Oraclel Internet Application Server

Using mod_plsql

Releasel.0.1

July 18, 2000
Part No. A83590-02

ORACLE

Using mod_plsql for iAS Releasel.0.1

Part No. AB83590-02

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.
Primary Author: Dave Mathews

Contributors: Ron Decker, Pushkar Kapasi, Sanjay Khanna, Eric Lee, Kannan Muthukkaruppan

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark and Oracle8, Oracle8i, Oracle Application Server, Oracle WebDB,
PL/SQL, mod_plsql, Oracle HTTP Server (powered by Apache), and SQL*Net are registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

1 mod_plsqgl Overview

1.1 Stateless and Stateful MOTES. ..o 11
1.2 Database ACCESS DESCIIPLONSceiiiiiirieie sttt se bbb e be e 12
1.3 Processing ClENT FEQUESESc.vcviieicece et e re e sre e 12
1.4 INVOKING MOA_PISOL ... 13
1.4.1 POST and GET MELHOAS ..ottt srene s 15
15 Overview of Mod_PISOI FEALUIES..........ccciviiiiiirie e e ere s 16
151 AULNENTICALION ...ttt ettt 16
1511 Database Controlled Authentication..........c.cccoceiveveiii i, 16
15.1.2 DeaUuthentiCAtiONccooviiiiieie bbb 16
1513 CUStomM AULNENTICATION ... e 16
15.1.31 Implementing the authorize fuNCLION...........ccoiiii e 17
152 Transaction MOAEN ..o e 19
153 T 10 1= =] gl 0 T= 17 1 o 20
1531 Overloaded ParamMetersS ..ottt sb bbb aneas 20
1.5.3.2 Overloading and PLZSQL AITAYSccvivieiieiieeeieesese e seseeseaesesseessesesnens 21
1.5.3.3 Flexible Parameter PaSSINGcccovviieiirieierieserieeeseeestese e ste e seessessesasesnessensesns 22
1.5.34 Large PAraMETEITSccuiiiiieeiee ittt b e e e e b et st e e e bt nnesne e 23
1.5.4 File Upload and DOWNIOAdcccoviieiiiiniiiine et 24
1541 Document Table Definition ... 24
15411 Semantics of the CONTENT COlUMNccooiiiiiiiiiiecee e 25
1.5.4.1.2 Semantics of the CONTENT_TYPE CoOlUMNcccoveveivirinneeeeece e 25
1.5.4.1.3 Semantics of the LAST_UPDATED columncccoovvvvvveiciecce e 26
15414 Semantics of the DAD_CHARSET COlUMN.......cccocoviiiiiiic e 26
1.5.4.2 Old Style Document Table Definition.........cccccoovvererenee e 26

2

1.5.4.3 REIEVANT PAramMELEIScvviivie ettt ettt s sbe st eeba s seesbe e 26

1.5.4.31 document_table (Document Table Name) ..o, 27
1.5.4.4 document_path (Document Access Path).........cccceveiviveieninie s 27
1.5.4.4.1 document_proc (Document Access Procedure):ccovvvvrevireenevsieniesennns 27
1.5.4.4.2 UPI0AA_8S_1ONQT_FAW ..oiiiiiiieie e e 28
1.5.45 [T L=3L 11 o] [- o SRS 28
1.5.4.6 Specifying Attributes (Mime Types) of Uploaded Files.........ccccocvininincennne. 30
1547 Uploading MUItIple FIles ..o e 30
1548 FIle DOWNIOAA ..ot 31
1.6 CGI ENVIronmMent Variables ..o e 32
1.6.1 I OSSPSR 34
1.6.1.1 REQUEST_CHARSET CGI environment variable.........c..ccocovvveiviecvnnninesnnn, 34
1.6.1.2 REQUEST_IANA_CHARSET CGI environment variablecccccooiveinnnnnns 35

Installing mod_plsql

(62}

21 SYSEEM REGQUITEIMENTS. ...ttt bbb e et et b et st seesbene e 1
2.2 27= 0] oI {0 T I o= | o IR 2
2.3 INSTAITATION ...t bbb e et b ettt e b et st sa e 2
2.4 INStalling reqUIred PACKAGEScoveiiieiiese ettt s 2
25 Configuring the Oracle HTTP Server LIStENErcccccoceivivieeieie s 3
2.6 Accessing the mod_plsql configuration Page ..o 4
26.1 pls.conf configuration file ... 5
2.7 Starting and stopping the Oracle HTTP Server LiStENercccccvevviviievivsieneveseseseseanens 5

Configuring mod_plsql
3.1 Lo To [o] FsTo 1S T=]] 0T TSR 7

Setting up WebDB to run with mod_plsql
4.1 BEfOre YOU BEOIN .o.vviiiiiie ittt ettt e sttt e e neere e 11

Using the PL/SQL Web Toolkit

5.1 PL/SQL Web ToolKit INStallationcccoiveiiiiiciicce e s 13
5.2 Packages iN the TOOIKIT ..o et 13

521
5.2.2
523
524
525
53
5.4
55
5.6
5.7
5.8
5.9
5.10
511

htp and htf PACKAGES.coveveeece e 15

OWA_IMAJE PACKAGEeiueree ettt ettt ettt bbbt e b b sbe b e 15

o)1, o) o1 A [o1 TSRS 16
L0V T oL U L1 (] o PSS 16

(0)VAY 2= R T 1 (=1 o | PR PPPRR 17
Conventions for Parameter Names in the TOOIKIt.........cccovvieiinnic e 18
HTML TaQ QtEFIDULES ...ttt bt bttt 18
MOd_PISql aNd APPIELS ... e 18
COOKIES. ...ttt 19
LONG DALA TY . teitiiteiree ettt ettt ettt ettt e e s bt be e bt se e s bees b e bt e st e bt e e e ebeeneesae e b e nbeeneeneeas 19
Extensions to the htp and htf Packages..........c.coiiiiiiiiii e 20
String Matching and Manipulation ..o 21
OWA_PATTEINLIMALCR ... ettt sttt sae e 21
OWA_PATLEINL.CRANGE ...ttt bbbttt ettt st e e 22

6 mod_plsqgl Tutorial

6.1
6.2

Creating and Loading the Stored Procedure onto the Database............c.ccocooniiiiinnnn. 23
Creating an HTML Page to Invoke the Applicationcccccoeveivivve v 27

Vi

Send Us Your Comments

Using mod_plsql for Oracle Internet Application Server Release 1.0.1

Part No. A83590-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, then indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following way:

Electronic mail: webdbdoc@us.oracle.com

If you would like a reply, please give your name, address, and telephone number.

If you have problems with the software, contact your local Oracle Support Services.

Vii

viii

Preface

This manual describes how to install, configure, and maintain mod_plsql for iAS
1.0.1. It contains the following chapters:

Chapter 1
Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6

Related Documents

Provides an overview of mod_plsql and its features.
Explains how to install mod_plsql.

Describes global mod_plsql settings and those for individual Data
Access Descriptors .

Describes special considerations for running Oracle WebDB
versions 2.0, 2.1, and 2.2 with mod_plsql.

Describes how to install the PL/SQL Web Toolkit. Before you can
use mod_plsql, you must install the packages in the PL/SQL Web
Toolkit in a common schema called owa_public in your Oracle
database.

Provides step-by-step instructions for guide creating and invoking
a simple application that displays the contents of a database table
in an HTML page.

For more information, see the following manuals:

= Internet Application Server, Release 1.0.1 -
Migrating from Oracle Application Server A83709-02

« Internet Application Server, Release 1.0.1 -
Overview A83707-02

« Oracle Internet Application Server Installation Guide A83708-02
= Release Notes for Solaris and Windows NT A83588-02

1

mod_plsqgl Overview

Oracle Internet Application Server (iAS) consolidates Oracle’s middle-tier products
intoasinglesolutionfordevelopmentand deploymentofWebapplications.
The standard version of iAS version 1.0 includes:

« Oracle HTTP Server (powered by Apache) and Servlet Engine
« Oracle Java Server Pages (JSP) Engine

« mod_plsql

= Oracle 8i Cache

« Oracle Tools (included in Enterprise Edition)

mod_plsql provides support for building and deploying PL/SQL-based
applications on the Web. PL/SQL stored procedures can retrieve data from database
tables and generate HTTP responses containing data and code to display in a Web
browser. mod_plsql supports other Oracle products such as WebDB 2.2 and
includes a number of new features.

1.1 Stateless and Stateful modes

The database session state includes the state of PL/SQL package variables,
application state, and transaction state.

In a stateless environment, each HTTP request from a client maps to a new database
session. Application state is typically maintained in HTTP cookies or database
tables. Transaction state cannot span across requests. If a PL/SQL procedure
executes successfully, an implicit commit is performed. If it executes with an error,
an implicit rollback is performed.

In a stateful environment, each HTTP request from a client maps to the same
database session. Application state is preserved in PL/SQL package variables. A

mod_plsql Overview 1-11

Database Access Descriptors

transaction can span across requests because no implicit commits or rollbacks are
performed

iAS provides two configurations for deploying PL/SQL-based Web applications:

« IAS plus mod_plsql supports running in stateless mode. This is the
recommended configuration for users who want to develop stateless
PL/SQL-based Web applications.

= IAS plus mod_OSE supports running in both stateless and stateful mode. This is
the recommended configuration for users who want to develop stateful
PL/SQL- and Java-based Web applications. When using mod_OSE, the stateful
mode is preferable because a new database session does not have to be created
and destoyed for every HTTP request. For more information, see the mod_OSE
documentation.

1.2 Database Access Descriptors

Each mod_plsql request is associated with a database access descriptor (DAD), a
named set of configuration values used for database access. A DAD specifies
information such as:

« the database alias (SQL*Net V2 service name).
« aconnect string if the database is remote.
« aprocedure for uploading and downloading documents.

You can also specify a username and password information in a DAD; if they are
not specified, the user will be prompted to enter a username and password when
the URL is invoked.

1.3 Processing client requests
The following occurs when a server receives a request:

1. The Web server receives a mod_plsql request from a client and forwards the
request to mod_plsql.

2. mod_plsql uses the DAD’s configuration values (see "Configuring mod_plsql"
on page 3-7 for more information) to determine how to connect to the database.

