
Oracle Unified Messaging

Developer’s Guide

Release 2.1.2

January, 2001

Part No. A86093-02

Oracle Unified Messaging Developer’s Guide, Release 2.1.2

Part No. A86093-02

Copyright © 1999, 2001, Oracle Corporation. All rights reserved.

Primary Author: Ginger Tabora

Contributors: Byung Choung, Varouzhan Ebrahimian, Duane Jensen, Tom Kraikit, Jae Lee, Sunnia Lin,
Allen Liu, Louise Luo, Stefano Montero, Howard Narvaez, Ricardo Rivera

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Names, and Oracle Office are trademarks or registered
trademarks of Oracle Corporation. Other names mentioned may be trademarks of their respective
owners.

iii

Contents

Preface.. ix

1 Overview of the Unified Messaging SDK

Introduction to Unified Messaging... 1-2
Unified Messaging from the Developer’s Perspective.. 1-2
Unified Messaging Architecture .. 1-2
Unified Messaging Components.. 1-3

Working with the Unified Messaging SDK .. 1-3
Unified Messaging API.. 1-4
Sample Application .. 1-4

System Requirements .. 1-4
Environment Requirements .. 1-4
Requirements for Customizing the Unified Messaging GUI... 1-5
Knowledge Requirements ... 1-5

2 Planning Your Development Strategy

Choosing a Development Approach ... 2-2
HTML Approach .. 2-2
Java Approach... 2-2

Development Tools... 2-3
General Design Considerations for HTML Development ... 2-3

Consider How to Display Data .. 2-3
Consider How to Create Links ... 2-3
Consider How to Use and Create Forms .. 2-5

iv

Consider Your Network Bandwidth.. 2-5
Consider Browser Limitations .. 2-5
Consider Using Existing Application Designs and Templates .. 2-6

HTML Application Development Process Overview .. 2-6

3 Customizing Unified Messaging APIs

Unified Messaging API Overview .. 3-1
The Unified Messaging Functional Class Hierarchy... 3-1
The Unified Messaging Java Class Hierarchy .. 3-3

Typical Client Application Development .. 3-5
Creating and managing a login session... 3-5
Retrieving Message Stores... 3-9
Retrieving and Displaying Folders (e.g. Inbox) ... 3-10
Retrieving and Displaying Messages... 3-12
MIME.. 3-13
Displaying Messages.. 3-14
Converting Audio and Facsimile Files .. 3-16
Creating Messages .. 3-17
Searching for Messages.. 3-18

Searching the Directory ... 3-20
Searching for Users using the GSMDir Object ... 3-21
Searching for Address Book Entries Using the Directory Object .. 3-22

The SDK Package.. 3-22
Address Class .. 3-23
AdministratorList Class ... 3-23
Audio Class.. 3-24
Directory Class .. 3-25
Fax Class... 3-25
GSMAddress Class ... 3-26
GSMDir Class .. 3-26
List Class .. 3-27
MsgStores Class .. 3-28
Note Class .. 3-28
NotificationRule Class ... 3-29
PagerDevice Class... 3-29

v

Registration Class ... 3-29
SMS Class... 3-30
SMSMessage Class ... 3-30
Session Class.. 3-31
Settings Class... 3-35
Trace Class ... 3-36

The MS Package .. 3-37
BodyPart Class .. 3-37
Folder Class ... 3-38
InternetAddress Class.. 3-40
Message Class ... 3-41
MultiPart Class.. 3-43
SearchFolder Class ... 3-44
Store Class.. 3-44
Transport Class ... 3-46
UMInbox Class.. 3-47
UMRoot Class ... 3-48
UMStore Class... 3-48
... 3-49

4 Administering Unified Messaging

The Administrator’s Inbox.. 4-1
Creating New Accounts for Users ... 4-1
Updating Existing Accounts ... 4-3
Deleting Accounts .. 4-4
Working with SMS ... 4-4
Working with LDAP... 4-6
.. 4-7

Index

vi

vii

Send Us Your Comments

Oracle Unified Messaging Developer’s Guide, Release 2.1.2

Part No. A86093-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev@us.oracle.com
■ FAX: (650) 506-7228 Attn: Oracle Unified Messaging Documentation Manager
■ Postal service:

Oracle Corporation
Unified Messaging Documentation Manager
500 Oracle Parkway, Mailstop 4OP12
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services representa-
tive.

viii

ix

Preface

Intended Audience
This manual is intended for Unified Messaging client developers. It provides an
introduction to Unified Messaging and describes the management tasks you will
perform as an Unified Messaging server administrator.

Unified Messaging Documentation
Unified Messaging documentation is available in HTML and PDF format on the
CD-ROM and installs automatically during product installation. Use your Web
browser to access $ORACLE_HOME/um/doc/index.html on your server. The following
documents are available:

Oracle Unified Messaging Release Notes

Oracle Unified Messaging Installation Guide

Oracle Unified Messaging Developer’s Guide

x Developer’s Guide

Notation Conventions
The following notational conventions appear in this manual:

Convention Description

italic Italicized type identifies document titles.

Monospace Monospace type indicates commands.

bold Boldface type indicates script names, directory names, path names,
and file names (for example, the root.sh script).

UPPERCASE Uppercase letters indicate parameters or environment variables (for
example, ORACLE_HOME).

 .
 .
 .

In code examples, vertical ellipsis points indicate that information
not directly related to the example has been omitted.

. . . In command syntax, horizontal ellipsis points indicate repetition of
the preceding parameters. The following command example
indicates that more than one input_file may be specified on the
command line.

command [input_file ...]

< > In command syntax, angle brackets identify variables that the user
must supply. You do not type the angle brackets. The following
command example indicates that the user must enter a value for the
variable input_file:

command <input_file>

[] In command syntax, brackets enclose optional clauses from which
you can choose one or none. You do not type the brackets. The
following command example indicates that the variable output_file
is optional:

command <input_file> [output_file]

{ } In command syntax, curly brackets indicate that a choice of two or
more items separated by a vertical bar or pipe (|). You do not type
the curly brackets. The following command example indicates a
choice of either a or b:

command {a | b}

$ The dollar sign represents the shell prompt in UNIX.

Overview of the Unified Messaging SDK 1-1

1
Overview of the Unified Messaging SDK

This chapter introduces the Unified Messaging Server Developer Kit (SDK) to the
HTML developer. This chapter contains the following topics:

■ Introduction to Unified Messaging

■ Working with the Unified Messaging SDK

■ System Requirements

Introduction to Unified Messaging

1-2 Unified Messaging Developer’s Guide

Introduction to Unified Messaging
Today’s business professional receives and sends messages via multiple sources:
e-mail, voice mail, facsimiles, and short messages displayed on pagers. The
challenge is to keep up with all these messages and quickly recognize high priority
items that require immediate action. Oracle provides the solution: Unified
Messaging, which integrates messages from multiple sources into a single “inbox.”
Unified Messaging not only consolidates all messages into a single interface, it also
frees the business professional to focus on making decisions, rather than on keeping
track of multiple telephone numbers, passwords, and access codes.

Unified Messaging from the Developer’s Perspective
Unified Messaging provides an application development environment that includes
Java packages, classes, and methods. These classes allow both front-end
customization of the GUI and back-end customization of Unified Messaging
functions.

The Unified Messaging SDK provides resources for both HTML developers and
Java developers:

■ HTML developers can use a sample client by modifying HTML pages.

■ Java developers can write Java programs to extend the Unified Messaging SDK
classes.

Unified Messaging Architecture
The Unified Messaging system architecture includes the following three tiers.

■ Tier 1: A thin client, such as a Web browser

■ Tier 2: An application layer, consisting of the Unified Messaging SDK and its
environment:

■ A Unified Messaging SDK that runs in a JSP environment.

■ A Web server with JSP support enabled.

■ (Optional) RealAudio that provides audio streaming capabilities

■ Tier 3: The data store layer, including:

■ An Oracle database that stores Unified Messaging information

■ The Oracle internet Directory (OiD) that stores directory information

■ The Oracle eMail Server

Working with the Unified Messaging SDK

Overview of the Unified Messaging SDK 1-3

■ The voice mail server and message store connection

■ The facsimile server and message store connection

■ The Short Message Service (SMS) gateway

■ The Operational Support Systems (OSS) interfaces

■ (Optional) Other IMAP4-compliant e-mail message stores

Unified Messaging Components
The Oracle Unified Messaging provides components related to Tier 2 and Tier 3.
Oracle requires only that the user have a standard browser (a Real Audio plugin is
optional). The sample application is based upon Java Server Pages.

■ Tier 1: The graphical user interface of the Unified Messaging sample
application, displayed in a Web browser. The HTML interface, generated
dynamically, combining information from the database and information
supplied in customized JSP templates.

■ Tier 2: The Apache listener and JServ engine.

■ Tier 3: Oracle eMail Server and an SMS gateway.

To complete the Unified Messaging system, Unified Messaging includes the
interfaces used to connect all message sources:

■ Alternate e-mail servers

■ Voice mail servers

■ Facsimile servers

■ OSS system

Working with the Unified Messaging SDK
The Unified Messaging SDK runs in a programming environment that includes the
following main components:

■ The Unified Messaging Applications Programming Interface (Unified
Messaging API)

■ Apache and JServ

■ Unified Messaging sample application

System Requirements

1-4 Unified Messaging Developer’s Guide

Unified Messaging API
The Unified Messaging API is a set of classes and methods, written in Java, used to
implement the Unified Messaging system. Application developers use the standard
component and object model to create their own custom messaging solution.

Sample Application
The sample application included, provides Web access to the Unified Messaging
system through browsers

The sample application consists of a set of screens that give users access to standard
Unified Messaging functions, including:

■ E-mail access

■ Directory access

■ Audio and facsimile conversion (g726 to WAV or RealAudio, TIFF to GIF)

■ SMS connections

■ Administrative functions

The application can be accessed at the following locations after installation of the
"UMSDK Application" component of the Unified Messaging SDK:

http://<hostname:port>/um/login/jsp

System Requirements
This section describes three types of requirements for using Unified Messaging:

■ Environment requirements

■ Requirements for customizing the Unified Messaging GUI

■ Knowledge requirements for HTML developers

Environment Requirements
The following components are required for Unified Messaging to function on all
platforms:

■ Oracle database

■ Web server with JSP support

System Requirements

Overview of the Unified Messaging SDK 1-5

■ Oracle eMail Server

■ Oracle Internet Directory

■ A Web browser

■ A development tool

You do not need a special development tool to develop HTML-based applications.
Use a text editor or HTML editor or, if you prefer, a Web authoring tool to create
and maintain the template files that make up your application. No such special
development environments or tools are provided with the Unified Messaging SDK.

Requirements for Customizing the Unified Messaging GUI
To customize the sample applications included with the Unified Messaging SDK
you must have access to the following:

■ Oracle database

■ Web server administration authority

■ An account on an Oracle eMail Server

The sample applications run in the following Web browsers:

■ Netscape Navigator 4.5x

■ Internet Explorer 5.x

Knowledge Requirements
HTML application developers generally work with the provided Unified Messaging
API to create applications. The simplest way to create applications is to modify the
HTML templates provided in the Unified Messaging sample application.

This document assumes the HTML application developer has an understanding of
HTML, including form syntax. It also assumes a knowledge of general HTTP
concepts including the practical use of Web browsers, Web servers, and URLs.
While knowledge of browser scripting languages like JavaScript is not required to
develop simple HTML applications, such knowledge will assist in developing
enterprise-quality HTML applications and in understanding the Unified Messaging
GUI. Java programming knowledge is not required to program HTML applications,
but an understanding of general object-oriented programming concepts and the
ability to read Javadoc reference information is necessary.

