
Oracle ®

Heterogenous Services

Release 8.1.7

January 2001

Part No. A88714-01

Oracle Heterogeneous Services, Release 8.1.7

Part No. A88714-01

Copyright © 1996, 2001, Oracle Corporation. All rights reserved.

Primary Author: Ted Burroughs

Contributing Authors: Lance Ashdown and Pavna Jain

Contributors: John Bellemore, Jacco Draaijer, Diana Lorentz, Cynthia Kibbe, Nina Lewis, Raghu Mani,
Basab Maulik, Kishan Peyetti, Paul Raveling, Katia Tarkhanov, Randy Urbano, and Sandy Venning

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Net8, SQL*Plus, Oracle Call Interface, Oracle Transparent Gateway,
Oracle7, Oracle7 Server, Oracle8, Oracle8i, PL/SQL, Pro*C, Pro*C/C++, and Enterprise Manager are
trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

1 Heterogeneous Services Concepts

What is Heterogeneous Services? .. 1-2
Heterogeneous Services Process Architecture .. 1-2

What is an Agent?... 1-3
Oracle Transparent Gateways .. 1-3
Generic Connectivity.. 1-4

Heterogeneous Services Components .. 1-4
Transaction Service... 1-4
SQL Service.. 1-5
Database Links to a Non-Oracle System ... 1-5

Architecture of the Heterogenous Services Data Dictionary ... 1-6
Classes and Instances ... 1-7
Configuration Data... 1-8
Data Dictionary Views... 1-8

2 Managing Heterogeneous Services

Setting Up Access to Non-Oracle Systems .. 2-2
Step 1: Install the Heterogeneous Services Data Dictionary .. 2-2
Step 2: Set Up the Environment to Access Heterogeneous Services Agents 2-2
Step 3: Create the Database Link to the Non-Oracle System ... 2-4
iii

Step 4: Test the Connection ... 2-4
Registering Agents.. 2-5

Enabling Agent Self-Registration ... 2-5
Disabling Agent Self-Registration .. 2-6
Using Agent Self-Registration to Avoid Configuration Mismatches.................................... 2-6
Understanding Agent Self-Registration .. 2-7
Specifying HS_AUTOREGISTER ... 2-9

Using Heterogeneous Services Data Dictionary Views .. 2-9
Understanding Types of Views .. 2-10
Understanding Sources of Data Dictionary Information.. 2-12
Using General Views.. 2-12
Using Transaction Service Views ... 2-13
Using SQL Service Views .. 2-14

Using the Heterogeneous Services Dynamic Performance Views .. 2-16
Determining Which Agents Are Running on a Host .. 2-16
Determining the Open Heterogeneous Services Sessions .. 2-17
Determining the Heterogeneous Services Parameters .. 2-18

Using the DBMS_HS Package.. 2-18
Specifying Initialization Parameters .. 2-19
Unspecifying Initialization Parameters ... 2-20

3 Generic Connectivity

What Is Generic Connectivity?... 3-2
Types of Agents... 3-2
Generic Connectivity Architecture... 3-3
SQL Execution ... 3-6
Datatype Mapping.. 3-6
Generic Connectivity Restrictions .. 3-6

Supported Oracle SQL Statements.. 3-7
Functions Supported by Generic Connectivity .. 3-7

Configuring Generic Connectivity Agents .. 3-8
Creating the Initialization File .. 3-8
Editing the Initialization File... 3-9
Setting Initialization Parameters for an ODBC-based Data Source 3-10
Setting Initialization Parameters for an OLE DB-based Data Source 3-12
iv

ODBC Connectivity Requirements... 3-13
OLE DB (SQL) Connectivity Requirements .. 3-15
OLE DB (FS) Connectivity Requirements ... 3-16

Data Source Properties... 3-18

4 Developing Applications with Heterogeneous Services

Developing Applications with Heterogeneous Services: Overview .. 4-2
Developing Applications Using Pass-Through SQL... 4-2

Using the DBMS_HS_PASSTHROUGH package.. 4-2
Considering the Implications of Using Pass-Through SQL ... 4-3
Executing Pass-Through SQL Statements... 4-3

Optimizing Data Transfers Using Bulk Fetch ... 4-9
Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches 4-10
Controlling the Array Fetch Between Oracle Database Server and Agent 4-11
Controlling the Array Fetch Between Agent and Non-Oracle Server 4-11
Controlling the Reblocking of Array Fetches ... 4-11

Researching the Locking Behavior of Non-Oracle Systems... 4-12
Limitations to Heterogeneous Services .. 4-12

A Heterogeneous Services Initialization Parameters

HS_COMMIT_POINT_STRENGTH.. A-3
HS_DB_DOMAIN .. A-3
HS_DB_INTERNAL_NAME .. A-4
HS_DB_NAME.. A-4
HS_DESCRIBE_CACHE_HWM .. A-4
HS_FDS_CONNECT_INFO ... A-5
HS_FDS_SHAREABLE_NAME... A-6
HS_FDS_TRACE_LEVEL.. A-6
HS_FDS_TRACE_FILE_NAME ... A-6
HS_LANGUAGE .. A-7
HS_NLS_DATE_FORMAT ... A-8
HS_NLS_DATE_LANGUAGE ... A-8
HS_NLS_NCHAR... A-9
HS_OPEN_CURSORS ... A-9
HS_ROWID_CACHE_SIZE.. A-10
v

HS_RPC_FETCH_REBLOCKING .. A-10
HS_RPC_FETCH_SIZE ... A-11

B Heterogeneous Services Data Dictionary Views

C DBMS_HS_PASSTHROUGH for Pass-Through SQL

Summary of Subprograms ... C-2
BIND_VARIABLE procedure .. C-3
BIND_VARIABLE_RAW procedure... C-4
BIND_OUT_VARIABLE procedure.. C-6
BIND_OUT_VARIABLE_RAW procedure.. C-8
BIND_INOUT_VARIABLE procedure ... C-10
BIND_INOUT_VARIABLE_RAW procedure ... C-12
CLOSE_CURSOR function ... C-14
EXECUTE_IMMEDIATE function .. C-15
EXECUTE_NON_QUERY function .. C-16
FETCH_ROW function ... C-17
GET_VALUE procedure ... C-19
GET_VALUE_RAW procedure ... C-20
OPEN_CURSOR function... C-22
PARSE procedure .. C-23

D Data Dictionary Translation for Generic Connectivity

Data Dictionary Translation Support... D-2
Accessing the Non-Oracle Data Dictionary ... D-2
Supported Views and Tables ... D-3

Data Dictionary Mapping .. D-4
Default Column Values... D-5

Generic Connectivity Data Dictionary Descriptions .. D-6
ALL_CATALOG ... D-6
ALL_COL_COMMENTS.. D-6
ALL_CONS_COLUMNS .. D-6
ALL_CONSTRAINTS ... D-7
ALL_IND_COLUMNS.. D-7
vi

ALL_INDEXES .. D-8
ALL_OBJECTS ... D-10
ALL_TAB_COLUMNS.. D-11
ALL_TAB_COMMENTS .. D-12
ALL_TABLES .. D-12
ALL_USERS .. D-14
ALL_VIEWS.. D-14
DICTIONARY .. D-14
USER_CATALOG .. D-15
USER_COL_COMMENTS... D-15
USER_CONS_COLUMNS ... D-15
USER_CONSTRAINTS.. D-15
USER_IND_COLUMNS... D-16
USER_INDEXES .. D-17
USER_OBJECTS .. D-19
USER_TAB_COLUMNS... D-19
USER_TAB_COMMENTS ... D-20
USER_TABLES ... D-21
USER_USERS ... D-22
USER_VIEWS ... D-23

E Datatype Mapping

Mapping ODBC Datatypes to Oracle Datatypes.. E-2
Mapping OLE DB Datatypes to Oracle Datatypes... E-3

Index
vii

viii

Send Us Your Comments

Oracle Heterogeneous Services, Release 8.1.7

Part No. A88714-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev@us.oracle.com

■ FAX: (650) 506-7228 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

.

ix

x

Preface

Oracle Heterogeneous Services describes implementation issues for Oracle8i
Heterogeneous Services. It also introduces the tools and utilities available to assist

you in implementing and using this feature.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

See Also: Getting to Know Oracle8i for information about the

differences between Oracle8i and the Oracle8i Enterprise Edition.
xi

Audience
Oracle Heterogeneous Services is intended for database administrators who

administer or plan to administer a distributed database system involving either

Oracle to Oracle database links or Oracle to non-Oracle database links.

To use this document, you need to be familiar with:

■ Relational database concepts and basic database administration as described in

Oracle8i Concepts and the Oracle8i Administrator’s Guide.

■ The operating system environment under which database administrators are

running Oracle.

Organization
This document contains:

Chapter 1, "Heterogeneous Services Concepts" provides an overview of Oracle

Heterogeneous Services.

Chapter 2, "Managing Heterogeneous Services" explains how to implement and

maintain Heterogeneous Services using an Oracle Transparent Gateway.

Chapter 3, "Generic Connectivity" provides the information you need to connect to

non-Oracle datastores through ODBC or OLE DB.

Chapter 4, "Developing Applications with Heterogeneous Services" provides the

information you will need to develop applications that use Oracle Heterogeneous

Services.

Appendix A, "Heterogeneous Services Initialization Parameters" lists all

Heterogeneous Services-specific initialization parameters and their values.

Appendix B, "Heterogeneous Services Data Dictionary Views" lists the data

dictionary views that are available through Heterogeneous Services mapping.

Appendix C, "DBMS_HS_PASSTHROUGH for Pass-Through SQL" describes the

procedures and functions in the package DBMS_HS_PASSTHROUGH for

pass-through SQL of Heterogeneous Services.

Appendix D, "Data Dictionary Translation for Generic Connectivity" explains and

lists data dictionary translations for generic connectivity.

Appendix E, "Datatype Mapping" explains how datatypes are mapped for ODBC

and OLE DB compliant data sources.
xii

Related Documentation
For more information, see these Oracle resources:

■ Oracle8i Concepts

■ Oracle8i Administrator’s Guide

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

Conventions
This section describes the conventions used in the text and code examples of the

this documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.
xiii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle8i Concepts

You can specify the parallel_clause.

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Specify the ROLLBACK_SEGMENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.
xiv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , col n FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates variables for
which you must supply particular values.

CONNECT SYSTEM/system_password

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr
xv

xvi

Heterogeneous Services Con
1

Heterogeneous Services Concepts

This chapter describes the basic concepts of Heterogeneous Services.

This chapter contains these topics:

■ What is Heterogeneous Services?

■ Heterogeneous Services Process Architecture

■ Heterogeneous Services Components

■ Architecture of the Heterogenous Services Data Dictionary

See Also: Getting to Know Oracle8i about features that are new to this

release.
cepts 1-1

What is Heterogeneous Services?
What is Heterogeneous Services?
Heterogeneous Services is a component within the Oracle database server that is

required to access a non-Oracle database system.

The term "non-Oracle database system" refers to the following:

■ Any system accessed by PL/SQL procedures written in C (that is, by external

procedures)

■ Any system accessed through SQL (that is, by Oracle Transparent Gateways or

generic connectivity)

■ Any system accessed procedurally (that is, by procedural gateways)

Heterogeneous Services makes it possible for Oracle database server users to do the

following:

■ Use Oracle SQL statements to retrieve data stored in non-Oracle systems.

■ Use Oracle procedure calls to access non-Oracle systems, services, or

application programming interfaces (APIs) from within an Oracle distributed

environment.

Heterogeneous Services is generally applied in one of two ways:

■ Users use an Oracle Transparent Gateway in conjunction with Heterogeneous

Services to access a particular non-Oracle system for which the Oracle

Transparent Gateway has been designed. (For example, you use the Oracle

Transparent Gateway for Sybase on Solaris to access a Sybase database system

operating on a Sun Solaris platform.)

■ Users use Heterogeneous Services’ generic connectivity to access non-Oracle

databases through ODBC or OLE DB interfaces.

Heterogeneous Services Process Architecture
Heterogenous Services is composed of two basic components:

Note: This manual documents Heterogeneous Services as it

relates to gateways. For more information on external procedures,

see Oracle8i SQL Reference and Oracle8i Application Developer’s Guide -
Fundamentals.
1-2 Oracle Heterogeneous Services

Heterogeneous Services Process Architecture
■ Generic code that is part of the database server and which performs most of the

processing for Heterogeneous Services

■ Agent generic code that is not part of the database server but which is necessary

in order that the Oracle database server be able to communicate with a

non-Oracle database system

What is an Agent?
An agent is the Heterogeneous Services process that links the Oracle database

server into the code of the non-Oracle system. Agent generic code in Heterogeneous

Services in combination with a driver becomes an agent. Drivers are specific to the

type of non-Oracle system you want to access and provide the systems interface

between the non-Oracle system and the agent generic code of Oracle

Heterogeneous Services.

An agent can reside in the following places:

■ On the same machine as the non-Oracle system

■ On the same machine as the Oracle server

■ On a machine different from either of these two

Agent processes are activated when a user session accesses a non-Oracle system

through a database link on an Oracle database server. These connections are made

using Oracle’s remote data access software, Net8, that enables both client-server

and server-server communication. The agent process continues to run until the user

session is disconnected or the database link is explicitly closed.

Oracle Transparent Gateways
An Oracle Transparent Gateway is a particular kind of agent that is designed by

Oracle Corporation to access commercially produced brands and versions of

database systems not marketed by Oracle Corporation. For example, an Oracle

Transparent Gateway for Sybase on Solaris is designed to access Sybase database

systems that are running on Solaris platforms.

With Oracle Transparent Gateways, you can use an Oracle database server to access

data anywhere in a distributed database system without needing to know the

location of the data or how it is stored. Also, when the results of your queries are

returned to you by the Oracle database server, they are presented to you as if the

datastores from which they were taken all resided within a remote Oracle database.

This functionality is called transparency; when you are using it, you are

transparently accessing a non-Oracle database system.
Heterogeneous Services Concepts 1-3

Heterogeneous Services Components
Figure 1–1 Accessing Heterogeneous Non-Oracle Systems

Generic Connectivity
Generic connectivity is a feature of the Oracle database server that enables users to

use ODBC and OLE DB drivers to access non-Oracle systems having an ODBC or

an OLE DB interface.

A gateway using generic connectivity must have an additional ODBC or OLE DB

driver to provide an interface between generic connectivity and the non-Oracle

system. These drivers are not provided by Oracle Corporation. However, as long as

Oracle Corporation supports the ODBC and OLE DB protocols, you can use these

gateways to access their respective non-Oracle systems.

The ODBC and OLE DB drivers using generic connectivity are installed in the same

Oracle Home directory as the Oracle database server. Connecting to one of these

gateways from another Oracle database server is not supported.

Heterogeneous Services Components
Heterogeneous Services provides the following components:

■ Transaction Service

■ SQL Service

Transaction Service
The transaction service allows non-Oracle systems to be integrated into Oracle

database server transactions and sessions. Users transparently set up an

authenticated session in the non-Oracle system when it is accessed for the first time

over a database link within an Oracle user session. At the end of the Oracle user

See Also: Chapter 3, "Generic Connectivity"

Agent

Oracle8i Server

Non-Oracle System "X"

Client Application
1-4 Oracle Heterogeneous Services

Heterogeneous Services Components
session, the authenticated session in the non-Oracle system is transparently closed

at the non-Oracle system.

Additionally, one or more non-Oracle systems can participate in an Oracle

distributed transaction. When an application commits a transaction, Oracle’s

two-phase commit protocol accesses the non-Oracle system to transparently

coordinate the distributed transaction. Even if the non-Oracle system does not

support all aspects of Oracle’s two-phase commit protocol, the Oracle database

server usually supports distributed transactions with the non-Oracle system.

The SQL service uses the transaction service while Oracle’s object transaction

service uses agents that implement only the transaction service.

SQL Service
The SQL service uses SQL to access the non-Oracle system transparently. If an

application’s SQL request requires data from a non-Oracle system, Heterogeneous

Services does the following:

1. Translates the Oracle SQL request into an equivalent SQL request for the

non-Oracle system.

2. Accesses the non-Oracle data.

3. Makes the data from the non-Oracle system available to the Oracle database

server for post-processing.

The SQL service provides the following capabilities:

■ Translates Oracle’s SQL into a SQL dialect understood by the non-Oracle

system.

■ Translates specific SQL requests that are made on Oracle data dictionary tables

(which tell the Oracle database server how to organize the data in its datastore)

into equivalent requests on the non-Oracle system’s data dictionary tables.

■ Maps non-Oracle system datatypes to Oracle datatypes.

Database Links to a Non-Oracle System
With Heterogeneous Services, a non-Oracle system appears to the user as a remote

Oracle database server. To access or manipulate tables or to execute procedures in

the non-Oracle system, you must create a database link that specifies the connect

See Also: "Using Transaction Service Views" on page 2-13 for

more information on heterogeneous distributed transactions.
Heterogeneous Services Concepts 1-5

Architecture of the Heterogenous Services Data Dictionary
descriptor for the non-Oracle database. Use the following syntax to create a link to a

non-Oracle system (variables in italics):

CREATE DATABASE LINK link_name
 CONNECT TO user IDENTIFIED BY password
 USING ’ non_oracle_system ’;

If a non-Oracle system is referenced, then Heterogeneous Services translates the

SQL statement or PL/SQL remote procedure call into the appropriate statement at

the non-Oracle system.

