
Oracle9 iAS Single Sign-On
Integration with Third-Party Single Sign-On Products

Version 3.0.9

August 2001

Part No.  A95114-01

Oracle9iAS Single Sign-On provides single sign-on to all features in the

Oracle9iAS product complement. Because these applications delegate

authentication to the Oracle Single Sign-On server, users need authenticate

only once to gain access to Oracle9iAS applications. Customers who have

third-party single sign-on products in place can also gain access to the 9iAS

suite by using APIs that enable the Oracle Single Sign-On server to act as an

authentication gateway between third-party single sign-on systems and

Oracle applications.

This presentation explains how the Oracle single sign-on integration

solution works; then it presents the integration APIs. Finally, it presents

sample code that integrates Oracle9iAS Single Sign-On with SiteMinder®, a

single sign-on product from Netegrity, Inc.

The presentation contains the following topics:

■ How Oracle9iAS Single Sign-On Works

■ Integration with Third-Party Single Sign-On Products

■ Third-Party Integration Modules

■ Integration Case Study: Netegrity SiteMinder

Oracle is a registered trademark, and Oracle 9i is a trademark of Oracle Corporation. Other names may be trademarks of their

respective owners.

Copyright  2001, Oracle Corporation.

All Rights Reserved.



 2

How Oracle9 iAS Single Sign-On Works
The key component in most single sign-on systems is the authentication

token. The first time a successful login to a Web application occurs, the

Oracle Single Sign-On server issues the user a token that other Web sites

use subsequently to establish his or her identity. The user provides a user

name and password only once. Key to this arrangement are the notions of

delegation and trust. The applications involved trust the single sign-on

server to delegate the authentication function to it. For this reason, they are

called partner applications.

Integration with Third-Party Single Sign-On Products
In cases where Oracle9iAS Single Sign-On integrates with other single

sign-on products, the principle is the same. The only difference is that the

Oracle Single Sign-On server, the third-party single sign-on server, and the

partner application form a chain of trust. The Oracle Single Sign-On server

delegates authentication to the third-party single sign-on server, becoming

essentially a partner application to it. Oracle applications continue to work

only with the Oracle Single Sign-On server and are unaware of the

third-party single sign-on server. Implicitly, however, they trust the

third-party server.

For Oracle9iAS Single Sign-On to issue users an authentication token under

this arrangement, the third party single sign-on server must pass it the

user’s identity by setting HTTP headers. Once it obtains the user’s identity,

the Oracle Single Sign-On server functions as before, managing user

accounts, checking account policies, auditing, generating tokens, and

redirecting users to its partner applications.

Figure 1 on page 3 illustrates the process.



 3

Figure 1 Authentication Flow in Third-Party Single Sign-On

1. The user logs in to the third-party single sign-on server.

2. If login is successful, the third-party single sign-on server sets a token

in the user’s browser.

3. The user attempts to access an Oracle partner application.

4. The partner application, ignorant of the third-party server, redirects the

user to the Oracle Single Sign-On server. At the same time, the user

passes the third-party single sign-on token to the Oracle Single Sign-On

server.

5. The Single Sign-On server looks for its own cookie.

6. Failing to find its cookie, the Oracle Single Sign-On server looks for a

token from the third-party single sign-on server.

7. The Oracle Single Sign-On server sets its own cookie and redirects the

user back to the Oracle partner application, passing a URL token that

contains the user’s identity.

Browser

Oracle Partner
Application (Oracle9 iAS

Portal or Other)

Third-Party
Single Sign-On

Server

Oracle9 iAS
Single Sign-On

Server

4

7

1 2

3

6
5



 4

Third-Party Integration Modules
To achieve third-party integration, the developer must implement the

package body of wwsso_auth_external . The package specification is

located in the file ssoauthx.pks . The required interfaces perform the

following functions:

■ Authentication Using a User Name and Password

■ Authentication Using a Token

■ Account Policy Enforcement

■ Change Password

■ Reset Password

■ Set External Cookies

Notes:

■ In the case of users who try to access a partner

application before logging in to the third-party single

sign-on server, the Oracle Single Sign-On server can be

configured to redirect users to the third-party login

page. For more information, see "Customizing the

Single Sign-On Login Page," in Chapter 5 of Oracle9iAS
Single Sign-On Administrator’s Guide

■ If the single sign-on systems are to be accessible to all

authorized users, the user repository must be

centralized in one place. This means that, before

deployment, users may have to be migrated from the

third-party single sign-on repository to the Oracle

Single Sign-On repository or the reverse.



 5

Authentication Using a User Name and Password
The following function must be implemented if the Oracle Single Sign-On

server is to authenticate using an external user repository. The server uses

information entered in the Login form to call this function.

