Oracle8i

JDBC Developer’s Guide and Reference

Release 2 (8.1.6)

December 1999
Part No. A81354-01

ORACLE



JDBC Developer’s Guide and Reference, Release 2.0.1

Part No. A81354-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Brian Wright, Thomas Pfaeffle

Contributors:  Sunil Kunisetty, Joyce Yang, Soulaiman Htite, Douglas Surber, Anthony Lai, Paul Lo,
Prabha Krishna, Ragamayi Bhyravabhotla, Patrick Day, Van Le, Andrew Philips, Naresh Kumar, Kristy
Browder, Bernie Harris, Ana Hernandez, Janice Wong, Jack Melnick, Tim Smith, Ellen Barnes, Susan
Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper™, Net8™, Oracle Objects™, Oracle8i™, Oracle8™,
Oracle7™, PL/SQL™, SQL*Net®, and SQL*Plus® are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.



Contents

SENA US YOUT COMMENTES ...ttt ettt et st ee ettt s e ee et et et et e s e nes et rerenas XV
PRI AC ...ttt ettt ettt ettt et ettt et ettt e enas Xvii
{101 (T gL (Y0 I AN U o [ 1T o 1o < IR XVil
DOCUMENT SEIUCTUIE ...t ettt ettt e e e et e e e et e e e e saeee et b e s eaaeaeesbbe s et bessaseeessbbeesesteeesaes XViii
DOCUMENT CONVENTIONS ...ttt ettt e et e e e et e et e et e et e e sae e e e e eae s et e eessaeeseneeenensenas XX
REIATE DOCUMEBNES. ... eei ettt ettt ettt e e s et e e et e e s ebe e e e ebe e e sttaesesbeeessabesesbeee s srbesesssbeesasre s saneas XX

1 Overview

[T aY A oTo [UTw1 A To] o NN OO TSROV 1-2
WAL IS DB ...ttt sttt ettt a e et et ae et e e et e et et e et e st e et b e st s eteesteeabesneennas 1-2
JDBEC VEISUS SQLJ ..ottt ettt et ettt e st e e st e e e e te e e nte e e e et e eneeate e enneenreen 1-2

Overview of the Oracle JIDBC DIIVEIS.......ccce ettt ettt sttt et s e b s 1-5
Common Features of Oracle IDBC DIIVELS .......cocoiiiiiiiieiicie ettt 1-6
JDBC THIN DIIVEL ..ottt sttt et et et e e e te et e e e et et e e st e ebaesteenbenneeaeas 1-7
JDBC OC DIIVEIS....iitietie ettt ettt ettt st sttt sttt e be e ab e be et e s ae et e s e e st et ae st s etbesbeeabesneennas 1-8
JDBC Server-Side ThIN DIIVEL ...ttt ettt st sre b ene s 1-8
JDBC Server-Side INTErNal DIIVET ..ottt s sr e ene s 1-8
ChooSing the APPrOPFIate DITVEL .......cc.oiiiiiii it e 1-9

Overview of Application and Applet FUNCLIONATITY ..o 1-10
APPIICALION BASICS ....veviiiiie ettt ettt ettt bbb et en et ne s ben e es 1-10
AAPPIET BASICS ... vttt ettt et e b b bbb en e 1-10
(O] = Tod LI o Tq (=] 1Y o 1 SO 1-11

SEIVEI-SIOE BASICS.....uiiiiiiiiici sttt e st st et be st e e b besbeebbesbeeabe s be e e saeereas 1-12



SesSion and TranSACTION CONTEXT.......cccuiiiieiiiieiee ettt e e et e ee e s seee e e ste s s se e e s sabeeeesbbeseanes 1-12

CoNNECtiNG 10 the Database.......coiiueieie et ettt s eenees 1-12
ENVIFONMENTS QN SUPPOIT . ...c.iiiiiiiiiiiciiiet st 1-13
Supported JDK and JDBC VEISIONS ........ccciiieiiiieiiieiee ittt 1-13
NI anNd Java ENVIFONMENTS ........c.oiuiiiiieiie ittt ettt bbbt 1-14
JDBC and the Oracle APPlICAtioN SEIVEL .......cccooiiiiii it 1-14
IDBC @NA IDES ...ttt ittt sttt ettt et et es bbbt er et 1-14

Getting Started

Requirements and Compatibilities for Oracle IDBC DIiVersS........cccooiviiiiieiiine s 2-2
Verifying a JDBC Client INStallation ..ot 2-4
Check Installed Directories and FileS. ..o 2-4
Check the Environment Variables. ... e 2-6
Make Sure You Can Compile and RUN JAVA ..o 2-7
Determine the Version 0f the IDBC DIIVEL ........ccoviiiiiiiece e 2-7
Testing JDBC and the Database Connection: JADCCheCKUP .......cccooeiierieicence e 2-8

Basic Features

FIrst SEEPS 1N JDBC ...t s s b s e e 3-2
IMPOIT PACKAGES ... vttt et eb b bbb eh bbb et e 3-2
REQISLEr the JDBC DIIIVELS ...c.eiiiiii ittt bbbt b en e 3-3
Open a ConNnection t0 @ DAtaDASE ..ot e 3-3
Create a StatemMeNnt ODJECT. ......ocviii et 3-10
Execute a Query and Return a Result Set ODJECE ..........ccvieiiiiiiiiee e 3-10
Process the RESUIL SEL......cuiiiiiii i e s 3-11
Close the Result Set and Statement ODJECES ..o 3-11
Make Changes to the Database ... s 3-12
(©0] 0 0] 0 011 01 o - Vo =TT SRRP 3-13
Cl0SE the CONNECTION. ....ciiiiiie e bbb sr e b 3-14

Sample: Connecting, Querying, and Processing the Results ..., 3-15

DAtatyPe MAPPINGS .. .vve ettt sttt ettt ettt bbb e st b e st st b et eb e st eb et eb et b et bt en e ber e ben e 3-16
Table Of IMAPPINGS ..cvee et ettt e 3-16
Notes Regarding MapPiNgS .......cccoeiriireiiene et e e bbb 3-18

Java Streams IN JDBC ... ..ottt et ettt e b et bt r et er e 3-19

Streaming LONG or LONG RAW COIUMNS......ccooiiiiiieieie et 3-19



Streaming CHAR, VARCHAR, or RAW COIUMNS........ccociiiiiiiii e 3-24

Data Streaming and Multiple COIUMNS .........ccooiiiiiiiie e e 3-25
Streaming LOBS and EXTErNal FIlES .........coviiiiiiiiiie e 3-27
(O [Ty T g o = TS T Ut o OSSPSR 3-28
Notes and Precautions 0N STFEAMIS .........ccoviiriiiiriieire ettt e 3-28
Stored Procedure Calls in JIDBC ProgramS.........cccouiieirieinentnienese ettt 3-31
PL/ZSQL StOred PrOCEAUIES.......ccuiieiiieiie ettt ettt sttt e et en ettt st sneneesee e eneenens 3-31
JAVA STOFEA PrOCEAUIES ..ottt e bbb bbb en e 3-32
Processing SQL EXCEPTIONS.........ciiiiiiieie ittt e s s s s e s 3-33
Retrieving Error INfOrMation ..o e 3-33
Printing the STACK TraCe ... e 3-34

Overview of JDBC 2.0 Support

FNEFOTUCTION ..ottt bbbt eh bbb bbb et s 4-2
JDBC 2.0 Support: IDK 1.2.X VErsus JDK L.1X ...cccccoiiiiiiiriiiriirie s 4-3
DaAtatyYPE SUPPOIT ..ottt ettt b et er e st et en e 4-3
Standard FEAtUIE SUPPOIT .......ooviiiie ittt et ettt sae et es e et re s e e nne e 4-4
Extended FEAtUIE SUPPOIT ......ciii ittt ettt sttt ettt en e 4-5
Standard versus Oracle Performance Enhancement APIS ... 4-5
Migration from JDK 1.1.X 10 JIDK L.2.X c..cciciriiiiiiiieieieiee et s s 4-5
OVerview OF JIDBC 2.0 FEALUIES......co.ci ittt ittt sttt sttt st eb et eb et eb e st eb et en et eb e en e 4-7

Overview of Oracle Extensions

Introduction t0 Oracle EXIENSIONS ..ot 5-2
Support Features of the Oracle EXIENSIONS ..o 5-3
SUPPOIt FOr Oracle DAtALYPES ......covcueiieiirieiirieeirie sttt e e 5-3
SUPPOIt FOr Oracle ODJECES ......ooviviieieiieiiict et e 5-4
SuppPort for SChEMa NAMING ...ccii i 5-5
Oracle JDBC Packages and CIaSSES..........ociriiriiiiiiieiinietine ettt ettt 5-7
Package OraCle.SOL........ooiiiii e bbb bbb 5-7
Package oracle JahC.ArIVET ... e 5-16
Package oracle.jdbc2 (for IDK 1.1.X ONIY) ...ciiiiiiiie et 5-24
Oracle TYPE EXIENSIONS. ..ottt 5-26
Oracle ROWID TYPE ..ttt ettt ettt e et sttt bt st b et nee e ereen s ese e s 5-26
Oracle REF CURSOR TYPE CAtEUONY ......cviueririeririerinie sttt seere sttt sreseesese s snesiesesiesesnenennas 5-27



Support for Oracle Extensions in 8.0.x and 7.3.X JDBC DFiVerS........ccccoereeinierienesieneniennn 5-29

6 Accessing and Manipulating Oracle Data

Data Conversion CONSTAEIATIONS .........cuiiiiiiieie ettt e 6-2
Standard TYPeS VErSUS OFaCle TYPES. .....c.uiiiriiirieiiieiiietiieise sttt ettt sttt 6-2
ConVverting SQOL NULL Data......cccooiieiiiieie ettt et st esee e sn s e 6-2

Result Set and Statement EXIENSTONS .......cuiiiiii it e s 6-3

Comparison of Oracle get and set Methods to Standard JDBC..........ccccovviiiiiiniine s 6-4
Standard getODbject() MEthOd..........cooiii i 6-4
Oracle getOracleObject() MEtNOd ..o e 6-4
Summary of getObject() and getOracleObject() REtUrN TYPES .....c.covervvviiiiieeieeeieeee e 6-6
Other getXXX() MEtNOGS ..ottt 6-7
Casting Your get Method RetUrn ValUES ..ot 6-10
Standard setObject() and Oracle setOracleObject() Methods...........cccoceveieniieiciencncee, 6-11
Other SetXXX() MELNOGS ......cuoiiiiieie e s e 6-12
Limitations of the Oracle 8.0.x and 7.3.X JDBC DIIVEIS ......c.cccoveinirieneiinieieie s 6-18

Using Result Set Meta Data EXIENSIONS .......coiiiiiiieieie e e 6-19

7 Working with LOBs and BFILEs

Oracle Extensions for LOBS and BFILES ..ot 7-2
Working With BLOBS @nNd CLOBS ........cociuiiiiiiee ettt st se e eaeste e e stesne e e snesnens 7-3
Getting and Passing BLOB and CLOB LOCALOIS ........c.ccieieririie s reeeeie e e e seeneenens 7-3
Reading and Writing BLOB and CLOB Data .........cccoveiiiiiinieieirieee et s 7-6
Creating and Populating @ BLOB 0r CLOB COIUMN ..ot 7-10
Accessing and Manipulating BLOB and CLOB Data.........ccccoueieiieeesinene e 7-12
Additional BLOB and CLOB FEATUIES .......c..ccuiiiiiieiiie et seeie et eseeie e esesieneas 7-13
WOFKING WILh BEILES ......coiiiiiiiiiie ittt ettt et e b et b et eb et eb et en e ben e ben e 7-16
Getting and Passing BFEILE LOCALOIS..........ccuoiiiiriiiniiiricnee e e e 7-16
REAAING BFILE DALA ......eoviiviiiieeie ettt ettt sttt et st e s et es e nee e e neens 7-18
Creating and Populating @ BFILE COIUMN ........coooiiiiiii e 7-19
Accessing and Manipulating BFILE Data .........c.coccoeieiiinienciniinecnecseises e 7-21
AddItIoNal BFILE FEATUIES ......cuiviiitiiitiie ettt bbb 7-22

Vi



8

9

Working with Oracle Object Types

MapPIiNgG Oracle ODJECLS ....c.oco i e 8-2
Using the Default STRUCT Class for Oracle ODjJECtS..........ccciiiiieiiiniie e 8-3
STRUCT Class FUNCLIONANILY .....c.ooviiiiiiiiiieiie s 8-3
Creating STRUCT ODbjects and DeSCIIPLOIS ........cuiiiiieeiirieie e ee et 8-5
Retrieving STRUCT Objects and ALIFDULES .......ccooeiiiiii i 8-6
Binding STRUCT Objects iNt0 StatemMEentS.........ccccviiiiiiieiriiee e 8-8
Creating and Using Custom Object Classes for Oracle ODbJecCtS .........ccovoviirinencincnnns 8-9
Relative Advantages of CustomDatum versus SQLDALA...........cccereeereiiieieie e 8-10
Understanding Type Maps for SQLData Implementations.............ccooeveneiencineincineenns 8-10
Creating a Type Map Object and Defining Mappings for a SQLData Implementation .. 8-11
Understanding the SQLData INtErface ........ccocooiviiiie i 8-14
Reading and Writing Data with a SQLData Implementation............c..ccoooevvniinninncnennnne 8-17
Understanding the CustomDatum INterface........cocooeieiiiiiieis i 8-20
Reading and Writing Data with a CustomDatum Implementation............cc.ccocooveee i 8-23
Additional Uses for CUSTOMDATUM .........cocciiiiiiiii i 8-26
Using JPublisher to Create Custom ODJeCt ClaSSES........cccvieiieiienieieee e 8-28
JPUBLISher FUNCHIONAIITY ......ccooiiie e 8-28
JPUDIIShEr TYPE MaPPINGS ..c.uo ittt sttt ettt sttt st e bes e e e ere e 8-28
Describing an ODJECT TYPE ..ot 8-32
Functionality for Getting Object Meta Data ...........cccooeiieiienie e 8-32
Steps for Retrieving Object Meta Data ........ccoovieieie it e 8-33

Working with Oracle Object References

Oracle Extensions for ObJect RETErENCES ... e 9-2
Overview of Object Reference FUNCLIONAIILY ..o 9-4
Object Reference Getter and Setter MethodsS ..........ccooveiiiiniiiiic e 9-4
KeyY REF Class MEtNOUS.........oiiiiiie ettt st s e eneees 9-5
Retrieving and Passing an Object RETEreNCE ... e 9-6
Retrieving an Object Reference from a RESUIt St ..o 9-6
Retrieving an Object Reference from a Callable Statement............cccoeoviniinincncnen 9-7
Passing an Object Reference to a Prepared StatemMent ... icenece e 9-8
Accessing and Updating Object Values through an Object Reference..........c.coooeiiiiiincnn. 9-9
Custom Reference Classes With JPUDIISher............cccooii 9-10

vii



10

11

viii

Working with Oracle Collections

Oracle Extensions for COEeCtions (AITAYS) .....coi it e 10-2
Choices in Materializing COECTIONS ..ot e 10-2
Creating CoOlECLIONS ..o e 10-3

Overview of Collection (Array) FUNCLIONAIITY ........ccoooiiiiiiiiic e 10-5
Array Getter and Setter MEtNOUS ........cooi i e s 10-5
ARRAY Descriptors and ARRAY Class Functionality..........ccccccoiririeninnieneieeeeeee 10-6

Creating aNd USING ATTAYS ..ottt sttt sttt sttt s s s s s sr e er e 10-8
Creating ARRAY Objects and DesCriPLOrS.... ..ottt e 10-8
Retrieving an Array and ItS EIEMENTS........coooiiiiiiiiicc s 10-11
Passing Arrays to StatemMent ODJECTS ..ottt 10-16

Using a Type Map to Map Array EIEMENTS ...t 10-18

Custom Collection Classes With JPUBIISNEr ............ccociiii e 10-20

Result Set Enhancements

OVEIVIBW ..ottt et e b et etk ek s s s s b b b e h e e b bbbt bt 11-2
Result Set Functionality and Result Set Categories Supported in JDBC 2.0..........cccc.c..... 11-2
Oracle JDBC Implementation Overview for Result Set Enhancements............c.ccoocevvennen. 11-5

Creating Scrollable or Updatable ReSUIT SEtS ..........cccoieiiiiiiiie e 11-8
Specifying Result Set Scrollability and Updatability...........ccccooeniiininciiicece 11-8
Result Set Limitations and Downgrade RUIES...........cccooiiiiniiiiiincc e 11-10

Positioning and Processing in Scrollable ReSUIt SEts ... 11-13
Positioning in a Scrollable RESUIL SEt...........c.ooiiiiiiiiiic s 11-13
Processing a Scrollable RESUIT Set..........ccoiiiiiiiiiic s 11-16

UPAating RESUIT SEES ..ottt ettt ettt eb bbb bbb e 11-18
Performing a DELETE Operation in @ ReSUlt Set..........ccoooiiiiiiiiiie i 11-18
Performing an UPDATE Operation in @ ReSUlt Set..........ccoeoiininine e 11-19
Performing an INSERT Operation in @ RESUIt St ..........cccviiiininine e 11-21
UPAALE CONTIICES ...t e e 11-23

FEECRI SHZE ..ottt b bbb et e 11-24
Setting the FELCH SIZE. ... 11-24
Use of Standard Fetch Size versus Oracle Row-Prefetch Setting........ccccoovevveinenienne, 11-25

RETETCNING ROWS ...ttt ettt b ettt b bbbt e 11-26

Seeing Database Changes Made Internally and Externally ..., 11-27
Seeing INErNaAl CRANGES ....coiiieii ittt bbb b 11-27



12

13

Seeing EXLErnal ChaNGES ........ccoi ittt ettt st s eeneas 11-28

Visibility versus Detection of External Changes...........cccvereiine s 11-29
Summary of Visibility of Internal and External Changes..........c.ccccocoviniiniinncincee, 11-30
Oracle Implementation of Scroll-Sensitive Result SetS ... 11-30
Summary of New Methods for Result Set ENhancements ... 11-32
Modified ConNNECtioN METNOAS. ..o e 11-32
NewW ReSUIt SEt METNOAS ..o e e e 11-32
New StatemMeNnt IMETNOAS ........ooiie e e 11-35
New Database Meta Data Methods ..........ocoiiiiriiniiicc e 11-35

Performance Extensions

UPAAte BATCNING ... v e b b e e e e 12-2
Overview of Update Batching MOEelS ... e 12-2
Oracle Update BAtCNING .. ....ociiiiiciiictisietset ettt et et er e beb e ben e saen e 12-4
Standard Update BAtChiNg ........ccoveiiiiiiiee ettt 12-11

Additional Oracle Performance EXIENSIONS .......ccccoiiiiriiiiiiiirce e s 12-20
Oracle ROW PrefetChing .. ...ttt 12-20
DefiniNg COIUMN TYPES ..ottt ettt eb e et eb et eb et er bbb ben e 12-23
DatabaseMetaData TABLE_REMARKS RePOItiNG ......ccccovierrininienieeneee e 12-27

Connection Pooling and Caching

DIALA SOUICES ...ttt sttt et r et b skt er etk et ee bt e r e er e e e 13-2
A Brief Overview of Oracle Data Source SUppOrt for INDI .......ccccooeviiennicceee e 13-2
Data Source Features and PrOPEITIES. ... ..o 13-3
Creating a Data Source Instance and Connecting (Without INDI)........ccccooviiniiniinnennn, 13-7
Creating a Data Source Instance, Registering with JNDI, and Connecting ...........c.cc.o..... 13-7
(o o To [ TaTo Ir=Ta e I I = ot 1 o o PO ST SRPSR ST 13-9

CONNECTION POOTING ...ttt bbb 13-11
ConNNECtion POOIING CONCEPLS....c.uiieiiiiieietieiere ettt st ettt sttt neeneeneas 13-11
Connection Pool Data Source Interface and Oracle Implementation .............cc.cocevevenenne. 13-12
Pooled Connection Interface and Oracle Implementation ............cc.cccveoniiniincncnn, 13-13
Creating a Connection Pool Data Source and CoNNECtiNg ........c.cocceeverineirenenencnee, 13-13

CoNNECLION CACNING ....voiiii e e 13-15
Overview of ConnNection Caching .......c.cocciiiiiiiii i 13-15
Typical Steps in Using a ConNection CaChe ...........ccooeiiiiiiiiiniciieciee e 13-18



Oracle Connection Cache Specification: OracleConnectionCache Interface.................... 13-21
Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class ........... 13-22
Oracle Connection Event Listener: OracleConnectionEventListener Class..................... 13-25

14 Distributed Transactions

OVEIVIBW ..ottt et e h et e h ek ek s s s b b bbb bt bbbt bt 14-2
Distributed Transaction Components and SCENAIIOS .........cccuervereeireieee e 14-2
Distributed Transaction CONCEPTS. .........oivieiiiiiie ettt 14-3
OraCle XA PACKAGES. ... cveieete ettt ettt bttt ettt et eb e st eb et eb et eb et bt eb et eb bbb 14-5

XA COMPONENTS ..ttt sttt ettt et e b et e h st e h et ee e et ee b en et ere et 14-6
XA Data Source Interface and Oracle Implementation ... 14-6
XA Connection Interface and Oracle Implementation.............ccoeoviinincincincncee 14-7
XA Resource Interface and Oracle Implementation ...........c.coccoooiiiiiiiiincin s, 14-8
XA Resource Method Functionality and Input Parameters ..........ccocooveineincincineenenens 14-9
XA ID Interface and Oracle Implementation ... 14-13

Error Handling and OptimiZatioNns ...ttt 14-15
XA Exception Classes and Methods ...t 14-15
Mapping between Oracle Errors and XA EFTOFS ... 14-16
XA EITOr HANATING ..ot s 14-16
Oracle XA OPtIMIZALIONS. .......covioiriiiriee it b 14-17

Implementing a Distributed TranSaCtioN ............ocoviiiiere e 14-18
Summary of IMpPorts fOr Oracle XA ... e 14-18
Oracle XA Code SAMPIE ..o ettt eneees 14-18

15 Advanced Topics

IDBC AN NLS ...ttt s bbbt b b st s b e s bbb e e e b et e et s 15-2
How JDBC Drivers Perform NLS CONVEISIONS. ........ccouciiiiiiiieiieieeeeereee e 15-3
NLS SUPPOIt aNd ODJECT TYPES ...oviviiiriie ittt ettt 15-5
CHAR and VARCHAR?2 Data Size Restrictions with the Thin Driver..........c.ccccccovennee. 15-6

JDBC Client-Side SECUNTY FEATUIES. ......oiiiiire it 15-8
JDBC Support for Oracle AAvanced SECUNITY ..........cccoiieiiiiiiiiiie e 15-8
JDBC Support for Login AUthentiCatioN ..........ccocoeviiiiiineie e e 15-9
JDBC Support for Data Encryption and INtegrity ... 15-10

IDBC IN APPIELS ..ottt ettt e e b bbb 15-15
Connecting to the Database through the Applet ... 15-15



Connecting to a Database on a Different Host Than the Web Server...........cccccocvvvnenee. 15-17

Using Applets With FIreWallS ........c.coviiiiiice e 15-20
PaCKaging APPIETS. ...ttt e et 15-23
Specifying an Applet in an HTIML PAgE ..ottt 15-24
JDBC in the Server: the Server-Side Internal DIIVer ... 15-26
Connecting to the Database with the Server-Side Internal Driver..........cccccooeeviinennnn. 15-26
Exception-Handling Extensions for the Server-Side Internal Driver..........c..ccccccceviinee. 15-29
Session and Transaction Context for the Server-Side Internal Driver ... 15-30
TeSting JDBC 0N ThE SEIVET ......c.oiiiieiieeee ettt sttt ettt ereer et 15-30
Loading an Application iNto the SEIVEN ... 15-32
Server-Side Character Set Conversion of oracle.sql.CHAR Data..........ccccooeeverneinenenne. 15-34

16 Coding Tips and Troubleshooting

17

JDBC and MUIITRrEadiNg.......c.cviiiiiiiiie e e s 16-2
Performance OPLIMIZATION. .......cociiiii e e s 16-6
Disabling Auto-Commit IMOGE..........coociriiirieiee e e e 16-6
Standard Fetch Size and Oracle Row PrefetChing ..........ccocviiiiiniicei e 16-7
Standard and Oracle Update BatChing .........ccooieiiiiiiiiiicie e 16-7
COMMON PrOBIEMS ...ttt et eb et bbb ber e 16-8
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables.................... 16-8
Memory Leaks and RUNNING OUL OF CUISOIS .......c.ooveiiiiiiiieiiiiieie e 16-8
Boolean Parameters in PL/SQL Stored ProCedUures ..........cocevvriieeinnenieee e 16-9
Opening More Than 16 OCI Connections fOr a PrOCESS .........cccveveviiieieienieiecie e 16-9
Basic DebUgQiNg PrOCEAUIES .........cooiiiiieiiri ettt 16-11
Net8 Tracing to Trap NEtWOrK EVENTS .........ccviiiiiiiiie et 16-11
Third Party Debugging TOOIS .......cooviiriiiie ettt e s 16-13
Transaction Isolation Levels and AcCeSS MOUES.........ccoeiiiiceieie i 16-14

Sample Applications

BASIC SAMPIES ...t s bbb e e e 17-2
Listing Names from the EMP Table—EmPployee.java........c.cccocooeiivinciciiniecesee e 17-2
Inserting Names into the EMP Table—InsertExample.java........ccocooviiiiniiiinine e 17-3

Samples of PL/SQL IN JDBC ..ottt sttt er et er e ben e en e en e 17-5
Calling PL/SQL Stored Procedures—PLSQLEXample.java...........cccoveneiniincincinicnnnns 17-5
Executing Procedures in PL/SQL BIOCKS—PLSQL JAVA........ccoiieriiirieiiiee e 17-6

xi



Xil

INtermediate SAMPIES ..o e 17-10

Streams—StreamEXaMPIE.JAVA .......cuiiiiieiiiiieie et et 17-10
Multithreading—JdbCMTSaMPIE.JAVA........coeeiieiriii e e 17-12
SaMPIES FOr IDBEC 2.0 TYPES ..oveuirieririeririe sttt sttt sb e bbb bbb e s e 17-17
BLOBs and CLOBS—LODEXaMPIEJAVA ......ccvevviiriieieiicieiie et s 17-17
Weakly Typed Objects—PersonObJeCtJaVa........c.ccvcieriiriiiieeireceirece e 17-21
Weakly Typed Object References—StudentRef.java.........cccoooniiiiiecniiiie e, 17-24
Weakly Typed Arrays—ArrayEXampPle.jaVa.......ccocooi i 17-26
Samples for Oracle TYPe EXTENSIONS ......cccoiriiriiiieie sttt e e e 17-29
REF CURSORS—REefCUrSOrEXamMpPle.jaVa......cccoviiiieiiiiiee e et 17-29
BFILES—FIlEEXAMPIEJAVA ...ocvviiiiicieciieeiee ettt s et et 17-31
Samples for CUStOM ODJECT CIASSES. .......ccirviiriiiriiiriee e 17-34
SQLData Implementation—SQLDataEXample.java..........ccceoviiiinneinnsinesine s 17-35
CustomDatum Implementation—CustomDatumExample.java..........ccccocovvvveiiinnennnne. 17-38
JDBC 2.0 Result Set Enhancement SAmMPIES ... 17-43
Positioning in a Result Set—REeSUItSET2.JaVa ........ccoueiiriiiie i 17-43
Inserting and Deleting Rows in a Result Set—ResultSet3.java.........cccovevreinenennenens 17-47
Updating Rows in a Result Set—ReSUItSEt4.Java. ........cccceveniiiniienicecneee e 17-50
Scroll-Sensitive Result Set—ReSUILSET5.JaVa .......ccoiieieiiieece e 17-52
Refetching Rows in a Result Set—ReSUlItSet6.java.........cocoeiiiiiiie i 17-55
Performance ENhancement SAmMPIES ..ot 17-59
Standard Update Batching—BatchUpdates.java ...........ccoceviiiie e 17-59
Oracle Update Batching with Implicit Execution—SetExecuteBatch.java .............c......... 17-61
Oracle Update Batching with Explicit Execution—SendBatch.java..........c.cccooveinennnnee 17-63
Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java........ 17-64
Oracle Row Prefetching Specified in Statement—RowPrefetch_statement java............. 17-66
Oracle Column Type Definitions—DefineColumnType.java .......cccccoceooeieiinieinnnceanne 17-68
Samples for Connection Pooling and Distributed Transactions ..........ccccoceeeeinnnesinennns 17-70
Data Source wWithout INDI—DataSOUICE.JAVA .......ccueuerrireeieiieree e e 17-70
Data Source with INDI—DataSourCeJNDIJaVa .........cccceiiirieiiieie e 17-71
Pooled Connection—PooledConnectioN.JaVa.........cccccvoiieie i e 17-74
Oracle Connection Cache (dynamic)—CCachel.java .........ccccocoeeieiireiie e 17-75
Oracle Connection Cache ("fixed with no wait")—CCache2.java..........ccccocererrierenennnne. 17-77
XA with Suspend and ReSUME—XAZ.JAVA ......cueuiriiieiiriiiinie e et 17-79
XA with Two-Phase Commit Operation—XAJJaVa ........ccocvieieiireiieie e 17-84



SAMPIE APPIET ... e 17-90

HTML Page—JdbCAPPIEt.NTM ..o s 17-90
Applet Code—IADCAPPIELJAVA ...coveiiieieie e e 17-91
JDBC versus SQLJ SAMPIE COUE ..ot e s 17-94
SQL Program to Create Tables and ODJECES........cooiviiiieiiieie e 17-94
JDBC Version of the SAmple Code ... e 17-96
SQLJ Version of the SAmMpPle COAe.......cooiiiiiiii e 17-99

18 Reference Information

Valid SQL-JDBC Datatype MapPiNgS .....coeoreriirieietie st si e s s es 18-2
Supported SQL and PL/SQL DAtatYPES .......cccvreriiieiiieiiietisie sttt st 18-5
Embedded SQLO2 SYNTAX ......iciiiiiiiieie ettt sttt s s s b s 18-9
Time aNd DAt LItEralS. ..ottt 18-9
SCALAN FUNCTIONS ...ttt e e et bbbt eb et eb et bbb bbb 18-11
LIKE ESCAPE CRAIACTEIS......ectiiiie ettt sttt ettt ettt st es s et et ea e e ee et e tenee e 18-12
OULEE JOTNS ..ottt ettt ekt bbb ek e b e e b e b e eb e st eb e st bt eh et eb et eh bbbt beb e 18-12
FUNCLION CAIl SYNTAX ...eiititie ettt sttt e et s saeneeneen 18-13
SQLI2 t0 SQL SyNtax EXAMPIE.......coiiiiiiiciie e 18-13
Oracle JDBC Notes and LIMitations ..........ccociviiiiiiiiee e 18-15
CUISOFINEIMIE ...ttt b et b e sr e sr e e 18-15
SQLOI2 OULET JOIN ESCAPES ....ecveeetireceiietisietistet ittt st et et st ebe e eb et eb e eb et eb et eb e ben e nenens 18-15
PL/SQL TABLE, BOOLEAN and RECORD TYPES......ccccvitiiiiiiriiene ettt 18-15
IEEE 754 Floating PoiNt COMPIIANCE ......ccooiiiiiiiriiiriisie e e 18-15
Catalog Arguments to DatabaseMetaData Calls ... 18-16
SQLWaAINING ClASS ..eviitiieeie ettt ettt s et sttt st et b e et b sr e e enbeneas 18-16
BIiNA DY NAIME ..ottt e ettt et et sb bbb e e beneas 18-16
Related INTOMMALION .......ciiii e e 18-18
Oracle JDBC Drivers and SQLJ.......ccooi ittt 18-18
JAVA TECANOIOGY ...t e e e 18-18

A  JDBC Error Messages

General Structure 0f IDBC EFror IMESSAQES. .....ccuuriitirieiirietirie sttt st ere st ere e ene e ereneereeas A-2
GENETAl JIDBC IMIBSSAQES. ... eteieete ettt sttt ettt ettt b bbb st b e st b e st b e e eb et eb et ebe st eb et b et eb et er e A-3
JDBC Messages Sorted by ORA NUMDET .........ccooiiiiiie e A-3
JDBC Messages Sorted AIPhabetiCally ..o A-6

xiii



Xiv

TTC IMIBSSAGES ... ettt ettt stk et h et h e er et se et e h bbbt e R e et en e e n e
TTC Messages Sorted by ORA NUMDET .......cccoiiiiii e
TTC Messages Sorted Alphabetically ..o



Send Us Your Comments

JDBC Developer’s Guide and Reference, Release 2.0.1
Part No. A81354-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgcomnt@us.oracle.com

FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

XV



XVi



Preface

This preface introduces you to the Oracle8i JDBC Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

Intended Audience

This manual is intended for anyone with an interest in JDBC programming but
assumes at least some prior knowledge of the following:

Java
SQL
Oracle PL/SQL

Oracle databases

Xvii



Document Structure

The Oracle JIDBC Developers Guide and Reference contains 18 chapters and one

xviii

appendix:

Chapter 1, "Overview"

Chapter 2, "Getting Started"

Chapter 3, "Basic Features"

Chapter 4, "Overview of JDBC
2.0 Support”

Chapter 5, "Overview of Oracle
Extensions"

Chapter 6, "Accessing and
Manipulating Oracle Data"

Chapter 7, "Working with LOBs
and BFILEs"

Chapter 8, "Working with
Oracle Object Types"

Chapter 9, "Working with
Oracle Object References"

Chapter 10, "Working with
Oracle Collections"

This chapter provides an overview of the Oracle
implementation of JDBC and the Oracle JDBC
driver architecture.

This chapter introduces the Oracle JDBC drivers
and some scenarios of how you can use them.
This chapter also guides you through the basics
of testing your installation and configuration.

This chapter covers the basic steps in creating
any JDBC application. It also discusses
additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

This chapter presents an overview of JDBC 2.0
features and describes differences between JDK
1.2.x and JDK 1.1.x environments in how these
features are supported.

This chapter provides an overview of the JDBC
extension classes provided by Oracle.

This chapter describes data access using the
Oracle datatype formats rather than Java
formats.

This chapter covers the Oracle extensions to the
JDBC standard that let you access and
manipulate LOBs and LOB data.

This chapter explains how to map Oracle object
types to Java classes by using either standard
JDBC or Oracle extensions.

This chapter describes Oracle extensions to
standard JDBC that let you access and
manipulate object references.

This chapter describes Oracle extensions to
standard JDBC that let you access and
manipulate arrays and their data.



Chapter 11, "Result Set
Enhancements"

Chapter 12, "Performance
Extensions"

Chapter 13, "Connection
Pooling and Caching"

Chapter 14, "Distributed
Transactions"

Chapter 15, "Advanced Topics

Chapter 16, "Coding Tips and

Troubleshooting"

Chapter 17, "Sample
Applications"

Chapter 18, "Reference
Information"

Appendix A, "JDBC Error
Messages"

This chapter discusses JDBC 2.0 result set
enhancements such as scrollable result sets and
updatable result sets, including support issues
under JDK 1.1.x.

This chapter describes Oracle extensions to the
JDBC standard that enhance the performance of
your applications.

This chapter discusses JDBC 2.0 data sources
(and their usage of INDI), connection pooling
functionality (a framework for connection
caching implementations), and a sample
connection caching implementation provided by
Oracle.

This chapter covers distributed transactions,
otherwise known as global transactions, and
standard XA functionality. (Distributed
transactions are sets of transactions, often to
multiple databases, that have to be committed in
a coordinated manner.)

This chapter describes advanced JDBC topics
such as using NLS, working with applets, the
server-side driver, and embedded SQL92 syntax.

This chapter includes coding tips and general
guidelines for troubleshooting your JDBC
applications.

This chapter presents sample applications that
highlight advanced JDBC features and Oracle
extensions.

This chapter contains detailed JDBC reference
information.

This appendix lists JDBC error messages and the
corresponding ORA error numbers.

Xix



Document Conventions

This book uses Solaris syntax, but file names and directory names for Windows NT
are the same, unless otherwise noted.

The term [ORACLE_HOVE] is used to indicate the full path of the Oracle home
directory.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

<> Angle brackets enclose user-supplied names.
[1 Brackets enclose optional clauses from which you can choose one or
none.

Related Documents

XX

This section lists other documentation of interest.

See the following additional documents available from the Oracle Java Platform
group:
«  Oracle8i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle8i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

=« Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, VARRAY types, nested table types, or



object reference types, then JPublisher can generate custom Java classes to map
to them.

Oracle8i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

Oracle8i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle8i server. With stored procedures (functions, procedures, database
triggers, and SQL methods), Java developers can implement business logic at
the server level, thereby improving application performance, scalability, and
security.

Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This book describes the Oracle extensions to the Enterprise JavaBeans and
CORBA specifications.

You can also refer to the following documents from the Oracle Server Technologies
group.

Net8 Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Net8 network administration in general.

Oracle8i National Language Support Guide

This book contains information about NLS environment variables, character
sets, and territory and locale settings. In addition, it contains an overview of
common NLS issues, typical scenarios, and NLS considerations for OCI and
SQL programmers.

Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

Oracle8i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
an Oracle8i database and creating database access applications.

XXi



xXii

Oracle8i Application Developer’s Guide - Large Objects (LOBs)

This book describes general functionality and features of database large objects
(LOBs) in Oracle8i.

Oracle8i Application Developer’s Guide - Object-Relational Features

This book contains general information about structured objects and other
object-relational database features in Oracle8i.

Oracle8i Supplied PL/SQL Packages Reference

This book documents PL/SQL packages available as part of the Oracle8i server,
some of which may be useful to call from JDBC applications.

PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

Oracle8i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

Oracle8i Reference
This book contains general reference information about the Oracle8i server.
Oracle8i Error Messages

This book contains information about error messages that can be passed by the
Oracle8i server.

Documentation from the following Oracle groups may also be of interest.

Oracle8i Application Server documentation

This documentation contains information about how the Oracle8i Application
Server supports JDBC.

Oracle8i JDeveloper Suite documentation

This documentation contains information about how the Oracle8i JDeveloper
Suite supports JDBC.



1

Overview

This chapter provides an overview of the Oracle implementation of JDBC, covering
the following topics:

Introduction

Overview of the Oracle JDBC Drivers

Overview of Application and Applet Functionality
Server-Side Basics

Environments and Support

Overview 1-1



Introduction

Introduction

This section presents a brief introduction to Oracle JDBC, including a comparison to
SQLJ.

What is JDBC?

JDBC (Java Database Connectivity) is a standard Java interface for connecting from
Java to relational databases. The JDBC standard was defined by Sun Microsystems,
allowing individual providers to implement and extend the standard with their
own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface and complies with the
SQL92 Entry Level standard.

In addition to supporting the standard JDBC API, Oracle drivers have extensions to
support Oracle-specific datatypes and to enhance performance.

JDBC versus SQLJ

This section has the following subsections:
« Advantages of SQLJ over JDBC for Static SQL
« General Guidelines for Using JDBC and SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all the SQL statements are
complete or "textually evident" in the Java program. That is, details of the database
object, such as the column names, number of columns in the table, and table name,
are known before runtime. SQLJ offers advantages for these applications because it
permits error checking at precompile time.

1-2 JDBC Developer’s Guide and Reference



Introduction

The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,
in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations known at the time
the program is written, it can also interoperate with dynamic SQL through JDBC.
SQLJ allows you to create JDBC objects when they are needed for dynamic SQL
operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle8i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

Advantages of SQLJ over JDBC for Static SQL

While JDBC provides a complete dynamic SQL interface from Java to relational
databases, SQLIJ fills a complementary role for static SQL.

Although you can use static SQL statements in your JDBC programs, they can be
represented more conveniently in SQLJ. Here are some advantages you gain in
using SQLJ over JDBC for static SQL statements:

= SQLJ source programs are more concise than equivalent JDBC programs,
because SQLJ provides a shorter syntax.

« SQLJ provides strong typing of connections (and the sets of SQL entities that
they access), query outputs, and return parameters.

« SQLJcan use database connections to type-check static SQL code at translation
time. JDBC, being a completely dynamic API, does not perform any
type-checking until run-time.

« SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires separate getter and/or setter call statements for each
bind variable.

« SQLJ provides simplified rules for calling SQL stored procedures and functions.

Overview 1-3



Introduction

General Guidelines for Using JDBC and SQLJ
SQLJ is effective in the following circumstances:

= You want to be able to check your program for errors at translation-time, rather
than at run-time.

= You want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

= You are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

JDBC is effective in the following circumstances:

= Your program uses dynamic SQL. For example, you have a program that builds
queries in real-time or has an interactive query component.

= You do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Note: You can intermix SQLJ code and JDBC code in the same
source. This is discussed in the Oracle8i SQLJ Developer’s Guide and
Reference.

1-4 JDBC Developer’s Guide and Reference



Overview of the Oracle JDBC Drivers

Overview of the Oracle JDBC Drivers

This section introduces the Oracle JDBC drivers, their basic architecture, and some
scenarios for their use.

Oracle provides the following JDBC drivers:

« Thin driver, a 100% Java driver for client-side use without an Oracle
installation, particularly with applets

« OCIl drivers (OCI8 and OCI7) for client-side use with an Oracle client
installation

« server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

« server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Figure 1-1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
server-side internal drivers.

The rest of this section describes common features of the Oracle drivers and then
discusses each one individually, concluding with a discussion of some of the
considerations in choosing the appropriate driver for your application.

Overview 1-5



Overview of the Oracle JDBC Drivers

Figure 1-1 Driver-Database Architecture

Oracle8i

JDBC Thin Driver

Java Sockets Java Engine
I Server-Side Thin Driver
JDBC OCI Driver S_QL Engine JDBC Server-Side
Internal Driver

OCI C Library ey PL/SQL Engine

Common Features of Oracle JDBC Drivers

KPRB C Library

f——
Oracle8i

The server-side and client-side Oracle JDBC drivers provide the same basic
functionality. They all support the following standards and features:

« eitherJ]DK 1.2.x / JDBC 2.0 or JDK 1.1.x / JDBC 1.22 (with Oracle extensions for

JDBC 2.0 functionality)

These two implementations use different sets of class files.

« the same syntax and APIs
« the same Oracle extensions

« full support for multi-threaded applications

Generally speaking, the only differences between the drivers are in how they

connect to the database and how they transfer data.

1-6 JDBC Developer’'s Guide and Reference



Overview of the Oracle JDBC Drivers

Notes:
= The server-side internal driver supports only JDK 1.2.x.

« Most JDBC 2.0 functionality, including that for objects, arrays,
and LOBs, is available in a JDK 1.1.x environment through
Oracle extensions.

« Starting with release 8.1.6, JDK 1.0.2 is no longer supported.

JDBC Thin Driver

The Oracle JDBC Thin driver is a 100% pure Java, Type IV driver. It is targeted for
Oracle JDBC applets but can be used for applications as well. Because it is written
entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side.

For applets it can be downloaded into a browser along with the Java applet being
run. The HTTP protocol is stateless, but the Thin driver is not. The initial HTTP
request to download the applet and the Thin driver is stateless. Once the Thin
driver establishes the database connection, the communication between the browser
and the database is stateful and in a two-tier configuration.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of TCP/IP that emulates Net8 and TTC (the wire protocol used by
OCI) on top of Java sockets. Both of these protocols are lightweight implementation
versions of their counterparts on the server. The Net8 protocol runs over TCP/IP
only.

The driver supports only TCP/IP protocol and requires a TNS listener on the
TCP/IP sockets from the database server.

Note: When the JDBC Thin driver is used with an applet, the
client browser must have the capability to support Java sockets.

Using the Thin driver inside an Oracle server or middle tier is considered
separately, under "JDBC Server-Side Thin Driver" below.

Overview 1-7



Overview of the Oracle JDBC Drivers

JDBC OCI Drivers

The JDBC OCI drivers (OCI8 for Oracle8/8i and OCI7 for Oracle7) are Type Il
drivers targeted for client-server Java applications programmers. They require an
Oracle client installation, so are Oracle platform-specific and are not suitable for
applets.

The OCI drivers, written in a combination of Java and C, convert JDBC invocations
to calls to the Oracle Call Interface (OCI), using native methods to call C entry
points. These calls are then sent over Net8 to the Oracle database server.

These drivers use the OCI libraries, OCI cache, C-entry points, Net8, CORE
libraries, and other necessary files on the client machine on which they are installed.

The OCI drivers provide the highest compatibility with the different Oracle 7, 8, and
8i versions. They also support all installed Net8 adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

JDBC Server-Side Thin Driver

The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside an Oracle database and accesses a remote
database.

This is especially useful in two situations:
« toaccess a remote Oracle server from an Oracle server acting as a middle tier

« more generally, to access one Oracle server from inside another, such as from
any Java stored procedure or Enterprise JavaBean

There is no difference in your code between using the Thin driver from a client
application or from inside a server.

Note: Statementcancel () and set Quer yTi neout () methods
are not supported by the server-side Thin driver.

JDBC Server-Side Internal Driver

The Oracle JDBC server-side internal driver supports any Java code that runs inside
an Oracle database, such as in a Java stored procedures or Enterprise JavaBean, and
must access the same database. This driver allows the Java virtual machine (JVM) to
communicate directly with the SQL engine.

1-8 JDBC Developer’s Guide and Reference



Overview of the Oracle JDBC Drivers

The server-side internal driver, the JVM, the database, the KPRB (server-side) C
library, and the SQL engine all run within the same address space, so the issue of
network round trips is irrelevant. The programs access the SQL engine by using
function calls.

The server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions. For more information on the server-side
internal driver, see "JDBC in the Server: the Server-Side Internal Driver" on

page 15-26.

Choosing the Appropriate Driver

Consider the following when choosing which JDBC driver to use for your
application or applet:

If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCl-based driver classes will not work inside a Web browser, because they call
native (C language) methods.

If you want maximum portability, then choose the JDBC Thin driver. You can
connect to an Oracle server from either an application or an applet using the
JDBC Thin driver.

If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

If your code will run inside the target Oracle server, then use the JDBC
server-side internal driver to access that server. (You can also access remote
servers using the server-side Thin driver.)

Overview 1-9



Overview of Application and Applet Functionality

Overview of Application and Applet Functionality

This section compares and contrasts the basic functionality of JDBC applications
and applets, and introduces Oracle extensions that can be used by application and
applet programmers.

Application Basics

You can use either the Oracle JDBC Thin driver or the JDBC OCI driver for a client
application. Because the JDBC OCI driver uses native methods, there can be
significant performance advantages in using this driver for your applications.

An application that can run on a client can also run in the Oracle server, using the
JDBC server-side internal driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Net8 and client libraries.

Both the OCI drivers and the Thin driver offer support for data encryption and
integrity checksum features of the Oracle Advanced Security option (formerly
known as ANO or ASO). See "JDBC Client-Side Security Features" on page 15-8.
Such security is not necessary for the server-side internal driver.

Applet Basics

This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

For more about applets and a discussion of relevant firewall, browser, and security
issues, see "JDBC in Applets" on page 15-15.

Applets and Security

Without special preparations, an applet can open network connections only to the
host machine from which it was downloaded. Therefore, an applet can connect to
databases only on the originating machine. If you want to connect to a database
running on a different machine, you have two options:

= Use Oracle8 Connection Manager on the host machine. The applet can connect
to Oracle8 Connection Manager, which in turn connects to a database on
another machine.

« Use signed applets, which can request socket connection privileges to other
machines.

1-10 JDBC Developer’'s Guide and Reference



Overview of Application and Applet Functionality

Both of these topics are described in greater detail in "Connecting to the Database
through the Applet" on page 15-15.

The Thin driver offers support for data encryption and integrity checksum features
of the Oracle Advanced Security option. See "JDBC Client-Side Security Features"
on page 15-8.

Applets and Firewalls

An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 15-20 for more information on
configuring the firewall and on writing connect strings for the applet.

Packaging and Deploying Applets

To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 15-23.

Oracle Extensions

A number of Oracle extensions are available to Oracle JDBC application and applet
programmers, in the following categories:

« type extensions (such as ROWIDs and REF CURSOR types)
= wrapper classes for SQL types (the or acl e. sql package)

« support for custom Java classes to map to user-defined types
« extended LOB support

« extended connection, statement, and result set functionality
« performance enhancements

See Chapter 5, "Overview of Oracle Extensions" for an overview of type extensions
and extended functionality, and succeeding chapters for further detail. See
Chapter 12, "Performance Extensions" regarding Oracle performance enhancements.

Overview 1-11



Server-Side Basics

Server-Side Basics

By using the Oracle JDBC server-side internal driver, code that runs in an Oracle
database, such as in Java stored procedures or Enterprise JavaBeans, can access the
database in which it runs.

For a complete discussion of the server-side driver, see "JDBC in the Server: the
Server-Side Internal Driver" on page 15-26.

Session and Transaction Context

The server-side internal driver operates within a default session and default
transaction context. For more information on default session and transaction context
for the server-side driver, see "Session and Transaction Context for the Server-Side
Internal Driver" on page 15-30.

Connecting to the Database

The server-side internal driver uses a default connection to the database. You can
connect to the database with either the Dri ver Manager . get Connect i on()
method or the Oracle-specific Or acl eDri ver class def aul t Connecti on()
method. For more information on connecting to the database with the server-side
driver, see "Connecting to the Database with the Server-Side Internal Driver" on
page 15-26.

1-12 JDBC Developer’'s Guide and Reference



Environments and Support

Environments and Support

This section provides a brief discussion of platform, environment, and support
features of the Oracle JDBC drivers. The following topics are discussed:

« Supported JDK and JDBC Versions

« JNI and Java Environments

« JDBC and the Oracle Application Server
« JDBCand IDEs

Supported JDK and JDBC Versions

With release 8.1.6, Oracle has two versions of the Thin and OCI drivers—one that is
compatible with JDK 1.2.x and one that is compatible with JDK 1.1.x. The JDK 1.2.x
versions support standard JDBC 2.0. The JDK 1.1.x versions support most JDBC 2.0
features, but must do so through Oracle extensions because JDBC 2.0 features are
not available in JDK 1.1.x versions.

Very little is required in migrating from a JDK 1.1.x environment to a JDK 1.2.x
environment. For information, see "Migration from JDK 1.1.x to JDK 1.2.X" on
page 4-5.

Notes:
« The server-side internal driver supports only JDK 1.2.x.
« Beginning with release 8.1.6, JDK 1.0.2 is no longer supported.

« Each driver implementation uses its own JDBC classes ZIP
file—cl asses12. zi p for JDK 1.2.x versions, and
cl asses111. zi p for IDK 1.1.x versions.

For information about supported combinations of driver versions, JDK versions,
and database versions, see "Requirements and Compatibilities for Oracle JDBC
Drivers" on page 2-2.

Overview 1-13



Environments and Support

JNI and Java Environments

Beginning with release 8.1.6, Oracle JDBC OCI drivers use the standard JNI (Java
Native Interface) to call Oracle OCI C libraries. Prior to 8.1.6, when the OCI drivers
supported JDK 1.0.2, they used NMI (Native Method Interface) for C calls. NMI was
an earlier specification by Sun Microsystems and was the only native call interface
supported by JDK 1.0.2.

Because JNI is now supported by Oracle JDBC, you can use the OCI drivers with
Java virtual machines other than that of Sun Microsystems—in particular, with
Microsoft and IBM JVMs. These JVMs support only JNI for native C calls.

JDBC and the Oracle Application Server

The Oracle Application Server (OAS) is a collection of middleware services and
tools that provide a scalable, robust, secure, and extensible platform for distributed,
object-oriented applications. The OAS supports access to applications from both
Web clients (browsers) using the Hypertext Transfer Protocol (HTTP), and CORBA
clients, which use the Common Object Request Broker Architecture (CORBA) and
the Internet Inter-ORB Protocol (I10P).

You can use the JDBC OCI drivers on a middle tier in conjunction with OAS
(formerly Web Application Server, or WAS) versions 3.0 and higher—the OAS
bundles JDBC with its distribution. For more information about the use of JDBC
with the OAS, refer to the Oracle Application Server documentation.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC and SQLJ, including the 100% pure JDBC Thin driver
and the native OCI drivers. The database component of Oracle JDeveloper uses the
JDBC drivers to manage the connection between the application running on the
client and the server. See your Oracle JDeveloper documentation for more
information.

1-14 JDBC Developer’'s Guide and Reference



2

Getting Started

This chapter begins by discussing compatibilities between Oracle JDBC driver
versions, database versions, and JDK versions. It then guides you through the basics
of testing your installation and configuration, and running a simple application.
The following topics are discussed:

« Requirements and Compatibilities for Oracle JDBC Drivers

« \erifying a JDBC Client Installation

Getting Started 2-1



Requirements and Compatibilities for Oracle JDBC Drivers

Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 lists the compatibilities between Oracle JDBC driver versions and Oracle
database versions. The JDK versions supported by each JDBC driver version are
also listed.

Note: Notice that starting with release 8.1.6, the Oracle JDBC
drivers no longer support JDK 1.0.x versions.

Table 2-1 JDBC Driver-Database Compatibility
Database
Driver Versions JDK Versions
Versions Supported Supported Drivers Available Remarks
8.1.6 8.1.6,8.1.5,8.0.6, 1.2.x,1.1.x JDBC Thin driver The Thin driver is now also
8.0.5,8.0.4,7.34 JDBC OCI driver available in the server W_|th the
standard server installation.
JDBC server-side Thin driver This has the same usage and
JDBC server-side internal driver fur}ctlor_lahty as the cll_ent-5|de
Thin driver, for accessing a
(supports 8.1.6 database and JDK database f insid
1.2.x only) remote database from inside a
- database.
8.1.5 8.1.5,8.0.6,8.0.5, 1.1.x,1.0.x JDBC Thin driver Both client- and server-side
8.04,7.34 JDBC OCI driver drivers offer f_uII support for
structured objects when run
JDBC server-side internal driver against an 8.1.5 database.
(supports 8.1.5 database and JDK
1.1.x only)
8.0.6 8.0.6,8.0.5,8.0.4, 1.1.x,1.0x JDBC Thin driver
7.34

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

2-2 JDBC Developer’s Guide and Reference



Requirements and Compatibilities for Oracle JDBC Drivers

Table 2-1 JDBC Driver-Database Compatibility(Cont.)
Database

Driver Versions JDK Versions

Versions Supported Supported Drivers Available

8.0.5 8.05,8.0.4,7.34 1.1x, 1.0x JDBC Thin driver
JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

8.0.4 8.04,7.3.4 1.1.x,1.0.x JDBC Thin driver
JDBC OCI driver
Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

7.3.4 7.3.4 1.1.x,1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and

prior versions.

Notes:

« Different JDKs require different class files—classes in

cl asses12. zi p,cl asses11l. zi p,and cl asses102. zi p,

respectively.

« The JDBC drivers do not support structured objects when run against
an 8.0.x database. This is because JDBC depends on PL/SQL functions

that did not exist in those releases.

= There is no structured object or LOB support in Oracle 7.3.x.

= Any client-side driver might work with 7.x databases prior to
7.3.4, but this has not been tested and is not supported.

Getting Started 2-3



Verifying a JDBC Client Installation

Verifying a JDBC Client Installation
This section covers the following topics:
« Check Installed Directories and Files
«  Check the Environment Variables
« Make Sure You Can Compile and Run Java
« Determine the Version of the JDBC Driver
« Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Net8 and the OCI libraries.

Check Installed Directories and Files

This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system (although other forms of Java are also
supported). Oracle offers JDBC drivers compatible with either JDK 1.2.x versions or
JDK 1.1.x versions.

Installing the Oracle JServer products creates, among other things, an
[ ORACLE_HOVE] / j dbc directory containing these subdirectories and files:

« deno/sanpl es: The sanpl es subdirectory contains sample programs,
including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and
Oracle performance extensions.

« doc: The doc directory contains documentation about the JDBC drivers.

2-4 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

['i b: Thel i b directory contains . zi p files with these required Java classes:

cl asses12. zi p contains the classes for use with the JDK 1.2.x—all the
JDBC driver classes except the classes necessary for NLS support.

nl s_charset 12. zi p contains the classes necessary for NLS support with
the JIDK 1.2.x.

jta.zipandjndi.zipcontain classes for the Java Transaction APl and
the Java Naming and Directory Interface for JDK 1.2.x. These are only
required if you will be using JTA features for distributed transaction
management or JNDI features for naming services. (These files can also be
obtained from the Sun Microsystems Web site, but it is advisable to use the
versions from Oracle, because those have been tested with the Oracle
drivers.)

cl asses111l. zi p contains the classes for use with the JDK 1.1.x—all the
JDBC driver classes except the classes necessary for NLS support.

cl asses111. zi p also contains Oracle extensions that allow you to use
JDBC 2.0 functionality for objects, arrays, and LOBs under JDK 1.1.x.

nl s_charset 11. zi p contains the classes necessary for NLS support with
the JDK 1.1.x.

Thenl s_charset 12. zi pand nl s_char set 11. zi p files provide support
for specific NLS character sets. They have been separated out from the

cl asses*. zi p files to give you the option of excluding character sets in
situations where complete NLS support is not needed. For more information on
nl s_charset12. zi pand nl s_charset 11. zi p, see "NLS Support and
Obiject Types" on page 15-5.

readne. t xt: Thereadmne. t xt file contains late-breaking and release-specific
information about the drivers that might not be in this manual.

Check that all these directories have been created and populated.

Getting Started 2-5



Verifying a JDBC Client Installation

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Microsystems Solaris and
Microsoft Windows NT platforms.

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on whether you are using the JDK 1.2.x versions or 1.1.x versions, you
must set one of these values for the CLASSPATH:

« [Oracle Hone]/jdbc/lib/classesl2.zip
(and optionally [ Oracl e Hone]/jdbc/lib/nls_charset12. zi p) for full
NLS character support)

or:

« [Oracle Hone]/jdbc/lib/classeslll. zip
(and optionally [ Oracl e Hone]/jdbc/lib/nls_charset11. zi p) for full
NLS character support)

Ensure that there is only one cl asses*. zi p file version and one
nl s_charset *. zi p file version in your CLASSPATH.

Note: If you will be using JTA features or JNDI features, both of
which are discussed in Chapter 13, "Connection Pooling and
Caching", then you will also need to have j ta. zi pandj ndi . zi p
in your CLASSPATH.

JDBC OCI Drivers: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable

« On Solaris, set LD _LI BRARY_PATHas follows:
[Gacle Hone]/lib

This directory contains the | i boci j dbc8. so shared object library.
« On Windows NT, set PATH as follows:
[Gacle Hoe]\lib

This directory contains the oci j dbc8. dl | dynamic link library.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

2-6 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

Make Sure You Can Compile and Run Java

To further ensure that Java is set up properly on your client system, go to the
sanpl es directory (for example, C: \ or acl e\ or a81\ j dbc\ deno\ sanpl es if
you are using the JDBC driver on a Windows NT machine), then see if j avac (the
Java compiler) and j ava (the Java interpreter) will run without error. Enter:

j avac
then enter:
j ava

Each should give you a list of options and parameters and then exit. Ideally, verify
that you can compile and run a simple test program.

Determine the Version of the JDBC Driver

If at any time you must determine the version of the JDBC driver that you installed,
you can invoke the get Dri ver Ver si on() method of the
Or acl eDat abaseMet aDat a class.

Here is sample code showing how to do it:

inport java.sql.*;
inport oracle.jdbc.driver.*;

cl ass JOBCVersi on
{
public static void main (Sring args[])
throws SQLException
{
/1 Load the Gracle JDBC dri ver
Dri ver Manager . regi sterDri ver
(new oracl e.jdbc. driver.Qacl elxiver());
Gonnection conn = Dri ver Manager . get Gonnect i on
("jdbc:oracl e:thin: @ost:port:sid',"scott","tiger");

I/l Greate O acle DatabaseMt aData obj ect
Dat abaseMet aDat a nmeta = conn. get Met aDat a( ) ;

/1 gets driver info:
Systemout. println("JDBC driver versionis " + neta. getDriverVersion());

Getting Started 2-7



Verifying a JDBC Client Installation

Testing JDBC and the Database Connection: JdbcCheckup

The sanpl es directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup. j ava, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hel | o Wor | d", and prints it to the screen.

Go to the sanpl es directory and compile and run JdbcCheckup. j ava. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup. j ava is a simple program, it demonstrates several
important functions by executing the following:

= imports the necessary Java classes, including JDBC classes
« registers the JDBC driver

= connects to the database

« executes a simple query

= outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup. j ava for the JDBC OCI driver appears below.
/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It wll select

* "Hello Wirld" fromthe database.
*/

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

/1 V& inport java.io to be able to read fromthe comvand |ine
inport java.io.*;

cl ass JdbcCheckup
{

public static void nmain(String args[])
throws SQException, |CException

{
/! Load the Qacle JDBC driver

Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. Oracl eDriver());

2-8 JDBC Developer’s Guide and Reference



Verifying a JDBC Client Installation

/1 Pronpt the user for connect information

Systemout. println("P ease enter information to test connection to
the dat abase");

Sring user;

Sring password;

Sring database;

user = readEntry("user: ");
int slash_index = user.indexd('/");
if (slash_index !=-1)
{
password = user. substring(sl ash_index + 1);
user = user.substring(0, slash_index);
}
el se
password = readEntry("password: ");
dat abase = readEntry("dat abase(a TNSNAME entry): ");

Systemout. print ("Connecting to the database...");
Systemout . flush();

Systemout. println("Cnnecting...");
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc: oracl e:oci 8: @ + database, user, password);

Systemout. println("connected.");

/l reate a statenent
Satenent stnt = conn.createStatenent();

/! Do the SQL "Hello Wrld" thing
Resul t Set rset = stni. executeQuery("select 'Hello VWrld
fromdual ");

while (rset.next())
Systemout. printin(rset.getString(1));
/] close the result set, the statenment and connect
rset.close();
stm.close();
conn. cl ose() ;
Systemout.println("Your JDBCinstallationis correct.");

}

/1 Wility function to read a line fromstandard i nput
static Sring readEntry(String pronpt)

Getting Started 2-9



Verifying a JDBC Client Installation

{
try
{
SringBuffer buffer = new SringBuffer();
Systemout. print (pronpt);
Systemout. fl ush();
int ¢ = Systemin.read();
while (¢ !'="\n" & c !=-1)
buf f er. append((char)c);
c = Systemin.read();
return buffer.toSring().tring);
}
cat ch(| CException e)
{
return "";
}
}

2-10 JDBC Developer’s Guide and Reference



3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers.

The following topics are discussed:

First Steps in JDBC

Sample: Connecting, Querying, and Processing the Results
Datatype Mappings

Java Streams in JDBC

Stored Procedure Calls in JDBC Programs

Processing SQL Exceptions

Basic Features 3-1



First Steps in JDBC

First Steps in JDBC

This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

Import Packages
Register the JDBC Drivers
Open a Connection to a Database

Create a Statement Object

1
2
3
4
5. Execute a Query and Return a Result Set Object
6. Process the Result Set

7. Close the Result Set and Statement Objects

8. Make Changes to the Database

9. Commit Changes

10. Close the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Import Packages

Regardless of which Oracle JDBC driver you use, include the following i mpor t
statements at the beginning of your program (j ava. mat h only if needed):

i mport java.sql.*; for standard JDBC packages
i mport java.math.*; for Bi gDeci mal and Bi gl nt eger classes

3-2 JDBC Developer’s Guide and Reference



First Steps in JDBC

Import the following Oracle packages when you want to access the extended
functionality provided by the Oracle drivers. However, they are not required for the
example presented in this section:

i mport oracle.jdbc.driver.*; for Oracle extensions to JDBC

i mport oracle.sql.*;

For an overview of the Oracle extensions to the JDBC standard, see Chapter 5,
"Overview of Oracle Extensions".

Register the JDBC Drivers

You must provide the code to register your installed driver with your program. You
do this with the static r egi st er Dri ver () method of the JDBC Dri ver Manager
class. This class provides a basic service for managing a set of JDBC drivers.

Note: Alternatively, you can use the f or Name() method of the
java. | ang. C ass class to load the JDBC drivers directly. For
example:

Class.forNanme ("oracle.jdbc.driver.OacleDriver");

However, this method is valid only for JIDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to r egi st er Dri ver (). You register the driver only once in your Java
application.

Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. aclebriver());

Open a Connection to a Database

Open a connection to the database with the static get Connect i on() method of
the JDBC Dri ver Manager class. This method returns an object of the JDBC
Connect i on class that needs as input a user name, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the get Connect i on() method. If you are not

Basic Features 3-3



First Steps in JDBC

familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

If you are already familiar with the get Connect i on() method, you can skip
ahead to either of these sections, depending on the driver you installed:

« "Opening a Connection for the JDBC OCI Driver" on page 3-8
« "Opening a Connection for the JDBC Thin Driver" on page 3-9

Notes:

«  WithJDK 1.2, using JINDI (Java Naming and Directory
Interface) is becoming the recommended way to make
connections. See "A Brief Overview of Oracle Data Source
Support for INDI" on page 13-2 and "Creating a Data Source
Instance, Registering with JNDI, and Connecting" on page 13-7.

« If you are using the Thin driver, be aware that it does not
support OS authentication in making the connection. As a
result, special logins are not supported.

« This discussion in this section does not apply to the server-side
internal driver, which uses an implicit connection. See
"Connecting to the Database with the Server-Side Internal
Driver" on page 15-26.

Understanding the Forms of getConnection()

The Dri ver Manager class get Connect i on() method whose signatures and
functionality are described in the following sections:

« "Specifying a Database URL, User Name, and Password" on page 3-5

« "Specifying a Database URL That Includes User Name and Password" on
page 3-6

« "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

= a Net8 keyword-value pair
« astring of the form <host_name>:<port_number>:<sid> (Thin driver only)

=« a TNSNAMES entry (OCI driver only)

3-4 JDBC Developer’s Guide and Reference



First Steps in JDBC

For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Net8 Administrator’s Guide.

Specifying a Database URL, User Name, and Password

The following signature takes the URL, user name, and password as separate
parameters:

get Gonnection(String UR, Sring user, String passuorad);

Where the URL is of the form:
j dbc: oracl e: <dri vert ype>: @dat abase>
The following example connects user scot t with password ti ger to a database
with SID or ¢l through port 1521 of host nyhost , using the Thin driver.
Qonnection conn = Driver Manager . get Gonnecti on

("jdbc: oracl e: thi n: @yhost: 1521: orcl ", "scott", "tiger");
If you want to use the default connection for an OCI driver, specify either:

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: oracl e: oci 8: scott/tiger@);
or:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e:oci 8: @, "scott", "tiger");

For all JDBC drivers, you can also specify the database with a Net8 keyword-value
pair. The Net8 keyword-value pair substitutes for the TNSNAMES entry. The
following example uses the same parameters as the preceding example, but in the
keyword-value format:

Qonnection conn = Driver Manager . get Gonnecti on
(jdbc: oracl e: oci 8: @§Host Sring","scott","tiger");

or:

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: or acl e: oci 8: @descri pti on=(addr ess=( host = nyhost )
(protocol =t cp) (port=1521)) (connect _dat a=(sid=orcl)))","scott", "tiger");

Basic Features 3-5



First Steps in JDBC

Specifying a Database URL That Includes User Name and Password

The following signature takes the URL, user name, and password all as part of a
URL parameter:

get Gonnection(String LR);

Where the URL is of the form:
j dbc: oracl e: <dri vert ype>: <user>/ <passwor d>@dat abase>
The following example connects user scot t with password t i ger to a database on

host nyhost using the OCI driver. In this case, however, the URL includes the
userid and password, and is the only input parameter.

Qonnection conn = Driver Manager . get Gonnecti on
("j dbc: oracl e: oci 8: scott/tiger @yhost);

If you want to connect with the Thin driver, you must specify the port number and
SID. For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SI D (system identifier) is or cl :

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e:thin:scott/tiger@yhost: 1521: orcl);

Specifying a Database URL and Properties Object

The following signature takes a URL, together with a properties object that specifies
user name and password (perhaps among other things):

get Gonnection(String UR, Properties info);

Where the URL is of the form:

j dbc: oracl e: <dri vert ype>: @dat abase>

In addition to the URL, use an object of the standard Java Pr oper ti es class as
input. For example:

java.util.Properties info = newjava. util.Properties();
info.put ("user", "scott");

info.put ("password',"tiger");

info.put ("default RowPrefetch","15");

get Gonnection ("jdbc: oracl e:oci 8: @, i nfo);

Table 3-1 lists the connection properties that Oracle JDBC drivers support.

3-6 JDBC Developer’s Guide and Reference



First Steps in JDBC

Table 3-1 Connection Properties Recognized by Oracle JDBC Drivers

Short
Name Name Type Description
user n/a String the user name for logging into the
database
password n/a String the password for logging into the database
database server String the connect string for the database
internal_logon n/a String (OCI driver) a user name, such as sysdba,
that allows you to log on as "internal”
using that name (Thin driver does not
support OS authentication)
defaultRowPrefetch  prefetch String the default number of rows to prefetch
(containing from the server (default value is "10")
integer
value)
remarksReporting remarks String "true" if get Tabl es() and
(containing get Col unms( ) should report
boolean TABLE_REMARKS; equivalent to using
value) set Remar ksReporti ng() (default
value is "false")
defaultBatchValue batchvalue String the default batch value that triggers an
(containing execution request (default value is "10")
integer
value)
includeSynonyms synonyms  String "true" to include column information from
(containing predefined "synonym" SQL entities when
boolean you execute a Dat aBaseMet aDat a
value) get Col unms () call; equivalent to

connection set | ncl udeSynonyns() call
(default value is "false")

Basic Features 3-7



First Steps in JDBC

Properties for Oracle Performance Extensions Some of these properties are for use with
Oracle performance extensions. Setting these properties is equivalent to using
corresponding methods on the Or acl eConnect i on object, as follows:

« Setting the def aul t RowPr ef et ch property is equivalent to calling
set Def aul t RowPr ef et ch() .

See "Oracle Row Prefetching" on page 12-20.

« Setting the r emar ksReport i ng property is equivalent to calling
set Remar ksReporting().

See "DatabaseMetaData TABLE_REMARKS Reporting" on page 12-27.

« Setting the def aul t Bat chVal ue property is equivalent to calling
set Def aul t Execut eBat ch() .

See "Oracle Update Batching" on page 12-4.

Example The following example shows how to use the put () method of the
java.util.Properti es class, in this case to set Oracle performance extension
parameters.

/linport packages and register the driver

inport java.sql.*;

inport java. nath.*;

Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. aclebriver());

//specify the properties object

java.util.Properties info = newjava.util.Properties();
info.put("user", "scott");

info.put ("password', "tiger");

info.put ("default RowProfetch","20");

i nfo.put ("defaultBatchval ue", "5");

//specify the connecti on obj ect
Gonnection conn = Driver Manager . get Gonnect i on
("j dbc: oracl e: t hi n: @at abase", i nfo);

Opening a Connection for the JDBC OCI Driver

For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file t nsnanes. or a on the
client computer from which you are connecting. On Windows NT, this file is located

3-8 JDBC Developer’s Guide and Reference



First Steps in JDBC

in the [ ORACLE_HOME] \ NETWORK\ ADM N directory. On UNIX systems, you can
find itin the/ var/ opt/ or acl e directory.

For example, if you want to connect to the database on host nyhost as user scot t
with password t i ger that has a TNSNAMES entry of MyHost St ri ng, enter:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: oci 8: @¥Host Sring", "scott", "tiger");

Note that both the ": " and "@ characters are necessary.

For the JDBC OCI and Thin drivers, you can also specify the database with a Net8
keyword-value pair. This is less readable than a TNSNAMES entry but does not
depend on the accuracy of the TNSNAMES. ORA file. The Net8 keyword-value pair
also works with other JDBC drivers.

For example, if you want to connect to the database on host nyhost that has a
TCP/IP listener up on port 1521, and the Sl D (system identifier) isor cl , use a
statement such as:

Qonnection conn = Driver Manager . get Gonnecti on
("] dbc: or acl e: oci 8: @descri pti on=( addr ess=( host = nyhost )
(protocol =t cp) (port=1521)) (connect _data=(sid=orcl)))","scott", "tiger");

Note: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi meout () method will have
no effect.

Opening a Connection for the JDBC Thin Driver

Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

«  Explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect.

or:

« Use a keyword-value pair list.

Basic Features 3-9



First Steps in JDBC

Note: The JDBC Thin driver supports only the TCP/IP protocol.

For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database S| D (system identifier)
or cl . You can logon as user scot t , with password t i ger:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: thi n: @yhost: 1521: orcl ", "scott", "tiger");

You can also specify the database with a Net8 keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: thin: @descri pti on=(addr ess=( host =nyhost )
(protocol =t cp) (port=1521)) (connect _dat a=(si d=orcl)))", "scott", "tiger");

Notes: Oracle JDBC does not support login timeouts. Calling the
static Dri ver Manager . set Logi nTi meout () method will have
no effect.

Create a Statement Object

Once you connect to the database and, in the process, create your Connect i on
object, the next step is to create a St at enent object. The cr eat eSt at ement ()
method of your JDBC Connect i on object returns an object of the JDBC

St at ement class. To continue the example from the previous section where the
Connect i on object conn was created, here is an example of how to create the
St at ement object:

Satenent stnt = conn.createStatenent();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Execute a Query and Return a Result Set Object

To query the database, use the execut eQuer y() method of your St at enent
object. This method takes a SQL statement as input and returns a JDBC Resul t Set
object.

3-10 JDBC Developer’s Guide and Reference



First Steps in JDBC

To continue the example, once you create the St at enent object st nt , the next step
is to execute a query that populates a Resul t Set object with the contents of the
ENAME (employee name) column of a table of employees named EMP:

Resul t Set rset = stni. executeQuery ("SELECT enane FROM enp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Process the Result Set

Once you execute your query, use the next () method of your Resul t Set object to
iterate through the results. This method steps through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate
get XXX() methods of the Resul t Set object, where XXX corresponds to a Java
datatype.

For example, the following code will iterate through the Resul t Set objectr set
from the previous section and will retrieve and print each employee name:

vhile (rset.next())
Systemout.println (rset.getSring(l));

Once again, this is standard JDBC syntax. The next () method returns false when it
reaches the end of the result set. The employee names are materialized as Java
strings.

For a complete sample application showing how to execute a query and print the
results, see "Listing Names from the EMP Table—Employee.java" on page 17-2.

Close the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at ement objects after you finish
using them. This applies to all Resul t Set and St at ement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the cl ose() method of the Resul t Set and

St at ement classes. If you do not explicitly close your Resul t Set and

St at ement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.

Basic Features 3-11



First Steps in JDBC

For example, if your Resul t Set objectis r set and your St at enment object is
st nt, close the result set and statement with these lines:

rset.close();
stn.close();

When you close a St at enent object that a given Connect i on object creates, the
connection itself remains open.

Note: Typically, you should putcl ose() statementsina
finally clause.

Make Changes to the Database

To write changes to the database, such as for | NSERT or UPDATE operations, you
will typically create a Pr epar edSt at ement object. This allows you to execute a
statement with varying sets of input parameters. The pr epar eSt at ement ()
method of your JDBC Connect i on object allows you to define a statement that
takes variable bind parameters, and returns a JDBC Pr epar edSt at enment object
with your statement definition.

Use set XXX() methods on the Pr epar edSt at enent object to bind data into the
prepared statement to be sent to the database. The various set XXX() methods are
described in "Standard setObject() and Oracle setOracleObject() Methods" on

page 6-11 and "Other setXXX() Methods" on page 6-12.

Note that there is nothing Oracle-specific about the functionality described here; it
follows standard JDBC syntax.

The following example shows how to use a prepared statement to execute | NSERT
operations that add two rows to the EMP table. For the complete sample application,
see "Inserting Names into the EMP Table—InsertExample.java" on page 17-3.

/1 Prepare to insert new nanes in the EMP tabl e
PreparedStatenent pstn =
conn. preparetatenent ("insert into EMP (EMPNQ ENAME) values (?, ?)");

/1 Add LESLIE as enpl oyee nunber 1500

pstn.setint (1, 1500); /1 The first ? is for BEMPNO
pstnm.setSring (2, "LESLIE"); /1 The second ? is for ENAME
/1 Do the insertion

pstnt . execute ();

/1 Add MARSHA as enpl oyee nunber 507

3-12 JDBC Developer’s Guide and Reference



First Steps in JDBC

pstn.setint (1, 507); /1 The first ? is for BEMPNO
pstn.setSring (2, "MARSHA'); /1 The second ? is for ENAME
/1 Do the insertion

pstn . execute ();

// QA ose the statenent
pstnt. cl ose();

Commit Changes

By default, DML operations (I NSERT, UPDATE, DELETE) are committed
automatically as soon as they are executed. This is known as auto-commit mode. You
can, however, disable auto-commit mode with the following method call on the
Connect i on object:

conn. set Aut oConmit (fal se) ;
(For further discussion of auto-commit mode and an example of disabling it, see
"Disabling Auto-Commit Mode" on page 16-6.)

If you disable auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connect i on object:

conn.commt();

or:

conn. rol | back();

A COW T or ROLLBACK operation affects all DML statements executed since the
last COVM T or ROLLBACK.

Important:

« If auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes,
then an implicit COMM T operation is executed.

« Any DDL operation, such as CREATE or ALTER, always
includes an implicit COW T. If auto-commit mode is disabled,
this implicit COMM T will not only commit the DDL statement,
but also any pending DML operations that had not yet been
explicitly committed or rolled back.

Basic Features 3-13



First Steps in JDBC

Close the Connection

You must close your connection to the database once you finish your work. Use the
cl ose() method of the Connect i on object to do this:

conn. cl ose();

Note: Typically, you should putcl ose() statementsina
finally clause.

3-14 JDBC Developer’s Guide and Reference



Sample: Connecting, Querying, and Processing the Results

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
St at ement object, executes a query, and processes the result set.

Note that the code for creating the St at enent object, executing the query,
returning and processing the Resul t Set object, and closing the statement and
connection all follow standard JDBC syntax.

inport java.sql.*;
inport java. nath.*;
inport java.io.*;

inport java. aw.*;

cl ass JdbcTest {
public static void main (String args []) throws SQLException {
/1 Load Oracle driver
Dri ver Manager . regi sterDri ver (new oracl e.jdbc.driver. acleDxiver());
/1 Gonnect to the | ocal database
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc: oracl e: t hi n: @yhost : 1521: (RCL", "scott", "tiger");

/1 Query the enpl oyee nanes
Satenent stnt = conn.createStatenent ();
Resul t Set rset = stni. executeQuery ("SELECT enane FROM enp");
/1 Print the name out
vhile (rset.next ())
Systemout.println (rset.getSring (1));

//close the result set, statenent, and the connection
rset.close();
stm.close();
conn. cl ose() ;

}

If you want to adapt the code for the OCI driver, replace the Connecti on
statement with the following:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: oci 8: @¥Host Sring", "scott", "tiger");

Where MyHost St ri ng is an entry in the TNSNAMES. ORAfile.

Basic Features 3-15



Datatype Mappings

Datatype Mappings

The Oracle JDBC drivers support standard JDBC 1.0 and 2.0 types as well as
Oracle-specific BFI LE and ROW D datatypes and types of the REF CURSOR
category.

This section documents standard and Oracle-specific SQL-Java default type
mappings.

Table of Mappings

For reference, Table 3-2 shows the default mappings between SQL datatypes, JDBC
typecodes, standard Java types, and Oracle extended types.

The SQL Datatypes column lists the SQL types that exist in the database.

The JDBC Typecodes column lists data typecodes supported by the JDBC standard
and defined in the j ava. sqgl . Types class, or by Oracle in the

oracl e.jdbc. driver. Oracl eTypes class. For standard typecodes, the codes
are identical in these two classes.

The Standard Java Types column lists standard types defined in the Java language.

The Oracle Extension Java Types column lists the or acl e. sql . * Java types that
correspond to each SQL datatype in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of a or acl e. sql . * Java type. Mapping
SQL datatypes into the or acl e. sql datatypes lets you store and retrieve data
without losing information. Refer to "Package oracle.sgl" on page 5-7 for more
information on the or acl e. sql . * package.

Table 3-2 Default Mappings Between SQL Types and Java Types

SQL Datatypes JDBC Typecodes Standard Java Types Oracle Extension Java Types

STANDARD JDBC 1.0 TYPES:

CHAR java.sgl.Types.CHAR java.lang.String oracle.sql.CHAR
VARCHAR?2 java.sgl.Types.VARCHAR java.lang.String oracle.sql.CHAR
LONG java.sgl.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR
NUMBER java.sgl.Types.NUMERIC java.math.BigDecimal oracle.sql.NUMBER
NUMBER java.sgl.Types.DECIMAL java.math.BigDecimal oracle.sql. NUMBER
NUMBER java.sgl.Types.BIT boolean oracle.sql.NUMBER
NUMBER java.sgl.Types.TINYINT byte oracle.sql.NUMBER

3-16 JDBC Developer’s Guide and Reference



Datatype Mappings

Table 3-2 Default Mappings Between SQL Types and Java Types(Cont.)

SQL Datatypes

JDBC Typecodes

Standard Java Types

Oracle Extension Java Types

NUMBER java.sgl.Types.SMALLINT short oracle.sql.NUMBER
NUMBER java.sgl.Types.INTEGER int oracle.sql.NUMBER
NUMBER java.sgl.Types.BIGINT long oracle.sql.NUMBER
NUMBER java.sgl.Types.REAL float oracle.sql.NUMBER
NUMBER java.sgl.Types.FLOAT double oracle.sql.NUMBER
NUMBER java.sgl.Types.DOUBLE double oracle.sql.NUMBER
RAW java.sgl.Types.BINARY byte[] oracle.sql.RAW
RAW java.sgl.Types.VARBINARY byte[] oracle.sql.RAW
LONGRAW java.sgl.Types.LONGVARBINARY byte[] oracle.sql.RAW
DATE java.sgl.Types.DATE java.sgl.Date oracle.sql.DATE
DATE java.sgl.Types.TIME java.sql.Time oracle.sql.DATE
DATE java.sgl.Types.TIMESTAMP javal.sgl.Timestamp oracle.sql.DATE
STANDARD JDBC 2.0 TYPES:
BLOB java.sgl.Types.BLOB java.sql.Blob oracle.sql.BLOB
CLOB java.sgl.Types.CLOB java.sgl.Clob oracle.sql.CLOB

user-defined object

java.sgl.Types.STRUCT

java.sql.Struct

oracle.sql.STRUCT

user-defined
reference

java.sgl.Types.REF

java.sql.Ref

oracle.sql.REF

user-defined

java.sgl.Types. ARRAY

java.sql.Array

oracle.sql.ARRAY

collection

ORACLE EXTENSIONS:
BFILE oracle.jdbc.driver.OracleTypes.BFILE n/a oracle.sql.BFILE
ROWID oracle.jdbc.driver.OracleTypes.ROWID n/a oracle.sql.ROWID

REF CURSOR type

oracle.jdbc.driver.OracleTypes.CURSOR

java.sgl.ResultSet

oracle.jdbc.driver.OracleResultSet

Note: Under JDK 1.1.x, the Oracle package or acl e. j dbc2 is
required to support JDBC 2.0 types. (Under JDK 1.2.x they are

supported by the standard j aval . sql package.)

Basic Features 3-17



Datatype Mappings

For a list of all the Java datatypes to which you can validly map a SQL datatype, see
"Valid SQL-JDBC Datatype Mappings" on page 18-2.

See Chapter 5, "Overview of Oracle Extensions", for more information on type
mappings. In Chapter 5 you can also find more information on the following:

« packagesoracl e.sql,oracl e.jdbc.driver,andoracle.jdbc2

« type extensions for the Oracle BFI LE and ROW D datatypes and user-defined
types of the REF CURSOR category

Notes Regarding Mappings

This section goes into further detail regarding mappings for NUVMBER and
user-defined types.

Regarding User-Defined Types

User-defined types such as objects, object references, and collections map by default
to weak Java types (such as j ava. sql . St ruct), but alternatively can map to
strongly typed custom Java classes. Custom Java classes can implement one of two
interfaces:

«» thestandardj ava. sql . SQLDat a (for user-defined objects only)

« the Oracle-specific or acl e. sql . Cust onDat um(primarily for user-defined
objects, object references, and collections, but able to map from any SQL type
where you want customized processing of any kind)

For information about custom Java classes and the SQLDat a and Cust onDat um
interfaces, see "Mapping Oracle Objects" on page 8-2 and "Creating and Using
Custom Object Classes for Oracle Objects" on page 8-9. (Although these sections
focus on custom Java classes for user-defined objects, there is some general
information about other kinds of custom Java classes as well.)

Regarding NUMBER Types

For the different typecodes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work
properly. For example, call get Byt e() togetalavati nyi nt value, for an item x
where -128 < x < 128.

3-18 JDBC Developer’s Guide and Reference



Java Streams in JDBC

Java Streams in JDBC
This section covers the following topics:
« Streaming LONG or LONG RAW Columns
« Streaming CHAR, VARCHAR, or RAW Columns
« Data Streaming and Multiple Columns
« Streaming and Row Prefetching
« Closing a Stream
« Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

« binary stream—Used for RAWbytes of data. This corresponds to the
get Bi narySt ream() method.

« ASCII stream—Used for ASCII bytes in ISO-Latin-1 encoding. This corresponds
to the get Asci i St rean() method.

= Unicode stream—Used for Unicode bytes with the UCS- 2 encoding. This
corresponds to the get Uni codeSt r ean() method.

The methods get Bi naryStrean(),get Ascii Stream(), and

get Uni codeSt r ean() return the bytes of data in an | nput St r eamobject. These
methods are described in greater detail in Chapter 7, "Working with LOBs and
BFILEs".

For a complete sample application showing how to read and write stream data, see
"Streams—StreamExample.java" on page 17-10.

Streaming LONG or LONG RAW Columns

When a query selects one or more LONG or LONG RAWcolumns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
execut eQuery() or next (), the data of the LONGcolumn is waiting to be read.

Basic Features 3-19



Java Streams in JDBC

To access the data in a LONG column, you can get the column as a Java

I nput St r eamand use the r ead() method of the | nput St r eamobject. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

You can get LONG and LONG RAWdata with any of the three stream types. The driver
performs NLS conversions for you, depending on the character set of your database
and the driver. For more information about NLS, see "JDBC and NLS" on page 15-2.

LONG RAW Data Conversions

A call to get Bi narySt rean() returns RAWdata "as-is". A call to

get Asci i Stream() converts the RAWdata to hexadecimal and returns the ASCII
representation. A call to get Uni codeSt r eam() converts the RAWdata to
hexadecimal and returns the Unicode bytes.

For example, if your LONGRAWCcolumn contains the bytes 20 21 22, you receive the
following bytes:

LONG RAW BinaryStream  ASCIIStream UnicodeStream
20 21 22 20 21 22 49 52 49 53 49 54 0049 0052 0049 0053 0049 0054
which is also which is also:

R S R CH R T4 % 1T 6

For example, the LONG RAWvalue 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions

When you get LONGdata with get Asci i St r ean( ), the drivers assume that the
underlying data in the database uses an US7ASCI | or VE8] SC8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCI | or WE8I SCB8859P1 character
set, a call to get Asci i St ream() returns meaningless information.

When you get LONGdata with get Uni codeSt r ean{ ), you get a stream of
Unicode characters in the UCS- 2 encoding. This applies to all underlying database
character sets that Oracle supports.

3-20 JDBC Developer’s Guide and Reference



Java Streams in JDBC

When you get LONGdata with get Bi nar ySt r ean( ), there are two possible cases:

« Ifthe driver is JDBC OCI and the client character set is not US7ASCI | or
WE8| SO8859P1, then a call to get Bi nar ySt r ean() returns UTF- 8. If the
client character set is US7TASCI | or WE8I SCB859P1, then the call returns a
US7ASCI | stream of bytes.

« Ifthe driver is JDBC Thin and the database character set is not US7TASCI | or
WE8| SO8859P1, then a call to get Bi nar ySt r ean() returns UTF- 8. If the
server-side character set is US7ASCI | or WE8I SGB859P1, then the call returns a
US7ASCI | stream of bytes.

For more information on how the drivers return data based on character set, see
"JDBC and NLS" on page 15-2.

Note: Receiving LONGor LONG RAWcolumns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-25.

Table 3-3 summarizes LONG and LONG RAWdata conversions for each stream type.

Table 3-3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream
LONG bytes representing characters in bytes representing bytes representing
Unicode UTF- 8. The bytes can characters in 1ISO-Latin-1 characters in Unicode

represent characters in US7ASCI | or (VE8I SO8859P1) encoding UCS- 2 encoding
WE8| SOB8859P1 if:

« thevalue of NLS_LANGonN the
client is US7ASCI | or
W\E8| SCB859P1.

or:

. the database character set is
US7ASCI | or WE8I SO8859P1.

LONG RAW |as-is ASCII representation of Unicode representation
hexadecimal bytes of hexadecimal bytes

Basic Features 3-21



Java Streams in JDBC

Streaming Example for LONG RAW Data

One of the features of a get XXXSt r ean() method is that it allows you to fetch data
incrementally. In contrast, get Byt es() fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
get Bi naryStrean() method to obtain LONG RAWdata; the second version uses
the get Byt es() method.