You can access tables and procedures at the non-Oracle system by qualifying the

tables and procedures with the database link. This operation is identical to

accessing tables and procedures at a remote Oracle database server.

 Consider the following example, which accesses a non-Oracle system through a

database link:

SELECT * FROM EMP@non_oracle_system ;

Heterogeneous Services translates the Oracle SQL statement into the SQL dialect of

the target system and then executes the translated SQL statement at the non-Oracle

system.

Architecture of the Heterogenous Services Data Dictionary
You can access multiple non-Oracle systems from the same Oracle database server,

as illustrated in Figure 1–2.

See Also: Chapter 2, "Managing Heterogeneous Services"
1-6 Oracle Heterogeneous Services

Architecture of the Heterogenous Services Data Dictionary
Figure 1–2 Accessing Multiple Non-Oracle Instances

For Heterogeneous Services generic code to correctly generate SQL, map datatypes,

and interact effectively with the code of the non-Oracle system, Heterogeneous

Services needs information about that system. This information is uploaded from

the agent for that system and is stored in the Heterogeneous Services data

dictionary.

Classes and Instances
Oracle organizes information about the non-Oracle system by two levels of

granularity in the Heterogeneous Services data dictionary. These two levels of

granularity are class and instance. A class pertains to a specific type of non-Oracle

system. For example, you might want to access the class of Sybase database systems

with your Oracle database server. An instance defines specializations within a class.

For example, you might want to access several separate instances within a Sybase

database system. Instance information takes precedence over class information, and

class information takes precedence over server-supplied defaults.

Although it is possible to store data dictionary information at one level of

granularity by having completely separate definitions in the data dictionary for

each individual instance, this could lead the amount of stored data dictionary

information to become unnecessarily large and redundant. To avoid this, Oracle

organizes the data dictionary by two levels of granularity, in which each class

definition (one level of granularity) is shared by all the particular instances (a

second level of granularity) under that class.

Agent

Agent

Non-Oracle System "X" instance

Non-Oracle System "Y" instance

Client Application

Oracle8i Server
Heterogeneous Services Concepts 1-7

Architecture of the Heterogenous Services Data Dictionary
For example, consider a case where the Oracle database server accesses three

instances of Sybase and two instances of Ingres II. Sybase and Ingres II each have

their own code, which requires separate class definitions for the Oracle database

server to be able to access them. The Heterogeneous Services data dictionary

therefore would contain two class definitions, one for Sybase and one for Ingres II,

with five instance definitions, one for each instance being accessed by the Oracle

database server.

Configuration Data
The Heterogeneous Services data dictionary also contains the following types of

configuration data:

■ Heterogeneous Services initialization parameters to provide control over

various things, including language and date formats, domain names, and

Heterogeneous Services tuning

■ Capability definitions to identify details such as the SQL language features

supported by the non-Oracle data source

■ Data dictionary translations to map references to Oracle data dictionary tables

and views into equivalents specific to the non-Oracle data source

Data Dictionary Views
The Heterogeneous Services data dictionary views contain information about:

■ Names of instances and classes uploaded into the Oracle data dictionary

■ Capabilities, including SQL translations, defined for each class or instance

■ Data Dictionary translations defined for each class or instance

■ Initialization parameters defined for each class or instance

■ Distributed external procedures accessible from the Oracle database server

You can access information from the Oracle data dictionary by using fixed views.

The views can be divided into three main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service
1-8 Oracle Heterogeneous Services

Architecture of the Heterogenous Services Data Dictionary
See Also:

■ "Using Heterogeneous Services Data Dictionary Views" on

page 2-9 to learn how to use these views

■ Appendix B, "Heterogeneous Services Data Dictionary Views"

for a list of data dictionary views that Heterogeneous Services

supports
Heterogeneous Services Concepts 1-9

Architecture of the Heterogenous Services Data Dictionary
1-10 Oracle Heterogeneous Services

Managing Heterogeneous Se
2

Managing Heterogeneous Services

This chapter describes how to maintain a heterogeneous distributed environment

when using a transparent gateway.

This chapter contains these topics:

■ Setting Up Access to Non-Oracle Systems

■ Registering Agents

■ Using Heterogeneous Services Data Dictionary Views

■ Using the Heterogeneous Services Dynamic Performance Views

■ Using the DBMS_HS Package
rvices 2-1

Setting Up Access to Non-Oracle Systems
Setting Up Access to Non-Oracle Systems
This section explains the generic steps to configure access to a non-Oracle system.

Please see the Installation and User's Guide for your agent for more installation

information. The instructions for configuring your agent may slightly differ from

the following.

The steps for setting up access to a non-Oracle system are:

■ Step 1: Install the Heterogeneous Services Data Dictionary

■ Step 2: Set Up the Environment to Access Heterogeneous Services Agents

■ Step 3: Create the Database Link to the Non-Oracle System

■ Step 4: Test the Connection

Step 1: Install the Heterogeneous Services Data Dictionary
For most users, the script to install data dictionary tables and views for

Heterogeneous Services is automatically run at the time of installation.

In case you need to install these tables and views manually, you must run a script

that creates the Heterogeneous Services data dictionary tables, views, and packages.

On most systems this script is called caths.sql and resides in $ORACLE_
HOME/rdbms/admin .

Step 2: Set Up the Environment to Access Heterogeneous Services Agents
To initiate a connection to the non-Oracle system, the Oracle database server starts

an agent process through the Net8 listener. For the Oracle database server to be able

to connect to the agent, you must:

1. Set up a Net8 service name for the agent that can be used by the Oracle

database server. The Net8 service name descriptor includes protocol-specific

information needed to access the Net8 listener. The service name descriptor

must include the (HS=OK) clause to ensure that the connection uses Oracle

Heterogeneous Services.

2. Set up the listener to listen for incoming request from the Oracle database

server and spawn Heterogeneous Services agents. Modify the listener.ora

Note: Data dictionary tables, views, and packages might already

be installed on your Oracle database server. Check for the existence

of Heterogeneous Services data dictionary views, such as SYS.HS_

FDS_CLASS.
2-2 Oracle Heterogeneous Services

Setting Up Access to Non-Oracle Systems
file so that the listener can start Heterogeneous Services agents, and then restart

the listener.

Sample Entry for a Net8 Service Name
The following is a sample entry for the service name in the tnsnames.ora file:

Sybase_sales= (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun206)
 (PORT=1521))
 (CONNECT_DATA = (SID=SalesDB))
 (HS = OK))

The description of this service name is defined in tnsnames.ora , the Oracle

Names server, or in third-party name servers using the Oracle naming adapter. See

the installation documentation for your agent for more information about how to

define the Net8 service name.

A Sample Listener Entry
The following is a sample entry for the listener in the listener.ora file:

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS= (PROTOCOL=tcp)
 (HOST = dlsun206)
 (PORT = 1521)
)
)
...
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (SID_NAME=SalesDB)
 (ORACLE_HOME=/home/oracle/tg4sybs/8.1.6)
 (PROGRAM=tg4sybs)
)
)

The value associated with PROGRAM keyword defines the name of the agent

executable. The agent executable must reside in the $ORACLE_HOME/bin directory.

Typically, you use SID_NAME to define the initialization parameter file for the

agent.
Managing Heterogeneous Services 2-3

Setting Up Access to Non-Oracle Systems
Step 3: Create the Database Link to the Non-Oracle System
To create a database link to the non-Oracle system, use the CREATE DATABASE

LINK statement. The service name that is used in the USING clause of the CREATE

DATABASE LINK command is the Net8 service name.

For example, to create a database link to the SALES database on Sybase, enter:

CREATE DATABASE LINK sales
USING ‘Sybase_sales’;

Step 4: Test the Connection
To test the connection to the non-Oracle system, use the database link in a SQL or

PL/SQL statement. If the non-Oracle system is a SQL-based database, you can

execute a SELECT statement from an existing table or view using the database link.

For example, enter:

SELECT * FROM product@sales
WHERE product_name like '%pencil%';

When you try to access the non-Oracle system for the first time, the Heterogeneous

Services agent uploads information into the Heterogeneous Services data

dictionary. The uploaded information includes:

Type of Data Explanation

Capabilities of the
non-Oracle system

For example, the agent specifies whether it can perform a join or
a GROUP BY.

SQL translation
information

The agent specifies how to translate Oracle functions and
operators into functions and operators of the non-Oracle system.

Data dictionary
translations

The agent specifies how to translate Oracle data dictionary tables
into tables and views of the non-Oracle system, to make the data
dictionary information of the non-Oracle system available just as
if it were an Oracle data dictionary,

Note: Most agents upload information into the Oracle data

dictionary automatically the first time they are accessed. However,

some Oracle Transparent Gateway products provide scripts that

you must run on the Oracle database server.
2-4 Oracle Heterogeneous Services

Registering Agents
Registering Agents
Registration is an operation through which Oracle stores information about an

agent in the Heterogeneous Services data dictionary. Agents do not have to be

registered. If an agent is not registered, Oracle stores information about the agent in

memory instead of in the data dictionary. When a session involving an agent

terminates, this information ceases to be available.

Self-registration is an operation in which a database administrator sets an

initialization parameter that lets the agent automatically upload information into

the data dictionary. In release 8.0 of the Oracle database server, an agent could

determine whether to self-register. In this release, self-registration occurs only when

the HS_AUTOREGISTER initialization parameter is set to TRUE (default).

This section contains the following topics:

■ Enabling Agent Self-Registration

■ Using Heterogeneous Services Data Dictionary Views

■ Using Agent Self-Registration to Avoid Configuration Mismatches

■ Understanding Agent Self-Registration

Enabling Agent Self-Registration
To ensure correct operation over heterogeneous database links, agent

self-registration automates updates to Heterogeneous Services configuration data

that describe agents on remote hosts. Agent self-registration is the default behavior.

If you do not want to use the agent self-registration feature, then you must set the

HS_AUTOREGISTER initialization parameter to FALSE.

Both the server and the agent rely on three types of information to configure and

control operation of the Heterogeneous Services connection. These three sets of

information are collectively called Heterogeneous Services configuration data.

See Also: "Using Heterogeneous Services Data Dictionary Views"

on page 2-9.

Heterogeneous Services
Configuration Data Description

Heterogeneous Services
initialization parameters

Provide control over various things, including language and
date formats, domain names, and Heterogeneous Services
tuning.
Managing Heterogeneous Services 2-5

Registering Agents
Disabling Agent Self-Registration
To disable agent self-registration, set the HS_AUTOREGISTER initialization

parameter as follows:

HS_AUTOREGISTER = FALSE

If you disable agent self-registration, then agent information is not stored in the

data dictionary. Consequently, the Heterogeneous Services data dictionary views

cease to be useful sources of information. However, the Oracle database server still

requires information about the class and instance of each agent. To meet this

requirement when agent self-registration is disabled, the Oracle database server

stores this information in local memory.

Using Agent Self-Registration to Avoid Configuration Mismatches
Heterogeneous Services configuration data is stored in the Oracle database server’s

data dictionary. Because the agent is possibly remote, and can therefore be

administered separately, several circumstances can lead to configuration

mismatches between servers and agents:

■ An agent can be newly installed on a separate machine so that the server has no

Heterogeneous Services data dictionary content to represent the agent’s

Heterogeneous Services configuration data.

■ A server can be newly installed and lack the necessary Heterogeneous Services

configuration data for existing agents and non-Oracle data stores.

■ A non-Oracle instance can be upgraded from an older version to a newer

version, requiring modification of the Heterogeneous Services configuration

data.

Capability definitions Identify details such as SQL language features supported by
the non-Oracle datasource.

Data dictionary
translations

Map references to Oracle data dictionary tables and views into
equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 2-9.

Heterogeneous Services
Configuration Data Description
2-6 Oracle Heterogeneous Services

Registering Agents
■ A Heterogeneous Services agent at a remote site can be upgraded to a new

version or patched, requiring modification of the Heterogeneous Services

configuration data.

■ A database administrator at the non-Oracle site can change the agent setup,

possibly for tuning or testing purposes, in a manner that affects Heterogeneous

Services configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in

all these scenarios. Specifically, agent self-registration enhances interoperability

between any Oracle database server and any Heterogeneous Services agent,

provided that each is at least as recent as Version 8.0.3. The basic mechanism for this

functionality is the ability to upload Heterogeneous Services configuration data

from agents to servers.

Self-registration provides automatic updating of Heterogeneous Services

configuration data residing in the Oracle database server data dictionary. The

update ensures that the agent self-registration uploads need to be done only once,

during the initial use of a previously unregistered agent. Instance information is

uploaded on each connection and is not stored in the database server data

dictionary.

Understanding Agent Self-Registration
The Heterogeneous Services agent self-registration feature can:

■ Identify the agent and the non-Oracle data store to the Oracle database server

■ Permit agents to define Heterogeneous Services initialization parameters for

use both by the agent and connected Oracle database servers

■ Upload capability definitions and data dictionary translations, if available, from

an Heterogeneous Services agent during connection initialization

The information required to accomplish this is accessed in the database server data

dictionary by using the following agent-supplied names:

Note: When both the server and the agent are release 8.1 or

higher, the upload of class information occurs only when the class

is undefined in the database server data dictionary. Similarly,

instance information is uploaded only if the instance is undefined

in the server data dictionary.
Managing Heterogeneous Services 2-7

Registering Agents
■ FDS_CLASS

■ FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION are defined by Oracle or by third-party

vendors for each individual Heterogeneous Services agent and version. Oracle

Heterogeneous Services concatenates these names to form FDS_CLASS_NAME,

which is used as a primary key to access class information in the server data

dictionary.

FDS_CLASS should specify the type of non-Oracle data store to be accessed and

FDS_CLASS_VERSION should specify a version number for both the non-Oracle

data store and the agent to which it connects. Note that when any component of an

agent changes, FDS_CLASS_VERSION must also change to uniquely identify the

new release.

FDS_INST_NAME

Instance-specific information can be stored in the database server data dictionary.

The instance name, FDS_INST_NAME, is configured by the database administrator

who administers the agent; how the database administrator performs this

configuration depends on the specific agent in use.

The Oracle database server uses FDS_INST_NAME to look up instance-specific

configuration information in its data dictionary. Oracle uses the value as a primary

key for columns of the same name in these views:

■ FDS_INST_INIT

■ FDS_INST_CAPS

■ FDS_INST_DD

Server data dictionary accesses that use FDS_INST_NAME also use FDS_CLASS_

NAME to uniquely identify configuration information rows. Instances of the same

See Also: "Using Heterogeneous Services Data Dictionary Views"

on page 2-9 to learn how to use the Heterogeneous Services data

dictionary views.

Note: This information is uploaded when you initialize each

connection.
2-8 Oracle Heterogeneous Services

Using Heterogeneous Services Data Dictionary Views
name but that occur under different classes have separate sets of configuration

information. For example, if your database contains a Sybase816 and a Sybase817

class, but both of these classes have an instance called SALES, then each SALES

instance has a separate set of configuration information.

Unlike class information, instance information is not automatically self-registered in

the server data dictionary.

■ If the database server data dictionary contains instance information, it

represents setup details defined by the database administrator that fully define

the instance configuration. No instance information is uploaded from the agent

to the server.

■ If the database server data dictionary does not contain instance information,

any instance information made available by a connected agent is uploaded to

the database server for use in that connection. The uploaded instance data is not

stored in the database server data dictionary.

Specifying HS_AUTOREGISTER
The Oracle database server initialization parameter HS_AUTOREGISTER enables

or disables automatic self-registration of Heterogeneous Services agents. This

parameter is specified in the Oracle initialization parameter file, not the agent

initialization file.

For example, you can set the parameter as follows:

HS_AUTOREGISTER = TRUE

When set to TRUE, the agent uploads information describing a previously

unknown agent class or a new agent version into the server’s data dictionary.

Oracle Corporation recommends that you use the default value for this parameter

(TRUE), which ensures that the server’s data dictionary content always correctly

represents definitions of class capabilities and data dictionary translations as used

in Heterogeneous Services connections.

Using Heterogeneous Services Data Dictionary Views
You can use the Heterogeneous Services data dictionary views to access information

about Heterogeneous Services. This section addresses the following topics:

■ Understanding Types of Views

See Also: Oracle8i Reference for a description of this parameter.
Managing Heterogeneous Services 2-9

Using Heterogeneous Services Data Dictionary Views
■ Understanding Sources of Data Dictionary Information

■ Using General Views

■ Using Transaction Service Views

■ Using SQL Service Views

Understanding Types of Views
The Heterogeneous Services data dictionary views, which all begin with the prefix

HS_, can be divided into three main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.

Consequently, for most types of data there is a *_CLASS and an *_INST view.
2-10 Oracle Heterogeneous Services

Using Heterogeneous Services Data Dictionary Views
Like all Oracle data dictionary tables, the views are read-only. Do not use SQL to

change the content of any of the underlying tables. To make changes to any of the

underlying tables, use the procedures available in the DBMS_HS package.