3. mod_plsgl connects to the database, prepares the call parameters, and invokes
the PL/SQL procedure in the database.

1-12 Using mod_plsql

Invoking mod_plsql

4. The PL/SQL procedure generates an HTML page, which can include dynamic
data accessed from tables in the database as well as static data.

5. The output from the procedure is returned via the response buffer back to mod_
plsqgl and the client.

The procedure that mod_plsql invokes should return HTML data back to the client.
To simplify this task, mod_plsql comes with the PL/SQL Web Toolkit, a set of
packages that you can use in your stored procedure to get information about the
request, construct HTML tags, and return header information to the client. You
install the toolkit in a common schema so that all users can access it. See "Using the
PL/SQL Web Toolkit" on page 5-13 for more information.

1.4 Invoking mod_plsql

To invoke mod_plsql in a Web browser, the URL must typically be in the following
format:

protocol ://host nane[: port]/prefix/DAD [[!][schena.][package.] proc_
nane[?query_string]]

where:
protocol can be either htt p or htt ps. For SSL, use https.
hostname is the machine where the Web server is running.

port is the port at which the application server is listening. If omitted, port 80 is
assumed.

prefix is a virtual path to handle PL/SQL requests that you have configured in the
Web server. pl s is the default setting for this parameter. For example, you can
configure the Web server to set pl s as the prefix so that all requests containing the
pl s prefix are routed to mod_plsql.

DAD is the DAD entry to be used for this URL.

I character, if present, indicates that flexible parameter passing scheme must be
used. See"Flexible Parameter Passing" on page 1-22 for more information.

schema is the database schema name. If omitted, name resolution for
package.proc_name occurs based on the database user that the URL request is
processed as.

package is the package that contains the PL/SQL stored procedure. If omitted, the
procedure is stand-alone.

mod_plsql Overview 1-13

Invoking mod_plsq|

proc_name specifies the PL/SQL stored procedure to run. This must be a procedure
and not a function. It can accept only IN arguments.

?query_string specifies parameters (if any) for the stored procedure. The string
follows the format of the GET method. For example:

« Multiple parameters are separated with the & character, and space
characters in the values to be passed in are replaced with the + character.

« Ifyou use HTML forms to generate the string (as opposed to generating the
string yourself), the formatting will be done automatically for you.

« The HTTP request may also choose the HTTP POST method to post data to
mod_plsql. See "POST and GET Methods" on page 1-15 for more
information.

For example, if a Web server is configured with pls as a prefix and the browser
sends the following URL:

ht t p: / / waw acre. com 9000/ pl s/ nydad/ nypackage. nypr oc

the Web server running on ww. acne. comand listening at port 9000 would
handle the request. When the Web server receives the request, it will pass the
request to mod_plsql. This is because the pls prefix indicates that the Web server is
configured to invoke mod_plsql. mod_plsql then uses the DAD associated with
mydad and runs the myproc procedure stored in mypackage.

1-14 Using mod_plsql

Invoking mod_plsql

You can specify a URL without a DAD, schema or stored procedure name. For
example, if you specify

htt p: // wa acne. com 9000/ pl s/ nydad

then the default home page for the nydad DAD (as specified on the mod_plsql
configuration page) displays.

If you specify
htt p: // waw acne. com 9000/ pl s

the default DAD’s default home page is invoked.

Generally, you do not need to be concerned with the order in which PL/SQL
parameters are given in the URL or the HTTP header, because the parameters are
passed by name. However, there are some exceptions to this rule. Please refer to
Parameter passing on page 1-20 for more information.

1.4.1 POST and GET Methods

POST and GET methods in the HTTP protocol instruct browsers how to pass
parameter data (usually in the form of name-value pairs) to applications. The
parameter data are usually generated by HTML forms.

mod_plsql applications can use either method. The method that you use is as secure
as the underlying transport protocol (http or https).

When you use the POST method, parameters are passed in the request body. When
you use the GET method, parameters are passed using a query string. These
methods are described in the HTTP 1.1 specification, which is available at the W3C
web site at:

http://wa w3. org/ Protocol s/HITP/ 1. 1/ draft-i etf-http-v1l-spec-rev-01.txt
The limitation of the GET method is that the length of the value in a name-value
pair cannot exceed the maximum length for the value of an environment variable,

as imposed by the underlying operating system. In addition, operating systems
have a limit on how many environment variables you can define.

Generally, if you are passing large amounts of parameter data to the server, you
should use the POST method instead.

mod_plsql Overview 1-15

Overview of mod_plsql Features

1.5 Overview of mod_plsql Features

1.5.1 Authentication

mod_plsql provides levels of authentication in addition to those provided by the
Web Server itself. Whereas the Web server protects documents, virtual paths, etc.,
mod_plsql protects users logging into the database or running a PL/SQL Web
application.

1.5.1.1 Database Controlled Authentication

mod_plsql supports authentication at the database level. It uses HTTP Basic
Authentication but authenticates credentials by using them to attempt to log on to
the database. Authentication is verified against a user database account, using user
names and passwords that are either:

« stored in the DAD. The end user is not required to log in. This method is useful
for Web pages that provide public information

« provided by the users via a browser-based basic HTTP authentication dialog
box. The end user must provide a username and password in the dialog box.

1.5.1.2 Deauthentication

mod_plsql allows users to log off (clear HTTP authentication information)
programatically through a PL/SQL procedure without having to exit all instances of
the browser. Because of the use of cookies, this feature is supported on Netscape 3.0
or higher and Internet Explorer. On other browsers, the user may have to exit the
browser to deauthenticate.

Another method of deauthentication is to add / | ogneof f after the DAD in the
URL, for example

ht t p: / / nyhost : 2000/ pl s/ nyDAD | ogneof f

1.5.1.3 Custom Authentication

Custom authentication enables applications to authenticate users within the
application itself, not at the database level.

1-16 Using mod_plsql

Overview of mod_plsql Features

You can enable custom authentication using the Custom Authentication parameter
on mod_plsql configuration page, or using the custom_auth parameter. This
parameter can be set to one of the following values:

« Basic - authentication is performed using basic HTTP authentication. Most
applications will use Basic authentication.

« Global Owa - authorization id performed in the OWA package schema.

« Custom Owa - authorization is performed using packages and procedures in
the user’s schema, or if not found, in the OWA package schema

« PerPackage - authentication is performed by packages and procedures in the
user’s schema

« Single Sign-On - authentication is performed using the Oracle Single Sign-On
feature of the Login Server. You can use this mode only if your application is set
up to work with the Login Server

1.5.1.3.1 Implementing the authorize function

Custom authentication needs a static username/password to be stored in a
configuration file, and cannot be combined with the dynamic username/password
authentication.

The syntax of the authorize function is:

function authori ze return bool ean;

To enable custom authentication, you must

1. Set the level of authentication by editing the privcust.sql file
2. Reload it

3. Implement the authentication function.

mod_plsql uses the username/password provided in the DAD to log into the
database. Once the login is complete, authentication control is passed to the
application. Application-level PL/SQL hooks (callback functions) are then called.
The implementations for these callback functions are left to the application
developers. The return value of the callback function determines if the
authentication succeeded or failed: if the function returns TRUE, authentication
succeeded. If it returns FALSE, authentication failed and code in the application is
not executed.

You can place the authentication function in different locations, depending on when
it is to be invoked:

mod_plsql Overview 1-17

Overview of mod_plsql Features

If you want the same authentication function to be invoked for all users and for all
procedures, change the line in the privcust.sql file to:

owa_sec. set _aut hori zati on(OM SEC G.(BAL)
and implement the owa_custom.authorize function in the OWA Package schema,
which contains the PL/SQL Web Toolkit.

If you want a different authentication function to be invoked for each user and for
all procedures, change the line in the privcust.sql file to:

owa_sec. set _aut hori zati on(OM SEC ASTQV)
and implement the owa_custom.authorize function in each user’s schema. For users

who do not have that function in their schema, the owa_custom.authorize function
in the OWA package schema will be invoked instead.

For 3.0 users: if you implemented owa_init.authorize in each user’s schema, you
need to migrate the function to each user’s owa_custom package.

If you want the authentication function to be invoked for all users but only for
procedures in a specific package or for anonymous procedures, change the line in
the privcust.sql file to:

owa_sec. set _aut hori zati on(OM_SEC PER PACKAGE)

1-18 Using mod_plsql

Overview of mod_plsql Features

and implement the authorize function in that package in each user’s schema. If the
procedure is not in a package, then the anonymous authorize function is called
instead. The following table summarizes the parameter values:

Value for parameter
OWA _SEC.NO_CHECK

OWA_SEC.GLOBAL

OWA_SEC.PER_PACKAGE

OWA_SEC.PER_PACKAGE

OWA_SEC.CUSTOM

Access control scope
N/A

All packages

Specified package

Anonymousprocedures

All package

Callback function
N/A

owa_custom.authorize in the
OWA package schema

packageName.authorize in
the user’s schema

authorize in the user’s schema

owa_custom.authorize in the
user’s schema, or, if not
found, in the OWA package
schema

When you use custom authentication, you can use the subprograms in the owa_sec
package. You should not use owa_sec if you are not using custom authentication.

1.5.2 Transaction model

After processing a URL request for a procedure invocation, mod_plsqgl performs a
rollback if there were any errors. Otherwise, the Gateway performs a commit. This
mechanism does not allow a transaction to span across multiple HTTP requests. In
this stateless model, applications typically maintain state using HTTP cookies or

database tables.

mod_plsql Overview 1-19

Overview of mod_plsql Features

1.5.3 Parameter passing
mod_plsql supports:

« Parameter passing by hame

Each parameter in a URL that invokes procedure or functions identified by a
unique name. Overloaded parameters are supported. See "Overloaded
parameters" on page 1-20 for more information.

« Flexible parameter passing

Parameters are prefixed by a ! character. See "Flexible Parameter Passing" on
page 1-22 for more information.

« Large (up to 32K) parameters.

See "Large parameters" on page 1-23 for more information.

1.5.3.1 Overloaded parameters

Overloading allows multiple subprograms (procedures or functions) to have the
same name, but differ in the number, order, or the datatype family of the
parameters. When you call an overloaded subprogram, the PL/SQL compiler
determines which subprogram to call based on the data types passed.