FUNCTION authenticate_user
(
 p_user IN VARCHAR2
,p_password IN VARCHAR2
)
RETURN PLS_INTEGER;

/*The function throws the following exceptions:
EXT_AUTH_FAILURE_EXCEPTION,EXT_AUTH_UNKNOWN_EXCEPTION
EXT_AUTH_SETUP_EXCEPTION
*/

Authentication Using a Token
This function is called before a login screen is displayed to the user. If

authentication using a token is to be supported, the implementer of this

function must return the user name to the Oracle Single Sign-On server by

retrieving the user identity in a secure fashion—by looking at a securely set

HTTP header, for instance, or at a secure cookie.

FUNCTION authenticate_user
(
 p_user OUT VARCHAR2
)
RETURN PLS_INTEGER;

/*The function throws the following exceptions:
EXT_AUTH_FAILURE_EXCEPTION,EXT_AUTH_UNKNOWN_EXCEPTION
EXT_AUTH_SETUP_EXCEPTION
*/



 6

Account Policy Enforcement
The Oracle Single Sign-On server provides account and password policies.

Where an external repository provides similar features, these policies can be

switched off and on by modifying the following function to return 0 (false)

or 1 (true).

FUNCTION enforce_account_policies
RETURN BOOLEAN;

/*Returns 0 or 1 for now
Policies that are enforced or not are:
1. User termination
2. Lockout
*/

Change Password
The Oracle Single Sign-On server prompts the user for the old and the new

password when the user requests a change password. The change password

procedure below uses these parameters to implement a password change in

the external repository.

PROCEDURE change_passwd
(
 p_user IN VARCHAR2
,p_oldpwd IN VARCHAR2
,p_newpwd IN VARCHAR2
);

/*The procedure throws the following exceptions:
EXT_NOT_SUPPORTED_EXCEPTION,EXT_CHANGE_PASSWORD_FAILED,
EXT_CHANGE_PASSWD_EXCEPTION
*/



 7

Reset Password
In the following procedure, the Oracle Single Sign-On server resets the

user’s password using a randomly generated value. The call specification

wwsso_ls_private.ls_automated_reset_password  obtains this

value by calling the procedure.

PROCEDURE reset_passwd
(
 p_user IN VARCHAR2
,p_passwd IN VARCHAR2
);

/*The procedure throws the following exceptions:
EXT_NOT_SUPPORTED_EXCEPTION,EXT_RESET_PASSWORD_EXCEPTION,
EXT_AUTH_SETUP_EXCEPTION
*/

Get Authentication Name
The following function returns the name of the external authentication

agent and then displays this name on the Oracle Single Sign-On server

configuration screen.

FUNCTION get_authentication_name
RETURN VARCHAR2;

/*The function throws the following exceptions:
EXT_AUTH_SETUP_EXCEPTION,EXT_NOT_SUPPORTED_EXCEPTION
*/

Set External Cookies
If authentication is successful, the Oracle Single Sign-On server sets all the

cookies provided in the p_cookie_list parameter on behalf of the external

authentication server.

PROCEDURE set_external_cookies
(
  p_username IN VARCHAR2
 ,p_password IN VARCHAR2
 ,p_cookie_list OUT wwsso_ls_private.cookie_list
);



 8

Integration Case Study: Netegrity SiteMinder
SiteMinder by Netegrity, Inc., is a product, which, like Oracle9iAS Single

Sign-On, offers single sign-on authentication to protected resources.

SiteMinder consists of two components: the SiteMinder policy server and

the SiteMinder agent. The first provides users with a variety of services

including user and session management, authentication, and authorization.

The second is located on Web servers and Web application servers. It

screens requests for resources and determines whether a resource is

protected by SiteMinder.

Customers who have SiteMinder already installed may want to use it to

gain access to Oracle9iAS applications. They can achieve this access by

using APIs that enable SiteMinder to talk to Oracle applications by way of

Oracle9iAS Single Sign-On.

This section covers the following topics:

■ Authentication Flow for the SiteMinder Solution

■ Logging Out of the Integrated System

■ Sample Integration Package

■ Installing and Deploying the SiteMinder Solution

Authentication Flow for the SiteMinder Solution
Figure 2 on page 9 depicts the authentication flow for an integrated Single

Sign-On/SiteMinder system. It shows what happens when the user tries to

access a partner application—in this case, Oracle9iAS Portal—without

logging in to SiteMinder first.



 9

Figure 2 Authentication Flow for the SiteMinder Solution

1. The user tries to access a protected resource within Oracle Portal.

2. Oracle Portal redirects the user to the Oracle Single Sign-On server.

3. The SiteMinder agent prompts the user for credentials.

4. The user presents his or her credentials to the SiteMinder agent.

5. The SiteMinder agent checks the user’s credentials in the SiteMinder

policy server. The SiteMinder policy server in turn tries to authenticate

the user. If configured to do so, the policy server checks the credentials

against Oracle Internet Directory.

