
Oracle® Reports Services

Publishing Reports to the Web with Internet Application Server

Version 1.0

Part No. A83592-01

May 2000

Publishing Reports to the Web with Internet Application Server, Version 1.0

Part No. A83592-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Frank Rovitto

Contributing Author: Pat Hinkley

Contributors: Chan Fonseka, Shaun Lin, Paul Narth, Ashok Natesan, Danny Richardson, Ravikumar
Venkatesan, Viswanath Dhulipala

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Developer, Oracle Reports, Oracle WebDB, Oracle Internet
Application Server, Express, Oracle Report Services, and Oracle Installer are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Portions copyright @ Blue Sky Software Corporation. All rights reserved. All other products or company
names are used for identification purposes only, and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

Oracle Reports Services New Features ... xi
Intended Audience ... xii
Structure... xii
Related Documents... xiii
Notational Conventions... xiii

Part I Publishing Reports

1 Introduction

1.1 Oracle Internet Application Server Overview .. 1-1
1.2 Oracle Reports Services .. 1-2

2 Publishing Architecture and Concepts

2.1 Oracle Reports Services .. 2-2
2.2 Oracle Reports Services Architecture ... 2-3
2.2.1 Web Architecture: Server Configurations .. 2-4
2.2.1.1 Processing Web Reports... 2-5
2.2.2 Non-Web Architecture: Server Configuration... 2-6
2.2.2.1 Processing Reports.. 2-7
 iii

2.3 Oracle Reports Services Configuration Choices ... 2-8
2.3.1 Enable Web and Non-Web Requests... 2-8
2.3.2 Choose the Oracle Reports Services Web CGI or Servlet ... 2-9
2.3.3 Choose the Location of Oracle Reports Services.. 2-9

3 Installing Oracle Internet Application Server Oracle on the Sun SPARC
Solaris

3.1 About the Oracle Universal Installer .. 3-1
3.2 About the Oracle HTTP Server.. 3-2

4 Configuring Oracle Reports Services on Sun SPARC Solaris

4.1 Starting Oracle Reports Services ... 4-2
4.2 Configuring the Reports Servlet.. 4-2
4.2.1 Configuring the Oracle HTTP Server to Run the Reports Services Servlet with

JSDK 4-3
4.2.2 Configuring the Oracle HTTP Server to Run Reports Services Servlet with

JServ.. 4-4
4.3 Configuring Oracle HTTP Server Listener to Run Reports Services CGI 4-6
4.4 Stopping Oracle Reports Services ... 4-7
4.5 Environment Variables ... 4-7

5 Running Report Requests

5.1 Report Request Methods .. 5-1
5.2 Duplicate Job Detection .. 5-2
5.2.1 Usage Notes... 5-3
5.3 Using a Key Map File.. 5-4
5.3.1 Enabling Key Mapping.. 5-5
5.3.2 Mapping URL Parameters .. 5-5
5.4 Specifying Report Requests.. 5-6
5.4.1 Building a Report ... 5-6
5.4.2 Specifying a Report Request from a Web Browser.. 5-7
5.4.3 Scheduling Reports to Run Automatically ... 5-8
iv

6 Controlling User Access to Reports

6.1 Access Control Configuration and Setup Overview.. 6-2
6.1.1 Installing and Configuring Reports Services Security.. 6-2
6.1.2 Setting up Access Control ... 6-2
6.2 Installing and Configuring Reports Security in WebDB ... 6-3
6.2.1 Step 1. Configuring Reports Security in WebDB... 6-3
6.2.1.1 Installing WebDB .. 6-3
6.2.1.2 Installing Oracle Reports Services Security Packages in WebDB 6-4
6.2.1.3 Setting the Authentication Cookie Domain .. 6-5
6.3 Setting Up Access Controls in WebDB... 6-5
6.3.1 Step 1. Configuring Oracle Reports Services for Access Control............................ 6-7
6.3.1.1 Creating the TNS Names Alias that Connects to WebDB................................. 6-7
6.3.1.2 Restricting Access to Oracle Reports Services .. 6-8
6.3.2 Step 2. Creating User Accounts.. 6-9
6.3.2.1 Creating the Reports Services System Administrator User Account 6-10
6.3.2.2 Creating Users Accounts for Running Reports .. 6-10
6.3.3 Step 3. Creating Availability Calendars.. 6-11
6.3.3.1 Creating the Daily Calendar.. 6-12
6.3.3.2 Creating the Maintenance Calendar .. 6-13
6.3.3.3 Creating the Christmas Calendar ... 6-14
6.3.3.4 Creating a Combined Availability Calendar .. 6-15
6.3.4 Step 4. Adding Access to a Reports Services Printer in WebDB 6-16
6.3.5 Step 5. Adding Access to Oracle Reports Services in WebDB............................... 6-17
6.3.6 Step 6. Adding Access to the Report Definition File in WebDB............................ 6-18
6.3.6.1 Creating a List of Values for the Lastname User Parameter........................... 6-19
6.3.6.2 Adding Access the Report Definition File... 6-20
6.3.7 Step 7. Setting Parameter Values on the Reports Services Parameter Form 6-23
6.3.7.1 Running the Report Output to Cache .. 6-23
6.3.7.2 Running the Report Output to a Restricted Printer (Optional)...................... 6-25
6.3.7.3 Setting the Default Parameters for Users at Runtime...................................... 6-26
6.3.8 Step 8. Making the Report Available to Users ... 6-27
6.3.8.1 Creating a WebDB Site ... 6-27
6.3.8.2 Creating a Folder in the WebDB Site ... 6-27
6.3.8.3 Adding the Report Request to the Folder ... 6-29
6.3.8.4 Running the Report as a User ... 6-29
v

6.3.9 Step 9. Scheduling the Report to Run and Push the Output to a WebDB Site 6-30
6.3.9.1 Creating a Personal Folder... 6-31
6.3.9.2 Scheduling the Report .. 6-31
6.3.9.3 Viewing the Pushed Report Output... 6-33
6.3.9.4 Optional Exercise .. 6-33
6.4 Summary... 6-34

7 Configuring Oracle Reports Services Clusters

7.1 Clustering Overview... 7-2
7.2 Configuring Oracle Reports Services in a Cluster Example.. 7-3
7.2.1 Enabling Communication Between Master and Slaves.. 7-4
7.2.2 Configuring the Master Server ... 7-5
7.2.3 Running Reports in a Clustered Configuration... 7-7
7.2.4 Resubmitting Jobs When an Engine Goes Down .. 7-7
7.2.5 Adding Another Slave Server to the Master .. 7-8

8 Customizing Reports at Runtime

8.1 Overview... 8-2
8.1.1 Creating and Using XML Report Definitions... 8-4
8.2 Creating an XML Report Definition ... 8-5
8.2.1 Required Tags ... 8-5
8.2.2 Partial Report Definitions.. 8-6
8.2.2.1 Formatting Modifications Example.. 8-8
8.2.2.2 Formatting Exception Example... 8-10
8.2.2.3 Program Unit and Hyperlink Example.. 8-11
8.2.2.4 Data Model and Formatting Modifications Example 8-13
8.2.3 Full Report Definitions .. 8-14
8.3 Running XML Report Definitions ... 8-20
8.3.1 Applying an XML Report Definition at Runtime .. 8-21
8.3.1.1 Applying one XML Report Definition ... 8-21
8.3.1.2 Applying Multiple XML Report Definitions... 8-21
8.3.1.3 Applying an XML Report Definition in PL/SQL... 8-22
8.3.1.3.1 Applying an XML Definition Stored in a File.. 8-22
8.3.1.3.2 Applying an XML Definition Stored in Memory 8-22
vi

8.3.2 Running an XML Report Definition by Itself... 8-25
8.3.3 Performing Batch Modifications .. 8-26
8.4 Debugging XML Report Definitions .. 8-27
8.4.1 XML Parser Error Messages ... 8-27
8.4.2 Tracing Options.. 8-27
8.4.3 RWBLD60 .. 8-30
8.4.4 TEXT_IO .. 8-30
8.5 XML Tag Reference ... 8-31
8.5.1 <!-- comments --> ... 8-31
8.5.2 <![CDATA[]]>.. 8-32
8.5.3 <condition>... 8-33
8.5.4 <customize>.. 8-35
8.5.5 <data> .. 8-37
8.5.6 <dataSource> ... 8-38
8.5.7 <exception>... 8-40
8.5.8 <field>.. 8-42
8.5.9 <formLike> ... 8-47
8.5.10 <formula>.. 8-48
8.5.11 <function> ... 8-50
8.5.12 <group> ... 8-52
8.5.13 <groupAbove> ... 8-54
8.5.14 <groupLeft> .. 8-55
8.5.15 <labelAttribute> ... 8-56
8.5.16 <layout>... 8-59
8.5.17 <link>... 8-62
8.5.18 <matrix> .. 8-64
8.5.19 <matrixCell> ... 8-67
8.5.20 <matrixCol> .. 8-68
8.5.21 <matrixRow> .. 8-69
8.5.22 <object> ... 8-70
8.5.23 <programUnits>... 8-72
8.5.24 <properties>.. 8-74
8.5.25 <property> .. 8-75
8.5.26 <report>... 8-78
8.5.27 <section> ... 8-80
vii

8.5.28 <select> .. 8-82
8.5.29 <summary> ... 8-84
8.5.30 <tabular> ... 8-88

Part II Appendixes

A RWCLI60 Command Line Arguments

A.1 Syntax .. A-1
A.2 Usage Notes.. A-1

B Oracle Reports Services Configuration Parameters

C Environment Variables

D Database Connection Strings

E Troubleshooting

Glossary

Index
viii

Send Us Your Comments

Publishing Reports to the Web with Internet Application Server, Version 1.0

Part No. A83592-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, then where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, then please indicate the
chapter, section, and page number (if available). You can send comments to us at:

■ E-mail - oddoc@us.oracle.com
ix

x

Preface

This manual describes the different options available for publishing reports with
Oracle Reports Services as well as how to configure the Oracle Reports Services
software for publishing reports.

Oracle Reports Services New Features

New Feature See

Oracle Internet Applications Server. Provides a
middle-tier application server.

Chapter 1, "Introduction" and
Chapter 3, "Installing Oracle
Internet Application Server
Oracle on the Sun SPARC
Solaris"

Oracle HTTP Server for JSDK. Configuration for running
the Reports Servlet with JSDK through the Oracle HTTP
Server (powered by Apache).

Section 4.2.1, "Configuring the
Oracle HTTP Server to Run the
Reports Services Servlet with
JSDK"

Oracle HTTP Server for JServ. Configuration for running
the Reports Servlet through the Oracle HTTP Server
(powered by Apache).

Section 4.2.2, "Configuring the
Oracle HTTP Server to Run
Reports Services Servlet with
JServ"

Oracle HTTP Server Listener. Configuration for Oracle
HTTP Server Listener to run the Reports CGI.

Section 4.3, "Configuring
Oracle HTTP Server Listener to
Run Reports Services CGI"
xi

Intended Audience
This manual is intended for anyone who is interested in publishing reports with
Oracle Reports Services. It could be that you have built reports yourself and now
want to publish them to a wider audience in your organization. It could also be that
someone else built the reports for you and you now want to deploy them for other
users to access. To configure Oracle Reports Services software for publishing
reports, you should have a thorough understanding of the operating system (for
example, Windows NT or Solaris) as well as Net8. If you are planning to deploy
reports dynamically on the Web, then you should also be knowledgeable about
your Web server configuration.

Structure
This manual contains the following chapters:

Control user access to report. Restrict user access to
reports that are run with Oracle Reports Services. Oracle
Reports uses Oracle WebDB to check that users have the
necessary access privileges to run the report with
restricted Oracle Reports Services.

Chapter 6, "Controlling User
Access to Reports"

Clustering. Improve performance and loading balancing
by clustering your Oracle Reports Services.

Chapter 7, "Configuring Oracle
Reports Services Clusters"

Report Customization. Apply customizations to reports at
runtime without changing the original report and generate
different output depending upon the audience.

Chapter 8, "Customizing
Reports at Runtime"

Chapter 1 Introduces you to the Oracle Reports Services.

Chapter 2 Introduces the architecture of the Oracle Reports Services and
choices that you need to make before you configure the report.

Chapter 3 Provides information about installing.

Chapter 4 Describes how to configure the Oracle Reports Services.

Chapter 5 Describes the various methods for running reports to the Oracle
Reports Services.

Chapter 6 Describes how the Oracle Reports Services can be integrated with
Oracle WebDB to control user access to reports.

New Feature See
xii

Related Documents
For more information on building reports, Oracle WebDB, or the Oracle Report
Services, refer to the following manuals:

■ Oracle Reports Developer Building Reports, A73172-01

■ Oracle Reports Developer Getting Started for Windows, A73156-01

■ Oracle WebDB Getting Started-Installation and Tutorial, A70070-01

■ Deploying Forms to the Web with Oracle Internet Application Server, A83591-01

Notational Conventions
The following conventions are used in this book:

Chapter 7 Describes how to configure the Oracle Reports Services with
clustering to enhance performance and reliability.

Chapter 8 Describes how to use XML to apply customizations to reports at
runtime.

Convention Meaning

boldface text Used for emphasis. Also used for menu items,
button names, labels, and other user interface
elements.

italicized text Used to introduce new terms.

courier font Used for path and file names, and for code and text
that you type.

COURIER CAPS Used for file extensions (.PLL or .FMX) and SQL
commands

CAPS Used for environment variables, built-ins and
package names, and executable names
xiii

xiv

Part I

 Publishing Reports

Chapter 1, "Introduction"

Chapter 2, "Publishing Architecture and Concepts"

Chapter 3, "Installing Oracle Internet Application Server Oracle on the Sun SPARC
Solaris"

Chapter 4, "Configuring Oracle Reports Services on Sun SPARC Solaris"

Chapter 5, "Running Report Requests"

Chapter 6, "Controlling User Access to Reports"

Chapter 7, "Configuring Oracle Reports Services Clusters"

Chapter 8, "Customizing Reports at Runtime"

 Introd
1

Introduction

In today’s fast-moving, competitive business world, clear and up-to-date
information is needed for the accurate, expedient decision-making requirements of
an often geographically distributed workforce. The timely distribution of that
information must be reliable, cost effective, and accessible to everyone who requires
it. Oracle Reports Services provides an unbounded, easy-to-use, scalable, and
manageable solution for high-quality database publishing and reporting.

Oracle Reports Services is a powerful enterprise reporting tool used by information
system (IS) developers to create sophisticated dynamic reports for the Web and
across the enterprise.

The Oracle Reports Services server-based architecture means report consumers
require only a Web browser to view reports in industry standard formats. Oracle
Reports Services supports on-demand delivery of high-quality reports over the Web
through native generation of HTML with Cascading Style Sheets and the Adobe
Portable Document Format (PDF). Maintenance overhead costs are cut as reports
are administered and maintained centrally and there is no requirement to install
complex software on every user’s PC.

1.1 Oracle Internet Application Server Overview
The Oracle Internet Application Server is a scalable, secure, middle-tier application
server. Using it you can deliver Web content, host Web applications, connect to
back-office applications, and make those services accessible to any client browser.
Your users can access information, perform business analysis, and run business
applications on the Internet, or on internal and external corporate intranets.
uction 1-1

Oracle Reports Services
To deliver this wide range of content and services, you can use the Oracle Internet
Application Server for:

■ Publishing content

■ Transaction processing

For additional information about the Oracle Internet Application Server, refer to
Oracle Internet Application Server 8i Overview Guide.

1.2 Oracle Reports Services
Oracle Reports Services enables you to implement a multi-tiered architecture for
running your reports. With Oracle Reports Services, you can run reports on a
remote application server.

When used in conjunction with the Reports Web CGI or Reports Servlet, Oracle
Reports Services also enables you to run reports from a Web browser using
standard URL syntax. Oracle Reports Services can be installed on Windows NT,
Windows 95, or UNIX. It handles client requests to run reports by entering all
requests into a job queue. When one of the server’s runtime engines becomes
available, the next job in the queue is dispatched to run. As the number of jobs in
the queue increases, the server can start more runtime engines until it reaches the
maximum limit specified when the server process was started. Similarly, idle
engines are shut down after having been idle for longer than a specified period of
time.

Oracle Reports Services keeps track of a predefined maximum number of past jobs.
Information on when the jobs are queued, started, and finished is kept, as well as
the final status of the report. This information can be retrieved and reviewed on
Windows from the Reports Queue Manager (RWRQM60) or through the API. The
Reports Queue Manager might reside on the same machine as Oracle Reports
Services or on a client machine. On UNIX, you can use the Reports Queue Viewer
(RWRQV60) to view the Oracle Reports Services queue.
1-2 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services
The Oracle Reports Services is one of the components of Oracle Reports Services, a
new generation of development tools that enable you to deploy new and existing
reports on an internal company intranet, external company extranet, or on the
Internet.

In addition to the Oracle Reports Services, the Oracle Reports Services includes the
Graphics Server. The Graphics Server assists with the deployment of Oracle
Graphics. Graphics are deployed as Graphic Interchange Format (.GIF) files, which
can be embedded in HTML or incorporated into an Oracle Reports Services report.

Oracle Internet Application Server is an application server that is optimized to
deploy Oracle Reports Services applications (reports and graphics) in a multi-tiered
environment. It takes advantage of the ease and accessibility of the Web, elevating it
from a static information-publishing mechanism to an environment capable of
supporting complex applications.

For more information about the Forms Server and Graphics Server, refer to the
Oracle Forms Developer: Deploying Forms Applications to the Web with Oracle Internet
Application Server manual for more information.
Introduction 1-3

Oracle Reports Services
1-4 Publishing Reports to the Web with Internet Application Server

 Publishing Architecture and Con
2

Publishing Architecture and Concepts

In today’s fast-moving, competitive business world, clear and up-to-date
information is needed for the accurate, expedient decision making requirements of
an often geographically distributed workforce. The timely distribution of that
information must be reliable, cost effective, and accessible to everyone who requires
it. Oracle Reports Services provides an unbounded, easy-to-use, scalable, and
manageable solution for high-quality database publishing and reporting.

Oracle Reports Services is a powerful Enterprise Reporting tool used by information
system (IS) developers to create sophisticated dynamic reports for the Web and
across the enterprise.

The Oracle Reports Services server-based architecture means report consumers
require only a Web browser to view reports in industry standard formats. The
Oracle Reports Services supports on-demand delivery of high-quality reports over
the Web through native generation of HTML with Cascading Style Sheets and the
Adobe Portable Document Format (PDF). Maintenance overhead is cut as reports
are administered and maintained centrally and there is no requirement to install
complex software on every user’s PC.
cepts 2-1

Oracle Reports Services
2.1 Oracle Reports Services
The Oracle Reports Services enables you to implement a multi-tiered architecture
for running your reports. With Oracle Reports Services, you can run reports on a
remote application server.

When used in conjunction with the Reports Web CGI or Reports Servlet, Oracle
Reports Services also enables you to run reports from a Web browser using
standard URL syntax. Oracle Reports Services can be installed on Windows NT,
Windows 95, or UNIX. It handles client requests to run reports by entering all
requests into a job queue. When one of the server’s runtime engines becomes
available, the next job in the queue is dispatched to run. As the number of jobs in
the queue increases, the server can start more runtime engines until it reaches the
maximum limit specified when the server process was started. Similarly, idle
engines are shut down after having been idle for longer than a specified period of
time.

Oracle Reports Services keeps track of a predefined maximum number of past jobs.
Information on when the jobs are queued, started, and finished is kept, as well as
the final status of the report. This information can be retrieved and reviewed on
Windows from the Reports Queue Manager (RWRQM60) or through the API. The
Reports Queue Manager might reside on the same machine as Oracle Reports
Services or on a client machine. On UNIX, you can use the Reports Queue Viewer
(RWRQV60) to view the Oracle Reports Services queue.
2-2 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services Architecture
2.2 Oracle Reports Services Architecture
Oracle Reports Services can be configured in a number of ways depending upon
your requirements. When used in a Web environment, the Oracle Reports Services
architecture consists of four tiers1:

■ The thin client tier

■ The Web server tier

■ The Oracle Reports Services tier

■ The database tier

The range of possible configurations runs from having all of these tiers on one
machine to having each of these tiers on a separate machine. The most common
configurations typically have the tiers spread across three or four machines. The
graphics that follow provide a conceptual view of these common configurations.

1 The term tier refers to the logical location of the components that comprise the Oracle
Reports Services architecture. Each of the tiers, though, could reside on the same or
different machines.

Note: In the non-Web case, which will be discussed later, there are
only three tiers because the Web server tier is not necessary.
Publishing Architecture and Concepts 2-3

Oracle Reports Services Architecture
2.2.1 Web Architecture: Server Configurations
The diagrams that follow illustrate two of the most common configurations for
Oracle Reports Services in a Web environment. The key difference between the two
configurations is whether Oracle Reports Services and Web server tiers are on the
same or different machines. In the first case, the Web server and Oracle Reports
Services reside on the same machine. In the second case, they are on different
machines. The latter case requires a slightly different setup from the first.

Figure 2–1 Web Architecture, Three Machine Configuration
2-4 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services Architecture
Figure 2–2 Web Architecture, Four Machine Configuration

2.2.1.1 Processing Web Reports
Web reports are processed as follows:

1. The client requests the report from their Web browser either by typing a URL or
clicking a hyperlink. The Web browser passes the URL to the Web server.

2. To handle the request, the Web server invokes either the Reports Web CGI or
Reports Servlet, depending upon which one you have configured.
Publishing Architecture and Concepts 2-5

Oracle Reports Services Architecture
3. The Reports Web CGI or Servlet parses the request. If necessary, users are
prompted to log on. The Reports CGI or Servlet converts the request to a
command line that can be executed by Oracle Reports Services and submits it to
the specified Oracle Reports Services.

4. If the request includes a time tolerance1, then Oracle Reports Services checks its
output cache to determine whether it already has output that satisfies the
request. If it finds acceptable output in its cache, then it will immediately return
that output rather than executing the report.

5. Oracle Reports Services receives the job request and queues it. When one of its
runtime engines becomes available,2 it sends the command line to that runtime
engine for execution.

6. The runtime engine executes the report.

7. The Reports Web CGI or Servlet receives the report output from Oracle Reports
Services and sends it to the Web server.

8. The Web server sends the report output to the client’s Web browser.

2.2.2 Non-Web Architecture: Server Configuration
The non-Web architecture differs from the Web architecture in that there is no Web
browser or Web server. Report requests are sent to Oracle Reports Services from a
thin client such as the Reports Launcher or command line, RWCLI60. The non-Web
architecture is useful to those who cannot use the Web to deploy their reports for
some reason.

1 For any job request that you send to the Oracle Reports Services, you can include a
TOLERANCE argument. TOLERANCE defines the oldest output that the requester would
consider acceptable. For example, if the requester specified five minutes as the
TOLERANCE, Oracle Reports Services would check its cache for duplicate report output
that had been generated within the last five minutes.

2 When you configure Oracle Reports Services, you can specify the maximum number of
runtime engines it can use. If Oracle Reports Services is under this maximum, then it might
start new runtime engines to handle requests. Otherwise, the request must wait until one
of the current runtime engines completes its current job.
2-6 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services Architecture
Figure 2–3 Non-Web Architecture

2.2.2.1 Processing Reports
In a non-Web environment, reports are processed as follows:

1. The client requests the report using the command line (RWCLI60), the Reports
Queue Manager, or the Reports Launcher (ActiveX control). If necessary, users
are prompted to log on.

2. Oracle Reports Services receives the job request and queues it. When one of its
runtime engines becomes available, it sends the request to that runtime engine
for execution.

3. The runtime engine executes the report.

4. Oracle Reports Services is notified that the job has been completed.

5. If Oracle Reports Services was called synchronously, then it signals the client
that the job has been completed. If the destination type (DESTYPE) for the
command line client is set to localfile in the job request, then the output is
transferred to the client.
Publishing Architecture and Concepts 2-7

Oracle Reports Services Configuration Choices
2.3 Oracle Reports Services Configuration Choices
The configuration of Oracle Reports Services can vary widely depending upon the
requirements of your system. Before attempting to configure Oracle Reports
Services, you must make a number of important decisions based upon your
requirements. By making these decisions beforehand, you can greatly simplify the
configuration process. These decisions are discussed in the following sections.

2.3.1 Enable Web and Non-Web Requests
As you saw in Section 2.2, "Oracle Reports Services Architecture", Oracle Reports
Services can accept job requests from both Web and non-Web thin clients. In the
Web case, users run reports by clicking or typing a URL in their Web browser and,
depending on the URL, the report output is served back to them in their browser or
sent to a specified destination (for example, a printer). In the non-Web case, users
launch job requests using client software installed on their machines (that is, Net8
and the Reports Thin Client, which is comprised of the Reports Launcher, the
Reports Queue Manager, and RWCLI60).

To enable users to launch reports from a Web client, you need to install either the
Oracle Reports Services Web CGI or Servlet with your Web server to communicate
between the Web server and Oracle Reports Services. The Web CGI or Servlet is
required for your Web server to process report requests from Web clients. For more
information, refer to the Section 2.3.2, "Choose the Oracle Reports Services Web CGI
or Servlet". To enable users to launch reports from a non-Web client, you need to
install the required client software (that is, Net8 and the Oracle Reports Services
Thin Client) on each machine from which you plan to launch report requests.

From the perspective of configuration, the key differences between enabling Web
and non-Web requests is as follows:

■ Enabling Web requests requires that you install some additional software with
your Web server, namely the Oracle Reports Services Web CGI or Servlet, but
obviates the need to install any client software beyond a Web browser.

■ Enabling non-Web requests requires that you install and maintain client
software on each machine from which you want to send job requests to Oracle
Reports Services.

The Web case is clearly the most cost effective because it reduces client maintenance
costs, but there might be cases where launching non-Web requests is a necessity for
other reasons. Oracle Reports Services supports both Web and non-Web requests
and they are not mutually exclusive.
2-8 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services Configuration Choices
2.3.2 Choose the Oracle Reports Services Web CGI or Servlet
As discussed in Section 2.3.1, "Enable Web and Non-Web Requests", to use Oracle
Reports Services in a Web environment, you must install and configure the Oracle
Reports Services Web CGI or Servlet to handle the transmission of job requests and
output between your Web server and Oracle Reports Services. The key
consideration in this choice is the following:

■ If you are using a CGI-aware Web server (for example, Oracle Internet
Application Server, WebDB listener), then choose the Oracle Reports Services
Web CGI.

■ If you are using a Java-based Web server, then choose the Oracle Reports
Services Servlet.

2.3.3 Choose the Location of Oracle Reports Services
As described in the Section 2.2, "Oracle Reports Services Architecture", you can
place Oracle Reports Services on the same machine as your Web server or on a
different machine. As you make this decision, you should consider the following:

■ Having Oracle Reports Services and the Web server on the same machine, of
course, requires more of the machine’s resources. If you plan to have both on
the same machine, then you need to take that into account when determining
the machine’s resource requirements (that is, memory and disk space).

■ Having Oracle Reports Develooper and the Web server on the same machine
reduces network traffic. The Oracle Reports Services CGI or Servlet must reside
on the same machine as the Web server. If Oracle Reports Services is on a
different machine, then its transmissions to the Oracle Reports Services CGI and
Servlet must travel across a network. If it is on the same machine, then the
transmissions do not have to travel across the network.

Chapter 4, "Configuring Oracle Reports Services on Sun SPARC Solaris" provides
guidelines for configuring Oracle Reports Service using the Oracle Reports Services
Servlet.
Publishing Architecture and Concepts 2-9

Oracle Reports Services Configuration Choices
2-10 Publishing Reports to the Web with Internet Application Server

Installing Oracle Internet Application Server Oracle on the Sun SPARC S
3

Installing Oracle Internet Application Server

Oracle on the Sun SPARC Solaris

The Oracle Reports Services is installed as part of the Enterprise Edition of Oracle
Internet Application Server (iAS). The Enterprise Edition is recommended for
medium to large sized Web sites that handle a high volume of transactions.

For your convenience, the Oracle HTTP Server (powered by Apache), a Web listener
that supports the Common Gateway Interface (CGI), is provided. The Oracle HTTP
Server can be installed through the Oracle Universal Installer, which is provided
with the Oracle Internet Application Server.

For more detailed information about installing Oracle Reports Services, refer to the
Oracle Internet Application Server Installation Guide. All necessary requirements and
tasks are documented in this manual.

3.1 About the Oracle Universal Installer
The Oracle Internet Application Server uses the Oracle Universal Installer, a
Java-based tool to configure environment variables and to install components. The
installer guides you through each step of the installation process, so you can choose
different configuration options.

The installer includes features that perform the following tasks:

■ Explore and provide installation options for the product.

■ Detect preset environment variables and configuration settings.

■ Set environment variables and configuration settings during installation.

■ Deinstall the product.
olaris 3-1

About the Oracle HTTP Server
3.2 About the Oracle HTTP Server
The Oracle Internet Application Server uses the Oracle HTTP Server (powered by
Apache Web server technology). Using the Apache Web server technology offers the
following:

■ Scalability

■ Stability

■ Speed

■ Extensibility

The Apache server delegates the handling of HTTP requests to its modules (mods),
which add functionality not included in the server by default. Using the Apache
APIs, it is easy to extend the Apache functionality. A large number of mods have
already been created and are included on your CD-ROM. Although the default
Apache HTTP server supports only stateless transactions,1 you can configure it to
support stateful transactions2 by leveraging the functionality supplied by Apache
JServ (mod_jserv), which is described in the Oracle Internet Applications Server 8i
Overview Guide.

Additional information about the Oracle HTTP Server can also be found in the
Oracle Internet Application Server Installation Guide and the Apache Web Server, Release
1.3.9 manual on your CD-ROM.

1 A stateless transaction consists of a request and a response. In a stateless transaction, no
information about the user (the requestor) is tracked by the system, and each transaction is
unrelated to those that precede or follow it.

2 Stateful transactions are similar to database sessions because information abut the user (the
initiator of the transaction) is tracked by the system for one or more phases of the
transaction. In addition to user information, with a stateful transaction, the system also
keeps track of the state (the set of conditions at a moment in time) of one or more
preceding events in the sequence of a transaction.
3-2 Publishing Reports to the Web with Internet Application Server

Configuring Oracle Reports Services on Sun SPARC S
4

Configuring Oracle Reports Services on

Sun SPARC Solaris

When you install the Oracle Internet Application Server (iAS) with the Oracle HTTP
Server (powered by the Apache Web server), the Oracle Reports Services Servlet
and Oracle Reports Services CGI are automatically configured for you in the Sun
SPARC Solaris environment. This chapter describes how to manually change the
configurations that were provided by default.

This chapter also describes how to start and stop Oracle Reports Services and the
configuration environment variables.
olaris 4-1

Starting Oracle Reports Services
4.1 Starting Oracle Reports Services
Do the following to start Oracle Reports Services:

1. From the $ORACLE_HOME/BIN directory, run the following command line to
run Oracle Reports Services in the foreground:

rwmts60 name=repserver

Run the following command line to run Oracle Reports Services in the
background:

rwmts60 name=repserver &

2. From the $ORACLE_HOME/BIN directory, run the following command line to
ensure Oracle Reports Services is running:

rwrqv60 server=repserver

Status columns (for example, NAME, OWNER, and DEST) for Oracle Reports
Services are displayed. Currently, though, no status information is available
since no jobs are running.

If you want to output to PostScript or to a printer, then the printer must be
configured in the uiprint.txt file (this file is located in the
$ORACLE_HOME/guicommon6/tk60/ADMIN directory).