Table 2–1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS_BASE_CAPS SQL service All capabilities supported by
Heterogeneous Services

HS_BASE_DD SQL service All data dictionary translation table
names supported by Heterogeneous
Services

HS_CLASS_CAPS Transaction service,
SQL service

Capabilities for each class

HS_CLASS_DD SQL service Data dictionary translations for each
class

HS_CLASS_INIT General Initialization parameters for each
class

HS_FDS_CLASS General Classes accessible from this Oracle
database server

HS_FDS_INST General Instances accessible from this Oracle
database server

HS_INST_CAPS Transaction service,
SQL service

Capabilities for each instance

HS_INST_DD SQL service Data dictionary translations for each
instance

HS_INST_INIT General Initialization parameters for each
instance

See Also:

■ "Heterogeneous Services Process Architecture" on page 1-2 for

more information about classes and instances

■ Oracle8i Reference for information about Heterogeneous Services

views

■ "Using the DBMS_HS Package" on page 2-18 for more

information about the DBMS_HS package
Managing Heterogeneous Services 2-11

Using Heterogeneous Services Data Dictionary Views
Understanding Sources of Data Dictionary Information
The values used for data dictionary content in any particular connection on a

Heterogeneous Services database link can come from any of the following sources,

in order of precedence:

■ Instance information uploaded by the connected Heterogeneous Services agent

at the start of the session. This information overrides corresponding content in

the Oracle data dictionary, but is never stored in the Oracle data dictionary.

■ Instance information stored in the Oracle data dictionary. This data overrides

any corresponding content for the connected class.

■ Class information stored in the Oracle data dictionary

If the Oracle database server runs with the HS_AUTOREGISTER server

initialization parameter set to FALSE, then no information is stored automatically in

the Oracle data dictionary. The equivalent data is uploaded by the Heterogeneous

Services agent on a connection-specific basis each time a connection is made, with

any instance-specific information taking precedence over class information.

You can determine the values of Heterogeneous Services initialization parameters

by querying the VALUE column of the V$HS_PARAMETER view. Note that the

VALUE column of V$HS_PARAMETER truncates the actual initialization parameter

value from a maximum of 255 characters to a maximum of 64 characters, and it

truncates the parameter name from a maximum of 64 characters to a maximum of

30 characters.

Using General Views
The views that are common for all services are as follows:

Note: Because an agent can upload instance information, it is not

possible to determine positively what capabilities and what data

dictionary translations are in use for a given session.

View Contains

HS_FDS_CLASS

HS_FDS_INST

Names of the instances and classes that are uploaded into the

Oracle8i data dictionary

HS_CLASS_INIT

HS_INST_INIT

Information about the Heterogeneous Services initialization
parameters
2-12 Oracle Heterogeneous Services

Using Heterogeneous Services Data Dictionary Views
For example, you can access multiple Sybase gateways from an Oracle database

server. After accessing the gateways for the first time, the information uploaded

into the Oracle database server could appear as follows:

SQL> SELECT * FROM hs_fds_class;

FDS_CLASS_NAME FDS_CLASS_COMMENTS FDS_CLASS_ID
--------------------- ------------------------------ ------------
Sybase816 Uses Sybase driver, R1.1 1
Sybase817 Uses Sybase driver, R1.2 21

Two classes are uploaded: a class that accesses Sybase816 and a class that accesses

Sybase817. The data dictionary in the Oracle database server now contains

capability information, SQL translations, and data dictionary translations for both

Sybase816 and Sybase817.

In addition to this information, the Oracle database server data dictionary also

contains instance information in the HS_FDS_INST view for each non-Oracle

system instance that is accessed.

Using Transaction Service Views
When a non-Oracle system is involved in a distributed transaction, the transaction

capabilities of the non-Oracle system and the agent control whether it can

participate in distributed transactions. Transaction capabilities are stored in the HS_

CLASS_CAPS and HS_INST_CAPS capability tables.

The ability of the non-Oracle system and agent to support two-phase commit

protocols is specified by the 2PC type capability, which can specify one of the

following five types.

Read-only (RO) The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to
write data.

Single-Site (SS) The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it cannot participate in the two-phase commit
protocol.

Commit
Confirm (CC)

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol but only as the Commit
Point Site. That is, it cannot prepare data, but it can remember the outcome
of a particular transaction if asked by the global coordinator.
Managing Heterogeneous Services 2-13

Using Heterogeneous Services Data Dictionary Views
The transaction model supported by the driver and non-Oracle system can be

queried from Heterogeneous Services data dictionary views HS_CLASS_CAPS and

HS_INST_CAPS.

An example of the two-phase commit capability follows:

SELECT cap_description, translation
FROM hs_class_caps
WHERE cap_description LIKE '2PC%'
AND fds_class_name=‘Sybase’;

CAP_DESCRIPTION TRANSLATION
-- -----------
2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent support distributed transactions, the

non-Oracle system is treated like any other Oracle database server. When a failure

occurs during the two-phase commit protocol, the transaction is recovered

automatically. If the failure persists, the in-doubt transaction may need to be

manually overridden by the database administrator.

Using SQL Service Views
Data dictionary views that are specific for the SQL service contain information

about:

■ SQL capabilities and SQL translations of the non-Oracle data source

■ Data dictionary translations to map Oracle data dictionary views to the data

dictionary of the non-Oracle system.

Two-Phase
Commit

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol, as a regular two-phase
commit node, but not as a Commit Point Site. That is, it can prepare data,
but it cannot remember the outcome of a particular transaction if asked to
by the global coordinator.

Two-Phase
Commit
Confirm

The non-Oracle system can participate in distributed transactions. It can
participate in Oracle’s two-phase commit protocol as a regular two-phase
commit node or as the Commit Point Site. That is, it can prepare data and it
can remember the outcome of a particular transaction if asked by the global
coordinator.
2-14 Oracle Heterogeneous Services

Using Heterogeneous Services Data Dictionary Views
Using Views for Capabilities and Translations
The HS_*_CAPS data dictionary tables contain information about the SQL

capabilities of the non-Oracle data source and required SQL translations. These

views specify whether the non-Oracle data store or the Oracle database server

implements certain SQL language features. If a capability is turned off, then the

Oracle database server does not send any SQL statements to the non-Oracle data

source that require this particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations
In order to make the non-Oracle system appear similar to an Oracle database server,

Heterogeneous Services connections map a limited set of Oracle data dictionary

views onto the non-Oracle system’s data dictionary. This mapping permits

applications to issue queries as if these views belonged to an Oracle data dictionary.

Data dictionary translations make this access possible. These translations are stored

in Heterogeneous Services views whose names are suffixed with _DD.

For example, the following SELECT statement transforms into a Sybase query that

retrieves information about EMP tables from the Sybase data dictionary table:

SELECT * FROM USER_TABLES@salesdb
WHERE UPPER(TABLE_NAME)=’EMP’;

Data dictionary tables can be mimicked instead of translated. If a data dictionary

translation is not possible because the non-Oracle data source does not have the

required information in its data dictionary, Heterogeneous Services causes it to

appear as if the data dictionary table is available, but the table contains no

information.

To retrieve information for which Oracle data dictionary views or tables are

translated or mimicked for the non-Oracle system, you can issue the following

query on the HS_CLASS_DD or HS_INST_DD views:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS_CLASS_DD
WHERE FDS_CLASS_NAME=‘Sybase’;

Note: This section describes only a portion of the SQL

Service-related capabilities. Because you should never need to alter

these settings for administrative purposes, these capabilities are not

discussed here.
Managing Heterogeneous Services 2-15

Using the Heterogeneous Services Dynamic Performance Views
DD_TABLE_NAME T
----------------------------- -
ALL_ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER_HASH_EXPRESSIONS M
ALL_COLL_TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M
ALL_COL_PRIVS_MADE M
ALL_COL_PRIVS_RECD M
...

The translation type ‘T’ specifies that a translation exists. When the translation type

is ‘M’, the data dictionary table is mimicked.

Using the Heterogeneous Services Dynamic Performance Views
The Oracle database server stores information about agents, sessions, and

parameters. You can use the V$ dynamic performance views to access this

information. This section contains the following topics:

■ Determining Which Agents Are Running on a Host

■ Determining the Open Heterogeneous Services Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

Use this view to determine general information about the agents running on a

specified host. The following table describes the most relevant columns

See Also: Appendix B, "Heterogeneous Services Data Dictionary

Views" for a list of data dictionary views that are supported

through Heterogeneous Services mapping.

View Purpose

V$HS_AGENT Identifies the set of Heterogeneous Services agents currently
running on a given host, using one row per agent process.
2-16 Oracle Heterogeneous Services

Using the Heterogeneous Services Dynamic Performance Views
Determining the Open Heterogeneous Services Sessions
The following view shows which Heterogeneous Services sessions are open for the

Oracle database server:

The following table shows the most relevant columns

See also: Oracle8i Reference for a description of all the columns in

the view.

Table 2–2 V$HS_AGENT

Column Description

AGENT_ID Net8 session identifier used for connections to agent
(listener.ora SID)

MACHINE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS_ID The ID of the foreign data store class

FDS_INST_ID The instance name of the foreign data store

View Purpose

V$HS_SESSION Lists the sessions for each agent, specifying the database link
used.

See also: Oracle8i Reference for a description of all the columns in

the view.

Table 2–3 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

AGENT_ID Net8 session identifier used for connections to agent
(listener.ora SID)

DB_LINK Database link name used to access the agent NULL means that no
database link is used (such as, when using external procedures)
Managing Heterogeneous Services 2-17

Using the DBMS_HS Package
Determining the Heterogeneous Services Parameters
The following view shows which Heterogeneous Services parameters are set in the

Oracle database server:

The following table describes the most relevant columns.

Using the DBMS_HS Package
The DBMS_HS package contains functions and procedures that allow you to specify

and unspecify Heterogeneous Services initialization parameters, capabilities,

instance names, and class names. These parameters are configured in the gateway

initialization file, not the Oracle initialization parameter file. The only exception is

HS_AUTOREGISTER, which is set in the Oracle initialization parameter file.

DB_LINK_OWNER Owner of the database link in DB_LINK

View Purpose

V$HS_PARAMETER Lists Heterogeneous Services parameters and values registered
in the Oracle database server.

See Also: Oracle8i Reference for a description of all the columns in

the view.

Table 2–4 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

PARAMETER The name of the Heterogeneous Services parameter

VALUE The value of the Heterogeneous Services parameter

See Also: Oracle8i Supplied PL/SQL Packages Reference for a reference

listing of all DBMS_HS package interface information for

Heterogeneous Services administration.

Table 2–3 V$HS_SESSION

Column Description
2-18 Oracle Heterogeneous Services

Using the DBMS_HS Package
Specifying Initialization Parameters
Set initialization parameters either in the Oracle database server or in the

Heterogeneous Services agent.

To set initialization parameters in the Oracle database server, use the DBMS_HS

package. See the agent’s installation documentation for more information. If the

same initialization parameter is set both in the agent and the Oracle database server,

then the value of the initialization parameter set in the Oracle database server takes

precedence.

Many, although not all, Oracle gateways allow initialization parameters to be set

inside the initialization files. The name of the initialization file is usually initagent_
sid.ora and it is usually located in $ORACLE_HOME/product_name/admin.

Parameters set in the server override those set in the initialization files.

There are two types of initialization parameters to consider when setting up your

gateway:

You can set both generic and non-Oracle data store class-specific Heterogeneous

Services initialization parameters in the Oracle database server using the CREATE_

INST_INIT procedure in the DBMS_HS package.

See Also: Chapter 3, "Generic Connectivity"

Type Description

Generic Defined by Heterogeneous Services. See Appendix A,
"Heterogeneous Services Initialization Parameters" for more
information on generic initialization parameters.

Non-Oracle
class-specific

Defined by the Oracle transparent gateway product. Some
non-Oracle data store class-specific parameters may be
mandatory. For example, a parameter may include connection
information required to connect to a non-Oracle system. These
parameters are documented in the installation documentation
for your agent.
Managing Heterogeneous Services 2-19

Using the DBMS_HS Package
For example, set the HS_DB_DOMAIN initialization parameter as follows

DBMS_HS.CREATE_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘Sybase’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’,
 INIT_VALUE => ‘US.SALES.COM’);

Unspecifying Initialization Parameters
To unspecify an Heterogeneous Services initialization parameter in the Oracle

database server, use the DROP_INST_INIT procedure. For example, to delete the

HS_DB_DOMAIN entry, enter:

DBMS_HS.DROP_INST_INIT
 (FDS_INST_NAME => ‘SalesDB’,
 FDS_CLASS_NAME => ‘Sybase’,
 INIT_VALUE_NAME => ‘HS_DB_DOMAIN’);

See Also: Appendix A, "Heterogeneous Services Initialization

Parameters" for more information about initialization parameters.

See Also: Oracle8i Supplied PL/SQL Packages Reference for a full

description of the DBMS_HS package.
2-20 Oracle Heterogeneous Services

Generic Conne
3

Generic Connectivity

This chapter describes the configuration and usage of generic connectivity agents.

This chapter contains these topics:

■ What Is Generic Connectivity?

■ Supported Oracle SQL Statements

■ Configuring Generic Connectivity Agents

■ ODBC Connectivity Requirements

■ OLE DB (SQL) Connectivity Requirements

■ OLE DB (FS) Connectivity Requirements
ctivity 3-1

What Is Generic Connectivity?
What Is Generic Connectivity?
Generic connectivity is intended for low-end data integration solutions requiring

the ad hoc query capability to connect from an Oracle database server to non-Oracle

database systems. Generic connectivity is enabled by Oracle Heterogeneous

Services, allowing you to connect to non-Oracle systems with improved

performance and throughput.

Generic connectivity is implemented as either a Heterogeneous Services ODBC

agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB

agent are included as part of your Oracle system. Be sure to use the agents shipped

with your particular Oracle system, installed in the same $ORACLE_HOME.

Any data source compatible with the ODBC or OLE DB standards described in this

chapter can be accessed using a generic connectivity agent.

This section contains the following topics:

■ Types of Agents

■ Generic Connectivity Architecture

■ SQL Execution

■ Datatype Mapping

■ Generic Connectivity Restrictions

Types of Agents
Generic connectivity is implemented as one of the following types of

Heterogeneous Services agents:

■ ODBC agent for accessing ODBC data providers

■ OLE DB agent for accessing OLE DB data providers that support SQL

processing—sometimes referred to as OLE DB (SQL)

■ OLE DB agent for accessing OLE DB data providers without SQL processing

support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use

in that user session of the database link to the non-Oracle system. The agent process

ends when the user session ends.
3-2 Oracle Heterogeneous Services

What Is Generic Connectivity?
Generic Connectivity Architecture
To access the non-Oracle data store using generic connectivity, the agents work with

an ODBC or OLE DB driver. The Oracle database server provides support for the

ODBC or OLE DB driver interface. The driver that you use must be on the same

platform as the agent. The non-Oracle data stores can reside on the same machine as

the Oracle database server or a different machine.

Oracle and Non-Oracle Systems on Separate Machines
Figure 3–1 shows an example of a configuration in which an Oracle and non-Oracle

database are on separate machines, communicating through an Heterogeneous

Services ODBC agent.

Figure 3–1 Non-Oracle System on Separate Computer

In this configuration:

1. A client connects to the Oracle database server through Net8

Non-Oracle
system

Network

Machine 2

Client

NET8

Machine 1

Non-Oracle
component

Oracle8i

ODBC driver
manager

ODBC driver

Non-Oracle
system
client

HS

HS
ODBC
agent

Net8
Generic Connectivity 3-3

What Is Generic Connectivity?
2. The Heterogeneous Services component of the Oracle database server connects

through Net8 to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

■ A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on Same Machine
Figure 3–2 shows an example of a different configuration in which an Oracle and

non-Oracle database are on the same machine, again communicating through an

Heterogeneous Services ODBC agent.
3-4 Oracle Heterogeneous Services

What Is Generic Connectivity?
Figure 3–2 Accessing Heterogeneous Non-Oracle Systems

In this configuration:

1. A client connects to the Oracle database server through Net8

2. The Heterogeneous Services component of the Oracle database server connects

through Net8 to the Heterogeneous Services ODBC agent

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

Client

NET8

Machine 1

Oracle8i

Non-Oracle
system

HS

ODBC driver
manager

ODBC driver

HS
ODBC
agent

Net8

Non-Oracle
system
client
Generic Connectivity 3-5

What Is Generic Connectivity?
The driver then allows access to the non-Oracle data store.

SQL Execution
SQL statements sent using a generic connectivity agent are executed differently

depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB

(FS). For example, if a SQL statement involving tables is sent using an ODBC agent

for a file-based storage system, the file can be manipulated as if it were a table in a

relational database. The naming conventions used at the non-Oracle system can also

depend on whether you are using an ODBC or OLE DB agent.

Datatype Mapping
The Oracle database server maps the datatypes used in ODBC and OLE DB

compliant data sources to supported Oracle datatypes. When the results of a query

are returned, the Oracle database server converts the ODBC or OLE DB datatypes to

Oracle datatypes. For example, the ODBC datatype SQL_TIMESTAMP and the OLE

DB datatype DBTYPE_DBTIMESTAMP are converted to Oracle’s DATE datatype.

Generic Connectivity Restrictions
Generic connectivity restrictions include:

■ A table including a BLOB column must have a separate column that serves as a

primary key

■ BLOB/CLOB data cannot be read through passthrough queries

■ Updates or deletes that include unsupported functions within a WHERE clause

are not allowed

■ Stored procedures are not supported

■ Generic connectivity agents cannot participate in distributed transactions; they

support single-site transactions only

Note: The ODBC driver may require non-Oracle client libraries

even if the non-Oracle database is located on the same machine.
3-6 Oracle Heterogeneous Services

Supported Oracle SQL Statements
Supported Oracle SQL Statements
Generic connectivity supports the following statements, but only if the ODBC or

OLE DB driver and non-Oracle system can execute them and the statements contain

supported Oracle SQL functions:

■ DELETE

■ INSERT

■ SELECT

■ UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle

system. Most Oracle functions have no equivalent function in this limited set.