6. If authentication is successful, the SiteMinder agent passes the user’s

identity to the Oracle Single Sign-On server in the form of HTTP

headers.

7. The Oracle Single Sign-On server generates a URLC token and uses it to

transfer the user’s identity to Oracle Portal.

If the user in this scenario is already logged in to SiteMinder, steps 3, 4, and

5 are skipped, and the SiteMinder agent sends the user’s identity in the

form of HTTP headers.

Browser

Oracle9 iAS Portal

SiteMinder
Policy Server

5

3

4 2

1

7

Oracle9iAS Single 
Sign-On Server

SiteMinder
Agent

6

HTTP
Apache Server



 10

Logging Out of the Integrated System
The integrated Oracle Single Sign-On/SiteMinder system requires that,

when a user logs out of the Oracle Single Sign-On server, he or she is also

logged out of SiteMinder. For concurrent logout to occur, the Single

Sign-On logout procedure must be registered as a URI with the SiteMinder

agent. See Installing and Deploying the SiteMinder Solution for details.

When the Oracle Single Sign-On logout procedure is invoked from Oracle

Portal, the SiteMinder agent intercepts the request and ends the SiteMinder

session. It then transfers control to the Oracle Single Sign-On logout

procedure, which ends the Oracle Single Sign-On session.

Clicking Logout in Oracle Portal initiates the following sequence:

1. Oracle Portal ends the Portal session and redirects the user to the Single

Sign-On server with the done_URL for the application home page.

2. The SiteMinder agent intercepts the logout request, contacts the

SiteMinder policy server, and ends the SiteMinder session.

3. The SiteMinder agent transfers control to the Single Sign-On logout

procedure.

4. The Single Sign-On server ends the Single Sign-On session and

redirects the user to the application home URL sent in Step 1.

Before concurrent logout can begin, customer applications must redirect

users to the Portal logout link at

http:// host : port /pls/ Portal_DAD / Portal_schema .wwsec_app_priv.logout?p_
done_url= url_encoded_apps_URL

The done_url of the application might be the following:

http%3A%2F%2Fmysite.com/home

In this example, users are redirected back to the home page of mysite.com.

Note: In Oracle9iAS v1.0.2.2, the Oracle Single Sign-On

user repository need not be Oracle Internet Directory. In

Oracle9iAS v2 (Release 9.0.1), integration with this

directory is required.



 11

Sample Integration Package
The package ssoxnete.pkb , presented here, can be used to integrate an

existing SiteMinder implementation with Oracle9iAS Single Sign-On.

Rem ssoxnete.pkb
Rem
Rem  Copyright (c) Oracle Corporation 2001. All Rights Reserved.
Rem
Rem    NAME
Rem      ssoxnete.pkb - Single Sign-On Netegrity SiteMinder Integration
Rem
Rem    DESCRIPTION
Rem      This package body is used to achieve integration with Netegrity
Rem      SiteMinder. It may be customized as required. This is a
Rem default implementation and changes might be required based on a
Rem      customer's specific deployment scenario.
Rem    NOTES
Rem
Rem

CREATE OR replace PACKAGE BODY wwsso_auth_external AS

   GLOBAL_SEPARATOR CONSTANT varchar2(1)    := '~';

/* This function needs to be implemented to provide a DN
 * to UID mapping. One way to do this mapping is to look up
 * the UID for a given DN in the directory. Note that the function must

* be modified only if users are authenticated using PKI.
 */

FUNCTION map_dn_to_uid(p_user_dn IN VARCHAR2)
  return VARCHAR2
IS
BEGIN

  -- NULL implementation by default

  raise EXT_AUTH_FAILURE_EXCEPTION;

  --In actual implementation, map DN to UID and return UID.
  --return p_user_dn

END map_dn_to_uid;



 12

FUNCTION authenticate_user
  (
   p_user OUT VARCHAR2
  )
  return PLS_INTEGER
IS
 l_http_header varchar(1000);
 l_ssouser wwsec_person.user_name%type := NULL;
BEGIN

   l_http_header := owa_util.get_cgi_env('HTTP_SM_USER');
   debug_print('SiteMinder ID : ' || l_http_header);

  /*
   if l_http_header IS NULL then user may be authenticated by PKI
   in SiteMinder so check the DN header
   */

   IF (l_http_header is NULL) THEN
   BEGIN
       debug_print('check if user authenticated using PKI');
       l_http_header := owa_util.get_cgi_env('HTTP_SM_USERDN');
       l_ssouser := map_dn_to_uid(l_http_header);
   END;
   ELSE
       l_ssouser := l_http_header;
   END IF;

