repository immediately before the
specified operation. Because the Pre- overrides are the most frequently used, the
balance of this chapter focuses on Pre- overrides.
9-2 Oracle Internet File System Developer’s Guide

Before You Begin Working with Overrides
The following table presents an example of how each override method might be
used.

Before You Begin Working with Overrides
Because working with overrides is a complex task, we recommend that you
postpone tackling overrides until you have had considerable experience with
Oracle iFS and its Java API. Specifically, we suggest that your background should
include knowledge and hands-on experience in the following areas:

■ Sufficient familiarity with the bean-side API to know how Oracle iFS objects
work:
■ How objects are created.
■ How object attributes are set.
■ How related objects, such as Documents and Folders, work together.

■ Sufficient familiarity with attribute values and the definition classes to know
how they work together:

■ How to use the AttributeValue class, the Oracle iFS data structure that
holds attribute values in a definition object.

■ How to set and get bean-side attribute values.
■ How to set and get server-side attribute values.
■ How to work with sets of attribute values.
■ How to use basic datatypes to define attribute values.
■ How to use value defaults.
■ How to use value domains.

■ Familiarity with the Oracle iFS transaction model.

Providing this range of information is beyond the scope of this Guide. To gain the
experience required to tackle overrides, we suggest beginning with several
less-complex Oracle iFS applications. This hands-on experience, combined with

Operation Override Method Usage Example

Insert extendedPreInsert() To add a certain attribute with a specified value to
every new instance of a custom document class.

Update extendedPreUpdate() Same as for Insert, to extend this processing to Update
operations. Or to provide special validation on
Update.

Free extendedPreFree() To write a copy to a Deletions log file.
Using Overrides 9-3

Before You Begin Working with Overrides
attendance at Oracle iFS training, will provide the needed familiarity with the
Oracle iFS objects and the way they work together.

Review of Attributes
If you have created Oracle iFS objects using the classes of the Oracle iFS API, you
will recall the two-phase method of object creation:

1. Create a Definition object.
2. Pass the Definition object to the method that actually creates the object.

For example, for a document, you would first create a DocumentDefinition object,
then pass that object as an argument to the LibrarySession.createPublicObject()
method. For more information, see "Creating a New Document" in Chapter 3,
"Working with Documents".

Attributes and Server-Side Classes
In the Oracle iFS Java class hierarchy each Oracle iFS object has two representations:
■ The bean-side representation, known by the object name, such as Document.
■ The server-side representation, known by the object name preceded with "S_",

such as S_Document.

When you work with overrides, you are working with objects in the Oracle iFS
repository. In this context, you use the S_ classes, such as S_Document, rather than
the familiar bean-side classes, such as Document.

Attributes and Special Options
The function of the Definition object is to specify the object’s attributes. When you
create a DocumentDefinition object, you set two types of information:

■ Document attributes:

■ Document attributes, such as Name and Description, are the metadata
about the document that can be easily searched.

■ To set an attribute, use the generic setAttribute() method defined in the
LibraryObjectDefinition class.

■ Special options:

■ Special options, such as AddToFolderOption, specify detailed information
about the document but do not provide attribute values.
9-4 Oracle Internet File System Developer’s Guide

Override Methods
■ To set special options, use the specific method provided in the Definition
class, such as the oracle.ifs.beans.PublicObjectDefinition.
setAddToFolderOption().

■ Although special options are set on the bean-side, they are handled on the
server side, using the S_LibraryObjectDefinition object.

User-set Attributes and Derived Attributes
Attributes can also be divided into two categories based on their origin:

■ User-set attributes
User-set attributes are attributes that are set by and can be updated by the user,
such as the object Name and Description.

You can set all the user-set attributes using the bean-side Definition object.

■ Derived attributes

Derived attributes are attributes that are set by and can only be updated by the
system, such as Creator. These attributes are derived from a source other than
the user. For example, Creator is derived from the current logon ID.

To handle the derived attributes, you must use the server-side class,
S_DocumentDefinition.

Override Methods
The override methods provide pre-processing for the standard database operations:
■ Insert
■ Update
■ Free (for override purposes, use the methods related to Free rather than Delete)

Because overrides by their nature take place on the server-side, all the override
methods are located in the S_LibraryObject class and its subclasses. Just as
oracle.ifs.beans.LibraryObject provides a bean-side Java representation for all the
objects that end users manipulate directly (such as documents and folders),
oracle.ifs.server.S_LibraryObject provides the server-side Java representation for
these same objects.
Using Overrides 9-5

Writing an Override
Writing an Override
To plan an override, first decide which operation or operations you want to
override (Insert, Update, or Free).
To write an override, follow these steps:

1. Declare the Server-side Class.
2. Create the Constructor.
3. Implement the Override Method.

Declare the Server-side Class
Assume you have already created a bean-side custom class called PurchaseOrder
that extends the Document class. Now you decide you want to add some special
validation checks via a PreInsert override.

First you create a server-side Java class, S_PurchaseOrder, to represent your custom
class in the server. S_PurchaseOrder extends S_TieDocument. Tie classes allow you
to "tie" into the class hierarchy at any level, letting you customize without changing
the way the class hierarchy is structured. For more information, see "Tie Classes" in
Chapter 2, "API Overview".

Put this class into a new custom package, such as MyCompany.MyApp.server.
(Do not add this class to the oracle.ifs.server package).

Operation Method Purpose

Insert

extendedPreInsert Performs designated operations before inserting an iFS
object into the database. For example, used to modify
any attributes after the Definition object has been
created but before the Insert takes place.

Update

extendedPreUpdate Performs designated operations before updating an iFS
object in the database.

Free

extendedPreFree Performs designated operations before freeing a
database object. Note that this method is overridden by
classes that need to perform operations before
successfully deleting the rows for the freed instance.
9-6 Oracle Internet File System Developer’s Guide

Writing an Override
Sample Code: Declare the Class
public class S_PurchaseOrder extends S_TieDocument

Create the Constructor
Every override class must implement two constructors:
■ One used for an object that currently exists in the database.
■ One used for an object that has not yet been created in the database.

