
Oracle9 i

Database Migration

Release 2 (9.2)

March 2002

Part No. A96530-01

Oracle9i Database Migration, Release 2 (9.2)

Part No. A96530-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: Tony Morales

Graphic Artist: Valarie Moore

Contributors: Nipun Agarwal, Sanjay Agarwal, Rick Anderson, Vikas Arora, Rae Burns, Ben Chang,
Lakshminaray Chidambaran, Eugene Chong, George Claborn, David Colello, Jay Davison, Alan
Downing, Sreenivas Gollapudi, Brajesh Goyal, Tom Graves, Michael Hartstein, Jeffrey Hebert, Thuvan
Hoang, Wei Huang, Robert Jenkins, Sanjeev Jhala, Christopher Jones, Mark Jungerman, Sanjay Kaluskar,
Garrett Kaminaga, Dhiraj Kapoor, Vishwanath Karra, Mark Kennedy, Susan Kotsovolos, Viswanathan
Krishnamurthy, Muralidhar Krishnaprasad, Paul Lane, Gordon Larimer, Simon Law, Jing Liu, Juan
Loaiza, J. Bill Lee, Bill Maimone, Raghu Mani, Shailendra Mishra, Ari Mozes, Kannan Muthukkaruppan,
Subramanian Muralidhar, Ravi Murthy, Karuna Muthiah, Mark Niebur, Peter Ogilvie, Naresh Pamnani,
Jenn Polk, Greg Pongracz, Franco Putzolu, N. C. Ramesh, Paul Raveling, Ann Rhee, Ajay Sethi, Carol
Sexton, Helen Slattery, James Stamos, Debbie Steiner, Alex Tsukerman, Randy Urbano, Guhan
Viswanathan, Steven Wertheimer, Rick Wessman, Andrew Witkowski, Lik Wong, Aravind Yalamanchi,
Qin Yu

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Names, Oracle Store, Oracle7, Oracle8, Oracle8i,
Oracle9i, PL/SQL, Pro*Ada, Pro*COBOL, Pro*C, Pro*C/C++, SQL*Net, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

Audience ... xiv
Organization... xiv
Related Documentation .. xvi
Conventions... xvii
Documentation Accessibility ... xxi

1 Introduction

Terminology ... 1-2
Oracle Releases.. 1-2
Database Migration .. 1-3

Overview of Database Migration .. 1-3
Overview of Upgrade Steps.. 1-4
Role of the Database Administrator During the Upgrade ... 1-7
Role of the Application Developer During the Upgrade.. 1-8

Running Multiple Oracle Releases ... 1-9
Install Databases in Multiple Oracle Homes on the Same Computer 1-9
Install Databases in Multiple Oracle Homes on Separate Computers................................ 1-10
Upgrade a Database to the Current Release ... 1-10
Upgrade Clients to the Current Release.. 1-10

Using Optimal Flexible Architecture (OFA).. 1-10
Changing Word Size... 1-11
iii

Rolling Upgrades .. 1-12
Deinstalling Options.. 1-12

2 Preparing to Upgrade

Prepare to Upgrade ... 2-2
Become Familiar with the Features of the New Release ... 2-2
Determine Your Upgrade Path to the New Release .. 2-2
Choose an Upgrade Method ... 2-3
Choose an Oracle Home Directory for the New Release .. 2-8
Prepare a Backup Strategy... 2-8
Develop a Testing Plan .. 2-8

Test the Upgrade Process ... 2-12
Test the Upgraded Test Database ... 2-12

3 Upgrading a Database to the New Oracle9 i Release

Install the Release 9.2 Oracle Software... 3-2
Running the Database Upgrade Assistant Independently ... 3-4

Upgrade the Database Using the Database Upgrade Assistant ... 3-4
Upgrade the Database Manually ... 3-9

System Considerations and Requirements ... 3-9
Prepare the Database to be Upgraded... 3-12
Upgrade the Database.. 3-15
Upgrading Specific Components ... 3-25

4 After Upgrading a Database

Tasks to Complete After Upgrading Your Database .. 4-2
Back Up the Database .. 4-2
Change Passwords for Oracle-Supplied Accounts .. 4-2
Migrate Your Oracle Managed Files .. 4-2
Upgrade Oracle OLAP... 4-4
Migrate Tables from LONGs to LOBs ... 4-6
Modify Your listener.ora File .. 4-8
Upgrade Your Standby Database ... 4-8
Add New Features as Appropriate .. 4-10
iv

Develop New Administrative Procedures as Needed .. 4-10
Adjust Your Parameter File for the New Release .. 4-10
Normalize Filenames on Windows Operating Systems ... 4-11
Tasks to Complete Only After Upgrading a Release 8.1.7 or Lower Database 4-13
Tasks to Complete Only After Upgrading a Release 8.0.6 or Lower Database 4-16
Upgrading the Recovery Catalog... 4-18
Upgrading Statistics Tables Created by the DBMS_STATS Package 4-19
Tasks to Complete Only After Upgrading a Release 7.3.4 Database 4-20

Test the Database and Compare Results .. 4-22
Tune the Upgraded Database ... 4-22

Changing the Word Size of Your Current Release ... 4-22

5 Compatibility and Interoperability

What Is Compatibility?.. 5-2
The COMPATIBLE Initialization Parameter .. 5-2
Setting the COMPATIBLE Initialization Parameter .. 5-7

Features Requiring a COMPATIBLE Setting .. 5-10
What Is Interoperability? .. 5-13
Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1............. 5-14

Locally Managed SYSTEM Tablespace ... 5-14
Dictionary Managed Tablespaces .. 5-15
Change in Compatibility for Automatic Segment-Space Managed Tablespaces.............. 5-15
Compatibility and Object Types... 5-16
Oracle Managed Files... 5-16
Oracle OLAP ... 5-16
Log Format Change with Parallel Redo .. 5-17
Oracle Dynamic Services ... 5-17
Oracle Syndication Server ... 5-17

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases... 5-18
Applications .. 5-19
The STARTUP Command ... 5-27
Tablespaces and Datafiles ... 5-27
Data Dictionary... 5-29
Schema Objects ... 5-30
Datatypes ... 5-31
v

User-Defined Datatypes... 5-34
SQL and PL/SQL.. 5-36
Advanced Queuing (AQ)... 5-37
Procedures and Packages .. 5-38
Oracle Optimizer... 5-38
Oracle9i Real Application Clusters .. 5-39
Database Security.. 5-41
Database Backup and Recovery.. 5-43
Distributed Databases .. 5-47
SQL*Net or Oracle Net... 5-49
Miscellaneous Compatibility and Interoperability Issues .. 5-51

6 Upgrading Your Applications

Overview of Upgrading Applications .. 6-2
Compatibility Issues for Applications ... 6-2

Upgrading Precompiler and OCI Applications .. 6-3
Understanding Software Upgrades and Your Client/Server Configuration 6-3
Compatibility Rules for Applications When Upgrading Oracle Software........................... 6-4
Upgrading Options for Your Precompiler and OCI Applications .. 6-6

Upgrading SQL*Plus Scripts .. 6-9
Upgrading Oracle7 Forms or Oracle Developer Applications ... 6-10

7 Downgrading a Database Back to the Previous Oracle Release

Perform a Full Offline Backup ... 7-2
Remove Incompatibilities ... 7-2

Checking the Compatibility Level of Your Database .. 7-2
Identifying Incompatibilities... 7-2
Removing Release 9.2 Incompatibilities .. 7-4
Removing Release 9.0.1 Incompatibilities ... 7-8

Reset Database Compatibility .. 7-20
Downgrade the Database .. 7-21

8 Database Migration Using Export/Import

Export Dump File Compatibility ... 8-2
vi

Export/Import Usage on Data Incompatible with a Previous Release 8-3
Source Database and Target Database .. 8-3

Export Utility Requirements ... 8-3
Import Utility Requirements... 8-3

Upgrade the Source Database Using Export/Import.. 8-3

A Changes to Initialization Parameters and the Data Dictionary

Initialization Parameter Changes .. A-2
Deprecated Initialization Parameters .. A-2
Obsolete Initialization Parameters ... A-3

Compatibility Issues with Initialization Parameters... A-5
New Default Value for DB_BLOCK_CHECKSUM ... A-5
Maximum Number of Job Queue Processes... A-5
The ORACLE_TRACE_ENABLE Parameter.. A-6
The SERIALIZABLE Parameter.. A-6
SORT_AREA_SIZE and SORT_DIRECT_WRITES Parameters... A-6
New Default Value for LOG_CHECKPOINT_TIMEOUT ... A-7
The O7_DICTIONARY_ACCESSIBILITY Parameter.. A-7
The DML_LOCKS Parameter ... A-7
The DB_DOMAIN Parameter... A-8
Parallel Execution Allocated from Large Pool ... A-8
Archive Log Destination Parameters... A-11

Static Data Dictionary View Changes... A-14
Deprecated Static Data Dictionary Views... A-14
Obsolete Static Data Dictionary Views.. A-16
Static Data Dictionary Views with Renamed Columns .. A-16
Static Data Dictionary Views with Dropped Columns... A-17
Static Data Dictionary Views with Columns That May Return Nulls A-18

Dynamic Performance View Changes .. A-20
Deprecated Dynamic Performance Views .. A-20
Obsolete Dynamic Performance Views... A-22
Dynamic Performance Views with Renamed Columns ... A-23
Dynamic Performance Views with Dropped Columns .. A-24
vii

B Upgrade Considerations for Oracle Net Services

Overview of Unsupported Oracle Net Services Features ... B-2
Unsupported Parameters and Control Utility Commands ... B-4
Client and Database Coexistence Issues .. B-4

Oracle9i Database Connections .. B-4
Oracle8 or Oracle7 Database Connections .. B-5
Oracle Names .. B-6

Using the Oracle Net Manager to Handle Compatibility Issues... B-7
Upgrading to Oracle Net Services ... B-8

Step 1: Verify Service Name and Instance Name... B-8
Step 2: Perform Software Upgrade on the Database Server ... B-9
Step 3: Perform Software Upgrade on the Client... B-9
Step 4: Perform Functional Upgrade ... B-9

Using Oracle Names Version 9 .. B-12
Upgrading from Oracle Names Version 2 Using a Database.. B-13
Upgrading from Oracle Names Version 2 with the Dynamic Discovery Option B-15
Upgrading from ROSFILES.. B-17
Upgrading Region Checkpoint Files to Domain and Topology Checkpoint Files B-19
Reviewing Upgrade Checklist ... B-21

C Migrating from Server Manager to SQL*Plus

Startup Differences.. C-2
Starting Server Manager ... C-2
Starting SQL*Plus .. C-2

Commands... C-3
Commands Introduced in SQL*Plus Release 8.1 .. C-3
Commands Common to Server Manager and SQL*Plus... C-4
SQL*Plus Equivalents for Server Manager Commands... C-5
Possible Differences in the SET TIMING Command.. C-6
Server Manager Commands Unavailable in SQL*Plus.. C-7

Syntax Differences... C-7
Comments ... C-7
Blank Lines.. C-9
The Hyphen Continuation Character ... C-10
Ampersands.. C-12
viii

CREATE TYPE and CREATE LIBRARY Commands... C-13
COMMIT Command... C-14

D Upgrading an Oracle7 Database Using the MIG Utility

Overview of the MIG Utility .. D-2
Outline of the Upgrade Process Using the MIG Utility .. D-2

System Considerations and Requirements for Using the MIG Utility.................................... D-3
Space Requirements ... D-3
Block Size Considerations ... D-4
Considerations for SQL*Net ... D-4
Considerations for Replication Environments ... D-5
Considerations for Migrating from ConText to Oracle Text .. D-5
Distributed Database Considerations.. D-5

Prepare the Oracle7 Database to be Upgraded ... D-5
Review MIG Utility Command-Line Options .. D-9
Run the MIG Utility .. D-10

Run the MIG Utility on UNIX Operating Systems ... D-10
Run the MIG Utility on Windows Platforms... D-12
Check the MIG Utility Results ... D-13
Preserve the Oracle7 Database .. D-14

MIG Utility Messages ... D-14
Troubleshooting MIG Utility Errors .. D-24

Problems Using the MIG Utility.. D-25
Problems at the ALTER DATABASE CONVERT Statement .. D-27

Abandoning the Oracle7 Upgrade.. D-31
Migration Issues for Physical Rowids ... D-32

Upgrading Applications and Migrating Data ... D-33
The DBMS_ROWID Package ... D-34
Snapshot Refresh ... D-37
Oracle7 Client Compatibility Issues ... D-37
ROWID Migration and Compatibility Issues.. D-38

Changes to Initialization Parameters and the Data Dictionary in Release 8.0 D-39
Initialization Parameter Changes in Release 8.0 ... D-39
Static Data Dictionary View Changes in Release 8.0.. D-40
ix

E Database Migration and Compatibility for Replication Environments

Database Migration Overview for Replication... E-2
Upgrading All Sites at Once ... E-3
Upgrading Incrementally .. E-6

Preparing Oracle7 Master Sites for an Incremental Upgrade .. E-7
Incremental Upgrade of Materialized View Sites .. E-8
Incremental Upgrade of Master Sites ... E-10

Upgrading to Primary Key Materialized Views... E-15
Primary Key Materialized View Conversion at Master Sites.. E-16
Primary Key Materialized View Conversion at Materialized View Sites E-16

Features Requiring an Upgrade to a Higher Release of Oracle .. E-18
Features Requiring Oracle9i ... E-18
Features Requiring Oracle8i or Higher... E-18
Features Requiring Oracle8 or Higher.. E-19
Features That Work with Oracle7 and Higher Releases .. E-19

Obsolete Procedures .. E-20

Index
x

Send Us Your Comments

Oracle9 i Database Migration, Release 2 (9.2)

Part No. A96530-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This manual guides you through the process of planning and executing database

migrations on the Oracle database server. In addition, this manual provides

information about compatibility, about upgrading applications to the current release

of Oracle, and about important changes in the current release, such as initialization

parameter changes and data dictionary changes.

Oracle9i Database Migration contains information that describes the features and

functionality of the Oracle9i (also known as the standard edition) and the Oracle9i
Enterprise Edition products. Oracle9i and the Oracle9i Enterprise Edition have the

same basic features. However, several advanced features are available only with the

Enterprise Edition, and some of these are optional. For example, to use application

failover, you must have the Enterprise Edition with the Oracle9i Real Application

Clusters option.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

See Also: Oracle9i Database New Features for information about the

differences between Oracle9i and the Oracle9i Enterprise Edition

and the features and options that are available to you.
xiii

Audience
Oracle9i Database Migration is intended for database administrators (DBAs),

application developers, security administrators, system operators, and anyone who

plans or executes Oracle database migrations.

To use this document, you need to be familiar with the following:

■ Relational database concepts

■ Your current release of the Oracle database server

■ Your operating system environment

Organization
This document contains:

Chapter 1, "Introduction"
This chapter includes an overview of database migration as well as information

about running multiple releases of Oracle. This chapter also provides information

on changing the word size of your database during an upgrade or downgrade.

Chapter 2, "Preparing to Upgrade"
This chapter describes the steps to complete before upgrading a production

database.

Chapter 3, "Upgrading a Database to the New Oracle9i Release"
This chapter guides you through the process of upgrading a database to the new

Oracle9i release.

Chapter 4, "After Upgrading a Database"
This chapter describes the actions to complete after upgrading a database to the

new Oracle9i release. This chapter also describes how to change the word size of

your database (switching between 32-bit and 64-bit software).

Chapter 5, "Compatibility and Interoperability"
This chapter contains information about compatibility and interoperability between

different releases of Oracle, including detailed information about the COMPATIBLE
initialization parameter. This chapter also lists features of Oracle along with their
xiv

required compatibility level and discusses specific issues relating to compatibility

and interoperability.

Chapter 6, "Upgrading Your Applications"
This chapter provides general information about upgrading your applications and

tools for use with the new Oracle9i release.

Chapter 7, "Downgrading a Database Back to the Previous Oracle Release"
This chapter guides you through the process of downgrading a database back to the

previous Oracle release.

Chapter 8, "Database Migration Using Export/Import"
This chapter guides you through the process of using the Export and Import

utilities to migrate data between Oracle databases.

Appendix A, "Changes to Initialization Parameters and the Data Dictionary"
This appendix lists changes to initialization parameters and the data dictionary

across different releases of Oracle. This appendix also discusses compatibility issues

with certain initialization parameters.

Appendix B, "Upgrade Considerations for Oracle Net Services"
This appendix describes coexistence and upgrade issues for Oracle Net Services.

Appendix C, "Migrating from Server Manager to SQL*Plus"
This appendix guides you through the process of modifying your Server Manager

line mode scripts for use with SQL*Plus.

Appendix D, "Upgrading an Oracle7 Database Using the MIG Utility"
This appendix describes how to use the MIG utility to manually upgrade an Oracle7

database to the new Oracle9i release.

Appendix E, "Database Migration and Compatibility for Replication
Environments"
This appendix provides step-by-step instructions for upgrading an Oracle

Replication system on an Oracle7 database to Oracle9i. This appendix also discusses

compatibility issues between different releases of Oracle Replication.
xv

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Concepts for a comprehensive introduction to the concepts and

terminology used in this manual

■ Oracle9i Database Administrator’s Guide for information about administering the

Oracle database server

■ Oracle9i SQL Reference for information on Oracle’s SQL commands and

functions

■ Oracle9i Database Utilities for information about the utilities bundled with the

Oracle database server, including Export, Import, and SQL*Loader

■ Oracle9i Net Services Administrator’s Guide for information about Oracle Net

Services

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
xvi

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name , and
location_id columns are in the
hr.departments table.

SettheQUERY_REWRITE_ENABLEDinitialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xviii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xix

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating

systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>impSYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener
xx

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxi

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xxii

Introdu
1

Introduction

This chapter includes an overview of database migration as well as information

about running multiple releases of Oracle. This chapter also provides information

on changing the word size of your database during an upgrade or downgrade.

This chapter covers the following topics:

■ Terminology

■ Overview of Database Migration

■ Running Multiple Oracle Releases

■ Using Optimal Flexible Architecture (OFA)

■ Changing Word Size

■ Rolling Upgrades

■ Deinstalling Options
ction 1-1

Terminology
Terminology
The following terms are used throughout this document:

Oracle Releases
The instructions in this document describe moving between different releases of the

Oracle database server. Figure 1–1 describes what each part of a release number

represents.

Figure 1–1 Example of an Oracle Release Number

When a statement is made in this book about a major database release number, the

statement applies to all releases within that major database release. References to

Oracle9i include all releases in release 9.0 and release 9.2; references to version 8

include all releases in release 8.0 and release 8.1. References to version 7 include all

Oracle7 releases in release 7.0, release 7.1, release 7.2, and release 7.3.

Similarly, when a statement is made in this book about a maintenance release, the

statement applies to all component specific and platform specific releases within

that maintenance release. So, a statement about release 9.0.1 applies to release

9.0.1.1, release 9.0.1.1.2, and all other platform specific releases within release 9.0.1.

See Also: Oracle9i Database Administrator’s Guide for more

information about Oracle release numbers

Note: Starting with release 9.2, maintenance releases of Oracle are

denoted by a change to the second digit of a release number. In

previous releases, the third digit indicated a particular maintenance

release.

9.2.0.1.0
Major database
release number

Database maintenance
release number

Application server
release number

Component specific
release number

Platform specific
release number
1-2 Oracle9i Database Migration

Overview of Database Migration
Database Migration
Database migration refers to the collection of processes and procedures for

converting the data in an Oracle database to reflect a particular release of the Oracle

database server. Database migration includes the following:

■ The upgrade process, which upgrades a database to a new Oracle release.

■ The downgrade process, which downgrades a database back to the Oracle

release of the database prior to the upgrade.

Overview of Database Migration
This section includes an overview of the major steps required to upgrade an

existing Oracle database to the new Oracle9i release. Oracle9i is compatible with all

earlier Oracle releases. Therefore, databases upgraded using the procedures

described in this book can work in the same manner as in earlier releases and,

optionally, can leverage new Oracle9i functionality.

Several preparatory steps are required before you upgrade your current production

database. After the upgrade, you should perform several additional test steps.

Other procedures enable you to add new Oracle9i functionality to existing

applications.

See Also: Chapter 3, "Upgrading a Database to the New Oracle9i

Release" for information about the upgrade process

See Also: Chapter 7, "Downgrading a Database Back to the

Previous Oracle Release" for information about the downgrade

process

Note: Since this book documents upgrading and downgrading

between different releases of Oracle, this definition of database

migration is appropriate. However, other Oracle documentation

may use a broader definition of the term migration; for example, in

some cases, migration may describe the process of moving data

from a non-Oracle database into an Oracle database.
Introduction 1-3

Overview of Database Migration
Overview of Upgrade Steps
Before you upgrade a database, you should understand the major steps in the

upgrade process. These steps apply to all operating systems, with the possible

exception of a few operating system-specific details identified in your operating

system-specific Oracle documentation.

Figure 1–2 Major Upgrade Steps

Step 1:
Prepare to Upgrade

Step 2:
Test the Upgrade Process

Step 3:
Test the Upgraded

Test Database

Step 4:
Prepare and Preserve the

Production Database

Step 5:
Upgrade the

Production Database

Step 6:
Tune and Adjust the New

Oracle9i Production Database
1-4 Oracle9i Database Migration

Overview of Database Migration
Careful planning and use of Oracle9i tools can ease the process of upgrading a

database to the new Oracle9i release. You can use one of the following methods to

upgrade a database:

■ The Database Upgrade Assistant is the easiest way to upgrade a database. You

can choose to run the Database Upgrade Assistant either during the installation

of the new Oracle9i release or after installation is complete.

■ A manual upgrade is more complicated but provides finer control over the

process of upgrading a database.

■ Export/Import and data copying enable piecemeal migration of parts of a

database.

The following sections contain a brief outline of the major steps shown in

Figure 1–2. The purpose of these descriptions is to familiarize you with the major

steps in the upgrade process. For detailed instructions, refer to the appropriate

chapters in this book.

Step 1: Prepare to Upgrade
■ Become familiar with the features of the new Oracle9i release. See Oracle9i

Database New Features for an overview of these features.

■ Decide which upgrade method to use, based on considerations involving your

current production database.

■ Estimate and secure the system resources required for the upgrade.

■ Develop a plan for testing the upgrade with an Oracle9i test database and a

plan for testing the upgraded Oracle9i production database.

■ Prepare a backup strategy so that you can recover quickly from any unexpected

problems or delays.

Note: The Database Upgrade Assistant is the preferred method of

upgrading a database; Oracle Corporation highly recommends

using the Database Upgrade Assistant to upgrade to the new

Oracle9i release.
Introduction 1-5

Overview of Database Migration
Step 2: Test the Upgrade Process
■ Perform a test upgrade using a test database. The test upgrade should be

conducted in an environment created for testing and should not interfere with

the actual production database.

Step 3: Test the Upgraded Test Database
■ Perform the tests you planned in Step 1 on the test database and on the test

database that was upgraded to the new Oracle9i release.

■ Compare results, noting anomalies between test results on the test database and

on the upgraded database.

■ Investigate ways to correct any anomalies you find and then implement the

corrections.

■ Repeat Step 1, Step 2, and the first parts of Step 3, as necessary, until the test

upgrade is completely successful and works with any required applications.

Chapter 2, "Preparing to Upgrade" provides detailed information about Steps 1

through 3.

Step 4: Prepare and Preserve the Production Database
■ Prepare the current production database as appropriate to ensure that its

upgrade to the new Oracle9i release will be successful.

■ Schedule the downtime required for backing up and upgrading the production

database.

■ Perform a full backup of the current production database.

Step 5: Upgrade the Production Database
■ Upgrade the production database to the new Oracle9i release.

■ After the upgrade, perform a full backup of the production database and

perform other post-upgrade tasks.

Chapter 3 describes Steps 4 and 5 when using the Database Upgrade Assistant and

when performing a manual upgrade. Chapter 8 describes Steps 4 and 5 when using

the Export/Import utilities. Chapter 4 describes the backup procedure after the

upgrade and other post-upgrade tasks.
1-6 Oracle9i Database Migration

Overview of Database Migration
Step 6: Tune and Adjust the New Production Database
■ Tune the new Oracle9i production database. The new Oracle9i production

database should perform as good as, or better than, the database prior to the

upgrade. Chapter 4 describes these tuning adjustments.

■ Determine which features of the new Oracle9i release you want to use and

update your applications accordingly.

■ Develop new database administration procedures as needed.

■ Do not upgrade production users to the new Oracle9i database until all

applications have been tested and operate properly. Chapter 6 describes

considerations for updating applications.

During the upgrade, multi-versioning can be a useful feature because you can keep

multiple copies of the same database on one computer. You can use the existing

release as your production environment while you test the new release.

Role of the Database Administrator During the Upgrade
Typically, the database administrator (DBA) is responsible for ensuring the success

of the upgrade process. The DBA is usually involved in each step of the process,

except for steps that involve testing applications on the upgraded database.

The specific DBA duties typically include the following:

■ Meeting with everyone involved in the upgrade process and clearly defining

their roles

■ Performing test upgrades

■ Scheduling the test and production upgrades

■ Performing backups of the production database

■ Completing the upgrade of the production database

■ Performing backups of the newly upgraded Oracle9i production database

See Also: Appendix E, "Database Migration and Compatibility

for Replication Environments" if you are upgrading a database that

has Oracle Replication installed
Introduction 1-7

Overview of Database Migration
Role of the Application Developer During the Upgrade
The application developer is responsible for ensuring that applications designed for

the current database work correctly with the upgraded Oracle9i database.

Application developers often test applications against the upgraded Oracle9i
database and decide which new features of Oracle9i should be used.

Before upgrading the production database, the DBA or application developer

should install an Oracle9i test database. Then, the application developer can test

and modify the applications, if necessary, until they work with their original (or

enhanced Oracle9i) functionality.

The following references provide information about identifying differences in the

upgraded Oracle9i database that could affect particular applications. Application

developers can use these differences to guide modifications to existing applications.

■ Chapter 5, "Compatibility and Interoperability" describes compatibility and

interoperability issues that may result because of differences in releases of

Oracle.

■ Chapter 6, "Upgrading Your Applications" describes the changes required to

enable existing applications to access an Oracle9i database and provides

guidance for upgrading applications to take advantage of Oracle9i functionality.

■ Appendix A, "Changes to Initialization Parameters and the Data Dictionary"

lists obsolete and deprecated initialization parameters and data dictionary

views.

■ Appendix B, "Upgrade Considerations for Oracle Net Services" provides

instructions for upgrading SQL*Net and Net8 to Oracle Net Services.

■ Appendix E, "Database Migration and Compatibility for Replication

Environments" provides instructions for upgrading a database that has Oracle

Replication installed.

■ Oracle9i Database New Features describes the features available in the new

Oracle9i release

■ Oracle9i Real Application Clusters Concepts and Oracle9i SQL Reference contain

descriptions of changes and new Oracle9i functionality.

■ Oracle9i Application Developer’s Guide - Fundamentals, Oracle9i Application
Developer’s Guide - Large Objects (LOBs), and Oracle9i Application Developer’s
Guide - Advanced Queuing provide information about planning and

implementing applications.
1-8 Oracle9i Database Migration

Running Multiple Oracle Releases
Oracle9i includes features that aid in upgrading existing applications to Oracle9i,
for example:

■ Oracle Net and SQL*Net V2 support communication between Oracle versions.

■ The programming interface is unchanged between Oracle versions.

■ Oracle’s backward compatibility accommodates small incompatibilities

between different releases.

Running Multiple Oracle Releases
You can run different releases of Oracle on the same computer at the same time.

However, each release can only access a database that is consistent with its release.

For example, if you have Oracle8i and Oracle9i installed on the same computer,

then the Oracle8i server can access Oracle8i databases but not Oracle9i databases,

and the Oracle9i server can access Oracle9i databases but not Oracle8i databases.

The following sections provide general information about running multiple releases

of Oracle.

Install Databases in Multiple Oracle Homes on the Same Computer
You can install Oracle7, Oracle8, Oracle8i, and Oracle9i databases in multiple

(separate) Oracle homes on the same computer and have Oracle7, Oracle8, Oracle8i,
and Oracle9i clients connecting to any or all of the databases.

Caution: It is not possible to install release 9.2 products into an

existing Oracle home. This functionality was only available for

certain previous releases and has not been continued. An Oracle9i
release must be installed in a new Oracle home that is separate

from previous releases of Oracle. Also, you cannot have more than

one release per Oracle home. Oracle Corporation recommends that

you adopt an Optimal Flexible Architecture (OFA) when creating

multiple Oracle homes. See "Using Optimal Flexible Architecture

(OFA)" on page 1-10 for more information.

See Also: Your operating system-specific Oracle documentation

for more information about running multiple releases of Oracle on

your operating system. Restrictions may apply on some operating

systems.
Introduction 1-9

Using Optimal Flexible Architecture (OFA)
Install Databases in Multiple Oracle Homes on Separate Computers
You can install Oracle7, Oracle8, Oracle8i, and Oracle9i databases in multiple

(separate) Oracle homes on separate computers and have Oracle7, Oracle8,

Oracle8i, and Oracle9i clients connecting to any or all of the databases.

Upgrade a Database to the Current Release
You can upgrade an Oracle7, Oracle8, Oracle8i, or Oracle9i database to the current

Oracle9i release and have Oracle7, Oracle8, Oracle8i, and Oracle9i clients

connecting to the upgraded database. You cannot upgrade the database in the same

Oracle home.

Upgrade Clients to the Current Release
You can upgrade any or all of your Oracle7, Oracle8, Oracle8i, or Oracle9i clients to

the current Oracle9i release. You can also upgrade your Oracle7, Oracle8, Oracle8i,
or Oracle9i database to the current Oracle9i release at a later date.

Using Optimal Flexible Architecture (OFA)
Oracle Corporation recommends the Optimal Flexible Architecture (OFA) standard

for your Oracle9i installations. The OFA standard is a set of configuration

guidelines for efficient and reliable Oracle databases that require little maintenance.

OFA provides the following benefits:

■ Organizes large amounts of complicated software and data on disk to avoid

device bottlenecks and poor performance

■ Facilitates routine administrative tasks, such as software and data backup

functions, which are often vulnerable to data corruption

■ Alleviates switching among multiple Oracle databases

■ Adequately manages and administers database growth

■ Helps to eliminate fragmentation of free space in the data dictionary, isolates

other fragmentation, and minimizes resource contention.

If you are not currently using the OFA standard, then switching to the OFA

standard involves modifying your directory structure and relocating your database

files.
1-10 Oracle9i Database Migration

Changing Word Size
Changing Word Size
You can change the word size of your database after an upgrade or downgrade. A

change in word size includes the following scenarios:

■ You have 32-bit Oracle software installed on 64-bit hardware and want to

change to 64-bit Oracle software.

■ You have 64-bit Oracle software installed on 64-bit hardware and want to

change to 32-bit Oracle software.

Changing word size during an upgrade or downgrade is not supported. For

example, if you have the 32-bit installation of release 9.2 on 32-bit hardware and

you want to switch to the 64-bit installation of release 9.2 on 64-bit hardware, then

complete the following steps:

1. Install the 32-bit installation of release 9.2 on 64-bit hardware.

2. Upgrade the database.

3. Follow the instructions in "Changing the Word Size of Your Current Release" on

page 4-22.

The following information applies if you are switching from 32-bit hardware to

64-bit hardware or from 64-bit hardware to 32-bit hardware:

■ You can switch from 32-bit hardware to 64-bit hardware and still use your

existing 32-bit Oracle software without encountering any problems.

■ If you want to switch from 64-bit hardware to 32-bit hardware, then you must

first install 32-bit Oracle software.

The on-disk format for database data, redo, and undo is identical for the 32-bit and

64-bit installations of Oracle. The only internal structural differences between the

32-bit and 64-bit installations are the following:

■ The compiled format of PL/SQL is different. The instructions for how and

when to recompile PL/SQL are provided in the appropriate chapters of this

book.

See Also:

■ Your operating system-specific Oracle documentation for more

information about OFA

■ Oracle9i Database Administrator’s Guide for information about

relocating database files
Introduction 1-11

Rolling Upgrades
■ The storage format of user-defined types is based on the release of Oracle that

created the database. The existing storage format will be converted to the

correct format transparently when necessary. User-defined types include object

types, REFs, varrays, and nested tables.

Rolling Upgrades
The term rolling upgrade refers to upgrading different databases or different

instances of the same database in Oracle9i Real Application Clusters one at a time,

without stopping the database. Oracle9i Real Application Clusters does not support

rolling upgrades.

Deinstalling Options
If you want to deinstall old options when you upgrade to the new Oracle9i release,

then use the Oracle Universal Installer to deinstall them. You can deinstall them

before or after you upgrade, but you must use the release of the installer that

corresponds with the items you want to remove.

For example, if you are running release 9.0.1 with Oracle Text installed, and you

decide that you do not need this option when you upgrade to the new Oracle9i
release, then you should deinstall Oracle Text in one of the following ways:

■ Before you upgrade to the new Oracle9i release, use the release 9.0.1 Oracle

Universal Installer to deinstall Oracle Text. Then, do not install Oracle Text

when you install the new Oracle9i release.

■ When you upgrade to the new Oracle9i release, install and upgrade Oracle Text.

Then, use the Oracle Universal Installer in the new Oracle9i release to deinstall

Oracle Text.

Note: After you deinstall an option, extraneous data dictionary

tables may remain in the database.

See Also: Your operating system-specific Oracle documentation

for information about using the Oracle Universal Installer
1-12 Oracle9i Database Migration

Preparing to Up
2

Preparing to Upgrade

This chapter covers the steps that must be completed before you upgrade a

production database. This chapter covers in detail Steps 1 through 3 of the upgrade

process, which were outlined in "Overview of Database Migration" on page 1-3.

This chapter covers the following topics:

■ Prepare to Upgrade

■ Test the Upgrade Process

■ Test the Upgraded Test Database

See Also:

■ Appendix B, "Upgrade Considerations for Oracle Net Services"

for information about upgrade considerations for Oracle Net

Services

■ Appendix E, "Database Migration and Compatibility for

Replication Environments" if you are upgrading a database

system that has Oracle Replication installed

Note: Some aspects of upgrading are operating system-specific.

See your operating system-specific Oracle documentation for

additional information about preparing to upgrade.
grade 2-1

Prepare to Upgrade
Prepare to Upgrade
Complete the following tasks to prepare to upgrade:

■ Become Familiar with the Features of the New Release

■ Determine Your Upgrade Path to the New Release

■ Choose an Upgrade Method

■ Choose an Oracle Home Directory for the New Release

■ Prepare a Backup Strategy

■ Develop a Testing Plan

Become Familiar with the Features of the New Release
Before you plan the upgrade process, become familiar with the features of the new

Oracle9i release. Oracle9i Database New Features is a good starting point for learning

the differences between Oracle releases. Also, check specific books in the Oracle9i
documentation set to find information about new features for a certain component;

for example, see Oracle9i Real Application Clusters Concepts for changes in Oracle9i
Real Application Clusters.

Determine Your Upgrade Path to the New Release
The path that you must take to upgrade to the new Oracle9i release depends on the

release of your database. Table 2–1 contains the required upgrade path for each

release of Oracle. Use the upgrade path and the specified documentation to

upgrade your database.

Note: Oracle9i training classes are an excellent way to learn how

to take full advantage of the functionality available with Oracle9i.
Connect to the following Web page for more information:

http://education.oracle.com
2-2 Oracle9i Database Migration

Prepare to Upgrade
If the release number of your database is not supported, then you must first

upgrade your database to a supported Oracle release before upgrading to the new

Oracle9i release.

Choose an Upgrade Method
Choose one of the following methods to upgrade your database to the new Oracle9i
release:

■ Use the Database Upgrade Assistant (DBUA).

Table 2–1 Upgrade Paths

Current Release Upgrade Path

7.3.3 and Lower Direct upgrade is not supported. Complete the following steps to upgrade to the new
release:

1. Upgrade to release 7.3.4 using the instructions in release 7.3 of Oracle7 Server
Migration and in the release 7.3.4 README.

2. Upgrade the release 7.3.4 database to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release" and Appendix D,
"Upgrading an Oracle7 Database Using the MIG Utility".

7.3.4 Direct upgrade is supported. Upgrade to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release" and Appendix D,
"Upgrading an Oracle7 Database Using the MIG Utility".

8.0.3

8.0.4

8.0.5

Direct upgrade is not supported. Complete the following steps to upgrade to the new
release:

1. Upgrade to release 8.0.6 using the instructions in the release 8.0.6 READMEMIG.doc
file.

2. Upgrade the release 8.0.6 database to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release".

8.0.6 Direct upgrade is supported. Upgrade to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release".

8.1.5

8.1.6

Direct upgrade is not supported. Complete the following steps to upgrade to the new
release:

1. Upgrade to release 8.1.7 using the instructions in Oracle8i Migration.

2. Upgrade the release 8.1.7 database to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release".

8.1.7

9.0.1

Direct upgrade is supported. Upgrade to the new release using the instructions in
Chapter 3, "Upgrading a Database to the New Oracle9i Release".
Preparing to Upgrade 2-3

Prepare to Upgrade
The Database Upgrade Assistant can be launched by the Oracle Universal

Installer, depending upon the type of installation that you select, and provides a

graphical user interface (GUI) that guides you through the upgrade of a

database. During installation, you can choose to not use the Database Upgrade

Assistant, instead choosing to launch it as a standalone tool at any time in the

future to upgrade a database.

■ Perform a manual upgrade

A manual upgrade provides a command line upgrade of a database, using SQL

scripts and utilities.

■ Perform a full or partial export from your database, followed by a full or partial

import into a new Oracle9i database.

Export/Import can copy a subset of the data in a database. Export/Import

leaves the database unchanged, and makes a copy of the data.

■ Copy data from a database into a new Oracle9i database using the SQL*Plus

COPY command or the AS clause of the CREATE TABLE SQL statement.

Data copying can copy a subset of the data in a database. Data copying leaves

the database unchanged, and makes a copy of the data.

The following sections describe each of the upgrade methods in detail, and discuss

advantages and disadvantages of each method.

Database Upgrade Assistant
The Database Upgrade Assistant is a graphical user interface (GUI) tool that

provides a simplified upgrade of a database to the new Oracle9i release. Online

Help is available to assist you in its use.

The Database Upgrade Assistant performs all of the following pre-upgrade steps:

■ It analyzes the database to be upgraded, determining which components of the

database need upgrading. These components are then automatically upgraded

after the database upgrade is complete.

■ It checks the available space in the SYSTEM tablespace.

■ It optionally backs up all necessary database files.

■ It makes adjustments to the parameter file that are necessary for a successful

upgrade. After the upgrade is complete, any initialization parameters that were

temporarily adjusted are reverted back to their original values.
2-4 Oracle9i Database Migration

Prepare to Upgrade
During the upgrade process, the Database Upgrade Assistant runs all necessary

SQL scripts and utilities, removes obsolete initialization parameters and adjusts

deprecated initialization parameters, and creates detailed logs for all SQL scripts

and utilities executed during the upgrade.

When the upgrade is complete, the Database Upgrade Assistant provides a results

dialog, describing all the details of the upgrade.

Starting with release 9.2, the Database Upgrade Assistant supports the upgrading of

cluster databases.

Advantages of Using the Database Upgrade Assistant The following are some advantages

of using the Database Upgrade Assistant:

■ It filters all expected errors during the upgrade process.

■ It ensures that sufficient resources are available.

The Database Upgrade Assistant performs several steps to accomplish the upgrade.

It filters out all expected errors generated by the upgrade scripts.

If an unexpected error occurs during the upgrade, then the Database Upgrade

Assistant gives you the option of skipping the current step and moving on to the

next step of the upgrade. After the upgrade is complete, you can fix the cause of any

errors and restart the Database Upgrade Assistant. The Database Upgrade Assistant

resumes the upgrade by completing any steps that were skipped.

For example, if an unexpected error occurs during the upgrade of Oracle Spatial,

then you can skip the Oracle Spatial upgrade and move on to the next component’s

upgrade. After the Database Upgrade Assistant has finished upgrading all

components, you can restart the Database Upgrade Assistant to upgrade Oracle

Spatial.

Manual Upgrade
A manual upgrade consists of running SQL scripts and utilities from a command

line to upgrade a database to the new Oracle9i release.

When manually upgrading a database, you must perform the following

pre-upgrade steps:

■ Ensure that sufficient space in the SYSTEM tablespace exists, and add free space

if it does not.

■ Adjust your parameter file for the upgrade, to disable initialization parameters

that might cause upgrade problems. After the upgrade is complete, any
Preparing to Upgrade 2-5

Prepare to Upgrade
initialization parameters that were modified must be reverted back to their

original values.

You must also remove obsolete initialization parameters from your parameter

file, and account for other initialization parameter changes, such as

initialization parameters that have been deprecated.

■ Perform a backup of the database.

■ Some components of the database are not automatically upgraded when the

database is upgraded. You must manually upgrade these components after the

database upgrade is complete.

Depending on the release of the database being upgraded, you may need to

perform additional pre-upgrade steps.

While a manual upgrade gives you finer control over the upgrade process, it is

susceptible to error if any of the upgrade or pre-upgrade steps are either not

followed or are performed out of order. The Database Upgrade Assistant performs

all necessary pre-upgrade and upgrade steps.

Export/Import
Unlike the Database Upgrade Assistant or a manual upgrade, the Export/Import

utilities physically copy data from your current database to a new database. The

current database’s Export utility copies specified parts of the database into an

export dump file. Then, the Import utility of the new Oracle9i release loads the

exported data into a new Oracle9i database. However, the new Oracle9i database

must already exist before the export dump file can be copied into it.

When importing data from an earlier release, the Oracle9i Import utility makes

appropriate changes to data definitions as it reads earlier releases’ export dump

files.

The following sections highlight aspects of Export/Import that may help you to

decide whether to use Export/Import to upgrade your database.

Export/Import Effects on Upgraded Databases The Export/Import upgrade method does

not change the current database, which enables the database to remain available

throughout the upgrade process. However, if a consistent snapshot of the database

is required (for data integrity or other purposes), then the database must run in

restricted mode or must otherwise be protected from changes during the export

procedure. Because the current database can remain available, you can, for example,

keep an existing production database running while the new Oracle9i database is

being built at the same time by Export/Import. During the upgrade, to maintain
2-6 Oracle9i Database Migration

Prepare to Upgrade
complete database consistency, changes to the data in the database cannot be

permitted without the same changes to the data in the new Oracle9i database.

Most importantly, the Export/Import operation results in a completely new

database. Although the current database ultimately contains a copy of the specified

data, the upgraded database may perform differently from the original database.

For example, although Export/Import creates an identical copy of the database,

other factors, such as disk placement of data and unset tuning parameters, may

cause unexpected performance problems.

Export/Import Benefits Upgrading using Export/Import offers the following benefits:

■ Defragments the data - you can compress the imported data to improve

performance.

■ Restructures the database - you can create new tablespaces or modify existing

tables, tablespaces, or partitions to be populated by imported data.

■ Enables the copying of specified database objects or users - you can import only

the objects, users, and other items that you wish.

■ Serves as a backup archive - you can use a full database export as an archive of

the current database.

Time Requirements for Export/Import Upgrading an entire database by using

Export/Import can take a long time, especially compared to using the Database

Upgrade Assistant or performing a manual upgrade. Therefore, you may need to

schedule the upgrade during non-peak hours or make provisions for propagating to

the new Oracle9i database any changes that are made to the current database

during the upgrade.

Data Copying
You can copy data from one Oracle database to another Oracle database using

database links. For example, you can copy data from one database table to another

database table with the SQL*Plus COPYcommand, or you can create new tables and

fill the tables with data by using the INSERT INTO statement and the CREATE
TABLE ... AS statement.

Copying data and Export/Import offer the same advantages for upgrading. Using

either method, you can defragment data files and restructure the database by

creating new tablespaces or modifying existing tables or tablespaces. In addition,

you can copy only specified database objects or users.
Preparing to Upgrade 2-7

Prepare to Upgrade
Copying data, however, unlike Export/Import, enables the selection of specific

rows of tables to be placed into the new database. Copying data is thus a good

method for copying only part of a database table. In contrast, using Export/Import,

you can copy only entire tables.

Choose an Oracle Home Directory for the New Release
You must choose an Oracle home directory for the new Oracle9i release that is

separate from the Oracle home directory of your current release. You cannot install

the new Oracle9i software into the same Oracle home directory as your current

release.

Using separate installation directories enables you to keep your existing software

installed along with the new Oracle9i software. This method enables you to test the

upgrade process on a test database before replacing your production environment

entirely.

Prepare a Backup Strategy
The ultimate success of your upgrade depends heavily on the design and execution

of an appropriate backup strategy. To develop a backup strategy, consider the

following questions:

■ How long can the production database remain inoperable before business

consequences become intolerable?

■ What backup strategy should be used to meet your availability requirements?

■ Are backups archived in a safe, offsite location?

■ How quickly can backups be restored (including backups in offsite storage)?

■ Have recovery procedures been tested successfully?

Your backup strategy should answer all of these questions and include procedures

for successfully backing up and recovering your database.

Develop a Testing Plan
You need a series of carefully designed tests to validate all stages of the upgrade

process. Executed rigorously and completed successfully, these tests ensure that the

See Also: Oracle7 Server Administrator’s Guide for Oracle7

databases and Oracle9i User-Managed Backup and Recovery Guide for

Oracle9i databases
2-8 Oracle9i Database Migration

Prepare to Upgrade
process of upgrading the production database is well understood, predictable, and

successful. Perform as much testing as possible before upgrading the production

database. Do not underestimate the importance of a test program.

The testing plan must include the following types of tests.

Upgrade Testing
Upgrade testing entails planning and testing the upgrade path from your current

database to the new Oracle9i database, whether you use the Database Upgrade

Assistant, perform a manual upgrade, or use Export/Import or other data-copying

methods.

Regardless of the upgrade method you choose, you must establish, test, and

validate an upgrade plan.

Minimal Testing
Minimal testing entails moving all or part of an application from the current

database to the new Oracle9i database and running the application without

enabling any new database features. Minimal testing is a very limited type of

testing that may not reveal potential issues that may appear in a "real-world"

production environment. However, minimal testing will immediately reveal any

application startup or invocation problems.

Functional Testing
Functional testing is a set of tests in which new and existing functionality of the

system are tested after the upgrade. Functional testing includes all database,

networking, and application components. The objective of functional testing is to

verify that each component of the system functions as it did before upgrading and

to verify that new functions are working properly.

Integration Testing
Integration testing examines the interaction of each component of the system.

Consider the following factors when you plan your integration testing:

■ Pro*C/C++ applications running against a new Oracle9i database instance

should be tested to ensure that there are no problems with the new software.

■ Graphical user interfaces should be tested with other components.

■ Subtle changes in the new Oracle9i database, such as datatypes, data in the data

dictionary (additional rows in the data dictionary, object type changes, and so
Preparing to Upgrade 2-9

Prepare to Upgrade
forth) can have an effect all the way up to the front-end application, regardless

of whether or not the application is directly connected to a new Oracle9i
instance.

■ If the connection between two components involves SQL*Net, Net8, or Oracle

Net Services, then those connections should also be tested and stress tested.

Performance Testing
Performance testing of the new Oracle9i database compares the performance of

various SQL statements in the new Oracle9i database with the statements’

performance in the current database. Before upgrading, you should understand the

performance profile of the application under the current database. Specifically, you

should understand the calls the application makes to the database kernel.

For example, if you are using Oracle9i Real Application Clusters, and you want to

measure the performance gains realized from using cache fusion when you upgrade

to the new Oracle9i release, then make sure you record your system’s statistics

before upgrading. For cache fusion, record the statistics from the V$SYSSTAT,
V$LOCK_ACTIVITY, and V$LOCK_CLASS_PING views. Doing so enables you to

compare pre-cache fusion and post-cache fusion performance statistics.

For best results, run the SQL scripts utlbstat.sql and utlestat.sql to collect

V$SYSSTAT statistics for a specific period. Use a collection timeframe that most

consistently reflects peak production loads with consistent transaction activity

levels. To obtain data from V$LOCK_ACTIVITY and V$LOCK_CLASS_PING, use a

SELECT * statement at the beginning and end of the statistics collection period.

Repeat this process after cache fusion is running on the new Oracle9i release and

evaluate your system’s performance as described in Oracle9i Real Application
Clusters Deployment and Performance.

Volume and Load Stress Testing
Volume and load stress testing tests the entire upgraded database under high

volume and loads. Volume describes the amount of data being manipulated. Load

describes the level of concurrent demand on the system. The objective of volume

and load testing is to emulate how a production system might behave under

various volumes and loads.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information about tuning. To thoroughly understand the

application’s performance profile under the source database, enable

the SQL trace facility and profile with TKPROF.
2-10 Oracle9i Database Migration

Prepare to Upgrade
Volume and load stress testing is crucial, but is commonly overlooked. Oracle

Corporation has found that customers often do not conduct any kind of volume or

load stress testing. Instead, customers often rely on benchmarks that do not

characterize business applications. Benchmarks of the application should be

conducted to uncover problems relating to functionality, performance, and

integration, but they cannot replace volume and load stress testing.

After you upgrade the database, you should test the data to ensure that all data is

accessible and that the applications function properly. You should also determine

whether any database tuning is necessary. If possible, you should automate these

testing procedures.

The testing plan should reflect the work performed at the site. You should test the

functionality and performance of all applications on the production databases.

Gather performance statistics for both normal and peak usage.

Specific Pre-Upgrade and Post-Upgrade Tests
Include the following tests in your testing plan:

■ Timing tests

■ Data dictionary growth observations

■ Database resource usage observations, such as rollback and temporary segment

usage

Collecting this information will help you compare the current database with the

new Oracle9i database.

Use EXPLAIN PLAN on both the previous and new databases to determine the

execution plan Oracle follows to execute each SQL statement. Use the INTO clause

to save this information in tables.

After upgrading, you can compare the execution plans of the new Oracle9i database

with the execution plans of the current database. If there is a difference, then

execute the statement on the new Oracle9i database and compare the performance

with the performance of the statement executed on the current database.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about EXPLAIN PLAN.
Preparing to Upgrade 2-11

Test the Upgrade Process
Test the Upgrade Process
Create a test environment that will not interfere with the current production

database. Your test environment will depend on the upgrade method you have

chosen:

■ If you plan to use the Database Upgrade Assistant or perform a manual

upgrade, then create a test version (typically a subset) of the current production

database to test the upgrade.

■ If you plan to use Export/Import, then export and import small test pieces of

the current production database.

Practice upgrading the database using the test environment. The best upgrade test,

if possible, is performed on an exact copy of the database to be upgraded, rather

than on a downsized copy or test data.

Make sure you upgrade any OCI and precompiler applications that you plan to use

with your new Oracle9i database. Then, you can test these applications on a sample

database before upgrading your current production database. See "Upgrading

Precompiler and OCI Applications" on page 6-3 for more information.

Test the Upgraded Test Database
Perform the planned tests on the current database and on the test database that you

upgraded to the new Oracle9i release. Compare the results, noting anomalies.

Repeat the test upgrade as many times as necessary.

Test the newly upgraded Oracle9i test database with existing applications to verify

that they operate properly with a new Oracle9i database. You also might test

enhanced functionality by adding features that use the available Oracle9i
functionality. However, first make sure that the applications operate in the same

manner as they did in the current database.

Caution: Do not upgrade the actual production database until

after you successfully upgrade a test subset of this database and

test it with applications, as described in the next step.

See Also: Chapter 6, "Upgrading Your Applications" for more

information on using applications with Oracle9i
2-12 Oracle9i Database Migration

Upgrading a Database to the New Oracle9i Re
3

Upgrading a Database to the New Oracle9 i

Release

This chapter guides you through the process of upgrading a database to the new

Oracle9i release. This chapter covers the following topics:

■ Install the Release 9.2 Oracle Software

■ Upgrade the Database Using the Database Upgrade Assistant

■ Upgrade the Database Manually

See Also: Some aspects of upgrading are operating

system-specific. See your operating system-specific Oracle

documentation for additional instructions about upgrading on your

operating system.
lease 3-1

Install the Release 9.2 Oracle Software
Install the Release 9.2 Oracle Software
Complete the following steps to install the release 9.2 software:

1. If your operating system is UNIX, then make sure you are logged in as a user

with write permission to the Oracle home and Oracle base directories, as well as

all of their subdirectories.

2. Follow the instructions in your Oracle operating system-specific documentation

to prepare for installation and start the Oracle Universal Installer.

If you are upgrading a cluster database, then see Oracle9i Real Application
Clusters Setup and Configuration for additional installation instructions.

3. At the Welcome screen of the Oracle Universal Installer, click Next. The File

Locations screen appears.

If you need help at any screen or want to consult more documentation about

the Oracle Universal Installer, then click the Help button to open the online

help.

4. At the File Locations screen, complete the following steps:

a. Do not change the text in the Source field. This is the location of files for

installation.

b. On Windows operating systems, enter the name of a new Oracle home in

the Destination Name field.

c. Enter the complete path of the Oracle home directory where you want to

install the new release in the Destination Path field. Click the Browse button

to navigate to the directory.

d. Click Next.

The Available Products screen appears.

5. At the Available Products screen, select the Oracle9i server. The Oracle9i server

is either Oracle9i Enterprise Edition or Oracle9i, depending on your installation

medium. Then, click Next.

6. At the Installation Types screen, complete the following steps:

Note: You must install the new 9.2 release in a new Oracle home

that is separate from the old release.
3-2 Oracle9i Database Migration

Install the Release 9.2 Oracle Software
a. If you are installing software only and will be performing an upgrade later,

then select Enterprise Edition or Standard Edition. You should then select

Software Only from the Database Configuration menu.

b. Choose Custom if you would like finer control over the installation.

After you make your selection, click Next.

If you chose Custom, then the Available Product Components screen appears.

Complete the following steps:

a. Choose the product components you want to install. Then, click Next.

Make sure you install Oracle Utilities to install the Database Upgrade

Assistant, and if you are upgrading from Oracle7, the MIG utility.

Make sure you install all of the options you installed with the previous

database, assuming you do not want to discontinue use of a particular

option. For example, if you installed Oracle Text in the previous database,

then you should install Oracle Text in the new Oracle9i database.

b. If you are installing Oracle9i Real Application Clusters, then, at the Cluster

Node Selection screen, select the nodes onto which you want the software

installed. Then, click Next.

c. Respond to the remaining screens that enable you to specify your custom

installation settings, until you reach the Upgrading an Existing Database

screen.

7. At the Upgrading an Existing Database screen, complete the following steps:

a. To upgrade a database using the Database Upgrade Assistant, select the

Upgrade an Existing Database check box and choose the database to be

upgraded.

To upgrade a database manually, or to run the Database Upgrade Assistant

independently after installation is complete, do not select the Upgrade an

Existing Database check box.

b. Click Next.

Note: Normally, you should not install a starter database if you

are upgrading an existing database.
Upgrading a Database to the New Oracle9i Release 3-3

Upgrade the Database Using the Database Upgrade Assistant
8. If the Create Database screen appears, then select the No option, indicating that

you do not want to create a database because you are upgrading an existing

database. Then, click Next.

9. At the Summary screen, make sure all of the settings and choices are correct for

your installation. Then, click Install. The Oracle Universal Installer performs the

installation.

When installation is complete, one or more assistants may be started. If you chose to

run the Database Upgrade Assistant during installation, then you are ready to

proceed with the upgrade When the Database Upgrade Assistant is started. See

"Upgrade the Database Using the Database Upgrade Assistant" on page 3-4.

When installation has completed successfully, click the Exit button to close the

Oracle Universal Installer.

Running the Database Upgrade Assistant Independently
If you installed the new Oracle9i release without specifying that you are upgrading

an existing database, then you can run the Database Upgrade Assistant

independently after installation is complete.

Complete the following steps to run the Database Upgrade Assistant

independently:

1. Start the Database Upgrade Assistant.

On UNIX platforms, enter the following command at a system prompt:

dbua

On Windows operating systems, choose:

Start > Programs > Oracle - HOME_NAME > Configuration and Migration Tools >
Database Upgrade Assistant

You are ready to proceed with the upgrade when the Database Upgrade

Assistant is started.

Upgrade the Database Using the Database Upgrade Assistant
When the Database Upgrade Assistant starts, its Welcome screen appears.
3-4 Oracle9i Database Migration

Upgrade the Database Using the Database Upgrade Assistant
Figure 3–1 Welcome Screen of the Database Upgrade Assistant

Complete the following steps to upgrade a database using the Database Upgrade

Assistant:

1. At the Welcome screen of the Database Upgrade Assistant (shown in

Figure 3–1), make sure the database being upgraded meets the specified

conditions. Then, click Next.

If you need help at any screen or want to consult more documentation about

the Database Upgrade Assistant, then click the Help button to open the online

help.

2. At the Select a Database screen, select the database you want to upgrade. Then,

click Next.

You may need to provide a user name and password with SYSDBA privileges if

you do not have operating system authentication.

3. If you are upgrading an Oracle7 database, then, at the Database Name screen,

you can specify a new database name. Then, click Next.
Upgrading a Database to the New Oracle9i Release 3-5

Upgrade the Database Using the Database Upgrade Assistant
4. At the Password screen, enter a valid password for each user listed. Then, click

Next.

This screen only appears if the Database Upgrade Assistant requires a password

for any user for the upgrade.

5. At the Backup screen, you have two options:

■ Choose "I have already backed up my database" if you completed a backup

before running the Database Upgrade Assistant.

■ Choose "I would like this tool to back up the database" if you did not

complete a backup. If you choose this option, then you can select the

backup directory by clicking the Browse button.

After you have made your choice, click Next.

6. At the Network Configuration for the database screen, you have two tabs:

The Listeners tab is displayed if you have more than one listener in the release

9.2 Oracle home. Select the listeners in the release 9.2 Oracle home for which

you would like to register the upgraded database.

The Directory Service tab shows up if you have directory service is configured

in the release 9.2 Oracle home. You can select to either register or not register

the upgraded database with the directory service.

7. At the Summary screen, make sure all of the specifications are correct. If

anything is incorrect, then click Back until you can correct the specification. If

everything is correct, then click Finish.

The Database Upgrade Assistant lists the initialization parameters that will be

set for the database during the upgrade. The COMPATIBLE initialization

parameter will be set to at least 8.1.0 .

8. A Progress dialog appears and the Database Upgrade Assistant begins to

perform the upgrade.

You may encounter error messages with Ignore, Abort, and Skip the Step

choices. If other errors appear, then you must address them accordingly. If an

error is severe and cannot be handled during the upgrade, then you have the

following choices:

See Also: Chapter 5, "Compatibility and Interoperability" for

information about setting the COMPATIBLEinitialization parameter

after the upgrade
3-6 Oracle9i Database Migration

Upgrade the Database Using the Database Upgrade Assistant
■ If Skip the step is presented as a choice in the message, then clicking the

button will skip the current upgrade step.

This causes the Database Upgrade Assistant to move on to the next step in

the upgrade, skipping this and any dependent steps. After the upgrade is

complete, you can fix the problem, restart the Database Upgrade Assistant,

and complete the skipped steps.

■ If Skip the step is not presented as a choice in the message, then you need to

abort the process by clicking the Abort button.

This will abort the upgrade process. The Database Upgrade Assistant

prompts you to restore the database if the database backup was taken by

the Database Upgrade Assistant.

After the database has been restored, you need to correct the cause of the

error and restart the Database Upgrade Assistant to perform the upgrade

again.

If you do not want to restore the database, then the Database Upgrade

Assistant leaves the database in its present state so that you can proceed

with a manual upgrade.

After the upgrade has completed, the following message is displayed on the

Progress dialog:

Upgrade has been completed. Click the "OK" button to see the results of the
upgrade.

Click the OK button.

9. At the Results dialog, you can view the details of the upgrade. You can also

unlock and set passwords to the user accounts.

If you are not satisfied with the upgrade, then you can restore the database back

to the previous release.