   IF ( (l_ssouser IS NULL) or
       ( INSTR(l_ssouser, GLOBAL_SEPARATOR) != 0) ) THEN
       debug_print('malformed user id: '
               || l_ssouser
               || ' returned by wwsso_auth_external.authenticate_user');
       RAISE EXT_AUTH_FAILURE_EXCEPTION;
   ELSE
     p_user := NLS_UPPER(l_ssouser);
     return 0;
   END IF;

EXCEPTION
   WHEN OTHERS THEN
     debug_print('unknown exception in authenticate_user(p_user)'
                 || sqlerrm);
     RAISE EXT_AUTH_FAILURE_EXCEPTION;

END authenticate_user;



 13

FUNCTION authenticate_user
  (
    p_user IN VARCHAR2,
    p_password IN VARCHAR2
  )
   RETURN PLS_integer
IS
BEGIN

  raise EXT_AUTH_FAILURE_EXCEPTION;

END authenticate_user;

PROCEDURE get_configuration
  (
    p_config OUT ext_config
  )
AS
BEGIN

  null;
  -- p_config := NULL;

END get_configuration;

PROCEDURE change_passwd
  (
    p_user IN VARCHAR2,
    p_oldpwd IN VARCHAR2,
    p_newpwd IN VARCHAR2
  )
AS
BEGIN

 raise EXT_NOT_SUPPORTED_EXCEPTION;

EXCEPTION
    WHEN OTHERS THEN
      RAISE EXT_CHANGE_PASSWORD_EXCEPTION;
END change_passwd;



 14

FUNCTION enforce_account_policies.
    RETURN BOOLEAN
IS
BEGIN
    return FALSE;

END enforce_account_policies;

PROCEDURE reset_passwd
  (
    p_user IN VARCHAR2
  , p_passwd IN VARCHAR2
  )
IS
BEGIN

   raise EXT_NOT_SUPPORTED_EXCEPTION;

END reset_passwd;

FUNCTION get_authentication_name
 RETURN VARCHAR2
AS
BEGIN
    RETURN 'Netegrity SiteMinder';
END get_authentication_name;

PROCEDURE set_external_cookies
  (
    p_username IN VARCHAR2
  , p_password IN VARCHAR2
  , p_cookie_list OUT wwsso_ls_private.cookie_list
  )
AS
BEGIN
    null;

END set_external_cookies;

END;
/
show errors;



 15

Installing and Deploying the SiteMinder Solution
Perform the following steps to install and configure the Oracle Single

Sign-On server with SiteMinder:

1. Install the Oracle Single Sign-On server.

2. Run ssonete.sql . This script configures the Oracle Single Sign-On

server to operate in external mode and loads the default

implementation found in ssoxnete.pkb .

3. Install the SiteMinder agent in front of the Oracle Single Sign-On server.

This task involves installing mod_sm, the SiteMinder Apache module,

on the same instance as the Oracle Single Sign-On server. For more

details, see SiteMinder Agent Operations Guide.

4. Configure the SiteMinder policy server to protect access to the Oracle

Single Sign-On server URLs and to associate a user population with the

Oracle Single Sign-On server. To accomplish this task, create policy

domains and realms for the Oracle Single Sign-On server on the

SiteMinder policy server. The Oracle Single Sign-On server is accessed

at URLs of the form:

http:// hostname : port /pls/ Single_Sign-On_server_DAD

5. If you are using PKI authentication, customize the function map_dn_
to_uid(p_user_dn IN VARCHAR2) . Currently, this function has a

default implementation of NULL, as indicated in ssoxnete.pkb .

6. Edit your modplsql DAD file, typically named wbdbsvr.app, to include

the following SiteMinder headers:

[ DAD_Single_Sign-On_server_schema ]
connect_string = Single_Sign-On_server_schema_DB_connect_string

..
cgi_env_list = HTTP_SM_USER,HTTP_SM_USERDN

7. Register the Single Sign-Out logout procedure as a URI with the

SiteMinder agent. To do this, add the following line to the

WebAgent.conf file:

logoffuri="/pls/ Single_Sign-On_DAD / Single_Sign-On_schema .wwsso_app_
admin.ls_logout"



 16

After these steps have been completed, the user can log in to a partner

application. Because credentials are stored in a repository managed by

SiteMinder, the Change Password page in the Oracle Single Sign-On server

can be customized to point to the SiteMinder change password screen.

See Also: "Customizing the Change Password Page," in

Chapter 5 of Oracle9iAS Single Sign-On Administrator’s
Guide


	How Oracle9iAS Single Sign-On Works
	Integration with Third-Party Single Sign-On Products
	Third-Party Integration Modules
	Authentication Using a User Name and Password
	Authentication Using a Token
	Account Policy Enforcement
	Change Password
	Reset Password
	Get Authentication Name
	Set External Cookies

	Integration Case Study: Netegrity SiteMinder
	Authentication Flow for the SiteMinder Solution
	Logging Out of the Integrated System
	Sample Integration Package
	Installing and Deploying the SiteMinder Solution