PL/SQL allows you to overload local or packaged subprograms; stand-alone
subprograms cannot be overloaded. See the PL/SQL User’s Guide in the Oracle
Server documentation for more information on PL/SQL overloading.

You must give parameters different names for overloaded subprograms that have
the same number of parameters. Because HTML data is not associated with
datatypes, it is impossible for mod_plsql to know which version of the subprogram
to call.

1-20 Using mod_plsql

Overview of mod_plsql Features

For example, PL/SQL allows you to define the two procedures in the example
below. If parameter names for these procedures are the same, an error occurs when
you try to use them with mod_plsql:

-- legal PL/SQ, but not for nod_pl sql
CREATE PACKAGE ny_pkg AS
PROCEDURE ny_proc (val | N VARCHAR?);
PROCEDURE ny_proc (val IN NMBER;
END ny_pkg;

To avoid the error, name the parameters differently. For example:

-- legal PL/SQL and al so works for nod_pl sql
CREATE PACKACE ny_pkg AS
PROCEDURE ny_proc (val ve2 | N VARCHAR?) ;
PROCEDURE ny_proc (val num | N NJMBER) ;

BND ny_pkg;

The URL to invoke the first version of the procedure looks something like:

htt p: // waw acne. cond pl s/ nyDAD ny_pkg. ny_pr oc?val vc2=i hput
The URL to invoke the second version of the procedure looks something like:

htt p: // waw acne. cond pl s/ nyDAD ny_pkg. ny_pr oc?val hun¥34

1.5.3.2 Overloading and PL/SQL Arrays

If you have overloaded PL/SQL procedures where the parameter names are
identical, but where the data type is owa_util.ident_arr (a table of varchar2) for one
procedure and a scalar type for another procedure, mod_plsql can still distinguish
between the two procedures. For example, if you have the following procedures:

CREATE PACKAGE ny_pkg AS
PROCEDURE ny_proc (val IN VAR(HAR?); -- scalar data type
PROCEDURE ny_proc (val INowa util.ident_arr); -- array data type

B\D ny_pkg;

Each of these procedures has a single parameter of the same name, val .

mod_plsql Overview 1-21

Overview of mod_plsql Features

When mod_plsql gets a request that has only one value for the val parameter, it
invokes the procedure with the scalar data type. When it gets a request with more
than one value for the val parameter, it then invokes the procedure with the array
data type.

Example 1: If you send the following URL.:

htt p: // waw acre. cond pl s/ nyDAD ny_pr oc?val =j ohn
the scalar version of the procedure executes.

Example 2: If you send the following URL:

htt p: // waw acne. cond pl s/ nyDAD ny_pr oc?val =j ohn&al =sal | y
the array version of the procedure executes.

To ensure that the array version of the procedure executes, use hidden form
elements on your HTML page to send dummy values that are checked and
discarded in your procedure.

1.5.3.3 Flexible Parameter Passing

You can have HTML forms from which users can select any number of elements. If
these elements have different names, you must create overloaded procedures to
handle each possible combination, or you could insert hidden form elements to
ensure that the names in the query string are consistent each time, regardless of
which elements the user chooses.

mod_plsqgl makes this easier by supporting a flexible parameter passing scheme. In
order to use flexible parameter passing for a URL-based procedure invocation,
prefix the name of the procedure with a ‘I’ character in the URL. The procedure
must have the following signature:

procedure [proc_nane] is
nane_array IN [array_type]
value_array IN [array_type],
wher e:
[proc_name] is the name of the PL/SQL procedure that you are invoking.

name_array specifies the names from the query string (indexed from 1) in the order
submitted.

value_array specifies the values from the query string (indexed from 1) in the order
submitted.

[array_type] is any PL/SQL index-by table of varchar2 type (e.g., owa.vc_arr).

Note The above is a two parameter interface, which is recommended for use with
mod_plsql. A four parameter interface is supported for compatibility.

1-22 Using mod_plsql

Overview of mod_plsql Features

Example 1: If you send the following URL:

htt p: // waw acne. cond pl s/ nyDAD ! scot t . ny_pr oc?x=j ohn&=10&=doe
The ‘I’ prefix tells mod_plsql that it must use flexible parameter passing. It will
invoke procedure scott.myproc and pass it the following two arguments:

numentries ==] 3
reserved =] ()

Example 2: If you send the following URL, where the query_string has duplicate

occurrences of the name "x":

htt p: // waw acne. cond pl s/ nyDAD ! scot t . ny_pkg. ny_pr oc?x=a&y=b&x=c

The ‘I’ prefix tells mod_plsql that it must use flexible parameter passing. It will
invoke procedure scott. my_pkg. nyproc and pass it the following four
arguments:

numentries ==] 3

nane_array = (‘x', 'y, ‘x);
values_array ==] (‘a’, ‘b, ‘c’)
reserved =] ()

1.5.3.4 Large parameters

Section 1.5.3.2 and Section 1.5.3.3 above indicate that you can use mod_plsql to
invoke procedures with either scalar or index-by table of varchar2 arguments. The
values passed as scalar arguments and values that are passed as elements to the
index-by table of varchar2 arguments can be up to 32K in size.

For example, when using flexible parameter passing (described in "Flexible
Parameter Passing"” on page 1-22), each name or value in the query_string portion of
the URL gets passed as an element of the nane_array or val ue_array
argument to the procedure being invoked. These names or values can be up to 32KB
in size.

mod_plsql Overview 1-23

Overview of mod_plsql Features

1.5.4 File Upload and Download

mod_plsql allows you to:

Upload and download files as raw byte streams without any character set
conversions. The files are uploaded into the document table. A primary key is
passed to the PL/SQL upload handler routine so that it can retrieve the
appropriate row of the table.

Specify one or more tables per application for uploaded files so that files from
different applications are not mixed together.

Provide access to files in these tables via a URL format that doesn’t use query
strings, for example

http://nyhost/nysite/pl s/ docs/ cs250/ | ect urel. ht m

This is required to support uploading a set of files that have relative references
to each other.
Upload multiple files per form submission.

Upload files into LONG RAW and BLOB types of columns in the document
table.

1.5.4.1 Document Table Definition

mod_plsql enables you to specify the document storage table on a per DAD basis.
The document storage table must have the following definition;

1-24 Using mod_plsql

CREATE TABLE [tabl e_nane] (

NAME VARCHAR2(256) UN QUE NOT NLLL,

M ME_TYPE VARCHAR2(128),

DOC Sl ZE NUMBER

DAD CHARSET VARCHAR?(128),

LAST_UPDATED DATE,

cont ent _t ypeVARCHAR2(1128) ,

[content _col um_nane] [content _col unn_t ype]

[, [content_col unmm_nang] [content_col umm_type]]*

)

Overview of mod_plsql Features

Users can choose the table_name. The content_column_type type must be either
LONG RAW or BLOB.

The content_column_name depends on the corresponding content_column_type:

« Ifcontent_column_type is LONG RAW, the content_column_name must be
CONTENT.

« Ifcontent_column_type is BLOB, the content_column_ name must be
CONTENT_BLOB.

An example of legal document table definition is:

NAVE VARGHAR(128) LN QUE NOT NLLL,
M ME_TYPE VARGHAR(128) ,

DaC S ZE NUVBER

DAD CHARSET VARGHAR(128) ,

LAST_UPDATED DATE,

CONTENT_TYPE VARGHAR 128) ,

CONTENT LONG RA

BLCB_CONTENT BLCB ;

15.4.1.1 Semantics of the CONTENT column

The actual contents of the table will be stored in a content column. There can be
more than one content columns in a document table. However, for each row in the
document table, only one of the content column is used. The other content columns
are set to NULL.

15.4.1.2 Semantics of the CONTENT_TYPE column

The content_type column is used to track which content column the document is
stored in. When a document is uploaded, mod_plsql will set the value of this
column to be the type name (i.e. the [content_column_type] of the content column
into which the document is uploaded.

For example, if a document was uploaded into the BLOB content column, then the
content_type column for the document will be set to the string ‘BLOB’.

mod_plsql Overview 1-25

Overview of mod_plsql Features

15.4.1.3 Semantics of the LAST_UPDATED column

The LAST_UPDATED column reflects a document’s creation or last modified
time.When a document is uploaded, mod_plsql will set the

LAST_UPDATED column for the document to be the database server time (as
obtained from sysdate()) at the time of upload. If an application subsequently
modifies or replaces the contents or attributes of the document, it must also update
the LAST_UPDATED time.

The LAST_UPDATED column is used by mod_plsql to check and indicate to the
HTTP client (e.g., a browser) if it is okay for the HTTP client to use a previously
cached version of the document. This helps reduce network traffic and response
times and improves server performance and scalability.

15.4.1.4 Semantics of the DAD_CHARSET column

The DAD_CHARSET column keeps track of the character set setting at the time of
the file upload.

1.5.4.2 Old Style Document Table Definition

For backward capability with the document model used by older releases of WebDB
2.X, mod_plsql will also support the following old definition of the document
storage table where the content_type DAD_CHARSET and LAST_UPDATED
columns are not present.

/* ol der style docunent tabl e definition (CEPRECATED) */
CREATE TABLE [t abl e_nane]

(

NAVE VARCHAR?(128)

M ME_TYPE VARCHARR(128) ,
DCC S| ZE NUMBER

CONTENT LONG RAW

1.5.4.3 Relevant Parameters

For each DAD, the following configuration parameters are relevant for file
upload/download.

1-26 Using mod_plsql

Overview of mod_plsql Features

15.4.3.1 document_table (Document Table Name)

The document_table parameter specifies the name of the table to be used for storing
documents when file uploads are performed via this DAD.

Syntax

docunent _tabl e = [docunent _t abl e_nane]

Examples

docunent _tabl e = ny_docunent s
or,

docunent _tabl e = scott. ny_docunent _tabl e

1.5.4.4 document_path (Document Access Path)

This specifies the path element to immediately follow the DAD name in the URL to
access a document. For example, if the document access path is docs, then the URL
to access a document might look like:

htt p: // neon/ nyDAD docs/ nyfi | e. ht m

where nyDAD is the DAD name and nyfi | e. ht mis the file name. The document
access path mechanism enables the standard-style document access URLSs required
for WebDB’s features for building Web sites.