If you are satisfied with the upgrade, then click the Done button. The Database

Upgrade Assistant removes the entry of the upgraded database from the old

listener.ora file and reloads the listener of the old database.

a. The Database Upgrade Assistant modifies the SID_DESC entry for the

upgraded database in the Oracle9i listener.ora file in one of the

following ways:

A simple case: Suppose the old listener.ora has the following SID_

DESC entry:
Upgrading a Database to the New Oracle9i Release 3-7

Upgrade the Database Using the Database Upgrade Assistant
...
 (SID_DESC =
 (SID_NAME = ORCL)
)
...

If the database name is SAL, the domain name is COM, and the Oracle

home is /oracle/product/9.2 , then the assistant adds the following

entry:

...
 (SID_DESC =
 (GLOBAL_DBNAME = sal.com)
 (ORACLE_HOME = /oracle/product/9.2)
 (SID_NAME = SAL)
)
...

A more complicated case: Suppose the old listener.ora has the

following SID_DESC entry:

...
 (SID_DESC =
 (GLOBAL_DBNAME = an_entry)
 (SID_NAME = ORCL)
)
...

If an_entry does not match the GLOBAL_DBNAME of the migrated

database, and if the database name is SAL, the domain name is COM, and

the Oracle home is /oracle/product/9.2 , then the assistant adds the

following entry:

...
 (SID_DESC =
 (GLOBAL_DBNAME = sal.com)
 (ORACLE_HOME = /oracle/product/9.2)
 (SID_NAME = SAL)
)
...

This entry is the same as the entry in the simple case, but the Database

Upgrade Assistant also adds the entry an_entry to the SERVICE_NAMES
parameter in the listener.ora file. Therefore, the Database Upgrade

Assistant changes the SERVICE_NAMES parameter to the following:
3-8 Oracle9i Database Migration

Upgrade the Database Manually
SERVICE_NAMES = sal.com, an_entry

b. The Database Upgrade Assistant removes the entry of the upgraded

database from the old listener.ora file.

c. The Database Upgrade Assistant reloads the listener.ora file in both

the old and new Oracle9i environments.

10. Complete the procedures described in Chapter 4, "After Upgrading a Database".

Upgrade the Database Manually
Before you perform a manual upgrade, review the following system considerations

and requirements.

System Considerations and Requirements
The following sections discuss system considerations and requirements.

Upgrading a Cluster Database
If you are upgrading a cluster database, then most of the actions described in this

section should be performed on only one node of the system. So, perform the

actions described in this section on only one node unless instructed otherwise in a

particular step.

Migrating to a Different Operating System
You cannot migrate a database to a computer system that has a different operating

system during the upgrade process. For example, you cannot migrate a database

from Oracle7 on Solaris to Oracle9i on Windows 2000. However, you normally can

use Export/Import to migrate a database to a different operating system.

Caution: If you retain the old Oracle software, then never start the

upgraded database with the old Oracle software. Only start the

database with the executables in the new Oracle9i installation. Also,

before you remove the old Oracle environment, make sure you

relocate any datafiles in that environment to the new Oracle9i
environment. See the Oracle9i Database Administrator’s Guide for

information about relocating datafiles.
Upgrading a Database to the New Oracle9i Release 3-9

Upgrade the Database Manually
Considerations for Release 8.1.7 and Lower Database Character Sets
In Oracle9i, the SQL NCHAR datatypes (NCHAR, NVARCHAR2, and NCLOB) will be

limited to the Unicode character set encoding (UTF8 and AL16UTF16) only. Any

other version 8 character sets that were available under the NCHAR data type,

including Asian character sets (such as JA16SJISFIXED), will no longer be

supported.

Before migrating your SQL NCHAR data to the new Unicode NCHAR, Oracle

Corporation recommends that you analyze your SQL NCHAR data, using the

Character Set Scanner for the identification of possible invalid character set

conversion or data truncation.

When you upgrade to Oracle9i, the value of the National Character Set of the

upgraded database is set based on the value of the National Character Set of the

version 8 database being upgraded.

If the old National Character Set is UTF8, then the new National Character Set will

be UTF8. Otherwise, the National Character Set is changed to AL16UTF16.

During the upgrade, the existing NCHARcolumns in the data dictionary are changed

to use the new Oracle9i format and, if the National Character Set has been changed

to AL16UTF16, the dictionary NCHAR columns will be converted to the AL16UTF16

character set.

Note: A change in word size is supported during the upgrade

process. A change in word size involves switching between 32-bit

and 64-bit architecture within the same operating system. See

"Changing Word Size" on page 1-11 for more information.

See Also: Oracle9i Database Globalization Support Guide for more

information about the Character Set Scanner

Note: NCHAR columns in user tables are not changed during the

upgrade. To change NCHAR columns in user tables, see "Upgrade

User NCHAR Columns" on page 4-13.
3-10 Oracle9i Database Migration

Upgrade the Database Manually
Considerations for Replication Environments
If you plan to use CHAR column length semantics in Oracle9i, or if your replication

database contains tables with NCHAR or NVARCHAR2 columns, then this section

contains considerations for upgrading a replication environment to Oracle9i.

CHAR Column Length Semantics If you plan to use CHAR column length semantics in a

replication database after you upgrade it to Oracle9i, then all of the databases

participating with that database in the replication environment must also use CHAR
column length semantics. In this case, Oracle Corporation recommends that you

upgrade all of the databases participating in the replication environment at the

same time. This applies to both master sites and materialized view sites in your

replication environment.

If you cannot upgrade all of the databases in your replication environment at the

same time, then you can only use CHAR column length semantics in your Oracle9i
databases if all of the databases prior to Oracle9i are using a single-byte character

set. Otherwise, do not switch to CHAR column length semantics in the Oracle9i
database until all of the other databases in the replication environment are

upgraded to Oracle9i.

NCHAR or NVARCHAR2 Columns If your replication database contains tables with

NCHAR or NVARCHAR2 columns, then Oracle Corporation recommends that you

upgrade all of the databases participating in the replication environment at the

same time. This applies to both master sites and materialized view sites in your

replication environment. In Oracle9i, all columns specified as NCHARor NVARCHAR2
datatype are stored in Unicode format.

If you cannot upgrade all of the databases in your replication environment at the

same time, then interoperability is only supported if all of the databases prior to

Oracle9i are using a fixed width national character set. If any of the databases prior

to Oracle9i are using a variable width character set, then you must convert these

databases to fixed width character sets before you upgrade any of the other

databases in the replication environment to Oracle9i.
Upgrading a Database to the New Oracle9i Release 3-11

Upgrade the Database Manually
Prepare the Database to be Upgraded
Several preparatory steps are required before you upgrade your database to the

new Oracle9i release. Depending on the release number of the database being

upgraded, you may need to complete some or all of the following steps:

1. Review upgrade issues relating to SQL*Net, Net8, and Oracle Net Services.

2. Log in to the system as the owner of the Oracle home directory of the database

being upgraded.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. If the database being upgraded is release 8.0.6 or lower, then complete the

following steps. Skip to Step 6 if the database being upgraded is release 8.1.7 or

higher:

a. Make sure no user or role has the name OUTLN, because this schema is

created automatically when you install Oracle9i. If you have a user or role

named OUTLN, then you must drop the user or role and re-create it with a

different name.

To check for a user with the name OUTLN, enter the following SQL

statement:

SELECT username FROM dba_users WHERE username = ’OUTLN’;

See Also:

■ Oracle9i Replication for more information about replication

support for column length semantics and Unicode

■ Oracle9i Database Globalization Support Guide for general

information about column length semantics and Unicode

■ Oracle8i National Language Support Guide for information about

converting character sets in release 8.1

See Also: Appendix B, "Upgrade Considerations for Oracle Net

Services" for information

Note: If the database being upgraded is release 8.0.6 or lower,

then start Server Manager. Do not start SQL*Plus.
3-12 Oracle9i Database Migration

Upgrade the Database Manually
If you do not have a user named OUTLN, then zero rows are selected.

To check for a role with the name OUTLN, enter the following SQL

statement:

SELECT role FROM dba_roles WHERE role = ’OUTLN’;

If you do not have a role named OUTLN, then zero rows are selected.

b. If the database being upgraded is release 7.3.4, then complete the additional

preparatory steps in "Prepare the Oracle7 Database to be Upgraded" on

page D-5.

6. Add space to your SYSTEM tablespace and to the tablespaces where you store

rollback segments, if necessary.

Upgrading to a new release requires more space in your SYSTEMtablespace and

in the tablespaces where you store rollback segments. If you have enough space

on your system, then consider adding more space to these tablespaces.

Table 3–1 identifies the amount of additional space in the SYSTEM tablespace

required to upgrade to the new Oracle9i release from each supported Oracle

release. If you run out of space during the upgrade, then you will need to

perform the upgrade again.

The following example illustrates how to add more space to the SYSTEM
tablespace:

ALTER TABLESPACE system
 ADD DATAFILE ’/home/user1/mountpoint/oradata/db1/system02.dbf’
 SIZE 16M
 AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED;

ALTER ROLLBACK SEGMENT system
 STORAGE (MAXEXTENTS UNLIMITED);

Table 3–1 SYSTEM Tablespace Requirements

Release Additional SYSTEM Tablespace
Additional SYSTEM Tablespace
(with JServer)

9.0.1 16 MB 30 MB

8.1.7 52 MB 80 MB

8.0.6 70 MB N/A

7.3.4 85 MB N/A
Upgrading a Database to the New Oracle9i Release 3-13

Upgrade the Database Manually
7. Determine the files that you will back up in Step 10 by issuing the following

SQL statements:

SQL> SPOOL files.log
SQL> SELECT member FROM v$logfile;
SQL> SELECT name FROM v$datafile;
SQL> SELECT name from v$controlfile;
SQL> SPOOL OFF

The files.log spool file lists all of the files that you must back up in Step 10.

8. Run SHUTDOWN IMMEDIATE on the database:

SQL> SHUTDOWN IMMEDIATE

If you are upgrading a cluster database, then shut down all instances.

9. If your operating system is Windows, then ensure all Oracle services are

stopped.

10. Perform a full offline backup of the database. Make sure you back up the files

listed in the files.log spool file that you generated in Step 7.

11. Exit SQL*Plus.

See Also: Your Administrator’s Guide for Windows for information

about stopping services.

Caution: If you encounter any problems with the upgrade, then

you will need to restore the database from this backup. Therefore,

make sure you back up your database now as a precaution.

See Also:

■ Oracle8i Backup and Recovery Guide for more information about

backing up a release 8.1 database

■ Oracle8 Backup and Recovery Guide for more information about

backing up a release 8.0 database
3-14 Oracle9i Database Migration

Upgrade the Database Manually
Upgrade the Database
Complete the following steps to upgrade the database:

1. If you are upgrading from release 7.3.4, then complete the following steps:

a. Complete the steps in "Review MIG Utility Command-Line Options" on

page D-9 and in "Run the MIG Utility" on page D-10.

b. Either remove or rename the database’s control files, or use the CONTROL_
FILES initialization parameter to specify new control file names. The

CONTROL_FILES initialization parameter is typically set in the

initialization parameter file, but, if you are upgrading a cluster database,

then it may be set in the init db_name.ora file instead.

You will issue the ALTER DATABASE CONVERT statement later in the

upgrade process. This statement automatically creates new control files. If

you do not use the CONTROL_FILES initialization parameter, then this

statement uses the control file names of your previous database (derived

from the convert file) and returns an error if the control files already exist.

Therefore, in this case, you must remove or rename the control files.

However, if you use the CONTROL_FILES initialization parameter to

specify new control file names, then the ALTER DATABASE CONVERT
statement creates the new control files with the names you specify, and you

do not need to remove the old control files. For a complete list of your

existing control files, check the dbfiles.log spool file you created in Step

10 on page 3-14.

Control files are considerably larger in Oracle9i than in Oracle7. For

example, Oracle7 control files in the hundreds of kilobytes may expand into

tens of megabytes in Oracle9i. The larger size in Oracle9i results from the

storage of more information in the control file, such as backup and

tablespace records. This size increase could be important if a control file is

on a raw device or if its available disk space is restricted.

Note: The CONTROL_FILES initialization parameter specifies one

or more names of control files, separated by commas. Oracle

Corporation recommends using multiple files on different devices

or mirroring the file at the operating system level. See the Oracle9i
Database Administrator’s Guide for more information
Upgrading a Database to the New Oracle9i Release 3-15

Upgrade the Database Manually
2. If your operating system is Windows, then complete the following steps:

a. Stop the OracleService SID Oracle service of the database you are

upgrading, where SID is the instance name. For example, if your SID is

ORCL, then enter the following at a command prompt:

C:\> NET STOP OracleService ORCL

b. Delete the Oracle service at a command prompt using ORADIM. The

following table lists the command to run for each Oracle release:

For example, if your Oracle release is release 8.0.6 and your SID is ORCL,
then enter the following command:

C:\> ORADIM80 -DELETE -SID ORCL

If your Oracle release is release 8.1.7 and your SID is ORCL, then enter the

following command:

C:\> ORADIM -DELETE -SID ORCL

c. Create the new Oracle9i database service at a command prompt:

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
 -STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INIT SID .ORA

This syntax includes the following variables:

Note: For Oracle9i Real Application Clusters, perform this step on

all nodes.

Oracle Release... Enter at a Command Prompt...

7.3 C:\> ORADIM73 -DELETE -SID SID

8.0 C:\> ORADIM80 -DELETE -SID SID

8.1 and higher C:\> ORADIM -DELETE -SID SID

SID is the same SID name as the SID of the database you are

upgrading.
3-16 Oracle9i Database Migration

Upgrade the Database Manually
For example, if your SID is ORCL, your PASSWORD is TWxy579, the

maximum number of USERS is 10, and the ORACLE_HOME directory is

C:\ORA92 , then enter the following command:

C:\> ORADIM -NEW -SID ORCL -INTPWD TWxy579 -MAXUSERS 10
 -STARTMODE AUTO -PFILE C:\ORA92\DATABASE\INITORCL.ORA

3. Copy configuration files from the previous Oracle home to the new Oracle9i
Oracle home:

a. If you are upgrading from release 7.3.4 on a UNIX platform, then move or

copy the convert file from the Oracle7 Oracle home directory to the new

Oracle9i Oracle home directory. On most UNIX platforms, the convert file,

conv sid .dbf (where sid is the Oracle9i database name), should reside in

ORACLE_HOME/dbs in both the Oracle7 and the new Oracle9i environment.

On Windows operating systems, the convert file, convert.ora , should

reside in ORACLE_HOME\rdbms in the new Oracle9i environment. It is

automatically placed in this directory by the MIG utility, and you do not

need to move it.

b. If your parameter file resides within the old environment’s Oracle home,

then copy it to the new Oracle home. By default, Oracle looks for the

parameter file in ORACLE_HOME/dbs on UNIX platforms and in ORACLE_
HOME\database on Windows operating systems. The initialization

parameter file can reside anywhere you wish, but it should not reside in the

old environment’s Oracle home after you upgrade to the new Oracle9i
release.

c. If your parameter file has an IFILE (include file) entry and the file

specified in the IFILE entry resides within the old environment’s Oracle

home, then copy the file specified by the IFILE entry to the new Oracle

PASSWORD is the password for the new release 9.2 database instance.

This is the password for the user connected with SYSDBA
privileges. The -INTPWD option is not required. If you do

not specify it, then operating system authentication is used,

and no password is required.

USERS is the maximum number of users who can be granted

SYSDBA and SYSOPER privileges.

ORACLE_HOME is the release 9.2 Oracle home directory. Ensure that you

specify the full pathname with the -PFILE option, including

drive letter of the Oracle home directory.
Upgrading a Database to the New Oracle9i Release 3-17

Upgrade the Database Manually
home. The file specified in the IFILE entry contains additional

initialization parameters.

d. If you have a password file that resides within the old environment’s Oracle

home, then move or copy the password file to the new Oracle9i Oracle

home.

The name and location of the password file are operating system-specific.

On UNIX platforms, the default password file is ORACLE_
HOME/dbs/orapw sid . On Windows operating systems, the default

password file is ORACLE_HOME\database\pwd sid .ora . In both cases,

sid is your Oracle instance ID.

e. If you are upgrading a cluster database and your init db_name.ora file

resides within the old environment’s Oracle home, then move or copy the

init db_name.ora file to the new Oracle home.

4. Adjust your parameter file for use with the new Oracle9i release by completing

the following steps:

a. Remove obsolete initialization parameters and adjust deprecated

initialization parameters. Certain initialization parameters are obsolete in

the new Oracle9i release. Remove all obsolete parameters from any

parameter file that will start a release 9.2 instance. Obsolete parameters may

cause errors in the new Oracle9i release. Also, alter any parameter whose

syntax has changed in the new Oracle9i release; refer to Appendix A,

"Changes to Initialization Parameters and the Data Dictionary" for lists of

initialization parameters that have been deprecated or have become

obsolete.

Also, if you are upgrading a cluster database, then see Oracle9i Real
Application Clusters Setup and Configuration for more information about

obsolete cluster database initialization parameters.

b. Make sure the COMPATIBLE initialization parameter is properly set for

Oracle9i. If COMPATIBLE is set below 8.1.0, then you will encounter the

following error when you attempt to start up your release 9.2 database later

in step 10:

ORA-00401: the value for parameter compatible is not supported by this

Note: If you are upgrading a cluster database, then perform this

step on all nodes in which this cluster database has instances

configured.
3-18 Oracle9i Database Migration

Upgrade the Database Manually
release

Either leave COMPATIBLE unset in your initialization parameter file or set

COMPATIBLE to 8.1. x .

c. If you are using a password file, then set REMOTE_LOGIN_PASSWORDFILE
to NONE in the initialization parameter file. After upgrading your database,

you can change the settings for these parameters back to their normal

settings.

d. If you are upgrading a cluster database, then set the CLUSTER_DATABASE
initialization parameter to false . After the upgrade, you must set this

initialization parameter back to true .

e. Make sure the DB_DOMAIN initialization parameter is set properly.

f. If the NLS_LENGTH_SEMANTICS initialization parameter is set to CHAR,
then set it to BYTE. This initialization parameter can be set back to CHAR
after the upgrade is complete.

g. On Windows operating systems, change the BACKGROUND_DUMP_DEST
and USER_DUMP_DEST initialization parameters that point to RDBMS80 or

any other environment variable to point to the following directories instead:

In the settings, substitute the complete Oracle base path for ORACLE_BASE
and substitute the database name for DB_NAME.

h. Make sure all path names in the parameter file are fully specified. You

should not have relative path names in the parameter file.

i. If the parameter file contains an IFILE entry, then change the IFILE entry

in the parameter file to point to the new location of the include file that you

specified in Step 3. c. Then, edit the file specified in the IFILE entry in the

same way that you edited the parameter file in Steps a to h.

See Also: "The DB_DOMAIN Parameter" on page A-8 for more

information about setting this initialization parameter.

Initialization Parameter Change Setting To

BACKGROUND_DUMP_DEST ORACLE_BASE\oradata\ DB_NAME

USER_DUMP_DEST ORACLE_BASE\oradata\ DB_NAME\archive
Upgrading a Database to the New Oracle9i Release 3-19

Upgrade the Database Manually
j. If you are upgrading a cluster database, then modify the init db_
name.ora file in the same way that you modified the parameter file.

Make sure you save all of the files you modified after making these

adjustments.

5. If your operating system is UNIX, then make sure that the following

environment variables point to the new release 9.2 directories:

■ ORACLE_HOME

■ PATH

■ ORA_NLS33

■ LD_LIBRARY_PATH

If you are upgrading from release 7.3.4 and ORACLE_HOMEpoints to the Oracle7

executables, then the following error is displayed when you issue the ALTER
DATABASE CONVERT statement later in the upgrade process:

ORA-00223: convert file is invalid or incorrect version

6. Log in to the system as the owner of the Oracle home directory of the new

release.

7. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

8. Start SQL*Plus.

9. Connect to the database instance as a user with SYSDBA privileges.

Note: If you are upgrading a cluster database, then perform this

step on all nodes in which this cluster database has instances

configured.

Note: If you are upgrading a cluster database, then perform this

step on all nodes in which this cluster database has instances

configured.

See Also: Your operating system-specific Oracle9i installation

documents for information about setting other important

environment variables on your operating system.
3-20 Oracle9i Database Migration

Upgrade the Database Manually
10. If the database being upgraded is release 8.0.6 or higher, then Start up the

database by issuing the following command:

SQL> STARTUP MIGRATE

You may need to use the PFILE option to specify the location of your

initialization parameter file.

You may see error messages listing obsolete initialization parameters. If so, then

make a note of the obsolete initialization parameters and continue with the

upgrade normally. Then, remove the obsolete initialization parameters the next

time you shut down the database.

11. If the database being upgraded is release 7.3.4, then perform the following steps

to Start up the database:

a. Start an Oracle9i database instance without mounting the new Oracle9i
database:

SQL> STARTUP RESTRICT NOMOUNT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

You may see error messages listing obsolete initialization parameters. If so,

then make a note of the obsolete initialization parameters and continue

with the upgrade normally. Then, remove the obsolete initialization

parameters the next time you shut down the database.

b. Create a new Oracle9i database control file and convert the file headers of

all online tablespaces to Oracle9i format by issuing the following statement:

SQL> ALTER DATABASE CONVERT;

Successful execution of this statement is the "point of no return" to Oracle7

for this database. However, if necessary, you can restore the Oracle7

database from backups.

If errors occur during this step, then correct the conditions that caused the

errors and rerun the MIG utility. Otherwise restore the backup you

performed after you ran the MIG utility.

Caution: Starting the database instance in any other mode might

corrupt the database.
Upgrading a Database to the New Oracle9i Release 3-21

Upgrade the Database Manually
c. Open the Oracle9i database with the following statement:

SQL> ALTER DATABASE OPEN RESETLOGS MIGRATE;

When the Oracle9i database is opened, all rollback segments that are online

are converted to the new Oracle9i format.

If you encounter errors when you issue this statement, then start the

migration process over from the beginning, ensuring the database is not

opened in the Oracle7 environment after the Migration utility completes.

Start from the beginning of this chapter, but make sure you completed all of

the pre-migration steps described in Chapter 2.

12. Set the system to spool results to a log file for later verification of success:

SQL> SPOOL upgrade.log

13. If you want to see the complete detailed output of the scripts you will run, then

you can issue a SET ECHO ON command:

SQL> SET ECHO ON

14. Run uold_release .sql , where old_release refers to the release you had

installed prior to upgrading. See Table 3–2 to choose the correct script. Each

script provides a direct upgrade from the release specified in the "Old Release"

column. The "Old Release" is the release from which you are upgrading.

To run a script, enter the following:

SQL> @uold_release .sql

See Also: "Problems at the ALTER DATABASE CONVERT

Statement" on page D-27 for information about common errors

encountered at this step and the actions required to resolve them.

Table 3–2 Upgrade Scripts

Old Release Run Script

7.3.4 u0703040.sql

8.0.6 u0800060.sql

8.1.7 u0801070.sql

9.0.1 u0900010.sql
3-22 Oracle9i Database Migration

Upgrade the Database Manually
Make sure you follow these guidelines when you run the script:

■ You must use the version of the script supplied with the new release 9.2

installation.

■ You must run the script in the new release 9.2 environment.

■ You only need to run one script, even if your upgrade spans more than one

release. For example, if your old release was 8.1.7, then you only need to

run u0801070.sql .

The script you run creates and alters certain dictionary tables. It also runs the

catalog.sql and catproc.sql scripts that come with the new 9.2 release,

which create the system catalog views and all the necessary packages for using

PL/SQL.

15. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

Then, check the spool file and verify that the packages and procedures

compiled successfully. You named the spool file in Step 12; the suggested name

was upgrade.log . Correct any problems you find in this file and rerun the

appropriate upgrade script if necessary. You can rerun any of the scripts

described in this chapter as many times as necessary.

16. To identify which components were loaded into the database for the previous

release, display the contents of the registry after the upgrade script completes.

All of the components displayed need to be upgraded to release 9.2:

SQL> SELECT comp_id, version, status
 FROM dba_registry;

17. Run the component upgrade script to upgrade components whose upgrades

can be run while connected with SYSDBA privileges:

SQL> @cmpdbmig.sql

In a separate session, verify that the component upgrades ran successfully by

reviewing the cmp_upgrade.log file, and then rerunning cmpdbmig.sql if

necessary.

Note: If the old release you had installed prior to upgrading is not

listed in Table 3–2, then see the readme files in the new installation

for the correct upgrade script to run.
Upgrading a Database to the New Oracle9i Release 3-23

Upgrade the Database Manually
18. If you issued a SET ECHO ON command, then you may want to issue a SET
ECHO OFF command now:

SQL> SET ECHO OFF

19. Shut down and restart the instance to reinitialize the system parameters for

normal operation. The restart will also perform release 9.2 initialization for

JServer and other components.

SQL> SHUTDOWN IMMEDIATE

Executing this clean shutdown flushes all caches, clears buffers, and performs

other DBMS housekeeping activities. These measures are an important final

step to ensure the integrity and consistency of the newly upgraded Oracle9i
database.

Also, if you encountered a message listing obsolete initialization parameters

when you started the database in Step 10, then remove the obsolete

initialization parameters from the initialization parameter file now.

20. Upgrade any remaining components that existed in the previous database.

21. Run utlrp.sql to recompile any remaining stored PL/SQL and Java code.

SQL> @utlrp.sql

Verify that all expected packages and classes are valid:

SQL> SELECT count(*) FROM dba_objects WHERE status=’INVALID’;
SQL> SELECT UNIQUE name FROM dba_objects WHERE status=’INVALID’;

Verify that all components are valid and have been upgraded to release 9.2:

SQL> SELECT comp_id, version, status FROM dba_registry;

Your database is now upgraded to the new 9.2 release. Complete the procedures

described in "Upgrading Specific Components" on page 3-25 and in Chapter 4,

"After Upgrading a Database".
3-24 Oracle9i Database Migration

Upgrade the Database Manually
Upgrading Specific Components
Some components of the Oracle database server require an upgrade separate from

the integrated component upgrades performed by cmpdbmig.sql . Table 3–3 lists

components and their upgrade status:

Caution: If you retain the old Oracle software, then never start the

upgraded database with the old software. Only start the database

with the executables in the new release 9.2 installation directory.

Also, before you remove the old Oracle environment, make sure

you relocate any datafiles in that environment to the new Oracle9i
environment. See the Oracle9i Database Administrator’s Guide for

information about relocating datafiles.

Table 3–3 Component Upgrade Status

Installed Component
Automatically
Upgraded

Oracle9i Catalog Views Yes

Oracle9i Packages and Types Yes

JServer JAVA Virtual Machine Yes

Oracle9i Java Packages Yes

Oracle XDK for Java Yes

Messaging Gateway Yes

Oracle Text No

Oracle9i Real Application Clusters Yes

Oracle Workspace Manager Yes

Oracle Data Mining Yes

Oracle Ultra Search No

OLAP Catalog Yes

Oracle Spatial No

Oracle interMedia No

Oracle Visual Information Retrieval No

Oracle Label Security Yes
Upgrading a Database to the New Oracle9i Release 3-25

Upgrade the Database Manually
Complete the actions in the following sections to upgrade components that were

not automatically upgraded.

Upgrading Oracle Spatial
If the Oracle system has Oracle Spatial installed, then see the Oracle Spatial User’s
Guide and Reference for instructions about upgrading Oracle Spatial to release 9.2.

Upgrading Oracle inter Media
Upgrade instructions for Oracle interMedia can be found in ORACLE_
HOME/ord/im/admin/README.txt on UNIX platforms and in ORACLE_
HOME\ord\im\admin\README.txt on Windows platforms.

Upgrading Oracle Visual Information Retrieval
Upgrade instructions for Oracle Visual Information Retrieval can be found in

ORACLE_HOME/ord/vir/admin/README.txt on UNIX platforms and in

ORACLE_HOME\ord\vir\admin\README.txt on Windows platforms.

Upgrading Oracle Text
If the Oracle system has Oracle Text installed, then complete the following steps:

1. Log in to the system as the owner of the Oracle home directory of the new

release.

2. At a system prompt, change to the ORACLE_HOME/ctx/admin directory.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. If the instance is running, shut it down using SHUTDOWN IMMEDIATE:

SQL> SHUTDOWN IMMEDIATE

6. Start up the instance in RESTRICT mode:

SQL> STARTUP RESTRICT

Note: You should perform the actions described in these sections

only after you have upgraded the database by following the

instructions earlier in this chapter.
3-26 Oracle9i Database Migration

Upgrade the Database Manually
You may need to use the PFILE option to specify the location of your

initialization parameter file.

7. Set the system to spool results to a log file for later verification of success:

SQL> SPOOL text_upgrade.log

If you want to see the complete detailed output of the script you will run, then

you can also issue a SET ECHO ON command:

SQL> SET ECHO ON

8. If you are upgrading from release 8.1.7, then complete the following steps. Skip

to Step 9 if you are upgrading from release 9.0.1.

a. Run s0900010.sql :

SQL> @s0900010.sql

This script grants new, required database privileges to user CTXSYS.

b. Connect to the database instance as user CTXSYS.

c. Run u0900010.sql :

SQL> @u0900010.sql

d. Connect to the database instance as a user with SYSDBA privileges.

9. If you are upgrading from release 9.0.1, then complete the following steps.

a. Run s0902000.sql :

SQL> @s0902000.sql

This script grants new, required database privileges to user CTXSYS.

b. Connect to the database instance as user CTXSYS.

c. Run u0902000.sql :

SQL> @u0902000.sql

This script upgrades the CTXSYS schema to release 9.2.

d. Connect to the database instance as a user with SYSDBA privileges.

10. Check for any invalid CTXSYS objects and alter compile as needed.

11. Turn off the spooling of script results to the log file:
Upgrading a Database to the New Oracle9i Release 3-27

Upgrade the Database Manually
SQL> SPOOL OFF

Then, check the spool file and verify that the packages and procedures

compiled successfully. You named the spool file in Step 7; the suggested name

was text_upgrade.log . Correct any problems you find in this file and rerun

the appropriate upgrade scripts if necessary.

If you issued a SET ECHO ON command, then you may want to issue a SET
ECHO OFF command now:

SQL> SET ECHO OFF

12. Run ALTER SYSTEM DISABLE RESTRICTED SESSION:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;

13. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

14. Exit SQL*Plus.

Oracle Text is upgraded to the new release.

Upgrading Oracle Ultra Search
If the Oracle system has Oracle Ultra Search installed, then see the Oracle Ultra
Search Online Documentation for instructions about upgrading Oracle Ultra Search to

release 9.2.
3-28 Oracle9i Database Migration

After Upgrading a Data
4

After Upgrading a Database

This chapter guides you through the procedures to perform after you have

completed an upgrade of your database. This chapter covers the following topics:

■ Tasks to Complete After Upgrading Your Database

■ Test the Database and Compare Results

■ Changing the Word Size of Your Current Release
base 4-1

Tasks to Complete After Upgrading Your Database
Tasks to Complete After Upgrading Your Database
Complete the following tasks after you have upgraded your database.

Back Up the Database
Make sure you perform a complete backup of the production database. This backup

must be complete, including all datafiles, control files, online redo log files,

parameter files, and SQL scripts that create objects in the new database. To

accomplish a complete backup, a full database export or a cold backup is required,

because a hot backup cannot afford full recoverability. This backup can be used as a

return point, if necessary, in case subsequent steps adversely affect the database.

Change Passwords for Oracle-Supplied Accounts
Depending on the release from which you upgraded, there may be some new

Oracle-supplied accounts. Oracle Corporation recommends that you lock all

Oracle-supplied accounts except for SYS and SYSTEM, and expire their passwords,

requiring new passwords to be specified if the accounts are unlocked.

You can view the status of all accounts by issuing the following SQL statement:

SQL> SELECT username, account_status
 FROM dba_users
 ORDER BY username;

To LOCK and EXPIRE passwords, issue the following SQL statement:

ALTER USER username PASSWORD EXPIRE ACCOUNT LOCK;

Migrate Your Oracle Managed Files
If you are upgrading from an Oracle9i release earlier than release 9.0.1.2.0, then you

must migrate your Oracle Managed Files. In Oracle9i releases earlier than release

9.0.1.2.0, Oracle sometimes incorrectly considered non-OMF files as OMF. This

resulted in the following error when adding a datafile, control file, or log file to the

database:

ORA-01276: Cannot add a file with an Oracle Managed Files file name

See Also: Oracle9i User-Managed Backup and Recovery Guide for

details about backing up a database
4-2 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
Also, Oracle sometimes incorrectly deleted the operating system files associated

with a tablespace or redo log when dropping the tablespace or redo log.

Starting with release 9.0.1.2.0, the format of Oracle Managed Files file names on

Windows and UNIX operating systems has changed. OMF files created in earlier

Oracle9i releases will not be recognized as OMF files unless they are renamed to

conform to the new OMF file name format.

In earlier Oracle9i releases, a file was considered OMF if its base file name

contained:

■ An ora_ prefix

■ A .dbf , .tmp , .log , or .ctl extension

In release 9.0.1.2.0 and higher, a file is now considered OMF if its base file name

contains:

■ An o1_mf_ prefix

■ A .dbf , .tmp , .log , or .ctl extension

■ An underscore (_) immediately preceding the extension

You can migrate old OMF datafiles, tempfiles, and log files by renaming them in the

file system and in the control file. Complete the following steps:

1. Find the OMF files by issuing the following SQL statements:

SQL> SELECT name FROM v$datafile;
SQL> SELECT name FROM v$tempfile;
SQL> SELECT member FROM v$logfile;

2. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

3. Rename the files in the file system:

■ Change ora_ to o1_mf_

■ Add _ before the extension

For example, for a file named ora_tbs1_2ixfh90q.dbf , the new name

would be o1_mf_tbs1_2ixfh90q_.dbf .

4. Mount the database.

5. Rename the files in the control file. For example:

SQL> ALTER DATABASE RENAME FILE ’ old_filename ’ TO ’ new_omf_filename ’;
After Upgrading a Database 4-3

Tasks to Complete After Upgrading Your Database
6. Open the database.

OMF control files can be migrated by renaming them in the file system and in the

CONTROL_FILES initialization parameter. Complete the following steps:

1. Find the OMF files by examining the CONTROL_FILES initialization parameter.

2. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

3. Rename the files in the file system:

■ Change ora_ to o1_mf_

■ Add _ before the extension

For example, for a file named ora_cmr7t90p.ctl , the new name would

be o1_mf_cmr7t90p_.ctl .

4. Modify the CONTROL_FILES initialization parameter to reference the new

names.

5. Mount and open the database.

Upgrade Oracle OLAP
This section contains Oracle OLAP upgrade instructions.

Upgrading from Release 8.1.7 or Later
Oracle OLAP provides access to analytic workspaces through SQL. If your

COMPATIBLE initialization parameter is set to 8.1.6 or higher, then the standard

upgrade procedure provides this functionality. No additional steps are required.

Oracle OLAP also offers the OLAP API (a Java interface) and the OLAP Catalog

Metadata. To include these features when COMPATIBLEis 8.1.6 or higher, perform

the following steps:

1. Complete the standard upgrade procedure.

2. Set COMPATIBLE to 9.2.0 .

3. Restart the database.

4. Run the following script:

ORACLE_HOME/olap/admin/olapapi.sql
4-4 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
5. If you are upgrading from a release that is earlier than release 9.0.1, then

complete the following additional steps which create the OLAP Catalog

Metadata in its own tablespace:

a. Create a tablespace with a statement similar to the following. You can

specify any valid tablespace name and any valid database file name:

CREATE TABLESPACE OLAPCAT LOGGING
 DATAFILE ’ ORACLE_HOME/rdbms/dbs/olap01.dbf’
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

b. Run the following script specifying the name of the tablespace that you

created and the name of a temporary tablespace for your database. In this

example, the names are OLAPCAT and TEMP:

ORACLE_HOME/cwmlite/admin/oneinstl.sql OLAPCAT TEMP

Upgrading from Release 8.0.6 or Earlier
If you only want access to analytic workspaces through SQL, without the OLAP

API and the OLAP Catalog Metadata, then complete the following steps:

1. Complete the standard upgrade procedure.

2. Set COMPATIBLE to 8.1.6 or higher.

3. Restart the database.

4. Run the following script:

ORACLE_HOME/olap/admin/olapaw.sql

If you want support for the OLAP API and OLAP Catalog metadata in addition

to analytic workspace access through SQL, then complete the following steps

instead:

1. Complete the standard upgrade procedure.

2. Set COMPATIBLE to 9.2.0 .

3. Restart the database.

4. Run the following script:

ORACLE_HOME/olap/admin/olap.sql
After Upgrading a Database 4-5

Tasks to Complete After Upgrading Your Database
5. Create a tablespace with a statement similar to the following. You can specify

any valid tablespace name and any valid database file name:

CREATE TABLESPACE OLAPCAT LOGGING
 DATAFILE ’ ORACLE_HOME/rdbms/dbs/olap01.dbf’
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

6. Run the following script specifying the name of the tablespace that you created

and the name of a temporary tablespace for your database. In this example, the

names are OLAPCAT and TEMP:

ORACLE_HOME/cwmlite/admin/oneinstl.sql OLAPCAT TEMP

Migrate Tables from LONGs to LOBs
LOB datatypes (BFILE , BLOB, CLOB, and NCLOB) can provide many advantages

over LONG datatypes. See Oracle9i Database Concepts for information about the

differences between LONG and LOB datatypes.

Change LONGs to LOBs
In Oracle9i, the ALTER TABLE statement can be used to change the datatype of a

LONG column to CLOB and that of a LONG RAW column to BLOB.

In the following example, the LONGcolumn named long_col in table long_tab is

changed to datatype CLOB:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

After using this method to change LONG columns to LOBs, all the existing

constraints and triggers on the table will still be usable. However, all the indexes,

including Domain indexes and Functional indexes, on all columns of the table will

become unusable and will have to be rebuilt using an ALTER INDEX ...
REBUILD statement. Also, the Domain indexes on the LONG column will have to be

dropped before changing the LONG column to a LOB.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for information about modifying applications to use LOB

data
4-6 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
Copy LONGs to LOBs
In release 8.1, the TO_LOB SQL function copies data from a LONG column in a table

to a LOB column. The datatype of the LONG and LOB must correspond for a

successful copy. For example, LONG RAW data must be copied to BLOB data, and

LONG data must be copied to CLOB data.

In the examples in the following procedure, the LONG column named long_col in

table long_tab is copied to a LOB column named lob_col in table lob_tab .

These tables include an id column that contains identification numbers for each

row in the table.

Complete the following steps to copy data from a LONG column to a LOB column:

1. Create a new table with the same definition as the table that contains the LONG
column, but use a LOB datatype in place of the LONG datatype.

For example, suppose you have a table with the following definition:

CREATE TABLE long_tab (
 id NUMBER,
 long_col LONG);

Create a new table using the following SQL statement:

CREATE TABLE lob_tab (
 id NUMBER,
 clob_col CLOB);

2. Issue an INSERT statement using the TO_LOB function to insert the data from

the table with the LONG datatype into the table with the LOB datatype.

For example, issue the following SQL statement:

INSERT INTO lob_tab
 SELECT id,
 TO_LOB(long_col)
 FROM long_tab;

Note: When you create the new table, make sure you preserve the

table’s schema, including integrity constraints, triggers, grants, and

indexes. The TO_LOBfunction only copies data; it does not preserve

the table’s schema.
After Upgrading a Database 4-7

Tasks to Complete After Upgrading Your Database
3. When you are certain that the copy was successful, drop the table with the

LONG column.

For example, issue the following SQL statement to drop the long_tab table:

DROP TABLE long_tab;

4. Create a synonym for the new table using the name of the table with LONGdata.

The synonym ensures that your database and applications continue to function

properly.

For example, issue the following SQL statement:

CREATE SYNONYM long_tab FOR lob_tab;

Once the copy is complete, any applications that use the table must be modified to

use the LOB data.

Modify Your listener.ora File
You need to modify your listener.ora file only if one of the following

conditions is true:

■ You did not use the Database Upgrade Assistant to upgrade your database.

■ You used the Database Upgrade Assistant to upgrade your database but chose

not to have the listener.ora file updated automatically.

If neither of these conditions is true, then skip this section. If one of these conditions

is true, then you need to modify your listener.ora file.

Upgrade Your Standby Database
The following procedures contain information about upgrading your current

release of Oracle to the new Oracle9i release for a configuration that includes one or

more standby databases.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for information about modifying applications to use LOB
data.

See Also: "listener.ora" on page B-11 for information about

modifying your listener.ora file.
4-8 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
Prepare to Upgrade
If multiple standby databases exist, then repeat the steps in this section for each

standby database to be upgraded:

1. Check for the existence of nologging operations. If nologging operations have

been performed, then the standby will need to be updated. Refer to Oracle9i
Data Guard Concepts and Administration for further details.

2. Make note of any tablespaces or datafiles that need recovery due to offline

immediate. Tablespaces or datafiles should be recovered and either brought

online or taken offline prior to upgrading.

Upgrade the Production Site
Install the new Oracle9i release on production sites and follow the instructions in

Oracle9i for upgrading the production database.

Make the following additional adjustments to your parameter file before the

upgrade:

■ Do not enable remote archiving within the production database’s parameter file

if it was not already enabled. If remote archiving is enabled, then set the remote

destination to defer.

■ Cancel managed recovery on the standby database if running.

■ If upgrading from release 8.1.7 or earlier and running Oracle9i Real Application

Clusters Guard, make sure to comment out the PARALLEL_SERVER
initialization parameter and set CLUSTER_DATABASE = true on the

production site.

Ensure that all archived redo logs have been applied to the standby prior to the

upgrade.

After the upgrade is complete, switch logfiles to archive any redo that remains in

the last log:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Manually transfer archive logs from the upgrade from the primary archive

destination on the production site to the standby archive destination on the standby

host.

Shut down the standby database and listener

Start up and mount the standby database.
After Upgrading a Database 4-9

Tasks to Complete After Upgrading Your Database
Place the standby database in managed recovery mode. At the SUGGESTION

prompt, type AUTO to apply all of the archive logs generated during the upgrade

process.

Verify that the standby database has been recovered to the last log that was

transferred to the standby host. Resolve any archive log gaps between the

production and the standby.

Re-enable remote archiving on the primary site by changing the standby destination

from defer to enable.

Place standby into a recovery state.

Add New Features as Appropriate
Oracle9i Database New Features describes many of the new features available in the

new Oracle9i release. Determine which of these new features can benefit the

database and applications; then, develop a plan for using these features.

It is not necessary to make any immediate changes to begin using your new

Oracle9i database. You may prefer to introduce these enhancements into your

database and corresponding applications gradually.

Chapter 6, "Upgrading Your Applications" describes ways to enhance your

applications so that you can take advantage of new Oracle9i features. However,

before you implement new Oracle9i features, test your applications and successfully

run them with the upgraded database.

Develop New Administrative Procedures as Needed
After familiarizing yourself with new Oracle9i features, review your database

administration scripts and procedures to determine whether any changes are

necessary.

Coordinate your changes to the database with the changes that are necessary for

each application. For example, by enabling integrity constraints in the database, you

may be able to remove some data checking from your applications.

Adjust Your Parameter File for the New Release
Each release of Oracle introduces new initialization parameters, deprecates some

initialization parameters, and makes some initialization parameters obsolete. You

should adjust your parameter file to account for these changes and to take

advantage of new initialization parameters that may be beneficial to your system.
4-10 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
The COMPATIBLE initialization parameter controls the compatibility level of your

database. Set the COMPATIBLE initialization parameter based on the compatibility

level you want for your new database.

Normalize Filenames on Windows Operating Systems
You only need to normalize filenames if you are running Oracle on a Windows

operating system. You do not need to perform these steps on UNIX platforms.

The control file and the recovery catalog both store filenames so that they can access

files that are required by the database, such as:

■ Datafiles

■ Control files

■ Online and archived redo logs used by Oracle

■ Datafile copies and on-disk backup pieces used by Recovery Manager

In releases prior to release 8.1.6 on Windows operating systems, a flawed filename

normalization mechanism allowed two different filenames to refer to the same

physical file. For example, because of this flaw, Oracle may not record the fully

specified pathname for a file in the control file. That is, Oracle may record only

dbfile1.dbf instead of c:\oracle\oradata\dbfile1.dbf . If this happens,

then, in subsequent statements that modify c:\oracle\oradata\dbfile1.dbf ,

Oracle might conclude that this file is different than dbfile1.dbf .

Also, because of this behavior, SQL statements and Recovery Manager commands

that refer to existing files must be specified exactly as they were originally entered

or they are not recognized. An example of a SQL statement that refers to existing

files is the ALTER DATABASE RENAME FILE statement.

See Also:

■ Oracle9i Database Reference for a list of the new initialization

parameters in release 9.2, and for information about each

parameter

■ Appendix A, "Changes to Initialization Parameters and the

Data Dictionary" for lists of obsolete and deprecated

initialization parameters in release 9.2

See Also: "Setting the COMPATIBLE Initialization Parameter" on

page 5-7 for information
After Upgrading a Database 4-11

Tasks to Complete After Upgrading Your Database
In release 8.1.6 and higher, the flawed filename normalization mechanism is

corrected. However, existing filenames in the control file and recovery catalog must

be normalized with the new filename normalization mechanism.

To normalize these filenames, complete the following steps:

1. Using SQL*Plus, connect to the database as a user with SYSDBA privileges.

2. Shut down the database using SHUTDOWN NORMAL or SHUTDOWN IMMEDIATE:

SQL> SHUTDOWN IMMEDIATE

3. Make an operating system backup of your control file.

4. Run STARTUP MOUNT to mount the database without opening it:

SQL> STARTUP MOUNT

5. Run the DBMS_BACKUP_RESTORE.RENORMALIZEALLFILENAMES procedure

to normalize the filenames in your control file:

SQL> EXECUTE DBMS_BACKUP_RESTORE.RENORMALIZEALLFILENAMES;

6. When the DBMS_BACKUP_RESTORE.RENORMALIZEALLFILENAMES procedure

has completed successfully, open the database:

SQL> ALTER DATABASE OPEN;

7. Exit SQL*Plus.

8. Log in to Recovery Manager and connect to a target database and recovery

catalog.

For example, if the network service name for the target database is TGT_DB and

the network service name for the recovery catalog database is CAT_DB, then

you can enter the following, substituting the appropriate schema names and

passwords:

rman target sys/ password @tgt_db catalog rcat_schema/rcat_password @cat_db

Note: Do not perform the following procedure on Oracle releases

prior to release 8.1.6.

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information about operating system backups.
4-12 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
9. Issue the RENORMALIZE CATALOG command to normalize the filenames in the

recovery catalog for this target database:

RMAN> renormalize catalog;

10. Repeat Steps 8 through 9 for each release 8.1.6 or higher target database

registered in this recovery catalog.

Your filenames are now normalized.

Tasks to Complete Only After Upgrading a Release 8.1.7 or Lower Database
Complete the following additional tasks only if you upgraded your database from

release 8.1.7 or lower. These tasks are not required if you upgraded from release

9.0.1.

Upgrade User NCHAR Columns
If you upgraded from a version 8 release and your database contains user tables

with NCHAR columns, you must upgrade the NCHAR columns before they can be

used in Oracle9i.

The following steps convert your NCHARcolumns from the old format and character

set to the new Oracle9i format. In addition, if your old National Character Set was

UTF8, it will remain UTF8 in Oracle9i. However, your National Character Set will

be converted to AL16UTF16 if it was not UTF8 in the old release.

Note: The RENORMALIZE CATALOG command is not considered

part of the Recovery Manager syntax and is not documented in the

Oracle9i Recovery Manager User’s Guide. The command is only

intended for use on databases migrated or upgraded from a release

prior to release 8.1.6 on Windows platforms.

Note: If you need to restore a control file for a point-in-time

recovery from a backup that was taken before you completed the

filename normalization procedure described above, then first

restore the backup control file, then perform Steps 1 to 7, and finally

perform the recovery.
After Upgrading a Database 4-13

Tasks to Complete After Upgrading Your Database
You can override the default upgrade selection of the National Character Set. That

is, a version 8 UTF8 National Character Set can be converted to an Oracle9i
AL16UTF16 National Character Set or a version 8 non-UTF8 National Character Set

can be converted to an Oracle9i UTF8 National Character Set.

You will encounter the following error when attempting to use the NCHAR columns

in Oracle9i until you perform the steps in this section:

ORA-12714: invalid national character set specified

To upgrade user tables with NCHAR columns, perform the following steps:

1. Log in to the system as the owner of the Oracle home directory.

2. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. If the instance is running, shut it down using SHUTDOWN IMMEDIATE:

SQL> SHUTDOWN IMMEDIATE

6. Start up the instance in RESTRICT mode:

SQL> STARTUP RESTRICT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

7. Run utlnchar.sql :

SQL> @utlnchar.sql

Alternatively, to override the default upgrade selection, run n_switch.sql :

SQL> @n_switch.sql

8. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

Note: Once you upgrade your NCHAR columns, you will not be

able to downgrade to a previous release of Oracle until all NCHAR

columns have been dropped.
4-14 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
9. Exit SQL*Plus.

Downgrading SQL NCHAR Columns Once you have upgraded your SQL NCHAR

columns (NCHAR, NVARCHAR2, and NCLOB) to Oracle9i, you will not be able to

downgrade to a previous release until all SQL NCHAR columns have been

dropped. If you need to recover the version 8 SQL NCHAR data, you will need to

reimport the data from a previous backup.

Migrate Your Server Manager Line Mode Scripts to SQL*Plus
Oracle9i no longer supports the use of Server Manager. If you run SQL scripts using

Server Manager line mode, you must modify these scripts so that they are

compatible with SQL*Plus. Appendix C, "Migrating from Server Manager to

SQL*Plus" contains instructions for modifying your Server Manager line mode

scripts to work with SQL*Plus.

Migrate Your Initialization Parameter File to a Server Parameter File
If you are currently using a traditional initialization parameter file, perform the

following steps to migrate to a server parameter file:

1. If the initialization parameter file is located on a client machine, transfer the file

from the client machine to the server machine.

2. Create a server parameter file using the CREATE SPFILE statement. This

statement reads the initialization parameter file to create a server parameter file.

The database does not have to be started to issue a CREATE SPFILE statement.

3. Start up the instance using the newly created server parameter file.

Note: If you are using Oracle9i Real Application Clusters, you

must combine all of your instance-specific initialization parameter

files into a single initialization parameter file. Instructions for doing

this, and other actions unique to using a server parameter file for

cluster databases, are discussed in:

■ Oracle9i Real Application Clusters Setup and Configuration

■ Oracle9i Real Application Clusters Administration
After Upgrading a Database 4-15

Tasks to Complete After Upgrading Your Database
Tasks to Complete Only After Upgrading a Release 8.0.6 or Lower Database
Complete the following additional tasks only if you upgraded your database from

release 8.0.6 or lower. These tasks are not required if you upgraded from release

8.1.7 or higher.

Avoid Problems with Parallel Execution
Starting with release 8.1, parallel execution message buffers can be allocated from

the large pool. In past releases, this allocation was from the shared pool. To avoid

problems resulting from this change, you may need to adjust the following

initialization parameters in your initialization parameter file:

■ SHARED_POOL_SIZE

■ LARGE_POOL_SIZE

Rebuild Unusable Function-Based Indexes
During an upgrade, some function-based indexes may become unusable. To find

these indexes, issue the following SQL statement:

SELECT owner, index_name, funcidx_status
 FROM dba_indexes WHERE funcidx_status = ’DISABLED’;

Rebuild the unusable function-based indexes listed.

Upgrading Materialized Views

See Also:

■ Oracle9i Database Administrator’s Guide for more information

about creating server parameter files

■ Oracle9i SQL Reference for information about the CREATE
SPFILE statement

See Also: "Parallel Execution Allocated from Large Pool" on

page A-8 for information about adjusting these parameters.

Note: The word "snapshot" is synonymous with the word

"materialized view".
4-16 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
Materialized views upgraded from release 8.0 or imported from a release 8.0

database cannot use the new summary management features available in release 8.1

and higher. If you want to use these new features, then complete the following steps

for each materialized view and for each materialized view imported from release

8.0:

1. GRANT QUERY REWRITE privileges to the owner of the materialized view.

Only local materialized views are available for query rewrite.

If the materialized view references any schema objects outside its owner’s

schema, then you must issue a GRANT GLOBAL QUERY REWRITE statement.

2. Issue the ALTER MATERIALIZED VIEW ... ENABLE QUERY REWRITE
statement on the materialized views you want to upgrade.

For example, on a materialized view named SSORDERS, issue the following

statement:

ALTER MATERIALIZED VIEW ssorders ENABLE QUERY REWRITE;

In addition, if you do not ENABLE QUERY REWRITE on a materialized view, then

the ATOMIC=FALSEoption of the DBMS_MVIEW.REFRESHprocedure may not work

unless you issue an ALTER MATERIALIZED VIEW ... COMPILE statement on

the materialized view. For example, for a materialized view named SSCUST, issue

the following statement:

ALTER MATERIALIZED VIEW sscust COMPILE;

You do not need to issue this statement if you have issued any other ALTER
MATERIALIZED VIEW statement on the materialized view, such as the ALTER
MATERIALIZED VIEW ... ENABLE QUERY REWRITE statement.

Upgrading the Advanced Queuing Option
The following sections describe the actions required to upgrade the Advanced

Queuing (AQ) option.

Upgrade Your Queue Tables The following release 8.1 and higher AQ enhancements are

available only if you upgrade your existing queue tables:

■ Addition of the original message ID column for propagated messages

■ Addition of a sender’s ID column

■ Queue and system level privileges

■ Rule based subscriptions
After Upgrading a Database 4-17

Tasks to Complete After Upgrading Your Database
■ Separate storage of history management information, which was stored in a

varray in release 8.0

To upgrade an existing queue table, run the DBMS_AQADM.MIGRATE_QUEUE_
TABLE procedure, specifying 8.1 for the option. For example, for a queue table

named tb_queue owned by user scott , run the following procedure:

EXECUTE dbms_aqadm.migrate_queue_table (
 queue_table => ’scott.tb_queue’,
 compatible => ’8.1’);

To create a new queue table that is compatible with release 8.1 and higher, connect

as the owner of the queue table and run the DBMS_AQADM.CREATE_QUEUE_TABLE
procedure, specifying 8.1 for the COMPATIBLE option, as in the following example:

EXECUTE dbms_aqadm.create_queue_table(
 queue_table => ’scott.tkaqqtpeqt’,
 queue_payload_type =>’message’,
 sort_list => ’priority,enq_time’,
 multiple_consumers => true,
 comment => ’Creating queue with priority and enq_time sort order’,
 compatible => ’8.1’);

Upgrading the Recovery Catalog
Your recovery catalog schema for the upgraded database may reside in a database

that is separate from the database you upgraded. If you upgraded the Recovery

Manager executable to release 8.1, then you must upgrade the recovery catalog to

release 8.1 as well.

Also, if you have multiple databases of different releases managed by a single

recovery catalog, then you need to consider compatibility issues between a

particular Recovery Manager release and the recovery catalog release. For example,

release 8.1.3 and 8.1.4 of Recovery Manager cannot access a release 8.1.5 or higher

recovery catalog. Therefore, in this case, you must upgrade all of the databases

managed by the recovery catalog to release 8.1.5 or higher. For more information

about recovery catalog compatibility with Recovery Manager, see "Recovery

Manager" on page 5-43.

Note: The COMPATIBLE initialization parameter must be set to

8.1.0 or higher to upgrade your queue tables and to create new

release 8.1 compatible queue tables.
4-18 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
Complete the following steps to upgrade the recovery catalog:

1. Log in to Recovery Manager and connect to the recovery catalog.

For example, if RCAT/RCAT is the user name and password for the recovery

catalog owner, and RECDB is the network service name, then enter the

following:

rman rcvcat rcat/rcat@recdb

The first time you connect to an older recovery catalog with the 8.1 release of

Recovery Manager, you will see message RMAN-06186, indicating that the

recovery catalog must be upgraded.

2. Use the UPGRADE CATALOG command to upgrade the recovery catalog to the

most current release. Recovery Manager prompts you to enter the command

twice to confirm the catalog upgrade. If any errors are encountered while

upgrading, then they are displayed in the Recovery Manager log.

Here is the log from a session that upgrades the recovery catalog from

release 8.0.4:

Recovery Manager: Release 8.1.5.0.0

RMAN-06008: connected to recovery catalog database
RMAN-06186: PL/SQL package rcat.DBMS_RCVCAT version 08.00.04 in RCVCAT
database is too old

RMAN> upgrade catalog

RMAN-06435: recovery catalog owner is rcat
RMAN-06442: enter UPGRADE CATALOG command again to confirm catalog upgrade

RMAN> upgrade catalog

RMAN-06408: recovery catalog upgraded to version 08.01.05

Upgrading Statistics Tables Created by the DBMS_STATS Package
If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE

procedure, then upgrade these tables by executing the following procedure:

EXECUTE DBMS_STATS.UPGRADE_STAT_TABLE(’scott’, ’stat_table’);

where SCOTT is the owner of the statistics table and STAT_TABLE is the name of

the statistics table. Execute this procedure for each statistics table.
After Upgrading a Database 4-19

Tasks to Complete After Upgrading Your Database
Tasks to Complete Only After Upgrading a Release 7.3.4 Database
Complete the following tasks only if you upgraded your database from release

7.3.4. These tasks are not required if you upgraded your database from release 8.0.6

or higher.

Rebuild Unusable Bitmap Indexes
During the upgrade, some bitmap indexes may become unusable. To find these

indexes, issue the following SQL statement:

SELECT index_name, index_type, table_owner, status
 FROM dba_indexes
 WHERE index_type = ’BITMAP’
 AND status = ’UNUSABLE’;

Rebuild the unusable bitmap indexes listed.

Migrate Partition Views to Partition Tables
Partition views are not recommended for new applications in Oracle9i, and existing

partition views should be converted to partitioned tables. You can convert partition

views created for Oracle7 databases to partitioned tables by using the EXCHANGE
PARTITION option of the ALTER TABLE statement.

Check for Bad Date Constraints
A bad date constraint involves invalid date manipulation, which is a date

manipulation that implicitly assumes the century in the date, causing problems at

the year 2000. The utlconst.sql script runs through all of the check constraints

in the database and marks constraints as bad if they include any invalid date

manipulation. This script selects all the bad constraints at the end. Oracle7 allowed

you to create constraints with a two-digit year date constant. However, release 8.0

and higher returns an error if the check constraint date constant does not include a

four-digit year.

See Also: Oracle9i Database Performance Tuning Guide and Reference
and Oracle9i Database Concepts for more information about using

bitmap indexes

See Also: Oracle9i Database Administrator’s Guide for information

about converting partitioned views to partitioned tables and

Oracle9i Database Concepts for background information about

partition views and partitioned tables
4-20 Oracle9i Database Migration

Tasks to Complete After Upgrading Your Database
To run the utlconst.sql script, complete the following steps:

1. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

2. Start SQL*Plus.

3. Connect to the database instance as a user with SYSDBA privileges.

4. Enter the following:

SQL> SPOOL utlresult.log
SQL> @utlconst.sql
SQL> SPOOL OFF

After you run the script, the utlresult.log log file includes all the constraints

that have invalid date constraints.

Upgrade to the New Release of Oracle Net Services (Optional)
Migrating or upgrading to the new release of Oracle Net is not required. However,

Oracle Net provides significant advantages over SQL*Net V2, including simplified

configuration and expanded functionality. The new release of Oracle Net also

provides the following advantages over past releases of Oracle Net and SQL*Net:

■ Service naming enables clients to access a service as a whole, using the service

name, rather than a specific database instance. Service naming logically

separates the service name from any particular instance name and replaces the

SID parameter, enabling one instance to serve multiple services. Individual

instances also can be part of multiple services.

■ Instance registration is automatic. Instances register themselves with the

listener when they are started. In past releases, information about the instance

was configured manually in the listener.ora file.

■ Failover is automatic. If an instance is down, a client connect request is sent to a

different listener automatically.

■ Load balancing distributes connections over the available listeners.

Note: The utlconst.sql script does not correct bad constraints,

but instead it disables them. You should either drop the bad

constraints or recreate them after you make the necessary changes.
After Upgrading a Database 4-21

Test the Database and Compare Results
Test the Database and Compare Results
Test the new Oracle9i database using the testing plan you developed in "Develop a

Testing Plan" on page 2-8. Compare the results of the test with the results obtained

with the original database and make certain the same, or better, results are

achieved.