Sample Code: Constructor
public S_PurchaseOrder(S_LibrarySession session, S_LibraryObjectData data)

throws IfsException

Sample Code: Constructor
public S_PurchaseOrder(S_LibrarySession session, java.lang.Long classID)

throws IfsException

Parameters Datatype Description

session S_LibrarySession Current LibrarySession.

data S_LibraryObjectData Data component

Parameters Datatype Description

session S_LibrarySession Current LibrarySession.

classID Long Class ID for the object that is in the
process of being created.
Using Overrides 9-7

Writing an Override
Implement the Override Method
The S_PublicObject class provides Pre- methods for the standard database
operations. For a complete list, see "Override Methods".

The following table describes the parameters of the Override methods.

Sample Code: Implement the Override Method
public void extendedPreInsert(OperationState opState,

S_LibraryObjectDefinition def) throws IfsException

{
super.extendedPreInsert(opState, def);
//Add your validation code here.

}

The first call after the method begins should be to "super." This call implements
processing from the superclass of this object. In this case, it allows both the
S_Document class and the S_PublicObject class to perform processing.

After that, add any specific validation code that your application requires. For
example, in the custom bean-side class for Purchase Order, you may have added a
setApprover() method. Before you insert the PurchaseOrder object into the
database, you may want to check the value of that Approver, and perform one of
the following actions:

■ Validate that the Approver is correct.
■ Add a default Approver if the current value is null.
■ Change one Approver name to another based on some custom logic.

Parameter Datatype Description

opState OperationState Used by the system to track the current
state of operations.

def S_LibraryObjectDefinition Current object definition to be updated
with system attributes.
9-8 Oracle Internet File System Developer’s Guide

Sample Code: A PreInsert Override
Sample Code: A PreInsert Override
The following sample code provides a brief example of using a PreInsert override to
add server-side validation. Note the following three lines shown in bold, where
placeholders are used that must be replaced with appropriate code for your
application:

■ mypackage

■ <valid>

■ <your custom error code>

// S_PurchaseOrder.java

package mypackage;

import oracle.ifs.common.AttributeValue;
import oracle.ifs.common.IfsException;

import oracle.ifs.server.S_DirectoryUser;
import oracle.ifs.server.S_LibraryObjectData;
import oracle.ifs.server.S_LibraryObjectDefinition;
import oracle.ifs.server.S_LibrarySession;
import oracle.ifs.server.OperationState;
import oracle.ifs.server.S_TieDocument;

// server side PurchaseOrder class example
public class S_PurchaseOrder extends S_TieDocument
{

// constructors
public S_PurchaseOrder(S_LibrarySession session, S_LibraryObjectData data)

throws IfsException
{

super(session, data);
}
public S_PurchaseOrder(S_LibrarySession session, Long classId)

throws IfsException
{

super(session, classId);
}

Using Overrides 9-9

Sample Code: A PreInsert Override
// override Pre Insert Operation
public void extendedPreInsert(S_LibraryObjectDefinition def,

OperationState opState) throws IfsException
{

// ALWAYS call super
super.extendedPreInsert(opState, def);

// get our session
S_LibrarySession session = getSession();

// get the approver attribute so we can check it
AttributeValue av1 = def.getAttribute("APPROVER");
S_DirectoryUser approver = (av1 == null) ? null:

(S_DirectoryUser) av1.getDirectoryObject(session);

//validate the approver
if (! <valid>)
{

// this will rollback the operation
throw new IfsException(<your custom error code>, this);

}

// otherwise, set the APPROVED bit to true.
// the APPROVED bit is not settable or updateable
// by users, but the server can set it thusly
AttributeValue av2 = AttributeValue.newAttributeValue(true);
def.setSystemSetAttribute("APPROVED", av2);

}
}

9-10 Oracle Internet File System Developer’s Guide

Sending E-mail Programm
10

Sending E-mail Programmatically

This chapter covers the following topics:

■ What Is Sending E-mail Programmatically?

■ Writing an Application to Send E-mail Programmatically

■ Sample Code: Sending E-Mail Programmatically
atically 10-1

What Is Sending E-mail Programmatically?
What Is Sending E-mail Programmatically?
We are all familiar with using standard e-mail clients to create and send e-mail
messages. However, e-mail can also be created and sent by an application program.
This type of e-mail is called programmatic e-mail.

When a user inserts, updates, or deletes a file, your custom application can perform
the following tasks:

■ Generate an e-mail message notifying one or more other users of the change.
■ Send the message using the Oracle Internet File System programmatic e-mail

capability.

The message is staged in the Oracle iFS Outbox to await delivery.

Programmatic e-mail takes place in a transactional environment. Applications that
require transactional capability include multiple activities, one of which is an e-mail
notification. For the application to complete the task, the application must perform
some action and then send a notification of that action. The action and the
notification must be so tightly linked that you want both to be rolled back if the
message is not accepted by the Outbox. Here are the stages of the process:
■ Perform the action.
■ Create the message using the Oracle iFS e-mail API.
■ Insert the message in the Outbox.

An example of this type of application would be creating a new customer account,
then sending a message to the customer saying, "Here is your new account number
and password." If the message cannot be sent, the account and password are rolled
back. The Oracle iFS framework for programmatic e-mail provides a mechanism for
Oracle iFS applications to send such e-mail messages.
10-2 Oracle Internet File System Developer’s Guide

What Is Sending E-mail Programmatically?
Oracle iFS Infrastructure for Programmatic E-mail
The Oracle iFS infrastructure for programmatic e-mail includes the Outbox folder
and the IfsMessage class.
The Outbox folder is the location where messages are staged to await delivery. A
system-wide Oracle iFS Outbox is created during the installation process. An
Outbox agent delivers mail present in the Outbox on an event-driven basis.

The Oracle iFS API class, IfsMessage, provides methods to create and send e-mail
programmatically. All e-mail consists of three parts:

■ Header information, such as To, From, and Subject
■ Body (optional)
■ Attachments (optional)

The methods of the IfsMessage class allow you to set appropriate values for each of
these parts.