Consequently, many Oracle functions are not supported by generic connectivity,

although post-processing is performed by the Oracle database server, possibly

impacting performance.

If an Oracle SQL function is not supported by generic connectivity, then this

function is not supported in DELETE, INSERT, or UPDATE statements. In SELECT

statements, these functions are evaluated by the Oracle database server and

post-processed after they are returned from the non-Oracle system.

If an unsupported function is used in a DELETE, INSERT, or UPDATE statement, it

generates this Oracle error:

ORA-02070: database db_link_name does not support function in this context

Functions Supported by Generic Connectivity
Generic connectivity assumes that the following minimum set of SQL functions is

supported:

■ AVG(exp)

■ LIKE(exp)

■ COUNT(*)

■ MAX(exp)

■ MIN(exp)

■ NOT
Generic Connectivity 3-7

Configuring Generic Connectivity Agents
Configuring Generic Connectivity Agents
To implement generic connectivity on a non-Oracle data source, you must set the

agent parameters.

This section contains the following topics:

■ Creating the Initialization File

■ Editing the Initialization File

■ Setting Initialization Parameters for an ODBC-based Data Source

■ Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File
You must create and customize an initialization file for your generic connectivity

agent. Oracle Corporation supplies sample initialization files named

init agent .ora , where agent is odbc or oledb , indicating which agent the

sample file can be used for, as in the following:

initodbc.ora
initoledb.ora

The sample files are stored in the $ORACLE_HOME/hs/admin directory .

To create an initialization file for an ODBC or OLE DB agent, copy the applicable

sample initialization file and rename the file to init HS_SID.ora , where HS_SID is

the system identifier you want to use for the instance of the non-Oracle system to

which the agent connects.

The HS_SID is also used to identify how to connect to the agent when you configure

the listener by modifying the listener.ora file. The HS_SID you add to the

listener.ora file must match the HS_SID in an init HS_SID.ora file, because

the agent spawned by the listener searches for a matching init HS_SID.ora file.

That is how each agent process gets its initialization information. When you copy

and rename your init HS_SID.ora file, ensure it remains in the $ORACLE_
HOME/hs/admin directory.

See Also: "Step 2: Set Up the Environment to Access

Heterogeneous Services Agents" for more information on

configuring the listener.
3-8 Oracle Heterogeneous Services

Configuring Generic Connectivity Agents
Editing the Initialization File
Customize the init HS_SID.ora file by setting the parameter values used for

generic connectivity agents to values appropriate for your system, agent, and

drivers. You must edit the init HS_SID.ora file to change the HS_FDS_

CONNECT_INFO initialization parameter. HS_FDS_CONNECT_INFO specifies the

information required for connecting to the non-Oracle system.

Set the parameter values as follows:

[SET][PRIVATE] parameter =value

where:

For example, to enable tracing for an agent, set the HS_FDS_TRACE_LEVEL

parameter as follows:

See Also: Appendix A, "Heterogeneous Services Initialization

Parameters" for more information on parameters.

[SET][PRIVATE] are optional keywords. If you do not specify either SET or

PRIVATE, the parameter and value are simply used as an

initialization parameter for the agent.

SET specifies that in addition to being used as an initialization

parameter, the parameter value is set as an environment

variable for the agent process.

PRIVATE specifies that the parameter value is private and not

transferred to the Oracle database server and does not appear

in V$ tables or in an graphical user interfaces.

SET PRIVATE specifies that the parameter value is set as an

environment variable for the agent process and is also private

(not transferred to the Oracle database server, not appearing

in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that

you are specifying. See Appendix A, "Heterogeneous Services

Initialization Parameters" for a description of all

Heterogeneous Services parameters and their possible values.

The parameter is case-sensitive.

value is the value you want to specify for the Heterogeneous

Services parameter. The value is case-sensitive.
Generic Connectivity 3-9

Configuring Generic Connectivity Agents
HS_FDS_TRACE_LEVEL=ON

Typically, most parameters are only needed as initialization parameters, so you do

not need to use SET or PRIVATE. Use SET for parameter values that the drivers or

non-Oracle system need as environment variables.

PRIVATE is only supported for the follow Heterogeneous Services parameters:

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

You should only use PRIVATE for these parameters if the parameter value includes

sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source
The settings for the initialization parameters vary depending on the type of

operating system.

Setting Agent Parameters on Windows NT
Specify a File DSN or a System DSN which has previously been defined using the

ODBC Driver Manager.

When connecting using a File DSN, specify the value as follows:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

When connecting using a System DSN, specify the value as follows:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source,

precede the DSN by the name of the driver, followed by a semi-colon (;).

Setting Parameters on NT: Example Assume a System DSN has been defined in the

Windows ODBC Data Source Administrator. In order to connect to this SQL Server

database through the gateway, the following line is required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=sqlserver7
3-10 Oracle Heterogeneous Services

Configuring Generic Connectivity Agents
where sqlserver7 is the name of the System DSN defined in the Windows ODBC

Data Source Administrator.

The following procedure enables you to define a System DSN in the Windows

ODBC Data Source Administrator:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.

2. Select the System DSN tab to display the system data sources.

3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the

data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information

depending on the ODBC driver. For example, for SQL Server enter the SQL

Server machine.

7. Continue clicking Next and answering the prompts until you click Finish).

8. Click OK until you exit the ODBC Data Source Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT_INFO=dsn_value
HS_FDS_SHAREABLE_NAME=full_odbc_library_path_of_odbc_driver

HS_FDS_CONNECT_INFO is required for all platforms for an ODBC agent. HS_

FDS_SHAREABLE_NAME is required on UNIX platforms for an ODBC agent.

Other initialization parameters have defaults or are optional. You can use the

default values and omit the optional parameters, or you can specify the parameters

with values tailored for your installation.

Note: The name entered for the DSN must match the value of the

parameter HS_FDS_CONNECT_INFO that is specified in init HS_
SID .ora .
Generic Connectivity 3-11

Configuring Generic Connectivity Agents
Setting Parameters on UNIX: Example Assume that the odbc.ini file for connecting to

Informix using the Intersolve ODBC driver is located in /opt/odbc and includes

the following information:

[ODBC Data Sources]
Informix=INTERSOLV 3.11 Informix Driver

[Informix]
Driver=/opt/odbc/lib/ivinf13.so
Description=Informix
Database=personnel@osf_inf72
HostName=osf
LogonID=uid
Password=pwd

In order to connect to this Informix database through the gateway, the following

lines are required in init HS_SID.ora :

HS_FDS_CONNECT_INFO=Informix
HS_FDS_SHAREABLE_NAME=/opt/odbc/lib/libodbc.so
set INFORMIXDIR=/users/inf72
set INFORMIXSERVER=osf_inf72
set ODBCINI=/opt/odbc/odbc.ini

Note that the set statements are optional as long as they are specified in the working

account. Each database has its own set statements.

The HS_FDS_CONNECT_INFO parameter value must match the ODBC data

source name in the odbc.ini file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:

SET|PRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO="UDLFILE=data_link "

Or, specify the connection details directly:

Note: Before deciding to accept the default values or change them,

see Appendix A, "Heterogeneous Services Initialization

Parameters" for detailed information on all the initialization

parameters.
3-12 Oracle Heterogeneous Services

ODBC Connectivity Requirements
SET|PRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO="provider ; db[,CATALOG=catalog]"

where:

HS_FDS_CONNECT_INFO is required for an OLE DB agent. Other initialization

parameters have defaults or are optional. You can use the default values and omit

the optional parameters, or you can specify the parameters with values tailored for

your installation.

ODBC Connectivity Requirements
To use an ODBC agent, you must have an ODBC driver installed on the same

machine as the Oracle database server. On Windows NT, you must have an ODBC

driver manager also located on the same machine. The ODBC driver manager and

driver must meet the following requirements:

■ On Windows NT machines, a thread-safe, 32-bit ODBC driver Version 2.x or 3.x

is required. You can use the native driver manager supplied with your

Windows NT system.

■ On UNIX machines, ODBC driver Version 2.5 is required. A driver manager is

not required.

The ODBC driver and driver manager on Windows NT must conform to ODBC API

conformance Level 1 or higher. If the ODBC driver or driver manager does not

support multiple active ODBC cursors, then it restricts the complexity of SQL

statements that you can execute using generic connectivity.

provider is the name of the provider as it appears in the registry. The

value is case sensitive.

db is the name of the database

catalog is the name of the catalog

Note: If the parameter value includes an equal sign (=), then it

must be surrounded by quotation marks.

Note: Before deciding to accept the default values or change them,

see Appendix A, "Heterogeneous Services Initialization

Parameters" for detailed information on all the initialization

parameters.
Generic Connectivity 3-13

ODBC Connectivity Requirements
The ODBC driver you use must support all of the core SQL ODBC datatypes and

should support SQL grammer level SQL_92. The ODBC driver should also expose

the following ODBC APIs:

Table 3–1 ODBC Functions (Page 1 of 2)

ODBC Function Comment

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLColumns

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch Recommended if used by the non-Oracle system.

SQLFetch

SQLForeignKeys Recommended if used by the non-Oracle system.

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetTypeInfo
3-14 Oracle Heterogeneous Services

OLE DB (SQL) Connectivity Requirements
OLE DB (SQL) Connectivity Requirements
These requirements apply to OLE DB data providers that have an SQL processing

capability and expose the OLE DB interfaces.

Generic connectivity passes the username and password to the provider when

calling IDBInitialize::Initialize() .

OLE DB (SQL) connectivity requires that the data provider expose the following OLE

DB interfaces:

SQLNumParams Recommended if used by the non-Oracle system.

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys Recommended if used by the non-Oracle system.

SQLProcedureColumns Recommended if used by the non-Oracle system.

SQLProcedures Recommended if used by the non-Oracle system.

SQLPutData

SQLRowCount

SQLSetConnectOption

SQLSetStmtOption

SQLStatistics

SQLTables

SQLTransact Recommended if used by the non-Oracle system.

Table 3–2 OLE DB (SQL) Interfaces

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

ICommand Execute

Table 3–1 ODBC Functions (Page 2 of 2)

ODBC Function Comment
Generic Connectivity 3-15

OLE DB (FS) Connectivity Requirements
OLE DB (FS) Connectivity Requirements
These requirements apply to OLE DB data providers that do not have SQL

processing capabilities. If the provider exposes them, then OLE DB (FS) connectivity

uses OLE DB Index interfaces.

OLE DB (FS) connectivity requires that the data provider expose the following OLE

DB interfaces:

ICommandPrepare Prepare

ICommandProperties SetProperties

ICommandText SetCommandText

ICommandWithParameters GetParameterInfo

IDBCreateCommand CreateCommand

IDBCreateSession CreateSession

IDBInitialize Initialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

IErrorInfo1 GetDescription, GetSource

IErrorRecords GetErrorInfo

ILockBytes (OLE)2 Flush, ReadAt, SetSize, Stat, WriteAt

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE) Read, Seek, SetSize, Stat, Write

ISupportErrorInfo InterfaceSupportsErrorInfo

ITransactionLocal (optional) StartTransaction, Commit, Abort

1 You can also use IErrorLookup with the GetErrorDescription method.
2 Required only if BLOBs are used in the OLE DB provider.

Table 3–2 OLE DB (SQL) Interfaces

Interface Methods
3-16 Oracle Heterogeneous Services

OLE DB (FS) Connectivity Requirements
Table 3–3 OLE DB (FS) Interfaces

Interface Methods

IAccessor CreateAccessor, ReleaseAccessor

IColumnsInfo GetColumnsInfo (Command and Rowset
objects)

IOpenRowset OpenRowset

IDBCreateSession CreateSession

IRowsetChange DeleteRows, SetData, InsertRow

IRowsetLocate GetRowsByBookmark

IRowsetUpdate Update (optional)

IDBInitialize Initialize, Uninitialize

IDBSchemaRowset GetRowset (tables, columns, indexes;
optionally also procedures, procedure
parameters)

ILockBytes (OLE)1

1 Required only if BLOBs are used in the OLE DB provider.

Flush, ReadAt, SetSize, Stat, WriteAt

IRowsetIndex2

2 Required only if indexes are used in the OLE DB provider.

SetRange

IErrorInfo3

3 You can use IErrorLookup with the GetErrorDescription method as well.

GetDescription, GetSource

IErrorRecords GetErrorInfo

IRowset GetData, GetNextRows, ReleaseRows,
RestartPosition

IStream (OLE) Read, Seek, SetSize, Stat, Write

ITransactionLocal
(optional)

StartTransaction, Commit, Abort

ISupportErrorInfo InterfaceSupportsErrorInfo

ITableDefinition CreateTable, DropTable

IDBProperties SetProperties
Generic Connectivity 3-17

OLE DB (FS) Connectivity Requirements
Because OLE DB (FS) connectivity is generic, it can connect to a number of different

data providers that expose OLE DB interfaces. Every such data provider must meet

the certain requirements.

Data Source Properties
The OLE DB data source must support the following initialization properties:

■ DBPROP_INIT_DATASOURCE

■ DBPROP_AUTH_USERID

■ DBPROP_AUTH_PASSWORD

The OLE DB data source must also support the following rowset properties:

■ DBPROP_IRowsetChange = TRUE

■ DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

■ DBPROP_OWNUPDATEDELETE = TRUE

■ DBPROP_OWNINSERT = TRUE

■ DBPROP_OTHERUPDATEDELETE = TRUE

■ DBPROP_CANSCROLLBACKWARDS = TRUE

■ DBPROP_IRowsetLocate = TRUE

■ DBPROP_OTHERINSERT = FALSE

Note: The data provider must expose bookmarks. This enables

tables to be updated. Without bookmarks being exposed, the tables

are read-only.

Note: Required if the userid has been supplied in the security file

Note: Required if the userid and password have been supplied in

the security file
3-18 Oracle Heterogeneous Services

Developing Applications with Heterogeneous Se
4

Developing Applications with

Heterogeneous Services

This chapter provides information for application developers who want to use

Heterogeneous Services.

This chapter contains these topics:

■ Developing Applications with Heterogeneous Services: Overview

■ Developing Applications Using Pass-Through SQL

■ Optimizing Data Transfers Using Bulk Fetch

■ Researching the Locking Behavior of Non-Oracle Systems

■ Limitations to Heterogeneous Services
rvices 4-1

Developing Applications with Heterogeneous Services: Overview
Developing Applications with Heterogeneous Services: Overview
When you develop applications with Heterogeneous Services, Heterogeneous

Services makes the non-Oracle system appear as if it were another Oracle database

server.

However, you may sometimes need to access a non-Oracle system using the

non-Oracle system’s SQL dialect. To make access possible, Heterogeneous Services

provides a pass-through SQL feature that allows you to directly execute a native

SQL statement at the non-Oracle system.

Additionally, Heterogeneous Services supports bulk fetches to optimize the data

transfers for large data sets between a non-Oracle system, agent and Oracle

database server. This chapter also discusses how to tune such data transfers.

Developing Applications Using Pass-Through SQL
The pass-through SQL feature allows you to send a statement directly to a

non-Oracle system without being interpreted by the Oracle database server. This

feature can be useful if the non-Oracle system allows for operations in statements

for which there is no equivalent in Oracle.

This section contains the following topics:

■ Using the DBMS_HS_PASSTHROUGH package

■ Considering the Implications of Using Pass-Through SQL

■ Executing Pass-Through SQL Statements

Using the DBMS_HS_PASSTHROUGH package
You can execute these statements directly at the non-Oracle system using the

PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with the

pass-through package is executed in the same transaction as standard SQL

statements.

The DBMS_HS_PASSTHROUGH package conceptually resides at the non-Oracle

system. You must invoke procedures and functions in the package by using the

appropriate database link to the non-Oracle system.

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information about this package.
4-2 Oracle Heterogeneous Services

Developing Applications Using Pass-Through SQL
Considering the Implications of Using Pass-Through SQL
When you execute a pass-through SQL statement that implicitly commits or rolls

back a transaction in the non-Oracle system, the transaction is affected. For

example, some systems implicitly commit the transaction containing a DDL

statement. Because the Oracle database server is bypassed, the Oracle database

server is unaware of the commit in the non-Oracle system. Consequently, the data at

the non-Oracle system can be committed while the transaction in the Oracle

database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies

between the Oracle database server and the non-Oracle server can occur. This

situation results in global data inconsistency.

Note that if the application executes a regular COMMIT statement, the Oracle

database server can coordinate the distributed transaction with the non-Oracle

system. The statement executed with the pass-through facility is part of the

distributed transaction.

Executing Pass-Through SQL Statements
Table 4–1 shows the functions and procedures provided by the DBMS_HS_

PASSTHROUGH package that allow you to execute pass-through SQL statements.

Table 4–1 DBMS_HS_PASSTHROUGH Procedures and Functions

Procedure/Function Description

OPEN_CURSOR Opens a cursor

CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

BIND_VARIABLE Binds IN variables

BIND_OUT_VARIABLE Binds OUT variables

BIND_INOUT_VARIABLE Binds IN OUT variables

EXECUTE_NON_QUERY Executes non-query

EXECUTE_IMMEDIATE Executes non-query without bind variables

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters
Developing Applications with Heterogeneous Services 4-3

Developing Applications Using Pass-Through SQL
This section contains these topics:

■ Executing Non-Queries

■ Executing Queries

Executing Non-Queries
Non-queries include the following statements and types of statements:

■ INSERT

■ UPDATE

■ DELETE

■ DDL

To execute non-query statements, use the EXECUTE_IMMEDIATE function. For

example, to execute a DDL statement at a non-Oracle system that you can access

using the database link SalesDB, execute:

DECLARE
num_rows INTEGER;

BEGIN
num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@SalesDB

 ('CREATE TABLE DEPT (n SMALLINT, loc CHARACTER(10))');
END;

The variable num_rows is assigned the number of rows affected by the execution.