Generally, the performance of the new Oracle9i database should be as good as, or

better than, the performance of the previous database. If you notice any decline in

database performance with the new Oracle9i database, then make sure the

initialization parameters are set properly, because improperly set initialization

parameters can impede performance.

Tune the Upgraded Database
If you want to improve the performance of the upgraded database, then tune the

database. Actions you used to tune your previous database and applications should

not impair the performance of the upgraded Oracle9i database.

Changing the Word Size of Your Current Release
The instructions in this section guide you through the process of changing the word

size of your current release (switching from 32-bit software to 64-bit software or

from 64-bit software to 32-bit software).

Complete the following steps to change the word size of your current release:

1. Start SQL*Plus.

2. Connect to the database instance as a user with SYSDBA privileges.

See Also: Oracle9i Net Services Administrator’s Guide for more

information about the advantages of Oracle Net, and see

Appendix B, "Upgrade Considerations for Oracle Net Services" for

detailed instructions on migrating or upgrading to the new release

of Oracle Net.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for tuning information

See Also: "Changing Word Size" on page 1-11 for more

information about changing word-size.
4-22 Oracle9i Database Migration

Changing the Word Size of Your Current Release
3. Run SHUTDOWN IMMEDIATE on the database:

SQL> SHUTDOWN IMMEDIATE

4. Perform a full offline backup of the database.

5. If you are using the same Oracle home for your current release and the release

to which you are switching, then deinstall your current release using the Oracle

Universal Installer. You do not need to deinstall your current release if you are

using separate Oracle home directories.

6. If you currently have a 32-bit installation, then install the 64-bit release. Or, if

you currently have a 64-bit installation, then install the 32-bit release.

7. Copy configuration files to a location outside of the old Oracle home:

a. If your parameter file resides within the old environment’s Oracle home,

then copy it to a location outside of the old environment’s Oracle home. The

parameter file can reside anywhere you wish, but it should not reside in the

old environment’s Oracle home after you switch to the new release.

b. If your parameter file has an IFILE (include file) entry and the file

specified in the IFILE entry resides within the old environment’s Oracle

home, then copy the file specified by the IFILE entry to a location outside

of the old environment’s Oracle home. The file specified in the IFILE entry

has additional initialization parameters. After you copy this file, edit the

IFILE entry in the parameter file to point to its new location.

Note: For Oracle9i Real Application Clusters, issue this statement

for all instances. Also, set the CLUSTER_DATABASE initialization

parameter to false . You can change it back to true after the

change in word size is complete.

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information

Note: Installation and deinstallation are operating system-specific.

For installation and deinstallation instructions, see your Oracle9i
operating system-specific installation documentation and the

Oracle9i README for your operating system.
After Upgrading a Database 4-23

Changing the Word Size of Your Current Release
c. If you have a password file that resides within the old Oracle home, then

move or copy the password file to the new Oracle9i Oracle home. The name

and location of the password file are operating system-specific; for example,

on UNIX platforms, the default password file is ORACLE_
HOME/dbs/orapw sid , but on Windows operating systems, the default

password file is ORACLE_HOME\database\pwd sid .ora . In both cases,

sid is your Oracle instance ID.

8. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

9. Start SQL*Plus.

10. Connect to the database instance as a user with SYSDBA privileges.

11. Run STARTUP RESTRICT:

SQL> STARTUP RESTRICT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

12. Set the system to spool results to a log file for later verification of success:

SQL> SPOOL catoutw.log

If you want to see the output of the script you will run on your screen, then you

can also issue a SET ECHO ON command:

SQL> SET ECHO ON

13. Run utlirp.sql :

SQL> @utlirp.sql

The utlirp.sql script recompiles existing PL/SQL modules in the format

required by the new database. This script first alters certain dictionary tables.

Then, it reloads the STANDARD and DBMS_STANDARD packages, which are

necessary for using PL/SQL. Finally, it triggers a recompile of all PL/SQL

modules, such as packages, procedures, types, and so on.

Note: For Oracle9i Real Application Clusters, perform this step on

all nodes. Also, if your init db_name.ora file resides within the

old environment’s Oracle home, then move or copy the init db_
name.ora file to a location outside of the old environment’s Oracle

home.
4-24 Oracle9i Database Migration

Changing the Word Size of Your Current Release
14. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

Then, check the spool file and verify that the packages and procedures

compiled successfully. You named the spool file in Step 12; the suggested name

was catoutw.log . Correct any problems you find in this file.

If you issued a SET ECHO ON command, then you may want to issue a SET
ECHO OFF command now:

SQL> SET ECHO OFF

15. Run ALTER SYSTEM DISABLE RESTRICTED SESSION:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;

The word size of your database is changed. You can open the database for normal

use.
After Upgrading a Database 4-25

Changing the Word Size of Your Current Release
4-26 Oracle9i Database Migration

Compatibility and Interoper
5

Compatibility and Interoperability

This chapter describes compatibility and interoperability issues that may arise

because of differences between Oracle releases. These differences may affect general

database administration and existing applications.

This chapter covers the following topics:

■ What Is Compatibility?

■ Features Requiring a COMPATIBLE Setting

■ What Is Interoperability?

■ Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1

■ Compatibility and Interoperability Issues Between Release 9.2 and Previous

Releases
ability 5-1

What Is Compatibility?
What Is Compatibility?
When you upgrade to a new release of Oracle, certain new features may make your

database incompatible with your previous release. Your upgraded Oracle database

becomes incompatible with your previous release under the following conditions:

■ A new feature stores any data on disk (including data dictionary changes) that

cannot be processed with your previous release.

■ An existing feature behaves differently in the new environment as compared to

the old environment. This type of incompatibility is classified as a language
incompatibility.

The COMPATIBLE Initialization Parameter
Oracle enables you to control the compatibility of your database with the

COMPATIBLE initialization parameter. By default, when the COMPATIBLE
initialization parameter is not set in your parameter file, it defaults to the lowest

possible setting for the release, which is 8.1.0 for all Oracle9i releases. You cannot

use new features that would make your database incompatible until you raise the

value of the COMPATIBLE initialization parameter.

This default behavior has the following advantages:

■ Because compatibility with your previous release is maintained by default, it is

easier to downgrade.

■ If you are operating in an environment with more than one database, then your

upgraded database remains compatible with databases that have not yet been

upgraded.

Of course, the major disadvantage of the default setting is that many of the features

of the new release are not available to you if you leave the COMPATIBLE
initialization parameter unset.

Depending on the products you chose to install during your installation of the new

Oracle9i release, the Oracle Universal Installer may set the COMPATIBLE
initialization parameter to a higher value, such as 9.2.0 . Check your parameter file

if you are unsure of the current setting of the COMPATIBLE initialization parameter.

See Also: "Features Requiring a COMPATIBLE Setting" on

page 5-10 for a list of features that require the COMPATIBLE
initialization parameter
5-2 Oracle9i Database Migration

What Is Compatibility?
Figure 5–1 illustrates the default settings and the possible settings of the

COMPATIBLE initialization parameter in release 8.0, release 8.1, release 9.0, and

release 9.2.

Figure 5–1 The COMPATIBLE Initialization parameter

How the COMPATIBLE Initialization Parameter Operates
The COMPATIBLE initialization parameter operates in the following way:

■ It controls the behavior of your database. For example, if you run a release 9.2

database with the COMPATIBLE initialization parameter set to 8.1.6 , then the

release 9.2 database generates release 8.1.6 compatible database structures on

disk. Therefore, the COMPATIBLE initialization parameter enables or disables

the use of features. If you try to use any of the new features that make the

database incompatible with the COMPATIBLE initialization parameter, then an

Release
8.0

Can be set
to 8.0.x only

Release
8.1

Can be set
to 8.1.y or 8.0.x

Default 8.0.0 Default 8.0.0

Lowest Possible
Setting:
8.0.0

Lowest Possible
Setting:
8.0.0

Highest Possible
Setting:
Your current release

Highest Possible
Setting:
Your current release

Cannot be set to:
• Any Oracle7 release
 or lower
• Any release higher
than current, including
8.1.0 or higher

Cannot be set to:
• Any Oracle7 release
 or lower
• Any release higher
than current, including
9.0.0 or higher

Release
9.0

Can be set
to 9.0.y or 8.1.x

Default 8.1.0

Lowest Possible
Setting:
8.1.0

Highest Possible
Setting:
Your current release

Cannot be set to:
• Any 8.0 release or lower
• Any release higher
than current, including
9.2.0 or higher

Release
9.2

Can be set
to 9.2.z, 9.0.y, or 8.1.x

Default 8.1.0

Lowest Possible
Setting:
8.1.0

Highest Possible
Setting:
Your current release

Cannot be set to:
• Any 8.0 release or
• Any release higher
than current, includ
10.0.0 or higher
Compatibility and Interoperability 5-3

What Is Compatibility?
error is returned. However, any new features that do not make incompatible

changes on disk are enabled.

■ It makes sure that the database is compatible with its setting. If the database

becomes incompatible with its setting, then the database does not start and

terminates with an error. If this happens, then you must set the COMPATIBLE
initialization parameter to an appropriate value for the database.
5-4 Oracle9i Database Migration

What Is Compatibility?
Figure 5–2 Database Structures Depend on the COMPATIBLE Setting

See Also: Oracle9i Database Concepts for more information about

database structures

Release
9.0

8.1.0 COMPATIBLE
Setting

Release
9.0

9.0.0 COMPATIBLE
Setting

8.1.0 Database
Structures

9.0.0 Database
Structures

Release
9.2

9.2.0 COMPATIBLE
Setting

9.2.0 Database
Structures
Compatibility and Interoperability 5-5

What Is Compatibility?
Downgrading and Compatibility
Once you upgrade to a new release, you can set the COMPATIBLE initialization

parameter to match the new release. Doing so enables you to use all of the features

of the new release, but may make it more difficult, or impossible, for you to

downgrade to your previous release. If you want to downgrade, then you must

remove all of the incompatibilities with the release to which you are downgrading,

which is a process that may require a great deal of time and effort.

Compatibility Level
The compatibility level of your database corresponds to the value of the

COMPATIBLE initialization parameter. For example, if you set the COMPATIBLE
initialization parameter to 8.1.6 , then the database runs at 8.1.6 compatibility

level.

Checking the Current Value of the COMPATIBLE Initialization Parameter
To check the current value of the COMPATIBLE initialization parameter, issue the

following SQL statement:

SQL> SELECT name, value, description FROM v$parameter
 WHERE name = ’compatible’;

Checking the Compatibility Level of Specific Features
To check the compatibility level of specific features, issue the following SQL

statement:

SQL> SELECT * FROM v$compatibility;

Features with a compatibility level of 0.0.0.0.0 are not currently in use.

When to Set the COMPATIBLE Initialization Parameter
You should set the COMPATIBLE initialization parameter at a specific point during

the upgrade or downgrade process. Follow the procedure in the appropriate

chapter and set the COMPATIBLE initialization parameter only when you are

instructed to do so.

See Also: Chapter 7, "Downgrading a Database Back to the

Previous Oracle Release" for more information about downgrading
5-6 Oracle9i Database Migration

What Is Compatibility?
Setting the COMPATIBLE Initialization Parameter
Complete the steps in one of the following sections to set the COMPATIBLE
initialization parameter:

■ Raising the COMPATIBLE Initialization Parameter

■ Lowering the COMPATIBLE Initialization Parameter

Raising the COMPATIBLE Initialization Parameter
Complete the following steps to set the COMPATIBLE initialization parameter to a

higher value:

1. Perform a backup of your database before you raise the COMPATIBLE
initialization parameter (optional).

Raising the COMPATIBLE initialization parameter may cause your database to

become incompatible with earlier releases of Oracle, and a backup ensures that

you can return to the earlier release if necessary.

2. If you are using a server parameter file, then complete the following steps:

a. Update the server parameter file to set or change the value of the

COMPATIBLE initialization parameter.

For example, to set the COMPATIBLE initialization parameter to 9.2.0 ,

issue the following statement:

SQL> ALTER SYSTEM SET COMPATIBLE = ’9.2.0’ SCOPE=SPFILE;

b. Shut down and restart the instance.

3. If you are using an initialization parameter file, then complete the following

steps:

a. Shut down the instance if it is running:

SQL> SHUTDOWN IMMEDIATE

Note: Once the upgrade or downgrade is complete, you can

change the setting of the COMPATIBLE initialization parameter as

necessary.

See Also: Oracle9i Backup and Recovery Concepts for more

information about performing a backup
Compatibility and Interoperability 5-7

What Is Compatibility?
b. Edit the initialization parameter file to set or change the value of the

COMPATIBLE initialization parameter.

For example, to set the COMPATIBLE initialization parameter to 9.2.0 ,

enter the following in the initialization parameter file:

COMPATIBLE = 9.2.0

c. Start the instance using STARTUP.

Lowering the COMPATIBLE Initialization Parameter
Complete the following steps to set the COMPATIBLE initialization parameter to a

lower value:

1. Make sure that your database does not have any incompatibilities with the

intended lower value of the COMPATIBLE initialization parameter.

2. If you are using any initialization parameters that were added in a release

higher than the intended lower value of the COMPATIBLE initialization

parameter, then remove them from your parameter file.

3. Issue an ALTER DATABASE RESET COMPATIBILITY statement:

SQL> ALTER DATABASE RESET COMPATIBILITY;

4. If you are using a server parameter file, then complete the following steps:

a. Update the server parameter file to set or change the value of the

COMPATIBLE initialization parameter.

For example, to set the COMPATIBLE initialization parameter to 9.0.0 ,

issue the following statement:

See Also: "Remove Incompatibilities" on page 7-2 for information

on removing incompatibilities

See Also: The "What’s New in Oracle9i Database Reference"

section of Oracle9i Database Reference for lists of initialization

parameters added in each Oracle9i release

See Also: "About ALTER DATABASE RESET COMPATIBILITY"

on page 5-9 for more information
5-8 Oracle9i Database Migration

What Is Compatibility?
SQL> ALTER SYSTEM SET COMPATIBLE = ’9.0.0’ SCOPE=SPFILE;

b. Shut down and restart the instance.

5. If you are using an initialization parameter file, then complete the following

steps:

a. Shut down the instance if it is running:

SQL> SHUTDOWN IMMEDIATE

b. Edit the initialization parameter file to set or change the value of the

COMPATIBLE initialization parameter.

For example, to set the COMPATIBLE initialization parameter to 9.0.0 ,

enter the following in the initialization parameter file:

COMPATIBLE = 9.0.0

c. Start the instance using STARTUP.

About ALTER DATABASE RESET COMPATIBILITY
You use the ALTER DATABASE RESET COMPATIBILITY statement to instruct

Oracle that you want to lower the compatibility level of your database. Some Oracle

features, such as undo tablespaces, require a compatibility level of 9.0.0 or higher. If

you set the COMPATIBLE initialization parameter to 9.0.0 or higher and then create

an undo tablespace, then the undo tablespace is a 9.0.0 compatible object in the

database.

ALTER DATABASE RESET COMPATIBILITY checks each feature that may have

created an object that is incompatible with the lowest possible compatibility level,

which is 8.1.0 for all Oracle9i releases. If the check indicates that no incompatible

objects exist for a certain feature, then the compatibility level of that feature is set to

0.0.0, which means that the feature is not in use. If, however, the check indicates that

incompatible objects created by a certain feature exist, then the compatibility level

for that feature is set to the lowest possible compatibility level that enables the

feature.

For example, if one or more undo tablespaces exist, then the compatibility level for

the undo tablespaces feature is set to 9.0.0, because 9.0.0 is the lowest possible

compatibility level that enables the undo tablespaces feature. It is important to

understand, however, that ALTER DATABASE RESET COMPATIBILITY cannot

raise the compatibility level of your database. You must first set the COMPATIBLE
Compatibility and Interoperability 5-9

Features Requiring a COMPATIBLE Setting
initialization parameter to a higher value, such as 9.0.0, before you can create

database objects that require a 9.0.0 or higher compatibility level.

If you close the database, lower the value of the COMPATIBLE initialization

parameter, and then open the database, Oracle checks the compatibility level of

each feature. If a feature has a compatibility level higher than the value of the

COMPATIBLE initialization parameter, then the database fails to open and displays

an error message indicating the incompatible features.

If you remove all of the incompatibilities that exist in your database, but fail to issue

the ALTER DATABASE RESET COMPATIBILITY statement before shutting down

the database, then the database will still fail to open, even if no incompatibilities

exist. The database will fail to open because it was not instructed to check the

compatibility level of each feature against the objects that exist in the database.

Because it did not reset the compatibility level for these features, Oracle simply

remembers that incompatible objects were created at some time in the past. The

ALTER DATABASE RESET COMPATIBILITY statement instructs Oracle to

explicitly check for incompatible objects, and resets the compatibility level if no

incompatible objects exist.

Features Requiring a COMPATIBLE Setting
To use the features listed in Table 5–1, the COMPATIBLE initialization parameter

must be set to the indicated value. The features listed do not represent a complete

list of Oracle features. Instead, the features listed are only those Oracle features that

require a compatibility level; some features do not require a compatibility level.

See Also:

■ Oracle9i Database New Features for more information about the

features listed in the following sections and for information

about other new release 9.2 features

■ Oracle9i Database Master Index for entries relating to the new

release 9.2 features
5-10 Oracle9i Database Migration

Features Requiring a COMPATIBLE Setting
Table 5–1 Features Requiring A COMPATIBLE Setting

Feature Identifier Compatibility Level Description

DEFPART 9.2.0.0.0 Release 9.2 DEFAULT partitions:

■ DEFAULT partitions on list partitioned tables

MV92 9.2.0.0.0 Release 9.2 materialized views:

■

PARTMCLS 9.2.0.0.0 Release 9.2 partitioning methods:

■ Partitioning of tables using range-list methods

KNL92 9.2.0.0.0 Release 9.2 Streams

SPTEMPL 9.2.0.0.0 Release 9.2 subpartition templates

■ Subpartition templates in composite partitioned tables

FGASYNPL 9.2.0.0.0 Fine-grained security synonym policy

HSC 9.2.0.0.0 Heap segment block compression

LOB_RET 9.2.0.0.0 LOB retention:

■ Retention stored in LOB columns

LMST 9.2.0.0.0 Locally managed SYSTEM tablespace

COLLOCT 9.2.0.0.0 Ordered collections in tables

■ Ordered collections stored in tables

PGTMGDLB 9.2.0.0.0 Automatic segment-space managed tablespaces with LOBs:

■ LOB columns in automatic segment-space managed
tablespaces

RLENG 9.2.0.0.0 Rules engine

SYNUDC 9.2.0.0.0 Type synonyms or user-defined constructors

XMLSBSTR 9.2.0.0.0 XMLSchema based XMLType storage

PGTMGDTS 9.0.1.3.0 Automatic segment-space managed tablespaces

MV90 9.0.0.0.0 Release 9.0 materialized views

PARTM82 9.0.0.0.0 Release 9.0 partitioning methods:

■ Partitioning of tables using list methods

APPROLE 9.0.0.0.0 Application role

LGMR_B 9.0.0.0.0 Basic LogMiner info
Compatibility and Interoperability 5-11

Features Requiring a COMPATIBLE Setting
CPTLEN 9.0.0.0.0 Code point length

EXTTAB 9.0.0.0.0 Create external tables

WRDIR 9.0.0.0.0 Directory write privilege

DOMINDEA 9.0.0.0.0 Domain indexes on embedded ADTs

DOMINIOT 9.0.0.0.0 Domain indexes on index-organized tables

DOMINDRM 9.0.0.0.0 Domain indexes with row movement

EJTYPE 9.0.0.0.0 External Java types

APPFGA 9.0.0.0.0 Fine-grained auditing

LGMR_F 9.0.0.0.0 Full LogMiner info

FDOMIND 9.0.0.0.0 Function-based domain indexes

HASHPIOT 9.0.0.0.0 Hash partitioned index-organized tables

IOTBULOG 9.0.0.0.0 Index-organized tables batch update logging

IOTCVLOG 9.0.0.0.0 Index-organized tables column vector logging

IOTWMAP 9.0.0.0.0 Index-organized tables with mapping tables

URIDIND 9.0.0.0.0 Indexes on UROWIDs

JOININD 9.0.0.0.0 Join indexes

LGINDKEY 9.0.0.0.0 Large index keys

LDOMIND 9.0.0.0.0 Local domain indexes

LOGSTDBY 9.0.0.0.0 Logical standby

MLCTABLE 9.0.0.0.0 Multi level collection in tables

MULTBZ 9.0.0.0.0 Multiple block sizes

NFSTABLE 9.0.0.0.0 Not final type or subtype in tables

PDMLITLS 9.0.0.0.0 PDML ITL invariants

PIOTLOBS 9.0.0.0.0 Partitioned index-organized tables with LOBs:

■ LOB columns in partitioned index-organized tables

■ Varray columns in partitioned index-organized tables

TXNAUDN 9.0.0.0.0 Redo for transaction name auditing

Table 5–1 (Cont.) Features Requiring A COMPATIBLE Setting

Feature Identifier Compatibility Level Description
5-12 Oracle9i Database Migration

What Is Interoperability?
What Is Interoperability?
Interoperability is the ability of different releases of Oracle to communicate and

work together in a distributed environment. An Oracle distributed database system

can have Oracle databases of different releases, and all supported releases of Oracle

can participate in a distributed database system. However, the applications that

work with a distributed database must understand the functionality that is

available at each node in the system.

For example, a distributed database application cannot expect a release 7.3.4

database to understand the object SQL extensions that are available only with

release 8.0 and higher.

NESTEDTX 9.0.0.0.0 Redo/undo for nested transactions

ROWDEP 9.0.0.0.0 Row level dependencies

STAUTOFM 9.0.0.0.0 Standby automatic file management

TYPEVL 9.0.0.0.0 Type evolution

UNDOTBSP 9.0.0.0.0 Undo tablespaces

VWCONSTR 9.0.0.0.0 View constraints

ANYTABLE 9.0.0.0.0 XMLType/AnyType/AnyData in tables

ALTERFRL 8.1.6.0.0 Alter freelists:

■ Change FREELIST specification in ALTER statements

CARELOB 8.1.6.0.0 Cache reads mode for LOBs

EDTRIG 8.1.6.0.0 Enhanced DDL/DML support in triggers

FASTDROP 8.1.6.0.0 Faster segment drop

OPQTYPE 8.1.6.0.0 Opaque types

TBSMIGTN 8.1.6.0.0 Tablespace migration

TBSTRNSG 8.1.6.0.0 Transient segments

Table 5–1 (Cont.) Features Requiring A COMPATIBLE Setting

Feature Identifier Compatibility Level Description
Compatibility and Interoperability 5-13

Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1
Compatibility and Interoperability Issues Between Release 9.2 and
Release 9.0.1

The following sections describe compatibility and interoperability issues and the

actions you can take to prevent problems resulting from these issues. The issues

discussed in these sections occur because of differences between release 9.2 and

release 9.0.1:

■ Locally Managed SYSTEM Tablespace

■ Dictionary Managed Tablespaces

■ Change in Compatibility for Automatic Segment-Space Managed Tablespaces

■ Compatibility and Object Types

■ Oracle Managed Files

■ Oracle OLAP

■ Log Format Change with Parallel Redo

■ Oracle Dynamic Services

■ Oracle Syndication Server

Locally Managed SYSTEM Tablespace
The SYSTEMtablespace can be locally managed only if COMPATIBLEis set to 9.2.0
or higher. The SYSTEMtablespace can be migrated from dictionary managed format

to locally managed format using the DBMS_SPACE_ADMIN.TABLESPACE_
MIGRATE_TO_LOCAL procedure.

Before the SYSTEM tablespace can be migrated to locally managed format, you

should ensure the following:

■ The database has a default temporary tablespace which is not SYSTEM

Note: Since this book documents upgrading and downgrading

between different releases of Oracle, this definition of

interoperability is appropriate. However, other Oracle

documentation may use a broader definition of the term

interoperability; for example, in some cases, interoperability may

describe communication between different hardware platforms and

operating systems.
5-14 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1
■ There are not any rollback segments in dictionary managed tablespaces

■ There is at least one online rollback segment in a locally managed tablespace, or

an undo tablespace (if using automatic undo management mode) should be

online.

■ All tablespaces other than the tablespace containing the undo space (undo

tablespace or the tablespace containing the rollback segment) and the default

temporary tablespace are in read-only mode.

■ There is a cold backup of the system.

■ The system is in restricted mode.

Once the SYSTEM tablespace has been migrrated to locally managed format, you

will not be able to downgrade back to a previous release. The following query

determines whether the SYSTEM tablespace is locally managed:

SQL> SELECT ts# FROM ts$
 WHERE ts# = 0 AND bitmapped <> 0;

If 0 rows is returned, then the SYSTEM tablespace is dictionary managed.

Otherwise, the SYSTEM tablespace is locally managed.

Dictionary Managed Tablespaces
Starting with release 9.2, dictionary managed tablespaces are deprecated. Once the

SYSTEM tablespace has been migrated from dictionary managed format to locally

managed format, existing dictionary managed tablespaces are read-only. That is,

they cannot be made read-write once the SYSTEM tablespace is locally managed.

Once the SYSTEM tablespace is locally managed (either due to a new installation of

SYSTEM tablespace migration), new dictionary managed tablespaces cannot be

created.

Change in Compatibility for Automatic Segment-Space Managed Tablespaces
Starting with release 9.0.1.3.0, the compatibility requirement for automatic

segment-space managed tablespaces has been changed from 9.0.0.0.0 when first

introduced in release 9.0.1.0.0 to 9.0.1.3.0 . If you are upgrading from an Oracle9i
release earleir than release 9.0.1.3.0 and the database contains any automatic

segment-space managed tablespaces, then the COMPATIBLEinitialization parameter

will need to be set to 9.0.1.3.0 or higher in order to open the database. The

existing tablespaces need not be dropped.
Compatibility and Interoperability 5-15

Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1
Once the database has been opened with COMPATIBLEset to 9.0.1.3.0 or higher,

it can only be downgraded to release 9.0.1.3.0 or higher if automatic segment-space

managed tablespaces are used.

Compatibility and Object Types
Starting with release 9.2, object types support user-defined constructors using the

CONSTRUCTOR keyword that cannot be referred to from PL/SQL programs in

previous releases of Oracle. Specifically, such programs will fail to compile with an

error.

Oracle Managed Files
Starting with release 9.0.1.2.0, the naming scheme used by Oracle to keep track of

Oracle Managed Files has changed. As a result, existing Oracle Managed Files

created in Oracle9i releases earlier than release 9.0.1.2.0 will appear to Oracle to be

regular operating system files. See Table , "Migrate Your Oracle Managed Files" on

page 4-2 for information on migrating your Oracle Managed Files to the new

naming scheme.

Oracle OLAP
the OLAP API client provided with release 9.0.1 is not compatible with later Oracle

releases; similarly, the OLAP API client provided with release 9.2 is not compatible

with earlier Oracle releases.

The procedure that an application uses to make a connection through the OLAP API

has changed in release 9.2. Connections in previous releases relied on CORBA

software, but in release 9.2,connections are made through Java Database

Connectivity (JDBC). Consequently, programs created using the OLAP API client

provided with release 9.0.1 will not execute in later releases, and programs created

using the OLAP API client provided with release 9.2 will not execute in earlier

Oracle releases.

To upgrade OLAP API applications designed to run in release 9.0.1, application

developers must use the OLAP API client provided with release 9.2 and revise the

code for making a connection and for creating a MetadataProvider.

For information about using the OLAP API in release 9.2 to perform these actions,

see the Oracle9i OLAP Developer’s Guide to the OLAP API and the online Oracle

OLAP API Reference help provided with release 9.2.
5-16 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1
Log Format Change with Parallel Redo
Starting with release 9.2, the parallel redo feature generates redo logs using a new

format. Previous releases of Oracle cannot apply parallel redo generated logs.

However, when Oracle9i release 9.0.1 detects that release 9.2 parallel redo is being

applied, the following error is displayed:

ORA-00303: cannot process Parallel Redo

The new log format requires a clean shutdown of the database before a downgrade.

A complete backup is also highly recommended. If an ORA-00303 error is

displayed after the downgrade, then you must upgrade to release 9.2, perform

recovery, shut down the database cleanly, and then perform the downgrade again.

Release 9.2 can process release 9.0.1 and earlier format logs as well as release 9.2

parallel redo format logs.

Oracle Dynamic Services
Starting with release 9.2, Oracle Dynamic Services has been Deprecated. Oracle

Dynamic Services, an XML-based broker for the creation, aggregation, and

deployment of services from various content sources, was released with Oracle9i
Database release 9.0.1 along with the documentation, Oracle Dynamic Services User’s
and Administrator’s Guide.

Starting with Oracle9iAS release 2 (9.0.2), Oracle Corporation is delivering an

integrated, J2EE-compliant Web Services platform. Oracle Dynamic Services has

been integrated with Oracle9iAS Web Services as the XML/HTML Stream

Processing Tool.

Oracle9iAS release 2 (9.0.2) provides a standards-based, fully integrated J2EE and

Web services deployment platform. The current Dynamic Services functionality has

been integrated into the Oracle9iAS platform, and the Dynamic Services terminal

release is being delivered with Oracle9i Database release 9.2.

Oracle Syndication Server
Starting with release 9.2, Oracle Syndication Server has been Deprecated. Oracle

Syndication Server, designed to deliver file system and database content to

Information and Content Exchange (ICE)-compliant subscribers, was released with

See Also: Oracle9i Application Server Web Services Developer’s Guide
for more information
Compatibility and Interoperability 5-17

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Oracle9i Database release 9.0.1 along with the documentation, Oracle Syndication
Server User’s and Administrator’s Guide.

Starting with Oracle9iAS release 2 (9.0.2), Oracle Syndication Server has become a

feature of Oracle9iAS. The current Syndication Server functionality has been

integrated into this platform, and the Syndication Server terminal release is being

delivered with Oracle9i Database release 9.2.

Oracle9iAS Syndication Server is automatically installed with the Oracle9iAS Portal

install. The current release of the Oracle Syndication Server User’s and Administrator’s
Guide can be found with the Oracle9iAS Portal documentation on the Oracle9iAS

release 2 (9.0.2) Documentation CD-ROM.

Compatibility and Interoperability Issues Between Release 9.2 and
Previous Releases

The following sections describe compatibility and interoperability issues and the

actions you can take to prevent problems resulting from these issues. The issues

discussed in these sections occur because of differences between Oracle releases:

■ Applications

■ The STARTUP Command

■ Tablespaces and Datafiles

■ Data Dictionary

■ Schema Objects

■ Datatypes

■ User-Defined Datatypes

■ SQL and PL/SQL

■ Advanced Queuing (AQ)

■ Procedures and Packages

■ Oracle Optimizer

■ Oracle9i Real Application Clusters

■ Database Security

■ Database Backup and Recovery

■ Distributed Databases
5-18 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ SQL*Net or Oracle Net

■ Miscellaneous Compatibility and Interoperability Issues

Applications
You do not need to modify existing applications that do not use new release 9.2

features. Existing applications should achieve the same, or enhanced, functionality

on release 9.2. To increase the likelihood that applications running against your

release 9.2 database will continue to work if you downgrade to a previous release,

you can set the COMPATIBLE initialization parameter to match the previous release.

However, the COMPATIBLE initialization parameter only restricts the use of release

9.2 features that change the formatting on disk, not the use of other release 9.2

features. Therefore, a setting lower than 9.2.0 does not guarantee that applications

developed in release 9.2 will run correctly if the database is downgraded to a

previous release.

General Compatibility and Interoperability Issues for Applications
This section describes general compatibility and interoperability issues for

applications.

Change in Maximum VARCHAR2, CHAR, And RAW Size Oracle7 clients using VARCHAR2,
CHAR, or RAW datatypes may run into buffer overflow errors in their applications.

This may happen because in release 8.0 and higher, the maximum size of the

VARCHAR2 datatype was increased from 2000 to 4000 and the maximum size of

CHAR and RAW datatypes was increased from 255 to 2000.

Clients encountering this problem can either modify their applications to accept a

larger buffer size or use the SUBSTR() operator in the offending query to limit the

return size of the buffer to a length that can be processed by the application.

In the following example, column SIZE_TAB.SIZE_COL is VARCHAR(80).

SQL> CREATE VIEW v1 AS SELECT
 LPAD(' ',40-length(size_tab.size_col)/2,' ') size_col
 FROM size_tab;
Statement processed.

SQL> DESC v1

See Also: Chapter 6, "Upgrading Your Applications" for more

information about upgrading applications
Compatibility and Interoperability 5-19

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Column Name Null? Type
------------------------------ -------- ----
SIZE_COL VARCHAR2(4000)

SQL> DROP VIEW v1;
View dropped.

SQL> CREATE VIEW v1 AS SELECT
 SUBSTR(lpad(' ',40-length(size_tab.size_col)/2,' '), 2000) size_col
 FROM size_tab;

SQL> DESC v1;

Column Name Null? Type
------------------------------ -------- ----
SIZE_COL VARCHAR2(2001)

Index-Organized Tables Accessed by Applications If a table accessed by an application

changes from a regular table to an index-organized table, then the application may

require changes. The possible changes depend on whether the application uses

physical rowids or universal rowids (UROWIDs).

Whether an application requires changes depends on the kind of host variables the

application is using to bind or define rowid values:

■ If the application uses release 8.0 or higher OCI rowid descriptors

(OCIROWID * for Pro*C and SQL-ROWID for Pro*COBOL), then the

application should continue to function properly without any changes.

■ If the application always performs DESCRIBE on the host variables, then the

application should continue to function properly without any changes. Make

sure the application can accommodate the new SQLT_RDD datatype.

■ If the application uses SQLT_RID host variables, then you must rewrite the

application to use VARCHAR host variables or rowid descriptors. Rowid

descriptors are preferred.

■ If the application uses CHARACTER host variables, then the behavior also

depends on the size of the host variables. If the size can accommodate the

primary key and if the variable is a variable length string, then the application

should continue to function properly without any changes. However, if the

application uses a fixed size 18 character string, then you must change the

application to use longer variable strings or OCI descriptors.
5-20 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
For applications using UROWIDs, VARCHAR host variables may no longer be large

enough to hold the rowids. If so, then change the application to increase the

variable maximum size or change the application to use OCI rowid descriptors. OCI

rowid descriptors are preferred because they are opaque and resize automatically.

Change in Behavior for ANALYZE TABLE VALIDATE STRUCTURE Statement Starting with

release 8.1, the ANALYZE TABLE VALIDATE STRUCTURE statement no longer

stops running at the first error. Modify any applications that depend on this

behavior to account for this change.

OCI Applications
This section describes compatibility and interoperability issues relating to OCI

applications.

Shared Structures and Interoperability Shared structures are not supported on Oracle7

clients linked with release 8.1 libraries. To take advantage of shared structures,

applications must be written with the release 8.1 or higher OCI and must be

communicating with a release 8.1 or higher Oracle database server.

A release 8.1 OCI client accessing a release 8.0 Oracle database server only partially

realizes the benefits of shared structures, and shared structures are not supported if

both the client and the Oracle database server are release 8.0 or lower.

Thread Safety The ORLON and OLON calls are not supported in version 8.

However, you still should use OLOG, even for single-threaded applications.

OCI Application Link Line For OCI applications, the Oracle9i link line differs from the

Oracle7 link line. See the ORACLE_HOME/rdbms/demo/demo_rdbms.mk file for

examples of using the Oracle9i link line as an Oracle9i OCI application is compiled.

Oracle7 Clients Oracle7 clients can make selective use of Oracle9i OCI, combining

Oracle7 and Oracle9i calls. The degree of functionality added depends on which

calls are used. The encryption API and password reset calls are independently

usable as well. Use Oracle9i OCI for all phases of the statements being processed to

enable the following functionality:

See Also: Oracle Call Interface Programmer’s Guide for more

information.

Note: The OLOG call is required for multithreaded applications.
Compatibility and Interoperability 5-21

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ failover

■ prefetch

■ piggybacked commit or cancel

■ client-side conversions

Oracle7 clients must log in using Oracle9i calls if they want to combine Oracle7

code with Oracle9i code.

Using Batch Error Mode for Statement Execution Starting with release 8.1, OCI

applications can use the batch error mode when executing array DMLs using

OCIStmtExecute. To do this, both the OCI and server libraries must be release 8.1 or

higher.

You can modify existing applications to use batch error mode by setting the mode

parameter to OCI_BATCH_ERRORS and adding new code required for this

functionality. Then, recompile and relink the application with the release 8.1 client

libraries.

Support for Client Notification Starting with release 8.1, client notification is supported

in OCI applications using the publish/subscribe interface. Client notification

enables applications to take advantage of Database Event Publication and

Advanced Queuing features. To use the client notification feature, client

applications must link with release 8.1 or higher client libraries.

Support for the LISTEN Call with the Advanced Queuing Option Starting with release 8.1,

the LISTEN call is supported in OCI applications. The LISTEN call is available with

the Advanced Queuing Option and can be used to monitor a set of queues for a

message. To use the LISTEN call, client applications must link with release 8.1 or

higher client libraries.

Precompiler Applications
This section describes compatibility and interoperability issues relating to

precompiler applications.

Connecting With SYSDBA Privileges in Pro*C/C++ SYSDBA privileges are no longer

available by default when you issue the CONNECT statement in Pro*C/C++. In

See Also: Pro*C/C++ Precompiler Programmer’s Guide and

Pro*COBOL Precompiler Programmer’s Guide for more information.
5-22 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
release 8.0, the following CONNECT statement connected with SYSDBA privileges in

Pro*C/C++:

EXEC SQL CONNECT :sys IDENTIFIED BY :sys_passwd;

In release 8.1 and higher, issue the following CONNECT statement to connect with

SYSDBA privileges in Pro*C/C++:

EXEC SQL CONNECT :sys IDENTIFIED BY :sys_passwd IN SYSDBA MODE;

Connecting With SYSDBA Privileges in Pro*COBOL SYSDBA privileges are no longer

available by default when you issue the CONNECT statement in Pro*COBOL. In

release 8.0, the following CONNECT statement connected with SYSDBA privileges:

EXEC SQL
 CONNECT :sys IDENTIFIED BY :SYS-PASSWD
END-EXEC.

In release 8.1 and higher, issue the following CONNECT statement to connect with

SYSDBA privileges:

EXEC SQL
 CONNECT :sys IDENTIFIED BY :SYS-PASSWD IN SYSDBA MODE
END-EXEC.

Ada Support in Version 8 The Pro*ADA product was officially desupported by Oracle

in release 7.3. You can upgrade Pro*ADA to the latest release of SQL*Module for

Ada 8.1, which has a number of new features. However, SQL*Module for ADA 8.1

does not provide object support.

PL/SQL Backward Compatibility and Precompilers PLSQL_V2_COMPATIBILITY

backward compatibility behavior is available in the precompiler environment by

setting the DBMS precompiler command line option as follows:

... DBMS=Oracle7

PL/SQL Applications
This section includes compatibility and interoperability issues for PL/SQL

applications.

See Also: PL/SQL User’s Guide and Reference for more information
Compatibility and Interoperability 5-23

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Integrated SQL Analysis Syntax and semantic analysis of SQL statements in PL/SQL

programs is now integrated with the SQL engine. As a result, any new SQL feature

that is available through SQL*Plus or OCI is also available in PL/SQL.

In Oracle9i, syntax and semantic analysis of SQL statements is also a little stricter

than in previous releases. PL/SQL catches additional errors in SQL statements

during compilation itself, rather than throwing a runtime exception for invalid SQL

syntax. As a result, you may see compile-time errors with the PL/SQL:ORA- prefix

in PL/SQL programs that had compiled successfully in previous releases. The new

error messages point to problems in the SQL statement that must be fixed before the

program can be compiled successfully.

If you are unable to immediately modify a SQL statement to satisfy the new stricter

checks, Oracle provides an event to temporarily assist you in migrating PL/SQL

code to Oracle9i:

ALTER SESSION SET events = ’10933 trace name context forever, level 512’;

This event is provided only for temporary migration assistance. Oracle Corporation

strongly discourages long-term use of this event, and this event will be desupported

in the next major release of Oracle.

If you are upgrading from release 8.1.7 and this event exists in your parameter file,

then, as a temporary workaround, change all occurrences of this event from event
= ’10933 trace name context forever, level 512’ to event =
’10933 trace name context forever, level 1024’ .

Default Value of Parameter for Functions or Procedures in the Spec and Body Do Not Match In

previous releases, PL/SQL quietly ignored this error and used the default value

specified in the spec (ignoring the possibly different value in the body). Also, if

there is no default value specified in the spec, and a default value is specified in the

body, then the default value in the body is ignored.

In Oracle9i, PL/SQL will flag such discrepancies as errors. It is recommended to fix

the code, if such errors are reported, to avoid any possible future bugs.

If you are unable to immediately modify the PL/SQL code, then Oracle provides an

event to temporarily restore the old compiler behavior:

ALTER SESSION SET events = ’10932 trace name context level 32768’

This event is provided only for temporary migration assistance. Oracle Corporation

strongly discourages long-term use of this event, and this event will be desupported

in the next major release of Oracle.
5-24 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Compatibility and Object Types In Oracle9i, object types that are qualified as NOT
FINAL , NOT INSTANTIABLE , a subtype, or a SQLJ type cannot be referred to from

PL/SQL programs in earlier releases of Oracle. Specifically, such programs will fail

to compile with an error.

PL/SQL V2 Compatibility Mode The PL/SQL V2 compatibility mode is available in

PL/SQL release 8.0 and higher. This mode is enabled by the PLSQL_V2_
COMPATIBILITY initialization parameter.

You can set PL/SQL V2 compatibility mode in any one of the following three ways:

■ Add the following line to your initialization parameter file:

PLSQL_V2_COMPATIBILITY = true

■ Issue the following SQL statement:

ALTER SYSTEM SET PLSQL_V2_COMPATIBILITY = true;

■ Issue the following SQL statement:

ALTER SESSION SET PLSQL_V2_COMPATIBILITY = true;

The PLSQL_V2_COMPATIBILITY initialization parameter provides compatibility

between PL/SQL release 8.0 and higher and PL/SQL V2 in the following situations:

■ The PL/SQL V2 compiler allows a record type or index table type to be

referenced before its definition in the source. PL/SQL release 8.0 and higher

strictly requires that the type definition precede reference to the type in the

source. However, when you enable PL/SQL V2 compatibility mode, PL/SQL

release 8.0 and higher behaves the same as PL/SQL V2 regarding type

definitions.

■ The PL/SQL V2 compiler allows the following illegal syntax:

return variable-expression

This syntax is incorrect and should be changed to the following:

return variable-type

The PL/SQL release 8.0 and higher compiler issues an error when it encounters

the illegal syntax. However, when you enable PL/SQL V2 compatibility mode,

PL/SQL release 8.0 and higher behaves the same as PL/SQL V2 and does not

issue an error.
Compatibility and Interoperability 5-25

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ In PL/SQL V2 it is possible to modify or delete elements of an index table

passed in as an IN parameter, as in the following example:

function foo (x IN table_t) is
begin
x.delete(2);
end;

This use of an IN parameter is incorrect. PL/SQL release 8.0 and higher

correctly enforces the read-only semantics of IN parameters and does not let

index table methods modify index tables passed in as IN parameters. However,

when you enable PL/SQL V2 compatibility mode, PL/SQL release 8.0 and

higher behaves the same as PL/SQL V2 and allows the parameter.

■ PL/SQL V2 allows the passing (as an OUT parameter) of fields of IN

parameters that are records, but PL/SQL release 8.0 and higher does not allow

this type of passing. However, when you enable PL/SQL V2 compatibility

mode, PL/SQL release 8.0 and higher behaves the same as PL/SQL V2 and

allows this type of passing.

■ The PL/SQL V2 compiler permits fields of OUT parameters that are record

variables to be used in expression contexts (for example, in a dot-qualified

name on the right-hand side of an assignment statement).

This use of OUT parameters should not be permitted. PL/SQL release 8.0 and

higher does not permit OUT parameters to be used in expression contexts.

However, when you enable PL/SQL V2 compatibility mode, PL/SQL

release 8.0 and higher behaves the same as PL/SQL V2 in this regard.

■ PL/SQL V2 allows OUT parameters in the FROM clause of a SELECT list.

PL/SQL release 8.0 and higher does not allow this use of OUT parameters.

However, when you enable PL/SQL V2 compatibility mode, PL/SQL

release 8.0 and higher behaves the same as PL/SQL V2 in this regard.

Keyword Behavior Differences: Oracle7 vs. Release 8.0 and Higher The following keywords

or types included in Oracle7 and release 8.0 and higher produce slightly different

error message identifiers when used as a function name in a SELECT list:

Table 5–2 Keyword Behavior Differences

Keywords
Release 8.0 and Higher
Behavior Oracle7 Behavior

CHARACTER,COMMIT,DEC,
FALSE, INT , NUMERIC,
REAL, SAVEPOINT, TRUE

Generates errors:
ORA-06550 and
PLS-00222

Generates errors:
ORA-06552 and
PLS-00222
5-26 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
The STARTUP Command
This section describes compatibility and interoperability issues related to the

STARTUP command.

Change in Default Parameter File Selection
When the STARTUP command is issued without the PFILE option, Oracle attempts

to start up the instance using a default parameter file. In Oracle9i, the search criteria

for selecting the default parameter file has changed to facilitate the use of a server

parameter file.

In previous releases of Oracle, the STARTUP command looked for an initialization

parameter file with the name ORACLE_HOME/dbs/init SID .ora , where SID is the

instance name.

In Oracle9i, the process of selecting a default parameter file is as follows:

■ The STARTUP command first looks for a server parameter file with the name

ORACLE_HOME/dbs/spfile SID .ora , where SID is the instance name.

■ The STARTUP command next looks for a server parameter file with the name

ORACLE_HOME/dbs/spfile.ora .

■ If the STARTUP command cannot find a server parameter file, it defaults to the

behavior of the STARTUP command in previous releases, and looks for an

initialization parameter file with the name ORACLE_HOME/dbs/init SID .ora .

Tablespaces and Datafiles
This section describes compatibility and interoperability issues related to

tablespaces and datafiles.

CREATE TABLESPACE: New Behavior
In Oracle8i, the default type of tablespace that is created is dictionary managed if

the EXTENT MANAGEMENT clause is not specified in the CREATE TABLESPACE
statement.

In Oracle9i, the default for the EXTENT MANAGEMENTclause depends on the setting

of the COMPATIBLE initialization parameter:

See Also: Oracle9i Database Administrator’s Guide for more

information about server parameter files
Compatibility and Interoperability 5-27

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ If COMPATIBLEis set to 8.1. x , then the Oracle8i behavior is preserved. That is,

the tablespace is created as dictionary managed.

■ If COMPATIBLE is set to 9.0.0 or higher, then the default is locally managed.

The default storage clause is parsed to determine whether to use

AUTOALLOCATE or UNIFORM allocation policy for this tablespace.

In addition, there was another change made to disallow assigning permanent

locally managed tablespaces as a user’s temporary tablespace. In Oracle8i, an error

would be signalled only when a temporary segment had to be created in the

tablespace.

Default Temporary Tablespaces
Oracle Corporation strongly recommends using a default temporary tablespace for

the database. In a future release, it will be mandatory to have one. The default

temporary tablespace should be created using the CREATE TEMPORARY
TABLESPACE statement.

Undo Tablespaces
Oracle instances can run in one of two undo space management modes:

■ Automatic undo management mode

■ Manual undo management mode

All instances of the same database must run in the same undo space management

mode.

The COMPATIBLE initialization parameter effects how undo space is managed.

Automatic undo management mode is allowed only if COMPATIBLEis set to 9.0.0
or higher. The instance is started in manual undo management mode if the UNDO_
MANAGEMENT initialization parameter is not specified or if COMPATIBLE is set

below 9.0.0 .

In the manual undo management mode with COMPATIBLE set to 9.0.0 or higher,

CREATE, ALTER, and DROP operations on undo tablespaces are allowed. Rollback

segments can coexist with undo tablespaces. That is, rollback segments can exist

while running in automatic undo management mode and undo tablespaces can

exist while running in manual undo management mode. Undo tablespaces cannot

be brought online unless the instance is running in automatic undo management

mode.

In automatic undo management mode, DROP ROLLBACK SEGMENT operations are

allowed. Rollback segments cannot be brought online.
5-28 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Transportable Tablespace
There are compatibility issues when you transport a tablespace between two

databases.

Tempfiles
Release 8.1 introduced tempfiles. The information about tempfiles is in different

static data dictionary views and dynamic performance views than the information

about datafiles. To view information about tempfiles, consult the DBA_TEMP_FILES
static data dictionary view and the following dynamic performance views:

■ V$TEMPFILE

■ V$TEMP_EXTENT_MAP

■ V$TEMP_EXTENT_POOL

■ V$TEMP_SPACE_HEADER

■ V$TEMPSTAT

■ V$TEMP_PING

Oracle automatically assigns numbers to both datafiles and tempfiles. Two datafiles

cannot share the same number; similarly, two tempfiles cannot share the same

number. However, a tempfile and a datafile can share the same number.

Data Dictionary
This section describes possible compatibility and interoperability issues resulting

from data dictionary changes.

See Also: Oracle9i Database Administrator’s Guide for more

information about managing undo space.

See Also: Oracle9i Database Administrator’s Guide for information

about these compatibility issues.

See Also: Oracle9i SQL Reference for information about tempfiles

See Also: Appendix A, "Changes to Initialization Parameters and

the Data Dictionary" for more information about obsolete and

deprecated dictionary views
Compatibility and Interoperability 5-29

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Data Dictionary Protection
The data dictionary protection mechanism introduced in release 8.0 may cause

problems in any applications that create user tables in the SYS schema and access

them using the ’ANY’ privileges. For example, the user must have DELETE
CATALOG ROLE to use the DELETE statement to purge the audit records in the

AUD$ table.

Creating and accessing user tables in SYS schema is not secure. Therefore,

applications are expected to move the objects to a different schema. Use the O7_
DICTIONARY_ACCESSIBILITY initialization parameter for temporary

compatibility. However, this parameter is only for interim use.

Applications should not attempt to connect to user SYSwithout SYSDBAprivileges.

Instead of connecting to user SYSand sharing the password, grant DBA privilege to

a normal user, who will connect to the database as a user with SYSDBA privileges to

connect to SYS schema.

In Oracle9i, a user can be granted the SELECT ANY DICTIONARY privilege. A user

with this privilege can access objects in the SYS schema regardless of the setting of

O7_DICTIONARY_ACCESSIBILITY.

Obsolete Data Dictionary Views
Certain data dictionary views maintained in Oracle7 for backward compatibility to

version 5 and version 6 of Oracle, created in the files catalog5.sql and

catalog6.sql , are obsolete in release 8.0 and higher. Remove all references to

these data dictionary views from your database tools and applications.

Schema Objects
This section describes compatibility and interoperability issues relating to schema

objects.

Bitmap Index Protection
In releases prior to release 8.1, it was possible to unintentionally invalidate bitmap

indexes by issuing certain SQL statements. The most common causes of bitmap

index invalidation were the following types of statements:

■ ALTER TABLE statements that define a primary key on an existing table that

did not previously have a primary key.

■ ALTER TABLE statements that define a NOT NULL constraint on a column that

did not previously have this constraint.
5-30 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Oracle9i eliminates these unintentional invalidations.

Datatypes
This section describes compatibility and interoperability issues relating to

datatypes.

Datetime and Interval Datatypes
When a database is upgraded to Oracle9i, the database time zone is set to the time

zone of the environment variable ORA_SDTZ. If ORA_SDTZ is not set, the database

time zone is set to the time zone of the operating system clock. If the time zone of

the operating system clock is not set or is not valid, the database time zone defaults

to UTC.

old Oracle DATE data with time portion can be migrated to either TIMESTAMP to
support fractional seconds or TIMESTAMP WITH LOCAL TIME ZONE to support

time zone adjustments in addition to fractional seconds without having legacy data

rewritten. An ALTER TABLE statement must be explicitly issued to modify a DATE
column to a TIMESTAMP column or a TIMESTAMP WITH LOCAL TIME ZONE
column.

Large Objects (LOBs)
This section describes compatibility and interoperability issues relating to LOBs.

Varying-Width Character Sets for CLOBs and NCLOBs Release 8.0 did not allow users

other than SYSTEMto create tables with the CLOBor NCLOBdatatype if the database

character set was varying-width. Release 8.1 and higher supports CLOB and NCLOB
datatypes in tables with a varying-width character set, and the data is stored as

UCS2 (2-byte fixed-width unicode).

LOB Index Clause If you used the LOB index clause to store LOB index data in a

tablespace separate from the tablespace used to store the LOB, then the index data

will be relocated to reside in the same tablespace as the LOBif you perform either of

the following actions in release 8.1 and higher:

■ Perform an Export/Import on the LOB

■ Exchange the LOB into a partitioned table

If you used Export/Import to upgrade from Oracle7 to Oracle9i, then the index data

was relocated automatically during migration. However, the index data was not

relocated if you used the MIG utility or the Database Upgrade Assistant.
Compatibility and Interoperability 5-31

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Also, if you create a new table in release 8.1 and higher and specify a tablespace for

the LOB index for a non-partitioned table, then the tablespace specification will be

ignored and the LOB index will be located in the same tablespace as the LOB.

To check the storage of LOB indexes, issue the following SQL statement connected

as a user with SYSDBA privileges:

SELECT index_name, index_type, tablespace_name
 FROM dba_indexes
 WHERE index_type = ’LOB’;

Date Columns in Dynamic Performance Views
In Oracle7, all date columns in dynamic performance views were VARCHAR2(20)
strings in MM/DD/YY HH24:MI:SS format. In release 8.0 and higher, every date

column is a real DATE column that uses the DATE datatype. In contrast to the

previous VARCHAR2(20) string, the DATE datatype provides the following benefits:

■ Establishes consistency, because all date columns are in the DATE datatype.

■ Makes it easier to perform date arithmetic (including sorting) in SQL and

PL/SQL.

■ Enables you to set your date format using NLS_DATE_FORMAT.

■ Allows you to see dates in the old format by setting NLS_DATE_FORMAT to
MM/DD/YY HH24:MI:SS.

■ Avoids two-digit year numbers, thereby avoiding problems at the year 2000 and

beyond.

Oracle ROWIDs
This section describes compatibility and interoperability issues related to rowids.

UROWID Datatype Release 8.1 introduced the UROWID (universal rowid) datatype.

Clients prior to release 8.1 can access columns of UROWID datatype using character

host variables only; other types of variables are not supported.

Note: Although Oracle7 displays dates using the VARCHAR(20)
datatype in dynamic performance views, Oracle7 is still fully

year-2000 compliant. Oracle7 stores time to the nearest second in

the redo log files and control files.
5-32 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
New Physical ROWID Datatype Format Release 8.0 introduced a new format for physical

rowids. If you use physical rowids stored in columns or in application code, then

the old physical rowids are invalid and must be converted.

AL24UTFFSS Character Set Desupported
The AL24UTFFSS Unicode character set has been desupported in Oracle9i.
AL24UTFFSS was introduced in Oracle7 as the Unicode character set supporting

the UTF-8 encoding scheme based on the Unicode 1.1 standard, which is now

obsolete. In Oracle9i, The Unicode database character sets AL32UTF8 and UTF8,

include the Unicode enhancements based on the Unicode 3.1 standard.

The migration path for existing AL24UTFFSS databases is to upgrade your database

character set to UTF8 prior to upgrading to Oracle9i. As with all migrations to a

new database character set, Oracle Corporation recommends you use the Character

Set Scanner for data analysis before attempting to migrate your existing database

character set to UTF8.

NCHAR and NLS Use
In version 8, you can declare the use of the national character set (NCHAR) for

specific columns, attributes, PL/SQL variables, parameters, and return results.

Unless such an explicit declaration is made, use of NCHAR and NLS is, for the most

part, invisible and has no affect on other version 8 features. An exception is that

SELECT statements on either the PROPS$ or the VALUE$ dictionary view may

return the CHARACTER_SET_NAME column or the NLS_NCHAR_CHARACTERSET
row.

Migration Issues with NCHAR and NLS The PROPS$ dictionary table contains two rows

that describe the character sets specified in the CREATE DATABASE statement. The

row holding NAME=’NLS_CHARACTERSET’ has the database character set’s

name in the VALUE$ column. The row holding NAME=’NLS_NCHAR_

CHARACTERSET’ has the national character set’s name in the VALUE$ column.

Compared to release 7.3, various views contain the new column, CHARACTER_SET_
NAME, whose value is:

DECODE(x$.CHARSETFORM,

See Also: "Migration Issues for Physical Rowids" on page D-32

for more information about the new physical rowid format

See Also: Oracle9i Database Globalization Support Guide for more

information about the Character Set Scanner
Compatibility and Interoperability 5-33

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
 1, ’CHAR_CS’,
 2, ’NCHAR_CS’,

where x$ represents one of the base tables. The DATA_TYPE or COLTYPE column

value of the view will not change to indicate the character set choice.

NCHAR and NLS Environment Variables and Compatibility You should set NLS_LANG to
your environment as follows:

■ Set the ORA_NLS32 environment variable for the release 7.3.x environment

■ Set the ORA_NLS33 environment variable for the release 8.0 and higher

environment

Verify that the client has the correct NLS character set environment variables. An

error is generated when release 7.3 NLS code tries to load a release 8.0 and higher

character set.

User-Defined Datatypes
This section describes compatibility and interoperability issues relating to

user-defined datatypes.

Type Evolution
Because type evolution requires the COMPATIBLE initialization parameter to be set

to 9.0.0 or higher, clients which are using a previous release of PL/SQL cannot

access evolved types.

Subtypes and Non-Final Types
Types created in release 8.1 and earlier are considered to be FINAL types. Thus, they

cannot be used as supertypes in Oracle9i. However, an ALTER statement can be

explicitly used to change the type to be NOT FINAL .

If the COMPATIBLE initialization parameter is set below 9.0.0 , subtypes cannot be

created. Further, not instantiable and non-final types cannot be created.

Consequently, subtables, subviews, and substitutable columns are also not

permitted.

Release 8.1 Clients Accessing a Release 9.0 or Higher Server Any transfer involving data

of non-final types will return an error. Release 8.1 clients cannot access a release 9.0

or higher server if the type has been altered to non-final on the server.
5-34 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Release 9.0 and Higher Clients Accessing a Release 8.1 Server Since the release 8.1 server

can have only non-final types, no errors occur.

New Format for User-Defined Datatypes
Release 8.1 introduced a new format for user-defined datatypes. The new format

can result in significant performance improvements over the format used in

release 8.0. You can use release 8.0 user-defined datatypes in a release 8.1 or higher

database without causing compatibility problems. However, the database will not

realize the performance gains possible with the new format.

Release 8.1 and Higher Clients Accessing Release 8.0 User-Defined Datatypes The

user-defined datatypes format is negotiated as part of the compatibility exchange

between the client and server. If you are using a release 8.0 server, then release 8.1

and higher clients can access the database, but they are set to release 8.0.

Release 8.0 Clients Accessing Release 8.1 or Higher User-Defined Datatypes When a release

8.0 client accesses a server with release 8.1 or higher user-defined datatypes, the

database converts the user-defined datatypes to release 8.0 format. Consequently,

the release 8.0 client can access the data, but performance gains may not be realized.

Nested Tables
Release 8.0 clients do not support the following release 8.1 and higher nested table

features:

■ Collection locators

■ User-specified storage for collection columns, including storage of nested table

data in an index-organized table

Therefore, access fails with an incompatibility error when a release 8.0 client

attempts to access a release 8.1 or higher server and a nested table is specified to be

returned as a locator, or the storage for the nested table is user-specified.

Varrays Stored as LOBs
Release 8.0 clients do not support specifications of storage parameters for storing

varrays as LOBs. Therefore, access fails with an incompatibility error when a

release 8.0 client attempts to access a release 8.1 or higher server where there is a

specification of storage parameters for storing a varray as a LOB.
Compatibility and Interoperability 5-35

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
SQL and PL/SQL
This section describes compatibility and interoperability issues relating to SQL and

PL/SQL.