4.2 Configuring the Reports Servlet
There are two Reports Servlet configurations that you can manually change:

■ Oracle Reports Services Servlet with JSDK

■ Oracle Reports Services Servlet with JServ
4-2 Publishing Reports to the Web with Internet Application Server

Configuring the Reports Servlet
4.2.1 Configuring the Oracle HTTP Server to Run the Reports Services Servlet with
JSDK

The following configuration assumes that the Oracle HTTP Server is installed in the
following directory:

/private1/ias

It also assumes that Oracle Reports Services is installed in the following directory:

/private1/ias/6iserver

1. Add the following entry to the Servlet properties file, servlet.properties,
(for example, the Servlet properties file located in
/private1/ias/Apache/Jsdk/examples):

servlet.RWServlet.code=oracle.reports.rwcgi.RWServlet

2. Create the directory hierarchy oracle/reports/rwcgi in your Web server
Java class directory:

/private1/ias/Apache/Jsdk/examples/oracle/reports/rwcgi

You then copy into this new directory the RWServlet.class found in:

/private1/ias/6iserver/reports60/java

3. Add the root directory from the previous step into your CLASSPATH
environment variable, located in (/private1/ias/Apache/Ojsp). Also add
Ojsp/lib/servlet.jar to the CLASSPATH environment variable. For
example:

setenv CLASSPATH/private1/ias/Apache/jdk/bin:
/private1/ias/Apache/jdk/lib/classes.zip:
/private1/ias/Apache/Jsdk/examples:/private1/ias/Apache/Ojsp/lib/servlet.jar

4. Set the PATH variable:

setenv PATH /private1/ias/6iserver/bin:/private1/ias/Apache/Apache/bin:
private1/ias/Apache/jdk/bin:
private1/ias/Apache/jsdk/bin:$PATH

5. Start Oracle Reports Services.

6. Start the Servlet runner by running the following command:

servletrunner &
Configuring Oracle Reports Services on Sun SPARC Solaris 4-3

Configuring the Reports Servlet
4-4 Publishing Reports to the Web with Internet Application Server

Configuring the Reports Servlet
7. Verify that the Servlet is running by:

a. Running the following from your browser ensures the installation and
setup are okay:

http://hostname:portno/servlet/RWServlet/help?

where:

This shows you that the Help page is active.

b. Running the following from your browser ensures the Oracle Reports
Services is up:

http://hostname:portno/servlet/RWServlet/showjobs?
server=repserver

c. Entering the following from your browser runs a report:

http://hostname:portno/servlet/RWServlet?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart Oracle
Reports Services to acknowledge the changes.

4.2.2 Configuring the Oracle HTTP Server to Run Reports Services Servlet with
JServ

You do the following to configure the Oracle HTTP Server to run the Oracle Reports
Services Servlet with JServ:

1. Add the following entry to zone.properties file. The zone.properties
file is located in /private1/iAS/Apache/Jserv/examples directory.

servlet.RWServlet.code=oracle.reports.rwcgi.RWServlet

hostname is the machine name where the Apache listener is
running.

portno is the port number that where the Apache listener is
started.
Configuring Oracle Reports Services on Sun SPARC Solaris 4-5

Configuring the Reports Servlet
2. Create the directory hierarchy oracle/reports/rwcgi in your Web server
Java class directory. For example, the full path might look like the following:

/private1/ias/Apache/Jserv/servlets/oracle/reports/rwcgi

You then copy into this new directory the RWServlet.class found in:

/private1/ias/6iserver/reports60/java/classes

3. Add the root directory from the previous step into your CLASSPATH
environment variable. Also add Ojsp/lib/servlet.jar to the CLASSPATH
environment variable. For example:

setenv CLASSPATH/private1/ias/Apache/jdk/bin:
/private1/ias/Apache/jdk/lib/classes.zip:
/private1/ias/Apache/Jserv/servlets:
/private1/ias/Apache/Ojsp/lib/servlet.jar

4. Start Oracle Reports Services.

5. Start the Oracle HTTP Server (powered by Apache) listener using the following
command:

httpdsctl start

6. Verify the Oracle Reports Services Servlet is running by:

a. Running the following from your browser ensures the installation and
setup are okay:

http://hostname:portno/servlets/RWServlet/help?

This shows you that the Help page is active.

b. Running the following from your browser ensures Oracle Reports Services
is up:

http://hostname:portno/servlets/RWServlet/showjobs?
server=repserver
4-6 Publishing Reports to the Web with Internet Application Server

Configuring Oracle HTTP Server Listener to Run Reports Services CGI
c. Entering the following from your browser runs a report:

http://hostname:portno/servlets/RWServlet?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart Oracle
Reports Services to acknowledge the changes.

4.3 Configuring Oracle HTTP Server Listener to Run Reports Services
CGI

You do the following to change the default configuration for the Oracle HTTP
Server listener to run the Reports CGI:

1. Add the following entry to the file httpds.conf (found in
/private1/ias/Apache/Apache/conf):

ScriptAlias /cgi-bin/ "/private1/ias/6iserver/bin"

2. Start Oracle Reports Services.

3. Start the Oracle HTTP Server (powered by Apache) listener using the following
command:

httpdsctl start

4. Verify the Reports CGI is running by:

a. Running the following from your browser ensures the installation and
setup are okay:

http://hostname:portno/cgi-bin/rwcgi60/help?

This shows you that the Help page is active.

b. Running the following from your browser ensures Oracle Reports Services
is up:

http://hostname:portno/cgi-bin/rwcgi60/showjobs?
server=repserver
Configuring Oracle Reports Services on Sun SPARC Solaris 4-7

Stopping Oracle Reports Services
c. Entering the following from your browser runs a report:

http://hostname:portno/cgi-bin/rwcgi60?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart Oracle
Reports Services to acknowledge the changes.

4.4 Stopping Oracle Reports Services
Do one of the following to stop Oracle Reports Services:

■ If Oracle Report Services is running in the foreground, then ensure that the
focus is in the correct window and press ctrl-C.

■ If Oracle Report Services is running in the background, then enter the following
at the command line:

ps -ef |grep ’rwmts60’

You would then enter:

kill -9 process_number

4.5 Environment Variables
Environment variables are the configuration parameters that are used to control or
customize the behavior of Oracle Reports Services. Variables can be set using a shell
script.

You can set two environment variables, REPORTS60_PATH and TNS_ADMIN. The
REPORTS60_PATH is the search path for Reports Services source files (for example,
RDFs, TDFs, and PLLs), and TNS_ADMIN overrides the default location for
tnsnames.ora and sqlnet.ora. To set these do the following:

1. Create a directory for your source reports (for example, /WEB_REPORTS).

2. Set the REPORTS60_PATH environment variable to locate the reports. For
example, using the C shell syntax:

setenv REPORTS60_PATH /WEB_REPORTS
4-8 Publishing Reports to the Web with Internet Application Server

Environment Variables
Alternatively, after Oracle Reports Services is installed, you can set the source
path by using the SOURCEDIR parameter. See Appendix B, "Oracle Reports
Services Configuration Parameters" for more information.

3. Set the TNS_ADMIN environment variable to point to the location of the
tnsnames.ora file. For example, using the C shell syntax:

setenv TNS_ADMIN $ORACLE_HOME/NET80/ADMIN

Variable Description

REPORTS60_COOKIE_EXPIRE Determines the expire time of the cookie in minutes.
The default value is 30.

Cookies save encrypted user names and passwords
on the client-side when users log on to a secured
Oracle Reports Services to run report requests.
When users successfully log on, their browser is sent
an encrypted cookie. When a cookie expires,
subsequent requests (that is, ones that are sent to
secured Oracle Reports Services), user must
re-authenticate to run the report.

REPORTS60_DB_AUTH Specifies the database authentication template used
to log on to the database. The default value is
dbauth.htm.

REPORTS60_ENCRYPTION_KEY Specifies the encryption key used to encrypt the user
name and password for the cookie. The encryption
key can be any character string. The default value is
reports6.0.

REPORTS60_REPORTS_SERVER Specifies the default Oracle Reports Services for Web
requests. When this parameter is set, you can omit
the SERVER command line argument in report
requests to process them using the default server, or
you can include the SERVER command line
argument to override the default.

REPORTS60_SSLPORT If you are using SSL and you want to use a port
number other than 443, then you can use this
variable to set a different port number. The default
value is 443.

REPORTS60_SYS_AUTH Specifies the authentication template used to
authenticate the user name and password when
users run report request to a secured Oracle Reports
Services. The default value is sysauth.htm.
Configuring Oracle Reports Services on Sun SPARC Solaris 4-9

Environment Variables
4-10 Publishing Reports to the Web with Internet Application Server

Running Report Req
5

Running Report Requests

This chapter discusses various ways to specify report requests. The following topics
are covered:

■ Report request methods

■ Duplicate job detection

■ Using a mapping file to simplify run requests

■ Specifying URL run requests

■ Scheduling reports requests to run automatically

5.1 Report Request Methods
You can run report requests using various request methods. They are listed below:

■ The RWCLI60 command line enables you to run a report request from the
command line prompt. RWCLI60 is an executable that parses and transfers the
command line to the specified Reports Services. It uses a command line similar
to the Reports Runtime executable (RWRUN60). An RWCLI60 command line
request is made using a non-Web architecture. A typical command line request
looks like the following:

RWCLI60 REPORT=my_report.rdf USERID=username/password@my_db SERVER=repserver
DESTYPE=HTML DESFORMAT=cache

See Appendix A, "RWCLI60 Command Line Arguments" for a list of valid
RWCLI60 command line arguments.
uests 5-1

Duplicate Job Detection
■ The URL syntax enables you to run a report request from a Web browser. Web
CGI, and Servlet converts the URL syntax into an RWCLI60 command line
request that is processed by Oracle Reports Services. When the report has
finished processing, the output is sent to an HTML or PDF file in a location
known to the Web server, which is served back to the requesting Web browser.
You can provide users the URL syntax needed to make the report request from
their browser, or you can add the URL syntax to a Web site as a hyperlink. The
remainder of this chapter discusses this method in more detail.

■ The WebDB component enables you add a link as an Oracle WebDB component
to a WebDB site. This link points to a packaged procedure that contains
information about the report request. Reports Services system administrators
use Oracle WebDB wizards to create the packaged procedure making it more
convenient and secure to publish the report via the Web. Authorized users
accessing the WebDB site simply click the link to run the report. System
administrators can run the report directly from the wizard. See Chapter 6,
"Controlling User Access to Reports" for more information.

■ ActiveX control exposes Oracle Reports Services through industry-standard
ActiveX technology enabling you to run reports from any ActiveX container.
The Reports Launcher is an example of an ActiveX container. Refer to the
ActiveX and Reports Launcher online help for more information.

■ The SRW.RUN_REPORT is a packaged PL/SQL procedure that executes a
Reports Runtime command. When you specify the SRW.RUN_REPORT
command line, set the SERVER argument to Oracle Reports Services TNS
service entry name to cause the SRW.RUN.REPORT command to behave as
though you executed an RWCLI60 command. Refer to the Report Builder online
help for more information.

5.2 Duplicate Job Detection
When you run a report with the DESTYPE set to cache or the TOLERANCE set to
any number minutes (that is, 0 or greater), a copy of the report output is saved in
Oracle Reports Services’s cache. Subsequently, if an identical report is run (that is,
with the exact command line arguments), then the current request is recognized as a
duplicate job. Oracle Reports Services reuses the output from the cache instead of
executing the report again if it is requested within the specified tolerance (for
example, TOLERANCE=10). When the prior job is finished, or if it has already
finished, the cached output will be used for the subsequent report, too. If one of the
jobs is canceled (for example, canceled from the Reports Queue Manager), then the
runtime engine will run the other report normally.
5-2 Publishing Reports to the Web with Internet Application Server

Duplicate Job Detection
Refer to Appendix A, "RWCLI60 Command Line Arguments" for more information
about the DESTYPE and TOLERANCE command line arguments.

5.2.1 Usage Notes
You may find the following usage notes helpful:

■ The following command line arguments are compared to detect duplicate jobs:
REPORT, USERID, DESFORMAT, paramform, currency, thousands, decimal,
pagesize, orientation, mode, and all user parameters.

■ To distribute the output of a report to multiple destinations, you can run the
report once on a server, and then submit the same command to the same server
with a different destination and tolerance. Oracle Reports Services detects the
duplicate job and redistribute the cached file to the new destination.

■ Duplicate job detection operates independently on each instance of a
repeated job.

■ You can set the cache size through the Reports Queue Manager or manually by
setting the CACHESIZE parameter in the Oracle Reports Services configuration
file. Oracle Reports Services attempts to keep the total size of cache files below
this limit, deleting the least recently used files from the cache first. In addition,
you can empty the cache through the Reports Queue Manager.

Refer to the Reports Queue Manager online help, or see Appendix B, "Oracle
Reports Services Configuration Parameters" for more information on setting the
cache.

■ If a report is being processed when an identical job is submitted, then Oracle
Reports Services reuses the output of the currently running job even if
TOLERANCE is not specified or is equal to zero. Suppose that job_1 is currently
being run by one of the Oracle Reports Services engines and someone else
submits job_2, which is identical to job _1. Oracle Reports Services uses the
output from job_1 for job_2. In this case, processing job_2 is significantly faster
since job_2 is not sent to an engine for execution.
Running Report Requests 5-3

Using a Key Map File
5.3 Using a Key Map File
If you choose to provide users with the URL syntax or add the URL syntax as a
hyperlink to any Web site, then you can use a key map file to simplify or hide
parameters in your URL requests. Key mapping is useful for:

■ Shortening the URL, making it more convenient to use.

■ Remapping the URL run configuration without having to change the original
URL.

■ Standardizing several typical run configurations for the organization.

■ Hiding certain parameters from users (for example, the database connect
string).

■ Restricting the parameters users can use to run a report.

A more convenient and secure way to publish reports on a Web site is to create a
WebDB component. See Chapter 6, "Controlling User Access to Reports" for more
information.

A map file takes a URL parameter and maps it to the command line arguments that
govern the report request. For example, one argument in the URL request syntax
could map to all of the command line arguments needed to run the report. By using
key mapping, the command line arguments are all hidden from the user.

 Below is an example of a key mapping for a restricted run with a Parameter Form.

A submission of:

http://your_webserver/cgi-bin/rwcgi60.exe?key+par1+par2+parN

where the key mapping file contains:

KEY: module=myreport deptno=%1 myparam=%2 %*

generates the equivalent of the following command line request:

RWCLI60 module=myreport deptno=par1 myparam=par2 parN
5-4 Publishing Reports to the Web with Internet Application Server

Using a Key Map File
5.3.1 Enabling Key Mapping
Key mapping is enabled when either of the two following conditions are met:

■ The REPORTS60_CGIMAP (Web CGI) environment variable on the Web server
machine specifies the name of a valid key map file. See Appendix C,
"Environment Variables" for more information.

■ A valid file with the standard file name, cgicmd.dat, is present in
ORACLE_HOME\REPORT60 directory on the Web server machine.

Usage Notes
The following usage notes may be helpful for key mapping:

■ When key mapping is enabled, all RWCGI60 URLs are treated as if the first
argument is a key. The key map file searches for this key. If the key is found,
then its defined value is substituted into the command line for Oracle Reports
Services. If it is not found, then an error is generated.

■ When submitting a URL through an HTML form, the key is coded as an input
of type hidden.

5.3.2 Mapping URL Parameters
This section describes how to add key mapping entries to a key map file.

On the Web server machine:

1. Open cgicmd.dat (Web CGI) file, located in the ORACLE_HOME\REPORT60
directory, in a text editor.

Tip: Type: http://your_webserver/cgi-bin/rwcgi60.exe/showmap?
in your Web browser to verify the mapping file that is being used.

2. Add a key mapping entry. A basic key mapping entry looks similar to the
following, where key1 is the name of the key:

key1: REPORT=your_report.rdf USERID=user_name/password@mydb DESFORMAT=html
SERVER=repserver DESTYPE=cache
Running Report Requests 5-5

Specifying Report Requests
Except for the special parameters that are described in the file itself, the
command line arguments follow the syntax rules of RWCLI60. See Appendix A,
"RWCLI60 Command Line Arguments" for more information about the
RWCLI60 command line arguments.

If you set the REPORTS60_REPORTS_SERVER environment variable and are
sending the request to the default server, then you can omit the SERVER
command line argument. See Appendix C, "Environment Variables" for more
information.

3. Add or update the hyperlinks on your Web page. See Section 5.4.2, "Specifying
a Report Request from a Web Browser".

5.4 Specifying Report Requests
You can specify reports by:

■ Building a report

■ Specifying a report request from a Web browser

■ Scheduling reports to run automatically

5.4.1 Building a Report
To build a report, you do the following:

1. On the machine where your Oracle Reports Services is located, create the
reports source directory (for example, C:\WEB_REPORTS) for saving the reports
using the path. Ensure that this directory is set in the SOURCEDIR parameter in
the Oracle Reports Services configuration file. See Appendix B, "Oracle Reports
Services Configuration Parameters".

The reports source path can also be set in the REPORTS60_PATH environment
variable. See Appendix C, "Environment Variables" for more information.
5-6 Publishing Reports to the Web with Internet Application Server

Specifying Report Requests
Start the Report Builder and build a report. You can save this report as an .RDF
or .REP file. Be sure to copy this report definition file to the reports source
directory on Oracle Reports Services machine (for example,
C:\WEB_REPORTS). Refer to the Building Reports manual or Report Builder
online help for more information about building a report. To access Report
Builder only help, click on and do the following steps:

2. Make this report available to users. See Section 5.4.2, "Specifying a Report
Request from a Web Browser" for more information.

5.4.2 Specifying a Report Request from a Web Browser
You can provide the user with the URL syntax needed to make a report request, or
you can add the URL syntax to a Web page as a hyperlink.

A more convenient and secure way to publish reports on a Web site is to create a
WebDB component. See Chapter 6, "Controlling User Access to Reports" for more
information.

URL syntax can be presented in the following forms:

■ Full URL request that looks similar to the following:

http://your_webserver/cgi-bin/rwcgi60.exe?report=your_report.rdf
+userid=user_name/password@mydb+server=repserver+desformat=html
+destype=cache

If you require additional command line arguments, then refer to Appendix A,
"RWCLI60 Command Line Arguments" for a list of valid RWCLI60 command
line arguments.

■ Simplified URL request using key mapping that looks similar to the following:

http://your_webserver/cgi-bin/rwcgi60.exe?report=key1

1. For online help on this task, choose Help→Report Builder Help
Topics

2. On the Index page, type... report, building

3. Then click Display to view help topic... Building a standard
report
Running Report Requests 5-7

Specifying Report Requests
If you set the REPORTS60_REPORTS_SERVER environment variable and are
sending the request to the default server, then you can omit the SERVER command
line argument. See Appendix C, "Environment Variables" for more information.

To add the URL syntax to a Web page as a hyperlink:

1. Add the URL request as a hyperlink to your Web page. The syntax looks similar
to the following:

My report>

2. Provide users the Web site URL that publishes the report request. Users click
the link to run the report.

If the report does not run or display in Web browser as expected, then refer to
Appendix E, "Troubleshooting" for more information.

5.4.3 Scheduling Reports to Run Automatically
You can also use the server to run reports automatically from the Queue Manager or
from Oracle WebDB. The scheduling feature enables you to specify a time and
frequency for the report to run.

Refer to the Reports Queue Manager online help for more information about
scheduling your reports.

If you publish your reports on a WebDB site as WebDB component, then you can
schedule these report requests to run automatically and push the resulting reports
to specified folders on the site. See to Chapter 6, "Controlling User Access to
Reports" for more information.
5-8 Publishing Reports to the Web with Internet Application Server

 Controlling User Access to Re
6

Controlling User Access to Reports

Access control enables you to restrict user access to reports that are run on Oracle
Reports Services. Oracle Reports Services uses WebDB to perform a security check
that ensures that users have the necessary privileges to run reports on restricted
Oracle Reports Services and printers. Access control determines the following:

■ What report definition files, Oracle Reports Services, and printers are restricted.

■ Who has access privileges to run requested reports on a restricted Oracle
Reports Services and output to a restricted printer.

■ When report definition files, Oracle Reports Services, and printers are available
to run.

■ How report output is delivered by restricting report request options (that is,
required and optional parameters) that are available to users at runtime. This
includes specifying Oracle Reports Services and printers that are available to
users.

WebDB stores information about the report definition file (that is, how to run the
report) as a packaged procedure. In order to run a report, WebDB also needs to store
access control information about the restricted Oracle Reports Services that accepts
the request, and any printers that are used to print report output. These access
controls are added using Reports Services Security wizards in WebDB. Only users
who have Reports Services system administrator privileges can add access controls
in WebDB.
ports 6-1

Access Control Configuration and Setup Overview
You can make report requests available to users on the Web by doing the following:

■ Adding a link as a WebDB component to a WebDB site that points to the
report’s packaged procedure. See Section 6.3.8, "Step 8. Making the Report
Available to Users" for more information about this method.

■ Scheduling a request to run automatically and push the report output to a
WebDB site for users to view. See Section 6.3.9, "Step 9. Scheduling the Report to
Run and Push the Output to a WebDB Site" for more information.

■ Adding standard URL syntax to a Web site as a hyperlink. See Section 5.4,
"Specifying Report Requests" for more information.

6.1 Access Control Configuration and Setup Overview
This section describes how to configure Oracle Reports Services for access control
and how to add access information in WebDB that will be used to run report
requests to restricted Oracle Reports Services.

The steps below assume that you have already configured Oracle Reports Services
using Web CGI or Servlet. See Chapter 4, "Configuring Oracle Reports Services on
Sun SPARC Solaris" for more information. See Section 6.3, "Setting Up Access
Controls in WebDB" for a detailed example on implementing access control in
Reports Services.

6.1.1 Installing and Configuring Reports Services Security
To install and configure Reports Services security you need to configure WebDB for
Reports Services security.

6.1.2 Setting up Access Control
To set up access control, you do the following:

1. Configure Oracle Reports Services for access control.

2. Create user accounts.

3. Optionally, create availability calendars in WebDB.

Note: System administrators can run report requests from Reports
Services Security in WebDB. See Section 6.3.7, "Step 7. Setting
Parameter Values on the Reports Services Parameter Form" for
more information.
6-2 Publishing Reports to the Web with Internet Application Server

Installing and Configuring Reports Security in WebDB
4. Add access to the printer in WebDB.

5. Add access to Oracle Reports Services in WebDB.

6. Add access to the report definition file in WebDB and create a packaged
procedure.

You can batch register multiple reports in WebDB using the Reports Services
Batch Registering utility. Refer to the Reports Services Batch Registering
Reports technical white paper located on the OTN
(http://technet.oracle.com).

7. Set parameter values on the Parameter Form.

8. Publish the report request on a WebDB site.

9. Optionally, schedule the report to run and push the output to a WebDB site.

6.2 Installing and Configuring Reports Security in WebDB
Installing and configuring the Reports Services Security in WebDB involves
installing WebDB and Oracle Reports Services Security feature, and then setting the
authentication cookie domain.

Once Oracle Reports Services Security is installed and configured in WebDB, see
Section 6.3, "Setting Up Access Controls in WebDB" for information on configuring
Oracle Reports Services for access control and adding access to Oracle Reports
Services, reports, and printers in WebDB.

6.2.1 Step 1. Configuring Reports Security in WebDB
You must do the following to install and configure the Reports Services Security
feature in WebDB:

■ Install WebDB release 2.2 or later.

■ Install Reports Security feature in WebDB.

■ Set the authentication cookie domain.

6.2.1.1 Installing WebDB
Install WebDB into an Oracle 7.3.4, Oracle 8.0.5, or Oracle 8i database if it has not
been installed already. Refer to the Oracle WebDB Getting Started-Installation and
Tutorial manual for more information.
 Controlling User Access to Reports 6-3

Installing and Configuring Reports Security in WebDB
6.2.1.2 Installing Oracle Reports Services Security Packages in WebDB
You can install Oracle Reports Services security packages from any machine (for
example, where your WebDB or your Oracle Reports Services is installed).

1. If you want to install just Oracle Reports Services security packages, then start
the Oracle Installer and choose the Custom Installation. From the Available
Products list box, expand the Oracle Reports Developer node and choose
Reports Server Security Packages. Refer to the Getting Started manual for more
information about the installation process.

2. When the installation is complete, run the SQL script that installs the security
packages in WebDB:

■ For Windows NT, choose Install Reports Developer Security from the
Oracle Reports Developer Admin menu.

■ For UNIX, go to the ORACLE_HOME/REPORT60/SERVER/SECURITY
directory and type the following at the command line:

sqlplus /nolog @rwwwvins.sql

3. Type the following at the Enter Connection String prompt to log on to the
WebDB schema (username/password@database).

4. When the SQL script is complete, start WebDB and log on to the WebDB
schema.

5. Click Administrator at the main menu. You should see the Reports Developer
Security menu item.

Table 6–1 Connection to Log on to the WebDB Schema

Field Description

username A user name with DBA privileges that logs you on to the WebDB
schema. Contact your DBA if you cannot log on to the WebDB schema.

password A password that logs you on to the WebDB schema.

database The name of the database that connects you to the WebDB schema.
6-4 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.2.1.3 Setting the Authentication Cookie Domain
You set the authentication cookie domain so that the cookie can send the
authentication information to Oracle Reports Services where the report is sent. Click
on and do the following:

On the machine where WebDB is installed:

1. Open the wdbsvr.cfg file in a text editor (located in the
ORACLE_HOME\LISTENER\CFG directory). Under the [SERVER] section, set the
configuration parameter using the following syntax, where my_company.com
is the domain name of the Oracle Reports Services

ORCookieDomain=my_company.com

2. Save your changes and close the configuration file.

6.3 Setting Up Access Controls in WebDB
This example provides step-by-step instructions that will help you configure your
Oracle Reports Services for access control. You will add access to the report
definition file, Oracle Reports Services, and printer in WebDB. Finally, you will
publish the report request on a WebDB site so that authorized users can run this
restricted report.

This example assumes the following:

■ Oracle Reports Services is configured using the Web CGI configuration.

■ A printer that Oracle Reports Services can recognize must be installed and
running.

■ The Reports Services system administrator has WebDB site administrator
privileges. This enables the Reports Services system administrator to add items
to a WebDB site and grant Manage Item privileges to other users.

1. For WebDB online help on this task, click the help button on the title bar...

2. Click and type... authentication cookie

3. Click Find andthen click... Setting the authentication cookie to display
the topic.
 Controlling User Access to Reports 6-5

Setting Up Access Controls in WebDB
■ You have access to the security.rdf. This report generates a 401K report for
employees. Information about this report will be added in WebDB. This file is
provided for you in the ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory.

■ You must be able to access the Oracle Reports Services demo tables to run the
security.rdf file on Oracle Reports Services. Use the demo CD that came
with your product package to install the SQL scripts that are used to install the
demo tables in your database. These SQL scripts can be run from the
Start→ProgramsStart→Programs menu.

The 401K report that you add access to in WebDB contains vested 401K portfolio
information of four fictional employees. You want to restrict access to this
confidential report only to these four employees. Further, you want to ensure that
the requesting employee can access only his personal information, not other
employees’ information. This can be achieved by doing the following:

■ Restrict user access to the report itself. For the purposes of this example, you
will create a user account for Jeff Abers, one of the 401K participants, and then
give this user access to the report.

■ Restrict authorized users access to only their personal information. Users with
access to run the report will need to enter the correct last name and social
security number combination to retrieve their personal 401K summary. The
security.rdf report was built with two user parameters: last name and
social security number (SSN). In WebDB, you will build a Runtime Parameter
form that contains a list of values of the last names of 401K participants and an
unrestricted parameter for the social security number.

Suppose that Jeff Abers wants to review his 401K investments. On the Runtime
Parameter Form, in addition to the destination parameters, he will need to choose
his last name from a list of values and then enter his social security number. When
he runs the report, he must log on. WebDB checks that he has the access privileges
needed to run the report. If he logs on successfully, then Oracle Reports Services
processes the request. If he entered the correct last name and social security number
combination, then his personal 401K report is delivered as requested.
6-6 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.1 Step 1. Configuring Oracle Reports Services for Access Control
Oracle Reports Services must be installed and configured before you can perform
this step. See Chapter 4, "Configuring Oracle Reports Services on Sun SPARC
Solaris" for information.

To configure Oracle Reports Services for access control, you will do the following:

■ Create a TNS names alias that connects to WebDB.

■ Restrict access to Oracle Reports Services.

6.3.1.1 Creating the TNS Names Alias that Connects to WebDB
You need to create a TNS names alias for WebDB in the tnsnames.ora file on the
machine where Oracle Reports Services is installed. This enables Oracle Reports
Services to communicate with WebDB.

You can create the TNS names alias using the Net8 Easy Config tool, or you can
create one by editing the tnsnames.ora file in a text editor.

To create TNS names alias, you will need the following information:

■ A TNS names alias for the WebDB instance.

■ The host name of the database where WebDB is installed.

■ The port number of the database where WebDB is installed.

■ The System Identifier (SID) of the database where WebDB is installed.

You can find the host name, port number, and SID in the tnsnames.ora file in the
ORACLE_HOME\NETWORK\ADMIN directory on the machine where the database is
installed.

On Oracle Reports Services machine:

1. Do one of the following:

■ Start Net 8 Easy Config (if it is installed on your machine) and follow the
instructions on the wizard to help you create the TNS names alias.

■ Open the tnsname.ora file located in the ORACLE_HOME\NET80\ADMIN
directory. Go to step 2.

If you installed Oracle Reports Services Security feature from your Oracle
Reports Services machine, then a TNS names alias for WebDB has already been
created for you. You can skip this step and go to Section 6.3.1.2, "Restricting
Access to Oracle Reports Services".
 Controlling User Access to Reports 6-7

Setting Up Access Controls in WebDB
2. Add the following TNS names alias to connect to WebDB:

sec_rep.world =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = my_pc.my_domain)
 (PORT = 1521)
)
 (CONNECT_DATA = (SID = ORCL)
)
)

where:

3. Save and close the tnsnames.ora file.

6.3.1.2 Restricting Access to Oracle Reports Services
To restrict access to Oracle Reports Services, you set the SECURITYTNSNAME
parameter in Oracle Reports Services configuration file. Once set, access control is
enforced. Users will be required to authenticate themselves to run report requests to
this restricted Oracle Reports Services.

sec_rep.world is the name of the WebDB server instance.

.world is the domain specified in the
NAMES.DEFAULT_DOMAIN setting in the
sqlnet.ora file. If the NAMES.DEFAULT_DOMAIN
setting is not defined in the sqlnet.ora, then omit
.world from the name of the server instance.

TCP is the protocol address information.

my_pc.my_domain is the host name or IP address of the machine where
WebDB is installed.

1521 is the port number to the database where WebDB is
installed.

ORCL is the Oracle System Identifier for the database where
WebDB is installed.
6-8 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
To run a report request, access to the report definition file must be added in WebDB.
If you want to run unrestricted report requests, then ensure the Run Only
Registered Report Definition Files option is unchecked in the Server Access wizard
in WebDB for this Oracle Reports Services. Users, however, will still need to
authenticate themselves to the Reports Services to run the report.

On Oracle Reports Services machine, do the following:

1. Open the repserver.ora configuration file (located in the
ORACLE_HOME\REPORT60\SERVER directory) in a text editor. Set the
SECURTYTNSNAME parameter using the following syntax, where sec_rep is
the TNS names alias of the WebDB server instance defined in the
tnsnames.ora file:

SECURITYTNSNAME="sec_rep"

2. Save and close Oracle Reports Services configuration file.

3. Stop and restart Oracle Reports Services to accept the changes made to Oracle
Reports Services configuration file.

6.3.2 Step 2. Creating User Accounts
You will need to create the following users accounts:

■ The Oracle Reports Services system administrator to create and maintain access
controls for the restricted Oracle Reports Services, report definition files, and
printers. See Section 6.3.2.1, "Creating the Reports Services System
Administrator User Account". Once you create the Reports Services system
administrator, you can start creating access controls for Oracle Reports Services,
report definition files, and printers you want to restrict.

■ Any user who will be given access privileges to run a restricted report to a
restricted Oracle Reports Services and printer. See Section 6.3.2.2, "Creating
Users Accounts for Running Reports". You can create user accounts at anytime.
However, if you are restricting access to Oracle Reports Services, report
definition files, or printers, and know which users should have access to them,
then it is best to create the users accounts first.
 Controlling User Access to Reports 6-9

Setting Up Access Controls in WebDB
6.3.2.1 Creating the Reports Services System Administrator User Account
 In order to perform security administration in WebDB, you must have a user
account that is assigned the RW_ADMINISTRATOR role. Only those users with the
RW_ADMINISTRATOR role can access Reports Services Security wizards in
WebDB. In addition, you must have BUILD IN privileges to the schema that will
own the report’s packaged procedure and any list of values (LOV) that you might
create. If you have a user account with DBA privileges, then you can create user
accounts. Otherwise, contact your DBA and request that user accounts be created.
Click on and do the following:

To add a report item to a WebDB site, a WebDB site must be created. If you will be
responsible for creating the WebDB site, then you must be a DBA with Execute
privileges on the SYS.DBMS_SQL packaged procedure with the Grant option. This
privilege will allow you to create the site and grant Manage Item privileges to other
users.

If someone else is the site administrator, then you must be given Own, Manage
Item, or Create With Approval privileges for the folder that you want to add items
to. Contact the DBA or site administrator for more information.