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONGRAWcolumn to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAWdata
associated with the name LESLIE:

-- S code:
create tabl e streanexanpl e (NAMVE varchar2 (256), G FDATA long raw;

insert into streanexanpl e values (' LESLIE, ’'00010203040506070809');

The following Java code snippet writes the data from the LESLIE LONG RAWcolumn
intoafilecalledl eslie.gif:

Resul t Set rset = stnt. execut eQuery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 get first row
if (rset.next())
{
/] Gt the QF data as a streamfromQacle to the client
Input Sreamgi f_data = rset.getB naryStream (1);
try
{
FleQtputSreamfile = null;

file =newFileQutputStream("leslie.gif");
int chunk;
while ((chunk = gif _data.read()) !=-1)
file wite(chunk);
}
cat ch (Exception e)
{
Sring err = e.toXring();
Systemout. println(err);
}
finally

{
if file!=null()

3-22 JDBC Developer’s Guide and Reference



Java Streams in JDBC

file.close();

}

In this example the contents of the G| FDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The | nput St r eam
object returned by the call to get Bi nar ySt r ean{) reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the G FDATA column with get Byt es() instead of

get Bi naryStrean() . In this case, the driver fetches all the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

Resul t Set rset2 = stni.execut eQiery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 get first row
if (rset2.next())

{

/] Get the AQF data as a streamfromQacle to the client
byte[] bytes = rset2.getBytes(1);
try
{
FleQtputSreamfile = null;
file =newFileQutputStream ("l eslie2.gif");
file.wite(bytes);
}
cat ch (Exception €)
{
Sring err = e.toXring();
Systemout.println(err);
}
finally
{
if file!=null()
file.close();

}

Because a LONGRAWcolumn can contain up to 2 gigabytes of data, the get Byt es()
example will probably use much more memory than the get Bi nar ySt r ean()
example. Use streams if you do not know the maximum size of the data in your
LONGor LONGRAWcolumns.

Basic Features 3-23



Java Streams in JDBC

Avoiding Streaming for LONG or LONG RAW

The JDBC driver automatically streams any LONGand LONG RAWcolumns.
However, there may be situations where you want to avoid data streaming. For
example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the def i neCol umType() method to redefine the type of
the LONG column. For example, if you redefine the LONGor LONG RAWcolumn as
type VARCHAR or VARBI NARY, then the driver will not automatically stream the
data.

If you redefine column types with def i neCol umType(), you must declare the
types of all columns in the query. If you do not, execut eQuer y() will fail. In
addition, you must cast the St at ement object to an

oracl e.jdbc.driver. O acl eSt at ement object.

As an added benefit, using def i neCol uimType() saves the driver two round
trips to the database when executing the query. Without def i neCol uimType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the St at ement object st nt is cast to
the Or acl eSt at ement and the column containing LONG RAWdata is redefined to
be of the type VARBI NARAY. The data is not streamed—instead, it is returned in a
byte array.

//cast the statenent stnt to an O acl eSt at enent
oracle.jdbc. driver.Oacletatenent ostm =
(oracle.jdbc.driver.Oacl eatenent)stnt;

//redefine the LONG col um at index position 1 to VARB NARY
ost mi. def i neGol umType(1, Types. VARB NARY);

/! Do a query to get the inages naned ' LESLIE
Resul t Set rset = ostnt.execut eQiery
("sel ect A FDATA from streanexanpl e where NAME=' LESLIE ") ;

/1 The data is not streaned here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns

If you use the def i neCol uimType() Oracle extension to redefine a CHAR,
VARCHAR, or RAWcolumn as a LONGVARCHAR or LONGVARBI NARY, then you can get
the column as a stream. The program will behave as if the column were actually of

3-24 JDBC Developer’s Guide and Reference



Java Streams in JDBC

type LONGor LONG RAW Note that there is not much point to this, because these
columns are usually short.

If you try to get a CHAR, VARCHAR, or RAWcolumn as a data stream without
redefining the column type, the JDBC driver will return a Java | nput St r eam but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to the execut eQuer y()
method or next () method. The get XXXSt r ean() entry points return a stream
that reads data from this buffer.

Data Streaming and Multiple Columns

If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are not
available until the stream has been read, and the stream column is no longer
available once any following column is read. Any attempt to read a column beyond
a streaming column closes the streaming column. See "Streaming Data Precautions"
on page 3-28 for more information.

Streaming Example with Multiple Columns
Consider the following query:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');
vhi | e rset. next ()
{
//get the date data
java.sql .Date date = rset.getDate(1);

/1 get the streaning data
Input Streamis = rset. get Ascii Strean{?2);

I/l Qpen a file to store the gif data
FleQutputSreamfile = new F | eQut put Sream ("ascii.dat");

/1 Loop, reading fromthe ascii streamand
/I witetothe file
int chunk;
vwhile ((chunk = is.read ()) !=-1)
file wite(chunk);
/1 Aose the file
file.close();

Basic Features 3-25



Java Streams in JDBC

//get the nunber colunn data
int n=rset.getlnt(3);
}

The incoming data for each row has the following shape:

<a dat e><the characters of the |ong col um><a nunber >

As you process each row of the iterator, you must complete any processing of the
stream column before reading the number column.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-27.

Bypassing Streaming Data Columns

There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the cl ose() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT-list order.

In the following example, the stream data in the LONGcolumn is discarded and the
data from only the DATE and NUMBER column is recovered:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');

vhi | e rset. next ()

{
//get the date
java.sql .Date date = rset.getDate(1);
/] access the streamdata and discard it wth close()
Input Streamis = rset. get Ascii Strean{?2);
is.close();
/1 get the nunber col umrm dat a
int n=rset.getint(3);
}

3-26 JDBC Developer’s Guide and Reference



Java Streams in JDBC

Streaming LOBs and External Files

The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to
the location of the actual data. External files (binary files, or BFILES) are managed
similarly. The JDBC drivers can support these types through the use of streams:

« BLOBs (unstructured binary data)
« CLOBs (character data)
«  BFILEs (external files)

LOBs and BFILEs behave differently from the other types of streaming data
described in this chapter. The driver transfers data between server and client as a
Java stream. However, unlike most Java streams, a locator representing the data is
stored in the table. Thus, you can access the data at any time during the life of the
connection.

Streaming BLOBs and CLOBs

When a query selects one or more CLOB or BLOB columns, the JDBC driver transfers
to the client the data pointed to by the locator. The driver performs the transfer as a
Java stream. To manipulate CLOB or BLOB data from JDBC, use methods in the
Oracle extension classes or acl e. sql . BLOBand or acl e. sql . CLOB. These
classes provide functionality such as reading from the CLOB or BLOB into an input
stream, writing from an output stream into a CLOB or BLOB, determining the
length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 7-6.

Important: The JDBC 2.0 specification states that

Pr epar edSt at ement methods set Bi narySt rean() and

set Obj ect () can be used to input a stream value as a BLOB, and
that the Pr epar edSt at enent methods set Asci i Stream(),
set Uni codeSt ream(), set Char act er Strean(), and

set Obj ect () can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and
8.1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption can result.

Basic Features 3-27



Java Streams in JDBC

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database,
stored somewhere on the filesystem of the data server. The locator points to the
actual location of the file.

When a query selects one or more BFI LE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension class
or acl e. sqgl . BFI LE. This class provides functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE,
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 7-18.

Closing a Stream

You can discard the data from a stream at any time by calling the stream’s cl ose()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the cl ose() method for
data streams in "Bypassing Streaming Data Columns" on page 3-26. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-28.

Notes and Precautions on Streams

This section discusses several noteworthy and cautionary issues regarding the use
of streams:

« Streaming Data Precautions
« Using Streams to Avoid Limits on setBytes() and setString()

« Streaming and Row Prefetching

Streaming Data Precautions

This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described:

= Use the stream data after you access it.

3-28 JDBC Developer’s Guide and Reference



Java Streams in JDBC

To recover the data from a column containing a data stream, it is not enough to
get the column; you must immediately process its contents. Otherwise, the
contents will be discarded when you get the next column.

« Call the stream column in SELECT-list order.

If your query selects multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, the database sends the entire data stream before
proceeding to the next column.

If you do not use the SELECT-list order to access data, then you can lose the
stream data. That is, if you bypass the stream data column and access data in a
column that follows it, the stream data will be lost. For example, if you try to
access the data for the NUMBER column before reading the data from the stream
data column, the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONGcolumn contains a large
amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "St r eam Cl osed" error.

The second point is illustrated in the following example:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECO, LONGOA, NUMBEROCL from TABLE');
vhi | e rset. next ()

{
int n=rset.getInt(3); // This discards the streaming data
Input Streamis = rset. getAscii Strean{?2);
/! Raises an error: streamcl osed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

Resul t Set rset = stnt. execut eQuery
("sel ect DATECQ, LONGOA, NUMBERGOL from TABLE');
vhi | e rset. next ()

{
Input Streamis = rset.getAscii Strean{2); // Get the stream
int n=rset.getlnt(3);
/] Dscards streaning data and cl oses the stream

}

int ¢ =is.read(); // cis -1 no nore characters to read-stream cl osed

Basic Features 3-29



Java Streams in JDBC

Using Streams to Avoid Limits on setBytes() and setString()

There is a limit on the maximum size of the array which can be bound using the
Pr epar edSt at enent class set Byt es() method, and on the size of the string
which can be bound using the set St ri ng() method.

Above the limits, which depend on the version of the server you use, you should
use set Bi naryStrean() or set Charact er Strean{) instead.

When connecting to an Oracle8 database, the limit for set Byt es() is 2000 bytes
(the maximum size of a RAWin Oracle8) and the limit for set St ri ng() is 4000
bytes (the maximum size of a VARCHARZ in Oracle8).

When connecting to an Oracle7 database, the limit for set Byt es() is 255 bytes
(the maximum size of a RAWin Oracle7) and the limit for set St ri ng() is 2000
bytes (the maximum size of a VARCHARZ in Oracle?).

The 8.1.6 Oracle JDBC drivers may not raise an error if you exceed the limit when
using set Byt es() orset String(), butyou may receive the following error:

CRA-17070: Data si ze bigger than max size for this type

Future versions of the Oracle drivers will raise an error if the length exceeds these
limits.

Note: This discussion applies to binds in SQL, not PL/SQL.

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Row prefetching is an Oracle performance enhancement that allows multiple rows
of data to be retrieved with each trip to the database. See "Oracle Row Prefetching"
on page 12-20.

3-30 JDBC Developer’s Guide and Reference



Stored Procedure Calls in JDBC Programs

Stored Procedure Calls in JDBC Programs

This section describes how the Oracle JDBC drivers support the following kinds of
stored procedures:

« PL/SQL Stored Procedures

= Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle PL/SQL
block syntax. The following PL/SQL calls would work with any Oracle JDBC
driver:

/1 SQ92 synt ax
Cal | abl eStat ement c¢s1 = conn. pr epar eCal |
( "{call proc (?,?)3}" ) ; // stored proc
Cal | abl eSt at enent ¢s2 = conn. pr epar eCal |
("{? =cal func (?,?)}" ) ; // stored func
/1 Gacle PL/SQL bl ock syntax
Cal | abl eSt at enent ¢s3 = conn. pr epar eCal |
( "begin proc (?,?); end;" ) ; // stored proc
Cal | abl eSt at enent ¢s4 = conn. pr epar eCal |
( "begin ? :=func(?,?); end;" ) ; // stored func

As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (val 1 char)
return char as
begi n
retum vall || 'suffix’;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager.getConnection
(‘jdbc:oracle:oci8:@<hoststring>", "scott”, "tiger");

CallableStatement cs = conn.prepareCall ("begin ? :=foo(?); end;');

cs.registerOutParameter(1, Types.CHAR);

cs.setString(2, "aa’);

cs.executeUpdate();

String result = proc.getString(1);

Basic Features 3-31



Stored Procedure Calls in JDBC Programs

For complete sample applications that call PL/SQL stored procedures and functions
in SQL92 syntax and Oracle PL/SQL block syntax, see "Calling PL/SQL Stored
Procedures—PLSQLExample.java" on page 17-5 and "Executing Procedures in
PL/SQL Blocks—PLSQL.java" on page 17-6.

Java Stored Procedures

You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly "published"”
(that is, have had call specifications written to publish them to the Oracle data
dictionary). See the Oracle8i Java Stored Procedures Developer’s Guide for more
information on writing, publishing, and using Java stored procedures.

3-32 JDBC Developer’s Guide and Reference



Processing SQL Exceptions

Processing SQL Exceptions

To handle error conditions, the Oracle JDBC drivers throws SQL exceptions,
producing instances of class j ava. sql . SQLExcept i on or a subclass. Errors can
originate either in the JDBC driver or in the database (RDBMS) itself. Resulting
messages describe the error and identify the method that threw the error.
Additional run-time information can also be appended.

Basic exception-handling can include retrieving the error message, retrieving the
error code, retrieving the SQL state, and printing the stack trace. The
SQLExcept i on class includes functionality to retrieve all of this information,
where available.

Errors originating in the JDBC driver are listed with their ORA numbers in
Appendix A, "JDBC Error Messages".

Errors originating in the RDBMS are documented in the Oracle8i Error Messages
reference.

Retrieving Error Information
You can retrieve basic error information with these SQLExcept i on methods:
« get Message()

For errors originating in the JDBC driver, this method returns the error message
with no prefix. For errors originating in the RDBMS, it returns the error
message prefixed with the corresponding ORA number.

« getErrorCode()

For errors originating in either the JDBC driver or the RDBMS, this method
returns the five-digit ORA number.

« getSQState()

For errors originating in the JDBC driver, this returns no useful information. For
errors originating in the RDBMS, this method returns a five-digit code
indicating the SQL state. Your code should be prepared to handle null data.

The following example prints output from a get Message() call.

cat ch( SQLException e);
{

}

Systemout. println("exception: " + e. get Message());

Basic Features 3-33



Processing SQL Exceptions

This would print output such as the following for an error originating in the JDBC
driver:

exception: Invalid col um type

(There is no ORA number message prefix for errors originating in the JDBC driver,
although you can get the ORA number with a get Er r or Code() call.)

Note: Error message text is available in alternative languages and
character sets supported by Oracle.

Printing the Stack Trace

The SQLExcept i on class provides the following method for printing a stack trace.
« printStackTrace()

This method prints the stack trace of the throwable object to the standard error
stream. You can also specify aj ava. i 0. Pri nt St r eamobject or
java.io.PrintWiter object for output.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

try { <sone code> }
cat ch(SQException e) { e.printSackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

/1 lterate through the result and print the enpl oyee names
/1 of the code

try {
while (rset.next ())

Systemout.println (rset.getString (5)); // incorrect colum index

}
cat ch(SQException e) { e.printSackTrace (); }

3-34 JDBC Developer’s Guide and Reference



Processing SQL Exceptions

Assuming the column index is incorrect, executing the program would produce the
following error text:

java.sql . SQ.Exception: Invalid col um index

at oracl e.jdbc. dbaccess. DBE ror. check_error (DBError. j ava: 235)

at oracle.jdbc. driver.Oacl eXatemnent. prepare_for_new get (O acl eSt at enen
t.j ava: 1560)

at oracle.jdbc. driver.acleSaterent. getSringVval ue(Qacl eSatenent. jav
a: 1653)

at oracle.jdbc. driver. Oacl eResul t Set. get Sring(Q acl eResul t Set. j ava: 175

)
at BEnpl oyee. nai n( Enpl oyee. j ava: 41)

Basic Features 3-35



Processing SQL Exceptions

3-36 JDBC Developer’s Guide and Reference



A

Overview of JDBC 2.0 Support

A key aspect of Oracle JDBC with release 8.1.6 is JDBC 2.0 functionality, both new
functionality that was not previously supported, and the standardization of
functionality that was previously supported through Oracle extensions.

This chapter provides an overview of JDBC 2.0 support in the release 8.1.6 Oracle
JDBC drivers, focusing in particular on any differences in support between the JDK
1.2.x and JDK 1.1.x environments. The following topics are discussed:

« Introduction
« JDBC 2.0 Support: JIDK 1.2.x versus JDK 1.1.x

« Overview of JDBC 2.0 Features

Overview of JDBC 2.0 Support  4-1



Introduction

Introduction

With release 8.1.6, the Oracle JDBC drivers are compliant with the JDBC 2.0
specification. JDBC 2.0 functionality previously implemented through Oracle
extensions in the or acl e. j dbc2 package—such as structured objects, object
references, arrays, and LOBs—is how implemented through the standard

j ava. sqgl packageinJDK 1.2.

If you are in a JDK 1.1.x environment, you can continue to use the or acl e. j dbc2
package. With release 8.1.6, you can also use JDBC 2.0 features in connection objects,
statement objects, result set objects, and database meta data objects under JDK 1.1.x
by casting your objects to the Oracle types.

Furthermore, with release 8.1.6, you can use features of the JDBC 2.0 Optional
Package (also known as the JDBC 2.0 Standard Extension API) under either JDK
1.2.x or JDK 1.1.x. These features, including connection pooling and distributed
transactions, are supported through the standard j avax. sql package. This
package and the classes that implement its interfaces are now included with the
JDBC classes ZIP file for either JDK 1.2.x or JDK 1.1.x.

4-2 JDBC Developer’s Guide and Reference



JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

Support for standard JDBC 2.0 features differs depending on whether you are using
JDK 1.2.x or JDK 1.1.x. There are three areas to consider:

« datatype support—such as for objects, arrays, and LOBs—which is handled
through the standard j ava. sql package under JDK 1.2.x and through the
Oracle extension or acl e. j dbc?2 package under JDK 1.1.x

« standard feature support—such as result set enhancements and update
batching—which is handled through standard objects such as Connect i on,
Resul t Set, and Pr epar edSt at enent under JDK 1.2.x, but requires
Oracle-specific functionality under JDK 1.1.x

« extended feature support—features of the JDBC 2.0 Optional Package (also
known as the Standard Extension API), including data sources, connection
pooling, and distributed transactions—which, with release 8.1.6, has the same
support and functionality in either JDK 1.2.x or JDK 1.1.x

This section also discusses performance enhancements available under JDBC
2.0—update batching and fetch size—that are also still available as Oracle
extensions, then concludes with a brief discussion about migration from JDK 1.1.x
to JDK 1.2.x.

Datatype Support

Oracle JDBC release 8.1.6 fully supports JDK 1.2.x, which includes standard JDBC
2.0 functionality through implementation of interfaces in the standard j ava. sql
package. These interfaces are implemented as appropriate by classes in the

oracl e. sqgl andoracl e.jdbc. dri ver packages.

For JDBC 2.0 functionality under JDK 1.2.x, where you are using cl asses12. zi p,
no special imports are required. The following imports, both of which you will
likely need even if you are not using JDBC 2.0 features, will suffice:

inport java.sql.*;
inport oracle.sql.*;

JDBC 2.0 features are not supported by JDK 1.1.x; however, Oracle provides
extensions that allow you to use a significant subset of JDBC 2.0 datatypes under
JDK 1.1.x, where you are using cl asses111. zi p. These extensions support
database objects, object references, arrays, and LOBs.

The package or acl e. j dbc2 isincluded in cl asses111. zi p. This package
provides interfaces that mimic JDBC 2.0-related interfaces that became standard

Overview of JDBC 2.0 Support 4-3



JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

with JDK 1.2.x for SQL3 and advanced datatypes. The interfaces in or acl e. j dbc2
are implemented as appropriate by classes in the or acl e. sql package for a JDK
1.1.x environment.

The following imports are required for JDBC 2.0 datatypes under JDK 1.1.x:

inport java.sql.*;
inport oracle.jdbc2. *;
inport oracle.sql.*;

Standard Feature Support

Ina JDK 1.2.x environment (using the JDBC classes in cl asses12. zi p), JDBC 2.0
features such as scrollable result sets, updatable result sets, and update batching are
supported through methods specified by standard JDBC 2.0 interfaces. Therefore,
under JDK 1.2.x, you can use standard objects such as Connect i on,

Dat abaseMet aDat a, Resul t Set Met aDat a, St at ement , Pr epar edSt at ermrent
Cal | abl eSt at ement , and Resul t Set to use these features.

With release 8.1.6 in a JDK 1.1.x environment (using the JDBC classes in
cl asses111. zi p), Oracle JDBC provides support for these JDBC 2.0 features as
Oracle extensions. To use this functionality, you must cast your objects to the Oracle

types:
« Oracl eConnection

« O acl eDat abaseMet aDat a

« O acl eResul t Set Met aDat a

« O acl eStat enent

« Oracl ePreparedSt at enent

« O acleCall abl eSt at enent

« O acl eResul t Set

For example, to use JDBC 2.0 result set enhancements, you must do the following:

« Explicitly type or cast scrollable or updatable result sets as type
O acl eResul t Set .

«  Explicitly type or cast connection objects as type Or acl eConnect i on
whenever the connection object will be required to produce a statement object
that will in turn produce a scrollable or updatable result set.

4-4 JDBC Developer’s Guide and Reference



JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

In addition, you might have to cast statement objects to Or acl eSt at enent ,

Or acl ePrepar edSt at erent , or Or acl eCal | abl eSt at enent , and cast
database meta data objects to Or acl eDat abaseMet aDat a. This would be if you
want to use JDBC 2.0 statement or database meta data methods described under
"Summary of New Methods for Result Set Enhancements" on page 11-32.

Extended Feature Support

With release 8.1.6, features of the JDBC 2.0 Optional Package (also known as the
Standard Extension API), including data sources, connection pooling, and
distributed transactions, are supported equally in a JDK 1.2.x or 1.1.x environment.

The standard j avax. sql package and classes that implement its interfaces are
included in the JDBC classes ZIP file for either environment.

Standard versus Oracle Performance Enhancement APIs

There are two performance enhancements available under JDBC 2.0, which had
previously been available as Oracle extensions:

= update batching
« fetch size / row prefetching

In each case, with release 8.1.6 you have the option of using the standard model or
the Oracle model. Do not, however, try to mix usage of the standard model and
Oracle model within a single application for either of these features.

For more information, see the following sections:
« "Update Batching" on page 12-2

« "Fetch Size" on page 11-24

« "Oracle Row Prefetching" on page 12-20

Migration from JDK 1.1.x to JDK 1.2.x

The only migration requirements in going from JDK 1.1.x to JDK 1.2.x are as
follows:

« Remove your imports of the or acl e. j dbc2 package, as discussed above
under "Datatype Support" on page 4-3.

= Replace any direct references to or acl e. j dbc2. * interfaces with references to
the standard j ava. sql . * interfaces.

Overview of JDBC 2.0 Support 4-5



JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

= Type map objects (for mapping SQL structured objects to Java types), which
must extend the j ava. uti | . Di cti onary class under JDK 1.1.x, must
implement the j ava. uti | . Map interface under JDK 1.2.x. Note, however, that
the classj ava. uti | . Hasht abl e satisfies either requirement. If you used
Hasht abl e objects for your type maps under JDK 1.1.x, then no change is
necessary. For more information, see "Creating a Type Map Object and Defining
Mappings for a SQLData Implementation” on page 8-11.

If these points do not apply to your code, then you do not need to make any code
changes or recompile to run under JDK 1.2.x.

4-6 JDBC Developer’s Guide and Reference



Overview of JDBC 2.0 Features

Overview of JDBC 2.0 Features

Table 4-1 lists key areas of JDBC 2.0 functionality and points to where you can go in
this manual for more information about Oracle support.

Table 4-1 Key Areas of JDBC 2.0 Functionality

Feature

Comments and References

update batching

result set enhancements
(scrollable and updatable
result sets)

fetch size / row prefetching

use of INDI (Java Naming
and Directory Interface) to
specify and obtain database
connections

connection pooling
(framework for connection
caching)

connection caching (sample
Oracle implementation)

Also available previously as an Oracle extension. With release
8.1.6, under either JDK 1.2.x or JDK 1.1.x you can use either
the standard update batching model or the Oracle model.

See "Update Batching" on page 12-2 for information.

With release 8.1.6, this is also available under JDK 1.1.x as an
Oracle extension.

See Chapter 11, "Result Set Enhancements"” for information.

With release 8.1.6, the JDBC 2.0 fetch size feature is also
available under JDK 1.1.x as an Oracle extension.

Under either JDK 1.2.x or JDK 1.1.x, you can also use Oracle
row prefetching, which is largely equivalent to the JDBC 2.0
fetch size feature but predates JDBC 2.0.

See "Fetch Size" on page 11-24 and "Oracle Row Prefetching"
on page 12-20 for information.

This requires data sources, which are part of the JDBC 2.0
Optional Package (JDBC 2.0 Standard Extension API) in the
j avax. sql package. With release 8.1.6 this is available
under either JDK 1.2.x or JDK 1.1.x.

See "A Brief Overview of Oracle Data Source Support for
JNDI" on page 13-2 and "Creating a Data Source Instance,
Registering with JNDI, and Connecting" on page 13-7 for
information.

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the j avax. sql package. With
release 8.1.6 this is available under either JDK 1.2.x or 1.1.x.

See "Connection Pooling" on page 13-11 for information.

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the j avax. sql package. With
release 8.1.6 this is available under either JDK 1.2.x or 1.1.x.

See "Connection Caching" on page 13-15 for information.

Overview of JDBC 2.0 Support 4-7



Overview of JDBC 2.0 Features

Table 4-1 Key Areas of JDBC 2.0 Functionality(Cont.)

Feature

Comments and References

distributed transactions /7
XA functionality

miscellaneous get XXX()
methods

miscellaneous set XXX()
methods

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the j avax. sql package. With
release 8.1.6, this is available under either JDK 1.2.x or 1.1.x.

See Chapter 14, "Distributed Transactions" for information.

See "Other getXXX() Methods" on page 6-7 for information
about which get XXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

See "Other setXXX() Methods" on page 6-12 for information
about which set XXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

Note: The 8.1.6 Oracle JDBC drivers do not support the

Cal endar datatype because it is not yet feasible to support

j ava. sql . Dat e timezone information. Cal endar input to

set XXX() or get XXX() method calls for Dat e, Ti ne, and

Ti mest anp is ignored. The Cal endar type will be supported in a
future Oracle release.

4-8 JDBC Developer’s Guide and Reference



D

Overview of Oracle Extensions

Oracle’s extensions to the JDBC standard include Java packages and interfaces that
let you access and manipulate Oracle datatypes and use Oracle performance
extensions. Compared to standard JDBC, the extensions offer you greater flexibility
in how you can manipulate the data. This chapter presents an overview of the
packages and classes included in Oracle’s extensions to standard JDBC. It also
describes some of the key support features of the extensions.

This chapter includes these topics:

« Introduction to Oracle Extensions

« Support Features of the Oracle Extensions
« Oracle JDBC Packages and Classes

« Oracle Type Extensions

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 12, "Performance Extensions".

Overview of Oracle Extensions 5-1



Introduction to Oracle Extensions

Introduction to Oracle Extensions

Oracle provides two implementations of its JDBC drivers—one that supports Sun
Microsystems JDK 1.2.x and complies with the Sun JDBC 2.0 standard, and one that
supports JDK 1.1.x and complies with the Sun JDBC 1.22 standard.

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions.

Note: The JDBC OCI, Thin, and server-side internal drivers
support the same functionality and all the Oracle extensions.

Both implementations include the following Java packages:
« oracl e.sql (classes to support all Oracle type extensions)

« oracle.jdbc.driver (classes to support database access and updates in
Oracle type formats)

In addition to these packages, the implementation for JDK 1.1.x includes the
following Java package. This package supports some JDBC 2.0 features by
providing interfaces that mimic the JDBC 2.0 interfaces in the standard j ava. sql
package:

« oracl e.jdbc2 (interfaces equivalent to standard JDBC 2.0 interfaces)

(For example, or acl e. j dbc2. St ruct mimicsj ava. sql . St ruct, which exists
in JDK 1.2.)

"Oracle JDBC Packages and Classes" on page 5-7 further describes the preceding
packages and their classes.

5-2 JDBC Developer’s Guide and Reference



Support Features of the Oracle Extensions

Support Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your
ability to work with Oracle databases. Among these are support for Oracle
datatypes, Oracle objects, and specific schema naming.

Support for Oracle Datatypes

A key feature of the Oracle JDBC extensions is the type support in the or acl e. sql
package. This package includes classes that map to all the Oracle SQL datatypes,
acting as wrappers for raw SQL data. This functionality provides two significant
advantages in manipulating SQL data:

« Accessing data directly in SQL format is more efficient than first converting it to
Java format.

« Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

Once manipulations are complete and it is time to output the information, each of
the or acl e. sql . * type support classes has all the necessary methods to convert
data to appropriate Java formats. For a more detailed description of these general
issues, see "Package oracle.sgl" on page 5-7.

See the following for more information on specific or acl e. sql . * datatype
classes:

« "Oracle Type Extensions" on page 5-26 for information on the or acl e. sql . *
datatype classes for ROWIDs and REF CURSOR types

« Chapter 7, "Working with LOBs and BFILEs" for information on
oracl e. sql . * datatype support for BLOBs, CLOBs, and BFILEs

« Chapter 8, "Working with Oracle Object Types" for information on
oracl e. sql . * datatype support for composite data structures (Oracle objects)
in the database

« Chapter 9, "Working with Oracle Object References" for information on
oracl e. sql . * datatype support for object references

« Chapter 10, "Working with Oracle Collections" for information on
oracl e. sql . * datatype support for collections (VARRAYs and nested tables)

Overview of Oracle Extensions 5-3



Support Features of the Oracle Extensions

Support for Oracle Objects

Oracle8i supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Enpl oyee object type, where each Enpl oyee object
hasaf i r st name attribute (a character string), a| ast nane attribute (another
character string), and an enpl oyeenunber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application, you must consider the following:

« how to map between Oracle object datatypes and Java classes

« how to store Oracle object attributes in corresponding Java objects (they can be
stored in standard Java types or in or acl e. sql . * types)

« how to convert attribute data between SQL and Java formats
« how to access data

Oracle objects can be mapped either to the weak j ava. sql . St ruct or

oracl e. sql . STRUCT types or to strongly typed customized classes. These strong
types are referred to as custom Java classes, must implement either the standard

j ava. sqgl . SQLDat a interface or the Oracle extension

oracl e. sqgl . Cust onDat uminterface, and are described in detail in Chapter 8,
"Working with Oracle Object Types". Each interface specifies methods to convert
data between SQL and Java.

To create custom Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle8i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher performs this task seamlessly with command-line options and can
generate either SQLDat a or Cust onDat umimplementations.

For SQ.Dat a implementations, a type map defines the correspondence between
Oracle object datatypes and Java classes. Type maps are objects of a special Java
class that specify which Java class corresponds to each Oracle object datatype.
Oracle JDBC uses these type maps to determine which Java class to instantiate and
populate when it retrieves Oracle object data from a result set.

5-4 JDBC Developer’s Guide and Reference



Support Features of the Oracle Extensions

Note: Oracle recommends using the Cust onDat uminterface,
instead of the SQLDat a interface, in situations where portability is
not a concern. Cust onDat umworks more easily and flexibly in
conjunction with other features of the Oracle Java platform
offerings.

JPublisher automatically defines get methods of the custom Java classes, which
retrieve data into your Java application. For more information on the JPublisher
utility, see the Oracle8i JPublisher User’s Guide.

Chapter 8, "Working with Oracle Object Types" describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming

Oracle JDBC classes have the ability to accept and return fully qualified schema
names. A fully qualified schema name has this syntax:

{[ schena_nan¥ . }[ sql _t ype _nare]

Where schema_nane is the name of the schema and sq/ _t ype_nane is the SQL
type name of the object. Notice that the scherma_nane and the sq/ _t ype _nane s
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

« Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE. EMPLOYEE, the type
name must be quoted.

« The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has adot in it.

For example, assume that user Scott creates a type called per son. addr ess
and then wants to use it in his session. Scott might want to skip the schema

Overview of Oracle Extensions 5-5



Support Features of the Oracle Extensions

name and pass in per son. addr ess to the JDBC driver. In this case, if

per son. addr ess is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret per son as the schema name and addr ess as
the type name.

« JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScQt T. Per sonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

5-6 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Oracle JDBC Packages and Classes

This section describes the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages:

« Package oracle.sql
« Package oracle.jdbc.driver
« Package oracle.jdbc2 (for JIDK 1.1.x only)

You can refer to the Oracle JDBC Javadoc for more information about all the classes
mentioned in this section.

Package oracle.sql

The or acl e. sql package supports direct access to data in SQL format. This
package consists primarily of classes that provide Java mappings to SQL datatypes.

Essentially, the classes act as Java wrappers for the raw SQL data. Because data in
anoracl e. sql . * object remains in SQL format, no information is lost. For SQL
primitive types, these classes simply wrap the SQL data. For SQL structured types
(objects and arrays), they provide additional information such as conversion
methods and details of structure.

Each of the or acl e. sql . * datatype classes extends or acl e. sql . Dat um a
superclass that encapsulates functionality common to all the datatypes. Some of the
classes are for JDBC 2.0-compliant datatypes. These classes, as Table 5-1 indicates,
implement standard JDBC 2.0 interfaces in the j ava. sql package (or acl e. j dbc2
for JDK 1.1.x), as well as extending the or acl e. sqgl . Dat umclass.

Classes of the oracle.sql Package

Table 5-1 lists the or acl e. sql datatype classes and their corresponding Oracle
SQL types.

Table 5-1 Oracle Datatype Classes

Java Class Oracle SQL Type and Interfaces Implemented if for JDBC 2.0

oracl e. sgl . STRUCT STRUCT (objects) (JDBC 2.0)
implementsj ava. sql . Struct (oracl e.jdbc2. Struct
under JDK 1.1.x)

oracl e. sql . REF REF (object references) (JDBC 2.0)
implements j ava. sql . Ref (oracl e. j dbc2. Ref under
DK 1.1.)

Overview of Oracle Extensions 5-7



Oracle JDBC Packages and Classes

Table 5-1 Oracle Datatype Classes (Cont.)

Java Class Oracle SQL Type and Interfaces Implemented if for JDBC 2.0

oracl e. sgl . ARRAY VARRAY or nested table (collections) (JDBC 2.0)
implementsj ava. sql . Array (oracl e. jdbc2. Array
under JDK 1.1.x)

oracl e. sqgl . BLOB BLOB (binary large objects) (JDBC 2.0)
implements j ava. sql . Bl ob (oracl e.j dbc2. Bl ob
under JDK 1.1.x)

oracl e.sqgl.CLOB CL OB (character large objects) (JDBC 2.0)
implements j ava. sql . Cl ob (oracl e. j dbc2. Cl ob
under JDK 1.1.x)

oracl e.sql . BFILE  BFI LE (external files)
oracl e. sql . CHAR CHAR, VARCHAR2
oracl e. sql . DATE DATE

oracl e. sgl . NUMBER NUMBER

oracl e. sql . RAW RAW

oracle.sqgl . ROND ROW D(row identifiers)

You can find more detailed information about each of these classes later in this
chapter. Additional details about use of the Oracle extended types (STRUCT, REF,
ARRAY, BLOB, CLOB, BFI LE, and ROW D) are described in the following locations:

= "Oracle Type Extensions" on page 5-26

« Chapter 7, "Working with LOBs and BFILEs"

« Chapter 8, "Working with Oracle Object Types"

« Chapter 9, "Working with Oracle Object References"
« Chapter 10, "Working with Oracle Collections"

5-8 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Notes:

« For information about retrieving data from a result set or
callable statement object into or acl e. sql . * types, as
opposed to Java types, see Chapter 6, "Accessing and
Manipulating Oracle Data".

« The LONGand LONG RAWSQL types and REF CURSOR type
category have no or acl e. sql . * classes. Use standard JDBC
functionality for these types. For example, retrieve LONGor
LONG RAWdata as input streams using the standard JDBC result
set and callable statement methods get Asci Strean(),
get Bi naryStrean(), get Uni codeStrean(), and
get Character Strean() . Use get Cursor () for REF
CURSOR types.

In addition to the datatype classes, the or acl e. sql package includes the
following support classes and interfaces, primarily for use with objects and
collections:

oracl e. sql . ArrayDescri pt or class: Used in constructing
or acl e. sgl . ARRAY objects; describes the SQL type of the array. (For
information, see "Creating ARRAY Objects and Descriptors" on page 10-8.)

oracl e. sqgl . Struct Descri pt or class: Used in constructing

oracl e. sgl . STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. (For information, see "Creating STRUCT Objects
and Descriptors" on page 8-5.)

oracl e. sqgl . Cust onDat umand or acl e. sql . Cust onDat unfact ory
interfaces: Used in Java classes implementing the Oracle Cust onDat um
scenario of Oracle object support. (The other possible scenario is the
JDBC-standard SQLDat a implementation.) See "Understanding the
CustomDatum Interface" on page 8-20 for more information on Cust onDat um

General oracle.sqgl.* Datatype Support
Each of the Oracle datatype classes provides, among other things, the following:

one or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

data storage as Java byte arrays for SQL data

Overview of Oracle Extensions 5-9



Oracle JDBC Packages and Classes

« agetBytes() method, which returns the SQL data as a byte array (in the raw
format in which JDBC received the data from the database)

« atoJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as ROW D; the driver returns the object in the
corresponding or acl e. sql . * format. For example, it returns an Oracle
ROWID as an or acl e. sql . ROA' D.

« appropriate xxxVal ue() methods to convert SQL data to Java typed—for
example: st ri ngVal ue(),i nt Val ue(), bool eanVval ue(), dat evVal ue(),
bi gDeci mal Val ue()

= additional conversion, get , and set methods as appropriate for the
functionality of the datatype (such as methods in the LOB classes that get the
data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Oracle JDBC Javadoc for additional information about these classes.

Overview of Class oracle.sql.STRUCT

For any given Oracle object type, it is usually desirable to define a custom mapping
between SQL and Java. (If you use a SQLDat a custom Java class, the mapping must
be defined in a type map.)

If you choose not to define a mapping, however, then data from the object type will
be materialized in Java in an instance of the or acl e. sql . STRUCT class.

The STRUCT class implements the standard JDBC 2.0 j ava. sqgl . St ruct interface
(oracl e.jdbc2. Struct underJDK 1.1.x) and extends the or acl e. sql . Dat um
class.

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object. It contains the
SQL type name of the Oracle object and a "values" array of or acl e. sql . Dat um
objects that hold the attribute values in SQL format.

You can materialize a STRUCTs attributes as or acl e. sql . Dat uni ] objects if you
use the get Or acl eAttri but es() method, or asj ava. | ang. Obj ect [] objects
if you use the get Att ri but es() method. Materializing the attributes as

oracl e. sql . * objects gives you all the advantages of the or acl e. sql . * format:

« Materializing or acl e. sql . STRUCT data in or acl e. sql . * format
completely preserves data by maintaining it in SQL format. No translation is

5-10 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

performed. This is useful if you want to access data but not necessarily display
it.

« Itallows complete flexibility in how your Java application unpacks data.

Notes:

« Elements of the values array, although of the generic Dat um
type, actually contain data associated with the relevant
oracl e. sql . * type appropriate for the given attribute. You
can cast the element to the appropriate or acl e. sqgl . * type as
desired. For example, a CHAR data attribute within the STRUCT
is materialized as or acl e. sql . Dat um To use it as CHAR data,
you must cast it to the or acl e. sql . CHAR type.

« Nested objects in the values array of a STRUCT object are
materialized by the JDBC driver as instances of STRUCT.

In some cases, you might want to manually create a STRUCT object and pass it to a
prepared statement or callable statement. To do this, you must also create a
St ruct Descri pt or object.

For more information about working with Oracle objects using the
oracl e. sgl . STRUCT and St ruct Descr i pt or classes, see "Using the Default
STRUCT Class for Oracle Objects" on page 8-3.

Overview of Class oracle.sql.REF

The or acl e. sql . REF class is the generic class that supports Oracle object
references. This class, as with all or acl e. sql . * datatype classes, is a subclass of
the or acl e. sqgl . Dat umclass. It implements the standard JDBC 2.0

j ava. sql . Ref interface (or acl e. j dbc2. Ref under JDK 1.1.x).

The REF class has methods to retrieve and pass object references. Be aware,
however, that selecting an object reference retrieves only a pointer to an object. This
does not materialize the object itself. But the REF class also includes methods to
retrieve and pass the object data.

You cannot create REF objects in your JDBC application—you can only retrieve
existing REF objects from the database.

For more information about working with Oracle object references using the
or acl e. sqgl . REF class, see Chapter 9, "Working with Oracle Object References".

Overview of Oracle Extensions 5-11



Oracle JDBC Packages and Classes

Overview of Class oracle.sql.ARRAY

The or acl e. sql . ARRAY class supports Oracle collections—either VARRAY's or
nested tables. If you select either a VARRAY or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The or acl e. sqgl . ARRAY class extends

oracl e. sqgl . Dat umand implements the standard JDBC 2.0 j ava. sql . Arr ay
interface (or acl e. j dbc2. Array under JDK 1.1.x).

You can use the set ARRAY() method of the Or acl ePr epar edSt at ement or

Or acl eCal | abl eSt at enent class to pass an array as an input parameter to a
prepared statement. Similarly, you might want to manually create an ARRAY object
to pass it to a prepared statement or callable statement, perhaps to insert into the
database. This involves the use of Ar r ayDescr i pt or objects.

For more information about working with Oracle collections using the
oracl e. sql . ARRAY and Ar r ayDescr i pt or classes, see "Overview of Collection
(Array) Functionality" on page 10-5.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
BLOBs and CLOB:s (referred to collectively as "LOBs"), and BFILEs (for external
files) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

The or acl e. sql package supports these datatypes in several ways:

«» BLOBs point to large unstructured binary data items and are supported by the
oracl e. sql . BLOBclass.

« CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracl e. sql . CLOBclass.

« BFILEs point to the content of external files (operating system files) and are
supported by the or acl e. sql . BFI LE class.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data.

For information about how to access and manipulate locators and data for LOBs
and BFILEs, see Chapter 7, "Working with LOBs and BFILEs".

5-12 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Class oracle.sql.CHAR

The or acl e. sgl . CHARclass is used by Oracle JDBC in handling and converting
string and character data. JDBC constructs and populates CHAR objects once
character data has been read from the database.

CHAR objects that the driver constructs and returns can be in the database character
set, UTF- 8, or ISO-Latin-1 (WE8I SCB8859P1). CHAR objects that are Oracle8 object
attributes are returned in the database character set.

A JDBC application will rarely need to construct CHAR objects directly, because the
JDBC driver creates CHAR objects automatically as character data items are obtained
from the database. There may be circumstances, however, where constructing CHAR
objects directly is more efficient—for example, to repeatedly pass the same character
data to one or more prepared statements without the overhead of converting from
Java strings each time.

CHAR Objects and Character Sets The CHAR class has special functionality for NLS
conversion of character data. A key attribute of the CHAR class, and a parameter
always passed in when a CHAR object is constructed, is the NLS character set used in
presenting the character data. Without the character set being known, the bytes of
data in the CHAR object are meaningless.

The or acl e. sqgl . Char act er Set class is instantiated to represent character sets.
When you construct a CHAR object, you must provide character set information to
the CHAR object by way of an instance of the Char act er Set class. Each instance of
this class represents one of the NLS character sets that Oracle supports. A

Char act er Set instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets. You can
find a complete list of the character sets that Oracle supports in the Oracle8i National
Language Support Guide.

Constructing a CHAR Follow these general steps to construct a CHAR object:

1. Create a Char act er Set object by calling the static Char act er Set . make()
method. This method is a factory for the character set class. The make()
method takes as input an integer Oracle ID that corresponds to a character set
that Oracle supports. For example:

int oracleld = CharacterSet. JAL6SIIS CHARSET; // this is character set 832
Character Set nycharset = Character Set. make(oracl el d);

Each character set that Oracle supports has a unique predefined Oracle ID.

Overview of Oracle Extensions 5-13



Oracle JDBC Packages and Classes

Note: If you enter an invalid ID, an exception will not be thrown.
Instead, when you try to use the character set, you will receive
unpredictable results.

For more information on character sets and character set IDs, see the Oracle8i
National Language Support Guide.

2. Construct a CHAR object. Pass to the constructor a string (or the bytes that
represent the string) and the Char act er Set object that indicates how to
interpret the bytes based on the character set. For example:

Sring nystring = "teststring";
CHAR nychar = new CHAR(teststring, nycharset);

The CHAR class has multiple constructors—they can take a string, a byte array,
or an object as input along with the Char act er Set object. In the case of a
string, the string is converted to the character set indicated by the

Char act er Set object before being placed into the CHAR object.

Refer to the CHAR class Javadoc for more information.

Notes:
« The Char act er Set object cannot be null.

« TheChar act er Set class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make() method.

= The server recognizes the special value
Char act er Set . DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

= Oracle does not intend or recommend that users extend the
Char act er Set class.

CHAR Conversion Methods The CHAR class provides these methods for translating
character data to strings:

« getString():Converts the sequence of characters represented by the CHAR
object to a string, returning a Java St r i ng object. If the character set is not

5-14 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

recognized (that is, if you entered an invalid Or acl el D), thenget Stri ng()
throws a SQLExcept i on.

« toString():ldentical to get String(), butif the character set is not
recognized (that is, if you entered an invalid Or acl el D), thent oSt ri ng()
returns a hexadecimal representation of the CHAR data and does not throw a
SQLExcepti on.

« getStringWthRepl acement () : Identical toget String(), excepta
default replacement character replaces characters that have no Unicode
representation in the character set of this CHAR object. This default character
varies from character set to character set, but is often a question mark.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set (or the reverse). To convert the data,
the drivers use Oracle’s National Language Support (NLS). For more information
on how the JDBC drivers convert between character sets, see "JDBC and NLS" on
page 15-2. For more information on NLS, see the Oracle8i National Language Support
Guide.

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes map to primitive SQL datatypes, which are a part of standard JDBC,
and supply conversions to and from the corresponding JDBC Java types. For more
information, see the Javadoc.

Class oracle.sql.ROWID

This class supports Oracle ROWIDs, which are unique identifiers for rows in
database tables. You can select a ROWID as you would select any column of data
from the table. Note, however, that you cannot manually update ROWIDs—the
Oracle database updates them automatically as appropriate.

The or acl e. sgl . RON Dclass does not implement any noteworthy functionality
beyond what is in the or acl e. sqgl . Dat umsuperclass. However, RON D does
provide a st ri ngVal ue() method that overrides the st ri ngVal ue() method in
the or acl e. sqgl . Dat umclass and returns the hexadecimal representation of the
ROW D bytes.

For information about accessing ROWID data, see "Oracle ROWID Type" on
page 5-26.

Overview of Oracle Extensions 5-15



Oracle JDBC Packages and Classes

Package oracle.jdbc.driver

Theoracl e.jdbc. dri ver package includes classes that add extended features to
enable data access in or acl e. sgl format. In addition, these classes provide
Oracle-specific extensions to allow access to raw SQL format data by using

oracl e. sqgl . * objects.

Table 5-2 lists key classes in this package for connections, statements, and result
sets.

Table 5-2 Connection, Statement, and Result Set Classes

Class Key Functionality
Oracl eDri ver implements j ava. sql . Dri ver
Or acl eConnecti on methods to return Oracle statement objects; methods

to set Oracle performance extensions for any
statement executed in the current connection
(implementsj ava. sqgl . Connecti on)

Oracl eSt at enent methods to set Oracle performance extensions for
individual statement; superclass of

Or acl ePrepar edSt at erent and
Oracl eCal | abl eSt at erent (implements
java. sql . Statenent)

Oracl ePreparedSt at ement  set methods to bind or acl e. sql . * typesinto a
prepared statement (implements
j ava. sql . Prepar edSt at errent ; extends
Or acl eSt at errent ; superclass of
Oracl eCal | abl eSt at enent)

Oracl eCal | abl eSt at enent  get methods to retrieve data in or acl e. sql
format; set methods to bind or acl e. sql . * types
into a callable statement (implements
j ava. sql . Cal | abl eSt at errent ; extends
Or acl ePrepar edSt at enent)

O acl eResul t Set get methods to retrieve data in or acl e. sql
format (implements j ava. sql . Resul t Set)

O acl eResul t Set Met aData  methods to get meta information about Oracle result
sets, such as column names and datatypes
(implementsj ava. sqgl . Resul t Set Met aDat a)

5-16 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Table 5-2 Connection, Statement, and Result Set Classes (Cont.)

Class Key Functionality

Or acl eDat abaseMet aDat a methods to get meta information about the database,
such as database product name/version, table
information, and default transaction isolation level
(implementsj ava. sql . Dat abaseMet aDat a)

Theoracl e.jdbc. dri ver package additionally includes the Or acl eTypes
class, which defines integer constants used to identify SQL types. For standard
types, it uses the same values as the standard j ava. sqgl . Types class. In addition,
it adds constants for Oracle extended types.

The remainder of this section describes the classes of the or acl e. j dbc. dri ver
package. For more information about using these classes to access Oracle type
extensions, see Chapter 6, "Accessing and Manipulating Oracle Data".

Class oracle.jdbc.driver.OracleDriver

Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the static r egi st er Dri ver () method of
thej ava. sql . Dri ver Manager class so that your application can access and use
the Oracle drivers. Ther egi st er Dri ver () method takes as input a "driver" class,
that is, a class that implements the j ava. sql . Dri ver interface, as is the case with
Oracl eDri ver.

Once you register the Oracle JDBC drivers, you can create your connection using
the Dri ver Manager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Class oracle.jdbc.driver.OracleConnection

This class extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
and support type maps for Oracle objects.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching, update batching, and metadata
TABLE_REMARKS reporting.

Key methods include:
« CcreateStatenent(): Allocatesanew O acl eSt at ement object.

« prepareStatement (): Allocates a new Or acl ePr epar edSt at enent object.

Overview of Oracle Extensions 5-17



Oracle JDBC Packages and Classes

prepareCal | (): Allocates a new Or acl eCal | abl eSt at enment object.

get TypeMap() : Retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes).

set TypeMap() : Initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes).

get Transacti onl sol ati on() : Gets this connection’s current isolation
mode.

set Transact i onl sol ati on() : Changes the transaction isolation level using
one of the TRANSACTI ON_* values.

These oracl e. j dbc. dri ver. Oracl eConnecti on methods are Oracle-defined
extensions:

get Def aul t Execut eBat ch() : Retrieves the default update-batching value
for this connection.

set Def aul t Execut eBat ch() : Sets the default update-batching value for this
connection.

get Def aul t RowPr ef et ch() : Retrieves the default row-prefetch value for
this connection.

set Def aul t RowPr ef et ch() : Sets the default row-prefetch value for this
connection.

get Remar ksReporti ng() : Returns true if TABLE_REMARKS reporting is
enabled.

set Remar ksReporti ng() : Enables or disables TABLE REMARKS reporting.

Class oracle.jdbc.driver.OracleStatement

This class extends standard JDBC statement functionality and is the superclass of
the Or acl ePr epar edSt at ement and Or acl eCal | abl eSt at enent classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the

Or acl eConnect i on class that sets these on a connection-wide basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching and column type definitions.

Key methods include:

« execut eQuery():Executes a database query and returns an
O acl eResul t Set object.

5-18 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

« getResult Set ():Retrieves an Or acl eResul t Set object.
« cl ose(): Closes the current statement.

These or acl e. j dbc. dri ver. Oracl eSt at enent methods are Oracle-defined
extensions:

« defineCol umType() : Defines the type you will use to retrieve data from a
particular database table column.

« get RowPr ef et ch() : Retrieves the row-prefetch value for this statement.

« set RowPr ef et ch() : Sets the row-prefetch value for this statement.

Class oracle.jdbc.driver.OraclePreparedStatement

This class extends standard JDBC prepared statement functionality, is a subclass of
the Or acl eSt at enent class, and is the superclass of the

Or acl eCal | abl eSt at enent class. Extended functionality consists of set
methods for binding or acl e. sqgl . * types and objects into prepared statements,
and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including database update batching.

Key methods include:
« get Execut eBat ch() : Retrieves the update-batching value for this statement.
« set Execut eBat ch() : Sets the update-batching value for this statement.

« setOracl eObject():Thisisagenericset method for binding
oracl e. sql . * data into a prepared statement as an or acl e. sql . Dat um
object.

« set XXX(): These methods, such as set BLOB( ), are for binding specific
oracl e. sql . * types into prepared statements.

« set CustonDat un() : Binds a Cust onDat umobject (for use in mapping Oracle
object types to Java) into a prepared statement.

=« set Null (): Sets the value of the object specified by its SQL type name to
NULL. For set Nul | (param_i ndex, t ype_code, sql _t ype_nane), if
t ype_code is REF, ARRAY, or STRUCT, then sq/ _t ype_nane is the fully
qualified name (schema. sql _t ype_nane) of the SQL type.

« close(): Closes the current statement.

Overview of Oracle Extensions 5-19



Oracle JDBC Packages and Classes

Class oracle.jdbc.driver.OracleCallableStatement

This class extends standard JDBC callable statement functionality and is a subclass
of the Or acl eSt at enent and Or acl ePr epar edSt at enent classes. Extended
functionality includes set methods for binding structured objects and

oracl e. sqgl .* objects into prepared statements, and get methods for retrieving
data into or acl e. sql . * objects.

Key methods include:

get Oracl eObj ect () : This is a generic get method for retrieving data into an
or acl e. sqgl . Dat umobiject, which can be cast to the specific or acl e. sql . *
type as necessary.

get XXX( ) : These methods, such as get CLOB( ), are for retrieving data into
specific or acl e. sqgl . * objects.

set Oracl eObj ect () : This is a generic set method for binding
oracl e. sqgl . * data into a callable statement as an or acl e. sql . Dat um
object.

set XXX() : These methods, such as set BLOB( ) , are inherited from
O acl ePrepar edSt at enent for binding specificor acl e. sqgl . * objects into
callable statements.

set Nul | () : Sets the value of the object specified by its SQL type name to
NULL. For set Nul | ( param i ndex, t ype_code, sql _t ype nane), if

t ype_code is REF, ARRAY, or STRUCT, then sql _t ype_nane is the fully
qualified (schema. t ype) name of the SQL type.

regi st er Qut Par anet er () : Registers the SQL typecode of the statement’s
output parameter. JDBC requires this for any callable statement with an OUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in or acl e. j dbc. dri ver. Oracl eTypes).

This is an overloaded method. One version of this method is for named types
only—when the SQL typecode is Or acl eTypes. REF, STRUCT, or ARRAY. In
this case, in addition to a parameter index and SQL type, the method also takes
a St ri ng SQL type name (the name of the Oracle user-defined type in the
database, such as EMPLOYEE).

cl ose() : Closes the current result set, if any, and the current statement.

5-20 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

Class oracle.jdbc.driver.OracleResultSet

This class extends standard JDBC result set functionality, implementing get
methods for retrieving data into or acl e. sqgl . * objects.

Key methods include:

get Oracl eObj ect () : This is a generic get method for retrieving data into an
or acl e. sqgl . Dat umobiject. It can be cast to the specific or acl e. sqgl . * type
as necessary.

get XXX( ) : These methods, such as get CLOB( ), are for retrieving data into
oracl e. sqgl . * objects.

Class oracle.jdbc.driver.OracleResultSetMetaData

This class extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

Key methods include the following:

get Col umCount () : Returns the number of columns in an Oracle result set.

get Col umNane( ) : Returns the name of a specified column in an Oracle result
set.

get Col umType() : Returns the SQL type of a specified column in an Oracle
result set. If the column stores an Oracle object or collection, then this method
returns Or acl eTypes. STRUCT or Or acl eTypes. ARRAY respectively.

get Col umTypeNane() : Returns the SQL type name of the data stored in the
column. If the column stores an array or collection, then this method returns its
SQL type name. If the column stores REF data, then this method returns the
SQL type name of the objects to which the object reference points.

get Tabl eName() : Returns the name of the table from which an Oracle result
set column was selected.

Overview of Oracle Extensions 5-21



Oracle JDBC Packages and Classes

Class oracle.jdbc.driver.OracleTypes

The Or acl eTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The

oracl e.jdbc. driver. Oracl eTypes class duplicates the typecode definitions of
the standard Java j ava. sql . Types class and contains these additional typecodes
for Oracle extensions:

« O acleTypes. BFI LE

« Oracl eTypes. RON D

« Oracl eTypes. CURSOR (for REF CURSOR types)
Asinjava. sql . Types, all the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the Or acl eTypes class in
two main areas: registering output parameters, and in the set Nul | () method of
the Pr epar edSt at ement class.

OracleTypes and Registering Output Parameters The typecodes inj ava. sql . Types or
oracl e.jdbc. driver. O acl eTypes identify the SQL types of the output
parameters in the r egi st er Qut Par amet er () method of the

java. sql . Cal | abl eSt at ement interface and

oracl e.jdbc.driver. Oracl eCal | abl eSt at enent class.

These are the forms that r egi st er Cut put Par anet er () can take for
Cal | abl eSt at ement and Or acl eCal | abl eSt at enment (assume a standard
callable statement object cs):

cs.registerQut Paraneter(int index, int sql Type);
cs.registerQutParaneter(int index, int sql Type, Sring sql_nane);
cs.registerQutParaneter(int index, int sql Type, int scale;

In these signatures, i ndex represents the parameter index, sql Type is the
typecode for the SQL datatype, sq/ _nane is the name given to the datatype (for
user-defined types, when sql Type is a STRUCT, REF, or ARRAY typecode), and
scal e represents the number of digits to the right of the decimal point (when
sql Typeis a NUMERI C or DECI MAL typecode).

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

5-22 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

The following example uses a Cal | abl eSt at enent to call a procedure named
char out , which returns a CHAR datatype. Note the use of the Or acl eTypes. CHAR
typecode in the r egi st er Qut Par anet er () method (although

j ava. sql . Types. CHAR could have been used as well).

Cal | abl eStat enent ¢s = conn. prepareCal | ("BEA N charout (?); END");
cs.regi sterQut Paraneter (1, O acl eTypes. CHAR;

cs. execute ();

Systemout.println ("Qut argunent is: " + cs.getString (1));

The next example uses a Cal | abl eSt at ement to call st r uct out , which returns a
STRUCT datatype. The form of r egi st er Qut Par anet er () requires you to specify
the typecode (Types. STRUCT or Or acl eTypes. STRUCT), as well as the SQL
name (EMPLOYEE).

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE as
anoracl e. sql . STRUCT object, the statement object cs is cast to an

O acl eCal | abl eSt at enent and the Oracle extension get STRUCT() method is
invoked.

Cal | abl eStat enent ¢s = conn. prepareCal | ("BEA N structout (?); BEND");
cs.regi sterQut Paraneter (1, O acl eTypes. STRICT, "EMPLOYEE');
cs. execute ();

/1 get the value into a STRUCT because it
/1 is assuned that no type map has been defined
STRUCT enp = ((Qacl eCal | abl eX at enent ) cs) . get STRUICT (1) ;

OracleTypes and the setNull() Method The typecodes in Types and Or acl eTypes
identify the SQL type of the data item, which the set Nul | () method sets to NULL.
The set Nul | () method can be found in the j ava. sql . Prepar edSt at ement
interface and the or acl e. j dbc. dri ver. Oracl ePrepar edSt at enent class.

These are the forms that set Nul | () can take for Pr epar edSt at enent and
Or acl ePrepar edSt at erent objects (assume a standard prepared statement
object ps):

ps.setNul | (int index, int sql Type);
ps.setNul | (int index, int sql Type, Sring sql_nane);

In these signatures, i ndex represents the parameter index, sql Type is the
typecode for the SQL datatype, and sq/ _nane is the name given to the datatype
(for user-defined types, when sql Type is a STRUCT, REF, or ARRAY typecode). If

Overview of Oracle Extensions 5-23



Oracle JDBC Packages and Classes

you enter an invalid sq/ Type, a Par anet er Type Confli ct exception is
thrown.

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.

The following example uses a Pr epar edSt at enent to insert a NULL numeric
value into the database. Note the use of Or acl eTypes. NUMERI Cto identify the
numeric object set to NULL (although Types. NUMERI Ccould have been used as
well).

PreparedStat enent pstm =
conn. prepareS atenent ("I NSERT | NTO numtable VALUES (?)");

pstnm.setNul | (1, QacleTypes. NMER O);
pstnm . execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.

Prepar edSt at enent pstnt = conn. prepar eX at enent
("I NSERT | NTO enpl oyee_tabl e VALUES (?)");

pstnm.setNul | (1, QacleTypes. STRICI, "EMPLOYEE');
pstnm . execute ();

Package oracle.jdbc2 (for JDK 1.1.x only)

The or acl e. j dbc2 package is an Oracle implementation for use with JDK 1.1.x,
containing classes and interfaces that mimic JDBC 2.0 classes and interfaces (which
exist in the JDK 1.2 version of the standard j ava. sql package).

The following interfaces are implemented by or acl e. sql . * type classes for JDBC
2.0-compliant Oracle type extensions under JDK 1.1.x.

« oracle.jdbc2. Array isimplemented by or acl e. sgl . ARRAY

« oracle.jdbc2. Struct isimplemented by or acl e. sql . STRUCT
« oracle.jdbc2. Ref isimplemented by or acl e. sql . REF

« oracle.jdbc2. d obisimplemented by or acl e. sql . CLOB

« oracle.jdbc2. Bl obisimplemented by or acl e. sql . BLOB

5-24 JDBC Developer’s Guide and Reference



Oracle JDBC Packages and Classes

In addition, the or acl e. j dbc2 package includes the following interfaces for users
employing the JDBC-standard SQLDat a interface to create Java classes that map to
Oracle objects. Again, these interfaces mimic j ava. sqgl interfaces available with
JDK 1.2

« oracle.jdbc2. SQLDat a is implemented by classes that map to Oracle
objects; users must provide this implementation

« oracle.jdbc2. SQLI nput isimplemented by classes that read object data;
Oracle provides a SQLI nput class that the JDBC drivers use

« oracle.jdbc2. SQ.Qut put isimplemented by classes that write object data;
Oracle provides a SQLCut put class that the JDBC drivers use

The SQLDat a interface is one of the two facilities you can use to support Oracle
objects in Java. The other choice is the Oracle Cust onDat uminterface, included in
the or acl e. sgl package. See "Understanding the SQLData Interface" on page 8-14
for more information about SQLDat a, SQLI nput , and SQLQut put .

Overview of Oracle Extensions 5-25



Oracle Type Extensions

Oracle Type Extensions
See other chapters in this book for information about key Oracle type extensions:
« Chapter 7, "Working with LOBs and BFILEs"
« Chapter 8, "Working with Oracle Object Types"
« Chapter 9, "Working with Oracle Object References"
« Chapter 10, "Working with Oracle Collections"

This section covers additional Oracle type extensions and concludes with a
discussion of differences between the Oracle8i JDBC drivers and the Oracle 8.0.x
and 7.3.x drivers regarding support of Oracle extensions.

Oracle JDBC drivers support the Oracle-specific BFI LE and RON D datatypes and
REF CURSOR types, which were introduced in Oracle7 and are not part of the
standard JDBC specification. This section describes the RON Dand REF CURSOR
type extensions. See Chapter 7 for information about BFILEs.

ROW Dis supported as a Java string, and REF CURSOR types are supported as JDBC
result sets.

Oracle ROWID Type

A ROWID is an identification tag unique for each row of an Oracle database table.
The ROWID can be thought of as a virtual column, containing the ID for each row.

The or acl e. sgl . RON Dclass is supplied as a wrapper for type RON D SQL data.

ROWIDs provide functionality similar to the get Cur sor Nanme() method specified
inthe j ava. sqgl . Resul t Set interface, and the set Cur sor Nane() method
specified in the j ava. sql . St at enent interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set get St ri ng() method (passing in either the column
index or the column name). You can also bind a ROWID to a Pr epar edSt at enent
parameter with the set St ri ng() method. This allows in-place updates, as in the
example that follows.

5-26 JDBC Developer’s Guide and Reference



Oracle Type Extensions

Note: The oracl e. sql . RON Dclass replaces
oracl e. jdbc. dri ver. ROW D, which was used in previous
releases of Oracle JDBC.

Example: ROWID The following example shows how to access and manipulate RON D
data.

Satenent stnt = conn.createStatenent();

/1 Query the enpl oyee nanes wth "FCOR UPDATE' to | ock the rows.
/1 Select the RONDto identify the rows to be updated.

Result Set rset =
st . execut eQuery ("SELECT enane, rowi d FROM enp FCR UPDATE');

/] Prepare a statenment to update the ENAME columm at a gi ven ROND

PreparedStat enent pstm =
conn. prepareS atenent (" UPDATE enp SET enane = ? WERE rowid = ?");

/1 Loop through the results of the query
vhile (rset.next ())

{
Sring enane = rset.getString (1);
oracle.sqgl . RONDrow d = rset. get ROND (2); // Get the ROND as a String
pstn.setSring (1, enane.tolLower Case ());
pstni.set ROND (2, rowid); // Pass RONDto the update statenent
pstnt . executelpdat e (); /1 Do the update

}

Oracle REF CURSOR Type Category

A cursor variable holds the memory location (address) of a query work area, rather
than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a
pointer has the datatype REF x , where REF is short for REFERENCE and x
represents the entity being referenced. A REF CURSOR, then, identifies a reference
to a cursor variable. Because many cursor variables might exist to point to many
work areas, REF CURSOR can be thought of as a category or "datatype specifier" that
identifies many different types of cursor variables.

Overview of Oracle Extensions 5-27



Oracle Type Extensions

To create a cursor variable, begin by identifying a type that belongs to the REF
CURSOR category. For example:

CEQLARE TYPE Dept Qursor Typ | S REF ARSCR

Then create the cursor variable by declaring it to be of the type Dept Cur sor Typ:

dept _cv DeptQursorTyp - - declare cursor variable

REF CURSOR, then, is a category of datatypes, rather than a particular datatype.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, REF CURSORSs are materialized as Resul t Set objects and can be
accessed as follows:

1. Use aJDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSOR.

3. ThelJava application casts the callable statement to an Oracle callable statement
and uses the get Cur sor () method of the Or acl eCal | abl eSt at ement class
to materialize the REF CURSOR as a JDBC Resul t Set object.

4. The result set is processed as requested.

Important: Beginning with release 8.1.6, the cursor associated with
a REF CURSOR is closed whenever the statement object that
produced the REF CURSOR is closed.

Unlike in previous releases, the cursor associated with a REF
CURSOR is not closed when the result set object in which the REF
CURSOR was materialized is closed.

Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

inport oracle.jdbc.driver.*;

Cal | abl eStat enent cstnt;
Resul t Set cursor;

5-28 JDBC Developer’s Guide and Reference



Oracle Type Extensions

/1 We a P/ SQ bl ock to open the cursor
cstm = conn. prepareCal |
("begi n open ? for sel ect enane fromenp; end;");

cstmi.registerQut Paraneter (1, O acl eTypes. OUURSCR);
cstni. execute();
cursor = ((CacleCallabl eatenent)cstm).getQursor(1);

/1 Wse the cursor like a normal Resul t Set
vhile (cursor.next ())

{Systemout.println (cursor.getSring(1));}
In the preceding example:

« ACall abl eSt at enent object is created by using the prepareCal | ()
method of the connection class.

= The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

= Asalways, the output parameter of the callable statement must be registered to
define its type. Use the typecode Or acl eTypes. CURSOR for a REF CURSOR.

« The callable statement is executed, returning the REF CURSOR.

« TheCal | abl eSt at enment object is castto an Or acl eCal | abl eSt at enent
object to use the get Cur sor () method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a Resul t Set object.

For a full sample application using a REF CURSOR, see "REF
CURSORs—RefCursorExample.java" on page 17-29.

Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers

Some of the Oracle type extensions supported by the Oracle8i JDBC drivers are
either not supported or are supported differently by the Oracle 8.0.x and 7.3.x JDBC
drivers. Following are the key points:

« The8.0.xand 7.3.x drivers have no or acl e. sql package, meaning there are no
wrapper types such as or acl e. sql . NUMBERand or acl e. sql . CHAR that
you can use to wrap raw SQL data.

« The8.0.x and 7.3.x drivers do not support Oracle object and collection types.

« The8.0.x and 7.3.x drivers support the Oracle RON D datatype with the
Or acl eRowi d class inthe oracl e. j dbc. dri ver package.

Overview of Oracle Extensions 5-29



Oracle Type Extensions

« The8.0.x drivers support the Oracle BLOB, CLOB, and BFI LE datatypes with the
O acl eBl ob, Oracl eCl ob, and Or acl eBfi | e classes in the
oracl e. jdbc. dri ver package. These classes do not include LOB and BFILE
manipulation methods—you must instead use the PL/SQL DBMS_L OB package.

The 7.3.x drivers do not support BLOB, CLOB, and BFI LE.

Table 5-3 summarizes these differences. "OracleTypes Definition" refers to static
typecode constants defined in the or acl e. j dbc. dri ver. Oracl eTypes class.

Table 5-3 Support for Oracle Type Extensions, 8.0.x and 7.3.x JDBC Drivers

Oracle Datatype

OracleTypes Definition

Type Extension,
8i Drivers

Type Extension,
8.0.x/7.3.x drivers

NUMBER
CHAR
RAW
DATE
ROWID
BLOB

CLOB

BFILE

structured object

object reference

collection (array)

OracleTypes.NUMBER
OracleTypes.CHAR
OracleTypes.RAW
OracleTypes.DATE
OracleTypes.ROWID
OracleTypes.BLOB

OracleTypes.CLOB

n/a

OracleTypes.STRUCT

OracleTypes.REF

OracleTypes.ARRAY

oracle.sql. NUMBER
oracle.sql.CHAR
oracle.sql.RAW
oracle.sql.DATE
oracle.sql.ROWID
oracle.sql.BLOB

oracle.sql.CLOB

oracle.sql.BFILE

oracle.sql.STRUCT or
custom class

oracle.sql.REF or
custom class

oracle.sql.ARRAY or
custom class

no type extension for wrapper class
no type extension for wrapper class
no type extension for wrapper class
no type extension for wrapper class
oracle.jdbc.driver.OracleRowid

oracle.jdbc.driver.OracleBlob in 8.0.x;
not supported in 7.3.x

oracle.jdbc.driver.OracleClob in 8.0.x;
not supported in 7.3.x

oracle.jdbc.driver.OracleBfile in 8.0.x;
not supported in 7.3.x
not supported

not supported

not supported

5-30 JDBC Developer’s Guide and Reference



S

Accessing and Manipulating Oracle Data

This chapter describes data access in or acl e. sql . * formats, as opposed to
standard Java formats. As described in the previous chapter, the or acl e. sqgl . *
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using or acl e. sql . * formats involves casting your result sets and statements to
O acl eResul t Set, Or acl eSt at enent, Or acl ePr epar edSt at enent , and
Oracl eCal | abl eSt at erent objects, as appropriate, and using the

get Oracl eObj ect (),set Oacl eCbj ect (), get XXX(), and set XXX()
methods of these classes (where XXX corresponds to the types in the or acl e. sql
package).

This chapter covers the following topics:

« Data Conversion Considerations

» Result Set and Statement Extensions

« Comparison of Oracle get and set Methods to Standard JDBC

« Using Result Set Meta Data Extensions

Accessing and Manipulating Oracle Data 6-1



Data Conversion Considerations

Data Conversion Considerations

When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the or acl e. sql package. The classes in this package
simply wrap the raw SQL data.

Standard Types versus Oracle Types

In processing speed and effort, the or acl e. sqgl . * classes provide the most
efficient way of representing SQL data. These classes store the usual representations
of SQL data as byte arrays. They do not reformat the data or perform any
character-set conversions (aside from the usual network conversions) on it. The data
remains in SQL format, and therefore no information is lost. For SQL primitive
types (such as NUMBER, and CHAR), the or acl e. sql . * classes simply wrap the
SQL data. For SQL structured types (such as objects and arrays), the classes provide
additional information such as conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in or acl e. sql . * format. If you are displaying the data or performing
calculations on it in a Java application running outside the database, then you will
probably want to materialize the data as instances of standard types such as
java.sqgl . * orjava.l ang. * types. Similarly, if you are using a parser that
expects the data to be in a standard Java format, then you must use one of the
standard formats instead of or acl e. sql . * format.

Converting SQL NULL Data

Java represents a SQL NULL datum by the Java value nul | . Java datatypes fall into
two categories: primitive types (such as byt e, i nt, f| oat ) and object types (class
instances). The primitive types cannot represent nul | . Instead, they store the null
as the value zero (as defined by the JDBC specification). This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent nul | . The Java language defines an
object wrapper type corresponding to every primitive type (for example, | nt eger
fori nt, Fl oat for f| oat) that can represent nul | . The object wrapper types must
be used as the targets for SQL data to detect SQL NULL without ambiguity.

6-2 JDBC Developer’s Guide and Reference



Result Set and Statement Extensions

Result Set and Statement Extensions

The JDBC St at enrent object returns an Or acl eResul t Set object, typed as a

j ava. sgl . Resul t Set . If you want to apply only standard JDBC methods to the
object, keep it as a Resul t Set type. However, if you want to use the Oracle
extensions on the object, you must cast it to an Or acl eResul t Set type. Although
the type by which the Java compiler will identify the object is changed, the object
itself is unchanged.

For example, assuming you have a standard St at enent object st nt , do the
following if you want to use only standard JDBC Resul t Set methods:

Resul t Set rs = stmt. execut eQuery(" SELECT * FROM enp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard Resul t Set object, as above, and then cast
that object into an Or acl eResul t Set object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an Or acl eCal | abl eSt at enent object typed as a
java. sgl . Cal | abl eSt at ement . If you want to apply only standard JDBC
methods to the object, then keep itas a Cal | abl eSt at ement type. However, if
you want to use the Oracle extensions on the object, you must cast it to an

Or acl eCal | abl eSt at enent type. Although the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

You use the standard JDBC j ava. sql . Connecti on. prepar eSt at ement ()
method to create a Pr epar edSt at ement object. If you want to apply only
standard JDBC methods to the object, keep it as a Pr epar edSt at ement type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an O acl ePrepar edSt at enent type. While the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

Key extensions to the result set and statement classes include

get Oracl eObj ect () and set Or acl ebj ect () methods that you can use to
access and manipulate data in or acl e. sqgl . * formats, instead of standard Java
formats. For more information, see the next section: "Comparison of Oracle get and
set Methods to Standard JDBC".

Accessing and Manipulating Oracle Data 6-3



Comparison of Oracle get and set Methods to Standard JDBC

Comparison of Oracle get and set Methods to Standard JDBC

This section describes get and set methods, particularly the JDBC standard
get Obj ect () and set Obj ect () methods and the Oracle-specific

get Oracl ebj ect () and set Or acl eObj ect () methods, and how to access
datain or acl e. sql . * format compared with Java format.

Although there are specific get XXX() methods for all the Oracle SQL types (as
described in "Other getXXX() Methods" on page 6-7), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method

The standard JDBC get Obj ect () method of a result set or callable statement
returns datainto aj ava. | ang. Obj ect object. The format of the data returned is
based on its original type, as follows:

« For SQL datatypes that are not Oracle-specific, get Obj ect () returns the
default Java type corresponding to the column’s SQL type, following the
mapping specified in the JDBC specification.

« For Oracle-specific datatypes (such as ROW D, discussed in "Oracle ROWID
Type" on page 5-26), get Obj ect () returns an object of the appropriate
oracl e. sqgl . * class (such as or acl e. sql . ROA D).

= For Oracle objects, get Obj ect () returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and
database SQL types and are discussed in "Understanding Type Maps for
SQLData Implementations" on page 8-10.) The
get Obj ect ( par anet er _i ndex) method uses the connection’s default type
map. The get Cbj ect ( paranet er_i ndex, map) enables you to passin a
type map. If the type map does not provide a mapping for a particular Oracle
object, then get Cbj ect () returnsanor acl e. sql . STRUCT object.

For more information on get Obj ect () return types, see Table 6-1, "Summary of
getObiject() and getOracleObject() Return Types" on page 6-6.

Oracle getOracleObject() Method

If you want to retrieve data from a result set or callable statement into an

oracl e. sqgl . * object, then cast your result set to an Or acl eResul t Set type or
your callable statement to an Or acl eCal | abl eSt at ement type, and use the
get Or acl eObj ect () method.

6-4 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

When you use get Or acl ebj ect (), the data will be of the appropriate
oracl e. sqgl . * type and is returned into an or acl e. sql . Dat umobject (the
oracl e. sql type classes extend Dat um). The signature for the method is:

public oracl e.sql . Dat umget O acl eChj ect (i nt par anet er_i ndex)

When you have retrieved data into a Dat umobject, you can use the standard Java
i nst anceof operator to determine which or acl e. sql . * type it really is.

For more information on get Or acl eCbj ect () return types, see Table 6-1,
"Summary of getObject() and getOracleObject() Return Types" on page 6-6.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFI LE locator. A SELECT statement retrieves the contents of the table
into a result set. The get Or acl ebj ect () then retrieves the CHAR data into the
char _dat umvariable and the BFI LE locator into the bf i | e_dat umvariable. Note
that because get Or acl eObj ect () returns a Dat umobject, the results must be cast
to CHAR and BFI LE, respectively.

stn.execute ("CREATE TABLE bfile table (x varchar2 (30), b bfile)");
stnt. execute
('INSERT INTO bfile_table VALUES (on€’, bflename (TEST_DIR, filel))");

ResultSet rset = stmt.executeQuery ("'SELECT * FROM bfile_table");
while (rset.next ())

{
CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);

BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);

}

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure myGet Dat e( ), which associates a character string (in this
case a hame) with a date. The program passes the string SCOTT to the prepared call
and registers the DATE type as an output parameter. After the call is executed,

get Or acl eObj ect () retrieves the date associated with the name SCOTT. Note
that because get Or acl eObj ect () returns a Dat umobject, the results are cast to a
DATE object.

Accessing and Manipulating Oracle Data 6-5



Comparison of Oracle get and set Methods to Standard JDBC

Qacl eCal | abl eStat enent cstnt = (Oracl eCal | abl et at errent ) conn. pr epar eCal |
("begin nyGtDate (?, ?); end;");

cstm.setSring (1, "SQOIT");
cstni.regi sterQut Paraneter (2, Types. DATE);
cstm. execute ();

DATE date = (DATE) ((QracleCall abl et atenent)cstnt). get O acl eChject (2);

Summary of getObject() and getOracleObject() Return Types

Table 6-1 summarizes the information in the preceding sections, "Standard
getObject() Method" and "Oracle getOracleObject() Method" on page 6-4.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

« get Obj ect ():Always returns datainto aj ava. | ang. Obj ect instance.

« getOracl elbj ect (): Always returns data into an or acl e. sql . Dat um
instance.

You must cast the returned object to use any special functionality (see "Casting Your
get Method Return Values" on page 6-10).

Table 6-1 Summary of getObject() and getOracleObject() Return Types

getObject() getOracleObject()
Oracle SQL Type Underlying Return Type Underlying Return Type
CHAR String oracle.sql.CHAR
VARCHAR?2 String oracle.sql.CHAR
LONG String oracle.sql.CHAR
NUMBER java.math.BigDecimal oracle.sql. NUMBER
RAW byte[] oracle.sql.RAW
LONGRAW byte[] oracle.sql.RAW
DATE java.sql.Timestamp oracle.sql.DATE
ROWID oracle.sql.ROWID oracle.sql.ROWID
REF CURSOR java.sql.ResultSet (not supported)
BLOB oracle.sql.BLOB oracle.sql.BLOB

6-6 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

Table 6-1 Summary of getObject() and getOracleObject() Return Types (Cont.)

getObject() getOracleObject()
Oracle SQL Type Underlying Return Type Underlying Return Type
CLOB oracle.sql.CLOB oracle.sql.CLOB
BFILE oracle.sql.BFILE oracle.sql.BFILE
Oracle object class specified in type map oracle.sql.STRUCT

or oracle.sql.STRUCT
(if no type map entry)

Oracle object reference oracle.sql.REF oracle.sql.REF

collection (varray or oracle.sql. ARRAY oracle.sql. ARRAY
nested table)

For information on type compatibility between all SQL and Java types, see
Table 18-1, "Valid SQL Datatype-Java Class Mappings" on page 18-2.

Other getXXX() Methods

Standard JDBC provides a get XXX() for each standard Java type, such as
getByte(),getlnt(),getFl oat (), and so on. Each of these returns exactly
what the method name implies (a byt e, anint,af | oat, and so on).

In addition, the Or acl eResul t Set and Or acl eCal | abl eSt at enent classes
provide a full complement of get XXX() methods corresponding to all the
oracl e. sqgl . * types. Each get XXX() method returns an or acl e. sgl . XXX
object. For example, get RON D() returns an or acl e. sql . ROW D object.

Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type j ava. sql . * (ororacl e. j dbc2. * under JDK 1.1.x), instead of
oracl e. sql . *. For example, compare the following method names and return

types:
java.sqgl . Bl ob get Bl ob(i nt paraneter_index)

oracl e.sql . BLOB get BLOB(i nt paranet er_i ndex)

Although there is no particular performance advantage in using the specific
get XXX() methods, they can save you the trouble of casting, because they return
specific object types.

Accessing and Manipulating Oracle Data 6-7



Comparison of Oracle get and set Methods to Standard JDBC

Return Types and Input Parameter Types of getXXX() Methods

Table 6-2 summarizes the underlying return types and the input parameter types
for each get XXX() method, and notes which are Oracle extensions under JDK 1.2.x
and JDK 1.1.x. You must cast to an Or acl eResul t Set or

Oracl eCal | abl eSt at erent to use methods that are Oracle extensions.

Table 6-2 Summary of getXXX() Return Types

Oracle Oracle
Extfor Extfor

Underlying Return JDK JDK
Method Type Signature Type 1.2x? 1.1.x?
getArray() oracle.sql. ARRAY java.sql.Array No Yes

(oracle.jdbc2.Array
under JDK 1.1.x)

getARRAY() oracle.sql. ARRAY oracle.sql. ARRAY Yes Yes
getAsciiStream() java.io.InputStream java.io.InputStream No No
getBfile() oracle.sql.BFILE oracle.sql.BFILE Yes Yes
getBFILE() oracle.sql.BFILE oracle.sql.BFILE Yes Yes
getBigDecimal() java.math.BigDecimal java.math.BigDecimal No No
(see Notes section below)

getBinaryStream() java.io.InputStream java.io.InputStream No No
getBlob() oracle.sql.BLOB java.sql.Blob No Yes

(oracle.jdbc2.Blob
under JDK 1.1.x)

getBLOB oracle.sql.BLOB oracle.sql.BLOB Yes Yes
getBoolean() boolean boolean No No
getByte() byte byte No No
getBytes() byte[] byte[] No No
getCHAR() oracle.sql.CHAR oracle.sql.CHAR Yes Yes
getCharacterStream() java.io.Reader java.io.Reader No Yes

(new with 8.1.6)

getClob() oracle.sql.CLOB java.sql.Clob No Yes

(oracle.jdbc2.Clob
under JDK 1.1.x)

6-8 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

Table 6-2 Summary of getXXX() Return Types (Cont.)

Oracle Oracle
Ext for Extfor

Underlying Return JDK JDK

Method Type Signature Type 1.2x? 1.1.x?
getCLOB() oracle.sql.CLOB oracle.sql.CLOB Yes Yes
getDate() java.sql.Date java.sql.Date No No
(see Notes section below)

getDATE() oracle.sql.DATE oracle.sql.DATE Yes Yes
getDouble() double double No No
getFloat() float float No No
getint() int int No No
getLong() long long No No
getNUMBER() oracle.sql. NUMBER oracle.sql. NUMBER Yes Yes
getOracleObject() subclasses of oracle.sgl.Datum Yes Yes

oracle.sgl.Datum
getRAW() oracle.sql.RAW oracle.sql.RAW Yes Yes
getRef() oracle.sql.REF java.sgl.Ref No Yes
(oracle.jdbc2.Ref
under JDK 1.1.x)

getREF() oracle.sql.REF oracle.sql.REF Yes Yes
getROWID() oracle.sql.ROWID oracle.sql.ROWID Yes Yes
getShort() short short No No
getString() String String No No
getSTRUCT() oracle.sql.STRUCT. oracle.sql.STRUCT Yes Yes
getTime() java.sql.Time java.sql.Time No No
(see Notes section below)

getTimestamp() java.sql.Timestamp java.sql.Timestamp No No
(see Notes section below)

getUnicodeStream() java.io.InputStream java.io.InputStream No No

Accessing and Manipulating Oracle Data 6-9



Comparison of Oracle get and set Methods to Standard JDBC

Special Notes about getXXX() Methods
This section provides additional details about some of the get XXX() methods.

getBigDecimal() Note

JDBC 2.0 supports a simplified method signature for the get Bi gDeci mal ()
method. The previous input signature was:

(int columlndex, int scale) or(String columNane, int scale)
The new input signature is simply:
(int columl ndex) or(String col utmNane)

The scal e parameter, used to specify the number of digits to the right of the
decimal, is no longer necessary. The Oracle JDBC drivers retrieve numeric values
with full precision.

getDate(), getTime(), and getTimestamp() Note

In JDBC 2.0, the get Dat e(), get Ti me(), and get Ti nest anp() methods have
the following input signatures:

(int columlndex, Cal endar cal)
or:
(String columNane, Cal endar cal)

In release 8.1.6, the Oracle JDBC drivers ignore the Cal endar object input, because
it is not currently feasible to supportj ava. sql . Dat e timezone information
together with the data. You should continue to use previous input signatures that
take only the column index or column name. Calendar input will be supported in a
future Oracle JDBC release.

Casting Your get Method Return Values

As described in "Standard getObiject() Method" on page 6-4, Oracle’s
implementation of get Obj ect () always returnsaj ava. | ang. Obj ect instance,
and get Or acl eObj ect () always returns anor acl e. sql . Dat uminstance.
Usually, you would cast the returned object to the appropriate class so that you
could use particular methods and functionality of that class.

In addition, you have the option of using a specific get XXX() method instead of
the generic get Obj ect () or get Or acl eObj ect () methods. The get XXX()
methods enable you to avoid casting, because the return type of get XXX()

6-10 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

corresponds to the type of object returned. For example, get CLOB() returns an
oracl e. sgl . CLOBinstance, as opposed to aj ava. | ang. Obj ect instance.

Example: Casting Return Values This example assumes that you have fetched data of
type CHAR into a result set (where it is in column 1). Because you want to
manipulate the CHAR data without losing precision, cast your result set to an

O acl eResul t Set, and use get Or acl eObj ect () to return the CHAR data in
oracl e. sqgl . * format. If you do not cast your result set, you have to use

get Obj ect (), which returns your character data into a Java St r i ng and loses
some of the precision of your SQL data.

The get Or acl ehj ect () method returns an or acl e. sql . CHAR object into an
oracl e. sqgl . Dat umreturn variable unless you cast the output. Cast the

get Or acl eObj ect () outputtooracl e. sql . CHARif you want to use a CHAR
return variable and any of the special functionality of that class (such as the

get Char act er Set () method that returns the character set used to represent the
characters).

CHAR char = (CHAR) ors. get O acl e(hj ect (1);
Character Set cs = char.get CharacterSet();

Alternatively, you can return the object into a generic or acl e. sql . Dat umreturn
variable and cast it later when you must use the CHAR get Char act er Set ()
method.

Dat um rawdat um = ors. get O acl e(oj ect (1) ;
Character Set cs = ((CHAR rawdat un) . get Character Set () ;

This uses the get Char act er Set () method of or acl e. sql . CHAR. The
get Char act er Set () method is not defined on or acl e. sqgl . Dat umand would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods

Just as there is a standard get Obj ect () and Oracle-specific

get Or acl eObj ect () in result sets and callable statements for retrieving data,
there is also a standard set Obj ect () and an Oracle-specific

set Oracl eObj ect () in Oracle prepared statements and callable statements for
updating data. The set Or acl eCbj ect () methods take or acl e. sql . * input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
set Obj ect () method, which takes aj ava. | ang. Obj ect as input. The

Accessing and Manipulating Oracle Data 6-11



Comparison of Oracle get and set Methods to Standard JDBC

set Obj ect () method does support a few of the or acl e. sql . * types—it has
been implemented so that you can also input instances of the or acl e. sql . *
classes that correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,
BFI LE, STRUCT, REF, and ARRAY.

To bind or acl e. sql . * types to a prepared statement or callable statement, use the
set Oracl eCbj ect () method, which takes an or acl e. sqgl . Dat um(or any
subclass) as input. To use set Or acl eObj ect (), you must cast your prepared
statement or callable statement to an Or acl ePr epar edSt at enent or

Oracl eCal | abl eSt at erent object.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an Or acl eResul t Set so that you
can use Oracle-specific formats and methods. Because you want to use the data as
or acl e. sgl . CHAR format, cast the results of the get Or acl eObj ect () (which
returns type or acl e. sql . Dat um) to CHAR. Similarly, because you want to
manipulate the data in column 2 as strings, cast the data to a Java St r i ng type
(because get Obj ect () returns data of type Cbj ect ). In this example, r s
represents the result set, char Val represents the data from column 1 in

oracl e. sgl . CHARformat, and st r Val represents the data from column 2 in Java
Stri ng format.

CHAR char Val =(CHAR) ((Oracl eResul t Set ) rs) . get O acl e(hj ect (1) ;
Sring strVal=(Sring)rs. get (j ect (2);

For a prepared statement object ps, the set Or acl eCbj ect () method binds the
oracl e. sql . CHAR data represented by the char Val variable to the prepared
statement. To bind the or acl e. sqgl . * data, the prepared statement must be cast to
an Or acl ePrepar edSt at enent . Similarly, the set Obj ect () method binds the
Java St ri ng data represented by the variable st r Val .

Prepar edSt at enent ps= conn. prepareS at enent ("t ext_of _prepared st atenent");
((Cracl ePreparedS at enent ) ps) . set O acl e(hj ect (1, charVal ) ;
ps. set (yj ect (2, strval);

Other setXXX() Methods

As with get XXX() methods, there are several specific set XXX() methods.
Standard set XXX() methods are provided for binding standard Java types, and
Oracle-specific set XXX() methods are provided for binding Oracle-specific types.

6-12 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

Note: Under JDK 1.1.x, for compatibility with the JDBC 2.0
standard, Or acl ePr epar edSt at ement and

Or acl eCal | abl eSt at enent classes provide set XXX() methods
that take or acl e. j dbc?2 input parameters for BLOBs, CLOBs,
object references, and arrays. For example, a set Bl ob() method
takes an or acl e. j dbc2. Bl ob input parameter, where it would
take aj ava. sql . Bl ob input parameter under JDK 1.2.x.