Programmatic E-mail Scenario
One common use of programmatic e-mail is to use an application program to
respond automatically to customer actions. For example, in an e-commerce
application:
■ A customer logs onto your company’s e-commerce web site.
■ The customer submits an order.
■ The company wants to send an automatic e-mail confirmation of the order.
To create this automatic e-mail confirmation, you use information from multiple
sources. Some information comes from the customer, such as name and e-mail
address. Other information comes from your company, such as text for the
confirmation message and any attachments, such as an invoice.

The application program must perform three tasks:
■ Gather the information from appropriate sources.
■ Using the information, create a message object.
■ Send the e-mail message to the customer.
Sending E-mail Programmatically 10-3

Writing an Application to Send E-mail Programmatically
Writing an Application to Send E-mail Programmatically
To write a programmatic e-mail application, follow these steps:

1. Create an IfsMessage Object
2. Construct the Message Header
3. Construct the Message Body
4. Send the Message

For more information about e-mail methods, see the Javadoc for the
oracle.ifs.adk.mail.IfsMessage class.

Option for Sending Short Messages
Note that if you want to send a very short mesage, you can use the convenience
method, oracle.ifs.adk.mail.IfsMessage.sendMessage(). To use sendMessage(),
supply the following parameters, as appropriate:

Sample Code: Send a Short Message
// Use the convenience method to send a short message.

mail.sendMessage(currentSession,"Recipient", "CcRecipient", "BccRecipient",
"Subject:Sending Short Messages","This is a one-sentence message.");

Parameter Datatype

Session LibrarySession

To String[]

CC (Carbon Copy) String[]

BCC (Blind Carbon Copy) String[]

Subject String

Body Reader
10-4 Oracle Internet File System Developer’s Guide

Writing an Application to Send E-mail Programmatically
Create an IfsMessage Object
Creating a database connection is the first task of every Oracle iFS application, and
requires both LibraryService and LibrarySession. For a complete sample of the
standard technique for obtaining the current Library Session, see "Sample Code:
Sending E-Mail Programmatically".
In this case, LibrarySession is the single parameter passed to the IfsMessage
constructor.

For more information about LibraryService and LibrarySession, see Chapter 2, "API
Overview":
■ "The LibraryService Class"
■ "The LibrarySession Class"

Sample Code: Create an IfsMessage Object
Before you create the message object, check to be sure the current user has Admin
privileges.

// Check that user is in Admin Mode.
if (user.isAdminEnabled())

session.setAdministrationMode(true);

// Use the IfsMessage constructor to create a message object.
IfsMessage msg = new IfsMessage(session);

Note: Only users with Admin Mode enabled can send e-mail
programmatically.
Sending E-mail Programmatically 10-5

Writing an Application to Send E-mail Programmatically
Construct the Message Header
To construct the message header, supply one or more of the following pieces of
information:

Using Multiple Values for Header Items
Multiple values are allowed for each of the following header items:

■ To
■ CC
■ BCC
■ From
■ Reply To

For example, to send the same message to multiple destinations, you could set three
To headers and six CC headers. Any combination of the header items is acceptable,
as long as at least one recipient is indicated. In other words, each message must
have either a To, CC, or BCC specified, so the message can be delivered.

In some cases, one person will send mail on behalf of another person. In that case,
you can specify a From value (the author of the message) that varies from the
Sender value (the person who sends the message). If setFromHeader() is omitted,
the From value will be set to the current user by default. If setSenderHeader() is
provided, but not setFromHeader(), the value provided for Sender will be used for
From and Sender will be omitted.

Item Datatype Required/Optional Setter

To String See Note. setToHeader()

CC (Carbon Copy) String See Note. setCcHeader()

BCC (Blind Carbon
Copy)

String See Note. setBccHeader()

From String or
DirectoryUser

Automatically inserted;
optional.

setFromHeader()

Sender String or
DirectoryUser

Automatically inserted;
optional.

setSenderHeader()

ReplyTo String Optional. setReplyToHeader()

In Reply To Message Optional. setInReplyToHeader()

Subject String Optional. setSubject()
10-6 Oracle Internet File System Developer’s Guide

Writing an Application to Send E-mail Programmatically
For details of the setter methods for the message header, see the Javadoc for
oracle.ifs.adk.mail.IfsMessage. All of the setter methods are overloaded
to provide one method that accepts a single String value and another that accepts a
String array.

Sample Code: Construct the Message Header
msg.setFromHeader("tuser99@us.oracle.com");
msg.setSenderHeader(user); //Refers to a DirectoryUser
msg.setToHeader("guest@us.oracle.com");
msg.setBccHeader("tuser51@us.oracle.com");
msg.setSubject("iFS email API: Mail with multi-part body");

Construct the Message Body
To construct the message body, you can use any of the variants of the setBody()
method, and, optionally, of the attach() methods.

Methods Datatype Required/Optional Item

setBody(String body) String Optional. Body

setAlternativeBodies
(IfsMessage.MimeBodyPart[])

MimeBodyPart[] Optional. Alternative
bodies

setMixedBodies
(IfsMessage.MimeBodyPart[])

MimeBodyPart[] Optional. Mixed bodies

setParallelBodies
(IfsMessage.MimeBodyPart[])

MimeBodyPart[] Optional. Parallel
bodies

attach(String path) String Optional. Use to
indicate path to
document file.

Attachment

attach(String[] path) String[] Optional. Use to
indicate an array of
paths to document
files.

Attachment

attach(Document doc) Document Optional. Attach one
document.

Attachment

attach(Document[] doc) Document[] Optional. Attach an
array of documents.

Attachment
Sending E-mail Programmatically 10-7

Writing an Application to Send E-mail Programmatically
Using the setBody() methods
The setBody() method is overloaded to accept several combinations of arguments,
and includes 11 variants. For more information on methods used to construct the
message body, see the Javadoc for oracle.ifs.adk.mail.IfsMessage.