Syntax

docunent _pat h = [docurent _access_pat h_nane]

15.4.4.1 document_proc (Document Access Procedure):

This is an application-specified procedure, with no parameters, that processes a
URL request with the document access path. The document access procedure
should call wog_docl oad. downl oad_fil e(fil enane) to initiate download of a
file. It should figure out the filename based on the complete URL specification. This
can be used by an application, for example, to implement file-level access controls
and versioning. An example of such an application is shown in "File Download" on
page 1-31.

mod_plsql Overview 1-27

Overview of mod_plsql Features

Syntax

docunent _proc = [docurent _access_procedur e_nane]

Examples

docunent _proc = ny_access_procedur e
or,

docunent _proc = scott.ny_pkg. ny_access_procedur e

15.4.4.2 upload_as_long_raw

The DAD parameter upl oad_as_I| ong_r awis used to configure file uploads
based on their file extensions. The value of an upl oad_as_I| ong_raw DAD
parameter is a (,) comma separated list of file extensions. Files with these extensions
will be uploaded by mod_plsql into the content column of | ong_r awtype in the
document table.

The file extensions can be text literals (jpeg, gif, etc.). In addition, an asterisk (*) can
be used as a special file extension and matches any file whose extension has not
been explicitly listed in an upl oad_as_| ong_r awsetting.

Syntax
upl oad_as_long raw = [file_extension][,[file_extension]]*
where [file_extension] is an extension for a file (with or without the *.’ character,
e.g., ‘txt’ or “.txt’) or the wild card character *.
Examples

upl oad_as_long_raw = htnt, txt
upl oad_as_| ong_raw = *

1.5.4.5 File Upload

To upload files from a client machine to a database, you create an HTML page that
contains:

« A FORM tag whose enctype attribute issetto nul ti part/form data and
whose action attribute is associated with a mod_plsql procedure call, referred to
as the "action procedure”.

1-28 Using mod_plsql

Overview of mod_plsql Features

« AnINPUT element whose type and name attributes are set to file. The | NPUT
type=fi |l e element enables a user to browse and select files from the file
system.

When a user clicks the submit button to trigger the form action, the following
events occur:

1. The browser uploads the contents of the file specified by the user as well as
other form data to the server.

2. mod_plsql stores the file contents in the database in the document storage table.
The table name is derived from the document_table DAD setting.

3. The action procedure specified in the ACTION attribute of the FORM is run
similar to invoking a mod_plsql procedure without file upload.

The following example shows an HTML form that enables a user to select a file
from the file system to upload. The form contains other fields that allow the user to
provide information about the file.

<ht n >
<head>
<title>test upload</title>
</ head>
<body>
<FQRMenct ype="mul ti part/formdat a"
action="/sanpl e/plsql /wite_info"
net hod="PCBT" >
<p>Aut hor’s Nane: <I NPUT type="text" nane="who">
<p>Descri ption: <I NPUT type="text" nane="description">

<p>Fil e to upl oad: <I NPUT type="file" name="file">

<p><I NPUT type="submit">
</ FARW
</ body>
</ htn >

When a user clicks a Submit button on the form, the browser uploads the file listed
inthe | NPUT type=fil e element.

The write_info procedure then runs. The procedure writes information from the
form fields to a table in the database and returns a page to the user. The action
procedure does not have to return anything to the user, but it is a good idea to let
the user know whether the upload operation succeeded or failed.

mod_plsql Overview 1-29

Overview of mod_plsql Features

A sample write_info procedure might look like:

procedure wite_ info (

who in varchar 2,
description in varchar2,
file in varchar2) as
begi n

insert into nyTabl e val ues (who, description, file);

ht p. ht nh open;

ht p. headopen;

htp.title(’Fle Wl oaded);

ht p. headcl ose;

ht p. bodyopen;

ht p. header (1, ' Wl oad Satus’);

htp.print(’ Wloaded ' || file || ' successfully’);

ht p. bodycl ose;

ht p. ht ni cl ose;

end;
The filename obtained from the browser is prefixed with a generated directory
name to reduce the possibility of name conflicts. The "action procedure” specified in
the form should rename this name to what it wants. So, for instance, when
[private/ m nutes.txt isuploaded, the name stored in the table by the
gateway would look like FO080/ pri vat e/ m nut es. t xt . The application can
rename this to whatever it wants in the called stored procedure. For instance, the
application can rename itto scott/ m nut es. t xt.

1.5.4.6 Specifying Attributes (Mime Types) of Uploaded Files

In addition to renaming the uploaded file, the stored procedure that is the action
target of the form can alter other attributes relating to the file. For example, the form
in the example shown in section 1.5.4.5 on page 28 could display a field for
allowing the user to input the uploaded document’s mime type.

The mime type could be received as a parameter in write_info. The document table
could then store the mime type for the document instead of the default mime type
that is parsed from the multipart form by mod_plsql when uploading the file.

1.5.4.7 Uploading Multiple Files

To upload multiple files per submit action, the upload form must include multiple
<INPUT type="file" name="file"> elements. If more than one file INPUT element
defines narme to be of the same name, then the action procedure must declare that
parameter name to be of type owa.vc_arr. The names defined in the file INPUT
elements could also be unique, in which case the action procedure must declare

1-30 Using mod_plsql

Overview of mod_plsql Features

each of them to be of varchar2. For example, if a form contained the following
elements:

<INPUT type="file" name="textfiles">
<INPUT type="file" name="textfiles">
<INPUT type="file" name="bi naryfil e">

then the action procedure must contain the following parameters:

procedure handl e_text_and_binary files(textfiles IN owa.vc_arr,
bi naryfil e I N varchar?2).

1.5.4.8 File Download

After you have uploaded files to the database, you can download them, delete them
from the database, and read and write their attributes.

To download a file, create a stored procedure with no parameters that calls
wpg_docload.download_file(file_name) to initiate the download. The document
download packages are in docload.sql. See "Installing required packages" on
page 2-2 for more information about docload.sql.

The HTML page presented to the user will simply have a link to a URL which
includes the Document Access Path and specifies the file to be downloaded.

For example, if the webview DAD specifies that the Document Access Path is docs
and the Document Access Procedure is webview.process_download, then the
webview.process_download procedure will be called when the user clicks on a URL
such as

htt p: //acne/ pl s/ webvi ew docs/ nyfile. htm

mod_plsql Overview 1-31

CGlI Environment Variables

An example implementation of process_download is:

procedur e process_downl oad is
v_fil enane varchar2(255);
begi n
-- getfilepath() uses the SCR PT_NAME and PATH | NFO cgi
-- environnent variables to construct the full pathnane of
-- the file UR, and then returns the part of the pathnane
-- follow ng ‘/docs/’
v_filenane : = getfil epath;
select nane into v_fil enane frompl sgl _gat eway doc
where UPPER(nane) = WPPER(v_fil enane);
-- now we call docl oad. downl oad file to initiate
-- the downl oad.
wpg_docl oad. downl oad_file(v_fil enane);
except i on
when ot hers then
v_filenane := null;
end process_downl oad;

Any time you call wpg_docload.download_file(filename) from a procedure running
in the gateway, a download of the file f i | ename will be initiated. The restriction,
however, is that when a file downloaded is initiated, no other HTML (produced via
HTP interfaces) generated by the procedure, will be passed back to the browser.

mod_plsql looks up for the file filename in the document table. There must be a
unique row in the document table whose NAME column matches filename. mod_
plsql generates appropriate HTTP response headers based on the information in the
MIME_TYPE column of the document table. The

content_type column’s value determines which of the content columns get the
document’s content from. The contents of the document are sent as the body of the
HTTP response.

1.6 CGI Environment Variables

The OWA_UTIL package provides an API to get the values of CGI environment
variables, which serve to provide a kind of context to the procedure being executed
via mod_plsql. Although mod_plsql is not operated through CGl, the PL/SQL
application invoked from mod_plsql can access these CGI environment variables.

1-32 Using mod_plsql

CGlI Environment Variables

mod_plsql provides the following CGI environment variables:

REMOTE_USER
DAD_NAME
DOC_ACCESS_PATH
PATH_INFO

SCRIPT_NAME
SERVER_PORT
SERVER_NAME
REQUEST_METHOD
REMOTE_HOST
REMOTE_ADDR
SERVER_PROTOCOL
HTTP_USER_AGENT
HTTP_PRAGMA
HTTP_HOST
HTTP_ACCEPT
HTTP_ACCEPT ENCODING
HTTP_ACCEPT LANGUAGE
HTTP_ACCEPT CHARSET

REQUEST_CHARSET (see "REQUEST_CHARSET CGI environment variable"

on page 1-34 for more information)
REQUEST_IANA_CHARSET

DOCUMENT _TABLE (See "document_table (Document Table Name)" for more

information)
AUTHORIZATION

mod_plsql Overview 1-33

CGlI Environment Variables

1.6.1 NLS

A PL/SQL application can get the value of a CGI environment variable using the
owa_util.get_cgi_env interface.

Syntax:

owa_util.get_cgi _env(paramnanme in varchar2) return varchar2;

where

param_name is the name of the CGI environment variable. param_name is
case-insensitive.

The NLS extensions are part of the DAD or global settings in the Gateway
configuration and they provide a flexible infrastructure to request and retrieve
values to and from Oracle databases in different languages/formats. Even when the
database is configured with other NLS settings, all the conversions are handled
implicitly by the database and mod_plsq|l.

For example, if you have a database that is configured with US or NLS Currency
but you want to present the values in Japanese Yen to the user, all you need to do is
set NILS Currency to Japanese Yen. When the data is retrieved from the database, it
will be presented as Japanese Yen.

1.6.1.1 REQUEST_CHARSET CGl environment variable
Every request to mod_plsql is associated with a DAD. The CGI environment
variable REQUEST _CHARSET will be set as per the following rules:

« Otherwise, if NLS_LANG is specified as part of the Gateway’s global
configuration information, then the REQUEST_CHARSET CGI environment
variable will be set to the character set portion of the global NLS_LANG
parameter.

« Otherwise, the REQUEST_CHARSET will be set to the default character set in
use.

« For the embedded gateway this will be the database’s default character set.

« For the gateway deployed in the middle-tier (as part of WebDB listener or
Oracle HTTP Server) this will be the character set information derived from
the NLS_LANG environment variable of the WebDB listener process.