Functions GREATEST_LB, LEAST_UB, and TO_LABEL Desupported
Starting with release 8.1, the built-in PL/SQL functions GREATEST_LB, LEAST_UB,
and TO_LABEL are no longer supported.

Native Dynamic SQL in PL/SQL
The following sections describe interoperability issues related to native dynamic

SQL in PL/SQL:

Server-Side PL/SQL An Oracle database server at release 8.1.0 or higher compatibility

level can execute native dynamic SQL statements that contain references to objects

on a remote server at any compatibility level.

For example, the following procedure contains a native dynamic SQL statement and

links to a remote Oracle database server:

PROCEDURE dyn1 is
BEGIN
 EXECUTE IMMEDIATE ’insert into tab@ remote_link
 values (’a’, 10)’;
END;

In the example, remote_link can be a link to any version of Oracle, such as release 7.3,

8.0, or 8.1.

Native Dynamic SQL and RPC Calls PL/SQL programs that are targets of RPC calls can

use native dynamic SQL, regardless of the release of the clients making the RPC

calls. For example, release 7.3 or 8.0 clients can issue RPC calls to an Oracle database

server at 8.1.0 or higher compatibility level.

SQL Scripts utlchain.sql and utlchn1.sql
The Oracle9i installation includes the following two scripts for creating a table that

stores migrated and chained rows: utlchain.sql and utlchn1.sql . The

utlchn1.sql script can be run on index-organized tables as well as regular tables,

See Also: Oracle9i SQL Reference and PL/SQL User’s Guide and
Reference for more information about SQL and PL/SQL
5-36 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
while the utlchain.sql script can be run only on regular tables, but not on

index-organized tables.

In Oracle9i, you must always run the utlchn1.sql script.

SQL Scripts utlexcpt.sql and utlexpt1.sql
The Oracle9i installation includes the following two scripts for creating a table that

stores exceptions from enabling constraints: utlexcpt.sql and utlexpt1.sql .

The utlexpt1.sql script can be run on index-organized tables as well as regular

tables, while the utlexcpt.sql script can be run only on regular tables, but not on

index-organized tables.

In Oracle9i, you must always run the utlexpt1.sql script.

Behavior Change in Parallel CREATE TABLE Statements with the AS Subquery
In release 8.0 and higher, if you use the PARALLEL clause in a CREATE TABLE
statement with the AS subquery, then Oracle ignores the INITIAL storage

parameter and instead uses the NEXT storage parameter. Oracle7 did not ignore the

INITIAL storage parameter.

For example, consider the following SQL statement:

CREATE TABLE tb_2 STORAGE (INITIAL 1M NEXT 500K)
 PARALLEL (DEGREE 2)
 AS SELECT * FROM tb_1;

In release 8.0 and higher, the value of INITIAL is 500 KB, while in Oracle7, the

value of INITIAL is 1 MB.

Advanced Queuing (AQ)
This section includes compatibility and interoperability issues for AQ.

Queue Level and System Level Privileges
To use queue level and system level privileges, the queue table must be at 8.1.0

compatibility level or higher. Specifically, to grant queue level privileges using the

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about AQ. The sections below only

provide compatibility and interoperability information about new

AQ features, while Oracle9i Application Developer’s Guide - Advanced
Queuing provides detailed information about using them.
Compatibility and Interoperability 5-37

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
following procedures in the DBMS_AQADMpackage requires an 8.1.0 or higher queue

table compatibility level:

■ GRANT_QUEUE_PRIVILEGE

■ REVOKE_QUEUE_PRIVILEGE

Interoperability and the Sender’s ID Column
In release 8.1 and higher, the sender’s ID is mapped as an additional attribute in the

message properties. This new attribute is ignored when there is communication

between release 8.0 and release 9.0.1 and higher databases.

For OCI applications, the sender’s ID attribute is available as a new attribute in the

message properties descriptor. Release 8.1 and higher OCI clients use a new RPC

code to send and receive the message properties to and from the server.

Rule Based Subscriptions
When you migrate a queue table from release 8.0 to release 8.1 or higher using the

DBMS_AQADM.MIGRATE_QUEUE_TABLE procedure, any existing subscribers are

upgraded automatically to subscribers with null rules.

Procedures and Packages
This section describes compatibility and interoperability issues related to

procedures and packages.

Syntax Change for the SET_SESSION_LONGOPS Procedure
Release 8.0 introduced changes to the DBMS_APPLICATION_INFO.SET_SESSION_
LONGOPS procedure. For information about the new syntax, refer to the

dbmsapin.sql file. If any of your applications use this procedure, then change the

applications accordingly.

Oracle Optimizer
Oracle9i contains a significant number of optimizer enhancements that are either

new or have not been enabled by default in previous releases.

Upgrading an existing application to Oracle9i could therefore result in a large

number of changes in execution plans. For a mature application, changes in

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about packages
5-38 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
behavior may introduce an element of risk. Customers who wish to minimize

execution plan changes can do so by means of the OPTIMIZER_FEATURES_ENABLE
initialization parameter.

Setting the value of this parameter to an earlier release, for example, release 8.1.7,

makes Oracle use only those optimizer features that were enabled by default in that

release, something that will reduce the likelihood of changes in execution plans

when upgrading from that release.

The Oracle Plan Stability feature can also be used to preserve old behavior when

upgrading to a new release.

Oracle9 i Real Application Clusters
Support for different releases of Oracle within one Oracle9i Real Application

Clusters environment is operating system-specific. See your operating

system-specific Oracle documentation for information about whether or not the

coexistence of different releases within one Oracle9i Real Application Clusters

environment is supported on your operating system.

INSTANCES Keyword in PARALLEL Clause
The INSTANCES keyword can be used in release 8.1 and higher, but it will be

interpreted differently than in past releases. In Oracle7 and release 8.0, the

INSTANCES keyword could be used in the PARALLEL clause of statements such as

the following:

■ ALTER CLUSTER

■ ALTER DATABASE ... RECOVER

■ ALTER INDEX ... REBUILD

■ ALTER TABLE

■ CREATE CLUSTER

■ CREATE INDEX

■ CREATE TABLE

It also could be used in hints. The INSTANCES keyword was used to specify the

number of Oracle Parallel Server instances to use in a parallel operation.

Also starting with release 8.1, the syntax for specifying degree in a PARALLEL
clause has changed. You can specify degree simply by placing a number after

PARALLEL, as in the following example:
Compatibility and Interoperability 5-39

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
ALTER TABLE emp PARALLEL 5;

However, the DEGREEkeyword remains valid if you choose to use it. The preceding

syntax is equivalent to the following statement:

ALTER TABLE emp PARALLEL (DEGREE 5 INSTANCES 1);

Regardless of the syntax, the value you specify is the number of query threads used

in a parallel operation. Neither syntax will affect how many instances are used to

execute a query. The system will determine how many instances to use based on the

instances available and the load on each of the instances. So, either syntax will

produce the same result.

Continuing to Use the INSTANCES Keyword in Release 8.1 and Higher You can still use the

old syntax to specify both INSTANCES and DEGREE in release 8.1 and higher, but

Oracle interprets it as single keyword that specifies the degree. Therefore, the

obsolete command syntax is still accepted in release 8.1 and higher, but its

interpretation may be different than in past releases. Table 5–3 illustrates the way in

which Oracle interprets the possible settings of INSTANCES and DEGREE if you

continue to use the obsolete syntax. The columns in Table 5–3 represent the

following:

■ The Degree column indicates the setting for the DEGREE keyword in the

PARALLEL clause.

■ The Instances column indicates the setting for the INSTANCES keyword in the

PARALLEL clause.

■ The 8.1 Degree column indicates Oracle’s interpretation of the degree in

release 8.1 and higher based on the DEGREE and INSTANCES settings.

Table 5–3 Conversion of INSTANCES Keyword in Release 8.1

Degree Instances 8.1 Degree

Unset or 1 Unset or 1 1

x DEFAULT x

x Unset or 1 x

Unset or 1 DEFAULT DEFAULT

DEFAULT y y

Unset or 1 y y

DEFAULT Unset or 1 DEFAULT
5-40 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
In the table, x and y are variables representing an integer value.

If you leave a keyword unset, then Oracle uses 1 as its value.

The following scenarios illustrate the way Oracle may behave differently in

release 8.1 and higher because of these interpretations:

■ Setting DEGREE to x and INSTANCES to 1 does not guarantee that parallel

operations use only one instance.

■ Setting DEGREE to 1 and INSTANCES to y does not guarantee that parallel

operations use only one query thread per instance.

■ Setting DEGREE to x and INSTANCES to y does not guarantee either setting.

Instead, Oracle attempts to set the degree to x multiplied by y.

Oracle Corporation recommends that you discontinue use of the INSTANCES
keyword to avoid unexpected behavior. Also, consider using the PARALLEL_
INSTANCE_GROUP initialization parameter.

Database Security
This section describes compatibility and interoperability issues relating to database

security.

Password Management
Make the following changes to a version 7 (or earlier) application to enable it to

work with version 8 password management:

■ Use the version 8 OCI call, OCISessionBegin() , to connect to the server. If

the server returns SUCCESS_WITH_INFO, then check to see if the password

has expired and is still within the grace period. If the password has expired but

is still within the grace period, then signal a warning to the user and use the

OCIChangePassword() call to change the user’s password (the password

change call is optional but recommended).

x y x * y

See Also: Oracle9i SQL Reference for more information about the

PARALLEL clause and Oracle9i Database Reference for information

about the PARALLEL_INSTANCE_GROUP initialization parameter.

Table 5–3 (Cont.) Conversion of INSTANCES Keyword in Release 8.1

Degree Instances 8.1 Degree
Compatibility and Interoperability 5-41

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ If the password has expired and the error is returned, then use the version 8

OCI call, OCIChangePassword() , to change the user’s password. If

OCIChangePassword() is not used to change the password, then the

password verification routine will not check if the new password is equal to the

old password and will not reject the change if they are the same.

If you do not make these changes to Oracle7 applications, then one of the Oracle

tools, such as SQL*Plus, will be required to allow the password change after a

user’s account expires.

This version 8 password management feature is off by default. If a version 8 server

system does not implement the password expiration feature, then no change is

required to Oracle7 clients for password management. The DEFAULT profile sets all

the parameters to UNLIMITED, and sets the password complexity check routine to

NULL.

The password verification routine is exported/imported along with its profile

definition. The user's history table also can be imported/exported in version 8.

Oracle7 or Lower Client with Release 8.0 or Higher Server Oracle7 clients use Oracle7 OCI

calls to connect to the server; therefore, release 8.0 and higher password expiration

cannot be detected. However, other features of release 8.0 and higher password

management work for Oracle7 clients. Full release 8.0 and higher password

management, including password expiration handling, can operate in Oracle7

clients after you make the minor change of replacing their Oracle7 log in call with

the release 8.0 and higher log in call.

Release 8.0 or Higher Client with Oracle7 or Lower Server A release 8.0 or higher client can

be coded to work with Oracle7 or lower servers. An example of the code for such

clients follows:

OCISessionBegin(...) /* call release 8.0 and higher logon OCI call */
if (SUCCESS_WITH_INFO) then
{ /* Check for password expiration and take appropriate action*/
...
OCIChangePassword(...);
...
}

5-42 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Enterprise User Management
This section includes compatibility and interoperability issues related to enterprise

user management. This functionality is part of the Oracle Advanced Security

feature.

Interoperability with Release 8.1.5 Release 8.0 Release 8.1.5 and 8.0 servers cannot share

global users and roles with release 8.1.6 and higher servers. In addition, current user

database links between release 8.1.5 and release 8.1.6 and higher are not supported.

Current user database links between release 8.0 and release 8.1.6 and higher are not

supported.

Interoperability with Oracle7 and Version 6 Releases Because global users cannot be

created or authorized on version 7 or version 6 servers, those servers cannot share

global users or roles with version 8. Also, current user database links from version 8

to version 6 or version 7 are not supported.

Database Backup and Recovery
This section describes compatibility and interoperability issues related to database

backup and recovery.

Recovery Manager

Recovery Manager Commands
Release 8.1 of Recovery Manager introduced changes to some Recovery Manager

commands. However, all commands used in prior releases will continue to work

with release 8.1 and higher of Recovery Manager.

Note: The Oracle Security Server (OSS) component no longer

exists in Oracle8i; most of its functionality has been integrated into

Oracle Advanced Security. Oracle does not provide a tool to

migrate from OSS to Oracle Advanced Security.

See Also:

■ Oracle9i Recovery Manager Reference for compatibility and

interoperability issues relating to Recovery Manager

■ "Upgrading the Recovery Catalog" on page 4-18 for information

about upgrading the recovery catalog
Compatibility and Interoperability 5-43

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
For example, the CLONEcommand is changed to the DUPLICATEcommand, but the

CLONE command will continue to work. Also, the CLONE option of the ALLOCATE
and CONNECT commands is now the AUXILIARY option, but the CLONE option will

continue to work. Similarly, the CLONENAME keyword in the COPY and SET
commands is now AUXNAME, but the CLONENAME keyword will continue to work.

Backup Management: EBU and Recovery Manager
EBU and Recovery Manager are client-side utilities for managing Oracle database

backups. However, for managing version 8 database backups, you must use

Recovery Manager. You cannot use EBU with version 8.

Both EBU and Recovery Manager use the Media Management Language (MML) to

communicate with third party storage subsystems, such as EMC. Investments in

tape subsystem management modules for EBU and Oracle7 should be reusable

under Recovery Manager and version 8. However, backup volume formats are not

reusable. You need to write new backups to the storage subsystem under version 8

because Recovery Manager produces a different format, and backups from Oracle7

generally are not useful for version 8 restores.

Datafile Backups
A datafile backup taken with Oracle7 cannot be restored with any later Oracle

release, with the following exception: a backup of an Oracle7 database taken after

running the MIG utility can be restored and recovered with Oracle9i. If EBU is used

to backup the Oracle7 database, and the database must later be restored for

recovery with Oracle9i, then you must use EBU to restore the datafiles prior to

recovering them with Oracle9i. If the Oracle7 database is backed up with operating

system commands to disk files, then those disk files can be registered with Recovery

Manager by using the CATALOG DATAFILECOPY command.

A datafile backup taken with release 8.0 or higher can be restored and recovered

with any later Oracle release, if a direct upgrade path between the release that

backed-up the file and the release that recovers the file is supported in Table 2–1,

" Upgrade Paths" on page 2-3. You can also restore and recover release 8.0 and

higher backups with an earlier release if the datafile contents are compatible with

the earlier release.

Note: The scripting language for Recovery Manager is completely

different from the scripting language for EBU.
5-44 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Standby Database
Standby database operates only on release 7.3 and higher of Oracle. The following

compatibility restrictions apply to standby databases:

■ The primary and standby databases should run on the same operating system.

In addition, Oracle Corporation recommends that the primary and standby

databases run on the same release of the operating system.

■ The primary and standby databases must run the same maintenance release of

Oracle. For example, if your primary database is running release 8.1.6, then the

standby database can run any production 8.1 release, such as release 8.1.5, 8.1.6,

or 8.1.7. However, in this case, the standby database cannot run Oracle7 or

release 8.0.

Fast-Start On-Demand Rollback and Fast-Start Parallel Rollback
As part of the recovery process, after a session or instance is abnormally terminated,

Oracle rolls back uncommitted transactions. Oracle9i has two new features to

improve rollback performance: fast-start on-demand rollback and fast-start parallel

rollback.

When a dead transaction holds a row lock on a row that another transaction needs,

fast-start on-demand rollback automatically recovers the data block required by the

new transaction. Other data blocks and transactions that do not block any new

transaction’s progress are rolled back in the background. Fast-start on-demand

rollback is enabled only when you set the COMPATIBLE initialization parameter to

8.1.0 or higher.

Fast-start parallel rollback improves background rollback performance by

recovering each dead transaction using multiple server processes. You can use

fast-start parallel rollback when the COMPATIBLE initialization parameter is set to

any 8.0 or 8.1 release. Fast-start parallel rollback recovers each dead transaction

using multiple server processes only if the following conditions are met:

■ There are enough server processes to allocate one or more processes to each

dead transaction.

■ If COMPATIBLE is set to an 8.0 release, then the transaction was created with

multiple server processes. If a transaction was created with only one server

See Also: Your operating system-specific Oracle documentation

for more information about operating system requirements for

standby database.
Compatibility and Interoperability 5-45

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
process, then only one server process is used in the rollback operation. This

restriction does not apply if COMPATIBLE is set to 8.1.0 or higher.

Archiving of Redo Logs
Release 8.1 and higher enables you to archive online redo log files to multiple

destinations, including to a local disk-based file or to a specified standby database.

The compatibility and interoperability issues described in this section may arise

because of this functionality.

Re-Archiving Previously Archived Online Redo Logs Prior to release 8.1, it was possible to

re-archive an online redo log that already had been successfully and fully archived.

In addition, it was possible to re-archive redo log files to successfully archived

destinations.

Starting with release 8.1, the following restrictions apply:

■ Successfully archived online redo logs cannot be re-archived.

■ Successfully archived destinations cannot be re-archived.

Archive Operation Error Detection Behavior Prior to release 8.1, when any error was

detected, an archive operation stopped immediately, reported the error to the alert

log, and signaled the error to the user.

Starting with release 8.1, an archive operation does not stop processing unless all of

the archive destinations cannot be processed. An error at one or more destinations

does not stop the archive operation; the archive operation only stops if all archive

destinations cannot be processed. Specifically, archiving to a mandatory is retried

once, and archiving failure on the retry halts processing.

LogMiner
LogMiner runs in a release 8.1 or higher instance and can analyze redo log files

from any database that meets the following criteria:

■ Has the same DBCS (Database Character Set) as the analyzing Oracle instance

■ Is running on the same hardware platform as the analyzing Oracle instance

■ Is a release 8.0 or higher database

See Also: Oracle9i Database Concepts for more information about

fast-start on-demand rollback.
5-46 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
LogMiner does not require a mounted database to analyze redo log files. However,

to fully translate the contents of the redo log files, LogMiner requires access to a

LogMiner dictionary (catalog). LogMiner uses the dictionary to translate internal

object identifiers and data types to object names and external data formats. You can

use the PL/SQL package DBMS_LOGMNR_D to extract a database dictionary into

an external file for later use in analyzing redo log files. Without a dictionary,

LogMiner returns the internal object identifiers and presents data as hex bytes.

Analyzing Archived Redo Log Files from Other Databases You can run LogMiner on an

instance of a database while analyzing redo log files from a different database. To

analyze archived redo log files from other databases, LogMiner must:

■ Access a dictionary file that is both created from the same database as the redo

log files and created with the same database character set

■ Run on the same hardware platform that generated the log files, although it

does not need to be on the same system

■ Use redo log files that can be applied for recovery from Oracle release 8.0 and

higher

Oracle Media Management API and Proxy Copy
Starting with Oracle Media Management API version 2, proxy copy functionality is

supported. If a Recovery Manager proxy backup is attempted, and Oracle is linked

with Oracle Media Management API release 1.1, or a version 2 that does not

support proxy copy functionality, then Recovery Manager will return an error and

the backup will fail.

Distributed Databases
This section describes compatibility and interoperability issues related to

distributed databases.

Materialized Views
Prior to release 8.1, an Oracle materialized view always consisted of a materialized

view base table and a view on the base table. For example, creating a materialized

view SNAP_EMP creates a view SNAP_EMP and a base table normally called SNAP$_
SNAP_EMP. In release 8.1 and higher, most materialized views will have only a base

table with the same name as the materialized view. The view will not be created.

A view will be added to the materialized view under the following conditions:
Compatibility and Interoperability 5-47

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
■ The materialized view was imported from a database prior to release 8.1, such

as release 8.0.

■ The COMPATIBLE initialization parameter is set below 8.1.0 .

■ The materialized view requires hidden columns (that is, rowid materialized

views and fast-refreshable materialized views that contain subqueries).

Oracle Replication
The following compatibility restrictions apply to a replicated environment:

■ If you have a replicated environment with different releases of Oracle, then you

cannot replicate data that is incompatible on the lower releases. For example, in

a replicated environment with a database at 8.1.0 compatibility level and

another database at 8.0.0 compatibility level, you cannot replicate data between

them if the data is incompatible with release 8.0.

■ To improve performance and protect data integrity, a number of Advanced

Replication packages that were external prior to release 8.1 have been

internalized in release 8.1 and higher. Oracle9i Replication contains a list of these

internalized packages.

If one or more of your master sites is a release prior to release 8.1, then the

GENERATE_80_COMPATIBLE flag must be unset or set to TRUE in the following

procedures:

■ GENERATE_REPLICATION_SUPPORT

■ CREATE_SNAPSHOT_REPOBJECT

■ GENERATE_SNAPSHOT_SUPPORT

Heterogeneous Services Agents
This section describes compatibility and interoperability issues related to

Heterogeneous Services agents.

Interoperability Between Servers of Different Releases Servers at release 8.0.3 and higher

can connect to and use Heterogeneous Services agents of any other server at release

8.0.3 and higher. In a connection between servers of different releases, the

functionality is limited to that of the lower release.

Note: Importing version 8 snapshots into version 7 databases is

not supported.
5-48 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Multithreaded Service Agents Starting with release 8.1, multithreaded Heterogeneous

Services agents are supported. If you have existing agents and you want to take

advantage of the multithreaded features, then create the agent initialization file and

explicitly start the agents using the Agent Control Utility.

SQL*Net or Oracle Net
Version 7 and version 8 releases can use SQL*Net V2 or Net8. SQL*Net V1,

however, used a different network addressing scheme and cannot be used with

release 8.0 and higher. Therefore, the following requirements apply to upgraded

applications:

■ Both the client and server must run SQL*Net V2 or Net8.

■ The shared server requires SQL*Net V2 or Oracle Net on the server. Therefore,

to connect using the shared server, you also must use SQL*Net V2 or Oracle Net

on the client.

Upgrading SQL*Net V1 to SQL*Net V2 or Net8
Make the following changes to upgrade from SQL*Net V1 to SQL*Net V2 or Net8:

■ Install SQL*Net V2 or Net8.

■ Re-create each connect string as the next version’s connect descriptor.

SQL*Net V2 uses the syntax outlined in the SQL*Net Version 2.0 Administrator’s
Guide or and Net8 uses the syntax outlined in the Oracle9i Net Services
Administrator’s Guide.

■ Relink any precompiler programs and Oracle executables that you want to use

with SQL*Net V2 or Net8, including SQL*Plus and SQL*Forms.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for general information about Heterogeneous Services, and for

information about creating the agent initialization file and starting

the agents using the Agent Control utility.

See Also: SQL*Net Version 2.0 Administrator’s Guide and SQL*Net
V2 Migration Guide for complete instructions about upgrading

SQL*Net from V1 to V2. See Oracle9i Net Services Administrator’s
Guide for complete instructions about upgrading SQL*Net V1 to

Net8.
Compatibility and Interoperability 5-49

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Service Naming and Connection Load Balancing
Release 8.1 and higher supports service naming and connection load balancing for

services that include more than one database instance. Each service can include

multiple instances, and each instance can include multiple handlers. This support

enables clients to access a service rather than a specific database instance, and

logically separates the service name from any particular instance name.

To support services that include multiple instances, use the following new

parameters in connect descriptors:

■ SERVICE_NAME

■ INSTANCE_NAME

The new parameters enable connection load balancing by taking requests through

the following process:

1. A client program specifies the name of the service to which it wants to connect.

2. The TNS Listener finds the least loaded instance in the service.

3. The TNS Listener finds the least loaded handler in the instance.

4. The TNS Listener redirects the client to the optimal handler, or passes the client

connection to the handler, if necessary.

To use connection load balancing, perform the following actions:

■ Discontinue the use of the SID parameter in connect descriptors.

■ Use the SERVICE_NAMES and INSTANCE_NAME initialization parameters in

your initialization parameter file.

■ Use the SERVICE_NAME parameter in the tnsnames.ora file.

Note: Before configuring the TNS Listener to handle two or more

instances with the same instance name, make sure no client

programs use connections based on the SID parameter.

See Also: Oracle9i Net Services Administrator’s Guide for more

information about using connection load balancing and the

SERVICE_NAME parameter.
5-50 Oracle9i Database Migration

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
Miscellaneous Compatibility and Interoperability Issues
This section describes miscellaneous compatibility and interoperability issues

related to your Oracle installation.

2 GB File Size Dependencies
Release 8.0.4 and higher can access files that are larger than 2 GB. However, this

access is subject to the following operating system dependencies:

■ File Mode: Is the file a file system file or a raw device file? Many UNIX systems

support greater than 2 GB file sizes only on raw devices.

■ Asynchronous I/O: Does the operating system support asynchronous I/O on

files, for both raw and file system files? Is asynchronous I/O supported for files

that are greater than 2 GB?

■ Operating System Revision: Does your operating system release number

support file size greater than 2 GB? For example, in Solaris 2.5.1, a file size of

greater than 2 GB is supported only on raw devices. However, in Solaris 2.6,

both raw and file system files can be greater than 2 GB.

■ Operating System I/O Subsystem Issues: Does your operating system require

a firmware upgrade to support file size greater than 2 GB? Because support for

file size greater than 2 GB is fairly recent, many disk arrays or I/O subsystems

need firmware upgrades to support large files. It is important to determine from

the operating system vendor which firmware patches are required for large file

support.

It is very important to check these operating system dependencies before using files

that are greater than 2 GB in size.
Compatibility and Interoperability 5-51

Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
5-52 Oracle9i Database Migration

Upgrading Your Applica
6

Upgrading Your Applications

This chapter describes upgrading your current applications and covers the

following topics:

■ Overview of Upgrading Applications

■ Upgrading Precompiler and OCI Applications

■ Upgrading SQL*Plus Scripts

■ Upgrading Oracle7 Forms or Oracle Developer Applications
tions 6-1

Overview of Upgrading Applications
Overview of Upgrading Applications
You do not need to modify existing applications that do not use features available in

the new Oracle9i release. Existing applications running against a new Oracle9i
database function the same as they did on prior releases and achieve the same, or

enhanced, performance.

Many new features and enhancements are available after upgrading to the new

Oracle9i release. Some of these features provide added functionality, while others

provide improved performance. Before you upgrade your applications, you should

review these new features to decide which ones you want to use.

Compatibility Issues for Applications
There may be compatibility issues between different releases of Oracle that could

affect your applications. These compatibility issues result from differences in the

Oracle database server in various releases. Also, in each new release of Oracle, new

Oracle reserved words may be added, changes may be made to initialization

parameters, and changes may be made to the data dictionary.

When you upgrade your Oracle database server to a new release, make sure that

your applications do not use any Oracle reserved words, that your applications are

compatible with the initialization parameters of the server, and that your

applications are compatible with the data dictionary of the server. Finally, a new

release of Oracle software may require certain operating system releases or the

application of certain patch sets.

See Also: Oracle9i Database New Features for information about the

features available in the new Oracle9i release

See Also:

■ "Applications" on page 5-19 for information about

compatibility issues that relate to applications

■ Appendix A, "Changes to Initialization Parameters and the

Data Dictionary" for information about initialization parameter

changes and data dictionary changes

■ Oracle9i SQL Reference for a complete list of Oracle reserved

words

■ Your operating system-specific Oracle documentation for

information about operating system requirements
6-2 Oracle9i Database Migration

Upgrading Precompiler and OCI Applications
SQL*Net release 2.x, Net8, and Oracle Net Services work with various Oracle

releases. Thus, Oracle7, Oracle8, Oracle8i, and Oracle9i databases can communicate

by using SQL*Net release 2.x, Net8, and Oracle Net Services. SQL*Net release 1.x,

however, uses a different network addressing scheme and cannot be used with

release 8.0 and higher.

Upgrading Precompiler and OCI Applications
The upgrade path is very similar for precompiler and OCI applications. This section

guides you through your upgrade options for these applications and notes

differences between precompiler and OCI applications whenever necessary.

Create a test environment before you upgrade your production environment. Your

test environment should include your upgraded application and the new Oracle9i
database. Also, your test environment should provide a realistic test of your

application.

Understanding Software Upgrades and Your Client/Server Configuration
To understand your options for upgrading precompiler and OCI applications, you

first need to understand the type of software upgrade you are performing and your

client/server configuration.

Types of Software Upgrades
Two types of upgrades are possible for both client and server Oracle software.

Major Database Release Upgrade The upgrade changes the first digit of the release

number.For example, upgrading from Oracle8i to Oracle9i is a major database

release upgrade.

Database Maintenance Release Upgrade The upgrade changes the second digit of the

release number. For example, upgrading from release 9.0.1 to release 9.2 is a

database maintenance release upgrade.

See Also: Pro*C/C++ Precompiler Programmer’s Guide, Pro*COBOL
Precompiler Programmer’s Guide, and Oracle Call Interface
Programmer’s Guide for more information about using these

programming environments.
Upgrading Your Applications 6-3

Upgrading Precompiler and OCI Applications
Possible Client/Server Configurations
Your precompiler and OCI applications run on the client in a client/server

environment, where the Oracle database server is the server. You may use one or

more of the following client/server configurations in your environment.

Different Computers The client software and the server software are on different

computers, and they are connected through a network. The client and server

environments are separate.

Different Oracle Home Directories on the Same Computer The client software and the

server software are on the same computer, but they are installed in different Oracle

home directories. Again, the client and server environments are separate.

Same Oracle Home The client software and server software are installed in the same

Oracle home on the same computer. In this case, any upgrade of the server software

is also an upgrade of the client software.

Compatibility Rules for Applications When Upgrading Oracle Software
This section covers compatibility rules that apply when you upgrade Oracle server

software or Oracle client software. The rules are based on the type of software

upgrade you are performing and on your client/server configuration.

The following sections contain compatibility rules for the following type of

upgrades:

■ Upgrading the Oracle Server Software

■ Upgrading the Oracle Client Software

Note: Starting with release 9.2, maintenance releases of Oracle are

denoted by a change to the second digit of a release number. In

previous releases, the third digit indicated a particular maintenance

release.

See Also: Oracle9i Database Concepts and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for more information about

client/server environments.
6-4 Oracle9i Database Migration

Upgrading Precompiler and OCI Applications
Upgrading the Oracle Server Software
The following rules apply when you upgrade the Oracle server software.

If You Do Not Change the Client Environment, Then You Do Not Need to Relink. If your client

and server are on different computers or are in different Oracle home directories on

the same computer, and you upgrade the Oracle server software without changing

the client software, then you do not need to precompile, compile, or relink your

applications. In these cases, the client software is separate from the server software

and will continue to function against the server.

However, if your applications are using the same Oracle home as the Oracle

database server, then your server upgrade also upgrades your client software, and

you must follow the rules in "Upgrading the Oracle Client Software" on page 6-6.

Applications Can Run Against Newer or Older Oracle Server Releases When you run a

precompiler or OCI application against a database server, Oracle Corporation

recommends that the release of the database server software be equal to or higher

than the client software release, but this configuration is not strictly required. For

example, if your Oracle client software is release 8.1.7, then your Oracle server

software should be release 8.1.7 or higher to run a precompiler application on the

client against the server.

For OCI, Oracle7 client software can run against a release 8.0 or higher Oracle

server, and release 8.0 and higher client software can run against an Oracle7 server.

If a release 8.0 or higher client is running against an Oracle7 server, then the

application cannot use features available in release 8.0 and higher, including object

capabilities.

Note: This section uses the terms introduced in "Understanding

Software Upgrades and Your Client/Server Configuration" on

page 6-3.

Note: It is possible to upgrade the Oracle server software but not

install the new precompiler or OCI client software when you are

using the same Oracle home for both. In this case, the client

software is not upgraded. However, such a configuration is not

recommended.
Upgrading Your Applications 6-5

Upgrading Precompiler and OCI Applications
Upgrading the Oracle Client Software
Oracle Corporation recommends that you upgrade your client software to match

the current server software. For example, if you upgrade your Oracle database

server to release 9.2, then Oracle Corporation recommends upgrading the client

software to release 9.2 as well. Keeping the server and client software at the same

release number ensures the maximum stability for your applications. In addition,

the latest Oracle client software may provide added functionality and performance

enhancements that were not available with previous releases.

The following rules apply when you upgrade the Oracle client software.

Applications Can Be Linked with Newer Libraries The code generated by precompiler

applications can be linked with a release of the client library that is equal to or

higher than the server release. In addition, Oracle7 and release 8.0 and higher

SQLLIB function calls cannot be mixed in the same application and the same

transaction.

OCI applications can be linked with a version of the OCI runtime library that is

equal to or higher than the version of the OCI library with which the application

was developed.

Statically-Linked Applications Do Not Need to be Relinked For statically-linked

applications, when you perform any type of upgrade of the client software, you do

not need to relink your precompiler and OCI applications. However, relinking is

recommended because it may improve performance.

Dynamically-Linked Applications Do Not Need To Be Relinked When you perform an

upgrade of your client software, you do not need to relink your dynamically-linked

precompiler and OCI applications. However, relinking is recommended because it

may improve performance.

Upgrading Options for Your Precompiler and OCI Applications
You have the following four options for upgrading your precompiler and OCI

applications:

Option 1: Leave the application unchanged. Do not relink, precompile,

or compile the application, and do not change the application

code. The application will continue to work against an

Oracle9i database.
6-6 Oracle9i Database Migration

Upgrading Precompiler and OCI Applications
These options are listed in order of increasing difficulty and increasing potential

benefits. That is, Option 1 is the least difficult option, but it offers the least potential

benefits, while Option 4 is the most difficult option, but it offers the most potential

benefits. These options are discussed in the following sections.

Option 1: Leave the Application Unchanged
You can leave the application unchanged, and it will continue to work with an

Oracle9i database. The major advantage to this option is that it is simple and easy.

In addition, this option requires the least amount of administration, because you do

not need to upgrade all of your client computers. If you have a large number of

client computers, then avoiding the administrative costs of upgrading all of them

can become very important.

The major disadvantage to this option is that your application cannot use the

features that are available in the new Oracle9i release. In addition, your application

cannot leverage some of the possible performance benefits of the new Oracle9i
release.

Option 2: Relink the Application with the New Oracle9 i Libraries
You can relink the application with the new Oracle9i libraries, without making any

code changes and without recompiling. By relinking, your application may benefit

from performance improvements that are available only with the new libraries.

Remember that you should always relink the application in a test environment

before you relink in your production environment.

Option 2: Relink the application with the new Oracle9i libraries. Do not

precompile or compile the application and do not change the

application code.

Option 3: Precompile and/or compile and then relink the application

using the new Oracle9i software. Do not change the

application code.

Option 4: Change the application code to use new Oracle9i features.

Then, precompile and/or compile and then relink the code.

Note: On operating systems that do not support shared libraries,

you must relink your application if you want to include the new

libraries in the executable.
Upgrading Your Applications 6-7

Upgrading Precompiler and OCI Applications
Option 3: Precompile or Compile the Application Using the New Software
You can precompile or compile the application with the new Oracle9i software,

without making any code changes. This option requires that you install the new

Oracle client software on each client computer. However, you only need to

precompile or compile, and relink your application once, regardless of the number

of clients you have. The advantages, however, can be quite large.

By recompiling, you perform a syntax check of your application code. Some

problems in the application code that were not detected by previous releases of the

Oracle software may emerge when you precompile or compile with the new Oracle

software. Therefore, precompiling and compiling with the new software often helps

you detect and correct problems in the application code that may have gone

unnoticed before.

Also, recompiling affords maximum stability for your application, because you are

sure that it works with the new Oracle software. Further, your environment is ready

for new development using the latest tools and features available. In addition, you

may benefit from performance improvements that are available with the new Oracle

software only after you recompile and relink.

Option 4: Change the Application Code to Use New Oracle9 i Features
You can make code changes to your application to take advantage of new Oracle9i
features. This option is the most difficult, but it can provide the most potential

benefits. You gain all of the advantages described in Option 3. In addition, you also

benefit from changes to your application that may leverage performance and

scalability benefits available with Oracle9i. Further, you can add new features to

your application that are available only with the new release of Oracle9i.

Become familiar with the new Oracle9i features by reading Oracle9i Database New
Features. Also, consult the Oracle documentation for your development

environment so that you understand how to implement the features you want to

use. For the precompilers, see Pro*C/C++ Precompiler Programmer’s Guide and

Pro*COBOL Precompiler Programmer’s Guide. For OCI, see Oracle Call Interface
Programmer’s Guide.

When you have decided on the new features you want to use, change the code of

your application to use these features. Follow the appropriate instructions in the

following sections based on your development environment:

■ Changing Precompiler Applications

■ Changing OCI Applications
6-8 Oracle9i Database Migration

Upgrading SQL*Plus Scripts
Changing Precompiler Applications Complete the following steps to change your

precompiler application to use Oracle9i features:

1. Perform one of the following actions based on whether the existing application

is an Oracle7 application or a version 8 application:

■ If you have an Oracle7 application, then the existing Oracle7 application

may need to be modified, or new applications written, to reflect the

differences between Oracle7 and Oracle9i.

■ If you have a version 8 application and you want to take advantage of the

new Oracle9i features, then incorporate code for the new Oracle9i
functionality into the existing version 8 application.

2. Precompile the application using the Oracle precompiler.

3. Compile the application.

4. Relink the application with the Oracle9i runtime library, SQLLIB, which is

included with the precompiler.

Changing OCI Applications Complete the following steps to change your OCI

application to use Oracle9i features:

1. Change your OCI calls in one of the following ways:

■ If your application uses Oracle7 OCI calls, then modify the application to

use only new Oracle9i OCI calls.

■ If your application uses Oracle7 OCI calls, then incorporate Oracle9i OCI

calls into the existing application, while still using Oracle7 calls for some

operations.

■ If your application uses only version 8 calls, then incorporate the new

Oracle9i OCI calls into the existing application.

2. Compile the application.

3. Relink the application with the Oracle9i runtime library.

Upgrading SQL*Plus Scripts
To use SQL*Plus release 8.0 and higher, a release 8.0 or higher database, and

PL/SQL release 8.0 and higher functionality, complete the following steps:

1. Make the following changes to SQL*Plus release 3.x scripts to convert them into

scripts that are compatible with SQL*Plus release 8.0 and higher:
Upgrading Your Applications 6-9

Upgrading Oracle7 Forms or Oracle Developer Applications
a. If a script contains the line SET COMPATIBILITY V7 , then change it to

SET COMPATIBILITY NATIVE , or remove the line so that the default

setting is used. In Oracle9i, the default setting is NATIVE.

b. Check any login.sql and glogin.sql files and change any SET
COMPATIBILITY V7 line found to SET COMPATIBILITY NATIVE .

2. To use new Oracle9i functionality, change existing SQL scripts to use the new

Oracle9i syntax. Existing SQL scripts run unchanged on Oracle9i, and require

no modification, if they do not use new Oracle9i functionality.

Upgrading Oracle7 Forms or Oracle Developer Applications
Forms applications run the same on Oracle7, version 8, and Oracle9i. However,

review the new features described in Oracle9i Database New Features to determine

whether any of the new Oracle9i features would be beneficial to your applications

or might otherwise affect them. Information about the ways in which the Oracle9i
features interact with forms and developer applications is provided in the Oracle

Developer documentation set. Also, the Oracle Developer documentation for your

operating system contains instructions for upgrading your forms or developer

applications.

See Also:

■ SQL*Plus User’s Guide and Reference to learn about new

functionality in SQL*Plus

■ Oracle9i SQL Reference for more information about upgrading

SQL scripts

Note: No changes to PL/SQL packages, procedures, or functions

should be required.

Note: New releases of Oracle Developer may introduce new

reserved words that are specific to Oracle Developer. Code changes

may be required if your application uses any of these new reserved

words.
6-10 Oracle9i Database Migration

Downgrading a Database Back to the Previous Oracle Re
7

Downgrading a Database Back to the

Previous Oracle Release

This chapter guides you through the process of downgrading a database back to the

previous Oracle release. This chapter covers the following topics:

■ Perform a Full Offline Backup

■ Remove Incompatibilities

■ Reset Database Compatibility

■ Downgrade the Database

See Also: Some aspects of downgrading are operating

system-specific. See your operating system-specific Oracle

documentation for additional instructions about downgrading on

your operating system.
lease 7-1

Perform a Full Offline Backup
Perform a Full Offline Backup
Perform a full offline backup of your release 9.2 database before you downgrade.

Remove Incompatibilities
The process of removing incompatibilities depends on the release to which you are

downgrading. First, check the compatibility level of your database to see if your

database might have incompatibilities with the release to which you are

downgrading.

Checking the Compatibility Level of Your Database
If the compatibility level of your database is higher than the release to which you

are downgrading, then your database may have incompatibilities with the previous

release that must be removed before you downgrade. Your compatibility level is

determined by the setting of the COMPATIBLE initialization parameter. Check your

COMPATIBLE initialization parameter setting by issuing the following SQL

statement:

SQL> SELECT name, value, description FROM v$parameter
 WHERE name=’compatible’;

You do not need to remove incompatibilities if the COMPATIBLE parameter is set to

the release to which you are downgrading or lower. For example, if you are

downgrading to release 9.0.1 and the COMPATIBLE parameter is set to 9.0.0 or

lower, then you do not need to remove incompatibilities. In this case, no

incompatibilities exist in your database with the release to which you are

downgrading, and you can skip the rest of this section and see "Downgrade the

Database" on page 7-21.

However, if the COMPATIBLE parameter is set higher than the release to which you

are downgrading, then some incompatibilities may exist. For example, if you are

downgrading to release 8.1.7 and COMPATIBLE is set to 9.0.0 or higher, then

incompatibilities may exist.

Identifying Incompatibilities
To identify any incompatibilities that may exist with the release to which you are

downgrading, perform the following steps:

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information
7-2 Oracle9i Database Migration

Remove Incompatibilities
1. Log in to the system as the owner of the Oracle home directory.

2. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. Start up the instance in RESTRICT mode:

SQL> STARTUP RESTRICT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

6. Query the V$COMPATIBILITY dynamic performance view to identify any

incompatibilities:

SQL> SELECT * FROM v$compatibility WHERE release != ’0.0.0.0.0’;

An incompatibility exists wherever the value in the RELEASE column is higher

than the release to which you are downgrading.

7. Run utlincmp.sql :

SQL> SPOOL utlincmp.log
SQL> @utlincmp.sql
SQL> SPOOL OFF

The utlincmp.sql script runs all of the queries described in the rest of this

chapter to identify incompatibilities. Therefore, you can perform all of the

SELECT statements described in the rest of this chapter simply by running the

utlincmp.sql script.

After the utlincmp.sql script runs, view the utlincmp.log file and look

for instances where a SELECT statement returned values. The values returned

are incompatibilities that may need to be removed depending on the release to

which you are downgrading.

8. Drop or change all incompatibilities to make your database compatible with the

release to which you are downgrading.

Note: This query does not show features with a compatibility

level of 0.0.0.0.0. These features are not currently in use, and no

action is required for them.
Downgrading a Database Back to the Previous Oracle Release 7-3

Remove Incompatibilities
The following sections provide detailed information about removing

incompatibilities with previous Oracle releases. Depending on the release to which

you are downgrading, you may need to complete the steps in some or all of the

following sections.

For example, if you are downgrading to release 9.0.1, then you only need to

complete the steps in "Removing Release 9.2 Incompatibilities" on page 7-4.

However, if you are downgrading to release 8.1.7, then you need to complete the

steps in "Removing Release 9.2 Incompatibilities" on page 7-4 as well as the steps in

"Removing Release 9.0.1 Incompatibilities" on page 7-8.

Removing Release 9.2 Incompatibilities
If you are downgrading to release 9.0.1 or lower, then complete the actions in the

following sections to remove incompatibilities:

■ Release 9.2 DEFAULT Partitions

■ Release 9.2 Partitioning Methods

■ Release 9.2 Streams

■ Release 9.2 Subpartition Templates

■ LOB Retention

■ Automatic Segment-Space Managed Tablespaces with LOBs

Release 9.2 DEFAULT Partitions
This section describes removing incompatibilities relating to release 9.2 DEFAULT
partitions.

Drop All DEFAULT Partitions on List Partitioned Tables Before you downgrade to

release 9.0.1 or lower, drop all DEFAULT partitions on list partitioned tables. To

identify all list partitioned tables with DEFAULT partitions, issue the following SQL

statement:

Note: If you are downgrading from Oracle9i Enterprise Edition to

Oracle9i (formerly Workgroup Server), then, before you

downgrade, modify any applications that use the advanced

features of Oracle9i Enterprise Edition so that they do not use these

advanced features. See Oracle9i Database New Features for more

information about the differences between the editions.
7-4 Oracle9i Database Migration

Remove Incompatibilities
SELECT u.name AS OWNER, o.name AS TABLE_NAME, o.subname AS PARTITION_NAME
 FROM sys.user$ u, sys.obj$ o, sys.tabpart$ tp
 WHERE BITAND(tp.flags, 16384) = 16384
 AND tp.obj# = o.obj# AND o.owner# = u.user#;

For each partition represented by the PARTITION_NAME column in the table

represented by the OWNER.TABLE_NAME columns, simply drop the partition:

ALTER TABLE OWNER. TABLE_NAME DROP PARTITION PARTITION_NAME;

Release 9.2 Partitioning Methods
This section describes removing incompatibilities relating to release 9.2 partitioning

methods.

Drop All Partitioned Tables That Use Range-List Methods Before you downgrade to

release 9.0.1 or lower, drop all partitioned tables that use range-list methods. To

identify existing tables partitioned with range-list methods, issue the following SQL

statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME
 FROM sys.user$ u, sys.obj$ o, sys.partobj$ po
 WHERE po.parttype = 1 AND MOD(po.spare2, 256) = 4
 AND o.obj# = po.obj# AND o.owner# = u.user#;

If you do not need to preserve the table data, then, for each table represented by the

OWNER.TABLE_NAME columns, simply drop the table:

DROP TABLE OWNER. TABLE_NAME;

However, if you need to preserve the table data, then copy the data into

non-partitioned tables, or copy the data into tables partitioned by range, hash, list,

or another composite method.

Release 9.2 Streams
This section describes removing incompatibilities relating to release 9.2 Streams.

Drop All Streams Capture Processes Before you downgrade to release 9.0.1 or lower,

drop all Streams capture processes. To identify existing capture processes, issue the

following SQL statement:

SELECT capture_name FROM dba_capture;
Downgrading a Database Back to the Previous Oracle Release 7-5

Remove Incompatibilities
For each capture process listed in the CAPTURE_NAME column, issue the following

SQL statement:

EXECUTE dbms_capture_adm.drop_capture(capture_name => ’ CAPTURE_NAME’);

Drop All Streams Apply Processes Before you downgrade to release 9.0.1 or lower,

drop all Streams apply processes. To identify existing apply processes, issue the

following SQL statement:

SELECT apply_name FROM dba_apply;

For each apply process listed in the APPLY_NAME column, issue the following SQL

statement:

EXECUTE dbms_apply_adm.drop_apply(apply_name => ’ APPLY_NAME’);

Release 9.2 Subpartition Templates
This section describes removing incompatibilities relating to release 9.2 subpartition

templates.

Drop All Subpartition Templates in Composite Partitioned Tables Before you downgrade to

release 9.0.1 or lower, drop all subpartition templates in composite partitioned

tables. To identify existing composite partitioned tables with subpartition templates,

issue the following SQL statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME
 FROM sys.user$ u, sys.obj$ o
 WHERE o.owner# = u.user#
 AND o.obj# in (SELECT DISTINCT bo# FROM defsubpart$)
UNION
SELECT u.name AS OWNER, o.name AS TABLE_NAME
 FROM sys.user$ u, sys.obj$ o
 WHERE o.owner# = u.user#
 AND o.obj# in (SELECT DISTINCT bo# from defsubpartlob$);

For each table represented by the OWNER.TABLE_NAME columns, simply drop the

subpartition template:

ALTER TABLE OWNER. TABLE_NAME SET SUBPARTITION TEMPLATE ();
7-6 Oracle9i Database Migration

Remove Incompatibilities
LOB Retention
This section describes removing incompatibilities relating to LOB retention.

Drop Retention Stored in LOB Columns Before you downgrade to release 9.0.1 or lower,

drop retention stored in LOB columns. To identify existing LOB columns with

retention, issue the following SQL statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME, c.name AS LOB_COL_NAME
 FROM sys.user$ u, sys.obj$ o, sys.col$ c, sys.lob$ l
 WHERE BITAND(l.flags, 64) = 64 AND l.obj# = o.obj#
 AND c.obj# = o.obj# AND c.col# = l.col#
 AND o.owner# = u.user#;

For each column represented by the LOB_COL_NAME column in the table

represented by the OWNER.TABLE_NAME columns, simply drop the retention:

ALTER TABLE OWNER. TABLE_NAME MODIFY LOB(LOB_COL_NAME)
 (REBUILD FREEPOOLS);

Automatic Segment-Space Managed Tablespaces with LOBs
This section describes removing incompatibilities relating to automatic

segment-space managed tablespaces with LOBs.

Drop LOB Columns in Automatic Segment-Space Managed Tablespaces Before you

downgrade to release 9.0.1 or lower, drop all LOB columns in automatic

segment-space managed tablespaces. To identify existing automatic segment-space

managed tablespaces with LOB columns, issue the following SQL statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME, c.name AS LOB_COL_NAME
 FROM sys.lob$ l, sys.ts$ t, sys.user$ u, sys.obj$ o, sys.col$ c
 WHERE l.ts# = t.ts# AND
 (DECODE(BITAND(t.flags, 32), 32, 1, 0) = 1 AND t.online$ <> 3) AND
 o.owner# = u.user# AND l.obj# = o.obj# AND
 l.obj# = c.obj# AND l.col# = c.col#;

For each LOB segment listed, perform one of the following actions:

■ The LOB columns can be moved to a tablespace that is not auto segment-space

managed:

ALTER TABLE OWNER. TABLE_NAME MOVE LOB(LOB_COL_NAME) STORE AS
 (TABLESPACE manual segment space-managed tablespace);
Downgrading a Database Back to the Previous Oracle Release 7-7

Remove Incompatibilities
■ The table containing the LOB columns can be dropped:

DROP TABLE OWNER. TABLE_NAME;

Removing Release 9.0.1 Incompatibilities
If you are downgrading to release 8.1.7 or lower, then complete the actions in the

following sections to remove incompatibilities:

■ Tablespaces

■ Schema Objects

■ Release 9.0 Partitioning Methods

■ Hash Partitioned Index-Organized Tables

■ PDML ITL Invariants

■ Partitioned Index-Organized Tables with LOBs

■ Datatypes

■ User-Defined Datatypes

■ SQL and PL/SQL

■ Constraints and Triggers

Tablespaces
This section describes removing incompatibilities relating to tablespaces that were

introduced in release 9.0.1.

Drop All Automatic Segment-Space Managed Tablespaces Before you downgrade to

release 8.1.7 or lower, drop all automatic segment-space managed tablespaces. To

identify existing automatic segment-space managed tablespaces, issue the following

SQL statement:

SELECT TABLESPACE_NAME FROM dba_tablespaces
 WHERE segment_space_management = ’AUTO’;

For each tablespace represented by the TABLESPACE_NAME column, simply drop

the tablespace:

DROP TABLESPACETABLESPACE_NAME;
7-8 Oracle9i Database Migration

Remove Incompatibilities
Drop All Undo Tablespaces Before you downgrade to release 8.1.7 or lower, drop all

undo tablespaces. To identify existing undo tablespaces, issue the following SQL

statement:

SELECT name AS TABLESPACE_NAME FROM sys.ts$
 WHERE BITAND(flags, 16) = 16 AND online$ <> 3;

For each tablespace represented by the TABLESPACE_NAME column, simply drop

the tablespace:

DROP TABLESPACETABLESPACE_NAME;

Schema Objects
This section describes removing incompatibilities relating to schema objects that

were introduced in release 9.0.1.

Drop All External Tables Before you downgrade to release 8.1.7 or lower, drop all

external tables. To identify existing external tables, issue the following SQL

statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME
 FROM sys.user$ u, sys.obj$ o, sys.tab$ t
 WHERE t.obj# = o.obj# AND o.owner# = u.user# AND
 BITAND(t.property, 2147483648) != 0;

For each table represented by the OWNER.TABLE_NAME columns, simply drop the

table:

DROP TABLE OWNER. TABLE_NAME;

Drop All Bitmap Secondary Indexes on Index-Organized Tables Before you downgrade to

release 8.1.7 or lower, drop all bitmap secondary indexes on non-partitioned and

partitioned index organized tables in your database. To identify existing bitmap

secondary indexes on index-organized tables, issue the following SQL statement:

SELECT index_name, i.owner, t.table_name
 FROM dba_indexes i, dba_tables t
 WHERE i.index_type = ’BITMAP’ AND i.table_name = t.table_name
 AND t.owner = i.table_owner AND t.iot_type = ’IOT’;
Downgrading a Database Back to the Previous Oracle Release 7-9

Remove Incompatibilities
Rebuild Index-Organized Tables without Mapping Tables Before you downgrade to

release 8.1.7 or lower, after dropping all bitmap secondary indexes on

non-partitioned and partitioned index-organized tables, you need to rebuild the

corresponding index-organized tables without mapping tables.

To identify index-organized tables with mapping tables, issue the following SQL

statement:

SELECT owner, iot_name
 FROM dba_tables
 WHERE iot_type = ’IOT_MAPPING’;

For each of the tables (for example iot), you can rebuild without mapping tables as

follows:

ALTER TABLE iot MOVE NOMAPPING;

Drop All B-Tree Indexes on UROWID Datatypes on Heap and Index-Organized Tables Before

you downgrade to release 8.1.7 or lower, drop all B-tree indexes on heap and index

organized tables. To identify such B-tree indexes, issue the following SQL

statement:

SELECT index_owner, index_name
 FROM dba_ind_columns ic, dba_tab_columns tc
 WHERE tc.data_type = ’UROWID’ AND tc.table_name = ic.table_name
 AND tc.column_name = ic.column_name;

Remove Indexes With Large Keys Before downgrading to release 8.1.7 or lower, remove

Any index with large keys. To identify such indexes, issue the following SQL

statement:

SELECT u.name, o.name, i.flags
 FROM sys.obj$ o, sys.user$ u, sys.ind$ i
 WHERE u.user# = o.owner#
 AND o.obj# = i.obj#
 AND BITAND(i.flags, 16384) != 0;

Drop any indexes identified by this statement.

Release 9.0 Partitioning Methods
This section describes removing incompatibilities relating to release 9.0 partitioning

methods.
7-10 Oracle9i Database Migration

Remove Incompatibilities
Drop All Partitioned Tables That Use List Methods Before you downgrade to release 8.1.7

or lower, drop all partitioned tables that use list methods. To identify existing tables

partitioned with list methods, issue the following SQL statement:

SELECT u.name AS OWNER, o.name AS TABLE_NAME
 FROM sys.user$ u, sys.obj$ o, sys.partobj$ po
 WHERE po.parttype = 4
 AND o.obj# = po.obj# AND o.owner# = u.user#;

If you do not need to preserve the table data, then, for each table represented by the

OWNER.TABLE_NAME columns, simply drop the table:

DROP TABLE OWNER. TABLE_NAME;

However, if you need to preserve the table data, then copy the data into

non-partitioned tables, or copy the data into tables partitioned by range, hash, or

another composite method.

Hash Partitioned Index-Organized Tables
This section describes removing incompatibilities relating to hash partitioned

index-organized tables.

Drop All Hash Partitioned Index-Organized Tables Before you downgrade to release 8.1.7

or lower, drop all hash partitioned index-organized tables. To identify existing hash

partitioned index-organized tables, issue the following SQL statement:

SELECT t.OWNER, t.TABLE_NAME
 FROM dba_tables t, dba_part_tables p
 WHERE t.table_name = p.table_name AND t.owner = p.owner
 AND t.iot_type = ’IOT’ AND t.partitioned = ’YES’
 AND p.partitioning_type = ’HASH’;

If you do not need to preserve the table data, then, for each table represented by the

OWNER.TABLE_NAME columns, simply drop the table:

DROP TABLE OWNER. TABLE_NAME;

However, if you need to preserve the table data, then you can do it in one of the

following ways:

■ Move the table data into a range partitioned index-organized table or

non-partitioned index-organized table using the CREATE TABLE ... AS
SELECT statement.

CREATE range or non-partitioned index-organized table ... AS SELECT * FROM
Downgrading a Database Back to the Previous Oracle Release 7-11

Remove Incompatibilities
OWNER. TABLE_NAME;
DROP TABLE OWNER. TABLE_NAME;

■ Export the table using the Oracle9i Export utility. The data can then be loaded

into a non-partitioned index-organized table or a range partitioned

index-organized table using the release 8.1.7 Import utility.

PDML ITL Invariants
Before you downgrade to release 8.1.7 or lower, remove all PDML ITL invariants. To

identify existing PDML ITL invariants, issue the following SQL statement:

SELECT COUNT(*) FROM sys.tab$
 WHERE BITAND(property, 536870912) > 0;

If this query returns a result greater than 0, then perform the following steps:

1. Change to the ORACLE_HOME/rdbms/admin directory.

2. Run utlpitl.sql :

SQL> @utlpitl.sql

Partitioned Index-Organized Tables with LOBs
This section describes removing incompatibilities relating to partitioned

index-organized tables with LOBs.

Drop All LOB Columns in Partitioned Index-Organized Tables Before you downgrade to

release 8.1.7 or lower, drop all LOB columns in partitioned index-organized tables.

To identify existing partitioned index-organized tables with LOB columns, issue the

following SQL statement:

SELECT t.OWNER, t.TABLE_NAME, l.COLUMN_NAME
 FROM dba_lobs l, dba_tables t
 WHERE l.table_name = t.table_name and l.owner = t.owner
 AND t.iot_type = ’IOT’ AND t.partitioned = ’YES’;

If you do not need to preserve the LOB columns and their data, then, for each

column represented by the COLUMN_NAME column in the table represented by the

OWNER.TABLE_NAME columns, simply drop the column:

ALTER TABLE OWNER. TABLE_NAME DROP COLUMNCOLUMN_NAME;
7-12 Oracle9i Database Migration

Remove Incompatibilities
However, if you need to preserve the LOB columns, then you can create

corresponding non-partitioned index-organized tables:

CREATE non-partitioned index-organized table ... AS SELECT * FROM OWNER. TABLE_
NAME;
DROP TABLE OWNER. TABLE_NAME;

Drop All Varray Columns in Partitioned Index-Organized Tables Before you downgrade to

release 8.1.7 or lower, drop all varray columns in partitioned index-organized

tables. To identify existing partitioned index-organized tables with varray columns,

issue the following SQL statement:

SELECT v.OWNER, v.PARENT_TABLE_NAME, v.PARENT_TABLE_COLUMN
 FROM dba_varrays v, dba_tables t
 WHERE v.parent_table_name = t.table_name and v.owner = t.owner
 AND t.iot_type = ’IOT’ AND t.partitioned = ’YES’;

If you do not need to preserve the varray columns and their data, then, for each

column represented by the PARENT_TABLE_COLUMN column in the table

represented by the OWNER.PARENT_TABLE_NAME columns, simply drop the

column:

ALTER TABLE OWNER. PARENT_TABLE_NAME DROP COLUMNPARENT_TABLE_COLUMN;

However, if you need to preserve the varray columns, then you can create

corresponding non-partitioned index-organized tables:

CREATE non-partitioned index-organized table ... AS SELECT * FROM OWNER. PARENT_
TABLE_NAME;
DROP TABLE OWNER. PARENT_TABLE_NAME;

Datatypes
This section describes disabling datatypes that are available only in release 9.0.1 and

higher.

Discontinue Use of Datetime and Interval Datatypes Before you downgrade to release

8.1.7 or lower, the following datetime and interval datatypes have to be dropped:

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE
Downgrading a Database Back to the Previous Oracle Release 7-13

Remove Incompatibilities
■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

However, when the datatype is TIMESTAMP WITH LOCAL TIME ZONE, the

TIMESTAMP WITH LOCAL TIME ZONE columns can be converted to DATE
columns by explicitly issuing an ALTER TABLE statement.