For DDL statements, zero is returned. Note that you cannot execute a query with

EXECUTE_IMMEDIATE and you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL

statement multiple times with different values, reducing the number of times a SQL

statement needs to be parsed. For example, if you need to insert four rows in a

particular table, then you can parse the SQL statement once and bind and execute

the SQL statement for each row. One SQL statement can have zero or more bind

variables.

To execute pass-through SQL statements with bind variables, you must:

1. Open a cursor.

2. Parse the SQL statement at the non-Oracle system.

3. Bind the variables.
4-4 Oracle Heterogeneous Services

Developing Applications Using Pass-Through SQL
4. Execute the SQL statement at the non-Oracle system.

5. Close the cursor.

Figure 4–1 shows the flow diagram for executing non-queries with bind variables.

Figure 4–1 Flow Diagram for Non-Query Pass-Through SQL

Using IN Bind Variables The syntax of the non-Oracle system determines how a

statement specifies a bind variable. For example, in Oracle you define bind variables

with a preceding colon, as in:

Execute
non query

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

(optional)
Developing Applications with Heterogeneous Services 4-5

Developing Applications Using Pass-Through SQL
UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME=:ename

In this statement :ename is the bind variable. In other non-Oracle systems you

might need to specify bind variables with a question mark, as in:

UPDATE EMP
SET SAL=SAL*1.1
WHERE ENAME= ?

In the bind variable step, you must positionally associate host program variables (in

this case, PL/SQL) with each of these bind variables.

For example, to execute the previous statement, you can use the following PL/SQL

program:

DECLARE
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'UPDATE EMP SET SAL=SAL*1.1 WHERE ENAME=?');
 DBMS_HS_PASSTHROUGH.BIND_VARIABLE(c,1,’JONES’);
 nr:=DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY@SalesDB(c);
 DBMS_OUTPUT.PUT_LINE(nr||’ rows updated’);
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesDB(c);
END;

Using OUT Bind Variables In some cases, the non-Oracle system can also support OUT

bind variables. With OUT bind variables, the value of the bind variable is not

known until after the execution of the SQL statement.

Although OUT bind variables are populated after the SQL statement is executed,

the non-Oracle system must know that the particular bind variable is an OUT bind

variable before the SQL statement is executed. You must use the BIND_OUT_

VARIABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OUT bind

variable using the GET_VALUE procedure.

Using IN OUT Bind Variables A bind variable can be both an IN and an OUT variable.

This means that the value of the bind variable must be known before the SQL

statement is executed but can be changed after the SQL statement is executed.
4-6 Oracle Heterogeneous Services

Developing Applications Using Pass-Through SQL
For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure

to provide a value before the SQL statement is executed. After the SQL statement is

executed, you must use the GET_VALUE procedure to retrieve the new value of the

bind variable.

Executing Queries
The difference between queries and non-queries is that queries retrieve a result set

from a SELECT statement. The result set is retrieved by iterating over a cursor.

Figure 4–2 illustrates the steps in a pass-through SQL query. After the system parses

the SELECT statement, each row of the result set can be fetched with the FETCH_

ROW procedure. After the row is fetched, use the GET_VALUE procedure to

retrieve the select list items into program variables. After all rows are fetched you

can close the cursor.
Developing Applications with Heterogeneous Services 4-7

Developing Applications Using Pass-Through SQL
Figure 4–2 Pass-through SQL for Queries

You do not have to fetch all the rows. You can close the cursor at any time after

opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time,

Heterogeneous Services optimizes the round trips between the

Oracle database server and the non-Oracle system by buffering

multiple rows and fetching from the non-Oracle data system in one

round trip.

Fetch_row

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

For each
row

For each
column
4-8 Oracle Heterogeneous Services

Optimizing Data Transfers Using Bulk Fetch
The following example executes a query:

DECLARE
 val VARCHAR2(100);
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@SalesDB;
 DBMS_HS_PASSTHROUGH.PARSE@SalesDB(c,
 'select ename
 from emp
 where deptno=10’);
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@SalesDB(c);
 EXIT WHEN nr = 0;
 DBMS_HS_PASSTHROUGH.GET_VALUE@SalesDB(c, 1, val);
 DBMS_OUTPUT.PUT_LINE(val);
 END LOOP;
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@SalesDB(c);
END;

After parsing the SELECT statement, the rows are fetched and printed in a loop

until the function FETCH_ROW returns the value 0.

Optimizing Data Transfers Using Bulk Fetch
When an application fetches data from a non-Oracle system using Heterogeneous

Services, data is transferred:

■ From the non-Oracle system to the agent process

■ From the agent process to the Oracle database server

■ From the Oracle database server to the application

Oracle allows you to optimize all three data transfers, as illustrated in Figure 4–3.
Developing Applications with Heterogeneous Services 4-9

Optimizing Data Transfers Using Bulk Fetch
Figure 4–3 Optimizing data transfers

This section contains the following topics:

■ Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

■ Controlling the Array Fetch Between Oracle Database Server and Agent

■ Controlling the Array Fetch Between Agent and Non-Oracle Server

■ Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
You can optimize data transfers between your application and the Oracle database

server by using array fetches. See your application development tool

documentation for information about array fetching and how to specify the amount

of data to be transferred over the network.

Controlling the Array Fetch Between Oracle Database Server and Agent
When Oracle retrieves data from a non-Oracle system, the Heterogeneous Services

initialization parameter HS_RPC_FETCH_SIZE defines the number of bytes sent

per fetch between the agent and the Oracle database server. The agent fetches data

from the non-Oracle system until one of the following occurs:

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

Array fetch
with OCI/Pro*
or other tool

Agent

Non-Oracle System

Client

Oracle8i Server
4-10 Oracle Heterogeneous Services

Optimizing Data Transfers Using Bulk Fetch
■ It has accumulated the specified number of bytes to send back to the Oracle

database server

■ The last row of the result set is fetched from the non-Oracle system

Controlling the Array Fetch Between Agent and Non-Oracle Server
The initialization parameter HS_FDS_FETCH_ROWS determines the number of

rows to be retrieved from a non-Oracle system. Note that the array fetch must be

supported by the agent. See your agent-specific documentation to ensure that your

agent supports array fetching.

Controlling the Reblocking of Array Fetches
By default, an agent fetches data from the non-Oracle system until it has enough

data retrieved to send back to the server. That is, it continues processing until the

number of bytes fetched from the non-Oracle system is equal to or higher than the

value of HS_RPC_FETCH_SIZE. In other words, the agent reblocks the data between

the agent and the Oracle database server in sizes defined by the value of HS_RPC_

FETCH_SIZE.

When the non-Oracle system supports array fetches, you can immediately send the

data fetched from the non-Oracle system by the array fetch to the Oracle database

server without waiting until the exact value of HS_RPC_FETCH_SIZE is reached.

That is, you can stream the data from the non-Oracle system to the Oracle database

server and disable reblocking by setting the value of initialization parameter HS_

RPC_FETCH_REBLOCKING to OFF.

For example, assume that you set HS_RPC_FETCH_SIZE to 64K and HS_FDS_

FETCH_ROWS to 100 rows. Assume that each row is approximately 600 bytes in

size, so that the 100 rows are approximately 60K. When HS_RPC_FETCH_

REBLOCKING is set to ON, the agent starts fetching 100 rows from the non-Oracle

system.

Because there is only 60K bytes of data in the agent, the agent does not send the

data back to the Oracle database server. Instead, the agent fetches the next 100 rows

from the non-Oracle system. Because there is now 120K of data in the agent, the first

64K can be sent back to the Oracle database server.

Now there is 56K of data left in the agent. The agent fetches another 100 rows from

the non-Oracle system before sending the next 64K of data to the Oracle database

server. By setting the initialization parameter HS_RPC_FETCH_REBLOCKING to

OFF, the first 100 rows are immediately sent back to the Oracle database server.
Developing Applications with Heterogeneous Services 4-11

Researching the Locking Behavior of Non-Oracle Systems
Researching the Locking Behavior of Non-Oracle Systems
When designing applications with Heterogeneous Services, be aware that the

Oracle database server and non-Oracle data sources can have different locking

behaviors. For example, some non-Oracle data sources differ from the Oracle

database server in how they set read and write locks on records in affected tables.

Oracle cannot change any aspect of the locking behavior of a non-Oracle data

source. In order to avoid adverse effects on other users of the non-Oracle data

source, all applications that access a non-Oracle data source must always adhere to

the programming standards of that data source.

Limitations to Heterogeneous Services
Limitations to Heterogeneous Services include the following:

■ Long columns are limited to 4 MB in size

■ There is no support for the SQL*Plus DESCRIBE command

■ There is no support for LOBs and object types

■ Shared database links cannot be used with Heterogeneous Services

■ There is no support for PL/SQL records

■ There is no support for ref cursors

■ Each specific gateway might have its own limitations

See Also: Your non-Oracle system’s documentation for

information about locking behavior.
4-12 Oracle Heterogeneous Services

Heterogeneous Services Initialization Parame
A

Heterogeneous Services Initialization

Parameters

Heterogeneous Services parameters are distinct from Oracle database server

initialization parameters. Set Heterogeneous Services parameters by editing the

Oracle Transparent Gateway initialization file, or by using the DBMS_HS package

to set them in the data dictionary. String values for Heterogeneous Services

parameters must be lowercase.

This appendix contains the following topics:

■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_FDS_CONNECT_INFO

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_FDS_TRACE_FILE_NAME

■ HS_LANGUAGE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE
ters A-1

■ HS_RPC_FETCH_REBLOCKING

■ HS_RPC_FETCH_SIZE
A-2 Oracle Heterogeneous Services

HS_DB_DOMAIN
HS_COMMIT_POINT_STRENGTH

Specifies a value that determines the commit point site in a heterogeneous

distributed transaction. HS_COMMIT_POINT_STRENGTH is similar to COMMIT_

POINT_STRENGTH, described in the Oracle8i Reference.

Set HS_COMMIT_POINT_STRENGTH to a value relative to the importance of the

site that is the commit point site in a distributed transaction. The Oracle database

server or non-Oracle system with the highest commit point strength becomes the

commit point site. To ensure that a non-Oracle system never becomes the commit

point site, set the value of HS_COMMIT_POINT_STRENGTH to zero.

HS_COMMIT_POINT_STRENGTH is important only if the non-Oracle system can

participate in the two-phase protocol as a regular two-phase commit partner and as

the commit point site. This is only the case if the transaction model is two-phase

commit confirm (2PCC).

HS_DB_DOMAIN

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOMAIN

is similar to DB_DOMAIN, described in the Oracle8i Administrator’s Guide and the

Oracle8i Reference. HS_DB_DOMAIN is required if you use the Oracle Names server.

HS_DB_NAME and HS_DB_DOMAIN define the global name of the non-Oracle

system.

Default value: 0

Range of values: 0 to 255

See Also: Chapter 2, "Managing Heterogeneous Services" for

more information about heterogeneous distributed transactions.

Default value: WORLD

Range of values: 1 to 119 characters

Note: HS_DB_NAME and HS_DB_DOMAIN must combine to

form a unique address.
Heterogeneous Services Initialization Parameters A-3

HS_DB_INTERNAL_NAME
HS_DB_INTERNAL_NAME

Specifies a unique hexadecimal number identifying the instance to which the

Heterogeneous Services agent is connected. This parameter’s value is used as part

of a transaction ID when global name services are activated. Specifying a

non-unique number can cause problems when two-phase commit recovery actions

are necessary for a transaction.

HS_DB_NAME

Specifies a unique alphanumeric name for the data store given to the non-Oracle

system. This name identifies the non-Oracle system within the cooperative server

environment. HS_DB_NAME and HS_DB_DOMAIN define the global name of the

non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Specifies the maximum number of entries in the describe cache used by

Heterogeneous Services. This limit is known as the describe cache high water mark.

The cache contains descriptions of the mapped tables that Heterogeneous Services

reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, then increase the high water mark to

improve performance. Note that increasing the high water mark improves

performance at the cost of memory usage.

Default value: 01010101

Range of values: 1 to 16 hexadecimal characters

Default value: HO

Range of values: 1 to 8 lowercase characters

Default value: 100

Range of values: 1 to 4000
A-4 Oracle Heterogeneous Services

HS_FDS_CONNECT_INFO
HS_FDS_CONNECT_INFO

Specifies the information needed to bind to the data provider, that is, the non-Oracle

system. For generic connectivity, you can bind to an ODBC-based data source or to

an OLE DB-based data source. The information that you provide depends on the

platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using generic connectivity.

ODBC-based Data Source on Windows: You can use either a File DSN or a System DSN

as follows:

■ When connecting using a File DSN the parameter format is:

HS_FDS_CONNECT_INFO=FILEDSN=file_dsn

■ When connecting using a System DSN the parameter format is:

HS_FDS_CONNECT_INFO=system_dsn

If you are connecting to the data source through the driver for that data source, then

precede the DSN by the name of the driver, followed by a semi-colon (;).

ODBC-based Data Source on UNIX: Use a DSN with the following format:

HS_FDS_CONNECT_INFO=dsn

OLE DB-based Data Source (Windows NT Only): Use a universal data link (UDL) with the

following formats:

■ HS_FDS_CONNECT_INFO="UDLFILE=data_link"

■ HS_FDS_CONNECT_INFO="data_link_provider;db[,CATALOG=catalog]"

which allows you to specify the connection details directly, and where:

– data_link_provider is the case-sensitive name of the provider as it appears in

the registry

– db is the name of the database

Default value: none

Range of values: not applicable
Heterogeneous Services Initialization Parameters A-5

HS_FDS_SHAREABLE_NAME
– catalog is the name of the catalog

HS_FDS_SHAREABLE_NAME

Specifies the full path name to the ODBC library. This parameter is required when

you are using generic connectivity to access data from an ODBC provider on a

UNIX machine.

HS_FDS_TRACE_LEVEL

Specifies whether error tracing is enabled or disabled for generic connectivity.

Enable the tracing to see which error messages occur when you encounter

problems. The results are written to a generic connectivity log file, in the /log
directory under the $ORACLE_HOME directory.

HS_FDS_TRACE_FILE_NAME

Specifies the name of the trace file to which generic connectivity error messages are

written, if TRACE is enabled. The trace file is located in the LOG directory under the

$ORACLE_HOME directory.

Note: Whenever the parameter value includes an equal sign (=), it

must be enclosed in quotation marks.

Default value: none

Range of values: not applicable

Default value: OFF

Range of values: ON or OFF

Default value: none

Range of values: not applicable
A-6 Oracle Heterogeneous Services

HS_LANGUAGE
HS_LANGUAGE

Provides Heterogeneous Services with character set, language, and territory

information of the non-Oracle data source. The value must use the following

format:

language [_ territory . character_set]

Character sets
Ideally, the character sets of the Oracle database server and the non-Oracle data

source are the same. If they are not the same, Heterogeneous Services attempts to

translate the character set of the non-Oracle data source to the Oracle database

character set, and back again. The translation can degrade performance. In some

cases, Heterogeneous Services cannot translate a character from one character set to

another.

Language
The language component of the HS_LANGUAGE initialization parameter

determines:

■ Day and month names of dates

■ AD, BC, PM, and AM symbols for date and time

■ Default sorting mechanism

Default value: System-specific

Range of values: Any valid language name (up to 255 characters)

Note: The national language support initialization parameters

affect error messages, the data for the SQL Service, and parameters

in distributed external procedures.

Note: The specified character set must be a superset of the

operating system character set on the platform where the agent is

installed.
Heterogeneous Services Initialization Parameters A-7

HS_NLS_DATE_FORMAT
Note that HS_LANGUAGE does not determine the language for error messages for

the generic Heterogeneous Services messages (ORA-25000 through ORA-28000).

These are controlled by the session settings in the Oracle database server.

Territory
The territory clause specifies the conventions for day and week numbering, default

date format, decimal character and group separator, and ISO and local currency

symbols. Note that:

■ You can override the date format using the initialization parameter HS_NLS_

DATE_FORMAT.

■ The level of National Language Support between the Oracle database server

and the non-Oracle data source depends on how the driver is implemented. See

the installation documentation for your platform for more information about

the level of National Language Support.

HS_NLS_DATE_FORMAT

Defines the date format for dates used by the target system. This parameter has the

same function as the NLS_DATE_FORMAT parameter for an Oracle database

server. The value of can be any valid date mask listed in the Oracle8i Reference, but

must match the date format of the target system. For example, if the target system

stores the date February 14, 1995 as 1995/02/14, set the parameter to

yyyy/mm/dd. Note that characters must be lowercase.

HS_NLS_DATE_LANGUAGE

Note: Use the HS_NLS_DATE_LANGUAGE initialization

parameter to set the day and month names, and the AD, BC, PM,

and AM symbols for dates and time independently from the

language.