6.3.2.2 Creating Users Accounts for Running Reports
Any users who will be given access privileges to run report requests must have a
user account that WebDB can recognize. Reports Services has four predefined roles
that can be assigned to users. Each role gives users access to certain administrative
controls, such as monitoring jobs or viewing error messages. By default, Reports
Services basic user functions (that is, the RW_BASIC_USER role) are implied if users
are not assigned specific Reports Services roles.

1. For WebDB online help on this task, click the help button on the
title bar...

2. Click and type... Creating user accounts.

3. Click Find and then click... Creating user accounts to display the
topic.

Note: It is possible that the packaged procedures and the
parameter list of values that you create might be owned by
different schemas. You might need BUILD IN privileges to more
than one schema.
6-10 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
If you have a user account with DBA privileges, then you can create user accounts.
Otherwise, contact your DBA and request that user accounts be created. Click on
and do the following:

For this exercise, create or request a user account for Jeff Abers, one of the
employees who participates in the 401K plan. His user account should be JABERS.
He is assigned the basic user role. Contact your DBA to create user accounts for
those users who require access privileges to run report requests. Assign users
Reports Services roles as needed.

If the JABERS user account already exists, then append your initials to it (for
example, JABERSAA).

6.3.3 Step 3. Creating Availability Calendars
An availability calendar determines when report definition files, Oracle Reports
Services, and printers are available for processing.

You can create two types of availability calendars:

■ A simple availability calendar defines a single availability rule (for example,
daily, Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).

■ A combined availability calendar combines two or more availability calendars
(for example, combining the daily calendar with a maintenance calendar) into a
single availability calendar.

You can associate only one availability calendar with a report definition file, Oracle
Reports Services, or printer. If your production environment requires more than one
availability rule, then you will need to combine availability calendars.

Availability calendars are not necessary if the reports definition files, Oracle Reports
Services, and printers are always available for processing.

1. For WebDB online help on this task, click the help button on the
title bar...

2. Click and type... Creating user accounts.

3. Click Find and then click... Creating user accounts to display the
topic.
 Controlling User Access to Reports 6-11

Setting Up Access Controls in WebDB
In this exercise, you will create a production calendar that determines the
availability for every day of the week, days with scheduled maintenance, and
holidays. To do this, you will create the following availability calendars:

■ Daily calendar with an availability period of every Sunday through Saturday
from 12:00 a.m. to 10:00 p.m.

■ Maintenance calendar with an availability period of every Saturday from
3:00 p.m. to 10:00 p.m.

■ Christmas calendar with an availability period starting on December 25 at
12:00 a.m. and ending on December 26 at 12:00 a.m.

■ Production calendar that combines all the above calendars, and then excludes
the maintenance and Christmas calendars. Excluding these calendars prohibits
processing based on their availability rules.

6.3.3.1 Creating the Daily Calendar
You will create a daily calendar with an availability period of Sunday through
Saturday from 12:00 a.m. to 10:00 p.m.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Access WebDB and log on as the Reports Services system administrator. You
must be logged on as the Reports Services system administrator to access the
Reports Services Security wizards.

2. On the Oracle WebDB home page, click Administer. You also can click
from the navigation toolbar on any WebDB page to access the Administer page.

3. On the Administer page, click Reports Developer Security.

4. On the Reports Services Security page, Click Availability Calendars.

5. On the Availability Calendars page, click the Simple Availability Calendar
option to create a new calendar.

6. Click Create to create the simple Availability calendar.

7. On the Simple Availability Calendar page, type Daily as the Calendar Name.
If the Daily calendar already exists, then append your initials to it (for example,
DailyAA).

8. Click .

9. On the Date/Time Availability page, specify today’s date as the start month,
date, and year, and 12:00 a.m. as the start time.
6-12 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
10. Specify today’s date as the end month, date, and year, and 10:00 p.m. as the end
time.

11. Choose Daily as the Repeat option. This will repeat the duration pattern every
day. For example, if the start date is Monday, January 4, 2000, then this pattern
will repeat every day starting on this date until the pattern is terminated.

12. Click .

13. Optionally, on the Simple Availability Calendar Summary page, click Show
Calendar to view a visual representation of the daily calendar. Green indicates
availability. Close the calendar when you are finished reviewing it.

14. Click .

15. On the Create Simple Availability calendar page, click OK to create the
calendar.

6.3.3.2 Creating the Maintenance Calendar
You will create a maintenance calendar with an availability period of every
Saturday from 3:00 p.m. to 10:00 p.m. In a later step, you will add this calendar to
the Production calendar and then exclude it to prohibit processing based on the
date and time specified.

1. From the Availability Calendars page, click the Simple Availability Calendar
option to create a calendar.

2. Click Create.

3. On the Simple Availability Calendar page, type Maintenance as the
Calendar Name. If the Maintenance calendar already exists, then append your
initials to it (for example, MaintenanceAA).

4. Click .
 Controlling User Access to Reports 6-13

Setting Up Access Controls in WebDB
5. Follow steps 9-15 in Section 6.3.3.1, "Creating the Daily Calendar" to define the
following availability rule:

6.3.3.3 Creating the Christmas Calendar
You will create a Christmas calendar with an availability period of every December
25 from 12:00 a.m. to December 26 at 12:00 a.m. In a later step, you will add this
calendar to the Production calendar and then exclude it to prohibit processing
based on the date and time specified.

1. From the Availability Calendar page, click the Simple Availability Calendar
option to create the third calendar.

2. Click Create.

3. On the Simple Availability Calendar page, type Christmas as the Calendar
Name. If the Christmas calendar already exists, then append your initials to it
(for example, ChristmasAA).

4. Click .

5. Follow steps 9-15 in Section 6.3.3.1, "Creating the Daily Calendar" to define the
following rule:

Table 6–2 Maintenance Calendar Rule

Field Value

Duration Start Specify a date starting on a Saturday (for example, January 8, 2000),
and time starting at 3:00 p.m.

Duration End Specify the same date defined as the start date, and time ending at
10:00 p.m.

Repeat Choose Weekly.

Table 6–3 Christmas Calendar Rule

Field Value

Duration Start Specify December 25 and 12:00 a.m.

Duration End Specify December 26 and 12:00 a.m.

Repeat Choose Yearly.
6-14 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.3.4 Creating a Combined Availability Calendar
In this exercise, you will create a Production calendar that combines the Daily,
Maintenance, and Christmas calendars, then excludes the Maintenance and
Christmas calendars, which prohibits processing based on their availability rules.

1. From the Availability Calendar page, click the Combined Availability
Calendar option to create the calendar that will combine the three calendars
you created into one.

2. Click Create.

3. On the Combined Availability Calendar page, type Production as the
Calendar Name. If the Production calendar already exists, then append your
initials to it (for example, ProductionAA).

4. Click .

5. On the Select Availability Calendars page, ctrl-click the Daily, Maintenance
and Christmas calendars from the Availability Calendars list box.

6. Click to move the selected calendars to the Selected Availability Calendars
list box, or click to select all available calendars.

7. Click .

8. On the Exclude Availability Calendars, ctrl-click the Maintenance and
Christmas calendars in the Availability Calendars list box.

9. Click to move the Maintenance and Christmas calendars to the Excluded
Availability Calendars list box. Doing so prohibits processing on the date and
time specified in each calendar.

10. Click .

11. On the Combined Availability Calendar Summary page, click Show Calendar
to view a visual representation of the availability calendar. Green indicates
availability. Close the calendar when you are finished reviewing it.

It is a good practice to check the combined calendar at this point. You can verify
that the calendars you prohibited processing on are excluded during the period
specified. Scroll to December to ensure that December 25 is excluded from
processing. Choose the Day option and scroll to a Saturday to ensure that
processing is unavailable from 3 p.m.

12. Click .

13. On the Create Combined Availability Calendar page, click OK to create the
Production calendar in WebDB.
 Controlling User Access to Reports 6-15

Setting Up Access Controls in WebDB
6.3.4 Step 4. Adding Access to a Reports Services Printer in WebDB
Printer Access defines the following:

■ What printer is available in WebDB to print report output.

■ Who has access privileges to print output to this printer.

■ When this printer is available to print report requests.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Click Reports Developer Security from the link history, which is located just
above the navigation toolbar.

2. On the Reports Developer Security page, click Printer Access.

3. Click Create to add printer access to WebDB.

4. On the Printer Name page, type Reports_Printer in the Printer Name field.
If this printer name already exists, then append your initials to it (for example,
Reports_PrinterAA).

5. Type the operating system name of the printer in the OS Printer Name field (for
example, the OS printer name in Windows NT might be
\\net_machine\my_printer). Refer to your operating system’s
documentation for more information.

6. Click .

7. On the Users and Roles page, choose JABERS and your Reports Services
system administrator user account from the All Users list box to specify who
can output reports to this printer.

8. Click to move this user to the Selected Users list box.

9. Click .

Prerequisite: You must already have a printer that Reports
Services can recognize installed and running. Refer to the
DESNAME and DESFORMAT command line arguments described
in Appendix A, "RWCLI60 Command Line Arguments" for more
information.
6-16 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
10. On the Availability Calendar page, type Production as the availability
calendar, or click to find the availability calendar. If you want to make this
printer available all the time, then do not specify a calendar.

11. Click .

12. On the Add Printer Access page, click OK to add access to this printer in
WebDB.

6.3.5 Step 5. Adding Access to Oracle Reports Services in WebDB
Oracle Reports Services Access defines the following in WebDB:

■ What Oracle Reports Services is available in WebDB for processing requests.

■ What printer is available to Oracle Reports Services.

■ Who has access privileges to send report requests to this Oracle Reports
Services.

■ When this Oracle Reports Services is available to accept report requests.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Click Reports Developer Security from the link history.

2. At the Reports Developer Security page, click Server Access.

3. Click Create.

4. On the Server Name and Printers page, type Repserver in the Server Name
field. If this server name already exists, then append your initials to it (for
example, RepserverAA).

5. Type repserver in the Reports Server TNS Name field. The Reports Services
TNS name is Oracle Reports Services entry name that is added to the
tnsname.ora file when you installed and configured Oracle Reports Services.
See Chapter 4, "Configuring Oracle Reports Services on Sun SPARC Solaris" for
more information.

6. Type the Reports Services Web Gateway URL in lowercase:

http://my_webserver/cgi-bin/rwcgi60.exe

The Reports Services Web Gateway URL is determined by the virtual location of
the Web CGI.

7. Choose the Reports_Printer from the Printers list box.
 Controlling User Access to Reports 6-17

Setting Up Access Controls in WebDB
8. Click .

9. On the Users and Roles page, choose JABERS and your Reports Services
system administrator user account from the All Users list box to specify who
can access this server.

Be sure that you select the same users who have been given access to the
printer.

10. Click to move this user to the Selected Users list box.

11. Click .

12. On the Availability Calendar page, type Production as the availability
calendar, or click to find the availability calendar. If you want to make this
server available all the time, then do not specify a calendar.

13. Click .

14. On the Add Server Access page, click OK to add server access to WebDB.

6.3.6 Step 6. Adding Access to the Report Definition File in WebDB
Report Definition File Access defines the following in WebDB:

■ What Reports Services .RDF, .REP, or .XML file you want to make accessible in
WebDB.

■ Who has access privileges to run this report definition file.

■ When this report definition file is available to run.

■ How report output is delivered by restricting the report request options (that is,
required and option parameters) that are available to users at runtime. This
includes specifying Oracle Reports Services and printers that are available to
users.

In this exercise, you will restrict access to the security.rdf file (located in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory) in WebDB based on the
following information:

■ Destination type is restricted to Cache and Printer.

■ Destination format is restricted to HTMLCSS and PDF.

■ P_LASTNAME user parameter is restricted to a list of values defined in WebDB.

■ P_SSN user parameter is used to validate the social security number and last
name pair.
6-18 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
■ COPIES system parameter is restricted to two copies preventing users from
printing more than two copies of their report.

■ USERID system parameter is restricted so that users can save database logon
information in the Runtime Parameter Form. Specifying the USERID as a
restricted parameter is necessary if you want users to schedule their reports to
run automatically.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

6.3.6.1 Creating a List of Values for the Lastname User Parameter
If you want users to select values from a list of values for any system or user
parameters you define on the Optional Parameters page, then you must create this
list in WebDB.

Recall that the security.rdf report gathers information about the vested
portfolios of employees participating in the company’s 401K plan. You want to
restrict access to only those employees who participate in the plan. In this exercise,
you will create a list of values for the P_Lastname user parameter that lists the last
names of these employees.

If you are not publishing the report request on a WebDB site, then creating a list of
values in WebDB is not necessary. You can create a list of values in Report Builder
using the Parameter Form editor. Click on and do the following:

1. Click from the navigation toolbar.

2. At the Shared Components menu, click Lists of Values (LOV).

3. Choose the Static - Static Values option, and then click Create LOV.

4. On the Create Static List of Values page, choose a schema as the Owning
Schema of this LOV.

1. For Report Builder online help on this task, choose Help→Report
Builder Help Topics

2. On the Index page, type... parameter, list of values.

3. Then click Display to view help topic... Creating a list of values
(LOV) for a parameter.
 Controlling User Access to Reports 6-19

Setting Up Access Controls in WebDB
5. Choose PUBLIC from the Privileges list box so that all users have access to this
LOV.

6. Type LASTNAME_LOV as the name of LOV. If this LOV already exists, then
append your initials to it (for example, LASTNAME_LOVAA).

7. Choose Combo Box as the Default Format.

8. Enter the following values in the table:

9. Click Add LOV.

10. From the Manage List of Values page, the newly created LOV is displayed in
the Recently Edited List of Values section. If you want to test the LOV, then
you can do so here.

6.3.6.2 Adding Access the Report Definition File
If you back out of the wizard page (that is, click Back on your Web browser), then
you will lose the settings you defined on that page. If you need to make changes,
then first create the packaged procedure for the report by completing the wizard.
Then, edit the package by clicking Edit on the Manage Component page.

1. Click from the navigation toolbar and click Reports Developer Security.

2. On the Reports Developer Security page, click Report Definition File Access.

3. Click Create.

4. On the Report Name and Schema page, choose a schema from the Owner list
box. The schema that you choose will own this packaged procedure for this
report.

Table 6–4 Static List of Values

Display Value Return Value Display Order

Abers Abers 1

Costner Costner 2

Matsumoko Matsumoko 3

Williams Williams 4
6-20 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
5. Type Investment_Report in the Report Name field. The report name cannot
be prefaced with numeric characters (for example, 401K_report is an invalid file
name and my_401K_report is valid). If this report name already exists, then
append your initials to it (for example, Investment_ReportAA).

6. Choose repserver from the Reports Servers list box.

7. Type security.rdf as the Reports Services File Name. Ensure Oracle Reports
Services can find this report definition file. The report’s source path must be set
in the SOURCEDIR parameter in Oracle Reports Services configuration, or must
be set in the REPORTS60_PATH environment variable.

8. Click .

9. On the Users and Roles page, choose JABERS and your Reports Services
system administrator user account from the All Users list box to specify who
can run this report. Ensure that you choose the same users who have been given
access to the printer and Oracle Reports Services.

10. Click to move this user to the Selected Users list box.

11. Click .

12. On the Availability Calendar page, type Production as the availability
calendar, or click to find the availability calendar. If you want to make this
report definition file available all the time, then do not specify a calendar.

13. Click .

14. On the Required Parameters page, ctrl-click Cache and Printer from the Types
list box.

15. Shift-click HTMLCSS and PDF from the Formats list box.

16. Choose Reports_Printer from the Printers list box. If the printer you
defined does not appear, then you might have entered an incorrect OS Printer
Name when you created access to your printer. Finish creating this report
definition file package. It is likely that an invalid package will be created.
Return to the Printer Access wizard and edit access to the Reports_Printer.
After you edit the printer access. Return to the Report Definition File Access
wizard, edit the report definition file access for this report, then create a new
package.

17. Optionally, choose another Parameter form template. The template you choose
determines the page style on which the Runtime Parameter Form is displayed.

18. Click .
 Controlling User Access to Reports 6-21

Setting Up Access Controls in WebDB
19. On the Optional Parameters page, type P_LASTNAME in the Parameter Name
column. When users run this report at runtime, they will be required to select a
last name to run the report. The P_LASTNAME is the name of the parameter
defined in report. Open the security.rdf file in Report Builder and view the
parameters in the Parameter Form editor to determine the parameter’s name.

20. Type LASTNAME_LOV in the LOV column to enable users to choose the last
name of the 401K participant from a list of values, or click to find the LOV.

21. Type P_SSN in the second row of the Parameter Name column to require users
to type their social security number in the Runtime Parameter Form.

22. Type COPIES in the third row of the Parameter Name column to restrict the
number of copies the user can print when outputting the report to a printer.

23. Type 1 in the Low Value column.

24. Type 2 in the High Value column.

25. Type USERID in the fourth row of the Parameter Name column. This enables
users to specify the database that they can connect to if they want to schedule
the report to run automatically.

26. Click twice to skip the Validation Trigger page.

27. At the Add Report Definition File Access page, click OK to create the
packaged procedure for this report. When the package is created, the Manage
Component page appears. From this page, you can edit the report access, run
the report, or set up the Parameter Form. The next exercise explains how to set
the default parameter values in the Parameter Form that are used to run the
report.

If an invalid package is created, then you will be unable to proceed to the next
step. Verify the access controls that you defined for the printer, Oracle Reports
Services, and report. Make the necessary changes and then try to create a valid
production package for this report definition file.
6-22 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
To edit access to the report definition file, click from the navigation
toolbar. At the Reports Developer Security menu, choose Report Definition
File Access. Then, to access the Manage Component page for a particular
report, find the report or choose the report from the Recently Edited Report
Definition File section. At the Manage Component page, click Edit.

6.3.7 Step 7. Setting Parameter Values on the Reports Services Parameter Form
As the Reports Services system administrator, you can run the restricted report
request you just created to ensure that it will run as expected. You also can set the
default parameters that will be available to users at runtime. You can run and set
default parameter values from the Manage Component page.

6.3.7.1 Running the Report Output to Cache
In this exercise and the next, you will choose parameters values to run the report to
cache for debugging purposes, not to set the default values that will be available to
users at runtime. You will set the default values in Section 6.3.7.3, "Setting the
Default Parameters for Users at Runtime".

1. On the Manage Component page, click Parameters to set the default
parameters and choose the parameters that will be visible on the Runtime
Parameter Form.

To access the Manage Component page, click . At the Reports Developer
Security menu, choose Report Definition File Access. Then, find the report or
choose the report from the Recently Edited Report Definition File section.
 Controlling User Access to Reports 6-23

Setting Up Access Controls in WebDB
2. On the Reports Services Parameter Form, set the following parameters:

3. Click Run Report to run the report as requested.

Table 6–5 Parameter Form Settings for Debugging Cache Output

Parameter Value

Server repserver

Printer Reports_Printer

Destype Cache

Desformat HTMLCSS

Desname blank

Copies 1

P_LASTNAME Abers

P_SSN 559014203

USERID username/password@my_db

where username/password@my_db is the user name and
password for the database you want to connect to.

CAUTION: When setting parameter values for debugging
purposes, be sure to delete (or not save) any confidential parameter
values, such as social security numbers, from this Parameter Form.
Otherwise, this confidential information will be made public when
you add this report request to a WebDB site.
6-24 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.7.2 Running the Report Output to a Restricted Printer (Optional)
Following are the steps you would follow if you want to run report output to a
restricted printer:

1. If you want to send the output to the printer, then return to the Manage
Component page and click Parameters.

2. At the Reports Services Parameter Form, choose the following parameter
values:

3. Click Run Report.

4. Click OK when a message appears stating that the report was printed
successfully.

Table 6–6 Parameter Form Settings for Debugging Printer Output

Parameter Value

Server repserver

Printer Reports_Printer

Destype Printer

Desformat PDF

Desname defaults to the printer name

Copies 1

P_LASTNAME Abers

P_SSN 559014203

USERID username/password@my_db

where username/password@my_db is the user name and
password for the database you want to connect to.
 Controlling User Access to Reports 6-25

Setting Up Access Controls in WebDB
6.3.7.3 Setting the Default Parameters for Users at Runtime
Once you are satisfied that the report can run based on the restrictions imposed,
you can set the default parameter values and choose the parameters that will be
available to users on the Runtime Parameter Form.

1. On the Reports Services Parameter Form, set the following parameters:

You might want to make parameters visible to users on the Runtime Parameter
Form only when they need to take an action on the parameter (that is, select or
input a value) to run the request. In this case, the Server and Printer parameters
are restricted to one server and printer. The Desname parameter is populated
automatically with the printer name when Printer is chosen as the Destination
type. These parameters do not require user input to run the report.

When users run the report from a WebDB site, they can set the default
parameters values available to them on the Runtime Parameter Form to their
personal preferences. See Section 6.3.8, "Step 8. Making the Report Available to
Users" for more information.

2. Click Save Parameters to save the changes made to this Parameter Form.

Table 6–7 Default Parameter Settings for Users

Parameter Default Value Visible to User

Server repserver No

Printer Reports_Printer No

Destype Cache Yes

Desformat HTMLCSS Yes

Desname blank No

COPIES 1 Yes

P_LASTNAME blank Yes

P_SSN Type your SSN Yes

USERID Type the database logon Yes
6-26 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.8 Step 8. Making the Report Available to Users
You make the report available to users in a WebDB site by adding a link as a WebDB
component that points to the INVESTMENT_REPORT packaged procedure.

6.3.8.1 Creating a WebDB Site
Create a WebDB site if it has not already been created. Click on and do the
following:

To create a WebDB site, the Reports Services system administrator will need to have
site administrator privileges (that is, a DBA with execute privileges on the
SYS.DBMS_SQL packaged procedure with the Grant option). If someone else is the
site administrator, then ask that person to create the WebDB site.

6.3.8.2 Creating a Folder in the WebDB Site
You will create the folder in which the report’s packaged procedure is added. By
default this folder and any items that are added to it are available only to the owner
of the folder (that is, the Reports Services system administrator). You can make the
folder available to all users (that is, to public users) or available only to users who
have been given access to it. You will restrict access to this folder only to the users
who have access privileges to run this report (that is, JABERS).

If you make a folder public, then PUBLIC users (that is, users who have not logged
on to the WebDB site) can access the report’s Parameter/Scheduling form and
might unknowingly save their personal information to it. Subsequent PUBLIC users
will see this confidential information. To prevent this from happening, it is best to
restrict access to the folder to those users who have access to run the report. Users
must log on to access the restricted folder. Once logged on, the information they
save on the Parameters/Scheduling form is secured (that is, only they can view it).

1. For WebDB online help on this task, click the help button on the
title bar...

2. Click and type... web site.

3. Click Find and click... Creating web sites to display the topic.
 Controlling User Access to Reports 6-27

Setting Up Access Controls in WebDB
Click to access context-sensitive help for the current wizard page. Click on
the title bar to access theWebDB help system.

1. From your Web browser, type the URL of the WebDB site. For example:

http://my_webdb_server.com:1111/my_webdb_site

If you have site administrator privileges to create a site, then click from
the navigation toolbar on any WebDB page to access the Sites page. Click Site
Home Page to access the WebDB site.

2. Log on as the Reports Services system administrator.

To add a WebDB component to a WebDB site, your Reports Services system
administrator user account must have site administrator privileges (that is, a
DBA with execute privileges on the SYS.DBMS_SQL packaged procedure with
the Grant option). If you do not have site administrator privileges, then you
must have Own, Manage Item, or Create with Approval privileges for the
folders in which the component is being added. Contact your DBA or site
administrator for more information.

3. At the WebDB Site home page, click .

4. Click to add a new folder to your site.

5. On the Folder Manager page, type Benefits as the internal folder name of the
new folder.

6. Type Benefits as the title of the folder that will be displayed in the WebDB
site. If the Benefits folder has already been created by another user, then append
your initials to the folder name (for example, BenefitsAA).

7. Click Create to create the folder.

8. Choose Benefits from the list box.

9. Click Edit.

10. Click the Users tab.

11. On the Benefits page, type JABERS as the Name of the user you want to have
access to this folder.

12. Click Add to Access list. Notice that JABER is listed in the User Access List
with view privileges. Keep this default.

13. Click to return to the Benefits folder.
6-28 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.8.3 Adding the Report Request to the Folder
To add the report request to the folder, do the following:

1. On the Benefits, click to access the Item wizard and add the report
request to this folder.

2. On the Add an Item page, choose WebDB Component as the Item Type.

3. Choose Regular Item as the Display Option.

4. Click Next.

5. On the WebDB Component page, choose WEBDB.INVESTMENT_REPORT
from the list box, where WEBDB is the name of the schema that owns this
report’s package procedure for the 401K report.

6. Type Investment Summary Report as the Title.

7. Choose General as the Category.

8. Type Restricted 401K Report in the Description text box.

9. Click Next.

10. On the second WebDB Component page, choose the Display Parameter Form
option.

11. Click Finish. A link to the packaged procedure that contains the report request
appears in the Benefits folder.

6.3.8.4 Running the Report as a User
You will run this report as JABERS, not as the Reports Services system
administrator. In this exercise, you will set your default parameter settings for Jeff
Abers and then run the report.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Click Log Off on the navigation bar to log off as the Reports Services system
administrator.

2. Click Log On to log on as JABERS.

3. Click Site Map to access the Benefits folder.

4. Click Benefits folder.
 Controlling User Access to Reports 6-29

Setting Up Access Controls in WebDB
5. In the Benefits folder, click Investment Summary Report.

6. On the Parameters/Scheduling page, choose the following parameters:

7. Click Save Parameters to save your personalized settings.

The default settings saved here are the ones that are accessible only to this user.
If you (or someone else) logged on as a different user, then the default settings
defined by the Reports Services system administrator would display. That user
could then personalize her or his own settings.

8. Click Run Report.

6.3.9 Step 9. Scheduling the Report to Run and Push the Output to a WebDB Site
Suppose that Jeff Abers only wants to review his 401K investments once a month.
Further, he prefers to have this report run automatically and pushed to his own
personal folder by 9:00 a.m. on the last Friday of every month. First, you will create
Jeff’s own personal folder (that is, one that only his user account can access). Then,
you will schedule the report to run automatically.

Table 6–8 User’s Default Parameter Settings

Parameter Default value

Destype Cache

Desformat HTMLCSS

COPIES 1

P_LASTNAME Abers

P_SSN 559014203

USERID username/password@my_db

where username/password@my_db is the user name and
password for the database you want to connect to.

Prerequisite: You must have already completed the exercise in
Section 6.3.8, "Step 8. Making the Report Available to Users".
6-30 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.9.1 Creating a Personal Folder
To ensure that only the specified user can access his or her own personal reports, the
user (that is, you are logged on as JABERS for this exercise) can create her or his
own personal folder.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Access the WebDB site from your Web browser, and log on as JABERS if you
have not already done so.

2. Click Administration from the navigation bar.

3. Under the Access Managers section, click Personal Information.

4. Check the Create Personal Folder box. If the Create Personal Folder box does
not appear, then your personal folder has already been created.

5. Type personal information as desired.

6. Click .

You are the owner of your personal folder. No one else can access it unless you give
them permission to do so. You are ready to schedule the 401K report to run
automatically and push to the JABERS personal folder.

6.3.9.2 Scheduling the Report
In this exercise, you will schedule the report to run every last Friday of the month at
9:00 a.m. You also want to retain historical records of your 401K results for two
months.

Click to access context-sensitive help for the current wizard page. Click on
the title bar to access the WebDB help system.

1. Click Site Map from the navigation bar. You should be logged on as JABERS.

2. Click the Benefits folder.

3. Click Investment Summary Report. If the default parameters have not been set,
then go to Section 6.3.8.4, "Running the Report as a User" and set the default
parameters.

4. On the Parameters/Scheduling page, click Schedule.

5. Choose to start the job at 9:00 a.m. on today’s date. If you want to run the report
immediately, then choose the Immediately option.
 Controlling User Access to Reports 6-31

Setting Up Access Controls in WebDB
6. Choose the following Repeat option:

Last Friday of each month on or before the 30 th.

Rather than waiting until the end of the month for the report to run, set the
repeat option to repeat every n hours. Once you are satisfied that the report
output can be pushed successfully to the result folder, reset the repeat pattern.

7. Set the following output destination options:

8. Click Submit. A message stating that the report was successfully scheduled
appears. If you scheduled the report to run immediately, then the report output
is displayed in your browser.

9. Click OK. The job will run based on its scheduled date, time, and repeat
pattern.

Table 6–9 Output Destination Settings

Field Value

Site The name of the WebDB site in which the Result folder is located.

Log File Folder JABERS

Result Title My 401K Report

Result Folder JABERS

Overwrite
Previous Result

uncheck

Expiration 60 days

CAUTION: The names of the Log File Folder and Result Folder are
case-sensitive. If want your report output and status information to
be pushed to an existing folder, then you must type the exact folder
name. If you mistype the folder names, then WebDB will not be
able to find them, and by default will add the named folders to the
Reports Services Output and Reports Services Status folders. By
default, these folders are given public access (that is, all users will
be able to view your personal report). Exercise care when defining
these folders.
6-32 Publishing Reports to the Web with Internet Application Server

Setting Up Access Controls in WebDB
6.3.9.3 Viewing the Pushed Report Output
To view the pushed report output, do the following:

1. Click Site Map from the navigation bar. You are still logged on as JABERS.

2. Click JABERS to open the folder.

3. Click My 401K Report to view the report.

Notice that in addition to a link to the report itself, a link to status information
about the report is also available. Use this status link to help you troubleshoot any
problems you might have running this scheduled report. Depending on the Reports
Services role (for example, RW_BASIC_USER) this user is assigned, you might see
different status details. If users are having problems scheduling and running their
reports, then they should contact the Reports Services system administrator for
help.

6.3.9.4 Optional Exercise
Suppose that the Human Resource director asked you (the Reports Services system
administrator) to make a stock report available to all employees. You want to run
this stock report automatically every morning so that employees can monitor the
status of certain stocks. This report will be pushed to a public folder from which all
employees can view it.

Use the exercises in this chapter to help you add access to the template.rdf
report (located in the ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory) in
WebDB.

Since you (as the Reports Services system administrator) will be scheduling this
report to run and push to a public folder, this report needs to be accessible only to
the Reports Services system administrator.

Add this report’s packaged procedure to the Benefits folder as a WebDB
component. Then, schedule this report to run every morning at 10:00 a.m. pushing
the report output to a new folder called Stocks.

The Stock folder must be set up to display for public users.
 Controlling User Access to Reports 6-33

Summary
6.4 Summary
You have successfully configured Oracle Reports Services for access control. In this
chapter, you learned how to do the following:

■ Create availability calendars to determine when reports, Oracle Reports
Services, and printers are available for processing.

■ Add access to printers, Oracle Reports Services, and report definition files in
WebDB by restricting who can access them and restricting when they are
available for processing.

■ Add a report request, stored as a packaged procedure, to a WebDB site as a
WebDB component.

■ Enable users to set their personal default parameters and run report requests
from a WebDB site.

■ Enable users to schedule reports to run automatically and push the resulting
report to their own personal folder.
6-34 Publishing Reports to the Web with Internet Application Server

 Configuring Oracle Reports Services Clu
7

Configuring Oracle Reports Services

Clusters

This chapter will show you how to configure Oracle Reports Services in a cluster to
improve performance and loading balancing. This becomes important as the need
to deliver information to a rapidly growing user base becomes more demanding.

Oracle Reports Services clustering addresses this demand by leveraging your
organization’s existing hardware investment by plugging in additional application
servers as they are needed. This enables the processing capabilities of your Oracle
Reports Services to grow as your organization grows.

Before you begin to configure your Oracle Reports Services for clustering, you
should be familiar with the basic Oracle Reports Services architecture. See
Chapter 2, "Publishing Architecture and Concepts" for more information. You must
also have already set up your Oracle Reports Services using a basic configuration.
See Chapter 4, "Configuring Oracle Reports Services on Sun SPARC Solaris" for
more information.
sters 7-1

Clustering Overview
7.1 Clustering Overview
Suppose that you have three machines configured as Oracle Reports Services that
you want to cluster. These machines are described below:

For step-by-step instructions on configuring Oracle Reports Services in a cluster as
described in this overview, see Section 7.2, "Configuring Oracle Reports Services in
a Cluster Example".

You will designate NT-1 as the master, then set the CLUSTERCONFIG parameter to
enable this server to recognize NT-2 and SUN-1 as slaves. To simplify this example,
the MAXENGINE and MINENGINE for the master and each slave server are set to
the number of CPUs available on each machine.

Once configured, you will send report requests to the master server (that is,
SERVER=NT-1) which redirects the reports to the slaves. When the master server is
started, it checks the configuration file. The master contacts each of the slave servers
in the order that they are listed in the configuration file and notifies them to start up
the defined number of engines (for example, two engines each). When the slave
engines are started, they are under the control of the master, which allocates jobs to
them using a round-robin algorithm.