Similarly, there are two forms of the set Nul | () method:

void setNull (int paraneterindex, int sql Type)

This is specified in the standard j ava. sqgl . Pr epar edSt at enent interface.
This signature takes a parameter index and a SQL typecode defined by the
java.sql . Typesororacle.jdbc.driver. O acl eTypes class. Use this
signature to set an object other than a REF, ARRAY, or STRUCT to NULL.

void setNull (int parameterindex, int sql Type, String sql_type nane)

With JDBC 2.0, this signature is also specified in the standard

java. sgl . Prepar edSt at ement interface. Under JDK 1.1.x, it is available as
an Oracle extension. It takes a SQL type name in addition to a parameter index
and a SQL type code. Use this method when the SQL typecode is

j ava. sql . Types. REF, ARRAY, or STRUCT. (If the typecode is other than REF,
ARRAY, or STRUCT, then the given SQL type name is ignored.)

Similarly, the r egi st er Qut Par anet er () method has a signature for use with
REF, ARRAY, or STRUCT data:

voi d regi st erQutParanet er

(i nt paraneterindex, int sql Type, Sring sql_type nane);

For binding Oracle-specific types, using the appropriate specific set XXX()
methods instead of methods for binding standard Java types may offer some
performance advantage.

Input Parameter Types of setXXX() Methods

Table 6-3 summarizes the input types for all the set XXX() methods and notes
which are Oracle extensions under JDK 1.2.x and JDK 1.1.x. To use methods that are
Oracle extensions, you must cast your statement to an

Or acl ePrepar edSt at emrent or Or acl eCal | abl eSt at enent .

Accessing and Manipulating Oracle Data 6-13



Comparison of Oracle get and set Methods to Standard JDBC

Table 6-3 Summary of setXXX() Input Parameter Types

Oracle Ext Oracle Ext
for JIDK for JIDK

Method Input Parameter Type 1.2.x? 1.1.x?
setArray/() java.sql.Array No Yes

(oracle.jdbc2.Array under

JDK 1.1.x)
setARRAY() oracle.sql. ARRAY Yes Yes
setAsciiStream() java.io.InputStream No No
(see Notes section below)
setBfile() oracle.sql.BFILE Yes Yes
setBFILE() oracle.sql.BFILE Yes Yes
setBigDecimal() BigDecimal No No
setBinaryStream() java.io.InputStream No No
(see Notes section below)
setBlob() java.sql.Blob No Yes

(oracle.jdbc2.Blob under

JDK 1.1.x)
setBLOB() oracle.sql.BLOB Yes Yes
setBoolean() boolean No No
setByte() byte No No
setBytes() byte[] No No
setCHAR() oracle.sql.CHAR Yes Yes
(also see setFixedCHAR() method)
setCharacterStream() java.io.Reader No Yes
(see Notes section below)
setClob() java.sql.Clob No Yes

(oracle.jdbc2.Clob under

JDK 1.1.x)
setCLOB() oracle.sql.CLOB Yes Yes
setDate() java.sgl.Date No No
(see Notes section below)
setDATE() oracle.sql. DATE Yes Yes

6-14 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

Table 6-3 Summary of setXXX() Input Parameter Types (Cont.)

Oracle Ext Oracle Ext
for JIDK for JIDK

Method Input Parameter Type 1.2.x? 1.1.x?
setDouble() double No No
setFixedCHAR() java.lang.String Yes Yes
(see setFixedCHAR() section below)
setFloat() float No No
setint() int No No
setLong() long No No
setNUMBER() oracle.sql. NUMBER Yes Yes
setRAW() oracle.sql.RAW Yes Yes
setRef() java.sql.Ref No Yes
(oracle.jdbc2.Ref under
JDK 1.1.x)
setREF() oracle.sql.REF Yes Yes
setROWID() oracle.sql.ROWID Yes Yes
setShort() short No No
setString() String No No
setSTRUCT() oracle.sql.STRUCT Yes Yes
setTime() java.sql.Time No No
(see note below)
setTimestamp() java.sql.Timestamp No No
(see note below)
setUnicodeStream() java.io.InputStream No No

(see note below)

For information on all supported type mappings between SQL and Java, see
Table 18-1, "Valid SQL Datatype-Java Class Mappings" on page 18-2.

Setter Method Size Limitations on Oracle8 and Oracle7

Table 6-4 lists size limitations for the set Byt es() and set St ri ng() methods for
SQL binds to Oracle8 and Oracle7 databases. (These limitations do not apply to
PL/SQL binds.) For information about how to work around these limits using the

Accessing and Manipulating Oracle Data 6-15



Comparison of Oracle get and set Methods to Standard JDBC

stream API, see "Using Streams to Avoid Limits on setBytes() and setString()" on
page 3-30.

Table 6-4 Size Limitations for setByes() and setString() Methods

Oracle8 Oracle7
setBytes() size limitation 2000 bytes 255 bytes
setString() size limitation 4000 bytes 2000 bytes

Setter Methods That Take Additional Input

The following set XXX() methods take an additional input parameter other than
the parameter index and the data item itself:

« setAsciiStrean(int param ndex, |nputStreamistream
int | ength)

Takes the length of the stream, in bytes.

« setBinaryStrean(int param ndex, |nputStreamistream
int I ength)

Takes the length of the stream, in bytes.

« setCharacterStream(int param ndex, Reader reader,
int |ength)

Takes the length of the stream, in characters.

« setUnicodeStrean(int paranm ndex, |nputStreamistream
int [ength)

Takes the length of the stream, in bytes.

The particular usefulness of the set Char act er St r eam() method is that when a
very large Uni code value is input to a LONGVARCHAR parameter, it can be more
practical to send it through aj ava. i 0. Reader object. IDBC will read the data
from the stream as needed, until it reaches the end-of-file mark. The JDBC driver
will do any necessary conversion from Uni code to the database character format.

Important: The preceding stream methods can also be used for
LOBs, but only with an 8.1.6 database and the 8.1.6 JDBC OCI
driver. See "Reading and Writing BLOB and CLOB Data" on
page 7-6 for more information.

6-16 JDBC Developer’s Guide and Reference



Comparison of Oracle get and set Methods to Standard JDBC

« setDate(int param ndex, Date x, Cal endar cal)
« setTime(int param ndex, Tinme x, Calendar cal)
« setTinmestanp(int param ndex, Tinmestanp x, Cal endar cal)

The JDBC 2.0 signatures for set Dat e(), set Ti me(), and set Ti nest anp()
include a Cal endar object, but in release 8.1.6 the Oracle JDBC drivers ignore
this input because it is not yet feasible to support j ava. sql . Dat e timezone
information together with the data. You should continue to use the previous
signatures that take only the parameter index and data item. Calendar input
will be supported in a future release.

Method setFixedCHAR() for Binding CHAR Data into WHERE Clauses

CHAR data in the database is padded to the column width. This leads to a limitation
in using the set CHAR() method to bind character data into the WHERE clause of a
SEL ECT statement—the character data in the WHERE clause must also be padded to
the column width to produce a match in the SELECT statement. This is especially
troublesome if you do not know the column width.

To remedy this, Oracle has added the set Fi xedCHAR() method to the
O acl ePrepar edSt at enent class. This method executes a non-padded
comparison.

Note:

« Remember to cast your prepared statement object to
O acl ePrepar edSt at enent to use the set Fi xedCHAR()
method.

« There isno need to use set Fi xedCHAR() for an | NSERT
statement. The database always automatically pads the data to
the column width as it inserts it.

Example The following example demonstrates the difference between the
set CHAR() and set Fi xedCHAR() methods.

/* Schema is :
create table ny table (col 1 char(10));
insert into ny_table values ('JDBC);
*/
PreparedS aterment pstni = conn. pr epar eSt at enent
("sel ect count(*) fromny_table where coll = ?");

Accessing and Manipulating Oracle Data 6-17



Comparison of Oracle get and set Methods to Standard JDBC

/11
/11

pstm.setSring (1, "JDBC');
runQery (pstmt);

CHAR ch = new CHAR("JDBC

((QO acl ePrepar edSt at enent ) pst ) .

runQery (pstmnt); /1

((C acl ePrepar edSt at erment ) pst ) .

runQery (pstn); /1

voi d runQuery (PreparedSt at enent

Set the Bind Val ue
This will print " No of rows are 0"
nul );

set CHAR(1, ch); // Pad it to 10 bytes

This will print "No of rows are 1"
set F xedCHAR(1, "JDBC');

This will print "No of rows are 1"
ps)

{
/1 Run the Query

Result Set rs = pstnt. executeQery ();

vhile (rs.next())

Systemout.printIn("No of rows are " + rs.getlnt(1));

rs. close();
rs =null;

Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

The Oracle 8.0.x JDBC drivers use the same protocol as the Oracle 7.3.x JDBC
drivers. In both cases, Oracle datatypes are as defined for an Oracle 7.3.x database,
and data items longer than 2K bytes must be LONG

As with any LONGdata, use the stream APIs to read and write data between your
application and the database. Essentially, this means that you cannot use the normal
get String() andset String() methods to read or write data longer than 2K
bytes when using the 8.0.x and 7.3.x drivers.

The stream APIs include methods such as get Bi narySt r ean(),
set Bi naryStrean(),get Ascii Stream(),and set Asci i Strean() . These
methods are discussed under "Java Streams in JDBC" on page 3-19.

6-18 JDBC Developer’s Guide and Reference



Using Result Set Meta Data Extensions

Using Result Set Meta Data Extensions

Theoracl e.jdbc.driver. Oracl eResul t Set Met aDat a class is JDBC
2.0-compliant but does not implement the get SchemaNane() and

get Tabl eName() methods because underlying protocol makes this unfeasible.
Oracle does implement many methods to retrieve information about an Oracle
result set, however.

The get Col umTypeNane() method takes a column number and returns the SQL
type name for columns of type REF, STRUCT, or ARRAY. In contrast, the

get Col umType() method takes a column number and returns the SQL type. If
the column stores an Oracle object or collection, then it returns an

Or acl eTypes. STRUCT or an Or acl eTypes. ARRAY. For a list of the key methods
provided by Or acl eResul t Set Met adat a, see "Class
oracle.jdbc.driver.OracleResultSetMetaData" on page 5-21.

The following example uses several of the methods in the
O acl eResul t Set Met adat a class to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

Dat abaseMet alat a dbnd = conn. get Met aDat a() ;
Resul t Set rset = dbmd. get Tabl es("", "SCOIT', "EMP', null);

while (rset.next())

{
O acl eResul t Set Met abat a orsnd = ((Oacl eResul t Set) rset) . get Met aDat a() ;
int num@l ums = or snd. get Gol ummGount () ;
Systemout. printl n("Numof colums =" + nunCol ums);

for (int i=0; i<nunGol umms; i++)
{
Systemout. print ("Col um Name=" + orsnu. get Col unmNane (i +1));
Systemout.print (" Type=" + orsnd. get Gol umType (i + 1) );
Systemout. println (" Type Nane=" + orsnu. get Gol unmmTypeNane (i + 1));
}
}

The program returns the following output:

Num of colums = 5

Gol urn Nane=TABLE CAT Type=12 Type Nane=VARCHAR?

Gol urn Nane=TABLE_SCHEM Type=12 Type Name=VARCHAR?
Gol urn Nane=TABLE NAME Type=12 Type Nane=VARCHAR2
Gol urn Nane=TABLE TYPE Type=12 Type Nane=VARCHAR2
Gol urm Nane=TABLE REMARKS Type=12 Type Nane=VARCHAR2

Accessing and Manipulating Oracle Data 6-19



Using Result Set Meta Data Extensions

6-20 JDBC Developer’s Guide and Reference



v

Working with LOBs and BFILEsS

This chapter describes how you use JDBC and the or acl e. sqgl . * classes to access
and manipulate LOB and BFILE locators and data, covering the following topics:

=« Oracle Extensions for LOBs and BFILEs
«  Working with BLOBs and CLOBs
«  Working with BFILEs

Working with LOBs and BFILEs 7-1



Oracle Extensions for LOBs and BFILES

Oracle Extensions for LOBs and BFILEs

LOBs ("large objects") are stored in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of LOBs: BLOBs
(unstructured binary data) and CLOBs (character data). BLOB and CLOB data is
accessed and referenced by using a locator, which is stored in the database table and
points to the BLOB or CLOB data, which is outside the table.

BFILEs are large binary data objects stored in operating system files outside of
database tablespaces. These files use reference semantics. They can also be located
on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs and DVDs. As
with BLOBs and CLOBSs, a BFILE is accessed and referenced by a locator which is
stored in the database table and points to the BFILE data.

To work with LOB data, you must first obtain the LOB locator from the table. Then
you can read or write LOB data and perform data manipulation. The following
sections also describe how to create and populate a LOB column in a table.

The JDBC drivers support these or acl e. sqgl . * classes for BLOBs, CLOBs, and
BFILEs:

« oracle.sqgl.BLOB
« oracle.sql.CLOB
« oracle.sqgl.BFILE

The or acl e. sgl . BLOB and CLOB classes implement the j ava. sqgl . Bl ob and
Cl ob interfaces, respectively (or acl e. j dbc2. Bl ob and Cl ob interfaces under
JDK 1.1.x). By contrast, BFI LE is an Oracle extension, without a corresponding
java. sql (ororacl e.jdbc2) interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 7-6 and "Reading BFILE Data" on page 7-18.

Note: You cannot create BLOB, CLOB, or BFI LE objects in your
JDBC application—you can only retrieve existing BLOBs, CLOBs,
or BFILEs from the database.

7-2 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

Working with BLOBs and CLOBs

This section describes how to read and write data to and from binary large objects
(BLOBSs) and character large objects (CLOBSs) in an Oracle database, using LOB
locators.

For general information about Oracle8i LOBs and how to use them, see the Oracle8i
Application Developer’s Guide—Large Objects (LOBS).

Getting and Passing BLOB and CLOB Locators

Standard as well as Oracle-specific getter and setter methods are available for
retrieving or passing LOB locators from or to the database.

Retrieving BLOB and CLOB Locators

Given a standard JDBC result set (j ava. sqgl . Resul t Set ) or callable statement

(j ava. sgl . Cal | abl eSt at enent ) that includes BLOB or CLOB locators, you can
access the locators by using standard getter methods, as follows. All the standard
and Oracle-specific getter methods discussed here take either an i nt column index
ora Stri ng column name as input.

« Under JDK 1.2.x, you can use the standard get Bl ob() and get Cl ob()
methods, which return j ava. sql . Bl ob and Cl ob objects, respectively.

« Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic get Obj ect () method, which returns j ava. | ang. Obj ect,
and cast the output as desired.

If you retrieve or cast the result set or callable statement to an Or acl eResul t Set
or Oracl eCal | abl eSt at ement object, then you can use Oracle extensions as
follows:

« Under either JIDK 1.2.x or JDK 1.1.x, you can use get BLOB() and get CLOB(),
which return or acl e. sql . BLOB and CLOB objects, respectively.

« Undereither JIDK 1.2.x or JDK 1.1.x, you can also use the get Or acl eCbj ect ()
method, which returns an or acl e. sql . Dat umobject, and cast the output
appropriately.

« Under JDK 1.1.x, you also have the option of using the Oracle extensions
get Bl ob() and get C ob(), which return or acl e. j dbc2. Bl ob and Cl ob
objects, respectively. (These Bl ob and Cl ob interfaces mimic the standard
interfaces available in JDK 1.2.x.)

Working with LOBs and BFILEs 7-3



Working with BLOBs and CLOBs

Note: If using get Obj ect () or get Or acl eObj ect (), then
remember to cast the output, as necessary. For more information,
see "Casting Your get Method Return Values" on page 6-10.

Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called | ob_t abl e with a column for a BLOB locator, bl ob_col ,and a
column for a CLOB locator, ¢l ob_col . This example assumes that you have
already created the St at enent object, st nt .

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

/1l Select LCBlocator into standard result set.
ResultSet rs =

st . execut eQuery ("SELECT bl ob_col, clob_col FROMIob_table");
vhile (rs.next())

{

// Get LCB locators into Java wapper classes.
java.sqgl.Bob blob = (java.sql .B ob)rs. get j ect (1);
java.sqgl.dob clob = (java.sqgl .dob)rs. get (j ect (2);
(...process...)

}

The outputiscasttoj ava. sqgl . Bl ob and Cl ob. As an alternative, you can cast the
output to or acl e. sql . BLOB and CLOB to take advantage of extended
functionality offered by the or acl e. sql . * classes. For example, you can rewrite
the above code to get the LOB locators as:

/l Get LCB locators into Java wapper classes.
oracle.sqgl.BLGB blob = (BLAB)rs. get (bj ect(1);
oracle.sgl.Q.@B clob = (A.B)rs. get hj ect(2);
(...process...)

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods.

For example, if you have an Or acl eCal | abl eSt at enent ocs that calls a
function f unc that has a CLOB output parameter, then set up the callable statement
as in the following example.

This example registers Or acl eTypes. CLOB as the typecode of the output
parameter.

7-4 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

G acl eCal | abl eStat enent ocs =
(O acl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}");
ocs. regi sterQut Paraneter (1, O acl eTypes. OLCB);
ocs. execute();
oracle.sqgl .. cl ob = ocs. get ALCB(1) ;

Passing BLOB and CLOB Locators

Given a standard JDBC prepared statement (j ava. sql . Prepar edSt at enent ) or
callable statement (j ava. sqgl . Cal | abl eSt at ement ), you can use standard setter
methods to pass LOB locators, as follows. All the standard and Oracle-specific setter
methods discussed here take an i nt parameter index and the LOB locator as input.

« Under JDK 1.2.x, you can use the standard set Bl ob() and set Cl ob()
methods, which take j ava. sql . Bl ob and Cl ob locators as input.

« Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic set Obj ect () method, which simply specifies a
java. |l ang. Obj ect input.

Given an Oracle-specific Or acl ePr epar edSt at enent or
Oracl eCal | abl eSt at errent , then you can use Oracle extensions as follows:

« Under either JIDK 1.2.x or JDK 1.1.x, you can use set BLOB() and set CLOB(),
which take or acl e. sql . BLOB and CLOB locators as input, respectively.

« Undereither JIDK 1.2.x or JDK 1.1.x, you can also use the set Or acl eCbj ect ()
method, which simply specifies an or acl e. sql . Dat uminput.

« Under JDK 1.1.x, you also have the option of using the Oracle extensions
set Bl ob() and set Cl ob(), which take or acl e. j dbc2. Bl ob and Cl ob
locators as input, respectively. (These Bl ob and Cl ob interfaces mimic the
standard interfaces available in JDK 1.2.x.)

Example: Passing a BLOB Locator to a Prepared Statement If you have an
Or acl ePrepar edSt at erent object ops and a BLOB named nry_bl ob, then write
the BLOB to the database as follows:

QO acl ePrepar edSt at enent ops = (O acl ePr epar edSt at enent ) conn. pr epar et at enent
("I'NSERT INTO bl ob_table VALLES(?)");

ops.setBLAB(1, ny_blob);

ops. execute();

Working with LOBs and BFILEs 7-5



Working with BLOBs and CLOBs

Example: Passing a CLOB Locator to a Callable Statement If you have an
Or acl eCal | abl eSt at enent object ocs and a CLOB named ny_cl ob, then input
the CLOB to the stored procedure pr oc as follows:

G acl eCal | abl eStat enent ocs =

(O acl eCal | abl et at enent ) conn. prepareCal | ("{cal | proc(?))}");
ocs.setdob(1, ny_clob);
ocs. execute();

Reading and Writing BLOB and CLOB Data

Once you have a LOB locator, you can use JDBC methods to read and write the LOB
data. LOB data is materialized as a Java array or stream. However, unlike most Java
streams, a locator representing the LOB data is stored in the table. Thus, you can
access the LOB data at any time during the life of the connection.

To read and write the LOB data, use the methods in the or acl e. sql . BLOBor
oracl e. sql . CLOBclass, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.

Notes:

« To write LOB data, the application must acquire a write lock on
the LOB object. One way to accomplish this is through a
SELECT FOR UPDATE. Also, disable auto-commit mode.

= The implementation of the data access API uses direct native
calls in the JDBC OCI and server-side internal drivers, thereby
providing better performance. You can use the same APl on the
LOB classes in all Oracle JDBC drivers.

« Inthe case of the JDBC Thin driver only, the implementation of
the data access API uses the PL/SQL DBMS_L OB package
internally. You never have to use DBMS_LOB directly. This is in
contrast to the 8.0.x drivers. For more information on the
DBMS_L OB package, see the Oracle8i Supplied PL/SQL Packages
Reference.

7-6 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

To read and write LOB data, you can use these methods:

To read from a BLOB, use the get Bi nar ySt r eam() method of an
oracl e. sql . BLOB object to retrieve the entire BLOB as an input stream. This
returnsaj ava. i o. | nput St r eamobject.

As with any | nput St r eamobject, use one of the overloaded r ead() methods
to read the LOB data, and use the cl ose() method when you finish.

To write to a BLOB, use the get Bi nar yQut put St r eam() method of an
oracl e. sql . BLOB object to retrieve the BLOB as an output stream. This
returnsaj ava. i 0. Qut put St r eamobiject to be written back to the BLOB.

As with any Qut put St r eamobiject, use one of the overloaded wri t e()
methods to update the LOB data, and use the cl ose() method when you
finish.

To read from a CLOB, use the get Asci i Strean() or

get Char act er St rean() method of an or acl e. sql . CLOB object to retrieve
the entire CLOB as an input stream. The get Asci i St r eam() method returns
an ASCIl input stream inaj ava. i 0. | nput St r eamobject. The

get Char act er St r ean{) method returns a Uni code input stream in a
java. i o. Reader object.

As with any | nput St r eamor Reader object, use one of the overloaded
read() methods to read the LOB data, and use the cl ose() method when
you finish.

You can also use the get SubSt ri ng() method of or acl e. sql . CLOB object
to retrieve a subset of the CLOB as a character string of type
java.lang. String.

To write to a CLOB, use the get Asci i Qut put St rean() or

get Char act er Qut put St r eam() method of an or acl e. sql . CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The

get Asci i Qut put St ream() method returns an ASCII output stream in a

j ava. i o. Qut put St r eamobject. The get Char act er Qut put St r eam()
method returns a Uni code output streaminaj ava.i o. Wit er object.

As with any Qut put St r eamor Wi t er object, use one of the overloaded
writ e() methods to update the LOB data, and use the f | ush() andcl ose()
methods when you finish.

Working with LOBs and BFILEs 7-7



Working with BLOBs and CLOBs

Notes:

=« The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE/COWM T to write the
data.

«  When writing to or reading from a CLOB, the JDBC drivers
perform all character set conversions for you.

Important: The JDBC 2.0 specification states that

Pr epar edSt at ement methods set Bi narySt rean() and

set Obj ect () can be used to input a stream value as a BLOB, and
that the Pr epar edSt at enent methods set Asci i Stream(),
set Uni codeSt ream(), set Char act er Strean(), and

set Obj ect () can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and
8.1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption may result.

Example: Reading BLOB Data Use the get Bi nar ySt r ean{) method of the
oracl e. sql . BLOBclass to read BLOB data. The get Bi nar ySt r eam() method
reads the BLOB data into a binary stream.

The following example uses the get Bi nar ySt r ean() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read, as well).

/! Read BLOB data fromBLOB | ocat or.

I nput Stream byt e_stream= ny_bl ob. get B naryStreant);
byte [] byte_array = new byte [10];

int bytes read = byte streamread(byte_array);

Example: Reading CLOB Data The following example uses the

get Char act er St r ean() method to read CLOB data into a Uni code character
stream. It then reads the character stream into a character array (returning the
number of characters read, as well).

7-8 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

// Read LGB data fromQ.(B locator into Reader char stream
Reader char_stream = ny_cl ob. get Character Srean();

char [] char_array = new char [10];

int chars_read = char_streamread (char_array, 0, 10);

The next example uses the get Asci i St ream() method of the or acl e. sql . CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read, as well).

/! Read CLCB data fromQ.(B locator into Input ASO| character stream
I nput stream asci i Char _stream = ny_cl ob. get Asci i Srean();

byt e[] asciiChar_array = new byte[ 10];

int asciiChar_read = ascii Char_streamread(ascii Char_array, 0, 10);

Example: Writing BLOB Data Use the get Bi nar yQut put St r eam() method of an
oracl e. sqgl . BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
get Bi nar yQut put St r eam() method to write an array of character data to a
BLOB.

java.io. Qut put Streamout st ream

/1 read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5 6, 7, 8, 9};

[/l wite the array of binary data to a BLCB
out stream = ((BLCB) ny_bl ob) . get B naryQut put S reanf);
outstreamw ite(data);

Example: Writing CLOB Data Use the get Char act er Qut put St reanm() method or
the get Asci i Qut put St r eam() method to write data to a CLOB. The

get Char act er Qut put St r ean{) method returns a Uni code output stream; the
get Asci i Qut put St ream() method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
get Char act er Qut put St r eam() method to write the array of character data to a
CLOB. The get Char act er Qut put St r ean{) method returns a
java.io.Witer instance inanoracl e. sql . CLOB object, not a

j ava. sql . Cl ob object.

Working with LOBs and BFILEs 7-9



Working with BLOBs and CLOBs

java.io.Witer witer;

/1 read data into a character array

Il wite the array of character data to a O.(B
witer = ((QLCB)ny_cl ob). get Char act er Qut put Streang) ;
witer.wite(data);

witer.flush();

witer.close();

The next example reads a vector of data into a byte array, then uses the

get Asci i Qut put St rean() method to write the array of ASCII data to a CLOB.
Because get Asci i Qut put St reanm() returns an ASCII output stream, you must
cast the output to a or acl e. sql . CLOB datatype.

java.io. Qut put Streamout ;
/1 read data into a byte array
byte[] data ={'0,'1,'2,'3,'4,’5,'6,'7,'8,"9};

/l wite the array of ascii datato a OB
out = ((CL@B)cl ob). get Ascii Qut put Streant);
out.wite(data);

out. flush();

out.close();

Creating and Populating a BLOB or CLOB Column
Create and populate a BLOB or CLOB column in a table by using SQL statements.

Note: You cannot create a new BLOB or CLOB locator in your
application, such as with a Java new statement. You must create the
locator through a SQL operation, and then select it into your
application.

Create a BLOB or CLOB column in a table with the SQL CREATE TABLE statement,
then populate the LOB. This includes creating the LOB entry in the table, obtaining
the LOB locator, creating a file handler for the data (if you are reading the data from
afile), and then copying the data into the LOB.

7-10 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

Creating a BLOB or CLOB Column in a New Table

To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This
example assumes that you have already created your Connect i on object conn and
St at ement object st nt :

Sring cmd = "CREATE TABLE ny_bl ob_tabl e (x varchar2 (30), c blob)";
stnt. execute (cnu);

In this example, the VARCHAR2 column designates a row number, such as 1 or 2,
and the BLOB column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table

This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connect i on object conn and St at enent object st nt . The table ny_bl ob_t abl e
is the table that was created in the previous section.

The following example writes the G F file j ohn. gi f to aBLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
enpt y_bl ob syntax to create the BLOB locator.

stmtexecute ("INSERT INTO my_blob_table VALUES (rowl’, empty_blob())");

2. Get the BLOB locator from the table.

BLOB blob;

cmd ="SELECT *FROMmy_blob_table WHERE X=row1™;
ResultSet rest = stmt.executeQuery(cmd);

BLOB blob = ((OracleResultSet)rset).getBLOB(2);

3. Declare afile handler for the j ohn. gi f file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a Fi | el nput St r eamobject to read the contents of the G F file,
and an Qut put St r eamobject to retrieve the BLOB as a stream.

File binaryFile = new File(“john.gif’);

System.out printin(“john.gif length =" + binaryFle.length());
FlelnputStream instream = new FilelnputStream(binaryFile);
OutputStream outstream = blob.getBinaryOutputStream();

Working with LOBs and BFILEs 7-11



Working with BLOBs and CLOBs

4. Call get Buf f er Si ze() to retrieve the ideal buffer size (according to
calculations by the JDBC driver) to use in writing to the BLOB, then create the
buf f er byte array.

int size = blob.getBufferS ze();
byte[] buffer = new byt €[ si ze];
int length = -1;

5. Usetheread() method to read the G F file to the byte array buf f er, then use
thewr it e() method to write it to the BLOB. When you finish, close the input
and output streams.

vwhile ((length = instreamread(buffer)) = -1)
outstreamw ite(buffer, 0, length);

instreamcl ose();

out stream cl ose();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the next section, "Accessing and Manipulating BLOB and CLOB Data".

Accessing and Manipulating BLOB and CLOB Data

Once you have your BLOB or CLOB locator in a table, you can access and

manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting and
Passing BLOB and CLOB Locators" on page 7-3 describes these techniques in detail.

After you select the locators, you can retrieve the BLOB or CLOB data. You will
usually want to cast the result set to the Or acl eResul t Set datatype so that you
can retrieve the data in or acl e. sqgl . * format. After retrieving the BLOB or CLOB
data, you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table ny_bl ob_t abl e
into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

/1 Select the blob - what we are real ly doi ng here
/1 is getting the blob locator into a result set
BLCB bl ob;

cnd = "SELECT * FROMny_bl ob_t abl e";

Resul t Set rset = stni. executeQuery (cnd);

/]l Get the blob data - cast to GacleResult set to
/1 retrieve the data in oracle.sqg fornat

7-12 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

Sring index = ((CGacl eResul t Set)rset).getString(1);
bl ob = ((Oacl eResul t Set) rset). get BLCB(2) ;

/1 get the length of the blob
int length = bl ob. | ength();

/1 print the length of the blob
Systemout. println("blob | ength" + I ength);

/1 read the blob into a byte array

/1 then print the blob fromthe array
byt e bytes[] = bl ob.getBytes(1, |ength);
printBytes(bytes, |ength);

Additional BLOB and CLOB Features

In addition to what has already been discussed in this chapter, the
oracl e. sql . BLOBand CLOB classes have a number of methods for further
functionality.

Note: Theoracl e. sql . CLOBclass supports all the character sets
that the Oracle data server supports for CLOB types.

Additional BLOB Methods
The or acl e. sgl . BLOB class includes the following methods:

« getBi naryQut put Strean(): Returnsaj ava. i 0. Qut put St r eamto write
data to the BLOB as a stream.

=« getBinaryStrean():Returns the BLOB data for this Bl ob instance as a
stream of bytes.

« get Buf ferSize():Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing BLOB data. This value is a
multiple of the chunk size (see get ChunkSi ze() below) and is close to 32K.

« getBytes():Reads from the BLOB data, starting at a specified point, into a
supplied buffer.

« get ChunkSi ze() : Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the

Working with LOBs and BFILEs 7-13



Working with BLOBs and CLOBs

LOB data layer in accessing or modifying the BLOB value. Part of each chunk
stores system-related information, and the rest stores LOB data. Performance is
enhanced if read and write requests use some multiple of the chunk size.

| engt h() : Returns the length of the BLOB in bytes.

posi ti on(): Determines the byte position in the BLOB where a given pattern
begins.

put Byt es() : Writes BLOB data, starting at a specified point, from a supplied
buffer.

Additional CLOB Methods
The or acl e. sgl . CLOB class includes the following methods:

get Asci i Qut put St ream() : Returns aj ava. i 0. Qut put St r eamto write
data to the CLOB as a stream.

get Asci i Strean() : Returns the CLOB value designated by the Cl ob object
as a stream of ASCII bytes.

get Buf f er Si ze()) : Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing CLOB data. This value is a
multiple of the chunk size (see get ChunkSi ze() below) and is close to 32K.

get Char act er Qut put Strean{) : Returnsaj ava. i o. Wit er to write data
to the CLOB as a stream.

get Char act er St r ean( ) : Returns the CLOB data as a stream of Uni code
characters.

get Char s() : Retrieves characters from a specified point in the CLOB data into
a character array.

get ChunkSi ze() : Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the CLOB value. Part of each chunk
stores system-related information and the rest stores LOB data. Performance is
enhanced if you make read and write requests using some multiple of the
chunk size.

get SubSt ri ng() : Retrieves a substring from a specified point in the CLOB
data.

I engt h() : Returns the length of the CLOB in characters.

7-14 JDBC Developer’s Guide and Reference



Working with BLOBs and CLOBs

posi tion(): Determines the character position in the CLOB at which a given
substring begins.

put Char s() : Writes characters from a character array to a specified point in
the CLOB data.

put St ri ng() : Writes a string to a specified point in the CLOB data.

Working with LOBs and BFILEs 7-15



Working with BFILES

Working with BFILEs

This section describes how to read and write data to and from external binary files
(BFILESs), using file locators.

Getting and Passing BFILE Locators

Getter and setter methods are available for retrieving or passing BFILE locators
from or to the database.

Retrieving BFILE Locators

Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard result set get Obj ect ()
method. This returns an or acl e. sql . BFI LE object.

You can also access the locators by casting your result set to Or acl eResul t Set or
your callable statement to Or acl eCal | abl eSt at enent and using the
get Oracl eObj ect () orget BFI LE() method.

Notes:

« Inthe Oracl eResul t Set and Or acl eCal | abl eSt at enent
classes, get BFI LE() and get Bf i | e() both return
oracl e. sql . BFI LE. Thereisnoj ava. sqgl interface (or
or acl e. j dbc2 interface) for BFILEs.

« Ifusing get Obj ect () orget Oracl eCbj ect (), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 6-10.

Example: Getting a BFILE locator from a Result Set  Assume that the database has a table
called bf i | e_t abl e with a single column for the BFILE locator bf i | e_col . This
example assumes that you have already created your St at ement object st nt .

Select the BFILE locator into a standard result set. If you cast the result set to an
O acl eResul t Set, you can use get BFI LE() to get the BFILE locator:

/1 Select the BFILE locator into a result set
Result Set rs = stm. execut eQuery(" SELECT bfile_col FROMbfile_table");
vhile (rs.next())

{
}

oracle.sql.BFILE ny_bfile = ((OacleResul t Set)rs). get BFl LK 1);

7-16 JDBC Developer’s Guide and Reference



Working with BFILES

Note that as an alternative, you can use get Obj ect () to return the BFILE locator.
In this case, because get Obj ect () returnsaj ava. | ang. Obj ect, cast the results
to BFI LE. For example:

oracle.sqgl.BFILE ny_bfile = (BFILE)rs. get (j ect (1) ;

Example: Getting a BFILE Locator from a Callable Statement Assume you have an

Or acl eCal | abl eSt at enent object ocs that calls a function f unc that has a
BFI LE output parameter. The following code example sets up the callable
statement, registers the output parameter as Or acl eTypes. BFI LE, executes the
statement, and retrieves the BFILE locator:

G acl eCal | abl eStat enent ocs =
(O acl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}");
ocs. regi ster Qut Paranet er (1, O acl eTypes. BFI LE);
ocs. execute();
oracl e.sql.BFILE bfile = ocs. get BFI LE(1) ;

Passing BFILE Locators

To pass a BFILE locator to a prepared statement or callable statement (to update a
BFILE locator, for example), you can do one of the following:

« Use the standard set Cbj ect () method.
or:

« Castthe statement to Or acl ePr epar edSt at ement or
Or acl eCal | abl eSt at enent , and use the set Or acl eCbj ect () or
set BFI LE() method.

These methods take the parameter index and an or acl e. sql . BFI LE object as
input.

Example: Passing a BFILE Locator to a Prepared Statement Assume you want to insert a
BFILE locator into a table, and you have an Or acl ePr epar edSt at enment object
ops to insert data into a table. The first column is a string (to designate a row
number), the second column is a BFILE, and you have a valid or acl e. sql . BFI LE
object (bf i | e). Write the BFILE to the database as follows:

QO acl ePrepar edSt at enent ops = (O acl ePr epar edSt at enent ) conn. pr epar et at enent
("I'NSERT INTOny _bfile_table VALUES (?,?)");

ops.setSring(1,"one");

ops. set BFI LE(2, bfile);

ops. execute();

Working with LOBs and BFILEs 7-17



Working with BFILES

Example: Passing a BFILE Locator to a Callable Statement Passing a BFILE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFILE locator is passed to the myGet Fi | eLengt h() procedure, which returns the
BFILE length as a numeric value.

QacleCal | abl eStat enent cstnt = (Oracl eCal | abl et at errent ) conn. pr epar eCal |
("begin ? := nyGetFileLength (?); end;");
try

{
cstn.registerQutParaneter (1, Types. NMER O);

cstm.setBFILE (2, bfile);
cstm. execute ();
return cstn.getlong (1);

Reading BFILE Data

To read BFILE data, you must first get the BFILE locator. You can get the locator
from either a callable statement or a result set. "Getting and Passing BFILE Locators
on page 7-16 describes this.

Once you obtain the locator, you can invoke a number of methods on the BFILE
without opening it. For example, you can use the or acl e. sqgl . BFI LE methods
fileExists() andisFil eOpen() todetermine whether the BFILE exists and if
it is open. If you want to read and manipulate the data, however, you must open
and close the BFILE, as follows:

« Usethe openFi | e() method of the or acl e. sql . BFI LE class to open a
BFILE.

« When you are done, use the cl oseFi | e() method of the BFI LE class.

BFILE data is materialized as a Java stream. To read from a BFILE, use the
get Bi naryStreanm() method of an or acl e. sql . BFI LE object to retrieve the
entire file as an input stream. This returns aj ava. i 0. | nput St r eamobject.

As with any | nput St r eamobject, use one of the overloaded r ead() methods to
read the file data, and use the cl ose() method when you finish.

7-18 JDBC Developer’s Guide and Reference



Working with BFILES

Notes:

« BFILEs are read-only. You cannot insert data or otherwise write
to a BFILE.

= You cannot use JDBC to create a new BFILE. They are created
only externally.

Example: Reading BFILE Data The following example uses the get Bi nar ySt r eant()
method of an or acl e. sql . BFI LE object to read BFILE data into a byte stream and
then read the byte stream into a byte array. The example assumes that the BFILE has
already been opened.

/1 Read BF LE data froma BFILE | ocat or
Inputstreamin = bfile.getB narySreant);
byte[] byte array = new byt e{10};

int byte read = in.read(byte_array);

Creating and Populating a BFILE Column

This section discusses how to create a BFI LE column in a table with SQL operations
and specify the location where the BFILE resides. The examples below assume you
have already created your Connect i on object conn and St at ement object st nt .

Creating a BFILE Column in a New Table

To work with BFILE data, create a BFI LE column in a table, and specify the location
of the BFILE. To specify the location of the BFILE, use the SQL CREATE

DI RECTORY...AS statement to specify an alias for the directory where the BFILE
resides. Then execute the statement. In this example, the directory alias is

t est _di r, and the BFILE resides in the / home/ wor k directory.

Sring cnd;

cnd = "CREATE D RECTCRY test _dir AS '/hone/ work'";
stnt.execute (cnu);

Use the SQL CREATE TABLE statement to create a table containing a BFI LE column,
then execute the statement. In this example, the name of the table is
ny_bfile_table.

/Il Greate a table containing a BFILE field
cmd = "CREATE TABLE ny_bfile_table (x varchar2 (30), b bfile)";
stnt. execute (cnu);

Working with LOBs and BFILEs 7-19



Working with BFILES

In this example, the VARCHAR2 column designates a row number, and the BFI LE
column stores the locator of the BFILE data.

Populating a BFILE Column

Use the SQL | NSERT | NTO. . . VALUES statement to populate the VARCHAR2 and
BFI LE fields, then execute the statement. The BFI LE column is populated with the
locator to the BFILE data. To populate the BFI LE column, use the bf i | enane
function to specify the directory alias and the name of the BFILE file.

cmd ="1NSERT INTO ny_bfile table VALUES (' one’, bfilename(test_dir,
"filel.data))";

stnt. execute (cnu);

cmd ="INSERT INTO ny_bfile table VALUES ('two’, bfilename(test_dir,
"jdbcTest.data’ ))";

stn.execute (cnd);

In this example, the name of the directory alias ist est _di r. The locator of the
BFILEfi | el. dat a isloaded into the BFI LE column on row one, and the locator
of the BFI LEj dbcTest . dat a is loaded into the bf i | e column on row t wo.

As an alternative, you might want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and nul | as a place holder for the BFILE locator.

cnd ="INSERT INTO ny_bfile_table VALUES ("three’, null)";
stn . execut e(cnd);

Here, t hr ee is inserted into the row number column, and nul | is inserted as the
place holder. Later in your program, insert the BFILE locator into the table by using
a prepared statement.

First get a valid BFILE locator into the bf i | e object:

rs = stmt.executeQuery("SELECT b FROM my _bfile_table WHERE x=two™);

rs.next(;
oracle.sql.BFILE bfile = (OracleResultSet)rs).getBFILE(L);

Then, create your prepared statement. Note that because this example uses the
set BFI LE() method to identify the BFILE, the prepared statement must be cast to
an Or acl ePr epar edSt at enent :

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
(UPDATE my_bfile_table SET b=? WHERE x = three’);
ops.setBFILE(Y, bfile);

7-20 JDBC Developer’s Guide and Reference



Working with BFILES

ops. execute();

Now row t wo and row t hr ee contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and
manipulate the BFILE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data

Once you have the BFILE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following code continues the example from "Populating a BFILE Column" on
page 7-20, getting the locator of the BFILE from row t wo of a table into a result set.
The result set is cast to an Or acl eResul t Set so thator acl e. sql . * methods can
be used on it. Several of the methods applied to the BFILE, such as

get Di r Al'i as() and get Nane( ), do not require you to open the BFILE. Methods
that manipulate the BFILE data, such as reading, getting the length, and displaying,
do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE. For a
complete BFILE example, see "BFILEs—FileExample.java" on page 17-31.

/1 select the bfile |ocator
cnd = "SELECT * FROMny_bfile table WHERE x = "two'";
rset = stnt.executeQiery (cnd);

if (rset.next ())
BFILE bfile = ((Qacl eResul t Set)rset). get BFI LE (2);

/1 for these nethods, you do not have to open the bfile
printin("getDrAias() =" + bfile.getDrAias());
println("getName() =" + bfile. get Nane());

println("fil eExists() "+ bfile.fileExists());
println("isFileQen() "+ bfile.isFileQen());

/1 now open the bfile to get the data
bfile. openFle();

/1 get the BFILE data as a binary stream

Input Streamin = bfile.getB narySreant);
int length ;

Working with LOBs and BFILEs 7-21



Working with BFILES

/1 read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

vwhile ((length = in.read(buf)) !'=-1)

{

}

/1 append and display the bfile data in 6-byte chunks
SringBuffer sb = new SringBuffer(length);
for (int i=0; i<length; i++)
sb. append( (char)buf[i] );
Systemout. println(sh.toString());

/1 we are done working with the input stream dose it.
in.close();

/1 we are done working with the BFILE Qose it.
bfile.closeFile();

Additional BFILE Features

In addition to the features already discussed in this chapter, the
or acl e. sqgl . BFI LE class has a number of methods for further functionality,
including the following:

openFi | e() : Opens the external file for read-only access.
cl oseFi | e(): Closes the external file.

get Bi nar ySt r eant( ) : Returns the contents of the external file as a stream of
bytes.

get Byt es() : Reads from the external file, starting at a specified point, into a
supplied buffer.

get Name() : Gets the name of the external file.
get Di r Al i as() : Gets the directory alias of the external file.
I engt h() : Returns the length of the BFILE in bytes.

posi ti on() : Determines the byte position at which the given byte pattern
begins.

i sFi | eOpen() : Determines whether the BFILE is open (for read-only access).

7-22 JDBC Developer’s Guide and Reference



8

Working with Oracle Object Types

This chapter describes JDBC support for user-defined object types. It discusses
functionality of the generic, weakly typed or acl e. sgl . STRUCT class, as well as
how to map to custom Java classes that implement either the JDBC standard
SQLDat a interface or the Oracle Cust onDat uminterface. The following topics are
covered:

« Mapping Oracle Objects

« Using the Default STRUCT Class for Oracle Objects

« Creating and Using Custom Object Classes for Oracle Objects
« Using JPublisher to Create Custom Object Classes

« Describing an Object Type

Note: For general information about Oracle object features and
functionality, see the Oracle8i Application Developer’s Guide -
Object-Relational Features.

Working with Oracle Object Types 8-1



Mapping Oracle Objects

Mapping Oracle Objects

Oracle object types provide support for composite data structures in the database.
For example, you can define a type Per son that has attributes such as name (type
CHAR), phone number (type CHAR), and employee number (type NUMBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes. In
this book, Java classes that you create to map to Oracle objects will be referred to as
custom Java classes or, more specifically, custom object classes. This is as opposed to
custom references classes to map to object references, and custom collection classes to
map to Oracle collections. Custom object classes can implement either a standard
JDBC interface or an Oracle extension interface to read and write data.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: 1) creating the Java classes for the
Oracle objects, and 2) populating these classes. You have two options:

« Let JDBC materialize the object as a STRUCT. This is described in "Using the
Default STRUCT Class for Oracle Objects" on page 8-3.

or:

« Explicitly specify the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate instances of the custom object classes that you specify. This
imposes a set of constraints on the Java classes. To satisfy these constraints, you
can define your classes to implement either the JDBC standard
j ava. sqgl . SQLDat a interface or the Oracle extension
oracl e. sqgl . Cust onDat uminterface. This is described in "Creating and
Using Custom Obiject Classes for Oracle Objects" on page 8-9.

You can use the Oracle JPublisher utility to generate custom Java classes.

Note: When you use the SQLDat a interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
java. sgl . Struct objects will suffice. See "Understanding Type
Maps for SQLData Implementations" on page 8-10.

8-2 JDBC Developer’s Guide and Reference



Using the Default STRUCT Class for Oracle Objects

Using the Default STRUCT Class for Oracle Objects

If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC will materialize the object as an instance of the
oracl e. sgl . STRUCT class.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you are manipulating data. For example, your Java application
might be a tool to manipulate data within the database, as opposed to being an
end-user application. You can select data from the database into STRUCT objects
and create STRUCT objects for inserting data into the database. STRUCT objects
completely preserve data, because they maintain the data in SQL format. Using
STRUCT obijects is more efficient and more precise in these situations where the
information does not need to be in a user-friendly format.

For a complete sample application using the STRUCT class to access and manipulate
SQL object data, see "Weakly Typed Objects—PersonObiject.java" on page 17-21.

STRUCT Class Functionality

This section discusses standard versus Oracle-specific features of the
oracl e. sql . STRUCT class, introduces STRUCT descriptors, and lists methods of
the STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods

If your code must comply with standard JDBC 2.0, then use aj ava. sql . St ruct
instance (or acl e. j dbc2. St ruct under JDK 1.1.x), and use the following
standard methods:

« getAttributes(nmap): Retrieves the values of the attributes, using entries in
the specified type map to determine the Java classes to use in materializing any
attribute that is a structured object type. The Java types for other attribute
values would be the same as for a get Obj ect () call on data of the underlying
SQL type (the default JDBC types).

« getAttributes():Thisis the same as the preceding get At t ri but es( map)
method, except it uses the default type map for the connection.

« get SQLTypeName() : Returns alava St ri ng that represents the fully qualified
name (schena. sql _t ype nane) of the Oracle object type that this St r uct
represents (such as SCOTT. EMPLOYEE).

Working with Oracle Object Types 8-3



Using the Default STRUCT Class for Oracle Objects

Oracle oracle.sql.STRUCT Class Methods

If you want to take advantage of the extended functionality offered by
Oracle-defined methods, then use an or acl e. sql . STRUCT instance.

The or acl e. sgl . STRUCT class implements the j ava. sql . St ruct interface
(oracl e.jdbc2. Struct interface under JDK 1.1.x) and provides extended
functionality beyond the JDBC 2.0 standard.

The STRUCT class includes the following methods in addition to standard St r uct
functionality:

« getOracl eAttributes(): Retrieves the values of the values array as
oracl e. sqgl . * objects.

« getDescriptor():Returnsthe Struct Descri pt or object for the SQL type
that corresponds to this STRUCT object.

« get Connecti on():Returns the current connection.

« toJdbc(): Consults the default type map of the connection, to determine what
class to map to, and then usest oCl ass() .

« toJdbc(map) : Consults the specified type map to determine what class to map
to, and then uses t oCl ass() .

STRUCT Descriptors

Creating and using a STRUCT object requires the existence of a descriptor—an
instance of the or acl e. sql . Struct Descri pt or class—to exist for the SQL type
(such as EMPLOYEE) that will correspond to the STRUCT object. You need only one
Struct Descri pt or object for any number of STRUCT objects that correspond to
the same SQL type.

STRUCT descriptors are further discussed in "Creating STRUCT Objects and
Descriptors" on page 8-5.

8-4 JDBC Developer’s Guide and Reference



Using the Default STRUCT Class for Oracle Objects

Creating STRUCT Objects and Descriptors

This section describes how to create STRUCT objects and descriptors and lists useful
methods of the St ruct Descri pt or class.

Steps in Creating StructDescriptor and STRUCT Objects

This section describes how to construct an or acl e. sql . STRUCT object for a given
Oracle object type. To create a STRUCT object, you must:

1. Createa Struct Descri pt or object (if one does not already exist) for the
given Oracle object type.

2. Usethe Struct Descri pt or to construct the STRUCT object.

A StructDescri ptor isan instance of the or acl e. sql . St ruct Descri pt or
class and describes a type of SQL structured object (Oracle object). Only one
Struct Descri pt or is necessary for each Oracle object type. The driver caches
Struct Descri pt or objects to avoid recreating them if the type has already been
encountered.

Before you can construct a STRUCT object, a St r uct Descr i pt or must first exist
for the given Oracle object type. If a St ruct Descri pt or object does not exist, you
can create one by calling the static St r uct Descri pt or. creat eDescri ptor ()
method. This method requires you to pass in the SQL type name of the Oracle object
type and a connection object:

SructDescriptor structdesc = StructDescriptor. createDescri ptor
(sql _type nane, connection);

Where sql _t ype_nane is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connect i on is your connection object.

Once you have your St r uct Descr i pt or object for the Oracle object type, you can
construct the STRUCT object. To do this, pass in the St ruct Descri pt or, your
connection object, and an array of Java objects containing the attributes you want
the STRUCT to contain.

STRUCT struct = new STRUCT(structdesc, connection, attributes);

Where st ruct desc isthe St ruct Descri pt or created previously, connecti on
is your connection object, and at t ri but es is an array of type
java.l ang. Object[].

Working with Oracle Object Types 8-5



Using the Default STRUCT Class for Oracle Objects

Using StructDescriptor Methods

A Struct Descri pt or can be thought of as a "type object". This means that it
contains information about the object type, including the typecode, the type name,
and how to convert to and from the given type. Remember, there should be only
one St ruct Descri pt or object for any one Oracle object type. You can then use
that descriptor to create as many STRUCT objects as you need for that type.

The St ruct Descri pt or class includes the following methods:

« get Name() : Returns the fully qualified SQL type name of the Oracle object
(thatis, in schena. sql _t ype_nane format, such as CORPORATE. EMPLOYEE).

« getLength():Returns the number of fields in the object type.

« get Met aDat a() : Returns the meta data regarding this type (like the
get Met aDat a() method of a result set object). The returned
Resul t Set Met aDat a object contains the attribute name, attribute typecode,
and attribute type precision information. The "column” index in the
Resul t Set Met aDat a object maps to the position of the attribute in the
STRUCT, with the first attribute being at index 1.

The get Met aDat a() method is further discussed in "Functionality for Getting
Object Meta Data" on page 8-32.

Retrieving STRUCT Objects and Attributes

This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Note: The JDBC driver seamlessly handles embedded objects
(STRUCT obijects that are attributes of STRUCT objects) in the same
way that it normally handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion, using the type map if it is available, or else using
default mapping.

Retrieving an Oracle Object as an oracle.sql.STRUCT Object

You can retrieve an Oracle object directly into an or acl e. sql . STRUCT instance. In
the following example, get Cbj ect () is used to get a NUMBER object from

column 1 (col 1) of the table st r uct _t abl e. Because get Obj ect () returns an
hj ect type, the return is cast to an or acl e. sql . STRUCT. This example assumes
that the St at ement object st nt has already been created.

8-6 JDBC Developer’s Guide and Reference



Using the Default STRUCT Class for Oracle Objects

Sring cnd;
cnd = "CREATE TYPE type Struct AS object (fieldl NUMBER fiel d2 DATE)";
st . execut e(cnd);

cnd = "CREATE TABLE struct _tabl e (col 1 type struct)";
st . execut e(cnd);

cnd = "INSERT INTO st ruct _t abl e VALUES (type_struct(10,01-apr-01))";
stmtexecute(cmd);

omd="INSERTINTO st ruct _t abl e VALUES (type_struct(20,02-may-02))";
stmtexecute(cmd);

ResultSet rs= simt.executeQuery('SELECT * FROM struct_table");
oracle.sql.STRUCT oracleSTRUCT=(oracle.sq. STRUCT)rs.getObject(1);

Another way to return the object as a STRUCT object is to cast the result set to an
O acl eResul t Set object and use the Oracle extension get STRUCT() method:

oracle.sql.STRUCT oracleSTRUCT=((OracleResultSet)rs).getSTRUCT (L);

Retrieving an Oracle Object as a java.sql.Struct Object

Alternatively, referring back to the previous example, you can use standard JDBC
functionality such as get Obj ect () to retrieve an Oracle object from the database
as an instance of j ava. sql . Struct (oracl e. jdbc2. Struct under JDK 1.1.x).
Because get Obj ect () returnsaj ava. | ang. Obj ect , you must cast the output of
the method to a St r uct . For example:

ResultSet rs= stmt.executeQuery('SELECT * FROM struct_table");
java.sgl.Struct jdbeStruct = (java.sql.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types

If you want to retrieve Oracle object attributes from a STRUCT or St r uct instance
asoracl e. sql types, use the get Oracl eAttri but es() method of the

oracl e. sql . STRUCT class (fora St r uct instance, you will have to castto a
STRUCT instance).

Working with Oracle Object Types 8-7



Using the Default STRUCT Class for Oracle Objects

Referring back to the previous examples:
oracle.sqgl.Datunj] attrs = oracl eSTRUCT. get O acl eAttributes();

or:

oracle.sql.Datunj] attrs =
((oracl e.sqgl . STRICT)jdbcStruct). get Oacl eAttributes();

Retrieving Attributes as Standard Java Types
If you want to retrieve Oracle object attributes from a STRUCT or St r uct instance
as standard Java types, use the standard get At t ri but es() method:

(oject[] attrs = jdbcStruct.get Atributes();

Binding STRUCT Objects into Statements

To bind an or acl e. sql . STRUCT object to a prepared statement or callable
statement, you can either use the standard set Obj ect () method (specifying the
typecode) or cast the statement object to an Oracle statement object and use the
Oracle extension set Or acl eCObj ect () method. For example:

Prepar edSt at enent ps= conn. prepareSt at enent ("t ext_of _prepared _statenent");
STRUCT nySTRUCT = new STRUCT (...);
ps. set oj ect (1, nySTRUCT, Types. STRUCT); // QO acl eTypes. STRUCT under JOK 1.1.X

or:

Prepar edSt at enent ps= conn. prepareSt at enent ("t ext_of _prepared_statenent");
STRUCT nySTRUCT = new STRUCT (...);
((Cracl ePrepar edS at enent ) ps) . set O acl eChj ect (1, nySTRCT);

8-8 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

Creating and Using Custom Object Classes for Oracle Objects

If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide get and set methods corresponding to the Oracle object’s attributes,
although this is not necessary. To create and populate the custom classes and
provide these read/write capabilities, you can choose between these two interfaces:

« the JDBC standard SQLDat a interface
« the Cust onDat umand Cust onDat unfact or y interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
Cust onDat uminterface can also be used to implement the custom reference class
corresponding to the custom object class. If you are using the SQLDat a interface,
however, you can only use weak reference types in Java (j ava. sqgl . Ref or
oracl e. sql . REF). The SQLDat a interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Nane (which is type CHAR) and EnpNum(employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom object class that you call JEnpl oyee.
You can implement either the SQLDat a or Cust onDat uminterface in the

JEnpl oyee class.

You can create custom object classes yourself, but the most convenient way to create
them is to employ the Oracle JPublisher utility to create them for you. As of release
8.1.6, JPublisher supports the standard SQLDat a interface as well as the
Oracle-specific Cust onDat uminterface, and is able to generate classes that
implement either one. See "Using JPublisher to Create Custom Object Classes" on
page 8-28 for more information.

The following section compares Cust onDat umand SQLDat a functionality.

Working with Oracle Object Types 8-9



Creating and Using Custom Object Classes for Oracle Objects

Relative Advantages of CustomDatum versus SQLData

In deciding which of these two interface implementations to use, consider the
following:

Advantages of Cust onDat um
« It does not require an entry in the type map for the Oracle object.
« It has awareness of Oracle extensions.

= You can construct a Cust onDat umfrom an or acl e. sql . STRUCT. This is
more efficient because it avoids unnecessary conversions to native Java types.

= You can obtain the corresponding Dat umobject (which is in or acl e. sql
format) from the Cust onDat umobject, using the t oDat un() method.

« It provides better performance: Cust onDat umworks directly with Dat um
types, which is the internal format used by the driver to hold Oracle objects.

Advantages of SQLDat a:
« ItisaJDBC standard, making your code more portable.

The SQLDat a interface is for mapping SQL objects only. The Cust onDat um
interface is more flexible, enabling you to map SQL objects as well as any other SQL
type for which you want to customize processing. You can create a Cust onDat um
object from any datatype found in an Oracle database. This could be useful, for
example, for serializing RAWdata in Java.

Understanding Type Maps for SQLData Implementations

If you use the SQLDat a interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the SQL object
type to Java. You can either use the default type map of the connection object, or a
type map that you specify when you retrieve the data from the result set. The

Resul t Set interface get Obj ect () method has a signature that lets you specify a

type map:

rs. get yj ect (i nt col uml ndex) ;

or:

rs. get j ect (i nt col urml ndex, Map nap);

For a description of how to create these custom object classes with SQLDat a, see
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.

8-10 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

When using a SQLData implementation, if you do not include a type map entry;,
then the object will map to the or acl e. sql . STRUCT class by default.

(Cust onDat umimplementations, by contrast, have their own mapping
functionality so that a type map entry is not required. When using a Cust onDat um
implementation, use the Oracle get Cust onDat un{) method instead of the
standard get Obj ect () method.)

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you
read data from an Oracle object, the JDBC driver considers the type map to
determine which Java class to use to materialize the data from the SQL object type.
When you write data to an Oracle object, the JDBC driver gets the SQL type name
from the Java class by calling the get SQLTypeNane() method of the SQLDat a
interface. The actual conversion between SQL and Java is performed by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the or acl e. sql . * classes) to
store attributes.

Creating a Type Map Object and Defining Mappings for a SQLData Implementation

When using a SQLDat a implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class as
follows:

« under JDK 1.2.%, an instance of a class that implements the standard
java.util . Map interface

or:

« under JDK 1.1.%, an instance of a class that extends the standard
java.util.Dictionary class (or an instance of the Di cti onary class itself)

You have the option of creating your own class to accomplish this, but under either
JDK 1.2.x or JDK 1.1.x, the standard class j ava. uti | . Hasht abl e meets the
requirement.

Note: If you are migrating from JDK 1.1.x to JDK 1.2.x, you must
ensure that your code uses a class that implements the Map
interface. If you were using the j ava. uti | . Hasht abl e class
under 1.1.x, then no change is necessary.

Working with Oracle Object Types 8-11



Creating and Using Custom Object Classes for Oracle Objects

Hasht abl e and other classes used for type maps implement a put () method that
takes keyword-value pairs as input, where each key is a fully qualified SQL type
name and the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard

j ava. sgl . Connect i on interface and the Oracle-specific

oracl e.jdbc. driver. O acl eConnecti on class include a get TypeMap()
method. Under JDK 1.2.x, both return a Map object; under JDK 1.1.x, both return a
Di cti onary object.

The remainder of this section covers the following topics:
« Adding Entries to an Existing Type Map
« Creating a New Type Map

Adding Entries to an Existing Type Map

When a connection instance is first established, the default type map is empty. You
must populate it to use any SQL-Java mapping functionality.

Follow these general steps to add entries to an existing type map.

1. Usethe get TypeMap() method of your Or acl eConnect i on object to return
the connection’s type map object. The get TypeMap() method returns a
java. util.Mp object (orjava. util.Dictionary underJDK 1.1.x). For
example, presuming an Or acl eConnect i on instance or aconn:

java.util.NMap nyMap = oraconn. get TypeMap();

Note: If the type map in the Or acl eConnect i on instance has
not been initialized, then the first call to get TypeMap() returns an

empty map.

2. Use the type map’s put () method to add map entries. The put () method
takes two arguments: a SQL type name string and an instance of a specified
Java class that you want to map to.

nyMap. put ( sql/ TypeNarre, cl assQj ect) ;

8-12 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

The sql TypeNane is a string that represents the fully qualified name of the
SQL type in the database. The ¢/ ass@bj ect is the Java class object to which
you want to map the SQL type. Get the class object with the

Cl ass. f or Nanme() method, as follows:

nyMap. put (sql TypeNane, A ass. f or Nane( ¢/ assNane) ) ;
For example, if you have a PERSON SQL datatype defined in the CORPORATE

database schema, then map it to a Per son Java class defined as Per son with
this statement:

nyMap. put (" CCRPCRATE PERSON', d ass. f or Narme(" Person") ) ;

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Per son Java class.

Note: SQL type names in the type map must be all uppercase,
because that is how the Oracle database stores SQL names.

Creating a New Type Map

Follow these general steps to create a new type map. This example uses an instance
ofj ava. uti | . Hasht abl e, which extends j ava. uti | . Di cti onary and, under
JDK 1.2.x, also implements j ava. util . Map.

1.

Create a new type map object.
Hasht abl e newhap = new Hasht abl e() ;

Use the put () method of the type map object to add entries to the map. For
more information on the put () method, see Step 2 under "Adding Entries to an
Existing Type Map" on page 8-12. For example, if you have an EMPLOYEE SQL
type defined in the CORPORATE database, then you can map it to an Enpl oyee
class object defined by Enpl oyee. j ava, with this statement:

newhap. put (" CORPCRATE EMPLOYEE', cl ass. f or Nare( " Enpl oyee")) ;
When you finish adding entries to the map, use the Or acl eConnecti on

object’s set TypeMap() method to overwrite the connection’s existing type
map. For example:

or aconn. set TypeMap( newMap) ;

Working with Oracle Object Types 8-13



Creating and Using Custom Object Classes for Oracle Objects

In this example, set TypeMap() overwrites the or aconn connection’s original
map with newivap.

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set get Cbj ect () call that does not specify the map as input.

Materializing Object Types not Specified in the Type File

If you do not provide a type map with an appropriate entry when using a

get Obj ect () call, then the JDBC driver will materialize an Oracle object as an
instance of the or acl e. sql . STRUCT class. If the Oracle object type contains
embedded objects, and they are not present in the type map, the driver will
materialize the embedded objects as instances of or acl e. sql . STRUCT as well. If
the embedded objects are present in the type map, a call to the get Att ri but es()
method will return embedded objects as instances of the specified Java classes from
the type map.

Understanding the SQLData Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the SQLDat a
interface. Note that if you use this interface, you must supply a type map that
specifies the Oracle object types in the database and the names of the corresponding
custom object classes that you will create for them.

The SQLDat a interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLDat a interface and
companion SQLI nput and SQLCut put interfaces in thej ava. sql package
(oracl e. j dbc2 package under JDK 1.1.x).

If you create a custom object class that implements SQLDat a, then you must
provide ar eadSQL() method and awr it eSQL() method, as specified by the
SQLDat a interface.

The JDBC driver calls your r eadSQL() method to read a stream of data values
from the database and populate an instance of your custom object class. Typically,
the driver would use this method as part of an Or acl eResul t Set object

get bj ect () call.

Similarly, the JDBC driver calls your wri t eSQL() method to write a sequence of
data values from an instance of your custom object class to a stream that can be

8-14 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

written to the database. Typically, the driver would use this method as part of an
O acl ePrepar edSt at enent object set Obj ect () call.

Understanding the SQLInput and SQLOutput Interfaces

The JDBC driver includes classes that implement the SQLI nput and SQLCut put
interfaces. It is not necessary to implement the SQLCQut put or SQLI nput
objects—the JDBC drivers will do this for you.

The SQLI nput implementation is an input stream class, an instance of which must
be passed in to the r eadSQL() method. SQLI nput includes ar eadXXX() method
for every possible Java type that attributes of an Oracle object might be converted
to, such asreadObj ect (), readl nt (), readLong(),readFl oat (),

readBl ob(),and so on. Each r eadXXX() method converts SQL data to Java data
and returns it into an output parameter of the corresponding Java type. For
example, r eadl nt () returns an integer.

The SQLOut put implementation is an output stream class, an instance of which
must be passed in to the wri t eSQL() method. SQLCQut put includes a

wr i t eXXX() method for each of these Java types. Each wr i t e XXX() method
converts Java data to SQL data, taking as input a parameter of the relevant Java
type. For example, wri t eSt ri ng() would take as input a string attribute from
your Java class.

Implementing readSQL() and writeSQL() Methods

When you create a custom object class that implements SQLDat a, you must
implement ther eadSQL() and wri t eSQL() methods, as described here.

You must implement r eadSQL() as follows:

public void readSQ(SQI nput stream Sring sql_type nane) throws SQException

« ThereadSQL() method takes as input a SQLI nput stream and a string that
indicates the SQL type name of the data (in other words, the name of the Oracle
object type, such as EMPLOYEE).

When your Java application calls get Obj ect (), the JIDBC driver creates a
SQLI nput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver calls r eadSQL() , it passes in these parameters.

« For each Java datatype that maps to an attribute of the Oracle object,
readSQL() must call the appropriate r eadXXX() method of the SQLI nput
stream that is passed in.

Working with Oracle Object Types 8-15



Creating and Using Custom Object Classes for Oracle Objects

For example, if you are reading EMPLOYEE objects that have an employee hame
as a CHAR variable and an employee number as a NUMBER variable, you must
haveareadString() callandareadl nt () call inyourreadSQ.() method.
JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

« ThereadSQ.() method takes the data that the r eadXXX() methods read and
convert, and assigns them to the appropriate fields or elements of a custom
object class instance.

You must implement wri t eSQL() as follows:
public void witeSQ(SQQutput strean) throws SQException

« ThewriteSQ() method takes as input a SQLCQut put stream.

When your Java application calls set Obj ect (), the JDBC driver creates a
SQLQut put stream object and populates it with data from a custom object class
instance. When the driver callsw i t eSQL( ), it passes in this stream parameter.

« For each Java datatype that maps to an attribute of the Oracle object,
wri t eSQL() must call the appropriate wri t eXXX() method of the
SQLQut put stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
youmusthaveawriteString() callandawitelnt() callinyour

wr it eSQ.() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

« ThewiteSQL() method then writes the data converted by the wri t eXXX()
methods to the SQLCut put stream so that it can be written to the database once
you execute the prepared statement.

"SQLData Implementation—SQLDataExample.java" on page 17-35 contains a
sample implementation of the SQLDat a interface for a given SQL object definition.

8-16 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

Reading and Writing Data with a SQLData Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLDat a.

Reading SQLData Objects from a Result Set

This section summarizes the steps to read data from an Oracle object into your Java
application when you choose the SQLDat a implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object st nt .

1. Query the database to read the Oracle object into a JDBC result set.
Result Set rs = stmt. execut eQuer y(" SELECT enp_col FROM personnel ") ;

The PERSONNEL table contains one column, EMP_COL, of SQL type
EMP_OBJECT. This SQL type is defined in the type map to map to the Java class
Enpl oyee.

2. Use the get Obj ect () method of your result set to populate an instance of
your custom object class with data from one row of the result set. The
get Obj ect () method returns the user-defined SQLDat a object because the
type map contains an entry for Enpl oyee.

if (rs.next())
Enpl oyee enp = (Epl oyee)rs. get (pj ect (1);

Note that if the type map did not have an entry for the object, then

get Obj ect () would return an or acl e. sql . STRUCT object. Cast the output
to type STRUCT, because the get Obj ect () method signature returns the
genericj ava. | ang. Obj ect type.

if (rs.next())
STRUCT enpstruct = (STRICT)rs. get (hject(1);

The get Obj ect () call triggersr eadSQL() and r eadXXX() calls from the
SQLDat a interface, as described above.

Working with Oracle Object Types 8-17



Creating and Using Custom Object Classes for Oracle Objects

Note: If you want to avoid using a type map, then use the
get STRUCT() method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

3. Ifyou have get methods in your custom object class, then use them to read
data from your object attributes. For example, if EMPLOYEE has an EnpNane
(employee name) of type CHAR, and an EnpNum(employee number) of type
NUMBER, then provide a get EnpName() method that returnsalJava St ri ng
and a get EnpNum() method that returns an integer (i nt ). Then invoke them
in your Java application, as follows:

Sring enpnane = enp. get EnpNare() ;
int enpnunber = enp. get EnpNunt) ;

Note: Alternatively, fetch data by using a callable statement
object, which also has a get Obj ect () method.

Retrieving SQLData Objects from a Callable Statement OUT Parameter

Suppose you have an Or acl eCal | abl eSt at enent ocs that calls a PL/SQL
function GETEMPLOYEE( ) . The program passes an employee number (enpnunber)
to the function; the function returns the corresponding Enpl oyee object.

1. Preparean Oracl eCal | abl eSt at ement to call the GETEMPLOYEE( )
function.

G acl eCal | abl eStat enent ocs =
(O acl eCal | abl eSt at enent ) conn. prepareCal | ("{ ? = call CGETEMPLOYEH?) }");

2. Declare the empnumnber as the input parameter to GETEMPLOYEE( ) . Register
the SQLDat a object as the OUT parameter, with typecode
Or acl eTypes. STRUCT. Then, execute the statement.

ocs. setlnt(2, enpnunber);
ocs. regi ster Qut Paranet er (1, O acl eTypes. STRICT, "EMP_BIECT");
ocs. execute();

3. Usethe get Obj ect () method to retrieve the employee object. The following
code assumes that there is a type map entry to map the Oracle object to Java

type Enpl oyee:
Enpl oyee enp = (Empl oyee) ocs. get (j ect (1);

8-18 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

If there is no type map entry, then get Obj ect () would return an

oracl e. sgl . STRUCT object. Cast the output to type STRUCT, because the
get Obj ect () method signature returns the generic j ava. | ang. Obj ect
type:

STRUCT enp = (STRUCT) ocs. get (hj ect (1) ;

Passing SQLData Objects to a Callable Statement as an IN Parameter

Suppose you have a PL/SQL function addEnpl oyee( ?) that takes an Enpl oyee
object as an | N parameter and adds it to the PERSONNEL table. In this example, enp
is a valid Enpl oyee object.

1. Preparean Oracl eCal | abl eSt at erent to call the addEnpl oyee( ?)
function.

G acl eCal | abl eStat enent ocs =
(O acl eCal | abl eStatenent) conn. prepareCal | ("{ cal |l addEnpl oyee(?) }");

2. Useset Obj ect () to pass the enp object as an | N parameter to the callable
statement. Then, execute the statement.

ocs. set(oj ect (1, enp);
ocs. execute();

Writing Data to an Oracle Object Using a SQLData Implementation

This section describes the steps in writing data to an Oracle object from your Java
application when you choose the SQLDat a implementation for your custom object
class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

enp. set EnpNane( enpnane) ;
enp. set EnpNun{ enpnunber ) ;

This statement uses the enp object and the enpnarne and enpnunber variables
assigned in "Reading SQLData Objects from a Result Set" on page 8-17.

Working with Oracle Object Types 8-19



Creating and Using Custom Object Classes for Oracle Objects

2. Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

Prepar edStat enent pstnt = conn. prepar eSt at enent
("1 NSERT | NTO PERSONNEL. VALUES (?)");
This assumes conn is your connection object.

3. Usethe set Obj ect () method of the prepared statement to bind your Java
datatype object to the prepared statement.

pst n . set j ect (1, enp);

4. Execute the statement, which updates the database.

pst n . execut elpdat e() ;

Understanding the CustomDatum Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the

oracl e. sqgl . Cust onDat umand or acl e. sql . Cust onDat unfact ory
interfaces (or you can implement Cust onDat unfact ory in a separate class). The
Cust onDat umand Cust onDat unfact or y interfaces are supplied by Oracle and
are not a part of the JDBC standard.

Note: The JPublisher utility supports the generation of classes that
implement the Cust onDat umand Cust onDat unfact ory
interfaces. See "Using JPublisher to Create Custom Object Classes"
on page 8-28.

Understanding CustomDatum Features
The Cust onDat uminterface has these advantages:

« It recognizes Oracle extensions to the JDBC; Cust onDat umuses
oracl e. sqgl . Dat umtypes directly.

« It does not require a type map to specify the names of the Java custom classes
you want to create.

« It provides better performance: Cust onDat umworks directly with Dat um
types, the internal format the driver uses to hold Oracle objects.

8-20 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

The Cust onmDat umand Cust onDat unfact or y interfaces do the following:

« ThetoDat um() method of the Cust onDat umclass transforms the data into an
oracl e. sqgl . * representation.

« CustonDat unfact ory specifiesa cr eat e() method equivalent to a
constructor for your custom object class. It creates and returns a Cust onDat um
instance. The JDBC driver uses the cr eat e() method to return an instance of
the custom object class to your Java application or applet. It takes as input an
or acl e. sqgl . Dat umobject and an integer indicating the corresponding SQL
typecode as specified in the Or acl eTypes class.

Cust onDat umand Cust onDat unfact or y have the following definitions:

public interface Qustonbatum

{
Dat um t oDat um (G acl eGonnecti on conn) throws SQExcepti on;
}
public interface Qustonbatunfactory
{
QustonbDatumcreate (Datumd, int sql_Type Code) throws SQException;
}

Where conn represents the Connection object, d represents an object of type
oracl e. sql . Datumand sql/ _Type_Code represents the SQL typecode (from the
standard Types or Or acl eTypes class) of the Dat umobject.

Retrieving and Inserting Object Data

The JDBC drivers provide the following methods to retrieve and insert object data
as instances of Cust onDat um

To retrieve object data:

« Use the Oracle-specific Or acl eResul t Set class get Cust onDat um() method
(assume an Or acl eResul t Set object or s):

ors. get Qust onbat um (i nt col _i ndex, QustonbDatuniactory factory);

This method takes as input the column index of the data in your result set, and
a Cust onDat unfact or y instance. For example, you can implement a

get Fact ory() method in your custom object class to produce the

Cust onDat unfact or y instance to input to get Cust onDat un( ) . The type
map is not required when using Java classes that implement Cust onDat um

Working with Oracle Object Types 8-21



Creating and Using Custom Object Classes for Oracle Objects

or:

« Use the standard get Obj ect (/ ndex, nmap) method specified by the
Resul t Set interface to retrieve data as instances of Cust onDat um In this
case, you must have an entry in the type map that identifies the factory class to
be used for the given object type, and its corresponding SQL type name.

To insert object data:

« Use the Oracle-specific Or acl ePr epar edSt at enent class
set Cust orDat um() method (assume an Or acl ePr epar edSt at errent object
ops):
ops. set Qust onbat um (i nt  bi nd_i ndex, Qust onDat um cust omobj);

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

or:

» Use the standard set Obj ect () method specified by the
Pr epar edSt at enent interface. You can also use this method, in its different
forms, to insert Cust onDat uminstances without requiring a type map.

The following sections describe the get Cust onDat un() and set Cust onDat un()
methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

Qust onDat um dat um = or s. get Qust onbDat un{1, Enpl oyee. get Factory());

In this example, or s is an Oracle result set, get Cust onDat um() is a method in the
Or acl eResul t Set class used to retrieve a Cust onDat umobject, and the
EMPLOYEE is in column 1 of the result set. The static Enpl oyee. get Fact ory()
method will return a Cust onDat unfact or y to the JDBC driver. The JDBC driver
will call cr eat e( ) from this object, returning to your Java application an instance
of the Enpl oyee class populated with data from the result set.

8-22 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

Notes:

« Cust onmDat umand Cust onDat unfact or y are defined as
separate interfaces so that different Java classes can implement
them if you wish (such as an Enpl oyee class and an
Enpl oyeeFact ory class).

« To use the Cust onmDat uminterface, your custom object classes
must import or acl e. sqgl . * (or at least Cust onDat um
Cust onDat unfact or y, and Dat un).

"CustomDatum Implementation—CustomDatumExample.java" on page 17-38
contains an example implementation of the Cust onDat uminterface for a given SQL
object definition.

Reading and Writing Data with a CustomDatum Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements Cust onDat um

Reading Data from an Oracle Object Using a CustomDatum Implementation

This section summarizes the steps in reading data from an Oracle object into your
Java application. These steps apply whether you implement Cust onDat um
manually or use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object st nt .

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

QacleResul t Set ors = (O acl eResul t Set) st nt . execut eQuery
("SELECT Enp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Enp_col of
type Enpl oyee_obj ect.

2. Usethe get Cust orDat un() method of your Oracle result set to populate an
instance of your custom object class with data from one row of the result set.
The get Cust onDat un{) method returns an or acl e. sql . Cust onDat um
object, which you can cast to your specific custom object class.

Working with Oracle Object Types 8-23



Creating and Using Custom Object Classes for Oracle Objects

if (ors.next())
Enpl oyee enp = (Enpl oyee) ors. get Qust onat un{1, Enpl oyee. get Factory());

or:

if (ors.next())
Qust onDat um dat um = or s. get Qust onbat un{1, Enpl oyee. get Factory());

This example assumes that Enpl oyee is the name of your custom object class
and or s is the name of your O acl eResul t Set object.

In case you do not want to use get Cust onDat un{ ) , the JDBC drivers let you
use the get Obj ect () method of a standard JDBC Resul t Set to retrieve
Cust onDat umdata. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Enpl oyee, which will implement Cust onDat um
The corresponding Factory class is Enpl oyeeFact or y, which will implement
Cust onDat unfact ory.

Use this statement to declare the Enpl oyeeFact ory entry for your type map:
nmap. put ("BWPLOYEE', dass.forNane (" Enpl oyeeFactory"));

Then use the form of get Obj ect () where you specify the map object:
Enpl oyee enp = (Enpl oyee) rs.getject (1, nap);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of get Cbj ect ():

Enpl oyee enp = (Empl oyee) rs.getject (1);

3. Ifyou have get methods in your custom object class, use them to read data
from your object attributes into Java variables in your application. For example,
if EMPLOYEE has EnpNane of type CHAR and EnpNum(employee number) of
type NUMBER, provide a get EnpNane() method that returns a Java string and
aget EnpNum() method that returns an integer. Then invoke them in your Java
application as follows:

Sring enpnane = enp. get EnpNare() ;
int enpnunber = enp. get EnpNung) ;

8-24 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

Note: Alternatively, you can fetch data into a callable statement
object. The Or acl eCal | abl eSt at enent class also has a
get Cust onDat unm() method.

Writing Data to an Oracle Object Using a CustomDatum Implementation

This section summarizes the steps in writing data to an Oracle object from your Java
application. These steps apply whether you implement Cust onDat ummanually or
use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class (or had JPublisher create it for you).

Note: The type map is not used when you are performing
database | NSERT and UPDATE operations.

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

enp. set EnpNane( enpnane) ;
enp. set EnpNun{ enpnunber ) ;

This statement uses the enp object and the enpnane and enpnunber variables
defined in "Reading Data from an Oracle Object Using a CustomDatum
Implementation” on page 8-23.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

Q acl ePrepar edSt at enent opst i = conn. pr epar eSt at enent
(" UPDATE PERSONNEL SET Enpl oyee = ? WHERE Enpl oyee. EnpNum = 28959) ;
This assumes conn is your Connect i on object.

3. Usethe set Cust onDat un{) method of the Oracle prepared statement to bind
your Java datatype object to the prepared statement.

opstnt . set Qust onbat un{1, enp);

Working with Oracle Object Types 8-25



Creating and Using Custom Object Classes for Oracle Objects

The set Cust onDat um() method calls thet oDat unm() method of the custom
object class instance to retrieve an or acl e. sql . STRUCT object that can be
written to the database.

In this step you could also use the set Obj ect () method to bind the Java
datatype. For example:

opstnt. set (j ect (1, enp) ;

Note: You can use your Java datatype objects as either | Nor OUT
bind variables.

Additional Uses for CustomDatum

The Cust onDat uminterface offers far more flexibility than the SQLDat a interface.
The SQLDat a interface is designed to let you customize the mapping of only SQL
object types (that is, Oracle8 object types) to Java types of your choice.
Implementing the SQLDat a interface lets the JDBC driver populate fields of a
custom Java class instance from the original SQL object data, and the reverse, after
performing the appropriate conversions between Java and SQL types.

The Cust omDat uminterface goes beyond supporting the customization of SQL
object types to Java types. It lets you provide a mapping between Java object types
and any SQL type supported by the or acl e. sql package.

It might be useful to provide custom Java classes to wrap or acl e. sql . * types
and perhaps implement customized conversions or functionality as well. The
following are some possible scenarios:

« to perform encryption and decryption or validation of data
« to perform logging of values that have been read or are being written

« to parse character columns (such as character fields containing URL
information) into smaller components

« to map character strings into numeric constants

« to map data into more desirable Java formats (such as mapping a DATE field to
java. util . Dat e format)

« to customize data representation (for example, data in a table column is in feet
but you want it represented in meters after it is selected)

« toserialize and deserialize Java objects—into or out of RAWfields, for example

8-26 JDBC Developer’s Guide and Reference



Creating and Using Custom Object Classes for Oracle Objects

For example, use Cust onDat umto store instances of Java objects that do not
correspond to a particular SQL Oracle8 object type in the database in columns of
SQL type RAWThe cr eat e() method in Cust onDat unfact or y would have to
implement a conversion from an object of type or acl e. sql . RAWto the desired
Java object. The t oDat um() method in Cust onDat umwould have to implement a
conversion from the Java object to an or acl e. sql . RAWobject. This can be done,
for example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an or acl e. sql . RAWand calls the Cust onDat unfact ory’scr eat e()
method to convert the or acl e. sql . RAWobject to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAWto store it. The driver transparently calls the

Cust onDat umt oDat un() method to convert the Java object to an

oracl e. sgl . RAWobject. This object is then stored in a column of type RAWiIn the
database.

Support for the Cust onDat uminterfaces is also highly efficient because the
conversions are designed to work using or acl e. sql . * formats, which happen to
be the internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLDat a interface, is not required when using Java classes that
implement Cust onDat um For more information on why classes that implement
Cust onDat umdo not need a type map, see "Understanding the CustomDatum
Interface" on page 8-20.

Working with Oracle Object Types 8-27



Using JPublisher to Create Custom Object Classes

Using JPublisher to Create Custom Object Classes

A convenient way to create custom object classes, as well as other kinds of custom
Java classes, is to use the Oracle JPublisher utility. It generates a full definition for a
custom Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section offers a brief overview. For more information, see the Oracle8i JPublisher
User’s Guide.

JPublisher Functionality

You can direct JPublisher to create custom object classes that implement either the
SQLDat a interface or the Cust onDat uminterface, according to how you set the
JPublisher type mappings.

If you use the Cust onDat uminterface, JPublisher will also create a custom
reference class to map to object references for the Oracle object type. If you use the
SQLDat a interface, JPublisher will not produce a custom reference class; you would
use standard j ava. sql . Ref instances instead.

If you want additional functionality, you can subclass the custom object class and
add features as desired. When you run JPublisher, there is a command-line option
for specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.

JPublisher Type Mappings

JPublisher offers various choices for how to map user-defined types and their
attribute types between SQL and Java. The rest of this section lists categories of SQL
types and the mapping options available for each category.

For general information about SQL-Java type mappings, see "Datatype Mappings"
on page 3-16.

8-28 JDBC Developer’s Guide and Reference



Using JPublisher to Create Custom Object Classes

For more information about JPublisher features or options, see the Oracle8i
JPublisher User’s Guide.

Categories of SQL Types

JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as noted:

user-defined types (UDT)—Oracle objects, references, and collections

Use the JPublisher - usert ypes option to specify the type-mapping
implementation for UDTs—either a standard SQLDat a implementation or an
Oracle-specific Cust onDat umimplementation.

numeric types—anything stored in the database as SQL type NUVBER

Use the JPublisher - nunber t ypes option to specify type-mapping for numeric
types.

LOB types—SQL types BLOB and CLOB
Use the JPublisher - | obt ypes option to specify type-mapping for LOB types.

built-in types—anything stored in the database as a SQL type not covered by
the preceding categories; for example: CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher - bui | ti nt ypes option to specify type-mapping for built-in
types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to
numeric types only:

JDBC mapping (setting j dbc)—Uses standard default mappings between SQL
types and Java native types. For a custom object class, uses a SQLDat a
implementation.

Oracle mapping (setting or acl e)—Uses corresponding or acl e. sql types to
map to SQL types. For a custom object, reference, or collection class, uses a
Cust onDat umimplementation.

object-JDBC mapping (for numeric types only) (setting obj ect j dbc)—This is
an extension of JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard j ava. | ang package (such as

java.l ang. | nt eger, Fl oat, and Doubl e), instead of primitive Java types

Working with Oracle Object Types 8-29



Using JPublisher to Create Custom Object Classes

(suchasint,fl oat,and doubl e). Thej ava. | ang types are nullable, while
the primitive types are not.

Bi gDeci mal mapping (for numeric types only) (setting bi gdeci mal )—Uses
j ava. mat h. Bi gDeci mal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the

oracl e. sgl . NUMBERclass.

Note: Using Bi gDeci mal mapping can significantly degrade
performance.

Mapping the SQL Object Type to Java

Use the JPublisher - usert ypes option to determine how JPublisher will
implement the custom Java class that corresponds to a SQL object type:

A setting of - usert ypes=or acl e (the default setting) instructs JPublisher to
create a Cust onDat umimplementation for the custom object class.

This will also result in JPublisher producing a Cust onDat umimplementation
for the corresponding custom reference class.

A setting of - user t ypes=j dbc instructs JPublisher to create a SQLDat a
implementation for the custom object class. No custom reference class can be
created—you must use j ava. sql . Ref ororacl e. sql . REF for the reference

type.

The next section discusses type mapping options that you can use for object
attributes.

Note: You can also use JPublisher with a- usert ypes=or acl e
setting in creating Cust omrDat umimplementations to map SQL
collection types.

The - user t ypes=j dbc setting is not valid for mapping SQL
collection types. (The SQLDat a interface is intended only for
mapping SQL object types.)

Mapping Attribute Types to Java

If you do not specify mappings for the attribute types of the SQL object type,
JPublisher uses the following defaults:

For numeric attribute types, the default mapping is object-JDBC.

8-30 JDBC Developer’s Guide and Reference



Using JPublisher to Create Custom Object Classes

« For LOB attribute types, the default mapping is Oracle.
« For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, use the - nunbert ypes, - | obt ypes, and
-bui | ti ntypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself a SQL object type, it will be mapped according to the
- usertypes setting.

Important: Be especially aware that if you specify a SQLDat a
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify

-1 obt ypes=j dbc.

Summary of SQL Type Categories and Mapping Settings

Table 8-1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Table 8-1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type JPublisher

Category Mapping Option Mapping Settings Default
UDT types -usertypes oracle, jdbc oracle
numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc
LOB types -lobtypes oracle, jdbc oracle
built-in types  -builtintypes oracle, jdbc jdbc

Note: The JPublisher - mappi ng option used in previous releases
will be deprecated but is currently still supported. For information
about how JPublisher converts -mapping option settings to settings
for the new mapping options, see the Oracle8i JPublisher User’s
Guide.

Working with Oracle Object Types 8-31



Describing an Object Type

Describing an Object Type

Release 8.1.6 includes new functionality to retrieve information about a structured
object type regarding its attribute names and types. This is similar conceptually to
retrieving information from a result set about its column names and types, and in
fact uses an almost identical API.

Functionality for Getting Object Meta Data

Theoracl e. sql . Struct Descri pt or class, discussed earlier in "STRUCT
Descriptors" on page 8-4 and "Steps in Creating StructDescriptor and STRUCT
Obijects" on page 8-5, now includes functionality to retrieve meta data about a
structured object type.

The St ruct Descri pt or class has a get Met aDat a() method with the same
functionality as the standard get Met aDat a() method available in result set
objects. It returns a set of attribute information such as attribute names and types.
Call this method ona St ruct Descr i pt or object to get meta data about the Oracle
object type that the St r uct Descri pt or object describes. (Remember that each
structured object type must have an associated St r uct Descr i pt or object.)

The signature of the St ruct Descr i pt or class get Met aDat a() method is the
same as the signature specified for get Met aDat a() in the standard Resul t Set
interface:

« Resul t Set Met aDat a get MetaData() throws SQLException

However, this method actually returns an instance of

oracl e.jdbc. driver. Struct Met aDat a, a class that supports structured object
meta data in the same way that the standard j ava. sql . Resul t Set Met aDat a
interface specifies support for result set meta data.

The St uct Met aDat a class includes the following standard methods that are also
specified by Resul t Set Met aDat a:

« String getCol umNane(int columm) throws SQLException

This returns a St r i ng that specifies the name of the specified attribute, such as
"salary".

« int getColumType(int colum) throws SQLException

This returns ani nt that specifies the typecode of the specified attribute,
according to the j ava. sql . Types and
oracl e.jdbc.driver. O acl eTypes classes.

8-32 JDBC Developer’s Guide and Reference



Describing an Object Type

« String getCol umTypeNanme(int columm) throws SQLException

This returns a string that specifies the type of the specified attribute, such as
"BigDecimal".

« int getColumCount() throws SQLException
This returns the number of attributes in the object type.
As well as the following method, supported only by St r uct Met aDat a:

« String getOracl eCol umCl assNanme(i nt col umm)
throws SQLException

This returns the fully-qualified name of the or acl e. sqgl . Dat umsubclass
whose instances are manufactured if the Or acl eResul t Set class

get Or acl eoj ect () method is called to retrieve the value of the specified
attribute. For example, "oracle.sql. NUMBER".

To use get Or acl eCol uimdCl assNane() , you must cast the
Resul t Set Met aDat a object (that was returned by the get Met aDat a()
method) to a St r uct Met aDat a object.

Note: In all the preceding method signatures, "column” is
something of a misnomer. Where you specify a "column" of 4, you
really refer to the fourth attribute of the object.