The PL/SQL application can access this information via a function call of the form:
owa util.get_cgi _env(‘ REQEST CHARSET);

1-34 Using mod_plsql

CGlI Environment Variables

1.6.1.2 REQUEST IANA CHARSET CGlI environment variable

This is the IANA (Internet Assigned Number Authority) equivalent of the
REQUEST_CHARSET CGI environment variable. IANA is an authority that
globally coordinates the standards for charsets used on the Internet.

mod_plsql Overview 1-35

CGlI Environment Variables

1-36 Using mod_plsql

2

Installing mod_plsql

2.1 System Requirements

The following are the recommended and minimum requirements for installing and
running mod_plsql:

Operating Systems

Windows NT 4.0 with Service Pack 3 or above
Solaris 2.6 and above

IBM AIX 4.3.2/4.3.3

Compagq Tru64 4.0d

Solaris Intel 2.7

Oracle Database

Oracle8i (Release 8.1.6)

Note mod_plsql requires the Oracle 8.1.6 client libraries to be installed in the
same Oracle Home as mod_plsql. If these libraries are installed, you can still
run mod_plsql against Oracle 8.0.5 or above. For example, you can use mod_
plsqgl to run PL/SQL procedures installed in a remote 8.0.5 database.

Web Listener

On Solaris - Oracle HTTP Server (powered by Apache) 1.3.9 for iAS version
1.0.0

On Windows NT - Oracle HTTP Server (powered by Apache) 1.3.12 for iAS
version 1.0.1

Installing mod_plsqgl 2-1

Before you begin

Web Browsers
= Netscape 4.0.8 and above

« Microsoft Internet Explorer 4.0.1 with Service Pack 1 and above

2.2 Before you begin

Before you install mod_plsql using the Internet Application Server (IAS) v1.0 Oracle
Universal Installer, you must satisfy the following prerequisite requirements:

= You must have a SYS user password on the database where you plan to load
Oracle Web Agent (OWA) packages required by mod_plsq|l.

« The database to which you plan to connect mod_plsql must be up and running.

= You must have enough disk space on the machine where you plan to run the
Oracle Universal Installer.

= You must have write permissions to the directory where the Oracle Universal
Installer is writing its oralnventory data.

2.3 Installation

To begin the Oracle Universal Installer, execute the runinstaller application located
on your product CD or stage area. Follow the instructions in each step of the
installation application, including choosing a directory where you want to install
iAS v1.0.1. This install directory will be referred to as <IAS_ROOT> after you
choose.

2.4 Installing required packages

After installation, you must manually install additional required packages using the
owaload.sql script.

1. Navigate to the directory where the owaload.sql and docload.sql files are
located. This directory should be <IAS_ROOT>/Apache/modplsql/owa.

2. Log into the Oracle 8.1.6 database as the SYS user.

2-2 Using mod_plsql

Configuring the Oracle HTTP Server Listener

3. AtaSQL prompt, run the following command:

@wal oad. sql log file

where
log_file is the installation log file.

owaload.sql installs the OWA packages into the SYS schema. It also creates
public synonyms and makes the packages public so that all users in the
database have access to them. Therefore, only one installation per database is
needed.

2.5 Configuring the Oracle HTTP Server Listener

The iAS installation creates configuration files that you can edit, including the
following that affect mod_plsql:

<IAS_ROOT>/Apache/Apache/bin/httpdsctl

This script is used to start and stop Oracle HTTP Server. Inside this file, there are
three parameters that affect mod_plsql:

« ORACLE_HOME - the Oracle Home in which mod_plsqgl runs. Default: <IAS_
ROOT>

« LD _LIBRARY_PATH - the Oracle libraries needed by mod_plsql. This should
point to an Oracle 8.1.6 installation. This parameter is for Solaris only.
Default: <IAS_ROOT>/lib

« WV_GATEWAY_CFG - mod_plsgl configuration file.
Default on Solaris: <IAS_ROOT>/Apache/modplsql/cfg/wdbsvr.app
Default on Windows NT <APACHE_HOME>/modplsql/cfg/wdbsvr.app

If you want to have mod_plsql running in another Oracle Home, remember to
change both the ORACLE_HOME and LD_LIBRARY_PATH settings.

On Solaris, if you want mod_plsql to use a different configuration file, just update
the httpdsctl file to point to the new configuration file. On Windows NT, you can
click Start->Settings->Control Panel->System. Click the Environment tab, then
create a System variable called WV_GATEWAY_CFG that points to the new
configuration file.

<IAS_ROOT>/Apache/Apache/conf/httpds.conf

This configuration file defines the behavior of Oracle HTTP Server (powered by
Apache). You can set your port number as well as other server settings.

Installing mod_plsqgl 2-3

Accessing the mod_plsql configuration page

<IAS_ROOT>/Apache/modplsqgl/cfg/plsql.conf

This configuration file describes settings for the mod_plsgl module. There settings
are configurable:

« LoadModule plsgl_module <MOD_PATH> - the location of the mod_plsql
module.
Default on Solaris: <IAS_ROOT>/Apache/modplsql/bin/modplsql.so
Default on Windows NT: <IAS_ROOT>/Apache/modplsql/bin/modplsq.dll
located in $ORACLE_HOME/bin

» <Location <MOUNT_PATH>> - the prefix in the URL for which mod_plsql is
invoked.
Default: /pls

<IAS_ROOT>/Apache/modplsqgl/cfg/wdbsvr.app

This is the main mod_plsql configuration file. It contains all the DAD information.
Please do not edit this file directly. Use mod_plsql configuration page, which you
can access through your browser as shown below.

2.6 Accessing the mod_plsqgl configuration page

To access to mod_plsql configuration page, enter the following URL in your Web
browser:

ht t p: / / <host nane>; <por t >/ pl s/ DADY <admi n_pat h>/ gat enay. ht m

where:
<hostname> is the machine where the application server is running.

<port> specifies the port at which the application server is listening. If omitted, port
80 is assumed.

<admin_path> specifies the URL path element that identifies an admin page. The
default is admin_. For example, if you specify the default of admin_, the following
URL will invoke mod_plsql configuration page, given that the invoking user is
listed in the administrators configuration setting:

htt p: // waw nyser ver . cond pl s/ adm n_/ gat enay. ht m
Configuration settings are protected by the administration security settings. The
web administration page can only be invoked by those users whose user names

appear in the Administrators setting of the configuration file. See "Configuring
mod_plsqgl" on page 3-7 for more information.

2-4 Using mod_plsql

Starting and stopping the Oracle HTTP Server Listener

2.6.1 pls.conf configuration file

The Oracle HTTP Listener configuration file includes the modplsql configuration
file plsgl.conf. The contents of plsql.conf are:

#

Drectives added for nod_pl sql

#

LoadMbdul e pl sgl _nodul e YAPACHE HOMEY nodpl sql / bi n/ nodpl sql . so

#
BEnabl e handling of all virtual paths beginning with "/pls" by nod-pl sql
#
<Location /pl s>
Set Handl er pl s_handl er
Qder deny, all ow
Alowfromall
</ Locati on>

2.7 Starting and stopping the Oracle HTTP Server Listener
To start the Apache listener, type:
<I AS ROOT>/ Apache/ Apache/ bi n/ httpdsct| start

To start the Apache listener with SSL. support, type:
<I AS ROOT>/ Apache/ Apache/ bi n/ htt pdsct!| start ssl

To stop the Apache listener, type:
> <| AS ROOr>/ Apache/ Apache/ bi n/ htt pdsct| stop

Installing mod_plsqgl 2-5

Starting and stopping the Oracle HTTP Server Listener

2-6 Using mod_plsql

3

Configuring mod_plsq|

mod_plsql provides a Web page for configuring Database Access Descriptors
(DADs). A DAD is a set of values that specify how mod_plsqgl connects to a
database server to fulfill an HTTP request.

You can access mod_plsql configuration page at

ht t p: / / <host nane>: <por t >/ pl s/ adni n_/ gat eway. ht m

3.1 mod_plsqgl Settings

Global Settings
Default Database Access Descriptor
(DAD)

Administrators

Specify a path that points to the default DAD. If the end user
enters a URL without specifying the DAD name, the home
page for the default DAD will be displayed.

Default = none You can change the DAD name by typing a
new one in this field.

Specifies who can view the admin pages. By default, this is
set to ALL which means anyone can view the admin pages.
This should be changed to a comma separated list of users to
enforce security on the admin pages, for example scott, mike
where scott and mike are local database user names. Or, scott,
mike@orcl where orcl is a connect string for a remote
database.

Note This setting is accessible through the configuration file
only, not through mod_plsqgl Web page.

Configuring mod_plsqgl 3-7

mod_plsql Settings

Admin Path

Database Access Descriptor
Settings

Database Access Descriptor Name

Oracle User Name

Oracle Password

Oracle Connect String

Authentication Mode

3-8 Using mod_plsql

Specifies the URL path element that identifies an admin
page. This should normally be left unchanged as /admin_/.

Note This setting is accessible through the configuration file
only, not through mod_plsqgl Web page.

Displays the name for this DAD. The name is set at
installation time or during creation of new web sites. You can
change the name by typing a new one in this field.

Displays the Oracle database account user name. The user
name is typically set at installation or during creation of new
web sites. You can change it by typing a new name in this
entry field.

Displays the Oracle database account password. The
password is typically set at installation, but you change it by
typing a new password in this entry field.

Notes The Oracle User Name and Password are the default
user name and password for logging in to a Web site or page.
If you leave the Oracle User Name and Oracle Password
entry fields blank, the user will be prompted to enter a user
name and password when first logging in.

Enter a SQL*Net alias if you are using a remote database.
Leave this field blank if the database is local.

This parameter can be set to one of the following values:

« Basic - authentication is performed using basic HTTP
authentication. Most applications will use Basic
authentication.

« Global Owa - authorization id performed in the OWA
package schema.

« Custom Owa - authorization is performed using
packages and procedures in the user’s schema, or if not
found, in the OWA package schema

« PerPackage - authentication is performed by packages
and procedures in the user’s schema

« Single Sign-On - authentication is performed using the
Oracle Single Sign-On feature of the Login Server. You
can use this mode only if your application is is set up to
work with the Login Server.

mod_plsql Setti

ngs

Session Cookie Name

Create a Stateful Session?

Keep Database Connection Open
Between Requests?