The ALTER TABLE statement scans all rows of the table. If the TIMESTAMP WITH
LOCAL TIME ZONE data has fractional seconds, the row data for the column will

be updated by rounding the fractional seconds; if the TIMESTAMP WITH LOCAL
TIME ZONE data has the minute field greater than or equal to 60, the row data for

the column will be updated by subtracting 60 from its minute field. When

modifying a TIMESTAMP WITH LOCAL TIME ZONE column to a DATE column,

the information for fractional seconds and time zone adjustment will be lost.

Downgrading will fail if any of the following objects exist in the database:

■ Any table containing columns of these new datatypes

■ Any procedure or function (stand alone or inside a package) declared with

arguments or a result of these new datatypes

■ Any object type with attributes of these new datatypes, or member functions

with arguments or a result of these new datatypes

■ Any collection type whose element type is one of these new datatypes

These objects have to be dropped in order to downgrade to a previous release.

To list tables with columns of type TIMESTAMP, issue the following SQL statement:

SELECT owner, table_name, column_name
 FROM dba_tab_columns
 WHERE data_type LIKE ’TIMESTAMP(%)’;

For each table listed as a result of this statement, drop its TIMESTAMP datatype

columns, or drop the whole table.

To list tables with columns of type TIMESTAMP WITH TIME ZONE, issue the

following SQL statement:

SELECT owner, table_name, column_name
 FROM dba_tab_columns
 WHERE data_type LIKE ’TIMESTAMP(%) WITH TIME ZONE’;

For each table listed as a result of this statement, drop its TIMESTAMP WITH TIME
ZONE datatype columns, or drop the whole table.
7-14 Oracle9i Database Migration

Remove Incompatibilities
To list tables with columns of type TIMESTAMP WITH LOCAL TIME ZONE, issue

the following SQL statement:

SELECT owner, table_name, column_name
 FROM dba_tab_columns
 WHERE data_type LIKE ’TIMESTAMP(%) WITH LOCAL TIME ZONE’;

For each table listed as a result of this statement, drop its TIMESTAMP WITH
LOCAL TIME ZONE datatype columns, or drop the whole table.

To list tables with columns of type INTERVAL YEAR TO MONTH, issue the

following SQL statement:

SELECT owner, table_name, column_name
 FROM dba_tab_columns
 WHERE data_type LIKE ’INTERVAL YEAR(%) TO MONTH’;

For each table listed as a result of this statement, drop its INTERVAL YEAR TO
MONTH datatype columns, or drop the whole table.

To list tables with columns of type INTERVAL DAY TO SECOND, issue the

following SQL statement:

SELECT owner, table_name, column_name
 FROM dba_tab_columns
 WHERE data_type LIKE ’INTERVAL DAY(%) TO SECOND’;

For each table listed as a result of this statement, drop its INTERVAL DAY TO
SECOND datatype columns, or drop the whole table.

To find a list of procedures and functions declared with arguments or a result of

type TIMESTAMP, issue the following SQL statement:

SELECT owner, object_name, package_name, argument_name
 FROM all_arguments
 WHERE data_type = ’TIMESTAMP’;

To find a list of procedures and functions declared with arguments or a result of

type TIMESTAMP WITH TIME ZONE, issue the following SQL statement:

SELECT owner, object_name, package_name, argument_name
 FROM all_arguments
 WHERE data_type = ’TIMESTAMP WITH TIME ZONE’;

To find a list of procedures and functions declared with arguments or a result of

type TIMESTAMP WITH LOCAL TIME ZONE, issue the following SQL statement:
Downgrading a Database Back to the Previous Oracle Release 7-15

Remove Incompatibilities
SELECT owner, object_name, package_name, argument_name
 FROM all_arguments
 WHERE data_type = ’TIMESTAMP WITH LOCAL TIME ZONE’;

To find a list of procedures and functions declared with arguments or a result of

type INTERVAL YEAR TO MONTH, issue the following SQL statement:

SELECT owner, object_name, package_name, argument_name
 FROM all_arguments
 WHERE data_type = ’INTERVAL YEAR TO MONTH’;

To find a list of procedures and functions declared with arguments or a result of

type INTERVAL DAY TO SECOND, issue the following SQL statement:

SELECT owner, object_name, package_name, argument_name
 FROM all_arguments
 WHERE data_type = ’INTERVAL DAY TO SECOND’;

To find a list of object types with attributes of type TIMESTAMP, or member

functions with arguments or a result of type TIMESTAMP, issue the following SQL

statement:

SELECT owner, type_name, attr_name
 FROM dba_type_attrs
 WHERE attr_type_name = ’TIMESTAMP’;

SELECT owner, type_name, method_name, param_name
 FROM dba_method_params
 WHERE param_type_name = ’TIMESTAMP’;

SELECT owner, type_name, method_name
 FROM dba_method_results
 WHERE result_type_name = ’TIMESTAMP’;

To find a list of object types with attributes of type TIMESTAMP WITH TIME ZONE,
or member functions with arguments or a result of type TIMESTAMP WITH TIME
ZONE, issue the following SQL statement:

SELECT owner, type_name, attr_name
 FROM dba_type_attrs
 WHERE attr_type_name = ’TIMESTAMP WITH TIME ZONE’;

SELECT owner, type_name, method_name, param_name
 FROM dba_method_params
 WHERE param_type_name = ’TIMESTAMP WITH TIME ZONE’;
7-16 Oracle9i Database Migration

Remove Incompatibilities
SELECT owner, type_name, method_name
 FROM dba_method_results
 WHERE result_type_name = ’TIMESTAMP WITH TIME ZONE’;

To find a list of object types with attributes of type TIMESTAMP WITH LOCAL
TIME ZONE, or member functions with arguments or a result of type TIMESTAMP
WITH LOCAL TIME ZONE , issue the following SQL statement:

SELECT owner, type_name, attr_name
 FROM dba_type_attrs
 WHERE attr_type_name = ’TIMESTAMP WITH LOCAL TIME ZONE’;

SELECT owner, type_name, method_name, param_name
 FROM dba_method_params
 WHERE param_type_name = ’TIMESTAMP WITH LOCAL TIME ZONE’;

SELECT owner, type_name, method_name
 FROM dba_method_results
 WHERE result_type_name = ’TIMESTAMP WITH LOCAL TIME ZONE’;

To find a list of object types with attributes of type INTERVAL YEAR TO MONTH, or

member functions with arguments or a result of type INTERVAL YEAR TO MONTH,

issue the following SQL statement:

SELECT owner, type_name, attr_name
 FROM dba_type_attrs
 WHERE attr_type_name = ’INTERVAL YEAR TO MONTH’;

SELECT owner, type_name, method_name, param_name
 FROM dba_method_params
 WHERE param_type_name = ’INTERVAL YEAR TO MONTH’;

SELECT owner, type_name, method_name
 FROM dba_method_results
 WHERE result_type_name = ’INTERVAL YEAR TO MONTH’;

To find a list of object types with attributes of type INTERVAL DAY TO SECOND, or

member functions with arguments or a result of type INTERVAL DAY TO SECOND,

issue the following SQL statement:

SELECT owner, type_name, attr_name
 FROM dba_type_attrs
 WHERE attr_type_name = ’INTERVAL DAY TO SECOND’;

SELECT owner, type_name, method_name, param_name
Downgrading a Database Back to the Previous Oracle Release 7-17

Remove Incompatibilities
 FROM dba_method_params
 WHERE param_type_name = ’INTERVAL DAY TO SECOND’;

SELECT owner, type_name, method_name
 FROM dba_method_results
 WHERE result_type_name = ’INTERVAL DAY TO SECOND’;

To find a list of collection types with elements of type TIMESTAMP, issue the

following SQL statement:

SELECT owner, type_name, coll_type
 FROM dba_coll_types
 WHERE elem_type_name = ’TIMESTAMP’;

To find a list of collection types with elements of type TIMESTAMP WITH TIME
ZONE, issue the following SQL statement:

SELECT owner, type_name, coll_type
 FROM dba_coll_types
 WHERE elem_type_name = ’TIMESTAMP WITH TIME ZONE’;

To find a list of collection types with elements of type TIMESTAMP WITH LOCAL
TIME ZONE, issue the following SQL statement:

SELECT owner, type_name, coll_type
 FROM dba_coll_types
 WHERE elem_type_name = ’TIMESTAMP WITH LOCAL TIME ZONE’;

To find a list of collection types with elements of type INTERVAL YEAR TO
MONTH, issue the following SQL statement:

SELECT owner, type_name, coll_type
 FROM dba_coll_types
 WHERE elem_type_name = ’INTERVAL YEAR TO MONTH’;

To find a list of collection types with elements of type INTERVAL DAY TO
SECOND, issue the following SQL statement:

SELECT owner, type_name, coll_type
 FROM dba_coll_types
 WHERE elem_type_name = ’INTERVAL DAY TO SECOND’;
7-18 Oracle9i Database Migration

Remove Incompatibilities
User-Defined Datatypes
This section describes disabling features related to user-defined datatypes that are

only available in release 9.0.1 and higher.

Drop User-Defined Aggregate Functions Before you downgrade to release 8.1.7 or lower,

drop all user-defined aggregate functions. To identify existing user-defined

aggregate functions, issue the following SQL statement:

SELECT procedure_name FROM dba_procedures
 WHERE aggregate = ’YES’;

Drop all aggregate functions listed.

Remove All Evolved Types and Their Dependent Types and Tables Before you downgrade to

release 8.1.7 or lower, all evolved types and their dependent types and tables must

be removed. To identify all evolved types, issue the following SQL statement:

SELECT UNIQUE owner, type_name
 FROM dba_types
 WHERE version_name != ’$8.0’;

To identify all tables that reference an evolved type, issue the following SQL

statement:

SELECT UNIQUE owner, table_name
 FROM dba_tab_columns
 WHERE data_type_owner IS NOT NULL
 AND version_name != ’$8.0’;

Discontinue Use of Subtypes and Non-Final Types Before you downgrade to release 8.1.7

or lower, discontinue use of all subtypes and non-final types in tables. To identify

the use of existing subtypes and non-final types in tables, issue the following SQL

statement:

SELECT c.name AS COLUMN_NAME, o.name AS TABLE_NAME, u.name AS TABLE_OWNER
 FROM user$ u, sys.obj$ o, sys.col$ c, sys.coltype$ ct, sys.type$ t
 WHERE u.user# = o.owner# AND o.obj# = c.obj# AND c.obj# = ct.obj#
 AND c.intcol# = ct.intcol# and ct.toid = t.toid AND o.type# = 2
 AND BITAND(t.properties, 3153928) > 0;
Downgrading a Database Back to the Previous Oracle Release 7-19

Reset Database Compatibility
SQL and PL/SQL
The following sections describe specific SQL and PL/SQL downgrading issues. The

actions described in these sections help you to avoid compile and runtime errors in

SQL scripts and stored procedures. Although these actions are not strictly required,

Oracle Corporation recommends that you perform them before you downgrade.

Discontinue Use of Pipelined Table Functions Before you downgrade to release 8.1.7 or

lower, discontinue use of all pipelined table functions. To identify existing pipelined

table functions, issue the following SQL statement:

SELECT procedure_name FROM dba_procedures
 WHERE pipelined = ’YES’;

Discontinue Use of Parallel Table Functions Before you downgrade to release 8.1.7 or

lower, discontinue use of all parallel table functions. To identify existing parallel

table functions, issue the following SQL statement:

SELECT procedure_name FROM dba_procedures
 WHERE parallel = ’YES’;

Constraints and Triggers
This section describes removing incompatibilities relating to constraints and

triggers.

Drop All View Constraints Before you downgrade to release 8.1.7 or lower, drop all

view related primary key, unqiue, and foreign key constraints. To identify existing

view constraints, issue the following SQL statement:

SELECT * FROM dba_constraints WHERE view_related = ’DEPEND_ON_VIEW’;

Reset Database Compatibility
After you have removed all of the incompatibilities with the release to which you

are downgrading, reset the compatibility level of the database to the previous

release.

See Also: "Lowering the COMPATIBLE Initialization Parameter"

on page 5-8
7-20 Oracle9i Database Migration

Downgrade the Database
If your database fails to open after lowering the value of the COMPATIBLE
initialization parameter, then some incompatibilities still exist. If so, reset the

COMPATIBLE initialization parameter to the higher setting. Remove the

incompatibilities and attempt to reset database compatibility again. All

incompatibilities with the release to which you are downgrading must be removed

before you proceed with the downgrade process.

Downgrade the Database
Make sure your database is compatible with the release to which you are

downgrading before you perform the downgrade steps in this section.

Complete the following steps to downgrade your release 9.2 database to the

previous Oracle release:

1. Log in to the system as the owner of the release 9.2 Oracle home directory.

2. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. Start up the instance in MIGRATE mode:

SQL> STARTUP MIGRATE

You may need to use the PFILE option to specify the location of your

initialization parameter file.

6. Set the system to spool results to a log file for later verification of success:

SQL> SPOOL downgrade.log

If you want to see the complete detailed output of the script you will run, then

you can also issue a SET ECHO ON command:

SQL> SET ECHO ON

See Also: "Remove Incompatibilities" on page 7-2 for information

about removing incompatibilities

See Also: "Remove Incompatibilities" on page 7-2 if you have not

yet removed incompatibilities
Downgrading a Database Back to the Previous Oracle Release 7-21

Downgrade the Database
7. Run dold_release .sql , where old_release refers to the release to which

you are downgrading. See Table 7–1 to choose the correct script. Each script

provides a direct downgrade to the release specified in the "Downgrading To"

column.

To run a script, enter the following:

SQL> @dold_release .sql

The following are notes about running the script:

■ You must use the version of the script included with release 9.2.

■ You must run the script in the release 9.2 environment.

■ You only need to run one script, even if your downgrade spans more than

one release. For example, if you are downgrading to release 8.1.7, then you

only need to run d0801070.sql .

If you encounter any problems when you run the script, or any of the scripts in

the remaining steps, then correct the causes of the problems and rerun the

script. You can rerun any of the scripts described in this chapter as many times

as necessary.

8. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

Then, check the spool file and verify that the packages and procedures

compiled successfully. You named the spool file in Step 6; the suggested name

was downgrade.log . Correct any problems you find in this file and rerun the

appropriate downgrade script if necessary.

Table 7–1 Downgrade Scripts

Downgrading To Run Script

9.0.1 d0900010.sql

8.1.7 d0801070.sql

Note: If the release to which you are downgrading is not included

in Table 7–1, then see the README files in the new installation for

the correct downgrade script to run.
7-22 Oracle9i Database Migration

Downgrade the Database
If you issued a SET ECHO ON command, then you may want to issue a SET
ECHO OFF command now:

SQL> SET ECHO OFF

9. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

If you are downgrading a cluster database, then shut down all instances.

10. Exit SQL*Plus.

11. If you are downgrading to release 9.0.1, then copy the following files from the

release 9.2 Oracle home to the release 9.0.1 Oracle home:

If you are downgrading to release 8.1.7, then copy the following files from the

release 9.2 Oracle home to the release 8.1.7 Oracle home:

12. If your operating system is UNIX, then change the following environment

variables to point to the directories of the release to which you are

downgrading:

■ ORACLE_HOME

■ PATH

■ ORA_NLS33

■ LD_LIBRARY_PATH

Component Copy from Release 9.2 Oracle Home Copy to Previous Oracle Home

JServer JAVA Virtual Machine ORACLE_HOME/javavm/install/jvmd901.sql ORACLE_HOME/javavm/install

Oracle XDK for Java ORACLE_HOME/xdk/admin/xmld901.sql ORACLE_HOME/xdk/admin

Messaging Gateway ORACLE_HOME/mgw/admin/mgwd901.sql ORACLE_HOME/mgw/admin

Oracle Workspace Manager ORACLE_HOME/rdbms/admin/owmd901.plb ORACLE_HOME/rdbms/admin

Component Copy from Release 9.2 Oracle Home Copy to Previous Oracle Home

JServer JAVA Virtual Machine ORACLE_HOME/javavm/install/jvmd817.sql ORACLE_HOME/javavm/install

Oracle XDK for Java ORACLE_HOME/xdk/admin/xmld817.sql ORACLE_HOME/xdk/admin
Downgrading a Database Back to the Previous Oracle Release 7-23

Downgrade the Database
13. If your operating system is Windows, then complete the following steps:

a. Stop all Oracle services, including the OracleService SID Oracle service

of the release 9.2 database, where SID is the instance name.

For example, if your SID is ORCL, then enter the following at a command

prompt:

C:\> NET STOP OracleServiceORCL

b. Delete the Oracle service at a command prompt by issuing the ORADIM

command. For example, if your SID is ORCL, then enter the following

command:

C:\> ORADIM -DELETE -SID ORCL

c. Create the Oracle service of the database to which you are downgrading at

a command prompt using the ORADIM command.

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
 -STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INIT SID .ORA

This syntax includes the following variables:

Note: If you are downgrading a cluster database, then perform

this step on all nodes in which this cluster database has instances

configured.

See Also: Your operating system-specific Oracle9i installation

documents for information about setting other important

environment variables on your operating system.

See Also: Your Administrator’s Guide for Windows for information

about stopping services

SID is the same SID name as the SID of the database being

downgraded.
7-24 Oracle9i Database Migration

Downgrade the Database
For example, if you are downgrading to release 8.1.7, if your SID is ORCL,

your PASSWORD is TWxy579, the maximum number of USERS is 10, and

the ORACLE_HOME directory is C:\ORANT, then enter the following

command:

C:\> ORADIM -NEW -SID ORCL -INTPWD TWxy579 -MAXUSERS 10
 -STARTMODE AUTO -PFILE C:\ORANT\DATABASE\INITORCL.ORA

14. If you are using a server parameter file to start up the instance, or if your

initialization parameter file has an SPFILE (server parameter file) entry, then

complete the following steps:

a. Export the server parameter file to a traditional initialization parameter file:

CREATE PFILE[= pfile-name] [FROM spfile-name];

The initialization parameter file will be created as a text file. In an Oracle9i
Real Application Clusters environment, it will contain all parameter

settings of all instances.

b. If you used the SPFILE parameter to specify a server parameter file, then

change the SPFILE parameter to an IFILE parameter in the initialization

parameter file used to start up the instance. Make sure the IFILE
parameter points to the initialization parameter file that you exported from

the server parameter file.

c. If you are using Oracle9i Real Application Clusters, then create

instance-specific initialization parameter files. Remove all instance-specific

parameters from the initialization parameter file that you exported from the

server parameter file.

PASSWORD is the password for the database instance. This is the

password for the user connected with SYSDBA privileges.

The -INTPWD option is not required. If you do not specify it,

then operating system authentication is used, and no

password is required.

USERS is the maximum number of users who can be granted

SYSDBA and SYSOPER privileges.

ORACLE_HOME is the Oracle home directory of the database to which you

are downgrading. Ensure that you specify the full pathname

with the -PFILE option, including drive letter of the Oracle

home directory.
Downgrading a Database Back to the Previous Oracle Release 7-25

Downgrade the Database
You can use the IFILE parameter in each instance-specific parameter file to

point to the initialization parameter file that you exported from the server

parameter file.

15. Copy configuration files from the release 9.2 Oracle home directory to the

Oracle home of the release to which you are downgrading:

a. Copy your parameter file from the release 9.2 Oracle home to the Oracle

home of the release to which you are downgrading. By default Oracle looks

for the parameter file in ORACLE_HOME/dbs on UNIX platforms and in

ORACLE_HOME\database on Windows operating systems. The

initialization parameter file can reside anywhere you wish, but it should not

reside in the release 9.2 Oracle home.

b. If your parameter file has an IFILE (include file) entry and the file

specified in the IFILE entry resides within the release 9.2 Oracle home

directory, then copy the file specified by the IFILE entry to the Oracle

home of the release to which you are downgrading. The file specified in the

IFILE entry contains additional initialization parameters. After you copy

this file, edit the parameter file to point to its new location.

c. If you have a password file that resides within the release 9.2 Oracle home

directory, then move or copy the password file to the Oracle home of the

release to which you are downgrading. The name and location of the

password file are operating system-specific. On UNIX platforms, the default

password file is ORACLE_HOME/dbs/orapw sid . On Windows operating

systems, the default password file is ORACLE_
HOME\database\pwd sid .ora . On both UNIX platforms and Windows

operating systems, sid is your Oracle instance ID.

Note: If you are downgrading a cluster database, then perform

this step on all nodes in which this cluster database has instances

configured.

■ If you are downgrading to release 9.0.1, then set the CLUSTER_
DATABASE initialization parameter to false .

■ If you are downgrading to release 8.1.7, then set the

PARALLEL_SERVER initialization parameter to false .

After the downgrade, you must set the appropriate initialization

parameter back to true .
7-26 Oracle9i Database Migration

Downgrade the Database
16. Add the following initialization parameters to your parameter file:

_SYSTEM_TRIG_ENABLED = false
JOB_QUEUE_PROCESSES = 0
AQ_TM_PROCESSES = 0

If you are downgrading to release 9.0.1, then add the following aditional

initialization parameter to your parameter file:

NLS_LENGTH_SEMANTICS = BYTE

These initialization parameters should be removed from your parameter file

after the downgrade is complete.

17. At a system prompt, change to the ORACLE_HOME/rdbms/admin directory of

the previous release.

18. Start SQL*Plus.

19. Connect to the database instance as a user with SYSDBA privileges.

20. Start up the instance in RESTRICT mode:

STARTUP RESTRICT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

21. Set the system to spool results to a log file for later verification of success:

SPOOL old_scripts.log

If you want to see the complete detailed output of the scripts you will run, then

you can also issue a SET ECHO ON command:

SET ECHO ON

22. Run utlip.sql :

@utlip.sql

The utlip.sql script invalidates all existing PL/SQL modules by altering

certain dictionary tables so that subsequent recompilations will happen in the

Note: If you are downgrading to release 8.1.7, then start Server

Manager. Do not start SQL*Plus.
Downgrading a Database Back to the Previous Oracle Release 7-27

Downgrade the Database
format required by the database. It also reloads packages STANDARD and DBMS_
STANDARD, which are necessary for any PL/SQL compilations.

23. Run catalog.sql :

@catalog.sql

24. Run catproc.sql :

@catproc.sql

25. If you are downgrading to release 8.1.7, then run catrep.sql :

@catrep.sql

26. If you are downgrading a cluster database, then complete the following steps:

a. If you are downgrading to release 9.0.1,then run catclust.sql :

@catclust.sql

b. If you are downgrading to release 8.1.7, then run catparr.sql :

@catparr.sql

27. You may need to run one or more catalog scripts supplied with the release to

which you are downgrading. For example, to re-create Heterogeneous Services

data dictionary views, tables, and packages, run caths.sql :

@caths.sql

28. If the database being downgraded has JServer JAVA Virtual Machine installed,

then run the appropriate downgrade script (copied to the previous Oracle home

in Step 11) to complete the JServer JAVA Virtual Machine downgrade. When

you run the script, replace ORACLE_HOME with the full path of the previous

Oracle home directory.

If you are downgrading to release 9.0.1, then run the following script:

@ORACLE_HOME/javavm/install/jvmd901.sql

If you are downgrading to release 8.1.7, then run the following script:

@ORACLE_HOME/javavm/install/jvmd817.sql

See Also: "Changing Word Size" on page 1-11 for more

information about changing word size
7-28 Oracle9i Database Migration

Downgrade the Database
29. If the database being downgraded has Oracle XDK for Java installed, then run

the appropriate downgrade script (copied to this directory in Step 11) to

complete the Oracle XDK for Java downgrade. When you run the script, replace

ORACLE_HOME with the full path of the Oracle home directory of the release

to which you downgraded.

If you are downgrading to release 9.0.1, then run the following script:

@ORACLE_HOME/xdk/admin/xmld901.sql

If you are downgrading to release 8.1.7, then run the following script:

@ORACLE_HOME/xdk/admin/xmld817.sql

30. If the database being downgraded has Messaging Gateway installed, then run

the appropriate downgrade script (copied to this directory in Step 11) to

complete the Messaging Gateway downgrade. When you run the script, replace

ORACLE_HOME with the full path of the Oracle home directory of the release

to which you downgraded.

If you are downgrading to release 9.0.1, then run the following script:

@ORACLE_HOME/mgw/admin/mgwd901.sql

31. If the database being downgraded has Oracle Workspace Manager installed,

then run the appropriate downgrade script (copied to this directory in Step 11)

to complete the Oracle Workspace Manager downgrade. When you run the

script, replace ORACLE_HOME with the full path of the Oracle home directory

of the release to which you downgraded.

If you are downgrading to release 9.0.1, then run the following script:

@ORACLE_HOME/rdbms/admin/owmd901.plb

32. Run utlrp.sql . This step is optional and can be done regardless of whether

there was a change in word-size.

@utlrp.sql

The utlrp.sql script recompiles all existing PL/SQL modules that were

previously in an INVALID state, such as packages, procedures, types, and so on.

These actions are optional; however, they ensure that the cost of recompilation

is incurred during installation rather than in the future.

Oracle Corporation highly recommends running utlrp.sql .

33. Turn off the spooling of script results to the log file:
Downgrading a Database Back to the Previous Oracle Release 7-29

Downgrade the Database
SPOOL OFF

Then, check the spool file and verify that the packages and procedures

compiled successfully. You named the spool file in Step 21; the suggested name

was catoutd2.log . Correct any problems you find in this file and rerun the

appropriate script if necessary.

If you issued a SET ECHO ON command, then you may want to issue a SET
ECHO OFF command now:

SET ECHO OFF

34. Shut down the instance:

SHUTDOWN IMMEDIATE

35. Exit Server Manager or SQL*Plus, depending on which you started in Step 18.

36. Remove the initialization parameters from your parameter file that you added

in Step 16.

Your database is now downgraded.

Note: For Oracle Parallel Server, set the PARALLEL_SERVER
initialization parameter to false . You can change it back to true
after the downgrade operation is complete.
7-30 Oracle9i Database Migration

Database Migration Using Export/I
8

Database Migration Using Export/Import

This chapter guides you through the process of upgrading and downgrading data

in an Oracle database using the Export and Import utilities. This chapter covers the

following topics:

■ Export Dump File Compatibility

■ Source Database and Target Database

■ Upgrade the Source Database Using Export/Import

See Also: Oracle9i Database Utilities for detailed information about

the Export and Import utilities
mport 8-1

Export Dump File Compatibility
Export Dump File Compatibility
Export dump files can be imported into all future releases of Oracle. For example,

an Oracle7 export dump file can be imported by the release 8.1.7, release 9.0.1, and

release 9.2 Import utilities.

Export dump files, however, are not downward compatible with the Import utilities

of previous Oracle releases. That is, exported data cannot be imported by the Import

utilities of previous Oracle releases. For example, a release 8.1.7 export dump file

cannot be imported by the release 8.0.6 Import utility, and an Oracle9i export dump

file cannot be imported by the Oracle7 Import utility.

The contents of a database can be imported into a previous Oracle release if you use

the Export and Import utilities of the previous release to export and import the data.

Table 8–1 details this support.

As Table 8–1 indicates, to export data from a release 8.0 or higher database into an

Oracle7 database, you must first run the catexp7.sql script on the release 8.0 or

higher database before using the Oracle7 Export utility to export the data.

You do not need to run the catexp7.sql script if you are exporting data from a

release 8.1 or higher database into a release 8.0 database.

Table 8–1 Backward Compatibility Support for Export/Import

To Export Data From Import Into Use Export/Import Utilities For

Release 9.2

Release 9.0.1

Release 8.1.7

Release 8.0.6

Release 7.3.4 Release 7.3.4

Note: Run the catexp7.sql script
before exporting.

Release 9.2

Release 9.0.1

Release 8.1.7

Release 8.0.6 Release 8.0.6

Release 9.2

Release 9.0.1

Release 8.1.7 Release 8.1.7

Release 9.2 Release 9.0.1 Release 9.0.1
8-2 Oracle9i Database Migration

Upgrade the Source Database Using Export/Import
Export/Import Usage on Data Incompatible with a Previous Release
When you export data to a previous release, data that is incompatible with the

previous release either is not exported at all or is exported with the loss of some

features.

For example, partitioned tables are not exported by the Oracle7 Export utility. If you

need to move a partitioned table from a release 8.0 or higher database into an

Oracle7 database, then first reorganize the table into a non-partitioned table.

Another example involves procedures that use invoker-rights in release 8.1 and

higher. If you use the release 8.0 Export utility, then these procedures are exported,

but they do not function properly in release 8.0 because release 8.0 does not support

invoker-rights. Therefore, in general, if you need to export data to a previous

release, then first remove as many incompatibilities with the previous release as

possible before you export the data.

Source Database and Target Database
The source database is the database containing the data to be exported. The target
database is the database into which you are importing the exported data.

Export Utility Requirements
To upgrade a database, use the Export utility shipped with the release of the source

database. After the export, the Import utility can copy the data from the export

dump file into the target database, which is a new Oracle9i database. The new

Oracle9i database must be created and operational before the Import utility can

import the exported data.

For example, if you are upgrading to release 9.2 from release 7.3.4, then use the

Export utility for release 7.3.4.

Import Utility Requirements
To upgrade a database, use the Import utility shipped with the release of the target

database, which is a new Oracle9i database. For example, if you are upgrading to

release 9.2 from release 7.3.4, then use the Import utility for release 9.2.

Upgrade the Source Database Using Export/Import
To upgrade a database using the Export/Import utilities, complete the following

steps:
Database Migration Using Export/Import 8-3

Upgrade the Source Database Using Export/Import
1. Export data from the source database using the Export utility shipped with the

source database. See the source database’s server utilities documents for

information about using the Export utility on the source database.

To ensure a consistent export, make sure the source database is not available for

updates during and after the export. If the source database will be available to

users for updates after the export, then, prior to making the source database

available, put procedures in place to copy the changes made in the source

database to the new Oracle9i target database after the import is complete.

2. Install the new Oracle9i software. Installation is operating system-specific.

Installation steps for Oracle9i are covered in your operating system-specific

Oracle documentation.

3. If the new Oracle9i database will have the same name as the existing source

database, then shut down the existing database before creating the new Oracle9i
database.

4. Create the new Oracle9i target database.

5. Start SQL*Plus in the new Oracle9i environment.

6. Connect to the database instance as a user with SYSDBA privileges.

7. Start an Oracle9i database instance using STARTUP.

8. Pre-create tablespaces, users, and tables in the target database to improve space

usage by changing storage parameters. When you pre-create tables using

SQL*Plus, either run the database in the original database compatibility mode

or make allowances for the specific data definition conversions that occur

during import.

See Also: Oracle9i Database Administrator’s Guide for information

about creating an Oracle9i database

Note: If the new Oracle9i database will be created on the same

computer as the source database, and you do not want to overwrite

the source database datafiles, then you must pre-create the

tablespaces and specify IGNORE=Y and DESTROY=N when you

import.
8-4 Oracle9i Database Migration

Upgrade the Source Database Using Export/Import
9. Use the Import utility of the new Oracle9i database to import the objects

exported from the source database. Include the LOG parameter to save the

informational and error messages from the import session to a file.

10. After the import, check the import log file for information about which imports

of which objects completed successfully and, if there were failures, which failed.

11. Use further Import scenarios (see Oracle9i Database Utilities) or SQL scripts that

create the source objects to clean up incomplete imports (or possibly to start an

entirely new import).

12. If changes are made to the source database after the export, then make sure

those changes are propagated to the new Oracle9i database prior to making it

available to users. See Step 1 on page 8-4 for more information.

13. Complete the procedures described in Chapter 4, "After Upgrading a Database".

See Also: Oracle9i Database Utilities for a complete description of

the Import utility.

See Also: Oracle9i Database Utilities and the Oracle9i server

README.doc file for error handling information.
Database Migration Using Export/Import 8-5

Upgrade the Source Database Using Export/Import
8-6 Oracle9i Database Migration

Changes to Initialization Parameters and the Data Dictio
A

Changes to Initialization Parameters and the

Data Dictionary

This appendix lists changes to initialization parameters and the data dictionary

across different releases of Oracle. This appendix also discusses compatibility issues

with certain initialization parameters.

This appendix covers the following topics:

■ Initialization Parameter Changes

■ Compatibility Issues with Initialization Parameters

■ Static Data Dictionary View Changes

■ Dynamic Performance View Changes

Note: This appendix does not list changes to initialization

parameters and the data dictionary that occurred in release 8.0. If

you are upgrading from Oracle7, then see "Changes to Initialization

Parameters and the Data Dictionary in Release 8.0" on page D-39 in

addition to the changes outlined in this appendix.
nary A-1

Initialization Parameter Changes
Initialization Parameter Changes
The following sections list changes to initialization parameters across different

releases of Oracle:

■ Deprecated Initialization Parameters

■ Obsolete Initialization Parameters

Deprecated Initialization Parameters
The following sections list initialization parameters that have been deprecated. A

deprecated parameter behaves the same way as a regular parameter, except that a

warning message is displayed at instance startup if a deprecated parameter is

specified in a parameter file. In addition, all deprecated parameters are logged to

the alert log at instance startup:

■ Initialization Parameters Deprecated in Release 9.2

■ Initialization Parameters Deprecated in Release 9.0.1

Initialization Parameters Deprecated in Release 9.2
The following initialization parameters were deprecated in release 9.2:

Initialization Parameters Deprecated in Release 9.0.1
The following initialization parameters were deprecated in release 9.0.1:

See Also: The "What’s New in Oracle9i Database Reference"

section of Oracle9i Database Reference for a list of new initialization

parameters in Oracle9i

Deprecated In Favor Of

DRS_START DG_BROKER_START

Deprecated In Favor Of

MTS_CIRCUITS CIRCUITS

MTS_DISPATCHERS DISPATCHERS

MTS_MAX_DISPATCHERS MAX_DISPATCHERS

MTS_MAX_SERVERS MAX_SHARED_SERVERS
A-2 Oracle9i Database Migration

Initialization Parameter Changes
Obsolete Initialization Parameters
The following sections list initialization parameters that have been made obsolete:

■ Initialization Parameters Obsolete in Release 9.2

■ Initialization Parameters Obsolete in Release 9.0.1

■ Initialization Parameters Obsolete in Release 8.1

Initialization Parameters Obsolete in Release 9.2
The following initialization parameters were made obsolete in release 9.2:

Initialization Parameters Obsolete in Release 9.0.1
The following initialization parameters were made obsolete in release 9.0.1:

MTS_SERVERS SHARED_SERVERS

MTS_SESSIONS SHARED_SERVER_SESSIONS

PARALLEL_SERVER CLUSTER_DATABASE

PARALLEL_SERVER_INSTANCES CLUSTER_DATABASE_INSTANCES

Note: An attempt to start a release 9.2 database using one or more

of these obsolete initialization parameters will succeed, but a

warning will be returned and recorded in the alert log.

DISTRIBUTED_TRANSACTIONS MAX_TRANSACTION_BRANCHES

PARALLEL_BROADCAST_ENABLED STANDBY_PRESERVES_NAMES

ALWAYS_ANTI_JOIN ALWAYS_SEMI_JOIN

DB_BLOCK_LRU_LATCHES DB_BLOCK_MAX_DIRTY_TARGET

DB_FILE_DIRECT_IO_COUNT GC_DEFER_TIME

GC_RELEASABLE_LOCKS GC_ROLLBACK_LOCKS

HASH_MULTIBLOCK_IO_COUNT INSTANCE_NODESET

JOB_QUEUE_INTERVAL OPS_INTERCONNECTS

Deprecated In Favor Of
Changes to Initialization Parameters and the Data Dictionary A-3

Initialization Parameter Changes
Initialization Parameters Obsolete in Release 8.1
The following initialization parameters were made obsolete in release 8.1:

OPTIMIZER_PERCENT_PARALLEL SORT_MULTIBLOCK_READ_COUNT

TEXT_ENABLE

ALLOW_PARTIAL_SN_RESULTS ARCH_IO_SLAVES

B_TREE_BITMAP_PLANS BACKUP_DISK_IO_SLAVES

CACHE_SIZE_THRESHOLD CLEANUP_ROLLBACK_ENTRIES

CLOSE_CACHED_OPEN_CURSORS COMPATIBLE_NO_RECOVERY

COMPLEX_VIEW_MERGING DB_BLOCK_CHECKPOINT_BATCH

DB_BLOCK_LRU_EXTENDED_
STATISTICS

DB_BLOCK_LRU_STATISTICS

DB_FILE_SIMULTANEOUS_WRITES DELAYED_LOGGING_BLOCK_
CLEANOUTS

DISCRETE_TRANSACTIONS_ENABLED DISTRIBUTED_RECOVERY_
CONNECTION_HOLD_TIMEFAST_FULL_
SCAN_ENABLED

ENT_DOMAIN_NAME FREEZE_DB_FOR_FAST_INSTANCE_
RECOVERY

GC_LATCHES GC_LCK_PROCS

JOB_QUEUE_KEEP_CONNECTIONS LARGE_POOL_MIN_ALLOC

LGWR_IO_SLAVES LM_LOCKS

LM_PROCS LM_RESS

LOCK_SGA_AREAS LOG_ARCHIVE_BUFFER_SIZE

LOG_ARCHIVE_BUFFERS LOG_BLOCK_CHECKSUM

LOG_FILES LOG_SIMULTANEOUS_COPIES

LOG_SMALL_ENTRY_MAX_SIZE MTS_LISTENER_ADDRESS

MTS_MULTIPLE_LISTENERS MTS_RATE_LOG_SIZE

MTS_RATE_SCALE MTS_SERVICE

OGMS_HOME OPS_ADMIN_GROUP
A-4 Oracle9i Database Migration

Compatibility Issues with Initialization Parameters
Compatibility Issues with Initialization Parameters
The lists of deprecated and obsolete initialization parameters earlier in this

appendix show changes to initialization parameters across different releases of

Oracle. However, certain initialization parameter changes require special attention

because they may raise compatibility issues for your database. These parameter

changes are described in this section.

New Default Value for DB_BLOCK_CHECKSUM
Starting with release 9.0.1, the DB_BLOCK_CHECKSUM initialization parameter has a

new default value. In previous releases, the default value was false , but in release

9.0.1 and higher, the default value is true .

Maximum Number of Job Queue Processes
In Oracle9i, the maximum number of job queue processes that can be spawned per

instance is 1000. In previous releases, the maximum number was 36. The JOB_
QUEUE_PROCESSES initialization parameter controls the number of job queue

processes.

OPTIMIZER_SEARCH_LIMIT PARALLEL_DEFAULT_MAX_INSTANCES

PARALLEL_MIN_MESSAGE_POOL PARALLEL_SERVER_IDLE_TIME

PARALLEL_TRANSACTION_RESOURCE_
TIMEOUT

PUSH_JOIN_PREDICATE

REDUCE_ALARM ROW_CACHE_CURSORS

SEQUENCE_CACHE_ENTRIES SEQUENCE_CACHE_HASH_BUCKETS

SHARED_POOL_RESERVED_MIN_ALLOC SNAPSHOT_REFRESH_KEEP_
CONNECTIONS

SNAPSHOT_REFRESH_PROCESSES SORT_DIRECT_WRITES

SORT_READ_FAC SORT_SPACEMAP_SIZE

SORT_WRITE_BUFFER_SIZE SORT_WRITE_BUFFERS

SPIN_COUNT TEMPORARY_TABLE_LOCKS

USE_ISM

See Also: DB_BLOCK_CHECKSUM in Oracle9i Database Reference
Changes to Initialization Parameters and the Data Dictionary A-5

Compatibility Issues with Initialization Parameters
The ORACLE_TRACE_ENABLE Parameter
Starting with release 8.1.7, the ORACLE_TRACE_ENABLE initialization parameter is

dynamic. The default value is false .

To enable Oracle Trace collections for the server, use ALTER SYSTEM or ALTER
SESSION to set ORACLE_TRACE_ENABLE to true . This setting alone does not start

an Oracle Trace collection, but it allows Oracle Trace to be used with the server.

With ORACLE_TRACE_ENABLE set to true , Oracle Trace collection of server event

data can then be performed in one of the following ways:

■ Use the Oracle Trace Manager application (supplied with the Oracle Diagnostic

Pack).

■ Use the Oracle Trace command line interface (supplied with the server).

■ Specify a collection name in the ORACLE_TRACE_COLLECTION_NAME
initialization parameter.

The SERIALIZABLE Parameter
Starting with release 8.1.6, setting the SERIALIZABLE initialization parameter to

true is no longer supported. This is not the same as "obsolete". The parameter still

shows up as a valid parameter in the V$PARAMETER data dictionary view.

The default behavior henceforth is as if SERIALIZABLE were set to false . Use the

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE command to achieve

similar transaction isolation behavior. You can also use ALTER SESSION SET
ISOLATION_LEVEL = SERIALIZABLE to get the behavior for a full session.

SORT_AREA_SIZE and SORT_DIRECT_WRITES Parameters
The SORT_DIRECT_WRITES initialization parameter is obsolete in release 8.1 and

higher. If you had SORT_DIRECT_WRITES set to FALSE or AUTO in a past release,

then the sort buffers were kept in the buffer cache whenever possible. Because

SORT_DIRECT_WRITES is obsolete in release 8.1 and higher, the sort buffers could

go directly to disk if you do not adjust your SORT_AREA_SIZE initialization

parameter.

See Also: JOB_QUEUE_PROCESSES in Oracle9i Database Reference

See Also: Oracle9i Database Reference and Oracle9i Database
Performance Tuning Guide and Reference
A-6 Oracle9i Database Migration

Compatibility Issues with Initialization Parameters
You should increase the value of SORT_AREA_SIZE if either of the following

conditions were true in a past release:

■ SORT_DIRECT_WRITES was set to FALSE.

■ SORT_DIRECT_WRITES was set to AUTO, and SORT_AREA_SIZE was set to

640 KB or less.

If either of these conditions were true in a past release, then increase the value of

SORT_AREA_SIZE for better performance.

New Default Value for LOG_CHECKPOINT_TIMEOUT
Starting with release 8.1.5, the LOG_CHECKPOINT_TIMEOUT initialization

parameter has a new default value. In previous releases, the default value was zero

seconds, but in release 8.1.5 and higher, the default value is 1800 seconds.

The O7_DICTIONARY_ACCESSIBILITY Parameter
The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls whether

to continue Oracle7 data dictionary behavior. Use of this initialization parameter is

only a temporary expedient. Starting with release 9.0.1, the default value of this

initialization parameter is false .

The DML_LOCKS Parameter
Oracle9i systems typically consume more DML locks while performing DDL

operations than are required for Oracle7 systems. Nevertheless, the Oracle7 DML_
LOCKS parameter default settings are usually adequate for Oracle9i systems, even

for DML-intensive applications.

The default value of DML_LOCKS is a multiple of the number of transactions, which

is calculated from the number of rollback segments. However, in Oracle9i fewer

transactions are used per rollback segment than are used in Oracle7. Consequently,

DML_LOCKS has a lower default value in Oracle9i. Under some extreme load

conditions, you may need to increase the DML_LOCKS parameter value.

See Also: LOG_CHECKPOINT_TIMEOUT in Oracle9i Database
Reference

See Also: "Data Dictionary Protection" on page 5-30 for more

information.
Changes to Initialization Parameters and the Data Dictionary A-7

Compatibility Issues with Initialization Parameters
You may also need to adjust the TRANSACTION_PER_ROLLBACK_SEGMENT
parameter setting, depending on the operating system-specific settings. An

informational message about this change may be displayed during database startup

operations.

The DB_DOMAIN Parameter
Starting with release 8.1, if the DB_DOMAINinitialization parameter is not set, then it

is set to NULL by default. In prior releases of Oracle, the default setting was the

following:

WORLD

A NULL setting for DB_DOMAIN may cause database connection problems in some

environments. If you are upgrading from release 8.0.6 or earlier, then make sure the

DB_DOMAIN initialization parameter in your initialization parameter file is set to

one of the following:

■ WORLD

■ a valid domain setting for your environment

If DB_DOMAIN is not set in your current database, then set it to WORLD before you

upgrade.

If DB_DOMAIN is set to a valid domain for your environment in your current

database, then retain the setting in your initialization parameter file when you

upgrade.

Parallel Execution Allocated from Large Pool
Starting with release 8.1, parallel execution message buffers are allocated from the

large pool whenever PARALLEL_AUTOMATIC_TUNING is set to true . In previous

releases, this allocation was from the shared pool. If you are upgrading from release

8.0.6 or earlier, and you choose to set PARALLEL_AUTOMATIC_TUNING to true ,

then you can avoid problems by modifying the settings for the following

initialization parameters:

■ SHARED_POOL_SIZE

■ LARGE_POOL_SIZE

Typically, you should reduce the setting of SHARED_POOL_SIZE and raise the

setting of LARGE_POOL_SIZE to avoid problems. Alternatively, you can reduce the

setting of SHARED_POOL_SIZE and let Oracle calculate the setting of LARGE_
A-8 Oracle9i Database Migration

Compatibility Issues with Initialization Parameters
POOL_SIZE. Oracle calculates a default LARGE_POOL_SIZE only if PARALLEL_
AUTOMATIC_TUNING is set to true and LARGE_POOL_SIZE is unset.

The calculation is based on the settings of the following initialization parameters:

■ PARALLEL_MAX_SERVERS

■ PARALLEL_THREADS_PER_CPU

■ PARALLEL_SERVER_INSTANCES

■ MTS_DISPATCHERS

■ DBWR_IO_SLAVES

If PARALLEL_AUTOMATIC_TUNING is unset or set to FALSE, and if LARGE_POOL_
SIZE is unset, then the value of LARGE_POOL_SIZE defaults to zero.

The following scenarios illustrate the behavior that results from various

initialization parameter settings when you upgrade to release 8.1 or higher.

Retaining Parameter Settings without Modifications
You do not alter the parameters from their previous settings:

Note: When PARALLEL_AUTOMATIC_TUNING is set to true , the

new behavior applies even if your COMPATIBLE parameter is set

below 8.1.0.

See Also: Oracle9i Database Reference and Oracle9i Database
Performance Tuning Guide and Reference for more information about

other effects of the PARALLEL_AUTOMATIC_TUNING initialization

parameter.

Table A–1 Retaining Parameter Settings without Modifications

Parameter Setting

PARALLEL_AUTOMATIC_TUNING Unset (defaults to FALSE).

SHARED_POOL_SIZE Set to a large value, including the space
required for parallel execution.

LARGE_POOL_SIZE Unset (defaults to zero).
Changes to Initialization Parameters and the Data Dictionary A-9

Compatibility Issues with Initialization Parameters
These settings are the most common scenario. In this case, you already have

accounted for the space required for parallel execution in the shared pool.

Using PARALLEL_AUTOMATIC_TUNING
You alter the parameters from their previous settings to the following settings:

In this case, parallel execution allocates buffers from the large pool based on

Oracle’s automatic calculation. Buffer allocation is more efficient, and failures to

allocate are isolated from the clients of the shared pool.

Using PARALLEL_AUTOMATIC_TUNING and Setting LARGE_POOL_SIZE
You alter the parameters from their previous settings to the following settings:

In this case, parallel execution allocates buffers from the large pool. After initial

testing with LARGE_POOL_SIZE unset, you determined that the default calculation

for LARGE_POOL_SIZE did not reflect your requirements for the large pool.

Therefore, you decided to manually set LARGE_POOL_SIZE. After you set LARGE_
POOL_SIZE properly, buffer allocation is more efficient, and failures to allocate are

isolated from the clients of the shared pool.

Table A–2 Using PARALLEL_AUTOMATIC_TUNING

Parameter Setting

PARALLEL_AUTOMATIC_TUNING Set to true .

SHARED_POOL_SIZE Set to a small value that accounts for all
clients except parallel execution.

LARGE_POOL_SIZE Unset (defaults to a large value that includes
the space required for parallel execution).

Table A–3 Using PARALLEL_AUTOMATIC_TUNING and Setting LARGE_POOL_SIZE

Parameter Setting

PARALLEL_AUTOMATIC_TUNING Set to true .

SHARED_POOL_SIZE Set to a small value that accounts for all
clients except parallel execution.

LARGE_POOL_SIZE Set to a value that includes the space
required for parallel execution.
A-10 Oracle9i Database Migration

Compatibility Issues with Initialization Parameters
Using PARALLEL_AUTOMATIC_TUNING without Modifying SHARED_POOL_
SIZE
You alter the parameters from their previous settings to the following settings:

In this case, parallel execution allocates buffers from the large pool, but because you

did not modify SHARED_POOL_SIZE, it is likely that the SGA will be unnecessarily

large, causing performance problems. Therefore, avoid setting PARALLEL_
AUTOMATIC_TUNING to true without modifying the settings of SHARED_POOL_
SIZE and LARGE_POOL_SIZE appropriately.

Archive Log Destination Parameters
Release 8.1 and higher supports new archive log destination parameters. After you

upgrade, you can dynamically convert from the old pre-release 8.1 parameters

(LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST) to the new release 8.1

and higher parameters (LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_
STATE_n). You can also dynamically revert to the old parameters.

Changing to the New Archive Log Destination Parameters
After you determine the new archive destinations, associated states, and options,

complete the following steps to change from the old archive log destination

parameters to the new ones:

1. Use ALTER SYSTEM to set LOG_ARCHIVE_MIN_SUCCEED_DEST to 1.

2. Use ALTER SYSTEM to set LOG_ARCHIVE_DUPLEX_DEST to NULL.

Table A–4 Using PARALLEL_AUTOMATIC_TUNING without Modifying SHARED_
POOL_SIZE

Parameter Setting

PARALLEL_AUTOMATIC_TUNING Set to true .

SHARED_POOL_SIZE Set to a large value, including the space
required for parallel execution.

LARGE_POOL_SIZE Unset (defaults to a large value that includes
the space required for parallel execution).

Note: In Oracle9i, the number of archive log destinations was

increased from 5 to 10.
Changes to Initialization Parameters and the Data Dictionary A-11

Compatibility Issues with Initialization Parameters
3. Use ALTER SYSTEM to set LOG_ARCHIVE_DEST to NULL.

4. Use ALTER SYSTEM to set any LOG_ARCHIVE_DEST_STATE_n parameters to

"defer" or "enable" as required. Although enable is the default, Oracle

Corporation recommends that you explicitly set a state for each destination.

5. Use ALTER SYSTEM to set at least one LOG_ARCHIVE_DEST_n parameter to a

value specifying a local destination.

6. Use ALTER SYSTEM to set other LOG_ARCHIVE_DEST_n parameters as

required.

7. Use ALTER SYSTEM to set LOG_ARCHIVE_MIN_SUCCEED_DEST to the

required value.

For example, assume there are the following two destinations:

■ /oracle/dbs/arclog

■ /backup/dbs/arclog

Both destinations are mandatory (minimum succeed destination count is 2). The

new destinations are the following:

■ /oracle/dbs/arclog (local)

■ stndby1 (a standby database)

■ /backup/dbs/arclog

■ /backup2/dbs/arclog

The first destination, the standby destination, and either of the backup destinations

are mandatory (minimum succeed destination count is 3).

With these assumptions, issue the following SQL statements to change your old

archive log destination parameters to the new ones:

ALTER SYSTEM SET LOG_ARCHIVE_MIN_SUCCEED_DEST = 1;

ALTER SYSTEM SET LOG_ARCHIVE_DUPLEX_DEST = ’ ’;

ALTER SYSTEM SET LOG_ARCHIVE_DEST = ’ ’;

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1 = ’enable’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = ’enable’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_3 = ’enable’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4 = ’enable’;

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1 = ’LOCATION=/oracle/dbs/arclog MANDATORY’;
A-12 Oracle9i Database Migration

Compatibility Issues with Initialization Parameters
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = ’SERVICE=stndby1 MANDATORY’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_3 = ’LOCATION=/backup/dbs/arclog OPTIONAL’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_4 = ’LOCATION=/backup2/dbs/arclog OPTIONAL’;
ALTER SYSTEM SET LOG_ARCHIVE_MIN_SUCCEED_DEST = 3;

Changing Back to the Old Archive Log Destination Parameters
Complete the following steps to change back to the old archive log destination

parameters:

1. Use ALTER SYSTEM to set LOG_ARCHIVE_MIN_SUCCEED_DEST to 1.

2. Use ALTER SYSTEM to set all LOG_ARCHIVE_DEST_n parameters to NULL.

3. Use ALTER SYSTEM to set the LOG_ARCHIVE_DEST parameter to a value

specifying a local destination.

4. Use ALTER SYSTEM to set the LOG_ARCHIVE_DUPLEX_DEST parameter as

required.

5. Use ALTER SYSTEM to set LOG_ARCHIVE_MIN_SUCCEED_DEST to the

required value.

For example, assume there are the following two destinations:

■ /oracle/dbs/arclog (LOG_ARCHIVE_DEST_1)

■ /backup/dbs/arclog (LOG_ARCHIVE_DEST_4)

Both destinations are mandatory. The new destinations and minimum succeed

count are the same.

With these assumptions, issue the following SQL statements to change your new

archive log destination parameters to the old ones:

ALTER SYSTEM SET LOG_ARCHIVE_MIN_SUCCEED_DEST = 1;

ALTER SYSTEM SET LOG_ARCHIVE_DEST_4 = ’ ’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1 = ’ ’;

ALTER SYSTEM SET LOG_ARCHIVE_DEST = ’/oracle/dbs/arclog’;

ALTER SYSTEM SET LOG_ARCHIVE_DUPLEX_DEST = ’/backup/dbs/arclog’;

ALTER SYSTEM SET LOG_ARCHIVE_MIN_SUCCEED_DEST = 2;
Changes to Initialization Parameters and the Data Dictionary A-13

Static Data Dictionary View Changes
Possible Errors During the Transition in Parameters
When you follow the procedures described previously in this section for changing

your archive destination parameters, you may encounter the following error

messages in your log files if archiving is enabled:

■ In the Alert log - "Archiving not possible: No available destinations"

■ In the Trace log - "ARCH: INCOMPLETE, no available destinations"

You will not encounter these errors if archiving is disabled. The errors may occur

during the procedure when there are no valid archive destinations. However, when

the transition in parameters is complete, the errors should cease. You should not
disable archiving during the transition to avoid these errors.

Static Data Dictionary View Changes
The following sections list changes to static data dictionary views across different

releases of Oracle:

■ Deprecated Static Data Dictionary Views

■ Obsolete Static Data Dictionary Views

■ Static Data Dictionary Views with Renamed Columns

■ Static Data Dictionary Views with Dropped Columns

■ Static Data Dictionary Views with Columns That May Return Nulls

Deprecated Static Data Dictionary Views
The following sections list static data dictionary views that have been deprecated:

■ Static Data Dictionary Views Deprecated in Release 9.2

■ Static Data Dictionary Views Deprecated in Release 9.0.1

■ Static Data Dictionary Views Deprecated in Release 8.1

Static Data Dictionary Views Deprecated in Release 9.2
The following static data dictionary views were deprecated in release 9.2:

See Also: The "What’s New in Oracle9i Database Reference"

section of Oracle9i Database Reference for a list of new static data

dictionary views in Oracle9i
A-14 Oracle9i Database Migration

Static Data Dictionary View Changes
Static Data Dictionary Views Deprecated in Release 9.0.1
The following static data dictionary views were deprecated in release 9.0.1:

Static Data Dictionary Views Deprecated in Release 8.1
The following static data dictionary views were deprecated in release 8.1:

Deprecated In Favor Of

ALL_RULESETS ALL_RULE_SETS

DBA_RULESETS DBA_RULE_SETS

USER_RULESETS USER_RULE_SETS

Deprecated In Favor Of

ALL_REGISTERED_SNAPSHOTS ALL_REGISTERED_MVIEWS

ALL_SNAPSHOT_LOGS ALL_BASE_TABLE_MVIEWS

ALL_MVIEW_LOGS

ALL_SNAPSHOT_REFRESH_TIMES ALL_MVIEW_REFRESH_TIMES

DBA_REGISTERED_SNAPSHOT_GROUPS DBA_REGISTERED_MVIEW_GROUPS

DBA_REGISTERED_SNAPSHOTS DBA_REGISTERED_MVIEWS

DBA_SNAPSHOT_LOG_FILTER_COLS DBA_MVIEW_LOG_FILTER_COLS

DBA_SNAPSHOT_LOGS DBA_BASE_TABLE_MVIEWS

DBA_MVIEW_LOGS

DBA_SNAPSHOT_REFRESH_TIMES DBA_MVIEW_REFRESH_TIMES

USER_REGISTERED_SNAPSHOTS USER_REGISTERED_MVIEWS

USER_SNAPSHOT_LOGS USER_BASE_TABLE_MVIEWS

USER_MVIEW_LOGS

USER_SNAPSHOT_REFRESH_TIMES USER_MVIEW_REFRESH_TIMES

Deprecated In Favor Of

ALL_SNAPSHOTS ALL_MVIEWS

ALL_SUMMARIES ALL_MVIEW_ANALYSIS
Changes to Initialization Parameters and the Data Dictionary A-15

Static Data Dictionary View Changes
Obsolete Static Data Dictionary Views
The following sections list static data dictionary views that have been made

obsolete:

■ Static Data Dictionary Views Obsolete in Release 8.1

Static Data Dictionary Views Obsolete in Release 8.1
The following static data dictionary views were made obsolete in release 8.1:

Static Data Dictionary Views with Renamed Columns
The following sections list static data dictionary views with renamed columns:

ALL_SUMMARY_AGGREGATES ALL_MVIEW_AGGREGATES

ALL_SUMMARY_DETAIL_TABLES ALL_MVIEW_DETAIL_RELATIONS

ALL_SUMMARY_JOINS ALL_MVIEW_JOINS

ALL_SUMMARY_KEYS ALL_MVIEW_KEYS

DBA_SNAPSHOTS DBA_MVIEWS

DBA_SUMMARIES DBA_MVIEW_ANALYSIS

DBA_SUMMARY_AGGREGATES DBA_MVIEW_AGGREGATES

DBA_SUMMARY_DETAIL_TABLES DBA_MVIEW_DETAIL_RELATIONS

DBA_SUMMARY_JOINS DBA_MVIEW_JOINS

DBA_SUMMARY_KEYS DBA_MVIEW_KEYS

USER_SNAPSHOTS USER_MVIEWS

USER_SUMMARIES USER_MVIEW_ANALYSIS

USER_SUMMARY_AGGREGATES USER_MVIEW_AGGREGATES

USER_SUMMARY_DETAIL_TABLES USER_MVIEW_DETAIL_RELATIONS

USER_SUMMARY_JOINS USER_MVIEW_JOINS

USER_SUMMARY_KEYS USER_MVIEW_KEYS

ALL_LABELS

Deprecated In Favor Of
A-16 Oracle9i Database Migration

Static Data Dictionary View Changes
■ Static Data Dictionary Views with Renamed Columns in Release 9.0.1

Static Data Dictionary Views with Renamed Columns in Release 9.0.1
The static data dictionary view columns listed in Table A–5 were renamed in release

9.0.1:

Static Data Dictionary Views with Dropped Columns
The following sections list static data dictionary views with dropped columns:

■ Static Data Dictionary Views with Dropped Columns in Release 9.0.1

■ Static Data Dictionary Views with Dropped Columns in Release 8.1

Static Data Dictionary Views with Dropped Columns in Release 9.0.1
The following static data dictionary view columns were dropped in release 9.0.1:

Static Data Dictionary Views with Dropped Columns in Release 8.1
The following static data dictionary view columns were dropped in release 8.1:

Table A–5 Static Data Dictionary Views with Renamed Columns in Release 9.0.1

Static Data Dictionary View Pre-Release 9.0.1 Column Name
Release 9.0.1 and Higher Column
Name

DBA_RSRC_PLAN_DIRECTIVES MAX_ACTIVE_SESS_TARGET_P1 ACTIVE_SESS_POOL_P1

DBA_RSRC_PLANS MAX_ACTIVE_SESS_TARGET_MTH ACTIVE_SESS_POOL_MTH

Static Data Dictionary View Dropped Columns

DBA_RSRC_PLAN_DIRECTIVES MAX_ACTIVE_SESS_TARGET_P1

DBA_RSRC_PLANS MAX_ACTIVE_SESS_TARGET_MTH

Static Data Dictionary Views Dropped Columns

DBA_AUDIT_OBJECT

USER_AUDIT_OBJECT

OBJECT_LABEL

SESSION_LABEL

DBA_AUDIT_SESSION

USER_AUDIT_SESSION

SESSION_LABEL
Changes to Initialization Parameters and the Data Dictionary A-17

Static Data Dictionary View Changes
Static Data Dictionary Views with Columns That May Return Nulls
Starting with release 8.1, the static data dictionary view columns listed in Table A–6

may return nulls; in previous releases, these columns could not return nulls. If an

application requires non-null values for one or more of these columns, then modify

the application accordingly:

DBA_AUDIT_STATEMENT

USER_AUDIT_STATEMENT

SESSION_LABEL

DBA_AUDIT_TRAIL

USER_AUDIT_TRAIL

OBJECT_LABEL

SESSION_LABEL

DBA_CONTEXT ATTRIBUTE

ALL_IND_COLUMNS

DBA_IND_COLUMNS

USER_IND_COLUMNS

COLUMN_EXPRESSION

ALL_JOBS

DBA_JOBS

USER_JOBS

CLEARANCE_HI

CLEARANCE_LO

CURRENT_SESSION_LABEL

ALL_REFS

DBA_REFS

USER_REFS

HAS_REFERENTIAL_CONS

REFERENTIAL_CONS_NAME

Static Data Dictionary Views Dropped Columns
A-18 Oracle9i Database Migration

Static Data Dictionary View Changes
Table A–6 Static Data Dictionary Views with Columns That May Return Nulls in Release 8.1

Static Data Dictionary Views Columns Explanation

DBA_DATA_FILES AUTOEXTENSIBLE

BLOCKS

BYTES

INCREMENT_BY

MAXBLOCKS

MAXBYTES

These columns return a null if the
data file is offline and therefore not
readable.