Steps for Retrieving Object Meta Data

Use the following steps to obtain meta data about a structured object type:

1. Create or acquire a Struct Descri pt or instance that describes the relevant
structured object type.

2. Call the get Met aDat a() method on the St r uct Descri pt or instance.

3. Call the meta data getter methods as desired—get Col umNane(),
get Col umType(),and get Col umTypeNane().

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.

Working with Oracle Object Types 8-33



Describing an Object Type

Example The following method shows how to retrieve information about the
attributes of a structured object type. This includes the initial step of creating a
St ruct Descri pt or instance.

1

/1 Print out the ADT's attribute nanes and types

1

void getAttributel nfo (Gonnection conn, Sring type nane) throws SQException
{

/1 get the type descriptor
Struct Descriptor desc = SructDescriptor. createDescriptor (type_name, conn);

/1 get type meta data
Resul t Set Met aDat a ml = desc. get MetaData ();

/1 get # of attrs of this type
int numttrs = desc.length ();

/1 tenporary buffers
String attr_nane;

int attr_type;
String attr_typeNane;

Systemout.println ("Attributes of "+t ype_name+' :");
for (int i=0; i<nunittrs; i++)
{
attr_nane = nd. get Gol ummMNarre (i +1);
attr_type = nu. get Gl umType (i+1);
Systemout. println (" index"+(i+1)+" nane="+attr_nane+' type="+attr_type);

/] drill down nested obj ect
if (attrType == Q acl eTypes. STRCT)

attr_typeNare = mi. get @l umTypeNane (i +1);

/] recursive calls to print out nested object neta data
get Attributelnfo (conn, attr_typeNane);
}
}
}

8-34 JDBC Developer’s Guide and Reference



9

Working with Oracle Object References

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate object references. The following topics are discussed:

Oracle Extensions for Object References

Overview of Object Reference Functionality

Retrieving and Passing an Object Reference

Accessing and Updating Object Values through an Object Reference

Custom Reference Classes with JPublisher

Working with Oracle Object References 9-1



Oracle Extensions for Object References

Oracle Extensions for Object References

Oracle supports the use of references (pointers) to Oracle database objects. Oracle
JDBC provides support for object references as:

« columnsin a SELECT-list

« | Nor QUT bind variables

« attributes in an Oracle object

« elements in acollection (array) type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, be aware that you are
retrieving only a pointer to an object, not the object itself. You have the choice of
materializing the reference as a weakly typed or acl e. sql . REF instance (or a
j ava. sgl . Ref instance for portability), or materializing it as an instance of a
custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for object references are referred to as custom reference
classes in this manual and must implement the or acl e. sql . Cust onDat um
interface.

The or acl e. sqgl . REF class implements the standard j ava. sql . Ref interface
(oracl e.jdbc2. Ref under JDK 1.1.x).

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the
underlying object (for example, EMPLOYEE).

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

For more information about custom reference classes, see "Custom Reference
Classes with JPublisher" on page 9-10. Also refer to "Using JPublisher to Create
Custom Object Classes" on page 8-28, or to the Oracle8i JPublisher User’s Guide.

For a complete sample application using the REF class to access SQL object data, see
"Weakly Typed Object References—StudentRef.java" on page 17-24.

9-2 JDBC Developer’s Guide and Reference



Oracle Extensions for Object References

Notes:

If you are using the or acl e. sql . Cust onDat uminterface for
custom object classes, you will presumably use Cust omDat um
for corresponding custom reference classes as well. If you are
using the standard j ava. sql . SQLDat a interface for custom
object classes, however, you can only use weak Java types for
references (j ava. sql . Ref ororacl e. sql . REF). The
SQLDat a interface is for mapping SQL object types only.

You cannot create REF objects in your JDBC application; you
can only retrieve existing REF objects from the database.

You cannot have a reference to an array, even though arrays,
like objects, are structured types.

Working with Oracle Object References 9-3



Overview of Object Reference Functionality

Overview of Object Reference Functionality

To access and update object data through an object reference, you must obtain the
reference instance through a result set or callable statement and then pass it back as
a bind variable in a prepared statement or callable statement. It is the reference
instance that contains the functionality to access and update object attributes.

This section summarizes the following:

« statement and result set getter and setter methods for passing REF instances
from and to the database

« REF class functionality to get and set object attributes

Remember that you can use custom reference classes instead of the ARRAY class. See
"Custom Reference Classes with JPublisher" on page 9-10.

Object Reference Getter and Setter Methods

Use the following result set, callable statement, and prepared statement methods to
retrieve and pass object references. Code examples are provided later in the chapter.

Result Set and Callable Statement Getter Methods The Or acl eResul t Set and

Oracl eCal | abl eSt at erent classes support get REF() and get Ref () methods
to retrieve REF objects as output parameters—either as or acl e. sql . REF instances
orj ava. sqgl . Ref instances (or acl e. j dbc2. Ref under JDK 1.1.x). You can also
use the get Obj ect () method. These methods take as input a St ri ng column
name or i nt column index.

Prepared and Callable Statement Setter Methods The Or acl ePr epar edSt at ement and
Or acl eCal | abl eSt at enent classes support set REF() and set Ref () methods
to take REF obijects as bind variables and pass them to the database. You can also
use the set Obj ect () method. These methods take as input a St ri ng parameter
name or i nt parameter index as well as, respectively, an or acl e. sql . REF
instance or aj ava. sql . Ref instance (or acl e. j dbc2. Ref under JDK 1.1.x).

9-4 JDBC Developer’s Guide and Reference



Overview of Object Reference Functionality

Key REF Class Methods

Use the following or acl e. sql . REF class methods to retrieve the SQL object type
name and retrieve and pass the underlying object data.

« get BaseTypeNane() : Retrieves the fully-qualified SQL structured type name
of the referenced object (for example, EMPLOYEE).

This is a standard method specified by the j ava. sql . Ref interface.

« get Val ue() : Retrieves the referenced object from the database, allowing you
to access its attribute values. It optionally takes a type map object, or else you
can use the default type map of the database connection object.

This method is an Oracle extension.

« set Val ue() : Sets the referenced object in the database, allowing you to update
its attribute values. It takes an instance of the object type as input (either a
STRUCT instance or an instance of a custom object class).

This method is an Oracle extension.

Working with Oracle Object References 9-5



Retrieving and Passing an Object Reference

Retrieving and Passing an Object Reference

This section discusses JDBC functionality for retrieving and passing object
references.

Retrieving an Object Reference from a Result Set

To demonstrate how to retrieve object references, the following example first
defines an Oracle object type ADDRESS, which is then referenced in the PEOPLE
table:

create type ADDRESS as obj ect

(street_nane VARCHAR2( 30) ,

house_no NUMBER) ;

create tabl e PECPLE

(col 1 VARCHAR2(30),
col 2 NUMBER
col 3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1.

Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

Use get REF() to get the address reference from the result set into a REF object.

Let Addr ess be the Java custom class corresponding to the SQL object type
ADDRESS.

Add the correspondence between the Java class Addr ess and the SQL type
ADDRESS to your type map.

Use the get Val ue() method to retrieve the contents of the Addr ess reference.
Cast the output to a Java Addr ess object.

9-6 JDBC Developer’s Guide and Reference



Retrieving and Passing an Object Reference

Here is the code for these steps (other than adding Addr ess to the type map),
where st nt is a previously defined statement object. The PEOPLE database table is
defined earlier in this section:

Resul t Set rs = stmt. execut eQuer y(" SELECT col 3 FROM PECPLE') ;
vhile (rs.next())

REF ref = ((Oacl eResul t Set)rs). get REF(1);
Address a = (Address)ref. get Val ue();

}

As with other SQL types, you could retrieve the reference with the get Obj ect ()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getject(1);

There are no performance advantages in using get Cbj ect () instead of
get REF() ; however, using get REF() allows you to avoid casting the output.

Retrieving an Object Reference from a Callable Statement

To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Castyour callable statement to an Or acl eCal | abl eSt at enent :
O acl eCal | abl eSt at enent ocs =
(O acl eCal | abl et at enent ) conn. prepareCal | ("{? = call func()}");
2. Register the OUT parameter with this form of the r egi st er Cut Par anet er ()
method:
ocs. regi st er Qut Par anet er

(int paramindex, int sql_type, Sring sql_type nane);

Where par am i ndex is the parameter index and sq/ _t ype is the SQL
typecode (in this case, Or acl eTypes. REF). The sq/ _t ype_nane is the name
of the structured object type that this reference is used for. For example, if the
QUT parameter is a reference to an ADDRESS object (as in "Retrieving and
Passing an Object Reference" on page 9-6), then ADDRESS is the

sql _t ype_nane that should be passed in.

3. Execute the call:

ocs. execute();

Working with Oracle Object References 9-7



Retrieving and Passing an Object Reference

Passing an Object Reference to a Prepared Statement

Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the set Obj ect () method or the set REF()
method of a prepared statement object.

Continuing the example in "Retrieving and Passing an Object Reference” on
page 9-6, use a prepared statement to update an address reference based on ROW D,
as follows:

PreparedStat enent pstm =

conn. prepareSt atenent ("update PECPLE set ADDR REF = ? where ROND = ?");
((Cracl ePreparedSt atenent ) pstm ) . set RE- (1, addr_ref);
((Cracl ePreparedSt atenent ) pstm ). set ROND (2, row d);

9-8 JDBC Developer’s Guide and Reference



Accessing and Updating Object Values through an Object Reference

Accessing and Updating Object Values through an Object Reference

You can use the REF object set Val ue() method to update the value of an object in
the database through an object reference. To do this, you must first retrieve the
reference to the database object and create a Java object (if one does not already
exist) that corresponds to the database object.

For example, you can use the code in the section "Retrieving and Passing an Object
Reference" on page 9-6 to retrieve the reference to a database ADDRESS obiject:

Result Set rs = stmt. execut eQuer y(" SELECT col 3 FROM PECPLE') ;
if (rs.next())

{

REF ref =rs.getRE(1);

Address a = (Address)ref. get Val ue();
}

Then, you can create a Java Addr ess object (this example omits the content for the
constructor of the Addr ess class) that corresponds to the database ADDRESS object.
Use the set Val ue() method of the REF class to set the value of the database
object:

Address addr = new Address(...);
ref . set Val ue(addr) ;

Here, the set Val ue() method updates the database ADDRESS object immediately.

Working with Oracle Object References 9-9



Custom Reference Classes with JPublisher

Custom Reference Classes with JPublisher

This chapter primarily describes the functionality of the or acl e. sqgl . REF class,
but it is also possible to access Oracle object references through custom Java classes
or, more specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter,
as well as the advantage of being strongly typed. A custom reference class must
satisfy three requirements:

« It mustimplement the or acl e. sqgl . Cust onDat uminterface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.
Note that the standard JDBC SQLDat a interface, which is an alternative for
custom object classes, is not intended for custom reference classes.

« It, or acompanion class, must implement the
oracl e. sql . Cust onDat unfact ory interface, for creating instances of the
custom reference class.

« Itmust provide a way to refer to the object data. JPublisher accomplishes this by
using an or acl e. sql . REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to
generate a custom object class to map to an Oracle object, and you specify that
JPublisher use a Cust onDat umimplementation, then JPublisher will also generate
a custom reference class that implements Cust onDat umand

Cust onDat unfact ory and includes an or acl e. sql . REF attribute. (The

Cust onDat umimplementation will be used if JPublisher’s - user t ypes mapping
option is set to or acl e, which is the default.)

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Enpl oyee custom object class
and an Enpl oyeeRef custom reference class. Using Enpl oyeeRef instances
instead of generic or acl e. sql . REF instances makes it easier to catch errors
during compilation instead of at runtime—for example, if you accidentally assign
some other kind of object reference into an Enpl oyeeRef variable.

Be aware that the standard SQLDat a interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLDat a
interface in creating a custom object class, then JPublisher will not generate a
custom reference class. In this case your only option is to use standard

j ava. sgl . Ref instances (or or acl e. sqgl . REF instances) to map to your object
references. (Specifying the SQLDat a implementation is accomplished by setting
JPublisher’s UDT attributes mapping option to j dbc.)

9-10 JDBC Developer’s Guide and Reference



10

Working with Oracle Collections

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate Oracle collections, which map to Java arrays, and their data. The
following topics are discussed:

Oracle Extensions for Collections (Arrays)
Overview of Collection (Array) Functionality
Creating and Using Arrays

Using a Type Map to Map Array Elements

Custom Collection Classes with JPublisher

Working with Oracle Collections 10-1



Oracle Extensions for Collections (Arrays)

Oracle Extensions for Collections (Arrays)

An Oracle collection—either a variable array (VARRAY) or a nested table in the
database—maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms "collection" and "array" are sometimes used
interchangeably, although "collection" is more appropriate on the database side, and
"array" is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection.

JDBC lets you use arrays as any of the following:

« columnsin a SELECT-list

« | Nor OUT bind variables

« attributes in an Oracle object

The rest of this section discusses creating and materializing collections.

The remainder of the chapter describes how to access and update collection data
through Java arrays. For a complete code example of creating a table with a
collection column and then manipulating and printing the contents, see "Weakly
Typed Arrays—ArrayExample.java" on page 17-26.

Choices in Materializing Collections

In your application, you have the choice of materializing a collection as an instance
of the or acl e. sql . ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection
classes in this manual. A custom collection class must implement the Oracle

oracl e. sql . Cust onDat uminterface. In addition, the custom class or a
companion class must implement or acl e. sql . Cust onDat unfact ory. (The
standard j ava. sqgl . SQLDat a interface is for mapping SQL object types only.)

The or acl e. sqgl . ARRAY class implements the standard j ava. sql . Arr ay
interface (or acl e. j dbc2. Array under JDK 1.1.x).

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. You cannot write to the array, however, as there are no setter methods.

Custom collection classes, as with the ARRAY class, allow you to retrieve all or part
of the array and get the SQL base type name. They also have the advantage of being

10-2 JDBC Developer’'s Guide and Reference



Oracle Extensions for Collections (Arrays)

strongly typed, which can help you find coding errors during compilation that
might not otherwise be discovered until runtime.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements. (This is also something you
could implement in a custom collection class yourself.)

Note: There is no difference in your code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.

For more information about custom collection classes, see "Custom Collection
Classes with JPublisher" on page 10-20.

Creating Collections
This section presents background information about creating Oracle collections.

Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. "VARRAY" and "nested table" are not
types themselves, but categories of types.

A SQL type name is assigned to a collection when you create it, as in the following
SQL syntax:

CREATE TYPE <sql _t ype name> AS <dat at ype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and
all the elements are of the same datatype. Each element has an index, which is a
number corresponding to the element’s position in the VARRAY. The number of
elements in a VARRALY is the "size" of the VARRAY. You must specify a maximum
size when you declare the VARRAY type. For example:

CREATE TYPE nyNunType AS VARRAY(10) COF NUMBER
This statement defines my Nunirype as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,

Working with Oracle Collections 10-3



Oracle Extensions for Collections (Arrays)

it can also be viewed as a multi-column table, with a column for each attribute of
the object type. Create a nested table with this SQL syntax:

CREATE TYPE nyNunbi st AS TABLE CF int eger;

This statement identifies myNunLi st as a SQL type name that defines the table type
used for the nested tables of the type | NTEGER

10-4 JDBC Developer’'s Guide and Reference



Overview of Collection (Array) Functionality

Overview of Collection (Array) Functionality

You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The or acl e. sqgl . ARRAY class, which implements the standard j ava. sql . Arr ay
interface (or acl e. j dbc2. Array interface under JDK 1.1.x), provides the
necessary functionality to access and update the data of an Oracle collection (either
a VARRAY or nested table).

This section discusses the following:

« statement and result set getter and setter methods for passing collections to and
from the database as Java arrays

= ARRAY descriptors and ARRAY class methods

Remember that you can use custom collection classes instead of the ARRAY class.
See "Custom Collection Classes with JPublisher" on page 10-20.

Array Getter and Setter Methods

Use the following result set, callable statement, and prepared statement methods to
retrieve and pass collections as Java arrays. Code examples are provided later in the
chapter.

Result Set and Callable Statement Getter Methods The Or acl eResul t Set and
Oracl eCal | abl eSt at erent classes support get ARRAY() and get Array()
methods to retrieve ARRAY objects as output parameters—either as

oracl e. sgl . ARRAY instances or j ava. sql . Arr ay instances

(oracl e.jdbc2. Array under JDK 1.1.x). You can also use the get Obj ect ()
method. These methods take as input a St ri ng column name or i nt column
index.

Prepared and Callable Statement Setter Methods The Or acl ePr epar edSt at ement and
Or acl eCal | abl eSt at enent classes support set ARRAY() and set Array()
methods to take updated ARRAY objects as bind variables and pass them to the
database. You can also use the set Obj ect () method. These methods take as input
a St ri ng parameter name or i nt parameter index as well as, respectively, an
oracl e. sgl . ARRAY instance or aj ava. sql . Arr ay instance

(oracl e.jdbc2. Array under JDK 1.1.x).

Working with Oracle Collections 10-5



Overview of Collection (Array) Functionality

ARRAY Descriptors and ARRAY Class Functionality

The section introduces ARRAY descriptors and lists methods of the ARRAY class to
provide an overview of its functionality.

ARRAY Descriptors

Creating and using an ARRAY object requires the existence of a descriptor—an
instance of the or acl e. sql . ArrayDescri pt or class—to exist for the SQL type
of the collection being materialized in the array. You need only one

ArrayDescri pt or object for any number of ARRAY objects that correspond to the
same SQL type.

ARRAY descriptors are further discussed in "Creating ARRAY Objects and
Descriptors" on page 10-8.

ARRAY Class Methods
The or acl e. sgl . ARRAY class includes the following methods:

« getDescriptor():Returnsthe ArrayDescri pt or object that describes the
array type.

« get Array(): Retrieves the contents of the array in "default" JDBC types. If it
retrieves an array of objects, then get Array() uses the default type map of the
database connection object to determine the types.

« getOracl eArray(): Identical to get Array(), but retrieves the elements in
oracl e. sql . * format.

« getBaseType(): Returns the SQL typecode for the array elements (see "Class
oracle.jdbc.driver.OracleTypes" on page 5-22 for information about typecodes).

« getBaseTypeNane() : Returns the SQL type name of the elements of this
array.

« get SQLTypeName() (Oracle extension): Returns the fully qualified SQL type
name of the array as a whole.

« getResul t Set () : Materializes the array elements as a result set.
« get Connecti on():Returns the connection instance associated with this array.

« | ength():Returns the number of elements in the array.

10-6 JDBC Developer’'s Guide and Reference



Overview of Collection (Array) Functionality

Note: As an example of the difference between

get BaseTypeNane() and get SQLTypeNarne( ), if you define
ARRAY_OF_PERSON as the array type for an array of PERSON
objects in the SCOTT schema, then get BaseTypeName() would
return "SCOTT.PERSON" and get SQLTypeName() would return
"SCOTT.ARRAY_OF_PERSON".

Working with Oracle Collections 10-7



Creating and Using Arrays

Creating and Using Arrays

This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

« Creating ARRAY Objects and Descriptors
» Retrieving an Array and Its Elements

« Passing Arrays to Statement Objects

Creating ARRAY Objects and Descriptors

This section describes how to create ARRAY objects and descriptors and lists useful
methods of the ArrayDescr i pt or class.

Steps in Creating ArrayDescriptor and ARRAY Objects

This section describes how to construct an or acl e. sql . ARRAY object. To do this,
you must:

1. Create an ArrayDescri pt or object (if one does not already exist) for the
array.

2. Usethe ArrayDescri pt or object to construct the or acl e. sql . ARRAY object
for the array you want to pass.

An ArrayDescri pt or is an object of the or acl e. sql . ArrayDescri ptor class
and describes the SQL type of an array. Only one array descriptor is necessary for
any one SQL type. The driver caches Ar r ayDescr i pt or objects to avoid recreating
them if the SQL type has already been encountered. You can reuse the same
descriptor object to create multiple instances of an or acl e. sql . ARRAY object for
the same array type.

Collections are strongly typed. Oracle supports only named collections, that is, a
collection given a SQL type name. For example, when you create a collection with
the CREATE TYPE statement:

CREATE TYPE numvarray AS varray(22) GF NMBER(S5, 2);

Where NUM_VARRAY is the SQL type name for the collection type.

10-8 JDBC Developer’'s Guide and Reference



Creating and Using Arrays

Note: The name of the collection type is not the same as the type
name of the elements. For example:

CREATE TYPE person AS obj ect
(c1 NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of _persons AS varray(10)
OF person;

In the preceding statements, the SQL name of the collection type is
ARRAY_OF_PERSON. The SQL name of the collection elements is
PERSON.

Before you can construct an Ar r ay object, an ArrayDescr i pt or must first exist
for the given SQL type of the array. If an ArrayDescr i pt or does not exist, then
you must construct one by passing the SQL type name of the collection type and
your Connect i on object (which JDBC uses to go to the database to gather meta
data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescriptor.createDescriptor

(sql _type _name, connection);
Where sql _t ype_nane is the type name of the array and connect i onis your
Connect i on object.

Once you have your ArrayDescr i pt or object for the SQL type of the array, you
can construct the ARRAY object. To do this, pass in the array descriptor, your
connection object, and a Java object containing the individual elements you want
the array to contain.

ARRAY array = new ARRAY( arraydesc, connection, elenents);
Where ar r aydesc is the array descriptor created previously, connect i on is your

connection object, and el ement s is a Java array. The two possibilities for the
contents of el ement s are:

« anarray of Java primitives—for example, i nt [ ]

« anarray of Java objects, such as xxx[ ] where xxx is the name of a Java
class—for example, | nt eger [ ]

Working with Oracle Collections 10-9



Creating and Using Arrays

Note: The set ARRAY(),set Array(),and set Obj ect ()
methods of the Or acl ePr epar edSt at enent class take an object
of the type or acl e. sqgl . ARRAY as an argument, not an array of
objects.

Using ArrayDescriptor Methods

An ARRAY descriptor can be referred to as a type object. It has information about the
SQL name of the underlying collection, the typecode of the array’s elements, and, if

itis
also

an array of structured objects, the SQL name of the elements. The descriptor
contains the information on about to convert to and from the given type. You

need only one descriptor object for any one type, then you can use that descriptor to
create as many arrays of that type as you want.

The

ArrayDescri ptor class has the following methods for retrieving an element’s

typecode and type name:

creat eDescri ptor():Thisis afactory for ArrayDescri pt or instances;
looks up the name in the database and determine the characteristics of the
array.

get BaseType() : Returns the integer typecode associated with this ARRAY
descriptor (according to integer constants defined in the Or acl eTypes class,
which "Package oracle.jdbc.driver" on page 5-16 describes).

get BaseNane( ) : Returns a string with the type name associated with this
array element if it is a STRUCT or REF.

get ArrayType() : Returns an integer indicating whether the array is a
VARRAY or nested table. ArrayDescri pt or. TYPE_VARRAY and
ArrayDescri ptor. TYPE_NESTED TABLE are the possible return values.

get MaxLengt h() : Returns the maximum number of elements for this array
type.
get Connect i on() : Returns the connection instance that was used in creating

the ARRAY descriptor (a new descriptor must be created for each connection
instance).

Note: You cannot use a collection within a collection. You can,
however, use a structured object with a collection attribute, or a
collection with structured object elements.

10-10 JDBC Developer’s Guide and Reference



Creating and Using Arrays

Retrieving an Array and Its Elements

This section discusses how to retrieve an ARRAY instance as a whole from a result
set, and then how to retrieve the elements from the ARRAY instance.

Retrieving the Array

You can retrieve a SQL array from a result set by casting the result set to an

Oracl eResul t Set object and using the get ARRAY() method, which returns an
oracl e. sgl . ARRAY object. If you want to avoid casting the result set, then you
can get the data with the standard get Obj ect () method specified by the

j ava. sgl . Resul t Set interface, and cast the output to an or acl e. sql . ARRAY
object.

Data Retrieval Methods

Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the or acl e. sqgl . ARRAY class:

« getArray()
« getOracl eArray()
« getResultSet()

Oracle also provides methods that enable you to retrieve all the elements of an
array, or a subset.

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.

getOracleArray() The get Or acl eArray() method is an Oracle-specific extension
that is not specified in the standard Ar r ay interface (j ava. sqgl . Array under JDK
1.2xororacle.jdbc2. Array under DK 1.1.x). The get Or acl eArray()
method retrieves the element values of the array into a Dat uni ] array. The
elements are of the or acl e. sql . * datatype corresponding to the SQL type of the
data in the original array.

For an array of structured objects, this method will use or acl e. sql . STRUCT
instances for the elements.

Working with Oracle Collections 10-11



Creating and Using Arrays

Oracle also provides a get Or acl eArray( i ndex, count) met hod to get a subset
of the array elements.

getResultSet() The get Resul t Set () method returns a result set that contains
elements of the array designated by the ARRAY object. The result set contains one
row for each array element, with two columns in each row. The first column stores
the index into the array for that element, and the second column stores the element
value. In the case of VARRAYS, the index represents the position of the element in
the array. In the case of nested tables, which are by definition unordered, the index
reflects only the return order of the elements in the particular query.

Oracle recommends using get Resul t Set () when getting data from nested tables.
Nested tables can have an unlimited number of elements. The Resul t Set object
returned by the method initially points at the first row of data. You get the contents
of the nested table by using the next () method and the appropriate get XXX()
method. In contrast, get Array() returns the entire contents of the nested table at
one time.

The get Resul t Set () method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, get Resul t Set ( map) , enables you to
specify an alternate type map.

Oracle also provides the get Resul t Set (i ndex, count) and
get Resul t Set (i ndex, count, nap) methods to retrieve a subset of the array
elements.

getArray() The get Array() method is a standard JDBC method that returns the
array elements into aj ava. | ang. Obj ect instance that you can cast as
appropriate (see "Comparing the Data Retrieval Methods" on page 10-12). The
elements are converted to the Java types corresponding to the SQL type of the data
in the original array.

Oracle also provides a get Ar r ay(/ ndex, count) method to retrieve a subset of
the array elements.

Comparing the Data Retrieval Methods

If you use get Or acl eArray() to return the array elements, the use by that
method of or acl e. sql . Dat uminstances avoids the expense of data conversion
from SQL to Java. The data inside a Dat um(or subclass) instance remains in raw
SQL format.

10-12 JDBC Developer’'s Guide and Reference



Creating and Using Arrays

If you use get Resul t Set () to return an array of primitive datatypes, then the
JDBC driver returns a Resul t Set object that contains, for each element, the index
into the array for the element and the element value. For example:

Result Set rset = intArray.get Resul t Set();

In this case, the result set contains one row for each array element, with two
columns in each row. The first column stores the index into the array; the second
column stores the element value.

If you use get Array() to retrieve an array of primitive datatypes, then a

j ava. | ang. Obj ect that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example:

Bi glecinal [] values = (BigDecinal []) intAray.getArray();

Where i nt Array isan or acl e. sql . ARRAY, corresponding to a VARRAY of type
NUMBER. The val ues array contains an array of elements of type

j ava. mat h. Bi gDeci mal , because the SQL NUMBER datatype maps to Java

Bi gDeci mal by default, according to the Oracle JDBC drivers.

Note: Using Bi gDeci mal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to

Bi gDeci mal by default, using get Array() may impact
performance, and is not recommended for numeric collections.

Retrieving Elements of a Structured Object Array According to a Type Map

By default, if you are working with an array whose elements are structured objects,
and you use get Array() or get Resul t Set (), then the Oracle objects in the
array will be mapped to their corresponding Java datatypes according to the default
mapping. This is because these methods use the connection’s default type map to
determine the mapping.

However, if you do not want default behavior, then you can use the

get Array( nap) or get Resul t Set ( map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

(oj ect[] object = (Coject[])obj Array. get Array(map);

Working with Oracle Collections 10-13



Creating and Using Arrays

In the preceding example, obj Array isan or acl e. sql . ARRAY object and map is a
java.util . Map object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an or acl e. sql . STRUCT object.

The get Resul t Set ( map) method behaves similarly to the get Ar r ay( map)
method.

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 10-18.

Retrieving a Subset of Array Elements

If you do not want to retrieve the entire contents of an array, then you can use
signatures of get Array(), get Resul t Set (), and get Or acl eArray() that let
you retrieve a subset. To retrieve a subset of the array, pass in an index and a count
to indicate where in the array you want to start and how many elements you want
to retrieve. As described above, you can specify a type map or use the default type
map for your connection to convert to Java types. For example:

(hj ect obj ect = arr.getArray(/ndex, count, nap);
(bj ect object = arr.getArray(index, count);

Similar examples using get Resul t Set () are:

Result Set rset = arr.get Resul t Set (/ ndex, count, nap);
Resul t Set rset = arr.get Resul t Set (i ndex, count);

A similar example using get Or acl eArray() is:

Datumarr = arr.get Qacl eArray(index, count);

Where arr isan or acl e. sql . ARRAY object, / ndex is type | ong, count is type
int,and mapisaj ava. util . Map object.

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.

10-14 JDBC Developer’s Guide and Reference



Creating and Using Arrays

Retrieving Array Elements into an oracle.sgl.Datum Array

Use get Oracl eArray() toreturnanoracl e. sgl . Dat uni ] array. The elements
of the returned array will be of the or acl e. sql . * type that correspond to the SQL
datatype of the elements of the original array. For example:

Datumarraydata[] = arr.getQacl eArray();

Where ar r isan or acl e. sql . ARRAY object. For an example of retrieving an array
and its contents, see "Weakly Typed Arrays—ArrayExample.java" on page 17-26.

The following example assumes that a connection object conn and a statement
object st nt have already been created. In the example, an array with the SQL type
name NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is
in turn stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to an
Oracl eResul t Set object; get ARRAY() is applied to it to retrieve the array data
into my_ar r ay, which is an or acl e. sql . ARRAY object.

Because my_ar r ay is of type or acl e. sql . ARRAY, you can apply the methods
get SQLTypeName() and get BaseType() toitto return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of

nmy_arr ay are of the SQL datatype NUMBER, it must first be cast to the Bi gDeci nal
datatype. In the f or loop, the individual values of the array are cast to

Bi gDeci mal and printed to standard output.

stnt. execute ("CREATE TYPE numvarray AS VARRAY(10) CF NUMBER(12, 2)");
st . execute ("CREATE TABLE varray_table (col 1 numvarray)");
stnt.execute ("INSERT INTOvarray_tabl e VALLES (numvarray(100, 200))");

Result Set rs = stm. execut eQuery(" SEHLECT * FROMvarray_t abl €");
ARRAY ny_array = ((Qacl eResul t Set)rs). get ARRAY(1) ;

/1 return the SQL type nanes, integer codes,

/1 and lengths of the col unms

Systemout.println ("Array is of type " + array.get SQLTypeNane());
Systemout.println ("Array elenent is of typecode " + array.get BaseType());
Systemout.println ("Array is of length " + array.length());

/] get Array el enents
B gDecimal [] values = (Biglecinal []) ny array.getArray();

for (int i=0; i<values.length; i++)

Working with Oracle Collections 10-15



Creating and Using Arrays

Bi gleci nal out_val ue = (Bigleci nal ) val ues[i];
Systemout.printIn(">> index " +i +" =" + out_val ue.intValue());

}

Note that if you use get Resul t Set () to obtain the array, you would first get the
result set object, then use the next () method to iterate through it. Notice the use of
the parameter indexes in the get | nt () method to retrieve the element index and
the element value.

Result Set rset = ny_array. get Resul t Set () ;
vhile (rset.next())

/] The first colum contains the el enent index and t he
/] second col umn contains the el enent val ue
Systemout. println(">> index " + rset.getlnt(1)+" =" + rset.getInt(2));

Passing Arrays to Statement Objects

This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement

Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement). Note that you can use arrays as either | N or OUT bind
variables.

1. Constructan ArrayDescri pt or object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Steps in
Creating ArrayDescriptor and ARRAY Objects" on page 10-8 for information
about creating Ar r ayDescr i pt or objects.

ArrayDescriptor descriptor = ArrayDescri ptor. creat eDescri ptor
(sql _type nane, connection);

Where sql _t ype_nane is a Java string specifying the user-defined SQL type
name of the array, and connect i onis your Connect i on object. See "Oracle
Extensions for Collections (Arrays)" on page 10-2 for information about SQL
typenames.

2. Define the array that you want to pass to the prepared statement as an
or acl e. sgl . ARRAY object.

ARRAY array = new ARRAY( descriptor, connection, elenents);

10-16 JDBC Developer’s Guide and Reference



Creating and Using Arrays

Where descri ptor isthe ArrayDescri pt or object previously constructed
and el enent sisaj ava. | ang. Obj ect containing a Java array of the
elements.

Create aj ava. sql . Prepar edSt at enent object containing the SQL
statement to execute.

Cast your prepared statement to an Or acl ePr epar edSt at enment and use the
set ARRAY() method of the Or acl ePr epar edSt at enent object to pass the
array to the prepared statement.

(O acl ePr epar edS at enent ) st nt . set ARRAY( par anet er | ndex, array);
Where par anet er | ndex is the parameter index, and ar r ay is the
oracl e. sgl . ARRAY object you constructed previously.

Execute the prepared statement.

Passing an Array to a Callable Statement

To retrieve a collection as an OUT parameter in PL/SQL blocks, execute the
following to register the bind type for your OUT parameter.

1.

Cast your callable statement to an Or acl eCal | abl eSt at enent :
O acl eCal | abl eSt at enent ocs =
(O acl eCal | abl et at enent) conn. prepareCal | ("{? = call func()}");
Register the OUT parameter with this form of the r egsi t er Qut Par anet er ()
method:
ocs. regi st er Qut Par anet er

(int paramindex, int sql_type, string sql_type nane);

Where par am i ndex is the parameter index, sq/ _t ype is the SQL typecode,
and sql/ _t ype_nane is the name of the array type. In this case, the sq/ _t ype
isOracl eTypes. ARRAY.

Execute the call:

ocs. execute();

Get the value:
oracl e.sgl . ARRAY array = ocs. get ARRAY(1);

Working with Oracle Collections 10-17



Using a Type Map to Map Array Elements

Using a Type Map to Map Array Elements

If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an or acl e. sql . STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add an appropriate entry
to the map. For instructions on how to add entries to an existing type map or how
to create a new type map, see "Understanding Type Maps for SQLData
Implementations” on page 8-10.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LI| ST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LI ST
tables.

st . execut e(" CREATE TYPE BEMPLOYEE AS (BIECT
(EnphNane  VARCHARZ(50) , EnpNo | NTEGER) ) ") ;

st . execut e(" CREATE TYPE BEMPLOYEE LI ST AS TABLE OF EMPLOYEE') ;

st . execut e(" CREATE TABLE EMPLOYEE TABLE ( Dept Narre VARCHAR2( 20),
Enpl oyees BEMPLOYEE LI ST) NESTED TABLE Enpl oyees STCRE AS ntabl el");

stnt. execut e(" 1 NSERT | NTO EMPLOYEE TABLE VALUES (" SALES', EMPLOYEE LI ST
(EMPLOYEE(Susan Smith, 123), EMPLOYEE(Scott Tiger, 124)))');

If you want to retrieve all the employees belonging to the SALES department into
an array of instances of the custom object class Enpl oyeeObj , then you must add
an entry to the type map to specify mapping between the EMPLOYEE SQL type and
the Enpl oyeeObj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LI ST associated with the SALES department into the result set. Cast the
result set to Or acl eResul t Set so you can use the get ARRAY() method to
retrieve the EMPLOYEE_LI ST into an ARRAY object (enpl oyeeAr r ay in the
example below).

10-18 JDBC Developer’'s Guide and Reference



Using a Type Map to Map Array Elements

The Enpl oyeeObj custom object class in this example implements the SQLDat a
interface. "Custom Object Class—SQLData Implementation” on page 17-35 contains
the code that creates the Enpl oyeeCbj type.

Satenent s = conn.createSatenent();
QacleResult Set rs = (O acl eResul t Set) s. execut eQuery
("SELECT Employees FROM employee_table WHERE DeptName ='SALES");

I/ get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(L);

Now that you have the EMPLOYEE_L| ST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the Enpl oyeeCbj Java type.

I/ add type map entry to map SQL type

II"EMPLOYEE" to Java type "EmployeeOby"

Map map = conn.getTypeMap();
map.put'EMPLOYEE", Class.forName("EmployeeObj");

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LI ST. To do this,
invoke the get Array() method of the enpl oyeeAr r ay array object. This method
returns an array of objects. The get Arr ay() method returns the EMPLOYEE objects
into the enpl oyees object array.

I/ Retrieve array elements

Object]] employees = (Object]]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
Enpl oyeeObj Java object enp.

I Each aray element is mapped to EmployeeObj object.
for (int i=0; ikemployees length; i++)

{
EmployeeObj emp = (EmployeeObj) employeesi];

}

Working with Oracle Collections 10-19



Custom Collection Classes with JPublisher

Custom Collection Classes with JPublisher

This chapter primarily describes the functionality of the or acl e. sql . ARRAY class,
but it is also possible to access Oracle collections through custom Java classes or,
more specifically, custom collection classes.

You can create custom collection classes yourself, but the most convenient way is to
use the Oracle JPublisher utility. Custom collection classes generated by JPublisher
offer all the functionality described earlier in this chapter, as well as the following
advantages (it is also possible to implement such functionality yourself):

« They are strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

= They can be changeable, or mutable. Custom collection classes produced by
JPublisher, unlike the ARRAY class, allow you to get and set individual elements
using the get El ement () and set El ement () methods. (This is also
something you could implement in a custom collection class yourself.)

A custom collection class must satisfy three requirements:

« It mustimplement the or acl e. sgl . Cust onDat uminterface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.
Note that the standard JDBC SQLDat a interface, which is an alternative for
custom object classes, is not intended for custom collection classes.

« It, or acompanion class, must implement the
oracl e. sql . Cust onDat unfact ory interface, for creating instances of the
custom collection class.

» It must have a means of storing the collection data. Typically it will directly or
indirectly include an or acl e. sql . ARRAY attribute for this purpose (this is the
case with a JPublisher-produced custom collection class).

A JPublisher-generated custom collection class implements Cust onDat umand
Cust onDat unfact or y and indirectly includes an or acl e. sql . ARRAY attribute.
The custom collection class will have an or acl e. j pub. runti ne. Mut abl eArr ay
attribute. The Mut abl eAr r ay class has an or acl e. sqgl . ARRAY attribute.

10-20 JDBC Developer’'s Guide and Reference



Custom Collection Classes with JPublisher

Note: When you use JPublisher to create a custom collection class,
you must use the Cust onDat umimplementation. This will be true
if JPublisher’s - user t ypes mapping option is set to or acl e,
which is the default.

You cannot use a SQLDat a implementation for a custom collection
class (that implementation is for custom object classes only). Setting
the - user t ypes mapping option to j dbc is invalid.

As an example of custom collection classes being strongly typed, if you define an
Oracle collection MYVARRAY, then JPublisher can generate a MyVar r ay custom
collection class. Using MyVar r ay instances, instead of generic

or acl e. sgl . ARRAY instances, makes it easier to catch errors during compilation
instead of at runtime—for example, if you accidentally assign some other kind of
array into a MyVar r ay variable.

If you do not use custom collection classes, then you would use standard
j ava. sgl . Array instances (or or acl e. sql . ARRAY instances) to map to your
collections.

For more information about JPublisher, see "Using JPublisher to Create Custom
Obiject Classes" on page 8-28, or refer to the Oracle8i JPublisher User’s Guide.

Working with Oracle Collections 10-21



Custom Collection Classes with JPublisher

10-22 JDBC Developer’'s Guide and Reference



11

Result Set Enhancements

Standard JDBC 2.0 features in JDK 1.2.x include enhancements to result set
functionality—processing forward or backward, positioning relatively or absolutely,
seeing changes to the database made internally or externally, and updating result
set data and then copying the changes to the database.

This chapter discusses these features, including the following topics:

Overview

Creating Scrollable or Updatable Result Sets

Positioning and Processing in Scrollable Result Sets
Updating Result Sets

Fetch Size

Refetching Rows

Seeing Database Changes Made Internally and Externally

Summary of New Methods for Result Set Enhancements

The Oracle JDBC drivers also include extensions to support these features in a JIDK
1.1.x environment.

For more general and conceptual information about JDBC 2.0 result set
enhancements, refer to the Sun Microsystems JDBC 2.0 API specification.

Result Set Enhancements 11-1



Overview

Overview

This section provides an overview of JDBC 2.0 result set functionality and
categories, and some discussion of implementation requirements for the Oracle

JDBC drivers.

Result Set Functionality and Result Set Categories Supported in JDBC 2.0

Result set functionality in JDBC 2.0 includes enhancements for scrollability and
positioning, sensitivity to changes by others, and updatability.

« Scrollability, positioning, and sensitivity are determined by the result set type.
« Updatability is determined by the concurrency type.

Specify the desired result set type and concurrency type when you create the
statement object that will produce the result set.

Together, the various result set types and concurrency types provide for six different
categories of result set.

This section provides an overview of these enhancements, types, and categories.

Scrollability, Positioning, and Sensitivity

Scrollability refers to the ability to move backward as well as forward through a
result set. Associated with scrollability is the ability to move to any particular
position in the result set, through either relative positioning or absolute positioning.

Relative positioning allows you to move a specified number of rows forward or
backward from the current row. Absolute positioning allows you to move to a
specified row number, counting from either the beginning or the end of the result
set.

Under JDBC 1.0 (in JDK 1.1.x) you can scroll only forward, using the next ()
method as described in "Process the Result Set" on page 3-11, and there is no
positioning functionality. You can start only at the beginning and iterate
row-by-row until the end.

Under JDBC 2.0 (in JDK 1.2.x), scrollable/positionable result sets are also available.

When creating a scrollable/positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set.

11-2 JDBC Developer’s Guide and Reference



Overview

A sensitive result set can see changes made to the database while the result set is
open, providing a dynamic view of the underlying data. Changes made to the
underlying columns values of rows in the result set are visible.

An insensitive result set is not sensitive to changes made to the database while the
result set is open, providing a static view of the underlying data. You would need to
retrieve a new result set to see changes made to the database.

Sensitivity is not an option in a JDBC 1.0/non-scrollable result set.

Result Set Types for Scrollability and Sensitivity

When you create a result set under JDBC 2.0 functionality, you must choose a
particular result set type to specify whether the result set is scrollable/positional
and sensitive to underlying database changes.

If the JDBC 1.0 functionality is all you desire, JDBC 2.0 continues to support this
through the forward-only result set type. A forward-only result set cannot be
sensitive.

If you want a scrollable result set, you must also specify sensitivity. Specify the
scroll-sensitive type for the result set to be scrollable and sensitive to underlying
changes. Specify the scroll-insensitive type for the result set to be scrollable but not
sensitive to underlying changes.

To summarize, the following three result set types are available with JDBC 2.0:

« forward-only (JDBC 1.0 functionality—not scrollable, not positionable, and not
sensitive)

« scroll-sensitive (scrollable and positionable; also sensitive to underlying
database changes)

« scroll-insensitive (scrollable and positionable but not sensitive to underlying
database changes)

Note: The sensitivity of a scroll-sensitive result set (how often it is
updated to see external changes) is affected by fetch size. See Fetch
Size on page 11-24 and "Oracle Implementation of Scroll-Sensitive
Result Sets" on page 11-30.

Result Set Enhancements 11-3



Overview

Updatability

Updatability refers to the ability to update data in a result set and then (presumably)
copy the changes to the database. This includes inserting new rows into the result
set or deleting existing rows.

Updatability might also require database write locks to mediate access to the
underlying database. Because you cannot have multiple write locks concurrently,
updatability in a result set is associated with concurrency in database access.

Result sets can optionally be updatable under JDBC 2.0, but not under JDBC 1.0.

Note: Updatability is independent of scrollability and sensitivity,
although it is typical for an updatable result set to also be scrollable
so that you can position it to particular rows that you want to
update or delete.

Concurrency Types for Updatability

The concurrency type of a result set determines whether it is updatable. Under
JDBC 2.0, the following concurrency types are available:

« updatable (updates, inserts, and deletes can be performed on the result set and
copied to the database)

« read-only (the result set cannot be modified in any way)

Summary of Result Set Categories

Because scrollability and sensitivity are independent of updatability, the three result
set types and two concurrency types combine for a total of six result set categories:

« forward-only/read-only

« forward-only/updatable

« scroll-sensitive/read-only

« scroll-sensitive/updatable

« scroll-insensitive/read-only

« scroll-insensitive/updatable

11-4 JDBC Developer’s Guide and Reference



Overview

Note: A forward-only updatable result set has no positioning
functionality. You can only update rows as you iterate through
them with the next () method.

Oracle JDBC Implementation Overview for Result Set Enhancements

This section discusses key aspects of the Oracle JDBC implementation of result set
enhancements for scrollability—through use of a client-side cache—and for
updatability—through use of ROWIDs.

It is permissible for customers to implement their own client-side caching
mechanism, and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability
Because the underlying Oracle8i server does not support scrollable cursors, Oracle
JDBC must implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Important: Because all rows of any scrollable result set are stored
in the client-side cache, a situation where the result set contains
many rows, many columns, or very large columns might cause the
client-side Java virtual machine to fail. Do not specify scrollability for
a large result set.

Scrollable cursors in the Oracle server, and therefore a server-side cache, will be
supported in a future Oracle release.

Oracle JDBC Implementation for Result Set Updatability

To support updatability, Oracle JDBC uses ROWIDs to uniquely identify database
rows that appear in a result set. For every query into an updatable result set, the
Oracle JDBC driver automatically retrieves the ROWID along with the columns you
select.

Note: Client-side caching is not required by updatability in and of
itself. In particular, a forward-only updatable result set will not
require a client-side cache.

Result Set Enhancements 11-5



Overview

Implementing a Custom Client-Side Cache for Scrollability

There is some flexibility in how to implement client-side caching in support of JDBC
2.0 scrollable result sets.

Although Oracle JDBC provides a complete implementation, it also supplies an
interface, Or acl eResul t Set Cache, that you can implement as desired:

public interface O acl eResul t Set Cache
{

/**

* Save the data in the i-th rowand j-th col um.

*/

public void put (int i, int j, Cbject value) throws | CException;

/**

* Return the data stored in the i-th rowand j-th col um.
*/

public (bject get (int i, int j) throws | CException;

/**

* Renove the i-th row

*/

public void renove (int i) throws | CException;

/**
* Renove the data stored ini-th rowand j-th colum
*/
public void renove (int i, int j) throws |CException;

/**
* Renove all data fromthe cache.
*/
public void clear () throws | CExcepti on;

/**
* dose the cache.
*/
public void close () throws | CExcepti on;

11-6 JDBC Developer’s Guide and Reference



Overview

If you implement this interface with your own class, your application code must
instantiate your class and then use the set Resul t Set Cache() method of an
Oracl eSt at erent , Or acl ePr epar edSt at enent, or

Or acl eCal | abl eSt at enent object to set the caching mechanism to use your
implementation. Following is the method signature:

« Vvoid setResultSetCache(O acl eResul t Set Cache cache)
throws SQLException

Call this method prior to executing a query. The result set produced by the query
will then use your specified caching mechanism.

Result Set Enhancements 11-7



Creating Scrollable or Updatable Result Sets

Creating Scrollable or Updatable Result Sets

Under JDBC 1.0, no special attention is required in creating and using a result set. A
result set is produced automatically to store the results of a query, and no result set
types or categories must be specified, because there is only one kind of result set
available—forward-only/read-only. For example (given a connection object conn):

Satenent stnt = conn.createStatenent();
Resul t Set rs = stmt. execut eQuer y(" SELECT enpno, sal FROMenp");

In using JDBC 2.0 result set enhancements, however, you may specify the result set
type (for scrollability and sensitivity) and the concurrency type (for updatability)
when you create a generic statement or prepare a prepared statement or callable
statement that will execute a query.

(Note, however, that callable statements are intended to execute stored procedures
and functions and rarely return a result set. Still, the callable statement class is a
subclass of the prepared statement class and so inherits this functionality.)

This section discusses the creation of result sets to use JDBC 2.0 enhancements.

Specifying Result Set Scrollability and Updatability

Under JDBC 2.0, Connect i on classes have new cr eat eSt at enent (),
prepareSt at emrent (), and pr epar eCal | () method signatures that take a result
set type and a concurrency type as input:

« Statenent createStatenent
(int resultSetType, int resultSetConcurrency)

« PreparedStatement prepareStat enent
(String sqgl, int resultSetType, int resultSetConcurrency)

« Callabl eStatenment preparecCall
(String sqgl, int resultSetType, int resultSetConcurrency)

The statement objects created will have the intelligence to produce the appropriate
kind of result sets.

You can specify one of the following static constant values for result set type:
« Resul t Set. TYPE_FORWARD ONLY

« ResultSet. TYPE SCROLL_| NSENSI Tl VE

« ResultSet. TYPE SCROLL_SENSI Tl VE

11-8 JDBC Developer’s Guide and Reference



Creating Scrollable or Updatable Result Sets

Note: See "Oracle Implementation of Scroll-Sensitive Result Sets"
on page 11-30 for information about possible performance impact.

And you can specify one of the following static constant values for concurrency
type:

« Resul t Set. CONCUR_READ ONLY
« Result Set. CONCUR_UPDATABLE

Note: If you are using the Oracle JDBC drivers in a JDK 1.1.x
environment , the static constants discussed here are part of the
Oracle extensions, belonging only to the Or acl eResul t Set class,
which you must specify. For example:

Q acl eResul t Set . TYPE SCROLL_ SENS TI VE
instead of:

Resul t Set . TYPE_SCROLL_SENS! TI VE

After creating a St at enent, Pr epar edSt at enent , or Cal | abl eSt at ement
object, you can verify its result set type and concurrency type by calling the
following methods on the statement object:

« int getResultSetType() throws SQLException
« int getResultSetConcurrency() throws SQ.Exception
Example Following is an example of a prepared statement object that specifies a

scroll-sensitive and updatable result set for queries executed through that statement
(where conn is a connection object):

Prepar edSt at enent pstnt = conn. prepar eX at enent
("SELECT enpno, sal FROM enp WHERE enpno = ?",
Resul t Set. TYPE SCROLL_SENSI TI VE, Resul t Set . CONOUR_UPDATABLE) ;

pstn.setSring(1, "28959");
Result Set rs = pstnt. execut eQuery();

Result Set Enhancements 11-9



Creating Scrollable or Updatable Result Sets

Result Set Limitations and Downgrade Rules

Some types of result sets are not feasible for certain kinds of queries. If you specify
an unfeasible result set type or concurrency type for the query you execute, the
JDBC driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement
is executed, with the driver issuing a SQLWar ni ng on the statement object if the
desired result set type or concurrency type is not feasible. The SQLWAr ni ng object
will contain the reason why the requested type was not feasible. Check for warnings
to verify whether you received the type of result set that you requested, or call the
methods described in "Verifying Result Set Type and Concurrency Type" on

page 11-12.

Result Set Limitations

The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines will result in the JDBC driver choosing an alternative result
set type or concurrency type.

To produce an updatable result set:

= A query can select from only a single table and cannot contain any join
operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

« A query cannot use "SELECT * ". (But see the workaround below.)

« A query must select table columns only. It cannot select derived columns or
aggregates such as the SUMor MAX of a set of columns.

« A query cannot use ORDER BY.

To produce a scroll-sensitive result set:

« A query cannot use "SELECT * ". (But see the workaround below.)
= A query can select from only a single table.

« A query cannot use ORDER BY.

In fact, you cannot use ORDER BY for any result set where you will want to refetch
rows. This applies to scroll-insensitive/updatable result sets as well as
scroll-sensitive result sets. (See "Summary of New Methods for Result Set
Enhancements" on page 11-32 for general information about refetching.)

11-10 JDBC Developer’'s Guide and Reference



Creating Scrollable or Updatable Result Sets

Workaround As a workaround for the "SELECT *" limitation, you can use table
aliases as in the following example:

SHECTt.* FRMTABLE t ...

Hint: There is a simple way to determine if your query will
probably produce a scroll-sensitive or updatable result set: If you
can legally add a ROWID column to the query list, then the query is
probably suitable for either a scroll-sensitive or an updatable result
set. (You can try this out using SQL*Plus, for example.)

Result Set Downgrade Rules
If the specified result set type or concurrency type is not feasible, the Oracle JDBC
driver uses the following rules in choosing alternate types:

« If the specified result set type is TYPE_SCROLL_SENSI Tl VE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_SCROLL_I NSENSI TI VE.

« If the specified (or downgraded) result set type is
TYPE_SCROLL_I NSENSI TI VE, but the JDBC driver cannot fulfill that request,
then the driver attempts a downgrade to TYPE_FORWARD_ONLY.

Furthermore:

« Ifthe specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver
cannot fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ ONLY.

Notes:

« Criteria that would prevent the JDBC driver from fulfilling the
result set type specifications are listed in "Result Set
Limitations" on page 11-10.

« Any manipulations of the result set type and concurrency type
by the JDBC driver are independent of each other.

Result Set Enhancements  11-11



Creating Scrollable or Updatable Result Sets

Verifying Result Set Type and Concurrency Type

After a query has been executed, you can verify the result set type and concurrency
type that the JDBC driver actually used, by calling methods on the result set object.
« int getType() throws SQLException

This method returns an i nt value for the result set type used for the query.
Resul t Set . TYPE_FORWARD ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or

Resul t Set . TYPE_SCROLL_I NSENSI Tl VE are the possible values.

« int getConcurrency() throws SQLException

This method returns an i nt value for the concurrency type used for the query.
Resul t Set . CONCUR_READ ONLY or Resul t Set . CONCUR_UPDATABLE are
the possible values.

11-12 JDBC Developer’'s Guide and Reference



Positioning and Processing in Scrollable Result Sets

Positioning and Processing in Scrollable Result Sets

Scrollable result sets (result set type TYPE_SCROLL_SENSI Tl VE or
TYPE_SCROLL_I NSENSI Tl VE) allow you to iterate through, them either forward
or backward, and to position the result set to any desired row.

This section discusses positioning within a scrollable result set and how to process a
scrollable result set backward, instead of forward.

For a complete sample application demonstrating this functionality, see "Positioning
in a Result Set—ResultSet2.java" on page 17-43.

Positioning in a Scrollable Result Set

In a scrollable result set, you can use several result set methods to move to a desired
position and to check the current position.

Methods for Moving to a New Position

The following result set methods are available for moving to a new position in a
scrollable result set:

« void beforeFirst() throws SQLException

« void afterLast() throws SQ.Exception

« Dboolean first() throws SQLException

« boolean last() throws SQLException

« Dboolean absolute(int row) throws SQLException

« boolean relative(int row) throws SQLException

Note: You cannot position a forward-only result set. Any attempt
to position it or to determine the current position will result in a
SQL exception.

beforeFirst() Method Positions to before the first row of the result set, or has no effect
if there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going forward, and is the default initial position for any kind of result set.

You are outside the result set bounds after a bef or eFi r st () call. There is no valid
current row, and you cannot position relatively from this point.

Result Set Enhancements 11-13



Positioning and Processing in Scrollable Result Sets

afterLast() Method Positions to after the last row of the result set, or has no effect if
there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going backward.

You are outside the result set bounds after an af t er Last () call. There is no valid
current row, and you cannot position relatively from this point.

first() Method Positions to the first row of the result set, or returns f al se if there are
no rows in the result set.

last() Method Positions to the last row of the result set, or returns f al se if there are
no rows in the result set.

absolute() Method Positions to an absolute row from either the beginning or end of
the result set. If you input a positive number, it positions from the beginning; if you
input a negative number, it positions from the end. This method returns f al se if
there are no rows in the result set.

Attempting to move forward beyond the last row, such as an absol ut e( 11) call if
there are 10 rows, will position to after the last row, having the same effect as an
af terLast () call.

Attempting to move backward beyond the first row, such as an absol ut e(- 11)
call if there are 10 rows, will position to before the first row, having the same effect
asabeforeFirst() call

Note: Calling absol ut e(1) isequivalentto callingfirst();
calling absol ut e(- 1) isequivalentto calling | ast () .

relative() Method Moves to a position relative to the current row, either forward if you
input a positive number or backward if you input a negative number, or returns
f al se if there are no rows in the result set.

The result set must be at a valid current row for use of ther el ati ve() method.

Attempting to move forward beyond the last row will position to after the last row,
having the same effect as an af t er Last () call.

Attempting to move backward beyond the first row will position to before the first
row, having the same effect as a bef or eFi r st () call.

Arel ative(0) callisvalid but has no effect.

11-14 JDBC Developer’'s Guide and Reference



Positioning and Processing in Scrollable Result Sets

Important: You cannot position relatively from before the first row
(which is the default initial position) or after the last row.
Attempting relative positioning from either of these positions
would result in a SQL exception.

Methods for Checking the Current Position

The following result set methods are available for checking the current position in a
scrollable result set:

bool ean i sBeforeFirst() throws SQLException
Returns t r ue if the position is before the first row.

bool ean i sAfterLast() throws SQLException
Returns t r ue if the position is after the last row.

bool ean isFirst() throws SQ.Exception
Returns t r ue if the position is at the first row.

bool ean isLast() throws SQLException
Returns t r ue if the position is at the last row.

int getRow() throws SQ.Exception

Returns the row number of the current row, or returns 0 if there is no valid
current row.

Note: The boolean methods—i sFirst (),i sLast(),
i sAfterFirst(),andi sAfterLast()—allreturnfal se (and
do not throw an exception) if there are no rows in the result set.

Result Set Enhancements 11-15



Positioning and Processing in Scrollable Result Sets

Processing a Scrollable Result Set

In a scrollable result set you can iterate backward instead of forward as you process
the result set. The following methods are available:

« bool ean next () throws SQ.Exception
« bool ean previous() throws SQ.Exception

The previ ous() method works similarly to the next () method, in that it returns
t r ue as long as the new current row is valid, and f al se as soon as it runs out of
rows (has passed the first row).

Backward versus Forward Processing

You can process the entire result set going forward, using the next () method as in
JDBC 1.0. This is documented in "Process the Result Set" on page 3-11. The default
initial position in the result set is before the first row, appropriately, but you can call
the bef or eFi r st () method if you have moved elsewhere since the result set was
created.

To process the entire result set going backward, call af t er Last (), then use the
previ ous() method. For example (where conn is a connection object):

/* NOTE The specified concurrency type, GONOUR UPDATABLE, is not rel evant to
this exanple. */

Satement stnmt = conn. creat eX at enent
(Resul t Set. TYPE SCRALL_SENS TI VE, Resul t Set . GONOUR_UPDATABLE) ;

Result Set rs = stmt. execut eQuer y(" SELECT enpno, sal FROMenp");
rs.afterLast();

vhile (rs.previous())

{

}

Systemout. printin(rs.getSring("enpno") +" " + rs.getFoat("sal"));

Unlike relative positioning, you can (and typically do) use next () from before the
first row and pr evi ous() from after the last row. You do not have to be at a valid
current row to use these methods.

11-16 JDBC Developer’'s Guide and Reference



Positioning and Processing in Scrollable Result Sets

Note: In anon-scrollable result set, you can process only with the
next () method. Attempting to use the pr evi ous() method will
cause a SQL exception.

Presetting the Fetch Direction

The JDBC 2.0 standard allows the ability to pre-specify the direction, known as the
fetch direction, for use in processing a result set. This allows the JDBC driver to
optimize its processing. The following result set methods are specified:

« void setFetchDirection(int direction) throws SQLException
« int getFetchDirection() throws SQLException

With release 8.1.6, however, the Oracle JDBC drivers support only the forward
preset value, which you can specify by inputting the Resul t Set . FETCH_FORWARD
static constant value.

The values Resul t Set . FETCH_REVERSE and Resul t Set . FETCH_UNKNOWN are
not supported—attempting to specify them causes a SQL warning, and the settings
are ignored.

Result Set Enhancements 11-17



Updating Result Sets

Updating Result Sets

A concurrency type of CONCUR_UPDATABLE allows you to update rows in the result
set, delete rows from the result set, or insert rows into the result set.

After you perform an UPDATE or | NSERT operation in a result set, you propagate
the changes to the database in a separate step that you can skip if you want to
cancel the changes.

A DELETE operation in a result set, however, is immediately executed (but not
necessarily committed) in the database as well.

For sample applications demonstrating this functionality, see "Inserting and
Deleting Rows in a Result Set—ResultSet3.java" on page 17-47 and "Updating Rows
in a Result Set—ResultSet4.java" on page 17-50.

Note: When using an updatable result set, it is typical to also
make it scrollable. This allows you to position to any row that you
want to change. With a forward-only updatable result set, you can
change rows only as you iterate through them with the next ()
method.

Performing a DELETE Operation in a Result Set

The result set del et eRow() method will delete the current row. Following is the
method signature:

void del eteRow() throws SQ.Exception

Important: Unlike UPDATE and | NSERT operations in a result set,
which require a separate step to propagate the changes to the
database, a DELETE operation in a result set is immediately
executed in the corresponding row in the database as well.

Once you call del et eRow( ) , the changes will be made permanent
with the next transaction COMM T operation. Remember also that
by default, the auto-commit flag is set to t r ue. Therefore, unless
you override this default, any del et eRow() operation will be
executed and committed immediately.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except bef or eFi rst () and af t er Last (), which

11-18 JDBC Developer’'s Guide and Reference



Updating Result Sets

Performing an

do not go to a valid current row), and then delete that row, as in the following
example (presuming a result set r s):

rs. absol ute(5);
rs. del eteRow();

See "Positioning in a Scrollable Result Set" on page 11-13 for information about the
positioning methods.

Important: In a forward-only result set in release 8.1.6, the deleted
row remains in the result set object even after it has been deleted
from the database.

In a scrollable result set, by contrast, a DELETE operation is evident
in the local result set object—the row would no longer be in the
result set after the DELETE. The row preceding the deleted row
becomes the current row, and row numbers of subsequent rows are
changed accordingly.

Refer to "Seeing Internal Changes" on page 11-27 for more
information.

UPDATE Operation in a Result Set

Performing a result set UPDATE operation requires two separate steps to first update
the data in the result set and then copy the changes to the database.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except bef or eFi rst () and af t er Last (), which
do not go to a valid current row), and then update that row as desired.

See "Positioning in a Scrollable Result Set" on page 11-13 for information about the
positioning methods.

Here are the steps for updating a row in the result set and database:

1. Call the appropriate updat eXXX() methods to update the data in the columns
you want to change.

With JDBC 2.0, a result set object has an updat e XXX() method for each
datatype, as with the set XXX() methods previously available for updating the
database directly.

Result Set Enhancements 11-19



Updating Result Sets

Each of these methods takes an i nt for the column number or a string for the
column name and then an item of the appropriate datatype to set the new
value. Following are a couple of examples for a result setr s:

rs.updateSring(l, "nystring");
rs. updat eH oat (2, 10000. Of);

Call the updat eRow( ) method to copy the changes to the database (or the
cancel RowUpdat es() method to cancel the changes).

Once you call updat eRow( ) , the changes are executed and will be made
permanent with the next transaction COVMM T operation. Be aware that by
default, the auto-commit flag is set to t r ue so that any executed operation is
committed immediately.

If you choose to cancel the changes before copying them to the database, call the
cancel Rowpdat es() method instead. This will also revert to the original
values for that row in the local result set object. Note that once you call the
updat eRow( ) method, the changes are written to the transaction and cannot
be canceled unless you roll back the transaction (auto-commit must be disabled
to allow a ROLLBACK operation).

Positioning to a different row before calling updat eRow( ) also cancels the
changes and reverts to the original values in the result set.

Before calling updat eRow( ) , you can call the usual get XXX() methods to
verify that the values have been updated correctly. These methods take an i nt
column index or string column name as input. For example:

float nyfloat = rs.getH oat(2);
.. . process myfloat to see ifit's appropriate

Note: In release 8.1.6, result set UPDATE operations are visible in
the local result set object for all result set types (forward-only,
scroll-sensitive, and scroll-insensitive).

Refer to "Seeing Internal Changes" on page 11-27 for more
information.

11-20 JDBC Developer’'s Guide and Reference



Updating Result Sets

Performing an

Example Following is an example of a result set UPDATE operation that is also
copied to the database. The tenth row is updated. (The column number is used to
specify column 1, and the column name—sal — is used to specify column 2.)

Satement stmi = conn. creat eS at enent
(Resul t Set. TYPE SCRALL_SENS TI VE, Resul t Set . GONOUR_UPDATABLE) ;

Resul t Set rs = stmt. execut eQuer y(" SELECT enpno, sal FROMenp");

if (rs.absol ute(10)) Il (returns false if row does not exist)

{
rs.updateString(1, "28959");

rs. updat eH oat ("sal ", 100000. Of );
rs. updat eRow() ;

/1 Changes will be nade permanent with the next GOMM T operati on.

INSERT Operation in a Result Set

Result set | NSERT operations use what is called the result set insert-row, which is a
staging area that holds the data for the inserted row until it is copied to the
database. You must explicitly move to this row to write the data that will be
inserted.

As with UPDATE operations, result set | NSERT operations require separate steps to
first write the data to the insert-row and then copy it to the database .

Following are the steps in executing a result set | NSERT operation.

1. Move to the insert-row by calling the result set roveTol nsert Row() method.

Note: The result set will remember the current position prior to
the noveTol nsert Row() call. Afterward, you can go back to it
with amoveToCur r ent Row() call.

2. As with UPDATE operations, use the appropriate updat eXXX() methods to
write data to the columns. For example:

rs.updateSring(l, "nystring");
rs. updat eH oat (2, 10000. Of);

Result Set Enhancements 11-21



Updating Result Sets

(Note that you can specify a string for column name, instead of an integer for
column number.)

Important: Each column value in the insert-row is undefined until
you call the updat eXXX() method for that column. You must call
this method and specify a non-null value for all non-nullable
columns, or else attempting to copy the row into the database will
result in a SQL exception.

It is permissible, however, to not call updat eXXX() for a nullable
column. This will result in a value of nul | .

3. Copy the changes to the database by calling the result seti nsert Row()
method.

Once you call i nsert Row( ) , the insert is executed and will be made
permanent with the next transaction COMM T operation.

Positioning to a different row before calling i nsert Row() cancels the insert
and clears the insert-row.

Before calling i nsert Row() you can call the usual get XXX() methods to
verify that the values have been set correctly in the insert-row. These methods
take ani nt column index or string column name as input. For example:

float nyfloat = rs.getH oat(2);
.. . process myfloat to see ifit's appropriate

Note: Inrelease 8.1.6, no result set type (neither scroll-sensitive,
scroll-insensitive, nor forward-only) can see a row inserted by a
result set | NSERT operation.

Refer to "Seeing Internal Changes" on page 11-27 for more
information.

11-22 JDBC Developer’'s Guide and Reference



Updating Result Sets

Example The following example performs a result set | NSERT operation, moving to
the insert-row, writing the data, copying the data into the database, and then
returning to what was the current row prior to going to the insert-row. (The column
number is used to specify column 1, and the column name—sal — is used to
specify column 2.)

Satement stmi = conn. creat eS at enent
(Resul t Set. TYPE SCRALL_SENS TI VE, Resul t Set . GONOUR_UPDATABLE) ;

Result Set rs = stmt. execut eQuer y(" SELECT enpno, sal FROMenp");

rs. noveTol nsert Row() ;

rs.updateString(1, "28959");

rs. updat eH oat ("sal ", 100000. Of );

rs.insert Row();

/1 Changes will be nade pernmanent with the next GOMM T operati on.
rs. noveToQurrentFow(); // Go back to where we came from..

Update Conflicts

It is important to be aware of the following facts regarding updatable result sets
with the release 8.1.6 JDBC drivers:

« Thedrivers do not enforce write locks for an updatable result set.

=« Thedrivers do not check for conflicts with a result set DELETE or UPDATE
operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

The Oracle JDBC drivers use the ROWID to uniquely identify a row in a database
table. As long as the ROWID is still valid when a driver tries to send an UPDATE or
DELETE operation to the database, the operation will be executed.

The driver will not report any changes made by another committed transaction.
Any conflicts are silently ignored and your changes will overwrite the previous
changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when executing the
query that produces the result set. This will avoid conflicts, but will also prevent
simultaneous access to the data. Only a single write lock can be held concurrently
on a data item.

Result Set Enhancements 11-23



Fetch Size

Fetch Size

By default, when Oracle JDBC executes a query, it receives the result set 10 rows at a
time from the database cursor. This is the default Oracle row-prefetch value. You can
change the number of rows retrieved with each trip to the database cursor by
changing the row-prefetch value (see "Oracle Row Prefetching" on page 12-20 for
more information).

JDBC 2.0 also allows you to specify the number of rows fetched with each database
round trip for a query, and this number is referred to as the fetch size. In Oracle
JDBC, the row-prefetch value is used as the default fetch size in a statement object.
Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries executed through that statement object.

Fetch size is also used in a result set. When the statement object executes a query,
the fetch size of the statement object is passed to the result set object produced by
the query. However, you can also set the fetch size in the result set object to override
the statement fetch size that was passed to it. (Also note that changes made to a
statement object’s fetch size after a result set is produced will have no affect on that
result set.)

The result set fetch size, either set explicitly, or by default equal to the statement
fetch size that was passed to it, determines the number of rows that are retrieved in
any subsequent trips to the database for that result set. This includes any trips that
are still required to complete the original query, as well as any refetching of data into
the result set. (Data can be refetched, either explicitly or implicitly, to update a
scroll-sensitive or scroll-insensitive/updatable result set. See "Refetching Rows" on
page 11-26.)

Setting the Fetch Size

The following methods are available in all St at ement , Pr epar edSt at ement ,
Cal | abl eSt at enent , and Resul t Set objects for setting and getting the fetch
size:

« void setFetchSize(int rows) throws SQLException
« int getFetchSize() throws SQLException

To set the fetch size for a query, call set Fet chSi ze() on the statement object prior
to executing the query. If you set the fetch size to N, then N rows are fetched with
each trip to the database.

After you have executed the query, you can call set Fet chSi ze() on the result set
object to override the statement object fetch size that was passed to it. This will

11-24 JDBC Developer’'s Guide and Reference



Fetch Size

affect any subsequent trips to the database to get more rows for the original query,
as well as affecting any later refetching of rows. (See "Refetching Rows" on
page 11-26.)

Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

Using the JDBC 2.0 fetch size is fundamentally similar to using the Oracle
row-prefetch value, except that with the row-prefetch value you do not have the
flexibility of distinct values in the statement object and result set object. The row
prefetch value would be used everywhere.

Furthermore, JDBC 2.0 fetch size usage is portable and can be used with other JDBC
drivers. Oracle row-prefetch usage is vendor-specific.

See "Oracle Row Prefetching" on page 12-20 for a general discussion of this Oracle
feature.

Note: Do not mix the JDBC 2.0 fetch size APl and the Oracle row
prefetching API in your application. You can use one or the other,
but not both.

Result Set Enhancements 11-25



Refetching Rows

Refetching Rows

The result set r ef reshRow( ) method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to N rows in the result set, starting with the current row,
where N is the fetch size (described above in "Fetch Size" on page 11-24). This lets
you see the latest updates to the database that were made outside of your result set,
subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your
result set, it does nothing about rows that have been inserted or deleted in the
database since the original query. It ignores rows that have been inserted, and rows
will remain in your result set even after the corresponding rows have been deleted
from the database. When there is an attempt to refetch a row that has been deleted
in the database, the corresponding row in the result set will maintain its original
values.

Following is the r ef r eshRow() method signature:
« void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

With the 8.1.6 release, the r ef r eshRow( ) method is supported for the following
result set categories:

« scroll-sensitive/read-only

« scroll-sensitive/updatable

« scroll-insensitive/updatable

Oracle JDBC might support additional result set categories in future releases.

For a code sample that explicitly refetches data using the r ef r eshRow() method,
see "Refetching Rows in a Result Set—ResultSet6.java" on page 17-55.

Note: Scroll-sensitive result set functionality is implemented
through implicit calls to r ef reshRow( ) . See "Oracle
Implementation of Scroll-Sensitive Result Sets" on page 11-30 for
details.

11-26 JDBC Developer’s Guide and Reference



Seeing Database Changes Made Internally and Externally

Seeing Database Changes Made Internally and Externally

This section discusses the ability of a result set to see the following:

its own changes (DELETE, UPDATE, or | NSERT operations within the result set),
referred to as internal changes

changes made from elsewhere (either from your own transaction outside the
result set, or from other committed transactions), referred to as external changes

Near the end of the section is a summary table.

Note: External changes are referred to as "other’s changes" in the
Sun Microsystems JDBC 2.0 specification.

Seeing Internal Changes

The ability of an updatable result set to see its own changes depends on both the
result set type and the kind of change (UPDATE, DELETE, or | NSERT). This is
discussed at various points throughout the "Updating Result Sets" section
beginning on on page 11-18, and is summarized as follows:

Internal DELETE operations are visible for scrollable result sets (scroll-sensitive
or scroll-insensitive), but are not visible for forward-only result sets.

After you delete a row in a scrollable result set, the preceding row becomes the
new current row, and subsequent row numbers are updated accordingly.

Internal UPDATE operations are always visible, regardless of the result set type
(forward-only, scroll-sensitive, or scroll-insensitive).

Internal | NSERT operations are never visible, regardless of the result set type
(neither forward-only, scroll-sensitive, nor scroll-insensitive).

An internal change being "visible" essentially means that a subsequent get XXX()
call will see the data changed by a preceding updat eXXX() call on the same data
item.

Result Set Enhancements 11-27



Seeing Database Changes Made Internally and Externally

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or

Resul t Set. TYPE_SCROLL_| NSENSI Tl VE).

« Dbool ean ownDel et esAreVisi bl e(int) throws SQLException
« Dbool ean ownUpdat esAreVisi bl e(int) throws SQLException

« Dboolean ownlnsertsAreVisible(int) throws SQLException

Note: When you make an internal change that causes a trigger to
execute, the trigger changes are effectively external changes.
However, if the trigger affects data in the row you are updating,
you will see those changes for any scrollable/updatable result set,
because an implicit row refetch occurs after the update.

Seeing External Changes

Only a scroll-sensitive result set can see external changes to the underlying
database, and it can only see the changes from external UPDATE operations.
Changes from external DELETE or | NSERT operations are never visible.

Note: Any discussion of seeing changes from outside the
enclosing transaction presumes the transaction itself has an
isolation level setting that allows the changes to be visible.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 11-30.

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or

Resul t Set. TYPE_SCROLL_| NSENSI Tl VE).

« Dbool ean othersDel etesAreVisible(int) throws SQLException
« Dbool ean ot hersUpdat esAreVisible(int) throws SQLException

« Dboolean otherslinsertsAreVisible(int) throws SQLException

11-28 JDBC Developer’'s Guide and Reference



Seeing Database Changes Made Internally and Externally

Note: Explicit use of ther ef r eshRow() method, described in
"Refetching Rows" on page 11-26, is distinct from this discussion of
visibility. For example, even though external updates are "invisible"
to a scroll-insensitive result set, you can explicitly refetch rows in a
scroll-insensitive/updatable result set and retrieve external changes
that have been made. "Visibility" refers only to the fact that the
scroll-insensitive/updatable result set would not see such changes
automatically and implicitly.

Visibility versus Detection of External Changes

Regarding changes made to the underlying database by external sources, there are
two similar but distinct concepts with respect to visibility of the changes from your
local result set:

« visibility of changes
« detection of changes

A change being "visible" means that when you look at a row in the result set, you
can see new data values from changes made by external sources to the
corresponding row in the database.

A change being "detected", however, means that the result set is aware that this is a
new value since the result set was first populated.

With release 8.1.6, even when an Oracle result set sees new data (as with an external
UPDATE in a scroll-sensitive result set), it has no awareness that this data has
changed since the result set was populated. Such changes are not "detected".

JDBC 2.0 Dat abaseMet aDat a objects include the following methods to verify this.
Each takes a result set type as input (Resul t Set . TYPE_FORWARD_ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or

Resul t Set. TYPE_SCROLL_| NSENSI Tl VE).

« Dbool ean del etesAreDetected(int) throws SQ.Exception
« bool ean updat esAreDetected(int) throws SQ.Exception
« Dboolean insertsAreDetected(int) throws SQ.Exception

It follows, then, that result set methods specified by JDBC 2.0 to detect
changes—r owDel et ed(), r owUpdat ed() , and r o nsert ed() —will always
return false with the 8.1.6 Oracle JDBC drivers. There is no use in calling them.

Result Set Enhancements 11-29



Seeing Database Changes Made Internally and Externally

Summary of Visibility of Internal and External Changes

Table 11-1 summarizes the discussion in the preceding sections regarding whether a
result set object in the Oracle JDBC implementation can see changes made internally
through the result set itself, and changes made externally to the underlying
database from elsewhere in your transaction or from other committed transactions.

Table 11-1 Visibility of Internal and External Changes for Oracle JDBC

Can See Can See Can See Can See Can See Can See
Internal Internal Internal External External External
Result Set Type DELETE? UPDATE? INSERT? DELETE? UPDATE? INSERT?

forward-only no yes no no no no
scroll-sensitive yes yes no no yes no
scroll-insensitive  yes yes no no no no

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 11-30.

Notes:

« Remember that explicit use of the r ef r eshRow( ) method,
described in "Refetching Rows" on page 11-26, is distinct from
the concept of "visibility" of external changes. This is discussed
in "Seeing External Changes" on page 11-28.

« Remember that even when external changes are "visible", as
with UPDATE operations underlying a scroll-sensitive result set,
they are not "detected". The result set r owDel et ed(),
rowUpdat ed(),and row nsert ed() methods always return
f al se. This is further discussed in "Visibility versus Detection
of External Changes" on page 11-29.

Oracle Implementation of Scroll-Sensitive Result Sets

The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row (as described in
"Positioning in a Scrollable Result Set" on page 11-13), the window consists of the N

11-30 JDBC Developer’'s Guide and Reference



Seeing Database Changes Made Internally and Externally

rows in the result set starting with that row, where N is the fetch size being used by
the result set (see "Fetch Size" on page 11-24). Note that there is no current row, and
therefore no window, when a result set is first created. The default position is before
the first row, which is not a valid current row.

As you move from row to row, the window remains unchanged as long as the
current row stays within that window. However, once you move to a new current
row outside the window, you redefine the window to be the N rows starting with
the new current row.

Whenever the window is redefined, the N rows in the database corresponding to
the rows in the new window are automatically refetched through an implicit call to
the r ef r eshRow() method (described in "Refetching Rows" on page 11-26),
thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set;
they are only visible after the automatic refetches just described.

For a sample application that demonstrates the functionality of a scroll-sensitive
result set, see "Scroll-Sensitive Result Set—ResultSet5.java" on page 17-52.

Note: Because this kind of refetching is not a highly efficient or
optimized methodology, there are significant performance
concerns. Consider carefully before using scroll-sensitive result sets
as currently implemented. There is also a significant tradeoff
between sensitivity and performance. The most sensitive result set
is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However,
this would have a significant impact on the performance of your
application.

Result Set Enhancements 11-31



Summary of New Methods for Result Set Enhancements

Summary of New Methods for Result Set Enhancements

This section summarizes all the new connection, result set, statement, and database
meta data methods added for JDBC 2.0 result set enhancements. These methods are
more fully discussed throughout this chapter.

Modified Connection Methods

Following is an alphabetical summary of modified connection methods that allow
you to specify result set and concurrency types when you create statement objects.

St at ement creat eSt at enent
(int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a generic St at ement object.

Cal | abl eSt at enment prepareCal |
(String sqgl, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a Pr epar edSt at enent object.

Pr epar edSt at enent pr epar eSt at ement
(String sqgl, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a Cal | abl eSt at ement object.

New Result Set Methods

Following is an alphabetical summary of new result set methods for JDBC 2.0 result
set enhancements.

bool ean absolute(int row) throws SQLException
Move to an absolute row position in the result set.
voi d afterLast() throws SQLException

Move to after the last row in the result set (you will not be at a valid current row
after this call).

voi d beforeFirst() throws SQ.Exception

Move to before the first row in the result set (you will not be at a valid current
row after this call).

11-32 JDBC Developer’'s Guide and Reference



Summary of New Methods for Result Set Enhancements

voi d cancel RowUpdat es() throws SQLException

Cancel an UPDATE operation on the current row. (Call this after the
updat eXXX() calls but before the updat eRow() call.)

void del eteRow() throws SQ.Exception
Delete the current row.

bool ean first() throws SQ.LException

Move to the first row in the result set.

int getConcurrency() throws SQLException

Returns an i nt value for the concurrency type used for the query (either
Resul t Set . CONCUR_READ ONLY or Resul t Set . CONCUR_UPDATABLE).

int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip (also available in statement objects).

int getRow() throws SQ.Exception

Returns the row number of the current row. Returns 0 if there is no valid current
row.

int getType() throws SQLException

Returns an i nt value for the result set type used for the query (either
Resul t Set . TYPE_FORWARD ONLY,

Resul t Set. TYPE_SCROLL_SENSI Tl VE, or

Resul t Set. TYPE_SCROLL_| NSENSI Tl VE).

voi d insertRow() throws SQLException

Write a result set | NSERT operation to the database. Call this after calling
updat eXXX() methods to set the data values.

bool ean i sAfterLast() throws SQLException
Returns t r ue if the position is after the last row.

bool ean isBeforeFirst() throws SQ.LException
Returns t r ue if the position is before the first row.

bool ean isFirst() throws SQ.Exception

Returns t r ue if the position is at the first row.

Result Set Enhancements 11-33



Summary of New Methods for Result Set Enhancements

« boolean isLast() throws SQ.Exception
Returns t r ue if the position is at the last row.

« boolean last() throws SQ.Exception
Move to the last row in the result set.

« void noveToCurrent Row() throws SQLException

Move from the insert-row staging area back to what had been the current row
prior to the noveTol nsert Row() call.

« void noveTol nsert Row() throws SQLException
Move to the insert-row staging area to set up a row to be inserted.
« bool ean next () throws SQ.Exception
Iterate forward through the result set.
« bool ean previous() throws SQ.Exception
Iterate backward through the result set.
« void refreshRow() throws SQLException

Refetch the database rows corresponding to the current window in the result
set, to update the data. This is called implicitly for scroll-sensitive result sets.

« boolean relative(int row) throws SQLException

Move to a relative row position, either forward or backward from the current
row.

« void setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when refetching (also available in statement objects).

« Vvoid updateRow() throws SQ.Exception

Write an UPDATE operation to the database after using updat eXXX() methods
to update the data values.

« void updateXXX() throws SQ.Exception

Set or update data values in a row to be updated or inserted. There is an
updat eXXX() method for each datatype. After calling all the appropriate
updat eXXX() methods for the columns to be updated or inserted, call
updat eRow( ) for an UPDATE operation or i nsert Row() for an | NSERT
operation.

11-34 JDBC Developer’'s Guide and Reference



Summary of New Methods for Result Set Enhancements

New Statement Methods

Following is an alphabetical summary of new statement methods for JDBC 2.0
result set enhancements. These methods are available in generic statement,
prepared statement, and callable statement objects.

int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

voi d setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

voi d set Resul t Set Cache( Or acl eResul t Set Cache cache)
t hrows SQLException

Use your own client-side cache implementation for scrollable result sets. Create
your own class that implements the Or acl eResul t Set Cache interface, then
use the set Resul t Set Cache() method to input an instance of this class to
the statement object that will create the result set.

int getResultSetType() throws SQLException

Check the result set type of result sets produced by this statement object (which
was specified when the statement object was created).

i nt getResultSetConcurrency() throws SQLException

Check the concurrency type of result sets produced by this statement object
(which was specified when the statement object was created).

New Database Meta Data Methods

Following is an alphabetical summary of new database meta data methods for
JDBC 2.0 result set enhancements.

bool ean ownDel et esAreVi si bl e(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal DELETE operations.

bool ean ownUpdat esAreVi si bl e(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal UPDATE operations.

Result Set Enhancements 11-35



Summary of New Methods for Result Set Enhancements

« Dboolean ownlnsertsAreVisible(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of its own internal | NSERT operations.

« Dbool ean othersDel etesAreVisible(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external DELETE operation in the database.

« Dbool ean ot hersUpdat esAreVisible(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external UPDATE operation in the database.

« Dboolean otherslinsertsAreVisible(int) throws SQLException

Returns t r ue if, in this JDBC implementation, the specified result set type can
see the effect of an external | NSERT operation in the database.

« Dbool ean del etesAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external DELETE operation occurs in the database. This method
always returns f al se in release 8.1.6.

« Dbool ean updat esAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external UPDATE operation occurs in the database. This method
always returns f al se in release 8.1.6.

« Dboolean insertsAreDetected(int) throws SQ.Exception

Returns t r ue if, in this JDBC implementation, the specified result set type can
detect when an external | NSERT operation occurs in the database. This method
always returns f al se in release 8.1.6.

11-36 JDBC Developer’'s Guide and Reference



12

Performance Extensions

This chapter describes the Oracle performance extensions to the JDBC standard.

In the course of discussing update batching, it also includes a discussion of the
standard update-batching model provided with JDBC 2.0.

This chapter covers the following topics:
« Update Batching

= Additional Oracle Performance Extensions

Note: For a general overview of Oracle extensions and detailed
discussion of Oracle packages and type extensions, see Chapter 5,
"Overview of Oracle Extensions".

Performance Extensions 12-1



Update Batching

Update Batching

You can reduce the number of round trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or | NSERT
statements into a single "batch" and having the whole batch sent to the database and
processed in one trip. This is referred to in this manual as update batching and in the
Sun Microsystems JDBC 2.0 specification as batch updates.

This is especially useful with prepared statements, when you are repeating the same
statement with different bind variables.

With release 8.1.6, Oracle JDBC supports two distinct models for update batching:

« the standard model, supported since release 8.1.6 and implementing the Sun
Microsystems JDBC 2.0 specification, which is referred to as standard update
batching

« the Oracle-specific model, supported since release 8.1.5 and independent of the
Sun Microsystems JDBC 2.0 specification, which is referred to as Oracle update
batching

Note: Itisimportant to be aware that you cannot mix theses
models. In any single application, you can use the syntax of one
model or the other, but not both. The Oracle JDBC driver will throw
exceptions when you mix these syntaxes.

Overview of Update Batching Models

This section compares and contrasts the general models and types of statements
supported for standard update batching and Oracle update batching.

Oracle Model versus Standard Model

Oracle update batching uses a batch value that typically results in implicit processing
of a batch. The batch value is the number of operations you want to batch
(accumulate) for each trip to the database. As soon as that many operations have
been added to the batch, the batch is executed. Note the following:

= You can set a default batch for the connection object, which applies to any
prepared statement executed in that connection.

« For any individual prepared statement object, you can set a statement batch
value that overrides the connection batch value.

12-2 JDBC Developer’'s Guide and Reference



Update Batching

= You can choose to explicitly execute a batch at any time, overriding both the
connection batch value and the statement batch value.

Standard update batching is a manual, explicit model. There is no batch value. You
manually add operations to the batch and then explicitly choose when to execute
the batch.

Oracle update batching is a more efficient model because the driver knows ahead of
time how many operations will be batched. In this sense, the Oracle model is more
static and predictable. With the standard model, the driver has no way of knowing
in advance how many operations will be batched. In this sense, the standard model
is more dynamic in nature.

If you want to use update batching, here is how to choose between the two models:

« Use Oracle update batching if portability is not critical. This will probably result
in the greatest performance improvement.

« Use standard update batching if portability is a higher priority than
performance.

Types of Statements Supported

As implemented by Oracle, update batching is intended for use with prepared
statements, when you are repeating the same statement with different bind
variables. Be aware of the following:

« Oracle update batching supports only Oracle prepared statement objects. In an
Oracle callable statement, both the connection default batch value and the
statement batch value are overridden with a value of 1. In an Oracle generic
statement, there is no statement batch value, and the connection default batch
value is overridden with a value of 1.

Note that because Oracle update batching is vendor-specific, you must actually
use (or cast to) Or acl ePr epar edSt at ement objects, not general
Pr epar edSt at ement objects.

« To adhere to the JDBC 2.0 standard, Oracle’s implementation of standard
update batching supports callable statements and generic statements, as well as
prepared statements. You can migrate standard update batching syntax into an
Oracle JDBC application without difficulty.

= You can batch only UPDATE, | NSERT, or DELETE operations. Executing a batch
that includes an operation that attempts to return a result set will cause an
exception.

Performance Extensions 12-3



Update Batching

Note: The Oracle implementation of standard update batching
does not implement true batching for generic statements and
callable statements. Although Oracle JDBC supports the use of
standard batching syntax for St at ement and

Cal | abl eSt at ement objects, you will see performance
improvement for only Pr epar edSt at emrent objects.

Note that with standard update batching, you can use either standard

Prepar edSt at ement , Cal | abl eSt at enent, and St at ement objects, or
Oracle-specific Or acl ePr epar edSt at enent, Or acl eCal | abl eSt at enent
and Or acl eSt at ement objects.

Oracle Update Batching

The Oracle update batching feature associates a batch value (limit) with each
prepared statement object. With Oracle update batching, instead of the JDBC driver
executing a prepared statement each time its execut eUpdat e() method is called,
the driver adds the statement to a batch of accumulated execution requests. The
driver will pass all the operations to the database for execution once the batch value
is reached. For example, if the batch value is 10, then each batch of 10 operations
will be sent to the database and processed in one trip.

A method in the Or acl eConnect i on class allows you to set a default batch value
for the Oracle connection as a whole, and this batch value is relevant to any Oracle
prepared statement in the connection. For any particular Oracle prepared statement,
amethod in the Or acl ePr epar edSt at enent class allows you to set a statement
batch value that overrides the connection batch value. You can also override both
batch values by choosing to manually execute the pending batch.

Notes:

« Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The JDBC
driver will throw an exception when you mix these syntaxes.

« Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

12-4 JDBC Developer’'s Guide and Reference



Update Batching

Oracle Update Batching Characteristics and Limitations

Note the following limitations and implementation details regarding Oracle update
batching:

« By default, there is no statement batch value, and the connection (default) batch
value is 1.

« Batch values between 5 and 30 tend to be the most effective. Setting a very high
value might even have a negative effect. It is worth trying different values to
verify the effectiveness for your particular application.