System Requirements

1-6 Unified Messaging Developer’s Guide

Planning Your Development Strategy 2-1

2
Planning Your Development Strategy

This chapter describes planning your development strategy for the Unified
Messaging server and includes the following topics:

■ Choosing a Development Approach

■ Development Tools

■ General Design Considerations for HTML Development

■ HTML Application Development Process Overview

Choosing a Development Approach

2-2 Unified Messaging Developer’s Guide

Choosing a Development Approach
Web application developers typically take one of two main approaches in writing
application to customize Unified Messaging, though additional approaches are
possible. For complex tasks or tasks requiring special processing, you may also
choose to extend the JavaBeans APIs in combination with either the HTML
approach or the Java approach. The approach you choose, and whether you also
choose to extend the JavaBeans APIs, depends on the complexity of the task, the
target runtime environment or platform, and the areas of expertise of the
developers. All approaches, however, access the Unified Messaging server through
the JavaBeans APIs.

■ HTML Approach: Using HTML application to access the JavaBeans APIs
through the Java Server Pages.

■ Java Approach: Using Java application to access the JavaBeans APIs directly.

HTML Approach
With the HTML approach, you develop templates that consist of a combination of
standard HTML and URL syntax. The JSP engine passes templates and executes
Java code held within. Variables of the calling URL, browser cookies, and browser
environment variables passed in the HTTP request can be accessed using Java
servlets. Once processed, sends this dynamically generated HTML is sent to the
browser.

This approach offers the following advantages:

■ HTML application use only standard ASCII syntax, allowing rapid prototyping
and development without the need to compile code.

■ You can use scripting languages such as JavaScript™, JScript™, or VBScript™
to enhance the functionality or interactivity of your application.

■ You can add rich functionality without requiring Java programming expertise.

■ It requires only a standard Web browser on the client machine, making it ideal
for thin-client solutions.

Java Approach
With the Java approach, you develop custom Java application that pass instructions
to the UM APIs directly. Java application can achieve all of the functionality of
HTML application, by directly invoking API methods to access and manipulate

General Design Considerations for HTML Development

Planning Your Development Strategy 2-3

attributes. Although the Java approach is a development option, writing Java
application is beyond the scope of this document.

Development Tools
You do not need a special development tool to develop HTML-based application for
Unified Messaging. You can use a text or HTML editor or, if you prefer, a Web
authoring tool to create and maintain the template files that make up your
application.

To create Java applets or use any browser-compatible scripting, you can use
development tools. No special development environments or tools are provided
with the Unified Messaging SDK.

General Design Considerations for HTML Development
The visible part of most HTML application will be a collection of HTML templates.
Templates are the building blocks of your application and include a variety of
programming information.

You can build new HTML pages and use these as templates for your application or
you can modify existing templates. Regardless of where you begin, there are several
factors to consider before you write the application.

Consider How to Display Data
You should consider the number of runtime application objects—for example,
message titles—that appear in the interface and how template tags are replaced by
those objects. Also consider the formatting of objects included by template tags.

Consider How to Create Links
Links in an HTML application can be static URLs to other pages of the application
or detailed functional instructions for the application’s next operation.

When you build application URLs, you will specify the next template to use and the
error template to use. Before you begin developing your Unified Messaging
application, consider how you want to create links from text—like lists of message
subjects—and links from forms. When planning a link from an application page,
consider:

■ What’s the next HTML page to display after an action?

General Design Considerations for HTML Development

2-4 Unified Messaging Developer’s Guide

■ What’s the next HTML page to display after an error?

This diagram is a basic example of how various lists and forms may be linked in an
application.

Figure 2-1

The diagram also illustrates how you can display error messages in the current
HTML template (e.g., the Inbox, View Message, and Address Book templates), or
you can build dedicated error message templates.

General Design Considerations for HTML Development

Planning Your Development Strategy 2-5

Consider How to Use and Create Forms
HTML forms allow application users to enter a variety of information using text
fields, radio buttons, check boxes, and selection menus. You should plan to use
forms to allow users to log into your application, to search for text, and to enter text
for use in messages or as other attribute information.

Submitting a form constructs a URL. The content of the URL submitted by the form
is composed of a series of name=value pairs that are taken from the names and
values of elements in the form. The name=value pairs can be used to define, create,
and manipulate application objects such as, messages using references to existing
application objects and the objects in the JavaBeans APIs. The placement order of
form elements determines the order of name=value pairs that are submitted in
URLs.

Consider Your Network Bandwidth
Network bandwidth limitations may slow application performance and decrease
user productivity. For example, if you are building a mail application for use over
modem lines, it might be frustrating to the user to have to wait while a list of the
subject lines of the 3000 messages in the user’s inbox is created and sent out down
the line. It is important to consider your network bandwidth prior to developing
and deploying your application. For example, if you build a limit to the objects
displayed, you must also build ways to show the remaining objects.

You should also consider bandwidth when you are planning sophisticated graphics,
multiple frames, or any other HTML structures that create processing overhead.

Consider Browser Limitations
Make sure to consider the limitations of the Web browsers that will support your
application. For example, if you plan to use scripting for HTML form validation,
your choice of a scripting language may depend on the browser being used to run
the application. In addition, since scripting is processed by the Web browser, heavy
use of scripting in your application increases the load on the browsers running the
application and may decrease performance.

Note: When constructing HTML forms, Oracle Corporation
recommends using POST for the form method. POST will not
display the URL "contents" in the location text field of the browser
and allows for larger data transfer. GET is a valid form method;
however, it is subject to URL length limitations.

HTML Application Development Process Overview

2-6 Unified Messaging Developer’s Guide

Make sure you consider the browser versions you intend to support, and the size of
the typical machine that the browser will run on when planning your application.

Consider Using Existing Application Designs and Templates
Another approach to application development is to use HTML application
templates provided with the Unified Messaging SDK as a starting point for a new
application or to add Unified Messaging capabilities to existing Web pages.

For example, if you are developing an application with the messaging JavaBeans
APIs, you can begin your application design by looking at the included admin and
user application. The sample application is a HTML template with calls to the
Unified Messaging APIs.

You can copy and modify any or all parts of these application to build a comparable
application that meets your needs. To view the source code of any of the HTML
application templates for the sample application, go to the application files in the
following directory:

$ORACLE_HOME/um/templates/um

HTML Application Development Process Overview
As you write HTML templates, you may find that your application development is
easier if you take the following steps:

1. Design and create regular HTML files as static templates.

Start by creating a set of industry-standard HTML files that define the graphical
user interface and flow of the application. At this point, data is hard-coded, not
retrieved from the Unified Messaging Server, and clicking a link or an icon
displays another HTML file.

2. View your static templates through personal Web server software.

So that the links to images and other templates work as they will in the running
application, view the static templates through a personal Web server, rather
than viewing local files through a Web browser.

During this step, you can experiment with the look and feel of the application,
as well as the execution flow. You can also work with end users, managers, Web
designers, or other developers to refine the application before you start building
live Unified Messaging functionality.

HTML Application Development Process Overview

Planning Your Development Strategy 2-7

3. Create the directory structure.

Create a directory for your application in $ORACLE_HOME/um/templates. In
your application directory, create separate directories for templates and images,
like this:

$ORACLE_HOME/um/templates/um

$ORACLE_HOME/um/templates/images

4. Change the static URLs to application URLs.

Start with the first template, which by default has the same name as the
application. Change the static URLs, which call other HTML files, into
application URLs, which call methods from the JavaBeans APIS and specify the
next template that will be displayed.

5. Replace static data with template tags that call the JavaBeans APIs.

You can then transform the static HTML files into dynamic HTML templates by
replacing static data with template tags that call the JavaBeans APIs. For
example, in developing an e-mail application, you might begin by displaying a
hard coded list of messages and replace this list with template tags that display
actual messages stored in the user’s inbox on the Unified Messaging server. You
can handle repeating data sets or conditional processing with template tags.

6. View your finished application through a Web browser.

Once you have modified all of the templates, the application is complete. You
do not need to compile or link anything.

HTML Application Development Process Overview

2-8 Unified Messaging Developer’s Guide

Customizing Unified Messaging APIs 3-1

3
Customizing Unified Messaging APIs

This chapter discusses how to use Unified Messaging administration facilities and
how the Unified Messaging API can be used to develop applications. The following
topics are included:

Unified Messaging API Overview

Typical Client Application Development

Searching the Directory

The SDK Package

The MS Package

Unified Messaging API Overview
The Unified Messaging SDK provides an Application Programming Interface (API)
that provides access to the Unified Messaging server data and functionality. This
API is exposed as a set of JavaBeans. This allows developers to use a standard
component and object model when developing new applications. It also provides
an opportunity for application developers to use other JavaBean components in
conjunction with the Unified Messaging JavaBeans.

The Unified Messaging Functional Class Hierarchy
This class hierarchy provides a high-level view of the Unified Messaging classes
likely to be most useful to web application developers. It shows the package or
sub-package to which each class belongs (oracle.um.sdk or oracle.um.ms). This
hierarchy groups the Unified Messaging classes according to functional areas, and
does not imply inheritance.

■ sdk.Session

Unified Messaging API Overview

3-2 Unified Messaging Developer’s Guide

■ sdk.Audio

■ sdk.AdministratorList

■ sdk.Settings

■ sdk.CustomerNotes

■ sdk.Note

■ sdk.Directory

■ sdk.Address

■ sdk.GSMDir

■ sdk.GSMAddress

■ sdk.MsgStores

■ ms.Store

■ ms.Folder

■ ms.Message

■ ms.UMStore

■ ms.UMRoot

■ ms.UMInbox

■ ms.Message

■ ms.Folder

■ ms.Message

■ ms.SearchFolder

■ ms.Message

■ sdk.PagerDevice

■ sdk.NotificationRule

■ sdk.SMS

■ sdk.SMSMessage

■ sdk.Registration

■ sdk.Trace

Unified Messaging API Overview

Customizing Unified Messaging APIs 3-3

Keep in mind that this is only a partial list. Additional classes exist within the
Unified Messaging packages. For a complete description of the Unified Messaging
classes, refer to the Unified Messaging Javadoc.

The Unified Messaging API contains one major package: oracle.um.sdk. This
package supports both user and administrator functions, including:

Session management, including access to user profiles

■ Directory searching

■ E-mail manipulation

■ SMS management

■ Synchronization and notification

This main package has two sub-packages performing specific functions:

■ oracle.um.ms, which provides access to the IMAP4 message stores, resolves
addresses, and sends and receives e-mail.

■ oracle.um.services.ldap, which provides access to the LDAP directory.

The packages are built in a hierarchy and installed at the following location:

$ORACLE_HOME/um/lib/um.jar

For detailed information about the complete syntax of the Unified Messaging SDK
packages, classes, methods, and properties. The Javadoc is available at the following
location:

$ORACLE_HOME/um/doc/javadoc/index.html

The Unified Messaging Java Class Hierarchy
The Java class hierarchy describes how one class inherits from another. This
information is important because the inheriting class inherits the methods and
properties of the parent class. The following lists describe the class hierarchy of the
two Unified Messaging packages: oracle.um.sdk and oracle.um.ms. Most of the
classes that a web application developer will use are included in the oracle.um.sdk
package. Other supporting packages and sub-packages provide classes that deal
with specific, less frequently used tasks. This list describes the class hierarchy of the
oracle.um.sdk package:

■ Address

■ Audio

Unified Messaging API Overview

3-4 Unified Messaging Developer’s Guide

■ Directory

■ Fax

■ GSMAddress

■ GSMDir

■ List

■ AdministratorList

■ CustomerNotes

■ MsgStores

■ PagerDevice

■ SMS

■ Note

■ NotificationRule

■ Registration

■ Session

■ Settings

This list describes the class hierarchy of the oracle.um.ms package:

■ BodyPart

■ Folder

■ SearchFolder

■ UMInbox

■ UMRoot

■ Message

■ Migration

■ MultiPart

■ Store

■ UMStore

■ Transport

Typical Client Application Development

Customizing Unified Messaging APIs 3-5

These hierarchies provide only a partial list. Some classes within the oracle.um.ms
package are used by other classes for internal processing. For a complete listing of
the class hierarchy, refer to the Unified Messaging Javadoc.