Suppose that the master server (that is, NT-1) receives seven report requests. The
master uses its four engines to run the first four reports. For the fifth and sixth
reports, the master redirects the requests to the two NT-2 engines to run them.
When the master receives the seventh report, it redirects the request to the first
SUN-1 engine to run it. All output is written to a central cache (that is, one that is
shared by all servers). The master sends the output back to the requestor (for
example, a Web browser).

Table 7–1 Example Server Machines Descriptions

Machine/Server TNS name Description Master/Slave

NT-1 4 CPU NT server Master

NT-2 2 CPU NT server Slave

SUN-1 2 CPU Sun Solaris workstation Slave

Note: The decision to make the NT-1 machine the master server
was arbitrary. The number of CPUs was not a determining factor.
7-2 Publishing Reports to the Web with Internet Application Server

Configuring Oracle Reports Services in a Cluster Example
It is possible for slave servers to remain fully functional Oracle Reports Services in
their own right if they can start engines independently of the master server.
Suppose that the MAXENGINE and MINENGINE parameters of the NT-2 Oracle
Reports Services configuration are set to three. This means that three engines are
dedicated to the NT-2 Oracle Reports Services and can receive requests without the
master’s knowledge. When configured as a slave server (that is, the MAXENGINE
and MINENGINE parameters in the master configuration for NT-2 are set to two),
the NT-2 Oracle Reports Services has a total of five engines started: three engines
that are dedicated to the NT-2 server and two engines are dedicated slaves to the
master.

7.2 Configuring Oracle Reports Services in a Cluster Example
This section provides step-by step instructions for configuring Oracle Reports
Services clusters. This example describes the following:

■ Enabling communication between the master and slaves

■ Configuring the master server

■ Running report requests to clustered servers

■ Resubmitting jobs when an engine goes down

■ Adding a server to an existing configuration

In this example, you will configure the server machines for clustering as described
in Table 7–1, "Example Server Machines Descriptions".

The following assumptions have also been made for each machine:

■ The Oracle Reports Services component has been installed.

■ Oracle Reports Services has been configured using the machine name as the
TNS service entry name (for example, NT-1) in the tnsames.ora file.
Configuring Oracle Reports Services Clusters 7-3

Configuring Oracle Reports Services in a Cluster Example
■ A central file server is running and set up with two directories: a Source
directory (where report definition files are stored) and a Cache directory (where
all cached report output is sent).

All engines must write their output to a central cache and all engines read
report definition files from a central source directory. A central source directory
guarantees that all engines are running the same reports. This also eliminates
copying updated report definition files to various locations. A central cache
enables the master server to serve duplicate jobs and jobs run within the
specified tolerance without going to each slave server’s local disk.

■ All engines see the same aliases for printers (unless the output is always being
sent to the default printer).

7.2.1 Enabling Communication Between Master and Slaves
On the NT-1 machine (master) you open the tnsnames.ora located in the
ORACLE_HOME\NET80 directory in a text editor, and add the following. The
nt-2.world and sun-1.world are the names of the server instances and .world
is the domain specified in the NAMES.DEFAULT_DOMAIN setting in the
sqlnet.ora file. If the NAMES.DEFAULT_DOMAIN setting is not defined in the
sqlnet.ora, then omit .world from the name of the server instance:

nt-2.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-2)(PORT=1949))
sun-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=sun-1)(PORT=1949))

On the NT-2 machine (slave) you do the following:

1. Open the tnsnames.ora located in the ORACLE_HOME\NET80 directory in a
text editor, and add the following, where nt-1.world is the name of the server
instance and .world is the domain specified in the
NAMES.DEFAULT_DOMAIN setting in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the sqlnet.ora, then
omit .world from the name of the server instance:

nt-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-1)(PORT=1949))

2. Open the nt-2.ora (the Oracle Reports Services configuration file) located in
the ORACLE_HOME\REPORT60\SERVER directory, and set the INITEGINE
parameter to 0. This ensures that the only engines created at startup are the
ones started by the master.

3. Repeat steps 1 and 2 on the SUN-1 server machine. In step 2, edit the
sun-1.ora configuration file.
7-4 Publishing Reports to the Web with Internet Application Server

Configuring Oracle Reports Services in a Cluster Example
7.2.2 Configuring the Master Server
In this section your will configure the master using the following settings:

■ Edit the master server configuration file to identify the slave servers to the
master and to control the number of engines associated with master server.

■ Set the parameters in the master server configuration file that defines the
following:

■ The engine settings and identifies the cache and source directories.

■ Since there are four CPUs on this machine, you will use four local engines
to start at the same time as the server.

■ These four engines will shut down if they are idle for 60 minutes, and will
restart after running 50 jobs.

■ The number of processes that can communicate with the server at one time
is set to the maximum number of 4096.

■ Set the CLUSTERCONFIG parameter to identify the slave servers to the master.
In this example, you will start two engines on each slave server when the
master is started.

The ENGLIFE and MAXIDLE parameters for the master server’s engines are
implied for all slave engines.

On the NT-1 server machine (master) you do the following:

1. Open nt-1.ora (the Oracle Reports Services configuration file) located on
ORACLE_HOME\REPORT60\SERVER directory.

2. Edit the configuration file according to settings below:

maxconnect=4096
sourcedir="X:\Source"
cachedir="X:\Cache"
cachesize=50
minengine=0
maxengine=4
initengine=4
maxidle=60
englife=50

The NT-1 machine is mapped to the central server on the X: drive.
Configuring Oracle Reports Services Clusters 7-5

Configuring Oracle Reports Services in a Cluster Example
3. Edit the configuration file according to the settings below:

clusterconfig="(server=nt-2
minengine=0
maxengine=2
initengine=2
cachedir="W:\Cache")
(server=sun-1
minengine=0
maxengine=2
initengine=2
cachedir="/share/Cache")"

where:

Usage Notes
When configuring the master server, you should consider the following:

■ Each slave definition must be surrounded by paretheses.

■ The cache directory setting for the NT and the UNIX machines are different.
Not all servers need to see the shared file system by the same definition (that is,
the master is mapped to the X: drive, while the slave is mapped to W: drive).

■ The slave servers must have their REPORTS60_PATH environment variable
set to /share/Source (for the SUN-1 server machine) and set to
W:\Source (for the NT-2 machine).

■ Shut down and restart the master server so that the master server can recognize
the new configuration.

This completes the configuration. Eight engines will start when the master server is
started.

server is the TNS service entry name of the slave server.

minengine is the minimum number of runtime engines this master
server should have available to run reports.

maxengine is the maximum number of runtime engines this master
server has available to run reports.

initengine is the initial number of runtime engines started by this
master server.

cachedir is the central cache directory for this master server.
7-6 Publishing Reports to the Web with Internet Application Server

Configuring Oracle Reports Services in a Cluster Example
7.2.3 Running Reports in a Clustered Configuration
To run report requests to Oracle Reports Services that have been configured for
clustering, you specify the master server in the SERVER command line argument
(that is, SERVER=NT-1)along with any other relevant arguments for the thin client
executable. The master server assigns incoming jobs to the engines on the slave
servers.

If you set the REPORTS60_REPORTS_SERVER environment variable to the master
server, then you can omit the SERVER command line argument. See Appendix C,
"Environment Variables" for more information.

See Chapter 5, "Running Report Requests" for more information on the various
report request methods you can use.

See Section 7.2.4, "Resubmitting Jobs When an Engine Goes Down" if you have
problems submitting report requests to the server cluster.

The master server’s jobs can be monitored by using the Queue Viewer in the Queue
Manager. Refer to the Queue Manager online help for more information.

7.2.4 Resubmitting Jobs When an Engine Goes Down
If an engine goes down while a report is running, then the Retry settings defined in
the SCHEDULE command line argument dictates whether the job will be re-run or
not. If no Retry settings have been specified, then the job is lost. This job failure,
however, will be logged against the server log file, and displayed in the list of jobs
in the Queue Manager. If the command line includes retry settings, then the master
server will re-run the job with the next available engine.

Suppose that you have submitted a job with the Retry option set to 2 in the
SCHEDULE command line argument. The master server starts the report request on
the second slave engine on the NT-2 server. However, the NT-2 server runs out of
temporary space and the job terminates. The master server will resubmit the job.
Assuming that no other jobs have been submitted, this job is assigned to the first
engine on the SUN-1 server.

The retry option is useful for giving you fail-over support, but should be used with
caution. For example, setting the retry to a large number might not solve the
problem. The resubmitted job might always fail if the underlying problem is with
the report itself, not the engine.
Configuring Oracle Reports Services Clusters 7-7

Configuring Oracle Reports Services in a Cluster Example
7.2.5 Adding Another Slave Server to the Master
You want to add another slave server to the existing cluster configuration as defined
in the following table:

This exercise assumes that this machine has already been configured as an Oracle
Reports Services. The TNS service entry name for Oracle Reports Services is the
machine name.

On the SUN-2 server machine (slave), open the sun-2.ora (the Oracle Reports
Services configuration file) located in the ORACLE_HOME\REPORT60\SERVER
directory and add the following, where nt-1.world is the name of the server
instance and .world is the domain specified in the NAMES.DEFAULT_DOMAIN
setting in the sqlnet.ora file. If the NAMES.DEFAULT_DOMAIN setting is not
defined in the sqlnet.ora, then omit .world from the name of the server
instance:

nt-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-1)(PORT=1949))

On the NT-1 server machine (master), do the following:

1. Open the tnsnames.ora file located in the ORACLE_HOME\NET80\ADMIN
directory and add the following entry, where sun-2.world is the name of the
server instance and .world is the domain specified in the
NAMES.DEFAULT_DOMAIN setting in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the sqlnet.ora, then
omit .world from the name of the server instance:

sun-2.world=(ADDRESS=(PROTOCOL=tcp)(HOST=sun-1)(PORT=1949))

Table 7–2 Additional Server Machine Description

Machine/Server TNS name Description Master/Slave

SUN-2 4 CPU Sun Solaris server Slave
7-8 Publishing Reports to the Web with Internet Application Server

Configuring Oracle Reports Services in a Cluster Example
2. Open the nt-1.ora (the Oracle Reports Services configuration file) and add
the following bolded text to the already existing CLUSTERCONFIG parameter:

clusterconfig="(server=nt-2
minengine=0
maxengine=2
initengine=2
cachedir="W:\Cache")
(server=sun-1
minengine=0
maxengine=2
initengine=2
cachedir="/share/Cache")
(server=sun-2
minengine=0
maxengine=4
initengine=4
cachedir="/share/Cache")"

3. Shut down and restart the master server so that the master server can recognize
the newly configured slave server.

Suppose that while you were configuring the SUN-2 machine as a slave server,
another administrator took down the NT-2 machine (for example, to perform a
backup). While the NT-2 machine is still down, you restarted Oracle Reports
Services on the NT-1 machine. The NT-1 machine was able to start the slave engines
on the two Sun machines, but could not start the slave engines on the NT-2 machine
since it was down.

Since the NT-1 server is polling all the slave servers, once the NT-2 machine is
brought back up and Oracle Reports Services started, it will be detected
automatically by the NT-1 server. When the four slave engines start, they are
available to receive jobs from the master.
Configuring Oracle Reports Services Clusters 7-9

Configuring Oracle Reports Services in a Cluster Example
7-10 Publishing Reports to the Web with Internet Application Server

Customizing Reports at Ru
8

Customizing Reports at Runtime

Oracle Reports Services can run report definitions built with XML tags and merge
them with other report definitions. Previously, a report had to be built and saved in
the Report Builder in order to be run by Oracle Reports Services. Now you can
build a report definition using XML tags. This XML report definition can be run by
itself or applied to another report at runtime to customize the output for a
particular audience.

Using XML report definitions you can:

■ Apply customizations to reports at runtime without changing the original
report. By creating and applying different XML report definitions, you can alter
the report output on a per user or user group basis. The advantage of this
scenario is that you can use the same report to generate different output
depending upon the audience.

■ Apply batch updates to existing reports. When you apply an XML report
definition to another report, you have the option of saving the combined
definition out to a file. As a result, you can use XML report definitions to make
batch updates to your existing reports. The advantage of this is that you can
quickly update a large number of reports without having to open each file in
the Report Builder to manually make the changes.

■ Create complete report definitions in XML. The advantage of this is that you
can build reports on the fly without using the Report Builder. If you can
generate XML tags, then you can create a report definition that can be run by
Oracle Reports Services.
ntime 8-1

Overview
8.1 Overview
Using XML tags, you can build a full or partial report definition that can serve as
either a customization file or a completely self-contained report. A full report
definition specifies a complete data model and layout in XML and can be run
separately or applied to another report to customize it. A partial definition can
contain far less information and can only be used in conjunction with another report
(that is, it cannot be run by itself).

A customization file is a report definition that is applied to an existing report (.RDF
or .XML). As illustrated in the figure below, it can change certain characteristics of
existing report objects, such as the field’s date format mask or background color. A
customization file can also be used to add entirely new objects to another report.
Customization files can be full or partial report definitions.
8-2 Publishing Reports to the Web with Internet Application Server

Overview
In order to be run by itself, an XML report must contain a full report definition. As
shown in the figure below, a self-contained XML report is one that is run without
being applied to another report.
Customizing Reports at Runtime 8-3

Overview
8.1.1 Creating and Using XML Report Definitions
The steps below outline the process of building and using XML report definitions:

1. Create a full or partial report definition using the XML tags described in
Section 8.5, "XML Tag Reference". You can create this definition manually with
an editor or you can create it programmatically.1 The following is a sample of a
partial report definition:

<report name="emp" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_sal" source="sal" textColor="red"/>
 <field name="f_mgr" source="mgr" fontSize="18" font="Script"/>
 <field name="f_deptno" source="deptno" fontStyle="bold"
 fontEffect="underline"/>
 </section>
 </layout>
</report>

This sample would change the formatting characteristics of some fields when
applied to another report. This XML could not be run by itself because it does
not contain a full report definition. It contains no data model definition and
only a partial layout definition. In order to be run by itself, it would need to
contain a complete data model and layout definition.

For more information on this step, refer to Section 8.2, "Creating an XML Report
Definition".

2. Store the XML report definition in a location that is accessible to Oracle Reports
Services.2

3. Apply the XML report definition to another report (via the CUSTOMIZE
command line argument or the PL/SQL built-in SRW.APPLY_DEFINITION) or
run the XML report definition by itself (via the REPORT command line
argument).

For more information on this step, refer to Section 8.3, "Running XML Report
Definitions".

1 Creating the definition programmatically would allow you to build up a report definition
on the fly based on user input.

2 Note that you can also use XML report definitions with the Reports Runtime and Report
Builder.
8-4 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
The remainder of this chapter describes in greater detail the steps for building and
using XML report definitions, and includes a reference section for the XML tags
used to build a definition.

8.2 Creating an XML Report Definition
The best way to understand how to build an XML report definition is to work our
way up from just the required tags to a partial definition and, finally, to a complete
definition (that is, one that does not require a .RDF file in order to be run). This
section describes the following XML definitions:

■ Section 8.2.1, "Required Tags"

Some XML tags are required regardless of whether you are building a partial or
full report definition in XML. This XML report definition shows you the
minimum set of XML tags that a report definition must have in order to be
parsed correctly.

■ Section 8.2.2, "Partial Report Definitions"

This type of XML report definition contains less than a complete report
definition. As a result, it can only be applied to another report as a
customization file. It cannot be run by itself.

■ Section 8.2.3, "Full Report Definitions"

This type of XML report definition contains a complete report definition. As a
result, it can be applied to an .RDF file or it can be run by itself.

8.2.1 Required Tags
Every XML report definition, full or partial, must contain the following required tag
pair:

<report></report>

For example, the following is the most minimal XML report definition possible:1

<report name="emp" DTDVersion="1.0">
</report>

1 It should be noted that this XML report definition would have a null effect if applied to
another report because it contains nothing. It can be parsed because it has the needed tags,
but it is only useful to look at this definition to see what are the required tags.
Customizing Reports at Runtime 8-5

Creating an XML Report Definition
The <report> tag indicates the beginning of the report, its name, and the version of
the Document Type Definition (DTD) file that is being used with this XML report
definition.1 The </report> tag indicates the end of the report definition.

A full report definition requires both a data model and a layout and therefore also
requires the following tags and their contents:

■ <data></data>

■ <layout></layout>

8.2.2 Partial Report Definitions
One of the chief uses of XML report definitions is to make modifications to another
report at runtime. The XML report definition enables you to easily change the data
model or formatting of another report at runtime, without permanently affecting
the original report.2 The advantage of this is that it enables you to use a single
report to serve multiple audiences. For example, you can build one .RDF file and
apply different partial XML report definitions to it to customize it for different
audiences. The XML report definition can be very simple, containing only a few
tags to change the appearance of a few objects, or very complex, affecting every
object in the report and possibly adding new objects.

To help you understand the kind of modifications possible in customization files, it
is helpful to see some examples. The Building Reports manual contains descriptions
of how to build several example reports using Report Builder. The finished .RDF
files for these reports are located in the ORACLE_HOME\TOOLS\DOC60\US\RBBR60
directory. For the purposes of this chapter, an XML report definition that modifies
some of these reports has been placed in this directory with the .RDF files. The table
that follows describes each of these XML report definitions in greater detail.

1 DTD files are what give XML tags their meanings. Oracle Reports Services includes a DTD
file that defines the XML tags that can be used in a report definition. For more information
about the supported XML tags, refer to Section 8.5, "XML Tag Reference".

2 Note that it is possible to save the combined .RDF file and XML report definition as a new
.RDF file. This technique will be discussed later in this chapter.
8-6 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
Table 8–1 XML Report Definitions for Building Reports

.XML File .RDF File Description

cond.xml cond.rdf cond.xml changes:

■ The format mask of F_trade_date to
MM/DD/RR.

■ The fill colors of
F_Mincurrent_pricePersymbol and
F_Maxcurrent_pricePersymbol.

cond.xml adds:

■ HTML in the report escapes to be inserted
when generating HTML output.

For more information, refer to Section 8.2.2.1,
"Formatting Modifications Example".

temp.xml temp.rdf temp.xml changes:

■ The field labels for F_high_365 and
F_low_365

temp.xml adds:

■ A formatting exception to F_p_e to
highlight values greater than 10

■ A formatting exception to F_p_e1 to
highlight values greater than 10

For more information, refer to Section 8.2.2.2,
"Formatting Exception Example".

sect.xml sect.rdf sect.xml adds:

■ Program units to the report

■ Link destinations to the detail records in
the main section of the report

■ Hyperlinks from the employee summary
in the header section to the detail records
in the main section

For more information, refer to Section 8.2.2.3,
"Program Unit and Hyperlink Example".
Customizing Reports at Runtime 8-7

Creating an XML Report Definition
You can apply the XML customizations by running the .RDF files with one
additional argument. For example:

rwrun60 userid=scott/tiger report=cond.rdf
 customize=e:\orant\tools\doc60\us\rbbr60\cond.xml

For more information, refer to Section 8.3, "Running XML Report Definitions".

Take a few moments to run these .RDF files with and without the customization
file. In the next section, we will examine the XML used to achieve these
modifications.

8.2.2.1 Formatting Modifications Example
The XML in cond.xml modifies some basic formatting characteristics of cond.rdf
and adds some HTML code to be inserted at the beginning and end of the report
when generating HTMLCSS output.

Tips on this Example
■ In this case the name attribute on the <report> tag matches the name of the

.RDF file. You could also use a different name, for example, condnew.

■ The name attributes on the <field> and <section> tags match the names of
fields and the section that exist in the .RDF file. As a result, the other attributes
on the <field> tag will be applied to those existing fields in the main section of
the layout defined in the .RDF file.

ref.xml ref.rdf ref.xml adds:

■ A new query, Q_summary, to the data
model

■ A header section to the report that uses
the data from the new query, Q_summary

For more information, refer to Section 8.2.2.4,
"Data Model and Formatting Modifications
Example".

Table 8–1 XML Report Definitions for Building Reports

.XML File .RDF File Description
8-8 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
■ The code inside of the <customize> tag modifies the before and after report
escapes. The beforeReportType property indicates that the contents of the before
report escape are located in a file. The beforeReportValue property indicates the
name of the file, header_example.html, and its path (you might need to
change this path if the file is located elsewhere on your machine). The
afterReportType property indicates that the contents of the second report escape
are located in the afterReportValue property. Note the use of the <!CDATA[]]>
tag around the HTML for the afterReportValue property. When using characters
in your XML report definition that could be confused with XML tags, you
should always enclose those segments in the <!CDATA[]]> tag.

■ The header_example.html file contains a reference to a graphic, orep.gif,
this graphic must be located in the same path as the HTML generated from the
report.

■ To see the effects of the code in the <customize> tag, you need to generate
HTML output. This report’s output is best viewed with HTMLCSS output
(DESFORMAT=HTMLCSS) and page streaming (PAGESTREAM=YES).

<report name="cond" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>
 <customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\orant\tools\doc60\us\rbbr60\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
Customizing Reports at Runtime 8-9

Creating an XML Report Definition
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
</report>

8.2.2.2 Formatting Exception Example
The XML in temp.xml adds formatting exceptions to two fields in temp.rdf.

Tips on this Example
■ Note the usage of the <exception> tag to define the formatting change. This

formatting exception is only applied when the criteria defined by the
<condition> tag is met.

■ The <object> tags inside of the <customize> section enable you to change the
labels of an existing field in the layout. If you are creating a new field, then you
can specify the label using the label attribute of the <field> tag.

<report name="temp" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_p_e" source="p_e" alignment="right"
 formatMask="NNN0.00">
 <exception textColor="red">
 <condition source="p_e" operator="gt" operand1="10"/>
 </exception>
 </field>
 <field name="f_p_e1" source="p_e" alignment="right"
 formatMask="NNN0.00">
 <exception textColor="blue">
 <condition source="p_e" operator="gt" operand1="10"/>
 </exception>
 </field>
 </section>
8-10 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
 </layout>
 <customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
 </customize>
</report>

8.2.2.3 Program Unit and Hyperlink Example
The XML in sect.xml adds two program units to sect.rdf and uses the
program units to add a header section.

Tips on this Example
■ When the parameter form appears, you should enter 100 for the parameter.

■ The program units are created outside of the data model and layout, inside the
<programUnits> tag.

■ The functions are referenced by name from the formatTrigger attribute of the
<field> tag.

■ Notice the usage of the <![CDATA[]]> tag around the PL/SQL function. This is
necessary because of the special characters used within the PL/SQL code.

■ This report is best viewed in PDF. To generate PDF output, you could use the
following command line:

rwrun60 userid=scott/tiger@nt805 report=sect.rdf customize=sect.xml
destype=file desformat=htmlcss desname=d:\sect.pdf
Customizing Reports at Runtime 8-11

Creating an XML Report Definition
Open the .PDF file and roll your mouse over the values in the SSN column.
Click a value to be taken to the details on that record.

<report name="sect" DTDVersion="1.0">
 <layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
 </layout>
 <programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 </programUnits>
</report>
8-12 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
8.2.2.4 Data Model and Formatting Modifications Example
The XML in ref.xml adds a new query to the data model of ref.rdf and adds a
header section.

Tips on this Example
■ This XML report definition can be run by itself or applied to ref.rdf. The

reason it can be run by itself is that it has both a data model and a complete
layout.

■ Another important point is the use of aliases in the SELECT statement. In
general, it is a good idea to use aliases in your SELECT lists because it
guarantees the name that will be assigned to the report column. If you do not
use an alias, then the name of the report column is defaulted and could be
something different from the name you expect (for example, portid1 instead of
portid). This becomes important when you must specify the source attribute of
the <field> tag because you have to use the correct name of the source column.

■ Also notice the use of the <labelAttribute> tag. This tag defines the formatting
for the field labels in the layout. Because it lies outside of the <field> tags, it
applies to all of the labels in the tabular layout. If you wanted it to pertain to
only one of the fields, then you could place it inside of the <field></field> tag
pair. Be aware that if there is both a global and local <labelAttribute>, the local
one overrides the global one. For more information refer to Section 8.5.8,
"<field>".

<report name="ref" DTDVersion="1.0">
 <data>
 <dataSource name="Q_summary">
 <select>
 select portid ports, locname locations from portdesc
 </select>
 </dataSource>
 </data>
 <layout>
 <section name="header">
 <tabular name="M_summary" template="corp2.tdf">
 <labelAttribute font="Arial"
 fontSize="10"
 fontStyle="bold"
 textColor="white"/>
Customizing Reports at Runtime 8-13

Creating an XML Report Definition
 <field name="F_ports"
 source="ports"
 label="Port IDs"
 font="Arial"
 fontSize="10"/>
 <field name="F_locations"
 source="locations"
 label="Port Names"
 font="Arial"
 fontSize="10"/>
 </tabular>
 </section>
 </layout>
</report>

8.2.3 Full Report Definitions
Another use of XML report definitions is to make an entire report definition in XML
that can be run independently of another report. The advantage of this is that you
can build a report without using the Report Builder. In fact, you could even use
your own front end to generate the necessary XML and allow your users to build
their own reports dynamically.

The following example illustrates a complete report definition in XML. This XML
report definition is named videosales.xml and can be found in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory.

Tips on this Example
■ This XML report definition is complete and can be run by itself. It contains a full

data model and layout. This report is best viewed in PDF.

■ The first query in the data model (Q_1) is used to populate a summary tabular
layout in the header section of the report. The second query (Q_2) is used for
the matrix break layout in the main section of the report. The <group>,
<matrixRow>, <matrixCol>, and <matrixCell> tags define both the layout and
the data model structure needed to support it. Based on which fields are inside
these tags, the groups and columns are arranged within the data model. To get a
better sense of the data model, you can run the report to the Report Builder and
look at the Data Model view of the Report Editor:

rwbld60 userid=scott/tiger report=videosales.xml
8-14 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
■ The quarter and city values in the header section are hyperlinked to the quarter
and city values in the main section. This is accomplished by associating format
triggers with each of the fields that contain quarter and city values. The
PL/SQL for the triggers is located inside the <programUnits> tag at the end of
the report definition. When the report is used to generate PDF or HTMLCSS
output, the user can click on values in the summary in the header section to
jump to the details in the main section of the report.

<report name="videosales" author="Generated" DTDVersion="1.0">
 <data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,
VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <dataSource name="Q_2">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <summary name="SumTOTAL_SALESPerCITY1" source="total_sales1"/>
 <summary name="SumTOTAL_COSTPerCITY1" source="total_cost1"/>
 <summary name="SumTOTAL_PROFITPerCITY1" source="total_profit1"/>
 <summary name="SumTOTAL_SALESPerQUARTER" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerQUARTER" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerQUARTER" source="total_profit"/>
 <summary name="SumTOTAL_SALESPerCITY" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerCITY" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerCITY" source="total_profit"/>
Customizing Reports at Runtime 8-15

Creating an XML Report Definition
 <formula name="Profit_Margin" source="FormulaProfitMargin"
 datatype="number" width="9"/>
 </data>
 <layout>
 <section name="header">
 <groupLeft name="M_video_sales_summary" template="corp1.tdf">
 <group>
 <field name="f_quarter1" source="quarter1" label="Quarter"
 font="Arial" fontSize="8"
 formatTrigger="F_quarter1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </group>
 <group>
 <field name="f_city1" source="city1" label="City"
 font="Arial" fontSize="8"
 formatTrigger="F_city1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_SALESPerCITY1"
source="SumTOTAL_SALESPerCITY1"
 label="Sales" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY1"
source="SumTOTAL_COSTPerCITY1"
 label="Costs" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY1"
source="SumTOTAL_PROFITPerCITY1"
 label="Profits" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
8-16 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
 <field name="f_Profit_Margin" source="Profit_Margin"
 label="Margin%" font="Arial" fontSize="8"
 formatMask="N0%">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </group>
 </groupLeft>
 </section>
 <section name="main">
 <matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER"
source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_ PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8"
fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
Customizing Reports at Runtime 8-17

Creating an XML Report Definition
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY"
source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY"
source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY"
source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total
Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
8-18 Publishing Reports to the Web with Internet Application Server

Creating an XML Report Definition
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total
Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
 </matrix>
 </section>
 </layout>
 <programUnits>
 <function name="F_quarter1FormatTrigger">
 <![CDATA[
 function F_quarter1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#QUARTER_DETAILS_&<’ || LTRIM(:quarter1) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_quarterFormatTrigger">
 <![CDATA[
 function F_quarterFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’QUARTER_DETAILS_&<’ || LTRIM(:quarter) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_city1FormatTrigger">
 <![CDATA[
 function F_city1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#QTR_CITY_DETAILS_&<’ || LTRIM(:quarter1)
||
 LTRIM(:city1) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_cityFormatTrigger">
Customizing Reports at Runtime 8-19

Running XML Report Definitions
 <![CDATA[
 function F_cityFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’QTR_CITY_DETAILS_&<’ || LTRIM(:quarter) ||
 LTRIM(:city) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="FormulaProfitMargin">
 <![CDATA[
 FUNCTION FormulaProfitMargin RETURN number IS
 BEGIN
 return ((:TOTAL_PROFIT1 / (:TOTAL_SALES1 - (0.07 * :TOTAL_SALES1)))
* 100);
 END;
]]>
 </function>
 </programUnits>
</report>

8.3 Running XML Report Definitions
Once you have created your XML report definition, you can use it in the following
ways.

■ Section 8.3.1, "Applying an XML Report Definition at Runtime"

You can apply XML report definitions to .RDF or other .XML files at runtime by
specifying the CUSTOMIZE command line argument or the
SRW.APPLY_DEFINITION built-in.

■ Section 8.3.2, "Running an XML Report Definition by Itself"

You can run an XML report definition by itself (without another report) by
specifying the REPORT command line argument.

■ Section 8.3.3, "Performing Batch Modifications"

You can use RWCON60 to make batch modifications using the CUSTOMIZE
command line argument.

The sections that follow describe each of the above cases in more detail and provide
examples.
8-20 Publishing Reports to the Web with Internet Application Server

Running XML Report Definitions
8.3.1 Applying an XML Report Definition at Runtime
To apply an XML report definition to an .RDF or .XML file at runtime, you can use
the CUSTOMIZE command line argument or the SRW.APPLY_DEFINITION
built-in. CUSTOMIZE can be used with RW60CLI, RWRUN60, RWBLD60,
RWCON60, and URL report requests. For more information on using CUSTOMIZE
with RWCON60, refer to Section 8.3.3, "Performing Batch Modifications".

8.3.1.1 Applying one XML Report Definition
The following command line would send a job request to Oracle Reports Services
that applies an XML report definition, emp.xml, to an .RDF file, emp.rdf:

rwcli60 report=emp.rdf customize=e:\myreports\emp.xml
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
 server=repserver

If you were using Reports Runtime, then the equivalent command line would be:

rwrun60 userid=username/password@mydb report=emp.rdf
 customize=e:\myreports\emp.xml destype=file desname=emp.pdf
 desformat=PDF

When testing your XML report definition, it is sometimes useful to run your report
requests with additional arguments to create a trace file. For example:

tracefile=emp.log tracemode=trace_replace traceopt=trace_app

The trace file provides a detailed listing of the creation and formatting of the report
objects.

8.3.1.2 Applying Multiple XML Report Definitions
You can apply multiple XML report definitions to a report at runtime by providing
a list with the CUSTOMIZE command line argument. The following command line
would send a job request to Oracle Reports Services that applies two XML report
definitions, emp0.xml and emp1.xml, to an .RDF file, emp.rdf:

rwcli60 report=emp.rdf
 customize="(e:\corp\myreports\emp0.xml,
 e:\corp\myreports\emp1.xml)"
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
 server=repserver
Customizing Reports at Runtime 8-21

Running XML Report Definitions
If you were using Reports Runtime, then the equivalent command line would be:

rwrun60 report=emp.rdf
 customize="(e:\corp\myreports\emp0.xml,
 e:\corp\myreports\emp1.xml)"
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF

8.3.1.3 Applying an XML Report Definition in PL/SQL
To apply an XML report definition to an .RDF file in PL/SQL, you use the
SRW.APPLY_DEFINITION and SRW.ADD_DEFINITION built-ins in the Before
Form or After Form trigger.

8.3.1.3.1 Applying an XML Definition Stored in a File To apply XML that is stored in the
file system to a report, you can use the SRW.APPLY_DEFINITION built-in in the
Before Form or After Form triggers of the report:

SRW.APPLY_DEFINITION (’d:\orant\tools\doc60\us\rbbr60\cond.xml’);

When the report is run, the trigger will execute and the specified XML file will be
applied to the report.