Here are some basic guidelines:
■ Use setBody() for a message with no attachments.
■ If the message has an attachment, you must use one of the three setXxxBodies()

methods:
■ setMixedBodies()
■ setAlternativeBodies()
■ setParallelBodies()

The setMixedBodies() Method
The setMixedBodies() method will meet most application needs for sending any
message with an attachment. The multipart/mixed content type is the most general
MIME content type, and can be used for any multipart message or any message
with attachments. The client is free to choose the method to display the message.
Generally, the different body parts are treated as different parts of the message; that
is, they are treated the same as if they were attachments.

When you pass only a single parameter to setMixedBodies(), rather than an array,
setMixedBodies has the same effect as the setBody() method.

The setAlternativeBodies() Method
Use setAlternativeBodies() to specify alternative formats for use by specific
browsers. A multipart/alternative body is a body of multiple body parts of the
same content but in different formats. A compatible client should choose the most
appropriate format to display the message to the user.

The content type of the message is always multipart/alterative if the message does
not have attachments. Otherwise, the message content type will be
multipart/mixed with a nested multipart/alternative message.

When you pass only a single parameter to setAlternativeBodies(), rather than an
array, setAlternativeBodies() has the same effect as the setBody() method.
10-8 Oracle Internet File System Developer’s Guide

Writing an Application to Send E-mail Programmatically
The setParallelBodies() Method
Use setParallelBodies() when all attachments are of a format that can be displayed
following the message, rather than included as a separate file. A multipart/parallel
body is a message body with multiple body parts that should be viewed in parallel
using a compatible client.

The content type of the message is always multipart/parallel if the message does
not have attachments. Otherwise, the message content type will be
multipart/mixed with a nested multipart/parallel message.

When you pass only a single parameter to setParallelBodies(), rather than an array,
setParallelBodies() has the same effect as the setBody() method.

Sample Code: Construct a Simple Message Body
msg.setBody("Hello there! This is a simple string body.");

Sample Code: Construct a Multipart Message Body
//Construct a multipart message body using setAlternativeBodies().
MimeBodyPart[] bodies = new MimeBodyPart[2];
bodies[0] = new MimeBodyPart("Hello, this is plain text.",

"text/plain", null);
bodies[1] = new MimeBodyPart("<html><body>Hello, this is HTML text " +

".</body></html>", "text/html", null);
msg.setAlternativeBodies(bodies);

In this example, note the class MimeBodyPart. MimeBodyPart is a class that
represents a single body part of a multipart MIME message. This class provides a
means to group the essential information of a message body part into a single class
for ease of storage and retrieval. MimeBodyPart is an inner class of the IfsMessage
class; many methods of IfsMessage accept MimeBodyPart objects as arguments.

Sample Code: Add an Attachment
// Add a document object attachment.
msg.attach(doc);
Sending E-mail Programmatically 10-9

Sample Code: Sending E-Mail Programmatically
Send the Message
To send the message, use the oracle.ifs.adk.mail.IfsMessage.send() method, with no
arguments. The only validation the send() method performs is to be sure that one of
the recipient fields is set (To, CC, or BCC). All other validation is performed by the
outgoing e-mail protocol. The Outbox agent will automatically pick up messages
from the outbox. The Outbox agent passes all messages to the SMTP port on the
local machine.

Sample Code: Send the Message
msg.send();

Note that this method will return the following error messages if the message
cannot be sent:
■ 11031: Either From or Sender header must be present.
■ 11032: Either To, Cc or Bcc header must be present.

Sample Code: Sending E-Mail Programmatically
package oracle.ifs.adk.mail;
/* --IfsMailTest.java-- */

import oracle.ifs.beans.DirectoryUser;
import oracle.ifs.beans.Document;
import oracle.ifs.beans.FolderPathResolver;
import oracle.ifs.beans.LibrarySession;
import oracle.ifs.common.IfsException;
import oracle.ifs.beans.LibraryService;
import oracle.ifs.protocols.email.beans.Mailbox;
import oracle.ifs.adk.mail.IfsMessage.MimeBodyPart;

public class IfsMailTest
{
public static void main(String[] args)
{
try
{
// Setting up the service, session, and user
LibraryService service = new LibraryService();
ClearTextCredential me = new ClearTextCredential("tuser1", "tuser1");
ConnectOptions options = new ConnectOptions();
options.setLocale(Locale.getDefault());
LibrarySession session = service.connect(me, options);
10-10 Oracle Internet File System Developer’s Guide

Sample Code: Sending E-Mail Programmatically
DirectoryUser user = (DirectoryUser) session.getDirectoryUser();
if (user.isAdminEnabled())
session.setAdministrationMode(true);

IfsMessage msg = new IfsMessage(session);

// Example 1
// Creating a simple message being sent to two destinations.
// The message has a simple string body.
//
IfsMessage msg = new IfsMessage(session);
msg.setToHeader(new String[] {"guest@us.oracle.com",

"tuser51@us.oracle.com"});
msg.setFromHeader("tuser99@us.oracle.com");
msg.setSenderHeader(user);
msg.setCcHeader("tuser51@us.oracle.com");
msg.setBccHeader("tuser51@us.oracle.com");
msg.setContentType("text/plain");
msg.setSubject("iFS email API: Mail with body and multiple recipients");
msg.setBody("Hello there! This is a simple string body");
msg.send();

//Example 2
// Creating a simple message being sent to two destinations.
// The message has a multipart alternative structure.
//
IfsMessage msg = new IfsMessage(session);
msg.setFromHeader("tuser99@us.oracle.com");
msg.setSenderHeader(user);
msg.setToHeader("guest@us.oracle.com");
msg.setBccHeader("tuser51@us.oracle.com");
msg.setSubject("iFS email API: Mail with multi-part body");
MimeBodyPart[] bodies = new MimeBodyPart[2];
bodies[0] = new MimeBodyPart("hello this is plain text.",

"text/plain", null);
bodies[1] = new MimeBodyPart("<html><body>hello this is a html text " +

".</body></html>", "text/html", null);
msg.setAlternativeBodies(bodies);
msg.send();