Typical Client Application Development
Developing or customizing a Unified Messaging application will proceed more
efficiently for the developer who understands the following:

■ The functions of a messaging system that need to be provided

■ The specific Unified Messaging classes to use for each task

Some general messaging system functions include:

■ Creating and managing a login session

■ Retrieving Message Stores

■ Retrieving and displaying a folder (e.g. Inbox)

■ Retrieving and displaying a message

■ Creating and sending a new message

■ Searching for message using specified search criteria

■ Managing and organizing messages using folders

■ Updating various items related to the user, including the personal address
book, user profile settings, and notification rules.

These tasks are explained with examples that are derived from the Unified
Messaging client. These templates can be viewed, in their entirety, at the following
location:

$ORACLE_HOME/um/templates/um

Before you start customizing or developing your application, be sure you have
completed all the post-installation tasks related to the Unified Messaging
Applications component.

Creating and managing a login session
An instance of the Session class must be created when a user logs into the system.
This is done with the username and password provided by the user. A login page is
usually the entry point for the end user in most session-based applications. Here is

Typical Client Application Development

3-6 Unified Messaging Developer’s Guide

the login page [login.jsp] that the Unified Messaging client uses to gather this
information:

<html>
<head>
 <title>Unified Messaging Login</title>
 <link rel=stylesheet type="text/css" href="umstyle.css">
</head>

<body bgcolor="#FFFFFF">

<form action=<%= response.encodeUrl("checkStatus.jsp") %>
method=post>
 <table border=0 cellpadding=0 cellspacing=0
 align=center width=640 background="/images/umlogo.gif">
 <tr>
 <td></td>
 <td>
 <table border=0 cellspacing=0 cellpadding=0
 align=right width=45% background="">
 <tr><td height=30> </td></tr>
 <tr><td>
 Username or Phone
Id
 </td></tr>
 <tr><td><input name=username type=text size=16
maxlength=20></td></tr>
 <tr><td>
 Password
 </td></tr>
 <tr><td><input name=password type=password size=16
maxlength=20></td></tr>
 <tr><td> </td></tr>
 <tr><td>
 <input type=submit value=Login>
 <input type=reset value=Reset>
 </td></tr>
 </table>
 </td>
 </tr>
 </table>
</form>
<center>

Typical Client Application Development

Customizing Unified Messaging APIs 3-7

 On Java Server Pages
1.0
</center>
<%
 String errorMsg = request.getParameter("errorMsg");
 if (errorMsg != null)
 out.println("<p><center class=errMsg>" + errorMsg + "</center>");
%>
</body>
</html>

You can see that this page is essentially a form with two fields for the username and
password. When a user logs into the system, there may be other preparations
required before letting them proceed with their login session. Aside from
validating their information, special steps may want to be taken based on things
like the amount of quota the user has left, or whether this user is logging in for the
very first time. For this reason, the form action in the Unified Messaging client
login page will call the "checkStatus.jsp" template with the results of this form.

Before we discuss this other template, we should also note that at the bottom of this
template there is also some JSP code that checks to see if an error parameter was
passed in the URL to this page. This general mechanism can be used to allow a
template to react differently based on URL parameters such as error cases or to even
allow a template to work as a "traffic cop" and direct traffic to other templates. In
this case, we merely print out the value of the error message parameter and use
stylesheets to make it appear in an appropriate manner. The code for
checkStatus.jsp has no HTML inside it.

<%
String nextURL = response.encodeUrl("main.jsp");
try {

 String uname = request.getParameter("username");
 String pword = request.getParameter("password");

 oracle.um.sdk.Session umSession = new

 oracle.um.sdk.Session(uname, pword, "", "");

 session.putValue("umSession", umSession);

 oracle.um.sdk.Settings umSettings = umSession.getSettings();

 String regStatus = (String) umSettings.get("status");

Typical Client Application Development

3-8 Unified Messaging Developer’s Guide

 if (regStatus.equals("I")) {
 nextURL = response.encodeUrl("inactive.jsp"); // user is not activated
yet.
 }
 if (umSettings.isQuotaUsed()) {
 nextURL = response.encodeUrl("quotaExceeded.jsp"); // quota
exceeded
 } else if (umSettings.isQuotaCheckpointExceded()) {
 nextURL = response.encodeUrl("quotaWarning.jsp"); // warning
quota is over 80 percent.
 }

} catch (Exception e) {
 nextUrl = "login.jsp?errorMsg=" +
java.net.UrlEncoder.encode(e.toString());
}

response.sendRedirect(response.encodeRedirectUrl(nextUrl));

%>

This template will always redirect to another template. In a typical login scenario,
this template would redirect to main.jsp. If there are any special cases, we may go
to a different template based on each case. Almost the entire template is coded
inside a try-catch statement, so if there are any exceptions, the template we would
be redirected to is login.jsp with the error string passed as a parameter to the URL.

The main purpose of this template is to create an instance of a Session object by
passing in the username and password to the constructor. The Session class serves
a special function in the Unified Messaging API, acting as a factory class that
provides access to other Unified Messaging classes. You can think of the Session
class as the highest entity in the Unified Messaging functional hierarchy, because
the other classes often require some information that has been processed and stored
by the Session class.

If a session is created successfully, the Unified Messaging client will ‘put’ the
Unified Messaging session into the JSP session for later reference and then gets the
settings for this user’s session. This information will include things like the status
of the user’s account. The value of user status can be one of the following:

■ Administrator

 Administrators require a more powerful set of functions than other users, such
as the ability to create and delete accounts. These functions are specified in the

Typical Client Application Development

Customizing Unified Messaging APIs 3-9

Session object. Administrative privileges are discussed in further detail in the
"Administering Unified Messaging" section.

■ First-time user (inactive user)

 First-time users, also known as "inactive users," may need to go through an
activation process including both authentication (username and password) and
customization (user profile). The Registration class provides authentication by
sending and verifying a registration code to the user’s pager. The user can then
specify a more appropriate username and password to replace the ones
generated by the system.

■ Active user

An active user is a validated Unified Messaging user who has successfully
activated a Unified Messaging account by selecting a personalized account
name and password.

What happens next depends on whether the user is active or inactive. For inactive
users, the client is redirected to the inactive.jsp template which performs the
following steps:

1. Display the welcome message.

2. Retrieve the registration code.

3. Verify the registration code.

4. Set up the custom password and e-mail alias.

5. Create a messaging account.

If the user is active:

1. Check quota usage.

2. If the user is approaching the quota limit for messages, redirect the client to an
notification page before allowing them to continue.

After this point, the user will proceed into the application where the Unified
Messaging client will open message stores and provide an initial display.

Retrieving Message Stores
In order to get access to Unified Messaging messages the client must open message
stores. A message store contains folders such as an inbox or wastebasket. The
Unified Messaging system supports three types of message stores:

■ Email server

Typical Client Application Development

3-10 Unified Messaging Developer’s Guide

■ Voice mail server

■ Facsimile server

A user can even have more than one message store for each type of message. For
example, a user could have one e-mail message store, two voice mail message
stores, and two facsimile message stores. In this case, each of the five message stores
corresponds to its own e-mail, voice mail, or facsimile address. Each message store
has its own inbox, where all incoming messages for that message store are initially
placed. Multiple message stores may also be aggregated into one Unified
Messaging inbox, to provide a single, unified view of messages from the multiple
message stores. You should use the Store class to represent each message store in
your Unified Messaging system.

In this code snippet from main.jsp, the Unified Messaging client retrieves the list of
message stores and retrieves the first message store from the list (which is always
the aggregated Unified Messaging inbox).

oracle.um.sdk.MsgStores umMsgStores =
umSession.getUMMsgStores();
oracle.um.ms.UMStore umStore = (oracle.um.ms.UMStore)
umMsgStores.getElement(0);

Retrieving and Displaying Folders (e.g. Inbox)
Folder objects are contained within a Store object, as shown in the following
hierarchy:

oracle.ms.Store
oracle.ms.Folder
oracle.ms.Message

A folder can contain other folders and messages.

To demonstrate a retrieval of a folder from a message store, here is some code from
msg_list_con.jsp:

String newFolder = request.getParameter("newFolder");
oracle.um.ms.Folder f = null;
if (newFolder != null)
{
 oracle.um.ms.UMStore umStore = (oracle.um.ms.UMStore)
session.getValue("umStore");
 f = umStore.getFolder(newFolder);
 f.preFetch();

Typical Client Application Development

Customizing Unified Messaging APIs 3-11

 session.putValue("currFolder", f);
}

The code gets the value of the parameter "newFolder" from the requesting URL. If
the value is not null, it retrieves the umStore object from the session, and gets the
folder from the store. It then prefetches some information about the first messages
in the folder and the folder is "put" into the session for later reference.

Once the folder is available, displaying the list of contents can range from fairly
simple to fairly complex based on what information you would like to display, and
how you would like the user to interact with the content. Basic to any display
would be the list of messages and their attributes. To retrieve information about
these messages, you would call a method very similar to the one to retrieve a folder
from a store:

m = f.getMessage(i);

Where f is the folder and I is the index of the message in the folder. With the
message in hand, retrieving the attributes is relatively straightforward. Placing this
code in a loop makes the list of messages easy to come by. Here is an example of the
basic aspects to displaying a folder list taken from parts of the msg_list_con.jsp
template:

.

.

.
<form name=msgList>
<%
 oracle.um.ms.Message m = null;
 String msgType = null;
 int msgSize = 0;
 boolean bg = false;
 for (int i=msgNumOffset; i<lastMsgNum; i++)
 {
 m = f.getMessage(i);
 msgType = m.getFolder().getStore().getMsgStoreType();
 msgSize = m.getSize() / 1024;
...
%>
.
.
.
lots of interesting formatting and javascript mixing JSP and HTML
.

Typical Client Application Development

3-12 Unified Messaging Developer’s Guide

.

.
<% } %>
</form>

Retrieving and Displaying Messages
Like folders, Message objects contain other objects, as shown in the following
hierarchy:

oracle.ms.Message
oracle.ms.MultiPart
oracle.ms.BodyPart

A Message object can contain the following objects:

■ At most, one MultiPart object (simple messages may not have a MultiPart
object)

■ One or more BodyPart objects, which can represent any of the following:

■ The email text message

■ An attached message

■ An attached file, such as an audio file

In addition to retrieving the content of the e-mail itself, you may want to retrieve
various parts of the message header, which includes information such as:

■ Sender

■ Recipient

■ Date

■ Subject

■ Message status

These parts of the message header are represented as properties of the message, so
to retrieve them, use the appropriate getXXX method on the Message object, as
shown in the following example:

String subj = msg.getSubject();

A simple message object may contain only the message body; that is, the e-mail text
itself. It may not contain a multipart object at all. In this case the body of the

Typical Client Application Development

Customizing Unified Messaging APIs 3-13

message can be retrieved using the getBody method, as shown in the following
example:

String content = msg.getBody();

In more complex messages, a message may contain one MultiPart object. This
MultiPart object is a container for one or more BodyPart objects that may represent
different components of a complete message such as:

■ Email message text

■ Attached files

■ Attached messages

A complex message may thus contain several BodyPart objects, representing the
e-mail text and attachments. In this case, you will need to use the MultiPart and
BodyPart classes to access the message text and other attachments of a message.

MIME
E-mail was originally designed to transmit ASCII text. MIME, or Multipurpose
Internet Mail Extensions, defines a series of file types that allow mail systems to
transmit non-ASCII files, such as formatted text files, image files, and sound files.
MIME adds a header to the file that specifies the type of data contained. Sample
MIME types include:

text/HTML, text/plain, application/pdf, image/gif, image/tiff, and audio/wav.
You need to know the MIME type of a BodyPart or Message object to determine
how to handle its content. To ascertain the type of the you can call the isMimeType
method as shown in the following example:

bp = mp.getBodyPart(i);
if (bp.isMimeType("text/html"))
{…}

If a Message object has a MIME type of multipart/* it contains a MultiPart object. If
the content of this message is not a MultiPart object, the MIME type of its contents
will be a type other than multipart/*, such as text/*. In this case, the is
MimeType("multipart/*") method would return the value false.