8.3.1.3.2 Applying an XML Definition Stored in Memory To create an XML report
definition in memory, you must add the definition to the document buffer using
SRW.ADD_DEFINITION before applying it using SRW.APPLY_DEFINITION.

The following example illustrates how to build up several definitions in memory
based upon parameter values entered by the user and then apply them. The
PL/SQL in this example is actually used in the After Parameter Form trigger of an
example report called videosales_custom.rdf that can be found in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory.

The videosales_custom.rdf file contains PL/SQL in its After Parameter Form
trigger that does the following:

■ Conditionally highlights fields based upon parameter values entered by the
user at runtime

■ Changes number format masks based upon parameter values entered by the
user at runtime
8-22 Publishing Reports to the Web with Internet Application Server

Running XML Report Definitions
Tips on this Example
■ Each time you use SRW.APPLY_DEFINITION, the document buffer is flushed

and you must begin building a new XML report definition with
SRW.ADD_DEFINITION.

■ Notice the use of the parameters hilite_profits, hilite_costs,
hilite_sales, and money_format to determine what to include in the XML
report definition. The hilite_profits, hilite_costs, and
hilite_sales parameters are also used in the formatting exceptions to
determine which values to highlight.

■ Because of the upper limit on the size of VARCHAR2 columns, you might need
to spread very large XML report definitions across several columns. If so, then
you might have to create several definitions in memory and apply them
separately rather than creating one large definition and applying it once.

function AfterPForm return boolean is
begin
SRW.ADD_DEFINITION(’<report name="vidsales_masks"
author="Generated" DTDVersion="1.0">’);
IF :MONEY_FORMAT=’$NNNN.00’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_SALESPerCITY"
 source="SumTOTAL_SALESPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_COSTPerCITY"
 source="SumTOTAL_COSTPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
ELSIF :MONEY_FORMAT=’$NNNN’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT" formatMask="LNNNNNNNNNNN0"/>’);
Customizing Reports at Runtime 8-23

Running XML Report Definitions
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_SALESPerCITY"
 source="SumTOTAL_SALESPerCITY"
formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_COSTPerCITY"
 source="SumTOTAL_COSTPerCITY" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_costs"
author="Generated" DTDVersion="1.0">’);
IF :HILITE_COSTS <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition source="TOTAL_COST"
 operator="gt" operand1=":hilite_costs"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_sales"
author="Generated" DTDVersion="1.0">’);
IF :HILITE_SALES <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition source="TOTAL_SALES"
 operator="gt" operand1=":hilite_sales"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
8-24 Publishing Reports to the Web with Internet Application Server

Running XML Report Definitions
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_profits"
author="Generated" DTDVersion="1.0">’);
IF :HILITE_PROFITS <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition
 source="TOTAL_PROFIT" operator="gt"
operand1=":hilite_profits"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
return (TRUE);
end;

8.3.2 Running an XML Report Definition by Itself
To run an XML report definition by itself, you send a request with an XML file
specified in the REPORT argument. The following command line sends a job
request to Oracle Reports Services to run a report, emp.xml, by itself:

rwcli60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml
 destype=file desname=emp.pdf desformat=PDF
 server=repserver
Customizing Reports at Runtime 8-25

Running XML Report Definitions
If you were using Reports Runtime, then the equivalent command line would be:

rwrun60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml
 destype=file desname=emp.pdf desformat=PDF

When running an XML report definition in this way, the file extension must be
.XML. Note also that you could apply an XML customization file to this report using
the CUSTOMIZE argument.

8.3.3 Performing Batch Modifications
As illustrated in the figure below, if you have a large number of reports that need to
be updated, then you can use the CUSTOMIZE command line argument with
RWCON60 to perform modifications in batch. Batch modifications are particularly
useful when you need to make a repetitive change to a large number of reports (for
example, changing a field’s format mask). Rather than opening each report and
manually making the change in Report Builder, you can run RWCON60 once and
make the same change to a large number of reports at once.

8-26 Publishing Reports to the Web with Internet Application Server

Debugging XML Report Definitions
The following example applies two XML report definitions, translate.xml and
customize.xml, to three .RDF files, inven.rdf, inven2.rdf, and manu.rdf,
and saves the revised definitions to new files, inven1_new.rdf,
inven2_new.rdf, and manu_new.rdf.

rwcon60 username/password@mydb
 stype=rdffile
 source="(inven1.rdf, inven2.rdf, manu.rdf)"
 dtype=rdffile
 dest="(inven1_new.rdf, inven2_new.rdf, manu_new.rdf)"
 customize="(e:\apps\trans\translate.xml,
 e:\apps\custom\customize.xml)" batch=yes

8.4 Debugging XML Report Definitions
The following features can help you to debug your XML report definitions:

■ Section 8.4.1, "XML Parser Error Messages"

■ Section 8.4.2, "Tracing Options"

■ Section 8.4.3, "RWBLD60"

■ Section 8.4.4, "TEXT_IO"

8.4.1 XML Parser Error Messages
The XML parser will catch most syntax errors and display an error message. The
error message contains the line number in the XML where the error occurred as well
as a brief description of the problem.

8.4.2 Tracing Options
When testing your XML report definition, it is sometimes useful to run your report
requests with additional arguments to create a trace file. For example:

rwrun60 username/password@mydb
 report=e:\corp\myreports\emp.xml
 tracefile=emp.log
 tracemode=trace_replace
 traceopt=trace_app
Customizing Reports at Runtime 8-27

Debugging XML Report Definitions
The last three arguments in this command line will generate a trace file that
provides a detailed listing of the fetching and formatting of the report. Below is a
segment of an example trace file for a successfully executed report.

LOG :
 Report: d:\xml_reps\test1.xml
 Logged onto server:
 Username:
LOG :
 Logged onto server: nt805
 Username: scott
+--+
| Report customization/generation begins |
+--+
 Processing XML report definition 1 of 1.
 *** Parsing the XML document ***
 Creating XML parser object...
 XML Parser Created!
 Parsing report definition from:
 d:\xml_reps\test1.xml
 Report definition parsed successfully!
 *** Setting Application Property ***
 Setting module name to "test"...
 Done with application level properties modification.
 *** Creating PL/SQL Program Units ***
 *** Defaulting the Data Model ***
Created query Q_depemp.
 Applying SQL to query Q_depemp and creating columns...
 Done with queries and columns creation/modification.
 Done with groups creation/modification.
 *** Defaulting the Layout ***
 Start defaulting layout for main section...
 Defaulting field f_deptno for column deptno...
 Defaulting field f_mgr for column mgr...
 Defaulting field f_job for column job...
 Layout defaulted into new frame M_empform.
 *** Modifying report objects’ properties ***
+---+
| Report customization/generation finished successfully |
+---+
11:22:59 APP (Frame
11:22:59 APP . (Text Boilerplate B_DATE1_SEC2
11:22:59 APP .) Text Boilerplate B_DATE1_SEC2
11:22:59 APP . (Text Boilerplate B_PAGENUM1_SEC2
11:22:59 APP .) Text Boilerplate B_PAGENUM1_SEC2
8-28 Publishing Reports to the Web with Internet Application Server

Debugging XML Report Definitions
11:22:59 APP . (Text Field F_DATE1_SEC2
11:22:59 APP .. (Database Column Name unknown
11:22:59 APP ..) Database Column Name unknown
11:22:59 APP .) Text Field F_DATE1_SEC2
11:22:59 APP) Frame
11:22:59 APP (Frame
11:22:59 APP . (Frame M_G_1_GRPFR
11:22:59 APP .. (Frame M_G_1_HDR
11:22:59 APP ... (Text Boilerplate B_DEPTNO
11:22:59 APP ...) Text Boilerplate B_DEPTNO
11:22:59 APP ... (Text Boilerplate B_MGR
11:22:59 APP ...) Text Boilerplate B_MGR
11:22:59 APP ... (Text Boilerplate B_JOB
11:22:59 APP ...) Text Boilerplate B_JOB
11:22:59 APP ..) Frame M_G_1_HDR
11:22:59 APP .. (Repeating Frame R_G_1
11:22:59 APP ... (Group G_1 Local Break: 0 Global
Break: 0
11:22:59 APP (Query Q_depemp
11:22:59 SQL EXECUTE QUERY : select * from emp
11:22:59 APP) Query Q_depemp
11:22:59 APP ...) Group G_1
11:22:59 APP ... (Text Field F_DEPTNO
11:22:59 APP (Database Column DEPTNO
11:22:59 APP) Database Column DEPTNO
.
.
.
+-------------------------------------+
| Report Builder Profiler statistics |
+-------------------------------------+
 TOTAL ELAPSED Time: 11.00 seconds
 Reports Time: 10.00 seconds (90.90% of TOTAL)
 ORACLE Time: 1.00 seconds (9.09% of TOTAL)
 UPI: 0.00 second
 SQL: 1.00 seconds
 TOTAL CPU Time used by process: N/A
Customizing Reports at Runtime 8-29

Debugging XML Report Definitions
8.4.3 RWBLD60
When designing an XML report definition, it is sometimes useful to open it in
Report Builder. In Report Builder, you can quickly determine if the objects are being
created or modified as expected. For example, if you are creating summaries in an
XML report definition, then opening the definition in Report Builder enables you to
quickly determine if the summaries are being placed in the appropriate group in the
data model.

To open a full report definition in Report Builder, you use the REPORT keyword.
For example:

rwbld60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml

To open a partial report definition in Report Builder, you use the CUSTOMIZE
keyword. For example:

rwbld60 userid=username/password@mydb report=emp.rdf
 customize=e:\myreports\emp.xml

In both cases, the Report Builder is opened with the XML report definition in effect.
You can then use the various views (including the Live Previewer) of the Report
Editor to quickly determine if the report is being created or modified as you
expected.

8.4.4 TEXT_IO
If you are using SRW.ADD_DEFINTION to build an XML report definition in
memory, then it can be helpful to write the XML to a file for debugging purposes.
Following is an example of a procedure that writes each line that you pass it to the
document buffer in memory and, optionally, to a file that you give it.

PROCEDURE addaline (newline VARCHAR, outfile Text_IO.File_Type) IS
BEGIN
 SRW.ADD_DEFINITION(newline);
 IF :WRITE_TO_FILE=’Yes’ THEN
 Text_IO.Put_Line(outfile, newline);
 END IF;
END;

For this example to work, the PL/SQL that calls this procedure would need to
declare a variable of type TEXT_IO.File_Type. For example:

custom_summary Text_IO.File_Type;
8-30 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
And you would also need to open the file for writing and call the addaline
procedure, passing it the string to be written and the file to which it should be
written. For example:

custom_summary := Text_IO.Fopen(:file_directory || ’vid_summ_per.xml’, ’w’);
addaline(’<report name="video_custom" author="Generated" DTDVersion="1.0">’,
 custom_summary);

8.5 XML Tag Reference
The Document Type Definition (DTD) file incorporated into Oracle Reports Services
defines the tags that can be used in an XML report definition. The sections that
follow describe each of the tags and their syntax, and provide examples of their
usage. The tags are listed in hierarchical order (from outermost to innermost).

8.5.1 <!-- comments -->

Description
<!-- --> tag enables you to include comments within your XML report definition.
The parser will ignore any text between the comment delimiters. If you are using
PL/SQL (SRW.ADD_DEFINITION) to build your XML report definition, then you
can incorporate comments in the program unit using the PL/SQL comment
delimiters (for example, -- or /* */).

Syntax
<!--
 comment_content
-->

WARNING: THE XML TAGS AND THEIR ATTRIBUTES ARE
CASE SENSITIVE, AND SHOULD BE ENTERED IN THE CASE
SHOWN IN THE SYNTAX DESCRIPTIONS.
Customizing Reports at Runtime 8-31

XML Tag Reference
Example
The following example shows a segment of an XML report definition that uses the
<!-- --> tag to include a comment.

<report name="cond" DTDVersion="1.0">
<!-- This report assumes that the file
 named header_example.html is located
 in d:\ORANT\TOOLS\DOC60\US\RBBR60.
 If it it not located there, the report
 will not run properly.
-->

8.5.2 <![CDATA[]]>

Description
The <!CDATA[]> tag enables you to include special characters within your XML
report definition. The parser will ignore any special characters it encounters within
the <!CDATA[]> tag. This is particularly useful when including PL/SQL program
units or SQL queries that might require special characters.

Syntax
<![CDATA[
 content
]]>

Examples
The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a PL/SQL function that adds a hyperlink and
hyperlink destination to an object in a report.

 <programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERlink(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
8-32 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_linkTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 </programUnits>

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign.

<select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
</select>

8.5.3 <condition>

Description
The <condition> tag defines the conditions under which a formatting exception is
applied to a field. The <condition> tag must be nested within an <exception> tag.

Refer to Section 8.5.7, "<exception>" for more information.

Syntax
<condition
 source="source_column_name"
 operator="eq | lt | lteq | neq | gt | gteq | btw | notBtw | like | notLike
 | null | notNull"
 [operand1="comparison_value"]
 [operand2="comparison_value"]
 [relation="and | or"]
/>
Customizing Reports at Runtime 8-33

XML Tag Reference
Attributes
The following table describes the attributes of the <condition> tag:

Table 8–2 <condition> Tag Attributes

Attribute Required or Optional Description

source Required Is the name of the source column to be used in
the condition.

operator Required Is the operator to use in comparing other
values to the source column.

■ eq (equal)

■ lt (less than)

■ lteq (less than or equal)

■ neq (not equal)

■ gt (greater than)

■ gteq (greater than or equal)

■ btw (between)

■ notBtw (not between)

■ like

■ notLike

■ null

■ notNull

operand1 Optional Is the value to which the source column is
being compared. If the operator is null or
notNull, then no operands are required. If the
operator is btw or notBtw, then you must also
specify operand2.

operand2 Optional Is the second value to which the source
column is being compared. You only need to
use operand2 if the operator requires two
values for comparison (that is, if the operator
is btw or notBtw)
8-34 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Usage Note
Two conditions can be joined by entering the relation attribute in the first condition
tag, which must include either of the operators and or or.

Example
The following example shows two formatting exceptions for field f_ename. The
first exception changes the text color to red if both of its conditions are met. The
second exception changes the text color to blue if its condition is met.

<field name="f_ename" source="ename" label="Employee" textColor="green">
 <exception textColor="red">
 <condition source="deptno" operator="btw" operand1="20"
 operand2="30" relation="and"/>
 <condition source="sal" operator="gt" operand1="1000"/>
 </exception>
 <exception textColor="blue">
 <condition source="deptno" operator="eq" operand1="30"/>
 </exception>
</field>

8.5.4 <customize>

Description
The <customize> tag delimits any object properties that you want to specify as part
of the report definition. The tags nested within the <customize> tag (<object>
<properties>, and <property>) enable you to set properties for certain objects in the
report.

relation Optional Defines whether there are multiple conditions
and, if there are, how they should be related.

■ The and means that the formatting
exception is applied only if both are met.

■ The or means that the formatting
exception is applied if either condition is
met.

Table 8–2 <condition> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 8-35

XML Tag Reference
Syntax
<customize>
 content_of_data_model
</customize>

Examples
The following example shows the object property segment of an XML report
definition.

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
8-36 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

8.5.5 <data>

Description
The <data> tag delimits the beginning and ending of the data model of the report
definition.

Syntax
<data>
 content_of_data_model
</data>

Example
The following example shows the data model segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
Customizing Reports at Runtime 8-37

XML Tag Reference
 </select>
 </dataSource>
 </data>

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<data>
 <dataSource name="Q_1">
 <select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
 </select>
 </dataSource>
</data>

8.5.6 <dataSource>

Description
The <dataSource> tag delimits the beginning and ending of a query in the data
model. <dataSource> must be nested within the <data> tag. All of the data sources
supported by Oracle Reports Services (SQL and Express) are supported by this tag.

Syntax
<dataSource>
 content_of_data_source
</dataSource>
8-38 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Examples
The following example shows the data model segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
 </select>
 </dataSource>
 </data>

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<data>
 <dataSource name="Q_1">
 <select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
 </select>
 </dataSource>
</data>
Customizing Reports at Runtime 8-39

XML Tag Reference
8.5.7 <exception>

Description
The <exception> tag delimits a formatting exception that you want to apply to a
field (for example, the field should turn red when the value exceeds some limit).
The <exception> tag must be nested within a <field> tag. It must also have a
<condition> tag nested within it that defines the condition under which to apply
the formatting exception.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.3, "<condition>"

Syntax
<exception
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [hide="yes | no"]
 [font="font_name"]
>
 condition_definition
</exception>

Attributes
The following table describes the attributes of the <exception> tag:

Table 8–3 <exception> Tag Attributes

Attribute Required or Optional Description

lineColor Optional Is the name of the border color to apply when
the condition is met. If noLine is specified,
then the border is transparent (that is,
invisible).

fillColor Optional Is the name of the fill color to apply when the
condition is met. If noFill is specified, then the
background is transparent.

textColor Optional Is the name of the text color to apply when the
condition is met.
8-40 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Usage Notes
■ Exceptions are processed in the order they appear in the field.

■ Each exception can have up to three conditions.

■ There is no limit on the number of exceptions that can be applied to a field,
except for the PL/SQL maximum length restriction for the resulting format
trigger.

■ If multiple exceptions exist, then they are controlled by an implicit OR relation,
which means that as soon as one of the exceptions has been applied (that is,
satisfied), no other exceptions will be processed.

hide Optional Is whether to hide the field when the
condition is met.

■ A yes means the field is hidden when the
condition is met.

■ A no means the field is not be hidden
when the condition is met.

font Optional Is the name of the font to apply when the
condition is met.

fontSize Optional Is the size of the font to be used when the
condition is met.

fontStyle Optional Is the style of the font to be used when the
condition is met:

■ regular

■ italic

■ bold

■ boldItalic

fontEffect Optional Is the effect of the font to be used when the
condition is met:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

Table 8–3 <exception> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 8-41

XML Tag Reference
Example
The following example shows two formatting exceptions for field f_ename. The
first exception changes the text color to red if both of its conditions are met. The
second exception changes the text color to blue if its condition is met.

<field name="f_ename" source="ename" label="Employee" textColor="green">
 <exception textColor="red">
 <condition source="deptno" operator="btw" operand1="1"
 operand2="20" relation="and"/>
 <condition source="sal" operator="gt" operand1="1000"/>
 </exception>
 <exception textColor="blue">
 <condition source="deptno" operator="eq" operand1="30"/>
 </exception>
</field>

8.5.8 <field>

Description
The <field> tag defines a field in the layout of the report definition and assigns
attributes to it. The <field> tag must be nested within the <layout> tag. Most of the
other layout tags require a <field> nested within them (for example, <tabular>,
<group>, <matrixCell>). The <field> tag modifies existing fields in an .RDF file, if
you use the same field name. Otherwise, it can be used to create an entirely new
field in the report.

The <field> tag can also contain the <labelAttribute> and <exception> tags.

You can end the <field> tag with /> or </field>. The latter is the method you must
use if you are including an <exception> or <labelAttribute> inside the <field> tag.
The example below illustrates both methods of ending the <field> tag.

<field name="f_deptno" label="Department" source="deptno"/>
<field name="f_mgr" label="Manager" source="mgr">
 <labelAttribute textColor="red" alignment="center"/>
</field>

For more information refer to:

■ Section 8.5.7, "<exception>"

■ Section 8.5.15, "<labelAttribute>"
8-42 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Syntax
<field
 name="field_name"
 source="source_column"
 [label="field_label"]
 [currency="currency_symbol"]
 [tsep="separator_character"]
 [formatTrigger="plsql_program_unit"]
 [font="font_name"]
 [fontSize="point_size"]
 [fontStyle="regular | italic | bold | boldItalic"]
 [fontEfffect="regular | strikeout | underline | strikeoutUnderline"]
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [alignment="start | left | center | right | end"]
 [hyperlink="URL"]
 [linkdest="hyperlink_target"]
 [formatMask="mask"]
/> | >[other_tags]</field>

Attributes
The following table describes the attributes of the <field> tag:

Table 8–4 <field> Tag Attributes

Attribute Required or Optional Description

name Required Is the identifier for the field. If the name
matches that of a field in an .RDF file to which
the XML is being applied, then the attributes
specified will override those in the .RDF file.

source Required, for creating
new fields

Optional, for
modifying existing
fields

Is the source column from which the field gets
its data. The source column must exist in the
data model.
Customizing Reports at Runtime 8-43

XML Tag Reference
label Optional Is the boilerplate text to be associated with the
field. To control the formatting attributes of
the label, you must use the <labelAttribute>
tag. For more information refer to
Section 8.5.15, "<labelAttribute>".

The label attribute only affects new fields, it
will not change the label of an existing field in
the .RDF file. To change the label of an
existing field, you can use the <object> tag.
For more information, refer to Section 8.5.22,
"<object>".

currency Optional Is the currency symbol to be used with the
field (for example, $). Note that you must still
specify the formatMask attribute to indicate
where you want the currency symbol placed.

tsep Optional Is the separator character that you want to use
when generating delimited output. The most
commonly used delimiter is a tab, which can
be read by spreadsheet programs such as
Microsoft Excel.

formatTrigger Optional Is the name of a PL/SQL program unit that is
to be used as the format trigger for the field.
Format triggers must be functions. For more
information refer to the Report Builder online
help system and look for format trigger in the
index.

font Optional Is the name of the font to be used for the field
contents.

fontSize Optional Is the size of the font to be used for the field
contents.

fontStyle Optional Is the style of the font to be used for the field
contents:

■ regular

■ italic

■ bold

■ boldItalic

Table 8–4 <field> Tag Attributes

Attribute Required or Optional Description
8-44 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
fontEffect Optional Is the effect of the font to be used for the field
contents:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

lineColor Optional Is the name of the color to be used for the
border of the field. If noLine is specified, then
the field’s border is transparent (that is,
invisible).

fillColor Optional Is the name of the color to be used as the
background for the field. If noFill is specified,
then the background is transparent.

textColor Optional Is the name of the color to be used for the field
contents.

alignment Optional Is how the text should be justified within the
field:

■ start

■ left

■ center

■ right

■ end

hyperlink Optional Is a URL to be associated with the field
contents when HTML or PDF output is
generated. This attribute is ignored for other
types of output such as PostScript or ASCII.

linkdest Optional Is the target to be used when hyperlinking to
this field’s contents. This attribute is only used
when generating HTML or PDF output. It is
ignored for other types of output such as
PostScript or ASCII.

formatMask Optional Is the mask to be applied when displaying the
field’s contents. For more information on the
format mask syntax, refer to the Report
Builder online help system and look under
format mask in the index.

Table 8–4 <field> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 8-45

XML Tag Reference
Examples
The following example shows a section in the layout of a report definition that
defines fields within two break groups for a matrix report:

<group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
<group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
8-46 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
The following example shows a section in the layout of a report definition that
defines a field within a break group for a group left report. The formatTrigger
attribute points to a function that would be defined within the <programUnits> tag.

<group>
 <field name="f_quarter1" source="quarter1" label="Quarter"
 font="Arial" fontSize="8"
 formatTrigger="F_quarter1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
</group>

8.5.9 <formLike>

Description
The <formLike> tag delimits a form style within a section of the report’s layout. If
you use the <formLike> tag, then you must also nest <field> tags to list the fields
you want to include in the form layout.

Refer to Section 8.5.8, "<field>" for more information on the <field> tag

Syntax
<formLike>
 <field>
 </field>
 [...]
</formLike>
Customizing Reports at Runtime 8-47

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
section with a form layout inside of it:

<section name="main">
 <formLike name="M_empform" template="corp2.tdf">
 <labelAttribute textColor="green" alignment="center"/>
 <field name="f_deptno" source="deptno" label="Department"/>
 <field name="f_mgr" source="mgr" label="Manager">
 <labelAttribute textColor="red" alignment="center"/>
 </field>
 <field name="f_job" label="Job" source="job"/>
 </formLike>
</section>

8.5.10 <formula>

Description
The <formula> tag defines a formula column in the data model of the report
definition. A formula column uses a PL/SQL function to perform an operation,
typically a complex calculation of some kind. If you are performing a common
calculation (for example, sum, percent of total, or standard deviation), then you can
use the <summary> tag, which requires no PL/SQL.

Refer to Section 8.5.29, "<summary>" for more information.

Syntax
<formula
 name="column_name"
 source="plsql_function_name"
 dataType="number | character | date"
 width="number"
/>
8-48 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Attributes
The following table describes the attributes of <formula> tag:

Example
The following example shows a segment of an XML report definition that defines a
data model with a formula column in it. The defaulting algorithm will place the
column in the appropriate group based on where we place its associated fields in
the <layout> section.

<data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>

Table 8–5 <formula> Tag Attributes

Attribute Required or Optional Description

name Required Is the name of the formula column.

source Required Is the name of a PL/SQL function defined
within the <programUnits> tag that performs
the desired operation for the formula.

dataType Optional Is the type of data that will be generated by
the formula. For example, if the formula
performs a mathematical operation, then the
result is a number. The possible values for
dataType are:

■ number

■ character

■ date

width Optional Is the number of characters wide of the result
of the formula.
Customizing Reports at Runtime 8-49

XML Tag Reference
 <dataSource name="Q_2">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <formula name="Profit_Margin" source="FormulaProfitMargin"
 datatype="number" width="9"/>
</data>
<programUnits>
 <function name="FormulaProfitMargin">
 <![CDATA[
 FUNCTION FormulaProfitMargin RETURN number IS
 BEGIN
 return ((:TOTAL_PROFIT1 / (:TOTAL_SALES1 - (0.07 * :TOTAL_SALES1))) *
100);
 END;
]]>
 </function>
</programUnits>

8.5.11 <function>
The <function> tag defines a PL/SQL function that you want to add to the report
definition. The <function> tag must be nested within a <programUnits> tag. To
reference a function, you use the formatTrigger attribute of the <field> tag.

For more information refer to:

■ Section 8.5.23, "<programUnits>"

■ Section 8.5.8, "<field>"

Syntax
<function
 name="function_name"
>
 PLSQL_function
</function>
8-50 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Attributes
The following table describes the attributes of the <function> tag:

Example
The following example shows a segment of an XML report definition that defines
some PL/SQL functions. The functions are referenced from fields in the layout
through the formatTrigger attribute.

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
</layout>
<programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">

Table 8–6 <function> Tag Attributes

Attribute Required or Optional Description

name Required Is the identifier for the function. This is the
name that should be used when referencing
the function (for example, from the
formatTrigger attribute of the <field> tag).
Customizing Reports at Runtime 8-51

XML Tag Reference
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
</programUnits>

8.5.12 <group>

Description
The <group> tag delimits the master group in a master-detail style layout. The
<group> tag can only be nested within a <groupLeft>, <groupAbove>, or <matrix>
tag. You must nest <field> tags within the <group> tag to list the fields you want to
include in the master group.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.13, "<groupAbove>"

■ Section 8.5.14, "<groupLeft>"

■ Section 8.5.18, "<matrix>"

Syntax
<group>
 master_group_content
</group>
8-52 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
The following example shows a section in the layout of a report definition that
defines fields within two break groups for a matrix report.

<group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
<group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
Customizing Reports at Runtime 8-53

XML Tag Reference
8.5.13 <groupAbove>

Description
The <groupAbove> tag delimits a master-detail style within a section of the report’s
layout. The master records will be placed above the detail records. If you use the
<groupAbove> tag, then you must also nest a <group> tag to identify the master
group as well as <field> tags to list the fields you want to include in the group
above layout.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.12, "<group>"

Syntax
<groupAbove
 name="style_name"
>
 <group>
 master_group_content
 </group>
 detail_group_content
</groupAbove>

Example
The following example shows a segment of an XML report definition that defines a
section with a group above layout inside of it:

<section name="main">
 <groupAbove name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
8-54 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupAbove>
</section>

8.5.14 <groupLeft>

Description
The <groupLeft> tag delimits a master-detail style within a section of the report’s
layout. The master records are placed to the left of the detail records. If you use the
<groupLeft> tag, then you must also nest a <group> tag to identify the master
group as well as <field> tags to list the fields you want to include in the group left
layout.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.12, "<group>"

Syntax
<groupLeft
 name="style_name"
>
 <group>
 master_group_content
 </group>
 detail_group_content
</groupLeft>

Example
The following example shows a segment of an XML report definition that defines a
section with a group left layout inside of it:

<section name="main">
 <groupLeft name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
Customizing Reports at Runtime 8-55

XML Tag Reference
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupLeft>
</section>

8.5.15 <labelAttribute>

Description
The <labelAttribute> tag defines the formatting attributes for field labels. The
<labelAttribute> tag can be nested within a <field> tag or within a layout style tag
(for example, <tabular> or <matrix>). If <labelAttribute> is nested inside a <field>
tag, then it applies only to the labels for that field.

The <labelAttribute> tag only affects new fields, it will not change the label of an
existing field in the .RDF file. Note that to change the text of an existing label, you
should use the textSegment attribute of the <property> tag.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.25, "<property>"

Syntax
<labelAttribute
 [font="font_name"]
 [fontSize="point_size"]
 [fontStyle="regular | italic | bold | boldItalic"]
 [fontEfffect="regular | strikeout | underline | strikeoutUnderline"]
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [alignment="start | left | center | right | end"]
>
</labelAttribute>
8-56 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Attributes
The following table describes the attributes of the <labelAttribute> tag:

Table 8–7 <labelAttribute> Tag Attributes

Attribute Required or Optional Description

font Optional Is the name of the font to be used for the field
label.

fontSize Optional Is the size of the font to be used for the field
label.

fontStyle Optional Is the style of the font to be used for the field
label:

■ regular

■ italic

■ bold

■ boldItalic

fontEffect Optional Is the effect of the font to be used for the field
contents:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

lineColor Optional Is the name of the color to be used for the
border of the field. If noLine is specified, then
the field’s border is transparent (that is,
invisible).

fillColor Optional Is the name of the color to be used as the
background for the field. If noFill is specified,
then the background is transparent.

textColor Optional Is the name of the color to be used for the field
contents.
Customizing Reports at Runtime 8-57

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
section with a group left layout inside of it. The first <labelAttribute> tag would
apply to all of the fields in the layout except for f_sumsal, which has its own
embedded <labelAttribute> tag.

<section name="main">
 <groupLeft name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupLeft>
</section>

alignment Optional Is how the text should be justified within the
field:

■ start

■ left

■ center

■ right

■ end

Table 8–7 <labelAttribute> Tag Attributes

Attribute Required or Optional Description
8-58 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
8.5.16 <layout>

Description
The <layout> tag delimits the beginning and ending of the layout of the report
definition.

Syntax
<layout>
 content_of_layout
</layout>

Examples
The following example shows the layout segment of an XML report definition. This
is not a complete layout model and would have to be applied as a customization to
an .RDF file:

<layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>
Customizing Reports at Runtime 8-59

XML Tag Reference
The following example shows another layout segment of an XML report definition.
This is a complete layout and, assuming the appropriate data model was in place, it
could stand by itself, without being applied to an .RDF file.

<layout>
 <section name="main">
 <matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER"
source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
8-60 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY"
source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
 </matrix>
 </section>
 </layout>
Customizing Reports at Runtime 8-61

XML Tag Reference
8.5.17 <link>

Description
The <link> tag defines a link between data sources in the data model. <link> must
be nested within the <data> tag. Data sources are linked by columns. Hence each
column link requires parent and child column attributes and a condition attribute
that relates the columns. In order to join two tables or views, the foreign key
columns must have a column alias in the SELECT statements. (These aliases are
used to reference the parent and child column in the column link specification.)

Syntax
<link
 parentGroup="parent_group_name"
 parentColumn="parent_column_name"
 childQuery="child_query_name"
 childColumn="child_column_name"
 condition="eq | lt | lteq | neq | gt | gteq | like | notLike"
 sqlClause="startWith | having | where"
 name="link_name"
>
</link>

Attributes
The following table describes the attributes of the <link> tag:

Table 8–8 <link> Tag Attributes

Attribute Required or Optional Description

parentGroup Required for group
links

Optional for column
links

Is the name of the parent group that you want
to relate to the child query.

parentColumn Required for column
links

Ignored for group
links

Is the name of a column in the parent query
that relates to a column in the child query
(that is, child column).

childQuery Required for group
links

Optional for column
links

Is the name of the child query that relates to
the parent group.
8-62 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
childColumn Required for column
links

Ignored for group
links

Is the name of a column in the child query that
relates to a column in the parent query (that is,
parent column).

condition Required Is a SQL operator that defines the relationship
between parent column and child column.
Condition can have the following values:

■ eq (equal to)

■ lt (less than)

■ lteq (less than or equal to)

■ neq (not equal to)

■ gt (greater than)

■ gteq (greater than or equal to)

■ Like (means that the condition is true
when the value in one column matches
the pattern in the other column. The
pattern can contain % and _ as wildcard
characters.)