Maximum Number of Open
Connections

Enter a session cookie name only for Oracle Portal 3.X
installations that participate in a distributed environment.
Choose Yes to preserve the database package/session state
for each database request. Choose No to reset it after each
request. For mod_plsql, this parameter must be set to No.
Choose whether, after processing one URL request, the
database connection should be kept open to process future
requests. In most configurations, choose Yes for maximum
performance.

The mod_plsql cleanup thread cleans up database sessions
that have not been used for 15 minutes.

Enter the size of the connection pool. This is the maximum
number of database connections kept open at one time for
this DAD. If a request for another connection comes in after
the maximum number is reached, one of the connection is
closed to serve this request.

Tip You'll need to adjust this number depending on your
server, its capacity, and the number of connected users. As a
rule of thumb, set this number at between 5 and 20 at a
medium sized installation (approximately 200 users).

Notes

- This field is ignored when the Unix Oracle HTTP Server
(powered by Apache) is used with mod_plsql. In a Unix
configuration, each server process keeps one database
connection pooled for each DAD. Thus, the maximum
number of Oracle HTTP Server (powered by Apache)
processes currently alive is the maximum size of the
connection pool for each DAD. If the number of processes
grows, the pool size grows, and the Gateway creates new
connection. When a process dies, connections are closed. The
maximum number of server processes can be configured
through Oracle HTTP Server (powered by Apache)
Configuration files.

-When NT Oracle HTTP Server (powered by Apache) Server
is used with mod_plsql, configuration files govern the
maximum number of threads that will simultaneously be
serving requests. The Maximum Number of Open
Connections field governs the maximum number of
connection that can be kept open. Therefore, to ensure
correct behavior on NT, specify a value that is equal to
maximum number of threads specified in the Apache server
configuration file. If this number is smaller, some requests
may be rejected if threads are idle to serve but maximum
connection limit has already been reached.

Configuring mod_plsql

3-9

mod_plsql Settings

Keep Database Connection Open
Between Requests

Default (Home) Page

Document Table

Document Access Path

Document Access Procedure

Extensions to be Uploaded as
LONGRAW

Path Alias

Path Alias Procedure

3-10 Using mod_plsql

Choose whether, after processing one URL request, the
database connection should be kept open to process future
requests. In most configurations, specify Yes for maximum
performance.

Enter the PL/SQL procedure that will be invoked when none
is specified as part of the URL itself. For example, if you
specify a default home page of myapp. hore and an end
user enters this URL in a browser:

http://myapp.myserver.com:2000/pls/myapp/
will automatically update the URL to:

http://myapp.myserver.com:2000/pls/
myapp/myapp.home

Enter the name of the database table into which files
uploaded to a web site created with will be stored. The
default value in this entry field is based on the name of the
schema in which you created the site.

Enter a path in the URL installation that is used to indicate a
document is being referenced. In the following URL, for
example:

http://myapp.myserver.com:2000/pls/my_site/
docs/folderl/presentation.htm

docs is the document access path.

Enter the procedure that will be used to upload and
download documents.

Specify extensions for files to be uploaded as LONGRAW.

To be used by PL/SQL applications for path aliasing.

WebDB 2.X Note You must leave this field blank if the DAD
is for an existing WebDB 2.x Web site.

To be used by PL/SQL applications for path aliasing.

WebDB 2.X Note You must leave this field blank if the DAD
is for an existing WebDB 2.x Web site.

A

Setting up WebDB to run with mod_plsq|

This section is for WebDB users who plan to run WebDB version 2.x (2.0, 2.1, 2.2)
through mod_plsql.

4.1 Before You Begin

Use the latest OWA packages shipped with mod_plsql in your WebDB 2.x
database. Re-execute owaload.sql with the proper parameters if you are in
doubt. Note: This may invalidate some of your existing PL/SQL procedures.
You may need to recompile them. See "Installing required packages" on
page 2-2 for more information

Set the following in the DAD configuration for the WebDB 2.x schema in
wdbsvr.app configuration file.

Authentication Mode = Basic
Document Table = schema.wwv_document
upload_as_long raw =*

If you set up your DAD using the Add for WebDB 2.x configuration page
(http://<hostname>:<port>/pls/admin_/gateway.htm), these settings will
automatically be set.

To enable WebDB 2.x sites, please connect to the database as the owner of the
site and run wwvdocs.sql and wwvdocb.plb. These files are located in the same
directory as the owaload.sql and docload.sql files See "Installing required
packages" on page 2-2 for more information.

Setting up WebDB to run with mod_plsql 4-11

Before You Begin

4-12 Using mod_plsql

D

Using the PL/SQL Web Toolkit

Before you can use mod_plsql, you must install the packages in the PL/SQL Web
Toolkit in a common schema called owa_public in your Oracle database. Public
synonyms are used to enable users to execute the objects in the common schema.
Users execute the objects in the common schema with their own privileges, rather
than with the privileges of the common schema.

If multiple instances of the PL/SQL Web Toolkit are installed in the database, it is
recommended that you drop earlier packages from the individual schemas.

5.1 PL/SQL Web Toolkit Installation

If you did not install the PL/SQL Web Toolkit when you installed mod_plsql, you
can install it using the owaload .sql installation script. See "Installing required
packages" on page 2-2 for more information.

5.2 Packages in the Toolkit

The PL/SQL Web Toolkit contains the following packages:

Package

Description

htf and htp

The htp (hypertext procedures) package contains procedures that generate HTML tags.
For instance, the htp.anchor procedure generates the HTML anchor tag, <A>.

The htf (hypertext functions) package contains the function version of the procedures
in the htp package. The function versions do not directly generate output in your web
page. Instead, they pass their output as return values to the statements that invoked
them. Usethese functions when you need to nest calls.

To print the output of htf functions, call them from within the htp.print procedure,
which simply prints its parameter values to the generated web page.

Using the PL/SQL Web Toolkit 5-13

Packages in the Toolkit

Package

Description

owa

Contains subprograms required by mod_plsql.

owa_content

Contains functions and procedures that let you query the content service repository
and manipulate document properties.

owa_sec Contains subprograms used by mod_plsql for authenticating requests.
Note This package is included when you install the Toolkit with OAS. mod_plsqgl does
not use it.

owa_util Contains utility subprograms. It is divided into the following areas:

« Dynamic SQL utilities enable you to produce pages with dynamically generated
SQL code.

« HTML utilities enable you to retrieve the values of CGI environment variables and
perform URL redirects.

« Date utilities enable correct date-handling. Date values are simple strings in
HTML, but should be properly treated as a data type by the Oracle database.

owa_pattern

Contains subprograms that you can use to perform string matching and string
manipulation with regular expression functionality.

owa_text Contains subprograms used by owa_pattern for manipulating strings. They are
externalized so you can use them directly

owa_image Contains subprograms that get the coordinates of where the user clicked on an image.
Use this package when you have an imagemap whose destination links invoke a mod_
plsql.

owa_cookie Contains subprograms that enable you to send HTTP cookies to and get them from the

client’s browser. Cookies are opaque strings sent to the browser to maintain state
between HTTP calls. State can be maintained throughout the client’s session, or longer
if an expiration date is included. Your system date is calculated with reference to the
information specified in the owa_custom package.

owa_opt_lock

Contains subprograms that enable you to impose database optimistic locking
strategies, so as to prevent lost updates. Lost updates can occur if a user selects and
then attempts to update a row whose values have been changed in the meantime by
another user.

owa_custom

Contains the authorize function and the time zone constants used by cookies.

Note This package is included when you install the Toolkit with OAS. mod_plsqgl does
not use it.

5-14 Using mod_plsql

Packages in the Toolkit

5.2.1 htp and htf packages

The htp and htf packages provide subprograms that enable you to generate HTML
tags from your stored procedure. For example, the following commands generate a
simple HTML document:

create or replace procedure hello AS

BEA N
ht p. ht n open; -- generates <HM.>
ht p. headopen; -- generates <HEAD>
htp.title(’Hllo); -- generates <TlI TLE>Hel | o</ TI TLE>
ht p. headcl ose; -- generates </ HEAD>
ht p. bodyopen; -- generates <BDY>
ht p. header (1, 'Hel10'); -- generates <HL>Hel | o</ HL>
ht p. bodycl ose; -- generates </ BCDY>
ht p. ht m cl ose; -- generates </ HIM>
END,

These packages also provide print procedures (such as htp.print), which writes its
argument to the current document. You can use these print procedures to generate
non-standard HTML, to display the return value of functions, or to pass hard-coded
text that appears in the HTML document as-is. The generated text is passed to
mod_plsql, which then sends it to the user’s browser.

5.2.2 owa_image package

The owa_image package contains subprograms that get the coordinates of where
the user clicked on an image. You use this for image maps that invoke mod_plsql.
Your procedure would look something like:

create or replace procedure process_i nage
(ny_ing i n owa_i mage. poi nt)

X integer := owa_inage. get_x(ny_i ng);
y integer := owa_i nage. get_y(ny_i ng);
begi n

/* process the coordinate */
end

Using the PL/SQL Web Toolkit 5-15

Packages in the Toolkit

5.2.3 owa_opt_lock

The owa_opt_lock package contains subprograms that enable you to impose
database optimistic locking strategies, so as to prevent lost updates. Lost updates
can occur if a user selects and then attempts to update a row whose values have
been changed in the meantime by another user.

mod_plsql cannot use conventional database locking schemes because HTTP is a
stateless protocol. The owa_opt_lock package works around this by giving you two
ways of dealing with the lost update problem:

« The hidden fields method stores the previous values in hidden fields in the
HTML page. When the user requests an update, mod_plsql checks these values
against the current state of the database. The update operation is performed
only if the values match. To use this method, call the
owa_opt_lock.store_values procedure.

= The checksum method stores a checksum rather than the values themselves. To
use this method, call the owa_opt_lock.checksum function.

These methods are optimistic. That is, they do not prevent other users from
performing updates, but they do reject the current update if an intervening update
has occurred.

5.2.4 owa_custom

Note This package is included when you install the Toolkit with OAS. mod_plsqgl does not
use it.