A Complex Message Example
Here’s an example of a more complex message. This is the "containing" relationship
structure:

Typical Client Application Development

3-14 Unified Messaging Developer’s Guide

■ Message object

■ MultiPart object

■ Body Part #1 - The actual e-mail text file, MIME type text/plain.

■ Body Part #2 - An attached document file, MIME type application/pdf.

■ Body Part #3 - An attached photograph file, MIME type image/gif.

Note that a BodyPart object can be an entire e-mail message. For example, assume
the following scenario:

■ Manager Magee sends Smith a message with the subject line, "Departmental
Meeting."

■ Smith then forwards Magee’s message to Jones with the subject line, "Important
Meeting Scheduled."

To display the forwarded message to Jones, you would find that his message object
is multipart and that one of the BodyParts was of MIME type message/*. Opening
the content of that BodyPart would get you a message object that contained a
BodyPart that had the actual e-mail message from Magee.

Thus, a BodyPart object can contain another whole Message object. This Message
object, in turn, can be a multipart Message object that contains more BodyPart
objects. This series of objects containing objects can create a recursive structure that
could be many levels deep.

Displaying Messages
Be sure to consider the recursive nature of e-mail messages when you plan how
your web application will display e-mail messages. In most cases, you will probably
not want to display the content of all the BodyPart objects in a single window. This
is particularly true for those BodyParts that represent attachments. Providing an
access point to these items in the form of a link is usually best. In general
displaying all the BodyParts could make for a complicated and difficult-to-read
display, because you cannot predict in advance the number of levels of BodyPart
objects a message may contain.

The Unified Messaging client displays attachment icons in a separate browser frame
from the content. This allows the list of attachments to always be visible. This also
requires an "original message" icon to take the user back to the content of the
message. This code is in message_view_header.jsp and a snippet follows:

<!-- list attachment and the original msg icons for emails -->
<%

Typical Client Application Development

Customizing Unified Messaging APIs 3-15

 if (msg.isMimeType("multipart/mixed"))
 {
 oracle.um.ms.MultiPart mp = (oracle.um.ms.MultiPart)
msg.getContent();
 int numbp = mp.getCount();
 if (numbp > 1)
 {
 out.println("<table border=0 cellspacing=0 cellpadding=0>");
 out.println("<tr><td width=15><img src=’/images/blank.gif’ width=15
height=5 border=0></td><td class=attach><img src=\"/images/MessRead.gif\"
alt=\"Message Content\" border=0></td>\n<td class=attach
width=5><img src=’/images/blank.gif’ width=5 height=5
border=0></td>");
 out.println("<td class=attach width=100% >");
 for (int i=1; i<numbp; i++)
 {
 oracle.um.ms.BodyPart bp = mp.getBodyPart(i);
 if (bp.isMimeType("message/rfc822"))
 {
 oracle.um.ms.Message bpcon = (oracle.um.ms.Message)
bp.getContent();
 String subj = bpcon.getSubject();
 if (subj.trim().equals(""))
 subj = "No Subject";

 out.println("<img
src=\"/images/Attch_w_Merss.gif\" alt=\"Open Attachment\" border=0>"
+subj+ "");
 }
 else
 {
 String filename = bp.getFileName();
 if (filename.trim().equals(""))
 filename = "Anonymous";
 out.println("<img
src=\"/images/Attch.gif\" alt=\"Open Attachment\" border=0>"
+filename+ "<img src=’/images/blank.gif’ width=5 height=5
border=0>");
 }
 }
 out.println("</td><td class=attach nowrap><img src=’/images/blank.gif’
width=5 height=5 border=0></td></tr>");
 out.println("<tr><td width=100% colspan=5><hr></td></tr></table>");
 }

Typical Client Application Development

3-16 Unified Messaging Developer’s Guide

 }

Converting Audio and Facsimile Files
The Unified Messaging SDK provides audio conversion from g726 format to both
WAV and RealAudio formats. This conversion is needed because voice mail systems
use g726 format and facsimiles use the TIFF format. Neither of these formats is
compatible with standard web browsers. Web browsers will work with WAV and
GIF formats by default and now usually come prepackaged with a RealAudio
plugin. Both audio and facsimile conversions require a three-step process:

1. First create an instance of the Audio and Fax objects for the user’s session
(during login time usually).

2. When you need to handle a voice mail or facsimile, call prepareAudio() or
prepareFax() to ask the server to perform the necessary conversion.

3. Finally, display the converted audio file or fax images.

After the customer logs in successfully it is a good idea to create an instance of the
Audio and Fax objects. You can reuse a single instance of these objects throughout
an entire session. Here’s an example of creating a Fax object:

oracle.um.sdk.Fax fax = umSession.getFax();

Once you have these object instances available, you need to call their prepareXXX
method before giving the end user the data. Here are the function parameters for
the prepareAudio and prepareFax methods of the Audio and Fax classes found in
the oracle.um.sdk package:

public void prepareAudio(BodyPart part, String title, String author, String
copyright)
public void prepareFax(BodyPart part)

Parameter Description

Once prepared, the data can be made available to the end user. In the case of audio,
you can choose either RealAudio or WAV format by using either the method

part The body part that contains the voice data.

title The title of the voice data.

author The author of the voice data.

copyright The copyright information regarding the voice data.

Typical Client Application Development

Customizing Unified Messaging APIs 3-17

getRealcontent() or getWavecontent() on the Audio object. For Fax data, you can use
the getGifcontent() method on the Fax object.

Creating Messages
Creating a new message via a compose window is very simple. The JSP template
for creating a new message is essentially a form with various attributes about the
new message. Here are the more relevant parts of the code that is used in the
Unified Messaging client compose window:

<form name=composeEmailForm enctype="multipart/form-data"
 action="<%= response.encodeUrl("msg_comp_email_send.jsp")
%>"
 target=msgRes method=post>
…

 <td class=fieldData colspan=3 nowrap><input type=text name=to
size=35 value="<%= to %>">
…
 <td class=fieldData colspan=3 nowrap><input type=text name=cc
size=35 value="<%= cc %>"></td>
 <td class=fieldData colspan=3 nowrap><input type=text name=subject
size=35 value="<%= subject %>"></td>
…
<td class=fieldData nowrap><select name=fcc>
<%
try {
 oracle.um.ms.UMStore umStore = (oracle.um.ms.UMStore)
session.getValue("umStore");
 oracle.um.ms.Folder rootFolder = umStore.getRoot();
 out.println(listSubFolders(rootFolder, ""));
} catch (Exception e) {
 out.println(e.getMessage());
}
%>
 </select></td>
…
 <td class=fieldData colspan=3 nowrap><input type=file
name=fileAttach size=35></td>
…
 <td class=fieldData colspan=5><textarea name=body cols=50
rows=12><%= body %></textarea></td>
…
</table>

Typical Client Application Development

3-18 Unified Messaging Developer’s Guide

</form>
…

The contents of the form are filled with appropriate data as needed (e.g. in a
message reply or forward). In the Unified Messaging client, the form will call the
msg_comp_email_send.jsp template where the createMessage method is invoked as
follows:

umSession.createMessage(to, cc, subject, body, fcc, msg, fds);

Parameter Description

Searching for Messages
The searchFolder method for retrieving message objects with specific values is:

public searchFolder search(String[] searchAttribute, String[]
searchOperator,String[] searchValue,String startFolderName, boolean
nestedFolder,String compoundOperator)

to The destination address(es)

cc Carbon copy address(es)

subject The subject of the message

body The content of the message (the "text")

fcc A folder to copy the new message to ("Folder Carbon copy")

msg A Message object that this new message will contain (e.g. the forwarded
message)

fds A oracle.um.util.FileStreamDataSource that contains the attachments (see
msg_comp_email_send.jsp for an example)

Typical Client Application Development

Customizing Unified Messaging APIs 3-19

Parameter Description

To specify the search criteria, set three parameters:

■ searchAttribute

■ searchOperator

■ searchValue

The following table shows how these three parameters can be used together to
specify search criteria:

searchAttribute The portion of the message to search, specified as a String array.
The value may be BODY, FROM, TO, RECEIVED, SUBJECT,
PRIORITY, SIZE, or READ.

searchOperator The operator to use in the search, specified as a String array. The
value may be EQUAL_TO, NOT_EQUAL_TO, CONTAIN, NOT_
CONTAIN, GREATER_THAN, or LESS_THAN.

searchValue The specific value to search for, specified as a String array. The
value may be one of the following constants: ALL, YES, NO,
LOW, MEDIUM, or HIGH; or any user-specified string, such as a
name or date.

startFolderName The name of the folder from which to begin the search.

nestedFolder Whether to search through all nested folders, or to search only in
the current folder. The value may be TRUE or FALSE. FALSE
means "search only the folder specified in startFolderName."

CompoundOperator If multiple search operators have been listed, specifies how to
combine the search terms. The value may be AND or OR.

searchAttribute searchOperator searchValue

BODY CONTAIN

NOT_CONTAIN

User-defined string

FROM CONTAIN

NOT_CONTAIN

User-defined string

TO CONTAIN

NOT_CONTAIN

User-defined string

Searching the Directory

3-20 Unified Messaging Developer’s Guide

As in message composition, the Unified Messaging client uses a form to retrieve the
search criteria from the user:

<form name=searchMsgForm
 action="<%= response.encodeUrl("search_message.jsp") %>"
 target=Result method=post>

The real work happens in search_message.jsp where the call to the search method is
made:

oracle.um.ms.SearchFolder sf =null;
…
sf = s.search(a,o,v,folder,sub,matchStr);

The vector of attributes, operators, and values, is passed in with the folder to search
in, a flag for the subfolder search, and the type of compound operation to perform.
This call then returns a SearchFolder object that can be treated in a manner similar
to a regular messaging folder object. This makes it easy for the Unified Messaging
client to display the results of the search using the same approach; as a message list.

Searching the Directory
If you want to search a directory to retrieve information about addresses, use the
Session class with the GSMDir and Directory classes. (GSM stands for Global
System for Mobile communications).

RECEIVED LESS_THAN

GREATER_THAN

EQUAL_TO

NOT_EQUAL_TO

User-defined string

SUBJECT CONTAIN

NOT_CONTAIN

User-defined string

PRIORITY LOW, MEDIUM, HIGH

READ YES, NO

SIZE LESS_THAN

GREATER_THAN

EQUAL_TO

NOT_EQUAL_TO

User-defined string representing an integer

Searching the Directory

Customizing Unified Messaging APIs 3-21

■ The GSMDir object represents a public directory that can be searched by any
user.

■ The Directory object represents the user’s private directory, which can only be
searched by the owner of the directory.

To search the content of a directory, you must first create one of these directory
objects using the Session object. You can create both GSMDir and Directory objects
using the Session object’s getDirectory method. The getDirectory method is
overloaded; that is, you can use the same method for different purposes, depending
on the number and type of parameters used in calling the method. In this case, you
pass six parameters to getDirectory to retrieve a GSMDir object and five parameters
when you wish to retrieve a Directory object.