■ notLike (means that the condition is true
when the value in one column does not
match the pattern in the other column.
The pattern can contain % and _ as
wildcard characters.)

sqlClause Required Is the type of SQL clause that relates the
parent group to the child query. The default is
a WHERE clause.

Table 8–8 <link> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 8-63

XML Tag Reference
Example
The following example shows the data model segment of a report definition with a
link between two queries:

<data>
 <dataSource name="Q_dept">
 <select>
 select deptno deptno_dept from dept
 </select>
 </dataSource>
 <dataSource name="Q_emp">
 <select>
 select deptno deptno_emp, ename, empno, sal from emp
 </select>
 </dataSource>
 <link parentColumn="deptno_dept"
 childColumn="deptno_emp"
 condition="eq"
 sqlClause="where"/>
</data>

8.5.18 <matrix>

Description
The <matrix> tag delimits a matrix style within a section of the report’s layout. If
you use the <matrix> tag, then you must also nest <matrixRow>, <matrixCol>, and
<matrixCell> tags to identify the parts of the matrix as well as <field> tags to list the
fields you want to include in the matrix layout.

A <group> tag can also be used in conjunction with <matrix> tags to create a matrix
with group style.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.12, "<group>"

■ Section 8.5.20, "<matrixCol>"

■ Section 8.5.21, "<matrixRow>"

■ Section 8.5.19, "<matrixCell>"
8-64 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Syntax
<matrix
 name="style_name"
>
 [<group>
 master_group_content
 </group>]
 <matrixCol>
 matrix_column content
 </matrixCol>
 <matrixRow>
 matrix_row_content
 </matrixRow>
 <matrixCell>
 matrix_cell_content
 </matrixCell>
</matrix>

Example
The following example shows a segment of an XML report definition that defines a
matrix with group layout:

<matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
Customizing Reports at Runtime 8-65

XML Tag Reference
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY" source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
8-66 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
</matrix>

8.5.19 <matrixCell>

Description
The <matrixCell> tag delimits the cells in a matrix style layout. The <matrixCell>
tag can only be nested within a <matrix> tag. You must nest <field> tags within the
<matrixCell> tag to list the fields you want to include as matrix cells.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.18, "<matrix>"

Syntax
<matrixCell>
 master_group_content
</matrixCell>
Customizing Reports at Runtime 8-67

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
matrix cell:

<matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
</matrixCell>

8.5.20 <matrixCol>

Description
The <matrixCol> tag delimits the column fields in a matrix style layout. The
<matrixCol> tag can only be nested within a <matrix> tag. You must nest <field>
tags within the <matrixCol> tag to list the fields you want to include as matrix
columns.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.18, "<matrix>"

Syntax
<matrixCol>
 master_group_content
</matrixol>
8-68 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines
the column dimension of a matrix layout:

<matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY" source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
</matrixCol>

8.5.21 <matrixRow>

Description
The <matrixRow> tag delimits the row fields in a matrix style layout. The
<matrixRow> tag can only be nested within a <matrix> tag. You must nest <field>
tags within the <matrixRow> tag to list the fields you want to include as matrix
rows.

For more information refer to:

■ Section 8.5.8, "<field>"

■ Section 8.5.18, "<matrix>"
Customizing Reports at Runtime 8-69

XML Tag Reference
Syntax
<matrixRow>
 master_group_content
</matrixRow>

Example
The following example shows a segment of an XML report definition that defines
the row dimension of a matrix layout:

<matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
</matrixRow>

8.5.22 <object>

Description
The <object> tag identifies an object in the report whose properties you want to
change. The <object> tag typically has <properties> and <property> tags nested
within it.

Syntax
<object
 name="object_name"
 type="REP_REPORT | REP_GROUP | REP_COL_MAP | REP_GRAPHIC_TEXT"
>
 property_definitions
</object>
8-70 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Attributes
The following table describes the attributes of the <object> tag:

Examples
The following example shows a segment of an XML report definition that defines
some object properties:

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>

Table 8–9 <object> Tag Properties

Attribute Required or Optional Description

name Required Is the identifier for the object to which you
want to apply the properties.

type Required Is the kind of object to which you want to
apply the properties:

■ REP_REPORT is the report itself.

■ REP_GROUP is a group in the data model
of the report.

■ REP_COL_MAP is a column in the data
model of the report.

■ REP_GRAPHIC_TEXT is a boilerplate
object in the layout of the report.
Customizing Reports at Runtime 8-71

XML Tag Reference
]]>
 </property>
 </properties>
 </object>
 </customize>

The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

8.5.23 <programUnits>

Description
The <programUnits> tag delimits any PL/SQL that you want to add to the report
definition. The <programUnits> tag typically has <function> tags nested within it.

Refer to Section 8.5.11, "<function>" for more information.

Syntax
<programUnits>
 program_unit_definitions
</programUnits>
8-72 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines
some PL/SQL. The <programUnits> tag is outside of the <layout> tag and that the
functions are referenced from fields in the layout through the formatTrigger
attribute.

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
</layout>
<programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
</programUnits>
Customizing Reports at Runtime 8-73

XML Tag Reference
8.5.24 <properties>

Description
The <properties> tag delimits the properties of the object. The <properties> tag
must be nested inside of the <object> tag and typically has <property> tags nested
within it.

Syntax
<properties>
 property_definitions
</properties>

Examples
The following example shows a segment of an XML report definition that defines
an object’s properties:

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
8-74 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

8.5.25 <property>

Description
The <property> tag delimits a single property of the object. The <property> tag
must be nested inside of the <properties> tag and typically has some text nested
within it to define the value of the property.

Syntax
<property
 name="xmlTag | xmlAttribute | xmlSuppress | prologType | prolog |
 beforeReportValue | beforeReportType | afterReportValue | afterReportType |
 beforePageValue | beforePageType | afterPageValue | afterPageType
 beforeFormValue | beforeFormType | afterFormValue | afterFormType |
 pageNavigationControlValue | pageNavigationControlType | textSegment
>
 property_value
</property>
Customizing Reports at Runtime 8-75

XML Tag Reference
Attributes
The following table describes the attributes of the <property> tag:

Usage Notes
The following table lists the properties that are available for each type of object:

Table 8–10 <property> Tag Attributes

Attribute Required or Optional Description

name Required Is the name of the property that you want to
specify. The available properties vary
depending upon the type of object. Refer to
the "Usage Notes" for more information.

Table 8–11 Valid Properties for Object Types

Object Valid Properties

Report object (REP_REPORT) ■ xmlTag

■ xmlAttribute

■ xmlSuppress

■ prologType

■ prolog

■ beforeReportValue

■ beforeReportType

■ afterReportValue

■ afterReportType

■ beforePageValue

■ beforePageType

■ afterPageValue

■ afterPageType

■ beforeFormValue

■ beforeFormType

■ afterFormValue

■ afterFormType

■ pageNavigationControlValue

■ pageNavigationControlType
8-76 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Examples
The following example shows a segment of an XML report definition that defines
an object’s properties.

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>

Group object (REP_GROUP) ■ xmlTag

■ xmlAttribute

■ outerXMLTag

■ outerXMLAttribute

■ xmlSuppress

Column object (REP_COL_MAP) ■ xmlTag

■ xmlAttribute

■ XMLSuppress

■ containXML

Boilerplate object (REP_GRAPHIC_TEXT) ■ textSegment

Table 8–11 Valid Properties for Object Types

Object Valid Properties
Customizing Reports at Runtime 8-77

XML Tag Reference
]]>
 </property>
 </properties>
 </object>
 </customize>

The following example shows a customization section that changes the text in a
boilerplate object. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

8.5.26 <report>

Description
The <report> tag delimits the beginning and ending of the report definition. You
can append attributes that apply to the entire report to the <report> tag.

Syntax
<report DTDVersion=1.0"
 [name="report_name"]
 [title="report_title"]
 [author="author_name"]
>
 content_of_report
</report>
8-78 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
This example shows an XML customization document designed to be applied to an
.RDF file named cond.rdf. Note that this example does not touch the data model. It
only changes the formatting of some of the fields in the layout.

<report name="cond" DTDVersion="1.0">
<!-- This report assumes that the file
 named header_example.html is located
 in d:\ORANT\TOOLS\DOC60\US\RBBR60.
 If it it not located there, the report
 will not run properly.
-->
 <layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>
 <customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
Customizing Reports at Runtime 8-79

XML Tag Reference
]]>
 </property>
 </properties>
 </object>
 </customize>
</report>

Attributes
The following table describes the attributes of the <report> tag:

8.5.27 <section>

Description
The <section> tag delimits the beginning and ending of a section in the layout of the
report definition. The <section> tag must be nested within the <layout> tag. A
report might have up to three sections in its layout.

Table 8–12 <report> Tag Attributes

Attribute Required or Optional Description

name Optional Records the name of the report. If the name
is not specified, then the default is
UNTITLED. If you plan to apply the report
definition to an .RDF file, then this name
should be the same as the file name without
the .RDF extension.

dtdVer Required Records the version of the Reports DTD
used to generate this XML report definition.
Since the DTD can change between versions,
any new reports definition must include
information about which version was used.
This permits backward compatibility in
future releases.

title Optional Places the specified title at the beginning of
the report. When applying the definition
title at an .RDF file, this title overrides the
existing report title.

author Optional Records the name of the author.
8-80 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
For each section, you might also define a layout style using the following tags:

■ Section 8.5.30, "<tabular>"

■ Section 8.5.18, "<matrix>"

■ Section 8.5.9, "<formLike>"

■ Section 8.5.13, "<groupAbove>"

■ Section 8.5.14, "<groupLeft>"

Syntax
<section
 name= "header | main | trailer"
 width="section_width"
 height="section_height"
>
 section_contents
</section>

Attributes
The following table describes the attributes of the <section> tag:

Table 8–13 <section> Tag Attributes

Attribute Required or Optional Description

name Required Is the section’s name: header, main, or trailer.

width Optional Is the width of one physical page (including
the margin) in the unit of measurement of the
report (for example, 8.5 inches).

height Optional Is the height of one physical page (including
the margin) in the unit of measurement of the
report (for example, 11 inches).
Customizing Reports at Runtime 8-81

XML Tag Reference
Example
The following is an example of a <section> definition:

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
 </layout>

8.5.28 <select>

Description
The <select> tag delimits the beginning and ending of a SELECT statement within
the data model. <select> must be nested within the <dataSource> tag.

Syntax
<select>
 content_of_SELECT
</select>

Examples
The following example shows the data source segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
8-82 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
 </select>
 </dataSource>
 </data>

A user parameter is automatically generated for you if you include it as a bind
reference in a SELECT statement. For example:

<select>
 select * from dept where deptno > :p_dept;
</select>

This SELECT statement would cause a user parameter named p_dept to be
automatically generated. Therefore, you would not need to manually create it in the
report definition.

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
</select>
Customizing Reports at Runtime 8-83

XML Tag Reference
8.5.29 <summary>

Description
The <summary> tag defines a summary column in the data model of the report
definition. Summary columns are used to perform some mathematical function on
the data values of another column. If you want to perform a function that is not one
of the standard summary functions, then you can use the <formula> tag to create a
formula column that uses PL/SQL to perform more complex calculations.

Refer to Section 8.5.10, "<formula>" for more information.

Syntax
<summary
 source="src_col_name"
function="sum|average|minimum|maximum|count|first|last|pctTotal|stddeviation
 |variance"
 compute="group+names"
 reset="group_name"
 productOrder="group_name"
 nullval="value_if_null"
/>

Attributes
The following table describes the attributes of the <summary> tag:

Table 8–14 <summary> Tag Attributes

Attribute Required or Optional Description

source Required Is the name of the column whose values are
summarized.
8-84 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
function Optional Is the mathematical operation to be applied to
produce the summary values:

■ average calculates the average of the
column’s values within the reset group.

■ count counts the number of records within
the reset group.

■ first prints the column’s first value fetched
for the reset group.

■ last prints the column’s last value fetched for
the reset group.

■ maximum calculates the column’s highest
value within the reset group.

■ minimum calculates the column’s lowest
value within the reset group.

■ pctTotal calculates the column’s percent of
the total within the reset group.

■ stddeviation calculates the column’s positive
square root of the variance for the reset
group.

■ sum calculates the total of the column’s
values within the reset group.

■ variance sums the squares of each column
value’s distance from the mean value of the
reset group and divides the total by the
number of values minus 1.

compute Optional Is the group over which a % of Total summary
column is computed. Compute is used only for
columns with a function of % of Total. This value
determines the total of which each source column
value is a percentage. When you calculate a
percentage, you divide a value by a total (for
example, SMITH’s salary/total department
salaries). Compute defines the total for a
percentage calculation. For matrix reports,
Compute At can be multiple groups.

You can also set this attribute to page or report if
you want to compute percentages over the total
values on each page or over the entire report.

Table 8–14 <summary> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 8-85

XML Tag Reference
Default Values
Typically, you should not need to specify anything for the optional attributes of the
<summary> tag because their values are defaulted at runtime. The only time you
should need to specify the optional values is when you want to override their
defaults. The following tables describe the defaulting for each of the optional
attributes for each layout style.

reset Optional Is the group at which the summary column value
resets to zero (if Function is Count), null (if
Function is not Count), or nullval (if the
summary has one). Reset determines if the
summary is a running summary or a periodic (for
example, group-level) summary.

You can also set this attribute to page or report if
you want to compute percentages over the total
values on each page or over the entire report.

productOrder Optional Is the order in which groups are evaluated in the
cross product for a summary. ProductOrder also
defines the frequency of a summary, formula, or
placeholder in a cross product group. That is, the
summary, formula, or placeholder has one value
for each combination of values of the groups in
its productOrder. productOrder is used only for
columns owned by cross-product groups.
Because a cross product relates multiple groups,
the groups in the cross product could be
evaluated in any one of many different orders.
Therefore, when creating a summary for a cross
product, you must use productOrder to specify
which group should be evaluated first, which
second, and so on. You must also use
productOrder to specify the frequency of a
summary, formula, or placeholder within the
cross product.

nullval Optional Is a value to be substituted for any null values of
the column. For example, if you enter X in this
field, then an X is displayed for null values
fetched for the column. If left blank, then no
substitution is done for null values.

Table 8–14 <summary> Tag Attributes

Attribute Required or Optional Description
8-86 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
The following is an example of some summaries for a data model that contains two
queries. The first three summaries are for a tabular layout and the last six are for a
matrix break report. Because only the name, source column, and function are
specified, the defaulting algorithm will place the columns in the appropriate groups
based on where we place their associated fields in the layout.

<data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,
VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <dataSource name="Q_2">

Table 8–15 Default Values for Summaries in Break Groups

Optional Attribute Default Value

function sum

compute The parent group of the summary column’s group

reset The parent group of the summary column’s group

Table 8–16 Default Values for Summaries in a Matrix Report

Optional Attribute Default Value

function sum

compute The cross product group

productOrder ■ The group containing the summary (for dimension
summaries)

■ A list of groups that define the matrix row (for cell
summaries)

reset The highest frequency group of the productOrder
Customizing Reports at Runtime 8-87

XML Tag Reference
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <summary name="SumTOTAL_SALESPerCITY1" source="total_sales1"/>
 <summary name="SumTOTAL_COSTPerCITY1" source="total_cost1"/>
 <summary name="SumTOTAL_PROFITPerCITY1" source="total_profit1"/>
 <summary name="SumTOTAL_SALESPerQUARTER" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerQUARTER" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerQUARTER" source="total_profit"/>
 <summary name="SumTOTAL_SALESPerCITY" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerCITY" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerCITY" source="total_profit"/>
 <formula name="Profit_Margin" source="FormulaProfitMargin"
datatype="number"
 width="9"/>
</data>

8.5.30 <tabular>

Description
The <tabular> tag delimits a tabular style within a section of the report’s layout. If
you use the <tabular> tag, then you must also nest <field> tags to list the fields you
want to include in the tabular layout.

Refer to Section 8.5.8, "<field>" for more information.

Syntax
<tabular>
 <field>
 </field>
 [...]
</tabular>
8-88 Publishing Reports to the Web with Internet Application Server

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
section with a tabular layout inside of it:

<section name="header"> "
<tabular name="M_summary" template="corp2.tdf">
 <labelAttribute font="Arial"
 fontSize="10"
 fontStyle="bold"
 textColor="white"/>
 <field name="F_ports"
 source="ports"
 label="Port IDs"
 font="Arial"
 fontSize="10"/>
 <field name="F_locations"
 source="locations"
 label="Port Names"
 font="Arial"
 fontSize="10"/>
</tabular>
</section>
Customizing Reports at Runtime 8-89

XML Tag Reference
8-90 Publishing Reports to the Web with Internet Application Server

Part II

 Appendixes

Appendix A, "RWCLI60 Command Line Arguments"

Appendix B, "Oracle Reports Services Configuration Parameters"

Appendix C, "Environment Variables"

Appendix D, "Database Connection Strings"

Appendix E, "Troubleshooting"

RWCLI60 Command Line Argum
A

RWCLI60 Command Line Arguments

This appendix contains descriptions of RWCLI60 command line arguments.
RWCLI60 parses and transfers the command line to the specified Oracle Reports
Services (RWMTS60). It uses a command line very similar to RWRUN60.

A.1 Syntax
Following is the syntax for the RWCLI60 command line, where keyword=value is
a valid command line argument:

RWCLI60 MODULE|REPORT=runfile USERID=userid
[[keyword=]value|(value1, value2, ...)] SERVER=tnsname

A.2 Usage Notes
The following usage notes apply to the RWCLI60 command line:

■ All file names and paths specified in the client command line refer to files and
directories on the server machine, except for command file.

■ If the command line contains CMDFILE=, then the command file is read and
appended to the original command line before being sent to Oracle Reports
Services. The runtime engine will not re-read the command file.

MODULE|REPORT

Description MODULE|REPORT is the name of the report to run. (REPORT is
allowed for backward compatibility.)

Syntax [MODULE|REPORT=]runfile
ents A-1

Usage Notes
Values Any valid runfile (that is, a file with an extension of .RDF, .REP, or .XML).
If you do not enter a file extension, then Reports Runtime searches first for a file
with extension .REP, then extension .RDF, then .XML, and then no extension.
Reports Runtime will use its file path search order to find the file.

USERID

Description USERID is your ORACLE user name or placeholder user name (that
is, $username) and password with an optional database name, Net8
communication protocol to access a remote database, or ODBC datasource name (if
accessing a non-Oracle datasource). If the password is omitted, then a database
logon form is provided.

If you want users to log on to the database, then omit the USERID command line
argument from the report request. If you want users to log on every time they run
report requests, then use the Web CGI command SHOWAUTH and AUTHTYPE=S
in the report URL, or include the %D argument to the key mapping entry in the
cgicmd.dat (Web CGI) file.

Values The logon definition must be in one of the following forms and cannot
exceed 512 bytes in length:

username[/password]
username[/password][@database]
[user[/password]]@ODBC:datasource[:database] or [user[/password]]@ODBC:*

<$username>[/password]
<$username>[/password][@database]

See Appendix D, "Database Connection Strings" for a list of valid connection
strings.

PARAMFORM

Description If PARAMFORM is specified, then it must be NO.

Syntax [PARAMFORM=]NO

CMDFILE

Description CMDFILE is a file that contains arguments for the RWRUN60
command. This option enables you to run a report without having to specify a large
number of arguments each time you invoke RWRUN60.
A-2 Publishing Reports to the Web with Internet Application Server

Usage Notes
Syntax [CMDFILE=]cmdfile

Values Any valid command file.

Restrictions The following restrictions apply:

■ A command file might reference another command file.

■ Command file syntax for RWRUN60 arguments is identical to that used on the
command line.

■ Values entered on the command line override values specified in command
files. For example, suppose that you specify RWRUN60 from the command line
with COPIES equal to 1 and CMDFILE equal to RUNONE (a command file). In
RUNONE, COPIES is set to 2. Only one copy of the report would be generated
in this case.

■ The argument or arguments for this keyword might be operating
system-specific.

TERM

Description TERM is the type of terminal on which you are using RWRUN60.
TERM is useful for the Runtime Parameter Form and Runtime Previewer only. This
keyword is only used in character mode.

Syntax [TERM=]termtype

Values Any valid terminal type.

Default Installation dependent. (See your Reports Services system administrator
for a compatible definition.)

Usage Note The argument or arguments for this keyword might be case sensitive,
depending on your operating system.

ARRAYSIZE

Description ARRAYSIZE is the size (in kilobytes) for use with ORACLE array
processing. Generally, the larger the array size, the faster the report will run.

Syntax [ARRAYSIZE=]n
RWCLI60 Command Line Arguments A-3

Usage Notes
Values A number from 1 through 9,999. This means that Reports Runtime can use
this number of kilobytes of memory per query in your report.

Default The default array size is 10K. For details about the ORACLE array
processing, see the Oracle8 Server Administrator’s Guide.

DESTYPE

Description DESTYPE is the type of device that will receive the report output.

Syntax [DESTYPE=]{CACHE|LOCALFILE|FILE|PRINTER|SYSOUT|MAIL}

Values

Default Taken from the Initial Value property of the DESTYPE parameter.

Usage Note Screen and Preview cannot be used for DESTYPE with RWCLI60.

CACHE Sends the output directly to Oracle Reports Services cache.
DESTYPE=CACHE is not compatible with the DISTRIBUTE
keyword. If the server encounters DISTRIBUTE on the command
line, then it is ignored the DESTYPE=CACHE command line
argument.

LOCALFILE Sends the output to a file on the client machine and forces a
synchronous call, regardless of the BACKGROUND value.

FILE Sends the output to the file on the server machine named in
DESNAME.

PRINTER Sends the output to the printer on the server machine named in
DESNAME. You must have a printer that Reports Services can
recognize installed and running.

MAIL Sends the output to the mail users specified in DESNAME. You
can send mail to any mail system that is MAPI compliant or has
the service provider driver installed. The report is sent as an
attached file.

SYSOUT Sends the output to the client machine’s default output device
and forces a synchronous call.
A-4 Publishing Reports to the Web with Internet Application Server

Usage Notes
DESNAME

Description DESNAME is the name of the file, printer, or e-mail ID (or
distribution list) to which the report output will be sent. To send the report output
by e-mail, specify the e-mail ID as you do in your e-mail application (any
MAPI-compliant application on Windows or your native mail application on
UNIX). You can specify multiple user names by enclosing the names in parentheses
and separating them by commas (for example, (name, name, . . .name)).

Syntax [DESNAME=]desname

Values Any valid file name, printer name, or e-mail ID not to exceed 1K in length.
For printer names, you can optionally specify a port. For example:

DESNAME=printer,LPT1:
DESNAME=printer,FILE:

Default Taken from the Initial Value property of the DESNAME parameter. If
DESTYPE=FILE and DESNAME is an empty string, then it defaults to
reportname.lis at runtime.

Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is SCREEN.

■ If DESTYPE is PREVIEW, then Report Builder uses DESNAME to determine
which printer’s fonts to use to display the output.

■ The argument or arguments for this keyword might be case sensitive,
depending on your operating system.

In some cases, this parameter might be overridden by your operating system.

DESFORMAT

Description In bit-mapped environments, DESFORMAT specifies the printer
driver to be used when DESTYPE is FILE. In character-mode environments, it
specifies the characteristics of the printer named in DESNAME.

Syntax [DESFORMAT=]desformat
RWCLI60 Command Line Arguments A-5

Usage Notes
Values Any valid destination format not to exceed 1K in length. Examples of valid
values for this keyword are, for example, hpl, hplwide, dec, decwide, decland,
dec180, dflt, wide. Ask your System Administrator for a list of valid destination
formats.

Default Taken from the Initial Value property of the DESFORMAT parameter. For
bit-mapped Report Builder, if DESFORMAT is blank or dflt, then the current
printer driver (specified in File→Choose Printer) is used. If nothing has been
selected in Choose Printer, then PostScript is used by default.

Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is SCREEN.

■ The value or values for this keyword might be case sensitive, depending on
your operating system.

PDF Means that the report output is sent to a file that can be read by a PDF
viewer. PDF output is based upon the currently configured printer for
your system. The drivers for the currently selected printer is used to
produce the output; you must have a printer configured for the
machine on which you are running the report.

HTML Means that the report output is sent to a file that can be read by an
HTML 3.0 compliant browser (for example, Netscape 2.2).

HTMLCSS Means that the report output sent to a file includes style sheet
extensions that can be read by an HTML 3.0 compliant browser that
supports cascading style sheets.

HTMLCSSIE Means that the report output sent to a file includes style sheet
extensions that can be read by Microsoft Internet Explorer 3.x.

RTF Means that the report output is sent to a file that can be read by
standard word processors (such as Microsoft Word). When you open
the file in MS Word, you must choose View→Page Layout to view all
the graphics and objects in your report.

DELIMITED Means that the report output is sent to a file that can be read by
standard spreadsheet utilities, such as Microsoft Excel. If you do not
choose a delimiter, then the default delimiter is a TAB.

XML Means that the report output is an XML document, saved as a separate
file with the .XML extension. This report can be opened and read in an
XML-supporting browser, or your choice of XML viewing application.
A-6 Publishing Reports to the Web with Internet Application Server

Usage Notes
CACHELOB

Description CACHELOB specifies whether to cache retrieved Oracle8 large object
or objects in the temporary file directory (specified by REPORTS60_TMP).

Values YES means to cache the LOB in the temporary file directory. NO means to
not cache the LOB in the temporary file directory.

Default YES

Usage Notes The following usage notes apply:

■ You can only set this option on the command line.

■ If the location of the temporary file directory does not have sufficient available
disk space, then it is preferable to set this value to NO. Setting the value to NO,
however, might decrease performance, as the LOB might need to be fetched
from the server multiple times.

COPIES

Description COPIES is the number of copies of the report output to print.

Syntax [COPIES=]n

Values Any valid integer from 1 through 9,999.

Default Taken from the Initial Value property of the COPIES parameter.

Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is not Printer.

■ If COPIES is left blank on the Runtime Parameter Form, then it defaults to one.

CURRENCY

Description CURRENCY is the currency character to be used in number formats.

Syntax [CURRENCY=]currency_symbol

Values Any valid alphanumeric string not to exceed 1K in length.
RWCLI60 Command Line Arguments A-7

Usage Notes
Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default of up to four characters in the
Initial Value property of the CURRENCY parameter.

Usage Note A CURRENCY value entered in Property Palette overrides any
CURRENCY value entered on the command line.

THOUSANDS

Description THOUSANDS is the thousands character to be used in number
formats.

Syntax [THOUSANDS=]thousands_symbol

Values Any valid alphanumeric character.

Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default of up to four characters in the
Initial Value property of the THOUSANDS parameter.

Usage Notes The following usage notes apply:

■ A THOUSANDS value entered on the Parameter property sheet overrides any
THOUSANDS value entered on the command line.

■ The alphanumeric character defined as the THOUSANDS value is the actual
value that is returned. For example, if you define "," as the THOUSANDS value,
then "," is returned.

DECIMAL

Description DECIMAL is the decimal character to be used in number formats.

Syntax [DECIMAL=]decimal_symbol

Values Any valid alphanumeric character.

Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default in the Initial Value property
of the DECIMAL parameter.
A-8 Publishing Reports to the Web with Internet Application Server

Usage Notes
Usage Notes The following usage notes apply:

■ A DECIMAL value entered on the Parameter property sheet will override
any DECIMAL value entered on the command line.

■ The alphanumeric character defined as the DECIMAL value is actual value
that is returned. For example, if you define "." as the DECIMAL value, then
"." is returned.

READONLY

Description READONLY requests read consistency across multiple queries in a
report. When accessing data from ORACLE, read consistency is accomplished by a
SET TRANSACTION READ ONLY statement (refer to your Oracle8 Server SQL
Language Reference Manual for more information on SET TRANSACTION READ
ONLY).

Syntax [READONLY=]{YES|NO}

Values YES requests read consistency. NO means do not provide read consistency.

Default NO

Usage Note This keyword is only useful for reports using multiple queries,
because ORACLE automatically provides read consistency, without locking, for
single query reports.

Restriction In the Report trigger order of execution, notice where the SET
TRANSACTION READONLY occurs.

LOGFILE

Description LOGFILE is the name of the file to which File→Print Screen output is
sent. If the specified file already exists, then output is appended to it. This keyword
is only used in character mode.

Syntax [LOGFILE=]logfile

Values Any valid file name.

Default dfltrep.log in the current directory.
RWCLI60 Command Line Arguments A-9

Usage Notes
BUFFERS

Description BUFFERS is the size of the virtual memory cache in kilobytes. You
should tune this setting to ensure that you have enough space to run your reports,
but not so much that you are using too much of your system’s resources.

Syntax [BUFFERS=]n

Values A number from 1 through 9,999. For some operating systems, the upper
limit might be lower.

Default 640K

Usage Note If this setting is changed in the middle of you session, then the
changes does not take effect until the next time the report is run.

BATCH

Description If BATCH is specified, then it must be YES.

Syntax [BATCH=]YES

PAGESIZE

Description PAGESIZE is the dimensions of the physical page (that is, the size of
the page that the printer outputs). The page must be large enough to contain the
report. For example, if a frame in a report expands to a size larger than the page
dimensions, then the report is not run.

Syntax [PAGESIZE=]width x height

Values Any valid page dimensions of the form: page width x page height, where
page width and page height are zero or more. The maximum width and height
depends upon the unit of measurement. For inches, the maximum width and height
is 512 inches. For centimeters, it is 1312 centimeters. For picas, it is 36,864 picas.

Default For bitmap, 8.5 x 11 inches. For character mode, 80 x 66 characters. If the
report was designed for character mode and is being run or converted on bitmap,
then the following formula is used to determine page size if none is specified:
(default page size * character page size)/default character page size. For example, if
the character page size is 80 x 20, then the bit-mapped page size would be: (8.5 *
80)/80 x (11 * 20)/66 = 8.5 x 3.33.
A-10 Publishing Reports to the Web with Internet Application Server

Usage Notes
Usage Notes The following usage notes apply:

■ On some printers the printable area of the physical page is restricted. For
example, the sheet of paper a printer takes might be 8.5 x 11 inches, but the
printer might only be able to print on an area of 8 x 10.5 inches. If you define a
page width x page height in Report Builder that is bigger than the printable
area your printer allows, then clipping might occur in your report output. To
avoid clipping, you can either increase the printable area for the printer (if your
operating system allows it) or you can set the page width x page height to be
the size of the printable area of the page.

■ If this keyword is used, then its value overrides the page dimensions of the
report definition.

■ A PAGESIZE value entered on the Runtime Parameter Form overrides any
PAGESIZE value entered on the command line.

PROFILE

Description PROFILE is the name of a file in which you want to store
performance statistics on report execution. If you specify a file name, then Report
Builder calculates statistics on the elapsed and CPU time spent running the report.
PROFILE calculates the following statistics:

■ TOTAL ELAPSED TIME is the amount of time that passes between when you
issue RWBLD60 and when you leave the designer. TOTAL ELAPSED TIME is
the sum of Report Builder Time and ORACLE Time.

■ Time is the amount of time spent in Report Builder.

■ ORACLE Time is the amount of time spent in the database and is composed of
the following:

■ UPI is the amount of time spent to do such things as connect to the database,
parse the SQL, and fetch the data.

■ SQL is the amount of time spent performing SRW.DO_SQL.

■ TOTAL CPU Time used by process is the CPU time spent while in the designer.

Note: For some operating systems, the Report Builder time
includes the database time because the database is included in
Report Builder’s process.
RWCLI60 Command Line Arguments A-11

Usage Notes
Syntax [PROFILE=]profiler_file

Values Any valid file name in the current directory.

RUNDEBUG

Description RUNDEBUG is whether you want extra runtime checking for logical
errors in reports. RUNDEBUG checks for things that are not errors but might result
in undesirable output. RUNDEBUG checks for the following:

■ Frames or repeating frames that overlap but do not enclose another object. This
can lead to objects overwriting other objects in the output.

■ Layout objects with page-dependent references that do not have fixed sizing.
Report Builder makes such objects fixed in size regardless of the Vertical and
Horizontal Elasticity properties.

■ Bind variables referenced at the wrong frequency in PL/SQL.

Syntax [RUNDEBUG=]{YES|NO}

Values YES means perform extra runtime error checking. NO means do not
perform extra runtime error checking.