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid date format mask (up to 255 characters)

Default value: Value determined by HS_LANGUAGE parameter
A-8 Oracle Heterogeneous Services

HS_OPEN_CURSORS
Specifies the language used in character date values coming from the non-Oracle

system. Date formats can be language independent. For example, if the format is

dd/mm/yyyy, all three components of the character date are numbers. In the

format dd-mon-yyyy, however, the month component is the name abbreviated to

three characters. The abbreviation is very much language dependent. For example,

the abbreviation for the month April is "apr", which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the

non-Oracle system are in this format. Also, Heterogeneous Services sends character

date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Informs Heterogeneous Services of the value of the national character set of the

non-Oracle data source. This value is the non-Oracle equivalent to the NATIONAL

CHARACTER SET parameter setting in the Oracle CREATE DATABASE statement.

The HS_NLS_NCHAR value should be the character set ID of a character set

supported by the Oracle NLSRTL library.

HS_OPEN_CURSORS

Defines the maximum number of cursors that can be open on one connection to a

non-Oracle system instance.

Range of values: Any valid NLS_LANGUAGE value (up to 255 characters)

Default value: Value determined by HS_LANGUAGE parameter

Range of values: Any valid national character set (up to 255 characters)

See Also: HS_LANGUAGE on page A-7.

Default value: 50

Range of values: 1 - value of Oracle’s OPEN_CURSORS initialization parameter
Heterogeneous Services Initialization Parameters A-9

HS_ROWID_CACHE_SIZE
The value never exceeds the number of open cursors in the Oracle database server.

Therefore, setting the same value as the OPEN_CURSORS initialization parameter

in the Oracle database server is recommended.

HS_ROWID_CACHE_SIZE

Specifies the size of the Heterogeneous Services cache containing the non-Oracle

system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs

needed to support the WHERE CURRENT OF clause in a SQL statement or a

SELECT FOR UPDATE statement.

When the cache is full, the first slot in the cache is reused, then the second, and so

on. Only the last HS_ROWID_CACHE_SIZE non-Oracle system ROWIDs are

cached.

HS_RPC_FETCH_REBLOCKING

Controls whether Heterogeneous Services attempts to optimize performance of data

transfer between the Oracle database server and the HS agent connected to the

non-Oracle data store.

The following values are possible:

■ OFF disables reblocking of fetched data so that data is immediately sent from

agent to server

■ ON enables reblocking, which means that data fetched from the non-Oracle

system is buffered in the agent and is not sent to the Oracle database server

until the amount of fetched data is equal or higher than HS_RPC_FETCH_SIZE.

However, any buffered data is returned immediately when a fetch indicates that

no more data exists or when the non-Oracle system reports an error.

Default value: 3

Range of values: 1 to 32767

Default value: ON

Range of values: OFF, ON
A-10 Oracle Heterogeneous Services

HS_RPC_FETCH_SIZE
HS_RPC_FETCH_SIZE

Tunes internal data buffering to optimize the data transfer rate between the server

and the agent process.

Increasing the value can reduce the number of network round trips needed to

transfer a given amount of data, but also tends to increase data bandwidth and to

reduce response time or latency as measured between issuing a query and

completion of all fetches for the query. Nevertheless, increasing the fetch size can

increase latency for the initial fetch results of a query, because the first fetch results

are not transmitted until additional data is available.

Default value: 4000

Range of values: Decimal integer (byte count)

See Also: Chapter 4, "Developing Applications with

Heterogeneous Services" for more information.
Heterogeneous Services Initialization Parameters A-11

HS_RPC_FETCH_SIZE
A-12 Oracle Heterogeneous Services

Heterogeneous Services Data Dictionary V
B

Heterogeneous Services Data Dictionary

Views

Heterogeneous Services mapping supports the following list of data dictionary

views:

■ ALL_CATALOG

■ ALL_COL_COMMENTS

■ ALL_COL_PRIVS

■ ALL_COL_PRIVS_MADE

■ ALL_COL_PRIVS_RECD

■ ALL_CONSTRAINTS

■ ALL_CONS_COLUMNS

■ ALL_DB_LINKS

■ ALL_DEF_AUDIT_OPTS

■ ALL_DEPENDENCIES

■ ALL_ERRORS

■ ALL_INDEXES

■ ALL_IND_COLUMNS

■ ALL_OBJECTS

■ ALL_SEQUENCES

■ ALL_SNAPSHOTS

■ ALL_SOURCE
iews B-1

■ ALL_SYNONYMS

■ ALL_TABLES

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TAB_PRIVS

■ ALL_TAB_PRIVS_MADE

■ ALL_TAB_PRIVS_RECD

■ ALL_TRIGGERS

■ ALL_USERS

■ ALL_VIEWS

■ AUDIT_ACTIONS

■ COLUMN_PRIVILEGES

■ DBA_CATALOG

■ DBA_COL_COMMENTS

■ DBA_COL_PRIVS

■ DBA_OBJECTS

■ DBA_ROLES

■ DBA_ROLE_PRIVS

■ DBA_SYS_PRIVS

■ DBA_TABLES

■ DBA_TAB_COLUMNS

■ DBA_TAB_COMMENTS

■ DBA_TAB_PRIVS

■ DBA_USERS

■ DICTIONARY

■ DICT_COLUMNS

■ DUAL

■ INDEX_STATS
B-2 Oracle Heterogeneous Services

■ PRODUCT_USER_PROFILE

■ RESOURCE_COST

■ ROLE_ROLE_PRIVS

■ ROLE_SYS_PRIVS

■ ROLE_TAB_PRIVS

■ SESSION_PRIVS

■ SESSION_ROLES

■ TABLE_PRIVILEGES

■ USER_AUDIT_OBJECT

■ USER_AUDIT_SESSION

■ USER_AUDIT_STATEMENT

■ USER_AUDIT_TRAIL

■ USER_CATALOG

■ USER_CLUSTERS

■ USER_CLU_COLUMNS

■ USER_COL_COMMENTS

■ USER_COL_PRIVS

■ USER_COL_PRIVS_MADE

■ USER_COL_PRIVS_RECD

■ USER_CONSTRAINTS

■ USER_CONS_COLUMNS

■ USER_DB_LINKS

■ USER_DEPENDENCIES

■ USER_ERRORS

■ USER_EXTENTS

■ USER_FREE_SPACE

■ USER_INDEXES

■ USER_IND_COLUMNS
Heterogeneous Services Data Dictionary Views B-3

■ USER_OBJECTS

■ USER_OBJ_AUDIT_OPTS

■ USER_RESOURCE_LIMITS

■ USER_ROLE_PRIVS

■ USER_SEGMENTS

■ USER_SEQUENCES

■ USER_SNAPSHOT_LOGS

■ USER_SOURCE

■ USER_SYNONYMS

■ USER_SYS_PRIVS

■ USER_TABLES

■ USER_TABLESPACES

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TAB_PRIVS

■ USER_TAB_PRIVS_MADE

■ USER_TAB_PRIVS_RECD

■ USER_TRIGGERS

■ USER_TS_QUOTAS

■ USER_USERS

■ USER_VIEWS
B-4 Oracle Heterogeneous Services

DBMS_HS_PASSTHROUGH for Pass-Through
C

DBMS_HS_PASSTHROUGH for

Pass-Through SQL

The package DBMS_HS_PASSTHROUGH contains the procedures and functions

for pass-through SQL of Heterogeneous Services.

This appendix contains these topics:

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_RAW procedure

■ CLOSE_CURSOR function

■ EXECUTE_IMMEDIATE function

■ EXECUTE_NON_QUERY function

■ FETCH_ROW function

■ GET_VALUE procedure

■ GET_VALUE_RAW procedure

■ OPEN_CURSOR function

■ PARSE procedure

See Also: Chapter 4, "Developing Applications with

Heterogeneous Services" for more information about this package.
 SQL C-1

Summary of Subprograms
Summary of Subprograms

Table C–1 DBMS_HS Package Subprograms

Subprogram Description

BIND_VARIABLE
procedure

Binds an IN variable positionally with a PL/SQL program
variable

BIND_VARIABLE_RAW
procedure

Binds IN variables of type RAW

BIND_OUT_VARIABLE
procedure

Binds an OUT variable with a PL/SQL program variable

BIND_OUT_VARIABLE_
RAW procedure

Binds an OUT variable of datatype RAW with a PL/SQL
program variable

BIND_INOUT_VARIABLE
procedure

Binds IN OUT bind variables

BIND_INOUT_VARIABLE_
RAW procedure

Binds IN OUT bind variables of datatype RAW

CLOSE_CURSOR function Closes the cursor and releases associated memory after the
SQL statement has been executed at the non-Oracle system

EXECUTE_IMMEDIATE
function

Executes a SQL statement immediately

EXECUTE_NON_QUERY
function

Executes any SQL statement other than a SELECT statement

FETCH_ROW function Fetches rows from a result set

GET_VALUE procedure Retrieves the select list items of SELECT statements after a
row has been fetched, and retrieves the OUT bind values
after the SQL statement has been executed

GET_VALUE_RAW
procedure

Retrieves the select list items of SELECT statements after a
row has been fetched, and retrieves the OUT bind values
after the SQL statement has been executed. This procedure
operates on the RAW datatype

OPEN_CURSOR function Opens a cursor for executing a pass-through SQL statement
at the non-Oracle system

PARSE procedure Parses a SQL statement at non-Oracle system
C-2 Oracle Heterogeneous Services

Summary of Subprograms
BIND_VARIABLE procedure
This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax.

DBMS_HS_PASSTHROUGH.BIND_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN dty
 [,name IN VARCHAR2]);

Where dty is one of

■ DATE

■ NUMBER

■ VARCHAR2

Parameters

See Also: Chapter 4, "Developing Applications with

Heterogeneous Services".

See Also: BIND_VARIABLE_RAW procedure

Table C–2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement. The
cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE.

pos Position of the bind variable in the SQL statement. Starts from
1

val Value that must be passed to the bind variable

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-3

Summary of Subprograms
Exceptions

Pragmas
Purity levels defined: WNDS, RNDS

BIND_VARIABLE_RAW procedure

This procedure binds IN variables of type RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN RAW
 [,name IN VARCHAR2]);

Table C–3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 The procedure is not executed in right order. Did you first open
the cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure
C-4 Oracle Heterogeneous Services

Summary of Subprograms
Parameters

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

Table C–4 BIND_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Value that must be passed to the bind variable

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.

Table C–5 BIND_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range

ORA-28555 A NULL value was passed for a NOT NULL parameter
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-5

Summary of Subprograms
BIND_OUT_VARIABLE procedure
This procedure binds an OUT variable with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT dty ,
 [,name IN VARCHAR2]);

Where dty is one of

■ DATE

■ NUMBER

■ VARCHAR2

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_VARIABLE procedure

■ BIND_OUT_VARIABLE procedure

See Also: See Chapter 4, "Developing Applications with

Heterogeneous Services" for more information about binding OUT

parameters.

See Also: BIND_OUT_VARIABLE_RAW procedure for more

information about OUT variables of datatype RAW.
C-6 Oracle Heterogeneous Services

Summary of Subprograms
Parameters

Exceptions

Table C–6 BIND_OUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val Variable in which the OUT bind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUE to
retrieve the value of the OUT parameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE.

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.

Table C–7 BIND_OUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-7

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

BIND_OUT_VARIABLE_RAW procedure
This procedure binds an OUT variable of datatype RAW with a PL/SQL program

variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT RAW,
 [,name IN VARCHAR2]);

Parameters

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure

■ GET_VALUE procedure

See Also: Chapter 4, "Developing Applications with

Heterogeneous Services" for more information on binding OUT

parameters.

Table C–8 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
C-8 Oracle Heterogeneous Services

Summary of Subprograms
Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

val Variable in which the OUT bind variable will store its value.
The package will remember only the size of the variable. After
the SQL statement is executed, you can use GET_VALUE to
retrieve the value of the OUT parameter. The size of the
retrieved value should not exceed the size of the parameter
that was passed using BIND_OUT_VARIABLE_RAW.

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.

Table C–9 BIND_OUT_VARIABLE_RAW Parameter Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table C–8 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-9

Summary of Subprograms
BIND_INOUT_VARIABLE procedure
This procedure binds IN OUT bind variables.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN OUT dty ,
 [,name IN VARCHAR2]);

Where dty is one of

■ DATE

■ NUMBER

■ VARCHAR2

For binding IN OUT variables of datatype RAW, see BIND_INOUT_VARIABLE_

RAW.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure

■ GET_VALUE procedure

See Also: Chapter 4, "Developing Applications with

Heterogeneous Services" for more information on binding IN OUT

parameters.
C-10 Oracle Heterogeneous Services

Summary of Subprograms
Parameters

Exceptions

Table C–10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the OUT value

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.

Table C–11 BIND_INOUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-11

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

BIND_INOUT_VARIABLE_RAW procedure
This procedure binds IN OUT bind variables of datatype RAW. See Syntax

DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val IN OUT RAW,
 [,name IN VARCHAR2]);

Parameters

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE_RAW procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure

■ GET_VALUE procedure

See Also : Chapter 4, "Developing Applications with

Heterogeneous Services" for more information on binding IN OUT

parameters.

Table C–12 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement. Starts from
1.
C-12 Oracle Heterogeneous Services

Summary of Subprograms
Exceptions

Pragmas
Pragmas defined: WNDS, RNDS

val This value will be used for two purposes:

■ To provide the IN value before the SQL statement is
executed

■ To determine the size of the out value

name Optional parameter to name the bind variable. For example,
consider the following statement:

SELECT * FROM emp WHERE ename=:ename;

The position of the bind variable :ename is 1 and the name is
:ename. You can use this parameter if the non-Oracle system
supports named binds instead of positional binds. Note that
passing the position is still required.

Table C–13 BIND_INOUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table C–12 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-13

Summary of Subprograms
CLOSE_CURSOR function
This function closes the cursor and releases associated memory after the SQL

statement has been executed at the non-Oracle system. If the cursor was not open,

the operation is a no operation.

Syntax
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (
 c IN BINARY_INTEGER NOT NULL);

Parameter

Exceptions

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_VARIABLE procedure

■ BIND_VARIABLE_RAW procedure

■ GET_VALUE procedure

Table C–14 CLOSE_CURSOR Procedure Parameters

Parameter Description

c Cursor to be released.

Table C–15 CLOSE_CURSOR Procedure Exceptions

Exception Description

ORA-28555 A NULL value was passed for a NOT NULL parameter.
C-14 Oracle Heterogeneous Services

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

EXECUTE_IMMEDIATE function
This function executes a SQL statement immediately. Any valid SQL command

except SELECT can be executed immediately, but the statement must not contain

any bind variables. The statement is passed in as a VARCHAR2 in the argument.

Internally, the SQL statement is executed using the PASSTHROUGH SQL protocol

sequence of OPEN_CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Syntax
EXECUTE_IMMEDIATE (s IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER;

Parameter Description

Returns
The number of rows affected by the execution of the SQL statement.

Exceptions

See Also: OPEN_CURSOR function

Table C–16 EXECUTE_IMMEDIATE Procedure Parameters

Parameter Description

s VARCHAR2 variable with the statement to be executed
immediately.

Table C–17 EXECUTE_IMMEDIATE Procedure Exceptions

Exception Description

ORA-28544 Max open cursors.

ORA-28551 SQL statement is invalid.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-15

Summary of Subprograms
Pragmas
Purity level defined: NONE

EXECUTE_NON_QUERY function
This function executes any SQL statement other than a SELECT statement. A cursor

has to be open and the SQL statement has to be parsed before the SQL statement

can be executed.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY (
 c IN BINARY_INTEGER NOT NULL)
 RETURN BINARY_INTEGER;

Parameter

Returns
The number of rows affected by the SQL statement in the non-Oracle system.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ EXECUTE_NON_QUERY function

■ CLOSE_CURSOR function

Table C–18 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.
C-16 Oracle Heterogeneous Services

Summary of Subprograms
Exceptions
s

Pragmas
Purity level defined: NONE

FETCH_ROW function
This function fetches rows from a result set. The result set is defined with a SQL

SELECT statement.

Before the rows can be fetched, a cursor has to be opened, and the SQL statement

has to be parsed. When there are no more rows to be fetched, the function returns 0.

After a 0 return, the NO_DATA_FOUND exception occurs when:

■ A subsequent FETCH_ROW is attempted

■ A GET_VALUE is attempted

Syntax
DBMS_HS_PASSTHROUGH.FETCH_ROW (
 c IN BINARY_INTEGER NOT NULL
 [,first IN BOOLEAN])
 RETURN BINARY_INTEGER;

Table C–19 EXECUTE_NON_QUERY Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not executed in right order. Did
you first open the cursor and parse the SQL statement?

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-17

Summary of Subprograms
Parameters and Descriptions

Returns
The returns the number of rows fetched. The function will return 0 if the last row

was already fetched.

Exceptions

Pragmas
Purity level defined: WNDS

Table C–20 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

first Optional parameter to re-execute a SELECT statement. Possible
values:

■ TRUE: re-execute SELECT statement.

■ FALSE: fetch the next row, or if executed for the first time
execute and fetch rows (default).

Table C–21 FETCH_ROW Function Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor and parse the SQL statement?

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure
C-18 Oracle Heterogeneous Services

Summary of Subprograms
GET_VALUE procedure
This procedure has two purposes:

■ To retrieve the select list items of SELECT statements after a row has been

fetched.

■ To retrieve the OUT bind values after the SQL statement has been executed.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT dty);

Where dty is one of

■ DATE

■ NUMBER

■ VARCHAR2

For retrieving values of datatype RAW, see GET_VALUE_RAW.