//Example 3
// Creating a simple message being sent to two destinations.
// The message has a multipart mixed structure.
//
IfsMessage msg = new IfsMessage(session);
Sending E-mail Programmatically 10-11

Sample Code: Sending E-Mail Programmatically
msg.setFromHeader("tuser99@us.oracle.com");
msg.setSenderHeader(user);
msg.setToHeader("guest@us.oracle.com");
msg.setCcHeader("tuser51@us.oracle.com");
bodies = new MimeBodyPart[3];
bodies[0] = new MimeBodyPart("This is plain text again.",

"text/plain", null);
bodies[1] = new MimeBodyPart("<html><body>This is html text. " +

"</body></html>", "text/html",
IfsMessage.ASCII_CHARSET);

bodies[2] = new MimeBodyPart("<html><body>hello this is another html " +
"text.</body></html>", "text/html",
IfsMessage.ISO88591_CHARSET);

msg.setMixedBodies(bodies);

//
// Associate attachments for Example 3.
//
FolderPathResolver resolver = new FolderPathResolver(session);
Document doc = (Document) resolver.findPublicObjectByPath(

"/home/tuser1/test.txt");
msg.attach(doc);
doc = (Document) resolver.findPublicObjectByPath("/home/tuser1/test.jpg");
msg.attach(doc);

msg.send();
}
catch (IfsException e)
{
e.printStackTrace();

}
}

}

10-12 Oracle Internet File System Developer’s Guide

Error Mess
A

Error Messages

This appendix presents typical error messages you may encounter while developing
your application. For each message, the cause of the error as well as actions you
may take to correct the error condition are provided.

IFS-10170 Invalid name/credential.

Cause: Incorrect Oracle iFS login and password were entered.

Possible
Actions:

1. Re-enter the correct login and password.

2. Confirm that a user exists in Oracle iFS with the specified
name.

IFS-10200 Unable to access object (insufficient privileges)

Cause: User tried to access a PublicObject (such as a Document,
Folder, etc.) that the user did not have permission to access.

Possible
Actions:

1. Have the owner change the permissions (ACL) to allow
user to access the object.

2. If the permissions are set correctly so as to prohibit the
user from accessing the object, no other action is applicable.
ages A-1

IFS-10406 Invalid AttributeValue conversion ({0} to Java {1})

Cause: This error generally occurs when writing directly against
the Java API. The error is coercing an attribute value to an
incorrect datatype. An example of an invalid conversion is
coercing a DATE to a BOOLEAN. An example of a valid
conversion is coercing an INTEGER to a STRING.

One case worthy of a special mention is in converting from
PUBLICOBJECT to PUBLICOBJECT. This will fail if the user
does not have permission to access the PublicObject
referenced in the AttributeValue.

The parameters {0} and {1} will have the actual values that
caused the error.

Possible
Actions:

1. Check the datatypes, and modify them to be compatible
datatypes.

2. In the case of coercing to a PublicObject, check whether
the user can access the PublicObject referenced in the
AttributeValue.

IFS-10600 Unable to construct library connection

Cause: This error occurs when the Oracle iFS repository cannot
connect to the database. Generally, this is caused by an
invalid database username specified in the service
properties file, or an invalid database password. It can also
occur if the DatabaseUrl setting in the service properties file
is invalid.

Possible
Actions:

1. Verify that the database username, password, and TNS
names entry are set correctly, by using SQL*Plus or a similar
tool to connect to the database.

2. Check to see if this exception encapsulates another
exception that describes the cause more clearly.
A-2 Setup and Administration Guide

IFS-10620 Unable to construct connection pool

Cause: This error generally occurs when database connections
cannot be made. Typically, error 10633 causes this error to
be thrown.

Possible
Actions:

If error 10633 has caused this exception, verify that the
database username, password, and TNS names entry are set
correctly, by using SQL*Plus or similar tool to connect to the
database.

IFS-10633 Unable to create library connection

Cause: This error generally occurs when database connections
cannot be made. Typically, error 10600 causes this error to
be thrown.

Possible
Actions:

If error 10600 has caused this exception, verify that the
database username, password, and TNS names entry are set
correctly, by using SQL*Plus or a similar tool to connect to
the database.

IFS-12200 Invalid item name specified (<item name>).

Cause: An attempt was made to look up an object by name in one
of the Oracle iFS Collections, and no object by that name
exists. This can occur when directly invoking the getItems()
method on the Collection class, or indirectly by performing
an operation that will access one of the Collections. An
example of the latter case is when a ClassObject name is
specified in an operation such as creating a new Document,
and there is no ClassObject with the specified name.

Possible
Actions:

Check the name specified, and re-enter a valid name.
Error Messages A-3

IFS-12620 Parser: syntax error (parameter)

Cause: A syntactical error was detected by a parser while parsing a
document stream being introduced into the Oracle iFS
repository. The parameter identifies the token responsible
for the syntax error. For example, the SimpleXmlParser will
throw this exception when an unknown tag is encountered
while parsing an XML file; the parameter is the unknown
tag value.

Possible
Actions:

Fix the document body, correcting the syntax error, and
re-submit to Oracle iFS.

IFS-20000 Unable to get repository parameter (parameter)

Cause: This error typically occurs when trying to run Oracle iFS
against a partially installed Oracle iFS instance or a very old
Oracle iFS instance (e.g., older than 1.0.8.0.0). This is
particularly true if the parameter listed is the string
"SCHEMAVERSION".

Possible
Actions:

Verify that the Oracle iFS instance on which this error occurs
has been installed properly, and is version 1.0.8.0.0 or
higher.

IFS-20001 Unable to get schema version.

Cause: This error is typically caused by error 20000, the inability to
get the repository parameter named "SCHEMAVERSION".
This generally occurs when trying to run Oracle iFS against
a partially installed Oracle iFS instance or a very old Oracle
iFS instance (e.g., older than 1.0.8.0.0).