Default YES

ONSUCCESS

Description ONSUCCESS is whether you want a COMMIT or ROLLBACK
performed when a report is finished executing.

Syntax [ONSUCCESS=]{COMMIT|ROLLBACK|NOACTION}

Values COMMIT means perform a COMMIT when a report is done. ROLLBACK
means perform a ROLLBACK when a report is done. NOACTION means do
nothing when a report is done.

Default COMMIT, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle Forms Services) with no USERID provided.

Usage Note The COMMIT or ROLLBACK for ONSUCCESS is performed after the
after report trigger fires. Other COMMITs and ROLLBACKs can occur prior to this
one. For more information, see the READONLY command.
A-12 Publishing Reports to the Web with Internet Application Server

Usage Notes
ONFAILURE

Description ONFAILURE is whether you want a COMMIT or ROLLBACK
performed if an error occurs and a report fails to complete.

Syntax [ONFAILURE=]{COMMIT|ROLLBACK|NOACTION}

Values COMMIT means perform a COMMIT if a report fails. ROLLBACK means
perform a ROLLBACK if a report fails. NOACTION means do nothing if a report
fails.

Default ROLLBACK, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle Forms Services) with no USERID provided.

Usage Note The COMMIT or ROLLBACK for ONFAILURE is performed after the
after fails. Other COMMITs and ROLLBACKs can occur prior to this one. For more
information, see the READONLY command.

KEYIN

Description KEYIN is the name of a keystroke file that you want to run at
runtime. KEYIN is used to run the keystroke files created with KEYOUT. Since
KEYIN is used to run a keystroke file, it is only relevant when running in a
character-mode environment.

Syntax [KEYIN=]keyin_file

Values Any valid key file name in the current directory.

KEYOUT

Description KEYOUT is the name of a keystroke file in which you want Reports
Runtime to record all of your keystrokes. You can then use KEYIN to run the
keystroke file. KEYOUT and KEYIN are useful when you have certain keystrokes
that you want to do each time you run a report. They are also useful for debugging
purposes. Since KEYOUT is used to create a keystroke file, it is only relevant when
running reports in a character-mode environment.

Syntax [KEYOUT=]keyout_file

Values Any valid file name.
RWCLI60 Command Line Arguments A-13

Usage Notes
ERRFILE

Description ERRFILE is the name of a file in which you want Report Builder to
store error messages.

Syntax [ERRFILE=]error_file

Values Any valid file name.

LONGCHUNK

Description LONGCHUNK is the size (in kilobytes) of the increments in which
Report Builder retrieves a LONG column value. When retrieving a LONG value,
you might want to retrieve it in increments rather than all at once because of
memory size restrictions. LONGCHUNK applies only to Oracle7 and Oracle8.

Syntax [LONGCHUNK=]n

Values A number from 1 through 9,999. For some operating systems, the upper
limit might be lower.

Default 10K

ORIENTATION

Description ORIENTATION controls the direction in which the pages of the
report will print.

Syntax [ORIENTATION=]{DEFAULT|LANDSCAPE|PORTRAIT}

Values DEFAULT means use the current printer setting for orientation.
LANDSCAPE means landscape orientation. PORTRAIT means portrait orientation.

Default DEFAULT

Usage Notes The following usage notes apply:

■ If ORIENTATION=LANDSCAPE for a character mode report, then you must
ensure that your printer definition file contains a landscape clause.

■ Not supported when output to a PCL printer on Motif.
A-14 Publishing Reports to the Web with Internet Application Server

Usage Notes
BACKGROUND

Description BACKGROUND is whether the call is synchronous
(BACKGROUND=NO) or asynchronous (BACKGROUND=YES). A synchronous
call means that the client waits for the report to queue, be assigned to a runtime
engine, run, and finish. An asynchronous call means that the client simply sends the
call without waiting for it to complete. If the client process is killed during a
synchronous call, then the job is canceled.

Syntax [BACKGROUND=]{YES|NO}

Values YES or NO

Default NO

MODE

Description MODE specifies whether to run the report in character mode or
bitmap. This enables you to run a character-mode report from bit-mapped Report
Builder or vice versa. For example, if you want to send a report to a PostScript
printer from a terminal (for example, a vt220), then you could invoke
character-mode RWRUN60 and run the report with MODE=BITMAP. On Windows,
specifying MODE=CHARACTER means that the Report Builder ASCII driver is
used to produce editable ASCII output.

Syntax [MODE=]{BITMAP|CHARACTER|DEFAULT}

Values The following values apply:

■ BITMAP

■ DEFAULT means to run the report in the mode of the current executable being
used.

■ CHARACTER

Default DEFAULT
RWCLI60 Command Line Arguments A-15

Usage Notes
PRINTJOB

Description PRINTJOB specifies whether the Print Job dialog box should be
displayed before running a report.

Syntax [PRINTJOB=]{YES|NO}

Values YES or NO

Default NO

Usage Notes The following usage notes apply:

■ When a report is run as a spawned process (that is, one executable, such as
RWRUN60, is called from within another executable, such as RWBLD60), the
Print Job dialog box does not appear, regardless of PRINTJOB.

■ When DESTYPE=MAIL, the Print Job dialog box does not appear, regardless of
PRINTJOB.

TRACEFILE

Description TRACEFILE is the name of the file in which Report Builder logs trace
information.

Syntax [TRACEFILE=]tracefile

Values Any valid file name.

Usage Notes The following usage notes apply:

■ Trace information can only be generated when running an .RDF file. You
cannot specify logging when running a .REP file.

■ If you specify LOGFILE or ERRFILE as well as TRACEFILE, then all of the trace
information is placed in the most recently specified file. For example, in the
following case, all of the specified trace information would be placed in the
err.log because it is the last file specified in the RWRUN60 command:

RWRUN60 MODULE=order_entry
USERID=scott/tiger
TRACEFILE=trace.log LOGFILE=mylog.log
ERRFILE=err.log
A-16 Publishing Reports to the Web with Internet Application Server

Usage Notes
TRACEMODE

Description TRACEMODE indicates whether Report Builder should add the trace
information to the file or overwrite the entire file.

Syntax [TRACEMODE=]{TRACE_APPEND|TRACE_REPLACE}

Values TRACE_APPEND adds the new information to the end of the file.
TRACE_REPLACE overwrites the file.

Default TRACE_APPEND

Usage Note Trace information can only be generated when running an .RDF file.
You cannot specify logging when running a .REP file.

TRACEOPTS

Description TRACEOPTS indicates the tracing information that you want to be
logged in the trace file when you run the report.

Syntax
[TRACEOPTS=]{TRACE_ERR|TRACE_PRF|TRACE_APP|TRACE_PLS|TRACE_SQL
|TRACE_TMS|TRACE_DST|TRACE_ALL|(opt1, opt2, ...)}

Values The following values apply:

■ A list of options in parentheses means you want all of the enclosed options to
be used. For example, TRACE_OPTS=(TRACE_APP, TRACE_PRF) means you
want TRACE_APP and TRACE_PRF applied.

■ TRACE_ALL means log all possible trace information in the trace file.

■ TRACE_APP means log trace information on all the report objects in the trace
file.

■ TRACE_BRK means list breakpoints in the trace file.

■ TRACE_DST means list distribution lists in the trace file. You can use this
information to determine which section was sent to which destination. The
trace file format is very similar to the .DST file format, so you can cut and past
to generate a .DST file from the trace file.

■ TRACE_ERR means list error messages and warnings in the trace file.
RWCLI60 Command Line Arguments A-17

Usage Notes
■ TRACE_PLS means log trace information on all the PL/SQL objects in the trace
file.

■ TRACE_PRF means log performance statistics in the trace file.

■ TRACE_SQL means log trace information on all the SQL in the trace file.

■ TRACE_TMS means enter a timestamp for each entry in the trace file.

Default TRACE_ALL

Usage note Trace information can only be generated when running a .RDF file.
You cannot specify logging when running a .REP file.

AUTOCOMMIT

Description Specifies whether database changes (for example, CREATE) should
be automatically committed to the database. Some non-ORACLE databases (for
example, SQL Server) require that AUTOCOMMIT=YES.

Syntax [AUTOCOMMIT=]{YES|NO}

Values YES or NO

Default NO

NONBLOCKSQL

Description NONBLOCKSQL specifies whether to allow other programs to
execute while Reports Runtime is fetching data from the database.

Syntax [NONBLOCKSQL=]{YES|NO}

Values YES means that other programs can run while data is being fetched. NO
means that other programs cannot run while data is being fetched.

Default YES
A-18 Publishing Reports to the Web with Internet Application Server

Usage Notes
ROLE

Description ROLE specifies the database role to be checked for the report at
runtime. ROLE is ignored for RWBLD60.

Syntax [ROLE=]{rolename/[rolepassword]}

Values A valid role and (optionally) a role password.

DISABLEPRINT

Description DISABLEPRINT specifies whether to disable File→Print, or
File→Choose Printer (on Motif) and the equivalent toolbar buttons in the Runtime
Previewer.

Syntax [DISABLEPRINT=]{YES|NO}

Values YES or NO

Default NO when there are blank pages in your report output that you do not
want to print.

DISABLEMAIL

Description DISABLEMAIL specifies whether to disable the Mail menu and the
equivalent toolbar buttons in the Runtime Previewer.

Syntax [DISABLEMAIL=]{YES|NO}

Values YES or NO

Default NO

DISABLEFILE

Description DISABLEFILE specifies whether to disable the File→Generate to File
menu in the Runtime Previewer.

Syntax

[DISABLEFILE=]{YES|NO}
RWCLI60 Command Line Arguments A-19

Usage Notes
Values YES or NO

Default NO

DISABLENEW

Description DISABLENEW specifies whether to disable the View→New
Previewer menu to prevent the ability to display a new instance of the Runtime
Previewer.

Syntax [DISABLENEW=]{YES|NO}

Values YES or NO

Default NO

DESTINATION

Description The DESTINATION keyword allows you to specify the name of a
.DST file that defines the distribution for the current run of the report.

Syntax [DESTINATION=]filename.DST

Values The name of a .DST file that defines a report or report section distribution.

Usage Note To enable the DESTINATION keyword, you must specify
DISTRIBUTE=YES on the command line.

DISTRIBUTE

Description DELIMITER specifies the character or characters to use to separate
the cells in your report output.

DISTRIBUTE enables or disables distributing the report output to multiple
destinations, as specified by the distribution list defined in the report distribution
definition or a .DST file.

Syntax [DISTRIBUTE=]{YES|NO}
A-20 Publishing Reports to the Web with Internet Application Server

Usage Notes
Values YES means to distribute the report to the distribution list.

NO means to ignore the distribution list and output the report as specified by the
DESNAME and DESFORMAT parameters. This is fundamentally a debug mode to
allow running a report set up for distribution without actually executing the
distribution.

Default NO

Usage Note To enable the DESTINATION keyword, you must specify
DISTRIBUTE=YES.

PAGESTREAM

Description PAGESTREAM enables or disables page streaming for the report
when formatted as HTML or HTMLCSS output, using the navigation controls set by
either of the following:

■ The Page Navigation Control Type and Page Navigation Control Value
properties in the Report Property Palette.

■ PL/SQL in a Before Report trigger (SRW.SET_PAGE_NAVIGATION_HTML)

Syntax [PAGESTREAM=]{YES|NO}

Values YES means to stream the pages. NO means to output the report without
page streaming.

Default NO

BLANKPAGES

Description BLANKPAGES specifies whether to suppress blank pages when you
print a report. Use this keyword when there are blank pages in your report output
that you do not want to print.

Syntax [BLANKPAGES=]{YES|NO}

Values YES means print all blank pages. NO means do not print blank pages

Default YES
RWCLI60 Command Line Arguments A-21

Usage Notes
Usage Note BLANKPAGES is especially useful if your logical page spans multiple
physical pages (or panels), and you wish to suppress the printing of any blank
physical pages.

SERVER

Description SERVER is the TNS service entry name of Oracle Reports Services.

Syntax [SERVER=]tnsname

Values Any valid TNS service entry name.

Usage Note If you set the REPORTS60_REPORTS_SERVER environment variable
on your Web server machine, then you can omit the SERVER command line
argument to process requests using the default server, or you can include the
SERVER command line argument to override the default.

JOBNAME

Description JOBNAME is the name for a job to appear in the Reports Queue
Manager. It is treated as a comment and has nothing to do with the running of the
job. If it is not specified, then the queue manager shows the report name as the job
name.

Syntax [JOBNAME=]string

SCHEDULE

Description SCHEDULE is a scheduling command. The default is now. To
eliminate the need for quoting the scheduling command, use underscore (_) instead
of a space. For example:

schedule=every_first_fri_of_month_from_15:53_Oct_23,_1999_retry_3_after_1_hour
schedule=last_weekday_before_15_from_15:53_Oct_23,_1999_retry_after_1_hour

Syntax Following is the correct syntax:

[SCHEDULE=]string

Note: Earlier forms of the SCHEDULE syntax are supported, but
only the current SCHEDULE syntax is documented here.
A-22 Publishing Reports to the Web with Internet Application Server

Usage Notes
where the string is:

[FREQ from] TIME [retry {n} + after LEN]

TOLERANCE

Description TOLERANCE is the time tolerance for duplicate job detection in
minutes. TOLERANCE determines the maximum acceptable time for reusing a
report’s cached output when a duplicate job is detected. Setting the time tolerance
on a report reduces the processing time when duplicate jobs are found.

See Section 5.2, "Duplicate Job Detection" for more information on duplicate job
detection.

Syntax [TOLERANCE=]number

Values Any number of minutes starting from 0

Usage Notes The following usage notes apply:

■ If tolerance is not specified, then Oracle Reports Services reruns the report even
if a duplicate report is found in the cache.

■ If a report is being processed (that is, in the current job queue) when an
identical job is submitted, then Oracle Reports Services reuses the output of the
currently running job even if TOLERANCE is not specified or is set to zero.

FREQ hourly | daily | weekly | monthly | {every LEN | DAYREPEAT}} | {last
{WEEKDAYS | weekday | weekend} before {n}+}

LEN {n}+ {minute[s] | hour[s] | day[s] | week[s] | month[s]}

DAYREPEAT {first | second | third | fourth | fifth} WEEKDAYS of month

WEEKDAYS mon | tue | wed | thu | fri | sat | sun

TIME now | CLOCK [DATE]

CLOCK h:m | h:mm | hh:m | hh:mm

DATE today | tomorrow | {MONTHS {d | dd} [,year]}

MONTHS jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
RWCLI60 Command Line Arguments A-23

Usage Notes
DELIMITER

Description DELIMITER specifies the character or characters to use to separate
the cells in your report output.

Syntax [DELIMITER=]value

Values Any alphanumeric character or string of alphanumeric characters, such as:

You can also use any of these four reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default Tab

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED.

CELLWRAPPER

Description CELLWRAPPER specifies the character or characters that displays
around the delimited cells in your report output.

Syntax [CELLWRAPPER=]value

, means a comma separates each cell

. means a period separates each cell

tab means a tab separates each cell

space means a space separates each cell

return means a new line separates each cell

none means no delimiter is used

\t means a tab separates each cell

\n means a new line separates each cell
A-24 Publishing Reports to the Web with Internet Application Server

Usage Notes
Value Any alphanumeric character or string of alphanumeric characters.

You can also use any of these four reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default None.

Usage Notes The following usage notes apply:

■ This argument can only be used if you have specified
DESFORMAT=DELIMITED.

■ The cell wrapper is different from the actual delimiter.

DATEFORMATMASK

Description DATEFORMATMASK specifies how date values display in your
delimited report output.

Syntax [DATEFORMATMASK=]mask

Values Any valid date format mask

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED

" means a double quotation mark displays on each side of the
cell

’ means a single quotation mark displays on each side of the
cell

tab means a tab displays on each side of the cell

space means a single space displays on each side of the cell

return means a new line displays on each side of the cell

none means no cell wrapper is used

\t means a tab displays on each side of the cell

\n means a new line displays on each side of the cell
RWCLI60 Command Line Arguments A-25

Usage Notes
NUMBERFORMATMASK

Description NUMBERFORMATMASK specifies how number values display in
your delimited report output.

Syntax [NUMBERFORMATMASK=]mask

Values Any valid number format mask

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED.

EXPRESS_SERVER

Description EXPRESS_SERVER specifies the Express Server to which you want to
connect.

Syntax
EXPRESS_SERVER="server=[server]/domain=[domain]/user=[userid]/
password=[passwd]"

Syntax with RAM

EXPRESS_SERVER="server=[server]/domain=[domain]/
user=[userid]/password=[passwd]/ramuser=[ramuserid]/
rampassword=[rampasswd]/ramexpressid=[ramexpid]/
ramserverscript=[ramsscript]/rammasterdb=[ramdb]/
ramconnecttype=[ramconn]"

Values A valid connect string enclosed in double quotes (") where

server is the Express Server string (for example,
ncacn_ip_tcp:olap2-pc/sl=x/st=x/ct=x/sv=x/).
See below for more details on the server string.

domain is the Express Server domain.

user is the user ID to log on to the Express Server.

password is the password for the user ID.

ramuser is the user ID to log into the RDBMS.

rampassword is the password for the RDBMS.
A-26 Publishing Reports to the Web with Internet Application Server

Usage Notes
ramexpressid is the Oracle Sales Analyzer database user ID. This is
required for Oracle Sales Analyzer databases only.

ramserverscript is the complete file name (including the full path) of the
remote database configuration file (RDC) on the server.
This file specifies information such as the location of code
and data databases. Using UNC (Universal Naming
Convention) syntax allows multiple users to use the same
connection to access the data without having to map the
same drive letter to that location. UNC syntax is
\\ServerName\ShareName\ followed by any subfolders
or files.

rammasterdb is the name of the Relational Access Manager database to
attach initially. You must specify only the database file
name. This database must reside in a directory that is
included in the path list in ServerDBPath for Express
Server. You can check the ServerDBPath in the File I/O tab
of the Express Configuration Manager dialog box.

ramconnecttype is the type of Express connection. Always specify 0 for a
direct connection.
RWCLI60 Command Line Arguments A-27

Usage Notes
Parameters The server value contains four parameters that correspond to settings
that are made in the Oracle Express Connection Editor and stored in connection
(.XCF) files. All four parameters are required and can be specified in any order. The
following table describes the parameters and their settings:

Usage Notes The following usage notes apply:

■ You can have spaces in the string if necessary (for example, if the user ID is John
Smith) because the entire string is inside of quotes.

■ If a forward slash (/) is required in the string, then you must use another
forward slash as an escape character. For example, if the domain were
tools/reports, then the command line should be as follows:

EXPRESS_SERVER="server=ncacn_ip_tcp:olap2-pc/sl=0/
st=1/ct=0/sv=1/ domain=tools//reports"

■ You can use single quotes within the string. It is not treated specially because it
is enclosed within double quotes.

Parameter Description Setting

sl Server Login -2: Host (Domain Login)

-1: Host (Server Login)

0: No authentication required

1: Host (Domain Login) and Connect security

2: Host (Domain Login) and Call security

3: Host (Domain Login) and Packet security

4: Host (Domain Login) and Integrity security

5: Host (Domain Login) and Privacy security

Note: Windows NT uses all the settings. UNIX systems
use only the settings 0, -1, and -2.See the Express
Connection Editor Help system for information on these
settings.

st Server Type :1: Express Server

ct Connection
Type

0: Express connection

sv Server Version 1: Express 6.2 or greater
A-28 Publishing Reports to the Web with Internet Application Server

Usage Notes
AUTHID

Description AUTHID is the user name and password used to authenticate users
to the restricted Oracle Reports Services. User authentication ensures that the users
making report requests have access privileges to run the requested report. When
users successfully log on, their browser is sent an encrypted cookie that
authenticates them to the secured Oracle Reports Services registered in WebDB. By
default, the cookie expires after 30 minutes. When a cookie expires, subsequent
requests (that is, ones sent to a secured Oracle Reports Services) must be
re-authenticated.

You can use the REPORTS60_COOKIE_EXPIRE environment variable to change the
expiration time of the authentication cookie. See Appendix C, "Environment
Variables" for more information.

If you want users to authenticate and remain authenticated until the cookie expires,
then omit the AUTHID command line argument from the report request. If you
want users to authenticate every time they run report requests, then use the Web
CGI command SHOWAUTH and AUTHTYPE=S in the report URL, or include the
%S argument to the key mapping entry in the cgicmd.dat (Web CGI) file.

Syntax [AUTHID=]username/password

Values Any valid user name and password created in Oracle WebDB. See your
DBA to create new users accounts in WebDB.

CUSTOM

Description CUSTOMIZE specifies an XML file that you want to apply to the
report when it is run. The XML file contains customizations (for example, font
changes or color changes) that change the report definition in some way.

Syntax [CUSTOMIZE=]filename.xml | (filename1.xml,
filename2.xml, . . .)

Values A file name or list of file names that contain a valid XML report definition,
with path information prefixed to the file name or file names if necessary.
RWCLI60 Command Line Arguments A-29

Usage Notes
SAVE_RDF

Description SAVE_RDF specifies a file to which you want to save a combined
.RDF file and .XML customization file. This argument is most useful when you have
an .RDF file to which you are applying an .XML file with the CUSTOMIZE
keyword and want to save the combination of the two to a new .RDF file.

Syntax [SAVE_RDF=]filename.rdf

Values Any valid file name.
A-30 Publishing Reports to the Web with Internet Application Server

Oracle Reports Services Configuration Param
B

Oracle Reports Services Configuration

Parameters

This appendix contains a comprehensive list of Oracle Reports Services
configuration parameters:

Parameter Description

CACHEDIR CACHEDIR is the cache for Oracle Reports Services. CACHEDIR
can be set to any directory or logical drive on the machine. If it is
not specified, then the default is
ORACLE_HOME\REPORT60\SERVER\CACHE. For example:

CACHEDIR="C:\ORACLE_HOME\Report60\cache"

CACHESIZE CACHESIZE is the size of the cache in megabytes. If you expect to
store the output of many of your reports in Oracle Reports
Services cache, then you might want to increase this setting. If you
do not expect to store a lot of output in the cache and have limited
system resources, then you might want to reduce it. Once the
cache grows beyond the set size, Oracle Reports Services cleans
up the cached files on a first in, first out basis. The default value is
50.

Note: You can set this parameter from the Queue Manager. Open
the Queue Manager and log on as the administrator. Choose
Queue→Properties, and then change the Cache size (MB) setting.
eters B-1

CLUSTERCONFIG CLUSTERCONFIG is the configuration of slave servers to the
master server. Clustering allows you to run reports on multiple
Oracle Reports Services. The master server can identify available
slave servers and start their engines as needed. You can set up
many servers as slaves to the master server. Use the following
syntax in the master server configuration file:

Clusterconfig="(server=<servername> minengine=<minimum number of master
engines> maxengine=<maximum number of master engines> initengine=<initial
number of master engines> cachedir=<directory of central cache>)"

Note: Each slave definition must be enclosed in parentheses.

See Chapter 7, "Configuring Oracle Reports Services Clusters" for
detailed instructions.

ENGLIFE ENGLIFE is the maximum number of reports that an engine runs
before shutting itself down. Oracle Reports Services then brings
up fresh engines for new requests. The default value is 50.

FAILNOTEFILE FAILNOTEFILE is path and file name of the notification message
template that is sent to specified email addresses for jobs that fail
to run. For example:

FAILNOTEFILE="C:\ORACLE_HOME\Report60\failnote.dat"

IDENTIFIER IDENTIFIER is an internal setting that contains the encrypted
queue administrator user ID and password. You should not
attempt to modify it. If IDENTIFIER is not specified or is deleted
or the configuration file is not present, then anyone can supply
any user ID and password from the Reports Queue Manager to
log on as the queue administrator. Once someone has logged on in
this way, the user ID and password they specified becomes the
queue administrator user ID and password until it is changed
from the Queue Manager.

INITENGINE INITENGINE is the initial number of runtime engines started by
Oracle Reports Services. The server process spawns this many
engines when it is started. It waits two minutes for these engines
to connect to it and shuts itself down if they fail to do so. If the
engines cannot connect in this amount of time, then there is
usually some setup problem. The default value is 1.

LOGOPTION LOGOPTION is the type of log information you want inserted
into the log file. The options are alljob, failedjob, and
succeededjob. For example:

LOGOPTION="alljob"

Parameter Description
B-2 Publishing Reports to the Web with Internet Application Server

MAILPROFILE This only applies to Windows NT. If DESTYPE=MAIL, then
Oracle Report Services sends your mail to a specific destination.
MAILPROFILE allows you to specify the mail profile and
password to be used when mailing reports from Oracle Report
Services. For example:

MAILPROFILE="mailprofileid/password"

MAXCONNECT MAXCONNECT is the maximum number of processes that can
communicate with the server process at any one time. This setting
is the sum of the number of engines and clients, and must be
greater than two (at least one engine and one client). The default
value is 20.

MAXENGINE MAXENGINE is the maximum number of runtime engines
available to Oracle Reports Services to run reports. The server
process attempts to keep no more than this many engines active.
Ensure you have sufficient memory and resources available to
accommodate this number of engines. The default value is 1.

Note: You can set this parameter from the Queue Manager. Open
the Queue Manager and log on as the administrator. Choose
Queue→Properties, and then change the Simultaneous running
engines Max setting.

MAXIDLE MAXIDLE is the maximum amount of time an engine is allowed
to be idle before being shut down. Oracle Reports Services does
not shut down the engine if doing so would reduce the number of
available engines to less than those defined in the MINENGINE. T
default value is 30.

Note: You can set this parameter from the Queue Manager. Open
the Queue Manager and log on as the administrator. Choose
Queue→Properties, and then change the Max idle time (minutes)
before engine shutdown setting.

MINENGINE MINENGINE is the minimum number of runtime engines Oracle
Reports Services should have available to run reports. The server
process attempts to keep at least this many engines active. Ensure
that you have sufficient memory and resources available to
accommodate this many engines. The default value is 0.

Note: You can set this parameter from the Queue Manager. Open
the Queue Manager and log on as the administrator. Choose
Queue→Properties, and then change the change the
Simultaneous running engines Min setting.

Parameter Description
Oracle Reports Services Configuration Parameters B-3

PERSISTFILE PERSISTFILE indicates the location of Oracle Reports Services
.DAT file, which contains the details of scheduled jobs. If
PERSISTFILE is not specified, then the default is
ORACLE_HOME\REPORT60\SERVER. For example:

PERSISTFILE="C:\ORACLE_HOME\Report60\repserver.dat"

REPOSITORYCONN REPOSITORYCONN is the database connection string that
connects Oracle Reports Services to the database when the server
starts up. The database takes a snapshot of Oracle Reports
Services queue activity (that is, scheduled jobs) whenever jobs are
run.

To create a queue activity table in your database, you must run
rw_server.sql script. For example:

REPOSITORYCONN="repserver_schema/password@mydb"

SECURITY SECURITY is the security level (0, 1, 2, or 3) for accessing cached
output files through the Reports Queue Manager. A 0 means that
anyone can access a job’s cached output. A 1 means that only a
user whose user ID is identical to that of the user who ran the job
can access the job’s cached output. A 2 means that only the same
process that sent the job can access the job’s cached output. A 3
means that the cached output cannot be accessed.

The default value is 1.

SECURITYTNSNAME SECURITYTNSNAME is the TNS name of the Oracle WebDB
database that is used for authenticating users to Oracle Reports
Services. Oracle Reports Services uses Oracle WebDB to perform a
security check and to ensure that users have access privileges to
run the report to the restricted Oracle Reports Services and, if
requested, output to a restricted printer.

When the SECURITYTNSNAME parameter is set, you must add
information about Oracle Reports Services, printers, and reports
in WebDB to process report requests through Oracle Reports
Services. For example:

SECURITYTNSNAME="sec_db"

See Chapter 6, "Controlling User Access to Reports" for more
information.

SOURCEDIR SOURCEDIR is a path to be searched before REPORTS60_PATH
when searching for reports and other runtime files. This setting is
useful when you have more than one Oracle Reports Services
sharing the same ORACLE_HOME because each Oracle Reports
Services can search different directories. For example:

SOURCEDIR="C:\my_reports"

Parameter Description
B-4 Publishing Reports to the Web with Internet Application Server

SUCCNOTEFILE SUCCNOTEFILE is the path and file name of the notification
message template that is sent to specified email addresses for jobs
that run successfully. For example:

SUCCNOTEFILE="C:\ORACLE_HOME\REPORT60\succnote.dat"

TEMPDIR TEMPDIR is a directory that will be used instead of
REPORTS60_TMP when creating temporary files. TEMPDIR can
be set to any directory or logical drive on the machine. For
example

TEMPDIR="C:\ORACLE_HOME\Report60\temp"

Parameter Description
Oracle Reports Services Configuration Parameters B-5

B-6 Publishing Reports to the Web with Internet Application Server

Environment Vari
C

Environment Variables

This appendix contains detailed explanations of environment variables and
configuration parameters that pertain to Oracle Reports Services. See the table
below for a list of Web CGI and Servlet environments variables.

Environment variables are the configuration parameters used to control or
customize the behavior of Oracle Reports Services. For Windows NT, environment
variables are set using the Registry Editor. For UNIX, variables can be set using a
shell script.

Variable Description

REPORTS60_COOKIE_EXPIRE Determines the expire time of the cookie in minutes.
The default value is 30.

Cookies save encrypted user names and passwords
on the client-side when users log on to a secured
Oracle Reports Services to run report requests. When
users successfully log on, their browser is sent an
encrypted cookie. When a cookie expires, subsequent
requests (that is, ones that are sent to secured Oracle
Reports Services), users must re-authenticate to run
the report.

REPORTS60_DB_AUTH Specifies the database authentication template used to
log on to the database. The default value is
dbauth.htm.

REPORTS60_ENCRYPTION_KEY Specifies the encryption key used to encrypt the user
name and password for the cookie. The encryption
key can be any character string. The default value is
reports6.0.
ables C-1

REPORTS60_CGIDIAGBODYTAGS For the Reports Web CGI, specifies HTML tags that
are inserted as a <BODY…> tag in the RWCGI60
diagnostic/debugging output. For example, you may
want to use this environment to set up text and
background color or image.

REPORTS60_CGIDIAGHEADTAGS For the Reports Web CGI, specifies HTML tags to
insert between <HEAD> …</HEAD> tags in the
RWCGI60 diagnostic and debugging output. For
example, you might want to use this environment to
set up <TITLE> or <META…> tags.

REPORTS60_CGIHELP For the Reports Web CGI, defines URL and URI of the
RWCGI60 help file, which is navigated to when
RWCGI60 is invoked with the empty request:

http://your_webserver/rwcgi60?.

For example., setting it to http://www.yahoo.com
goes to that URL; setting it to myhelpfile.htm
displays the file:

 http://your_webserver/myhelpfile.htm

If this parameter is not defined, then a default help
screen is displayed.

REPORTS60_CGIMAP For the Reports Web CGI, defines fully qualified file
name and location of the RWCGI60 map file if map
file configuration is used. For example:

C:\ORANT\REPORT60\cgicmd.dat)

REPORTS60_CGINODIAG For the Reports Web CGI, when defined, disables all
debugging and diagnostic output, such as help and
showmap, from RWCGI60. For example, the
following does not work when
REPORTS60_CGINODIA is defined:

http://your_webserver/rwcgi60/help?

REPORTS60_REPORTS_SERVER Specifies the default Oracle Reports Services for Web
CGI requests. When this environment variable is set,
you can omit the SERVER command line argument in
report requests to process them using the default
server, or you can include the SERVER command line
argument to override the default.

REPORTS60_SSLPORT If you are using SSL and you want to use a port
number other than 443, then you can use this variable
to set a different port number.The default value is 443.

Variable Description
C-2 Publishing Reports to the Web with Internet Application Server

REPORTS60_SYS_AUTH Specifies the authentication template used to
authenticate the user name and password when users
run report request to a restricted Oracle Reports
Services.

Variable Description
Environment Variables C-3

C-4 Publishing Reports to the Web with Internet Application Server

Database Connection S
D

Database Connection Strings

This appendix lists typical database connection strings that you or users can use
when specifying report requests using the Web CGI or Servlet. A database
connection string is the value used in the USERID command line argument to
connect to the database.

See Appendix A, "RWCLI60 Command Line Arguments" for more information
about the USERID command line argument.

Database Connection String
Oracle Reports
Services Response User Action

No USERID specified Returns the database
authentication form.

Types the Oracle or
placeholder user
name and password.

Oracle username@database Looks for the Oracle
user name and
database pair in the
connection string
table to get the
password. If Oracle
Reports Services finds
the password, then
the report is run.