Parameters

Table C–22 GET_VALUE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUT bind variable or select list item will
store its value.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-19

Summary of Subprograms
Exceptions

Pragmas
Purity level defined: WNDS

GET_VALUE_RAW procedure
This procedure, which operates on RAW datatypes, has two purposes:

■ To retrieve the select list items of SELECT statements after a row has been

fetched.

Table C–23 GET_RAW Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing the
GET_VALUE after the last row was fetched (i.e. FETCH_ROW
returned 0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE_RAW procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_RAW procedure
C-20 Oracle Heterogeneous Services

Summary of Subprograms
■ To retrieve the OUT bind values after the SQL statement has been executed.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 pos IN BINARY_INTEGER NOT NULL,
 val OUT RAW);

Parameters

Exceptions

Pragmas
Purity level defined: WNDS

Table C–24 GET_VALUE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement. Starts from 1.

val Variable in which the OUT bind variable or select list item will
store its value.

Table C–25 GET_VALUE_RAW Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when executing the
GET_VALUE after the last row was fetched (i.e. FETCH_ROW
returned 0).

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not executed in right order. Did you first open the
cursor, parse and execute (or fetch) the SQL statement?

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-21

Summary of Subprograms
OPEN_CURSOR function
This function opens a cursor for executing a pass-through SQL statement at the

non-Oracle system. This function must be called for any type of SQL statement The

function returns a cursor, which must be used in subsequent calls. This call allocates

memory. To deallocate the associated memory, you call the procedure DBMS_HS_

PASSTHROUGH.CLOSE_CURSOR.

Syntax
DBMS_HS_PASSTHROUGH.OPEN_CURSOR ()
 RETURN BINARY_INTEGER;

Returns
The cursor to be used on subsequent procedure and function calls.

Exceptions

See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_RAW procedure

Table C–26 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase
Heterogeneous Services' OPEN_CURSORS initialization
parameter.
C-22 Oracle Heterogeneous Services

Summary of Subprograms
Pragmas
Purity level defined: WNDS, RNDS

PARSE procedure
This procedure parses SQL statement at non-Oracle system.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 stmt IN VARCHAR2 NOT NULL);

Parameters

Exceptions

Pragmas
Purity level defined: WNDS, RNDS

See Also: CLOSE_CURSOR function

Table C–27 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR.

stmt Statement to be parsed.

Table C–28 PARSE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH for Pass-Through SQL C-23

Summary of Subprograms
See Also:

■ OPEN_CURSOR function

■ PARSE procedure

■ FETCH_ROW function

■ GET_VALUE procedure

■ BIND_OUT_VARIABLE procedure

■ BIND_OUT_VARIABLE_RAW procedure

■ BIND_INOUT_VARIABLE procedure

■ BIND_INOUT_VARIABLE_RAW procedure
C-24 Oracle Heterogeneous Services

Data Dictionary Translation for Generic Connect
D

Data Dictionary Translation for Generic

Connectivity

Generic connectivity agents translate a query that refers to an Oracle8i data

dictionary table into a query that retrieves the data from a non-Oracle data

dictionary. You perform queries on data dictionary tables over the database link in

the same way you query data dictionary tables in Oracle8i. The generic connectivity

data dictionary is similar to the Oracle8i data dictionary in appearance and use.

Non-Oracle data dictionary information is supplied to the user in Oracle8i data

dictionary format.

To better understand the data dictionary support provided by generic connectivity,

read these sections:

■ Data Dictionary Translation Support

■ Data Dictionary Mapping

■ Generic Connectivity Data Dictionary Descriptions
ivity D-1

Data Dictionary Translation Support
Data Dictionary Translation Support
Data dictionary information is stored in the non-Oracle system as system tables and

accessed through ODBC or OLE DB application programming interfaces (APIs).

This section contains the following topics:

■ Accessing the Non-Oracle Data Dictionary

■ Supported Views and Tables

Accessing the Non-Oracle Data Dictionary
Accessing a non-Oracle data dictionary table or view is identical to accessing a data

dictionary in an Oracle database. You issue a SELECT statement specifying a

database link. The Oracle8i data dictionary view and column names are used to

access the non-Oracle data dictionary. Synonyms of supported views are also

acceptable.

For example, the following statement queries the data dictionary table ALL_USERS

to retrieve all users in the non-Oracle system:

SQL> SELECT * FROM all_users@sid1;

When you issue a data dictionary access query, the ODBC or OLE DB agent:

1. Maps the requested table, view, or synonym to one or more ODBC or OLE DB

APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary

column names to their corresponding non-Oracle column names within the

query.

2. Sends the sequence of APIs to the non-Oracle system.

3. Possibly converts the retrieved non-Oracle data to give it the appearance of the

Oracle8i data dictionary table.

4. Passes the data dictionary information from the non-Oracle system table to the

Oracle8i.

Note: The values returned when querying the generic

connectivity data dictionary may not be the same as the ones

returned by the Oracle Enterprise Manager DESCRIBE command.
D-2 Oracle Heterogeneous Services

Data Dictionary Translation Support
Supported Views and Tables
Generic connectivity supports only these views and tables:

■ ALL_CATALOG

■ ALL_COL_COMMENTS

■ ALL_CONS_COLUMNS

■ ALL_CONSTRAINTS

■ ALL_IND_COLUMNS

■ ALL_INDEXES

■ ALL_OBJECTS

■ ALL_TAB_COLUMNS

■ ALL_TAB_COMMENTS

■ ALL_TABLES

■ ALL_USERS

■ ALL_VIEWS

■ DICTIONARY

■ USER_CATALOG

■ USER_COL_COMMENTS

■ USER_CONS_COLUMNS

■ USER_CONSTRAINTS

■ USER_IND_COLUMNS

■ USER_INDEXES

■ USER_OBJECTS

■ USER_TAB_COLUMNS

■ USER_TAB_COMMENTS

■ USER_TABLES

■ USER_USERS

■ USER_VIEWS
Data Dictionary Translation for Generic Connectivity D-3

Data Dictionary Mapping
If you use an unsupported view, then you receive the Oracle8i message for no rows

selected.

If you want to query data dictionary views using SELECT ... FROM DBA_*, first

connect as Oracle user SYSTEM or SYS. Otherwise, you receive the following error

message:

ORA-28506: Parse error in data dictionary translation for %s stored in %s

Using generic connectivity, queries of the supported data dictionary tables and

views beginning with the characters "ALL_" may return rows from the non-Oracle

system when you do not have access privileges for those non-Oracle objects. When

querying an Oracle database with the Oracle data dictionary, rows are returned only

for those objects you are permitted to access.

Data Dictionary Mapping
The tables in this section list Oracle data dictionary view names and the equivalent

ODBC or OLE DB APIs used.

Table 4–2 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API

ALL_CATALOG SQLTables DBSCHEMA_CATALOGS

ALL_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

ALL_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

ALL_INDEXES SQLStatistics DBSCHEMA_STATISTICS

ALL_OBJECTS SQLTables, SQLProcedures, SQLStatistics DBSCHEMA_TABLES,
DBSCHEMA_PROCEDURES,
DBSCHEMA_STATISTICS

ALL_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

ALL_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

ALL_TABLES SQLStatistics DBSCHEMA_STATISTICS

ALL_USERS SQLTables DBSCHEMA_TABLES
D-4 Oracle Heterogeneous Services

Data Dictionary Mapping
Default Column Values
The generic connectivity data dictionary differs from a typical Oracle database

server data dictionary. The Oracle database server columns that are missing in a

non-Oracle data dictionary table are filled with the following, depending on the

column type:

■ Zeros

■ Spaces

■ NULL values

■ Default values

ALL_VIEWS SQLTables DBSCHEMA_TABLES

DICTIONARY SQLTables DBSCHEMA_TABLES

USER_CATALOG SQLTables DBSCHEMA_TABLES

USER_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

USER_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

USER_INDEXES SQLStatistics DBSCHEMA_STATISTICS

USER_OBJECTS SQLTables, SQLProcedures, SQLStatistics DBSCHEMA_TABLES,
DBSCHEMA_PROCEDURES,
DBSCHEMA_STATISTICS

USER_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

USER_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

USER_TABLES SQLStatistics DBSCHEMA_STATISTICS

USER_USERS SQLTables DBSCHEMA_TABLES

USER_VIEWS SQLTables DBSCHEMA_TABLES

Table 4–2 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
Data Dictionary Translation for Generic Connectivity D-5

Generic Connectivity Data Dictionary Descriptions
Generic Connectivity Data Dictionary Descriptions
The generic connectivity data dictionary tables and views provide this information:

■ Name, data type, and width of each column

■ The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the

Oracle8i data dictionary tables and views. Any default value is shown to the right

of an item.

ALL_CATALOG

ALL_COL_COMMENTS

ALL_CONS_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
"SYNONYM"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)
D-6 Oracle Heterogeneous Services

ALL_IND_COLUMNS
ALL_CONSTRAINTS

ALL_IND_COLUMNS

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NO ACTION"
or "SET NULL"

STATUS VARCHAR2(8) NULL

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_OWNER NOT NULL VARCHAR2(30)

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity D-7

ALL_INDEXES
ALL_INDEXES

INDEX_NAME NOT NULL VARCHAR2(30)

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NOT NULL NUMBER

COLUMN_LENGTH NOT NULL NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE CHAR(5) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

Name Null? Type Value
D-8 Oracle Heterogeneous Services

ALL_INDEXES
PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER

AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity D-9

ALL_OBJECTS
ALL_OBJECTS

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

OBJECT_NAME NOT NULL VARCHAR2(30)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NOT NULL NUMBER 0

DATA_OBJECT_ID NUMBER 0

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"

CREATED NOT NULL DATE NULL

LAST_DDL_TIME NOT NULL DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value
D-10 Oracle Heterogeneous Services

ALL_TAB_COLUMNS
ALL_TAB_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER 0

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER 0

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DEC_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0
Data Dictionary Translation for Generic Connectivity D-11

ALL_TAB_COMMENTS
ALL_TAB_COMMENTS

ALL_TABLES

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL
D-12 Oracle Heterogeneous Services

ALL_TABLES
NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity D-13

ALL_USERS
ALL_USERS

ALL_VIEWS

DICTIONARY

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

CREATED NOT NULL DATE NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT NOT NULL LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value

TABLE_NAME VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL
D-14 Oracle Heterogeneous Services

USER_CONSTRAINTS
USER_CATALOG

USER_COL_COMMENTS

USER_CONS_COLUMNS

USER_CONSTRAINTS

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW" or
"SYNONYM"

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

POSITION NUMBER

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30)
Data Dictionary Translation for Generic Connectivity D-15

USER_IND_COLUMNS
USER_IND_COLUMNS

SEARCH_CONDITION LONG NULL

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9) "CASCADE" or
"NOACTION"
or "SET NULL"

STATUS VARCHAR2(8) NULL

DEFERRABLE VARCHAR2(14) NULL

DEFERRED VARCHAR2(9) NULL

VALIDATED VARCHAR2(13) NULL

GENERATED VARCHAR2(14) NULL

BAD VARCHAR2(3) NULL

RELY VARCHAR2(4) NULL

LAST_CHANGE DATE NULL

Name Null? Type Value

INDEX_NAME VARCHAR2(30)

TABLE_NAME VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

COLUMN_POSITION NUMBER

COLUMN_LENGTH NUMBER

DESCEND VARCHAR2(4) "DESC" or
"ASC"

Name Null? Type Value
D-16 Oracle Heterogeneous Services

USER_INDEXES
USER_INDEXES

Name Null? Type Value

INDEX_NAME NOT NULL VARCHAR2(30)

INDEX_TYPE VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE"

UNIQUENESS VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION VARCHAR2(8) NULL

PREFIX_LENGTH NUMBER 0

TABLESPACE_NAME VARCHAR2(30) NULL

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

PCT_THRESHOLD NUMBER 0

INCLUDE_COLUMNS NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

PCT_FREE NUMBER 0

LOGGING VARCHAR2(3) NULL

BLEVEL NUMBER 0

LEAF_BLOCKS NUMBER 0

DISTINCT_KEYS NUMBER
Data Dictionary Translation for Generic Connectivity D-17

USER_INDEXES
AVG_LEAF_BLOCKS_PER_KEY NUMBER 0

AVG_DATA_BLOCKS_PER_KEY NUMBER 0

CLUSTERING_FACTOR NUMBER 0

STATUS VARCHAR2(8) NULL

NUM_ROWS NUMBER 0

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

DEGREE VARCHAR2(40) NULL

INSTANCES VARCHAR2(40) NULL

PARTITIONED VARCHAR2(3) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

BUFFER_POOL VARCHAR2(7) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARHCAR2(15) NULL

PCT_DIRECT_ACCESS NUMBER 0

ITYP_OWNER VARCHAR2(30) NULL

ITYP_NAME VARCHAR2(30) NULL

PARAMETERS VARCHAR2(1000) NULL

GLOBAL_STATS VARCHAR2(3) NULL

DOMIDX_STATUS VARCHAR2(12) NULL

DOMIDX_OPSTATUS VARCHAR2(6) NULL

FUNCIDX_STATUS VARCHAR2(8) NULL

Name Null? Type Value
D-18 Oracle Heterogeneous Services

USER_TAB_COLUMNS
USER_OBJECTS

USER_TAB_COLUMNS

Name Null? Type Value

OBJECT_NAME VARCHAR2(128)

SUBOBJECT_NAME VARCHAR2(30) NULL

OBJECT_ID NUMBER 0

DATA_OBJECT_ID NUMBER 0

OBJECT_TYPE VARCHAR2(18) "TABLE" or
"VIEW" or
"SYNONYM" or
"INDEX" or
"PROCEDURE"

CREATED DATE NULL

LAST_DDL_TIME DATE NULL

TIMESTAMP VARCHAR2(19) NULL

STATUS VARCHAR2(7) NULL

TEMPORARY VARCHAR2(1) NULL

GENERATED VARCHAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(106)

DATA_TYPE_MOD VARCHAR2(3) NULL

DATA_TYPE_OWNER VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER
Data Dictionary Translation for Generic Connectivity D-19

USER_TAB_COMMENTS
USER_TAB_COMMENTS

NULLABLE VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER NULL

DATA_DEFAULT LONG NULL

NUM_DISTINCT NUMBER NULL

LOW_VALUE RAW(32) NULL

HIGH_VALUE RAW(32) NULL

DENSITY NUMBER 0

NUM_NULLS NUMBER 0

NUM_BUCKETS NUMBER 0

LAST_ANALYZED DATE NULL

SAMPLE_SIZE NUMBER 0

CHARACTER_SET_NAME VARCHAR2(44) NULL

CHAR_COL_DECL_LENGTH NUMBER 0

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

AVG_COL_LEN NUMBER 0

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11) "TABLE" or
"VIEW"

COMMENTS VARCHAR2(4000) NULL

Name Null? Type Value
D-20 Oracle Heterogeneous Services

USER_TABLES
USER_TABLES

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30) NULL

CLUSTER_NAME VARCHAR2(30) NULL

IOT_NAME VARCHAR2(30) NULL

PCT_FREE NUMBER 0

PCT_USED NUMBER 0

INI_TRANS NUMBER 0

MAX_TRANS NUMBER 0

INITIAL_EXTENT NUMBER 0

NEXT_EXTENT NUMBER 0

MIN_EXTENTS NUMBER 0

MAX_EXTENTS NUMBER 0

PCT_INCREASE NUMBER 0

FREELISTS NUMBER 0

FREELIST_GROUPS NUMBER 0

LOGGING VARCHAR2(3) NULL

BACKED_UP VARCHAR2(1) NULL

NUM_ROWS NUMBER

BLOCKS NUMBER

EMPTY_BLOCKS NUMBER 0

AVG_SPACE NUMBER 0

CHAIN_CNT NUMBER 0

AVG_ROW_LEN NUMBER 0

AVG_SPACE_FREELIST_BLOCKS NUMBER 0

NUM_FREELIST_BLOCKS NUMBER 0

DEGREE VARCHAR2(10) NULL
Data Dictionary Translation for Generic Connectivity D-21

USER_USERS
USER_USERS

INSTANCES VARCHAR2(10) NULL

CACHE VARCHAR2(5) NULL

TABLE_LOCK VARCHAR2(8) NULL

SAMPLE_SIZE NUMBER 0

LAST_ANALYZED DATE NULL

PARTITIONED VARCHAR2(3) NULL

IOT_TYPE VARCHAR2(12) NULL

TEMPORARY VARHCAR2(1) NULL

SECONDARY VARCHAR2(1) NULL

NESTED VARCHAR2(3) NULL

BUFFER_POOL VARCHAR2(7) NULL

ROW_MOVEMENT VARCHAR2(8) NULL

GLOBAL_STATS VARCHAR2(3) NULL

USER_STATS VARCHAR2(3) NULL

DURATION VARCHAR2(15) NULL

SKIP_CORRUPT VARCHAR2(8) NULL

MONITORING VARCHAR2(3) NULL

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30)

USER_ID NOT NULL NUMBER 0

ACCOUNT_STATUS NOT NULL VARCHAR2(32) "OPEN"