ALL_IND_COLUMNS

DBA_IND_COLUMNS

USER_IND_COLUMNS

COLUMN_NAME This column returns a null if an
index is on a function instead of a
column. In this case, there is no
column to list.

ALL_IND_PARTITIONS

DBA_IND_PARTITIONS

USER_IND_PARTITIONS

INITIAL_EXTENT

MAX_EXTENT

MIN_EXTENT

NEXT_EXTENT

PCT_INCREASE

These columns return a null if the
index is partitioned using a
composite method and no default
value was specified for the
partition.

ALL_OBJECT_TABLES

DBA_OBJECT_TABLES

USER_OBJECT_TABLES

TABLESPACE_NAME This column returns a null in if an
object table is partitioned or if it is
a temporary table.

ALL_SEGMENTS

DBA_SEGMENTS

USER_SEGMENTS

BLOCKS

BYTES

EXTENTS

NEXT_EXTENT

PCT_INCREASE

The BLOCKS, BYTES, and EXTENTS
columns return a null if the
segment header cannot be read
because the file is offline or if there
is some other corruption.

The NEXT_EXTENT and PCT_
INCREASE columns return a null if
the tablespace storing the segment
is locally managed and uses the
AUTOALLOCATEoption, because the
system chooses the extent sizes,
and the algorithm cannot be
explainedintermsofNEXT_EXTENT
and PCT_INCREASE.
Changes to Initialization Parameters and the Data Dictionary A-19

Dynamic Performance View Changes
Dynamic Performance View Changes
The following sections list changes to dynamic performance views (V$ views)

across different releases of Oracle:

■ Deprecated Dynamic Performance Views

■ Obsolete Dynamic Performance Views

■ Dynamic Performance Views with Renamed Columns

■ Dynamic Performance Views with Dropped Columns

Deprecated Dynamic Performance Views
The following sections list dynamic performance views that have been deprecated:

■ Dynamic Performance Views Deprecated in Release 9.2

ALL_TAB_PARTITIONS

DBA_TAB_PARTITIONS

USER_TAB_PARTITIONS

INITIAL_EXTENT

MAX_EXTENT

MIN_EXTENT

NEXT_EXTENT

PCT_INCREASE

These columns return a null if the
table is partitioned using a
composite method and no default
value was specified for the
partition.

ALL_TABLESPACES

DBA_TABLESPACES

USER_TABLESPACES

NEXT_EXTENT

PCT_INCREASE

These columns return a null if the
tablespace is locally managed and
uses the AUTOALLOCATE option,
because the system chooses the
extent sizes, and the algorithm
cannot be explained in terms of
NEXT_EXTENTandPCT_INCREASE.

ALL_TRIGGERS

DBA_TRIGGERS

USER_TRIGGERS

TABLE_NAME This column returns a null if the
trigger is a system trigger. In this
case, the base object type of the
trigger will be SCHEMA or
DATABASE, instead of TABLE or
VIEW.

See Also: The "What’s New in Oracle9i Database Reference"

section of Oracle9i Database Reference for a list of new dynamic

performance views in Oracle9i

Table A–6 (Cont.) Static Data Dictionary Views with Columns That May Return Nulls in Release 8.1

Static Data Dictionary Views Columns Explanation
A-20 Oracle9i Database Migration

Dynamic Performance View Changes
■ Dynamic Performance Views Deprecated in Release 9.0.1

Dynamic Performance Views Deprecated in Release 9.2
The following dynamic performance views were deprecated in release 9.2:

Dynamic Performance Views Deprecated in Release 9.0.1
The following dynamic performance views were deprecated in release 9.0.1:

Deprecated In Favor Of

GV$SORT_USAGE GV$TEMPSEG_USAGE

V$SORT_USAGE V$TEMPSEG_USAGE

Deprecated In Favor Of

GV$BSP GV$CR_BLOCK_SERVER

GV$CLASS_PING GV$CLASS_CACHE_TRANSFER

GV$DLM_ALL_LOCKS GV$GES_ENQUEUE

GV$DLM_CONVERT_LOCAL GV$GES_CONVERT_LOCAL

GV$DLM_CONVERT_REMOTE GV$GES_CONVERT_REMOTE

GV$DLM_LATCH GV$GES_LATCH

GV$DLM_LOCKS GV$GES_BLOCKING_ENQUEUE

GV$DLM_MISC GV$GES_STATISTICS

GV$DLM_RESS GV$GES_RESOURCE

GV$DLM_TRAFFIC_CONTROLLER GV$GES_TRAFFIC_CONTROLLER

GV$FILE_PING GV$FILE_CACHE_TRANSFER

GV$LOCK_ELEMENT GV$GC_ELEMENT

GV$LOCKS_WITH_COLLISIONS GV$GC_ELEMENTS_WITH_COLLISIONS

GV$MAX_ACTIVE_SESS_TARGET_MTH GV$ACTIVE_SESS_POOL_MTH

GV$MTS GV$SHARED_SERVER_MONITOR

GV$PING GV$CACHE_TRANSFER

GV$TEMP_PING GV$TEMP_CACHE_TRANSFER

V$BSP V$CR_BLOCK_SERVER
Changes to Initialization Parameters and the Data Dictionary A-21

Dynamic Performance View Changes
Obsolete Dynamic Performance Views
The following sections list dynamic performance views that have been made

obsolete:

■ Dynamic Performance Views Obsolete in Release 9.2

■ Dynamic Performance Views Obsolete in Release 9.0.1

■ Dynamic Performance Views Obsolete in Release 8.1

Dynamic Performance Views Obsolete in Release 9.2
The following dynamic performance views were made obsolete in release 9.2:

V$CLASS_PING V$CLASS_CACHE_TRANSFER

V$DLM_ALL_LOCKS V$GES_ENQUEUE

V$DLM_CONVERT_LOCAL V$GES_CONVERT_LOCAL

V$DLM_CONVERT_REMOTE V$GES_CONVERT_REMOTE

V$DLM_LATCH V$GES_LATCH

V$DLM_LOCKS V$GES_BLOCKING_ENQUEUE

V$DLM_MISC V$GES_STATISTICS

V$DLM_RESS V$GES_RESOURCE

V$DLM_TRAFFIC_CONTROLLER V$GES_TRAFFIC_CONTROLLER

V$FILE_PING V$FILE_CACHE_TRANSFER

V$LOCK_ELEMENT V$GC_ELEMENT

V$LOCKS_WITH_COLLISIONS V$GC_ELEMENTS_WITH_COLLISIONS

V$MAX_ACTIVE_SESS_TARGET_MTH V$ACTIVE_SESS_POOL_MTH

V$MTS V$SHARED_SERVER_MONITOR

V$PING V$CACHE_TRANSFER

V$TEMP_PING V$TEMP_CACHE_TRANSFER

GV$LOADCSTAT V$LOADCSTAT

GV$LOADTSTAT V$LOADTSTAT

Deprecated In Favor Of
A-22 Oracle9i Database Migration

Dynamic Performance View Changes
Dynamic Performance Views Obsolete in Release 9.0.1
The following dynamic performance views were made obsolete in release 9.0.1:

Dynamic Performance Views Obsolete in Release 8.1
The following dynamic performance views were made obsolete in release 8.1:

Dynamic Performance Views with Renamed Columns
The following sections list dynamic performance views with renamed columns:

■ Dynamic Performance Views with Renamed Columns in Release 9.2

■ Dynamic Performance Views with Renamed Columns in Release 9.0.1

■ Dynamic Performance Views with Renamed Columns in Release 8.1

Dynamic Performance Views with Renamed Columns in Release 9.2
The dynamic performance view columns listed in Table A–7 were renamed in

release 9.2:

GV$TARGETRBA V$TARGETRBA

GV$CURRENT_BUCKET V$CURRENT_BUCKET

GV$RECENT_BUCKET V$RECENT_BUCKET

Table A–7 Dynamic Performance Views with Renamed Columns in Release 9.2

Dynamic Performance View Pre-Release 9.2 Column Name
Release 9.2 and Higher Column
Name

GV$ARCHIVE_DEST and
V$ARCHIVE_DEST

MANIFEST REGISTER

REGISTER REMOTE_TEMPLATE

GV$DATABASE and V$DATABASE STANDBY_MODE PROTECTION_MODE

GV$LOGMNR_CALLBACK and
V$LOGMNR_CALLBACK

CALLBACK_STATE STATE

CALLBACK_TYPE TYPE

CALLBACK_CAPABILITY CAPABILITY

GV$LOGMNR_REGION and
V$LOGMNR_REGION

ID MEMSTATE

CURRENT_STATE STATE
Changes to Initialization Parameters and the Data Dictionary A-23

Dynamic Performance View Changes
Dynamic Performance Views with Renamed Columns in Release 9.0.1
The dynamic performance view columns listed in Table A–8 were renamed in

release 9.0.1:

Dynamic Performance Views with Renamed Columns in Release 8.1
The dynamic performance view columns listed in Table A–9 were renamed in

release 8.1:

Dynamic Performance Views with Dropped Columns
The following sections list dynamic performance views with dropped columns. If

an application requires one or more of these columns, then modify the application

accordingly:

■ Dynamic Performance Views with Dropped Columns in Release 9.2

■ Dynamic Performance Views with Dropped Columns in Release 9.0.1

■ Dynamic Performance Views with Dropped Columns in Release 8.1

Table A–8 Dynamic Performance Views with Renamed Columns in Release 9.0.1

Dynamic Performance View Pre-Release 9.0.1 Column Name
Release 9.0.1 and Higher Column
Name

GV$RSRC_CONSUMER_GROUP and
V$RSRC_CONSUMER_GROUP

SESSIONS_QUEUED QUEUE_LENGTH

Table A–9 Dynamic Performance Views with Renamed Columns in Release 8.1

Dynamic Performance View Pre-Release 8.1 Column Name
Release 8.1 and Higher Column
Name

GV$DISPATCHER_RATE and
V$DISPATCHER_RATE

NUM_LOOPS_TRACKED TTL_LOOPS

NUM_MSG_TRACKED TTL_MSG

NUM_SVR_BUF_TRACKED TTL_SVR_BUF

NUM_CLT_BUF_TRACKED TTL_CLT_BUF

NUM_BUF_TRACKED TTL_BUF

NUM_IN_CONNECT_TRACKED TTL_IN_CONNECT

NUM_OUT_CONNECT_TRACKED TTL_OUT_CONNECT

NUM_RECONNECT_TRACKED TTL_RECONNECT
A-24 Oracle9i Database Migration

Dynamic Performance View Changes
Dynamic Performance Views with Dropped Columns in Release 9.2
The following dynamic performance view columns were dropped in release 9.2:

Dynamic Performance Views with Dropped Columns in Release 9.0.1
The following dynamic performance view columns were dropped in release 9.0.1:

Dynamic Performance View Dropped Columns

GV$DATABASE and V$DATABASE STANDBY_MODE

GV$LOGMNR_CALLBACK and V$LOGMNR_
CALLBACK

FUNC_NAME

CALLBACK_ID

CALLBACK_RESULT_SIZE

CALLBACK_STATE

CALLBACK_TYPE

CALLBACK_CAPABILITY

NUMBER_INVOKED

GV$LOGMNR_REGIONandV$LOGMNR_REGION ID

CURRENT_STATE
Changes to Initialization Parameters and the Data Dictionary A-25

Dynamic Performance View Changes
Dynamic Performance Views with Dropped Columns in Release 8.1
The following dynamic performance view columns were dropped in release 8.1:

Dynamic Performance View Dropped Columns

GV$LOGMNR_CONTENTS and V$LOGMNR_
CONTENTS

PH1_NAME

PH1_REDO

PH1_UNDO

PH2_NAME

PH2_REDO

PH2_UNDO

PH3_NAME

PH3_REDO

PH3_UNDO

PH4_NAME

PH4_REDO

PH4_UNDO

PH5_NAME

PH5_REDO

PH5_UNDO

GV$RSRC_CONSUMER_GROUP and V$RSRC_
CONSUMER_GROUP

SESSIONS_QUEUED

Dynamic Performance View Dropped Columns

V$ARCHIVE_DEST ARCMODE

V$DLM_LATCH IMM_GETS

LATCH_TYPE

TTL_GETS

V$DLM_LOCKS RESOURCE_NAME
A-26 Oracle9i Database Migration

Dynamic Performance View Changes
V$SESSION_LONGOPS APPLICATION_DATA_1

APPLICATION_DATA_2

APPLICATION_DATA_3

COMPNAM

CURRENT_TIME

MSG

OBJID

OPID

STEPID

STEPSOFAR

STEPTOTAL

UPDATE_COUNT

Dynamic Performance View Dropped Columns
Changes to Initialization Parameters and the Data Dictionary A-27

Dynamic Performance View Changes
A-28 Oracle9i Database Migration

Upgrade Considerations for Oracle Net Ser
B

Upgrade Considerations for Oracle Net

Services

This appendix describes coexistence and upgrade issues for Oracle Net Services.

This appendix covers the following topics:

■ Overview of Unsupported Oracle Net Services Features

■ Unsupported Parameters and Control Utility Commands

■ Client and Database Coexistence Issues

■ Using the Oracle Net Manager to Handle Compatibility Issues

■ Upgrading to Oracle Net Services

■ Using Oracle Names Version 9
vices B-1

Overview of Unsupported Oracle Net Services Features
Overview of Unsupported Oracle Net Services Features
In an effort to streamline configuration decisions for the Internet, the following

subsections describe the features and the configuration file that are no longer being

supported:

■ Identix and SecurID Authentication Methods

■ NDS External Naming and NDS Authentication

■ Net8 OPEN

■ protocol.ora File

■ Prespawned Dedicated Servers

■ Protocols

Identix and SecurID Authentication Methods
If you are using Identix or SecurID authentication, provided by Oracle Advanced

Security, Oracle Corporation recommends upgrading to one of the following

authentication methods:

■ CyberSafe

■ RADIUS

■ Kerberos

■ SSL

NDS External Naming and NDS Authentication
Support for Novell Directory Services (NDS) as an authentication method and as an

external naming method are no longer supported. If you are using NDS as an

external naming method, Oracle Corporation recommends using directory naming

instead.

Net8 OPEN
Net8 OPEN, which provided an application program interface (API) that enabled

programmers to develop both database and non-database applications, is no longer

supported.

See Also: Oracle Advanced Security Administrator’s Guide
B-2 Oracle9i Database Migration

Overview of Unsupported Oracle Net Services Features
protocol.ora File
Parameters in the protocol.ora file have been merged into the sqlnet.ora file.

These parameters enable you to configure access control to the database, as well as

no delays in TCP/IP buffer flushing. These parameters include:

■ TCP.NODELAY

■ TCP.EXCLUDED_NODES

■ TCP.INVITED_NODES

■ TCP.VALIDNODE_CHECKING

If you have a protocol.ora file in $ORACLE_HOME/network/admin on UNIX

and ORACLE_HOME\network\admin on Windows, Oracle Net Manager, when first

started, will automatically merge its parameters into the sqlnet.ora file.

There may be operating system specific parameters in protocol.ora that are

node specific. For this reason, Oracle Corporation recommends not sharing

sqlnet.ora with other nodes after merging or adding these parameters.

Prespawned Dedicated Servers
Prespawned dedicated server processes are no longer supported. Instead, configure

shared server (formerly named multi-threaded server) to improve scalability and

system resource usage.

Protocols
Protocol addresses using the SPX or LU6.2 protocol must be replaced. Oracle Net

provides support for the following network protocols:

■ TCP/IP

■ TCP/IP with SSL

■ Named Pipes

See Also: Oracle9i Net Services Reference Guide for a description of

these parameters

See Also: Oracle9i Net Services Reference Guide for protocol

parameter information
Upgrade Considerations for Oracle Net Services B-3

Unsupported Parameters and Control Utility Commands
Unsupported Parameters and Control Utility Commands

Client and Database Coexistence Issues
Clients and database servers require compatible releases of Oracle Net Services or

Net8. For example, an Oracle9i client requires an installation of Oracle Net Services,

and an Oracle9i database requires an installation of Oracle Net Services with the

Oracle Net Listener.

Consider the following client-to-database connection issues before you decide if

upgrading is appropriate for your environment:

■ Oracle9i Database Connections

■ Oracle8 or Oracle7 Database Connections

■ Oracle Names

Oracle9 i Database Connections
Connect descriptors, created for connections to an Oracle9i or an Oracle8i database,

identify a database by its service name with the SERVICE_NAME parameter.

A connect descriptor to an Oracle9i or Oracle8i database uses the parameter

SERVICE_NAME, as shown in the following example:

sales=
(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
 (CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)))

Connect descriptors that are currently configured with the SID parameter can

remain. However, to take advantage of new features, such as client load balancing

and connect-time failover, Oracle Corporation recommends replacing SID with

SERVICE_NAME.

To modify a connect descriptor to use SERVICE_NAME, use the Oracle Net

Manager’s compatibility mode, as described in "Using the Oracle Net Manager to

Handle Compatibility Issues" on page B-7.

See Also: Oracle9i Net Services Reference Guide for further

information about unsupported configuration parameters and

control utility commands
B-4 Oracle9i Database Migration

Client and Database Coexistence Issues
Consider the following questions for an environment with release 8.0 clients

connecting to an Oracle9i database:

■ Will my third-party applications be able use features of Oracle Net Services?

No. You must rebuild or upgrade applications to work with Oracle Net libraries.

■ Do my clients require Oracle Net to connect to a remote Oracle9i database?

No. If a client needs to connect to a remote Oracle9i database, only Net8 Client

release 8.0 needs to be configured on the client. However, new features of

Oracle Net Services are not available to these clients.

■ Do my clients require Oracle Net to connect to a local Oracle9i database?

No. The client requires an installation of Net8 Client release 8.0 in its Oracle

home and the Oracle9i requires an installation of Oracle Net and Oracle Net

Listener in its Oracle home.

Oracle8 or Oracle7 Database Connections
A connect descriptor to an Oracle release 8.0 or Oracle7 database uses SID , as

shown in the following example:

sales=
(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
 (CONNECT_DATA=

(SID=sales)))

 In addition, the listener.ora file on the database server must be configured

with the description of the SID for the release 8.0 database. In the following

example, the listener is configured to listener for a database service called

sales.us.acme.com that has a SID of sales :

SID_LIST_listener=
(SID_LIST=
 (SID_DESC=
 (GLOBAL_DBNAME=sales.us.acme.com)
 (SID_NAME=sales)))

See Also: Oracle9i Net Services Administrator’s Guide for

information about database identification by SERVICE_NAME
rather than SID
Upgrade Considerations for Oracle Net Services B-5

Client and Database Coexistence Issues
Consider the following questions for an environment with Oracle9i clients

connecting to a release 8.0 database.

■ Do my clients require Net8 Client release 8.0 to connect to a remote Oracle release 8.0
database?

No. If a client needs to connect to a remote release 8.0 database, only Net8 Client

of a compatible release needs to be configured on the client. The only limitation

is that the new features available with Oracle Net Services are unavailable with

this connection type.

■ Do my clients require Net8 Client release 8.0 to connect to a local release 8.0 database?

Yes. The client requires an installation of Oracle Net in its Oracle home and the

release 8.0 database requires an installation of Net8 Server in its Oracle home.

Oracle Names
If you upgrade all or part of your network to Oracle9i, you should upgrade all the

Oracle Names Servers in the region to version 9.

■ Can my release 8.0 clients use Oracle Names version 9 to resolve service names?

Yes.

■ Can my release 8.0 clients then use the connect descriptor returned from Oracle Names
version 9 to connect to an Oracle version 8 database?

Yes, if the connect descriptor was specified correctly when it was entered into

Oracle Names.

See Also: Oracle9i Net Services Administrator’s Guide for

information about database identification by SID

Note: In future releases, Oracle Names will not be supported as a

centralized naming method. Because no new enhancements are

being added to Oracle Names, consider using directory naming or

upgrading an existing Oracle Names configuration to directory

naming, as described in the Oracle9i Net Services Administrator’s
Guide.
B-6 Oracle9i Database Migration

Using the Oracle Net Manager to Handle Compatibility Issues
Using the Oracle Net Manager to Handle Compatibility Issues
Because some parameters are enabled only for release 9i and release 8.1, Oracle Net

Manager offers two options that permit you to set the proper parameters in the

tnsnames.ora file for clients connecting to a particular release of the database.

These options are described in Table B–1.

Table B–1 Compatibility Options Available with Oracle Net Manager

Oracle Net Manager Option Description

Use Options Compatible with Net8 8.0
Clients

Enables you to configure multiple addresses parameters for a
client.

If selected, enables the SOURCE_ROUTE parameter for pre-release
8.1 clients requiring Oracle Connection Manager connections.

If turned off, enables you to use the SOURCE_ROUTE, LOAD_
BALANCE, and FAILOVERparameters for release 9i and release 8.1
clients.

See Also: Oracle9i Net Services Administrator’s Guide for
information about configuring address list parameters

Use Oracle8 Release 8.0 Compatible
Identification

Enables you to configure parameters specific to a database
release in the CONNECT_DATA section of a connect descriptor.

If turned on, allows you to enter the SID of the release 8.0 or
Oracle7 database.

If turned off, enables you to enter the Oracle9i or Oracle8i
database service name (SERVICE_NAME).

Note: The Advanced Service Options dialog box, which is visible
when the Advanced button in the Service Identification group is
chosen, is also affected by whether this option is turned on or off.
Some settings are only available for connections to an Oracle9i or
Oracle8i database service.

See Also: Oracle9i Net Services Administrator’s Guide for
information about configuring advanced connect data
parameters
Upgrade Considerations for Oracle Net Services B-7

Upgrading to Oracle Net Services
Upgrading to Oracle Net Services
To upgrade from SQL*Net release 2.x to Oracle Net Services or upgrade from Net8

release 8.0 or 8.1, complete these tasks:

Step 1: Verify Service Name and Instance Name

Step 2: Perform Software Upgrade on the Database Server

Step 3: Perform Software Upgrade on the Client

Step 4: Perform Functional Upgrade

Step 1: Verify Service Name and Instance Name
If you want to identify a service and its instance in the tnsnames.ora file, ensure

that the SERVICE_NAMES and INSTANCE_NAMES initialization parameters are set

in the initialization parameter file.

Table B–2 Initialization Parameters for Oracle Net Services

Parameter Description

SERVICE_NAMES Specifies one or more names for the database service to which this instance connects.
You can specify multiple services names in order to distinguish among different uses of
the same database. For example:

SERVICE_NAMES = sales.us.acme.com, widgetsales.us.acme.com

If you do not qualify the names in this parameter with a domain, Oracle qualifies them
with the value of the DB_DOMAINparameter. If DB_DOMAINis not specified, Oracle uses
the domain of your local database as it currently exists in the data dictionary.

Note: You can change the value of SERVICE_NAMES parameter dynamically with the
SQL ALTER SYSTEM when the database is running. See the Oracle9i Database Reference
for further information about this parameter

INSTANCE_NAME Specifies the unique name of this instance. Set the instance name to the value of the
Oracle System Identifier (SID).
B-8 Oracle9i Database Migration

Upgrading to Oracle Net Services
Step 2: Perform Software Upgrade on the Database Server
To perform a software upgrade on the database server, install the latest release of

Oracle Net and Oracle Net Listener from the Oracle Universal Installer to receive

the latest executables.

You are prompted to upgrade a database with the Database Upgrade Assistant if the

Oracle Universal Installer detects a pre-release 9.2 database on your system. If you

do not want to upgrade during the installation process, you can choose to install

this assistant and use it later.

The Oracle Universal Installer automatically performs these tasks:

■ Stops older listener

■ Starts release 9.2 listener

Step 3: Perform Software Upgrade on the Client
To perform a software upgrade on the client, install the latest release of Oracle Net

Services from the Oracle Universal Installer to receive the latest executables.

Step 4: Perform Functional Upgrade
After the software is upgraded, it is not required to upgrade the configuration files

unless you want to use the Oracle9i features. To take advantage of new features,

review the following configuration files:

■ sqlnet.ora

■ tnsnames.ora

■ listener.ora

■ protocol.ora

Replace obsolete or renamed parameters.

See Also: Oracle9i Net Services Reference Guide for further

information about unsupported configuration parameters
Upgrade Considerations for Oracle Net Services B-9

Upgrading to Oracle Net Services
tnsnames.ora
Replace the SID parameter with the SERVICE_NAME parameter to connect to a

release 8.1 or higher service, as in the following example.

sales=
(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
 (CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)))

If you have multiple addresses, you can configure client load balancing and

connect-time failover features, as in the following example.

sales=
(DESCRIPTION=
 (ADDRESS_LIST=

(FAILOVER=on)
(LOAD_BALANCE=on)

 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1-server)(PORT=1521)
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2-server)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

See Also:

■ "Using the Oracle Net Manager to Handle Compatibility

Issues" on page B-7 for information about configuring the

service name and multiple address features

■ Oracle9i Net Services Administrator’s Guide for information about

multiple addresses
B-10 Oracle9i Database Migration

Upgrading to Oracle Net Services
listener.ora
Because instance information is registered with the listener in release 9i, it is no

longer necessary to include the instance information with the SID_LIST_
listener_name section of the listener.ora file.

However, Oracle Enterprise Manager still requires static information in the

listener.ora file. If you are using Oracle Enterprise Manager to manage

database objects, the listener.ora file must be configured with information

about the database in the following manner:

SID_LIST_ listener_name =
 (SID_LIST=
 (SID_DESC=
 (GLOBAL_DBNAME= global_database_name)
 (ORACLE_HOME= oracle_home)
 (SID_NAME= sid)))

Table B–3 Service Settings in listener.ora

Parameter Description

SID_NAME The Oracle System Identifier (SID) identifies the instance. You
can obtain the SID value from the INSTANCE_NAME parameter
in the initialization parameter file.

GLOBAL_DBNAME The global database name is comprised of the database name
and database domain name. You can obtain the GLOBAL_
DBNAMEvalue from the SERVICE_NAMESparameter, or from the
DB_NAME and DB_DOMAIN parameters in the initialization
parameter file.

ORACLE_HOME Identifies the Oracle home location of the database that you are
specifying

Note: This setting is required on UNIX.

Important: If you are using connect-time failover or Transparent

Application Failover, such as in an Oracle9i Real Application

Clusters environment, Oracle Corporation recommends not setting

the GLOBAL_DBNAME parameter.

See Also: Oracle9i Net Services Administrator’s Guide for

information about configuring service information and

connect-time failover and Transparent Application Failover (TAF)
Upgrade Considerations for Oracle Net Services B-11

Using Oracle Names Version 9
Using Oracle Names Version 9

Oracle Names version 9 is backward compatible with Oracle Names versions 2 and

8. If you wish to take advantage of the new features provided with Oracle Names

version 9, you must upgrade all of your existing Oracle Names Servers in a region

to version 9 by installing Oracle Names version 9 on every existing Oracle Names

server node.

Upgrade issues to keep in mind are described in the following sections:

■ Upgrading from Oracle Names Version 2 Using a Database

■ Upgrading from Oracle Names Version 2 with the Dynamic Discovery Option

■ Upgrading from ROSFILES

■ Upgrading Region Checkpoint Files to Domain and Topology Checkpoint Files

■ Reviewing Upgrade Checklist

Note: In future releases, Oracle Names will not be supported as a

centralized naming method. Because no new enhancements are

being added to Oracle Names, consider using directory naming or

upgrading an existing Oracle Names configuration to directory

naming, as described in Oracle9i Net Services Administrator’s Guide.

The material presented here is primarily for reference to enable you

to maintain your current Oracle Names environment.
B-12 Oracle9i Database Migration

Using Oracle Names Version 9
Upgrading from Oracle Names Version 2 Using a Database
To upgradeand transfer data from an existing Oracle Names server version 2

database to a version 9 region database, run the namesupg.sql script located in

$ORACLE_HOME/network/admin on UNIX and ORACLE_HOME\network\admin
on Windows platforms on the node where Oracle Network Manager stored your

network definition.

In order to run the namesupg.sql script, two tables, NAMES_DOM and NAMES_DID
must be created and populated using values from an existing names.ora file.

■ The NAMES_DOM table needs a DOMAIN column with one row per domain

specified by the NAMES.DOMAINS parameter in the names.ora file.

■ The NAMES_DID table needs the ID which is defined in the NAME_P column in

the NMO_INFORMATION table. The NAME_P column is the same as the DOCNAME
specified by the NAMES.ADMIN_REGION parameter in the names.ora file.

To upgrade data:

1. Create the NAMES_DOM table as follows:

SQL> CONNECTuser / password
SQL> CREATE TABLE NAMES_DOM (domain varchar(256));

2. Populate the table with the domain names specified by the NAMES.DOMAINS
parameter in the names.ora file. For example, consider the following

NAMES.DOMAIN parameter setting:

NAMES.DOMAINS=
 (DOMAIN_LIST=
 (DOMAIN=
 (NAME=)
 (MIN_TTL=86400))
 (DOMAIN=
 (NAME=com)
 (MIN_TTL=86400))
 (DOMAIN=
 (NAME=acme.com)
 (MIN_TTL=86400))

In this example, three rows for the root domain, acme subdomain, and com
domain must be created as follows:

SQL> INSERT into NAMES_DOM values (’(root)’);
SQL> INSERT into NAMES_DOM values (’acme’);
SQL> INSERT into NAMES_DOM values (’acme.com’);
Upgrade Considerations for Oracle Net Services B-13

Using Oracle Names Version 9
3. Create the NAMES_DID table as follows:

SQL> CREATE TABLE NAMES_DID (did number(10))

4. Find the DOCNAME value under the NAMES.ADMIN_REGION parameter in the

names.ora file. The DOCNAME represents the name associated with the region.

In the following example, the DOCNAME is sbox .

NAMES.ADMIN_REGION= (REGION=
 (NAME=local_region.world)
 (TYPE=rosdb)
 (USERID=names)
 (PASSWORD=names)
 (description=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=tcp)
 (HOST=nineva)
 (PORT=1387)))
 (CONNECT_DATA=(SID=em)))
 (DOCNAME=sbox)
 (VERSION=34619392) # 2.1.4
 (RETRY=60))

5. Query the NMO_INFORMATION table for the ID associated with the DOCNAME
and insert it into the NAMES.DOM table:

SQL> SELECT ID from NMO_INFORMATION where name_P= docname;
SQL> INSERT into NAMES_DID
 select DID from NMO_INFORMATION
 where NAME_p=' docname';

6. Run the namesupg.sql script:

SQL> CONNECTuser / password
SQL> @oracle_home /network/admin/namesupg.sql;
B-14 Oracle9i Database Migration

Using Oracle Names Version 9
Upgrading from Oracle Names Version 2 with the Dynamic Discovery Option
The procedure to upgrade Oracle Names version 2 with the Dynamic Discovery

Option is dependent upon whether or not you want Oracle Names version 8 to

store information in a region database.

■ Non-Region Database Upgrade

■ Region Database Upgrade

Non-Region Database Upgrade
If you upgrade to an Oracle Names version 8 from Oracle Names version 2 with the

Dynamic Discovery Option, the new Oracle Names server should be able to obtain

registered data from the old checkpoint files. If data is not registered, you can

register objects by completing the procedures in the Oracle9i Net Services
Administrator’s Guide.

Region Database Upgrade
If you were previously running Oracle Names version 2 with the Dynamic

Discovery Option, and you want to configure a region database as a repository for

your Oracle Names information, you will need to:

1. Write the information stored in the Oracle Names version 2 local administrative

region to a tnsnames.ora file from Oracle Network Manager or run the

following from the command line with a version 8 Oracle Names Control

utility:

NAMESCTL
NAMESCTL> DUMP_TNSNAMES

2. Run the namesini.sql script located in $ORACLE_HOME/network/admin
on UNIX and ORACLE_HOME\network\admin on Windows platforms on the

computer where the database resides.

SQL> CONNECTuser / password
SQL> @oracle_home /network/admin/namesini.sql;

3. Use Oracle Net Manager to configure a NAMES.ADMIN_REGION parameter in

every Oracle Names server configuration file (names.ora).

See Also: Oracle9i Net Services Administrator’s Guide for

information about creating an Oracle Names server.
Upgrade Considerations for Oracle Net Services B-15

Using Oracle Names Version 9
4. Load the tnsnames.ora file into a version 9 Oracle Names server using either

Oracle Net Manager or Oracle Names Control utility:

Use the Oracle Net Manager... Use the Oracle Names Control utility...

1. Start the Oracle Net Manager:

-On UNIX, run netmgr at $ORACLE_HOME/bin.

-On Windows platforms, choose Start > Programs >
Oracle - HOME_NAME > Configuration and
Migration Tools > Net Manager

2. In the navigator pane, expand Oracle Names
Servers.

3. Select the Oracle Names server.

4. From the list in the right pane, select Manage Data.

5. Choose the Net Service Names tab.

6. Choose Load.

7. Enter the path and file name of the Oracle Network
Manager-generated tnsnames.ora file in the File
field created in Step 1.

8. Choose Execute.

9. Choose File > Save Network Configuration.

From the command line, enter:

namesctl
NAMESCTL> LOAD_TNSNAMESfile_name
B-16 Oracle9i Database Migration

Using Oracle Names Version 9
Upgrading from ROSFILES
Oracle Names version 8 and higher do not support older configurations that use

Resource Object Store (ROS) files (ROSFILES). ROSFILES must be upgraded directly

into Oracle Names database tables or first into a tnsnames.ora file and then into

Oracle Names. The following sections cover both procedures:

■ ROSFILES to Database Tables

■ ROSFILES to a tnsnames.ora File

ROSFILES to Database Tables
To upgrade ROSFILES to database tables:

1. Create a database user account for Oracle Network Manager:

SQL> CONNECT system/ password
SQL> CREATE USER user
 IDENTIFIED BY password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp;

2. To build the necessary tables, the scripts described next must be run against the

server. Typically, these scripts are run on the Oracle Network Manager node.

SQL> CONNECTusername / password
SQL> @oracle_home \dbs\rosbild.sql;
SQL> @oracle_home \dbs\nmcbild.sql;
SQL> @oracle_home \dbs\rosgrnt.sql;
SQL> @oracle_home \dbs\nmcgrnt.sql;

Script Description

rosbild.sql Builds tables for use by the ROS

nmcbild.sql Builds tables for use by the Oracle Network Manager Objects
(NMO) components

rosgrnt.sql Grants access to the common tables. You will be prompted for the
user name. Use the same user name that was used when you set up
the Oracle Network Manager account.

nmcgrnt.sql Grants access to the users who will access the Oracle Network
Manager tables
Upgrade Considerations for Oracle Net Services B-17

Using Oracle Names Version 9
3. From the Oracle Network Manager, save the ROSFILES to a database:

a. Choose File > Save As.

b. Select Database in the Save Network Definition dialog box, and then

choose OK.

c. Enter the database user name and password created in Step 1 and a net

service name for the database in the Connect dialog box.

d. Choose OK.

e. Select or enter the name of the network you wish to save in the Save

Network Definition dialog box.

f. Choose File > Generate to save the network definition and create the

Oracle Names tables from the saved definition.

g. Choose File > Exit to exit the Oracle Network Manager.

4. On the server, create the NAMES_DID and NAMES_DOM tables and run the

namesupg.sql script, as described in "Upgrading from Oracle Names Version

2 Using a Database" on page B-13.

ROSFILES to a tnsnames.ora File
To upgrade ROSFILES to a tnsnames.ora file, and then import the

tnsnames.ora file into Oracle Names:

1. Create a tnsnames.ora file from ROSFILES:

a. From the Oracle Network Manager, choose Special > Preferences.

b. Ensure Oracle Names is not selected in the Preferences dialog box.

c. Choose File > Generate to update the network definition and create a

tnsnames.ora file.

d. Choose File > Exit to exit the Oracle Network Manager.
B-18 Oracle9i Database Migration

Using Oracle Names Version 9
2. Load the tnsnames.ora file into the Oracle Names server using either Oracle

Net Manager or Oracle Names Control utility:

Upgrading Region Checkpoint Files to Domain and Topology Checkpoint Files
In release 8.1, the region checkpoint file, ckpreg.ora , contained both topology and

domain authoritative data. In release 9i, this data has been split into two files. The

topology checkpoint files, ckptop.ora , defines the domains in the administrative

region and the Oracle Names servers authoritative for each domain. The domain

checkpoint file, ckpdom.ora , contains the authoritative data for each domain.

These files are automatically generated if you are using a region database. If you are

not using a region database and instead relying on the data in the checkpoint files,

you can either disregard the checkpoint files and rely on Oracle Names servers

running in the region or move data from the ckpreg.ora file to the ckptop.ora
file.

Use Oracle Net Manager... Use the Oracle Names Control utility...

1. Start the Oracle Net Manager.

-On UNIX, run netmgr at $ORACLE_HOME/bin.

-On Windows platforms, choose Start > Programs >
Oracle - HOME_NAME > Configuration and
Migration Tools > Net Manager

2. In the navigator pane, expand Oracle Names
Servers.

3. Select the Oracle Names server.

4. From the list in the right pane, select Manage Data.

5. Choose the Net Service Names tab.

6. Choose Load.

7. Enter the path and file name of the Oracle Network
Manager-generated tnsnames.ora file in the File
field.

8. Choose Execute.

9. Choose File > Save Network Configuration.

From the command line, enter:

namesctl
NAMESCTL> LOAD_TNSNAMESfile_name

See Also:

■ Oracle Network Manager Administrator's Guide, release 3.1

■ Oracle Names Administrator’s Guide, version 2
Upgrade Considerations for Oracle Net Services B-19

Using Oracle Names Version 9
To rely on data from other Oracle Names servers:

1. Upgrade the Oracle Names servers to release 9.2.

2. For each Oracle Names server, ensure the .sdns.ora file is in $ORACLE_
HOME/network/names on UNIX operating systems or the sdns.ora file is in

ORACLE_HOME\network\names on Windows operating systems.

This file contains the name and address of the first Oracle Names server. If it

does not exist, discover the other Oracle Names server with the Oracle Net

Manager’s Command > Discover Oracle Names Servers command or the

Oracle Names Control utility’s REORDER_NS command.

3. Start the Oracle Names servers.

When an Oracle Names server starts, it finds another Oracle Names server and

downloads the topology and domain data information from it.

To copy or move data from the ckpreg.ora file to the ckptop.ora file:

1. Upgrade the Oracle Names servers to release 9.2.

2. Move the ckpreg.ora file to the ckptop.ora file. For example:

cd network/names
mv ckpreg.ora ckptop.ora

3. Start the Oracle Names servers.

When an Oracle Names server starts, it automatically generates the

ckpdom.ora file.

See Also: Oracle9i Net Services Administrator’s Guide for an

example cktop.ora file
B-20 Oracle9i Database Migration

Using Oracle Names Version 9
Reviewing Upgrade Checklist
The following checklist is provided to ensure a proper upgrade to Oracle Names

version 9.

❏ Upgrade all Oracle Names servers in each region to the same version 8 release.

❏ If you were previously running Oracle Names version 2, and you want to

update your database as a repository for your Oracle Names information, run

the namesupg.sql script on the node where the network definition is stored.

❏ If you were previously running Oracle Names version 2 with the Dynamic

Discovery Option, and you want to configure a region database as a repository

for your Oracle Names information:

1. Run the namesini.sql script on the node where you wish to install the

database.

2. Use the Oracle Net Manager to configure a NAMES.ADMIN_REGION
parameter in every names.ora file. See Oracle9i Net Services Reference Guide
for more information about the NAMES.ADMIN_REGION parameter.

❏ Set up at least two Oracle Names servers in each region to provide for fault

tolerance.
Upgrade Considerations for Oracle Net Services B-21

Using Oracle Names Version 9
B-22 Oracle9i Database Migration

Migrating from Server Manager to SQL
C

Migrating from Server Manager to SQL*Plus

This appendix guides you through the process of modifying your Server Manager

line mode scripts to work with SQL*Plus. Server Manager is no longer supported in

Oracle9i. If you run SQL scripts using Server Manager line mode, then you will

need to change these scripts so that they are compatible with SQL*Plus, and then

run them using SQL*Plus.

This appendix covers the following topics:

■ Startup Differences

■ Commands

■ Syntax Differences

See Also: SQL*Plus User’s Guide and Reference for detailed

information about SQL*Plus

Note: For brevity, Server Manager line mode is referred to as

Server Manager in the rest of this appendix.
*Plus C-1

Startup Differences
Startup Differences
The methods for starting Server Manager and SQL*Plus are different, and your SQL

scripts must be modified to properly start SQL*Plus. The following sections explain

the startup differences and provide options for starting SQL*Plus.

Starting Server Manager
To start Server Manager, enter the name of the Server Manager program at a system

prompt; the name of this program is operating system-specific. After you start up

Server Manager, connect using the CONNECT command, as in the following

example:

CONNECT hr/hr

Starting SQL*Plus
The following sections describe various ways to start SQL*Plus.

Starting SQL*Plus with the NOLOG Option
If you want SQL*Plus to behave in the same way as Server Manager, then use the

NOLOG option when you start SQL*Plus, as in the following example:

sqlplus /nolog

SQL*Plus starts and you can use the CONNECT command to connect as a user.

Starting SQL*Plus with Connect Information
Another option for starting SQL*Plus is to enter the connect information when you

start the program. For example, to start SQL*Plus and connect as user hr with

password hr , enter the following:

sqlplus hr/hr

SQL*Plus starts and connects as user hr .

Starting SQL*Plus without Options or Connect Information
To start SQL*Plus without options or connect information, enter the following:

sqlplus
C-2 Oracle9i Database Migration

Commands
SQL*Plus prompts you for a user name and password. When you enter a valid user

name and password, SQL*Plus starts and connects as the user you specified at the

prompts. In your SQL scripts, however, you may not want to prompt the user to

enter a user name and password.

Commands
Server Manager and SQL*Plus share certain commands that behave the same in

both programs. Other commands, however, behave differently in SQL*Plus than

they do in Server Manager. To successfully migrate from Server Manager to

SQL*Plus, you need to understand these differences and similarities. The following

sections include information about modifying your SQL scripts to use commands

that are interpreted correctly by SQL*Plus.

Commands Introduced in SQL*Plus Release 8.1
Table C–1 lists Server Manager commands that are available in SQL*Plus release 8.1

and higher. You can use these commands in SQL scripts that you run with

SQL*Plus.

Note: If you run SQL scripts containing any of these commands in

Oracle7 or release 8.0, then you must use Server Manager to run

these scripts. Versions of SQL*Plus before SQL*Plus release 8.1 will

not run scripts containing these commands.

Table C–1 Commands Introduced in SQL*Plus Release 8.1

Command Description

ARCHIVE LOG Starts or stops automatic archiving of online redo log files, manually (explicitly)
archives specified redo log files, or displays information about archives.

RECOVER Performs media recovery on one or more tablespaces, one or more datafiles, or the
entire database.

SET AUTORECOVERY ON causes the RECOVER command to automatically apply the default filenames of
archived redo log files needed during recovery. No interaction is needed when
AUTORECOVERY is set to ON, provided the necessary files are in the expected
locations with the expected names.

SET INSTANCE Changes the default instance for your session to the specified instance path. Does
not connect to a database. The default instance is used for commands when no
instance is specified.
Migrating from Server Manager to SQL*Plus C-3

Commands
Commands Common to Server Manager and SQL*Plus
The commands listed in Table C–2 are available in both Server Manager and

SQL*Plus, and have been available in both programs in past releases of Oracle. You

do not need to alter these commands in your SQL scripts to use SQL*Plus.

SET LOGSOURCE Specifies the location from which archive logs are retrieved during recovery. The
default value is set by the LOG_ARCHIVE_DESTinitialization parameter. Issuing the
SET LOGSOURCE command without a pathname restores the default location.

SHOW AUTORECOVERY Shows whether autorecovery is enabled.

SHOW INSTANCE Shows the connect string for the default instance. SHOW INSTANCE returns the
value LOCAL if you have not used SET INSTANCE or if you have used the LOCAL
option of the SET INSTANCE command.

SHOW LOGSOURCE Shows the current setting of the archive log location. Displays DEFAULT if the
default setting is in effect, as specified by the LOG_ARCHIVE_DEST initialization
parameter.

SHOW PARAMETERS Displays the current values of one or more initialization parameters. The SHOW
PARAMETERS command, without any string following the command, displays all
initialization parameters.

SHOW SGA Displays information about the current instance’s System Global Area.

SHUTDOWN Shuts down a currently running Oracle instance, optionally closing and
dismounting a database.

Note: The STARTUP and SHUTDOWN commands in SQL*Plus release 8.1 are not
supported against an Oracle7 server.

STARTUP Starts an Oracle instance with several options, including mounting and opening a
database.

Note: The STARTUP and SHUTDOWN commands in SQL*Plus release 8.1 are not
supported against an Oracle7 server.

Note: There may be minor formatting differences in the output for

these commands in the two programs.

Table C–1 (Cont.) Commands Introduced in SQL*Plus Release 8.1

Command Description
C-4 Oracle9i Database Migration

Commands
SQL*Plus Equivalents for Server Manager Commands
Table C–3 lists the SQL*Plus commands that correspond to Server Manager

commands with different names. If you are using any of these Server Manager

commands in SQL scripts, then modify the scripts to use the SQL*Plus commands

instead.

Table C–2 Server Manager Commands Corresponding to Existing SQL*Plus Commands

Command Description

CONNECT Connects to a database using the specified user name.

DESCRIBE Describes a function, package, package body, procedure, table, view, or object type.
For example, for a table, displays the definitions of each column in the table.

REMARK Enters a comment, typically in SQL script files.

SET COMPATIBILITY Sets compatibility mode to V7, V8, or NATIVE. The compatibility mode setting affects
the specification of character columns, integrity constraints, and rollback segment
storage parameters. NATIVE matches the version of the database.

SET ECHO Controls whether the START command lists each command in a command file as the
command is executed. ON lists the commands; OFF suppresses the listing.

SET NUMWIDTH Sets the default width for displaying numbers.

SET SERVEROUTPUT Controls whether to display the output (that is, DBMS_OUTPUT.PUT_LINE) of stored
procedures or PL/SQL blocks in SQL*Plus. OFF suppresses the output of DBMS_
OUTPUT.PUT_LINE; ON displays the output.

SET TERMOUT Controls the display of output generated by commands executed from a command
file. OFF suppresses the display so that you can spool output from a command file
without seeing the output on the screen. ON displays the output.

SHOW ALL Lists all of the system variables set by the SETcommand in alphabetical order, except
ERRORS, PARAMETERS, and SGA.

SHOW ERRORS Shows the errors generated from the last compilation of a procedure, package, or
function, if any.

SPOOL Stores query results in an operating system file and, optionally in SQL*Plus, sends
the file to a printer.

Note:The extension of spool files may differ between SQL*Plus and Server Manager.
To ensure an extension, specify it when you issue the SPOOL command. Also,
SQL*Plus may format white space in terminal output using tab characters in place of
repeated spaces. Use SET TAB OFF in SQL*Plus to prevent this replacement. Server
Manager never outputs tab characters.
Migrating from Server Manager to SQL*Plus C-5

Commands
Possible Differences in the SET TIMING Command
The SET TIMING command is available in both Server Manager and SQL*Plus, but

this command may function differently in the two programs on some operating

systems. Check your operating system-specific Oracle documentation for more

Table C–3 SQL*Plus Equivalents for Server Manager Commands

Server Manager Commands SQL*Plus Commands Description

SET CHARWIDTH

SET DATEWIDTH

SET LONGWIDTH

COLUMN FORMAT You can use the COLUMN FORMAT command in
SQL*Plus to set the column width of character
columns, date columns, and number columns. In
your SQL scripts, replace the SET CHARWIDTH, SET
DATEWIDTH, and SET LONGWIDTH Server Manager
commands with the SQL*Plus COLUMN FORMAT
command.

Use COLUMN FORMAT for all character columns to be
changed. There is no equivalent command to change
all character columns with one command.

For example, suppose you have the following entry
in a SQL script:

SET CHARWIDTH 5

This command sets the width for all character
columns to 5 in Server Manager.

To specify that a particular column, such as first_
name, display with a width of 5 characters, enter the
following SQL*Plus command:

COLUMN first_name FORMAT A5

Use COLUMN FORMAT for all character columns to be
changed. There is no equivalent command to change
all character columns with one command.

Use COLUMN FORMAT for all date columns to be
changed. There is no equivalent command to change
all date columns with one command.

Use SET LONG to specify how much of the LONG
column to fetch and display.

SET STOPONERROR WHENEVER SQLERROR

WHENEVER OSERROR

Use the WHENEVER SQLERROR and WHENEVER
OSERROR commands to direct SQL*Plus to either exit
or continue whenever a SQL error or operating
system error occurs. Use these commands in your
SQL scripts instead of the Server Manager SET
STOPONERROR command.

For both WHENEVER SQLERROR and WHENEVER
OSERROR, the EXIT clause directs SQL*Plus to exit,
while the CONTINUE clause directs SQL*Plus to
continue. Other terms and clauses are also available
for these commands.
C-6 Oracle9i Database Migration

Syntax Differences
information. If the SET TIMING command functions differently in these two

programs on your operating system, then modify your SQL scripts so that this

command functions properly with SQL*Plus.

Server Manager Commands Unavailable in SQL*Plus
The following Server Manager commands are unavailable in SQL*Plus release 8.1

and higher:

■ SET MAXDATA

■ SET RETRIES

Remove these commands from your SQL scripts.

Syntax Differences
The following sections explain the syntax differences between Server Manager and

SQL*Plus. Modify your SQL scripts to conform with SQL*Plus syntax conventions

before you attempt to run your scripts using SQL*Plus.

Comments
SQL*Plus recognizes the following types of comments:

■ the SQL*Plus REMARK command (or REM)

■ the SQL comment delimiters, /* ... */

■ the ANSI/ISO comments, --

The SQL*Plus User’s Guide and Reference provides detailed information about using

these types of comments in SQL*Plus scripts.

Server Manager supports these types of comments, but the behavior is different for

some of them. Also, certain types of comments are available in Server Manager, but

not in SQL*Plus. The sections below discuss each type of comment and the syntax

differences between Server Manager and SQL*Plus.

REMARK Command (or REM)
In general, the REMARKcommand works the same in Server Manager and SQL*Plus,

and you do not need to change the occurrences of the REMARK command in your

SQL scripts. There is, however, one difference: SQL*Plus interprets a hyphen that
Migrating from Server Manager to SQL*Plus C-7

Syntax Differences
terminates a REMARK command differently than Server Manager. See "Hyphens

Used as Dividing Lines" on page C-11 for information about this difference.

SQL Comment Delimiters, /* ... */
In Server Manager, the SQL comment delimiters can be placed after a semicolon (;),

but in SQL*Plus, placing a SQL comment delimiter after a semicolon is not allowed.

Except for this one difference, SQL comment delimiters work the same in Server

Manager and SQL*Plus.

If your SQL scripts contain any SQL comment delimiters placed after a semicolon ,

then either move the comment to its own line, or remove the semicolon and place a

slash (/) on the next line to end the SQL statement.

For example, suppose you have the following Server Manager code in one of your

SQL scripts:

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’; /* Includes only clerks. */

In SQL*Plus, replace this code with either of the following entries:

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’;
/* Includes only clerks. */

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’ /* Includes only clerks. */
 /

ANSI/ISO Comments, --
In Server Manager, the ANSI/ISO comments can be placed after a semicolon (;), but

in SQL*Plus, placing an ANSI/ISO comment after a semicolon is not allowed.

Except for this one difference, ANSI/ISO comments work the same in Server

Manager and SQL*Plus.

If your SQL scripts contain any ANSI/ISO comments that are placed after a

semicolon, then either move the comment to its own line, or remove the semicolon

and place a slash (/) on the next line to end the SQL statement.

For example, suppose you have the following Server Manager code in one of your

SQL scripts:

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’; -- Includes only clerks.
C-8 Oracle9i Database Migration

Syntax Differences
In SQL*Plus, replace this code with either of the following entries:

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’;
-- Includes only clerks.

SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’ -- Includes only clerks.
 /

Server Manager Pound (#) Comments
Server Manager supports the use of the pound sign (#) to indicate a comment line.

If your scripts contain these comments, then change the '#' to '--' to run the scripts

using SQL*Plus.

For example, suppose you have the following Server Manager code in one of your

SQL scripts:

This statement returns only clerks.
SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’;

In SQL*Plus, replace this code with the following entry:

-- This statement returns only clerks.
SELECT * FROM hr.employees
 WHERE job_id LIKE ’%CLERK’;

Blank Lines
Server Manager ignores blank lines within SQL statements, but when SQL*Plus

encounters a blank line the default behavior is to stop recording the statement and

return to the prompt.

Both products allow blank lines between distinct SQL statements. This section only

applies to blank lines between clauses of SQL statements.

In SQL*Plus, the SET SQLBLANKLINES command alters the way blank lines are

handled. When SQLBLANKLINES is set to OFF, the default setting, and there is a

SQL statement containing a blank line, SQL*Plus buffers the statement at the blank

line, returning to the prompt without executing the statement. This behavior allows
Migrating from Server Manager to SQL*Plus C-9

Syntax Differences
interactive users to abort and buffer an unwanted SQL command, or to perform

other SQL*Plus commands before executing or editing this buffered SQL command.

If any of your SQL scripts contain blank lines within SQL statements, then either set

SQLBLANKLINES to ON, or remove the blank lines before you run these scripts

using SQL*Plus.

For example, suppose you have the following SQL statement in one of your SQL

scripts:

SELECT employee_id, first_name, last_name, salary, commission_pct

 FROM hr.employees

 WHERE job_id LIKE ’%MAN’;

Either set SQLBLANKLINES to ON, or delete the blank lines:

SELECT employee_id, first_name, last_name, salary, commission_pct
 FROM hr.employees
 WHERE job_id LIKE ’%MAN’;

If you do not remove the blank lines or set SQLBLANKLINES to ON, then SQL*Plus

will treat each blank line of code as a command terminator.

The value of SQLBLANKLINES does not affect blank lines in PL/SQL blocks. These

are always treated as part of the block and do not return to the SQL*Plus prompt.

Interactive users can terminate SQL or PL/SQL statements by entering a period on

a line by itself, regardless of the value of SQLBLANKLINES.

The Hyphen Continuation Character
SQL*Plus supports the use of a hyphen as a continuation character for long SQL

statements or SQL*Plus commands. For example, you can use the continuation

character in the following way:

SELECT employee_id, first_name, last_name FROM hr.employees -
WHERE job_id LIKE ’%MAN’;

Server Manager does not support the use of a hyphen as a continuation character,

but you may use hyphens for other purposes in your SQL scripts. If you do, then

SQL*Plus may interpret a hyphen as a continuation character, which can cause

unexpected output.
C-10 Oracle9i Database Migration

Syntax Differences
The following sections provide scenarios in which SQL*Plus interprets the use of

hyphens in SQL scripts as continuation characters, when the hyphens were meant

for another purpose. Check your SQL scripts for the use of hyphens and modify

them to avoid scenarios similar to those described below.

Hyphens Used as Dividing Lines
Your SQL scripts may use a long row of hyphens following a REMARK command as

a dividing line in the code. Consider the following sample lines from a SQL script:

Rem ---
SELECT employee_id, first_name, last_name, job_id
 FROM hr.employees;

In this statement, SQL*Plus interprets the first line of the SELECT statement as a

continuation of the previous line, which is a REMARK comment. Therefore, the FROM
line is interpreted as the first line of a SQL statement, and SQL*Plus returns the

following error:

unknown command beginning "FROM hr..." - rest of line ignored.

If you use hyphens as dividing lines in your SQL scripts, then remove the REM
command preceding the hyphens before you run the scripts using SQL*Plus.

Hyphens Used as Minus Signs
Because the hyphen is the same keyboard character as the minus sign, you may

have a hyphen at the end of a line. Consider the following sample lines from a SQL

script:

CREATE TABLE xx (
 a int,
 b int,
 c int);

INSERT INTO xx VALUES (10, 20, 30);

SELECT a + b -
 c FROM xx;

SQL*Plus interprets the 'c' as an alias because the minus symbol is interpreted as a

continuation character:

SELECT a + b c FROM xx;
Migrating from Server Manager to SQL*Plus C-11

Syntax Differences
Therefore, SQL*Plus returns the following unexpected output:

 C

 30

Server Manager, however, interprets this code as the following:

SELECT a + b - c FROM xx;

Therefore, Server Manager returns the following expected output:

A+B-C

 0

Make sure you do not have a minus sign at the end of a line in your SQL scripts.

Ampersands
SQL*Plus interprets an ampersand (&) as a substitution variable, whereas Server

Manager interprets an ampersand as a normal string. If the text following the

ampersand does not have a defined value, then SQL*Plus interprets it as an

undefined value and prompts the user for input, even if the ampersand is enclosed

in a comment. Therefore, ampersands can cause unexpected output in SQL*Plus.

If you have SQL scripts that use ampersands as normal text strings, then you have

two options:

■ Use the SET ESCAPE command to place an escape character before each

ampersand.

■ Use the SET DEFINE OFF command to disable the recognition of substitution

variables.

For example, the following SQL statement prompts the user for input in SQL*Plus:

CREATE TABLE "Employees & Managers" (
 Employees varchar(16),
 Managers varchar(16));

Note: Do not use the SET DEFINE OFF command if you have

other, valid substitution variables; if you do, then the other

variables will not be recognized.
C-12 Oracle9i Database Migration

Syntax Differences
Enter value for managers:

Using the SET ESCAPE Command
To avoid the user prompt, you can use the SET ESCAPE command to set an escape

character. Then, place the escape character before the ampersand. A backslash (\) is

often used as an escape character.

To avoid the prompt in the preceding example by using the SET ESCAPE
command, change the entry to the following:

SET ESCAPE \

CREATE TABLE "Employees \& Managers" (
 Employees varchar(16),
 Managers varchar(16));

Using the SET DEFINE OFF Command
To avoid the prompt in the preceding example by using the SET DEFINE OFF
command, change the entry to the following:

SET DEFINE OFF

CREATE TABLE "Employees & Managers" (
 Employees varchar(16),
 Managers varchar(16));

CREATE TYPE and CREATE LIBRARY Commands
SQL*Plus treats the CREATE TYPE and CREATE LIBRARY commands as PL/SQL

blocks. Therefore, in SQL*Plus, you must use a slash (/) on a separate line to end

these commands, while Server Manager allows you to end these commands with a

semicolon (;).

If you end any CREATE TYPE or CREATE LIBRARY command with a semicolon in

your SQL scripts, then remove the semicolon and place a slash (/) on the next line.