Possible
Actions:

Verify that the Oracle iFS instance on which this error occurs
has been installed properly, and is version 1.0.8.0.0 or
higher.
A-4 Setup and Administration Guide

IFS-20010 Failed to get PropertiesResourceBundler <parameter>

Cause: This error occurs when attempting to start an Oracle iFS
process by specifying a service properties file name that
cannot be located by the Oracle iFS repository. The
parameter specified in the error is the name of the specified
service properties file. The specified service properties file
must exist in the oracle.ifs.server.properties package
descending from one of the directories included in the
CLASSPATH setting for the process.

Possible
Actions:

Check for the existence of a service properties file with the
specified name reachable from the current CLASSPATH.

IFS-21008 Login failure (2)

Cause: An attempt to establish an Oracle iFS session has failed,
usually because the specified credential (name/password
combination) is invalid. In this case, this error encapsulates
the error 10170; for all other (rare) authentication failures,
error 10150 is encapsulated.

Possible
Actions:

If the login failure is caused by invalid credential, re-enter
the valid credential to establish an Oracle iFS session.

IFS-30002 Unable to create new LibraryObject

Cause: The creation of a new Oracle iFS object has failed. The actual
cause of the failure is described in an exception
encapsulated by this exception. For example, if a
uniqueness constraint is violated when attempting to create
a new object, the top-most exception will be 30002, and it
will encapsulate exception 30010: "Attribute would not be
unique (<attribute>)".

Possible
Actions:

Investigate the cause of the object creation failure, take
corrective action, and retry.
Error Messages A-5

IFS-34611 Error reserving version series

Cause: An error has occurred in "checking out" a versioned
PublicObject, e.g., reserving the VersionSeries object
associated with a versioned PublicObject. The failure can be
caused by number of conditions, listed below, and described
in most cases by inspecting the encapsulated exception. For
example, another user already has the VersionSeries
reserved, the encapsulated exception will be 34602:
"Operation not permitted, version series is reserved."

Possible
Actions:

1. Make sure the VersionSeries is not reserved or locked by
another user.

2. Make sure that the Family is not locked by another user.

3. Make sure that the last version in the VersionSeries is not
locked by another user.

4. Verify the current user has the permission "AddVersion"
on the target VersionSeries.

IFS-46113 No such Server (name)

Cause: An attempt was made to look up an Oracle iFS Server by
name, using one of the ServerManager interfaces, when no
such server exists. This can occur if the name is improperly
specified, or when a server that matches this name is no
longer running.

Possible
Actions:

1. Re-check the active server list, using the ServerManager
interfaces; e.g. by using the "list servers" command in the
ServerManager commandline interface.

2. Check the ServerManager and/or protocol server logs to
see if a server by the specified name has stopped
unexpectantly.
A-6 Setup and Administration Guide

IFS-46114
Server name IfsProtocols is ambiguous; specify the
server identifier:(<id>, <id>, ...)

Cause: An attempt was made to look up an Oracle iFS Server by
name in the ServerManager comandline interface, and more
than one server exists with this name. The identifiers listed
in the exception text are the unique server identifiers of the
servers that have the specified name. These identifiers can
be used in place of the server name to perform an operation
on a server.

Possible
Actions:

List the servers using the -i option in the ServerManager
commandline interface. Then, re-submit the original server
request by using the identifier instead of the server name.
Error Messages A-7

A-8 Setup and Administration Guide

Index

A
AccessControlEntry class, 2-14
AccessControlList class, 2-14
accessor methods, 3-8
agents

agent registration file, 8-16
classes and methods, 8-4
constructor, 8-7
description, 8-2
event agent sample code, 8-17
event-based agents, 8-2
registering agents, 8-15
time-based agents, 8-2
working with the ServerManager, 8-3
writing an event agent, 8-5

API
bean-side classes, 2-18
oracle.ifs.beans class hierarchy, 2-4
packages, 2-2
security classes, 2-14
server-side classes, 2-18
tie classes, 2-16
user-related classes, 2-10

application development
tasks, 1-6
tools, 1-4

ApplicationObject class, 4-7
attributes

accessor and mutator methods, 3-8
compound values, 4-7
derived attributes, 9-5
embedded attributes, 4-7
getter and setter methods, 3-8
review of attributes, 9-4
searching on attributes, 3-13
setAttribute() method, 9-4
setting attributes, 3-9, 9-4
setting special options, 9-4

user-set attributes, 9-5
using mutator methods, 9-4

B
bean-side classes, 2-18, 6-3, 9-4

C
callbacks, 5-18
classes

ApplicationObject, 4-7
bean-side classes, 2-18, 6-3, 9-4
ClassDomain, 4-7
documents and folders, 2-11
file classes, 2-11
LibraryObjectDefinition, 2-3
PublicObject, 2-6
security classes, 2-14
server-side classes, 2-18, 9-4
session classes, 2-15
tie classes, 2-16

ClassName tag, 5-6
ClassObject class, 4-3, 5-6
CLASSPATH environment variable, 4-12, 5-15,

6-14, 7-9
code samples

"Hello World" example, 3-14
adding a document to a folder, 3-14
agents, 8-17
claim1.xml, 7-12
ClassDomain definition, 4-9
ColorAgent.java, 8-17
constructing a DocumentDefinition, 3-14
CreateInsuranceForm.xml, 7-11
creating a new Document, 3-14
creating an instance class Bean, 4-10
creating document instances, 4-14
custom class definition file, 4-6
Index-1

custom type file, 4-6
e-mail, 10-10
embedded attribute type definition, 4-7
index.html, 7-11
InsuranceBean.java, 7-22
InsuranceForm.jsp, 7-20
InsuranceLogin.java, 7-14
invoking a parser, 5-17
invoking the renderer, 6-17
JSPs, 7-10
list of sample files, 7-10
login.jsp, 7-12
logout.jsp, 7-18
obtaining the user’s home folder, 3-14
overrides, 9-9
parser callback, 5-20
parsing, 5-10
PolicyBundle, 6-16
registering a parser, 5-17
registering a renderer, 6-16
rendering, 6-12
running the sample application, 7-8
sending e-mail programmatically, 10-10

compound values, 4-7
connect() method, 3-4
ContentObject class, 2-13
custom classes

creating a custom Bean, 4-10
creating a custom class definition file, 4-6
creating an instance class, 4-10
creating document instances, 4-13

customization
advanced customization, 1-5
basic customization, 1-5
creating a custom agent, 8-5
creating a custom class, 4-6
creating a custom parser, 5-8
creating a custom renderer, 6-9
creating a JSP, 7-3
creating a type file, 4-6
creating an override, 9-6
sending e-mail programmatically, 10-4
task overview, 1-7