Searching for Users using the GSMDir Object
The parameters for the getDirectory method when retrieving a GSMDir object are as
follows:

public GSMDir getDirectory (String type, String name, String city, String
fax, String phone, String operation)

Parameter Description
The following table describes the parameters for the getDirectory method:

A form is used to gather these parameters from the user as in message composition.
This form then calls the search_directory.jsp template to do the actual search. Here
is the way the Unified Messaging client instantiates a GSMDir object when
performing a search in search_directory.jsp:

oracle.um.sdk.GSMDir gsmDir = (oracle.um.sdk.GSMDir)
umSession.getDirectory("GSM",name,city,fax,phone,"AND");

type The type of the search (must be "GSM")

name The name of the person to search for

city The city to search for

fax The fax number to search for

phone The phone number to search for

operation The operation of the search

The SDK Package

3-22 Unified Messaging Developer’s Guide

Searching for Address Book Entries Using the Directory Object
The parameters for the getDirectory method when retrieving a Directory object is:

public Directory getDirectory (String type, String name, String
startValue,
String endValue, String operation)

Parameter Description

A form is used to gather these parameters from the user as in message composition.
This form then calls the search_addrbook.jsp template to do the actual search. Here
is the way the Unified Messaging client instantiates a Directory object when
performing a search in search_addrbook.jsp:

oracle.um.sdk.Directory addrDir = (oracle.um.sdk.Directory)
umSession.getDirectory(addressType,addressName,searchValue,searchValue,searchOpe
ration);

For example, to search for private aliases whose FULL_NAME attributes start with
the letters "a" to "g", you would pass PRIVATE_ALIAS for type of search, FULL_
NAME for the name of the address element to search, "a" as the startValue, "g" as
the endValue, and START as the operation. For more details regarding options and
variations, please refer to the reference or the javadoc.

The SDK Package
The oracle.um.sdk package is used to perform high-level tasks, such as creating
new user accounts, creating notes, and converting audio and facsimile files. The
classes of the oracle.um.sdk package use the classes of the oracle.um.ms
package to carry out some of these tasks.

type The type of the search (ALL, PRIVATE_ALIAS, or PRIVATE_GROUP)

name The name of the address element used for the search operation

startValue The start value of the search

endValue The end value of the search

operation The operation of the search

The SDK Package

Customizing Unified Messaging APIs 3-23

Address Class
The Address class represents an entry in the Unified Messaging user’s address
book. Use the Address class to represent the user’s private aliases and distribution
lists. A private alias contains the contact information for any person. A private
distribution list is a list of aliases. Addresses are created using
Session.createAddress.

The following tables list the attributes and methods of the Address class:

AdministratorList Class
The AdministratorList class is used exclusively by the Unified Messaging
administrator. An AdministratorList object contains a list of Unified Messaging
accounts, retrieved by performing a search. The administrator can use this list to log
into a particular account or to change account information.

Attribute Description

PRIVATE_ALIAS Specifies that the search is for PRIVATE_ALIASes only.

PRIVATE_GROUP Specifies that the search is for PRIVATE_GROUPs (distribution
lists).

Method Description

delete() Deletes this address from LDAP.

get(String Directory) Gets the value of a given property name (dynamic
properties).

getId() Gets this address id.

getMembers() Returns a directory list with the aliases in this DL.

getType() Gets this address type Returns either PRIVATE_ALIAS or
PRIVATE_GROUP.

insert(String[], String[]) Inserts and array of aliases to the current object’s distribution
list.

next() Gets the next address in a directory search.

previous() Gets the previous address in a directory search.

remove(String[], String[]) Removes aliases from the current object’s distribution list.

update(String, String,
String[], String[])

Updates an address with new values.

The SDK Package

3-24 Unified Messaging Developer’s Guide

The following table lists the method of the AdministratorList class:

Audio Class
The Audio class handles conversion of g726 and WAV formatted files from the
message store as either WAV files or files in RealAudio format. Conversion requires
two steps: first prepareAudio starts a background process for retrieving and
converting the data. Then the file is played by the Web browser using
getWavecontent or getRealcontent.

The following table lists the methods of the Audio class:

Method Description

getList(int) Gets the settings of a UM account stored in this[index].

Method Description

createMetaFile() Creates a meta file for the RealAudio media.

getRealcontent() Gets the meta information for the temporary RealAudio file.

getRealcontentMIME() Gets the MIME type of the RealAudio.

getRealfile() Get the filename for the RealAudio data.

getServer() Gets the location of the RealAudio server.

getWavecontent() Gets the content of the Wave audio file.

getWavecontentMIME() Gets the MIME type of the Wave data.

getWavefile() Gets the filename for the Wave audio.

prepareAudio(BodyPart,
String, String, String)

Starts background processes.

setMIMERealPlayer() Sets the RealAudio MIME type for the external browser
player.

setMIMERealPlugin() Set the RealAudio MIME type for the browser plugin player

The SDK Package

Customizing Unified Messaging APIs 3-25

Directory Class
The Directory class represents a set of addresses retrieved by performing a search
on the customer’s address book. The following tables list the attributes and
methods of the Directory class:

Fax Class
The Fax class is for on-the-fly facsimile image conversion. The prepareFax
method converts a facsimile image to GIF format. Then the getGifContent,
getGifContentMIME, and getGifFile methods are used to retrieve and display
the image. Currently, this class takes only two types of images: GIF files and TIFF
files. Implementation for other types of images requires modification to the
prepareFax method.

The following table lists the methods of the Fax class:

Attributes Description

ALL Searches for both aliases and groups.

OP_CONTAINS Searches for addresses ’contain’ the specified value.

OP_EQUAL Searches for addresses ’equal’ to the specified value.

OP_MEMBER Searches for addresses in the specified distribution list.

OP_NOT_MEMBER Searches for addresses and/or groups not in the specified
distribution list.

OP_START Searches for addresses ’start’ with the specified value.

PRIVATE_ALIAS Searches for PRIVATE_ALIAS only.

PRIVATE_GROUP Searches for PRIATE_GROUP (distribution lists) only.

Method Description

getCount() Gets the maximum number of records.

getElement(int) Gets an address in the list.

getIndex() Gets the current index.

isTooMany() Indicates whether the search results in too many hits.

The SDK Package

3-26 Unified Messaging Developer’s Guide

GSMAddress Class
The GSMAddress class represents any person’s entry in an LDAP server, whether
the person is a Unified Messaging customer or not. (GSM stands for Global System
for Mobile communications.)

The following table lists the methods of the GSMAddress class:

GSMDir Class
The GSMDir class represents a set of addresses retrieved by performing a search on
the GSM (public) address directory. Just as the Directory class contains a list of
private addresses, such as personal address book, the GSMDir class contains a list
of public addresses, like a corporate directory.

The following tables list the attributes and methods of the GSMDir class:

Method Description

getGifContent() Gets the content in GIF format.

getGifContentMIME() Gets the Content MIME Type of the bodypart.

getGifFilename() Returns the filename property.

prepareFax(BodyPart) Sets a content of a BodyPart.

Method Description

get(String) Gets the value of a property by name.

getCustomerName() Gets the customer name.

getFaxNumber() Gets the fax number.

getPhoneId() Gets the value of phone_id.

next() Returns the next GSM address from the GSM directory.

previous() Returns the previous address from the current GSM directory.

set(String, Object) Sets the value of a property by name.

Method Description

get(int) Gets a GSM address specified by the index.

get(String) Gets a property by name (dynamic properties).

The SDK Package

Customizing Unified Messaging APIs 3-27

List Class
The List class is an Abstract class, used to define many of the common functions
used by other classes that contain lists of objects, such as AdministratorList and
CustomerNotes.

The following table lists the methods of the List class:

getCount() Gets the number of records that can be retrieved.

getElement(int) Gets a GSM address from this.

getIndex() Gets the current index.

getSearchOperator() Gets the search operator.

isToomany() Indicates whether the query returns too many results.

reset() Resets the list.

set(String, Object) Sets a property by name (dynamic properties)

setCity(String) Sets the city name to search for.

setFaxNumber(String) Sets the fax number to search for.

setLastName(String) Sets the last name to search for.

setListAmount(int) Sets the size of the memory buffer.

setPhoneId(String) Sets the phone number to search for.

setSearchOperator(String) Sets the search operator.

Method Description

getCount() Gets the number of records to retrieve.

getElement(int) Gets an element in the list.

getIndex() Gets the current index.

reset() Resets the list.

setListAmount(int) Sets the size of the memory buffer.

Method Description

The SDK Package

3-28 Unified Messaging Developer’s Guide

MsgStores Class
The MsgStores class retrieves all the message stores defined for a Unified
Messaging user. This class can be created by the Session class. Each element in a
MsgStores object is a Store object of the message store available to this customer.

The following table lists the method of the MsgStores class:

Note Class
The Note class represents a customer note object, consisting of the following parts:
NoteID, Subject, Text, and Signature. Notes are primarily used by Unified
Messaging administrators to record reminders related to a specific customer.

The following table lists the methods of the Note class:

Method Description

toString() Returns a string of all message stores.

Method Description

delete(String) Deletes a note given the note id.

get(String) Gets the value of a property by name.

getNoteId() Gets the note id.

getSignature() Gets the signature.

getSubject() Gets the subject.

getText() Gets the text.

next() Returns the next note.

previous() Returns the previous note.

set(String, Object) Sets the value of a property by name.

setCreateDate(String) Sets the date the note is created.

setCustomerId(String) Sets the customer id.

setNoteId(String) Sets the note id.

setSignature(String) Sets the signature, or the author of the note.

setSubject(String) Sets the subject of the note.

setText(String) Sets the text of the note.

The SDK Package

Customizing Unified Messaging APIs 3-29

NotificationRule Class
The NotificationRule class administers the creation, deletion, and maintenance of
notification rules. Rules are used to set reminders, such as which messages will
trigger user notification via a pager.

The following table lists the methods of the NotificationRule class:

PagerDevice Class
The PagerDevice class manages the notification rules for a pager device. The rules
can be retrieved, modified, updated, enabled, and disabled.

The following table lists the methods of the PagerDevice class:

Registration Class
The Registration class is used for inactive users when they want to register and
create a Unified Messaging account. Using the Registration class, Unified
Messaging sends a randomly generated registration code to the user via a pager.
After this code has been successfully identified, a Unified Messaging account will
be created. This account will use a custom password and e-mail alias. The
Registration class can be retrieved though the Session class.

update(String, String,
String, String)

Updates the attributes of the current object.

Method Description

delete() Deletes this rule.

get(String) Gets the value of a property by name.

set(String, Object) Sets the value of a property by name.

update(String[], String[]) Updates the rules.

Method Description

get(String) Gets the value of a property by name.

getRule(int) Gets the notification rule for the current device.

setEnabled(String[]) Enables the given list of rules and disables the rest for the
device.

Method Description

The SDK Package

3-30 Unified Messaging Developer’s Guide

The following table lists the methods of the Registration class:

SMS Class
The SMS class administers the creation and sending (to one receiver) or
broadcasting (to all Unified Messaging users) of Short Message Service (SMS)
messages.

The following table lists the methods of the SMS class:

SMSMessage Class
The SMSMessage class contains a list of SMS Message objects retrieved by
performing a search.

The following table lists the methods of the SMSMessage class:

Method Description

checkRegistrationCode(String) Verifies the registration code from the user.

createAccount(String) Creates a Unified Messaging account given that the
password is known.

createAccount(String, String) Creates a Unified Messaging account given that the
phone_id is known.

createAccount(String, String,
String)

Creates the Unified Messaging account.

createRegistrationCode(String) Creates a registration code.

Method Description

broadcast(String) Broadcasts an SMS message to all active UM users.

send(String, String) Sends an SMS message to the specified receivers.

Method Description

getDate() Gets the date of the message.

getError() Gets any error that may have occurred.

getMessage() Gets the body of the message.

getPhone() Gets the phone associated with the message.

getStatus() Gets the status of the message.

The SDK Package

Customizing Unified Messaging APIs 3-31

Session Class
The Session class is the main class of the Unified Messaging SDK. A Session object
must be instantiated before a user can connect to Unified Messaging. The Session
object registers the user, creates a new Unified Messaging account, creates e-mail
messages, creates user notification rules, and prepares audio and facsimile objects
for conversion. The Session class also acts as a factory class for other classes
developed for use with the Unified Messaging utilities. For example, it starts an
SMS connection and lists the pager devices for the account.