The owa_custom package contains the authorize function and the time zone
constants used by cookies. Cookies use expiration dates defined in Greenwich Mean
Time (GMT). If you are not on GMT, you can specify your time zone using one of
these two constants:

If your time zone is recognized by Oracle, you can specify it directly using dbms_
server_timezone. The value for this is a string abbreviation for your time zone. (See
Oracle Server SQL Reference for a list of recognized time zones. For example, if your
time zone is Pacific Standard Time, you can use the following:

dbns_server_tinezone constant varchar2(3) :='PST

5-16 Using mod_plsql

Packages in the Toolkit

If your time zone is not recognized by Oracle, use dbms_server_gmtdiff to specify
the offset of your time zone from GMT. Specify a positive number if your time zone
is ahead of GMT, otherwise use a negative number.

dbns_server_gmdiff constant nunber := NULL

After making the appropriate changes, you need to reload the package.

5.2.5 owa_content

Note This package is included when you install the Toolkit with OAS. mod_plsqgl does not
use it.

The owa_content package contains functions and procedures that let you query the
content service repository and manipulate document properties. You can use this
package to perform tasks, like:

« setadocument description

« delete documents

« delete document attributes

« retrieve attribute information

« list document attributes

= retrieve content type of a document

When compiling PL/SQL procedures and packages that use the owa_content
package, you may get the following error message:

PLS 00201
identifier ‘VWEBSYS OM QONTENT nust be decl ared

To avoid this error, when creating a new DAD that uses a non local database, you
must enter the SYS username and corresponding password when prompted for a
DBA user. Entering the SYSTEM user will not allows the correct grant and rights to
be assigned to the database user. If you have entered SYSTEM as the DBA user then
you must explicitly perform the grant privilege option as shown below:

SQA>grant all on VEBSYS. OM QONTENT to scott
If you are creating a DAD using an existing database user, you must perform the
manual grant privilege shown above before using the OWA_CONTENT package.

The PL/SQL samples use the OWA_CONTENT package; so, these steps must be
performed before installing the PL/SQL samples.

Using the PL/SQL Web Toolkit 5-17

Conventions for Parameter Names in the Toolkit

5.3 Conventions for Parameter Names in the Toolkit

In the PL/SQL Web Toolkit, the first letter of the parameter name indicates the data
type of the parameter:

Table 5-1
First character Datatype Example
c VARCHAR2 cname IN VARCHAR?2
n INTEGER nsize IN INTEGER
d DATE dbuf IN DATE

5.4 HTML Tag attributes

5.5

Many HTML tags have a large number of optional attributes that, if passed as
individual parameters to the hypertext procedures or functions, would make the
calls cumbersome. In addition, some browsers support non-standard attributes.
Therefore, each hypertext procedure or function that generates an HTML tag has as
its last parameter cattri but es, an optional parameter. This parameter enables
you to pass the exact text of the desired HTML attributes to the PL/SQL procedure.

For example, the syntax for htp.em is:

htp. en{ctext, cattributes);

A call that uses HTML 3.0 attributes might look like the following:
htp.en{’ This is an exanpl e’ ,’ ID="SGVL_ID' LANG="en"");

which would generate the following:
<EMID="SGVL_ID' LANG="en">This is an exanpl e</ BW

mod_plsgl and Applets

When you reference an applet using the APPLET tag in an HTML file, the server
looks for the applet class file in the directory containing the HTML file. If the applet
class file is in another directory, you use the CODEBASE attribute of the APPLET
tag to specify that directory.

5-18 Using mod_plsql

LONG Data Type

When you generate an HTML page from mod_plsql and the page references an
applet, you must specify the CODEBASE attribute because mod_plsql does not
have a concept of a current directory and does not know where to look for the
applet class file.

The following example uses htp.appletopen to generate an APPLET tag. It uses the
cat tri but es parameter to specify the CODEBASE value.

ht p. appl et open(’ nyappl et . cl ass’, 100, 200, ' CDEBASE="/appl ets"’)

generates
<APPLET QCDE="nyappl et . cl ass" hei ght =100 wi dt h=200 QCDEBASE="/ appl et s">

/applets is a virtual path that contains the myapplet.class file.

56 Cookies

Cookies can be used to maintain persistent state variables from the client browser:

ht t p: / / hone. net scape. coni newsr ef / st d/ cooki e_spec. ht ni
http://waw vi rtual . net/ Proj ect s/ Gooki es/

The owa_cookie package enables you to send and retrieve cookies in HTTP headers.
It contains the following subprograms that you can use to set and get cookie values:

= Oowa_cookie.cookie data type contains cookie name-value pairs.
= Oowa_cookie.get function gets the value of the specified cookie.
« Oowa_cookie.get_all procedure gets all cookie name-value pairs.

= owa_cookie.remove procedure removes the specified cookie.

5.7 LONG Data Type

If you use values of the LONG data type in procedures/functions such as htp.print,
htp.prn, htp.prints, htp.ps, or owa_util.cellsprint, be aware that only the first 32K of
the LONG data is used. This reason for this limitation is that the LONG data is
bound to a varchar2 data type in the procedure/function.

Using the PL/SQL Web Toolkit 5-19

Extensions to the htp and htf Packages

5.8 Extensions to the htp and htf Packages

The htp and htf packages allow you to use customized extensions. Therefore, as the
HTML standard changes, you can add new functionality similar to the hypertext
procedure and function packages to reflect those changes.

Here is an example of customized packages using non-standard <BLINK> and
imaginary <SHOUT>tags:

creat e package nsf as
function blink(cbuf in varchar2) return varchar2;
function shout (cbuf in varchar2) return varchar2;
end;

creat e package body nsf as
function blink(cbuf in varchar2) return varchar2 is
begin return (" <BLINK' || cbuf || '</BLING);
end;
function shout (cbuf in varchar2) return varchar2 is
begin return (" <SHAUJT> || cbuf || *</SHAU>);
end;
end;

create package nsp as
procedure blink(cbufin varchar?2);
procedure shout (cbufin varchar?2);
end;

creat e package body nsp as
procedure blink(cbufin varchar?) is
begi n htp. print(nsf.blink(cbuf));
end;
procedure shout (cbufin varchar2) is
begi n ht p. print (nsf. shout (cbuf));
end;
end;
Now you can begin to use these procedures and functions in your own procedure.

creat e procedure nonstandard as

begi n
nsp. bl ink(’ Gee this hurts ny eyes!’);
htp.print(’And | might * || nsf.shout(’get nad!’'));
end;

5-20 Using mod_plsql

owa_pattern.match

5.9 String Matching and Manipulation

The owa_pattern package contains procedures and functions that you can use to
perform string matching and string manipulation with regular expression
functionality. The package provides the following subprograms:

« The owa_pattern.match function determines whether a regular expression
exists in a string. It returns TRUE or FALSE.

« The owa_pattern.amatch function is a more sophisticated variation of the
owa_pattern.match function. It lets you specify where in the string the match
has to occur. This function returns the end of the location in the string where the
regular expression was found. If the regular expression is not found, it returns
0.

« The owa_pattern.change function and procedure lets you replace the portion of
the string that matched the regular expression with a new string. If you call it as
a function, it returns the number of times the regular expression was found and
replaced.

These subprograms are overloaded. That is, there are several versions of each,
distinguished by the parameters they take. Specifically, there are six versions of
MATCH, and four each of AMATCH and CHANGE. The subprograms use the
following parameters:

« line - This is the target to be examined for a match. Despite the name, it can be
more than one line of text or can be a owa_text.multi_line data type.

« pat- This is the pattern that the subprograms attempt to locate in line. The
pattern can contain regular expressions. Note in the

= owa_pattern.change function and procedure, this parameter is called from_str.

« flags - This specifies whether the search is case-sensitive or if substitutions are
to be done globally.

5.10 owa_pattern.match

The regular expression in this function can be either a VARCHAR?2 or a
owa_pattern.pattern data type. You can create a owa_pattern.pattern data type from
a string using the owa_pattern.getpat procedure.

You can create a multi_line data type from a long string using the
owa_text.stream2multi procedure. If a multi_line is used, the rlist parameter
specifies a list of chunks where matches were found.

Using the PL/SQL Web Toolkit 5-21

owa_pattern.change

If the line is a string and not a multi_line, you can add an optional output parameter
called backrefs. This parameter is a row_list that holds each string in the target that

was matched by a sequence of tokens in the regular expression. Here is an example

of the owa_pattern.match function:

bool ean f oundNat ch;
foundhMat ch : = owa _pattern. natch(’ KAZGQD, 'zoo.*', 'i’);

This is how the function works: KAZOO is the target where it is searching for the
z00. * regular expression. The period indicates any character other than newline,
and the asterisk matches 0 or more of the preceding characters. In this case, it
matches any character other than the newline.

Therefore, this regular expression specifies that a matching target consists of zoo,
followed by any set of characters neither ending in nor including a newline (which
does not match the period). The i is a flag indicating that case is to be ignored in the
search. In this case, the function returns TRUE, which indicates that a match had
been found.

5.11 owa_pattern.change

owa_pattern.change can be a procedure or a function, depending on how it is
invoked. As a function, it returns the number of changes made. If the flag ‘g’ is not
used, this number can only be 0 or 1. The flag ‘g’ specifies that all matches are to be
replaced by the regular expression. Otherwise, only the first match is replaced.

The replacement string can use the token ampersand (&), which indicates that the
portion of the target that matched the regular expression is to be included in the
expression that replaces it. For example:

owa_pattern.change(’ Cats in pajamas’, 'C+n', '&red ")

The regular expression matches the substring ‘Cats in’. It then replaces this string
with ‘& red’. The ampersand character, &, indicates ‘Cats in’, since that’s what
matched the regular expression. Thus, this procedure replaces the string ‘Cats in
pajamas’ with 'Cats in red’. If you called this as a function instead of a procedure,
the value it would return would not be ‘Cats in red’ but 1, indicating that a single
substitution had been made.

5-22 Using mod_plsql

S

mod_plsql Tutorial

This section provides a step-by-step guide on creating and invoking a simple
application that displays the contents of a database table as an HTML table. The
application consists of one PL/SQL cartridge. The cartridge invokes a stored
procedure that calls functions and procedures defined in the PL/SQL Web Toolkit.

This tutorial assumes the following:
= You have completed the section, "Installing required packages" on page 2-2.