= Regardless of the batch value in effect, if any of the bind variables of an Oracle
prepared statement is (or becomes) a stream type, then the Oracle JDBC driver
sets the batch value to 1 and sends any queued requests to the database for
execution.

« The Oracle JDBC driver automatically executes the sendBat ch() method of an
Oracle prepared statement in any of the following circumstances: 1) the
connection receives a COVM T request, either as a result of invoking the
conmi t () method or as a result of auto-commit mode; 2) the statement
receives a cl ose() request; or 3) the connection receives acl ose() request.

Note: A connection COVMM T request, statement close, or
connection close has no effect on a pending batch if you use
standard update batching—only if you use Oracle update batching.

Setting the Connection Batch Value

You can specify a default batch value for any Oracle prepared statement in your
Oracle connection. To do this, use the set Def aul t Execut eBat ch() method of
the Or acl eConnect i on object. For example, the following code sets the default
batch value to 20 for all prepared statement objects associated with the conn
connection object:

((Cracl eConnect i on) conn) . set Def aul t Execut eBat ch( 20) ;
Even though this sets the default batch value for all the prepared statements of the

connection, you can override it by calling set Def aul t Bat ch() on individual
Oracle prepared statements.

The connection batch value will apply to statement objects created after this batch
value was set.

Performance Extensions 12-5



Update Batching

Note that instead of calling set Def aul t Execut eBat ch(), you can set the

def aul t Bat chVal ue Java property if you use a Java Pr oper ti es object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

Setting the Statement Batch Value

Use the following steps to set the statement batch value for a particular Oracle
prepared statement. This will override any connection batch value set using the
set Def aul t Execut eBat ch() method of the Or acl eConnect i on instance for
the connection in which the statement executes.

1. Write your prepared statement and specify input values for the first row:

Prepar edSt at enent ps = conn. prepar e at enent
("I NSERT | NTO dept VALUES (?,2,?2)");
ps.setint (1,12);
ps.setSring (2,"Cacle");
ps.setSring (3,"UA");

2. Castyour prepared statement to an Or acl ePr epar edSt at enent object, and
apply the set Execut eBat ch() method. In this example, the batch size of the
statement is set to 2.

((Cracl ePrepar edS at enent ) ps) . set Execut eBat ch(2) ;

If you wish, insert the get Execut eBat ch() method at any point in the
program to check the default batch value for the statement:

Systemout.println (" Satenent Execute Batch Value " +
((Cracl ePrepar eds at enent ) ps) . get Execut eBat ch()) ;

3. Ifyou send an execute-update call to the database at this point, then no data
will be sent to the database, and the call will return 0.

/1l No data is sent to the database by this call to executelUpdate
Systemout. println ("Nunber of rows updated so far: "
+ ps. execut elpdate ());

4. Ifyou enter a set of input values for a second row and an execute-update, then
the number of batch calls to execut eUpdat e() will be equal to the batch
value of 2. The data will be sent to the database, and both rows will be inserted
in a single round trip.

12-6 JDBC Developer’'s Guide and Reference



Update Batching

ps.setint (1, 11);
ps.setSring (2, "Applications");
ps.setSring (3, "Indonesia");

int rows = ps. executelpdate ();
Systemout. println ("Nunber of rows updated now " + rows);

ps. close ();

Checking the Batch Value

To check the overall connection batch value of an Oracle connection instance, use
the Or acl eConnecti on class get Def aul t Execut eBat ch() method:

Integer batch val = ((Q acl e®nnection)conn). get Def aul t Execut eBat ch() ;
To check the particular statement batch value of an Oracle prepared statement, use
the Or acl ePr epar edSt at ement class get Execut eBat ch() method:

Integer batch val = ((QO acl ePreparedSt at enent ) ps) . get Execut eBat ch() ;

Note: If no statement batch value has been set, then
get Execut eBat ch() will return the connection batch value.

Overriding the Batch Value

If you want to execute accumulated operations before the batch value in effect is
reached, then use the sendBat ch() method of the Or acl ePr epar edSt at enrent
object.

For this example, presume you set the connection batch value to 20. (This sets the
default batch value for all prepared statement objects associated with the
connection to 20.) You could accomplish this by casting your connection to an
Oracl eConnect i on object and applying the set Def aul t Execut eBat ch()
method for the connection, as follows:

((Cracl eConnect i on) conn) . set Def aul t Execut eBat ch (20);

Performance Extensions 12-7



Update Batching

Override the batch value as follows:

1.

Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

Prepar edStat enent ps =
conn. prepareSatenent ("insert into dept values (?, 2, ?)");

ps.setint (1, 32);
ps.setSring (2, "Qacle");
ps.setSring (3, "WSA");

Systemout. println (ps. executelUpdate ());

The batch is not executed at this point. The ps. execut eUpdat e() method
returns "0".

If you enter a set of input values for a second operation and call

execut eUpdat e() again, the data will still not be sent to the database,
because the batch value in effect for the statement is the connection batch value:
20.

ps.setint (1, 33);
ps.setSring (2, "Applications");
ps.setSring (3, "Indonesia");

/1 this batch is still not executed at this point
int rows = ps. executelpdate ();

Systemout. println ("Nunber of rows updated before calling sendBatch: "
+ rows);

Note that the value of r ows in the pri nt | n statement is "0".

If you apply the sendBat ch() method at this point, then the two previously
batched operations will be sent to the database in a single round trip. The
sendBat ch() method also returns the total number of updated rows. This
property of sendBat ch() isused by pri nt| n to print the number of updated
rows.

12-8 JDBC Developer’'s Guide and Reference



Update Batching

/1 Execution of both previously batched executes wll happen
/1 at this point. The nunber of rows updated wll be

/1 returned by sendBat ch.

rows = ((QOacl ePreparedSt at enent ) ps) . sendBat ch ();

Systemout. println ("Nunber of rows updated by cal ling sendBatch: "
+ rows);
ps. close ();

Committing the Changes in Oracle Batching

After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commi t () on the connection object in Oracle batching not only commits
operations in batches that have been executed, but also issues an implicit
sendBat ch() call to execute all pending batches. So commi t () effectively
commits changes for all operations that have been added to a batch.

Update Counts in Oracle Batching

In a non-batching situation, the execut eUpdat e() method of an

Or acl ePrepar edSt at erent object will return the number of database rows
affected by the operation.

In an Oracle batching situation, this method returns the number of rows affected at
the time the method is invoked, as follows:

« Ifanexecut eUpdat e() call results in the operation being added to the batch,
then the method returns a value of 0, because nothing was written to the
database yet.

« Ifan execut eUpdat e() call results in the batch value being reached and the
batch being executed, then the method will return the total number of rows
affected by all operations in the batch.

Similarly, the sendBat ch() method of an Or acl ePr epar edSt at enent object
returns the total number of rows affected by all operations in the batch.

Example: Oracle Update Batching

The following example illustrates how you use the Oracle update batching feature.
It assumes you have imported the or acl e. j dbc. dri ver. * classes.

Performance Extensions 12-9



Update Batching

Qonnection conn =
Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: ", "scott","tiger");

conn. set Aut oConmit (fal se) ;

Prepar edSt at enent ps =
conn. prepareStat enent ("insert into dept values (?, 2, ?2");

/] Change bat ch size for this statenent to 3
((Cracl ePrepar edS at enent ) ps) . set Execut eBat ch (3);

ps.setint (1, 23);

ps.setSring(2, "Sales");

ps.setSring(3, "UA");

ps. execut elpdat e(); //JDBC queues this for later execution

ps.setint (1, 24);

ps.setSring(2, "B ue Sky");

ps.set Sring(3, "Mntana"');

ps. execut elpdat e(); //JDBC queues this for later execution

ps.setint (1, 25);

ps.set Sring(2, "Applications");

ps.setSring(3, "India");

ps. execut elpdat e(); //The queue si ze equal s the batch val ue of 3
/1 JOBC sends the requests to the dat abase

ps.setint (1, 26);

ps.setSring(2, "HR');

ps.set Sring(3, "Mngolia");

ps. execut elpdat e(); //JDBC queues this for later execution

((Oracl ePreparedst at erent ) ps) . sendBat ch(); // JDBC sends the queued request
conn.commt();

ps. cl ose();
For complete sample applications for Oracle update batching, including how to
execute the batch both implicitly and explicitly, see "Oracle Update Batching with

Implicit Execution—SetExecuteBatch.java" on page 17-61 and "Oracle Update
Batching with Explicit Execution—SendBatch.java" on page 17-63.

12-10 JDBC Developer’'s Guide and Reference



Update Batching

Note: Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is deferred
due to batching, then the second will return unexpected results:

UPDATE enp SET name = "Sue" WHERE nane = "Bob";
SELECT nane FRCM enp WHERE nane = " Sue";

Standard Update Batching

With release 8.1.6, Oracle implements the standard update batching model
according to the Sun Microsystems JDBC 2.0 specification. Because it is a JDBC 2.0
feature, it is intended for use in a JDK 1.2.x environment. To use standard update
batching in a JDK 1.1.x environment, you must cast to Oracle statement objects.

This model, unlike the Oracle update batching model, depends on explicitly adding
statements to the batch using an addBat ch() method and explicitly executing the
batch using an execut eBat ch() method. (In the Oracle model, you invoke
execut eUpdat e() as in a non-batching situation, but whether an operation is
added to the batch or the whole batch is executed is typically determined implicitly,
depending on whether a pre-determined batch value is reached.)

Notes:

« Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The Oracle
JDBC driver will throw exceptions when these syntaxes are
mixed.

« Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.

Limitations in the Oracle Implementation of Standard Batching

Note the following limitations and implementation details regarding Oracle’s
implementation of standard update batching:

« InOracle JDBC applications, update batching is intended for use with prepared
statements that are being executed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement
true batching for generic statements and callable statements. Even though

Performance Extensions 12-11



Update Batching

Oracle JDBC supports the use of standard batching syntax for St at ement and
Cal | abl eSt at ement objects, you are unlikely to see performance
improvement.

« Oracle’s implementation of standard update batching does not support stream
types as bind values. (This is also true of Oracle update batching.) Any attempt
to use stream types will result in an exception.

Adding Operations to the Batch

When any statement object is first created, its statement batch is empty. Use the
standard addBat ch() method to add an operation to the statement batch. This
method is specified in the standard j ava. sql . St at emrent

Pr epar edSt at enent , and Cal | abl eSt at enent interfaces, which are
implemented by classes or acl e. j dbc. dri ver. Or acl eSt at enent,

Or acl ePrepar edSt at enent , and Or acl eCal | abl eSt at enent, respectively.

For a St at enent object (or Or acl eSt at enment ), the addBat ch() method takes a
Java string with a SQL operation as input. For example (assume a Connect i on
instance conn):

Satenent stnt = conn.createStatenent();

stmtaddBatch('INSERT INTO emp VALUES(1000, 'Joe Jones)");
stmtaddBatch('INSERT INTO dept VALUES(260, 'Sales)");
stmtaddBatch('INSERT INTO emp_dept VALUES(1000, 260)");

At this point, three operations are in the batch.

(Remember, however, that in the Oracle implementation of standard update
batching, you will probably see no performance improvement in batching generic
statements.)

For prepared statements, update batching is used to batch multiple executions of
the same statement with different sets of bind parameters. For a

Prepar edSt at ement or Or acl ePr epar edSt at ement object, the addBat ch()
method takes no input—it simply adds the operation to the batch using the bind
parameters last set by the appropriate set XXX() methods. (This is also true for
Cal | abl eSt at ement or Or acl eCal | abl eSt at enent objects, but remember
that in the Oracle implementation of standard update batching, you will probably
see no performance improvement in batching callable statements.)

12-12 JDBC Developer’s Guide and Reference



Update Batching

For example (again assuming a Connect i on instance conn):

PreparedStat enent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setint(1, 2000);
pstm.setSring(2, "Mlo Minford");
pst m . addBat ch();

pstn.setint(1, 3000);
pstnm.setSring(2, "Sulu S npson");
pst m . addBat ch();

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated executions of a single prepared statement, as in this example.

Executing the Batch

To execute the current batch of operations, use the execut eBat ch() method of the
statement object. This method is specified in the standard St at enent interface,
which is extended by the standard Pr epar edSt at enent and

Cal | abl eSt at ement interfaces.

Following is an example that repeats the prepared statement addBat ch() calls
shown previously and then executes the batch:

PreparedStat enent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstn.setint(1, 2000);
pstnm.setSring(2, "Mlo Minford");
pst m . addBat ch();

pstnt.setint(1, 3000);
pstnm.set&ring(2, "Sulu S npson");
pst n . addBat ch();

int[] updateGunts = pstmt.executeBatch();

Performance Extensions 12-13



Update Batching

The execut eBat ch() method returns an i nt array, typically one element per
batched operation, indicating success or failure in executing the batch and
sometimes containing information about the number of rows affected. This is
discussed in "Update Counts in the Oracle Implementation of Standard Batching"
on page 12-15.

Notes:

« After calling addBat ch( ), you must call either
execut eBat ch() orcl ear Bat ch() before a call to
execut eUpdat e() , otherwise there will be a SQL exception.

=« When a batch is executed, operations are performed in the
order in which they were batched.

« The statement batch is reset to empty once execut eBat ch()
has returned.

« AnexecuteBat ch() call closes the statement object’s current
result set, if one exists.

Committing the Changes in the Oracle Implementation of Standard Batching

After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Callingcommi t () commits non-batched operations and commits batched
operations for statement batches that have been executed, but for the Oracle
implementation of standard batching, has no effect on pending statement batches
that have not been executed.

Clearing the Batch

To clear the current batch of operations instead of executing it, use the

cl ear Bat ch() method of the statement object. This method is specified in the
standard St at ement interface, which is extended by the standard

Pr epar edSt at enent and Cal | abl eSt at enent interfaces.

Following is an example that repeats the prepared statement addBat ch() calls
shown previously but then clears the batch under certain circumstances:

PreparedStat enent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

12-14 JDBC Developer’s Guide and Reference



Update Batching

pstnt.setint(1, 2000);
pstm.setSring(2, "Mlo Minford");
pst m . addBat ch();

pstn.setint(1, 3000);
pstnm.set&ring(2, "Sulu S npson");
pst m . addBat ch();

if (...condition...)

{
int[] updateGunts = pstmt.executeBatch();

}

el se

{
pst . cl earBat ch();

Notes:

« After calling addBat ch( ), you must call either
execut eBat ch() orcl ear Bat ch() before a call to
execut eUpdat e() , otherwise there will be a SQL exception.

« AclearBatch() call resets the statement batch to empty.

« Nothing is returned by the cl ear Bat ch() method.

Update Counts in the Oracle Implementation of Standard Batching

If a statement batch is executed successfully (no batch exception is thrown), then the
integer array—or update counts array—returned by the statement

execut eBat ch() call will always have one element for each operation in the
batch. In the Oracle implementation of standard update batching, the values of the
array elements are as follows:

« For a prepared statement batch, it is not possible to know the number of rows
affected in the database by each individual statement in the batch. Therefore, all
array elements have a value of -2. According to the JDBC 2.0 specification, a
value of -2 indicates that the operation was successful but the number of rows
affected is unknown.

Performance Extensions 12-15



Update Batching

« For ageneric statement batch or callable statement batch, the array contains the
actual update counts indicating the number of rows affected by each operation.
The actual update counts can be provided because Oracle JDBC cannot use true
batching for generic and callable statements in the Oracle implementation of
standard update batching.

In your code, upon successful execution of a batch, you should be prepared to
handle either -2’s or true update counts in the array elements. For a successful batch
execution, the array contains either all -2’s or all positive integers.

Note: For information about possible values in the update counts
array for an unsuccessful batch execution, see "Error Handling in the
Oracle Implementation of Standard Batching" on page 12-17.

Example: Standard Update Batching

This example combines the sample fragments in the previous sections,
accomplishing the following steps:

» disabling auto-commit mode (which you should always do when using either
update batching model)

= Creating a prepared statement object

« adding operations to the batch associated with the prepared statement object
« executing the batch

« committing the operations from the batch

Assume a Connect i on instance conn:

conn. set Aut oConmit (fal se) ;

PreparedStat enent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setint(1, 2000);
pstm.setSring(2, "MIlo Minford");
pst m . addBat ch();

pstnt.setint(1, 3000);
pstnm.setSring(2, "Sulu S npson");
pst m . addBat ch();

int[] update®unts = pstm.executeBatch();

12-16 JDBC Developer’s Guide and Reference



Update Batching

conn.commt();

pst . cl ose();

You can process the update counts array to determine if the batch executed
successfully. This is discussed in the next section ("Error Handling in the Oracle
Implementation of Standard Batching").

For a complete sample application, see "Standard Update
Batching—BatchUpdates.java" on page 17-59.

Error Handling in the Oracle Implementation of Standard Batching

If any one of the batched operations fails to complete successfully (or attempts to
return a result set) during an execut eBat ch() call, then execution stops and a
j ava. sql . Bat chUpdat eExcept i on is generated (a subclass of

java. sqgl . SQLExcepti on).

After a batch exception, the update counts array can be retrieved using the

get Updat eCount s() method of the Bat chUpdat eExcept i on object. This
returns an i nt array of update counts, just as the execut eBat ch() method does.
In the Oracle implementation of standard update batching, contents of the update
counts array are as follows after a batch exception:

« For a prepared statement batch, it is not possible to know which operation
failed. The array has one element for each operation in the batch, and each
element has a value of -3. According to the JDBC 2.0 specification, a value of -3
indicates that an operation did not complete successfully. In this case, it was
presumably just one operation that actually failed, but because the JDBC driver
does not know which operation that was, it labels all the batched operations as
failures.

You should always perform a ROLLBACK operation in this situation.

« For ageneric statement batch or callable statement batch, the update counts
array is only a partial array containing the actual update counts up to the point
of the error. The actual update counts can be provided because Oracle JDBC
cannot use true batching for generic and callable statements in the Oracle
implementation of standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.

Performance Extensions 12-17



Update Batching

You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed execution of a batch, you should be prepared to handle
either -3’s or true update counts in the array elements when an exception occurs.
For a failed batch execution, you will have either a full array of -3’s or a partial
array of positive integers.

Intermixing Batched Statements and Non-Batched Statements

You cannot call execut eUpdat e() for regular, non-batched execution of an
operation if the statement object has a pending batch of operations (essentially, if
the batch associated with that statement object is non-empty).

You can, however, intermix batched operations and non-batched operations in a
single statement object if you execute non-batched operations either prior to adding
any operations to the statement batch or after executing the batch. Essentially, you
can call execut eUpdat e() for a statement object only when its update batch is
empty. If the batch is non-empty, then an exception will be generated.

For example, it is legal to have a sequence such as the following:

PreparedStat enent pstm =
conn. prepareSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstn.setint(1, 2000);
pstm.setSring(2, "MIlo Minford");

int scount = pstn.executelpdate(); // QK no operations in pstnt batch
pstnt.setint(1, 3000);

pstnm.setSring(2, "Sulu S npson");

pst nt . addBat ch() ; /1 Now start a batch

pstnt.setInt(1, 4000);

pstnm.setSring(2, "San Leland");

pst n . addBat ch();

int[] bcounts = pstnt.executeBatch();

pstnt.setInt(1, 5000);
pstn.setSring(2, "Any Feiner");

int scount = pstnt.executelpdate(); // CK pstm batch was executed

12-18 JDBC Developer’s Guide and Reference



Update Batching

Intermixing non-batched operations on one statement object and batched
operations on another statement object within your code is permissible. Different
statement objects are independent of each other with regards to update batching
operations. A COMM T request will affect all non-batched operations and all
successful operations in executed batches, but will not affect any pending batches.

Performance Extensions 12-19



Additional Oracle Performance Extensions

Additional Oracle Performance Extensions

In addition to update batching, discussed previously, Oracle JDBC drivers support
the following extensions that improve performance by reducing round trips to the
database:

« prefetching rows

This reduces round trips to the database by fetching multiple rows of data each
time data is fetched—the extra data is stored in client-side buffers for later
access by the client. The number of rows to prefetch can be set as desired.

« specifying column types

This avoids an inefficiency in the normal JDBC protocol for performing and
returning the results of queries.

« suppressing database metadata TABLE REMARKS columns
This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the

remar ksReport i ng flag and default values for row prefetching and update
batching. For more information, see "Specifying a Database URL and Properties
Object" on page 3-6.

Oracle Row Prefetching

Oracle JDBC drivers include extensions that allow you to set the number of rows to
prefetch into the client while a result set is being populated during a query. This
feature reduces the number of round trips to the server.

Note: With JDBC 2.0, the ability to preset the fetch size has
become standard functionality. For information about the standard
implementation of this feature, see "Fetch Size" on page 11-24.

Setting the Oracle Prefetch Value

Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row-prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N

12-20 JDBC Developer’'s Guide and Reference



Additional Oracle Performance Extensions

is the prefetch setting. Then, once your next () calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1.

Cast your statement object to an Or acl eSt at enent,
O acl ePrepar edSt at enent , or O acl eCal | abl eSt at ement object, as
applicable, if it is not already one of these.

Use the set RowPr ef et ch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the get RowPr ef et ch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection, as
follows:

1.
2.

Cast your Connect i on object to an Or acl eConnect i on object.

Use the set Def aul t RowPr ef et ch() method of your O acl eConnecti on
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the get Def aul t RowPr ef et ch() method of the

O acl eConnect i on object. This method returns an integer.

Equivalently, instead of calling set Def aul t RowPr ef et ch(), you can set the
def aul t RowPr ef et ch Java property if you use a Java Pr operti es object in
establishing the connection. See "Specifying a Database URL and Properties
Object" on page 3-6.

Performance Extensions 12-21



Additional Oracle Performance Extensions

Notes:

« Do not mix the JDBC 2.0 fetch size API and the Oracle
row-prefetching APl in your application. You can use one or
the other, but not both.

« Be aware that setting the Oracle row-prefetch value can affect
not only queries, but also: 1) explicitly refetching rows in a
result set through the result set r ef r eshRow( ) method
available with JDBC 2.0 (relevant for scroll-sensitive/read-only,
scroll-sensitive/updatable, and scroll-insensitive/updatable
result sets); and 2) the "window" size of a scroll-sensitive result
set, affecting how often automatic refetches are performed. The
Oracle row-prefetch value will be overridden, however, by any
setting of the fetch size. See "Fetch Size" on page 11-24 for more
information.

Example: Row Prefetching The following example illustrates the row-prefetching
feature. It assumes you have imported the or acl e. j dbc. dri ver. * classes.

Qonnection conn =
Dri ver Manager . get Connect i on("j dbc: or acl e: oci 8: ", "scott","tiger");

/1Set the default row prefetch setting for this connection
((Cracl eConnect i on) conn) . set Def aul t RowPr ef et ch(7) ;

/* The follow ng statenent gets the default rowprefetch value for
the connection, that is, 7.

*/

Satenent stnt = conn.createStatenent();

/* Subsequent statenents | ook the same, regard ess of the row
prefetch value. Only execution time changes.

*/

Resul t Set rset = stnt. execut eQuery("SELECT enane FROM enp");

Systemout.println( rset.next () );

vhile( rset.next () )
Systemout. printin( rset.getSring (1) );

//OQverride the default rowprefetch setting for this statement
( (QacleSaterent)stnm ).set RowPrefetch (2);

12-22 JDBC Developer’s Guide and Reference



Additional Oracle Performance Extensions

Resul t Set rset = stni. execut eQuery("SELECT enane FRCOM enp");
Systemout.printin( rset.next () );

vhile( rset.next() )
Systemout.printin( rset.getSring (1) );

stn.close();

For complete sample applications, including how to set the connection default
row-prefetch value and the statement row-prefetch value, see "Oracle Row
Prefetching Specified in Connection—RowPrefetch_connection.java" on page 17-64
and "Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java"
on page 17-66.

Oracle Row-Prefetching Limitations

There is no maximum prefetch setting, but empirical evidence suggests that 10 is
effective. Oracle does not recommend exceeding this value in most situations. If you
do not set the default row-prefetch value for a connection, 10 is the default.

A statement object receives the default row-prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row-prefetch setting have no effect on the statement’s
row-prefetch setting.

If a column of a result set is of datatype LONGor LONG RAW(that is, the streaming
types), JDBC changes the statement’s row-prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the Dri ver Manager class get Connecti on() method that
takes a Pr oper ti es object as an argument, then you can set the connection’s
default row-prefetch value that way. See "Specifying a Database URL and Properties
Object" on page 3-6.

Defining Column Types

Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.

Performance Extensions 12-23



Additional Oracle Performance Extensions

When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

For a complete sample application, see "Oracle Column Type
Definitions—DefineColumnType.java" on page 17-68.

Following these general steps to define column types for a query:

1. Cast your statement object to an Or acl eSt at enent ,
O acl ePrepar edSt at enent , or O acl eCal | abl eSt at ement object, as
applicable, if it is not already one of these.

2. If necessary, use the cl ear Def i nes() method of your St at enent object to
clear any previous column definitions for this St at ement object.

3. For each column of the expected result set, invoke the def i neCol umType()
method of your St at enent object, passing it these parameters:

« column index (integer)
« typecode (integer)

Use the static constants of the j ava. sql . Types class or

oracl e.jdbc.driver. Oracl eTypes class (such as Types. | NTEGER,
Types. FLOAT, Types. VARCHAR O acl eTypes. VARCHAR, and

O acl eTypes. ROW D). Typecodes for standard types are identical in these
two classes.

« type name (string) (structured objects, object references, and arrays only)

For structured objects, object references, and arrays, you must also specify
the type name (for example, Enpl oyee, Enpl oyeeRef , or
Enpl oyeeArr ay).

« (optionally) maximum field size (integer)
Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

For example, assuming st mt is an Oracle statement, use this syntax:

st . def i neCol umType( col unm_i ndex, typeCode);

12-24 JDBC Developer’s Guide and Reference



Additional Oracle Performance Extensions

or (recommended if the column is VARCHAR or equivalent and you know the
length limit):

stnt. def i neCol uimType( col urm_i ndex, typeCode, nax_si ze);

or (for structured object, object reference, and array columns):

st . def i neCol umType( col unn_i ndex, typeCode, typeNane);

Set a maximum field size if you do not want to receive the full default length of
the data. Calling the set MaxFi el dSi ze() method of the standard JDBC

St at ement class sets a restriction on the amount of data returned. Specifically,
the size of the data returned will be the minimum of:

« the maximum field size set in def i neCol umType()
or:

« the maximum field size set in set MaxFi el dSi ze()
or:

« the natural maximum size of the datatype

Once you complete these steps, use the statement’s execut eQuer y() method to
perform the query.

Note: You must define the datatype for every column of the
expected result set. If the number of columns for which you specify
types does not match the number of columns in the result set, the
process fails with a SQL exception.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the or acl e. j dbc. dri ver. * classes.

Qonnection conn =
Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: ", "scott","tiger");

Satenent stnt = conn.createStatenent();

/*Ask for the colum as a string:

*Avoid a round trip to get the col um type.

*Convert fromnunber to string on the server.

*/

((Cacl eStatenent) stnt). defi neCol umType(1, Types. VARCHAR) ;

Performance Extensions 12-25



Additional Oracle Performance Extensions

Resul t Set rset = stni. execut eQuery("sel ect enpno fromenp");

vhile (rset.next() )
Systemout. printin(rset.getSring(1));

stn.close();

As this example shows, you must cast the statement (st nt ) to type

Or acl eSt at enent in the invocation of the def i neCol umType() method. The
connection’s cr eat eSt at ement () method returns an object of type

j ava. sgl . St at ement , which does not have the def i neCol umType() and

cl ear Def i nes() methods. These methods are provided only in the

Or acl eSt at enent implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural" JDBC types; in most cases, they can be
defined to the Types. CHAR or Types. VARCHAR typecode.

Table 12-1 lists the valid column definition arguments you can use in the
def i neCol umType() method.

Table 12-1 Valid Column Type Specifications

If the column has Oracle You can use defineColumnType()

SQL type: to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR?2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

12-26 JDBC Developer’s Guide and Reference



Additional Oracle Performance Extensions

DatabaseMetaData TABLE_REMARKS Reporting

The get Col uims(), get Procedur eCol umms( ), get Procedures(), and

get Tabl es() methods of the database metadata classes are slow if they must
report TABLE_REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE_REMARKS columns by
default.

You can enable TABLE_REMARKS reporting by passing at r ue argument to the
set Remar ksReporti ng() method of an Or acl eConnect i on object.

Equivalently, instead of calling set Renmar ksRepor ti ng(), you can set the

remar ksRepor ti ng Java property if you use a Java Pr operti es objectin
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

If you are using a standard j ava. sgl . Connect i on object, you must cast it to
Or acl eConnecti on to use set Remar ksReporting().

Example: TABLE_REMARKS Reporting

Assuming conn is the name of your standard Connect i on object, the following
statement enables TABLE_REMARKS reporting.

( (oracle.jdbc. driver. O acl eConnection)conn ). set Renar ksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods

According to JDBC versions 1.1 and 1.2, the methods get Pr ocedur es() and
get Procedur eCol uims() treat the cat al og, schemaPat t er n,

col umNamePat t er n, and pr ocedur eNanmePat t er n parameters in the same
way. In the Oracle definition of these methods, the parameters are treated
differently:

« cat al og: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the cat al og parameter is treated as the package name. This
applies both on input (the cat al og parameter) and output (the cat al og
column in the returned Resul t Set ). On input, the construct" " (the empty
string) retrieves procedures and arguments without a package, that is,
standalone objects. A nul | value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%). Otherwise the cat al og parameter should be a package name
pattern (with SQL wild cards, if desired).

Performance Extensions 12-27



Additional Oracle Performance Extensions

« schemaPat t er n: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct " " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the cat al og parameter, nul | is interpreted to
drop the schema from the selection criteria (same as passing in "%). It can also
be used as a pattern with SQL wild cards.

« procedureNanePatt ernand col uimNanePat t er n: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct " " will raise an exception. To
be consistent with the behavior of other parameters, nul | has the same effect as
passing in "%.

12-28 JDBC Developer’s Guide and Reference



13

Connection Pooling and Caching

This chapter discusses the Oracle JDBC implementations of 1) data sources, a
standard facility for specifying resources to use, including databases; 2) connection
pooling, which is a framework for caches of database connections; and 3)
connection caching, including documentation of a sample Oracle implementation.
You will also find related discussion of Oracle JDBC support for the standard Java
Naming and Directory Interface (JNDI).

The following topics are discussed:
« Data Sources
« Connection Pooling

« Connection Caching

Notes: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which are available through the j avax packages from Sun
Microsystems. These packages are not part of the standard JDK, but
relevant packages are included with the cl asses111. zi p and

cl asses12. zi p files.

For further introductory and general information on these topics, refer to the Sun
Microsystems specification for the JDBC 2.0 Optional Package.

Connection Pooling and Caching 13-1



Data Sources

Data Sources

The JDBC 2.0 extension API introduces the concept of data sources, which are
standard, general-use objects for specifying databases or other resources to use.
Data sources can optionally be bound to Java Naming and Directory Interface
(JNIDI) entities so that you can access databases by logical names, for convenience
and portability.

This functionality is a more standard and versatile alternative to the connection
functionality described under "Open a Connection to a Database" on page 3-3. The
data source facility provides a complete replacement for the previous JDBC

Dri ver Manager facility.

You can use both facilities in the same application, but ultimately developers will be
encouraged to use data sources for their connections, regardless of whether
connection pooling or distributed transactions are required. Eventually, Sun
Microsystems will probably deprecate Dr i ver Manager and related classes and
functionality.

For further introductory and general information about data sources and JNDI,
refer to the Sun Microsystems specification for the JDBC 2.0 Optional Package.

A Brief Overview of Oracle Data Source Support for JNDI

The standard Java Naming and Directory Interface, or INDI, provides a way for
applications to find and access remote services and resources. These services can be
any enterprise services, but for a JDBC application would include database
connections and services.

JNDI allows an application to use logical names in accessing these services,
removing vendor-specific syntax from application code. JNDI has the functionality
to associate a logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.

13-2 JDBC Developer’'s Guide and Reference



Data Sources

Note: Using JNDI functionality requires the file j ndi . zi p to be
in the CLASSPATH. This file is included in the Oracle database plus
JServer option product CD, but is not included in the

cl asses12. zi pandcl asses111. zi p files. You must add it to
the CLASSPATH separately. (You can also obtain it from the Sun
Microsystems Web site, but it is advisable to use the version from
Oracle, because that has been tested with the Oracle drivers.)

Data Source Features and Properties

"First Steps in JDBC" on page 3-2 includes sections on how to use the JDBC

Dri ver Manager class to register driver classes and open database connections.
The problem with this model is that it requires your code to include vendor-specific
class names, database URLSs, and possibly other properties, such as machine names
and port numbers.

With JDBC 2.0 data source functionality, using JNDI, you do not need to register the
vendor-specific JDBC driver class name, and you can use logical names for URLs
and other properties. This allows your application code for opening database
connections to be portable to other environments.

Data Source Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard
j avax. sql . Dat aSour ce interface:

public interface DataSource

{
Gonnection get Connection() throws SQException;

Gonnecti on get Connection(String usernane, String passwor d)
throws SCQLExcepti on;

}

Oracle implements this interface with the Or acl eDat aSour ce class in the
oracl e. j dbc. pool package. The overloaded get Connect i on() method
returns an Or acl eConnect i on instance, optionally taking a user name and
password as input.

To use other values, you can set properties using appropriate setter methods
discussed in the next section. For alternative user names and passwords, you can
also use the get Connect i on() signature that takes these as input—this would
take priority over the property settings.

Connection Pooling and Caching 13-3



Data Sources

Note: The Or acl eDat aSour ce class and all subclasses
implement thej ava. i 0. Seri al i zabl e and
j avax. nam ng. Ref er enceabl e interfaces.

Data Source Properties

The Or acl eDat aSour ce class, as with any class that implements the
Dat aSour ce interface, provides a set of properties that can be used to specify a
database to connect to. These properties follow the JavaBeans design pattern.

Table 13-1 and Table 13-2 document Or acl eDat aSour ce properties. The
properties in Table 13-1 are standard properties according to the Sun Microsystems
specification. (Be aware, however, that Oracle does not implement the standard

r ol eName property.) The properties in Table 13-2 are Oracle extensions.

Table 13-1 Standard Data Source Properties

Name Type Description

dat abaseNane String name of the particular database on the server; also
known as the "SID" in Oracle terminology

dat aSour ceNane String name of the underlying data source class (for connection
pooling, this is an underlying pooled connection data
source class; for distributed transactions, this is an
underlying XA data source class)

description String description of the data source

net wor kProt ocol String network protocol for communicating with the server; for
Oracle, this applies only to the OCI drivers and defaults
totcp
(Other possible settings include i pc. See the Net8
Administrator’s Guide for more information.)

passwor d String login password for the user name

port Number i nt number of the port where the server listens for requests

server Nanme String name of the database server

user String name for the login account

13-4 JDBC Developer’'s Guide and Reference



Data Sources

The Or acl eDat aSour ce class implements the following setter and getter methods
for the standard properties:

« public synchronized void setDatabaseNanme(String dbnane)
« public synchronized String getDat abaseNane()

« public synchronized void setDataSourceNane(String dsnane)
« public synchronized String getDat aSourceName()

« public synchronized void setDescription(String desc)

« public synchronized String getDescription()

« public synchronized void set NetworkProtocol (String np)
« public synchronized String getNetworkProtocol ()

« public synchronized void setPassword(String pwd)

« public synchronized void setPortNumber (int pn)

« public synchronized int getPortNunber()

« public synchronized void setServerNane(String sn)

« public synchronized String get Server Name()

« public synchronized void setUser(String user)

« public synchronized String getUser()

Note that there is no get Passwor d() method, for security reasons.

Table 13-2 Oracle Extended Data Source Properties

Name Type Description

driverType String category of the Oracle JDBC driver you are using—can be
oci 8,t hi n,orkpr b (server-side internal)

ur | String URL of the database connect string; as a convenience for
customers migrating from older versions of Oracle JDBC, you
can use this in place of the Oracle t nsEnt r y and
dri ver Type properties and the standard por t Nunmber ,
net wor kPr ot ocol , ser ver Nane, and
dat abaseNane properties

tnskntry String TNSentry name—relevant only for OCI drivers and assumes
an Oracle client installation with TNS_ADM N environment
variable set appropriately

Connection Pooling and Caching 13-5



Data Sources

The Or acl eDat aSour ce class implements the following setter and getter methods
for the Oracle extended properties:

public synchroni zed void setDriverType(String dt)
public synchronized String getDriverType()

public synchronized void setURL(String url)

public synchronized String get URL()

public synchroni zed voi d set TNSEnt ryName(String tns)
public synchronized String get TNSEntryNane()

If you are using the server-side internal driver—dr i ver Type property is set to
kpr b—then any other property settings are ignored.

If you are using a Thin or OCI driver, note the following:

A URL setting can include settings for user and passwor d, as in the following
example, in which case this takes precedence over individual user and
passwor d property settings:

jdbc: oracl e: thin:scott/tiger @ocal host: 1521: or cl

Settings for user and passwor d are required, either directly, through the URL
setting, or through the get Connecti on() call. The user and password
settings in a get Connecti on() call take precedence over any property
settings.

If the ur | property is set, thenany t nsEntry, dri ver Type, port Nunber,
net wor kPr ot ocol , ser ver Name, and dat abaseNarme property settings are
ignored.

If the t nsEnt ry property is set (which presumes the ur| property is not set),
then any dat abaseNane, ser ver Nane, por t Nunber, and
net wor kPr ot ocol settings are ignored.

If you are using an OCI driver (which presumes the dri ver Type property is
set to oci 8) and the net wor kPr ot ocol issettoi pc, then any other property
settings are ignored.

13-6 JDBC Developer’'s Guide and Reference



Data Sources

Creating a Data Source Instance and Connecting (without JNDI)

This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an Or acl eDat aSour ce instance, initialize its connection properties as
appropriate, and get a connection instance as in the following example:

Q acl ebat aSour ce ods = new O acl eDat aSour ce();

ods. set Iri ver Type("oci 8") ;
ods. set Server Nare( " dl sun999") ;
ods. set Net wor kPr ot ocol ("t cp");
ods. set Dat abaseNane("816");
ods. set Port Nunber (1521) ;

ods. set User ("scott");

ods. set Password("tiger");

Gonnection conn = ods. get Gnnection();

Or optionally override the user name and password:

Gonnection conn = ods. get nnection("bill", "lion");

For a complete sample program, see "Data Source without JNDI—DataSource.java"
on page 17-70.

Creating a Data Source Instance, Registering with JNDI, and Connecting

This section exhibits INDI functionality in using data sources to connect to a
database. Vendor-specific, hard-coded property settings are required only in the
portion of code that binds a data source instance to a JNDI logical name. From that
point onward, you can create portable code by using the logical name in creating
data sources from which you will get your connection instances.

For a complete sample, see "Data Source with JNDI—DataSourceJNDI.java" on
page 17-71.

Connection Pooling and Caching 13-7



Data Sources

Note: Creating and registering data sources is typically handled
by a INDI administrator, not in a JDBC application.

Initialize Connection Properties

Create an Or acl eDat aSour ce instance, and then initialize its connection
properties as appropriate, as in the following example:

QO acl eDat aSour ce ods = new O acl eDat aSour ce() ;

ods. set Iri ver Type("oci 8") ;
ods. set Server Nare( " dl sun999") ;
ods. set Net wor kPr ot ocol ("t cp");
ods. set Dat abaseNane("816");
ods. set Port Nunber (1521) ;

ods. set User ("scott");

ods. set Password("tiger");

Register the Data Source

Once you have initialized the connection properties of Or acl eDat aSour ce
instance ods, as shown in the preceding example, you can register this data source
instance with JNDI, as in the following example:

Gontext ctx = new Initial Context();
ctx. bi nd("j dbc/ sanpl edb”, ods);

Calling the INDI I ni ti al Cont ext () constructor creates a Java object that
references the initial INDI naming context. System properties that are not shown
instruct JINDI which service provider to use.

The ct x. bi nd() call binds the Or acl eDat aSour ce instance to a logical INDI
name. This means that anytime after the ct x. bi nd() call, you can use the logical
name j dbc/ sanpl edb in opening a connection to the database described by the
properties of the Or acl eDat aSour ce instance ods. The logical name

j dbc/ sanpl edb is logically bound to this database.

13-8 JDBC Developer’'s Guide and Reference



Data Sources

The JNDI name space has a hierarchy similar to that of a file system. In this
example, the INDI name specifies the subcontext j dbc under the root naming
context and specifies the logical name sanpl edb within the j dbc subcontext.

The Cont ext interface and | ni ti al Cont ext class are in the standard
j avax. nam ng package.

Note: The JDBC 2.0 specification requires that all JDBC data
sources be registered in the j dbc naming subcontext of a JNDI
namespace or in a child subcontext of the j dbc subcontext.

Open a Connection

Use the logical INDI name from the preceding example to perform a lookup and
open a connection to the database logically bound to the JNDI name. This requires
casting the lookup result (which is otherwise simply a Java Cbj ect ) to a new

O acl eDat aSour ce instance and then using its get Connecti on() method to
open the connection.

Following is an example:

Q acl ebat aSour ce odsconn = (O acl eDat aSour ce) ct x. | ookup("j dbc/ sanpl edb") ;
Gonnection conn = odsconn. get Gonnection();

Logging and Tracing

The data source facility provides a way to register a character stream for JDBC to
use as output for error logging and tracing information. This allows tracing specific
to a particular data source instance. If you want all data source instances to use the
same character stream, then you must register the stream with each data source
instance individually.

The Or acl eDat aSour ce class implements the following standard data source
methods for logging and tracing:

« public synchronized void setLogWiter(PrintWiter pw)
« public synchronized PrintWiter getLogWiter()

The Print Witer classis in the standard j ava. i o package.

Connection Pooling and Caching 13-9



Data Sources

Notes:

« When a data source instance is created, logging is disabled by
default (the log stream name is initially null).

« Messages written to a log stream registered to a data source
instance are not written to the log stream normally maintained
by Dri ver Manager.

« An O acl eDat aSour ce instance obtained from a JNDI name
lookup will not have its Pri nt er Wit er set, even if the
Print Wi ter was set when a data source instance was first
bound to this JNDI name.

13-10 JDBC Developer’'s Guide and Reference



Connection Pooling

Connection Pooling

Connection pooling in the JDBC 2.0 extension API is a framework for caching
database connections. This allows reuse of physical connections and reduced
overhead for your application. Connection pooling functionality minimizes
expensive operations in the creation and closing of sessions.

The following are central concepts:

= Connection pool data sources—similar in concept and functionality to the data
sources described previously, but with methods to return pooled connection
instances, instead of normal connection instances.

« Pooled connections—a pooled connection instance represents a single physical
connection to a database, remaining open during use by a series of logical
connection instances.

A logical connection instance is a simple connection instance (such as a
standard Connect i on instance or an Or acl eConnect i on instance) returned
by a pooled connection instance. Each logical connection instance acts as a
temporary handle to the physical connection represented by the pooled
connection instance.

For further introductory and general information about connection pooling, refer to
the Sun Microsystems specification for the JDBC 2.0 Optional Package.

Note: The concept of connection pooling is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Connection Pooling Concepts

If you do not use connection pooling, each connection instance

( ava. sqgl . Connectionororacl e.jdbc.driver. O acl eConnecti on
instance) encapsulates its own physical database connection. When you call the

cl ose() method of the connection instance, the physical connection itself is closed.
This is true whether you obtain the connection instance through the JDBC 2.0 data
source facility described under "Data Sources" on page 13-2, or through the

Dri ver Manager facility described under "Open a Connection to a Database" on
page 3-3.

With connection pooling, an additional step allows physical database connections to
be reused by multiple logical connection instances, which are temporary handles to

Connection Pooling and Caching 13-11



Connection Pooling

the physical connection. Use a connection pool data source to return a pooled
connection, which is what encapsulates the physical database connection. Then use
the pooled connection to return JDBC connection instances (one at a time) that each
act as a temporary handle.

Closing a connection instance that was obtained from a pooled connection does not
close the physical database connection. It does, however, free the resources of the
connection instance, clear the state, close statement objects created from the
connection instance, and restore the defaults for the next connection instance that
will be created.

To actually close the physical connection, you must invoke the cl ose() method of
the pooled connection. This would typically be performed in the middle tier.

Connection Pool Data Source Interface and Oracle Implementation

The j avax. sqgl . Connect i onPool Dat aSour ce interface outlines standard
functionality of connection pool data sources, which are factories for pooled
connections. The overloaded get Pool edConnect i on() method returns a pooled
connection instance and optionally takes a user name and password as input:

public interface Connecti onPool Dat aSour ce

{
Pool edGonnect i on get Pool edConnecti on() throws SQExcepti on;
Pool edGonnecti on get Pool edConnecti on(Sring user, Sring password)
throws SCQLExcepti on;
}

Oracle JDBC implements the Connect i onPool Dat aSour ce interface with the
oracl e. j dbc. pool . Oracl eConnect i onPool Dat aSour ce class. This class
also extends the Or acl eDat aSour ce class, so it includes all the connection
properties and getter and setter methods described in "Data Source Properties" on
page 13-4.

The Or acl eConnect i onPool Dat aSour ce class get Pool edConnecti on()
methods return the Oracle implementation of pooled connection instances, which
are Or acl ePool edConnect i on instances (as discussed in the next section).

Note: You can register connection pool data sources in JNDI using
the same naming conventions as discussed for non-pooling data
sources in "Register the Data Source" on page 13-8.

13-12 JDBC Developer’'s Guide and Reference



Connection Pooling

Pooled Connection Interface and Oracle Implementation

A pooled connection instance encapsulates a physical connection to a database. This
would be the database specified in the connection properties of the connection pool
data source instance used to produce the pooled connection instance.

A pooled connection instance is an instance of a class that implements the standard
j avax. sqgl . Pool edConnect i on interface. The get Connecti on() method
specified by this interface returns a logical connection instance that acts as a
temporary handle to the physical connection, as opposed to encapsulating the
physical connection, as does a non-pooling connection instance:

public interface Pool edCnnecti on

{
Gonnection get Connection() throws SQException;
voi d close() throws SQException;
voi d addConnect i onEvent Li st ener (Gonnecti onEvent Li stener listener) ... ;
voi d removeConnect i onEvent Li st ener (CGonnect i onEvent Li stener |istener);
}

(Event listeners are used in connection caching and are discussed in "Typical Steps
in Using a Connection Cache" on page 13-18.)

Oracle JDBC implements the Pool edConnect i on interface with the
oracl e. jdbc. pool . O acl ePool edConnect i on class. The get Connect i on()
method returns an Or acl eConnect i on instance.

A pooled connection instance will typically be asked to produce a series of
connection instances during its existence, but only one of these connection instances
can be open at any particular time.

Each time a pooled connection instance get Connect i on() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same
pooled connection instance. It is advisable to explicitly close any previous
connection instance before opening a new one, however.

Calling the cl ose() method of a pooled connection instance closes the physical
connection to the database. This would typically be performed in the middle-tier
layer.

Creating a Connection Pool Data Source and Connecting

This section contains an example of the most basic use of a connection pool data
source to connect to a database, without using JNDI functionality. You could

Connection Pooling and Caching 13-13



Connection Pooling

optionally use JNDI, binding the connection pool data source instance to a JNDI
logical name, in the same way that you would for a generic data source instance (as
shown in "Register the Data Source" on page 13-8).

Summary of Imports for Oracle Connection Pooling
You must import the following for Oracle connection pooling functionality:

inport oracl e.jdbc. pool . *;

This package contains the Or acl eDat aSour ce,

Or acl eConnect i onPool Dat aSour ce, and Or acl ePool edConnect i on classes,
in addition to classes for connection caching and event-handling, which will be
discussed under "Connection Caching" on page 13-15.

Oracle Connection Pooling Code Sample

This example creates an Or acl eConnect i onPool Dat aSour ce instance,
initializes its connection properties, gets a pooled connection instance from the
connection pool data source instance, and then gets a connection instance from the
pooled connection instance. (The get Pool edConnect i on() method actually
returns an Or acl ePool edConnect i on instance, but in this case only generic
Pool edConnect i on functionality is required.)

QO acl eGonnect i onPool Dat aSour ce ocpds = new Q acl eConnect i onPool Dat aSour ce() ;

ocpds. set Ori ver Type("oci 8");
ocpds. set Ser ver Nane( " dl sun999") ;
ocpds. set Net wor kPr ot ocol ("tcp");
ocpds. set Dat abaseNane( " 816") ;
ocpds. set Por t Nunber (1521) ;

ocpds. set User ("scott");

ocpds. set Password("tiger");

Pool edGonnecti on pc = ocpds. get Pool edGonnecti on() ;
Gonnection conn = pc. get Connection();

For a complete sample program, see "Pooled Connection—PooledConnection.java"
on page 17-74.

13-14 JDBC Developer’'s Guide and Reference



Connection Caching

Connection Caching

Connection caching, generally implemented in a middle tier, is a means of keeping
and using caches of physical database connections.

Connection caching uses the connection pooling framework—such as connection
pool data sources and pooled connections—in much of its operations. "Connection
Pooling", starting on page 13-11, describes this framework.

The JDBC 2.0 specification does not mandate a connection caching implementation,
but Oracle provides a simple implementation to serve at least as an example.

This section is divided into the following topics:

«  Overview of Connection Caching

« Typical Steps in Using a Connection Cache

= Oracle Connection Cache Specification: OracleConnectionCache Interface

« Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class

= Oracle Connection Event Listener: OracleConnectionEventListener Class

Note: The concept of connection caching is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.

Overview of Connection Caching

Each connection cache is represented by an instance of a connection cache class and
has an associated group of pooled connection instances. For a single connection
cache instance, the associated pooled connection instances must all represent
physical connections to the same database and schema. Pooled connection instances
are created as needed, which is whenever a connection is requested and the
connection cache does not have any free pooled connection instances. A "free"
pooled connection instance is one that currently has no logical connection instance
associated with it; in other words, a pooled connection instance whose physical
connection is not being used.

Basics of Setting Up a Connection Cache

The middle tier, in setting up a connection cache, will create an instance of a
connection cache class and set its data source connection properties as

Connection Pooling and Caching 13-15



Connection Caching

appropriate—for example, ser ver Nane, dat abaseNane, or URL. Recall that a
connection cache class extends a data source class. For information about data
source properties, see "Data Source Properties” on page 13-4.

An example of a connection cache class is Or acl eConnect i onCachel npl . How
to instantiate this class and set its connection properties is described in
"Instantiating OracleConnectionCachelmpl and Setting Properties” on page 13-22.
This class extends the Or acl eDat aSour ce class and so includes the setter
methods to set connection properties to specify the database to connect to. All the
pooled connection instances in the cache would represent physical connections to
this same database, and in fact to the same schema.

Once the middle tier has created a connection cache instance, it can optionally bind
this instance to JNDI as with any data source instance, which is described in
"Register the Data Source" on page 13-8.

Basics of Accessing the Connection Cache

A JDBC application must retrieve a connection cache instance to use the cache. This
is typically accomplished through the middle tier, often using a JNDI lookup. In a
connection caching scenario, a INDI lookup would return a connection cache
instance instead of a generic data source instance. Because a connection cache class
extends a data source class, connection cache instances include data source
functionality.

Executing a INDI lookup is described in "Open a Connection" on page 13-9.

If INDI is not used, the middle tier will typically have some vendor-specific API
through which a connection cache instance is retrieved for the application.

Basics of Opening Connections

A connection cache class, as with a pooled connection class, has a

get Connecti on() method. The get Connecti on() method of a connection
cache instance returns a logical connection to the database and schema associated
with the cache. This association is through the connection properties of the
connection cache instance, as typically set by the middle tier.

Whenever a JDBC application wants a connection to a database in a connection
caching scenario, it will call the get Connect i on() method of the connection
cache instance associated with the database.

This get Connect i on() method checks if there are any free pooled connection
instances in the cache. If not, one is created. Then a logical connection instance will

13-16 JDBC Developer’s Guide and Reference



Connection Caching

be retrieved from a previously existing or newly created pooled connection
instance, and this logical connection instance will be supplied to the application.

Basics of Closing Connections: Use of Connection Events

JDBC uses JavaBeans-style events to keep track of when a physical connection
(pooled connection instance) can be returned to the cache or when it should be
closed due to a fatal error. When a JDBC application calls the cl ose() method of a
logical connection instance, an event is triggered and communicated to the event
listener or listeners associated with the pooled connection instance that produced
the logical connection instance. This triggers a connection-closed event and informs
the pooled connection instance that its physical connection can be reused.
Essentially, this puts the pooled connection instance and its physical connection
back into the cache.

The point at which a connection event listener is created and registered with a
pooled connection instance is implementation-specific. This could happen, for
example, when the pooled connection instance is first created or each time the
logical connection associated with it is closed.

It is also possible for the cache class to implement the connection event listener
class. In this case, the connection event listener is part of the connection cache
instance. (This is not the case in the Oracle sample implementation.) Even in this
case, however, an explicit association must be made between the connection event
listener and each pooled connection instance.

Implementation Scenarios

Middle-tier developers have the option of implementing their own connection
cache class and connection event listener class.

For convenience, however, Oracle provides the following, all in the
oracl e. j dbc. pool package:

« aconnection cache interface: Or acl eConnecti onCache
= aconnection cache class: Or acl eConnect i onCachel npl
= aconnection event listener class: Or acl eConnecti onEvent Li st ener

The Or acl eConnect i onCachel npl class is a simple connection cache class
implementation that Oracle supplies as an example, providing sufficient but
minimal functionality. It implements the Or acl eConnect i onCache interface and
uses instances of the Or acl eConnect i onEvent Li st ener class for connection
events.

Connection Pooling and Caching 13-17



Connection Caching

If you want more functionality than Or acl eConnect i onCachel npl has to offer
but still want to use Or acl eConnect i onEvent Li st ener for connection events,
then you can create your own class that implements Or acl eConnect i onCache.

Or you can create your own connection cache class and connection event listener
class from scratch.

Typical Steps in Using a Connection Cache

This section lists the general steps in how a JDBC application and middle-tier will
use a connection cache in opening and closing a logical connection.

Preliminary Steps in Connection Caching
Presume the following has already been accomplished:

1. The middle tier has created a connection cache instance, as described in "Basics
of Setting Up a Connection Cache" on page 13-15.

2. The middle tier has provided connection information to the connection cache
instance for the database and schema that will be used. This can be
accomplished when constructing the connection cache instance.

3. The application has retrieved the connection cache instance, as described in
"Basics of Accessing the Connection Cache" on page 13-16.

General Steps in Opening a Connection

Once the JDBC application has access to the connection cache instance, the
application and middle tier perform the following steps to produce a logical
connection instance for use by the application:

1. The application requests a connection through the get Connecti on() method
of the connection cache instance. No input is necessary, because a connection
cache instance is already associated with a particular database and schema.

2. The connection cache instance examines its cache as follows: a) to see if there
are any pooled connection instances in the cache yet; and b) if so, if any are
free—that is, to see if there is at least one pooled connection instance that
currently has no logical connection instance associated with it.

3. The connection cache instance chooses an available pooled connection instance
or, if none is available, might create a new one (this is implementation-specific).
In creating a pooled connection instance, the connection cache instance can
specify connection properties according to its own connection properties,

13-18 JDBC Developer’'s Guide and Reference



Connection Caching

because the pooled connection instance will be associated with the same
database and schema.

Note: Exactly what happens in a situation where no pooled
connection instances are available depends on the implementation
schemes and whether the cache is limited to a maximum number of
pooled connections. For the Oracle sample implementation, this is
discussed in "Schemes for Creating New Pooled Connections in the
Oracle Implementation" on page 13-24.

4. Depending on the situation and implementation, the connection cache instance
creates a connection event listener (a process that associates the listener with the
connection cache instance) and associates the listener with the chosen or newly
created pooled connection instance. The association with the pooled connection
instance is accomplished by calling the standard
addConnecti onEvent Li st ener () method specified by the
Pool edConnect i on interface. This method takes the connection event listener
instance as input. If the connection cache class implements the connection event
listener class, then the argument to the addConnect i onEvent Li st ener ()
method would be the t hi s object.

In some implementations, the creation and association of the connection event
listener can occur only when the pooled connection instance is first created. In
the Oracle sample implementation, this also occurs each time a pooled
connection instance is reused.

Note that in being associated with both the connection cache instance and a
pooled connection instance, the connection event listener becomes the bridge
between the two.

5. The connection cache instance gets a logical connection instance from the
chosen or newly created pooled connection instance, using the pooled
connection get Connect i on() method.

No input is necessary to get Connect i on(), because a pooled connection
instance is already associated with a particular database and schema.

6. The connection cache instance passes the logical connection instance to the
application.

The JDBC application uses this logical connection instance as it would any other
connection instance.

Connection Pooling and Caching 13-19



Connection Caching

General Steps in Closing a Connection

Once the JDBC application has finished using the logical connection instance, its
associated pooled connection instance can be returned to the connection cache (or
closed, as appropriate, if a fatal error occurred). The application and middle tier
perform the following steps to accomplish this:

1. The application calls the cl ose() method on the logical connection instance
(as it would with any connection instance).

2. The pooled connection instance that produced the logical connection instance
triggers an event to the connection event listener or listeners associated with it
(associated with it through previous calls by the connection cache instance to
the pooled connection instance addConnect i onEvent Li st ener () method).

3. The connection event listener performs one of the following:

« It puts the pooled connection instance back into the cache and flags it as
available (typical).

or:

« ltcloses the pooled connection instance (if a fatal error occurred during use
of its physical connection).

The connection event listener will typically perform these steps by calling
methods of the connection cache instance, which is implementation-specific. For
the Oracle sample implementation, these functions are performed by methods
specified in the Or acl eConnect i onCache interface, as discussed in"Oracle
Connection Cache Specification: OracleConnectionCache Interface" on

page 13-21.

4. Depending on the situation and implementation, the connection cache instance
disassociates the connection event listener from the pooled connection instance.
This is accomplished by calling the standard
renmoveConnect i onEvent Li st ener () method specified by the
Pool edConnect i on interface.

In some implementations, this step can be performed only when a pooled
connection instance is closed, either because of a fatal error or because the
application is finished with the physical connection. In the Oracle sample
implementation, however, the connection event listener is disassociated with
the pooled connection instance each time the pooled connection is returned to
the available cache (because in the Oracle implementation, a connection event
listener is associated with the pooled connection instance whenever it is
reused).

13-20 JDBC Developer’'s Guide and Reference



Connection Caching

Oracle Connection Cache Specification: OracleConnectionCache Interface

Middle-tier developers are free to implement their own connection caching scheme
as desired, but Oracle offers the Or acl eConnect i onCache interface, which you
can implement in a connection cache class and which uses instances of the

Or acl eConnecti onEvent Li st ener class for its listener functionality.

In addition, Oracle offers a class that implements this interface,

Or acl eConnect i onCachel npl , which can be used as is. This class also extends
the Or acl eDat aSour ce class and, therefore, includes a get Connecti on()
method. For more information about this class, see "Oracle Connection Cache
Implementation: OracleConnectionCachelmpl Class" on page 13-22.

These Oracle classes and interfaces are all in the or acl e. j dbc. pool package.

The Or acl eConnect i onCache interface specifies the following methods (in
addition to data source methods that it inherits), to be implemented in a connection
cache class:

« reusePool edConnecti on() : Takes a pooled connection instance as input
and returns it to the cache of available pooled connections (essentially, the
available physical connections).

This method would be invoked by a connection event listener after a JDBC
application has finished using the logical connection instance provided by the
pooled connection instance (through previous use of the pooled connection
get Connecti on() method).

« cl osePool edConnecti on() : Takes a pooled connection instance as input
and closes it.

A connection event listener would invoke this method after a fatal error has
occurred through the logical connection instance provided by the pooled
connection instance. The listener would call cl osePool edConnecti on(), for
example, if it notices a server crash.

« cl ose(): Closes the connection cache instance, after the application has
finished using connection caching with the associated database.

The functionality of the r eusePool edConnecti on() and
cl osePool edConnecti on() methods is an implementation of some of the steps
described generally in "General Steps in Closing a Connection" on page 13-20.

Connection Pooling and Caching 13-21



Connection Caching

Oracle Connection Cache Implementation: OracleConnectionCachelmpl Class

Oracle offers a sample implementation of connection caching and connection event
listeners, providing the Or acl eConnect i onCachel npl class. This class
implements the Or acl eConnect i onCache interface (which you can optionally
implement yourself in some other connection cache class) and uses instances of the
O acl eConnecti onEvent Li st ener class for listener functionality.

These Oracle classes and interfaces are all in the or acl e. j dbc. pool package.

If you use the Or acl eConnect i onCachel npl class for your connection caching
functionality, you should be familiar with the following topics, discussed
immediately below:

« Instantiating OracleConnectionCachelmpl and Setting Properties
«  Setting a Maximum Number of Pooled Connections
« Schemes for Creating New Pooled Connections in the Oracle Implementation

« Additional OracleConnectionCachelmpl Methods

Note: Oracl eConnecti onCachel npl support for JINDI is not
complete in release 8.1.6—an instance obtained through a lookup
call does not have any connections opened; however, the
connection properties, caching scheme, and limits for the number of
pooled connections are retained.

Instantiating OracleConnectionCachelmpl and Setting Properties

A middle tier that uses the Oracle implementation of connection caching can
construct an Or acl eConnect i onCachel npl instance and set its connection
properties in one of three ways:

« Itcan usethe Oracl eConnecti onCachel npl constructor that takes an
existing connection pool data source as input. This is convenient if the middle
tier has already created a connection pool data source instance and set its
connection properties. For example, where cpds is a connection pool data
source instance:

Q@ acl eGonnect i onCachel npl  ocachei npl = new O acl eConnect i onCachel npl (cpds) ;

or:

« Itcan use the default Or acl eConnect i onCachel npl constructor (which
takes no input) and then the set Connect i onPool Dat aSour ce() method,

13-22 JDBC Developer’s Guide and Reference



Connection Caching

or:

which takes an existing connection pool data source instance as input. Again,
this is convenient if the middle tier already has a connection pool data source
instance with its connection properties set. For example, where cpds is a
connection pool data source instance:

Q acl eGonnect i onCachel npl ocachei npl = new Q acl eConnect i onCachel npl ();

ocachei npl . set Connect i onPool Dat aSour ce( cpds) ;

Notes:

= You can also use the set Connect i onPool Dat aSour ce()
method to override a previously set pooled connection data
source or previously set connection properties.

« Ifyoucall set Connecti onPool Dat aSour ce() when there
is already a connection pool data source with associated logical
connections in use, then an exception will be thrown if the new
connection pool data source specifies a different database
schema than the old connection pool data source.

It can use the default Or acl eConnect i onCachel npl constructor and then set
the properties individually, using setter methods. For example:

Q acl eGonnect i onCachel npl ocachei npl = new Q acl eConnect i onCachel npl ();

ocachei npl . set Dri ver Type("oci 8");
ocachei npl . set Server Nane( " dl sun999") ;
ocachei npl . set Net wor kPr ot ocol ("tcp");
ocachei npl . set Dat abaseNane(" 816") ;
ocachei npl . set Port Nunber ( 1521) ;
ocachei npl . set User ("scott");

ocachei npl . set Password("tiger");

This is equivalent to setting properties in any generic data source or connection

pool data source, as discussed in "Initialize Connection Properties" on
page 13-8.

Connection Pooling and Caching 13-23



Connection Caching

Setting a Maximum Number of Pooled Connections

In any connection caching implementation, the middle-tier developer must decide
whether there should be a maximum number of pooled connections in the cache,
and how to handle situations where no pooled connections are available and the
maximum number has been reached.

The Or acl eConnecti onCachel npl class includes a maximum cache size that can
be set using the set MaxLi m t () method (taking ani nt as input). The default
value is 1.

Following is an example, presuming ocachei npl is an
Or acl eConnecti onCachel npl instance:

ocachei npl . set MaxLi nit (10);

This limits the cache to a maximum size of 10 pooled connection instances.

Schemes for Creating New Pooled Connections in the Oracle Implementation

The Or acl eConnecti onCachel npl class supports two schemes, known as cache

schemes, for situations where the application has requested a connection, all existing
pooled connections are in use, and the maximum number of pooled connections in

the cache has been reached:

« dynamic

In the dynamic scheme, which is the default, new pooled connections can be
created above and beyond the maximum limit, but each one is automatically
closed and freed as soon the logical connection instance that it provided is no
longer in use. (This is as opposed to the normal scenario when a pooled
connection instance is done being used, where it is returned to the available
cache.)

« fixed with no wait

In the "fixed with no wait" scheme, the maximum limit cannot be exceeded.
Requests for connections when the maximum has already been reached will
return nul | .

Set the cache scheme by invoking the set CacheSchene() method of the
O acl eConnecti onCachel npl instance. Use one of the following class static
constants as input:

. DYNAM C_SCHEME
. FI XED_RETURN_NULL_SCHEME

13-24 JDBC Developer’s Guide and Reference



Connection Caching

For example, presuming ocachei npl isan Or acl eConnecti onCachel npl
instance:

ocachei npl . set CacheSchene( O acl e(nnect i onCachel npl . FI XED RETURN NLLL_SCHEMVE) ;

An example of each scheme is available in the Sample Applications chapter—see
"Oracle Connection Cache (dynamic)—CCachel.java" on page 17-75 and "Oracle
Connection Cache ("fixed with no wait")—CCache2.java" on page 17-77.

Additional OracleConnectionCachelmpl Methods

In addition to the key methods already discussed in "Oracle Connection Cache
Specification: OracleConnectionCache Interface" on page 13-21, the following
O acl eConnecti onCachel npl methods might be useful:

« getActiveSi ze(): Returns the number of currently active pooled
connections in the cache (pooled connection instances with an associated logical
connection instance being used by the JDBC application).

« get CacheSi ze() : Returns the total number of pooled connections in the
cache, both active and inactive.

Oracle Connection Event Listener: OracleConnectionEventListener Class

This section discusses Or acl eConnect i onEvent Li st ener functionality by
summarizing its constructors and methods.

Instantiating an Oracle Connection Event Listener

In the Oracle implementation of connection caching, an

Oracl eConnect i onCachel npl instance constructs an Oracle connection event
listener, specifying the connection cache instance itself (its t hi s instance) as the
constructor argument. This associates the connection event listener with the
connection cache instance.

In general, however, the Or acl eConnecti onEvent Li st ener constructor can
take any data source instance as input. For example, where ds is a generic data
source:

QO acl eGonnect i onEvent Li st ener ocel = new Q acl eConnecti onEvent Li st ener (ds) ;

Connection Pooling and Caching 13-25



Connection Caching

There is also a default constructor that takes no input and can be used in
conjunction with the Or acl eConnecti onEvent Li st ener class
set Dat aSour ce() method:

QO acl eConnect i onEvent Li st ener ocel = new Q acl eConnecti onEvent Li stener();
ocel . set Dat aSour ce(ds) ;

The input can be any kind of data source, including an
Oracl eConnect i onCachel npl instance (because that class extends
O acl eDat aSour ce).

Oracle Connection Event Listener Methods
This section summarizes the methods of the Or acl eConnecti onEvent Li st ener
class:

« set Dat aSource() (previously discussed): Used to input a data source to the
connection event listener, in case one was not provided when constructing the
listener. This can take any type of data source as input.

« connectionCl osed(): Invoked when the JDBC application calls cl ose() on
its representation of the connection.

=« connectionErrorGccurred(): Invoked when a fatal connection error
occurs, just before a SQLExcept i on is issued to the application.

13-26 JDBC Developer’s Guide and Reference



14

Distributed Transactions

This chapter discusses the Oracle JDBC implementation of distributed transactions.
These are multi-phased transactions, often using multiple databases, that must be
committed in a coordinated way. There is also related discussion of XA, which is a
general standard (not specific to Java) for distributed transactions.

The following topics are discussed:

«  Overview

« XA Components

« Error Handling and Optimizations

« Implementing a Distributed Transaction

Note: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which is available through the j avax packages from Sun
Microsystems. The Optional Package not part of the standard JDK,
but relevant packages are included with the Oracle JDBC

cl asses111. zi pand cl asses12. zi p files.

For further introductory and general information about distributed transactions,
refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and
the Java Transaction APl (JTA).

Distributed Transactions 14-1



Overview

Overview

A distributed transaction, sometimes referred to as a global transaction, is a set of two
or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want
either transaction committed without assurance that both will complete
successfully.

In the JDBC 2.0 extension API, distributed transaction functionality is built on top of
connection pooling functionality, described under "Connection Pooling" on

page 13-11. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. (XA is part of the X/Open standard and is not
specific to Java.)

The remainder of this overview covers the following topics:
« Distributed Transaction Components and Scenarios

» Distributed Transaction Concepts

« Oracle XA Packages

For further introductory and general information about distributed transactions and
XA, refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package
and the Java Transaction API.

Note: Distributed transaction (XA) features require version 8.1.6
or later of the Oracle database with JServer option.

Distributed Transaction Components and Scenarios

In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

« Adistributed transaction system typically relies on an external transaction
manager—such as a software component that implements standard Java
Transaction APl (JTA) functionality—to coordinate the individual transactions.

14-2 JDBC Developer’'s Guide and Reference



Overview

Many vendors will offer XA-compliant JTA modules. This includes Oracle,
which is developing a JTA module based on the Oracle implementation of XA
discussed below.

« XA functionality is usually isolated from a client application, being
implemented instead in a middle-tier environment such as an application
server.

In many scenarios, the application server and transaction manager will be
together on the middle tier, possibly together with some of the application code
as well.

« Discussion throughout this section is intended mostly for middle-tier
developers.

« The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Note: Using JTA functionality requires filej t a. zi p to be in the
CLASSPATH. Oracle includes this file with the JDBC product. (You
can also obtain it from the Sun Microsystems Web site, but it is
advisable to use the version from Oracle, because that has been
tested with the Oracle drivers.)

Distributed Transaction Concepts

Software that uses distributed transactions cannot use normal connection instance
COW T, auto-commit, or ROLLBACK functionality, because all COW T or
ROLLBACK operations in a distributed transaction must be coordinated. Any
attempt to use the commi t () orrol | back() method or enable the auto-commit
flag of a connection instance would result in a SQL exception.

When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back
all transaction branches appropriately.

XA functionality includes the following key components:

« XA data sources—These are extensions of connection pool data sources and
other data sources, and similar in concept and functionality.

Distributed Transactions 14-3



Overview

There will be one XA data source instance for each resource manager (database)
that will be used in the distributed transaction. You will typically create XA
data source instances (using the class constructor) in your middle-tier software.

XA data sources produce XA connections.

« XA connections—These are extensions of pooled connections, and similar in
concept and functionality. An XA connection encapsulates a physical database
connection; individual connection instances are temporary handles to these
physical connections.

An XA connection instance corresponds to a single database session, although
the session can be used in sequence by multiple logical connection instances
(one at a time), as with pooled connection instances.

You will typically get an XA connection instance from an XA data source
instance (using a get method) in your middle-tier software. You can get
multiple XA connection instances from a single XA data source instance if the
distributed transaction will involve multiple sessions (multiple physical
connections) in the same database.

XA connections produce XA resource instances and JDBC connection instances.

« XA resources—These are used by a transaction manager in coordinating the
transaction branches of a distributed transaction.

You will get one XA resource instance from each XA connection instance (using
a get method), typically in your middle-tier software. There is a one-to-one
correlation between XA resource instances and XA connection instances;
equivalently, there is a one-to-one correlation between XA resource instances
and database sessions (physical connections).

In a typical scenario, the middle-tier component will hand off XA resource
instances to the transaction manager, for use in coordinating distributed
transactions.

Because each XA resource instance corresponds to a single database session,
there can be only a single active transaction branch associated with an XA
resource instance at any given time. There can be additional suspended
transaction branches, however—see "XA Resource Method Functionality and
Input Parameters” on page 14-9.

Each XA resource instance has the functionality to start, end, prepare, commit,
or roll back the operations of the transaction branch running in the session with
which the XA resource instance is associated.

14-4 JDBC Developer’'s Guide and Reference



Overview

The "prepare” step is the first step of a two-phase COMM T operation. The
transaction manager will issue a pr epar e to each XA resource instance. Once
the transaction manager sees that the operations of each transaction branch
have prepared successfully (essentially, that the databases can be accessed
without error), it will issue a COVW T to each XA resource instance to commit
all the changes.

« Transaction IDs—These are used to identify transaction branches. Each ID
includes a transaction branch ID component and a distributed transaction ID
component—this is how a branch is associated with a distributed transaction.
All XA resource instances associated with a given distributed transaction would
have a transaction ID that includes the same distributed transaction ID
component.

Oracle XA Packages

Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

« oracle.jdbc. xa (O acl eXi dand Oracl eXAExcept i on classes)
« oracle.jdbc.xa.client
« oracle.jdbc. xa.server

Classes for XA data sources, XA connections, and XA resources are in both the

cl i ent package and the ser ver package. (An abstract class for each is in the
top-level package.) The Or acl eXi d and Or acl eXAExcept i on classes are in the
top-level or acl e. j dbc. xa package, because their functionality does not depend
on where the code is running.

In middle-tier scenarios, you will import Or acl eXi d, Or acl eXAExcept i on, and
the oracl e. j dbc. xa. cl i ent package.

If you intend your XA code to run in the target Oracle database, however, you will
import the or acl e. j dbc. xa. ser ver package instead of the cl i ent package.

If code that will run inside a target database must also access remote databases,
then do not import either package—instead, you must fully qualify the names of
any classes that you use from the cl i ent package (to access a remote database) or
from the ser ver package (to access the local database). Class hames are duplicated
between these packages.

Distributed Transactions 14-5



XA Components

XA Components

This section discusses the XA components—standard XA interfaces specified in the
JDBC 2.0 Optional Package, and the Oracle classes that implement them. The
following topics are covered:

« XA Data Source Interface and Oracle Implementation

« XA Connection Interface and Oracle Implementation

« XA Resource Interface and Oracle Implementation

« XA Resource Method Functionality and Input Parameters

« XA ID Interface and Oracle Implementation

XA Data Source Interface and Oracle Implementation

The j avax. sql . XADat aSour ce interface outlines standard functionality of XA
data sources, which are factories for XA connections. The overloaded

get XAConnect i on() method returns an XA connection instance and optionally
takes a user name and password as input:

public interface XADat aSource

{
XAConnect i on get XAConnection() throws SQExcepti on;
XAConnect i on get XAConnection(String user, String password)
throws SCQLExcepti on;
}

Oracle JDBC implements the XADat aSour ce interface with the
Or acl eXADat aSour ce class, located both in the or acl e. j dbc. xa. cl i ent
package and the or acl e. j dbc. xa. ser ver package.

The Or acl eXADat aSour ce classes also extend the

O acl eConnect i onPool Dat aSour ce class (which extends the

O acl eDat aSour ce class), so include all the connection properties described in
"Data Source Properties" on page 13-4.

The Or acl eXADat aSour ce class get XAConnect i on() methods return the
Oracle implementation of XA connection instances, which are
Or acl eXAConnect i on instances (as the next section discusses).

14-6 JDBC Developer’'s Guide and Reference



XA Components

Note: You can register XA data sources in JNDI using the same
naming conventions as discussed previously for non-pooling data
sources in "Register the Data Source" on page 13-8.

XA Connection Interface and Oracle Implementation

An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA
connection instance.

Each XA connection instance also has the facility to produce the XA resource
instance that will correspond to it for use in coordinating the distributed
transaction.

An XA connection instance is an instance of a class that implements the standard
j avax. sql . XAConnect i on interface:

public interface XAQonnection extends Pool edConnecti on

{
}

javax.jta.xa. XAResour ce get XAResource() throws SQException;

As you see, the XAConnect i on interface extends the

j avax. sql . Pool edConnecti on interface, so it also includes the

get Connection(),cl ose(),addConnecti onEvent Li st ener (), and
renmoveConnect i onEvent Li st ener () methods listed in "Pooled Connection
Interface and Oracle Implementation” on page 13-13.

Oracle JDBC implements the XAConnect i on interface with the
Or acl eXAConnect i on class, located both in the or acl e. j dbc. xa. cl i ent
package and the or acl e. j dbc. xa. ser ver package.

The Or acl eXAConnect i on classes also extend the Or acl ePool edConnecti on
class.

The Or acl eXAConnect i on class get XAResour ce() method returns the Oracle
implementation of an XA resource instance, which is an Or acl eXAResour ce
instance (as the next section discusses). The get Connect i on() method returns an
Or acl eConnect i on instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the

Distributed Transactions 14-7



XA Components

physical connection. The physical connection is encapsulated by the XA connection
instance.

Each time an XA connection instance get Connect i on() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same XA
connection instance. It is advisable to explicitly close any previous connection
instance before opening a new one, however.

Calling the cl ose() method of an XA connection instance closes the physical
connection to the database. This is typically performed in the middle tier.

XA Resource Interface and Oracle Implementation

The transaction manager uses XA resource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each XA resource instance provides the following key functionality, typically
invoked by the transaction manager:

« Itassociates and disassociates distributed transactions with the transaction
branch operating in the XA connection instance that produced this XA resource
instance. (Essentially, associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance.) This is done
through use of transaction IDs.

« It performs the two-phase COVM T functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

"XA Resource Method Functionality and Input Parameters" on page 14-9
further discusses this.

Notes: Because there must always be a one-to-one correlation
between XA connection instances and XA resource instances, an XA
resource instance is implicitly closed when the associated XA
connection instance is closed.

14-8 JDBC Developer’'s Guide and Reference



XA Components

An XA resource instance is an instance of a class that implements the standard
javax.transacti on. xa. XAResour ce interface:

public interface XAResource

{
void commt(Xid xid, bool ean onePhase) throws XAExcepti on;
void end(Xd xid, int flags) throws XAException;
voi d forget(Xid xid) throws XAException;, // no Qracle inplenentation
int prepare(Xd xid) throws XAException;
Xid[] recover(int flag) throws XAException; // no Qracle inplenentation
void rol | back(X d xi d) throws XAExcepti on;
void start(Xid xid, int flags) throws XAExcepti on;
bool ean i sSaneRM XAResour ce xares) throws XAExcepti on;
}

Oracle JDBC implements the XAResour ce interface with the Or acl eXAResour ce
class, located both in the or acl e. j dbc. xa. cl i ent package and the
oracl e. jdbc. xa. server package.

The Oracle JDBC driver creates and returns an Or acl eXAResour ce instance
whenever the Or acl eXAConnect i on class get XAResour ce() method is called,
and it is the Oracle JDBC driver that associates an XA resource instance with a
connection instance and the transaction branch being executed through that
connection.

This is how an Or acl eXAResour ce instance is associated with a particular
connection and with the transaction branch being executed in that connection.

Note: With release 8.1.6, Oracle JDBC does not currently
implement ther ecover () and f or get () methods.

XA Resource Method Functionality and Input Parameters

The Or acl eXAResour ce class has several methods to coordinate a transaction
branch with the distributed transaction with which it is associated. This usually
involves two-phase COW T operations.

A transaction manager, receiving Or acl eXAResour ce instances from a middle-tier
component such as an application server, would typically invoke this functionality.

Each of these methods takes a transaction ID as input, in the form of an Or acl eXi d
instance, which includes a transaction branch ID component and a distributed
transaction ID component. Every transaction branch has a unique transaction ID,

Distributed Transactions 14-9



XA Components

but transaction branches belonging to the same distributed transaction have the
same distributed transaction component as part of their transaction IDs.

The Or acl eXi d class and the standard interface upon which it is based are
discussed in "XA ID Interface and Oracle Implementation” on page 14-13.

Following is a description of key XA resource functionality, the methods used, and
additional input parameters. Each of these methods throws an XA exception if an
error is encountered. See "XA Exception Classes and Methods" on page 14-15.

Start Start work on behalf of a transaction branch, associating the transaction branch
with a distributed transaction.

void start(Xid xid, int flags)

The f | ags parameter can have one of the following values:

=«  XAResour ce. TMNOFLAGS (no special flag)—This is to flag the start of a new
transaction branch for subsequent operations in the session associated with this
XA resource instance. This branch will have the transaction ID xi d, which is an
O acl eXi d instance created by the transaction manager. This will map the
transaction branch to the appropriate distributed transaction.

« XAResour ce. TMJIO N—This is to join subsequent operations in the session
associated with this XA resource instance to the existing transaction branch
specified by xi d.

« XAResour ce. TMRESUME—This is to resume the transaction branch specified
by xi d. (It must first have been suspended.)

TMNOFLAGS, TMIAO N, and TMRESUME are defined as static members of the
XAResour ce interface and Or acl eXAResour ce class.

Note: Instead of using the st art () method with TMRESUME, the
transaction manager can cast to an Or acl eXAResour ce instance
and use ther esune( Xi d xi d) method, an Oracle extension.

Note that to create an appropriate transaction ID in starting a transaction branch,
the transaction manager must know which distributed transaction the transaction
branch should belong to. The mechanics of this are handled between the middle tier
and transaction manager and are beyond the scope of this document. Refer to the
Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java
Transaction API.

14-10 JDBC Developer’'s Guide and Reference



XA Components

End End work on behalf of the transaction branch specified by xi d, disassociating
the transaction branch from its distributed transaction.

void end(Xd xid, int flags)

The f | ags parameter can have one of the following values:

« XAResour ce. TMSUCCESS—This is to indicate that this transaction branch is
known to have succeeded.

= XAResour ce. TMFAlI L—This is to indicate that this transaction branch is
known to have failed.

« XAResour ce. TMSUSPEND—This is to suspend the transaction branch specified
by xi d. (By suspending transaction branches, you can have multiple
transaction branches in a single session. Only one can be active at any given
time, however. Also, this tends to be more expensive in terms of resources than
having two sessions.)

TMSUCCESS, TMFAI L, and TMSUSPEND are defined as static members of the
XAResour ce interface and Or acl eXAResour ce class.

Notes:

« Instead of using the end() method with TMSUSPEND, the
transaction manager can cast to an Or acl eXAResour ce
instance and use the suspend( Xi d xi d) method, an Oracle
extension.

= This XA functionality to suspend a transaction provides a way
to switch between various transactions within a single JDBC
connection. You can use the XA classes to accomplish this, even
if you are not in a distributed transaction environment and
would otherwise have no need for the XA classes.

Prepare Prepare the changes performed in the transaction branch specified by xi d.
This is the first phase of a two-phase COMM T operation, to ensure that the database
is accessible and that the changes can be committed successfully.

int prepare(Xd xid)

Distributed Transactions 14-11



XA Components

This method returns an integer value as follows:

« XAResour ce. XA _RDONLY—This is returned if the transaction branch executes
only read-only operations such as SELECT statements.

« XAResour ce. XA _OK—This is returned if the transaction branch executes
updates that are all prepared without error.

« n/a(no value returned)—No value is returned if the transaction branch
executes updates and any of them encounter errors during preparation. In this
case, an XA exception is thrown.

XA RDONLY and XA _OK are defined as static members of the XAResour ce interface
and Or acl eXAResour ce class.

Notes:

« You should always call the end() method on a branch before
calling the pr epar e() method.

« Ifthereis only one transaction branch in a distributed
transaction, then there is no need to call the pr epar e()
method. You can call the XA resource conmi t () method
without preparing first.

Commit Commit prepared changes in the transaction branch specified by xi d. This
is the second phase of a two-phase COMM T and is performed only after all
transaction branches have been successfully prepared.

void commt(Xid xid, bool ean onePhase)

You can set the onePhase parameter as follows:

« true—This is to use one-phase instead of two-phase protocol in committing
the transaction branch. This is appropriate if there is only one transaction
branch in the distributed transaction; the pr epar e step would be skipped.

« fal se—This is to use two-phase protocol in committing the transaction branch
(typical).

Roll back Roll back prepared changes in the transaction branch specified by xi d.
voi d rol | back(X d xi d)

14-12 JDBC Developer’s Guide and Reference



XA Components

Check for same RM To determine if two XA resource instances correspond to the
same resource manager (database), call the i sSameRM ) method from one XA
resource instance, specifying the other XA resource instance as input. In the
following example, presume xar es1 and xar es2 are Or acl eXAResour ce
instances:

bool ean saneRM = xaresl. i sSaneR\ xar es2) ;

This method can be used by a transaction manager regarding certain Oracle
optimizations, as discussed in "Oracle XA Optimizations" on page 14-17.

XA D Interface and Oracle Implementation

The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction 1D, which includes the following information:

« format identifier (4 bytes)

A format identifier specifies a Java transaction manager—for example, there
could be a format identifier ORCL. This field cannot be null.

= global transaction identifier (64 bytes) (or "distributed transaction ID
component", as discussed earlier)

« branch qualifier (64 bytes) (or "transaction branch ID component", as discussed
earlier)

The 64-byte global transaction identifier value will be identical in the transaction
IDs of all transaction branches belonging to the same distributed transaction. The
overall transaction ID, however, is unique for every transaction branch.

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction. xa. Xi d interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Oracle implements this interface with the Or acl eXi d class in the
oracl e. j dbc. xa package. Or acl eXi d instances would be used only in a
transaction manager, transparent to application programs or an application server.

A transaction manager can use the following in creating an Or acl eXi d instance:
public QracleXid(int fld, byte gld[], byte bld[]) throws XAException

Where f | d is an integer value for the format identifier, gl d[ ] is a byte array for the
global transaction identifier, and bl d[ ] is a byte array for the branch qualifier.

Distributed Transactions 14-13



XA Components

The Xi d interface specifies the following getter methods:
« public int getFormatld()

« public byte[] getd obal Transactionld()

« public type[] getBranchQualifier()

14-14 JDBC Developer’s Guide and Reference



Error Handling and Optimizations

Error Handling and Optimizations

This section has two focuses: 1) the functionality of XA exceptions and error
handling; and 2) Oracle optimizations in its XA implementation. The following
topics are covered:

« XA Exception Classes and Methods

« Mapping between Oracle Errors and XA Errors
« XA Error Handling

» Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception
class and the Oracle-specific XA exception class, as well as particular XA error codes
and error-handling techniques.

XA Exception Classes and Methods

XA methods throw XA exceptions, as opposed to general exceptions or SQL
exceptions. An XA exception is an instance of the standard class

javax. transacti on. xa. XAExcept i on or a subclass. Oracle subclasses
XAExcept i on with the oracl e. j dbc. xa. Or acl eXAExcepti on class.

An O acl eXAExcept i on instance consists of an Oracle error portion and an XA
error portion and is constructed as follows by the Oracle JDBC driver:

public O acl eXAException()

or:

public O acl eXAException(int error)

The error value is an error code that combines an Oracle SQL error value and an XA
error value. (The JDBC driver determines exactly how to combine the Oracle and
XA error values.)

The Or acl eXAExcept i on class has the following methods:
« public int getOracleError()

This method returns the Oracle SQL error code pertaining to the exception—a
standard ORA error number (or O if there is no Oracle SQL error).

Distributed Transactions 14-15



Error Handling and Optimizations

public int

get XAError ()

This method returns the XA error code pertaining to the exception. XA error
values are defined in the j avax. t ransacti on. xa. XAExcept i on class; refer
to its Javadoc at the Sun Microsystems Web site for more information.

Mapping between Oracle Errors and XA Errors

As of release 8.1.6, Oracle errors correspond to XA errors in Or acl eXAExcept i on
instances as documented in Table 14-1.

Table 14-1 Oracle-XA Error Mapping

Oracle Error Code

XA Error Code

ORA
ORA
ORA

ORA
ORA

all other ORA errors

3113

3114

24756
24764
24765
24766
24767
25351

XAException. XAER_RMFAI L
XAExcept i on. XAER_RMFAI L
XAExcept i on. XAER_NOTA
XAExcepti on. XA_HEURCOM
XAExcepti on. XA HEURRB
XAException. XA HEURM X
XAExcepti on. XA_RDONLY
XAExcepti on. XA_RETRY
XAExcepti on. XA_RMERR

XA Error Handling

The following example uses the Or acl eXAExcept i on class to process an XA
exception:

try {

... Perform XA operations. ..

} catch(Q acl eXAException oxae) {
int oraerr = oxae.getQacl eEror();
Systemout.printIn("Eror " + oraerr);

}

cat ch( XAExcepti on xae)

{...Process generic XA exception...}

14-16 JDBC Developer’s Guide and Reference



Error Handling and Optimizations

In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

Oracle XA Optimizations

Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance—meaning that the XA
resource instances associated with these branches are associated with the same
resource manager.

In such a circumstance, the pr epar e() method of only one of these XA resource
instances will return XA_OK (or failure); the rest will return XA_RDONLY, even if
updates are made. This allows the transaction manager to implicitly join all the
transaction branches and commit (or roll back, if failure) the joined transaction
through the XA resource instance that returned XA _OK (or failure).

The transaction manager can use the Or acl eXAResour ce class i sSaneRM )
method to determine if two XA resource instances are using the same resource
manager. This way it can interpret the meaning of XA_RDONLY return values.

Distributed Transactions 14-17



Implementing a Distributed Transaction

Implementing a Distributed Transaction

This section provides an example of how to implement a distributed transaction
using Oracle XA functionality.

Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

inport oracle.jdbc. xa. Oacl eX d;

inport oracl e.jdbc. xa. O acl eXAExcepti on;
inport oracl e.jdbc. pool . *;

inport oracle.jdbc.xa.client.*;

inport javax.transaction. xa.*;

The oracl e. j dbc. pool package has classes for connection pooling functionality,
some of which are subclassed by XA-related classes.

In addition, if the code will run inside an Oracle database and access that database
for SQL operations, you must import the following:

inport oracl e.jdbc. xa. server. *;

(And if you intend to access only the database in which the code runs, you would
not need the or acl e. j dbc. xa. cl i ent classes.)

Thecl i ent and server packages each have versions of the

O acl eXADat aSour ce, Or acl eXAConnecti on, and Or acl eXAResour ce
classes. Abstract versions of these three classes are in the top-level

oracl e. j dbc. xa package.

Oracle XA Code Sample

This example uses a two-phase distributed transaction with two transaction
branches, each to a separate database.

Note that for simplicity, this example combines code that would typically be in a
middle tier with code that would typically be in a transaction manager (such as the
XA resource method invocations and the creation of transaction IDs).