The following tables list the attributes and methods of the Sessions class:

getType() Gets the type of the message.

next() Gets the next SMS message.

previous() Gets the previous SMS message.

Attribute Description

ALL Valid searchOperation for searchAttribute = READ.

AND valid compoundOperator values for search() function .

BODY The message body.

CONTAIN valid searchOperation for
searchAttribute=SUBJECT,BODY,FROM,TO.

EQUAL_TO Valid searchOperation for searchAttribute=SENT,RECEIVED,and
SIZE.

fax The Fax object; only one is needed.

FROM Message from name.

LOW Valid searchOperation for searchAttribute=PRIORITY.

PRIORITY Message Priority.

READ Message read.

RECEIVED Received Date.

SENT Sent date.

settings The settings for this session.

SIZE Size of message.

Method Description

The SDK Package

3-32 Unified Messaging Developer’s Guide

SUBJECT Subject of the message.

TO Message sent to name.

Method Description

close() Closes the session.

createAddress(String,
String, String, String[],
String[])

Creates an address both in the UM Database and in
InterOffice.

createBroadcastMessage(Stri
ng, String, String, String,
FileStreamDataSource[])

Creates and sends a Broadcast message.

createMessage(String,
String, String, String)

Creates and sends a message.

createMessage(String,
String, String, String,
FileStreamDataSource[])

Creates and sends a message.

createMessage(String,
String, String, String,
Message)

Creates and sends a message.

createMessage(String,
String, String, String,
Message,
FileStreamDataSource[])

Creates and sends a message.

createMessage(String,
String, String, String, String,
Message,
FileStreamDataSource[])

Creates and sends a message.

createMessage(String[],
String[])

Creates a message and either sends or saves it.

createMessage(String[],
String[],
FileStreamDataSource[])

Creates a message and either sends or saves it.

createMessage(String[],
String[], Message)

Creates a message and either sends or saves it.

Attribute Description

The SDK Package

Customizing Unified Messaging APIs 3-33

createMessage(String[],
String[], Message,
FileStreamDataSource[])

Creates a message and either sends or saves it.

createNote(String, String,
String, String)

Creates a note for a customer.

createNotificationRule(Strin
g, String, String[], String[])

Creates a new notification rule attached to the given user and
device id.

createNotificationRule(Strin
g, String[], String[])

Creates a new notification rule to the specified device id.

createUser(String, String,
String, String, String)

Creates a new user.

createUser(String[], String[]) Creates a new user.

deleteUser(String) Deletes a user from the UM system.

getAddressByAlias(String) Gets an address by alias.

getAddressById(String) This method is no longer supported.

getAddresses() Gets all addresses (aliases and DLs) created by the current
user.

getAdministratorList(String,
String, String)

Gets all users, inactive and active, matching the search
criteria.

getAudio() Gets the Audio object.

getClassId() Public version property.

getDirectory(String, String,
String, String, String)

Gets the search result as a Directory object.

getDirectory(String, String,
String, String, String, String)

Gets the result from the GSM search.

getDirectoryContext() Gets the directory context for this session.

getdomainQualifier() Gets the domain qualifier.

getFax() Gets the Fax object.

getLanguages() Gets the Languages object.

getMsgStores() Gets all the message stores for this user.

getMsgStores(String) Gets all the message stores for another user.

getNoteById(String) Gets a customer note by the note id.

Method Description

The SDK Package

3-34 Unified Messaging Developer’s Guide

getNotesByCustomer(String
)

Gets all notes given the customer id.

getNotificationRuleById(Str
ing, String)

Gets the notification rule given a device id and the sequence
id.

getPagerDevice(String,
String)

Gets a pager device given the pager id and the customer id.

getPagerDeviceById(String) Gets a pager device given an identifier.

getPagerDeviceById(String,
String)

Gets a pager device given an identifier and a rule filter.

getPersonByUID(String) Gets a person by the user id.

getRegistration() Gets a registration object to identify and create the actual
account.

getSettings() Gets the settings for the current user.

getSettings(String) Gets the settings of another user.

getSMS(String, String) Gets a list of SMS messages for a specified customer.

getSMSConnection() Gets the SMS connection.

getSMSMessage(String,
String, String)

Gets a specific SMS message for the given parameters.

getUMMailSession() Gets the external mail session.

getUMMsgStores() Gets the UM’s view of the message stores for this user.

getUsername() Gets the account username.

isAdministrator() Indicates whether the current user is an administrator.

saveMessage(String, String,
String, String, String)

Create and saves a message.

saveMessage(String, String,
String, String, String,
FileStreamDataSource[])

Create and saves a message.

saveMessage(String, String,
String, String, String,
Message,
FileStreamDataSource[])

Creates and saves a message. Used to store message in
folders without sending them.

saveMessage(String[],
String[])

Creates and saves a message. The FCC attribute should be
specified to a folder.

Method Description

The SDK Package

Customizing Unified Messaging APIs 3-35

Settings Class
The Settings class exposes the settings of the user for the current session. The
settings can be retrieved and updated as necessary.

The following table lists the methods of the Settings class:

saveMessage(String[],
String[],
FileStreamDataSource[])

Creates and saves a message. The FCC attribute should be
specified to a folder.

saveMessage(String[],
String[], Message)

Creates and saves a message.The FCC attribute should be
specified to a folder.

saveMessage(String[],
String[], Message,
FileStreamDataSource[])

Creates and saves a message. The FCC attribute should be
specified to a folder.

search(String[], String[],
String[], String, boolean,
String)

Searches the UMStore for messages matching the specified
criteria.

Method Description

changePassword(String,
String)

Allows a user to change their password.

get(String) Gets the value of a property by name. Properties are found
in the um_personal_profile table.

getAvailableGSMSearch() Gets the avaiable_gsm_srch table attribute.

getClassId() Public version property.

getDecPassword() Gets the password in plaintext.

getDomain() Gets the InterOffice domain.

getFaxCoverpage() Gets the fax_coverpage property.

getForwardFax() Gets the forward_fax property.

getForwardMail() Gets the forward_mail property.

getHashtable() Gets the hashtable as a string - for debugging.

getPaging() Gets the paging property

getQuotaInProcent() Gets the percentage of quota used.

Method Description

The SDK Package

3-36 Unified Messaging Developer’s Guide

Trace Class
The Trace class acts as a Unified Messaging template trace functionality. The class
should be instantiated when a new SDK mail session is constructed. A trace record

isEncPasswordCorrect(String) Indicates whether the given password is the same as the
encrypted one in the database.

isPasswordCorrect(String) Indicates whether the given password matches with the
password in the database.

isQuotaCheckpointExceded() Indicates whether the quota used exceeds the checkpoint.

isQuotaUsed() Indicates whether the account exceeds the quota.

refresh() Refresh the user settings.

refresh(String) Refreshes either the IO settings (type=’I’) or the UM settings
(type=’E’).

resetPassword(String, String,
String)

Resets a user’s password.

set(String, Object) Sets the value of a property by name.

setAccount(String, String) Sets and updates the user’s email alias and password.

setAvailableGSMSearch(Strin
g)

Sets and updates the availability of GSM search.

setFaxForward(String, String,
String, String, String)

Sets and updates the user’s fax forwarding setting.

setMailForward(String,
String)

Sets and updates the user’s mail forwarding setting.

setNotification(String) Sets and updates the status of notification.

setPersonalCodes(String,
String, String, String)

Sets and updates the personal codes (puk, mobile, pin and
fax codes).

setQuotaCheckpoint(String) Sets the check point for the quota available: default is 80%.

update() Updates the settings in the um_personal_profile table and
in the InterOffice system.

updateAccountSettings(Strin
g, String, String, String,
String)

Updates a set of account references.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-37

will be inserted into the UM_SDK_TRACE table, including the customer ID, a
keyword, and a description.

The following table lists the methods of the Trace class:

The MS Package
The oracle.um.ms package contains classes for interacting with an
IMAP4-compliant messaging system.

BodyPart Class
The BodyPart class represents a body part in a multipart message. This class
encapsulates Javamail’s BodyPart and MimeBodyPart classes and exposes only
those functions related to Unified Messaging. A BodyPart object is an item
contained within a message. This item can be an attached file, an attached message,
or the actual text of the e-mail message. A BodyPart object can contain another
whole message which, in itself, can be another multipart message containing many
body parts. This sequence can go several levels deep: one BodyPart object may
contain another message and that message, in turn, may contain more messages.

The following table lists the methods of the BodyPart class:

Method Description

close() Closes the trace.

finalize() Calls close and finalizes the object.

write(String) Writes a trace record to the UM_SDK_TRACE table.

write(String, String) Writes a trace record to the UM_SDK_TRACE table.

Method Description

getContent() Gets the current object’s content.

getContentId() Gets current object’s MIME content-id.

getContentMIME() Gets current object’s MIME content-type.

getContentType() Gets current object’s MIME content-type.

getDescription() Gets the current object’s description.

getDisposition() Gets current object’s disposition.

The MS Package

3-38 Unified Messaging Developer’s Guide

Folder Class
The Folder class represents a folder in a message store. This class encapsulates
JavaMail’s Folder class and exposes only those functions related to Unified
Messaging. A folder can contain other folders or messages. Subfolders, if they exist,
can also be retrieved. Messages are sorted in the order of arrival into the folder.

The following tables list the attributes and methods of the Folder Class:

getEncoding() Gets the transfer encoding scheme of the current object’s
MIME message.

getFileName() Gets the current object’s filename.

getSize() Gets the current object’s size in bytes.

isAttachment() Checks whether the current object’s is an attachment.

isInLine() Checks whether the current object’s content is to be displayed
in-line.

isMimeType(String) Checks whether the current object’s is a MIME type.

setContent(Object, String) Set the current object’s content

setDataHandler(DataHandl
er)

Sets the data handler for the content.

setDescription(String) Set the current object’s description.

setDisposition(String) Sets the current object’s disposition.

setFileName(String) Sets the current object’s filename.

setText(String) Sets the content to text/plain.

Attribute Description

ASCENDING Sets the sorting order to ascending.

DESCENDING Sets the sorting order to descending.

FROM Specifies that messages should be sorted using FROM.

RECEIVED_DATE Specifies that messages should be sorted using Received_Date.

SUBJECT Specifies that messges should be sorted using SUBJECT.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-39

Method Description

appendMessages(Message[])

copyMessages(int[], Folder) Copies specified messages in this to the specified folder.

copyMessages(Message[],
Folder)

Copies JavaMail messages from this to the specified folder.

createFolder(String) Creates a subfolder in this.

delete() Deletes this from the message store.

deleteMessages(int[]) Deletes specified messages from this.

getFolder(int) Gets the subfolder in this specified by fldrindx.

getFolder(String) Gets the subfolder specified by foldername.

getFolderCount() Gets the number of subfolders in this.

getFolders() Gets all the subfolders in this.

getFullName() Gets the full name of this.

getMessage(int) Retrieves the message of a given index.

getMessageByUID(long) Gets a message by UID.

getMessageCount() Gets the number of messages in this.

getMessages() Gets all messages in this.

getMessages(int, int) Gets all messages between startnum and endnum.

getMessages(int[]) Gets the messages specified by an array of message indices.

getMessages(Message[]) Gets an array of messages which encapsulate the given
JavaMail messages.

getName() Get this name

getNewMessageCount() Gets the number of messages that have arrived since this
was last opened.

getNextMessage(int) Gets the next message given the current message index.

getParent() Gets this parent folder Returns null if this is root.

getStore() Gets the message store that this is part of.

getUIDValidity() Gets the UID Validity value for this.

getUnreadMessageCount() Gets the number of unread messages in this.