= Youcan log in as the admin user on the server. This is required because you will
be adding new settings to the server configuration. The database to which you
will be connecting already has the PL/SQL Web Toolkit installed. See "PL/SQL
Web Toolkit Installation" on page 5-13 for more information.

= You have the SCOTT schema in your Oracle database. The PL/SQL cartridge
logs into the database using scott/tiger as the username and password. If you
do not have the SCOTTschema, you can use an existing schema on your
database, or you can create SCOTT using the CREATE SCHEMA command.

A schema is a user account containing as a collection of database objects such as
tables, views, procedures, and functions. Each object in the schema can access
other objects in the same schema.

6.1 Creating and Loading the Stored Procedure onto the Database

The stored procedure that the application invokes is current_users (defined below).
The procedure retrieves the contents of the all_users table and formats it as an
HTML table.

To create the stored procedure, save the text of the procedure in a file called
current_users.sql, and then run Oracle Server Manager to read and execute the
statements in the file.

mod_plsql Tutorial 6-23

Creating and Loading the Stored Procedure onto the Database

1. Type the following lines and save it in a file called current_users.sql. The
current_users procedure retrieves the contents of the all_users table and formats
itasan HTML table.

create or replace procedure current_users
AS
i gnor e bool ean;
BEA N
ht p. ht n open;
ht p. headopen;
htp.title(’ Qurrent Wsers’);
ht p. headcl ose;
ht p. bodyopen;
ht p. header (1, 'Qurrent Wsers’);
ignore :=owa util.tablePrint(’all_users’);
ht p. bodycl ose;
ht p. ht m cl ose;

END,
/

show errors

This procedure uses functions and procedures from the htp and owa_util
packages to generate the HTML page. For example, the htp.htmlopen
procedure generates the string

<html>, and htp.title("Current Users’) generates <title>Current Users</title>.

The owa_util.tablePrint function queries the specified database table, and
formats the contents as an HTML table.

2. Start up Server Manager in line mode. ORACLE_HOME is the directory that
contains the Oracle database files.

pronpt > $CRACLE HOME/ bi n/ svr nor |

3. Connect to the database as "scott". The password is "tiger".

SVRMER> connect scott/tiger

4. Load the current_users stored procedure from the current_users.sql file. You
need to provide the full path to the file if you started up Server Manager from a
directory different than the one containing the current_users.sql file.

SR> @ Nane of script file: current_users. sql

6-24 Using mod_plsql

Creating and Loading the Stored Procedure onto the Database

5. Exit Server Managetr.

SVRVER> exit

6. Configure a DAD to point to the schema where PL/SQL applications that you
want to run with mod_plsql are stored, with the parameters shown in the

following table:

Table 6-1

Parameter Value
Datab_ase Access Scott

Descriptor Name

Schema Scott

Oracle User Name Scott

Oracle Password Tiger

Oracle Connect String
Authentication Mode
Session Cookie Name
Create a Stateful Session?

Keep Database
Connections Open
Between Requests

Maximum Number of
Worker Threads

Default (Home) Page
Document Table
Document Access Path

Document Access
Procedure

Extensions to be Uploaded
as LONGRAW

Path Alias

Path Alias Procedure

htmlperf-tcp

Basic

No

Yes

10

Scott.home
Scott.wwdoc_document
docs

Scott.wpg_testdoc.process_download

*

mod_plsql Tutorial

6-25

Creating and Loading the Stored Procedure onto the Database

Notes
= You need to configure only one DAD per schema.

« If you want require a user to log on to the database containing the application,
leave the Oracle User Name and Oracle Password fields blank.

6-26 Using mod_plsql

Creating an HTML Page to Invoke the Application

6.2 Creating an HTML Page to Invoke the Application
To run the current_users procedure, enter the following URL in your browser:

htt p: //<host>: <port >/ / pl s/ nydad/ scott. current_users

It is more common, however, to invoke the procedure from an HTML page. For
example, the following HTML page has a link that calls the URL.

<HTM_>
<HEAD>
<title>Qurrent Wsers</title>
</ HEAD>

<BCDY>

<HLl>Qurrent Users</ Hl>

<p><a href="http://hal . us. oracl e. com 9999/ si npl eAppl/ cart 1/ current _
user s">Run

current _users</ a>

</ BODY>

</ HTM>

The figure below shows the source page (the page containing the link that invokes
the stored procedure), and the page that is generated by the current_users stored
procedure.

:p the name "simple". Do not imnchide blanks or special characters. A simple name like VourMName. gif wall do.
cial characters will mess up the URL when you try to retrieve it If you get a databaze error to the effect of
slicate key", then simply use the update button mstead of wnsert. It just means someone else has already uzed
name. Smee this 15 a demo, you can ust overwnte thew stuff

What should the name he:

Browse... |

Inseﬂl Update | Reset |

mod_plsqgl Tutorial 6-27

Creating an HTML Page to Invoke the Application

6-28 Using mod_plsql

Index

A date utility

in owa_util package, 14
deauthentication, 16
document access path, 27

administration pages
setting access to, 7

Apache : setting, 10
stopping, document table
applets, 18 setting, 10
arrays, 21 document table definition, 24
authentication, 16 old style, 26
document_path, 27
C document_proc, 27

document_table, 27
download, 24
downloading files, 31
DTD, 24

old style, 26
dynamic SQL utility

in owa_util package, 14

CGl
owa_util PL/SQL web toolkit package, 14
client request, 12
configuration
database access descriptor (DAD), 7
PL/SQL Gateway, 4,7

WebDB, 11
content colum, 25
content_type column, 25 E
cookies, 19 - -
' . . environment variables
owa_cookie PL/SQL web toolkit package, 14 CGl 32
D F

DAD_charset column, 26
data access descriptor (DAD)
configuring, 7

file upload, 24,28
attributes, 30
document table, 10

database multiple files, 30
locking, 16
setting password, 8

database access descriptor, 12 G

database access descriptor (DAD), 12 GET method, 15

Index-1

global settings, 7

H

home page
setting, 10
HTML page
invoking an application with, 27
HTML tags
attibutes, 18
htp and htf PL/SQL web toolkit packages, 13, 15
extensions, 20

images
owa_image PL/SQL web toolkit package, 14
installation, 1

L

LONG datatype, 19

M

mime type, 30

N

National Language Support (NLS), 34

O

overloading, 20,21

owa PL/SQL web toolkit package, 14
owa_content PL/SQL web toolkit package, 14,17
owa_cookie PL/SQL web toolkit package, 14
owa_custom PL/SQL web toolkit package, 14,16
owa_image PL/SQL web toolkit package, 14, 15
owa_opt_lock PL/SQL web toolkit package, 14, 16
owa_pattern PL/SQL web toolkit package, 14
owa_pattern.change function/procedure, 22
owa_pattern.match function, 21

owa_sec PL/SQL web toolkit package, 14
owa_text PL/SQL web toolkit package, 14
owa_util PL/SQL web toolkit package, 32, 14

-2 Using mod_plsql

owaload.sgl, 2

P

paragraph tags
PT PrefaceTitle, ix
parameters
flexible, 22
large, 23
overloaded, 20
passing, 20,22
PL/SQL web toolkit, 18
path alias
setting, 10
pls.conf configuration file, 5
PL/SQL Gateway
applets, 18
configuring, 4,7
features, 16
invoking, 13
running with WebDB, 11
tutorial, 23
PL/SQL procedure
loading into database, 23
PL/SQL Web Toolkit, 13
POST method, 15
PT PrefaceTitle, ix

R

request_charset, 34

S

string matching, 21
system requirements, 1

T
transaction model, 19
tutorial, 23

U

upload, 24

Index

-3

upload_as_content_type, 28

w

WebDB, 11
worker threads, 9

-4 Using mod_plsql

	1 mod_plsql Overview
	1.1� Stateless and Stateful modes
	1.2� Database Access Descriptors
	1.3� Processing client requests
	1.4� Invoking mod_plsql
	1.4.1� POST and GET Methods

	1.5� Overview of mod_plsql Features
	1.5.1� Authentication
	1.5.1.1� Database Controlled Authentication
	1.5.1.2� Deauthentication
	1.5.1.3� Custom Authentication

	1.5.2� Transaction model
	1.5.3� Parameter passing
	1.5.3.1� Overloaded parameters
	1.5.3.2� Overloading and PL/SQL Arrays
	1.5.3.3� Flexible Parameter Passing
	1.5.3.4� Large parameters

	1.5.4� File Upload and Download
	1.5.4.1� Document Table Definition
	1.5.4.2� Old Style Document Table Definition
	1.5.4.3� Relevant Parameters
	1.5.4.4� document_path (Document Access Path)
	1.5.4.5� File Upload
	1.5.4.6� Specifying Attributes (Mime Types) of Uploaded Files
	1.5.4.7� Uploading Multiple Files
	1.5.4.8� File Download

	1.6� CGI Environment Variables
	1.6.1� NLS
	1.6.1.1� REQUEST_CHARSET CGI environment variable
	1.6.1.2� REQUEST_IANA_CHARSET CGI environment variable

	2 Installing mod_plsql
	2.1� System Requirements
	2.2� Before you begin
	2.3� Installation
	2.4� Installing required packages
	2.5� Configuring the Oracle HTTP Server Listener
	2.6� Accessing the mod_plsql configuration page
	2.6.1� pls.conf configuration file

	2.7� Starting and stopping the Oracle HTTP Server Listener

	3 Configuring mod_plsql
	3.1� mod_plsql Settings

	4 Setting up WebDB to run with mod_plsql
	4.1� Before You Begin

	5 Using the PL/SQL Web Toolkit
	5.1� PL/SQL Web Toolkit Installation
	5.2� Packages in the Toolkit
	5.2.1� htp and htf packages
	5.2.2� owa_image package
	5.2.3� owa_opt_lock
	5.2.4� owa_custom
	5.2.5� owa_content

	5.3� Conventions for Parameter Names in the Toolkit
	5.4� HTML Tag attributes
	5.5� mod_plsql and Applets
	5.6� Cookies
	5.7� LONG Data Type
	5.8� Extensions to the htp and htf Packages
	5.9� String Matching and Manipulation
	5.10� owa_pattern.match
	5.11� owa_pattern.change

	6 mod_plsql Tutorial
	6.1� Creating and Loading the Stored Procedure onto the Database
	6.2� Creating an HTML Page to Invoke the Application