None.

If the password
cannot be found, then
Oracle Reports
Services returns the
database
authentication form.

Types the database
password.
trings D-1

Oracle username/password@database Accepts the
connection string and
runs the report.

None.

Oracle username/password Uses the local
database and runs the
report.

None.

If there is no local
database, then Oracle
Reports Services
returns the database
authentication form.

Types the Oracle
database.

<$username>@database Looks for the
placeholder user
name in the
connection string
table. If the user name
cannot be found, then
Oracle Reports
Services returns the
database
authentication form.

Types the Oracle
user name and
password.

If Oracle Reports
Services can find the
placeholder user
name in the table,
then it looks for the
Oracle user name and
database name pair in
the table to get the
password. If Oracle
Reports Services finds
the password, then
the report is run.

None.

If the password
cannot be found in the
table, then Oracle
Reports Services
returns the database
authentication form.

Types the database
password.

Database Connection String
Oracle Reports
Services Response User Action
D-2 Publishing Reports to the Web with Internet Application Server

<$username>/password@database Looks for the
placeholder user
name in the
connection string
table. If the user name
is found, then Oracle
Reports Services runs
the report.

None.

If the placeholder user
name cannot be
found, then it returns
the database
authentication form.
The user must
authenticate to run
the report.

Types the Oracle
user name and
password.

Database Connection String
Oracle Reports
Services Response User Action
Database Connection Strings D-3

D-4 Publishing Reports to the Web with Internet Application Server

Troublesho
E

Troubleshooting

This appendix contains information on how to troubleshoot your Oracle Reports
Services configuration.

Problem Description Probable Cause and Solution

Oracle Reports Services
appears to hang when you
start it.

You might have made a syntactical error in the
tnsnames.ora file and Oracle Reports Services cannot
resolve the TNS name.

Alternatively, you could try rebooting in case the cause is a
memory problem.

You get the error "Daemon
failed to listen to port."

If you start up an Oracle Reports Services that is listening to
the same port as an already running Oracle Reports Services,
then you receive this error. It could also be a problem with
your Net8 or TCP/IP setup.

You get an error about
being unable to initialize
the printer (REP-3002).

Ensure Oracle Reports Services has access to printers. For
Windows NT, the System Account does not usually have access
to printers. It could be that you installed Oracle Reports
Services as an NT service and used the System Account or
another account without printer access in the Log On As field.
You must specify an account in the Log On As field that has a
default printer access. This printer does not have to exist, but
the driver must be installed.

For UNIX, configure the printer in the uiprint.txt file.
oting E-1

Upon starting Oracle
Reports Services, you get
server specific error 186.

Typically this indicates a problem in tnsnames.ora or
sqlnet.ora. Check the entry for Oracle Reports Services in
tnsnames.ora. A typical entry should look something like
the following:

repserver.world = (ADDRESS=(PROTOCOL=tcp)
(HOST=144.25.87.182)(PORT=1951))

In this example .world is appended to the name because it is
the domain specified in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the
sqlnet.ora, then omit .world from the name of the server
instance.

If your tnsnames.ora file appears to be correct, then check
your sqlnet.ora file. Good default settings to use in this file
are:

TRACE_LEVEL_CLIENT=OFF names.directory_path = (TNSNAMES)
names.default_domain = world name.default_zone = world

If your protocol is TCP, then ensure the Net8 TCP/IP adapter
and Net8 have been installed. Lastly, be sure that your installed
version of Net8 is not older than the version that came with
Oracle Reports Services.

Error reported when
opening the report.

Check the name and extension carefully. On UNIX machines,
the actual report name must be in the same case as specified in
the URL. If you are using Windows Explorer in Windows, then
do not hide extensions for the displayed files that you are
copying and renaming. (Check View→Options in the Explorer
window.) This prevents you from creating files with names like
your_report.rdf.txt. Alternatively, use a DOS window
for file manipulation.

Alternatively, ensure the report is located in the path defined
by the REPORTS60_PATH environment variable.

Problem Description Probable Cause and Solution
E-2 Publishing Reports to the Web with Internet Application Server

Problems running Oracle
Reports Services as a
Windows NT Service.

If you install Oracle Reports Services service to run under a
user other than SYSTEM, then ensure the user account:

■ Has the Password Never Expires option selected in the
User Manager.

■ Has membership in the appropriate groups to run Oracle
Reports Services and access the report files.

■ Has at least print permission to a default printer.

■ Can log on to a service. Choose
Start→Programs→Administrative Tools→User Manager,
then Policies User Rights. Check Show Advanced User
Rights. From the Right list, choose Log on as a service. If
the user is not already in the Grant To list, then click the
Add.

When starting the service, you might need to explicitly specify
the domain as well as the user name (user name and domain).
If you get a Windows NT error reporting that the service failed
and returning the error message number, then you can look up
the message number in the Report Builder online help.

ops$ account is not
working.

For security reasons, ops$ accounts are not supported by
Oracle Reports Services. If you pass a command line with
USERID=/ to Oracle Reports Services, then an error is
generated because it tries to use the user name of Oracle
Reports Services process rather than the user name of the
client.

Database roles not
working as expected.

If you are using database roles, then Oracle Reports Services
gets and then sets the default roles for the job request’s
database connection. If the default roles require a password,
then Oracle Reports Services logs off and then back on to the
database. As a result, it is best to include roles that require
passwords in the report itself using the Role Name report
property. Since Oracle Reports Services gets and then sets the
default roles on a per job basis, you cannot share roles between
jobs. This is done to preserve security.

Problem Description Probable Cause and Solution
Troubleshooting E-3

URL mapping is not
working.

Ensure you have a valid key mapping file. It must be named
cgicmd.dat (for the Reports Web CGI or Servlet) in the
REPORT60 directory, or named according to the value set in the
REPORTS60_CGIMAP environment variable.

To ensure the key mapping file can be found, first try the
following (a Web CGI example) and verify that your key entry
has been correctly parsed in the resulting page:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe/showmap?

Then try, running the report using the key map entry, where
your_key is a valid key entry in the key mapping file:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe?your_key

Cannot shutdown the
queue from the Reports
Queue Manager.

You should not leave the user name and password blank the
first time that you log in as the administrator. The first time
that you log in as the queue administrator from the Reports
Queue Manager (Options→Privileges→Administrator), you
can specify any user name and password. The user name and
password that you specify the first time are the administrator’s
until you change it.

Cannot run Oracle Reports
Services as an NT Service
under LocalSystem.

If Oracle Reports Services is to be run as an NT service under
the LocalSystem user ID, then the system administrator must
ensure that the following line is in the sqlnet.ora file,
otherwise the server cannot be accessed:

sqlnet.authentication_services=(NONE)

Problems finding files. Since network drives are mapped to a drive letter on a per user
basis, these mappings are no longer in effect when the
Windows NT user logs off. Oracle Reports Services must not
refer to these drives through their drive letters. Instead you
should use UNC path names. For example:

 \\SALES\DOCUMENTS\REPORTS)

This applies to Oracle Reports Services parameters, Web CGI
and Servlet command mappings, and each hard-coded path
name in each report being run.

The Web server reports an
error opening the report
output.

If the Web server reports an error opening the report output,
then check the name and extension carefully. On UNIX
machines, the actual report name must have the same case as
specified in the URL. If you are on Windows using the
Windows Explorer, then be sure not to hide extensions for
displayed files (View→Options) in the Explorer window that
you are copying and renaming. This prevents you from
creating files with names like your_report.rdf.txt.
Alternatively, use a DOS window for file manipulation.

Problem Description Probable Cause and Solution
E-4 Publishing Reports to the Web with Internet Application Server

Report runs fine on design
platform (for example,
Windows), but fails on
server platform (for
example, UNIX).

Check whether the release you are using on the design
platform is the same as that on the server. If they are not the
same, then it could be that a difference between the two
releases is causing the problem.

An invalid package was
created when trying to
create access to an Reports
Services report definition
file in WebDB.

In WebDB, verify the access controls that you defined for the
printer, Oracle Reports Services, and report definition file.

Check for the following:

■ The OS Printer name defined in the Printer Access wizard
is correct. If the printer does not appear in the Required
Parameters page of the Report Definition File Access
wizard, then it is possible that you incorrectly entered the
OS Printer name.

■ Access to Oracle Reports Services and optionally, the
printer has been created.

■ Users who require access to the report definition files,
servers, and printer have been given access to them.

Make the necessary changes and then try to create a valid
production package for the report definition file. You must
create a valid production package in order to run this restricted
report to a restricted Oracle Reports Services.

Problem Description Probable Cause and Solution
Troubleshooting E-5

Reports are not running
when the URL is
requested.

Check for the following:

■ Ensure the Web server is responding (for example, by
trying to bring up your Web server administration page).
Refer to your Web server installation documentation.

■ Ensure your Web CGI or Servlet executable has been
found and is responding. For Windows 95 and Windows
NT, type one of the following in your browser URL field:

http://your_webserver/your_virtual_cgi_dir/rwcgim60.exe or
http://your_webserver/rwows

For UNIX, type:

http://your_webserver/your_virtual_cgi_dir/rwcgi60 or
http://your_webserver/rwows

A help page should appear. If it does not, then check the
mapping of your_virtual_cgi_dir (usually called
cgi-bin) in your Web server configuration file. It should
be mapped to an existing physical directory on your Web
server. You must have a copy of the RWCGI60 executable
in this physical directory.

■ Ensure that the REPORTS60_CGINODIAG (for Web CGI
or Servlet) environment variable is not defined, otherwise
all diagnostic output is disabled. Test this by typing one of
the following:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe/ showenv?

http://your_webserver/rwows/showenv?

This also allows you to view the other parameters or
environment variables.

Problem Description Probable Cause and Solution
E-6 Publishing Reports to the Web with Internet Application Server

■ Ensure the REPORTS60_PATH environment variable is
defined. Check the environment variable by typing one of
the following:

http://your_webserver/you_virtual_cgi_dir/rwcgi60.exe/
showenv?http://your_webserver/rwows/showenv?

■ Try running a simple report to your browser, by typing
one of the following:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe?server=your_re
pserver+report=your_report.rdf+
userid=scott/tiger@mydb+desformat=html

http://your_webserver/rwows?server=your_repserver+
report=your_report.rdf+userid=scott/tiger@my_db+ desformat=html

If the report does not display, then check to ensure that:

■ Your_report.rdf runs correctly from Report Builder or
Reports Runtime Your_report.rdf is located in a
directory specified under REPORTS60_PATH.

■ The database connection string is correct.

■ The Reports Server you are trying to run your report to
might be restricted. If so, then you need to be given access
privileges to the server. Contact your Reports Services
system administrator.

■ The report you are trying to run might be restricted. If so,
then you need to be given access privileges to run it to a
restricted Reports Server. Contact your Reports Services
system administrator.

Remember that the Reports Server must have access to the
report and any external files used by the report.

When sending a report to the Reports Server, you should only
use the In Report value for parameters if they have their
values explicitly set in the report definition. For example,
suppose that you are launching a report from the Reports
Queue Manager (Job→New). If you specify In Report for the
Report Mode and Orientation parameters, and neither of them
has a value specified in the report definition, then the job fails.

Report does not output to
the printer.

You might have access privileges to run a report to restricted
Reports Server, but might not have access privileges to the
printer you are trying to output to. Contact the Reports
Services system administrator.

Problem Description Probable Cause and Solution
Troubleshooting E-7

Host name lookup failure. You typed an incorrect URL when trying to run a report
request. Resubmit the report request using the correct URL. If
you are unsure of the URL, then contact your system
administrator.

If you trying to run your report to a restricted Reports Server,
then the Web Gateway URL defined in the Server Access in
WebDB might be incorrect.

In WebDB, click Administrator from the WebDB main menu.
Then, click Oracle Reports Developer Security and Server
Access. Search for the Reports Server Access you want to edit.
Confirm the Web Gateway URL on the Server Name and
Printers page of the Server Access wizard.

Note: Only users with Reports Services system administrator
privileges can access Oracle Reports Services Security in
WebDB.

Problem Description Probable Cause and Solution
E-8 Publishing Reports to the Web with Internet Application Server

Glossary

Authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system.

Cache

A temporary storage place for database data that is currently being accessed or
changed by users, or for data that Oracle Server requires to support users. The
terms are often used interchangeably.

CGI (Common Gateway Interface)

The industry-standard technique for running applications on a Web server. CGI
enables a program running on the Web server to communicate with another
computer to dynamically generate HTML documents in response to user-entered
information.

Cookie

A cookie is a special text file that a Web server puts on the users hard disk so that it
can remember something about the user at a later time. When users run report
requests to a secured Oracle Reports Services, they must authenticate. If they
successfully log on, then their browser is sent an encrypted cookie. When a cookie
has expired, subsequent requests (that is, ones that sent to a secured Oracle Reports
Services) must re-authenticate.
Glossary-1

CSS (Cascading Style Sheets)

HTML with CSS allows developers to control the style and layout of multiple Web
pages all at once. A style sheet works like template, a collection of style information,
such as font attributes and color. Cascading refers to a set of rules that Web
browsers use to determine how to use the style information. Navigator 4.0, or later,
and Internet Explorer 4.0, or later, support cascading style sheets.

Domain

A grouping of network objects, such as databases, that simplifies the naming of
network services.

Fail-over

The ability to reconfigure a computing system to utilize an alternate active
component when a similar component fails.

HTML (Hypertext Markup Language)

A tag-based ASCII language used to specify the content and links to other
documents on Web servers on the Internet. End users with Web browsers view
HTML documents and follow links to display other documents.

HTTP (Hypertext Transfer Protocol)

The protocol used to carry Web traffic between a Web browser computer and the
Web server being accessed.

IP (Internet Protocol)

The basic protocol of the Internet. It enables the delivery of individual packets from
one host to another. It makes no guarantees about whether or not the packet is
delivered, how long it takes, or if multiple packets arrive in the order they were
sent. Protocols built on top of this add the notions of connection and reliability.

Net8

This is the Oracle remote data access software that enables both client-server and
server-server communications across any network. Net8 supports distributed
processing and distributed database capability and runs over and interconnects
many communication protocols.
Glossary-2

Oracle Internet Application Server

Oracle Internet Application Server is a strategic platform for network application
deployment. By moving application logic to application servers and deploying
network clients, organizations can realize substantial savings through reduced
complexity, better manageability, and simplified development and deployment.
Oracle Internet Application Server provides the only business-critical platform that
offers easy database web publishing and complete legacy integration while
transition from traditional client-server to network application architectures.

ORACLE_HOME

An alternate name for the top directory in the Oracle directory hierarchy on some
directory-based operating systems. An environment variable that indicates the root
directory of Oracle products.

PDF (Portable Document Format)

A file format (native for Adobe Acrobat) for representing documents in a manner
that is independent of the original application software, hardware, and operating
system used to create the documents. A PDF file can describe documents containing
any combination of text, graphics, and images in a device-independent and
resolution independent format.

Placeholder user name

A placeholder user name enables users to log on to the database using their
personal user name rather than the Oracle database user name (for example,
$user_name@database). A placeholder user name allows:

■ Users to log on only once to run multiple reports from the same database.

■ Multiple end users to run the same report with personalized results (for
example, one user might receive East coast sales results and another might
receive West coast sales results).

The first time users log on to the database, however, they must log on using the
Oracle user name and password. For subsequent requests, Oracle Reports Services
looks for the user’s personal user name in the database connection table. If it is
found, then Oracle Reports Services gets the corresponding password from the
cookie and runs the report.

Port

A number that TCP uses to route transmitted data to and from a particular
program.
Glossary-3

Push delivery

The delivery of information on the Web that is initiated by the server rather than by
a client request. Oracle Reports Services can push reports to WebDB site by
scheduling the report request to run automatically on a secured Oracle Reports
Services. The end user clicks the link on the WebDB site to view the report.

Reports Queue Manager

Enables you to monitor and manipulate job requests that have been sent to Oracle
Reports Services.

Reports Launcher

An application that utilizes the functionality provided by the Reports ActiveX
control, such submitting a request to run the specified report to Oracle Reports
Services.

Reports Services

Enables you to run reports on a remote server in a multi-tier architecture. It can be
installed on Windows NT, Windows 95, or UNIX. Oracle Reports Services handles
client requests to run reports by entering all requests into a job queue.

Reports Servlet

An interface between a Java-based Web server and Reports Runtime, enabling you
to run report dynamically from your Web browser.

Reports Web CGI

An interface between a CGI-aware Web server and Reports Runtime, enabling you
to run a report dynamically from your Web browser.

 RWCLI60

An executable that parses and transfers the command line to the specified Oracle
Reports Services (RWMTS60).

TCP/IP (Transmission Control Protocol based on Internet Protocol

An Internet protocol that provides for the reliable delivery of streams of data from
one host to another.

tnsnames.ora

A Net8 file that contains connect descriptions mapped to service names. The file
might be maintained centrally or locally, for use by all or individual clients.
Glossary-4

URI (Uniform Resource Identifier)

A compact string representation of a location (URL) for use in identifying an
abstract or physical resource. URI is one of many addressing schemes, or protocols,
invented for the Internet for the purpose of accessing objects using an encoded
address string.

URL (Uniform Resource Locator)

A URL, a form of URI, is a compact string representation of the location for a
resource that is available through the Internet. It is also the text string format clients
use to encode requests to Oracle Internet Application Server.

Web browser

A program that end users utilize to read HTML documents and programs stored on
a computer (serviced by a Web server).

WebDB

Oracle WebDB is an HTML-based development tool for building scalable, secure,
extensible HTML applications and Web sites. Oracle Reports Services uses WebDB
to control end user access to reports published on the Web by storing information
about report requests, the secured server, and any Reports Services printer used to
print report output.

WebDB component

A PL/SQL stored procedure created by a WebDB component wizard (for example, a
chart, form, or Reports Services report definition file package). Running the stored
procedure creates the HTML code used to display the component.

Web Server

A server process (http daemon) running at a Web site which sends out Web pages
in response to http requests from remote Web browsers.
Glossary-5

Glossary-6

Index

Symbols
<!-- -->, 8-31
<![CDATA[]]>, 8-32
<condition>, 8-33
<customize>, 8-35
<data>, 8-37
<dataSource>, 8-38
<exception>, 8-40
<field>, 8-42
<formLike>, 8-47
<formula>, 8-48
<function>, 8-50
<group>, 8-52
<groupAbove>, 8-54
<groupLeft>, 8-55
<labelAttribute>, 8-56
<layout>, 8-59
<link>, 8-62
<matrix>, 8-64
<matrixCell>, 8-67
<matrixCol>, 8-68
<matrixRow>, 8-69
<object>, 8-70
<programUnits>, 8-72
<properties>, 8-74
<property>, 8-75
<report>, 8-78
<section>, 8-80
<select>, 8-82
<summary>, 8-84
<tabular>, 8-88

A
access control

availability calendars, 6-11
batch registering reports, 6-3
debugging, 6-23
example, 6-5
installing security packages in WebDB, 6-4
Oracle Reports system administrator, 6-10
overview, 6-2
printers, 6-16
report definition files, 6-18
setting default parameters, 6-26

accessing
database, 6-6
demo tables, 6-6

ActiveX request method, 5-2
Apache server See Oracle HTTP Server
architecture

Oracle Reports Services, 2-3
Oracle Reports Services tier, 2-3

thin client, 2-3
Web server, 2-3

Oracle Reports services tier
database, 2-3

Web
server configurations, 2-4

authentication cookie
expiring, A-29
setting domain, 6-5

availability calendars, 6-11
Index-1

B
batch

registering, 6-3
reporting

from a WebDB site, 6-30
Reports Queue Manager, 5-8

batch modifications to reports, 8-26
batch reporting

from a WebDB site, 5-8

C
cache size, B-1
clustering

configuration, 7-3
resubmitting, 7-7
running reports, 7-7

command line arguments, A-1
commands

AUTHID line argument, A-29
CUSTOMIZE line argument, 8-4, 8-20, 8-21, 8-26
DESFORMAT line argument, 5-3, 6-16
DESNAME line argument, 6-16
DESTYPE line argument, 5-3, A-4
line, 2-6
mapping URL parameter to line argument, 5-4
READONLY, A-9, A-12, A-13
REPORT line argument, 5-3, 8-4, 8-20
Reports Runtime, 5-2
RWCLI60, 5-1, 5-2
rwcli60, 8-21, 8-25
RWCLI60 line argument, A-1
RWRUN60, A-2, A-16
rwrun60, 8-11, 8-22, 8-26
SCHEDULE, A-22
SCHEDULE line argument, 7-7
SERVER line argument, 4-8, 5-8, 7-7, A-22, C-2
SHOWAUTH, A-2, A-29
sqlplus, 6-4
SRW.RUN.REPORT, 5-2
TOLERANCE line argument, 5-3
USERID line argument, 5-3, A-2, D-1

concepts, 2-1
configuring the Reports CGI, 4-6
Configuring the Reports Servlet, 4-2

configuring the Reports Servlet
with JSDK, 4-3
with JServ, 4-4

customization
overview, 8-2
XML report definition, 8-5

D
database tier, Oracle Reports Services, 2-3
debugging

restricted reports, 6-23
tracing options, 8-27
XML report definitions, 8-27

default printer
set access, 4-2

demo table, accessing, 6-6
duplicate job detection

multiple output destinations, 5-3
Oracle Reports Services handling, 5-2, A-23

E
environment variables

configuration, 4-7
REPORTS_PATH, 4-7
TNS_ADMIN, 4-7

examples
<!-- -->, 8-32
<![CDATA[]]>, 8-32
<condition>, 8-35
<customize>, 8-36
<data>, 8-37
<dataSource>, 8-39
<exception>, 8-42
<field>, 8-46
<formLike>, 8-49
<formula>, 8-48
<function>, 8-51
<group>, 8-53
<groupAbove>, 8-54
<groupLeft>, 8-55
<labelAttribute>, 8-58
<layout>, 8-59
<link>, 8-64
Index-2

<matrix>, 8-65
<matrixCell>, 8-68
<matrixCol>, 8-69
<matrixRow>, 8-70
<object>, 8-71
<programUnits>, 8-73
<properties>, 8-74
<property>, 8-77
<report>, 8-79
<section>, 8-82
<select>, 8-82
<summary>, 8-87
<tabular>, 8-89
access control, 6-5
cluster configuration, 7-3
full URL syntax, 5-7
key mapping, 5-4, 5-5
RWCLI60 command line request, 5-1
simplified URL syntax, 5-7
XML report definitions

additional objects, 8-13
formatting, 8-8
formatting exception, 8-10
full, 8-14
hyperlink, 8-11
PL/SQL, 8-11

I
iAS See Oracle Internet Application Server
installation, 3-1

Oracle Reports Services Security, 6-3
starting Oracle Reports Services on UNIX, 4-2

invalid package procedure, 6-22

K
key mapping

cgicmd.dat (Web CGI), 5-5
enabling, 5-5
example, 5-4, 5-5
mapping entries, 5-5
when to use, 5-4

L
load balancing

configuration, 7-3
resubmitting jobs, 7-7
running reports, 7-7

O
Oracle HTTP Server, 3-2
Oracle Internet Application Server, 1-1
Oracle Reports Services

architecture, 2-3
configuration parameters, B-1
configuring for clustering, 7-3
duplicate job detection, 5-2
installing security in WebDB, 6-3
installing security packages in WebDB, 6-4
introduction, 1-1
tier, 2-3
view job status on UNIX, 4-2

Oracle Universal Installer, 3-1

P
parameters

Oracle Reports Services configuration, B-1
RWCLI60 command line arguments, A-1

processing
Web reports, 2-5

R
registry entries, C-1
report request methods

ActiveX, 5-2
RWCLI60 command line, 5-1
SRW.RUN_REPORT, 5-2
URL syntax, 5-2
WebDB component, 5-2
Index-3

report requests
building reports, 5-6
duplicate job detection, 5-2
from Manage Component page, 6-23
in WebDB site, 6-27
running from a browser, 5-7
scheduling, 5-8
scheduling in WebDB, 6-30
specifying request, 5-6
when servers are clustered, 7-7

Reports Queue Manager
scheduling jobs to run, 5-8

REPORTS_PATH configuration environment
variable, 4-7

running reports automatically, 5-8
runtime customization

overview, 8-2
XML report definition, 8-5

RWCLI60
command line arguments, A-1
command line request, 5-1

S
scheduling reports, 5-8, 6-30
security

implementation, 6-2
Oracle Reports system administrator, 6-10

Servlet, 2-6
SRW.RUN_REPORT request method, 5-2
starting Oracle Reports Services, 4-2
stopping Oracle Reports Services, 4-7

T
tags, XML for report definitions, 8-31
text conventions, xiii
thin client tier, Reports Services, 2-3
TNS_ADMIN configuration environment

variable, 4-7
tolerance, A-23

U
URL syntax

adding as a hyperlink, 5-8
full syntax example, 5-7
hiding command line arguments, 5-4
report request method, 5-2
running from a browser, 5-7
simplified syntax example, 5-7
simplifying requests, 5-4

W
Web

CGI, 2-6
Web CGI

key map file, 5-5
Web server tier, Oracle Reports Services, 2-3
WebDB

component request method, 5-2
scheduling reports, 6-30

X
XML report definitions

additional objects, 8-13
applying, 8-21
applying via PL/SQL, 8-22
batch modifications, 8-26
debugging, 8-27
formatting example, 8-8
formatting exception example, 8-10
full, 8-14
hyperlink example, 8-11
overview, 8-2
parser, 8-27
partial, 8-6
PL/SQL example, 8-11
required tags, 8-5
running, 8-25
running to Report Builder, 8-30
tags, 8-31
writing to files, 8-30
Index-4

	Send Us Your Comments
	Preface
	Part I� Publishing Reports
	1 Introduction
	1.1� Oracle Internet Application Server Overview
	1.2� Oracle Reports Services

	2 Publishing Architecture and Concepts
	2.1� Oracle Reports Services
	2.2� Oracle Reports Services Architecture
	2.2.1� Web Architecture: Server Configurations
	2.2.1.1� Processing Web Reports

	2.2.2� Non-Web Architecture: Server Configuration
	2.2.2.1� Processing Reports

	2.3� Oracle Reports Services Configuration Choices
	2.3.1� Enable Web and Non-Web Requests
	2.3.2� Choose the Oracle Reports Services Web CGI or Servlet
	2.3.3� Choose the Location of Oracle Reports Services

	3 Installing Oracle Internet Application Server Oracle on the Sun SPARC Solaris
	3.1� About the Oracle Universal Installer
	3.2� About the Oracle HTTP Server

	4 Configuring Oracle Reports Services on Sun SPARC Solaris
	4.1� Starting Oracle Reports Services
	4.2� Configuring the Reports Servlet
	4.2.1� Configuring the Oracle HTTP Server to Run the Reports Services Servlet with JSDK
	4.2.2� Configuring the Oracle HTTP Server to Run Reports Services Servlet with JServ

	4.3� Configuring Oracle HTTP Server Listener to Run Reports Services CGI
	4.4� Stopping Oracle Reports Services
	4.5� Environment Variables

	5 Running Report Requests
	5.1� Report Request Methods
	5.2� Duplicate Job Detection
	5.2.1� Usage Notes

	5.3� Using a Key Map File
	5.3.1� Enabling Key Mapping
	5.3.2� Mapping URL Parameters

	5.4� Specifying Report Requests
	5.4.1� Building a Report
	5.4.2� Specifying a Report Request from a Web Browser
	5.4.3� Scheduling Reports to Run Automatically

	6 Controlling User Access to Reports
	6.1� Access Control Configuration and Setup Overview
	6.1.1� Installing and Configuring Reports Services Security
	6.1.2� Setting up Access Control

	6.2� Installing and Configuring Reports Security in WebDB
	6.2.1� Step 1. Configuring Reports Security in WebDB
	6.2.1.1� Installing WebDB
	6.2.1.2� Installing Oracle Reports Services Security Packages in WebDB
	6.2.1.3� Setting the Authentication Cookie Domain

	6.3� Setting Up Access Controls in WebDB
	6.3.1� Step 1. Configuring Oracle Reports Services for Access Control
	6.3.1.1� Creating the TNS Names Alias that Connects to WebDB
	6.3.1.2� Restricting Access to Oracle Reports Services

	6.3.2� Step 2. Creating User Accounts
	6.3.2.1� Creating the Reports Services System Administrator User Account
	6.3.2.2� Creating Users Accounts for Running Reports

	6.3.3� Step 3. Creating Availability Calendars
	6.3.3.1� Creating the Daily Calendar
	6.3.3.2� Creating the Maintenance Calendar
	6.3.3.3� Creating the Christmas Calendar
	6.3.3.4� Creating a Combined Availability Calendar

	6.3.4� Step 4. Adding Access to a Reports Services Printer in WebDB
	6.3.5� Step 5. Adding Access to Oracle Reports Services in WebDB
	6.3.6� Step 6. Adding Access to the Report Definition File in WebDB
	6.3.6.1� Creating a List of Values for the Lastname User Parameter
	6.3.6.2� Adding Access the Report Definition File

	6.3.7� Step 7. Setting Parameter Values on the Reports Services Parameter Form
	6.3.7.1� Running the Report Output to Cache
	6.3.7.2� Running the Report Output to a Restricted Printer (Optional)
	6.3.7.3� Setting the Default Parameters for Users at Runtime

	6.3.8� Step 8. Making the Report Available to Users
	6.3.8.1� Creating a WebDB Site
	6.3.8.2� Creating a Folder in the WebDB Site
	6.3.8.3� Adding the Report Request to the Folder
	6.3.8.4� Running the Report as a User

	6.3.9� Step 9. Scheduling the Report to Run and Push the Output to a WebDB Site
	6.3.9.1� Creating a Personal Folder
	6.3.9.2� Scheduling the Report
	6.3.9.3� Viewing the Pushed Report Output
	6.3.9.4� Optional Exercise

	6.4� Summary

	7 Configuring Oracle Reports Services Clusters
	7.1� Clustering Overview
	7.2� Configuring Oracle Reports Services in a Cluster Example
	7.2.1� Enabling Communication Between Master and Slaves
	7.2.2� Configuring the Master Server
	7.2.3� Running Reports in a Clustered Configuration
	7.2.4� Resubmitting Jobs When an Engine Goes Down
	7.2.5� Adding Another Slave Server to the Master

	8 Customizing Reports at Runtime
	8.1� Overview
	8.1.1� Creating and Using XML Report Definitions

	8.2� Creating an XML Report Definition
	8.2.1� Required Tags
	8.2.2� Partial Report Definitions
	8.2.2.1� Formatting Modifications Example
	8.2.2.2� Formatting Exception Example
	8.2.2.3� Program Unit and Hyperlink Example
	8.2.2.4� Data Model and Formatting Modifications Example

	8.2.3� Full Report Definitions

	8.3� Running XML Report Definitions
	8.3.1� Applying an XML Report Definition at Runtime
	8.3.1.1� Applying one XML Report Definition
	8.3.1.2� Applying Multiple XML Report Definitions
	8.3.1.3� Applying an XML Report Definition in PL/SQL

	8.3.2� Running an XML Report Definition by Itself
	8.3.3� Performing Batch Modifications

	8.4� Debugging XML Report Definitions
	8.4.1� XML Parser Error Messages
	8.4.2� Tracing Options
	8.4.3� RWBLD60
	8.4.4� TEXT_IO

	8.5� XML Tag Reference
	8.5.1� <!-- comments -->
	8.5.2� <![CDATA[]]>
	8.5.3� <condition>
	8.5.4� <customize>
	8.5.5� <data>
	8.5.6� <dataSource>
	8.5.7� <exception>
	8.5.8� <field>
	8.5.9� <formLike>
	8.5.10� <formula>
	8.5.11� <function>
	8.5.12� <group>
	8.5.13� <groupAbove>
	8.5.14� <groupLeft>
	8.5.15� <labelAttribute>
	8.5.16� <layout>
	8.5.17� <link>
	8.5.18� <matrix>
	8.5.19� <matrixCell>
	8.5.20� <matrixCol>
	8.5.21� <matrixRow>
	8.5.22� <object>
	8.5.23� <programUnits>
	8.5.24� <properties>
	8.5.25� <property>
	8.5.26� <report>
	8.5.27� <section>
	8.5.28� <select>
	8.5.29� <summary>
	8.5.30� <tabular>

	Part II� Appendixes
	A RWCLI60 Command Line Arguments
	A.1� Syntax
	A.2� Usage Notes

	B Oracle Reports Services Configuration Parameters
	C Environment Variables
	D Database Connection Strings
	E Troubleshooting
	Glossary
	Index