For brevity, the specifics of creating transaction IDs (in the cr eat el D() method)
and performing SQL operations (in the doSomeWsr k1() and doSomeWsr k2()
methods) are not shown here. The complete sample is in "XA with Two-Phase
Commit Operation—XA4.java" on page 17-84.

14-18 JDBC Developer’s Guide and Reference



Implementing a Distributed Transaction

For another complete sample, showing how to use XA resource functionality to
suspend and resume a transaction, see "XA with Suspend and Resume—XA2. java"
on page 17-79.

This example executes the following sequence:
Start transaction branch #1.
Start transaction branch #2.
Execute DML operations on branch #1.

Execute DML operations on branch #2.

End transaction branch #2.
Prepare branch #1.

1

2

3

4

5. End transaction branch #1.
6

7

8. Prepare branch #2.

9

Commit branch #1.
10. Commit branch #2.

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;

inport oracl e.jdbc. pool . *;

inport oracle.jdbc. xa. Oacl eX d;

inport oracl e.j dbc. xa. O acl eXAExcepti on;

inport oracle.jdbc.xa.client.*;

inport javax.transaction. xa.*;

class XAd
{
public static void main (String args [])
throws SQException
{

try

{
String URL1
String URL2

"jdbc: oracl e: oci 8: @;
"j dbc: oracl e: thi n: @descri pti on=(addr ess=( host =dl sun991)
(protocol =t cp) (port =5521)) (connect _dat a=(si d=rdbns2)))";

Dri ver Manager . regi st er Dri ver (new O acl eDxi ver ());

Distributed Transactions 14-19



Implementing a Distributed Transaction

/1 You can put a database nanme after the @sign in the connection URL.
CGonnecti on conna =
Dri ver Manager . get Connection (URL1, "scott", "tiger");

/] Prepare a statenent to create the table
Statenent stnta = conna.createStatenent ();

Gonnecti on connb =
Dri ver Manager . get Connection (UR2, "scott", "tiger");

/]l Prepare a statenent to create the table
Statenent stntb = connb.createStatenent ();

try

// Drop the test table
stnma.execute ("drop table ny_table");

}
catch (SQException e)
{
// lgnore an error here
}
try
{
/I Greate a test table
stnma.execute ("create table ny_table (collint)");
}
catch (SQException e)
{
/] lgnore an error here too
}
try
{
/l Drop the test table
stnib. execute ("drop table ny_tab");
}
catch (SQException e)
{
/] lgnore an error here
}
try

14-20 JDBC Developer’s Guide and Reference



Implementing a Distributed Transaction

{

/I Greate a test table

stnmb. execute ("create table ny_tab (col 1 char(30))");
}
catch (SQException e)

{

/] lgnore an error here too

}

/1 Create XADataSource instances and set properti es.
QO acl eXADat aSour ce oxds1l = new O acl eXADat aSour ce() ;
oxds1. set UR("jdbc: oracl e: oci 8: @) ;

oxdsl. set User ("scott");

oxds1l. set Password("tiger");

QO acl eXADat aSour ce oxds2 = new O acl eXADat aSour ce() ;

oxds2. set URL("j dbc: oracl e: t hi n: @descri pti on=(addr ess=( host =dl sun991)
(protocol =t cp) (port=5521)) (connect _dat a=(si d=r dbns2)))");

oxds2. set User ("scott");

oxds2. set Password("tiger");

/1 Get XA connections to the underlying data sources
XAQonnecti on pcl = oxdsl. get XAConnection();
XAQonnecti on pc2 = oxds2. get XAConnection();

/1l Get the physical connections
Gonnecti on connl = pcl. get Gonnection();
Gonnect i on conn2 = pc2. get Gonnection();

/1 Get the XA resources
XAResource oxarl = pcl. get XAResource();
XAResour ce oxar2 = pc2. get XAResour ce();

/] Create the Xids Wth the Sane G obal |ds
Xid xidl = createXid(1);
Xid xid2 = createX d(2);

/] Start the Resources
oxarl.start (xidl, XAResource. TMNFLAS);
oxar2.start (xid2, XAResource. TMNFLASS);

/1 Execute SQL operations with connl and conn2

doSoneWr k1 (connl);
doSoneVWr k2 (conn2);

Distributed Transactions 14-21



Implementing a Distributed Transaction

/] END both the branches -- | MPCRTANT
oxar 1. end( xi d1, XAResource. TMBUCCESS);
oxar 2. end( xi d2, XAResour ce. TMBUGCESS) ;

/1 Prepare the RW
int prpl = oxarl.prepare (xidl);
int prp2 = oxar2.prepare (xid2);

Systemout. println("Return val ue of prepare 1is " + prpl);
Systemout. println("Return val ue of prepare 2 is " + prp2);

bool ean do_commit = true;

if (1((prpl = XAResource. XA K) || (prpl == XAResource. XA RDA\LY)))
do coomt = fal se;

if (1((prp2 = XAResource. XA CK) || (prp2 == XAResource. XA RDA\LY)))
do coomt = fal se;

Systemout. println("do_conmt is " + do_conmit);
Systemout. println("ls oxarl same as oxar2 ? " + oxarl.isSaneRMoxar2));

if (prpl == XAResour ce. XA (X)
if (do_comit)
oxarl.commt (xidl, false);
el se
oxarl.rol I back (xidl);

if (prp2 == XAResour ce. XA X)
if (do_comit)
oxar2.commt (xid2, false);
el se
oxar2.rol I back (xid2);

// Qdose connections
connl. cl ose();

connl = nul|;

conn2. cl ose();

conn2 = nul | ;

pcl. cl ose();
pcl = null;
pc2. cl ose();
pc2 = null;

14-22 JDBC Developer’s Guide and Reference



Implementing a Distributed Transaction

Result Set rset = stma. execut eQuery ("select col 1 fromny_table");
whil e (rset.next())
Systemout.printin("Coll is " + rset.getlnt(1));

rset.close();
rset = null;

rset = stmb. executeQuery ("select coll fromny_tab");
whil e (rset.next())
Systemout.printin("Col1 is " + rset.getSring(l));

rset.close();
rset = null;

st a.cl ose();

stma = null;
st b. cl ose();
stmb = null;

conna. cl ose();

conna = nul | ;
connb. cl ose();
connb = nul | ;

} catch (SQException sqge)
{

sqe. print S ackTrace();
} catch (XAExcepti on xae)

{
if (xae instanceof QO acl eXAException) {
Systemout.println("XA Eror is " +
((Cracl eXAExcept i on) xae) . get XAError());
Systemout.printin("SQL Eror is " +
((Cracl eXAException)xae). get OacleEror());
}
}
}

static Xid createX d(int bids)
t hrows XAException
{...Qeate transaction IDs...}

private static voi d doSoneVr k1l (Gonnecti on conn)
throws SQException

Distributed Transactions 14-23



Implementing a Distributed Transaction

{...Execute SQ operations...}
private static voi d doSoneVér k2 (Gonnecti on conn)

throws SQException
{...Execute SQ operations...}

14-24 JDBC Developer’'s Guide and Reference



15

Advanced Topics

This chapter describes the following advanced JDBC topics:
« JDBC and NLS

« JDBC Client-Side Security Features

« JDBC in Applets

= JDBC in the Server: the Server-Side Internal Driver

Advanced Topics 15-1



JDBC and NLS

JDBC and NLS

After a brief overview, this section covers the following topics:

« How JDBC Drivers Perform NLS Conversions

« NLS Support and Object Types

«» CHAR and VARCHAR?2 Data Size Restrictions with the Thin Driver

Oracle’s JDBC drivers support NLS (National Language Support). NLS lets you
retrieve data or insert data into a database in any character set that Oracle supports.
If the clients and the server use different character sets, then the driver provides the
support to perform the conversions between the database character set and the
client character set.

For more information on NLS, NLS environment variables, and the character sets
that Oracle supports, see the Oracle8i National Language Support Guide. See the
Oracle8i Reference for more information on the database character set and how it is
created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on NLS character set conversion:

« Thejava. sqgl . Resul t Set methodsget String() and
get Uni codeSt r ean() return values from the database as Java strings and as
a stream of Unicode characters, respectively.

« Theoracle.sqgl.CLOBmethod get Char act er Strean{) returns the
contents of a CLOB as a Unicode stream.

« Theoracle.sqgl.CHARmethodsget String(),toString(),and
get Stri ngWt hRepl acement () convert the following data to strings:

— get String():Thisconverts the sequence of characters represented by the
CHAR object to a string and returns a Java St r i ng object.

— toString():Thisisidentical to get Stri ng(), butif the character set is
not recognized, thent oSt ri ng() returns a hexadecimal representation of
the CHAR data.

— getStringWthRepl acenment () : Thisis identical to get Stri ng(),
except characters that have no Unicode representation in the character set of
this CHAR object are replaced by a default replacement character.

15-2 JDBC Developer’'s Guide and Reference



JDBC and NLS

How JDBC Drivers Perform NLS Conversions

The techniques that the Oracle JDBC drivers use to perform character set conversion
for Java applications depend on the character set the database uses. The simplest
case is where the database uses the US7ASCI | or WE8I SO8859P1 character set. In
this case, the driver converts the data directly from the database character set to
UCS- 2, which is used in Java applications, and vice versa.

If you are working with databases that employ a non-US7ASCI | or

non-WE8I SOB859P1 character set (for example, Japanese or Korean), then the
driver converts the data first to UTF- 8 (this step does not apply to the server-side
internal driver), then to UCS- 2. For example, the driver always converts CHAR and
VARCHAR?2 data in a non-US7ASCI | , non-VE81 SO8859P1 character set. It does not
convert RAWdata.

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.

JDBC OCI Driver and NLS

If you are using the JDBC OCI driver, then NLS is handled as in any other Oracle
client situation. The client character set, language, and territory settings are in the
NLS LANGenvironment variable, which is set at client-installation time.

Note that there are also server-side settings for these parameters, determined
during database creation. So, when performing character set conversion, the JDBC
OCI driver has to take three factors into consideration:

« database character set and language
« client character set and language
« Java applications character set: UCS- 2

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANGenvironment variable,
the driver handles character set conversions in one of two ways:

« IfNLS_LANGis not specified, or specifies the US7ASCI | or WE8| SO8859P1
character set, then the JDBC OCI driver uses Java to convert the character set
from US7ASCI | or VVE8I SOB859P1 directly to UCS- 2, or the reverse.

Advanced Topics 15-3



JDBC and NLS

or:

« IfNLS_LANGspecifies a non-US7ASCI | or non-WE8| SO8859P1 character set,
then the driver changes the value of the NLS_LANG parameter on the client to
UTF- 8. This happens automatically and does not require any user-intervention.
OCl uses the NLS_LANGsetting in converting the data from the database
character set to UTF- 8; the JDBC driver then converts the UTF- 8 data to UCS- 2.

Notes:

« Thedriver sets the NLS_LANGcharacter set to UTF- 8 to
minimize the number of conversions it performs in Java. It
performs the conversion from database character set to UTF- 8
inC.

=« Thechange to UTF- 8 is for the JDBC application process only.

« For more information on the NLS_LANG parameter, see the
Oracle8i National Language Support Guide.

JDBC Thin Driver and NLS

If you are using the JDBC Thin driver, then there will presumably be no Oracle
client installation. NLS conversions must be handled differently.

Language and Territory The Thin driver obtains language and territory settings
(NLS_LANGUAGE and NLS_TERRI TORY) from the Java locale in the VM

user . | anguage property. The date format (NLS_DATE_FORMAT) is set according
to the territory setting.

Character Set If the database character set is US7ASCI | or WE8I SO8859P1, then the
data is transferred to the client without any conversion. The driver then converts
the character set to UCS- 2 in Java.

If the database character set is something other than US7ASCI | or WE8I SO8859P1,
then the server first translates the data to UTF- 8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UCS- 2 in Java.

Server-Side Internal Driver and NLS

If your JDBC code running in the server accesses the database, then the JDBC
server-side internal driver performs a character set conversion based on the
database character set. The target character set of all Java programs is UCS- 2.

15-4 JDBC Developer’'s Guide and Reference



JDBC and NLS

NLS Support and Object Types

The Oracle JDBC class files, cl asses12. zi p and cl asses111. zi p, provide NLS
support for the Thin and OCI drivers. The files contain all the necessary classes to
provide complete NLS support for all Oracle character sets for CHAR, VARCHAR,
LONGVARCHAR, and CLOB type data not retrieved or inserted as part of an Oracle
object or collection type.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the JDBC class files provide support for only these commonly used
character sets:

« US7ASCI |

= WESDEC

=« |SOLATIN1
« UTF-8

To provide support for all NLS character sets, the Oracle 8i JDBC driver installation
includes two additional files: nl s_char set 12. zi p for JDK 1.2.x and

nl s_charset 11. zi p for JIDK 1.1.x. The OCI and Thin drivers require these files to
support all Oracle characters sets for CHAR and VARCHAR data in Oracle object types
and collections. To obtain this support, you must add the appropriate

nl s_charset *. zi p file to your CLASSPATH.

It is important to note that the nl s_char set *. zi p files are very large, because
they must support a large number of character sets. To save space, you might want
to keep only the classes you need from the nl s_char set *. zi p file. If you want to
do this, follow these steps:

1. Unzip the appropriate nl s_char set *. zi p file.

2. Add only the needed character set classes to the CLASSPATH.

3. Remove the unneeded character set files from your system.

The character set extension class files are named in the following format:

Char act er Gonver t er <@ acl eChar act er Set | d>. cl ass

where <O acl eChar act er Set | d> is the hexadecimal representation of the Oracle
character set ID that corresponds to a character set name.

Advanced Topics 15-5



JDBC and NLS

Note: The preceding discussion is not relevant in using the
server-side internal driver, which provides complete NLS support
and does not require the NLS character set classes.

CHAR and VARCHAR? Data Size Restrictions with the Thin Driver

If the database character set is neither ASCI | (US7ASCI | ) nor | SO LATI N-1
(VWE81 SO8859P1), then the Thin driver must impose size restrictions for CHAR and
VARCHAR2 bind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The Thin driver checks CHAR or VARCHAR?Z bind sizes when the set XXX() method
is called. If the data size exceeds the size restriction, then the driver throws a SQL
exception (ORA-17070 "Data size bigger than max size for this type") from the

set XXX() call. This limitation is necessary to avoid the chance of data corruption
whenever an NLS conversion occurs and increases the length of the data. This
limitation is enforced when you are doing all the following:

« using the Thin driver
= using binds (not defines)
= using CHAR or VARCHAR2 datatypes

= connecting to a database whose character set is neither ASCl | (US7ASCI | ) nor
| SO Lati n- 1 (WE8I SCB859P1)

Role of NLS Ratio

As previously discussed, when the database character set is neither US7ASCI | nor
VE8| SO8859P1, the Thin driver converts Java UCS- 2 characters to UTF- 8
encoding bytes for CHAR or VARCHAR2 binds. The UTF- 8 encoding bytes are then
transferred to the database, and the database converts the UTF- 8 encoding bytes to
the database character set encoding.

This conversion to the character set encoding might result in a size increase. The
NLS ratio for a database character set indicates the maximum possible expansion in
converting from UTF- 8 to the character set:

NLS ratio = (nmaxi numpossi bl e val ue of) [(size in database character set) / (size in UTF8)]

15-6 JDBC Developer’'s Guide and Reference



JDBC and NLS

Size Restriction Formulas

Table 15-1 shows the database size limitations for CHAR and VARCHAR?2 data, and
the Thin driver size restriction formulas for CHAR and VARCHAR2 binds. Database
limits are in bytes. Formulas determine the maximum size of the UTF- 8 encoding,
in bytes.

Table 15-1 Maximum CHAR and VARCHAR?Z Bind Sizes, Thin Driver

Max Size Allowed by Formulafor Thin Driver Max

Oracle Version Datatype Database (bytes) Bind Size (UTF-8 bytes)
Oracle8 and Oracle8i CHAR 2000 min(2000, 4000/NLS_ratio)
Oracle8 and Oracle8i VARCHAR?2 4000 4000/NLS_ratio

Oracle7 CHAR 255 255

Oracle7 VARCHAR2 2000 2000/NLS_ratio

The formulas guarantee that after the data is converted from UTF- 8 to the database
character set, the size will not exceed the database maximum size.

The number of UCS- 2 characters that can be supported is determined by the
number of bytes per character in the data. All ASCI | characters are one byte long in
UTF- 8 encoding. Other character types can be two or three bytes long.

NLS Ratios and Calculated Size Restrictions for Common Character Sets

Table 15-2 lists the NLS ratios of some common server character sets, then shows
the Thin driver maximum bind sizes for CHAR and VARCHAR?2 data for each
character set, as determined by using the NLS ratio in the appropriate formula.

Again, maximum bind sizes are for UTF- 8 encoding, in bytes.

Table 15-2 NLS Ratio and Size Limits, Oracle8, Common Character Sets

Thin Driver Max Thin Driver Max
VARCHAR?2 Bind CHAR Bind Size
Server Character Set NLS Ratio Size (UTF-8 bytes) (UTF-8 bytes)
WESDEC 1 4000 2000
JA16SJI S 2 2000 2000
| SO 8859- 1 through 10 3 1333 1333

Advanced Topics 15-7



JDBC Client-Side Security Features

JDBC Client-Side Security Features

This section discusses support in the Oracle JDBC OCI and Thin drivers for login
authentication, data encryption, and data integrity—particularly with respect to
features of the Oracle Advanced Security option.

Oracle Advanced Security, previously known as the "Advanced Networking
Option" (ANO) or "Advanced Security Option" (ASO), includes features to support
data encryption, data integrity, third-party authentication, and authorizations.
Oracle JDBC supports most of these features; however, the JDBC Thin driver must
be considered separately from the JDBC OCI driver.

Note: This discussion is not relevant to the server-side internal
driver, given that all communication through that driver is
completely internal to the server.

JDBC Support for Oracle Advanced Security

Both the JDBC OCI drivers and the JDBC Thin driver support at least some of the
features of Oracle Advanced Security. If you are using one of the OCI drivers, you
can set relevant parameters in the same way that you would in any thick-client
setting. The Thin driver supports Advanced Security features through a set of Java
classes included with the JDBC classes ZIP file, and supports security parameter
settings through Java properties objects.

Included in your Oracle JDBC cl asses111. zi p orcl asses12. zi p fileare aJAR
file containing classes that incorporate features of Oracle Advance Security, and a
JAR file containing classes whose function is to interface between the JDBC classes
and the Advanced Security classes for use with the JDBC Thin driver.

OCI Driver Support for Oracle Advanced Security

If you are using one of the JDBC OCI drivers, which presumes you are running
from a thick-client machine with an Oracle client installation, then support for
Oracle Advanced Security and incorporated third-party features is, for the most
part, no different from any Oracle thick-client situation. Your use of Advanced
Security features is determined by related settings in the SQLNET. ORA file on the
client machine, as discussed in the Oracle Advanced Security Administrator’s Guide.
Refer to that manual for information.

15-8 JDBC Developer’'s Guide and Reference



JDBC Client-Side Security Features

Important: The one key exception to the preceding, with respect to
Java, is that SSL—Sun Microsystem’s standard Secure Socket Layer
protocol—is supported by the Oracle JDBC OCI drivers only if you
use native threads in your application. This requires special
attention, because green threads are generally the default.

Thin Driver Support for Oracle Advanced Security

Because the Thin driver was designed to be downloadable with applets, one
obviously cannot assume that there is an Oracle client installation and a
SQLNET. ORA file where the Thin driver is used. This necessitated the design of a
new, 100% Java approach to Oracle Advanced Security support.

Java classes that implement Oracle Advanced Security are included in your JDBC
cl asses12. zi porcl asses11l. zi p file. Security parameters for encryption and
integrity, normally set in SQLNET. ORA, are set in a Java properties file instead.

For information about parameter settings, see "Thin Driver Support for Encryption
and Integrity" on page 15-12.

JDBC Support for Login Authentication

Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the

get Connecti on() method call, as discussed in "Open a Connection to a
Database" on page 3-3.

This applies regardless of which client-side Oracle JDBC driver you are using, but is
irrelevant if you are using the server-side internal driver, which uses a special direct
connection and does not require a user name or password.

The Oracle JDBC Thin driver implements Oracle O3LOGON challenge-response
protocol to authenticate the user.

Note: As of release 8.1.6, third-party authentication features
supported by Oracle Advanced Security—such as those provided
by RADIUS, Kerberos, or SecurlD—are not supported by the Oracle
JDBC Thin driver. For the Oracle JDBC OCI driver, support is the
same as in any thick-client situation—refer to the Oracle Advanced
Security Administrator’s Guide.

Advanced Topics 15-9



JDBC Client-Side Security Features

JDBC Support for Data Encryption and Integrity

You can use Oracle Advanced Security data encryption and integrity features in
your Java database applications, depending on related settings in the server.

When using an OCI driver in a thick-client setting, set parameters as you would in
any Oracle client situation. When using the Thin driver, set parameters through a
Java properties file.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting.

Similarly, integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels—REJECTED, ACCEPTED,
REQUESTED, and REQUI RED. Table 15-3 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature.

Table 15-3 Client/Server Negotiations for Encryption or Integrity

Client

Client Accepted Client Client

Rejected (default) Requested  Required
Server OFF OFF OFF connection
Rejected fails
Server OFF OFF ON ON
Accepted
(default)
Server OFF ON ON ON
Requested
Server connection ON ON ON
Required fails

This table shows, for example, that if encryption is requested by the client, but
rejected by the server, it is disabled. The same is true for integrity. As another
example, if encryption is accepted by the client and requested by the server, it is
enabled. And, again, the same is true for integrity.

The general settings are further discussed in the Oracle Advanced Security
Administrator’s Guide. How to set them for a JDBC application is described in the
following subsections.

15-10 JDBC Developer’'s Guide and Reference



JDBC Client-Side Security Features

Note: The term "checksum" still appears in integrity parameter
names, as you will see in the following subsections, but is no longer
used otherwise. For all intents and purposes, "checksum" and
"integrity" are synonymous.

OCI Driver Support for Encryption and Integrity

If you are using one of the Oracle JDBC OCI drivers, which presumes a thick-client
setting with an Oracle client installation, you can enable or disable data encryption
or integrity and set related parameters as you would in any Oracle client situation,
through settings in the SQLNET. ORA file on the client machine.

To summarize, the client parameters are shown in Table 15-4:

Table 15-4 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET. ENCRYPTI ON_CLI ENT REJECTED
ACCEPTED
REQUESTED
REQUI RED

Client encryption selected SQLNET. ENCRYPTI ON_TYPES_CLI ENT RC4_40

list RC4 56
DES
DES40

(see note below)

Client integrity level SQLNET. CRYPTO_CHECKSUM CLI ENT REJECTED
ACCEPTED
REQUESTED
REQUI RED
Client integrity selected list SQLNET. CRYPTO_CHECKSUM TYPES_CLI ENT VD5

Note: For the Oracle Advanced Security domestic edition only, a
setting of RC4_128 is also possible.

These settings, and corresponding settings in the server, are further discussed in
Appendix A of the Oracle Advanced Security Administrator’s Guide.

Advanced Topics 15-11



JDBC Client-Side Security Features

Thin Driver Support for Encryption and Integrity

Thin driver support for data encryption and integrity parameter settings parallels
the thick-client support discussed in the preceding section. Corresponding
parameters exist under the or acl e. net package and can be set through a Java
properties object that you would then use in opening your database connection.

If you replace "SQLNET" in the parameter names in Table 15-4 with "oracle.net",
you will get the parameter names supported by the Thin driver (but note that in
Java, the parameter names are all-lowercase).

Table 15-5 lists the parameter information for the Thin driver. See the next section
for examples of how to set these parameters in Java.

Table 15-5 Thin Driver Client Parameters for Encryption and Integrity

Parameter Parameter
Parameter Name Type Class Possible Settings

oracl e. net. encryption_client string static REJECTED
ACCEPTED
REQUESTED
REQUI RED

oracl e. net. encryption_types_client string static RC4_40
RC4_56
DES40C
DES56C

oracl e. net.crypto_checksumcli ent string static REJECTED
ACCEPTED
REQUESTED
REQUI RED

oracl e. net.crypto_checksumtypes_client string static VD5

Notes:

« Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes ZIP file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export
edition are possible.

« The"C"in DES40C and DES56C refers to CBC (cipher block
chaining) mode.

15-12 JDBC Developer’'s Guide and Reference



JDBC Client-Side Security Features

Setting Encryption and Integrity Parameters in Java

Use a Java properties object (j ava. uti | . Properti es) to set the data encryption
and integrity parameters supported by the Oracle JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 15-5, and then uses the properties object in opening a
connection to the database:

Properties prop = new Properties();
prop. put ("oracl e. net.encryption client", "REQU RED');
prop. put ("oracl e. net.encryption_types_client", "( DE40 )");
prop. put ("oracl e. net. crypto_checksumclient", "REQESTED');
prop. put ("oracl e. net. crypto_checksumtypes_client", "( M®b )");
Gonnection conn = Driver Manager . get Gonnect i on

("j dbc: oracl e: t hi n: @ocal host : 1521: nai n", prop);

The parentheses around the parameter values in the encr ypti on_t ypes_cl i ent
and crypt o_checksum types_cl i ent settings allow for lists of values.
Currently, the Thin driver supports only one possible value in each case; however,
in the future, when multiple values are supported, specifying a list will resultin a
negotiation between the server and the client that determines which value is
actually used.

Complete example Following is a complete example of a class that sets data
encryption and integrity parameters before connecting to a database to perform a

query.

Note that in this example, the string "REQUIRED" is retrieved dynamically through
functionality of the AnoSer vi ces and Ser vi ce classes. You have the option of
retrieving the strings in this manner or hardcoding them as in the previous
examples.

inport java.sql.*;
inport java.sql.*;
inport java.io.*;

inport java. util.*;
inport oracl e.net.ns.*;
i nport oracl e. net. ano. *;

Advanced Topics 15-13



JDBC Client-Side Security Features

cl ass Enpl oyee
{
public static void main (String args [])
throws Excepti on

{

/1 Register the Qacle JDBC driver
Systemout. println("Regi string the driver...");
Driver Manager . regi sterDri ver (new oracl e.jdbc. driver. Oacl eDxiver());

Properties props = new Properties();

try {
F | el nput S reamdefaul t S ream= new Fi | el nput S reanf{args[0]);

props. | oad(defaul t Strean);

int level = AnoServices. REQU RED,
props. put ("oracl e. net. encryption_client", Service.getlLevel String(level));
props. put ("oracl e. net. encryption_types client", "( DE0 )");
props. put ("oracl e. net. crypto_checksumclient",
Servi ce. get Level String(level));
props. put ("oracl e. net. crypto_checksumtypes client", "( Mb )");
} catch (Exception e) { e.printSackTrace(); }

/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn = Dri ver Manager . get Gonnect i on
("j dbc: oracl e: t hi n: @l sun608. us. or acl e. com 1521: nai n", props);

/I Geate a S atenent
Satenment stnt = conn.createStatenment ();

/1 Select the ENAME colum fromthe BWP table
Resul t Set rset = stni.executeQuery ("sel ect ENAME from BEMP');

/] lterate through the result and print the enpl oyee nanes
vhile (rset.next ())
Systemout. println (rset.getSring (1));

conn. cl ose();

15-14 JDBC Developer’s Guide and Reference



JDBC in Applets

JDBC in Applets

This section describes some of the basics of working with Oracle JDBC applets,
which must use the JDBC Thin driver so that an Oracle installation is not required
on the client. The Thin driver connects to the database with TCP/IP protocol.

Aside from having to use the Thin driver, and being mindful of applet connection
and security issues, there is essentially no difference between coding a JDBC applet
and a JDBC application. There is also no difference between coding for a JDK 1.2.x
browser or a JDK 1.1.x browser, other than general JDK 1.1.x to 1.2.x migration
issues discussed in "Migration from JDK 1.1.x to JDK 1.2.x" on page 4-5.

This section describes what you must do for the applet to connect to a database,
including how to use the Oracle8 Connection Manager or signed applets if you are
connecting to a database not running on the same host as the Web server. It also
describes how your applet can connect to a database through a firewall. The section
concludes with how to package and deploy the applet.

The following topics are covered:

« Connecting to the Database through the Applet

« Connecting to a Database on a Different Host Than the Web Server
« Using Applets with Firewalls

« Packaging Applets

« Specifying an Applet in an HTML Page

For general information about connecting to the database, see "Open a Connection
to a Database" on page 3-3.

To see a sample applet, refer to "Sample Applet" on page 17-90.

Note: Beginning with release 8.1.6, Oracle JDBC no longer
supports JDK 1.0.x versions. This also applies to applets running in
browsers that incorporate JDK 1.0.x versions. The user must
upgrade to a browser with an environment of JDK 1.1.x or higher.

Connecting to the Database through the Applet

The most common task of an applet using the JDBC driver is to connect to and
guery a database. Because of applet security restrictions, unless particular steps are
taken an applet can open TCP/IP sockets only to the host from which it was
downloaded (this is the host on which the Web server is running). This means that

Advanced Topics 15-15



JDBC in Applets

without these steps, your applet can connect only to a database that is running on
the same host as the Web server.

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would
from an application.

As with connecting from an application, there are two ways in which you can
specify the connection information to the driver. You can provide it in the form of
host : port: si d orinthe form of a TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host
pr odHost , at port 1521, and SID ORCL, and you want to connect with user name
scot t with password ti ger, then use either of the two following connect strings:

using host : port: si d syntax:

Sring connString="j dbc: oracl e: t hi n: @rodHost : 1521: CGROL";
conn = DriverMinager. get Connect i on(connString, "scott", "tiger");

using TNS keyword-value syntax:

Sring connString = "jdbc: oracl e:thin: @description=(address_list=
(‘addr ess=(pr ot ocol =t cp) (port =1521) ( host =pr odHost ) ) )
(connect _dat a=(si d=CRL)))";

conn = DriverMinager. get Connect i on(connString, "scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the Web server runs.
There are two possible ways in which you can work around the security restriction:

= You can connect to the database by using the Oracle8 Connection Manager.
or:
= You can use a signed applet to connect to the database directly.

These options are discussed in the next section, "Connecting to a Database on a
Different Host Than the Web Server".

15-16 JDBC Developer’s Guide and Reference



JDBC in Applets

Connecting to a Database on a Different Host Than the Web Server

If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do
this by using either the Oracle8 Connection Manager or signed applets.

Using the Oracle8 Connection Manager

The Oracle8 Connection Manager is a lightweight, highly-scalable program that can
receive Net8 packets and re-transmit them to a different server. To a client running
Net8, the Connection Manager looks exactly like a database server. An applet that
uses the JDBC Thin driver can connect to a Connection Manager running on the
Web server host and have the Connection Manager redirect the Net8 packets to an
Oracle server running on a different host.

Figure 15-1 illustrates the relationship between the applet, the Oracle8 Connection
Manager, and the database.

Figure 15-1 Applet, Connection Manager, and Database Relationship

Net8 Listener

CMAN

applet »
in browser W
TCPNIP web server
(only)

any Net8
protocol

—
/ webHost oraHost

Using the Oracle8 Connection Manager requires two steps, described immediately
below:

« Install and run the Connection Manager.

«  Write the connection string that targets the Connection Manager.

There is also discussion of how to connect using multiple connection managers.
Installing and Running the Oracle8 Connection Manager You must install the Connection

Manager, available on the Oracle8 distribution media, onto the Web server host. You
can find the installation instructions in the Net8 Administrator’s Guide.

Advanced Topics 15-17



JDBC in Applets

On the Web server host, create a CMAN. ORA file in the
[ ORACLE_HOVE] / NET8/ ADM N directory. The options you can declare in a
CMAN. ORA file include firewall and connection pooling support.

Here is an example of a very simple CMAN. ORA file. Replace <web-server-host> with
the name of your Web server host. The fourth line in the file indicates that the
connection manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

cman = (ADDRESS LI ST =
(ADDRESS = (PROTGOCL=TCP)
(HOBT=<web- ser ver - host >)
(PORT=1610)))

cman_profile = (paraneter_list =
(MAXI MUM RELAYS=512)
(LGG LEVAL=1)

(TRAQ NG=YES)

( RELAY_STATI STI CS=YES)
(SHONTNS_| NFGEYES)
(USE_ASYNC CALL=YES)
(AUTHENTI CATI ON_LEVEL=0)
)

Note that the Java Net8 version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTI CATI ON_LEVEL
configuration parameter in the CMAN. ORA file must be set to 0.

After you create the file, start the Oracle8 Connection Manager at the operating
system prompt with this command:

cnectl start

To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Oracle8 Connection Manager This section
describes how to write the connect string in your applet so that the applet connects
to the Connection Manager, and the Connection Manager connects with the
database. In the connect string, you specify an address list that lists the protocol,
port, and name of the Web server host on which the Connection Manager is
running, followed by the protocol, port, and name of the host on which the
database is running.

The following example describes the configuration illustrated in Figure 15-1. The
Web server on which the Connection Manager is running is on host webHost and is

15-18 JDBC Developer’'s Guide and Reference



JDBC in Applets

listening on port 1610. The database to which you want to connect is running on
host or aHost , listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Qonnection conn =
Dri ver Manager . get Gonnection ("jdbc:oracle:thin:" +
"@description=(address_list=" +
" (addr ess=(pr ot ocol =t cp) ( host =webHost ) (port=1610))" +
" (addr ess=(pr ot ocol =t cp) (host =or aHost ) (port=1521)))" +
"(source_route=yes)" +
"(connect _data=(sid=orcl)))", "scott", "tiger");

The first element in the addr ess_| i st entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

Sring connString =
"jdbc: oracl e:thin: @descri pti on=(address_list=
(addr ess=(pr ot ocol =t cp) (port =1610) ( host =webHost ))
(‘addr ess=(pr ot ocol =t cp) (port =1521) (host =or aHost )))
(connect _dat a=(si d=orcl))
(source_rout e=yes))";
Gonnection conn = Driver Manager . get Gnnecti on(connString, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host or aHost .

For more information on the parameters that you specify in the connect string, see
the Net8 Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Net8 Administrator’s Guide for more information about sour ce_r out e addressing.

Advanced Topics 15-19



JDBC in Applets

Using Signed Applets

In either a JDK 1.2.x-based browser or a JDK 1.1.x-based browser, an applet can
request socket connection privileges and connect to a database running on a
different host than the Web server host. In Netscape 4.0, you perform this by signing
your applet (that is, writing a signed applet). You must follow these steps:

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://java. sun. com security/ si gnExanpl e/ i ndex. ht m

2. Include applet code that asks for appropriate permission before opening a
socket.
If you are using Netscape, then your code would include a statement like this:

net scape. security. Privil egeManager . enabl ePri vi | ege(" Uni ver sal Connect");
connection = DriverManager . get Connect i on
("jdbc:oracl e:thin:scott/tiger @l sun511: 1721: orcl ");

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

htt p: // devel oper . net scape. cond sof t war e/ si gnedobj /i ndex. ht n

This site provides information on obtaining and installing a certificate.

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

htt p: / / devel oper . net scape. cont docs/ manual s/ si gnedobj / capabi | i ti es/contents. htm
For information about the Java Security API, including signed applet examples
under JDK 1.2.x and 1.1.x, see the following Sun Microsystems site:

http://java. sun. comsecurity

Using Applets with Firewalls

Under normal circumstances, an applet that uses the JDBC Thin driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent unauthorized clients from reaching the server. In the case of applets trying
to connect to the database, the firewall prevents the opening of a TCP/IP socket to
the database.

15-20 JDBC Developer’s Guide and Reference



JDBC in Applets

Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client’s hosthame with the rules,
and based on this comparison, either grant the client access, or not. If the hostname
lookup fails, the firewall tries again. This time, the firewall extracts the IP address of
the client and compares it to the rules. The firewall is designed to do this so that
users can specify rules that include hostnames as well as IP addresses.

You can solve the firewall issue by using a Net8-compliant firewall and connection
strings that comply with the firewall configuration. Net8-compliant firewalls are
available from many leading vendors; a more detailed discussion of these firewalls
is beyond the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Net8-compliant firewall must be installed on that host. In contrast, a
signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

Connecting through a firewall requires two steps, described in the following
sections:

« Configuring a Firewall for Applets that use the JDBC Thin Driver

«  Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running a Net8-compliant
firewall.

Java applets do not have access to the local system—that is, they cannot get the
hostname or environment variables locally—because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

= Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

« Ensure that the hostname "__j dbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a false hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.

Advanced Topics 15-21



JDBC in Applets

By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address, instead of the
hostname.

Writing a Connect String to Connect through a Firewall

To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host or aHost , listening on
port 1521, with SID ORCL, and you are going though a firewall on host
fireWal |l Host, listening on port 1610, then use the following connect string:

Qonnection conn =
Dri ver Manager . get Gonnection ("jdbc:oracle:thin:" +
"@description=(address_|ist=" +
(addr ess=(pr ot ocol =t cp) (host =<firewal | - host >) (port=1610))" +
" (addr ess=(pr ot ocol =t cp) (host =or aHost ) (port=1521)))" +
"(source_route=yes)" +
"(connect _data=(sid=orcl)))", "scott", "tiger");

Note: To connect through a firewall, you cannot specify the
connection string in host : port: si d syntax. For example, a
connection string specified as follows will not work:

Sring connString =
"j dbc: oracl e: thi n: @xt a. us. oracl e. com 1521: orcl ";
conn = DriverMinager. get Connection (connString, "scott",
"tiger");

The first element in the addr ess_| i st represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

Sring connString =
"jdbc: oracl e: thi n: @descri pti on=(address_list=
(addr ess=(pr ot ocol =t cp) (port =1600) (host =f i reVl | Host))
(addr ess=(pr ot ocol =t cp) (port =1521) (host =or aHost )))
(connect _dat a=(si d=orcl))
(source_rout e=yes))";
Gonnection conn = Driver Manager . get Gnnecti on(connString, "scott", "tiger");

15-22 JDBC Developer’s Guide and Reference



JDBC in Applets

When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host or aHost .

Note: All the parameters shown in the preceding example are
required. In the addr ess_1 i st, the firewall address must precede
the database server address.

For more information on the parameters used in the above example, see the Net8
Administrator’s Guide. For more information on how to configure a firewall, please
see your firewall’s documentation or contact your firewall vendor.

Packaging Applets

After you have coded your applet, you must package it and make it available to
users. To package an applet, you will need your applet class files and the JDBC
driver class files (these will be contained in either cl asses12. zi p, if you are
targeting a browser that incorporates a JDK 1.2.x version, or cl asses111. zi p, for
a browser incorporating a JDK 1.1.x version).

Follow these steps:

1. Move the JDBC driver classes file cl asses12. zi p (orcl asses111. zi p) to
an empty directory.

If your applet will connect to a database with a non-US7ASCI | and
non-VEE8|1 SCB859P1 character set, then also move the nl s_char set 12. zi p
ornl s_charset11. zi p file to the same directory.

2. Unzip the JDBC driver classes ZIP file (and NLS character set ZIP file, if
applicable).

3. Add your applet classes files to the directory, and any other files the applet
might require.

4. Zip the applet classes and driver classes together into a single ZIP or JAR file.
The single zip file should contain the following:

« class files from cl asses12. zi p orcl asses111. zi p (and required class
filesfromnl s_charset 12. zi pornl s_charset 11. zi p if the applet
requires NLS)

= your applet classes

Advanced Topics 15-23



JDBC in Applets

Additionally, if you are using Dat abaseMet aDat a entry points in your applet,
include the or acl e/ j dbc/ dri ver/ Or acl eDat abaseMet aDat a. cl ass file.
Note that this file is very large and might have a negative impact on
performance. If you do not use Dat abaseMet aDat a methods, omit this file.

5. Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WDTH=500 HE GHT=200 QCDE=JdbcAppl et ARCH VE=JdbcAppl et . zi p
QODERASE=Appl et _Sanpl es
</ APPLET>

You can find a description of the APPLET, CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT parameters in the next section.

Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHI VE, CODEBASE, W DTH, and
HEI GHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEI GHT
and W DTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass—specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet—the path cannot be absolute.

In the following example, JdbcAppl et . cl ass is the name of the Applet’s
compiled applet subclass:

<APPLET OCDE="JdbcAppl et" WDTH-500 HE GHT=200>

</ APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
".cl ass".

15-24 JDBC Developer’s Guide and Reference



JDBC in Applets

CODEBASE

The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the
JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory isny_Di r:

<APPLET WDTH=500 HE GHT=200 GCDE=JdbcAppl et CCDEBASE="."
</ APPLET>

The entry GCDERASE=". " indicates that the applet resides in the current directory
(ny_Di r). If the value of codebase was set to Appl et _Sanpl es, for example:

QCODERASE=" Appl et _Sanpl es”

This would indicate that the applet resides in the my_Di r /Appl et _Sanpl es
directory.

ARCHIVE

The ARCHI VE parameter is optional and specifies the name of the archive file (either
a.zipor.jar file), if applicable, that contains the applet classes and resources the
applet needs. Oracle recommends using a . zi p file or . j ar file, which saves many
extra roundtrips to the server.

The . zi p (or. j ar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcAppl et . zi p:

<APPLET OCDE="JdbcAppl et” ARCH VE="JdbcAppl et . zi p* WDTHE500 HE GHT=200>
</ APPLET>

Note: Version 3.0 browsers do not support the ARCHI VE
parameter.

Advanced Topics 15-25



JDBC in the Server: the Server-Side Internal Driver

JDBC in the Server: the Server-Side Internal Driver
This section covers the following topics:
« Connecting to the Database with the Server-Side Internal Driver
« Exception-Handling Extensions for the Server-Side Internal Driver
« Session and Transaction Context for the Server-Side Internal Driver
« Testing JDBC on the Server
« Server-Side Character Set Conversion of oracle.sql. CHAR Data

Any Java program, Enterprise JavaBean (EJB), or Java stored procedure that runs
inside the target database must use the server-side internal driver to access the local
SQL engine.

This driver is intrinsically tied to the Oracle8i database and to the Java virtual
machine (JVM). The driver runs as part of the same process as the database. It also
runs within the default session—the same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call; there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Net8 call to access the SQL engine.

The server-side internal driver supports the same features, APIs, and Oracle
extensions as the client-side drivers. This makes application partitioning very
straightforward. For example, if you have a Java application that is data-intensive,
you can easily move it into the database server for better performance, without
having to modify the application-specific calls.

For general information about the Oracle Java platform server-side configuration or
functionality, see the Oracle8i Java Developer’s Guide.

Connecting to the Database with the Server-Side Internal Driver

As described in the preceding section, the server-side internal driver runs within a
default session. You are already "connected". There are two methods you can use to
access the default connection:

« Use the static Dri ver Manager . get Connecti on() method, with either
j dbc: oracl e: kprborjdbc: defaul t: connecti on as the URL string.

15-26 JDBC Developer’s Guide and Reference



JDBC in the Server: the Server-Side Internal Driver

« Use the Oracle-specific def aul t Connecti on() method of the
Oracl eDri ver class.

Using def aul t Connecti on() is generally recommended.

The remainder of this section provides more information.

Note: With release 8.1.6, you are no longer required to register the
O acl eDri ver class for connecting with the server-side internal
driver, although there is no harm in doing so. This is true whether
you are using get Connect i on() or def aul t Connecti on() to
make the connection.

Connecting with the OracleDriver Class defaultConnection() Method

Theoracl e.jdbc. driver. O acl eDri ver class def aul t Connecti on()
method is an Oracle extension and always returns the same connection object. Even
if you invoke this method multiple times, assigning the resulting connection object
to different variable names, just a single connection object is reused.

You do not need to include a connect string in the def aul t Connecti on() call.
For example:

inport java.sql.*;
inport oracle.jdbc.driver.*;

cl ass JDBODonnecti on

{

public static Gonnection connect () throws SQ Exception

{

Qonnection conn = nul | ;

try {
/] connect with the server-side internal driver

QacleDriver ora = new Qacl eDxiver();
conn = ora. defaul t Gonnection();

}

} catch (SQException e) {...}
return conn;

Advanced Topics 15-27



JDBC in the Server: the Server-Side Internal Driver

Note that there is no conn. cl ose() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the cl ose() method, be aware of the following:

« All connection instances obtained through the def aul t Connecti on()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.
Executing def aul t Connecti on() afterward would result in a new
connection object.

« Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method

To connect to the internal server connection from code that is running within the
target server, you can use the static Dri ver Manager . get Connecti on() method
with either of the following connect strings:

Dri ver Manager . get Connect i on("j dbc: oracl e: kprb:");

or:

Dri ver Manager . get Connect i on("j dbc: def aul t: connecti on: ");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The Dri ver Manager . get Connecti on() method returns a new Java

Connect i on object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that Dri ver Manager . get Connect i on() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connect i on object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call get Connecti on() to create a new Connecti on
object for each type map.

15-28 JDBC Developer’s Guide and Reference



JDBC in the Server: the Server-Side Internal Driver

Exception-Handling Extensions for the Server-Side Internal Driver

The server-side internal driver, in addition to having standard exception-handling
capabilities such as get Message(), get Err or Code(), and get SQLSt at e() (as
described in "Processing SQL Exceptions" on page 3-33), offers extended features
through the or acl e. j dbc. dri ver. Oracl eSQLExcept i on class. This class is a
subclass of the standard j ava. sql . SQLExcept i on class and is not available to
the client-side JDBC drivers or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related
errors being placed in an internal error stack. The JDBC server-side internal driver
retrieves errors from the stack and places them in a chain of

Oracl eSQLExcept i on objects.

You can use the following methods in processing these exceptions:
« SQ.Exception getNext Exception() (standard method)

This method returns the next exception in the chain (or nul | if no further
exceptions). You can start with the first exception you receive and work through
the chain.

« int getNunParaneters() (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of
the error message. These may indicate what type of error occurred, what kind
of operation was being attempted, or the invalid or affected values.

This method returns the number of parameters included with this error.
« bject[] getParaneters() (Oracle extension)
This method returns a Java Obj ect [ ] array containing the parameters
included with this error.
Example Following is an example of server-side error processing:

try
{
/1 should get "CRA-942: table or view does not exist"

st . execute("drop tabl e no_such_tabl e");

catch (O acl eSQLException €)

{
Systemout . println(e. get Message());

/] prints "CRA-942: table or view does not exist"

Advanced Topics 15-29



JDBC in the Server: the Server-Side Internal Driver

Systemout. printl n(e. get NunParanet ers());
/l prints "1"

(bj ect[] parans = e.getParaneters();
Systemout . printl n(parans[0]);
/1 prints "NO SUH TABLE"

Session and Transaction Context for the Server-Side Internal Driver

The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was invoked. In effect,
you are already connected to the database on the server. This is different from the
client side where there is no default session: you must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COUM T
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.commt();

or:

conn. rol | back();

Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All
the programs in the sanpl es directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup. j ava described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-8. If you want to run
this program on the server and connect with the

Dri ver Manager . get Connecti on() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci 8" to
"kpr b". For example:

Qonnection conn = Driver Manager . get Gonnecti on
("jdbc: oracl e: kprb: @ + database, user, password);

15-30 JDBC Developer’s Guide and Reference



JDBC in the Server: the Server-Side Internal Driver

The advantage of using this method is that must change only a short string in your
original program. The disadvantage is that you still must provide the user,
password, and database information, even though the driver will discard it. In
addition, if you issue the get Connect i on() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with def aul t Connect i on(), the preferred method of
connecting to the database from the server-side internal driver, you do not have to
enter any user, password, or database information. You can delete these statements
from your program.

For the connection statement, use:

Gonnection conn = new oracl e. jdbc. driver. racl elriver (). defaul t Connection();

The following example is a rewrite of the JdbcCheckup. j ava program which
uses the def aul t Connecti on() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information
statements, along with the utility function to read from standard input, have been
deleted.
/*

* This sanpl e can be used to check the JDBC installation.

* Just run it and provide the connect information. It wll select

* "Hello Wrld" fromthe database.

*/
/1 You need to inport the java. sgl package to use JDBC
inport java.sql.*;
/] V¢ inport java.io to be able to read fromthe command |i ne
inport java.io.*;

cl ass JdbcCheckup

{
public static void main (Sring args []) throws SQException, |CException

{
/1 Load the Gracle JDBC driver
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. Oracl eDriver());

Qonnection conn =
new oracl e.jdbc.driver. OacleDriver ().defaul tGnnection ();

/I reate a statenent
Satenent stnt = conn.createStatenment ();

/! Do the SQ "Hello VWrld" thing

Advanced Topics 15-31



JDBC in the Server: the Server-Side Internal Driver

Resul t Set rset = stni.executeQuery ("SELECT "Hello World FROMdual ");

vhile (rset.next ())
Systemout.println (rset.getSring (1));
Systemout. println ("Your JOBC installation is correct.");

Loading an Application into the Server

When loading an application into the server, you can load . cl ass files that you
have already compiled on the client, or you can load . j ava source files and have
them compiled automatically in the server.

In either case, use the Oracle | oadj ava client-side utility to load your files. You can
either specify source file names on the command line (note that the command line
understands wildcards), or put the files into a JAR file and specify the JAR file name
on the command line. The | oadj ava utility is discussed in detail in the Oracle8i
Java Developer’s Guide.

The | oadj ava script, which runs the actual utility, is in the bi n subdirectory under
your [ Oracl e Hone] directory. This directory should already be in your path once
Oracle has been installed.

Note: As of release 8.1.6, the | oadj ava utility does support
compressed files.

Loading Class Files into the Server

Consider a case where you have three class files in your application: Fool. cl ass,
Foo2. cl ass, and Foo3. cl ass. The following three examples demonstrate: 1)
specifying the individual class file names; 2) specifying the class file names using a
wildcard; and 3) specifying a JAR file that contains the class files.

Each class is written into its own class schema object in the server.
These three examples use the default OCI8 driver in loading the files:

| oadj ava -user scott/tiger Fool.class Foo2.class Foo3.cl ass

or:

| oadj ava -user scott/tiger Foo*.class

15-32 JDBC Developer’s Guide and Reference



JDBC in the Server: the Server-Side Internal Driver

or:

| oadj ava -user scott/tiger Foo.jar

Or use the following command to load with the Thin driver (specifying the - t hi n
option and an appropriate URL):

| oadj ava -thin -user scott/tiger@ocal host: 1521: CRCL Foo. j ar

(Whether to use an OCI driver or the Thin driver to load classes depends on your
particular environment and which performs better for you.)

Note: Because the server-side embedded JVM uses IDK 1.2.x, it is
advisable to compile classes under JDK 1.2.x if they will be loaded
into the server. This will catch incompatibilities during compilation,
instead of at runtime (for example, JDK 1.1.x artifacts such as
leftover use of the or acl e. j dbc2 package).

Loading Source Files into the Server

If you enable the | oadj ava -resol ve option in loading a . j ava source file, then
the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code, and one or more class
schema objects for the compiled output.

If you do not specify - r esol ve, then the source is loaded into a source schema
object without any compilation. In this case, however, the source is implicitly
compiled the first time an attempt is made to use a class defined in the source.

For example, run | oadj ava as follows to load and compile Foo. j ava, using the
default OCI driver:

| oadj ava -user scott/tiger -resolve Foo.java

Or use the following command to load with the Thin driver (specifying the - t hi n
option and an appropriate URL):

| oadj ava -thin -user scott/tiger@ocal host: 1521: CRCL -resol ve Foo.java

Either of these will result in appropriate class schema objects being created in
addition to the source schema object.

Advanced Topics 15-33



JDBC in the Server: the Server-Side Internal Driver

Note: Oracle generally recommends compiling source on the
client whenever possible, and loading the . cl ass files instead of
the source files into the server.

Server-Side Character Set Conversion of oracle.sql.CHAR Data

The server-side internal driver performs character set conversions for

oracl e. sgl . CHARin C. This is a different implementation than for the client-side
drivers, which perform character set conversions for or acl e. sql . CHARin Java,
and offers better performance. For more information on the or acl e. sql . CHAR
class, see "Class oracle.sql. CHAR" on page 5-13.

15-34 JDBC Developer’s Guide and Reference



16

Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

JDBC and Multithreading
Performance Optimization
Common Problems

Basic Debugging Procedures

Transaction Isolation Levels and Access Modes

Coding Tips and Troubleshooting 16-1



JDBC and Multithreading

JDBC and Multithreading

The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following example creates a specified number of threads and
lets you determine whether or not the threads will share a connection. If you choose
to share the connection, then the same JDBC connection object will be used by all
threads (each thread will have its own statement object, however).

Because all Oracle JIDBC APl methods are synchronized, if two threads try to use
the connection object simultaneously, then one will be forced to wait until the other
one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

Execute the program by entering:
java JdbcMISanpl e [ nunber_of _t hreads] [ shar €]
Where nunber _of _t hr eads is the number of threads that you want to create, and

shar e specifies that you want the threads to share the connection. If you do not
specify the number of threads, then the program creates 10 by default.

This example is repeated in "Multithreading—JdbcMTSample.java" on page 17-12.
/] This sanple is a multi-threaded JDBC program

inport java.sql.*;
inport oracle.jdbc.driver.Qacl eXatenent;

public class JdbcMrSanpl e extends Thr ead

{
/] Default no of threads to 10

private static int NUM G- THREADS = 10;
int mnyld;

static int c_nextld = 1;

static nnection s _conn = null;

static boolean share connection = fal se;

synchroni zed static int getNextld()
{

}

return c_next|d++

16-2 JDBC Developer’'s Guide and Reference



JDBC and Multithreading

public static void main (String args [])

{

try

{

/* Load the JDBC driver */

Dri ver Manager . regi ster Dri ver (new oracl e. j doc. dri ver. Oacl eDriver());

/1 1f NoOf Threads is specified, then read it
if ((args.length >2) ||

((args.length > 1) & !(args[1].equal s("share"))))

{
Systemout.printin("Eror: Invalid Syntax. ");
Systemout. println("java JdbcMSanpl e [ NoF Threads] [share]");
Systemexit(0);
}
if (args.length > 1)
{
share_connection = true;
Systemout. println
("All threads will be sharing the same connection");
}

/1 get the no of threads if given
if (args.length > 0)
NUM GF THREADS = Integer. parselnt (args[0]);

/1 get a shared connection
if (share_connection)
s_conn = Dri ver Manager . get Connect i on
("jdbc:oracle:" +args[1],

/Il Greate the threads
Thread[] threadList = new Thread] NUM G- THREADS ;

/1 spawn threads
for (int i =0; i < NMGO-_THEADS, i+
{
threadLi st[i] = new JdbcMSanpl e();
threadList[i].start();

}

/I Sart everyone at the same tine
set GeenLight ();

"scott","tiger");

Coding Tips and Troubleshooting 16-3



JDBC and Multithreading

// wait for all threads to end

for (int i =0; i < NMCO-_THEAS, i++
{
threadLi st[i].join();
}
if (share_connection)
{
s_conn. cl ose();
s_conn = nul | ;
}
}
catch (Exception e)
{
e. print StackTrace();
}
}
publ i ¢ JdbcMrSanpl e()
{
super () ;

/! Assign an Id to the thread
mnyld = getNext 1 d();

}
public void run()
{
Qonnection conn = nul | ;

Resul t Set rs =null;
Satement stnt = null;

try
{

// Get the connection

if (share_connection)
stm = s_conn.createSatenent (); // Qeate a S atenent
el se
{
conn = Dri ver Manager . get Gonnecti on("j dbc: oracl e: oci 8: @,
"scott","tiger");
stm = conn.createStatenent (); // CQeate a Statenent

}

16-4 JDBC Developer’'s Guide and Reference



JDBC and Multithreading

vhile (!getQeenLight())
yield();

/] Execute the Query
rs = stnt.execut eQery ("select * fromBwW');

/1 Loop through the results
vwhile (rs.next())

{
Systemout.printin("Thread " + mnyld +
" BEwployee Id : " +rs.getint(1) +
" Nane : " +rs.getString(2));
yield(); // Yield To other threads
}
/1 Qose all the resources
rs. close();
rs =null;

// Qose the statenent
stm.close();
stm = null;

/1 dose the local connection
if ((!share_connection) &% (conn !=null))
{
conn. cl ose();
conn = nul | ;
}
Systemout.printIn("Thread " + mnyld + " is finished. ");
}
catch (Exception e)
{
Systemout.printin("Thread " + mnyld + " got Exception: " + e);
e.printSackTrace();
return;
}
}

static bool ean greenLight = fal se;
static synchroni zed voi d setGeenLight () { greenLight =true; }
synchroni zed bool ean getGeenLight () { return greenLight; }

Coding Tips and Troubleshooting 16-5



Performance Optimization

Performance Optimization

You can significantly enhance the performance of your JDBC programs by using
any of these features:

« Disabling Auto-Commit Mode
« Standard Fetch Size and Oracle Row Prefetching
» Standard and Oracle Update Batching

Disabling Auto-Commit Mode

Auto-commit mode indicates to the database whether to issue an automatic COVMM T
operation after every SQL operation. Being in auto-commit mode can be expensive
in terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the set Aut oConmi t () method of the connection
object (either j ava. sql . Conecti onororacl e.jdbc. Oracl eConnecti on).

In auto-commit mode, the COMM T operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of
statements returning a Resul t Set , the statement completes when the last row of
the Resul t Set has been retrieved or when the Resul t Set has been closed. In
more complex cases, a single statement can return multiple results as well as output
parameter values. Here, the COMM T occurs when all results and output parameter
values have been retrieved.

If you disable auto-commit mode with a set Aut oComni t (fal se) call, then you
must manually commit or roll back groups of operations using the commi t () or
rol | back() method of the connection object.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Because new connections are in auto-commit mode
by default, this example shows how to disable auto-commit. In the example, conn
represents the Connect i on object, and st nt represents the St at ement object.

/1 Load the Gracle JDBC driver
Dri ver Manager . regi ster Dri ver (new oracl e. j doc. dri ver. Gacl eDriver());

/1 Gonnect to the dat abase
/1 You can put a database hostname after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

16-6 JDBC Developer’'s Guide and Reference



Performance Optimization

/] 1t's faster when auto commt is off
conn. set Aut ot (fal se);

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

Standard Fetch Size and Oracle Row Prefetching

Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is
being populated during a query. You can set a value in a connection object that
affects each statement produced through that connection, and you can override that
value in any particular statement object. The default value in a connection object is
10. Prefetching data into the client reduces the number of round trips to the server.

Similarly, and with more flexibility, JDBC 2.0 allows you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent
queries) and for result set objects (affecting row refetches). By default, a result set
uses the value for the statement object that produced it. If you do not set the JDBC
2.0 fetch size, then the Oracle connection row-prefetch value is used by default.

For more information, see "Oracle Row Prefetching" on page 12-20 and "Fetch Size"
on page 11-24.

Standard and Oracle Update Batching

The Oracle JDBC drivers allow you to accumulate | NSERT, DELETE, and UPDATE
operations of prepared statements at the client and send them to the server in
batches. This feature reduces round trips to the server. You can either use Oracle
update batching, which typically executes a batch implicitly once a pre-set batch
value is reached, or standard update batching, where the batch is executed
explicitly.

For a description of the update batching models and how to use them, see "Update
Batching" on page 12-2.

Coding Tips and Troubleshooting 16-7



Common Problems

Common Problems

This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

« Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
« Memory Leaks and Running Out of Cursors
« Boolean Parameters in PL/SQL Stored Procedures

« Opening More Than 16 OCI Connections for a Process

Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

In PL/SQL, CHAR columns defined as OUT or | N/OUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the set MaxFi el dSi ze() method on the St at emrent
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for

set MaxFi el dSi ze() , padded with spaces as needed. You must select the value
for set MaxFi el dSi ze() carefully, because this method is statement-specific and
affects the length of all CHAR, RAWLONG LONG RAWand VARCHAR2 columns.

To be effective, you must invoke the set MaxFi el dSi ze() method before you
register your OUT variables.

Memory Leaks and Running Out of Cursors

If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all your St at ement and Resul t Set objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods. They
perform cleanup routines by using the cl ose() method of the Resul t Set and

St at ement classes. If you do not explicitly close your result set and statement
objects, significant memory leaks can occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connect i on objects to avoid leaking and
running out of cursors on the server side. When you close the connection, the JDBC
driver closes any open statement objects associated with it, thus releasing the cursor
objects on the server side.

16-8 JDBC Developer’'s Guide and Reference



Common Problems

Boolean Parameters in PL/SQL Stored Procedures

Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
BOOLEAN parameters to PL/SQL stored procedures. If a PL/SQL procedure
contains BOOLEAN values, you can work around the restriction by wrapping the
PL/SQL procedure with a second PL/SQL procedure that accepts the argument as
an | NT and passes it to the first stored procedure. When the second procedure is
called, the server performs the conversion from | NT to BOOLEAN.

The following is an example of a stored procedure, BOOLPRCC, that attempts to pass
a BOOLEAN parameter, and a second procedure, BOOLWRAP, that performs the
substitution of an | NT value for the BOOLEAN.

CREATE (R REPLACE PROCEDURE bool proc(x bool ean)
AS
BEA N

[...]
END,

CREATE (R REPLACE PROCEDURE bool wrap(x int)
AS
BEG N
IF (x=1) THEN
bool proc(TRUE);
ELSE
bool proc(FALSE) ;
BE\D I F;
END,

/1 Greate the database connection
Gonnection conn = Driver Manager . get Gonnect i on
("jdbc:oracl e:oci 8 @. .. hoststring...>", "scott", "tiger");
Cal | abl eSt at enent ¢s = conn. prepareCal | ("begi n boolwap(?); end;");
cs.setint (1, 1);
cs. execute ();

Opening More Than 16 OCI Connections for a Process

You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either that the number of processes on the server exceeded the limit specified in
the initialization file, or that the per-process file descriptors limit was exceeded. It is

Coding Tips and Troubleshooting 16-9



Common Problems

important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase this
limit.

16-10 JDBC Developer’s Guide and Reference



Basic Debugging Procedures

Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:
« Net8 Tracing to Trap Network Events
« Third Party Debugging Tools

For information about processing SQL exceptions, including printing stack traces to
aid in debugging, see "Processing SQL Exceptions" on page 3-33.

Net8 Tracing to Trap Network Events

You can enable client and server Net8 trace to trap the packets sent over Net8. You
can use client-side tracing only for the JDBC OCI driver; it is not supported for the
JDBC Thin driver. You can find more information on tracing and reading trace files
in the Net8 Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Net8 parameters in the

SQLNET. ORAfile control the gathering of trace information. After setting the
parameters in SQLNET. ORA, you must make a new connection for tracing to be
performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.

Coding Tips and Troubleshooting 16-11



Basic Debugging Procedures

Client-Side Tracing
Set the following parameters in the SQLNET. ORA file on the client system.

TRACE_LEVEL_CLIENT

Purpose: Turns tracing on/off to a certain specified level.
Default Value: 0 or OFF
Available «  0or OFF - No trace output
Values: « 4orUSER - User trace information
« 10 or ADMIN - Administration trace information
« 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_CLIENT=10

TRACE_DIRECTORY_CLIENT

Purpose: Specifies the destination directory of the trace file.
Default Value: $ORACLE_HOME/network/trace
Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

TRACE_FILE_CLIENT

Purpose: Specifies the name of the client trace file.
Default Value: SQLNET.TRC
Example: TRACE_FILE_CLIENT=cli_Connectionl.trc

Note: Be sure to use different names for the
TRACE_FI LE_CLI ENT file and TRACE_FI LE_SERVERfile.

TRACE_UNIQUE_CLIENT

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF
Example: TRACE_UNIQUE_CLIENT = ON

16-12 JDBC Developer’s Guide and Reference



Basic Debugging Procedures

Server-Side Tracing

Set the following parameters in the SQLNET. ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

Purpose: Turns tracing on/off to a certain specified level.
Default Value: 0 or OFF
Available « 0or OFF - No trace output
Values: « 4orUSER - User trace information
« 10 or ADMIN - Administration trace information
« 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_SERVER=10

TRACE_DIRECTORY_SERVER

Purpose: Specifies the destination directory of the trace file.
Default Value: $ORACLE_HOME/network/trace
Example: TRACE_DIRECTORY_SERVER=/oracle/traces

TRACE_FILE_SERVER

Purpose: Specifies the name of the server trace file.
Default Value: SERVER.TRC
Example: TRACE_FILE_SERVER=svr_Connectionl.trc

Note: Be sure to use different names for the
TRACE_FI LE_CLI ENT file and TRACE_FI LE_SERVERfile.

Third Party Debugging Tools

You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Coding Tips and Troubleshooting 16-13



Transaction Isolation Levels and Access Modes

Transaction Isolation Levels and Access Modes

Read-only connections are supported by the Oracle server, but not by the Oracle
JDBC drivers.

For transactions, the Oracle server supports only the

TRANSACTI ON_READ_COWVM TTED and TRANSACTI ON_SERI ALI ZABLE
transaction isolation levels. The default is TRANSACTI ON_READ COWM TTED. Use
the following methods of the or acl e. j dbc. dri ver. Oracl eConnect i on class
to get and set the level:

« getTransactionlsol ati on() : Gets this connection’s current transaction
isolation level.

« setTransactionl sol ati on() :Changes the transaction isolation level,
using one of the TRANSACTI ON_* values.

16-14 JDBC Developer’s Guide and Reference



1/

Sample Applications

This chapter presents sample applications covering a range of both standard and
Oracle-specific JDBC features, categorized as follows:

Basic Samples

Samples of PL/SQL in JDBC

Intermediate Samples

Samples for JDBC 2.0 Types

Samples for Oracle Type Extensions
Samples for Custom Object Classes

JDBC 2.0 Result Set Enhancement Samples
Performance Enhancement Samples
Samples for Connection Pooling and Distributed Transactions
Sample Applet

JDBC versus SQLJ Sample Code

These samples are located in subdirectories under the following directory on the
product CD:

[ G acl e Hone] / j dbe/ deno/ sanpl es

Note: Aside from the sample applet, which requires the Thin
driver, all samples in this chapter work with any JDBC driver. Do
not be misled by the fact that most of the samples are located under
the oci 8 directory on the product CD.

Sample Applications 17-1



Basic Samples

Basic Samples

This section provides elementary samples that print employee information from a
table and insert employee information into the table.

» Listing Names from the EMP Table—Employee.java
« Inserting Names into the EMP Table—InsertExample.java
These samples are located in the following directory on the product CD:

[ G acl e Hone] / j dbe/ deno/ sanpl es/ oci 8/ basi c- sanpl es

For a step-by-step discussion of basic JDBC functionality, see "First Steps in JDBC"
on page 3-2.

Listing Names from the EMP Table—Employee.java
This example retrieves and prints all the employee names from the EMP table.

Note: Do not confuse this Enpl oyee. j ava with the one used
later as an example of a Cust onDat umimplementation of a custom
Java class.

/1 This sanple shows howto list all the nanes fromthe BEMP tabl e

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

cl ass Enpl oyee
{

public static void main (String args [])
throws SQException
{
/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

17-2 JDBC Developer’'s Guide and Reference



Basic Samples

/1 Select the ENAME col um fromthe BWP table
Resul t Set rset = stni.executeQuery ("sel ect ENAME from EMP');

/1 lterate through the result and print the enpl oyee nanes
vhile (rset.next ())
Systemout.println (rset.getring (1));

/1 dose the Rseul t Set
rset. close();

// QA ose the Statenent
stn. close();

// A ose the connection
conn. cl ose();

Inserting Names into the EMP Table—InsertExample.java

This sample uses a prepared statement to insert new employee rows into the EMP
table.

/1 This sanple shows howto insert data in a table.

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

cl ass I nsert Exanpl e

{

public static void main (String args [])

{

throws SQException

/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/] Prepare a statenent to cleanup the enp tabl e
Satenent stnt = conn.createStatenment ();

Sample Applications 17-3



Basic Samples

try
{
stn.execute ("del ete fromBEMP where BEMPNO = 1500");
}
catch (SQException e)
{
/] lgnore an error here
}
try
{
stm.execute ("del ete fromBEWP where BEMPNO = 507");
}
catch (SQException e)
{
/1 lgnore an error here too
}

// QA ose the statenent
stn. close();

/] Prepare to insert new nanes in the EMP tabl e
PreparedStatenent pstn =
conn. prepareStatenent ("insert into EMP (EMPNQ ENAME) values (?, ?)");

/1 Add LESLIE as enpl oyee nunber 1500

pstnm.setint (1, 1500); [l The first ? is for BEMPNO
pstm.setSring (2, "LESLIE"); /1 The second ? is for ENAME
/1 Do the insertion

pstn . execute ();

/1 Add MARSHA as enpl oyee nunber 507

pstnm.setint (1, 507); [l The first ? is for BEMPNO
pstm.setSring (2, "NMARSHA"); /1 The second ? is for ENAME
/1 Do the insertion

pstni . execute ();

// QA ose the statenent
pstni. cl ose();

// Q4 ose the connecion
conn. cl ose();

17-4 JDBC Developer’'s Guide and Reference



Samples of PL/SQL in JDBC

Samples of PL/SQL in JDBC

The following examples demonstrate the interoperability between PL/SQL and
JDBC, contrasting standard SQL92 calling syntax with Oracle PL/SQL block syntax:

« Executing Procedures in PL/SQL Blocks—PLSQL java
« Calling PL/SQL Stored Procedures—PLSQLExample.java
These samples are located in the following directory on the product CD:

[ G acl e Hone] / j dbe/ deno/ sanpl es/ oci 8/ basi c- sanpl es

For related discussion, see "PL/SQL Stored Procedures” on page 3-31.

Calling PL/SQL Stored Procedures—PLSQLExample.java

This sample defines a stored function and executes it using SQL92 CALL syntax in a
callable statement. The function takes an employee name and salary as input and
raises the salary by a set amount.

/* This sanpl e shows howto call a PL/SQL stored procedure using the S92
* syntax. See also the other sanple PLSQ.java.

*/

inport java.sql.*;

inport java.io.*;

cl ass PLSQ Exanpl e
{
public static void main (String args [])
throws SQException, |CException
{
/1 Load the driver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/I reate a statenent
Satenment stnt = conn.createStatenment ();

/] Geate the stored function

stnm.execute ("create or replace function RA SESAL (nane CHAR rai se NUMBER
return NOMBER i s begin return rai se + 100000; end;");

Sample Applications 17-5



Samples of PL/SQL in JDBC

// QA ose the statenent
stn. close();

/] Prepare to call the stored procedure RA SESAL.
/1 This sanple uses the S92 syntax
CGall abl et aterment cstnt = conn.prepareCall ("{? = call RASESAL (?, ?)}");

/] Declare that the first ? is a return val ue of type Int
cstn.registerQitParaneter (1, Types.|NTEGER;

/]l V¢ want to raise LESLIE s salary by 20, 000
cstm.setSring (2, "LESLIE'); // The nane argunent is the second ?
cstn.setint (3, 20000); /1 The raise argunment is the third ?

/1 Do the raise
cstm . execute ();

/1 Get the new sal ary back
int newsalary = cstnm.getint (1);

Systemout. println ("The newsalary is: " + newsalary);

// QA ose the statenent
cstn. cl ose();

// A ose the connection
conn. cl ose();

Executing Procedures in PL/SQL Blocks—PLSQL.java

This sample defines PL/SQL stored procedures and functions and executes them
from within Oracle PL/SQL BEG N. . . ENDblocks in callable statements. Stored
procedures and functions with input, output, input-output, and return parameters
are shown.

/* This sanpl e shows howto cal | PL/SQ bl ocks from JDBC
*/
inport java.sql.*;

class PLSQL
{

17-6 JDBC Developer’'s Guide and Reference



Samples of PL/SQL in JDBC

public static void main (String args [])
throws SQ@Exception, d assNotFoundException
{
/1 Load the driver
A ass.forNane ("oracle.jdbc.driver.racleDriver");

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/] Greate the stored procedures
init (conn);

/1 Qeanup the plsgltest database
Satenent stnt = conn.createStatenment ();
stnm.execute ("del ete fromplsqgltest");

// Qose the statenent
stn. close();

/1 CGall a procedure with no paraneters
{
Cal | abl eSt at enent  procnone = conn. prepareCal | ("begin procnone; end;");
procnone. execute ();
dunpTest Tabl e (conn);
procnone. cl ose() ;
}
/1l CGall a procedure with an I N pararet er
{
Cal | abl eSt at enent procin = conn. prepareCall ("begin procin (?); end;");
procin.setSring (1, "testing");
proci n. execute ();
dunpTest Tabl e (conn);
procin. cl ose();

}

/1 Call a procedure with an QJT paranet er
{
Cal | abl eSt at enent procout = conn. prepareCal | ("begin procout (?); end;");
procout . regi ster Qut Paraneter (1, Types. CHAR);
procout . execute ();
Systemout.println ("Qut argunent is: " + procout.getSring (1));
procout . cl ose();

Sample Applications 17-7



Samples of PL/SQL in JDBC

/1 Gall a procedure with an | N QJT praneter

{
Cal | abl eSt at enent proci nout = conn. prepar eCal |
("begin procinout (?); end;");
proci nout . regi st erQut Paraneter (1, Types. VARCHAR ;
procinout.setSring (1, "testing");
proci nout . execut e ();
dunpTest Tabl e (conn);
Systemout.println ("Qut argunment is: " + proci nout.getString (1));
proci nout . cl ose();
}
/1 Gall a function with no paraneters
{
Gl | abl et at enent  f uncnone = conn. prepareCal |
("begin ? := funcnone; end;");
funcnone. regi ster Qut Paraneter (1, Types. CHAR);
funcnone. execute ();
Systemout.println ("Return value is: " + funcnone.getSring (1));
funcnone. cl ose() ;
}
/1 Gl afunction with an I N paraneter
{
Gl | abl eSt at enent funci n = conn. prepareCal |
("begin ? :=funcin (?); end;");
funcin.regi sterQut Paraneter (1, Types. CHAR;
funcin.setSring (2, "testing");
funci n. execute ();
Systemout.println ("Return value is: " + funcin.getString (1));
funcin. cl ose();
}
/1 Gl a function with an GQJT paraneter
{
Gl | abl et at enent funcout = conn. prepareCal |
("begin ? := funcout (?); end;");
funcout. regi ster Qut Parameter (1, Types. CHAR;
funcout . regi ster Qut Parameter (2, Types. CHAR ;
funcout . execute ();
Systemout.println ("Return value is: " + funcout.getSring (1));
Systemout.println ("Qut argunent is: " + funcout.getSring (2));
funcout . cl ose();
}

17-8 JDBC Developer’'s Guide and Reference



Samples of PL/SQL in JDBC

}

/1 a
conn.

ose the connection
cl ose();

/1 Wility function to dunp the contents of the PLSQTEST tabl e and
Il clear it

static voi d dunpTest Tabl e (Gonnecti on conn)

throws SQException

{

}

Satenent stnt = conn.createStatenment ();
Resul t Set rset = stni.executeQuery ("select * fromplsqgltest");
vhile (rset.next ())

Systemout.println (rset.getring (1));

stm.
rset.
stm.

execute ("delete fromplsgltest");
cl ose();
cl ose();

/1l Wility function to create the stored procedures
static void init (Connection conn)
throws SQException

{

Satenment stnt = conn.createStatenment ();
try { stni.execute ("drop table plsqgltest”); } catch (SQException e) { }

stnt.
stn.

stn.

stnt.

stnt.

stn.

stn.

stnt.

st

execute ("create table plsqgltest (x char(20))");
execute ("create or replace procedure prochone
is begininsert into plsgltest values ("testing); end;");
execute ("create or replace procedure procin (y char)
is begininsert into plsgltest values (y); end;");
execute ("create or replace procedure procout (y out char)
is beginy :="tested ; end;");
execute ("create or replace procedure procinout (y in out varchar)
is begininsert into plsqgltest values (y);
y :='tested ; end;");

execute ("create or replace function funcnone return char
is beginreturn "tested ; end;");
execute ("create or replace function funcin (y char) return char
is beginreturny || y; end;");
execute ("create or replace function funcout (y out char) return char
isbeginy :="tested ; return 'returned ; end;");

.close();

Sample Applications 17-9



Intermediate Samples

Intermediate Samples
Samples in this section demonstrate intermediate-level JDBC functionality.
« Streams—StreamExample.java
«  Multithreading—JdbcMTSample.java
These samples are located in the following directory on the product CD:

[ G acl e Hone] / j dbe/ deno/ sanpl es/ oci 8/ basi c- sanpl es

Streams—StreamExample.java

The JDBC drivers support the manipulation of data streams in both directions
between client and server. The code sample in this section demonstrates this by
connecting to a database and inserting and fetching LONG data using standard JDBC
stream API.

For a complete discussion of this topic, see "Java Streams in JDBC" on page 3-19.
/*

* This exanpl e shows howto streamdata fromthe dat abase

*/

inport java.sql.*;
inport java.io.*;

class Sreantxanpl e
{
public static void main (String args [])
throws SQException, |CException
{
/1 Load the driver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/1 1t’s faster when you don’t commit autonatically
conn. set Aut omt (fal se);

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();

17-10 JDBC Developer’'s Guide and Reference



Intermediate Samples

/Il Greate the exanple tabl e

try

{
stnm.execute ("drop tabl e streanexanpl e");

}

catch (SQException e)

{
/1 An exception would be raised if the table did not exist
/]l V¢ just ignore it

}

/I Greate the table
stm.execute ("create tabl e streanexanpl e
(NAME var char2 (256), DATA long)");

/] Let's insert sone data intoit. VW' Il put the source code
/1 for this very test in the database.
File file = newF le ("Streankxanpl e.j ava");
Input Sreamis = new F | el nput Stream (" S reankxanpl e. j ava');
PreparedStatenent pstnt =

conn. prepareStat enent ("insert into streanmexanpl e

(data, nane) values (?, ?)");

pstm.setAscii Sream (1, is, (int)file.length ());
pstnm.set&ring (2, "SreanExanpl €");
pstn . execute ();

/] Do a query to get the roww th NAME ' & reanbExanpl €
Resul t Set rset =
st . execut eQuery ("sel ect DATA from streanexanpl e where
NAME=' S reaniExanpl €' ) ;

[/l Get the first row

if (rset.next ())

{
/] Get the data as a StreamfromCacle to the client
Input Streamgi f_data = rset. get Ascii Stream(1);

/!l Qpen a file to store the gif data
FleQutputSreamos = new F | eQut put Stream ("exanpl e. out");

/1 Loop, reading fromthe gif streamand witing tothe file
int c;
vwhile ((c = gif_data.read ()) !'=-1)

os.wite (c);

Sample Applications 17-11



Intermediate Samples

/I Aose the file
os. close ();

}

// Qose all the resources
if (rset '=null)
rset.close();

if (stm !'=null)
stm.close();

if (pstnt !'=null)
pstni. cl ose();

if (conn!=null)
conn. cl ose() ;

Multithreading—JdbcMTSample.java

The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following sample program creates a specified number of
threads and lets you determine whether or not the threads will share a connection.
If you choose to share the connection, then the same JDBC connection object will be
used by all threads (each thread will have its own statement object, however).

Because all Oracle JIDBC APl methods (except the cancel () method) are
synchronized, if two threads try to use the connection object simultaneously, then
one will be forced to wait until the other one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

This sample is repeated in "JDBC and Multithreading" on page 16-2.
/*

* This sanple is a milti-threaded JDBC program

*/

inport java.sql.*;
inport oracle.jdbc.driver.Qacl eXtatenent;

public class JdbcMrSanpl e extends Thr ead

17-12 JDBC Developer’'s Guide and Reference



Intermediate Samples

/] Default no of threads to 10
private static int NUM G- THREADS = 10;

int mnyld;
static int c_nextld = 1;
static nnection s _conn = null;

static boolean share connection = fal se;

synchroni zed static int getNextld()

{ return c_next|d++
}
public static void main (String args [])
{
try
{

/* Load the JDBC driver */
Dri ver Manager . regi ster Dri ver (new oracl e. j dbc. dri ver. Oracl eDriver());

/1 1f NoOfThreads is specified, then read it
if ((args.length >2) ||
((args.length > 1) && !(args[1].equal s("share"))))

{
Systemout.printin("Eror: Invalid Syntax. ");
Systemout. println("java JdbcMSanpl e [ NoF Threads] [share]");
Systemexit (0);
}
if (args.length > 1)
{
share_connection = true;
Systemout. println
("All threads will be sharing the same connection");
}

/1 get the no of threads if given
if (args.length > 0)
NUM GF THREADS = Integer. parselnt (args[0]);

/1 get a shared connection
if (share_connection)
s_conn = Dri ver Manager . get Connect i on
("jdbc:oracl e:oci 8: @, "scott","tiger");

Sample Applications 17-13



Intermediate Samples

/Il Greate the threads
Thread[] threadList = new Thread] NUM OF THREADS ;

/1 spawn threads
for (int i =0; i < NMCO-_THEAS, i++
{
threadLi st[i] = new JdbcMSanpl e();
threadList[i].start();

}

/] Sart everyone at the same tine
set GeenLight ();

// wait for all threads to end
for (int i =0; i < NMCO-_THEAS, i++
{

}

threadLi st[i].join();

if (share_connection)

{

s_conn. cl ose();
s_conn = nul | ;

}
catch (Exception e)

{
}
}

publ i ¢ JdbcMrSanpl e()

{
super();
/1l Assign an Id to the thread
mnyld = getNext 1 d();

e. print StackTrace();

}

public void run()

{

CGonnection conn = nul | ;
Resul t Set rs =null;

17-14 JDBC Developer’s Guide and Reference



Intermediate Samples

Satemnent stnt = null;

try
{

// Get the connection

if (share_connection)
stm = s_conn.createStatenent (); // Qeate a Staterent
el se

{

conn

Dri ver Manager . get Gonnecti on("j dbc: or acl e: oci 8: @,
"scott","tiger");
stm = conn.createStatenent (); // CQeate a Statenent

}

vhil e (!getGeenLight())
yield();

/] Execute the Query
rs = stnt.execut eQery ("select * fromBwW');

/1 Loop through the results
vhile (rs.next())
{
Systemout.printin("Thread " + mnyld +
" BEwloyee Id : " +rs.getInt(1) +
" Nane : " +rs.getString(2));
yield(); // Yield To other threads

}

// Qose all the resources
rs. close();
rs =null;

// Qose the statenent
stm.close();
stm = null;

/1 Aose the local connection
if ((!share_connection) &% (conn !'=null))

{

conn. cl ose();
conn = nul | ;

}
Systemout.printIn("Thread " + mnyld + " is finished. ");

Sample Applications 17-15



Intermediate Samples

}
catch (Exception e)

{
Systemout.printin("Thread " + mnyld + " got Exception: " + e);
e.printSackTrace();
return;
}
}

static bool ean greenLight = fal se;
static synchroni zed voi d setGeenLight () { greenLight =true; }
synchroni zed bool ean getGeenLight () { return greenLight; }

17-16 JDBC Developer’s Guide and Reference



Samples for JDBC 2.0 Types

Samples for JDBC 2.0 Types

This section contains sample code for the Oracle implementations of standard JDBC
2.0 types:

«» BLOBs and CLOBs—LobExample.java

«  Weakly Typed Objects—PersonObiject.java

«  Weakly Typed Object References—StudentRef.java

«  Weakly Typed Arrays—ArrayExample.java

These samples are located in the following directory on the product CD:

[ O acl e Hone] / j dbc/ deno/ sanpl es/ oci 8/ obj ect - sanpl es

BLOBs and CLOBs—LobExample.java

This sample demonstrates basic JDBC support for LOBs. It illustrates how to create
a table containing LOB columns and includes utility programs to read from a LOB,
write to a LOB, and dump the LOB contents. For more information on LOBS, see
"Working with BLOBs and CLOBs" on page 7-3.
/*

* This sanpl e denonstrate basi c LAB support.

*/

inport java.sql.*;

inport java.io.*;

inport java. util.*;

inport oracle.jdbc.driver.*;

// needed for new LB and BL(B cl asses
inport oracle.sql.*;

public class LobExanpl e
{

public static void main (String args [])
throws Exception

{
/1 Register the Oacle JDBC driver

Dri ver Manager . regi sterDri ver (new oracl e. jdbc. driver. Gacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.

Sample Applications 17-17



Samples for JDBC 2.0 Types

Gonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: oracl e: oci 8: @, "scott", "tiger");

/] 1t's faster when auto commt is off
conn. set Aut omt (fal se);

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();

try
{
stnm.execute ("drop table basic_|lob table");
}
catch (SQException e)
{
/1 An exception could be raised here if the table did not exist already.
}

/] Ceate a table contai ning a BL(B and a OL(B
stn.execute ("create table basic_|lob table
(x varchar2 (30), b blob, ¢ clob)");

/1 Popul ate the table
stnm.execute ("insert into basic_|ob_table val ues

(" one’, ’'010101010101010101010101010101', ’onetwot hreefour’)");
stnm.execute ("insert into basic_|ob_table val ues

("two', ' 0202020202020202020202020202' , ' twot hreef our fivesi x’)");

Systemout. println ("Dunping | obs");

/1 Select the | obs
Resul t Set rset = stni.executeQuery ("select * frombasic | ob_table");
vhile (rset.next ())
{
/1 Get the | obs
BLCB blob = ((Qacl eResul t Set)rset).getBLAB (2);
ABclob = ((Oacl eResul t Set)rset).get A (3);

/1 Print the lob contents
dunpB ob (conn, blob);
dunpd ob (conn, clob);

/1 Change the | ob contents

filldob (conn, clob, 2000);
fillB ob (conn, blob, 4000);

17-18 JDBC Developer’'s Guide and Reference



Samples for JDBC 2.0 Types

}
Systemout. println ("Dunping | obs again");

rset = stnt.executeQuery ("select * frombasic_|ob table");
vhile (rset.next ())
{
// Get the | obs
BLCB blob = ((Qacl eResul t Set)rset).getBLAB (2);
ABclob = ((Oacl eResul t Set)rset).get A (3);

/1 Print the |obs contents
dunpB ob (conn, blob);
dunpd ob (conn, clob);

/1 Qose all resources
rset. close();
stn. close();
conn. cl ose();

}

/1 Wility function to dunp A ob contents
static voi d dunpd ob (Gonnection conn, OLCB cl ob)
throws Excepti on

{

/1 get character streamto retrieve clob data
Reader i nstream= cl ob. get Char act er Streang) ;

/] create tenporary buffer for read
char[] buffer = new char[10];

/1 length of characters read
int length = 0;

/1 fetch data
vhile ((length = instreamread(buffer)) = -1)

Systemout.print("Read " + length + " chars: ");
for (int i=0; i<length; i++)

Systemout . print(buffer[i]);
Systemout. println();

}

/1 dose input stream

Sample Applications 17-19



Samples for JDBC 2.0 Types

instreamcl ose();

}

/1 Wility function to dunp Bl ob contents

static voi d dunpB ob (Gonnection conn, BLCB bl ob)
throws Excepti on

{
/1 Get binary output streamto retrieve blob data
I nput S reami nstream = bl ob. get B narySt rean() ;

/]l Greate tenporary buffer for read
byte[] buffer = new byte[10];

/1 length of bytes read
int length = 0;

/1 Fetch data
vhile ((length = instreamread(buffer)) !'=-1)

{
Systemout.print("Read " + length + " bytes: ");

for (int i=0; i<length; i+
Systemout. print(buffer[i]+" ");
Systemout. println();
}

/1 dose input stream
instreamcl ose();

}

// Wility function to put data in a dob
static void fill dob (Gonnection conn, A.CB clob, |ong | ength)
throws Excepti on

{
Witer outstream= cl ob. get Charact er Qut put Streanf);

int i =0;

int chunk = 10;
vhile (i < length)
{

outstreamwite(i + "hello world", 0, chunk);

i += chunk;
if (length - i < chunk)

17-20 JDBC Developer’'s Guide and Reference



Samples for JDBC 2.0 Types

chunk = (int) length - i;
}

out st reamcl ose();

}

/1 Wility function to put data in a Bl ob
static void fill Bl ob (Gonnection conn, BLCB bl ob, |ong | ength)
throws Exception

{
Qut put S ream out st ream = bl ob. get B nar yQut put Streang) ;
int i =0;
int chunk = 10;
byte [] data={ 1, 2, 3, 4, 5 6, 7, 8 9, 10 };
vhile (i < length)
{
data [0] = (byte)i;
outstreamw ite(data, 0, chunk);
i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}
out st reamcl ose();
}
}

Weakly Typed Objects—PersonObject.java

This sample demonstrates the functionality of the Oracle classes

oracl e. sgl . STRUCT and or acl e. sql . Struct Descri pt or for weakly typed
support of SQL structured objects. It defines the SQL object types PERSON and
ADDRESS (an attribute of PERSON).

For a complete discussion of weakly typed STRUCT class functionality, see "Using
the Default STRUCT Class for Oracle Objects" on page 8-3.

/*
* This sanpl e denonstrate basi c (hj ect support
*/

inport java.sql.*;

Sample Applications 17-21



Samples for JDBC 2.0 Types

inport java.io.*;

inport java. util.*;

inport java. nat h. Bi gDeci mal ;
inport oracle.sql.*;

inport oracle.jdbc.driver.*;

public class Person(j ect
{
public static void main (String args [])
throws Exception
{
/1 Register the Qacle JDBC driver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase

/1 You need to put your database name after the @sign in

/1 the connection URL.

/1l

/1 The sanple retrieves an object of type "STUDENT',

/] materializes the object as an obj ect of type ADI.

/1 The hject is then modified and i nserted back into the database.

Gonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: or acl e: oci 8: @,
"scott", "tiger");

/] 1t's faster when auto commt is off
conn. set Aut ot (fal se);

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();

try
{

stnm.execute ("drop tabl e peopl e");
stm.execute ("drop type PERSON FORCE');
stm.execute ("drop type ADDRESS FCORCE');

}
catch (SQException e)

/1 the above drop and create statenents will throw exceptions
/1 if the types and tables did not exist before

}

stm.execute ("create type ADDRESS as obj ect

17-22 JDBC Developer’s Guide and Reference



Samples for JDBC 2.0 Types

(street VARCHAR (30), numNMBER");
stn.execute ("create type PERSON as obj ect
(name VARGHAR (30), hone ADDRESS)");
stn.execute ("create table peopl e (enpno NUMBER enpid PERSON");

stnm.execute ("insert into people val ues

(101, PERSON (' Geg, ADDRESS ('Van Ness', 345)))");
stnm.execute ("insert into people val ues

(102, PERSON (' John', ADDRESS (' Geary’, 229)))");

ResultSet rs = stmt. executeQuery ("select * from peopl e");
showResul t Set (rs);
rs.close();

//now insert a new row

/1 create a new STRUCT object with a new nane and address
/] create the enbedded obj ect for the address

(bject [] address_attributes = new (hject [2];
address_attributes [0] = "Mssion";

address_attributes [1] = new Bi gDeci mal (346);

S ruct Descriptor addressDesc =
SructDescriptor.createlescriptor ("ADDRESS', conn);
STRUCT address = new STRUCT (addr essDesc, conn, address_attributes);

(bject [] person_ attributes = new (bject [2];
person_attributes [0] = "Gary";
person_attributes [1] = address;

S ruct Descri ptor personDesc =
Sruct Descriptor.createDescriptor("PERSON', conn);
STRUCT new per son = new STRUCT (personDesc, conn, person_ attributes);

PreparedS atenent ps =

conn. prepareSatenent ("insert into peopl e values (?,?2)");
ps.setint (1, 102);
ps. set hj ect (2, new person);

ps. execute ();
ps. cl ose();

rs = stnt.executeQuery ("select * frompeople");

Systemout. println ();
Systemout. println (" a new row has been added to the people tabl e");

Sample Applications 17-23



Samples for JDBC 2.0 Types

Systemout. println ();
showResul t Set (rs);

rs.close();
stn. close();
conn. cl ose();

}

public static void showResul t Set (ResultSet rs)
throws SQException

{
vhile (rs.next ())
{
int enpno = rs.getint (1);
/1 retrieve the STRUCT
STRUCT person_struct = (STRUCT)rs. get (bj ect (2);
(bj ect person_ attrs[] = person_struct.getAttributes();
Systemout.println ("person nane: " + (String) person_attrs[0]);
STRUCT address = (STRUCI) person_attrs[1];
Systemout.println ("person address: ");
(bj ect address_attrs[] = address.getAttributes();
Systemout.println ("street: " + (Sring) address_attrs[Q]);
Systemout.println ("nunber: " +
((BigDecinal) address_attrs[1]).intValue());
Systemout.printin ();
}
}
}

Weakly Typed Object References—StudentRef.java

This sample demonstrates the functionality of the Oracle class or acl e. sql . REF
for weakly typed support of SQL object references. It defines the SQL object type
STUDENT and uses references to that object type.

For a complete discussion of weakly typed REF class functionality, see Chapter 9,
"Working with Oracle Object References".

/* This sanpl e denonstrate basi c Ref support

17-24 JDBC Developer’s Guide and Reference



Samples for JDBC 2.0 Types

*/

inport java.sql.*;

inport java.io.*;

inport java. util.*;

inport java. nat h. Bi gDeci mal ;
inport oracle.sql.*;

inport oracle.jdbc.driver.*;

public class S udent Ref
{
public static void main (String args [])
throws Exception
{
/1 Register the Oacle JDBC driver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase

/1 You need to put your database name after the @sign in

/1 the connection LR

/1l

/1 The sanple retrieves an object of type "person",

/1 naterializes the object as an object of type ADI.

/1 The hject is then modified and i nserted back into the database.

Gonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: or acl e: oci 8: @,
"scott", "tiger");

/] 1t's faster when auto commt is off
conn. set Aut ommt (fal se);

/I Geate a S atenent
Satenment stnt = conn.createStatenment ();

try
{

stm.execute ("drop tabl e student_table");
stm.execute ("drop type STUDENT');

catch (SQException e)
{

/1 the above drop and create statenents will throw exceptions
/1 if the types and tables did not exist before

}

Sample Applications 17-25



Samples for JDBC 2.0 Types

stnm.execute ("create type STUDENT as obj ect

(name VARGHAR (30), age NIMBER");
stnm.execute ("create table student_table of STUDENT");
stnm.execute ("insert into student_tabl e values (' John', 20)");

ResultSet rs = stm.executeQuery ("select ref (s) fromstudent_table s");
rs.next ();

/1 retrieve the ref object
REF ref = (REF) rs.getject (1);

/lretrieve the object value that the ref points toin the
/1 object table

STRUCT student = (STRUCT) ref.getVal ue ();
(bject attributes[] = student.get Atributes();

Systemout. println ("student name: " + (String) attributes[Q]);
Systemout. println ("student age: " + ((B gblecinal)
attributes[1]).intValue());

rs.close();
stn. close();
conn. cl ose();

Weakly Typed Arrays—ArrayExample.java

This sample program uses JDBC to create a table with a VARRAY. It inserts a new
array object into the table, then prints the contents of the table. For more
information on arrays, see Chapter 10, "Working with Oracle Collections".

inport java.sql.*;

inport oracle.sql.*;

inport oracle.jdbc.oracore. Wil;
inport oracle.jdbc.driver.*;
inport java. nat h. Bi gDeci mal ;

public class ArrayExanpl e
{

public static void main (String args[])
throws Exception

{

17-26 JDBC Developer’s Guide and Reference



Samples for JDBC 2.0 Types

/! Register the Qacle JDBC driver
Dri ver Manager . regi sterDri ver (new oracl e. jdoc. driver. Gacl eDxiver());

/1 Gonnect to the dat abase

/1 You need to put your database nane after the @sign in
/1 the connection URL.

1

/1 The sanple retrieves an varray of type "NJM VARRAY",
/1 materializes the object as an object of type ARRAY.

/1 A new ARRAY is then inserted into the database.

Gonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: or acl e: oci 8: @,
"scott", "tiger");

/] 1t's faster when auto commt is off
conn. set Aut omt (fal se);

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

try
{
st .execute ("DRCP TABLE varray tabl e");

stn.execute ("DRCP TYPE numvarray");
}
catch (SQException e)
{
/1 the above drop statenents w Il throw exceptions
/1 if the types and tables did not exist before. Just ingore it.

}

stnt. execute ("CREATE TYPE numvarray AS VARRAY(10) CF NUMBER(12, 2)");
stn. execute ("CREATE TABLE varray table (col 1 numvarray)");
stn.execute ("INSERT INTO varray table VALLES (numvarray(100, 200))");

Resul tSet rs = stm. executeQuery("SELECT * FROMvarray_tabl e");
showResul t Set (rs);

//now insert a new row
/] create a new ARRAY obj ect
int elenents[] = { 300, 400, 500, 600 };

ArrayDescri ptor desc = ArrayDescri ptor. createDescri ptor ("NUM VARRAY', conn);
ARRAY newArray = new ARRAY(desc, conn, elenents);

Sample Applications 17-27



Samples for JDBC 2.0 Types

PreparedS atenent ps =
conn. prepareStatenent ("insert into varray_table values (?)");
((QO acl ePrepar edS at enent ) ps) . set ARRAY (1, newArray);

ps. execute ();

rs = stnt. execut eQuery("SELECT * FROMvarray_t abl e");
showResul t Set (rs);

/1 Qose all the resources
rs.close();

ps. cl ose();

stn. close();

conn. cl ose();

}

public static void showResul t Set (ResultSet rs)
throws SQException
{
int line = 0;
vhile (rs.next())
{
i ne++;
Systemout. println("Row "+ inet" : ");
ARRAY array = ((Qacl eResult Set)rs). get ARRAY (1);

Systemout.println ("Array is of type "+array. get SQ TypeNane());
Systemout. println

("Array elenent is of typecode "+array. get BaseType());
Systemout.println ("Array is of length "+array.length());

/1 get Array el enents
Biglecimal [] values = (Biglecinal []) array.getArray();

for (int i=0; i<values.length; i++)

{
Bi gDeci nal val ue = (BigDecinal ) val ues[i];
Systemout . printl n(">> index "+ +' = "+val ue.intVal ue());

}

}
}
}

17-28 JDBC Developer’s Guide and Reference



Samples for Oracle Type Extensions

Samples for Oracle Type Extensions
This section contains sample code for some of the Oracle type extensions:
» REF CURSORs—RefCursorExample.java
« BFILEs—FileExample.java
The REF CURSOR sample is located in the following directory on the product CD:
[ G acl e Hone] / j dbe/ deno/ sanpl es/ oci 8/ basi c- sanpl es

The BFILE example is in the obj ect - sanpl es directory.

REF CURSORs—RefCursorExample.java

This sample program shows Oracle JDBC REF CURSOR functionality, creating a
PL/SQL package that includes a stored function that returns a REF CURSOR type.
The sample retrieves the REF CURSOR into a result set object. For information on
REF CURSORs, see "Oracle REF CURSOR Type Category" on page 5-27.

/*

* This sanpl e shows howto call a PL/SQL function that opens
* a cursor and get the cursor back as a Java Result Set.

*/

inport java.sql.*;
inport java.io.*;
inport oracle.jdbc.driver.*;

cl ass Ref Qur sor Exanpl e
{
public static void main (String args [])
throws SQException
{
/1 Load the driver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/1 Create the stored procedure
init (conn);

Sample Applications 17-29



Samples for Oracle Type Extensions

/! Prepare a PL/SQ call
Gl lableStatenent call =
conn.prepareCall ("{ ? =call java_refcursor.job listing (?)}");

/1 Fnd out all the SALES person
call.registerQutParaneter (1, Qacl eTypes. ORSR ;
call.setSring (2, "SALESVAN');

call.execute ();

Result Set rset = (Result Set)call.get (ject (1);

/1 Dunp the cursor
vhile (rset.next ())
Systemout.println (rset.getSring ("ENAME'));

/1 Qose all the resources
rset. close();
call.close();
conn. cl ose();

}

/1 Wility function to create the stored procedure
static void init (Gonnection conn)

throws SQException
{

Satenment stnt = conn.createStatenment ();

stm.execute ("create or repl ace package java refcursor as " +
" type nyrctype is ref cursor return EMPBONYPE " +
" function job listing (j varchar2) return nyrctype; " +
"end java_refcursor;");

stnm.execute ("create or repl ace package body java refcursor as " +
" function job_ listing (j varchar2) return nyrctype is " +
" rc nyrctype; " +

" begin" +

" open rc for select * fromenp where job =j; " +
" return rc; " +

" end; " +

"end java_refcursor;");
stnt. close();

}
}

17-30 JDBC Developer’s Guide and Reference



Samples for Oracle Type Extensions

BFILEs—FileExample.java

This sample demonstrates Oracle JDBC BFILE support. It illustrates filling a table
with BFILEs and includes a utility for dumping the contents of a BFILE. For
information on BFILEs, see "Working with BFILEs" on page 7-16.

/*

* This sanpl e denonstrate basic File support
*

/

inport java.sql.*;
inport java.io.*;
inport java. util.*;

/lincluding this inport nmakes the code easier to read
inport oracle.jdbc.driver.*;

/! needed for new BFI LE cl ass
inport oracle.sql.*;

public class F | eExanpl e
{
public static void main (String args [])
throws Exception
{
/1 Register the Qacle JDBC driver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
/1
/1 The sanple creates a D RECTCRY and you have to be connected as
/] "systemi to be able to run the test.
/1 1 you can’t connect as "systen! have your system nmanager
/] create the directory for you, grant you the rights toit, and
/1 renove the portion of this programthat drops and creates the directory.
Qonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: oracl e: oci 8: @, "systeni, "manager");

[/l 1t's faster when auto commt is off
conn. set Aut ot (fal se);

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();

Sample Applications 17-31



Samples for Oracle Type Extensions

try
{
stm.execute ("drop directory TEST D R');
}
catch (SQException e)
{
/!l Anerror israised if the directory does not exist. Just ignore it.
}
stm.execute ("create directory TEST DRas '/tnp/filetest’'");
try
{
stm.execute ("drop table test_dir_table");
}
catch (SQException e)
{
/!l Anerror israised if the table does not exist. Just ignore it.
}

/l Geate and populate a table with files
/1 The files filel and file2 nmust exist in the directory TEST DR created
/1 above as synbolic nane for /private/local/filetest.
stm.execute ("create table test_dir_table (x varchar2 (30), b bfile)");
stm.execute ("insert into test_dir_table val ues

("one’, bfilenane (" TEST_ DR, 'filel’))");
stm.execute ("insert into test_dir_table val ues

("two', bfilenane ("TEST_ DR, 'file2’))");

/1 Select the file fromthe table
Resul t Set rset = stni.executeQuery ("select * fromtest_dir_table");
vhile (rset.next ())

{
Sring x =rset.getSring (1);
BFI LE bfile = ((Qacl eResul t Set)rset) . get BFI LE (2);
Systemout.println (x +" " + bfile);
/1 Dump the file contents
dunpBfile (conn, bfile);
}

/1 Qose all resources
rset. close();
stn. close();
conn. cl ose();

17-32 JDBC Developer’s Guide and Reference



Samples for Oracle Type Extensions

/1 Wility function to dunp the contents of a Bfile
static voi d dunpBfil e (Gonnection conn, BFILE bfile)
throws Excepti on

{
Systemout. println ("Dunping file " + bfile.getNane());
Systemout.println ("File exists: " + bfile.fileExists());
Systemout.println ("File open: " + bfile.isFleQen());

Systemout. println ("Qpening File: ");
bfile.openFile();
Systemout.println ("File open: " + bfile.isF|eQen());

long length = bfile.l ength();
Systemout.println ("File length: " + length);

int chunk = 10;
Input Sreaminstream = bfil e. get B naryStreant) ;

/]l Greate tenporary buffer for read
byte[] buffer = new byte[chunk];

/1 Fetch data
vhile ((length = instreamread(buffer)) !'=-1)

{
Systemout.print("Read " + length + " bytes: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i]+" ");
Systemout. printin();
}

/1 dose input stream
instreamcl ose();

/1 close file handl er
bfile.closeFle();

Sample Applications 17-33



Samples for Custom Object Classes

Samples for Custom Object Classes

This section demonstrates the functionality of custom Java classes to map from SQL
structured objects, providing examples of both a standard SQLDat a
implementation and an Oracle Cust onDat umimplementation:

« SQLData Implementation—SQLDataExample.java
« CustomDatum Implementation—CustomDatumExample.java

This includes examples of the code you must provide to define custom Java classes
for Oracle objects, and sample applications that make use of these custom Java class
definitions. You create the custom classes by implementing either the standard

j ava. sgl . SQLDat a interface or the Oracle or acl e. sql . Cust onDat um
interface. These interfaces provide a way to create and populate the custom Java
class for the Oracle object and its attributes.

SQLDat a and Cust onDat umboth populate a Java object from a SQL object, with
the SQLData interface providing more portability and the Cust onDat uminterface
providing more utility and flexibility in how you present the data.

The SQLDat a interface is a JDBC standard. For more information on this interface,
see "Understanding the SQLData Interface" on page 8-14.

The Cust onmDat uminterface is provided by Oracle. For more information on the
Cust onDat uminterface, see "Understanding the CustomDatum Interface" on
page 8-20.

You can write your own code to create custom Java classes that implement either
interface, but the Oracle JPublisher utility can generate classes to implement either
interface as well.

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 8-28 and the Oracle8i JPublisher User’s Guide.

The sample applications and custom Java class definitions in this section are located
in the following directory on the product CD:

[ O acl e Hone] / j dbc/ deno/ sanpl es/ oci 8/ obj ect - sanpl es

17-34 JDBC Developer’s Guide and Reference



Samples for Custom Object Classes

SQLData Implementation—SQLDataExample.java

This section contains code that illustrates how to define and use a custom Java type
corresponding to a given SQL object type, using a SQLDat a implementation.

SQL Object Definition
Following is the SQL definition of an EMPLOYEE object. The object has two

attributes: a VARCHAR2 attribute EMPNAME (employee name) and an | NTEGER
attribute EMPNO (employee number).

-- SQ definition
CREATE TYPE enpl oyee AS CBIECT

(
enpnane VARCHAR2( 50) ,
enpno | NTEGER

)

Custom Object Class—SQLData Implementation

The following code defines the custom Java class Enpl oyeeCbj (defined in

Enpl oyeeObj . j ava) to correspond to the SQL type EMPLOYEE. Notice that the
definition of Enpl oyeeObj contains a string enpNane (employee name) attribute
and an integer enpNo (employee number) attribute. Also notice that the Java
definition of the Enpl oyee(Cbj custom Java class implements the SQLDat a
interface and includes the implementations of a get method and the required
readSQL() andw it eSQ. () methods.

inport java.sql.*;
inport oracle.jdbc.*;

public class Epl oyeeChj inplenents SQData

{
private Sring sql _type;

public Sring enpNang;
public int enpNb;

publ i ¢ Enpl oyeeQhj ()
{
}

publ i c Enpl oyeeChj (Sring sql _type, String enpNane, int enpNb)
{

Sample Applications 17-35



Samples for Custom Object Classes

this.sql _type = sql _type;
thi s. enpNare = enpNarre;
this. enpNb = enpNb;

}

[1117] inplements SQData ////1/

public Sring get S TypeNane() throws SQException
{

return sql _type;

}

public void readSQ(SQInput stream String typeNane)
throws SQException

{
sql _type = typeNang;

empNane = streamreadSring();
empN\o = streamreadint();

}

public void witeSQ(SQQitput strean)
throws SQException

{

streamw iteSring(enpNane) ;
streamwitel nt (enpN\b);

}
}

Sample Application Using SQLData Custom Object Class

After you create the Enpl oyeeCbj Java class, you can use it in a program. The
following program creates a table that stores employee name and number data. The
program uses the Enpl oyeeObj object to create a new employee object and insert it
in the table. It then applies a SELECT statement to get the contents of the table and
prints its contents.

For information about using SQLDat a implementations to access and manipulate
SQL object data, see "Reading and Writing Data with a SQLData Implementation”
on page 8-17.

inport java.sql.*;
inport oracle.jdbc.driver.*;
inport oracle.sql.*;

17-36 JDBC Developer’s Guide and Reference



Samples for Custom Object Classes

inport java. nat h. Bi gDeci mal ;
inport java. util.D ctionary;

public class SQDat aExanpl e
{

public static void main(Sring args []) throws Exception

{

/1 Gonnect
Dri ver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDriver ());
Q acl eGonnection conn = (O acl eGonnect i on)
Dri ver Manager . get Gonnect i on("j dbc: oracl e: oci 8: @,
"scott", "tiger");

D ctionary map = (D ctionary)conn. get TypeMap() ;
nmap. put ("EMPLOYEE', A ass. f or Nane(" Enpl oyee(j ")) ;

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();
try

{
stm.execute ("drop tabl e BEMPLOYEE TABLE');

stm.execute ("drop type BEMPLOYEE');

}
catch (SQException e)

{

/!l Anerror israised if the table/type does not exist. Just ignore it.

}

/1 Create and popul ate tabl es
st . execut e ("CREATE TYPE BEMPLOYEE AS (BIECT
(EnpNane VARCHARZ( 50) , EnpNo | NTEGER) ") ;
st . execut e ("CREATE TABLE BEMPLOYEE TABLE (ATTRL EMPLOYEE)");
st . execute ("I NSERT | NTO BMPLOYEE TABLE VALUES
(BWPLOYEE(' Susan Smith', 123))");
stn. close();

I/l Geate a SQData object
Enpl oyee(hj e = new Enpl oyeeChj (" SCOIT. BMPLOYEE', "Geor ge Jones", 456);

/1 Insert the SQData object

Pr epar edSt at enent  pst nt
= conn. prepareS atenent ("insert into enpl oyee table val ues (?)");

Sample Applications 17-37



Samples for Custom Object Classes

pstn.setject (1, e, OacleTypes. STRLT);
pst i . execut eQuery();

Systemout. println("i nsert done");

pstnt. cl ose();

/1 Select now
Satenent s = conn.createSatenent();
Qacl eResul tSet rs = (O acl eResul t Set)
s. execut eQuery("sel ect * fromenpl oyee table");

vhil e(rs. next())

Enpl oyee(hj ee = (Enpl oyeeChj) rs. get j ect (1);
Systemout. printl n("EnpNane: " + ee.enpNane + " EnpNo: " + ee. enpNb);

}
rs.close();
s. close();

if (conn!=null)

{

}
}
}

conn. cl ose() ;

CustomDatum Implementation—CustomDatumExample.java

This section contains code that illustrates how to define and use a custom Java type
corresponding to a given SQL object type, using a Cust onmDat umimplementation.

SQL Object Definition
Following is the SQL definition of an EMPLOYEE object. The object has two

attributes: a VARCHAR2 attribute EMPNAME (employee name) and an | NTEGER
attribute EMPNO (employee number).

CREATE TYPE enpl oyee AS CBIECT

(
enpnane VARCHAR2( 50) ,
enpno | NTEGER

)

17-38 JDBC Developer’s Guide and Reference



Samples for Custom Object Classes

Custom Object Class—CustomDatum Implementation

The following code defines the custom Java class Enpl oyee (defined in

Enpl oyee. j ava) to correspond to the SQL type EMPLOYEE. Notice that the
definition of Enpl oyee contains accessor methods for a string enpnane (employee
name) and an integer enpno (employee number). Also notice that the Java
definition of the Enpl oyee custom Java class implements the Cust onDat umand
Cust onDat unfact ory interfaces. A custom Java class that implements

Cust onDat umhas a static get Fact or y() method that returns a

Cust onDat unfact or y object. The JDBC driver uses the Cust onDat unfact ory
object’s cr eat e() method to return a Cust orDat uminstance.

Note that instead of writing the custom Java class yourself, you can use the
JPublisher utility to generate class definitions that implement the Cust onDat um
and Cust onDat unfact or y interfaces. In fact, the Enpl oyee. j ava code shown
here was generated by JPublisher.

inport java. sqgl . SQLExcepti on;

inport oracle.jdbc.driver.Qacl eCnnecti on;
inport oracle.jdbc.driver.Qacl eTypes;

i nport oracl e. sql . Qust onbat um

inport oracl e. sql . Qust onbat unfFact ory;
inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class Empl oyee inpl enents Qust onbat um Qust onbat unfFact ory

{
public static final Sring _SQ_ NAME = "SCOIT. BVPLOYEE";

public static final int _SQ TYPEQE = O acl eTypes. STRULCT;
Mit abl eSruct _struct;

static int[] _sql Type =

{
12, 4

b
static QustonbDatunfactory[] _factory = new Qust onbat unfact ory[ 2] ;

static final Enpl oyee _Enpl oyeeFact ory = new Enpl oyee();
public static QustonbDat unfactory get Factory()

{
return _Enpl oyeeFactory;

}

Sample Applications 17-39



Samples for Custom Object Classes

/* constructor */
publ i ¢ Enpl oyee()
{
_struct = new Mitabl eSruct (new Qoj ect[2], _sql Type, _factory);

}

/* Qust onDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl ennecti on ¢) throws SQ.Exception
{
return _struct.tobDatunfc, _SQ _NAME);
}

/* Qust onbat unfactory interface */
publ ic QustonDatumcreate(Datumd, int sql Type) throws SQException

{
if (d=null) return null;
Enpl oyee o = new Enpl oyee() ;
0. _struct = new Mitabl eStruct ((STRUT) d, _sql Type, _factory);
return o;

}

/* accessor nethods */
public Sring get Enpnane() throws SQException
{ return (Sring) _struct.getAttribute(0); }

public voi d set Enpnane(Sring enpnane) throws SQException
{ _struct.setAttribute(0, enpnane); }

public Integer getEnpno() throws SQException
{ return (Integer) _struct.getAttribute(l); }

publ i ¢ voi d set Enpno(l nteger enpno) throws SQLException
{ _struct.setAttribute(l, enpno); }

Sample Application Using CustomDatum Custom Object Class

This sample program shows how you can use the Enpl oyee class generated by
JPublisher. The sample code creates a new Enpl oyee object, fills it with data, then
inserts it into the database. The sample code then retrieves the Enpl oyee data from
the database.

17-40 JDBC Developer’s Guide and Reference



Samples for Custom Object Classes

For information about using Cust onDat umimplementations to access and
manipulate SQL object data, see "Reading and Writing Data with a CustomDatum
Implementation” on page 8-23.

inport java.sql.*;

inport oracle.jdbc.driver.*;
inport oracle.sql.*;

inport java. nat h. Bi gDeci mal ;

public class Qustonbat uniExanpl e
{

public static void main(Sring args []) throws Exception

{

/1 Gonnect
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver ());
Q acl eGonnection conn = (O acl eGonnecti on)
Dri ver Manager . get Gonnect i on("j dbc: oracl e: oci 8: @,
"scott", "tiger");

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();
try

{
stm.execute ("drop tabl e BEMPLOYEE TABLE');

stm.execute ("drop type BEMPLOYEE');

}
catch (SQException e)

{

/1 Anerror israised if the table/type does not exist. Just ignore it.

}

/l Create and popul ate tabl es
st . execut e ("CREATE TYPE BEMPLOYEE AS (BIECT
(EnpNane  VARCHARZ( 50) , EnpNo | NTEGER) ") ;
st . execut e ("CREATE TABLE BEMPLOYEE TABLE (ATTRL EMPLOYEE)");
stn. execute ("I NSERT | NTO BEMPLOYEE TABLE VALUES
(BWPLOYEE(' Susan Smith’, 123))");
stn. close();

/1 Create a Qustonbat um obj ect
Enpl oyee e = new Enpl oyee(" Geor ge Jones", new B gDeci nal ("456"));

Sample Applications 17-41



Samples for Custom Object Classes

}

}

/1 Insert the Qustonbatum obj ect
Pr epar edSt at enent pst nt
= conn. prepareS atenent ("insert into enpl oyee table val ues (?)");

pstnt.setject (1, e, GacleTypes. STRLT);
pst i . execut eQuery();

Systemout. println("i nsert done");

pstni. cl ose();

/1 Select now
Satement s = conn.createSatenent();
Qacl eResul tSet rs = (O acl eResul t Set)
s. execut eQuery("sel ect * fromenpl oyee table");

vhil e(rs. next())

Enpl oyee ee = (Enpl oyee) rs.get Qustonbat un{1l, Enpl oyee. get Factory());
Systemout. printl n("EnpNane: " + ee.enpNane + " EnpNo: " + ee. enpNb);

}
rs.close();
s. close();

if (conn!=null)

{
conn. cl ose() ;

}

17-42 JDBC Developer’'s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

JDBC 2.0 Result Set Enhancement Samples

This section provides samples that demonstrate the functionality of result set
enhancements available with JDBC 2.0. This includes positioning in a scrollable
result set, updating a result set, using a scroll-sensitive result set that can
automatically see external updates, and explicitly refetching data into a result set:

« Positioning in a Result Set—ResultSet2.java

« Inserting and Deleting Rows in a Result Set—ResultSet3.java
« Updating Rows in a Result Set—ResultSet4.java

« Scroll-Sensitive Result Set—ResultSet5.java

« Refetching Rows in a Result Set—ResultSet6.java

The sample applications in this section are located in the following directory on the
product CD:

[ O acl e Hone] / j dbc/ deno/ sanpl es/ oci 8/ j dbc20- sanpl es

Positioning in a Result Set—ResultSet2.java

This section demonstrates scrollable result set functionality—moving to relative and
absolute row positions and iterating backwards through the result set.

For discussion on these topics, see "Positioning and Processing in Scrollable Result
Sets" on page 11-13.

/* Asinple sanple to denonstrate previous(), absolute() and relative().
*/
inport java.sql.*;

public class Resul t Set2
{
public static void main(Sring[] args) throws SQException

{
/! Load the O acle JDBC dri ver

Dri ver Manager . regi sterDri ver (new oracl e. jdbc. driver. Gacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e: oci 8: @, "scott", "tiger");

Sample Applications 17-43



JDBC 2.0 Result Set Enhancement Samples

/I Geate a S atenent
Satenent stnt = conn.createStatenent (ResultSet. TYPE SCROLL | NSENS Tl VE,
Resul t Set . GONOLR_UPDATABLE) ;

/1 Query the EMP tabl e
Resul t Set rset = stni.executeQuery ("sel ect ENAME fromEMP');

/] iterate through the result using next()
show resul t set _by next(rset);

/] iterate through the result using previous()
show resul t set _by previ ous(rset);

/] iterate through the result using absol ute()
show resul t set _by absol ute(rset);

/] iterate through the result using rel ative()
show resul tset _by rel ative(rset);

/1 dose the Resul t Set
rset. close();

// A ose the Statenent
stn. close();

// A ose the connection
conn. cl ose();

}

/**

* |terate through the result using next().

*

* @aramrset a result set object

*/

public static void show resul tset_by next(ResultSet rset)
throws SQException

{
Systemout. println ("List the enpl oyee names using ResultSet.next():");

/1 Nake sure the cursor is placed right before the first row
if (Irset.isBeforeFirst())

{

/1 P ace the cursor right before the first row
rset.beforeFirst ();

}

17-44 JDBC Developer’s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

// lterate through the rows using next()
vhile (rset.next())
Systemout.println (rset.getring (1));

Systemout. printin ();
}

/**
* |terate through the result using previous().
*
* @aramrset a result set object
*/
public static void show resul tset_by previous(Resul tSet rset)
t hrows SQException

{

Systemout. println ("List the enpl oyee nanes using Resul t Set. previous():");

/1 Nake sure the cursor is placed after the last row
if (Irset.isAfterLast())

/! Place the cursor after the | ast row
rset.afterlLast ();

}

/] lterate through the rows using previous()
vhile (rset.previous())
Systemout.println (rset.getSring (1));

Systemout. printin ();
}

/**

* |terate through the result using absol ute().

*

* @aramrset a result set object

*/

public static void show resul tset_by absol ute (ResultSet rset)
throws SQException

{
Systemout. println ("List the enpl oyee nanes using Resul t Set. absol ute():");

/1 The begin i ndex for ResultSet. absol ute (idx)
int idx = 1;

Sample Applications 17-45



JDBC 2.0 Result Set Enhancement Samples

/1 Loop through the result set until absolute() returns false.
vhile (rset.absol ute(idx))

{ Systemout.println (rset.getring (1));
idx ++
}
Systemout. println ();
}
/**

* |terate through the result using relative().
*
* @aramrset a result set object
*/
public static void show resultset_by relative (ResultSet rset)
throws SQ.Exception
{

Systemout. println ("List the enpl oyee nanes using ResultSet.relative():");

/1 getRow() returns O if there is no current row
if (rset.getRow () = 0 || !rset.isLast())
{

/1 place the cursor on the last row

rset.last ();

}

/I Glling relative(-1) is simlar to previous(), but the cursor
/1 has to be on a valid row before calling rel ative().
do

{

}
vwhile (rset.relative (-1));

Systemout.println (rset.getSring (1));

Systemout. println ();

17-46 JDBC Developer’s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

Inserting and Deleting Rows in a Result Set—ResultSet3.java

This sample shows some of the functionality of an updatable result set—inserting
and deleting rows that will in turn be inserted into or deleted from the database.

For discussion on these topics, see "Performing an INSERT Operation in a Result
Set" on page 11-21 and "Performing a DELETE Operation in a Result Set" on
page 11-18.

/* Asinple sanple to to denonstrate ResultSet.insert Row() and
* Result Set . del et eRow() .
*
/
inport java.sql.*;

public class Resul t Set3
{
public static void main(Sring[] args) throws SQException
{
/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/1 A eanup
cl eanup (conn);

/I Geate a S atenent

Satenment stnt = conn.createStatenent (ResultSet. TYPE SCROLL | NSENS Tl VE,
Resul t Set . GONOLR_UPDATABLE) ;

/1 Query the EMP tabl e

Resul t Set rset = stni.executeQuery ("sel ect EMPNQ ENAME from BWP');

/1 Add three new enpl oyees usi hg Resul t Set. i nsert Row()
addeEnpl oyee (rset, 1001, "PETER');
addeEnpl oyee (rset, 1002, "MARY");
addeEnpl oyee (rset, 1003, "DV D');

// Qose the result set
rset.close ();

/1 Verify the insertion
Systemout. println ("\nList BVPNO and ENAME in the EMP table: ");

Sample Applications 17-47



JDBC 2.0 Result Set Enhancement Samples

rset = stnt.executeQuery ("sel ect BMPNO ENAME from BEMP');
vhile (rset.next())

{

/1 V¢ expect to see the three new enpl oyees
Systemout.println (rset.getInt(1)+" "+rset.getSring(2));

}
Systemout. printin ();

/1 Delete the new enpl oyee ' PETER usi ng Resul t Set. del et eRow()
renovebnpl oyee (rset, 1001);
rset.close ();

/1 Verify the deletion
Systemout. println ("\nList BVPNO and ENAME in the EMP table: ");
rset = stnt.executeQuery ("sel ect BMPNO ENAME from BEMP');
vhile (rset.next())
{
/1 V¢ expect "PETER' is renoved
Systemout.println (rset.getInt(l)+" "+rset.getSring(2));

}
Systemout. printin ();

/1 dose the Rseul t Set
rset. close();

// A ose the Statenent
stn. close();

/1 A eanup
cl eanup( conn);

// A ose the connection
conn. cl ose();

}

/ * %
* Add a new enpl oyee to EMP tabl e.
*/
public static void addEnpl oyee (Result Set rset,
i nt enpl oyeel d,
Sring enpl oyeeNane)
throws SQException

{
Systemout. println ("Addi ng new enpl oyee: "+enpl oyeel d+" " +enpl oyeeNane) ;

17-48 JDBC Developer’s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

/] Place the cursor on the insert row
rset. noveTol nsert Row() ;

/1 Assign the new val ues
rset.updatelnt (1, enployeeld);
rset. updateSring (2, enpl oyeeNane);

/] Insert the newrow to database
rset.insert Row();

}

/ * %
* Renove the enpl oyee fromBEW table.
*/
public static void renoveEnpl oyee (ResultSet rset,
i nt enpl oyeel d)
throws SQException

{
Systemout. println ("Removi ng the enpl oyee: id="+enpl oyeel d);

/1 M ace the cursor right before the first rowif it doesn’t
if (Irset.isBeforeFirst())
{

rset.beforeFirst();

}

/] lterate the result set
vhile (rset.next())

/1 P ace the cursor the roww th nmatched enpl oyee id
if (rset.getlnt(1) == enpl oyeel d)

/] Delete the current row
rset . del et eRow() ;
br eak;
}
}
}

/ * %
* Generic cl eanup.
*/
public static void cleanup (Connection conn)
throws SQException
{

Sample Applications 17-49



JDBC 2.0 Result Set Enhancement Samples

Satenent stnt = conn.createStatenment ();
st . execut e
(" DELETE FROM BVP WHERE EMPNC=1001 CR BMPNO=1002 CR EMPNO=1003") ;
stn.execute ("COW T");
stnm.close ();

Updating Rows in a Result Set—ResultSet4.java

This sample shows some of the functionality of an updatable result set—updating
rows that will in turn be updated in the database.

For a discussion on this topic, see "Performing an UPDATE Operation in a Result
Set" on page 11-19.

/* Asinple sanple to denonstrate Result Set. udpat eFow().
*/
inport java.sql.*;

public class Resul t Set4
{
public static void main(String[] args) throws SQException
{
/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/] Qeate a S atenent

Satenent stnt = conn.createStatenent (ResultSet. TYPE SCROLL | NSENS Tl VE,
Resul t Set . GONOUR_UPDATABLE) ;

/1 Query the EMP tabl e

Resul t Set rset = stni.executeQuery ("select BEMPNQ ENAME, SAL from EWP');

/1 Qve everybody a $500 rai se
adjustSalary (rset, 500);

/1 Verify the sarlary changes

Systemout. println ("Verify the changes with a new query: ");
rset = stnt.executeQuery ("sel ect BEMPNQ ENAME, SAL fromEW');

17-50 JDBC Developer’'s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

}

/

while (rset.next())
{

Systemout.println (rset.getlnt(1)+" "+rset.getSring(2)+" "+

rset.getlnt(3));

}
Systemout. printin ();

/1 dose the Rseul t Set
rset. close();

// QA ose the Statenent
stn. close();

/1 Q4 eanup
cl eanup( conn);

// A ose the connection
conn. cl ose();

* %

* Update the Result Set content
*/

usi ng updat eRow( ) .

public static void adjustSalary (ResultSet rset, int raise)

{

t hrows SQException

Systemout. println ("Ave everybody in the BMP table a $500 rai se\n");

int salary = 0;

while (rset.next ())
{

/1 save the old val ue
salary = rset.getlnt (3);

/1 update the row
rset.updatelnt (3, salary + raise);

/1 flush the changes t o dat abase
rset . updat eRow ();

/1 show t he changes

Systemout.println (rset.getlnt(1)+" "+rset.getSring(2)+" "+
sal ary+" -> "+4rset.getInt(3));

Sample Applications 17-51



JDBC 2.0 Result Set Enhancement Samples

Systemout. printin ();
}

/ * %
* Generic cl eanup.
*/
public static void cleanup (Gonnection conn) throws SQException

{
Satenent stnt = conn.createStatenment ();
st . execute ("UPDATE BWP SET SAL = SAL - 500");
stn.execute ("COW T");
stnm.close ();

Scroll-Sensitive Result Set—ResultSet5.java

This sample shows the functionality of a scroll-sensitive result. Such a result set can
implicitly see updates to the database that were made externally.

For more information about scroll-sensitive result sets and how they are
implemented, see "Oracle Implementation of Scroll-Sensitive Result Sets" on
page 11-30.

/* Asinple sanple to denonstrate scroll sensitive result set.
*/
inport java.sql.*;

public class Resul tSet5
{
public static void main(String[] args) throws SQException

{
/! Load the O acle JDBC dri ver

Driver Manager . regi sterDri ver(new oracl e.jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/] Qeate a S atenent

Satenent stnt = conn.createStatenment (ResultSet. TYPE SCROLL _SENSI Tl VE
Resul t Set . GONOUR _UPDATABLE) ;

17-52 JDBC Developer’'s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

/]l Set the statenent fetch size to 1
stn. set FetchSi ze (1);

/1 Query the EMP tabl e
Resul t Set rset = stni.executeQuery ("select BEMPNQ ENAME, SAL from EWP');

/1 List the result set’'s type, concurrency type, ..., etc
showProperty (rset);

/] List the query result
Systemout. println ("List ENO ENAME and SAL fromthe EMP table: ");
while (rset.next())
{
Systemout.println (rset.getlnt(1)+" "+rset.getSring(2)+" "+
rset.getlnt(3));

}
Systemout. printin ();

/1 Do sone changes outside the result set
doSoneChanges (conn);

/1 P ace the cursor right before the first row
rset.beforeFirst ();

/1 List the enpl oyee infornati on again
Systemout. println ("List ENQ ENAME and SAL again: ");
vhile (rset.next())
{
/1 V¢ expect to see the changes nade in "doSoneChanges()"
Systemout.println (rset.getlnt(1)+" "+rset.getSring(2)+" "+
rset.getlnt(3));

}

/1 dose the Rseul t Set
rset. close();

// A ose the Statenent
stn. close();

/1 A eanup
cl eanup( conn);

// A ose the connection
conn. cl ose();

Sample Applications 17-53



JDBC 2.0 Result Set Enhancement Samples

/ * %
* Update the BWP tabl e.
*/

public static void doSomeChanges (Connection conn)
throws SQException

{
Systemout. println ("Udate the enpl oyee salary outside the result set\n");
Satenent otherSnt = conn.createStatenent ();
ot her X nt.execute ("update enp set sal = sal + 500");
ot her X nt.execute ("commt");
otherSnt.close ();
}
/**

* Show the result set properties like type, concurrency type, fetch

* size,..., etc.

*/
public static void showProperty (ResultSet rset) throws SQException
{

/1 Verify the result set type
switch (rset. get Type())

{
case ResultSet. TYPE FCRWMRD ALY
Systemout.println ("Result set type: TYPE FCRMRD O\NLY");
br eak;
case ResultSet. TYPE SCROLL | NSENS Tl VE
Systemout.println ("Result set type: TYPE SCROL | NSENS Tl VE');
br eak;
case ResultSet. TYPE SCROLL SENSITI VE
Systemout.println ("Result set type: TYPE SCROL_SENSITIVE');
br eak;
def aul t:
Systemout.println ("Invalid type");
br eak;
}

/1 Verify the result set concurrency
switch (rset. get Goncurrency())
{
case Resul t Set. CONCLR _UPDATABLE:
Systemout. println
("Result set concurrency: ResultSet.OONOUR UPDATABLE');
br eak;

17-54 JDBC Developer’s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

case ResultSet. CONOUR READ A\LY:
Systemout. println
("Result set concurrency: ResultSet.CONOUR READ ONLY');
br eak;
def aul t:
Systemout.println ("Invalid type");
br eak;

}

/1 Verify the fetch size
Systemout. println ("fetch size: "+rset.getFetchSize ());

Systemout. printin ();
}

/ * %
* Generic cl eanup.
*/
public static void cleanup (Gonnection conn) throws SQException

{
Satenent stnt = conn.createStatenment ();
st . execute ("UPDATE BWP SET SAL = SAL - 500");
stn.execute ("COW T");
stn.close ();

Refetching Rows in a Result Set—ResultSet6.java

This sample shows how to explicitly refetch data from the database to update the
result set. This functionality is available in scroll-sensitive and
scroll-insensitive/updatable result sets.

For more information, see "Refetching Rows" on page 11-26.

/* Asinple sanple to denonstrate Result Set.refreshRow().
*/
inport java.sql.*;

public class Resul t Set6

{
public static void main(Sring[] args) throws SQException

{
/! Load the O acle JDBC dri ver

Sample Applications 17-55



JDBC 2.0 Result Set Enhancement Samples

Dri ver Manager . regi sterDri ver (new oracl e. jdoc. driver. Gacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e: oci 8: @, "scott", "tiger");

/] Geate a S atenent
Satenent stnt = conn.createStatenent (ResultSet. TYPE SCRCLL | NSENS Tl VE,
Resul t Set . GONOLR_UPDATABLE) ;

/] Set the statenent fetch size to 1
stn. set FetchSi ze (1);

/1 Query the EMP tabl e
Resul t Set rset = stni.executeQuery ("select BEMPNQ ENAME, SAL from EWP');

/] List the result set’s type, concurrency type, ..., etc
showProperty (rset);

/] List the query result
Systemout. println ("List ENO ENAME and SAL fromthe EMP table: ");
while (rset.next())
{
Systemout. println (rset.getlnt(1)+" "+rset.getString(2)+" "+
rset.getint(3));

}
Systemout. printin ();

/1 Do sone changes outside the result set
doSoneChanges (conn);

/1 P ace the cursor right before the first row
rset.beforeFirst ();

/1 List the enpl oyee infornati on again
Systemout. println ("List ENQ ENAME and SAL again: ");
int salary = 0;
vhile (rset.next())
{
/] save the original salary
salary = rset.getlnt (3);

/1 refresh the row
rset.refreshRow ();

17-56 JDBC Developer’s Guide and Reference



JDBC 2.0 Result Set Enhancement Samples

/] V& expect to see the changes nade in "doSoneChanges()"
Systemout.println (rset.getlnt(1)+" "+rset.getSring(2)+" "+
sal ary+" -> "+4rset.getInt(3));

}

/1 dose the Rseul t Set
rset. close();

// A ose the Statenent
stn. close();

/1 Q4 eanup
cl eanup( conn);

// A ose the connection
conn. cl ose();

}

/ * %
* Update the BWP tabl e.
*/

public static void doSomeChanges (Connection conn)
throws SQException

{
Systemout. println ("Udate the enpl oyee salary outside the result set\n");
Satenent otherSnt = conn.createStatenent ();
other X nt.execute ("update enp set sal = sal + 500");
ot her X nt.execute ("commt");
othernt.close ();
}
/**

* Show the result set properties like type, concurrency type, fetch
* size,..., etc.
*/
public static void showProperty (ResultSet rset) throws SQException
{
/1 Verify the result set type
switch (rset. get Type())
{
case ResultSet. TYPE FCRMRD ALY
Systemout.println ("Result set type: TYPE FCRMRD ONLY');
br eak;

Sample Applications 17-57



JDBC 2.0 Result Set Enhancement Samples

case ResultSet. TYPE SCROLL | NSENS Tl VE
Systemout.println ("Result set type: TYPE SCROL | NSENS Tl VE');
br eak;

case ResultSet. TYPE SCROLL SENSITI VE
Systemout.println ("Result set type: TYPE SCROL _SENSITIVE');
br eak;

def aul t:
Systemout.println ("Invalid type");
br eak;

}

/1 Verify the result set concurrency
switch (rset. get Goncurrency())
{
case Resul t Set. CONCLR _UPDATABLE:
Systemout. println
("Result set concurrency: ResultSet.OONOUR UPDATABLE');
br eak;
case Resul t Set. CONCLR READ ON\LY:
Systemout. println
("Result set concurrency: ResultSet.CONOUR READ ONLY');
br eak;
def aul t:
Systemout.println ("Invalid type");
br eak;

}

/1 Verify the fetch size
Systemout. println ("fetch size: "+rset.getFetchSize ());

Systemout. printin ();
}

/**
* Generic cl eanup.
*/
public static void cleanup (Gonnection conn) throws SQException
{
Satenment stnt = conn.createStatenment ();
st . execute ("UPDATE BWP SET SAL = SAL - 500");
stn.execute ("COW T");
stnm.close ();

17-58 JDBC Developer’s Guide and Reference



Performance Enhancement Samples

Performance Enhancement Samples

This section provides sample applications for performance enhancement features
such as update batching:

« Standard Update Batching—BatchUpdates.java

« Oracle Update Batching with Implicit Execution—SetExecuteBatch.java

« Oracle Update Batching with Explicit Execution—SendBatch.java

« Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java
« Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java

= Oracle Column Type Definitions—DefineColumnType.java

The sample applications for Oracle-specific performance enhancements are located
in the following directory on the product CD:

[ G acl e Hone] / j dbe/ deno/ sanpl es/ oci 8/ basi c- sanpl es

The standard update batching sample is located in the j dbc20- sanpl es directory.

Standard Update Batching—BatchUpdates.java

This sample shows how to use standard update batching as specified by JDBC 2.0.
For more information, see "Standard Update Batching" on page 12-11.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.
/**

* Asinple sanple to demonstrate standard JDBC 2. 0 updat e bat chi ng.

*/
inport java.sql.*;

public class Bat chlpdat es

{

public static void main(String[] args)

{
Connecti on conn = nul | ;
S at enent stm = null;
PreparedStatenent  pstnt = null;
Resul t Set rset = null;
int i =0;

Sample Applications 17-59



Performance Enhancement Samples

try

{

Dri ver Manager . regi ster Dri ver (new oracl e. j doc. dri ver. Oacl eDriver());

conn = Driver Manager . get Connect i on(
"jdbc:oracl e: oci 8: @, "scott", "tiger");

stm = conn. createStat enent ();
try { stm.execute(

"create table nytest_tabl e (col 1 nunber, col 2 varchar2(20))");
} catch (Exception el) {}

/1

/1 Insert in a batch.

/1

pstmt = conn. prepareStatenent ("insert into nytest_table values (?, ?)");

pstn.setint(1, 1);
pstnm.setSring(2, "row1");
pst nt . addBat ch() ;

pstn.setint(1, 2);
pstnm.setSring(2, "row?2");
pst m . addBat ch() ;

pst i . execut eBat ch() ;

/1

/] Select and print results.

/1

rset = stnt.executeQuery("select * fromnytest table");
vwhile (rset.next())

{
Systemout. println(rset.getInt(1) +", " + rset.getSring(2));
}
}
catch (Exception e)
{
e.printSackTrace();
}
finally
{

if (stm !'=null)

{
try { stnt.execute("drop tabl e nytest_table"); } catch (Exception e) {}

17-60 JDBC Developer’s Guide and Reference



Performance Enhancement Samples

try { stnmi.close(); } catch (Exception e) {}

?f (pstm 1= null)

{ try { pstm.close(); } catch (Exception ) {}

?f (conn 1= null)

i try { conn.close(); } catch (Exception e) {}
}

}
}

Oracle Update Batching with Implicit Execution—SetExecuteBatch.java

This sample shows how to use Oracle update batching, with the batch being
executed implicitly when the batch value (the number of statements to collect before
sending them to the database) is reached.

For information about Oracle update batching, see "Oracle Update Batching" on
page 12-4.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.

/
Thi s sanpl e shows how to use the bat chi ng extensions.

In this exanple, we set the defaul tBatch val ue fromthe

connection object. This affects all statenents created from

thi s connection.

It is possible to set the batch val ue individually for each

statenment. The APl to use on the statenent object is set ExecuteBatch().

* * * * * * *

*/

/1 You need to inport the java.sql package to use JOBC
inport java.sql.*;

/1 You need to inport oracle.jdbc.driver.* in order to use the
/1 APl extensions.
inport oracle.jdbc.driver.*;

cl ass Set Execut eBat ch
{

Sample Applications 17-61



Performance Enhancement Samples

public static void main (String args [])
throws SQException
{
/1 Load the QO acle JDBC dri ver
Dri ver Manager . regi sterDri ver (new oracl e. jdoc. driver. Gacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/] Default batch value set to 2 for all prepared statenents bel ongi ng
/1 to this connection.
(( QO acl eGonnect i on) conn) . set Def aul t Execut eBat ch (2);

PreparedS atenent ps =
conn. prepareStatenent ("insert into dept values (?, 2, 2)");

ps.setint (1, 12);
ps.setSring (2, "Qacle");
ps.setSring (3, "WA");

/1 No data is sent to the database by this call to executelpdate
Systemout. println ("Nunber of rows updated so far: "
+ ps. executelpdate ());

ps.setint (1, 11);
ps.setSring (2, "Applications");
ps.setSring (3, "Indonesia");

/1 The nunber of batch calls to executelpdate is now equal to the
/1 batch value of 2. The data is now sent to the database and

/1 both rows are inserted in a single roundtrip.

int rows = ps. executelpbdate ();

Systemout. println ("Nunber of rows updated now " + rows);

ps.close ();
conn. cl ose();

17-62 JDBC Developer’s Guide and Reference



Performance Enhancement Samples

Oracle Update Batching with Explicit Execution—SendBatch.java

This sample shows how to use Oracle update batching, with the batch being
executed explicitly with a sendBat ch() call.

For information about Oracle update batching, see "Oracle Update Batching" on
page 12-4.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.

/*

* Thi s sanpl e shows how to use the batchi ng extensions.

* |n this exanpl e, we denonstrate the use of the "sendBatch" AP .
* This allows the user to actually execute a set of batched

* execut e conmands.

*/

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

/1 You need to inport oracle.jdbc.driver.* in order to use the
/1 APl extensions.
inport oracle.jdbc.driver.*;

cl ass SendBat ch
{

public static void main (String args [])
throws SQException

{
/! Load the O acle JDBC dri ver

Driver Manager . regi sterDri ver(new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

Satenment stnt = conn.createStatenment ();
/] Default batch value set to 50 for all prepared statenents bel ongi ng
/1 to this connection.

(( QO acl eGonnect i on) conn) . set Def aul t Execut eBat ch (50);

PreparedS atenent ps =
conn. prepareSatenent ("insert into dept values (?, 2, 2)");

Sample Applications 17-63



Performance Enhancement Samples

ps.setint (1, 32);
ps.setSring (2, "Qacle");
ps.setSring (3, "WSA");

/1 this execute does not actually happen at this point
Systemout. println (ps. executelpdate ());

ps.setint (1, 33);
ps.setSring (2, "Applications");
ps.setSring (3, "Indonesia");

/1 this execute does not actually happen at this point
int rows = ps. executelpdate ();

Systemout. println ("Nunber of rows updated before calling sendBatch: "
+ rows);

/1 Execution of both previously batched executes wll happen
/] at this point. The nunber of rows updated will be

/1 returned by sendBat ch.

rows = ((Q acl ePrepar edSt at enent ) ps) . sendBat ch () ;

Systemout. println ("Nunber of rows updated by cal ling sendBatch: "
+ rows);

ps.close ();
conn. cl ose ();

Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java

This section demonstrates how to use Oracle row prefetching-functionality, setting
the row prefetch value in the connection object and thereby affecting every
statement produced from that connection.

Note that Oracle row prefetching is fundamentally similar to JDBC 2.0 fetch size
functionality.

For information about Oracle row prefetching, see "Oracle Row Prefetching" on
page 12-20. For information about JDBC 2.0 fetch size and some comparison with
row prefetching, see "Fetch Size" on page 11-24.

17-64 JDBC Developer’s Guide and Reference



Performance Enhancement Samples

* This sanpl e shows how to use the Oracle performance extensi ons
* for rowprefetching. This allows the driver to fetch miltiple
* rows in one round-trip, saving unecessary round-trips to the database.

* This exanpl e shows how to set the rowPrefetch for the connection object,
* which will be used for all statenents created fromthis connection.

* Pl ease see RowPrefetch_statenent.java for exanpl es of howto set

* the rowPrefetch for statenents individually.

*/

/1 You need to inport the java.sql package to use JOBC

inport java.sql.*;
/1 You need to inport oacle.jdbc.driver in order to use the oracl e extensions.
inport oracle.jdbc.driver.*;
cl ass RowPref et ch_connect i on
{
public static void main (String args [])
throws SQ.Exception
{
/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());
/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =
Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");
/1 set the RowPrefetch value fromthe Connection obj ect
/1 This sets the rowPrefetch for *all* statenents bel ongi ng
/1 to this connection.
/1 The rowPrefetch val ue can be overriden for specific statements by
/1 using the setRowPrefetch APl on the statenent object. Please | ook
/] at RowPrefetch statenent.java for an exanpl e.
/! P ease note that any statenents created *before* the connection
/] rowPrefetch was set, will use the default rowPrefetch.

(( QO acl eCGonnect i on) conn) . set Def aul t RowPr ef et ch (30) ;

Satenment stnt = conn.createStatenment ();

Sample Applications 17-65



Performance Enhancement Samples

/1 Check to verify statenent rowPrefetch value is 30.
int rowprefetch = ((OacleSatenent)stnt). get RowPrefetch ();
Systemout. println ("The RowPrefetch for the statenent is:

+ row prefetch + "\n");

Resul t Set rset = stni.executeQuery ("sel ect enane fromenp");

whi | e(rset. next ())

{
Systemout.println (rset.getSring (1));

}

rset.close ();
stnm.close ();
conn. cl ose ();

Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java

This section demonstrates how to use Oracle row prefetching functionality, setting
the row prefetch value in a particular statement object to override the value in the
connection object producing the statement.

Note that Oracle row prefetching is fundamentally similar to JDBC 2.0 fetch size
functionality.

For information about Oracle row prefetching, see "Oracle Row Prefetching" on
page 12-20. For information about JDBC 2.0 fetch size and some comparison with
row prefetching, see "Fetch Size" on page 11-24.

/
Thi s sanpl e shows how to use the Oracl e perfornmance extensi ons

for rowprefetching. This allows the driver to fetch miltiple

rows in one round-trip, saving unecessary round-trips to the database.
Thi s exanpl e shows how to set the rowPrefetch for individual

stat enent s.

* * * * * *

*/
/1 You need to inport the java.sqgl package to use JOBC
inport java.sql.*;

/1 You need to inport oracle.jdbc.driver in order to use the

/1 Gacle extensions
inport oracle.jdbc.driver.*;

17-66 JDBC Developer’'s Guide and Reference



Performance Enhancement Samples

cl ass RowPref et ch_st at enent

{

public static void main (String args [])

{

throws SQException

/1 Load the G acle JDBC dri ver
Driver Manager . regi sterDri ver (new oracl e. jdbc. driver. Oacl eDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Qonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

/1 get the val ue of the default row prefetch fromthe connection obj ect

int default_row prefetch =
((Cracl eConnect i on) conn) . get Def aul t RowPrefetch ();
Systemout. println ("The Default RowPrefetch for the connectionis: "
+ defaul t _row prefetch);
Satenent stnt = conn.createStatenment ();

/1 set the RowPrefetch value fromthe statenent object

/] This sets the rowPrefetch only for this particular statenent.
/1 Al other statenents will use the default RowPrefetch fromthe
/1 connecti on.

((Cacletatenent)stnt). set RowPrefet ch (30);

/] Check to verify statenent rowPrefetch value is 30.

int rowprefetch = ((QacleSatenent)stnt). get RowPrefetch ();

Systemout. println ("The RowPrefetch for the statenent is: "
+ row prefetch + "\n");

Resul t Set rset = stni.executeQuery ("sel ect enane fromenp");

whi | e(rset. next ())
{

}

rset.close ();
stn.close ();
stnm.close ();

Systemout.println (rset.getSring (1));

Sample Applications 17-67



Performance Enhancement Samples

Oracle Column Type Definitions—DefineColumnType.java

This sample shows how to use Oracle extensions to predefine result set column
types to reduce round trips to the database for a query.

For information about column type definitions, see "Defining Column Types" on
page 12-23.

/*

* This sanpl e shows how to use the "define" extensions.

* The define extensions all ow the user to specify the types
* under which to retrieve colum data in a query.

* This saves round-trips to the database (otherw se necessary to
* gather information regarding the types in the select-list) and
* conversions fromnative types to the types under which the user
* wll get the data.

* This can al so be used to avoid streamng of |ong col ums, by defining
* themas CHAR or VARCHAR types.
*/

/1 You need to inport the java.sql package to use JOBC
inport java.sql.*;

/1 You need to inport oracle.jdbc.driver.* in order to use the
/1 APl extensions.
inport oracle.jdbc.driver.*;

cl ass Def i neGol unmType
{
public static void main (String args [])
throws SQException
{
/! Load the O acle JDBC dri ver
Driver Manager. regi sterDriver( new oracl e.jdbc. driver.QacleDxiver());

/1 Gonnect to the dat abase
/1 You can put a database nane after the @sign in the connection URL.
Gonnecti on conn =

Dri ver Manager . get Gonnecti on ("j dbc: oracl e:oci 8: @, "scott", "tiger");

Satenment stnt = conn.createStatenment ();

/1 CGall DefineGol umType to specify that the colum wll be
/] retrieved as a Sring to avoid conversion fromNJUMER to String

17-68 JDBC Developer’s Guide and Reference



Performance Enhancement Samples

/1
/1
/1
/1
/1
/1
/1

on the client side. This also avoids a round-trip to the
dat abase to get the col unm type.

There are 2 defineCol umType APl. & use the one with 3 argurents.
The 3rd argunent allows us to specify the nmaxi numlength

of the String. The values obtained for this colum wll

not exceed this |ength.

((Caclexatenent)stnt). defi neCol umType (1, Types. VARCHAR 7);

Resul t Set rset = stni.executeQuery ("sel ect enpno fromenp");
vhile (rset.next ())

{

}
/1

Systemout.println (rset.getring (1));

d ose the resul t Set

rset. close();

/1

d ose the statenent

stnm.close ();

11

d ose the connection

conn. cl ose();

Sample Applications 17-69



Samples for Connection Pooling and Distributed Transactions

Samples for Connection Pooling and Distributed Transactions

This section includes samples of JIDBC 2.0 extension features for data sources,
connection pooling, connection caching, and distributed transactions (XA), as
follows:

« Data Source without INDI—DataSource.java

« Data Source with INDI—DataSourceJNDI.java

« Pooled Connection—PooledConnection.java

«  Oracle Connection Cache (dynamic)—CCachel.java

« Oracle Connection Cache ("fixed with no wait")—CCache2.java
« XA with Suspend and Resume—XAZ2.java

« XA with Two-Phase Commit Operation—XA4.java

Data Source without JNDI—DataSource java

This example shows how to use JDBC 2.0 data sources without JNDI. For general
information about data sources, including how to use them with or without JNDI,
see "Data Sources" on page 13-2.

/* A S nple DataSource sanpl e without using JNDI .
*/

/1 You need to inport the java.sgl package to use JDBC
inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;

i nport oracl e. j dbc. pool . O acl eDat aSour ce;

public class DataSource
{
public static void main (String args [])
throws SQException
{
/1 Geate a Oacl eDataSource i nstance explicitly
Q acl eDat aSour ce ods = new O acl eDat aSour ce() ;

/1 Set the user nane, password, driver type and network protocol
ods. set User ("scott");

ods. set Password("tiger");

ods. set Dri ver Type("oci 8");

17-70 JDBC Developer’'s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

ods. set Net wor kPr ot ocol ("i pc");

/1 Retrieve a connection

Gonnecti on conn = ods. get Gnnecti on();
get User Nane( conn) ;

/1 dose the connection

conn. cl ose();

conn = nul | ;

}

static voi d get User Nane( Gonnecti on conn)
throws SQException

{

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

/1 Select the ENAME colum fromthe BWP table
Resul t Set rset = stni.executeQuery ("sel ect USER fromdual ");

/] lterate through the result and print the enpl oyee nanes
vhile (rset.next ())
Systemout.println ("User nane is " + rset.getString (1));

// QA ose the Rseul t Set
rset. close();
rset = null;

// QA ose the Statenent
stn. close();
stm = null;

Data Source with INDI—DataSourceJNDI.java

This example shows how to use JDBC 2.0 data sources with JNDI. For general
information about data sources, including how to use them with or without JNDI,
see "Data Sources" on page 13-2.

This class includes do_bi nd() and do_| ookup() methods for INDI functionality,
as well as a get User Name() method.

/* A Sinple DataSource sanple with JND .
* This is tested using File Systembased reference

Sample Applications 17-71



Samples for Connection Pooling and Distributed Transactions

* inplenmentation of JNO SPl driver fromJavaSoft.

* You need to downl oad fscontext1l 2beta2.zip from

* JavaSoft site.

* |Include providerutil.jar & fscontext.jar extracted
* fromthe above ZIP in the cl asspat h.

* Qeate a directory /tnp/JND/jdbc

*/

/1 You need to inport the java.sql package to use JOBC
inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;

inport oracl e. j dbc. pool . O acl eDat aSour ce;

inport javax.nam ng. *;

inport javax.nam ng. spi.*;

inport java. util.Hashtabl e;

public class DataSourceJND
{
public static void main (String args [])
throws SQException, Nam ngBException
{
/1 Initialize the Context
Qontext ctx = null;
try {
Hasht abl e env = new Hasht abl e (5);
env. put (Gontext.| N Tl AL_GONTEXT_FACTCRY,
"comsun. j ndi . f scont ext . Ref FSCont ext Fact ory") ;
env.put (Gontext. PROADER LR, "file:/tnp/IND");
ctx = new I nitial Gontext(env);
} catch (NaningException ne)
{

ne. pri nt StackTrace();

}

do_bi nd(ctx, "jdbc/sanpl edb");
do_| ookup(ctx, "jdbc/sanpl edb");

}

static void do_bind (Gntext ctx, String In)
throws SQException, Nam ngBException

{
/Il Greate a O acl ebataSource instance explicitly
Q acl eDat aSour ce ods = new O acl eDat aSour ce() ;

17-72 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

/1 Set the user nane, password, driver type and network protocol
ods. set User ("scott");

ods. set Password("tiger");

ods. set Dri ver Type("oci 8");

ods. set Net wor kPr ot ocol ("i pc");

/l Bndit
Systemout.println ("Doing a bind with the logical nane : " + In);
ctx.bind (In,ods);

}

static void do_| ookup (Gontext ctx, Sring In)
throws SQException, Nam ngBException
{

Systemout. println ("Doing a |l ookup with the logical nane : " +1n);
Q acl eDat aSour ce ods = (O acl eDat aSource) ctx. | ookup (I n);

/] Retrieve a connection

Gonnecti on conn = ods. get Gnnecti on();
get User Nane( conn) ;

/1 A ose the connection

conn. cl ose();

conn = nul | ;

}

static voi d get User Nane( Gonnecti on conn)
throws SQException

{

/I Geate a S atenent
Satenment stnt = conn.createStatenment ();

/1 Select the ENAME columm fromthe BWP table
Resul t Set rset = stni.executeQuery ("sel ect USER fromdual ");

/] lterate through the result and print the enpl oyee nanes
vhile (rset.next ())

Systemout.println ("User nane is " + rset.getString (1));
/1 dose the Rseul t Set
rset. close();
rset = null;

// A ose the Statenent

Sample Applications 17-73



Samples for Connection Pooling and Distributed Transactions

stn. close();
stm = null;

}
}

Pooled Connection—PooledConnection.java

This is a simple example of how to use JDBC 2.0 pooled connection functionality.
For general information about connection pooling, see "Connection Pooling" on
page 13-11.

/* A sinple Pool ed Gonnection Sanpl e
*/

inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;
inport oracl e.jdbc. pool . *;

cl ass Pool edConnect i onl

{
public static void main (String args [])
throws SQException

{

/1l Create a O acl ennecti onPool Dat aSour ce i nst ance
Q acl eGonnect i onPool Dat aSour ce ocpds =
new O acl ennect i onPool Dat aSour ce() ;

/] Set connection paraneters

ocpds. set URL("j dbc: oracl e: oci 8: @) ;
ocpds. set Wser ("scott");

ocpds. set Password("ti ger");

/1 Create a pool ed connection
Pool edGonnecti on pc = ocpds. get Pool edConnecti on();

/1 Get a Logical connection
Gonnecti on conn = pc. get Gonnection();

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

/] Select the ENAME columm fromthe BWP table

17-74 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

Resul t Set rset = stni.executeQuery ("sel ect ENAME from EMP');

/1 lterate through the result and print the enpl oyee nanes
vhile (rset.next ())
Systemout.println (rset.getring (1));

// QA ose the Rseul t Set
rset. close();
rset = null;

// QA ose the Statenent
stn. close();
stm = null;

/1 Qdose the | ogical connection
conn. cl ose();
conn = nul | ;

/1 A ose the pool ed connection
pc. cl ose();
pc = null;

Oracle Connection Cache (dynamic)}—CCachel.java

This is the first of two examples of connection caching using the Oracle sample
implementation available with class Or acl eConnect i onCachel npl .

This example uses the dynamic scheme for situations where the maximum number
of pooled connections has already been reached—new pooled connection instances
are created as needed, but each one is automatically closed and freed as soon as the
JDBC application is done using the logical connection instance that the pooled
connection instance provided.

For information about connection caching in general and Oracle’s sample
implementation in particular, see "Connection Caching" on page 13-15.

/* JDBC 2.0 Spec doesn't nandate that JDBC vendors inpl enent a

* (onnection Cache. However, we inplemented a basic one with two

* schemes as an exanpl e.

* A Sanple deno to illustrate DYNAM C SCHEME of O acl eCGonnect i onCachel npl .
* Dynamic Schene : This is the default scheme. New connections coul d be
* created beyond the Max |imt upon request but closed and freed when the

Sample Applications 17-75



Samples for Connection Pooling and Distributed Transactions

* |ogical connections are closed. When all the connections are active and
* busy, requests for new connections wllend up creating new physical

* connections. But these physical connections are closed when the

* correspondi ng | ogi cal connections are closed. A typical grow and shrink
* schene.

*/

inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;
inport oracl e.jdbc. pool . *;

cl ass QCachel
{
public static void main (String args [])
throws SQ.Exception
{
Q acl eGonnect i onCachel npl ods = new O acl eConnect i onCachel npl () ;
ods. set URL("j dbc: oracl e: oci 8: @) ;
ods. set User ("scott");
ods. set Password("tiger");

/] Set the Max Limt
ods. setMaxLimt (3);

Qonnection connl = nul | ;
connl = ods. get Gonnection();
if (connl != null)
Systemout. println("Gonnection 1 " + " Succeeded!");
el se
Systemout. println("Gonnection 1 " + " Failed !'!!");

Qonnection conn2 = nul | ;
conn2 = ods. get Gonnection();
if (conn2 !'=null)
Systemout. println("Gonnection 2 " + " Succeeded!");
el se
Systemout. println("Gonnection 2 " + " Failed !'!!");

Qonnection conn3 = nul | ;
conn3 = ods. get Gonnection();
if (conn3 !=null)
Systemout. println("Gonnection 3 " + " Succeeded!");
el se
Systemout. println("Gonnection 3" + " Failed !'!!");

17-76 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

Qonnection connd = nul |l ;
conn4d = ods. get Gonnection();
if (connd !'=null)
Systemout. println("Gonnection 4 " + " Succeeded!");
el se
Systemout. println("Gonnection 4 " + " Failed !'!!");

Qonnection conn5 = nul | ;
conn5 = ods. get Gonnection();
if (conn5 !'=null)
Systemout. println("Gonnection 5" + " Succeeded!");
el se
Systemout. println("Gonnection 5" + " Failed !'!!");

+

Systemout. println("Active size : "
Systemout. println("Cache Size is "

ods. get Acti veSi ze());
ods. get CacheS ze());

+

/1l Aose 3 logical Gonnections
connl. cl ose();
conn2. cl ose();
conn3. cl ose();

+

Systemout. println("Active size : "
Systemout. println("Cache Size is "

ods. get Acti veSi ze());
ods. get CacheS ze());

+

/1 close the Data Source
ods. cl ose() ;

+

Systemout. println("Active size : "
Systemout. println("Cache Size is "

ods. get Acti veSi ze());
ods. get CacheS ze());

+

Oracle Connection Cache (“fixed with no wait"}—CCache2.java

This is the second of two examples of connection caching using the Oracle sample
implementation available with class Or acl eConnect i onCachel npl .

This example uses the "fixed with no wait" scheme for situations where the
maximum number of pooled connections has already been reached—a nul | is
returned when a connection is requested.

Sample Applications 17-77



Samples for Connection Pooling and Distributed Transactions

For information about connection caching in general and Oracle’s sample
implementation in particular, see "Connection Caching" on page 13-15.

/* JDBC 2.0 Spec doesn't nandate that JDBC vendors inpl enent a

* (onnection Cache. However, we inplemented a basic one with 2

* schemes as an Exanpl e.

* A Sanple deno to illustrate FI XED RETURN NULL SCHEME of

* O acl eGnnect i onCachel npl .

* Fxed wth NoWiit : A no instance there will be nore active

* connections than the Maxi mumlimt. Request for new connections
* beyond the max limt wll return null.

*/

/1 You need to inport the java.sql package to use JOBC
inport java.sql.*;

inport javax.sql.*;

inport oracle.jdbc.driver.*;

inport oracl e.jdbc. pool . *;

public class QCache2 {

public static void main (String args [])
throws SQException
{

I/l Geate a O acl ennecti onPool Dat aSource as an factory
/1 of Pool ed®nnections for the Cache to create.
Q acl eGonnect i onPool Dat aSour ce ocpds =
new O acl ennect i onPool Dat aSour ce() ;
ocpds. set URL("j dbc: oracl e: oci 8: @) ;
ocpds. set Wser ("scott");
ocpds. set Password("ti ger");

/1 Associate it with the Cache
Q acl eGonnect i onCachel npl ods = new O acl eConnect i onCachel npl (ocpds) ;

/] Set the Max Limt
ods. setMaxLimt (3);

/1 Set the Schene
ods. set CacheSchene (O acl eConnect i onCachel npl . Fl XED RETURN NULL_SCHEME) ;

CGonnection conn = nul | ;

for (int i=0; i <5, +H )

{

17-78 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

conn = ods. get Gonnection();
if (conn!=null)

Systemout. println("Gonnection " + i + " Succeeded!");

el se

Systemout. println("Gonnection " +i + " Failed !!!");

}

Systemout. println("Active size : "
Systemout. println("Cache Size is "

/! close the Data Source
ods. cl ose() ;

Systemout. println("Active size : "
Systemout. println("Cache Size is "

XA with Suspend and Resume—XA2 java

+ ods. get Acti veSi ze());
+ ods. get CacheS ze());

+ ods. get Acti veSi ze());
+ ods. get CacheS ze());

This sample shows how to suspend and resume a transaction. It uses standard XA
resource functionality to suspend and resume the transaction, but includes
comments about how to use the Oracle extension suspend() andresune()

methods as an alternative.

This class includes a cr eat eXi d() method to form transaction IDs for purposes of

this example.

For general information about distributed transactions and XA functionality, see

Chapter 14, "Distributed Transactions".
/*

A sinple XA demo with suspend and resune. (pens 2 gl obal
transactions each of one branch. Does sone DM. on the first one
and suspends it and does sone DM. on the 2nd one and resunes the
first one and coomits. Basically, toillustrate interleaving

of global transactions.

Need a java enabled 8.1.6 database to run this deno.

*/

/1 You need to inport the java.sql package to use JOBC

inport java.sql.*;
inport javax.sql.*;

Sample Applications 17-79



Samples for Connection Pooling and Distributed Transactions

i nport
i nport
i nport
i nport
i nport
i nport

oracl e.jdbc. driver. *;

oracl e. j dbc. pool . *;

oracl e. j dbc. xa. O acl eXi d;

oracl e. j dbc. xa. O acl eXAExcepti on;
oracl e.jdbc.xa. client.*;
javax.transaction. xa. *;

cl ass XA2

{

public static void main (String args [])

{

throws SQException

try

{

Dri ver Manager . regi st er Dri ver (new Q acl eDxi ver ());
/1 You can put a database nane after the @sign in the connection UR.
Gonnect i on conn =

Dri ver Manager . get Connect i on ("jdbc: oracl e:oci 8: @, "scott", "tiger");

/]l Prepare a statenent to create the table
Statenent stnt = conn.createStatenent ();

try

/]l Drop the test table
stn.execute ("drop table ny table");

}
catch (SQException e)
{
/] lgnore an error here
}
try
{
/I Greate a test table
stn.execute ("create table ny table (coll int)");
}
catch (SQException e)
{
/] lgnore an error here too
}
try

17-80 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

{
/] Drop the test table

stni.execute ("drop tabl e ny_tab");
}
catch (SQException e)
{

/] lgnore an error here

}

try
{

/I Greate a test table
stni.execute ("create table ny tab (coll int)");

}
catch (SQException e)
{
/] lgnore an error here too
}

/1 Oreate a XADat aSour ce i nstance

QO acl eXADat aSour ce oxds = new O acl eXADat aSour ce() ;
oxds. set URL("j dbc: or acl e: oci 8: @) ;

oxds. set User ("scott");

oxds. set Password("ti ger");

/1 get a XA connection

XAonnecti on pc = oxds. get XAGonnecti on();
/1l Get a logical connection

Gonnecti on connl = pc. get Connection();

/1 Get XA resource handl e
XAResour ce oxar = pc. get XAResour ce();
Xid xidl = createX d(111, 111);

/] Start a transaction branch
oxar.start (xidl, XAResource. TMNOFLAGS);

/1 Oeate a Satenent
Statenent stnil = connl.createStatenent ();

/1 Do sone DML
st 1. executeUpdate ("insert into ny_table values (2727)");

/1 Suspend the first global transaction
/1 ((Q acl eXAResour ce) oxar ) . suspend (xi dl); or

Sample Applications 17-81



Samples for Connection Pooling and Distributed Transactions

oxar.end (xidl, XAResource. TMSUSPEND);

Xid xid2 = createX d(222, 222) ;

oxar.start (xid2, XAResource. TMNOFLAGS);

Statenent stnt2 = connl.createStatenent ();

st 2. executeUpdate ("insert into ny_tab values (7272)");
oxar.commt (xid2, true);

st 2. cl ose();

stm2 = null;

/] Aose the Statenent
st 1. cl ose();
stml = null;

/1 Resune the first global transaction
/1 ((Qacl eXAResource) oxar) . resune (xidl); or
oxar.start (xidl, XAResource. TMRESUME);

/] End the branch
oxar . end(xi d1, XAResour ce. TMBUXCESS) ;

// Do a 1 phase conmt
oxar.commt (xidl, true);

/] A ose the connection
connl. cl ose();
connl = nul | ;

/] close the XA connection
pc. cl ose();
pc = null;

ResultSet rset = stm.executeQuery ("select coll fromny table");
whil e (rset.next())
Systemout.printin("Coll is " + rset.getlnt(1));

rset.close();
rset = null;

rset = stm.executeQuery ("select coll fromny_ tab");
whil e (rset.next())
Systemout.printIn("Col1 is " + rset.getSring(l));

rset.close();
rset = null;

17-82 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

stn.cl ose();
stm = null;

conn. cl ose();
conn = nul | ;

} catch (SQException sqge)

sqe. print S ackTrace();
} catch (XAExcepti on xae)

if (xae instanceof QO acl eXAExcepti on)
{
Systemout.println("XA error is " +
(( QO acl eXAExcepti on) xae) . get XAEror());
Systemout.println("SQ error is " +
(( QO acl eXAException)xae).getQacl eEror());
}
xae. print S ackTrace();
}
}

static Xid createXid(int gd, int bd)
throws XAException

{
byte[] gid = newbyte[1]; gid[0]= (byte) gd;
byte[] bid = new byte[1]; bid[0]= (byte) bd;
byte[] gtrid = new byte[ 64];
byte[] bqual = new byte[64];
Systemarraycopy (gid, 0, gtrid, 0, 1);
Systemarraycopy (bid, 0, bqual, 0, 1);
Xid xid = new Qacl eXi d(0x1234, gtrid, bqual);
return xid;

Sample Applications 17-83



Samples for Connection Pooling and Distributed Transactions

XA with Two-Phase Commit Operation—XA4.java

This example shows basic two-phase COMM T functionality for a distributed
transaction.

This class includes a cr eat eXi d() method to form transaction IDs for purposes of
this example. It also includes doSormeWor k1() and doSoneWor k2() methods to
perform SQL operations.

For general information about distributed transactions and XA functionality, see
Chapter 14, "Distributed Transactions".

/*
A sinple 2 phase XA demo. Both the branches talk to different RVB
Need 2 java enabl ed 8.1.6 databases to run this deno.
-> start-1
-> start-2
-> Do some DM on 1
-> Do some DML on 2
->end 1
->end 2
-> prepare-1
-> prepare-2
-> comit-1
-> comit-2
F ease change the URL2 before running this.
*/
/1 You need to inport the java.sql package to use JOBC
inport java.sql.*;
inport javax.sql.*;
inport oracle.jdbc.driver.*;
inport oracl e.jdbc. pool . *;
inport oracle.jdbc. xa. Oacl eX d;
inport oracl e.jdbc. xa. O acl eXAExcepti on;
inport oracle.jdbc.xa.client.?*;
inport javax.transaction. xa. *;

cl ass XAd
{
public static void main (String args [])
throws SQException
{
try
{
String URL1 = "jdbc: oracl e: oci 8: @;

17-84 JDBC Developer’'s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

String URL2 = "jdbc: oracl e:thin: @
(descri pti on=(addr ess=( host =dl sun991) ( pr ot ocol =t cp)
(port=5521)) (connect _dat a=(si d=rdbns2)))";

Dri ver Manager . regi st er Dri ver (new O acl eDri ver());

/1 You can put a database name after the @sign in the connection URL.
Gonnecti on conna =
Dri ver Manager . get Connection (URL1, "scott", "tiger");

/] Prepare a statenent to create the table
Statenent stnta = conna.createStatenent ();

CGonnect i on connb =
Dri ver Manager . get Connection (UR2, "scott", "tiger");

/] Prepare a statenent to create the table
Statenent stntb = connb.createStatenent ();

try

// Drop the test table

stnma.execute ("drop table ny_table");
}
catch (SQLException €)

{

/] lgnore an error here

}

try
{

/] Greate a test table
stnma.execute ("create table ny_table (collint)");

}
catch (SQException e)

{

/] lgnore an error here too

}

try
{
/]l Drop the test table

stnmb. execute ("drop table ny_tab");

}
catch (SQException e)

Sample Applications 17-85



Samples for Connection Pooling and Distributed Transactions

{

/1 Ignore an error here

}

try
{

/I Greate a test table
stnmb. execute ("create table ny_tab (col 1 char(30))");

}
catch (SQException e)
{
/1 lgnore an error here too
}

/1 Oreate a XADat aSour ce i nstance

Q acl eXADat aSour ce oxds1l = new O acl eXADat aSour ce() ;
oxds1l. set UR("jdbc: oracl e: oci 8: @) ;

oxdsl. set User ("scott");

oxds1l. set Password("tiger");

Q acl eXADat aSour ce oxds2 = new O acl eXADat aSour ce() ;

oxds2. set URL
("j dbc: oracl e: thi n: @descri pt i on=(addr ess=( host =dl sun991)
(protocol =t cp) (port=5521)) (connect _dat a=(si d=rdbns2)))");
oxds2. set User ("scott");
oxds2. set Password("tiger");

/1 Get a XA connection to the underlying data source
XAQonnecti on pcl = oxdsl. get XAConnection();

/1 V¢ can use the sane data source
XAQonnecti on pc2 = oxds2. get XAConnection();

/1 Get the Physical Gonnections
Gonnecti on connl = pcl. get Gonnection();
Gonnect i on conn2 = pc2. get Gonnection();

/1 Get the XA Resources
XAResource oxarl = pcl. get XAResour ce();
XAResour ce oxar2 = pc2. get XAResour ce();

/] Oeate the Xids Wth the Sane G obal I|ds

Xid xidl = createXid(1);
Xid xid2 = createX d(2);

17-86 JDBC Developer’'s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

/] Start the Resources
oxarl.start (xidl, XAResource. TMNFLAS);
oxar2.start (xid2, XAResource. TMNFLA);

/1 Do something with connl and conn2
doSoneWr k1 (connl);
doSoneWr k2 (conn2);

/] END both the branches -- THS IS MIST
oxar 1. end( xi d1, XAResource. TMBUCCESS);
oxar 2. end( xi d2, XAResour ce. TMBUCCESS) ;

/1 Prepare the RW
int prpl = oxarl.prepare (xidl);
int prp2 = oxar2.prepare (xid2);

Systemout. println("Return value of prepare 1is " + prpl);
Systemout. println("Return val ue of prepare 2 is " + prp2);

bool ean do_commit = true;

if (1((prpl = XAResource. XA K) || (prpl == XAResource. XA RDA\LY)))
do coomt = fal se;

if (1((prp2 = XAResource. XA CK) || (prp2 == XAResource. XA RDA\LY)))
do coomt = fal se;

Systemout. println("do_conmt is " + do_conmit);
Systemout. println("ls oxarl same as oxar2 ? " + oxarl.isSaneRMoxar2));

if (prpl == XAResour ce. XA X)
if (do_comit)
oxarl.commt (xidl, false);
el se
oxarl.rol I back (xidl);

if (prp2 == XAResour ce. XA (X)
if (do_comit)
oxar2.commt (xid2, false);
el se
oxar2.rol I back (xid2);

// Q4 ose connections
connl. cl ose();

Sample Applications 17-87



Samples for Connection Pooling and Distributed Transactions

connl = nul|;
conn2. cl ose();
conn2 = nul | ;

pcl. cl ose();
pcl = null;
pc2. cl ose();
pc2 = null;

Result Set rset = stma. executeQuery ("select col 1 fromny_table");
whil e (rset.next())
Systemout.printin("CGoll is " + rset.getlnt(1));

rset.close();
rset = null;

rset = stmb. executeQuery ("select col1l fromny_tab");
whil e (rset.next())
Systemout.printin("Col1 is " + rset.getSring(l));

rset.close();
rset = null;

st a. cl ose();

stma = null;
st b. cl ose();
stmb = null;
conna. cl ose();
conna = nul | ;
connb. cl ose();
connb = nul | ;

} catch (SQException sqge)
{

sqe. print S ackTrace();
} catch (XAExcepti on xae)

{
if (xae instanceof QO acl eXAException) {
Systemout.println("XA Eror is " +
((Cracl eXAExcept i on) xae) . get XAError());
Systemout.printin("SQ Eror is " +
((Cracl eXAException)xae). get OacleEror());
}
}

17-88 JDBC Developer’s Guide and Reference



Samples for Connection Pooling and Distributed Transactions

}

static Xid createX d(int bids)

{

}

t hrows XAException

byte[] gid = new byte[1]; gid[0]= (byte) 9;
byte[] bid = new byte[1]; bid[0]= (byte) bids;
byte[] gtrid = new byte[ 64];

byte[] bqual = new byte[64];

Systemarraycopy (gid, 0, gtrid, 0, 1);
Systemarraycopy (bid, 0, bqual, 0, 1);

Xid xid = new Qacl eXi d(0x1234, gtrid, bqual);
return xid;

private static voi d doSoneVr k1l (Gonnecti on conn)

{

}

throws SQException

/I Geate a Satenent
Satenent stnt = conn.createStatenment ();

int cnt = stn.executelpbdate ("insert into ny_table val ues (4321)");
Systemout. printin("No of rows Affected " + cnt);

stn. close();
stm = null;

private static voi d doSoneVWr k2 (Gonnecti on conn)

{

throws SQException

/I Geate a S atenent
Satenent stnt = conn.createStatenment ();

int cnt = stn.executelpdate ("insert into ny_tab values ('test’)");
Systemout. println("No of rows Affected " + cnt);

stn. close();
stm = null;

Sample Applications 17-89



Sample Applet

Sample Applet

This section demonstrates the use of the Oracle JDBC Thin driver for a simple
applet that selects "Hello World" and the date from the database. Both the HTML
page and applet code are shown here. A JDBC applet, like any typical applet, can be
deployed using any standard Web server and run from any standard browser.

In this example, the Web server and database must be on the same host, as this is
not a signed applet and does not use Oracle Connection Manager. For more
information, see "Connecting to a Database on a Different Host Than the Web
Server" on page 15-17. For a complete discussion of how to use JDBC with applets,
see "JDBC in Applets" on page 15-15.

HTML Page—JdbcApplet.htm

Here is the HTML code for the user interface for the applet.

<ht m >

<head>

<title>JDBC applet</title>
</ head>

<body>

<h1>JDBC appl et </ h1>

Thi s page contains an exanpl e of an appl et that uses the Thin JDBC
driver to connect to Oracle. <p>

The source code for the applet is in <a
hr ef =" JdbcAppl et . j ava" >JdbcAppl et . j ava</ a> P ease check careful |y
the driver class nane and the connect string in the code. <p>

The Applet tag in this file contains a OODERBASE entry that nust be set
to point to a directory containing the Java classes fromthe Thin JOBC
distribution *and* the conpiled JdbcAppl et. cl ass. <p>

As distributed it will *not* work because the classes*.zip files are not
inthis directory. <p>

<hr >

<appl et codebase="." archi ve="cl asses111. zi p"
code="JdbcAppl et" w dt h=500 hei ght =200>

</ appl et >

<hr >

17-90 JDBC Developer’s Guide and Reference



Sample Applet

Applet Code—JdbcApplet.java

Here is the source code for the applet.

/*
* This sanple applet just selects 'Hello Wrld and the date fromthe database
*/

/1 Inport the JDBC cl asses
inport java.sql.*;

/1 Inport the java classes used in applets
inport java. aw.*;

inport java.io.*;

inport java. util.*;

public class JdbcAppl et extends java. appl et . Appl et
{

/1 The connect string
static final Sring connect_string =
"jdbc: oracl e:thin:scott/tiger @anger: 5521: rdbns";

/* This is the kind of string you woul d use i f going through the
* (racl e connection nanager which lets you run the database on a
* different host than the Web Server. See the Net8 Administrator’s Guide
*for more information.
* static final String connect_string ="jdbc:oracle:thin:scottftiger@

* (description=(address_list=(address=(protocol=tcp)

* (host=disun511)(port=1610))(address=(protocol=tcp)
* (host=pkrishna-pc2)(port=1521)))

* (source_route=yes)(connect_data=(sid=orcl)))";

*

/I The query we will execute
static final String query ="select 'Hello JDBC: ' || sysdate from dual”,

/I The button to push for executing the query
Button execute_button;

/I The place where to dump the query result
TextArea output;

/I The connection to the database

Sample Applications 17-91



Sample Applet

Connection conn;

/1l Oreate the Wser Interface
public voidinit ()
{
this. set Layout (new BorderLayout ());
Panel p = new Panel ();
p. set Layout (new Fl owLayout (Fl owLayout.LEFT));
execute button = new Button ("Hello JOBC');
p. add (execute_button);
this.add ("North", p);
out put = new Text Area (10, 60);
this.add ("Center", output);

}

/1 Do the work
publ i c bool ean action (Event ev, (bject arg)
{ if (ev.target == execute_button)
{
try
{

/1l See if we need to open the connection to the database
if (conn == null)
{
/1 Load the JDBC dri ver
Driver Manager. regi sterDriver (new oracl e.jdbc.driver.acleDiver());

/1 Connect to the databse

out put . appendText ("CGonnecting to " + connect_string + "\n");
conn = Dri ver Manager . get Gonnecti on (connect_string);

out put . appendText (" Gonnected\n");

}

/I reate a statenent
Satenent stnt = conn.createStatenent ();

/] Execute the query
out put . appendText ("Executing query " + query + "\n");
Result Set rset = stni.executeQuery (query);

/1 Dunp the result

vhile (rset.next ())
out put .. appendText (rset.getSring (1) + "\n");

17-92 JDBC Developer’s Guide and Reference



Sample Applet

/1 ' re done
out put . appendText ("done.\n");

cat ch (Exception €)

{
/1 Qops
out put . appendText (e.getMessage () + "\n");

}

return true;

}

el se
return fal se;

Sample Applications 17-93



JDBC versus SQLJ Sample Code

JDBC versus SQLJ Sample Code

This section contains a side-by-side comparison of two versions of the same sample
code using Oracle Cust onDat umfunctionality: one version is written in JDBC and
the other in SQLJ. The objective of this section is to point out the differences in
coding requirements between SQLJ and JDBC.

In the sample, two methods are defined: get Enpl oyeeAddr ess() selects into a
table and returns an employee’s address based on the employee’s number;

updat eAddr ess() takes the retrieved address, calls a stored procedure, and
returns the updated address to the database.

In both versions of the sample code, these assumptions have been made:

« The Obj ect Denp. sql SQL script (described below) has been run to create the
necessary database entities.

« A PL/SQL stored function UPDATE_ADDRESS, which updates a given address,
exists.

= The connection object (for JDBC) and default connection context (for SQLJ) have
previously been created by the caller.

« Exceptions are handled by the caller.

« The value of the address argument (addr ) passed to the updat eAddr ess
method can be null.

Note: The JDBC and SQLJ versions of the code are partial samples
only. They cannot be run independently.

SQL Program to Create Tables and Objects

Following is a listing of the Obj ect Denp. sqgl script that creates the tables and
objects referenced by the two versions of the sample code. The Obj ect Denp. sql
script creates a PERSON object, an ADDRESS object, a typed table (PERSONS) of
PERSON objects, and a relational table (EMPLOYEES) for employee data.