D
database connection, 2-15, 3-3
defining a custom class, 4-6
derived attributes, 9-5
DirectoryUser tag, 5-6
documents

adding a document to a folder, 3-7
ContentObject class, 2-13
creating a document definition, 3-6
creating document instance files, 4-13
Document class, 2-12
DocumentDefinition class, 2-12
documents and folders, 3-2
Folder class, 2-13
getting and setting attributes, 3-8
searching for a document, 3-12
storing documents in the repository, 3-2

E
e-mail

body methods, 10-7
create IfsMessage object, 10-5
definition, 10-2
header methods, 10-6
MimeBodyPart class, 10-9
option for sending short messages, 10-4
Outbox directory, 10-2
sample code, 10-10
sending the message, 10-10
writing a programmatic e-mail application, 10-4

embedded attributes, 4-7

F
folders

adding a document to a folder, 3-7
document and folder classes, 2-11
Folder class, 2-13
how folders are stored, 3-2
saving files in folders, 2-11

G
getAttribute() method, 3-8
Index-2

getter methods, 3-8

H
home directory, 3-7
HTTP authentication, 7-6

I
iFS applications

agents, 8-2
invoking a parser, 5-17
invoking a renderer, 6-5
overrides, 9-2
sending e-mail programmatically, 10-4
using a JSP to display data, 7-4
web-based applications, 7-2

implementation class, 2-16, 4-10
Internet File System

application development, 1-6
application development tools, 1-4
customization, 1-5
customization tasks, 1-7
Java, 1-4
protocol servers, 1-3
XML, 1-4

J
jar files, 7-9
JavaBeans

creating a custom Bean, 4-10
InsuranceBean.java, 7-22
InsuranceLogin.java, 7-14
JSPs and JavaBeans, 7-4

JSPs
component files, 7-3
deploying a JSP, 7-5
displaying data, 7-2
HTTP authentication, 7-6
InsuranceForm.jsp, 7-20
Jsplookup PropertyBundle, 7-5
JSPs and JavaBeans, 7-4
list of sample files, 7-10
login.jsp, 7-12

login/logout files, 7-3
logout.jsp, 7-18
required location, 7-5
running the sample application, 7-8

L
LibraryObject class, 2-3
LibraryObjectDefinition class, 2-3
LibraryService class, 2-15
LibrarySession class, 2-16
login/logout files, 7-3

M
methods

accessor and mutator methods, 3-7
connect(), 3-4
getAttribute(), 3-8
getter and setter methods, 3-8
setAttribute(), 3-9

MIME content types, 6-8, 7-5, 7-19, 10-8, 10-9
MimeBodyPart class, 10-9

O
Oracle Internet File System, 1-2
oracle.docmgr.beans class hierarchy, 2-4
Outbox directory, 10-2
overrides

background needed, 9-3
insert, update, free, 9-2
methods, 9-5
sample code, 9-9
usage examples, 9-2
writing an override, 9-6

P
parsers

application components, 5-7
custom parsers, 5-8
invoking a parser, 5-17
overview, 5-2
parse() code sample, 5-10
Index-3

ParserLookupByFileExtension, 5-16
parsing in FTP, 5-3
parsing in SMB, 5-3
parsing in the Web user interface, 5-3
parsing in the Windows user interface, 5-3
postOperation(), 5-19
preOperation(), 5-18
registering a parser, 5-16, 5-17
sample code, 5-8
sequence of parsing, 5-6
using a custom parser, 5-7
using standard parsers, 5-3
using the SimpleXmlParser, 5-3
writing a custom parser, 5-8
writing a parser application, 5-8
writing a parser callback, 5-18

Policy object attributes, 6-4
postOperation(), 5-19
pre- override methods, 9-5
preOperation(), 5-18
programmatic e-mail, 10-2
PropertyBundles

Jsplookup, 7-5
ObjectTypeLookupByFileExtension, 5-5
ParserLookupByFileExtension, 5-16
PolicyPropertyBundles, 6-3

protocol servers, 1-3
PublicObjects

abstract class, 2-6
attributes, 2-8
purpose, 2-3

R
registration files

registering a JSP, 7-5
registering a parser, 5-17
registering a renderer, 6-15
registering an agent, 8-15

renderers
invoking renderers, 6-5
registering a renderer, 6-15
using custom renderers, 6-8
using PolicyPropertyBundles, 6-3
using server-side classes, 6-3

using standard renderers, 6-5
writing a custom renderer, 6-9

repository
connecting to the repository, 2-15, 3-3
storing documents, 3-2

S
SchemaObjects

purpose, 2-3
searching, 3-12
security

AccessControlEntry class, 2-14
AccessControlList class, 2-14
HTTP authentication, 7-6

sendMessage() method, 10-4
ServerManager

description, 8-3
registering agents, 8-15

server-side classes
definition, 2-18
overrides, 9-4
renderers, 6-3

session classes, 2-15
LibraryService class, 2-15
LibrarySession class, 2-16

setAttribute() method, 9-4
setter methods, 3-8
SimpleXmlParser, 5-6
special options, 9-4
SystemObjects

purpose, 2-3

T
tie classes, 2-16
type definition file, 4-6

U
users, home directory, 3-7
user-set attributes, 9-5
Index-4

V
Vcard sample application, 6-8

W
web sites

HTTP authentication, 7-6
security, 7-6
using JSPs to display data, 7-2

X
XML

application development tool, 1-4
creating a type definition file, 4-2
embedded attributes, 4-7
MIME types, 7-5
registering a JSP, 7-20
registering a parser, 5-17
registering a renderer, 6-16
sample code, 4-6, 7-11
SimpleXmlParser, 5-6
Index-5