For example, the following SQL statements are not recognized by SQL*Plus:

CREATE OR REPLACE TYPE sys.dummy AS OBJECT (data CHAR(1));
CREATE OR REPLACE LIBRARY DBMS_SPACE_ADMIN_LIB TRUSTED AS STATIC;

Edit these statements in the following way before you run them with SQL*Plus:

CREATE OR REPLACE TYPE sys.aq$_dummy_t AS OBJECT (data CHAR(1))
Migrating from Server Manager to SQL*Plus C-13

Syntax Differences
/
CREATE OR REPLACE LIBRARY DBMS_SPACE_ADMIN_LIB TRUSTED AS STATIC
/

COMMIT Command
SQL*Plus requires that the COMMIT command be terminated either with a

semicolon (;) or a slash (/), but Server Manager allows the COMMIT command with

no terminator. Therefore, if you use the COMMIT command in your SQL scripts

without a terminator, then edit these scripts to include a terminator.

For example, suppose you have the following COMMIT command in a SQL script:

commit

Include a terminator for the command, as shown in either of the following

examples:

commit;

commit
/

C-14 Oracle9i Database Migration

Upgrading an Oracle7 Database Using the MIG
D

Upgrading an Oracle7 Database Using the

MIG Utility

This appendix describes how to use the MIG utility to manually upgrade an Oracle7

database to the new Oracle9i release. This appendix covers the following topics:

■ Overview of the MIG Utility

■ System Considerations and Requirements for Using the MIG Utility

■ Prepare the Oracle7 Database to be Upgraded

■ Review MIG Utility Command-Line Options

■ Run the MIG Utility

■ MIG Utility Messages

■ Troubleshooting MIG Utility Errors

■ Abandoning the Oracle7 Upgrade

■ Migration Issues for Physical Rowids

■ Changes to Initialization Parameters and the Data Dictionary in Release 8.0
Utility D-1

Overview of the MIG Utility
Overview of the MIG Utility
The MIG utility converts the data dictionary and structures of an Oracle7 database

into Oracle9i format. To upgrade the database, you first install the Oracle9i software

and run the MIG utility on the Oracle7 database. Then, you execute a series of

ALTER DATABASE statements on the new Oracle9i database and run the

u0703040.sql upgrade script.

The completion of these procedures results in the conversion of the following

Oracle7 structures into structures that can be used by Oracle9i:

■ Data files (file headers only)

■ Data dictionary

■ Control files

■ Rollback segments

Outline of the Upgrade Process Using the MIG Utility
The following sections provide an outline of the upgrade process using the MIG

utility:

In the Oracle7 Environment
■ You run the Oracle9i MIG utility, which creates and populates a new data

dictionary based on the data dictionary of the Oracle7 database, and also creates

a binary file based on the control file of the Oracle7 database. This binary file is

called the convert file.

In the Oracle9 i Environment
■ You execute an ALTER DATABASE CONVERT statement, which creates a new

control file based on the convert file generated by the MIG utility, converts all

online datafile headers to Oracle9i format, and mounts the Oracle9i database.

Note: You can run the Oracle9i MIG utility multiple times

(without opening the database in Oracle9i) and still be able to

return to the Oracle7 database. However, running the MIG utility

automatically eliminates the Oracle7 database catalog views (see

"Abandoning the Oracle7 Upgrade" on page D-31).
D-2 Oracle9i Database Migration

System Considerations and Requirements for Using the MIG Utility
The file headers of offline datafiles and read-only tablespaces are not updated

during the upgrade. The file headers of offline datafiles are converted later

when they are brought online, and the file headers of read-only tablespaces are

converted if and when they are made read-write sometime after the upgrade;

however, they never have to be made read-write.

■ You execute an ALTER DATABASE OPEN RESETLOGS MIGRATE statement,

which automatically converts all objects and users defined in the new

dictionary to Oracle9i specifications, and converts all rollback segments to

Oracle9i format.

If a database rollback segment is in a tablespace that is offline when the Oracle9i
database is opened, then the rollback segment is not converted immediately to

Oracle9i database format. Instead, the rollback segment is converted the first

time the tablespace is brought online in Oracle9i.

■ You run the u0703040.sql upgrade script. This script creates and alters

certain system tables and drops the MIGRATE user. It also runs the

catalog.sql and catproc.sql scripts, which create the system catalog

views and all the necessary packages for using PL/SQL.

System Considerations and Requirements for Using the MIG Utility
The following sections discuss additional system considerations and requirements

for using the MIG utility. These requirements supplement the general upgrade

requirements discussed in "System Considerations and Requirements" on page 3-9.

Space Requirements
Oracle9i executables may require as much as three times the disk space required by

Oracle7 executables. This requirement may cause you to run out of disk space

during the upgrade. If you are installing Oracle9i onto a computer system that

already has Oracle7 installed, then ensure that you have enough hard disk space

and RAM for both databases. You need to add the system requirements for Oracle9i
and Oracle7 to determine the total system requirements.

The MIG utility requires relatively little temporary space. It needs only enough

extra room in the SYSTEM tablespace to hold the new Oracle9i data dictionary

simultaneously with the existing Oracle7 data dictionary.

The space required to hold an Oracle data dictionary depends on how many objects

are in the database. Typically, a new Oracle9i data dictionary requires double the
Upgrading an Oracle7 Database Using the MIG Utility D-3

System Considerations and Requirements for Using the MIG Utility
space that its Oracle7 data dictionary required. If necessary, add space to the

SYSTEM tablespace.

In addition, running scripts such as the u0703040.sql upgrade script may require

more space in the SYSTEM tablespace and in the rollback segments. Insufficient

space results in an "unable to extend" warning when you run a script. The exact

amount of space required to run the scripts varies depending on the number of

objects in the database. If you encounter "unable to extend" warnings when you run

a conversion script, then try increasing the SYSTEM tablespace and the rollback

segments; then, rerun the script.

Block Size Considerations
The value of the DB_BLOCK_SIZE initialization parameter in both the Oracle7

database and in the upgraded Oracle9i database must be the same. Oracle9i requires

a minimum block size of 2048 bytes (2 KB). Above this amount, integer multiples of

your operating system’s physical block size are acceptable. However, multiples of 2

KB, especially powers of 2—that is, 2 KB, 4 KB, 8 KB, 16 KB—provide for the most

robust operation.

Make sure the Oracle9i block size setting meets the following criteria:

■ Matches the Oracle7 setting.

■ Is at least 2048 bytes (2 KB). The MIG utility displays an error message if the

Oracle7 block size is less than 2 KB.

■ Is an integer-multiple of your operating system’s physical block size, preferably

a multiple of 2 KB.

Considerations for SQL*Net
There are many issues relating to SQL*Net that you must consider when you

upgrade your database to the new Oracle9i release, not the least of which is

deciding whether you will migrate to Oracle Net Services.

See Also: Your operating system-specific installation

documentation for detailed information about system requirements

See Also: Appendix B, "Upgrade Considerations for Oracle Net

Services" for information about these issues and for instructions on

migrating from SQL*Net to Oracle Net Services
D-4 Oracle9i Database Migration

Prepare the Oracle7 Database to be Upgraded
Considerations for Replication Environments
You can upgrade an Oracle7 replication environment to Oracle9i. Oracle7 sites can

coexist and run successfully with Oracle8, Oracle8i, and Oracle9i sites within the

replication environment. However, take special care to accommodate the various

replication features implemented on each system.

Considerations for Migrating from ConText to Oracle Text
See Oracle Text Application Developer’s Guide for information about migrating from

ConText to Oracle Text.

Distributed Database Considerations
When upgrading from Oracle7 in a distributed database configuration, make sure

that no pending transactions are in the DBA_2PC_PENDING data dictionary view

before upgrading the database. Otherwise, when you open the database after the

upgrade using the ALTER DATABASE RESET LOGS statement and a transaction is

pending, you will encounter an error.

If there are any pending transactions, then resolve them before you migrate using

the SQL commands COMMIT FORCE or ROLLBACK FORCE.

Prepare the Oracle7 Database to be Upgraded
Additional preparatory steps are required before you upgrade your Oracle7

database to the new Oracle9i release. Complete the following steps:

1. Log in to the system as the owner of the Oracle home directory of the Oracle7

database being upgraded.

2. Start Server Manager.

3. Connect to the database instance as a user with SYSDBA privileges.

4. If the Procedural Option is not installed, then use your Oracle7 installation

media to install it. See your operating system-specific Oracle documentation for

instructions.

If you are not sure whether the Procedural Option is installed, then you can

check by starting Server Manager.

See Also: Appendix E, "Database Migration and Compatibility

for Replication Environments" for detailed instructions about

upgrading systems using replication features
Upgrading an Oracle7 Database Using the MIG Utility D-5

Prepare the Oracle7 Database to be Upgraded
The following is an example of the messages you will see when Server Manager

starts:

Oracle Server Manager Release 2.3.3.0.0 - Production

Copyright (c) Oracle Corporation 1994, 1995. All rights reserved.

Oracle7 Server Release 7.3.4.0.0 - Production
With the distributed, replication, parallel query, Parallel Server
and Spatial Data options
PL/SQL Release 2.3.4.0.0 - Production

The messages you see may be slightly different, based on the options you have

installed and their release numbers. If you see "PL/SQL" in the messages, as in

the last line in the preceding example, then the Procedural Option is installed.

Otherwise, it is not installed.

5. Make sure all datafiles and tablespaces are either online or offline normal.

To determine whether any datafiles require recovery, issue the following SQL

statement:

SELECT * FROM v$recover_file;

You should see a "0 rows selected" message, which indicates that all datafiles

are either online or offline normal. If any datafiles are listed, then you must

restore the datafiles before you upgrade the database. You can use the

V$DATAFILE dynamic performance view to find the datafile name based on the

datafile number. The MIG utility will not proceed, and will display an error, if

any datafiles require media recovery.

Tablespaces that are not taken offline cleanly must be dropped or brought

online before the upgrade. Otherwise, these tablespaces will not be available

under Oracle9i after the upgrade. Typically, tablespaces that are taken offline by

using an ALTER TABLESPACE OFFLINE IMMEDIATE or ALTER
TABLESPACE OFFLINE TEMPORARY statement require media recovery.

After the upgrade, tablespaces that are offline when you open the new Oracle9i
database remain in Oracle7 database file format. The offline tablespaces can be

brought online at any time after the upgrade, and the file headers are converted

to Oracle9i format at that time. In addition, if you want to avoid large restores

in the event of a failure, then you can make all tablespaces except SYSTEM and

ROLLBACK offline normal; then, you can restore only the datafiles for SYSTEM
and ROLLBACK if you need to perform another upgrade.
D-6 Oracle9i Database Migration

Prepare the Oracle7 Database to be Upgraded
6. Make sure no user or role has the name MIGRATE, because the MIG utility

creates this schema and uses it to replace any pre-existing user or role with this

name, and finally drops it from the system.

To check for a user with the name MIGRATE, issue the following SQL statement:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

If you do not have a user named MIGRATE, then zero rows are selected.

To check for a role with the name MIGRATE, issue the following SQL statement:

SELECT role FROM dba_roles WHERE role = ’MIGRATE’;

If you do not have a role named MIGRATE, then zero rows are selected.

7. Make sure the SYSTEMrollback segment does not have an OPTIMALsetting. An

OPTIMAL setting may cause errors during the upgrade.

To check the OPTIMAL setting for the SYSTEM rollback segment, issue the

following SQL statement:

SELECT a.usn, a.name, b.optsize
 FROM v$rollname a, v$rollstat b
 WHERE a.usn = b.usn AND name = ’SYSTEM’;

Your output should be similar to the following:

USN NAME OPTSIZE
---------- ------------------------------ ----------
 0 SYSTEM
1 row selected.

If there is a value in the OPTSIZE column, then issue the following SQL

statement to set optimal to NULL:

ALTER ROLLBACK SEGMENT SYSTEM STORAGE (OPTIMAL NULL);

You can reset OPTIMAL when the upgrade is complete.

8. Increase the maximum number of extents for your SYSTEMrollback segment by

altering the MAXEXTENTS parameter in the STORAGE clause of the ALTER
ROLLBACK SEGMENT statement (optional).

See Also: The troubleshooting information in "OPTIMAL Setting

for the SYSTEM Rollback Segment" on page D-26.
Upgrading an Oracle7 Database Using the MIG Utility D-7

Prepare the Oracle7 Database to be Upgraded
The following is an example of the ALTER ROLLBACK SEGMENT statement:

ALTER ROLLBACK SEGMENT system
 STORAGE (NEXT 500K MAXEXTENTS 121);

You may need more space in the SYSTEM rollback segment to complete the

upgrade successfully. If there is not enough space in your SYSTEM rollback

segment, then you may encounter errors when you run the MIG utility.

9. Make sure the NLS_LANG environment variable is set to the character set you

are using for your database.

To check your character set, issue the following SQL statement:

SELECT * FROM v$nls_parameters
 WHERE parameter = ’NLS_LANGUAGE’
 OR parameter = ’NLS_TERRITORY’
 OR parameter = ’NLS_CHARACTERSET’;

You use all three values returned by this query to set NLS_LANG. For example,

suppose your output for the query above is the following:

PARAMETER VALUE
--------------------- ---------------------------
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CHARACTERSET US7ASCII

In this case, set NLS_LANG to the following at a command prompt:

AMERICAN_AMERICA.US7ASCII

10. Make sure you have DBA privileges, which are required to run the MIG utility.

To check if you have DBA privileges, query the DBA_ROLE_PRIVS static data

dictionary view. For example, if you are connected as user SYSTEM, then enter

the following SQL statement:

SELECT * FROM dba_role_privs WHERE grantee = ’SYSTEM’;

You have DBA privileges if ’DBA’ is listed in the GRANTED_ROLE column for

the user. If you do not have DBA privileges, then connect as a user who does.

See Also: Oracle9i Database Globalization Support Guide for

information about setting NLS_LANG
D-8 Oracle9i Database Migration

Review MIG Utility Command-Line Options
11. Make sure no other DBA with RESTRICTED SESSIONprivilege connects to the

database while the MIG utility is running. Also, "Normal" users should not

connect to the database during an upgrade.

12. Shut down the Oracle7 database cleanly using the SHUTDOWN NORMAL or

SHUTDOWN IMMEDIATEcommands; do not use SHUTDOWN ABORT. The Oracle7

database must be shut down cleanly; therefore, no redo information or

uncommitted transactions can remain.

SHUTDOWN IMMEDIATE

If you are using Oracle Parallel Server, then shut down all instances.

Review MIG Utility Command-Line Options
The next task in the upgrade process is running the Oracle9i MIG utility. Before you

begin that task, review the following MIG utility command-line options because

you may need to specify some of them when you run the MIG utility. In addition,

your operating system-specific Oracle documentation may contain more

information about MIG utility command-line options.

Note: If you do not shut down the Oracle7 database before the

upgrade, then the MIG utility will stop and display an error

message.

CHECK_ONLY When true , the MIG utility performs space use calculations

without performing an upgrade. When false , the MIG

utility performs both space usage calculations and the

upgrade. This command-line option is mutually exclusive

with NO_SPACE_CHECK.

DBNAME Specifies the name of the database to upgrade (DB_NAME in
the initialization parameter file).

MULTIPLIER Specifies the initial size of the Oracle9i i_file#_block# index

relative to the Oracle7 i_file#_block# index. For example,

MULTIPLIER=30 triples the initial size when the index is

created. If no MULTIPLIER command-line option is

specified, then the MIG utility uses the i_file#_block# value

of 15, creating an index for Oracle9i that is 1.5 times larger

than the Oracle7 i_file#_block# index.
Upgrading an Oracle7 Database Using the MIG Utility D-9

Run the MIG Utility
Run the MIG Utility
The steps required to run the MIG utility on UNIX operating systems are different

than the steps required to run the MIG utility on Windows platforms. Complete the

steps in the appropriate section:

■ Run the MIG Utility on UNIX Operating Systems

■ Run the MIG Utility on Windows Platforms

Run the MIG Utility on UNIX Operating Systems
Complete the following steps to run the MIG utility on a UNIX operating system:

1. At a command prompt, change to the ORACLE_HOME/bin directory in your

release 9.2 installation.

2. Run the MIGPREP utility.

NEW_DBNAME Specifies a new name for the upgraded database. The default

name "DEFAULT" should not be used; choose a more meaningful

name.

NO_SPACE_CHECKWhen true , the MIG utility does not perform a space usage

check before the upgrade. When false , the MIG utility

performs a space usage check before the upgrade. This

command-line option is mutually exclusive with CHECK_
ONLY.

PFILE Specifies the name of the initialization parameter file. If no

PFILE command-line option is specified, then the MIG

utility uses the default initialization parameter file.

Note: On UNIX, the pathname must be enclosed by

double-quotes escaped by a backslash, for example:

mig PFILE=\"/tmp/mig/ pfile \"

SPOOL Specifies the filename for the spool output.

Note: On UNIX, the pathname must be enclosed by

double-quotes escaped by a backslash, for example:

mig SPOOL=\"/tmp/mig/ spool \"
D-10 Oracle9i Database Migration

Run the MIG Utility
The MIGPREP utility prepares the Oracle7 environment for upgrading by

copying required files from the Oracle9i Oracle home to the Oracle7 Oracle

home. Enter the following to run MIGPREP:

migprep new_oracle_home old_oracle_home

Where new_oracle_home is the complete path of the new Oracle9i Oracle

home directory and old_oracle_home is the complete path of the old Oracle7

Oracle home directory.

For example, if your new Oracle9i Oracle home is /oracle/product/9.2
and your old Oracle7 Oracle home is /oracle/product/7.3 , then enter the

following:

migprep /oracle/product/9.2 /oracle/product/7.3

3. Change the following environment variables to point to the Oracle7 directories:

■ ORACLE_HOME

■ PATH

■ LD_LIBRARY_PATH

■ ORA_NLS32

4. Set the ORA_NLS33 environment variable to the following directory in your

Oracle7 environment:

$ORACLE_HOME/migrate/nls/admin/data

5. Make sure you have enough space in the SYSTEM tablespace (optional).

A common upgrade problem is running out of space in the SYSTEM tablespace

during an upgrade. The MIG utility will not complete the upgrade unless

sufficient space is allocated in the SYSTEM tablespace. To determine disk space

requirements for a successful upgrade, run the MIG utility with the CHECK_
ONLY command-line option set to true by entering the following at a system

prompt:

mig CHECK_ONLY = true

Note: For Oracle Parallel Server, perform this step on all nodes.
Upgrading an Oracle7 Database Using the MIG Utility D-11

Run the MIG Utility
The CHECK_ONLY command-line option causes the MIG utility to assess the

amount of disk space required for the upgrade, check the amount of space

available, and issue an informational message about the disk space

requirements. When the CHECK_ONLY command-line option is set to true , the

MIG utility does not build the Oracle9i data dictionary or perform any other

upgrade processing.

If the CHECK_ONLY command-line option shows that you need to add more

space to the SYSTEM tablespace, then you should add the amount specified by

the CHECK_ONLY option plus an additional 25 megabytes. The additional 25

megabytes approximates the amount of space required by the upgrade script

that you will run later in the upgrade process.

6. Enter the following to run the MIG utility:

mig

The command is mig unless stated otherwise in your operating system-specific

Oracle documentation. Enter mig alone to run with a default set of options, or

enter mig followed by one or more selected options.

Run the MIG Utility on Windows Platforms
Complete the following steps to run the MIG utility on a Windows platform:

1. In the new Oracle9i Oracle home, run the MIG utility by entering the MIG

utility command at a command prompt with the PFILE option included:

C:\> mig PFILE= ORACLE7_HOME\DATABASE\INIT_PARAM_FILE

Replace the ORACLE7_HOME variable with the complete path to the Oracle7

Oracle home directory. Also, replace the INIT_PARAM_FILE variable with the

full name of the initialization parameter file for the Oracle7 database.

For example, if ORACLE7_HOME is C:\ORANT and INIT_PARAM_FILE is

INITORCL.ORA , then enter the following:

C:\> mig PFILE=C:\ORANT\DATABASE\INITORCL.ORA

You can enter mig with just the PFILE option to run with a default set of

options, or you can enter mig followed by more selected options.

See Also: "Review MIG Utility Command-Line Options" on

page D-9 for information about command-line options. Oracle

Corporation recommends using the SPOOL option, because it

makes it easier to check your results when the upgrade is complete.
D-12 Oracle9i Database Migration

Run the MIG Utility
2. If the Oracle7 Password appears when you run the MIG utility, then enter the

password for the user logged in with SYSDBA privileges on the Oracle7

database. This prompt appears because the DBA_AUTHORIZATION registry

parameter is set improperly or is not set at all.

Check the MIG Utility Results
Check the results after running the MIG utility. The MIG utility generates

informational messages and echoes its progress as it runs the migrate.bsq script.

If the MIG utility exits with an ORA- error, then check "Troubleshooting MIG Utility

Errors" on page D-24 for information about the error and the actions to perform to

resolve the problem.

The MIG utility creates a convert file that contains the information of the Oracle7

control file. Later in the upgrade process, the convert file is used by ALTER
DATABASE CONVERT to create a new control file in Oracle9i.

The name and location of the convert file are operating system-specific. For

example, on a UNIX operating system, the default location is ORACLE_HOME/dbs
in the Oracle7 environment, and the default filename in this directory is

conv sid .dbf , where sid is your Oracle7 instance ID. On Windows platforms, the

default location is ORACLE_HOME\rdbms in the Oracle9i environment, and the

default filename in this directory is convert.ora .

See Also: "Review MIG Utility Command-Line Options" on

page D-9 for information about command-line options. Oracle

Corporation recommends using the SPOOL option, because it

makes it easier to check your results when the upgrade is complete.

Caution: Do not open the Oracle7 database, which was shut down

by the Oracle9i MIG utility. To ensure datafile version integrity, the

SCNs in the dictionary, the convert file, and file header must all be

consistent when the database is converted to Oracle9i. If the

Oracle7 database is opened after running the MIG utility, then the

SCN check will fail when the database is converted to Oracle9i, and

the following error will be displayed:

ORA-01211: Oracle7 datafile is not from migration
to Oracle8

Therefore, if the Oracle7 database is opened, then you must rerun

the MIG utility.
Upgrading an Oracle7 Database Using the MIG Utility D-13

MIG Utility Messages
Preserve the Oracle7 Database
After you successfully run the MIG utility, perform a cold backup of the Oracle7

database. This backup serves the following purposes:

■ If you wish to return to the Oracle7 database after executing the ALTER
DATABASE CONVERT statement in Oracle9i, then you can restore the backup,

start the Oracle7 database, and complete the procedure in "Abandoning the

Oracle7 Upgrade" on page D-31.

■ It can be used as the first Oracle9i backup for an Oracle9i recovery.

■ If an error occurs at Oracle9i database convert time (ALTER DATABASE
CONVERT or ALTER DATABASE OPEN RESETLOGS MIGRATE), then you can

restore this backup, fix the problems, and continue the conversion process.

However, if you restore a backup that was performed before you ran the MIG

utility, then you must rerun the MIG utility.

In addition, perform a backup of the entire Oracle7 software distribution, including

the Oracle7 home directory. Make sure the backup includes the following:

■ All of the subdirectories

■ Control files

■ Datafiles and online redo log files (in case any datafiles in the Oracle7 database

are lost or unreadable), although these files should not contain any outstanding

redo information.

■ Parameter files

■ Convert file

■ Scripts that create objects in the Oracle7 database

■ Scripts that could restore the original database, if necessary

MIG Utility Messages
The MIG utility may return error messages and informational messages during the

upgrade process. This section describes errors you may encounter when using the

MIG utility. For each error, a description of its probable causes and instructions for

See Also: Oracle7 Server Administrator’s Guide for information

about performing backup and restore operations on your Oracle7

database
D-14 Oracle9i Database Migration

MIG Utility Messages
corrective action are provided. Informational messages are also listed, but they

require no corrective action.

If you are using the Database Upgrade Assistant, then the MIG utility messages are

recorded in a log file. See the online help for the Database Upgrade Assistant for

information about accessing its log files. Also, if you are using the Database

Upgrade Assistant and the recommended action for a message includes rerunning

the MIG utility, then you should rerun the Database Upgrade Assistant.

The following messages are listed in alphabetical order:

cannot reduce file number bits in DBA during migration
Cause: The MIG utility attempted to reduce the number of file-number bits

used in a datablock address.

Action: Contact Oracle Support Services.

cannot create conversion file, records exceed number bytes
Cause: An internal error occurred. A valid convert file could not be created

from the Oracle7 control file.

Action: Check the Oracle7 control file for corruption, fix any problems, and

rerun the MIG utility.

CHECK_ONLY - estimate V8 catalog space requirement ONLY (default=FALSE)
Cause: This is an informational message about the CHECK_ONLYcommand-line

argument.

Action: No user action is required.

CHECK_ONLY and NO_SPACE_CHECK are mutually exclusive options
Cause: These two mutually exclusive command-line options were passed to

the MIG utility.

Action: Rerun the MIG utility using only one of these options.

client nls_characterset does not match server nls_characterset - check that NLS_
LANG environment variable is set
Cause: The NLS_LANG character set does not match the character set in

PROPS$.

Action: Check the database character set in PROPS$ and set the NLS_LANG
environment variable to match it.

command-line argument value must be TRUE or FALSE (string)
Upgrading an Oracle7 Database Using the MIG Utility D-15

MIG Utility Messages
Cause: A command-line argument was entered with a value other than true
or false .

Action: Check the syntax of the command-line argument, correct the state-

ment, and retry the operation.

command-line arguments must be of the form <keyword>=<value> (string)
Cause: A command-line argument was used improperly.

Action: Check the syntax of the command-line argument, correct the state-

ment, and retry the operation.

command-line arguments:
Cause: This informational message displays the command-line arguments.

Action: No user action is required.

command name not found (string)
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

command not of form CMD(ARG1, ARG2, ...)
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

copy long command must be of form COPYLONG(U1,T1,C1,U2,T2,C2,K1<,K2>)
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

could not find a single contiguous extent of number bytes for c_file#_block#
Cause: Your SYSTEM tablespace does not have enough contiguous space.

Action: Add free space to your SYSTEM tablespace and rerun the MIG utility.
D-16 Oracle9i Database Migration

MIG Utility Messages
could not find a single contiguous extent of number bytes for c_ts#
Cause: Your SYSTEM tablespace does not have enough contiguous space.

Action: Add free space to your SYSTEM tablespace and rerun the MIG utility.

could not find a single contiguous extent of number bytes for i_file#_block#
Cause: Your SYSTEM tablespace does not have enough contiguous space.

Action: Add free space to your SYSTEM tablespace and rerun the MIG utility.

could not find a single contiguous extent of number bytes for i_ts#
Cause: Your SYSTEM tablespace does not have enough contiguous space.

Action: Add free space to your SYSTEM tablespace and rerun the MIG utility.

could not translate logical name string
Cause: An internal error has occurred.

Action: Check that the logical name is defined correctly and rerun the MIG util-

ity.

current version: string -- database must be release 7.1 or later
Cause: The current database is a release earlier than release 7.1.

Action: Migrate the current database to a release supported by the MIG utility

on your operating system. Then, rerun the MIG utility. See your operating sys-

tem-specific Oracle documentation for information about the releases sup-

ported by the MIG utility on your operating system.

data type must be long for column string
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

datafile is found in inconsistent state (internal error) -- string
Cause: An internal error occurred; a datafile was found in an inconsistent state.

Action: Contact Oracle Support Services.

datafile is offline while tablespace is online - apply media recovery and bring
datafile online before migration -- string
Upgrading an Oracle7 Database Using the MIG Utility D-17

MIG Utility Messages
Cause: The datafile in a tablespace is offline while the tablespace is online. The

MIG utility cannot proceed until the datafile and tablespace are both either

online or offline normal.

Action: Apply media recovery and bring the datafile online before rerunning

the MIG utility.

DBNAME - current database name (db_name in init.ora)
Cause: This is an informational message about the DBNAME command-line

argument.

Action: No user action is required.

dictionary constant not found - string
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

entries found in system.def$_call, def$_calldest, or def$_error - push all deferred
transactions before migration
Cause: Entries exist in SYSTEM.DEF$_CALL, DEF$_CALLDEST, or DEF$_
ERROR.

Action: If entries are in SYSTEM.DEF$_CALL, then push all deferred transac-

tions until SYSTEM.DEF$_CALL is empty. If entries are in SYSTEM.DEF$_
ERROR, then resolve and re-execute any errors in the local queue until it is

empty. Rerun the MIG utility.

error calling slgtd
Cause: Error in getting current time from slgtd, an internal error. The MIG

utility may be corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

error closing file string
Cause: An internal error has occurred. Data could not be written to disk.

Action: Check that the file access permissions are correct, that you have enough

space or quota to write this file, and that the disk is not corrupt. Fix any prob-

lems and rerun the MIG utility.
D-18 Oracle9i Database Migration

MIG Utility Messages
estimated space requirement for string is number blocks
Cause: In this informational message, the MIG utility displays the space

required for the object.

Action: No user action is required.

file number is too large for DBA conversion
Cause: An internal error has occurred; the specified file is too large for DBA

conversion.

Action: Contact Oracle Support Services.

file header does not fit in number bytes
Cause: An internal error has occurred.

Action: Check the control file for corruption, fix any problems, and rerun the

MIG utility.

fixed portion of control file does not fit in number bytes
Cause: An internal error has occurred.

Action: Check the control file for corruption, fix any problems, and rerun the

MIG utility.

found NULL SQL statement
Cause: An internal error has occurred; the migrate.bsq script may be

corrupted.

Action: Check that the version of the MIG utility, of migrate.bsq , and of the

Oracle9i software are compatible, and that no corruption exists in

migrate.bsq . Fix any problems and rerun the MIG utility.

free space found in system tablespace is number blocks
Cause: This informational message shows the amount of free space in the

SYSTEM tablespace.

Action: No user action is required.

free space found: number
Cause: This informational message shows the amount of free space in the

SYSTEM tablespace.

Action: No user action is required.

incomplete write
Cause: An internal error has occurred. Data could not be written to disk.
Upgrading an Oracle7 Database Using the MIG Utility D-19

MIG Utility Messages
Action: Check that the file access permissions are correct, that you have enough

space or quota to write this file, and that the disk is not corrupt. Fix any prob-

lems and rerun the MIG utility.

insufficient space for new dictionaries, number bytes needed, number found
Cause: There is insufficient room in your SYSTEM tablespace for the new data

dictionary information.

Action: Allocate the additional space required in the SYSTEM tablespace and

rerun the MIG utility.

invalid NLS_NCHAR value specified
Cause: The NLS_NCHAR value specified in the command line is invalid.

Action: Correct the NLS_NCHARvalue specified in the command line and rerun

the MIG utility.

migration can’t proceed - database blocksize number is less than Oracle9i’s
minimum block size 2 KB
Cause: The existing database blocksize is less than 2 KB.

Action: Make sure the block size of the Oracle7 database is at least 2 KB. You

may consider rebuilding the Oracle7 database. Then, rerun the MIG utility.

migration can’t proceed with datafile online while tablespace offline -- string
Cause: The datafile in a tablespace is online while the tablespace is offline.

Migration cannot proceed until the datafile and tablespace are both either

online or offline normal.

Action: Make sure the online status of the datafile is the same as the online sta-

tus of the tablespace. Then, rerun the MIG utility.

migration cannot proceed with active transactions or offline tablespaces with
outstanding undo
Cause: One or more tablespaces were offline with outstanding save undo when

the MIG utility attempted to upgrade the database.

Action: See Step 5 on page D-6 and make sure all offline tablespaces have been

taken offline cleanly. Then, rerun the MIG utility.

mounting database ...
Cause: This is an informational message. The MIG utility is mounting the

Oracle7 database.

Action: No user action is required.
D-20 Oracle9i Database Migration

MIG Utility Messages
MULTIPLIER - seg$/uet$ cluster index size increase factor (default=15)
Cause: This is an informational message that the MIG utility displays about the

MULTIPLIER command-line setting.

Action: No user action is required.

MULTIPLIER value must be at least 2
Cause: The MULTIPLIER value, which specifies the initial size of the Oracle9i
i_file#_block# in the command line, is less than 2.

Action: Change the MULTIPLIER value to be greater than or equal to 2, and

rerun the MIG utility.

NEW_DBNAME string too long - maximum length is 8 characters
Cause: The specified new database name is more than 8 characters long.

Action: Change the specified name for the new database to 8 or fewer charac-

ters, and rerun the MIG utility.

NEW_DBNAME - new name for the database (max. 8 characters)
Cause: This informational message displays information about the NEW_
DBNAME command-line argument.

Action: No user action is required.

NLS_NCHAR - specify the nchar characterset value
Cause: This informational message displays information about the NLS_NCHAR
command-line argument.

Action: No user action is required.

NO_SPACE_CHECK - do not execute the space check (default=FALSE)
Cause: This is an informational message about the NO_SPACE_CHECK
command-line argument.

Action: No user action is required, but make sure there is adequate space

before you run the MIG utility with this option.

string number being processed is incorrect during creating convert file
Cause: An internal error occurred while creating the convert file.

Action: Contact Oracle Support Services.

opening database ...
Cause: This is an informational message. The MIG utility is opening the

Oracle7 database.
Upgrading an Oracle7 Database Using the MIG Utility D-21

MIG Utility Messages
Action: No user action is required.

ORA_NLS33 environment variable is not set or incorrectly set
Cause: The ORA_NLS33 environment variable does not point to the NLS

datafiles.

Action: Set the ORA_NLS33 environment variable to point to the correct files

and rerun the MIG utility.

ORA-number:
Cause: The MIG utility has received an ORA- error and cannot retrieve the

message text for the error.

Action: Take appropriate action based on the Oracle error number (see Oracle9i
Database Error Messages).

parameter buffer overflow
Cause: The initialization parameter file is too large to fit in the buffer.

Action: Reduce the size of the initialization parameter file, possibly by remov-

ing any obsolete parameters. Then, rerun the MIG utility.

parameter file exceeds number bytes
Cause: The initialization parameter file for your Oracle7 database exceeds the

maximum size.

Action: If possible, reduce the size of your initialization parameter file by

removing obsolete parameters. Otherwise, contact Oracle Support Services.

PFILE - use alternate init.ora file
Cause: This is an informational message that displays information about the

PFILE command-line argument.

Action: No user action is required.

seek error in file string
Cause: An internal error has occurred reading the specified file.

Action: Make sure the file and disk are not corrupted. Fix any corruption

before you rerun the MIG utility.

short read, number bytes requested, number bytes read
Cause: There was a problem reading the control file.

Action: Check the control file for corruption, fix any problems, and rerun the

MIG utility.
D-22 Oracle9i Database Migration

MIG Utility Messages
shut down database (abort) ...
Cause: An internal error has occurred.

Action: Additional error messages should inform you of the cause of the shut-

down. Follow the actions suggested for these additional messages.

shutting down database ...
Cause: This is an informational message. The MIG utility is shutting down the

Oracle7 database.

Action: No user action is required.

SPOOL - spool output to file
Cause: This is an informational message that displays information about the

SPOOL command-line argument.

Action: No user action is required.

starting up database ...
Cause: This is an informational message. The MIG utility is starting up an

Oracle7 instance.

Action: No user action is required.

string argument too long, maximum length number
Cause: A string in the command-line argument passed to the MIG utility

exceeds the maximum size.

Action: Shorten the string in the command-line argument and rerun the MIG

utility.

Tablespace of datafile not taken offline normal. Bring tablespace online, offline
normal, or drop before migration -- string
Cause: A tablespace was taken offline using IMMEDIATE or TEMPORARY.

Action: Either bring the tablespace online and then take it offline using NOR-

MAL, or drop the tablespace. Then, rerun the MIG utility.

too many args in command (number max)
Cause: Too many arguments were specified on the command line.

Action: Check the syntax of the command and specify fewer command-line

options.

unable to allocate buffer space to copy longs
Upgrading an Oracle7 Database Using the MIG Utility D-23

Troubleshooting MIG Utility Errors
Cause: The MIG utility could not allocate memory to serve as a buffer for

copying LONG columns in the database.

Action: Make sure enough computer resources are available and rerun the MIG

utility.

unable to open file string
Cause: An internal error has occurred, or a file was not in the expected location,

when you started the MIG utility.

Action: Check that the file exists and that its access permissions allow Oracle to

open and read it. If possible, check that the file, and the disks on which the file

reside, are not corrupt. Fix any problems and rerun the MIG utility.

unable to read file string
Cause: An internal error has occurred or a file was not in the expected location

when you started the MIG utility.

Action: Check that the file exists and that its access permissions allow Oracle to

open and read it. If possible, check that the file, and the disks on which the file

reside, are not corrupt. Fix any problems and rerun the MIG utility.

unable to write file string
Cause: An internal error has occurred.

Action: Check the access permissions to make sure that Oracle can write to the

file. Check that the disks to which the file is being written are not corrupt. Fix

any corruption; then, rerun the MIG utility.

V8 catalog space requirement: number
Cause: This is an informational message that shows the amount of additional

space required in your SYSTEM tablespace to successfully run the MIG utility.

Action: Make sure you have the specified amount of additional space before

running the MIG utility.

Troubleshooting MIG Utility Errors
Errors may be caused by the following actions or omissions:

■ Performing an upgrade step out of order

■ Failing to fulfill the prerequisites for the upgrade

■ Encountering an occasional conversion irregularity
D-24 Oracle9i Database Migration

Troubleshooting MIG Utility Errors
Problems Using the MIG Utility
General upgrade problems may occur when you run the MIG utility, but they are

caused by your database system’s configuration. While the MIG utility is

performing the necessary actions to upgrade the Oracle7 database, an error is

generated by your Oracle software. Typically, when such an error occurs, the MIG

utility stops and displays one or more error messages.

If you encounter one of the following problems when you run the MIG utility, then

perform the suggested actions, and then rerun the MIG utility.

Insufficient Space in the SYSTEM Tablespace
This problem may return an error message similar to the following:

ORA-00604: error occurred at recursive SQL level 1
ORA-01653: unable to extend table SYS by 473 in tablespace SYSTEM

You need to add a new datafile to the SYSTEMtablespace and allocate enough space

to the new datafile to successfully complete the upgrade.

It is also possible to run out of space in the temporary tablespace during the

upgrade. If you do, then add a new datafile to the temporary tablespace and

allocate enough space to the new datafile to successfully complete the upgrade.

Incorrect AUDIT_TRAIL Parameter Setting
This problem may return error messages similar to the following:

ORA-00604: error occurred at recursive SQL level string
ORA-01552: cannot use system rollback segment for non-system tablespace
’ string ’
ORA-02002: error while writing to audit trail

You will encounter these errors only under the following conditions:

■ The AUDIT_TRAIL initialization parameter is set to either DB or to TRUE

■ The SYS.AUD$ table is located in a tablespace other than SYSTEM

To correct this problem, complete the following steps:

See Also: "Space Requirements" on page D-3 and Step 5 on

page D-11 for more information about the space requirements for

the SYSTEM tablespace, and information about adding a new

datafile to increase its available space.
Upgrading an Oracle7 Database Using the MIG Utility D-25

Troubleshooting MIG Utility Errors
1. Shut down the database if it is running.

2. Set the AUDIT_TRAIL initialization parameter in the initialization parameter

file in the following way:

AUDIT_TRAIL = NONE

3. Rerun the MIG utility.

OPTIMAL Setting for the SYSTEM Rollback Segment
This problem may return error messages similar to the following:

ORA-01562: failed to extend rollback segment number 0
ORA-01628: max # extents (n) reached for rollback segment SYSTEM

These messages indicate that the SYSTEM rollback segment is too small to complete

the upgrade. You must ensure that the SYSTEMrollback segment is large enough for

the upgrade to complete successfully.

Both the MIG utility and the Database Upgrade Assistant take all non-SYSTEM
rollback segments offline and then freeze the size of the SYSTEM rollback segment

by altering MAXEXTENTS to the number of extents currently allocated. This action

prevents any space operations, such as an extent allocation, while the MIG utility or

the Database Upgrade Assistant handles the space management tables.

If the SYSTEM rollback segment has an OPTIMAL setting, then extents are

deallocated dynamically when their data is no longer needed for active

transactions. The dynamic deallocation may cause the number of currently

allocated extents to be small when the SYSTEM rollback segment is frozen.

Therefore, the SYSTEM rollback segment may not be large enough to handle the

transactions involving the space management tables during the upgrade.

The solution is to change the following settings:

1. Turn off the OPTIMAL setting for rollback segment.

2. Double the NEXT EXTENT of the System Rollback Segment.

3. Double the MULTIPLIER value.

4. Add space to the system tablespace to make sure there is enough free space to

handle undo segment (at least 50 MB).

See Also: If you are using the MIG utility, then see Step 7 on

page D-7 for information on checking your OPTIMAL setting and

resetting it if necessary.
D-26 Oracle9i Database Migration

Troubleshooting MIG Utility Errors
Small MULTIPLIER Option Setting
This problem may return an error message similar to the following:

ORA-01632: max # extents (%s) reached in index %s.%s

The MIG utility is using the default value of 15 for the MULTIPLIER option, and

this value is too low. To correct the problem, increase the value of the MULTIPLIER
option.

If you are using the MIG utility, then, when you run it from the command line, enter

the following to raise the MULTIPLIER option to 30:

mig MULTIPLIER=30

If, however, you are running the MIG utility in the background by using the

Database Upgrade Assistant, then restore the backup of the database being

upgraded and then rerun the Database Upgrade Assistant. Choose the Custom

migration option in the Database Upgrade Assistant. When you are prompted for

the MULTIPLIER value, enter a value greater than the default of 15.

Problems at the ALTER DATABASE CONVERT Statement
You may encounter one of the problems described in this section when you issue

the ALTER DATABASE CONVERT statement during the upgrade process after you

run the MIG utility. Typically, the conversion will stop and one or more error

messages will be displayed. If you encounter one of the following problems when

you issue the ALTER DATABASE CONVERT statement, then perform the suggested

actions to correct the problem.

Oracle7 Control Files Exist
This problem may return the following error messages:

ORA-00200: cannot create control file name
ORA-00202: controlfile: name
ORA-27038: skgfrcre: file exists

The old Oracle7 control files must be renamed or removed before you issue the

ALTER DATABASE CONVERT statement.

See Also: "Review MIG Utility Command-Line Options" on

page D-9 for more information about the MULTIPLIER option

See Also: Step b on page 3-15
Upgrading an Oracle7 Database Using the MIG Utility D-27

Troubleshooting MIG Utility Errors
Database Started in Mode Other Than NOMOUNT
This problem may return the following error messages:

ORA-00227: corrupt block detected in controlfile: (block num, # blocks num)
ORA-00202: control file: ’ name’

The old Oracle7 control files must be renamed or removed before you issue the

ALTER DATABASE CONVERT statement. Also, the database must be started in

NOMOUNT mode when you issue the ALTER DATABASE CONVERT statement. This

error indicates that the database was started in a mode other than NOMOUNT.

Convert File Not Found
This problem may return the following error messages:

ORA-00404: convert file not found: name
ORA-27037: unable to obtain file status

The convert file (conv sid .dbf on UNIX and convert.ora on Windows

platforms) generated by the MIG utility was not found in the expected location. On

UNIX, the expected location is the ORACLE_HOME/dbs directory in the Oracle9i
environment; on Windows platforms, the expected location is the ORACLE_
HOME\rdbms directory in the Oracle9i environment. The convert file must be

moved to this location before you issue the ALTER DATABASE CONVERT
statement.

REMOTE_LOGIN_PASSWORDFILE Initialization Parameter Set to EXCLUSIVE
This problem may return the following error message:

ORA-00600: internal error code, arguments: [kzsrsdn: 1], [32]

You will encounter this error under the following conditions:

■ Your database is using a password file, and the password file was not moved to

the correct directory. On UNIX, the correct directory is ORACLE_HOME/dbs in

the Oracle9i environment; on Windows platforms, the correct directory is

ORACLE_HOME\database in the Oracle9i environment.

■ The REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

EXCLUSIVE in the initialization parameter file.

See Also: Step b on page 3-15 and Step 11 on page 3-21

See Also: Step 3 on page 3-17
D-28 Oracle9i Database Migration

Troubleshooting MIG Utility Errors
To continue with the upgrade, complete the following steps:

1. Shut down the database.

2. Set REMOTE_LOGIN_PASSWORDFILE to NONE in the initialization parameter

file:

REMOTE_LOGIN_PASSWORDFILE = NONE

3. Startup mount the database by entering the following SQL statement:

SQL> STARTUP MOUNT

You may need to use the PFILE option to specify the location of your

initialization parameter file.

4. Issue the ALTER DATABASE OPEN RESETLOGS MIGRATE statement:

SQL> ALTER DATABASE OPEN RESETLOGS MIGRATE;

5. Continue with the upgrade process starting with Step 12 on page 3-22.

You cannot use the existing password file because it is no longer valid. If you want

to use a password file with Oracle9i, then re-create the password file and repopulate

it with users. Remember to set REMOTE_LOGIN_PASSWORDFILE correctly.

Database Name Mismatch
This problem may return the following error message:

ORA-01103: database name ’ name’ in controlfile is not ’ name’

There is a mismatch in the database name. This mismatch is in one or more of the

following places:

■ The database name specified by the DB_NAME initialization parameter in the

initialization parameter file does not match the database name in the

conv sid .dbf filename.

■ The Oracle9i instance ID set by the ORACLE_SIDenvironment variable does not

match the database name in the conv sid .dbf filename.

Note: This problem only occurs on UNIX operating systems. It

does not apply to Windows platforms.
Upgrading an Oracle7 Database Using the MIG Utility D-29

Troubleshooting MIG Utility Errors
To correct the problem, make sure the correct database name is specified in each of

the following places:

■ The ORACLE_SID environment variable

■ The DB_NAME initialization parameter in the initialization parameter file

■ The sid part of the conv sid .dbf filename

For example, if your ORACLE_SID environment variable and the DB_NAME
initialization parameter in the initialization parameter file are both set to DB1, then

the conv sid .dbf filename should be the following:

convDB1.dbf

Rerunning the ALTER DATABASE CONVERT Statement
This problem may return the following error messages:

ORA-01122: datafile name - failed verification check
ORA-01110: data file name: str
ORA-01202: wrong incarnation of this file - wrong creation time

These errors usually indicate that the ALTER DATABASE CONVERT statement was

issued previously but failed. If you encounter these errors, then you can attempt to

move on to the next step in the upgrade process by issuing the ALTER DATABASE
OPEN RESETLOGS MIGRATEstatement. However, if you encounter problems, then

restore the backup you created before you started the upgrade process, and use it to

start the upgrade again from the beginning. Start at the beginning of Chapter 3, but

make sure you performed the pre-upgrade actions described in Chapter 2 and in

this appendix.

Datafile Version Integrity Problem
This problem may return the following error messages:

ORA-01122: datafile name - failed verification check
ORA-01110: data file name: str
ORA-01211: Oracle7 data file is not from migration to Oracle9 i

The MIG utility must be the last utility to access the database in the Oracle7

environment. The datafile specified in the error messages is either a backup taken

before you ran the MIG utility, or the database was opened by Oracle7 after you ran

the MIG utility. Only the datafiles that were current when the MIG utility ran can be

accessed by Oracle9i.
D-30 Oracle9i Database Migration

Abandoning the Oracle7 Upgrade
To ensure datafile version integrity, the system change numbers (SCNs) in the data

dictionary, the convert file, and the file headers must all be consistent when the

database is converted to Oracle9i. If the database is opened under Oracle7 after the

MIG utility has run, then the SCN checking fails when you issue the ALTER
DATABASE CONVERT statement.

To correct the problem, complete the following steps:

1. Shut down the database.

2. Rename the control files created by ALTER DATABASE CONVERT to different

file names.

3. Restore the saved copy of Oracle7 control files from immediately before the

issuing of the STARTUP NOMOUNT statement.

If you do not have the Oracle7 control files saved, then restore the backup you

made prior to starting the migration process.

4. Start the migration process over from the beginning, ensuring the database is

not opened in the Oracle7 environment after the MIG utility completes. Start

from the beginning of Chapter 3.

Abandoning the Oracle7 Upgrade
If you performed a backup of your Oracle7 database before running the MIG utility,

then the easiest way to abandon an upgrade is to restore that backup. However, if

you do not have a backup, or if you made the backup after running the MIG utility,

then you must complete the procedure described in this section to abandon the

upgrade.

You can run the Oracle9i MIG utility multiple times and still return to the Oracle7

database. However, running the MIG utility automatically eliminates the Oracle7

database catalog views. Therefore, to return to the Oracle7 database after running

the MIG utility, you must run the Oracle7 catalog.sql script to restore the

Oracle7 database catalog views.

Note: You cannot use the following procedure to abandon the

upgrade if you have already executed the ALTER DATABASE
CONVERT statement. If you have executed this statement and want

to return to Oracle7, then complete the downgrade procedure in

Chapter 8, "Database Migration Using Export/Import".
Upgrading an Oracle7 Database Using the MIG Utility D-31

Migration Issues for Physical Rowids
To abandon the upgrade, you generally must restore the Oracle7 database by

completing the following steps in the Oracle7 environment:

1. Start the Oracle7 database using Server Manager.

2. Drop the MIGRATE user:

DROP USER MIGRATE CASCADE;

3. Rerun catalog.sql and catproc.sql :

@catalog.sql
@catproc.sql

4. Run catsvrmg.sql :

@catsvrmg.sql

5. If Oracle Parallel Server is installed, then run catparr.sql :

@catparr.sql

6. If Oracle Replication is installed, then run catrep.sql :

@catrep.sql

Migration Issues for Physical Rowids
Release 8.0 introduced new internal and external formats for physical rowids that

enable you to use some new release 8.0 and higher features, including partitioning

and global indexes.

This section includes the following topics:

■ Upgrading Applications and Migrating Data

■ The DBMS_ROWID Package

■ Snapshot Refresh

■ Oracle7 Client Compatibility Issues

■ ROWID Migration and Compatibility Issues

See Also: Oracle9i Application Developer’s Guide - Fundamentals and

Oracle9i Database Concepts for more information
D-32 Oracle9i Database Migration

Migration Issues for Physical Rowids
Upgrading Applications and Migrating Data
Rowids can be stored in columns of ROWID datatype and in columns of character

type. Stored Oracle7 rowids become invalid after an upgrade to Oracle9i. Therefore,

stored Oracle7 rowids must be converted to the new format.

Applications that do not attempt to manually assemble and disassemble rowids do

not need to be changed or recompiled because the new rowids fit the current

storage requirements for host variables.

Applications that attempt to manufacture or analyze the contents of rowids must

use the DBMS_ROWID package to deal with the format and contents of the new

rowids. This package contains functions that extract the information that was

available directly from an Oracle7 rowid (including file and block address), plus the

data object number.

The columns that contain rowid values (in ROWID datatype format or in character

format) must be migrated if they point to tables that were upgraded to Oracle9i.
Otherwise, it will not be possible to retrieve any rows using their stored values. On

the other hand, if the rowid values stored in the upgraded tables still point to

Oracle7 tables, then you do not need to migrate the columns.

Columns are migrated in two stages: definition migration and data migration. The

column definition is adjusted automatically during the upgrade to Oracle9i. The

maximum size of rowid user columns is increased to the size of the extended disk

rowids, changing the LENGTH column of COL$ for rowid columns from six to ten

bytes.

The data migration can be performed only after the system has been opened in

Oracle9i. You can upgrade different tables at different times or multiple tables in

parallel. Make sure the upgrade is done before the Oracle7 database file limit is

exceeded, thereby guarding against the creation of ambiguous block addresses.

You can use existing rowid refresh procedures that are available at your installation,

or the DBMS_ROWID functionality, to migrate stored rowids from Oracle7 format to

the new format.

Note: In the rest of this section, references to new rowids include

rowid functionality that was introduced in release 8.0. Also, the

word "rowid" means "physical rowid". This appendix does not

discuss the UROWID (universal rowid) datatype. See Chapter 5,

"Compatibility and Interoperability" for compatibility issues

relating to the UROWID datatype.
Upgrading an Oracle7 Database Using the MIG Utility D-33

Migration Issues for Physical Rowids
Data migration by the MIG utility or the Database Upgrade Assistant applies only

to rowids stored in a user-defined column. All system-stored rowids (such as in

indexes) remain valid after the upgrade, and do not require specific actions to be

migrated. Also, indexes are not invalidated because, during the upgrade to

Oracle9i, indexes can continue to use the restricted ROWID datatype format.

The DBMS_ROWID Package
The DBMS_ROWID package contains the following functionality:

■ Creation and interpretation of rowids in both the Oracle7 format and in the new

format

■ Conversion between Oracle7 rowids and new rowids

Migration of the stored rowids can be accomplished using conversion functions, as

described in the following sections.

Rowid Conversion Types
You must specify the type of rowid being converted, because the rowid conversion

functions perform the conversion differently depending on whether the rowid is

stored in the user column of ROWID datatype, or in the user column of CHAR or

VARCHAR2 datatype.

For a column of ROWID datatype, the caller of the conversion procedures must pass

the following value as a procedure parameter:

rowid_convert_internal constant integer := 0;

For a column of CHAR or VARCHAR2 datatype, the caller of the conversion

procedures must pass the following value as a procedure parameter:

rowid_convert_external constant integer := 1;

Note: Importing a column containing rowids should produce a

message indicating that special attention might be required to

re-establish the validity of the rowids. Special attention is necessary

for all rowids being imported. Thus, database migration by

Export/Import requires special attention for every column

containing rowids (not just for user-defined columns).
D-34 Oracle9i Database Migration

Migration Issues for Physical Rowids
Rowid Conversion Functions
The following functions perform the rowid conversion:

■ ROWID_TO_EXTENDED converts a rowid from the Oracle7 (restricted) format to

the new (extended) format.

■ ROWID_TO_RESTRICTED converts a rowid from the new (extended) format to

the Oracle7 (restricted) format.

■ ROWID_VERIFY checks whether a given rowid can be converted from Oracle7

format to the new format.

The following sections contain detailed information about the ROWID_TO_
EXTENDED and ROWID_VERIFY procedures.

The ROWID_TO_EXTENDED Conversion Procedure ROWID_TO_EXTENDED uses the

following parameters:

■ Rowid - specifies the rowid to be converted (in External Character format).

■ Schema Name - specifies the schema name of the table that contains a row

whose rowid will be converted to the extended format.

■ Table Name - specifies the table name of the table that contains a row whose

rowid will be converted to the extended format.

■ Conversion Type - specifies the type of rowid being converted.

ROWID_TO_EXTENDED returns a new (extended) rowid in External Character

format, and its parameters are interpreted in the following way:

■ If the schema name and table name for the target table are not specified (null),

then ROWID_TO_EXTENDEDattempts to fetch the page specified by the rowid to

be converted. It will treat the file number stored in this rowid as the absolute

file number, which can cause problems if the file has been dropped and its

number has been reused prior to the migration. If the fetched page belongs to a

valid table, then the rowid will be converted to an extended format using the

Data Object ID of this table, but this conversion is very inefficient, and is only

recommended as a last resort, when the target table is not known. You still must

know the correct table name when using the converted value.

■ If the schema name and table name are given (a preferred approach), then

ROWID_TO_EXTENDED will verify SELECT authority on the table and convert

See Also: "Rowid Conversion Types" on page D-34 for more

information
Upgrading an Oracle7 Database Using the MIG Utility D-35

Migration Issues for Physical Rowids
the rowid to an extended format using the Data Object Number of this table.

There is no guarantee that the converted rowid actually references a real row in

this table, neither at the time of conversion nor at the time when the rowid is

used.

■ If a null value is supplied for the rowid, then the procedure ignores the table

specification and returns a null value.

■ If a value of 0, or, more generally, <n>0.<m>0.<p>0 is supplied for rowid, then

the table name is ignored and a restricted rowid of the form 00000000.0000.0000

is returned.

■ If a new rowid is supplied, then the data object in the rowid is verified against

the actual data object number (which depends on the table name specification).

If these two numbers do not match, then the INVALID ROWID error appears;

otherwise, the original rowid is returned.

ROWID_VERIFY A rowid verification procedure, ROWID_VERIFY, is provided. This

procedure uses the same parameters as ROWID_TO_EXTENDED and returns 0 if the

rowid can be converted successfully to extended format; otherwise, it returns 1.

However, ROWID_VERIFYreturns security violation errors, or an "object not found"

error, if the user does not have SELECT authority on the underlying table, or if the

table does not exist. ROWID_VERIFY can be used to identify bad rowids prior to

migration using the ROWID_TO_EXTENDED procedure.

Conversion Procedure Examples
The following are examples of conversion procedures for rowids:

Example 1 Assume a table scott.t contains a column c of ROWID datatype format.

All these rowids reference a single table, scott.t1 .

The values of column c can be converted to extended format using the following

statement:

UPDATE scott.t SET c = DBMS_ROWID.ROWID_TO_EXTENDED(c, ’scott’, ’t1’, 0);

Example 2 In a more general situation, rowids stored in column c may reference

different tables, but the table name can be found based on the values of some other

columns in the same row. For example, assume that the column tname of the table

t contains a name of the table which is referenced by a rowid from column c .
D-36 Oracle9i Database Migration

Migration Issues for Physical Rowids
In this case, the values in column c can be converted to extended format using the

following statement:

UPDATE scott.t SET c = DBMS_ROWID.ROWID_TO_EXTENDED(c, ’scott’, tname, 0);

Example 3 You can use the ROWID_TO_EXTENDEDfunction in the CREATE ... AS
SELECT statement. This use may be desirable in some cases because conversion can

increase the size of the user column of ROWID datatype (typically from 6 bytes to

10 bytes, although this depends on a specific port) which may create indirect rows.

In this case, CREATE ... AS SELECT may be a better choice than UPDATE:

CREATE TABLE scott.tnew (a, b, c)
 AS SELECT a, b, DBMS_ROWID.ROWID_TO_EXTENDED(c, ’scott’, ’t1’, 0) FROM
scott.t;

Example 4 If the target table for rowids stored in column c is not known, then

conversion can be accomplished using the following statement:

UPDATE scott.t SET c = DBMS_ROWID.ROWID_TO_EXTENDED(c, NULL, NULL, 0);

Example 5 The following SQL statement may be used to find bad rowids prior to

conversion:

SELECT ROWID,c FROM scott.t WHERE DBMS_ROWID.ROWID_VERIFY(c, NULL, NULL, 0) =
1;

Snapshot Refresh
The new ROWID datatype format forces all rowid snapshots to perform a complete

refresh when both master and snapshot sites are upgraded to Oracle9i.

Oracle7 Client Compatibility Issues
Oracle7 clients can access a release 8.0 or higher database, and release 8.0 and

higher clients can access an Oracle7 database. Binary and character values of the

pseudo column ROWID and of columns of datatype ROWID that are returned by

See Also: Appendix E, "Database Migration and Compatibility

for Replication Environments" for more information about

replication compatibility
Upgrading an Oracle7 Database Using the MIG Utility D-37

Migration Issues for Physical Rowids
an Oracle7 database to a release 8.0 and higher database are always in restricted

format, because Oracle7 cannot recognize the extended format ROWID.

The DBMS_ROWID package can be used for interpreting the contents of Oracle7

rowids and for creating the rowids in Oracle7 format.

An Oracle7 client accessing a release 8.0 and higher database receives the rowid in

the new (extended) format. Therefore, the client cannot interpret the contents of the

new rowids.

ROWID Migration and Compatibility Issues
For backward compatibility, the restricted form of the ROWID is still supported.

These ROWIDs exist in massive amounts of Oracle7 data, and the extended form of

the ROWID is required only in global indexes on partitioned tables. New tables

always get extended ROWIDs.

It is possible for an Oracle7 client to access a release 8.0 and higher database.

Similarly, a release 8.0 and higher client can access an Oracle7 Server. A client in this

sense can include a remote database accessing a server using database links, as well

as a client 3GL or 4GL application accessing a server.

There is more information on the ROWID_TO_EXTENDED function in the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Accessing an Oracle7 Database from a Release 8.0 and Higher Client
The ROWID values that are returned are always restricted ROWIDs. Also, ROWID

values returned to an Oracle7 server are always restricted ROWIDs.