The MS Package

3-40 Unified Messaging Developer’s Guide

InternetAddress Class
This class extends JavaMail’s InternetAddress class to provide Name Resolution
through the JNDI API. This class exposes only those functions related to Unified
Messaging and resolves private Addresses and Persons in the Directory. This class
is used until a generic Name Resolution mechanism is implemented in the Mail
Transfer Agent (MTA).

The following table lists the methods of the InternetAddress class:

hasNewMessages() Indicates whether new messages have arrived since this was
last opened.

holdsFolders() Indicates whether this can contain subfolders.

holdsMessages() Indicates whether this can contain messages.

isRoot() Indicates whether this is the root folder.

moveFolder(Folder) Moves this folder to a different parent folder.

moveMessages(int[], Folder) Moves messages from this to another folder.

moveMessages(int[], String) Moves an list of messages from this to the specified folder.

preFetch() Prefetches information about the first few messages in this.

refresh() Refreshes the subfolder list.

renameTo(String) Renames this.

search(SearchTerm) Searches this and returns messages based on the search
criteria.

setSort(String, String) Sets the sorting order for messages in this.

toString() Returns the full name of this.

Method Description

main(String[]) Class tester

ResolveEmailAddress(DirC
ontext, String, String,
MsgSrv, String)

Resolves a list of addresses delimited by comma to an array
of valid email addresses.

resolveMobileNumber(Strin
g, String, MsgSrv)

Resolves a list of aliases/dl’s to the corresponding phone
numbers.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-41

Message Class
The Message class represents a message in a message store. It encapsulates
JavaMail’s Message class and exposes only those functions related to Unified
Messaging. If a message is composed of multiple parts (such as a message and an
attachment), it contains one MultiPart object which holds the multiple parts of the
message. Each of these parts of the message can then be retrieved by going through
the BodyPart objects included in the MultiPart object. Normally a message will
contain a MultiPart object.

The following tables list the attributes and methods of the Message class:

ResolveName(String,
DirContext, String, String,
MsgSrv, String)

Resolves string Address List delimited by comma space or
semi-colon.

Attribute Description

IMPORTANCE_LOW Importance Settings.

PRIORITY_HIGH Priority Settings.

Method Description

delete() Deletes this.

getBcc() Gets a comma-delimited list of email addresses in the Bcc
field.

getBody() Gets the email body of this.

getBodyMIME() Gets this MIME body.

getCc() Gets a comma-delimited list of email addresses in the Cc
field.

getContent() Gets this content.

getContentId() Gets this content-id.

getContentMIME() Gets this MIME content-type.

getContentType() Gets this content-type.

getDescription() Return a description String for this part.

Method Description

The MS Package

3-42 Unified Messaging Developer’s Guide

getDisposition() Returns the disposition of this message.

getEncoding() Gets the transfer encoding scheme of this message.

getFileName() Gets this filename.

getFlags() Gets the flags associates with this message.

getFolder() Gets the parent folder that this message belongs.

getFrom() Gets the sender’s address.

getImportance() Retrieves the Importance flag for this message.

getMessageInputStream() Gets an input stream of this message as the content.

getMessageNumber() Gets the number of this.

getPriority() Retrieves the priority flag for this message.

getReceivedDate() Gets the date the message was received.

getReplyTo() Gets the Replyto address for this message.

getSentDate() Gets the date this message was sent.

getSize() Gets the size of this message in bytes.

getSubject() Gets the Subject field of this message.

getTo() Gets a comma-separated list of addresses in the TO field.

getUID() Gets the UID of this message, if supported by the message
store.

getXMessage() Returns the JavaMail message (xMessage)

hasAttachments() Indicates whether this message contains attachments.

hashCode() Overrides the default hashCode.

isAttachment() Indicates whether the message is an attachement.

isDraft() Indicates whether this message is a draft.

isInLine() Indicates whether the content should be displayed in-line.

isMimeType(String) Indicates whether this message is of a specified MIME type.

isNew() Indicates whether this is a new message since the folder was
last opened.

isRead() Indicates whether this message has been read.

next() Gets the next message in order from this folder.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-43

MultiPart Class
The MultiPart class represents a multipart of a message. A Multipart object is a
container that contains one or more BodyPart objects.This class encapsulates the
JavaMail Multipart and MimeMultipart classes and exposes only those functions
related to Unified Messaging.

The following table lists the methods of the MultiPart class:

previous() Gets the previous message from this folder.

setCc(String) Resolve a comma-delimited list of names to email addresses.

setContent(Object) Sets the content of this.

setDisposition(String) Sets the disposition of this.

setDraft(boolean) Sets the Draft flag for this object.

setFrom(String) Sets the email address to the FROM field.

setImportance(String) Sets the importance flag.

setPriority(String) Sets the priority flag.

setReplyTo(String) Sets the email address for the Reply to field.

setSentDate(Date) Sets the SentDate for this message

setSubject(String) Sets the Subject for this message

setTo(String) Sets a comma-delimited list of names in the TO field.

toString() Displays information about this.

Method Description

addBodyPart(BodyPart) Adds a BodyPart to this.

getBody() Gets the content of this in the best displayable format.

getBodyContentType() Returns either ’text/plain’ or ’text/html’ as the content type.

getBodyMIME() Same as getBodyContentType but complient with IOSDK.

getBodyPart(int) Gets this BodyPart specified by the location index.

getContentType() Gets the content type of this In all cases, this will be
multipart/alternative.

Method Description

The MS Package

3-44 Unified Messaging Developer’s Guide

SearchFolder Class
The SearchFolder class represents a folder in which the search result messages are
stored. This class is a subclass of the Folder class and exposes the functions to allow
the templates to easily access the messages from a search operation.

The following table lists the methods of the SearchFolder class:

Store Class
The Store class is the main class of Unified Messaging’s external message store
connection. It represents a connection to an IMAP4-enabled message store where
the user’s e-mail, voice mail, and facsimiles are stored. A Unified Messaging user
may have many of these message store objects, one for each external connection.

getCount() Gets the number of BodyPart objects in this.

Method Description

appendMessages(Message[]) Puts the set of matching messages into the SearchFolder
object.

copyMessages(int[], Folder) This method is not supported for this object.

delete() This method is not supported for this object.

deleteMessages(int[]) This method is not supported for this object.

getMessage(int) Gets the message at the specified index

getMessageByUID(long) This method is not supported for this object.

getMessageCount() Gets the number of matching messages from a search
operation.

getMessages() Gets all the messages of the search.

getMessages(int, int) Gets the messages between the two specified .

getMessages(int[]) Gets the messages specified by an array of message indices.

getUnreadMessageCount() This method is not supported for this object.

hasNewMessages() This method is not supported for this object.

moveMessages(int[], Folder) This method is not supported for this object.

moveMessages(int[], String) This method is not supported for this object.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-45

The Store class encapsulates the Javamail Store class, exposing only those methods
and properties pertinent to Unified Messaging. A user’s Unified Messaging session
is created by the oracle.um.sdk.
Session object. From that object, the user can retrieve external message stores by
calling the getMsgStores method.

The following tables list the attributes and methods of the Store class:

Attribute Description

RETRIEVE_BY_CUSTOMER Constant used to select the type of retrieval by customerid.

RETRIEVE_BY_PHONE Constant used to select the type of retrieval by phone_id.

Method Description

close() Closes the message store connection.

connect() Connects to the message store.

create() Creates the message store record.

createFolder(Folder, String) Creates a folder in this.

createFolder(String) Creates a folder in this.

emptyWastebasket() Empties the wastebasket.

getAddress() Gets the address of this message store.

getAggregate() Gets the String value of this AGGREGATE attribute.

getCreateDate() Gets the date this was created.

getCustomerId() Gets this customer id.

getFolder(String) Gets a specified folder in the root folder of this.

getInbox() Gets the inbox folder of this.

getMigration()

getMsgStoreName() Gets the name of this message store.

getMsgStoreType() Gets the type of this message store.

getPort() Gets the port this uses.

getProtocol() Gets this protocol.

getRetrievedDate() Gets the date the folders for this were last opened.

The MS Package

3-46 Unified Messaging Developer’s Guide

Transport Class
The Transport class represents a Transport in Unified Messaging. It encapsulates
JavaMail’s Transport class and exposes only those functions related to Unified
Messaging.

getRoot() Gets the root folder of this.

getUpdateDate() Gets the date this was last updated.

getUserId() Gets the userid.

getWastebasket() Gets the wastebasket folder from this.

isAggregate() Indicates whether this is to be aggregated to the UM

isAggregate Indicates whether this is connected to the message

retrieve(int) Retrieves this record by either the customer or the phone

search(SearchTerm, String,
boolean)

Searches for messages in the UM message store folders.

setAddress(String) Sets the address of this message store.

setAggregate(boolean) Sets this AGGREGATE value.

setCreateDate(Date) Sets the date this was created.

setCustomerId(String) Sets this customer id.

setMsgStoreName(String) Sets the name of this message store.

setMsgStoreType(String) Sets the type of this message store.

setPassword(String) Sets the password.

setPhoneId(String) Sets this phone id.

setPort(int) Sets the port this uses.

setProtocol(String) Sets this protocol.

setUserId(String) Sets the userid.

toString() Returns the full address of this.

update Updates the information of the current object in the database.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-47

The following table lists the methods of the Transport class:

UMInbox Class
The UMInbox class consolidates inboxes marked "aggregate" to provide a single
view of messages from multiple sources. This class represents an inbox folder in
UMStore, and it aggregates the inboxes of those message stores being managed by
UMStore. UMInbox encapsulates Javamail’s Folder class and exposes only those
functions related to Unified Messaging.

The following table lists the methods of the UMInbox class:

Method Description

send(Session, Message) Sends the message using the default transport.

Method Description

copyMessages(int[], Folder) Copies specifed messages from this to the specified folder.

createFolder(String) Overrides Folder.createFolder.

deleteMessages(int[]) Deletes the specified messages from this.

getMessage(int) Gets the message of the given message number.

getMessageCount() Gets the number of messages in all folders being aggregated.

getMessages() Gets all the messages in this.

getMessages(int, int) Gets all messages between startnum and endnum, inclusive.

getMessages(int[]) Gets all messages specified by the array of message numbers.

getNewMessageCount() Gets the number of new messages since this was last opened.

getUnreadMessageCount() Gets the number of unread messages in this.

hasNewMessages() Indicates whether new messages have arrived.

holdsFolders() Indicates whether this can hold subfolders.

holdsMessages() Indicates whether this can contain messages.

moveMessages(int[], Folder) Moves messages from one folder to another.

preFetch() Prefetches information about the first few messages in this.

The MS Package

3-48 Unified Messaging Developer’s Guide

UMRoot Class
The UMRoot class represents the root folder under UMStore. This class
encapsulates Javamail’s Folder class, exposing only those functions related to the
root folder functionality of the aggregated Unified Messaging view.

The following table lists the methods of the UMRoot class:

UMStore Class
The UMStore class is the main class of the aggregated view of Unified Messaging’s
external message store connection. “Aggregated view” means that Unified
Messaging consolidates the inboxes of several message stores (e-mail, voice mail,
and facsimiles) and presents them as one. The UMStore class encapsulates the
Javamail Store class, exposing only those methods and properties pertinent to
Unified Messaging. A Unified Messaging user normally has one UMStore object
and may have several Store objects representing non-aggregated message stores.
Non-aggregated message stores are provided to Unified Messaging users to
consolidate their own personal message stores into Unified Messaging. The
UMStore class allows accessibility to all other mail-related objects in this package.
For example, the user can obtain the list of all folders in this message store.

The following table lists the methods of the UMStore class:

search(SearchTerm) Searches the different inboxes for messages matching the
search criteria Returns an empty array if no matches are
found.

setSort(String, String) sets the sorting order for messages in this.

Method Description

getFolder(int) Gets the subfolder specified by the folder index.

getFolder(String) Gets the subfolder.

getFolders() Gets all subfolders in this.

holdsFolders() Indicates whether this can hold subfolders.

holdsMessages() Indicates whether this can hold messages.

search(SearchTerm) Searches the UM root folder for messages matching the
search criteria.