LOCK_DATE DATE NULL

EXPIRY_DATE DATE NULL

DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL

TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL

Name Null? Type Value
D-22 Oracle Heterogeneous Services

USER_VIEWS
USER_VIEWS

CREATED NOT NULL DATE NULL

INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30) NULL

EXTERNAL_NAME VARCHAR2(4000) NULL

Name Null? Type Value

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER 0

TEXT LONG NULL

TYPE_TEXT_LENGTH NUMBER 0

TYPE_TEXT VARCHAR2(4000) NULL

OID_TEXT_LENGTH NUMBER 0

OID_TEXT VARCHAR2(4000) NULL

VIEW_TYPE_OWNER VARCHAR2(30) NULL

VIEW_TYPE VARCHAR2(30) NULL

Name Null? Type Value
Data Dictionary Translation for Generic Connectivity D-23

USER_VIEWS
D-24 Oracle Heterogeneous Services

Datatype Mapp
E

Datatype Mapping

Oracle8i maps the datatypes used in ODBC and OLE DB compliant data sources to

supported Oracle datatypes. When the results of a query are returned, Oracle8i
converts the ODBC or OLE DB datatypes to Oracle datatypes. For information on

how the datatypes are mapped for each data source, see the following:

■ Mapping ODBC Datatypes to Oracle Datatypes

■ Mapping OLE DB Datatypes to Oracle Datatypes
ing E-1

Mapping ODBC Datatypes to Oracle Datatypes
Mapping ODBC Datatypes to Oracle Datatypes
This table shows the mapping from ODBC datatypes to Oracle datatypes:

ODBC Oracle

SQL_BIGINT NUMBER(19,0)

SQL_BINARY RAW

SQL_CHAR CHAR

SQL_DATE DATE

SQL_DECIMAL(p,s) NUMBER(p,s)

SQL_DOUBLE FLOAT(49)

SQL_FLOAT FLOAT(49)

SQL_INTEGER NUMBER(10)

SQL_LONGVARBINARY LONG RAW

SQL_LONGVARCHAR LONG

SQL_NUMERIC(p,s) NUMBER(p,s)

SQL_REAL FLOAT(23)

SQL_SMALLINT NUMBER(5)

SQL_TIME DATE

SQL_TIMESTAMP DATE

SQL_TINYINT NUMBER(3)

SQL_VARCHAR VARCHAR
E-2 Oracle Heterogeneous Services

Mapping OLE DB Datatypes to Oracle Datatypes
Mapping OLE DB Datatypes to Oracle Datatypes
This table shows the mapping from OLE DB datatypes to Oracle datatypes:

OLE DB Oracle

DBTYPE_UI1 NUMBER(3)

DBTYPE_I1 NUMBER(3)

DBTYPE_UI2 NUMBER(5)

DBTYPE_I2 NUMBER(5)

DBTYPE_BOOL NUMBER(5)

DBTYPE_UI4 NUMBER(10)

DBTYPE_I4 NUMBER(10)

DBTYPE_UI8 NUMBER(19,0)

DBTYPE_I8 NUMBER(19,0)

DBTYPE_NUMERIC(p,s) NUMBER(p,s)

DBTYPE_R4 FLOAT(23)

DBTYPE_R8 FLOAT(49)

DBTYPE_DECIMAL FLOAT(49)

DBTYPE_STR VARCHAR2

DBTYPE_WSTR VARCHAR2

DBTYPE_CY NUMBER(19,0)

DBTYPE_DBDATE DATE

DBTYPE_DBTIME DATE

DBTYPE_DBTIMESTAMP DATE

DBTYPE_BYTES RAW

DTYPE_BYTES (long attribute) LONG RAW

DBTYPE_STRING (long attribute) LONG
Datatype Mapping E-3

Mapping OLE DB Datatypes to Oracle Datatypes
E-4 Oracle Heterogeneous Services

Index

A
agents

generic connectivity, 1-4

Heterogeneous Services, 1-3

disabling self-registration, 2-6

registering, 2-5, 2-6, 2-7

specifying initialization parameters for, 2-4

application development

Heterogeneous Services, 4-1, 4-2

controlling array fetches between non-Oracle

server and agent, 4-11

controlling array fetches between Oracle

server and agent, 4-11

controlling reblocking of array fetches, 4-11

DBMS_HS_PASSTHROUGH package, 4-2

pass-through SQL, 4-2

using bulk fetches, 4-9

using OCI for bulk fetches, 4-10

using Heterogeneous Services, 4-1

Architecture of the Heterogenous Services Data

Dictionary, 1-6

array fetches, 4-10

agents, 4-11

B
bind queries

executing using pass-through SQL, 4-7

BIND_INOUT_VARIABLE procedure, 4-3, 4-7

BIND_OUT_VARIABLE procedure, 4-3, 4-6

BIND_VARIABLE procedure, 4-3

buffers

multiple rows, 4-8

bulk fetches

optimizing data transfers using, 4-9

C
CATHO.SQL script

installing data dictionary for Heterogeneous

Services, 2-2

character sets

Heterogeneous Services, A-7

CLOSE_CURSOR function, 4-3

commit point site

commit point strength, A-3

configuring generic connectivity, 3-8

configuring transparent gateways, 2-2

CREATE_INST_INIT procedure, 2-19

D
data dictionary

contents with generic connectivity, D-3

installing for Heterogeneous Services, 2-2

mapping for generic connectivity, D-4

Oracle server name/SQL Server name, D-4

tables, 1-5

translation support for generic

connectivity, D-2

data dictionary views

generic connectivity, D-3

Heterogeneous Services, 2-9, B-1

database links

heterogeneous systems, 1-5, 2-4

datatypes

mapping, 1-5
Index-1

ODBC, E-2

ODBC to Oracle, E-2

OLE DB, E-3

OLE DB to Oracle, E-3

date formats

Heterogeneous Services, A-8

DBMS_HS package

specifying HS parameters, 2-18

DBMS_HS_PASSTHROUGH package, 4-2

list of functions and procedures, 4-3

DBMS_HS_PASSTHROUGH.EXECUTE_

IMMEDIATE, C-15

describe cache high water mark

definition, A-4

drivers

ODBC, 3-13

OLEFS, 3-16

OLESQL, 3-15

dynamic performance views

Heterogeneous Services, 2-16

determining open sessions, 2-17

determining which agents are on host, 2-16

E
EXECUTE_IMMEDIATE procedure, 4-3

restrictions, 4-4

EXECUTE_NON_QUERY procedure, 4-3

F
FDS_CLASS, 2-8

FDS_CLASS_VERSION, 2-8

FDS_INST_NAME, 2-8

FETCH_ROW procedure, 4-3

executing queries using pass-through SQL, 4-7

fetches

bulk, 4-9

optimizing round-trips, 4-8

G
generic connectivity

architecture, 3-3

Oracle and non-Oracle on same machine, 3-4

Oracle and non-Oracle on separate

machines, 3-3

configuration, 3-8

creating initialization file, 3-8

data dictionary

translation support, D-2

definition, 3-2

DELETE statement, 3-7

editing initialization file, 3-9

error tracing, A-6

Heterogeneous Services, 1-4

INSERT statement, 3-7

non-Oracle data dictionary access, D-2

ODBC connectivity requirements, 3-13

OLE DB (FS) connectivity requirements, 3-16

OLE DB (SQL) connectivity requirements, 3-15

restrictions, 3-6

setting parameters for ODBC source, 3-10

UNIX, 3-11

Windows NT, 3-10

setting parameters for OLE DB source, 3-12

SQL execution, 3-6

supported functions, 3-7

supported SQL syntax, 3-7

types of agents, 3-2

UPDATE statement, 3-7

GET_VALUE procedure, 4-3, 4-6, 4-7

H
heterogeneous distributed systems

accessing, 2-2

Heterogeneous Services

agent registration, 2-5

avoiding configuration mismatches, 2-6

disabling, 2-6

enabling, 2-5

agents

self-registration, 2-7

application development, 4-1, 4-2

controlling array fetches between non-Oracle

server and agent, 4-11

controlling array fetches between Oracle

server and agent, 4-11

controlling reblocking of array fetches, 4-11
Index-2

DBMS_HS_PASSTHOUGH package, 4-2

locking behavior of non-Oracle systems, 4-12

pass-through SQL, 4-2

using bulk fetches, 4-9

using OCI for bulk fetches, 4-10

creating database links, 2-4

data dictionary, 1-6

classes and instances, 1-7

data dictionary views, 2-9, B-1

types, 2-10

understanding sources, 2-12

using general views, 2-12

using SQL service views, 2-14

using transaction service views, 2-13

database links to non-Oracle systems, 1-5

DBMS_HS package

using to specify initialization

parameters, 2-19

using to unspecify initialization

parameters, 2-20

defining maximum number of open

cursors, A-9

dynamic performance views, 2-16

V$HS_AGENT view, 2-16

V$HS_SESSION view, 2-17

generic connectivity

architecture, 3-3

creating initialization file, 3-8

definition, 3-2

editing initialization file, 3-9

non-Oracle data dictionary access, D-2

ODBC connectivity requirements, 3-13

OLE DB (FS) connectivity requirements, 3-16

OLE DB (SQL) connectivity

requirements, 3-15

restrictions, 3-6

setting parameters for ODBC source, 3-10

setting parameters for OLE DB source, 3-12

SQL execution, 3-6

supported functions, 3-7

supported SQL syntax, 3-7

supported tables, D-3

types of agents, 3-2

initialization parameters

specifying, 2-19

unspecifying, 2-20

installing data dictionary, 2-2

locking behavior of non-Oracle systems, 4-12

optimizing data transfer, A-10

overview, 1-2

setting global name, A-4

setting up access using transparent

gateway, 2-2

setting up environment, 2-2

specifying cache high water mark, A-4

specifying cache size, A-10

specifying commit point strength, A-3

specifying domain, A-3

specifying instance identifier, A-4

SQL service, 1-5

testing connections, 2-4

transaction service, 1-4

tuning internal data buffering, A-11

types, 1-4

HS_AUTOREGISTER initialization

parameter, 2-18

using to enable agent self-registration, 2-9

HS_BASE_CAPS view, 2-11

HS_BASE_DD view, 2-11

HS_CLASS_CAPS view, 2-11

HS_CLASS_DD view, 2-11

HS_CLASS_INIT view, 2-11

HS_COMMIT_POINT_STRENGTH initialization

parameter, A-3

HS_DB_DOMAIN initialization parameter, 2-20,

A-3

HS_DB_INTERNAL_NAME initialization

parameter, A-4

HS_DB_NAME initialization parameter, A-4

HS_DESCRIBE_CACHE_HWM initialization

parameter, A-4

HS_FDS_CLASS view, 2-11

HS_FDS_CONNECT_INFO initialization

parameter, A-5

specifying connection information, 3-9

HS_FDS_FETCH_ROWS initialization

parameter, 4-11

HS_FDS_INST view, 2-11

HS_FDS_SHAREABLE_NAME initialization

parameter, A-6
Index-3

HS_FDS_TRACE initialization parameter, A-6

HS_FDS_TRACE_FILE_NAME initialization

parameter, A-6

HS_FDS_TRACE_LEVEL initialization parameter

enabling agent tracing, 3-10

HS_INST_CAPS view, 2-11

HS_INST_DD view, 2-11

HS_INST_INIT view, 2-11

HS_LANGUAGE initialization parameter, A-7

HS_NLS_DATE_FORMAT initialization

parameter, A-8

HS_NLS_DATE_LANGUAGE initialization

parameter, A-8

HS_NLS_NCHAR initialization parameter, A-9

HS_OPEN_CURSORS initialization

parameter, A-9

HS_ROWID_CACHE_SIZE initialization

parameter, A-10

HS_RPC_FETCH_REBLOCKING initialization

parameter, 4-11, A-10

HS_RPC_FETCH_SIZE initialization

parameter, 4-11, A-11

L
Limitations to Heterogeneous Services, 4-12

listeners, 2-2

locks

in non-Oracle systems, 4-12

M
multiple rows

buffering, 4-8

N
National Language Support (NLS)

Heterogeneous Services, A-7

character set of non-Oracle source, A-9

date format, A-8

languages in character date values, A-8

Net8 listener, 1-3, 2-2

O
OCI

optimizing data transfers using, 4-10

ODBC agents

connectivity requirements, 3-13

functions, 3-14

ODBC connectivity

data dictionary mapping, D-4

mapping OBDC datatypes, E-2

mapping Oracle datatypes, E-2

ODBC driver, 3-13

requirements, 3-13

specifying connection information

UNIX, A-5

Windows NT, A-5

specifying path to library, A-6

OLE DB agents

connectivity requirements, 3-15, 3-16

OLE DB connectivity

data dictionary mapping, D-4

mapping to Oracle datatypes, E-3

setting connection information, A-5

OLEFS drivers, 3-16

data provider requirements, 3-16

initialization properties, 3-18

rowset properties, 3-18

OLESQL drivers, 3-15

security, 3-15

OPEN_CURSOR procedure, 4-3

operating system dependencies, C-1

Oracle precompiler

optimizing data transfers using, 4-10

OUT bind variables, 4-6

P
PARSE procedure, 4-3

pass-through SQL, 4-2

avoiding SQL interpretation, 4-2

executing statements, 4-3

non-queries, 4-4

queries, 4-7

with bind variables, 4-4

with IN bind variables, 4-5

with IN OUT bind variables, 4-6
Index-4

with OUT bind variables, 4-6

implications of using, 4-3

overview, 4-2

restrictions, 4-3

PL/SQL

development environment, 4-2

Q
queries

pass-through SQL, 4-7

R
reblocking, 4-11

Researching, 4-12

rows

buffering multiple, 4-8

S
security

OLESQL driver, 3-15

SELECT statement

accessing non-Oracle system, D-2

service names

specifying in database links, 2-4

SQL capabilities

data dictionary tables, 2-15

SQL dialect

understood by non-Oracle system, 1-5

SQL service

capabilities, 1-5

data dictionary views, 1-8, 2-10

Heterogeneous Services, 1-5

views

Heterogeneous Services, 2-14

SQL statements

mapping to non-Oracle datastores, 4-2

T
transaction service

Heterogeneous Services, 1-4

views

Heterogeneous Services, 2-13

transparent gateways

accessing Heterogeneous Services agents, 2-2

creating database links, 2-4

Heterogeneous Services, 1-3

installing Heterogeneous Services data

dictionary, 2-2

testing connections, 2-4

U
unsupported functions

generic connectivity, 3-7

V
V$HS_AGENT view

determining which agents are on host, 2-16

V$HS_PARAMETER view

listing HS parameters, 2-18

V$HS_SESSION view

determining open sessions, 2-17

variables

BIND, 4-4
Index-5

Index-6

	Send Us Your Comments
	Preface
	1 Heterogeneous Services Concepts
	What is Heterogeneous Services?
	Heterogeneous Services Process Architecture
	What is an Agent?
	Oracle Transparent Gateways
	Generic Connectivity

	Heterogeneous Services Components
	Transaction Service
	SQL Service
	Database Links to a Non-Oracle System

	Architecture of the Heterogenous Services Data Dictionary
	Classes and Instances
	Configuration Data
	Data Dictionary Views

	2 Managing Heterogeneous Services
	Setting Up Access to Non-Oracle Systems
	Step 1: Install the Heterogeneous Services Data Dictionary
	Step 2: Set Up the Environment to Access Heterogeneous Services Agents
	Step 3: Create the Database Link to the Non-Oracle System
	Step 4: Test the Connection

	Registering Agents
	Enabling Agent Self-Registration
	Disabling Agent Self-Registration
	Using Agent Self-Registration to Avoid Configuration Mismatches
	Understanding Agent Self-Registration
	Specifying HS_AUTOREGISTER

	Using Heterogeneous Services Data Dictionary Views
	Understanding Types of Views
	Understanding Sources of Data Dictionary Information
	Using General Views
	Using Transaction Service Views
	Using SQL Service Views

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open Heterogeneous Services Sessions
	Determining the Heterogeneous Services Parameters

	Using the DBMS_HS Package
	Specifying Initialization Parameters
	Unspecifying Initialization Parameters

	3 Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	SQL Execution
	Datatype Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements
	Functions Supported by Generic Connectivity

	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	OLE DB (FS) Connectivity Requirements
	Data Source Properties

	4 Developing Applications with Heterogeneous Services�
	Developing Applications with Heterogeneous Services: Overview
	Developing Applications Using Pass-Through SQL
	Using the DBMS_HS_PASSTHROUGH package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements

	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Researching the Locking Behavior of Non-Oracle Systems
	Limitations to Heterogeneous Services

	A Heterogeneous Services Initialization Parameters
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_FDS_TRACE_FILE_NAME
	HS_LANGUAGE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE

	B Heterogeneous Services Data Dictionary Views
	C DBMS_HS_PASSTHROUGH for Pass-Through SQL
	Summary of Subprograms
	BIND_VARIABLE procedure
	BIND_VARIABLE_RAW procedure
	BIND_OUT_VARIABLE procedure
	BIND_OUT_VARIABLE_RAW procedure
	BIND_INOUT_VARIABLE procedure
	BIND_INOUT_VARIABLE_RAW procedure
	CLOSE_CURSOR function
	EXECUTE_IMMEDIATE function
	EXECUTE_NON_QUERY function
	FETCH_ROW function
	GET_VALUE procedure
	GET_VALUE_RAW procedure
	OPEN_CURSOR function
	PARSE procedure

	D Data Dictionary Translation for Generic Connectivity
	Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Supported Views and Tables

	Data Dictionary Mapping
	Default Column Values

	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	E Datatype Mapping
	Mapping ODBC Datatypes to Oracle Datatypes
	Mapping OLE DB Datatypes to Oracle Datatypes

	Index