Index-6

	Oracle® Internet File System‰
	Send Us Your Comments
	Preface
	1 Getting Started
	Introducing the Oracle Internet File System
	Oracle iFS Advantages for Developers

	Oracle iFS System
	The Oracle iFS Repository
	The Oracle iFS Client Software
	The Oracle iFS Protocol Servers
	An Extensible Document Hierarchy
	A Java-based API

	Application Development Tools
	Customization in Oracle iFS
	No Customization
	Basic Customization
	Advanced Customization

	Overview of Application Tasks
	Task Reference

	2 API Overview
	Introducing the Oracle iFS Java API
	The Oracle iFS API Packages

	The LibraryObject Class
	The LibraryObjectDefinition Class

	The oracle.ifs.beans Class Hierarchy
	The PublicObject Class
	Characteristics of Public Objects
	Public Object Attributes
	Do You Need to Create a Custom Oracle iFS Document?
	User-related Classes

	Document and Folder Classes
	The Document Class
	The DocumentDefinition Class
	The ContentObject Class
	The Folder Class

	Security Classes
	The AccessControlList Class
	The AccessControlEntry Class

	Session Classes
	The LibraryService Class
	The LibrarySession Class

	Tie Classes
	Server Classes

	3 Working with Documents
	How Documents Are Stored in the Repository
	Documents and Folders

	Connecting to the Repository
	Step 1: Create an Instance of LibraryService
	Step 2: Obtain an Instance of LibrarySession

	Creating a New Document
	Why Create a Definition First?
	Creating PublicObjects
	Create a Document Definition Object
	Create a New Document

	Putting a Document in a Folder
	Working with Attributes
	Getting Attributes
	Setting Attributes
	Defining Explicit Getters and Setters

	Searching for a Document
	Sample Code: Hello World

	4 Creating Custom Classes
	Overview of Creating Custom Classes
	Creating a Type Definition File
	How Do Type Definitions Work?
	The Type Definition File: Description Section
	The Type Definition File: Attributes Section
	Sample Code: Create a Type Definition

	Using Compound Attributes
	Sample Code: Embedded Attribute Type Definition
	Sample Code: ClassDomain Definition
	Load a Custom Type Definition

	Creating an Instance Class Bean
	Sample Code: Create an Instance Class Bean
	Deploy an Instance Class Bean

	Creating Document Instances
	Sample Code: Create Document Instances
	Upload Document Instance Files
	Limitations on XML Type Definition Files

	5 Using Parsers
	What Is a Parser?
	Standard Oracle iFS Parsers vs. Custom Parsers

	Using the Standard Parsers
	Parsing Options

	Using the ClassSelectionParser
	Create a Class Definition
	Register the Extension with the ClassSelectionParser
	Register the Class

	How Does XML Parsing Work?
	Using a Custom Parser
	Overview of a Parser Application
	Writing a Parser Application
	Write the Parser Class

	Overview of a Custom Parser
	Sample Code: A Custom Parser
	Deploy the Parser
	Register the Parser
	Invoke the Parser
	Write a ParserCallback

	6 Using Renderers
	What Is a Renderer?
	The Oracle iFS Framework for Rendering
	A Renderer Does Not Create a Repository Object
	What Objects Can Be Rendered?
	Using Server-Side Classes with Renderers
	Using PolicyPropertyBundles to Register Renderers

	Using Standard Renderers
	Invoking Renderers

	Introduction to Custom Renderers
	How Custom Renderers Work

	Overview of a Renderer Application
	Write the Renderer Class
	Deploy the Renderer
	Register the Renderer
	Invoke the Renderer
	Output from the Custom Renderer

	7 Using JSPs
	Using Java Server Pages to Display Documents
	Preparing to Use JSPs

	Implementing an Application Using a JSP
	Login/Logout Files
	Application Files
	Registering a JSP
	Web Site Security Using HTTP Authentication
	Implementing HTTP Authentication

	Running the Sample Insurance Form Application
	Create the Insurance Form Application
	Run the Insurance Form Application

	Sample Files for the Insurance Form Application
	Sample Code: index.html
	Sample Code: CreateInsuranceForm.xml
	Sample Code: claim1.xml, claim2.xml
	Sample Code: login.jsp
	Sample Code: InsuranceLogin.java
	Sample Code: logout.jsp
	Registering a Java Server Page Using Oracle iFS Manager
	Registering a Java Server Page Using XML
	Sample Code: InsuranceForm.jsp
	Sample Code: InsuranceBean.java

	8 Using Agents
	What Is an Agent?
	What Triggers an Agent’s Action?

	How Do Agents Work?
	The SalaryFileLog Agent at Work

	Classes and Methods for an Event Agent
	Writing an Event Agent
	Start with Template Code
	Declare the Class
	Create the Constructor
	Write the run() Method
	Handle a Stop Request
	Handle a Suspend Request
	Handle a Resume Request
	Handle Oracle iFS Events

	Registering an Agent with ServerManager
	Agent Definition File
	Testing the Agent

	Event Agent (Complete Code Example)
	Sample Code: Event Agent

	9 Using Overrides
	What Is an Override?
	How Pre- Overrides Work
	Using Pre- Overrides

	Before You Begin Working with Overrides
	Review of Attributes

	Override Methods
	Writing an Override
	Declare the Server-side Class
	Create the Constructor
	Implement the Override Method

	Sample Code: A PreInsert Override

	10 Sending E-mail Programmatically
	What Is Sending E-mail Programmatically?
	Oracle iFS Infrastructure for Programmatic E-mail
	Programmatic E-mail Scenario

	Writing an Application to Send E-mail Programmatically
	Option for Sending Short Messages
	Create an IfsMessage Object
	Construct the Message Header
	Construct the Message Body
	Send the Message

	Sample Code: Sending E-Mail Programmatically

	A Error Messages
	Index