Method Description

The MS Package

Customizing Unified Messaging APIs 3-49

Method Description

close() Closes the message store connection.

connect() Connects to the message store.

getCount() Gets the number of Store objects.

getElement(int) Gets the Store object which this UMStore is aggregating.

getFolder(String) Gets the folder with the specified folder name.

getInbox() Gets the aggregate inbox folder from this.

getRoot() Gets the root folder.

search(SearchTerm, String,
boolean)

Searches for messages in the UM message store folders.

The MS Package

3-50 Unified Messaging Developer’s Guide

Administering Unified Messaging 4-1

4
Administering Unified Messaging

This chapter discusses how to administer your Unified Messaging system. The
following topics are included:

■ The Administrator’s Inbox

■ Creating New Accounts for Users

■ Updating Existing Accounts

■ Deleting Accounts

■ Working with SMS

■ Working with LDAP

The Administrator’s Inbox
An administrator account, named Helpdesk, provides the administrator with a
separate inbox for receiving, responding to, and storing support requests. This
inbox is created as part of the Unified Messaging installation process.

Creating New Accounts for Users
Before a user can log in, the administrator must create and activate the user’s
account using an instance of the Session class. Use the createUser() method to create
a new customer account. Here is a snippet of code from the admin_con_newUser.jsp
template. This form gathers various attributes and sends them to the admin_
createUser.jsp template:

…
<form name=newUserForm action="<%=
response.encodeUrl("admin_createUser.jsp") %>"

Creating New Accounts for Users

4-2 Unified Messaging Developer’s Guide

 target=Result method=post>
<table border=0 cellspacing=0 cellpadding=0 width=100%>
…
<td class=fieldData nowrap><input type=text
name=CUSTOMER_NAME value=""
 size=13>*</td>
…
<td class=fieldData nowrap><input type=text name=PHONE value=""
size=13>*</td>
…
<td class=fieldData nowrap><input type=text name=FAX value=""
size=13>*</td>
…
<td class=fieldData nowrap><input type=text name=USER_NAME
value="" size=13>*</td>
…
<td class=fieldData nowrap><input type=text name=PIN value=""
size=13>*</td>
…
<td class=fieldHeader nowrap>Protocol</td>
<td class=fieldData nowrap><input type=text name=EML_PROTOCOL
value="" size=4>*</td>
<td class=fieldData nowrap><input type=text name=VML_PROTOCOL
value="" size=4></td>
<td class=fieldData nowrap><input type=text name=FAX_PROTOCOL
value="" size=4></td>
…
<td class=fieldHeader nowrap>Address</td>
<td class=fieldData nowrap><input type=text name=EML_ADDRESS
value="" size=13>*</td>
<td class=fieldData nowrap><input type=text name=VML_ADDRESS
value="" size=13></td>
<td class=fieldData nowrap><input type=text name=FAX_ADDRESS
value="" size=13></td>
…
<td class=fieldData nowrap><input type=text name=EML_USERID
value="" size=13>*</td>
<td class=fieldData nowrap><input type=text name=VML_USERID

Updating Existing Accounts

Administering Unified Messaging 4-3

value="" size=13></td>
<td class=fieldData nowrap><input type=text name=FAX_USERID
value="" size=13></td>
…
<td class=fieldHeader nowrap>Password</td>
<td class=fieldData nowrap><input type=text name=EML_PASSWORD
value=""
 size=13>*</td>
<td class=fieldData nowrap><input type=text name=VML_PASSWORD
value=""
 size=13></td>
<td class=fieldData nowrap><input type=text name=FAX_PASSWORD
value=""
 size=13></td>
…
</table>
</form>
…

This is the simple call to createUser() in admin_createUser.jsp:

umSession.createUser(att, val);

Updating Existing Accounts
When the administrator needs to update an account, the first step is to search
through the list of customers to access the correct customer record. For this task, use
the getAdministratorList method in the Session class.

The results of this search may be multiple Unified Messaging accounts, so to find
the correct account, you must iterate through the AdministratorList object. The
AdministratorList object is a list of Settings objects. Most of the attributes in the
Settings class may be changed by either the user of the account or the administrator.
For a list of Settings attributes and HTML samples, refer to the Javadoc for
oracle.um.sdk.Settings.

This example includes two parts. The first example shows how to search for a
Unified Messaging customer.

<%
String searchID = request.getParameter ("searchID")
String searchOp = request.getParameter ("searchOp")
String searchVal = request.getParameter ("searchVal")
Session umSession = (Session) session.getValue (""umSession")

Deleting Accounts

4-4 Unified Messaging Developer’s Guide

AdministratorList admList = umSession.getAdministratorList (searchID, searchVal,
searchOp);
%>

The second HTML page shows how to update that customer’s password:

<%
Settings userSettings = admList.getElement (0);
String[]att = newString [1];
String[]val = newString [1];
att[0] = "password";
val[o] = "new_password";
userSettings.set (att, val);
userSettings.update ();
%>

Note that when constructing the search, you may also search on EMAIL_ID,
PHONE_ID, or any other column in the UM_ PERSONAL_PROFILE table. For the
Operation value, you may use START, EQUAL, or CONTAINS.

Deleting Accounts
To delete a Unified Messaging customer, call the deleteUser method.

<%
Session umSession = (Session)

session.getValue ("umSession");
String phone_id = request.getParameter ("phone_id");
String customer_id = request.getParameter ("phone_id");
umSession.deleteUser (phone_id, customer_id);
%>

The deletion is successful if a record exists that matches the specified PHONE_ID
and CUSTOMER_ID. Otherwise, an exception is thrown.

Working with SMS
In addition to receiving e-mail, voice mail, and facsimiles, customers who use
pagers will want to be notified of the arrival of important messages. The Short
Messaging Service (SMS) provides a connection to the SMS message store that
allows customers to send and receive these short pager messages, which are limited
to about 150 characters in length.

There are four ways an SMS message could be initiated from UM:

Working with SMS

Administering Unified Messaging 4-5

Scenario 1: During account activation, UM sends a registration code to the
subscriber’s pager.

Scenario 2: UM users with the notification feature activated are notified of the
arrival of new messages.

Scenario 3: UM users can send SMS messages from the UM Internet client running
on a Web browser.

Scenario 4: UM users can request that the next portion of e-mail text be displayed
on the pager. (UM users can also originate an e-mail message from a pager, when
the pager system includes this function.)

To send an SMS message, first create an SMS connection:

<%
SMS smsconn = umSession.getSMSConnection ();
%>

Then, make the following call to smsconn.send:

<%
String receiver = request.getParameter ("receiver");
String message = request.getParameter ("message");
smsconn = send (receiver, message);
%>

There is an outbound SMS process that handles SMS messages originating from
UM. In Scenario 1 and Scenario 3, the SMS process passes the request from its input
queue to the SMS gateway process for delivery. In Scenario 2, the SMS process
checks to see if the notification rule is active and if the arrived message passes the
user’s notification rule. If the message passes both checks, SMS passes the contents
of the e-mail (or the initial portion of e-mail, if it exceeds the SMSC buffer
limitation) to the SMS gateway for delivery. In Scenario 4, SMS receives the request
from an inbound SMS process and passes the next portion of the e-mail content to
the SMS gateway process.

For inbound SMS delivery, the SMS inbound process checks to see whether the
request is a new e-mail message or a request for the next portion of a current e-mail
message. If the request is for a new e-mail message, SMS passes the request to the
SMTP processor; otherwise, SMS passes the request to the outbound SMS process.

Customers may want to filter their messages based on time, sender, or other
categories. The UM notification rules provide this functionality. UM provides API
classes you can use to create, modify, and delete notification rules based on filtering
options. A sample of creating, modifying, and deleting notification rules can be

Working with LDAP

4-6 Unified Messaging Developer’s Guide

found in the $ORACLE_HOME/um/templates/um directory, called pref_con_
rules.jsp.

Sample code for the scenario where a UM user sends an SMS message from the UM
Internet client can be found in $ORACLE_HOME/um/templates/um directory
called msg_comp_sms_send.jsp.

Working with LDAP
Your company may already have an LDAP server containing a corporate directory
listing both UM users and non-UM users; that is, users who are not part of your UM
system. A UM user can search this server to obtain the e-mail address or phone
number of both UM users and non-UM users.

You can expose this directory from within Unified Messaging by connecting the
LDAP server to your UM application.

Use the GSMDir and GSMAddress classes in the oracle.um.sdk package to work
with UM’s own directory, as well as external LDAP servers.

An external LDAP server is likely to contain information about users who are not
known to the UM system. When displaying information about these users, you will
not be able to use the normal methods in GSMAddress class to display the various
user properties. To display properties defined by the external LDAP server, you
must first know the name of the properties as defined within that LDAP server.
Then you can use the generic method to retrieve the values for these properties.

The following example shows how this is done in an HTML template file.

GSMAddress person = dir.getElement (1);

Where dir is of the GSM Dir and is the result of the umsession.getDirectory method.

Set person to the second element returned from searching through the external
LDAP server:

person.get("FIRST_NAME");
person.get("ST");
person.get("STREET");

Note that you may need to test your code using all capital letters for the property
name.

Administering Unified Messaging 4-7

Using this technique, you can customize your UM application to display data stored
on any LDAP server. The only requirement is that you need to know the names of
the properties defined for the directory items on the LDAP server.

The default installation of UM will set up the UM system to use the same LDAP
server for both the UM directory and a generic directory. See the Unified Messaging
installation documentation for information about how to change this server name to
point to your own LDAP server.

4-8 Unified Messaging Developer’s Guide

Index-1

Index
A
application development

choosing an approach, 2-2
design considerations, 2-3
html approach, 2-2
Java approach, 2-2
planning, 2-1
tools, 2-3
using existing templates, 2-6

B
bandwidth considerations, 2-5
browser limitations

considerations, 2-5

C
class

address, 3-23
administratorlist, 3-23
audio, 3-24
bodypart, 3-37
directory, 3-25
fax, 3-25
folder, 3-38
gsmaddress, 3-26
gsmdir, 3-26
internetaddress, 3-40
list, 3-27
message, 3-41
msgstore, 3-28
multipart, 3-43

note, 3-28
notificationrule, 3-29
pagerdevice, 3-29
registration, 3-29
searchfolder, 3-44
session, 3-31
setting, 3-35
smsmessage, 3-30
store, 3-44
trace, 3-36
trasnsport, 3-46
uminbox, 3-47
umroot, 3-48
umstore, 3-48

components
unified messaging, 1-3

creating and using forms
considerations, 2-5

creating links, 2-3
customizing the um gui

requirements, 1-5

D
data display, 2-3
deleting

accounts, 4-4
development tools, 2-3
directory structure, 1-5
displaying data, 2-3

E
environment requirements

Index-2

unified messaging, 1-4

F
file structure, 1-5
forms

submitting, 2-5

H
html application development process

overview, 2-6

I
InterOffice SDK

directory structure, 1-5
overview, 1-3

introduction
unified messaging, 1-2

L
ldap

working with, 4-6
links, creating, 2-3

M
ms package, 3-37

N
network bandwidth, 2-5

O
overviews

InterOffice SDK, 1-3

P
planning your applications, 2-1
POST vs. GET method for submitting forms, 2-5

R
requirements

requirements for sample applications, 1-5

S
sample applications

requirements, 1-5
sdk package, 3-22
sms

working with, 4-4
system requirements

unified messaging, 1-4

T
templates

using existing, 2-6

U
unified messaging

components, 1-3
developer’s perspective, 1-2
environment requirements, 1-4
introduction, 1-2
knowledge requirements, 1-5
planning your development strategy, 2-1
sample applications, 1-4
system requirements, 1-4

unified messaging sdk
working with, 1-3

upcating
existing accounts, 4-3

W
working with

ldap, 4-6
sms, 4-4