[*** Using objects in SQJ ***/
SET ECHO O\

/**

[*** O ean up ***/

DRCP TABLE EMPLOYEES

/

CRCP TABLE PERSONS

17-94 JDBC Developer’'s Guide and Reference



JDBC versus SQLJ Sample Code

/

DRCP TYPE PERSON FORCE

/

DRCP TYPE ADDRESS FORCE

/

[*** (reate an address obj ect ***/
CREATE TYPE address AS (BIECT

(
street VARCHAR 60) ,
city VARCHAR 30) ,
state HAR 2),

Zi p_code CHAR(5)
)
/
/*** (reate a person object contai ning an enbedded Address obj ect ***/
CREATE TYPE person AS (BJIECT

(
nane VARCHAR( 30),
ssh NUMBER
addr addr ess

)
/

/*** Oreate a typed table for person objects ***/
CREATE TABLE persons CF person
/

/*** Oeate arelational table with two colums that are REFs
to person objects, as well as a col unm which is an Address object.***/

CREATE TABLE enpl oyees

( enpnunber | NTEGER PR MARY KEY,
person_dat a REF  person,
nanager REF  person,
of fi ce_addr addr ess,
sal ary NUMBER

)
/

/*** insert code for UPDATE ACDRESS stored procedure here
/

F**Now let's put in some sample data
Insert 2 objects into the persons typed table **/

INSERT INTO persons VALUES (
person(Wolfgang Amadeus Mozart, 123456,

Sample Applications 17-95



JDBC versus SQLJ Sample Code

address(Am Berg 100, 'Salzburg',’AU’,10424Y)))
/
INSERT INTO persons VALUES (
person(Ludwig van Beethoven’, 234567,
address(Rheinallee’, 'Bonn’, 'DE, '69234)))
/

P Puta rowin the employees table */

INSERT INTO employees (empnumber, office_addr, salary) " +
"VALUES (1001, address(’500 Oracle Parkway’, " +
"’Redwood City','CA’, '94065'), 50000)

/

P+ Set the manager and person REFs for the employee */

UPDATE employees
SET manager =
(SELECT REF(p) FROM persons p WHERE p.name ="Wolfgang Amadeus Mozart)
/

UPDATE employees
SET person_data=
(SELECT REF(p) FROM persons p WHERE p.name ="Ludwig van Beethoven’)
/

COMMIT
/
QUIT

JDBC Version of the Sample Code

Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note, the "TODGs" in the comment lines indicate where you might
want to add additional code to enhance the usefulness of the code sample.

inport java.sql.*;
inport oracle.jdbc.driver.*;

/**

This is what we have to do in JDBC

**/
public class S npl eDemoJDBC Il line 7
{

17-96 JDBC Developer’'s Guide and Reference



JDBC versus SQLJ Sample Code

//TODQ nake a main that calls this

publ i ¢ Address get Enpl oyeeAddress(i nt enpno, Connection conn)

throws SQ.Exception /1 line 13
{

Address addr;

PreparedStatenent pstm = /1 line 16

conn. prepar eSt at enent (" SELECT of fi ce_addr FROM enpl oyees" +

" WHERE enpnunber = ?");
pstn.setint(1, enpno);
Qacl eResul tSet rs = (O acl eResul t Set) pst mt . execut eQuer y() ;
rs.next(); /1 line 21
//TODO what if false (result set contains no data)?
addr = (Address)rs. get Qustonbat un{1, Address.getFactory());
//TODQ what if additional rows?

rs.close(); /1 line 25
pstni. cl ose();
return addr; /] line 27

}

publ i ¢ Address updat eAddr ess( Address addr, Gonnecti on conn)
throws SQException /1 line 30

Qacl eCal | abl eSatenent cstnt = (Qacl eCal | abl et at enent)
conn.prepareCal | ("{ ? = call UPDATE ADDRESY(?) }"); //line 34
cstm.registerQutParaneter (1, Address. SQ _TYPEQCDE, Address._SQ_NAME);
/1 line 36
if (addr == null) {
cstnm.setNul | (2, Address. _SQ TYPEQDE, Address._SQ. NAME);

} else {

cst . set Qust onDat un{2, addr);
}
cstn . execut eUpdat e() ; /1 line 43
addr = (Address)cstnit.get Qustonbatun{1, Address.getFactory());
cstn. cl ose(); /1 line 45
return addr;

Sample Applications 17-97



JDBC versus SQLJ Sample Code

Line 12: In the get Enpl oyeeAddr ess() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the
EMPLOYEES table on the basis of the employee number. The employee number is
represented by a marker variable, which is set with the set | nt () method. Note
that because the prepared statement does not recognize the "I NTO' syntax used in
"SQL Program to Create Tables and Objects" on page 17-94, you must provide your
own code to populate the address (addr ) variable. Since the prepared statement is
returning a custom object, cast the output to an Oracle result set.

Lines 21-23: Because the Oracle result set contains a custom object of type Addr ess,
use the get Cust onDat un{) method to retrieve it (the Addr ess object could be
created by JPublisher). The get Cust onDat un{) method requires you to use the
static factory method Addr ess. get Fact or y() to materialize an instance of an
Addr ess object. Since get Cust onDat un{) returns a Dat um cast the output to an
Addr ess object.

Note that the routine assumes a one-row result set. The "TODGs" in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updat eAddr ess() definition, you must pass the connection object
and the Addr ess object explicitly.

The updat eAddr ess() method passes an address to the database for update and
fetches it back. The actual updating of the address is performed by the
UPDATE_ADDRESS stored procedure (the code for this procedure is not illustrated
in this example).

Line 33-43: Prepare an Oracle callable statement that takes an address object

(Addr ess) and passes it to the UPDATE_ADDRESS stored procedure. To register an
object as an output parameter, you must know the object’s SQL typecode and SQL
type name.

Before passing the address object (addr ) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different set methods. If addr is null, the program calls set Nul | () ;
if it has a value, the program calls set Cust ormDat un{() .

17-98 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

Line 44: Fetch the return result addr . Since the Oracle callable statement returns a
custom object of type Addr ess, use the get Cust onDat un{) method to retrieve it
(the Addr ess object could be created by JPublisher). The get Cust onmDat un()
method requires you to use the static factory method Addr ess. get Fact ory to
materialize an instance of an Addr ess object. Because get Cust onDat unm() returns
a Dat um cast the output to an Addr ess object.

Lines 45, 46: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

« Theget Enpl oyeeAddr ess() and updat eAddr ess() definitions must
explicitly include the connection object.

« Long SQL strings must be concatenated with the SQL concatenation character
(ll+ll X

= You must explicitly manage resources (for example, close result set and
statement objects).

= You must cast datatypes as needed.

«  You must know the _SQL_TYPECODE and _SQ._ NAME of the factory objects
that you are registering as output parameters.

« Null data must be explicitly handled.

« Host variables must be represented by parameter markers in callable and
prepared statements.

Maintaining JDBC Programs

JDBC programs have the potential of being expensive in terms of maintenance. For
example, in the above code sample, if you add another WHERE clause, then you
must change the SELECT string. If you append another host variable, then you must
increment the index of the other host variables by one. A simple change to one line
in a JDBC program might require changes in several other areas of the program.

SQLJ Version of the Sample Code

Following is the SQLJ version of the sample code that defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database.

Sample Applications 17-99



JDBC versus SQLJ Sample Code

inport java.sql.*;

/**
This is what we have to do in SQJ
**/
public class S npl eDenoSQLI /1 line 6

{
//TODO nake a main that calls this?

publ i ¢ Address get Enpl oyeeAddr ess(i nt enpno) // line 10
throws SQException
{
Address addr; I/l line 13
#sqgl { SELECT office_addr I NIO :addr FROM enpl oyees
WHERE enpnunber = :enpno };
return addr;

}

/1 line 18
publ i ¢ Address updat eAddr ess( Address addr)
throws SQException
{
#sgl addr = { VALUES( UPDATE ADDRESS(: addr)) }; /1 line 23
return addr;
}

}

Line 10: The get Enpl oyeeAddr ess() method does not require a connection
object. SQLJ uses a default connection context instance, which would have been
defined previously somewhere in your application.

Lines 13-15: The get Enpl oyeeAddr ess() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT | NTOsyntax to select
an employee’s address from the employee table if their employee number matches
the one (enpno) passed in to get Enpl oyeeAddr ess() . This requires a declaration
of the Addr ess object (addr ) that will receive the data. The enpno and addr
variables are used as input host variables. (Host variables are sometimes also
referred to as bind variables.)

Line 16: The get Enpl oyeeAddr ess() method returns the addr object.

Line 19: The updat eAddr ess() method also uses the default connection context
instance.

17-100 JDBC Developer’s Guide and Reference



JDBC versus SQLJ Sample Code

Lines 19-23: The address is passed to the updat eAddr ess() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS stored function (the code for
this function is not shown here). Use standard SQLJ function-call syntax to receive
the address object (addr ) output by UPDATE _ADDRESS.

Line 24: The updat eAddr ess() method returns the addr object.

Coding Requirements of the SQLJ Version

Note the following coding requirements (and lack of requirements) for the SQLJ
version of the sample code:

= Anexplicit connection is not required; a default connection context will have
been defined previously in your application.

« No datatype casting is required.

« SQLJdoes not require knowledge of _SQ._TYPECODE, _SQL_NAME, or
factories.

= Null data is handled implicitly.

= No explicit code for resource management is required (for closing statements or
result sets, for example).

=«  SQLJembeds host variables, in contrast to JDBC, which uses parameter
markers.

« String concatenation for long SQL statements is not required.
= You do not have to register output parameters.

«  SQLJsyntax is simpler; for example, SELECT | NTOsyntax is supported and
OBDC-style escapes are not used.

Sample Applications 17-101



JDBC versus SQLJ Sample Code

17-102 JDBC Developer’s Guide and Reference



13

Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

» Valid SQL-JDBC Datatype Mappings

« Supported SQL and PL/SQL Datatypes
« Embedded SQL92 Syntax

« Oracle JDBC Notes and Limitations

= Related Information

Reference Information 18-1



Valid SQL-JDBC Datatype Mappings

Valid SQL-JDBC Datatype Mappings

Table 3-2 in Chapter 3 describes the default mappings between Java classes and
SQL datatypes supported by the Oracle JDBC drivers. Compare the contents of the
JDBC Datatypes, Standard Java Types and SQL Datatypes columns in Table 3-2
with the contents of Table 18-1 below.

Table 18-1 lists all the possible Java types to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data in an or acl e. sql . CHAR
object use the get CHAR() method. To materialize itasaj ava. mat h. Bi gDeci mal
object, use the get Bi gDeci nal () method.

Table 18-1 Valid SQL Datatype-Java Class Mappings

These SQL datatypes: Can be materialized as these Java types:

CHAR, VARCHAR2, LONG oracle.sql.CHAR
java.lang.String
java.sgl.Date
java.sql.Time
java.sql.Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE
java.sgl.Date
java.sql.Time
java.sql.Timestamp

java.lang.String

18-2 JDBC Developer’'s Guide and Reference



Valid SQL-JDBC Datatype Mappings

Table 18-1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:

NUMBER oracle.sql. NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

byte, short, int, long, float, double

RAW, LONG RAW oracle.sql.RAW
byte[]
ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB
java.sql.Blob (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB oracle.sql.CLOB
java.sql.Clob (oracle.jdbc2.Clob under JDK 1.1.x)

OBJECT oracle.sql.STRUCT
java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x)
oracle.sql.CustomDatum

oracle.sql.SqlData

REF oracle.sql.REF
java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)

TABLE (nested), VARRAY oracle.sql. ARRAY

java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)

Reference Information 18-3



Valid SQL-JDBC Datatype Mappings

Table 18-1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:
any of the above SQL types oracle.sql.CustomDatum or oracle.sql.Datum
Notes:

=« Thetype UROW Dis not supported.

« Theoracl e. sql . Dat umclass is abstract. The value passed to
a parameter of type or acl e. sqgl . Dat ummust be of the Java
type corresponding to the underlying SQL type. Likewise, the
value returned by a method with return type
oracl e. sql . Dat ummust be of the Java type corresponding
to the underlying SQL type.

« The mappingsto or acl e. sql classes are optimal if no
conversion from SQL format to Java format is necessary.

18-4 JDBC Developer’'s Guide and Reference



Supported SQL and PL/SQL Datatypes

Supported SQL and PL/SQL Datatypes

The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQLJ support them. Table 18-2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Table 18-2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
BFILE yes yes
BLOB yes yes
CHAR yes yes
CLOB yes yes
DATE yes yes
NCHAR no no
NCHAR VARYING no no
NUMBER yes yes
NVARCHAR2 no no
RAW yes yes
REF yes yes
ROWID yes yes
UROWID no no
VARCHAR2 yes yes

Table 18-3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 18-3 Support for ANSI-Supported SQL Datatypes

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes
DEC yes yes
DECIMAL yes yes
DOUBLE PRECISION yes yes

Reference Information 18-5



Supported SQL and PL/SQL Datatypes

Table 18-3 Support for ANSI-Supported SQL Datatypes (Cont.)

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

FLOAT yes yes
INT yes yes
INTEGER yes yes
NATIONAL CHARACTER no no
NATIONAL CHARACTER no no
VARYING

NATIONAL CHAR no no
NATIONAL CHAR VARYING no no
NCHAR no no
NCHAR VARYING no no
NUMERIC yes yes
REAL yes yes
SMALLINT yes yes
VARCHAR yes yes

Table 18-4 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

« scalar types

« scalar character types (includes boolean and date datatypes)
= composite types

« reference types

« LOBtypes

Table 18-4 Support for PL/SQL Datatypes

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
Scalar Types:

binary integer yes yes

dec yes yes

18-6 JDBC Developer’'s Guide and Reference



Supported SQL and PL/SQL Datatypes

Table 18-4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
decimal yes yes
double precision yes yes
float yes yes
int yes yes
integer yes yes
natural yes yes
naturaln no no
number yes yes
numeric yes yes
pls_integer yes yes
positive yes yes
positiven no no
real yes yes
signtype yes yes
smallint yes yes

Scalar Character Types:

char yes yes
character yes yes
long yes yes
long raw yes yes
nchar no no
nvarchar2 no no
raw yes yes
rowid yes yes
string yes yes
urowid no no
varchar yes yes

Reference Information 18-7



Supported SQL and PL/SQL Datatypes

Table 18-4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
varchar2 yes yes
boolean yes yes
date yes yes
Composite Types:
record no no
table no no
varray yes yes
Reference Types:
REF CURSOR types yes yes
object REF types yes yes
LOB Types:
BFILE yes yes
BLOB yes yes
CLOB yes yes
NCLOB no no
Notes:

« Thetypes NATURAL, NATURALn, PCSI Tl VE, PCSI Tl VEn, and
S| GNTYPE are subtypes of Bl NARY | NTEGER.

« Thetypes DEC, DECI MAL, DOUBLE PRECI SI ON, FLOAT, | NT,
| NTEGER, NUMERI C, REAL, and SMALLI NT are subtypes of
NUVBER.

18-8 JDBC Developer’'s Guide and Reference



Embedded SQL92 Syntax

Embedded SQL92 Syntax

Oracle’s JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

« Time and Date Literals

« Scalar Functions

« LIKE Escape Characters

« Outer Joins

« Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.
Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default, which results in the JDBC driver performing escape substitution before
sending the SQL code to the database. If you want the driver to use regular Oracle

SQL syntax, which is more efficient than SQL92 syntax and escape processing, then
use this statement:

st . set EscapePr ocessi ng(fal se);

Note: Because prepared statements have usually been parsed
prior to a call to set EscapePr ocessi ng() , disabling escape
processing for prepared statements will probably have no affect.

Time and Date Literals

Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d'yyyy-mm-dd}

Where yyyy- nm dd represents the year, month, and day—for example:
{d'1995-10-22'}

Reference Information 18-9



Embedded SQL92 Syntax

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

This code snippet contains an example of using a date literal in a SQL statement.

/1 Gonnect to the database
/1 You can put a database nane after the @sign in the connection URL.
Qonnection conn = Driver Manager . get Gonnecti on

("jdbc: oracl e:oci 8: @, "scott", "tiger");

/I Geate a Satenent
Satenent stnt = conn.createStatenent ();

/1 Select the ename colum fromthe enp tabl e where the hiredate is Jan-23-1982
Resul t Set rset = stnt. execut eQuery
("SELECT enane FROM enp WHERE hiredate = {d ' 1982-01-23'}");

/1 lterate through the result and print the enpl oyee names
vhile (rset.next ())
Systemout.println (rset.getSring (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t’ hh.mm:ss}

where hh: mm ss represents the hours, minutes, and seconds—for example:
{t'05:10:45}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

{t'14:20:50}

Then the equivalent Oracle representation would be "14:20:50", assuming the server
is using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
("SELECT ename FROM emp WHERE hiredate ={t'12:00:00});

18-10 JDBC Developer’s Guide and Reference



Embedded SQL92 Syntax

Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts "yyyy-mmdd hh:rmss.f..."}

where yyyy-mm dd hh: nm ss. f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (".f...") is optional and can be
omitted. For example: {ts '1997-11-01 13:22:45'} represents, in Oracle
format, NOV 01 1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL
statement.

Resul t Set rset = stnt. execut eQuery
(" SELECT enane FROM enp WHERE hiredate = {ts ' 1982-01-23 12:00:00' }");

Scalar Functions

The Oracle JDBC drivers do not support all scalar functions. To find out which
functions the drivers support, use the following methods supported by the

Oracle-specific oracle.jdbc.driver.OracleDatabaseMetaData and the
standard Java java.sql.DatabaseMetadata interfaces:
« getNumericFunctions() : Returns a comma-separated list of math functions

supported by the driver. For example, ABSnunber), CO%f | oat),
SQRTf/ oat).

« getStringFunctions() : Returns a comma-separated list of string functions
supported by the driver. For example, ASCII (st ri ng), LOCATHEst ringl,
string2, start).

« getSystemFunctions() : Returns a comma-separated list of system functions
supported by the driver. For example, DATABASE), IFNULL (expr essi on,
val ue), USER).

« getTimeDateFunctions() : Returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE,
DAYOFYEARJat e), HOURt i ne) .

Oracle’s JDBC drivers do not support the function keyword, *fn ". If you try to use
this keyword, for example:

{fn concat ("Cacle", "8 ") }

Reference Information 18-11



Embedded SQL92 Syntax

Then you will get the error "Non supported SQ.92 token at position xx:
f n" when you run your Java application. The workaround is to use Oracle SQL
syntax.

For example, instead of using the f n keyword in embedded SQL92 syntax:

Satenent stnt = conn.createStatenent ();
st . execut elpdat e(" UPDATE enp SET enane = {fn CONCAT(' M/, 'Nane’)}");

Use Oracle SQL syntax:
st . execut elpdat e( " UPDATE enp SET enane = GONCAT(' M, "Nare' )");

LIKE Escape Characters

Outer Joins

The characters "% and "_" have special meaning in SQL LI KE clauses (you use "%

to match zero or more characters, "_" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape

character, you identify it in the SQL statement as {escape '&’}:

Satenent stnt = conn.createStatenent ();

/1 Select the enpno colum fromthe enp tabl e where the enane starts with '’
Resul t Set rset = stnt. execut eQuery
(" SELECT enpno FROM enp WHERE enane LIKE ' & % {ESCAPE ' & }");

/1 lterate through the result and print the enpl oyee nunbers
vhile (rset.next ())
Systemout.println (rset.getSring (1));

Note: If you want to use the backslash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

Resul t Set rset = stni. execut eQuery("SELECT enpno FRCOM enp
WHERE enane LIKE '\\_% {escape "\\'}");

Oracle’s JDBC drivers do not support outer join syntax: {oj outer-join}. The
workaround is to use Oracle outer join syntax:

Instead of:

Satenent stnt = conn.createStatenent ();

18-12 JDBC Developer’'s Guide and Reference



Embedded SQL92 Syntax

Resul t Set rset = stnt. execut eQuery
(" SELECT enane, dnane
FROM {Q) dept LBEFT QUTER JO N enp ON dept. dept no = enp. dept no}
CRCER BY enane");

Use Oracle SQL syntax:

Satenent stnt = conn.createStatenent ();
Resul t Set rset = stnt. execut eQuery
(" SELECT enane, dnane
FROMenp a, dept b WHERE a. dept no = b. dept no(+)
CRCER BY enane”);

Function Call Syntax
Oracle’s JDBC drivers support the following procedure and function call syntax:

Procedure calls (without a return value):

{ call procedure name (argurent1, argunent2,...) }

Function calls (with a return value):

{ ? =call procedure nane (argurentl, argurent2,...) }

SQL92 to SQL Syntax Example

You can write a simple program to translate SQL92 syntax to standard SQL syntax.
The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracl e.jdbc.driver. O acl eSgl classparse() method performs the
conversions.

inport oracle.jdbc.driver.Qaclexql;

public class Foo
{
public static void main (String args[]) throws Exception
{
show ("{call foo(?, ?)}");
show ("{? = call bar (?, ?)}");
show ("{d ’1998-10-22'}");
show ("{t ’'16:22:34'}");
show ("{ts ' 1998-10-22 16:22:34'}");

Reference Information 18-13



Embedded SQL92 Syntax

public static void show (Sring s) throws Exception

{
}

Systemout.println (s +" =>" + new QacleSql (). parse (s));

}

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} = BEANTfoo(:1, :2); END

{? =call bar (?, 22} == BEAN:1:=bhar (:2, :3); BE\D

{d "1998-10-22'} => TO DATE (' 1998-10-22', ’'YYYY-MMDD)

{t '16:22:34'} => TODATE (' 16:22:34', 'HR4:M:SS)

{ts '1998-10-22 16:22: 34} => TO DATE (’ 1998-10-22 16:22: 34", ' YYYY-MA DD
HR4:M:SS)

18-14 JDBC Developer’s Guide and Reference



Oracle JDBC Notes and Limitations

Oracle JDBC Notes and Limitations

The following limitations exist in the Oracle JDBC implementation, but all are either
insignificant or have easy workarounds.

CursorName

Oracle JDBC drivers do not support the get Cur sor Nane() and

set Cur sor Name() methods, because there is no convenient way to map them to
Oracle constructs. Oracle recommends using RON D instead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 5-26.

SQL92 Quter Join Escapes

Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax™ on page 18-9.

PL/SQL TABLE, BOOLEAN and RECORD Types

It is not feasible for Oracle JDBC drivers to support calling arguments or return
values of the PL/SQL types TABLE (how known as indexed-by tables), RECORD, or
BOOLEAN.

As a workaround, you can create wrapper procedures that handle the data as types
supported by JDBC. For example, to wrap a stored procedure that uses PL/SQL
booleans, you can create a stored procedure that takes a character or number from
JDBC and passes it to the original procedure as BOOLEAN, or, for an output
parameter, accepts a BOOLEAN argument from the original procedure and passes it
as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored procedure that uses
PL/SQL records, you can create a stored procedure that handles a record in its
individual components (such as CHAR and NUMBER) or in a structured object type.
To wrap a stored procedure that uses PL/SQL tables, you can break the data into
components or perhaps use Oracle collection types.

For an example of a workaround for BOOLEAN, see "Boolean Parameters in PL/SQL
Stored Procedures" on page 16-9.

|[EEE 754 Floating Point Compliance

The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore, there can be small disagreements

Reference Information 18-15



Oracle JDBC Notes and Limitations

between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10°° and (1 — 10°®) * 10'% to full
38-digit precision.

Catalog Arguments to DatabaseMetaData Calls

Certain Dat abaseMet aDat a methods define a cat al og parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the cat al og argument, see "DatabaseMetaData
TABLE_REMARKS Reporting" on page 12-27.

SQLWarning Class

Bind by Name

Thej ava. sql . SQLWar ni ng class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers generally do not support
SQLWAr ni ng. (As an exception to this, scrollable result set operations do generate
SQL warnings, but the SQLWaAr ni ng instance is created on the client, not in the
database.)

For information on how the Oracle JDBC drivers handle errors, see "Processing SQL
Exceptions" on page 3-33.

Binding by name is not supported. Under certain circumstances, previous versions
of the Oracle JDBC drivers have allowed binding statement variables by name. In
the following statement, the named variable Enpl d would be bound to the integer
314159.

Prepar edStat enent p = conn. prepar eS at enent
("SELECT name FROMenp WERE id = : Bnpl d");
p.setint(1, 314159);

18-16 JDBC Developer’s Guide and Reference



Oracle JDBC Notes and Limitations

This capability to bind by name is not part of the JDBC specification, either 1.0 or
2.0, and Oracle does not support it. The JDBC drivers can throw a SQLExcept i on
or produce unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are how retained. For
example:

Prepar edStat enent p = conn. prepar eS at enent
("SELECT name FROMenp WERE id = :? AND dept = : ?");
p.setint(1, 314159);
p.setString(2, "SALES');
Result Set r1 = p.execute();
p.setlnt(1, 425260);
Result Set r2 = p. execute();

Previously, a SQLExcept i on would be thrown by the second execut e() call
because no value was bound to the second argument. In this release, the second
execute will return the correct value, retaining the binding of the second argument
to the string "SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.

Reference Information 18-17



Related Information

Related Information

This section lists Web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers, Oracle SQLJ, Java technology, the Java
Developer’s Kit APIs (for versions 1.2.x and 1.1.x), the Java Security API, and
resources to help you write signed applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)

htt p://waw oracl e. cont j ava/ j dbc

Oracle SQLJ Home Page (Oracle Corporation)

htt p: //waw oracl e. cond j ava/ sql j

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://www j avasof t. com

Java Development Kit (JDK1.2.x and 1.1.x) (Sun Microsystems, Inc.):
http://java. sun. com pr oduct s/ j dk

18-18 JDBC Developer’s Guide and Reference



A

JDBC Error Messages

This appendix briefly discusses the general structure of JDBC error messages, then
lists general JDBC error messages and TTC error messages that the Oracle JDBC
drivers can return. The appendix is organized as follows:

«  General Structure of JDBC Error Messages

« General IDBC Messages

« TTC Messages

Each of the two message lists is first sorted by ORA number, and then alphabetically.

For general information about processing JDBC exceptions, see "Processing SQL
Exceptions" on page 3-33.

Note: "Cause" and "Action" information for each message will be
provided in a later release.

JDBC Error Messages A-1



General Structure of JDBC Error Messages

General Structure of JDBC Error Messages

The general JDBC error message structure allows runtime information to be
appended to the end of a message, following a colon, as follows:

<error _nessage>: <extra_i nf o>

For example, a "closed statement" error might be output as follows:

d osed & at enent : next

This indicates that the exception was thrown during a call to the next () method
(of a result set object).

In some cases, the user can find the same information in a stack trace.

A-2 JDBC Developer’s Guide and Reference



General JDBC Messages

General JDBC Messages

This section lists general JDBC error messages, first sorted by ORA nhumber, and then
alphabetically.

JDBC Messages Sorted by ORA Number

ORA-17001 Internal Error

ORA- 17002 | o exception

ORA-17003 I nvalid col um index

ORA- 17004 Invalid colum type

ORA- 17005 Unsupported colum type
ORA- 17006 I nvalid col um nane

ORA- 17007 I nvalid dynami c col um
ORA- 17008 Cl osed Connection

ORA- 17009 Cl osed St atement

ORA-17010 Cl osed Resul tset

ORA- 17011 Exhaust ed Resul t set

ORA- 17012 Par anet er Type Confli ct
ORA- 17014 Resul t Set . next was not call ed
ORA- 17015 St at ement was cancel | ed
ORA-17016 Statenment timed out

ORA- 17017 Cursor already initialized
ORA-17018 I nvalid cursor

ORA-17019 Can only describe a query
ORA- 17020 Invalid row prefetch

ORA- 17021 M ssi ng defines

ORA- 17022 M ssing defines at index
ORA- 17023 Unsupported feature

ORA- 17024 No data read

ORA- 17025 Error in defines.isNull ()

JDBC Error Messages A-3



General JDBC Messages

ORA- 17026
ORA- 17027
ORA-17028

ORA-17029

ORA- 17030

ORA- 17031
ORA- 17032
ORA- 17033
ORA- 17034
ORA- 17035
ORA- 17036
ORA- 17037
ORA-17038
ORA- 17039
ORA- 17040

ORA-17041
ORA-17042
ORA-17043
ORA- 17044
ORA- 17045

ORA- 17046
ORA- 17047
ORA- 17048
ORA- 17049
ORA- 17050

Nuneric Overfl ow
Stream has al ready been cl osed

Can not do new defines until the current
Resul tSet is closed

set ReadOnl y: Read-only connections not
support ed

READ_COWM TTED and SERI ALI ZABLE are the only
valid transaction | evels

set Aut oCl ose: Only support auto cl ose npde on
cannot set row prefetch to zero

Mal formed SQL92 string at position

Non supported SQ.92 token at position
Character Set Not Supported !

exception in O acl eNunber

Fail to convert between UTF8 and UCS2

Byte array not |ong enough

Char array not |ong enough

Sub Protocol mnust be specified in connection
URL

M ssing IN or OUT paraneter at index:

I nvalid Batch Val ue

Invalid stream maxi num si ze

Internal error: Data array not all ocated

Internal error: Attenpt to access bind val ues
beyond the batch val ue

Internal error: Invalid index for data access
Error in Type Descriptor parse

Undefi ned type

I nconsi stent java and sqgl object types

no such elenment in vector

A-4 JDBC Developer’s Guide and Reference



General JDBC Messages

ORA- 17051
ORA- 17052
ORA- 17053
ORA- 17054
ORA- 17055
ORA- 17056
ORA- 17057
ORA- 17058
ORA- 17059
ORA- 17060
ORA- 17061
ORA- 17062
ORA- 17063
ORA- 17064
ORA- 17065
ORA- 17066
ORA- 17067
ORA- 17068
ORA- 17069
ORA- 17070
ORA- 17071
ORA- 17072
ORA- 17073
ORA- 17074
ORA- 17075
ORA- 17076
ORA- 17077
ORA-17078

This APl cannot be be used for non-UDT types
This ref is not valid

The size is not valid

The LOB |l ocator is not valid

Invalid character encountered in

Non supported character set

Cl osed LOB

Internal error: Invalid NLS Conversion ratio
Fail to convert to internal representation
Fail to construct descriptor

M ssi ng descri ptor

Ref cursor is invalid

Not in a transaction

Invalid Sytnax or Database name is nul
Conversion class is null

Access | ayer specific inplementation needed
Invalid Oracle URL specified

Invalid argument(s) in cal

Use explicit XA cal

Data size bigger than max size for this type
Exceeded maxi mum VARRAY |imit

Inserted value too | arge for colum

Logi cal handle no | onger valid

invalid name pattern

Invalid operation for forward only resultset
Invalid operation for read only resultset
Fail to set REF val ue

Cannot do the operation as connections are
al ready opened

JDBC Error Messages A-5



General JDBC Messages

ORA- 17079

ORA- 17080
ORA- 17081
ORA-17082
ORA- 17083
ORA- 17084
ORA- 17085
ORA- 17086
ORA- 17087
ORA-17088

ORA-17089
ORA- 17090
ORA- 17091

ORA-17092

ORA- 17066
ORA- 17038
ORA- 17084
ORA-17028

ORA-17019
ORA-17078

ORA- 17032
ORA- 17039

User credentials doesn't match the existing
ones

invalid batch conmand

error occurred during batching

No current row

Not on the insert row

Called on the insert row

Val ue conflicts occurs

Undefined col uim val ue on the insert row

I gnored performance hint: setFetchDirection()

Unsupported syntax for requested resultset
type and concurrency | eve

internal error
operation not allowed

Unable to create resultset at the requested
type and/or concurrency |eve

JDBC statenments cannot be created or executed
at end of call processing

JDBC Messages Sorted Alphabetically

Access | ayer specific inplementation needed
Byte array not |ong enough
Cal l ed on the insert row

Can not do new defines until the current
Resul tSet is closed

Can only describe a query

Cannot do the operation as connections are
al ready opened

cannot set row prefetch to zero

Char array not |ong enough

A-6 JDBC Developer’s Guide and Reference



General JDBC Messages

ORA- 17035
ORA- 17008
ORA- 17057
ORA-17010
ORA- 17009
ORA- 17065
ORA- 17017
ORA- 17070
ORA-17025
ORA- 17047
ORA-17081
ORA-17071
ORA- 17036
ORA-17011
ORA- 17060
ORA- 17037
ORA- 17059
ORA- 17077
ORA- 17087
ORA- 17049
ORA- 17072
ORA-17001
ORA- 17089
ORA- 17045

ORA- 17044
ORA- 17046
ORA- 17058
ORA- 17068

Character Set Not Supported !

Cl osed Connection

Cl osed LOB

Cl osed Resul tset

Cl osed St atement

Conversion class is null

Cursor already initialized

Data size bigger than max size for this type
Error in defines.isNull ()

Error in Type Descriptor parse

error occurred during batching

Exceeded maxi mum VARRAY | i mit

exception in O acl eNunber

Exhaust ed Resul t set

Fail to construct descriptor

Fail to convert between UTF8 and UCS2

Fail to convert to internal representation
Fail to set REF val ue

I gnored performance hint: setFetchDirection()
I nconsi stent java and sqgl object types
Inserted value too |arge for colum
Internal Error

internal error

Internal error: Attenpt to access bind val ues
beyond the batch val ue

Internal error: Data array not all ocated
Internal error: Invalid index for data access
Internal error: Invalid NLS Conversion ratio
Invalid argument(s) in cal

JDBC Error Messages A-7



General JDBC Messages

ORA- 17080
ORA-17042
ORA- 17055
ORA- 17003
ORA- 17006
ORA- 17004
ORA-17018
ORA- 17007
ORA- 17074
ORA- 17075
ORA- 17076
ORA- 17067
ORA-17020
ORA-17043
ORA- 17064
ORA-17002
ORA-17092

ORA- 17073
ORA- 17033
ORA-17021
ORA-17022
ORA- 17061
ORA-17041
ORA-17082
ORA- 17024
ORA- 17050
ORA- 17056
ORA- 17034

invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid
invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid

bat ch conmand

Bat ch Val ue

character encountered in

col um i ndex

col um name

col um type

cursor

dynam ¢ col umm

nane pattern

operation for forward only resultset
operation for read only resultset
Oracle URL specified

row prefetch

st ream maxi mum si ze

Syt nax or Dat abase name is nul

| o exception

JDBC statenments cannot be created or executed

at end of cal

Logi ca

processi ng
handl e no | onger valid

Mal formed SQL92 string at position

M ssi ng
M ssi ng
M ssi ng
M ssi ng

def i nes

defines at index

descri ptor

IN or QUT paranmeter at index:

No current row

No data read

no such

el enment in vector

Non supported character set

Non supported SQ.92 token at position

A-8 JDBC Developer’s Guide and Reference



General JDBC Messages

ORA- 17063
ORA- 17083
ORA- 17026
ORA- 17090
ORA-17012
ORA- 17030

ORA- 17062
ORA-17014
ORA- 17031
ORA-17029

ORA- 17016
ORA-17015
ORA- 17027
ORA- 17040

ORA- 17054
ORA- 17053
ORA- 17051
ORA- 17052
ORA- 17091

ORA- 17086
ORA-17048
ORA- 17005
ORA-17023
ORA-17088

ORA- 17069

Not in a transaction
Not on the insert row
Nureri c Overfl ow
operation not allowed
Par anet er Type Confli ct

READ_COWM TTED and SERI ALI ZABLE are the only
valid transaction | evels

Ref cursor is invalid
Resul t Set . next was not call ed
set Aut oCl ose: Only support auto cl ose npde on

set ReadOnl y: Read-only connections not
support ed

Statenment tinmed out
St at ement was cancel | ed
Stream has al ready been cl osed

Sub Protocol must be specified in connection
URL

The LOB locator is not valid

The size is not valid

This APl cannot be be used for non-UDT types
This ref is not valid

Unable to create resultset at the requested
type and/or concurrency |eve

Undefined col um value on the insert row
Undef i ned type

Unsupported columm type

Unsupported feature

Unsupported syntax for requested resultset
type and concurrency | eve

Use explicit XA cal

JDBC Error Messages A-9



General JDBC Messages

ORA- 17079 User credentials doesn't match the existing
ones
ORA- 17085 Val ue conflicts occurs

A-10 JDBC Developer’s Guide and Reference



TTC Messages

TTC Messages

This section lists TTC error messages, first sorted by ORA number, and then
alphabetically.

TTC Messages Sorted by ORA Number

ORA-17401 Prot ocol violation

ORA- 17402 Only one RPA nessage i s expected

ORA- 17403 Only one RXH nessage i s expected

ORA- 17404 Recei ved nore RXDs than expected

ORA- 17405 UAC length is not zero

ORA- 17406 Exceedi ng maxi mum buffer |ength

ORA- 17407 invalid Type Representation(setRep)

ORA-17408 i nvalid Type Representation(getRep)

ORA- 17409 invalid buffer length

ORA-17410 No nore data to read from socket

ORA- 17411 Data Type representations m smatch

ORA- 17412 Bi gger type length than Maxi num

ORA- 17413 Excedi ng key size

ORA- 17414 I nsufficient Buffer size to store Col ums
Names

ORA- 17415 This type hasn’t been handl ed

ORA-17416 FATAL

ORA- 17417 NLS Problem failed to decode col utm nanes

ORA-17418 Internal structure’'s field I ength error

ORA-17419 I nval id number of columms returned

ORA- 17420 Oracl e Version not defined

ORA- 17421 Types or Connection not defined

ORA- 17422 Invalid class in factory

ORA- 17423 Using a PLSQL bl ock wi thout an | OV defined

JDBC Error Messages A-11



TTC Messages

ORA- 17424
ORA- 17425
ORA- 17426
ORA- 17427
ORA- 17428
ORA- 17429
ORA- 17430
ORA- 17431
ORA- 17432
ORA- 17433
ORA- 17434
ORA- 17435
ORA- 17436
ORA- 17437
ORA- 17438
ORA- 17439
ORA- 17440
ORA- 17441

ORA- 17442
ORA- 17443

ORA- 17444

Attenpting different marshaling operation
Returning a streamin PLSQ. bl ock

Both I N and OUT binds are NULL

Using Uninitialized OAC

Logon nust be called after connect

Must be at | east connected to server
Must be | ogged on to server

SQL Statenment to parse is null

invalid options in all?7

invalid argunents in cal

not in stream ng node

invalid nunber of in_out _binds in OV

i nval i d nunmber of outbinds

Error in PLSQL bl ock I N OQUT argunent(s)
Internal - Unexpected val ue

Invalid SQ type

DBl t eml DBType is nul

Oracl e Version not supported. M nimum
supported version is 7.2.3.

Ref cursor value is invalid

Nul | user or password not supported in THI N
driver

TTC Protocol version received from server not
support ed

TTC Messages Sorted Alphabetically

ORA- 17424
ORA- 17412
ORA- 17426

Attenpting different marshaling operation
Bi gger type length than Maxi mum
Both IN and OUT binds are NULL

A-12 JDBC Developer’s Guide and Reference



TTC Messages

ORA- 17411
ORA- 17440
ORA- 17437
ORA- 17413
ORA- 17406
ORA- 17416
ORA- 17414

ORA- 17438
ORA-17418
ORA- 17433
ORA- 17409
ORA- 17422
ORA-17419
ORA- 17435
ORA- 17436
ORA- 17432
ORA- 17439
ORA- 17408
ORA- 17407
ORA- 17428
ORA- 17429
ORA- 17430
ORA- 17417
ORA-17410
ORA- 17434
ORA- 17443

ORA- 17402

Data Type representations m snmatch

DBl t eml DBType is nul

Error in PLSQL bl ock I N OQUT argunent(s)
Excedi ng key size

Exceedi ng maxi mum buffer |ength

FATAL

Insufficient Buffer size to store Col unms
Nanmes

Internal - Unexpected val ue

Internal structure’'s field I ength error
invalid argunents in cal

invalid buffer length

Invalid class in factory

nval i d number of colums returned

nval id number of in_out_binds in | OV
nval i d nunmber of outbinds

nvalid options in all?7
nvalid SQ type
nvalid Type Representation(getRep)

nval i d Type Representation(set Rep)

Logon nust be called after connect

Must be at |east connected to server

Must be | ogged on to server

NLS Problem failed to decode col utm nanes
No nore data to read from socket

not in stream ng node

Nul | user or password not supported in THIN
driver

Only one RPA nessage i s expected

JDBC Error Messages A-13



TTC Messages

ORA- 17403
ORA- 17420
ORA- 17441

ORA- 17401
ORA- 17404
ORA- 17442
ORA- 17425
ORA- 17431
ORA- 17415
ORA- 17444

ORA- 17421
ORA- 17405
ORA- 17423
ORA- 17427

Only one RXH nessage i s expected
Oracl e Version not defined

Oracl e Version not supported. M nimum
supported version is 7.2.3.

Prot ocol violation

Recei ved nore RXDs than expected
Ref cursor value is invalid
Returning a streamin PLSQ. bl ock
SQL Statenment to parse is null
This type hasn’t been handl ed

TTC Protocol version received from server not
support ed

Types or Connection not defined

UAC length is not zero

Using a PLSQL bl ock wi thout an IOV defined
Using Uninitialized OAC

A-14 JDBC Developer’s Guide and Reference



Index

A getResultSet() method, 10-6
getSQLTypeName() method, 10-6
length() method, 10-6
overview, 5-12

array descriptors
creating, 10-16
described, 10-8
introduced, 5-12

ArrayDescriptor class
createDescriptor() method, 10-10
creating instances, 10-9
get methods, 10-10
getArrayType() method, 10-10
getBaseName() method, 10-10
getBaseType() method, 10-10
getConnection() method, 10-10
getMaxLength() method, 10-10

arrays
defined, 10-2
example program, 17-26
getting, 10-15
passing to callable statement, 10-17
retrieving from a result set, 10-11
retrieving partial arrays, 10-14
using type maps, 10-18
working with, 10-2

ASO (Oracle Advanced Security), 15-8

authentication (security), 15-9

AUTHENTICATION_LEVEL parameter, 15-18

auto-commit mode
defined, 3-13
disabling, 16-6

absolute positioning in result sets, 11-2
absolute() method (result set), 11-14
addBatch() method, 12-12
addConnectionEventListener() method (connection
cache), 13-19
afterLast() method (result sets), 11-14
ANO (Oracle Advanced Security), 15-8
APPLET HTML tag, 15-24
applets
connecting to a database, 15-15
deploying in an HTML page, 15-24
for IDK 1.2.x or 1.1.x browser, 15-23
packaging, 15-23
packaging and deploying, 1-11
signed applets
browser security, 15-20
object-signing certificate, 15-20
using, 15-20
using with firewalls, 15-20
working with, 15-15
ARCHIVE, parameter for APPLET tag, 15-25
ARRAY class
and nested tables, 5-12
and VARRAYs, 5-12
creating instances, 10-9
described, 10-2
getArray() method, 10-6
getBaseType() method, 10-6
getBaseTypeName() method, 10-6
getConnection() method, 10-6
getDescriptor() method, 10-6
getOracleArray() method, 10-6

Index-1



B

batch updates--see update batching
batch value
checking value, 12-7
connection batch value, setting, 12-5
connection vs. statement value, 12-4
default value, 12-5
overriding value, 12-7
statement batch value, setting, 12-6
BatchUpdateException, 12-17
beforeFirst() method (result sets), 11-13
BFILE
accessing data, 7-21
creating and populating columns, 7-19
defined, 3-28
example program, 17-31
introduction, 7-2
locators, 7-16
getting from a result set, 7-16
getting from callable statement, 7-17
passing to callable statements, 7-17
passing to prepared statements, 7-17
selecting, 5-12
manipulating data, 7-21
reading data, 7-18
BFILE class
closeFile() method, 7-22
getBinaryStream() method, 7-22
getBytes() method, 7-22
getDirAlias() method, 7-22
getName() method, 7-22
isFileOpen() method, 7-22
length() method, 7-22
openFile() method, 7-22
overview, 5-12
position() method, 7-22
BigDecimal mapping (for attributes), 8-30
bind by name limitations, 18-16
BLOB
creating and populating, 7-10
creating columns, 7-11
introduction, 7-2
locators
getting from result set, 7-4

Index-2

passing to callable statements, 7-6
passing to prepared statement, 7-5
retrieving, 7-3
selecting, 5-12
manipulating data, 7-12
populating columns, 7-11
reading data, 7-6,7-8
writing data, 7-9
BLOB class
getBinaryOutputStream() method, 7-13
getBinaryStream() method, 7-13
getBufferSize() method, 7-13
getBytes() method, 7-13
getChunkSize() method, 7-13
length() method, 7-14
overview, 5-12
position() method, 7-14
putBytes() method, 7-14
Boolean parameters, restrictions, 16-9
branch qualifier (distributed transactions), 14-13

C

cache schemes (connection cache), 13-24
caching, client-side

custom use for scrollable result sets, 11-6

Oracle use for scrollable result sets, 11-5
callable statement

use for stored procedures, 3-31

using getOracleObject() method, 6-5
cancelRowUpdates() method (result set), 11-20
casting return values, 6-10
catalog arguments (DatabaseMetaData), 18-16
CHAR class

conversions with server-side internal

driver, 15-34

creating instances, 5-13

described, 5-13

getString() method, 5-14

getStringWithReplacement() method, 5-15

toString() method, 5-15
CHAR columns

NLS size restrictions, Thin, 15-6

space padding, 16-8

using setFixedCHAR() to match in



WHERE, 6-17
character sets
client-server conversions, 5-15
conversions with server-side internal

driver, 15-34
CharacterSet class, 5-13
checksums

code example, 15-13
setting parameters in Java, 15-13
support by OCI drivers, 15-11
support by Thin driver, 15-12
Class.forName() method, 3-3
CLASSPATH, specifying, 2-6
clearBatch() method, 12-14
clearDefines() method, 12-24
client installation, 1-10
CLOB
creating and populating, 7-10
creating columns, 7-11
introduction, 7-2
locators
getting from result set, 7-4
passing to callable statements, 7-6
passing to prepared statement, 7-5
retrieving, 7-3
selecting, 5-12
manipulating data, 7-12
populating columns, 7-11
reading data, 7-6,7-8
writing data, 7-9
CLOB class
getAsciiOutputStream() method, 7-14
getAsciiStream() method, 7-14
getBufferSize() method, 7-14
getCharacterOutputStream() method, 7-14
getCharacterStream() method, 7-14
getChars() method, 7-14
getChunkSize() method, 7-14
getSubString() method, 7-14
length() method, 7-14
overview, 5-12
position() method, 7-15
putChars() method, 7-15
putString() method, 7-15
supported character sets, 7-13

close() method, callable statement, 5-20
close() method, OracleConnectionCache
interface, 13-21

close() method, prepared statement, 5-19
close() method, statement objects, 5-19
closeFile() method for BFILEs, 7-22
closePooledConnection() method, 13-21
CMAN.ORA file, creating, 15-18
CODE, parameter for APPLET tag, 15-24
CODEBASE, parameter for APPLET tag, 15-25
collections

creating strongly typed, 10-8

defined, 10-2
column types, defining, 12-23
commit

changes to database, 3-13

distributed transaction branch, 14-12
CONCUR_READ_ONLY result sets, 11-9
CONCUR_UPDATABLE result sets, 11-9
concurrency types in result sets, 11-4
connect string

for database connection, 3-3

for server-side internal driver, 15-28

for the Oracle8 Connection Manager, 15-18
connection

closing, 3-14

from an applet, 15-15

opening, 3-3

opening for JDBC OCI driver, 3-8

opening for JDBC Thin driver, 3-9

Properties object, 3-6

read-only, 16-14

testing, 2-8

via multiple Connection Managers, 15-19

with server-side internal driver, 1-12,15-26
connection caching

adding connection event listener, 13-19

basics, accessing the cache, 13-16

basics, closing connections, 13-17

basics, opening connections, 13-16

basics, setting up a cache, 13-15

cache instance getConnection() method, 13-16

connection events, 13-17

creating connection event listener, 13-19

implementation scenarios, 13-17

Index-3



OracleConnectionCache interface, 13-21
OracleConnectionCachelmpl class, 13-22
OracleConnectionEventListener class, 13-25
overview, 13-15
preliminary steps, 13-18
removing connection event listener, 13-20
steps in closing a connection, 13-20
steps in opening a connection, 13-18
connection event listener, 13-19
Connection Manager
installing, 15-17
starting, 15-18
using multiple managers, 15-19
with applets, 1-10, 15-16, 15-17
writing the connect string, 15-18
connection methods, JDBC 2.0 result sets, 11-32
connection pooling
concepts, 13-11
creating data source and connecting, 13-13
introduction, 13-11
Oracle data source implementation, 13-12
pooled connections, 13-13
sample application, 17-74
standard data source interface, 13-12
connection properties
database, 3-7
defaultBatchValue, 3-7
defaultRowPrefetch, 3-7
password, 3-7
put() method, 3-8
remarksReporting, 3-7
user, 3-7
connectionClosed() method (connection event
listener), 13-26
connectionErrorOccurred() method (connection
event listener), 13-26
CREATE DIRECTORY statement, BFILEs, 7-19
CREATE TABLE statement
to create BFILE columns, 7-19
to create BLOB, CLOB columns, 7-10
create() method, CustomDatumFactory
interface, 8-21

createDescriptor() method, ArrayDescriptor, 10-10
createDescriptor() method, StructDescriptor, 8-5

createStatement() method, 5-17

Index-4

CursorName limitations, 18-15
cursors, closing resources, 16-8
custom collection classes
and JPublisher, 10-20
defined, 10-2,10-20
custom Java classes
creating, 17-35,17-38, 17-39
defined, 8-2
custom object classes
creating, 8-9
creating with JPublisher, 8-28
defined, 8-2
custom reference classes
and JPublisher, 9-10
defined, 9-2,9-10
CustomDatum interface
additional uses, 8-26
advantages, 8-10
described, 8-20
example program, 17-38, 17-39
introduced, 5-4
reading data, 8-23
writing data, 8-25
CustomDatumFactory interface, 8-20

D

data conversions
considerations, 6-2
LONG, 3-20
LONG RAW, 3-20

data sources
creating and connecting (with JNDI), 13-7
creating and connecting (without JNDI), 13-7
logging and tracing, 13-9
Oracle implementation, 13-3
PrintWriter, 13-9
properties, 13-4
sample application (with JNDI), 17-70
sample application (without JINDI), 17-71
standard interface, 13-3

database connection property, 3-7

database meta data
catalog parameter, 18-16
entry points for applets, 15-24



methods regarding scalar function start a transaction branch, 14-10

support, 18-11 transaction branch ID component, 14-13
methods, JDBC 2.0 result sets, 11-35 XA connection interface, 14-7
datatypes XA data source interface, 14-6
classes, 5-7 XA error handling, 14-16
Java, 3-16 XA exception classes, 14-15
Java native, 3-16 XA ID interface, 14-13
JDBC, 3-16 XA resource functionality, 14-9
mappings, 3-16 XA resource interface, 14-8
Oracle SQL, 3-16 DriverManager class, 3-3
DATE class, 5-15 dynamic SQL, 1-2
Datum class, 5-7 DYNAMIC_SCHEME (connection cache), 13-24
DBMS_LOB package, 7-6
debugging JDBC programs, 16-11 E
DEFAULT_CHARSET character set value, 5-14
defaultBatchValue connection property, 3-7 encryption
defaultConnection() method, 15-26 code example, 15-13
defaultRowPrefetch connection property, 3-7 overview, 15-10
defineColumnType() method, 3-24, 5-19, 12-24 setting parameters in Java, 15-13
DELETE in aresultset, 11-18 support by OCI drivers, 15-11
deleteRow() method (result set), 11-18 support by Thin driver, 15-12
deletesAreDetected() method (database meta end a distributed transaction branch, 14-11
data), 11-29 environment variables, checking, 2-6
Dictionary class (for type maps), 8-11 errors
distributed transactions general JDBC message structure, A-2
branch qualifier, 14-13 general JDBC messages, listed, A-3
check for same resource manager, 14-13 TTC messages, listed, A-11
commit a transaction branch, 14-12 exceptions
components and scenarios, 14-2 printing stack trace, 3-34
concepts, 14-3 processing, 3-33
distributed transaction ID component, 14-13 retrieving error code, 3-33
end a transaction branch, 14-11 retrieving message, 3-33
example of implementation, 14-18 retrieving SQL state, 3-33
global transaction identifier, 14-13 executeBatch() method, 12-13
ID format identifier, 14-13 executeQuery() method, 5-18
introduction, 14-2 executeUpdate() method, 12-9
Oracle XA connection implementation, 14-7 extensions to JDBC, Oracle, 5-1, 6-1, 8-1,9-1, 10-1
Oracle XA data source implementation, 14-6 external changes (result set)
Oracle XA ID implementation, 14-13 defined, 11-27
Oracle XA optimizations, 14-17 seeing, 11-28
Oracle XA resource implementation, 14-8 visibility vs. detection, 11-29
prepare a transaction branch, 14-11 external file, defined, 3-28

roll back a transaction branch, 14-12
sample application (suspend/resume), 17-79
sample application (two-phase commit), 17-84

Index-5



F

fetch direction in result sets, 11-17
fetch size, result sets, 11-24
firewalls
configuring for applets, 15-21
connect string, 15-22
described, 15-21
required rule list items, 15-21
using with applets, 1-11, 15-20
first() method (result sets), 11-14
FIXED_RETURN_NULL_SCHEME (connection
cache), 13-24
floating-point compliance, 18-15
format identifier, transaction ID, 14-13
forward-only result sets, 11-3
function call syntax, SQL92 syntax, 18-13

G

getActiveSize() method (connection cache), 13-25
getArray() method

introduced, 10-11

usage, 10-6

using type maps, 10-13
getARRAY() method, retrieving an array, 10-11
getArrayType() method, 10-10
getAsciiOutputStream() method for CLOBs, 7-7,

7-14
getAsciiStream() method for CLOBs, 7-7,7-14
getAttributes() method for embedded objects, 8-14
getAttributes() method for STRUCTs, 8-3
getBaseName() method, 10-10
getBaseType() method, 10-6, 10-10, 10-15
getBaseTypeName() method, 9-5, 10-6
getBinaryOutputStream() method for BLOBs, 7-7,
7-13

getBinaryStream() method for BFILEs, 7-18, 7-22
getBinaryStream() method for BLOBs, 7-7, 7-13
getBinaryStream() method for LONG RAW, 3-22
getBufferSize() method for BLOBs, 7-13
getBufferSize() method for CLOBs, 7-14
getBytes() method for BFILEs, 7-22
getBytes() method for BLOBs, 7-13
getBytes() method for LONG RAW, 3-23

Index-6

getBytes() method, general

, 5

10

getCacheSize() method (connection cache), 13-25
getCharacterOutputStream() method for

CLOBs, 7-7,7-14

getCharacterStream() method for CLOBs, 7-7, 7-14
getChars() method for CLOBs,
getChunkSize() method for BLOBs, 7-13
getChunkSize() method for CLOBs, 7-14

getColumnCount() method,
getColumnName() method,

getColumns() method, 12-27
5-21, 6-19

getColumnTypeName() method, 5-21, 6-19
getConcurrency() method (result set), 11-12

getColumnType() method,

getConnection() method

its forms and signatures,

7-14

5-21
5-21

3-4

with server-side internal driver, 15-26
getConnection() method for array

descriptors, 10-10

getConnection() method for arrays, 10-6
getConnection() method for STRUCTs, 8-4
getCursor() method, 5-28, 5-29
getCursorName() method, limitations, 18-15

getCustomDatum() method,

8-21, 8-23

getDefaultExecuteBatch() method, 5-18, 12-7
getDefaultRowPrefetch() method, 5-18, 12-21

getDescriptor() method
for ARRAYs, 10-6

getDescriptor() method, for STRUCTs, 8-4
getDirAlias() method for BFILEs, 7-21, 7-22
getErrorCode() method (SQLException), 3-33
5-19, 12-6, 12-7
getFetchSize() method, 11-24
getMaxLength() method for arrays, 10-10
getMessage() method (SQLException), 3-33
getName() method for BFILEs,
getNumericFunctions() method, 18-11

getExecuteBatch() method,

getObject() method
and SQLInput streams,

and SQLOutput streams,

casting return values,

7-21,7-22

8-15

6-10

for CustomDatum objects,

for Struct objects, 8-6
return types, 6-4,6-6
to get BFILE locators,

7-16

8-16

8-22



to get Oracle objects, 8-7

used with CustomDatum interface, 8-24
getOracleArray() method, 10-6, 10-11, 10-15
getOracleAttributes() method, 8-4, 8-7
getOracleObject() method

casting return values, 6-10

in callable statements, 5-20

inresult sets, 5-21

return types, 6-4,6-6

using in callable statement, 6-5

using in result set, 6-5
getProcedureColumns() method, 12-27
getProcedures() method, 12-27
getREF() method, 9-6,9-7
getRemarksReporting() method, 5-18
getResultSet() method, arrays, 10-6
getResultSet() method, statement objects, 5-19
getRow() method (result set), 11-15
getRowPrefetch() method, 5-19, 12-21
getSQLState() method (SQLException), 3-33
getSQLTypeName() method for ARRAYs, 10-6,

10-15

getSQLTypeName() method for STRUCTs, 8-3
getString() method

to get ROWIDs, 5-26

usage, 5-14
getStringFunctions() method, 18-11
getStringWithReplacement() method, 5-15
getSTRUCT() method, 8-7
getSubString() method for CLOBs, 7-7,7-14
getSystemFunctions() method, 18-11
getTableName() method, 5-21
getTimeDateFunctions() method, 18-11
getTransactionlsolation() method, 5-18, 16-14
getType() method (result set), 11-12
getTypeMap() method, 5-18, 8-12
getUpdateCounts() method

(BatchUpdateException), 12-17

getValue() method, REFs, 9-5, 9-6
getXXX() methods

casting return values, 6-10

for specific datatypes, 6-7

in callable statements, 5-20

inresult sets, 5-21
global transaction identifier (distributed

transactions), 14-13
global transactions, 14-2

H

HEIGHT, parameter for APPLET tag, 15-24
HTML tags, to deploy applets, 15-24
HTTP protocol, 1-7

IEEE 754 floating-point compliance, 18-15
INSERT in a result set, 11-21

insertRow() method (result set), 11-22
insertsAreDetected() method (database meta

data), 11-29
installation
client, 1-10

directories and files, 2-4

verifying on the client, 2-4
integrity

code example, 15-13

overview, 15-10

setting parameters in Java, 15-13

support by OCI drivers, 15-11

support by Thin driver, 15-12
internal changes (result set)

defined, 11-27

seeing, 11-27
isAfterLast() method (result set), 11-15
isBeforeFirst() method (result set), 11-15
isFileOpen() method for BFILEs, 7-22
isFirst() method (result set), 11-15
isLast() method (result set), 11-15
isSameRM() (distributed transactions), 14-13

J

Java
compiling and running, 2-7
datatypes, 3-16
native datatypes, 3-16
stored procedures, 3-32
stream data, 3-19
Java Naming and Directory Interface (JNDI), 13-2

Index-7



Java Sockets, 1-7
java.math, Java math packages, 3-2
java.sql, JDBC packages, 3-2
JDBC
and IDEs, 1-14
and Oracle Application Server, 1-14
basic program, 3-2
datatypes, 3-16
defined, 1-2
guidelines for using, 1-4
importing packages, 3-2
Oracle JDBC limitations, 18-15
sample files, 2-7
testing, 2-8
JDBC 2.0 support
datatype support, 4-3
extended feature support, 4-5
introduction, 4-2
JDK 1.2.xvs. JDK 1.1.x, 4-3
overview of features, 4-7
standard feature support, 4-4
JDBC drivers
and NLS, 15-3
applets, 1-10
applications, 1-10
choosing a driver for your needs, 1-9
common features, 1-6
common problems, 16-8
compatibilities, 2-2
determining driver version, 2-7
introduction, 1-5
registering, 3-3
requirements, 2-2
restrictions, 16-9
SQL92 syntax, 18-9
JDBC mapping (for attributes), 8-29
JdbcCheckup program, 2-8
JDeveloper, 1-14
JDK
migration from 1.1.x to 1.2.x, 4-5
versions supported, 1-13
JNDI
looking up data source, 13-9
overview of Oracle support, 13-2
registering data source, 13-8

Index-8

JPublisher utility

creating custom collection classes, 10-20

creating custom Java classes, 8-28
creating custom reference classes, 9-10
described, 5-4, 8-9

SQL type categories and mapping options,
type mapping modes and settings, 8-29

type mappings, 8-28

L

8-29

last() method (result set), 11-14
LD_LIBRARY_PATH variable, specifying,
length() method for arrays, 10-6

length() method for BFILEs, 7-22
length() method for BLOBs, 7-14
length() method for CLOBs, 7-14

LIKE escape characters, SQL92 syntax, 18-12

limitations
bind by name, 18-16
catalog arguments to DatabaseMetaData
calls, 18-16
CursorName, 18-15

IEEE 754 floating-point compliance, 18-15

on setBytes() and setString(), use of streams to

avoid, 3-30
PL/SQL TABLE, BOOLEAN, RECORD
types, 18-15

read-only connection, 16-14
SQL92 outer join escapes, 18-15
SQLWarning class, 18-16

LOB

defined, 3-27

introduction, 7-2

locators, 7-2
getting from callable statements, 7-4
getting from result sets, 7-4
passing, 7-5

reading data, 7-6

sample program, 17-17

locators

getting for BFILEs, 7-16
getting for BLOBs, 7-3
getting for CLOBs, 7-3
LOB, 7-2



logging with a data source, 13-9
logical connection instance, 13-11
LONG data conversions, 3-20
LONG RAW data conversions, 3-20

M

Map interface (for type maps), 8-11, 10-14
memory leaks, closing resources, 16-8
migration from JDK 1.1.xto 1.2.x, 4-5
moveToCurrentRow() method (result set), 11-21
moveTolnsertRow() method (result set), 11-21
mutable arrays, 10-20

N

named collections, 10-2, 10-8
National Language Support--see NLS
nested tables
defined, 10-3
usage of arrays to materialize, 10-5
Net8
name-value pair, 3-4
protocol, 1-7
network events, trapping, 16-11
next() method (result set), 11-16
NLS
and JDBC drivers, 15-3
conversions, 15-3
for JDBC OClI drivers, 15-3
for JDBC Thin drivers, 15-4
for server-side internal driver, 15-4
Java methods that employ, 15-2
Thin driver CHAR/VARCHAR?2 size
restrictions, 15-6
using, 15-2
NLS_LANG environment variable, 15-3
NULL data, converting, 6-2
NUMBER class, 5-15

O

object references
accessing object values, 9-7,9-9
described, 9-2

passing to prepared statements, 9-8
retrieving, 9-6
retrieving from callable statement, 9-7
updating object values, 9-7,9-9
object-JDBC mapping (for attributes), 8-29
OCI driver
applications, 1-10
described, 1-8
NLS considerations, 15-3
openFile() method for BFILEs, 7-22
optimization, performance, 16-6
Oracle Advanced Security
support by JDBC, 15-8
support by OCI drivers, 15-8
support by Thin driver, 15-9
Oracle Application Server, 1-14
Oracle datatypes, 6-1
Oracle extensions
datatype support, 5-3
object support, 5-4
packages, 5-2
performance extensions, 12-1
result sets, 6-3
schema naming support, 5-5
statements, 6-3
support under 8.0.x/7.3.x drivers, 5-29
to JDBC, 5-1,6-1, 8-1,9-1,10-1
Oracle mapping (for attributes), 8-29
Oracle objects
and JDBC, 8-2
converting with CustomDatum interface, 8-20
converting with SQLData interface, 8-14
getting with getObject() method, 8-7
Java classes which support, 8-3
mapping to custom object classes, 8-9
reading data by using SQLData interface, 8-17
working with, 8-2
writing data by using SQLData interface, 8-19
Oracle SQL datatypes, 3-16
OracleCallableStatement class
close() method, 5-20
described, 5-20
getOracleObject() method, 5-20
getXXX() methods, 5-20, 6-7
registerOutParameter() method, 5-20, 6-13

Index-9



setNull() method, 5-20

setOracleObject() method, 5-20

setXXX() methods, 5-20
OracleConnection class

createStatement() method, 5-17

described, 5-17

getDefaultExecuteBatch() method, 5-18

getDefaultRowPrefetch() method, 5-18

getRemarksReporting() method, 5-18

getTransactionlsolation() method, 5-18, 16-14

getTypeMap() method, 5-18

prepareCall() method, 5-18

prepareStatement() method, 5-17

setDefaultExecuteBatch() method, 5-18

setDefaultRowPrefetch() method, 5-18

setRemarksReporting() method, 5-18

setTransactionlsolation() method, 5-18, 16-14

setTypeMap() method, 5-18
OracleConnectionCache interface

close() method, 13-21

closePooledConnection() method, 13-21

described, 13-21

reusePooledConnection() method, 13-21
OracleConnectionCachelmpl class

described, 13-22

getActiveSize() method, 13-25

getCacheSize() method, 13-25

instantiating and setting properties, 13-22

schemes for new pooled connections, 13-24

setCacheScheme() method, 13-24

setConnectionPoolDataSource() method, 13-23

setMaxLimit() method, 13-24
setting maximum pooled connections, 13-24
OracleConnectionEventListener class
connectionClosed() method, 13-26
connectionErrorOccurred() method, 13-26
described, 13-25
instantiating, 13-25
setDataSource() method, 13-26
OracleConnectionPoolDataSouorce class, 13-12
OracleDataSource class, 13-3
OracleDriver class
defaultConnection() method, 15-27
described, 5-17
oracle.jdbc2 package, described, 5-24

Index-10

oracle.jdbc.driver package, 5-16
oracle.jdbc.pool package, 13-14
oracle.jdbc.xa package and subpackages, 14-5
OraclePooledConnection class, 13-13
OraclePreparedStatement class
close() method, 5-19
described, 5-19
getExecuteBatch() method, 5-19
setCustomDatum() method, 5-19
setExecuteBatch() method, 5-19
setNull() method, 5-19
setOracleObject() method, 5-19
setXXX() methods, 5-19
OracleResultSet class
described, 5-21
getOracleObject() method, 5-21
getXXX() methods, 5-21, 6-7
OracleResultSetCache interface, 11-6
OracleResultSetMetaData class
described, 5-21
getColumnCount() method, 5-21
getColumnName() method, 5-21
getColumnType() method, 5-21
getColumnTypeName() method, 5-21
getTableName() method, 5-21
using, 6-19
oracle.sql package
data conversions, 6-2
datatype classes, 5-7
datatype support, 5-9
described, 5-7
OracleSqgl.parse() method, 18-13
OracleStatement class
close() method, 5-19
defineColumnType(), 5-19
described, 5-18
executeQuery() method, 5-18
getResultSet() method, 5-19
getRowPrefetch() method, 5-19
setRowPrefetch() method, 5-19
OracleTypes class (for typecodes), 5-22,12-24
OracleXAConnection class, 14-7
OracleXADataSource class, 14-6
OracleXAResource class, 14-8
OracleXid class, 14-13



othersDeletesAreVisible() method (database meta
data), 11-28

otherslinsertsAreVisible() method (database meta
data), 11-28

othersUpdatesAreVisible() method (database meta
data), 11-28

outer joins, SQL92 syntax, 18-12

ownDeletesAreVisible() method (database meta

data), 11-28
ownlnsertsAreVisible() method (database meta
data), 11-28

ownUpdatesAreVisible() method (database meta
data), 11-28

P

password connection property, 3-7
password, specifying, 3-5
PATH variable, specifying, 2-6
performance extensions

defining column types, 12-23

introduction, 12-1

prefetching rows, 12-20

standard vs. Oracle, 4-5

TABLE_REMARKS reporting, 12-27
performance optimization, 16-6
PL/SQL

JDBC type support limitations, 18-15

restrictions, 16-9

space padding, 16-8

stored procedures, 3-31
pooled connections

Oracle implementation, 13-13

standard interface, 13-13
position() method for BFILEs, 7-22
position() method for BLOBs, 7-14
position() method for CLOBs, 7-15
positioning in result sets, 11-2
prefetching rows

described, 12-20

suggested default, 12-23
prepare a distributed transaction branch, 14-11
prepareCall() method, 5-18
prepared statement

creating prepared statement object, 3-12

using setObject() method, 6-12

using setOracleObject() method, 6-12
prepareStatement() method, 5-17
previous() method (result set), 11-16
printStackTrace() method (SQLException), 3-34
PrintWriter for a data source, 13-9
put() method

for Properties object, 3-8

for type maps, 8-12
putBytes() method for BLOBs, 7-14
putChars() method for CLOBs, 7-15
putString() method for CLOBs, 7-15

Q

query, executing, 3-10

R

RAW class, 5-15
read-only result set concurrency type, 11-4
readSQL() method

described, 8-14

implementing, 8-15
REF class

described, 9-2

getBaseTypeName() method, 9-5

getValue() method, 9-5

overview, b5-11

setValue() method, 9-5
REF CURSORs

defined, 5-28

example program, 17-29

materialized as result set objects, 5-28
refetching rows into a result set, 11-26, 11-29
refreshRow() method (result set), 11-26
registerDriver() method, 5-17
registering Oracle JDBC drivers, class for, 5-17
registerOutParameter() method, 5-20, 6-13
relative positioning in result sets, 11-2
relative() method (result set), 11-14
remarksReporting

connection property, 3-7

flag, 12-20
removeConnectionEventListener method

Index-11



(connection cache), 13-20
resource managers, 14-3
result set
closing, 3-11
fetch size, 11-24
metadata, 5-21
methods, JDBC 2.0, 11-32
Oracle extensions, 6-3
processing, 3-11
query, return result set, 3-10
types for scrollability and sensitivity, 11-3
using getOracleObject() method, 6-5
result set enhancements
concurrency types, 11-4
downgrade rules, 11-11
fetch size, 11-24
limitations, 11-10
Oracle scrollability requirements, 11-5
Oracle updatability requirements, 11-5
positioning, 11-2
positioning result sets, 11-13
processing result sets, 11-16
refetching rows, 11-26, 11-29
result set types, 11-3
scrollability, 11-2
seeing external changes, 11-28
seeing internal changes, 11-27
sensitivity to database changes, 11-2
specifying scrollability, updatability, 11-8
summary of methods, 11-32
summary of visibility of changes, 11-30
updatability, 11-4
updating result sets, 11-18
visibility vs. detection of external
changes, 11-29
ResultSet class, 3-10
return types
for getXXX() methods, 6-8
getObject() method, 6-6
getOracleObject() method, 6-6
return values, casting, 6-10
reusePooledConnection() method, 13-21
roll back
changes to database, 3-13
distributed transaction branch, 14-12

Index-12

row prefetching
and data streams, 3-30
described, 12-20
ROWID class
defined, 5-26
described, 5-15
usage, 5-26
ROWID, use for result set updates, 11-5

S

scalar functions, SQL92 syntax, 18-11
schema naming conventions, 5-5
scrollability in result sets, 11-2
scrollable result sets
creating, 11-8
fetch direction, 11-17
implementation of scroll-sensitivity, 11-30
positioning, 11-13
processing backward/forward, 11-16
refetching rows, 11-26, 11-29
scroll-insensitive result sets, 11-3
scroll-sensitive result sets, 11-3
seeing external changes, 11-28
visibility vs. detection of external
changes, 11-29
scroll-sensitive result sets, limitations, 11-10
security
authentication, 15-9
encryption, 15-10
integrity, 15-10
Oracle Advanced Security support, 15-8
overview, 15-8
sendBatch() method, 12-7,12-9
sensitivity in result sets to database changes,
server-side internal driver
connect string for, 15-28
connection to database, 15-26
described, 15-26
introduced, 1-8
NLS considerations, 15-4
relation to the SQL engine, 15-26
session context, 15-30
testing, 15-30
transaction context, 15-30



server-side Thin driver, described, 1-8

session context, server-side internal driver, 1-12,

15-30
setAsciiStream() method, 6-16
setAutoCommit() method, 16-6
setBFILE() method, 7-17
setBinaryStream() method, 6-16
setBLOB() method, 7-5
setBlob() method, JDK 1.1.x, 7-5
setBlob() method, IDK 1.2.x, 7-5
setBytes() limitations, using streams to avoid,
setCacheScheme() method (connection
cache), 13-24
setCharacterStream() method, 6-16
setCLOB() method, 7-5
setClob() method, IDK 1.1.x, 7-5
setClob() method, IDK 1.2.x, 7-5

setConnectionPoolDataSource method (connection

cache), 13-23
setCursorName() method, limitations, 18-15
setCustomDatum() method, 5-19, 8-22, 8-25
setDataSource() method (connection event
listener), 13-26

setDate() method, 6-17
setDefaultExecuteBatch() method, 5-18, 12-5
setDefaultRowPrefetch() method, 5-18, 12-21
setEscapeProcessing() method, 18-9
setExecuteBatch() method, 5-19, 12-6
setFetchSize() method, 11-24
setFixedCHAR() method, 6-17
setMaxFieldSize() method, 12-25,16-8
setNull() method

forms and signatures, 6-13

in callable statements, 5-20

in prepared statements, 5-19
setObject() method

for BFILES, 7-17

for BLOBs and CLOBs, 7-5

for CustomDatum objects, 8-22

for object references, 9-8

for STRUCT objects, 8-8

to write object data, 8-26

usage, 6-11

using in prepared statements, 6-12
setOracleObject() method

for BFILES, 7-17

for BLOBs and CLOBs, 7-5

in callable statements, 5-20

in prepared statements, 5-19

usage, 6-11

using in prepared statements, 6-12
setREF() method, 9-8
setRemarksReporting() method, 5-18, 12-27
setResultSetCache() method, 11-7
setRowPrefetch() method, 5-19, 12-21
setString() method

limitations, using streams to avoid, 3-30

to bind ROWIDs, 5-26
setTime() method, 6-17
setTimestamp() method, 6-17
setTransactionlsolation() method, 5-18, 16-14
setTypeMap() method, 5-18
setUnicodeStream() method, 6-16
setValue() method, REFs, 9-5
setXXX() methods

for specific datatypes, 6-12

in callable statements, 5-20

in prepared statements, 5-19
signed applets, 1-10
SQL

data converting to Java datatypes, 6-2

primitive types, 5-7

structured types, 5-7
SQL engine, relation to server-side internal

driver, 15-26

SQL syntax (Oracle), 18-9
SQL92 syntax, 18-9

function call syntax, 18-13

LIKE escape characters, 18-12

outer joins, 18-12

scalar functions, 18-11

time and date literals, 18-9

translating to SQL example, 18-13
SQLData interface

advantages, 8-10

described, 8-14

example program, 17-35

introduced, 5-4

Oracle implementation, 5-25

reading data from Oracle objects, 8-17

Index-13



using with type map, 8-14
writing data from Oracle objects, 8-19
SQLException class, 3-33
SQLInput interface
described, 8-15
introduced, 8-14
SQLJ
advantages over JDBC, 1-3
guidelines for using, 1-4

SQLNET.ORA, parameters for tracing, 16-11
SQLOutput interface

described, 8-15

introduced, 8-14
SQLWarning class, limitations, 18-16
start a distributed transaction branch, 14-10
statement methods, JDBC 2.0 result sets, 11-35

Statement object
closing, 3-11
creating, 3-10
statements, Oracle extensions, 6-3
static SQL, 1-2
stored procedures
Java, 3-32
PL/SQL, 3-31
stream data
avoiding streams, 3-24
bypassing stream column, 3-26
CHAR columns, 3-24
closing, 3-28
example, 3-22
example program,
external files, 3-27
LOBs, 3-27,7-6
LONG columns, 3-19
LONG RAW columns, 3-19
multiple columns, 3-25
overview, 3-19
precautions, 3-28
RAW columns, 3-24
row prefetching, 3-30
UPDATE/COMMIT statements, 7-8
use to avoid setBytes() and setString()
limitations, 3-30
VARCHAR columns, 3-24
STRUCT

17-10

Index-14

creating instances, 8-5
descriptor, 8-5
embedded object, 8-6
nested objects, 5-11
object attributes, 5-10
retrieving, 8-6
retrieving attributes as oracle.sql types,
STRUCT class
getConnection() method, 8-4
getDescriptor() method, 8-4
getOracleAttributes() method, 8-4
overview, 5-10
toJdbc() method, 8-4
STRUCT descriptor, 8-6
Struct interface
getAttributes() method, 8-3
getSQLTypeName() method, 8-3

implementation by STRUCT class, 5-10

StructDescriptor class
createDescriptor() method, 8-5
creating instances, 8-5
get methods, 8-6
usage, 8-5

T

TABLE_REMARKS reporting, 12-27
TCP/IP protocol, 1-7,3-10
Thin driver

applets, 1-10, 15-15

applications, 1-10

CHAR/VARCHAR?2 NLS size restrictions,

described, 1-7
NLS considerations, 15-4
server-side, described, 1-8
time and date literals, SQL92 syntax, 18-9
TNSNAMES entries, 3-4
toDatum() method
applied to CustomDatum objects,
called by setCustomDatum() method,
toJdbc() method, 5-10, 8-4
toString() method, 5-15
trace facility, 16-11
trace parameters
client-side, 16-12

8-26

15-6

8-10, 8-21



server-side, 16-13
tracing with a data source, 13-9
transaction branch
defined, 14-2
ID component, 14-13
transaction context, server-side internal
driver, 1-12,15-30
transaction IDs (distributed transactions), 14-5
transaction managers, 14-2
TTC error messages, listed, A-11
TTC protocol, 1-7
type map
adding entries, 8-12
and STRUCTs, 8-14
creating a new map, 8-13
defined, 5-4
relationship to database connection, 15-28
usage by getObject(), 6-4
usage with arrays, 10-18
usage with custom object classes, 8-9
usage with structured object arrays, 10-13
used with SQLData interface, 8-14
type mapping
BigDecimal mapping, 8-30
JDBC mapping, 8-29
JPublisher options, 8-28
object IDBC mapping, 8-29
Oracle mapping, 8-29
TYPE_FORWARD_ONLY result sets, 11-8
TYPE_SCROLL_INSENSITIVE result sets, 11-8
TYPE_SCROLL_SENSITIVE result sets, 11-8
typecodes, standard and Oracle extensions, 5-22
Types class (for typecodes), 12-24

U

updatability in result sets, 11-4
updatable result sets
concurrency type, 11-4
creating, 11-8
DELETE operations, 11-18
INSERT operations, 11-21
limitations, 11-10
refetching rows, 11-26, 11-29
seeing internal changes, 11-27

update conflicts, 11-23
UPDATE operations, 11-19
update batching
overview, Oracle vs. standard model, 12-2
overview, statements supported, 12-3
update batching (Oracle model)
batch value, checking, 12-7
batch value, overriding, 12-7
committing changes, 12-9
connection batch value, setting, 12-5
connection vs. statement batch value, 12-4
default batch value, 12-5
disable auto-commit, 12-4
example, 12-9
limitations and characteristics, 12-5
overview, 12-4
statement batch value, setting, 12-6
stream types not allowed, 12-5
update counts, 12-9
update batching (standard model)
adding to batch, 12-12
clearing the batch, 12-14
committing changes, 12-14
error handling, 12-17
example, 12-16
executing the batch, 12-13
intermixing batched and non-batched, 12-18
overview, 12-11
sample application, 17-59
stream types not allowed, 12-12
update counts, 12-15
update counts upon error, 12-17
update conflicts in result sets, 11-23
update counts
Oracle update batching, 12-9
standard update batching, 12-15
upon error (standard batching), 12-17
UPDATE in aresult set, 11-19
updateRow() method (result set), 11-20
updatesAreDetected() method (database meta
data), 11-29
updateXXX() methods (result set), 11-19, 11-21
URL for database
including userid and password, 3-6
specifying, 3-5

Index-15



user connection property, 3-7
userid, specifying, 3-5

V
VARCHAR2, NLS restrictions, Thin, 15-6
VARRAYs

defined, 10-3

example program, 17-26
usage of arrays to materialize, 10-5

\W

WIDTH, parameter for APPLET tag, 15-24
window, scroll-sensitive result sets, 11-30
writeSQL() method

described, 8-14

implementing, 8-16

usage, 8-16

X

XA
connection implementation, 14-7
connections (definition), 14-4
data source implementation, 14-6
data sources (definition), 14-3
definition, 14-2
error handling, 14-16
example of implementation, 14-18
exception classes, 14-15
Oracle optimizations, 14-17
Oracle transaction ID implementation, 14-13
resource implementation, 14-8
resources (definition), 14-4
sample application (suspend/resume), 17-79
sample application (two-phase commit), 17-84
transaction ID interface, 14-13

Index-16



	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	Introduction
	What is JDBC?
	JDBC versus SQLJ

	Overview of the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Drivers
	JDBC Server-Side Thin Driver
	JDBC Server-Side Internal Driver
	Choosing the Appropriate Driver

	Overview of Application and Applet Functionality
	Application Basics
	Applet Basics
	Oracle Extensions

	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and the Oracle Application Server
	JDBC and IDEs


	2 Getting Started
	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Check the Environment Variables
	Make Sure You Can Compile and Run Java
	Determine the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup


	3 Basic Features
	First Steps in JDBC
	Import Packages
	Register the JDBC Drivers
	Open a Connection to a Database
	Create a Statement Object
	Execute a Query and Return a Result Set Object
	Process the Result Set
	Close the Result Set and Statement Objects
	Make Changes to the Database
	Commit Changes
	Close the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Table of Mappings
	Notes Regarding Mappings

	Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Streaming LOBs and External Files
	Closing a Stream
	Notes and Precautions on Streams

	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions
	Retrieving Error Information
	Printing the Stack Trace


	4 Overview of JDBC 2.0 Support
	Introduction
	JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
	Datatype Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs
	Migration from JDK 1.1.x to JDK 1.2.x

	Overview of JDBC 2.0 Features

	5 Overview of Oracle Extensions
	Introduction to Oracle Extensions
	Support Features of the Oracle Extensions
	Support for Oracle Datatypes
	Support for Oracle Objects
	Support for Schema Naming

	Oracle JDBC Packages and Classes
	Package oracle.sql
	Package oracle.jdbc.driver
	Package oracle.jdbc2 (for JDK 1.1.x only)

	Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers


	6 Accessing and Manipulating Oracle Data
	Data Conversion Considerations
	Standard Types versus Oracle Types
	Converting SQL NULL Data

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject() Method
	Oracle getOracleObject() Method
	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Standard setObject() and Oracle setOracleObject() Methods
	Other setXXX() Methods
	Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

	Using Result Set Meta Data Extensions

	7 Working with LOBs and BFILEs
	Oracle Extensions for LOBs and BFILEs
	Working with BLOBs and CLOBs
	Getting and Passing BLOB and CLOB Locators
	Reading and Writing BLOB and CLOB Data
	Creating and Populating a BLOB or CLOB Column
	Accessing and Manipulating BLOB and CLOB Data
	Additional BLOB and CLOB Features

	Working with BFILEs
	Getting and Passing BFILE Locators
	Reading BFILE Data
	Creating and Populating a BFILE Column
	Accessing and Manipulating BFILE Data
	Additional BFILE Features


	8 Working with Oracle Object Types
	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Creating STRUCT Objects and Descriptors
	Retrieving STRUCT Objects and Attributes
	Binding STRUCT Objects into Statements

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of CustomDatum versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating a Type Map Object and Defining Mappings for a SQLData Implementation
	Understanding the SQLData Interface
	Reading and Writing Data with a SQLData Implementation
	Understanding the CustomDatum Interface
	Reading and Writing Data with a CustomDatum Implementation
	Additional Uses for CustomDatum

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Meta Data
	Steps for Retrieving Object Meta Data


	9 Working with Oracle Object References
	Oracle Extensions for Object References
	Overview of Object Reference Functionality
	Object Reference Getter and Setter Methods
	Key REF Class Methods

	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values through an Object Reference
	Custom Reference Classes with JPublisher

	10 Working with Oracle Collections
	Oracle Extensions for Collections (Arrays)
	Choices in Materializing Collections
	Creating Collections

	Overview of Collection (Array) Functionality
	Array Getter and Setter Methods
	ARRAY Descriptors and ARRAY Class Functionality

	Creating and Using Arrays
	Creating ARRAY Objects and Descriptors
	Retrieving an Array and Its Elements
	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

	11 Result Set Enhancements
	Overview
	Result Set Functionality and Result Set Categories Supported in JDBC 2.0
	Oracle JDBC Implementation Overview for Result Set Enhancements

	Creating Scrollable or Updatable Result Sets
	Specifying Result Set Scrollability and Updatability
	Result Set Limitations and Downgrade Rules

	Positioning and Processing in Scrollable Result Sets
	Positioning in a Scrollable Result Set
	Processing a Scrollable Result Set

	Updating Result Sets
	Performing a DELETE Operation in a Result Set
	Performing an UPDATE Operation in a Result Set
	Performing an INSERT Operation in a Result Set
	Update Conflicts

	Fetch Size
	Setting the Fetch Size
	Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

	Refetching Rows
	Seeing Database Changes Made Internally and Externally
	Seeing Internal Changes
	Seeing External Changes
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

	Summary of New Methods for Result Set Enhancements
	Modified Connection Methods
	New Result Set Methods
	New Statement Methods
	New Database Meta Data Methods


	12 Performance Extensions
	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Standard Update Batching

	Additional Oracle Performance Extensions
	Oracle Row Prefetching
	Defining Column Types
	DatabaseMetaData TABLE_REMARKS Reporting


	13 Connection Pooling and Caching
	Data Sources
	A Brief Overview of Oracle Data Source Support for JNDI
	Data Source Features and Properties
	Creating a Data Source Instance and Connecting (without JNDI)
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Logging and Tracing

	Connection Pooling
	Connection Pooling Concepts
	Connection Pool Data Source Interface and Oracle Implementation
	Pooled Connection Interface and Oracle Implementation
	Creating a Connection Pool Data Source and Connecting

	Connection Caching
	Overview of Connection Caching
	Typical Steps in Using a Connection Cache
	Oracle Connection Cache Specification: OracleConnectionCache Interface
	Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
	Oracle Connection Event Listener: OracleConnectionEventListener Class


	14 Distributed Transactions
	Overview
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Oracle XA Packages

	XA Components
	XA Data Source Interface and Oracle Implementation
	XA Connection Interface and Oracle Implementation
	XA Resource Interface and Oracle Implementation
	XA Resource Method Functionality and Input Parameters
	XA ID Interface and Oracle Implementation

	Error Handling and Optimizations
	XA Exception Classes and Methods
	Mapping between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample


	15 Advanced Topics
	JDBC and NLS
	How JDBC Drivers Perform NLS Conversions
	NLS Support and Object Types
	CHAR and VARCHAR2 Data Size Restrictions with the Thin Driver

	JDBC Client-Side Security Features
	JDBC Support for Oracle Advanced Security
	JDBC Support for Login Authentication
	JDBC Support for Data Encryption and Integrity

	JDBC in Applets
	Connecting to the Database through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using Applets with Firewalls
	Packaging Applets
	Specifying an Applet in an HTML Page

	JDBC in the Server: the Server-Side Internal Driver
	Connecting to the Database with the Server-Side Internal Driver
	Exception-Handling Extensions for the Server-Side Internal Driver
	Session and Transaction Context for the Server-Side Internal Driver
	Testing JDBC on the Server
	Loading an Application into the Server
	Server-Side Character Set Conversion of oracle.sql.CHAR Data


	16 Coding Tips and Troubleshooting
	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Net8 Tracing to Trap Network Events
	Third Party Debugging Tools

	Transaction Isolation Levels and Access Modes

	17 Sample Applications
	Basic Samples
	Listing Names from the EMP Table—Employee.java
	Inserting Names into the EMP Table—InsertExample.java

	Samples of PL/SQL in JDBC
	Calling PL/SQL Stored Procedures—PLSQLExample.java
	Executing Procedures in PL/SQL Blocks—PLSQL.java

	Intermediate Samples
	Streams—StreamExample.java
	Multithreading—JdbcMTSample.java

	Samples for JDBC 2.0 Types
	BLOBs and CLOBs—LobExample.java
	Weakly Typed Objects—PersonObject.java
	Weakly Typed Object References—StudentRef.java
	Weakly Typed Arrays—ArrayExample.java

	Samples for Oracle Type Extensions
	REF CURSORs—RefCursorExample.java
	BFILEs—FileExample.java

	Samples for Custom Object Classes
	SQLData Implementation—SQLDataExample.java
	CustomDatum Implementation—CustomDatumExample.java

	JDBC 2.0 Result Set Enhancement Samples
	Positioning in a Result Set—ResultSet2.java
	Inserting and Deleting Rows in a Result Set—ResultSet3.java
	Updating Rows in a Result Set—ResultSet4.java
	Scroll-Sensitive Result Set—ResultSet5.java
	Refetching Rows in a Result Set—ResultSet6.java

	Performance Enhancement Samples
	Standard Update Batching—BatchUpdates.java
	Oracle Update Batching with Implicit Execution—SetExecuteBatch.java
	Oracle Update Batching with Explicit Execution—SendBatch.java
	Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java
	Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java
	Oracle Column Type Definitions—DefineColumnType.java

	Samples for Connection Pooling and Distributed Transactions
	Data Source without JNDI—DataSource.java
	Data Source with JNDI—DataSourceJNDI.java
	Pooled Connection—PooledConnection.java
	Oracle Connection Cache (dynamic)—CCache1.java
	Oracle Connection Cache ("fixed with no wait")—CCache2.java
	XA with Suspend and Resume—XA2.java
	XA with Two-Phase Commit Operation—XA4.java

	Sample Applet
	HTML Page—JdbcApplet.htm
	Applet Code—JdbcApplet.java

	JDBC versus SQLJ Sample Code
	SQL Program to Create Tables and Objects
	JDBC Version of the Sample Code
	SQLJ Version of the Sample Code


	18 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	Embedded SQL92 Syntax
	Time and Date Literals
	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name

	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology


	A JDBC Error Messages
	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted Alphabetically

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted Alphabetically


	Index