The following ROWID functionality works when accessing an Oracle7 Server:

■ Selecting a ROWID and using the obtained value in a WHERE clause

■ WHERE CURRENT OF cursor operations

■ Storing ROWIDs in user columns of ROWID or CHAR type

■ Interpreting ROWIDs using the hexadecimal encoding (not recommended, use

the DBMS_ROWID functions)

See Also: Oracle9i Database Administrator’s Guide
D-38 Oracle9i Database Migration

Changes to Initialization Parameters and the Data Dictionary in Release 8.0
Accessing a Release 8.0 or Higher Database from an Oracle7 Client
Release 8.0 and higher returns ROWIDs in the extended format. This means that

you can only:

■ Select a ROWID and use it in a WHERE clause.

■ Use WHERE CURRENT OF cursor operations.

■ Store ROWIDs in user columns of CHAR(18) datatype.

Export/Import
It is not possible for an Oracle7 client to import a release 8.0 or higher table that has

a ROWID column (not the ROWID pseudocolumn), if any row of the table contains

an extended ROWID value.

Changes to Initialization Parameters and the Data Dictionary in Release
8.0

This section lists changes to initialization parameters and the data dictionary in

release 8.0.

Initialization Parameter Changes in Release 8.0
The following sections list changes to initialization parameters in release 8.0.

Renamed Initialization Parameters in Release 8.0
The initialization parameters listed in Table D–1 were renamed in release 8.0:

Table D–1 Initialization Parameters Renamed in Release 8.0

Pre-Release 8.0 Name Release 8.0 and Higher Name

ASYNC_READ DISK_ASYNCH_IO

ASYNC_WRITE DISK_ASYNCH_IO

CCF_IO_SIZE * DB_FILE_DIRECT_IO_COUNT *

DB_FILE_STANDBY_NAME_CONVERT DB_FILE_NAME_CONVERT

DB_WRITERS DBWR_IO_SLAVES

LOG_FILE_STANDBY_NAME_CONVERT LOG_FILE_NAME_CONVERT

SNAPSHOT_REFRESH_INTERVAL JOB_QUEUE_INTERVAL
Upgrading an Oracle7 Database Using the MIG Utility D-39

Changes to Initialization Parameters and the Data Dictionary in Release 8.0
* The units are different for CCF_IO_SIZE (bytes) and DB_FILE_DIRECT_IO_COUNT
(database blocks).

Initialization Parameters Obsolete in Release 8.0
The following initialization parameters were made obsolete in release 8.0:

Static Data Dictionary View Changes in Release 8.0
The following sections list changes to static data dictionary views in release 8.0.

Static Data Dictionary Views Obsolete in Release 8.0
The following static data dictionary views were made obsolete in release 8.0:

CHECKPOINT_PROCESS FAST_CACHE_FLUSH

GC_DB_LOCKS GC_FREELIST_GROUPS

GC_ROLLBACK_SEGMENTS GC_SAVE_ROLLBACK_LOCKS

GC_SEGMENTS GC_TABLESPACES

INIT_SQL_FILES IO_TIMEOUT

IPQ_ADDRESS IPQ_NET

LM_DOMAINS LM_NON_FAULT_TOLERANT

MLS_LABEL_FORMAT OPTIMIZER_PARALLEL_PASS

PARALLEL_DEFAULT_MAX_SCANS PARALLEL_DEFAULT_SCAN_SIZE

POST_WAIT_DEVICE SEQUENCE_CACHE_HASH_BUCKETS

UNLIMITED_ROLLBACK_SEGMENTS USE_IPQ

USE_POST_WAIT_DRIVER USE_READV

USE_SIGIO V733_PLANS_ENABLED

Note: An attempt to start a release 9.2 database using one or more

of these obsolete initialization parameters will result in an error,

and the database will not start.

ALL_HISTOGRAMS DBA_HISTOGRAMS

DEFCALL USER_HISTOGRAMS
D-40 Oracle9i Database Migration

Database Migration and Compatibility for Replication Environm
E

Database Migration and Compatibility for

Replication Environments

This appendix describes the steps that you must complete to upgrade a replication

environment from Oracle7 to Oracle9i. This appendix covers the following topics:

■ Database Migration Overview for Replication

■ Upgrading All Sites at Once

■ Upgrading Incrementally

■ Upgrading to Primary Key Materialized Views

■ Features Requiring an Upgrade to a Higher Release of Oracle

■ Obsolete Procedures

Note: This appendix addresses upgrading from Oracle7 to

Oracle9i. It does not address upgrading from release 8.0 or higher

to Oracle9i. For more information about upgrading from release 8.0

or higher to the current Oracle9i release, see Chapter 3, "Upgrading

a Database to the New Oracle9i Release".
ents E-1

Database Migration Overview for Replication
Database Migration Overview for Replication
In some cases, you may find it easiest to upgrade your replication environment,

particularly the multimaster component of your environment, in one step. Typically,

this type of upgrade is only possible for small configurations. If you have a large

configuration, then you might consider upgrading an existing Oracle7 replication

environment to Oracle9i incrementally. Replication and administrative operations

can be run successfully in a mixed Oracle7, Oracle8, Oracle8i, and Oracle9i
replication environment.

To successfully interoperate, however, you must observe the following restrictions:

■ Oracle9i materialized view sites can only interact with Oracle7 release 7.3.3 or

higher master sites.

■ Oracle9i master sites can only interact with Oracle7 release 7.3.4 or higher

materialized view sites.

■ Oracle9i master sites can only interact with Oracle7 release 7.3.3 or higher

master sites.

The following upgrade methods are supported for replication environments:

■ Manual Upgrade

■ Database Upgrade Assistant

■ Full database export from Oracle7 and import to Oracle9i

After upgrading a master site to Oracle9i, perform a complete refresh of all

associated materialized view sites. Downgrading a replication environment from

Oracle9i to Oracle7 is not supported.

Certain Oracle9i replication features require that all sites be successfully upgraded

to at least Oracle8 release 8.0 before the features can be used. For example, before

you can use primary key materialized views, both the materialized view site and its

associated master site must be upgraded to at least Oracle8 release 8.0. The simple

materialized views with subqueries feature and the master table reorganization

procedures require that you first upgrade from rowid materialized views to

primary key materialized views.

Note: In past releases of Oracle, "materialized views" were called

"snapshots". The terms are synonymous. In this appendix,

"materialized view" is used, even when discussing past releases.
E-2 Oracle9i Database Migration

Upgrading All Sites at Once
Similarly, certain Oracle9i replication features require that all sites be successfully

upgraded to Oracle8i or higher before the features can be used, and certain Oracle9i
replication features require that all sites be successfully upgraded to Oracle9i before

the features can be used. For example, to replicate objects based on user-defined

types, all sites must be Oracle9i. These features are listed in "Features Requiring an

Upgrade to a Higher Release of Oracle" on page E-18.

Upgrading All Sites at Once
This section describes upgrading all master sites in your multimaster environment

to Oracle9i at once. Any materialized view sites that you do not also upgrade to

Oracle9i must be upgraded to Oracle7 release 7.3.4 or higher. If you want to

upgrade your sites incrementally instead, see "Upgrading Incrementally" on

page E-6.

Complete the following steps to upgrade all master sites and (optionally)

materialized view sites at once:

1. Stop all propagation and refreshing from materialized view sites to all masters

that you are upgrading. You can do this, for example, by temporarily

suspending or "breaking" entries in the job queue that control automated

propagation and refreshing at the materialized view sites. You can use the

DBMS_JOB.BROKEN procedure to break a job.

All deferred transactions at the materialized view sites must be pushed before

the upgrade of the master site begins.

See Also: Consult the following documentation for information

about Oracle Replication:

■ For conceptual information about Oracle Replication, see

Oracle9i Replication. This book also contains information about

new features in each major release of Oracle from release 8.0 to

Oracle9i

■ For information about how to complete the steps described in

this appendix using the Replication Management tool in Oracle

Enterprise Manager, see the Replication Management tool

online help.

■ For information about how to complete the steps described in

this appendix using the replication management API, see the

Oracle9i Replication Management API Reference.
Database Migration and Compatibility for Replication Environments E-3

Upgrading All Sites at Once
2. Resolve and re-execute any errors in the local error queue at each master site

until it is empty.

3. Quiesce the replication environment by executing the SUSPEND_MASTER_
ACTIVITY procedure in the DBMS_REPCATpackage at the master definition site

for all master replication groups.

4. Upgrade all master sites using one of the upgrade methods discussed in

Chapter 3.

Alternatively, you can use Export/Import. To export a full database from

Oracle7 release 7.3.3 or higher and import to Oracle9i, complete these steps:

a. Export the Oracle7 release 7.3.3 or higher database to a dump file using the

release 7.3 Export utility under the SYSTEM schema with FULL=y.

b. Import the dump file to the Oracle9i database using the Oracle9i Import

utility under the SYSTEM schema with FULL=y.

You may also export data from individual Oracle7 tables, import the data to

Oracle9i tables, and then configure those tables as masters in an Oracle9i
replication environment using standard replication procedures.

If you use export/import, then you may need to drop and re-create the

materialized views that are based on the master tables.

See Also: The following sections in the Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data:

■ Chapter 4, "Asynchronously Propagating DML Changes

Among Master Sites"

■ Chapter 4, "Replication Administration Usage Notes"

See Also: The following section in the Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 7, "Manually

Resolving an Error"

See Also: The following section in the Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 4, "Suspending

Replication Activity"
E-4 Oracle9i Database Migration

Upgrading All Sites at Once
5. Using the Replication Management tool Setup Wizard or setup scripts, set up

the multimaster replication environment:

a. Create a primary master replication administrator account and register this

user as the replication administrator, propagator, and receiver on all master

sites.

b. Set up the appropriate database links connecting all sites.

6. Using Replication Management tool or the replication management API,

regenerate replication support for each replication base object. If you use the

replication management API, then run the GENERATE_REPLICATION_
SUPPORT procedure in the DBMS_REPCAT package. Among other activities,

generating replication support establishes the registered propagator as the

owner of generated objects.

7. Using Replication Management tool or the replication management API,

resume replication activity for the replication environment. If you use the

replication management API, then run the RESUME_MASTER_ACTIVITY
procedure in the DBMS_REPCAT package.

8. You must now upgrade all associated materialized view sites to Oracle7

release 7.3.4 or upgrade these sites to Oracle9i. Upgrading these materialized

view sites to Oracle9i is preferable.

9. Perform a complete refresh on all materialized views at all materialized view

sites that have master sites upgraded to Oracle9i. Before the refresh, make sure

you have "unbroken" any jobs that you may have "broken" during the upgrade

of your materialized view sites by calling the DBMS_JOB.BROKEN procedure.

See Also:

■ Chapter 8, "Database Migration Using Export/Import"

■ Oracle9i Database Utilities for general information about

performing an export/import

See Also:

■ Your Oracle7 documentation for information about upgrading

your materialized view sites to release 7.3.4

■ "Incremental Upgrade of Materialized View Sites" on page E-8

for instructions on upgrading your materialized view sites to

Oracle9i
Database Migration and Compatibility for Replication Environments E-5

Upgrading Incrementally
If your materialized views have been defined with the REFRESH FORCE option,

then their next attempted refresh will be a complete refresh automatically.

Materialized views defined with the REFRESH FAST option must be manually

refreshed using the DBMS_REFRESH.REFRESH procedure or other refresh

procedures.

If you are using procedural replication at your master sites that is initiated at

materialized view sites, then regenerate materialized view support on all

packages and package bodies used for procedural replication.

10. Drop any administrative accounts and database links that you were using to

maintain your Oracle7 multimaster replication environment that are not needed

in your Oracle9i environment. Unnecessary privileges may also be revoked. Be

careful not to drop accounts that are needed to maintain any Oracle7

materialized view sites.

Upgrading Incrementally
It is possible to incrementally upgrade your replication environment. However, you

must carefully analyze the interdependencies between sites to ensure that they can

continue to interoperate throughout the upgrade. Table E–1 describes the conditions

that must be met to allow Oracle7 and Oracle9i replication sites to interoperate.

Note: If you are able to upgrade all of a master’s materialized

view sites to Oracle9i when the master site is upgraded to Oracle9i
(that is, you do not need to upgrade the materialized view sites

incrementally), then you can alternatively drop the materialized

view logs for the master and re-create them as primary key

materialized view logs. The materialized views at each materialized

view site should be altered to convert them to primary key

materialized views. You can then do a complete refresh for each

primary key materialized view. See "Upgrading to Primary Key

Materialized Views" on page E-15 for additional details.

Table E–1 Interoperability in a Replication Environment

Environment Action Condition

Multimaster Upgrade master site
from Oracle7 to Oracle9i.

All other master sites must be Oracle7
release 7.3.3 or higher.
E-6 Oracle9i Database Migration

Upgrading Incrementally
To avoid interoperability problems within a replication environment, Oracle

Corporation strongly recommends that, if you must perform an incremental

upgrade, you perform it in the following order:

1. Upgrade all of your master sites to Oracle7 release 7.3.3 or higher and complete

the steps in "Preparing Oracle7 Master Sites for an Incremental Upgrade" on

page E-7 to prepare your Oracle7 master sites for an incremental upgrade.

2. Incrementally upgrade all materialized view sites to Oracle9i by completing the

steps in "Incremental Upgrade of Materialized View Sites" on page E-8.

3. Incrementally upgrade all master sites to Oracle9i by completing the steps in

"Incremental Upgrade of Master Sites" on page E-10.

Preparing Oracle7 Master Sites for an Incremental Upgrade
Before beginning an incremental upgrade of Oracle7 master or materialized view

sites, your Oracle7 release 7.3.3 or higher master sites must be configured so that all

replication administration and propagation is done within the security context of a

single user at each site. Additionally, this primary master replication administrator

must have the same username and password at all Oracle7 and Oracle9i sites.

Your Oracle7 master sites may already be configured in this manner. If not, then you

must complete the following steps:

1. Choose a primary master replication administrator for your replication

environment. You may select your current replication administrator or create a

new user.

Master with
dependent materialized
views

Upgrade master site
from Oracle7 to Oracle9i.

All dependent materialized view sites
must be Oracle7 release 7.3.4 or higher.

Master with
dependent materialized
views

Upgrade materialized
view site from Oracle7 to
Oracle9i.

Associated master sites must be
Oracle7 release 7.3.3 or higher.

See Also: Your Oracle7 documentation for information about

upgrading your Oracle7 sites to release 7.3.3 or higher

Table E–1 (Cont.) Interoperability in a Replication Environment

Environment Action Condition
Database Migration and Compatibility for Replication Environments E-7

Upgrading Incrementally
2. At each master site, grant the required privileges to the primary master

replication administrator using both DBMS_REPCAT_ADMIN.GRANT_ADMIN_
ANY_REPGROUP and DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT.

3. If they do not already exist, then you must create the following database links

from each master site to all other master sites in the multimaster environment:

– A public database link, created as SYS, that includes a valid global database

name, as well as a USING clause with a valid SQL*Net 2.3 TNS alias.

– A private database link, created as SYS, that includes a valid global

database name, as well as a CONNECT TO clause with the username and

password of the primary master replication administrator.

– A private database link, created by the primary master replication

administrator, that includes a valid global database name, as well as a

CONNECT TOclause with the username and password of the primary master

replication administrator.

Incremental Upgrade of Materialized View Sites
Before you can upgrade a materialized view site to Oracle9i, its associated master

site must have been upgraded to Oracle7 release 7.3.3 or higher and the master site

must have been fully prepared for an incremental upgrade.

To incrementally upgrade your Oracle7 materialized view sites to Oracle9i,
complete the following steps at each materialized view site:

1. Isolate the materialized view site from the replication environment by

completing the following steps:

a. Stop all local updates to updatable materialized views at the materialized

view site.

b. In a separate session, lock each materialized view’s base table to prevent

further transactions.

See Also:

■ Your Oracle7 documentation for information about upgrading

your Oracle7 sites to release 7.3.3 or higher

■ "Preparing Oracle7 Master Sites for an Incremental Upgrade"

on page E-7 for information about preparing your master sites
E-8 Oracle9i Database Migration

Upgrading Incrementally
c. Empty the local deferred transaction queue by pushing the queue to the

materialized view site’s master. See the following section in the Oracle7
Server Distributed Systems Manual, Volume II: Replicated Data: Chapter 5,

"When Changes Are Propagated".

d. Stop all propagation from the materialized view site to its master, for

example, by temporarily suspending or "breaking" entries in the job queue

that control automated propagation and refreshing of the materialized

views at the materialized view site. You can use the DBMS_JOB.BROKEN
procedure to break a job. See the following section in the Oracle7 Server
Distributed Systems Manual, Volume II: Replicated Data: Chapter 4,

"Replication Administration Usage Notes".

2. Perform one of the upgrade methods discussed in Chapter 3.

Alternatively, you can use Export/Import. To export a full database from

Oracle7 release 7.3.3 or higher and import to Oracle9i, complete these steps:

a. Export the Oracle7 release 7.3.3 or higher database to a dump file using the

release 7.3 Export utility under the SYSTEM schema with FULL=y.

b. Import the dump file to the Oracle9i database using the Oracle9i Import

utility under the SYSTEM schema with FULL=y.

You may also export data from individual Oracle7 tables, import the data to

Oracle9i tables, and then configure those tables as masters in an Oracle9i
replication environment using standard replication procedures.

3. Use the Replication Management tool Setup Wizard or execute the appropriate

replication management API calls to complete the following actions:

■ Register the primary materialized view replication administrator as the

replication administrator and propagator for the materialized view site. If

you are using the replication management API, then use the REGISTER_
PROPAGATOR procedure in the DBMS_DEFER_SYS package.

■ Register a receiver account at the associated master site. For materialized

views sites with Oracle7 master sites, your receiver at the master site must

be the primary master replication administrator that you prepared in the

See Also:

■ Chapter 8, "Database Migration Using Export/Import"

■ Oracle9i Database Utilities for general information about

performing an export/import
Database Migration and Compatibility for Replication Environments E-9

Upgrading Incrementally
previous section. If you are using the Replication Management tool Setup

Wizard, then select the customize option to specify this receiver. If you are

using the replication management API, then use the REGISTER_USER_
REPGROUP procedure in the DBMS_REPCAT_ADMIN package.

4. Create the appropriate database links from the materialized view site to the

master site.

Specifically, you should create a PUBLIC database link from the materialized

view site to the master site; doing so makes defining your private database links

easier because you do not need to include the USING clause in each link. You

also need private database links from the materialized view administrator to

the proxy administrator at the master site and from the propagator to the

receiver at the master site.

5. Use the Replication Management tool or the appropriate replication

management API calls to regenerate materialized view replication support. If

you use the replication management API, then run the GENERATE_MVIEW_
SUPPORT procedure in the DBMS_REPCAT package. Among other activities,

generating replication support establishes the registered propagator as the

owner of generated objects.

6. Use the Replication Management tool or the appropriate replication

management API calls to reschedule propagation and/or refresh intervals with

the master and enable local updates where appropriate. If you use the

replication management API, then run the SCHEDULE_PUSH procedure in the

DBMS_DEFER_SYS package to set the propagation schedule and the MAKE
procedure in the DBMS_REFRESHpackage to set the refresh interval for a refresh

group.

7. If you used the DBMS_JOB.BROKEN procedure to help isolate your master site

in Step 1, then you must "unbreak" your jobs to resume your replication activity

from your materialized view sites.

8. Drop any administrative accounts and links that you were using to maintain

your Oracle7 replication environment that are not needed in your Oracle9i
environment. Unnecessary privileges may also be revoked.

9. Complete all of the steps in this procedure for your other materialized view

sites that have not yet been upgraded, according to your schedule.

Incremental Upgrade of Master Sites
Before upgrading a master site from Oracle7 to Oracle9i, you must meet the

following conditions:
E-10 Oracle9i Database Migration

Upgrading Incrementally
■ All other master sites in a multimaster environment must be running Oracle7

release 7.3.3 or higher.

■ You must have completed the instructions in "Preparing Oracle7 Master Sites

for an Incremental Upgrade" on page E-7.

■ Any dependent materialized view sites must be running Oracle7 release 7.3.4 or

higher.

To incrementally upgrade your Oracle7 master sites to Oracle9i, complete the

following steps:

1. Pick a master site to upgrade. You should upgrade your master definition site

first.

2. If you are using procedural replication, then record the configuration

information and locations (schemas) of existing procedure wrappers. This

information will be used later.

3. Isolate the master site from the replication environment. To do this, complete

the following steps:

a. Stop updates to the master site by either calling DBMS_REPCAT.SUSPEND_
MASTER_ACTIVITY at the master definition site for all master replication

groups, or by calling DBMS_DEFER_SYS.UNSCHEDULE_EXECUTION (for

Oracle7 sites) or DBMS_DEFER_SYS.UNSCHEDULE_PUSH (for Oracle8 and

higher sites) at every remote master site and dependent materialized view

site. You should also refrain from executing any administrative operations

at the master definition site that may affect the master site being upgraded.

b. Prevent DML activity at the master site being upgraded.

See Also: Your Oracle7 documentation for information about

upgrading your Oracle7 sites

See Also: The following sections in Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data:

■ Chapter 4, "Suspending Replication Activity"

■ Chapter 4, "Removing a Master Site from the Deferred

Execution List"
Database Migration and Compatibility for Replication Environments E-11

Upgrading Incrementally
c. Empty the local deferred transaction queue by manually pushing the queue

to all sites.

d. Resolve and re-execute any errors in the local error queue until it is empty.

e. Stop any refreshes of the dependent materialized view sites from occurring

by "breaking" entries in the job queue at each materialized view site that

control automated propagation and refreshing at the materialized view site.

You can use the DBMS_JOB.BROKEN procedure to break a job.

4. Upgrade the master site using one of the upgrade methods discussed in

Chapter 3.

Alternatively, you can use Export/Import. To export a full database from

Oracle7 release 7.3.3 or higher and import to Oracle9i, follow these steps:

a. Export the Oracle7 release 7.3.3 or higher database to a dump file using the

release 7.3 Export utility under the SYSTEM schema with FULL=y.

b. Import the dump file to the Oracle9i database using the Oracle9i Import

utility under the SYSTEM schema with FULL=y.

You may also export data from individual Oracle7 tables, import the data to

Oracle9i tables, and then configure those tables as masters in an Oracle9i
replication environment using standard replication procedures.

See Also: The following section in Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 4,

"Asynchronously Propagating DML Changes Among Master Sites"

See Also: The following section in Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 4, "Forcing

Execution of the Deferred Transaction Queue"

See Also: The following section in the Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 7, "Manually

Resolving an Error"

See Also: The following section in the Oracle7 Server Distributed
Systems Manual, Volume II: Replicated Data: Chapter 4, "Replication

Administration Usage Notes"
E-12 Oracle9i Database Migration

Upgrading Incrementally
If you use export/import, then you may need to drop and re-create the

materialized views that are based on the master tables.

5. Use the Replication Management tool Setup Wizard or the replication

management API to register your primary master replication administrator as

the replication administrator, propagator, and receiver for the master site.

Database links from the primary master replication administrator to the

primary master replication administrator at all other Oracle7 and Oracle9i
master sites should already exist if you prepared your Oracle 7 master site for

compatibility with Oracle9i using the directions in "Preparing Oracle7 Master

Sites for an Incremental Upgrade" on page E-7.

6. If you are not already in a quiesced state, then use Replication Management tool

or the replication management API to suspend all replication activity for all

master groups. If you use the replication management API, then run the

SUSPEND_MASTER_ACTIVITY procedure in the DBMS_REPCAT package at the

master definition site for all master groups.

7. Use the Replication Management tool or the replication management API to

regenerate replication support for each replicated object.

If any sites in the replication environment are still running Oracle7, then you

must set the min_communication parameter to false when generating

replication support. The min_communication parameter should only be set to

true (the default) when all sites have been upgraded to Oracle9i (or in a mixed

environment with Oracle8 and higher sites). If you use the replication

management API, then run the GENERATE_REPLICATION_SUPPORT
procedure in the DBMS_REPCAT package. Among other activities, generating

replication support establishes the registered propagator as the owner of

generated objects.

8. If you are using procedural replication, then check your remaining Oracle7

master sites to determine whether the wrappers have been moved (you created

See Also:

■ Chapter 8, "Database Migration Using Export/Import"

■ Oracle9i Database Utilities for general information about

performing an export/import

See Also: Oracle9i Replication for more information minimum

communication
Database Migration and Compatibility for Replication Environments E-13

Upgrading Incrementally
a list of wrappers in Step 2). If they have been moved, then create a synonym in

their old location (in the schema of either the replication administrator or the

table owner, depending on whether the site previously used the system-based

or user-based model) pointing to the new location in the schema of the primary

replication administrator. Confirm that necessary object privileges have been

granted to access the new owner and locations. If you are also using procedural

replication that is initiated at materialized view sites, then regenerate

materialized view support on all packages and package bodies used for

procedural replication at these materialized view sites.

9. If you have isolated the master by unscheduling propagation to other masters

and from other masters, then reschedule propagation by executing DBMS_
DEFER_SYS.SCHEDULE_EXECUTION (for Oracle7 sites) or DBMS_DEFER_
SYS.SCHEDULE_PUSH (for Oracle8 and higher sites) at all master sites.

10. Use the Replication Management tool or the replication management API to

resume replication activity for each master group. If you use the replication

management API, then run the RESUME_MASTER_ACTIVITY procedure in the

DBMS_REPCAT package.

11. Perform a complete refresh on all materialized views after their master site has

been upgraded to Oracle9i. Because of the new rowid format introduced in

Oracle8, all the materialized view logs of master tables are truncated during the

upgrade.

12. If you used the DBMS_JOB.BROKEN procedure to help isolate your master site

in Step 3, then "unbreak" your jobs to resume your replication activity from

your materialized view sites.

If your materialized views have been defined with the REFRESH FORCE option,

then their next attempted refresh will be a complete refresh automatically.

Materialized views defined with the REFRESH FAST option must be manually

refreshed using the DBMS_REFRESH.REFRESH procedure or other refresh

procedures.
E-14 Oracle9i Database Migration

Upgrading to Primary Key Materialized Views
13. Drop any administrative accounts and links that you were using to maintain

your Oracle7 multimaster replication environment that are not needed in your

Oracle9i environment. Unnecessary privileges may also be revoked. Be careful

not to drop accounts that are needed to maintain any Oracle7 materialized view

sites or master sites.

14. Complete all of the steps in this procedure for your other master sites that have

not yet been upgraded, according to your schedule.

Upgrading to Primary Key Materialized Views
When a materialized view site and its master have been upgraded to Oracle9i, you

can upgrade your rowid materialized views to Oracle9i primary key materialized

views. To do this, you must first alter the materialized view logs for each master

table to log primary key information, as well as rowid information, when DML is

performed on the master. When this is completed at your master sites, you can

incrementally convert your Oracle9i materialized view sites by altering the

materialized views to convert them to primary key materialized views. Oracle9i
masters that have been altered to log primary key as well as rowid information can

support Oracle7 rowid materialized views as well as Oracle9i rowid and primary

key materialized views simultaneously to allow for an incremental upgrade.

Note: If you are able to upgrade all of the master’s materialized

view sites to Oracle9i when the master site is upgraded to Oracle9i
(that is, you do not need to upgrade the materialized view sites

incrementally), then you can alternatively drop the materialized

view logs for the master and re-create them as primary key

materialized view logs. The materialized views at each materialized

view site should be altered to convert them to primary key

materialized views. You can then do a complete refresh for each

primary key materialized view. See "Upgrading to Primary Key

Materialized Views" on page E-15 for additional details.

Note: A primary key materialized view cannot be converted or

downgraded to a rowid materialized view.
Database Migration and Compatibility for Replication Environments E-15

Upgrading to Primary Key Materialized Views
Primary Key Materialized View Conversion at Master Sites
To support primary key materialized views, complete the following steps at the

Oracle9i master site:

1. Define and enable a primary key constraint on each master table that does not

already have a primary key constraint enabled.

2. Alter the materialized view log for each master table supporting fast refresh to

include primary key information using the ALTER MATERIALIZED VIEW LOG
statement.

For example, the following statement alters an existing rowid materialized view

log to also record primary key information:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 ADD PRIMARY KEY;

Primary Key Materialized View Conversion at Materialized View Sites
After the Oracle9i master sites have been configured to support primary key

materialized views, complete the following steps at the Oracle9i materialized view

sites:

1. Isolate the materialized view site from the replication environment by

completing the following steps:

a. Stop all local updates to updatable materialized views at the materialized

view site.

b. Empty the local deferred transaction queue by pushing the queue to the

materialized view site’s master.You can use the DBMS_DEFER_SYS.PUSH
procedure to push the deferred transactions. See the Oracle9i Replication
Management API Reference for more information.

See Also: ALTER MATERIALIZED VIEW LOG in the Oracle9i SQL
Reference for additional information

Note: If you do not complete Steps 1 and 2, then an error is raised

when you execute the ALTER MATERIALIZED VIEW statement at

the materialized view sites to convert to primary key materialized

views.
E-16 Oracle9i Database Migration

Upgrading to Primary Key Materialized Views
c. Stop all propagation from the materialized view site to its master by, for

example, temporarily suspending or "breaking" entries in the job queue that

control automated propagation and refreshing of the materialized views at

the materialized view site. You can use the DBMS_JOB.BROKEN procedure

to break a job. See the Oracle9i Supplied PL/SQL Packages and Types Reference
for more information.

2. If you are converting any read-only rowid materialized views to primary key

materialized views and these rowid materialized views do not include all the

columns of the primary key, then drop and re-create the read-only materialized

views with all the primary key columns.

3. Perform a fast refresh of all materialized views that can be fast refreshed to

remove the need for any remaining rowid references in the master materialized

view log.

4. Use the ALTER MATERIALIZED VIEW statement to convert rowid materialized

views to primary key materialized views.

For example, the following statement changes a rowid materialized view to a

primary key materialized view:

ALTER MATERIALIZED VIEW hr.employees_mv
 REFRESH WITH PRIMARY KEY;

5. Resume replication by rescheduling propagation and/or materialized view

refresh with the master and enabling local updates where appropriate. If you

use the replication management API, then run the SCHEDULE_PUSH procedure

in the DBMS_DEFER_SYSpackage to set the propagation schedule and the MAKE
procedure in the DBMS_REFRESHpackage to set the refresh interval for a refresh

group.

6. If you used the DBMS_JOB.BROKENprocedure to help isolate you master site in

Step 1, then you need to "unbreak" your jobs to resume your replication activity

from your materialized view sites.

See Also: Oracle9i Replication for more information on rowid

materialized views

See Also: Oracle9i SQL Reference for the complete syntax of

ALTER MATERIALIZED VIEW
Database Migration and Compatibility for Replication Environments E-17

Features Requiring an Upgrade to a Higher Release of Oracle
Features Requiring an Upgrade to a Higher Release of Oracle
Oracle adds new features to each major release of the Oracle database server. The

following sections list the features that can only be used if you upgrade your

database to a higher release of Oracle.

Features Requiring Oracle9 i
All replication sites involved must be running Oracle9i to use the following

features:

■ Add new master sites without quiescing the master group

■ Add new columns to a master table without quiescing its master group

■ Alter a master table by making a safe change to it in a single master

environment without quiescing the master group

■ Replication of user-defined types and the objects on which they are based

■ Multi-tier updatable materialized views

■ Row-level dependency tracking for parallel propagation

■ Replication of tables using CHAR column length semantics or Unicode

■ Fast refresh of the following types of materialized views:

– Materialized views with one to many subqueries

– Materialized views with many to many subqueries

– Materialized views with unions

Features Requiring Oracle8 i or Higher
Master sites must be running Oracle8i release 8.1.7 or higher to use the following

feature:

■ Extended availability for single master replication environments. This feature

reduces the number of administration operations that require you to quiesce a

master group in a single master replication environment. A complete list of

these operations is in the "What’s New in Replication" section of the Oracle9i
Replication.

See Also: The "What’s New in Replication" section of Oracle9i
Replication for more information about these new replication

features
E-18 Oracle9i Database Migration

Features Requiring an Upgrade to a Higher Release of Oracle
All replication sites involved must be running Oracle8i release 8.1.5 or higher to use

the following features:

■ Instantiation of materialized view sites using deployment templates

■ Parameterized materialized view deployment templates

■ Column subsetting of updatable materialized views

Features Requiring Oracle8 or Higher
All replication sites involved must be running Oracle8 or higher to use the

following features:

■ Parallel propagation of deferred transactions

■ Reduced data propagation:

– Use of the min_communication parameter in various procedures in the

DBMS_REPCAT package and the DBMS_OFFLINE_SNAPSHOT package

– Use of the SEND_OLD_VALUES and COMPARE_OLD_VALUES procedures in

the DBMS_REPCAT package

■ Data subsetting by creating simple materialized views with subqueries

■ Replication of LOB data types

■ Primary key materialized views

■ Global authentication and privileged database links

■ Use of the VALIDATE function in the DBMS_REPCAT package

■ Reorganizing tables with capability of fast refresh

■ Replication of partitioned tables and indexes

Features That Work with Oracle7 and Higher Releases
The following features work automatically environments where some sites are

running Oracle7 while other sites are running Oracle8 and higher, but these features

only apply to the Oracle8 and higher sites:

■ Fine-grained quiesce

■ Materialized view registration at master sites
Database Migration and Compatibility for Replication Environments E-19

Obsolete Procedures
Obsolete Procedures
The following replication management API procedures are obsoleted in Oracle8 and

higher releases:

■ DBMS_REPCAT.GENERATE_REPLICATION_PACKAGE

■ DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER

■ DBMS_REPCAT_ADMIN.GRANT_ADMIN_REPGROUP

■ DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_REPGROUP

■ DBMS_REPCAT_ADMIN.REVOKE_ADMIN_REPGROUP

■ DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_REPGROUP

■ DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT

■ DBMS_REPCAT_AUTH.REVOKE_SURROGATE_REPCAT

■ DBMS_DEFER_SYS.EXECUTE

■ DBMS_DEFER_SYS.SCHEDULE_EXECUTION

Note: All master groups at Oracle7 sites are quiesced if any

master group at that site is quiesced.

Note: Oracle7 materialized views are not registered automatically

at Oracle9i sites but can be manually registered using the DBMS_
MVIEW.REGISTER_MVIEW procedure at the master site. See

Oracle9i Replication Management API Reference for more information

about using this procedure.
E-20 Oracle9i Database Migration

Index

Numerics
2 GB and larger files

operating system dependencies, 5-51

32-bit to 64-bit conversion. See word size

A
Ada. See SQL*Module for Ada

Advanced Queuing

compatibility, 5-37

privileges, 5-37

rule based subscriptions, 5-38

interoperability, 5-37

sender’s ID column, 5-38

upgrading, 4-17

AL24UTFFSS character set

desupported in Oracle9i, 5-33

ALTER DATABASE CONVERT statement, 3-21,

D-2

rerunning, D-30

ALTER DATABASE OPEN RESETLOGS MIGRATE

statement, 3-22, D-3

ALTER DATABASE RESET COMPATIBILITY

statement, 5-9, 5-10

ALTER DATABASE RESET LOGS statement, D-5

ALTER TABLE statement

bitmap index invalidation, 5-30

ANALYZE TABLE VALIDATE STRUCTURE

statement

change in release 8.1, 5-21

applications

client/server configurations

upgrading, 6-3

compatibility, 5-19, 6-2

development

role during the upgrade, 1-8

index-organized tables

compatibility, 5-20

interoperability, 5-19

linking with newer libraries, 6-6

OCI

compatibility, 5-21

interoperability, 5-21

physical ROWIDs and UROWIDs, 5-20

PL/SQL

compatibility, 5-23

interoperability, 5-23

precompiler

compatibility, 5-22

interoperability, 5-22

running against older server, 6-5

upgrading, 6-1

compatibility rules, 6-4

options, 6-6

relinking rules, 6-4

AQ. See Advanced Queuing

archive log destination parameters

new in release 8.1, A-11

archived redo logs

analyzing

from other databases, 5-47

compatibility, 5-46

rearchiving, 5-46

archiving

error detection behavior, 5-46

AUDIT_TRAIL initialization parameter

for upgrading, D-25
Index-1

automatic segment-space managed tablespaces

change in compatibility level, 5-15

automatic segment-space managed tablespaces with

LOBs

downgrading, 7-7

B
backups

after upgrading, 4-2

before upgrading, D-14

compatibility, 5-43

EBU, 5-44

preparing a strategy, 2-8

Recovery Manager and EBU, 5-44

backward compatibility

of ROWIDs, D-38

bitmap indexes

invalidations, 5-30

during upgrade, 4-20

bitmap secondary indexes

dropping from index-organized tables, 7-9

blocks

block size

DB_BLOCK_SIZE initialization

parameter, D-4

minimums for upgrading, D-4

C
CATALOG5.SQL script

obsolete, 5-30

CATALOG6.SQL script

obsolete, 5-30

CATALOG.SQL script, 3-23, 7-28, D-3

CATCLUST.SQL script, 7-28

CATEXP7.SQL script, 8-2

CATPARR.SQL script, 7-28

CATPROC.SQL script, 3-23, 7-28, D-3

CATREP.SQL script, 7-28

change passwords

for oracle-supplied accounts, 4-2

changes to initialization parameters, D-39

changes to static data dictionary views, D-40

CHAR

maximum size

change, 5-19

CHARACTER keyword

behavior differences, 5-26

character sets

upgrading the database, 3-10

varying-width

CLOBs and NCLOBs, 5-31

CHECK_ONLY

MIG utility option, D-9

ckpdom.ora file, B-19

ckpreg.ora file, B-19

ckptop.ora file, B-19

client-server configurations, 1-9

CLOBs

compatibility, 5-31

collections

collection columns

user-specified storage, 5-35

collection locators

compatibility, 5-35

command line

command-line options

MIG utility, D-9

commands

COMMIT FORCE, D-5

ROLLBACK FORCE, D-5

comments

differences between Server Manager and

SQL*Plus, C-7

COMMIT command

differences between Server Manager and

SQL*Plus, C-14

COMMIT FORCE command, D-5

COMMIT keyword

behavior differences, 5-26

compatibility, 5-1

Advanced Queuing, 5-37

ALTER DATABASE RESET COMPATIBILITY

statement, 5-9

ANALYZE VALIDATE STRUCTURE

statement, 5-21

applications, 5-19, 6-2

index-organized tables, 5-20

physical ROWIDs and UROWIDs, 5-20
Index-2

archived redo logs, 5-46

automatic segment-space managed

tablespaces, 5-15

backup, 5-43

change in maximum size

CHAR, 5-19

RAW, 5-19

VARCHAR2, 5-19

checking level for features, 5-10

compatibility level, 5-6

features requiring, 5-10

COMPATIBLE initialization parameter, 5-2

CREATE TABLE behavior change, 5-37

data dictionary, 5-29

datafiles, 5-27

datatypes, 5-31

date columns in dynamic performance

views, 5-32

dictionary managed tablespaces, 5-15

downgrading, 5-6

Export/Import, 8-2

Heterogeneous Services agents, 5-48

initialization parameters, A-5

LOB index clause, 5-31

LOBs, 5-31

CLOBS and NCLOBs, 5-31

LogMiner, 5-46

materialized views, 5-47

nested tables, 5-35

NLS and NCHAR environment variables, 5-34

object types, 5-16

OCI, 5-21

link line, 5-21

thread safety, 5-21

optimization, 5-38

Oracle Managed Files, 5-16

Oracle OLAP, 5-16

PL/SQL, 5-23

integrated SQL analysis, 5-24

PLSQL_V2_COMPATIBILITY initialization

parameter, 5-25

precompilers, 5-22

recovery, 5-43

removing incompatibilities, 7-2

replication, 5-48

resetting for database, 7-20

ROWID issues, D-38

rowids, 5-32

schema objects, 5-30

scripts

UTLCHN1.SQL, 5-36

UTLEXPT1.SQL, 5-37

standby database, 5-45

STARTUP, 5-27

tablespaces, 5-27

user-defined datatypes, 5-34

varrays

stored as LOBs, 5-35

compatibility level

checking, 7-2

resetting, 5-10

COMPATIBLE initialization parameter, 5-2

checking, 5-6

database structures, 5-3

setting, 5-7

features requiring, 5-10

when to set, 5-6

connections

load balancing in Net8, 5-50

connect-time failover

GLOBAL_DBNAME networking parameter in

listener.ora, B-11

ConText

migrating to Oracle Text, D-5

control files

renaming or removing for migration, 3-16

renaming or removing for upgrading, 3-15

CREATE LIBRARY command

differences between Server Manager and

SQL*Plus, C-13

CREATE TABLE

AS subquery

behavior change, 5-37

behavior change, 5-37

CREATE TYPE command

differences between Server Manager and

SQL*Plus, C-13
Index-3

D
data copying, 2-7

data dictionary

compatibility, 5-29

protection, 5-30

database

failure to open after removing

incompatibilities, 5-10

database administrator

role during the upgrade, 1-7

database migration

definition, 1-3

overview, 1-3

overview for replication, E-2

terminology, 1-2

using Export/Import, 8-1

Database Upgrade Assistant

advantages, 2-4

running, 3-4

databases

backing up for upgrading, D-14

downgrading, 7-21

test upgrade results, 4-22

tuning after upgrading, 4-22

datafiles

compatibility, 5-27

offline during upgrade, D-3

datatypes

compatibility, 5-31

date constraints

checking for bad, 4-20

DB_BLOCK_CHECKSUM

new default value, A-5

DB_BLOCK_CHECKSUM initialization parameter

compatibility, A-5

DB_BLOCK_SIZE initialization parameter

for upgrading, D-4

DB_DOMAIN initialization parameter, B-11

compatibility, A-8

DB_NAME initialization parameter, B-11

DBMS

precompiler command line option, 5-23

DBMS_APPLICATION_INFO package

SET_SESSION_LONGOPS procedure

syntax change, 5-38

DBMS_ROWID package, D-34

DBMS_STATS package

upgrading statistics tables, 4-19

DBNAME

MIG utility option, D-9

DBUA. See Database Upgrade Assistant

DEC keyword

behavior differences, 5-26

definitions. See terminology

DEGREE keyword

in PARALLEL clause, 5-39

deinstalling, 1-12

deprecated dynamic performance views, A-20

deprecated features

dictionary managed tablespaces, 5-15

Oracle Dynamic Services, 5-17

Oracle Syndication Server, 5-17

deprecated initialization parameters, A-2

deprecated static data dictionary views, A-14

Developer/2000 Applications

upgrading, 6-10

dictionary managed tablespaces

compatibility, 5-15

deprecated, 5-15

interoperability, 5-15

distributed databases

preparing to upgrade, D-5

DML_LOCKS initialization parameter

compatibility, A-7

downgrading

CATALOG.SQL, 7-28

CATPARR.SQL, 7-28

CATPROC.SQL, 7-28

Java, 7-28, 7-29

Messaging Gateway, 7-29

Oracle Workspace Manager, 7-29

Oracle9i Real Application Clusters, 7-28

ORADIM, 7-24

procedure for, 7-21

removing incompatibilities, 7-2

automatic segment-space managed

tablespaces, 7-8

automatic segment-space managed

tablespaces with LOBs, 7-7
Index-4

bitmap secondary indexes on index-organized

tables, 7-9

external tables, 7-9

hash partitioned index-organized

tables, 7-11

indexes with large keys, 7-10

LOB retention, 7-7

non-final types, 7-19

parallel table functions, 7-20

partitioned index-organized tables with

LOBs, 7-12

PDML ITL invariants, 7-12

pipelined table functions, 7-20

release 9.0 partitioning methods, 7-10

release 9.2 DEFAULT partitions, 7-4

release 9.2 partitioning methods, 7-5

release 9.2 Streams, 7-5

release 9.2 subpartition templates, 7-6

SQL and PL/SQL, 7-20

subtypes, 7-19

type evolution, 7-19

undo tablespaces, 7-9

user-defined aggregate functions, 7-19

view constraints, 7-20

replication, 7-28

resetting database compatibility, 7-20

scripts, 7-22

JVMD817.SQL, 7-28

JVMD901.SQL, 7-28

MGWD901.SQL, 7-29

OWMD901.PLB, 7-29

rerunning, 7-22

XMLD817.SQL, 7-29

XMLD901.SQL, 7-29

view constraints, 7-20

DUMP_TNSNAMES command, B-15

Dynamic Discovery Option for Oracle Names

migration issues, B-15

dynamic performance views

changes in Oracle9i, A-20

date columns

compatibility, 5-32

deprecated, A-20

obsolete, A-22

with dropped columns, A-24

with renamed columns, A-23

E
EBU

backup management, 5-44

enterprise user management

interoperability, 5-43

environment variables

compatibility

NCHAR and NLS, 5-34

ORA_NLS32, 5-34

ORA_NLS33, 5-34, D-11

required for upgrading, 3-20

Export utility

database migration, 8-1

requirements for upgrading, 8-3

Export/Import

advantages and disadvantages, 2-6

benefits, 2-7

compatibility, 8-2

effects on upgraded databases, 2-6

incompatible data, 8-3

scripts

CATEXP7.SQL, 8-2

time requirements, 2-7

upgrade steps using, 8-3

extended ROWIDs, D-38

external tables

dropping for downgrading, 7-9

F
FAILOVER networking parameter, B-7

failure to open database after removing

incompatibilities, 5-10

FALSE keyword

behavior differences, 5-26

fast-start parallel recovery

compatibility, 5-45

fast-start rollback

compatibility, 5-45

feature compatibility, 5-10

features

new features, 5-10
Index-5

requiring an upgrade, E-18

filenames

normalize, 4-11

Forms

upgrading Oracle Forms applications, 6-10

function-based indexes

invalidations

during upgrade, 4-16

G
generating

replication support, E-5, E-13

global database name, B-11

GLOBAL_DBNAME networking parameter, B-11

glossary. See terminology

GREATEST_LB function

desupported, 5-36

H
hash partitioned index-organized tables

downgrading, 7-11

Heterogeneous Services

agents

compatibility, 5-48

interoperability, 5-48

multithreaded, 5-49

I
identifying incompatibilities

UTLINCMP.SQL, 7-3

Identix authentication, B-2

Import utility

database migration, 8-1

requirements for upgrading, 8-3

incompatibilities

removing, 7-2

incremental upgrade, E-6

indexes

bitmap, 4-20

function-based, 4-16

initialization parameters

adjusting for Oracle9i, 3-18, 4-10

archive log destination

switching to new, A-11

changes, D-39

changes in Oracle9i, A-2

compatibility, A-5

DB_BLOCK_CHECKSUM, A-5

DB_DOMAIN, A-8

DML_LOCKS, A-7

JOB_QUEUE_PROCESSES, A-5

LOG_CHECKPOINT_TIMEOUT, A-7

O7_DICTIONARY_ACCESSIBILITY, A-7

ORACLE_TRACE_ENABLE, A-6

SERIALIZABLE, A-6

SORT_AREA_SIZE, A-6

SORT_DIRECT_WRITES, A-6

COMPATIBLE, 5-2

deprecated, A-2

LARGE_POOL_SIZE

parallel execution allocation, A-8

obsolete, A-3

REMOTE_LOGIN_PASSWORDFILE, 3-19

renamed, D-39

SHARED_POOL_SIZE

parallel execution allocation, A-8

INIT.ORA parameters. See initialization parameters

installation

Oracle9i software, 3-2, 8-4

INSTANCE_NAME initialization parameter, B-8

INSTANCES keyword

removed from PARALLEL clause, 5-39

INT keyword

behavior differences, 5-26

interoperability, 5-1, 5-13

Advanced Queuing, 5-37

applications, 5-19

dictionary managed tablespaces, 5-15

Heterogeneous Services agents, 5-48

native dynamic SQL, 5-36

object types, 5-16

OCI, 5-21

Oracle7 clients, 5-21

shared structures, 5-21

Oracle Managed Files, 5-16

Oracle OLAP, 5-16

PL/SQL, 5-23
Index-6

precompilers, 5-22

type evolution, 5-34

UROWIDs, 5-32

user-defined datatypes, 5-35

J
Java

downgrading, 7-28, 7-29

JOB_QUEUE_PROCESSES

maximum number of job queue processes, A-5

JOB_QUEUE_PROCESSES initialization parameter

compatibility, A-5

JVMD817.SQL script, 7-28

JVMD901.SQL script, 7-28

K
keywords

behavior differences, 5-26

L
large files

operating system dependencies, 5-51

large key indexes

removing, 7-10

LARGE_POOL_SIZE initialization parameter

changes in behavior, 4-16

parallel execution allocation, A-8

LEAST_UB function

desupported, 5-36

listener.ora file

migrating, B-11

modifying after upgrading, 4-8

parameters

GLOBAL_DBNAME, B-11

ORACLE_HOME, B-11

SID_NAME, B-11

upgrading, B-11

listeners

configuring for Oracle Enterprise

Manager, B-11

global database name, B-11

Oracle System Identifier, B-11

SID, B-11

load balancing

Net8, 5-50

LOAD_BALANCE networking parameter, B-7

LOAD_TNSNAMES command, B-16, B-19

LOB datatype

copying from LONG, 4-7

LOB index clause

compatibility, 5-31

LOB retention

downgrading, 7-7

LOBs

compatibility, 5-31

locks

DML lock limit, DML_LOCKS, A-7

LOG_CHECKPOINT_TIMEOUT

new default value, A-7

LOG_CHECKPOINT_TIMEOUT initialization

parameter

compatibility, A-7

LogMiner

compatibility, 5-46

LONG datatype

copying to LOB, 4-7

LU6.2 protocol, B-3

M
manual upgrade

advantages, 2-5

prepare the database, 3-12, D-5

master sites

incremental upgrade of, E-10

upgrading, E-3

materialized views

compatibility, 5-47

upgrading, 4-16

memory requirements

for MIG utility, D-3

Messaging Gateway

downgrading, 7-29

MGWD901.SQL script, 7-29

MIG utility

command-line options, D-9

error messages, D-14
Index-7

memory requirements for, D-3

MULTIPLIER option, D-27

options

CHECK_ONLY, D-9

DBNAME, D-9

MULTIPLIER, D-9

NEW_DBNAME, D-10

NO_SPACE_CHECK, D-10

PFILE, D-10

SPOOL, D-10

overview, D-2

running, D-10

on UNIX operating systems, D-10

on Windows platforms, D-12

space required for SYSTEM tablespace, D-3

space requirements for, D-3

MIGRATE user

avoid, D-7

MIGRATE.BSQ script, D-13

migration

ALTER DATABASE CONVERT statement

rerunning, D-30

ALTER DATABASE OPEN RESETLOGS

MIGRATE statement, 3-22

control files, 3-16

NCHAR and NLS, 5-33

Oracle Managed Files file names, 4-2

parallel execution, 4-16

ROWID compatibility, D-38

rowids, D-32

to a different operating system, 3-9

troubleshooting

datafile version integrity, D-30

MULTIPLIER

MIG utility option, D-9, D-27

multiversioning, 1-9

N
NAMES_DID table, B-13

NAMES_DOM table for Oracle Names, B-13

NAMES.ADMIN_REGION networking

parameter, B-14, B-15

NAMES.DOMAINS networking parameter, B-13

namesini.sql script for Oracle Names, B-21

namesupg.sql script for Oracle Names, B-13, B-15,

B-18, B-21

national character set

in Oracle8i, 5-33

native dynamic SQL

interoperability, 5-36

NCHAR

migration, 5-33

use in Oracle8i, 5-33

NCHAR and NLS environment variables

compatibility, 5-34

NCHAR columns

upgrading, 4-13

NCLOBs

compatibility, 5-31

nested tables

compatibility, 5-35

Net8

coexistence issues, B-4 to B-6

Oracle9i databases, B-4

using SERVICE_NAME networking

parameter, B-4

using SID networking parameter, B-5

connection load balancing, 5-50

service naming, 5-50

SID networking parameter, B-5

upgrading to Oracle Names release 1

(9.0.1), B-12

upgrading to Oracle Net Services, B-8 to B-11

configuration files, B-9

listener.ora file, B-11

software on client, B-9

software on server, B-9

tnsnames.ora file, B-10

Net8 OPEN, B-2

new features

adding after upgrade, 4-10

requiring a compatibility level, 5-10

NEW_DBNAME

MIG utility option, D-10

NLS

migration, 5-33

NLS and NCHAR environment variables

compatibility, 5-34

NLS_LANG environment variable
Index-8

compatibility, 5-34

nmcbild.sql script, B-17

nmcrgrnt.sql script, B-17

NMO_INFORMATION table for Oracle

Names, B-14

NO_SPACE_CHECK

MIG utility option, D-10

Novell Directory Services (NDS)

authentication, B-2

external naming, B-2

NUMERIC keyword

behavior differences, 5-26

O
O7_DICTIONARY_ACCESSIBILITY initialization

parameter

compatibility, 5-30, A-7

object types

compatibility, 5-16

interoperability, 5-16

obsolete

replication procedures, E-20

obsolete dynamic performance views, A-22

obsolete initialization parameters, A-3

obsolete replication procedures, E-20

obsolete static data dictionary views, A-16

OCI

applications

changing to use Oracle9i, 6-9

compatibility, 5-21

batch error mode, 5-22

client notification, 5-22

link line, 5-21

LISTEN call and AQ, 5-22

thread safety, 5-21

interoperability, 5-21

Oracle7 clients, 5-21

shared structures, 5-21

OCIChangePassword call, 5-41

OCISessionBegin call, 5-41

upgrading applications to Oracle9i, 6-3

OCI applications

upgrading options, 6-6

OFA, 1-10

offline datafiles

upgrading, D-3

OLON calls

obsolete, 5-21

operating system

migrating to a different, 3-9

Optimal Flexible Architecture. See OFA

OPTIMAL setting for SYSTEM rollback segment

for upgrading, D-26

optimization

compatibility, 5-38

options

deinstalling, 1-12

for MIG utility, D-9

ORA_NLS32 environment variable

compatibility, 5-34

ORA_NLS33 environment variable, D-11

compatibility, 5-34

Oracle Call Interface. See OCI

Oracle Dynamic Services

deprecated, 5-17

Oracle Enterprise Manager

static service information in listener.ora

file, B-11

Oracle home

multiple, 1-9

Oracle interMedia

upgrading, 3-26

Oracle Managed Files

compatibility, 5-16

interoperability, 5-16

migrating file names, 4-2

Oracle Media Management API

compatibility

proxy copy requirement, 5-47

Oracle Names

coexistence issues, B-6

migrating

ckreg.ora file to cktop.ora file, B-19

Oracle Names version 2 using a

database, B-13

ROSFILES, B-17

ROSFILES to a tnsnames.ora file, B-18

ROSFILES to Oracle Names tables in

database, B-17
Index-9

NAMES_DID table for Oracle Names, B-13

NAMES_DOM table, B-13

NAMES.ADMIN_REGION parameter in

names.ora file, B-14, B-15

NAMES.DOMAINS parameter in names.ora

file, B-13

namesini.sql script, B-21

namesupg.sql script, B-13, B-15, B-18, B-21

NMO_INFORMATION table, B-14

Oracle Names Control utility commands

DUMP_TNSNAMES command, B-15

LOAD_TNSNAMES, B-16, B-19

REORDER_NS, B-20

Oracle Names version 2 with Dynamic Discovery

Option, B-15

Oracle Net Manager

discovering Oracle Names servers, B-20

loading tnsnames.ora file into Oracle

Names, B-16, B-19

upgrading to release 1 (9.0.1), B-12

Oracle Names Control utility

commands

LOAD_TNSNAMES, B-16, B-19

REORDER_NS, B-20

Oracle Net

migrating or upgrading to, 5-49

Oracle Net Services

coexistence issues, B-4 to B-6

Oracle release 8.0 clients, B-5

Oracle release 8.0 databases, B-6

third-party applications, B-5

using Oracle Net Manager, B-7

using SERVICE_NAME networking

parameter, B-4

using SID networking parameter, B-4

FAILOVER networking parameter, B-7

listener.ora file with Oracle Enterprise

Manager, B-11

LOAD_BALANCE networking parameter, B-7

Oracle Net Manager

Use Options Compatible with Net8 8.0 Clients

option, B-7

Use Oracle8 Release 8.0 Compatible

Identification option, B-7

SERVICE_NAME parameter, B-4

SOURCE_ROUTE parameter, B-7

unsupported features

Identix authentication, B-2

LU6.2, B-3

Net8 OPEN, B-2

Novell Directory Services (NDS)

authentication, B-2

Novell Directory Services (NDS) external

naming, B-2

prespawned dedicated servers, B-3

protocol.ora file, B-3

SecurID authentication, B-2

SPX, B-3

upgrading to, 4-21

Oracle OLAP

compatibility, 5-16

interoperability, 5-16

Oracle precompilers. See precompilers

Oracle Spatial

upgrading, 3-26

Oracle Syndication Server

deprecated, 5-17

Oracle System Identifier, configuring on the

listener, B-11

Oracle Text

migrating from ConText to, D-5

upgrading, 3-26

Oracle Ultra Search

upgrading, 3-28

Oracle Universal Installer, 2-4

Oracle Visual Information Retrieval

upgrading, 3-26

Oracle Workspace Manager

downgrading, 7-29

ORACLE_HOME initialization parameter, B-11

ORACLE_TRACE_ENABLE initialization parameter

compatibility, A-6

Oracle9i
changes to dynamic performance views, A-20

changes to initialization parameters, A-2

changes to static data dictionary views, A-14

new features

adding after upgrade, 4-10

Oracle9i Real Application Clusters

compatibility requirements, 5-39
Index-10

downgrading, 7-28

upgrading, 3-9

oracle-supplied accounts

change passwords, 4-2

ORADIM

downgrading, 7-24

upgrading, 3-16

ORLON calls

obsolete, 5-21

OUTLN user

avoid, 3-12

OWMD901.PLB script, 7-29

P
PARALLEL clause

DEGREE keyword, 5-39

INSTANCES keyword removed, 5-39

parallel execution

allocated from large pool, A-8

avoiding problems with, 4-16

parallel table functions

removing, 7-20

parameters

for MIG utility. See command-line options

partition views

migrate to partition tables, 4-20

partitioned index-organized tables with LOBs

downgrading, 7-12

password file

upgrades

exclusive setting, D-28

password management

application changes required for Oracle8i, 5-41

interoperability, 5-42

password expiration, 5-42

PDML ITL invariants

downgrading, 7-12

pending transactions

and upgrading, D-5

PFILE

MIG utility option, D-10

pipelined table functions

removing, 7-20

PL/SQL

backward compatibility, 5-23

compatibility, 5-23

functions

desupported, 5-36

integrated SQL analysis, 5-24

interoperability, 5-23

PLSQL_V2_COMPATIBILITY initialization

parameter, 5-25

removing incompatibilities for

downgrading, 7-20

variables

NCHAR and NLS, 5-33

precompilers

applications

changing to use Oracle9i, 6-9

upgrading options, 6-6

compatibility, 5-22

interoperability, 5-22

PL/SQL backward compatibility, 5-23

upgrading applications to Oracle9i, 6-3

preparing to upgrade, 2-2

prespawned dedicated servers, B-3

primary keys

upgrading snapshots, E-15

Pro*Ada

upgrading to SQL*Module for Ada, 5-23

Pro*C/C++

connecting with SYSDBA privileges, 5-22

Pro*COBOL

connecting with SYSDBA privileges, 5-23

Procedural Option

required for upgrading, D-5

PROPS$ view

NCHAR and NLS, 5-33

protocol.ora file, B-3

proxy copy

requirement, 5-47

Q
queue tables

upgrading, 4-17
Index-11

R
RAW

maximum size

change, 5-19

read-only tablespaces

upgrading, D-3

REAL keyword

behavior differences, 5-26

recovery

compatibility, 5-43

recovery catalog

compatibility with Recovery Manager, 5-43

upgrading, 4-18

Recovery Manager

backup management, 5-44

commands

compatibility, 5-43

compatibility, 5-43

normalize catalog, 4-11

release

definition, 1-2

release 9.0 partitioning methods

downgrading, 7-10

release 9.2 DEFAULT partitions

downgrading, 7-4

release 9.2 partitioning methods

downgrading, 7-5

release 9.2 Streams

downgrading, 7-5

release 9.2 subpartition templates

downgrading, 7-6

releases

multiple, 1-9

relinking with SQL*Net, 6-3

REMOTE_LOGIN_PASSWORDFILE initialization

parameter, 3-19

upgrading, D-28

renamed initialization parameters, D-39

REORDER_NS command, B-20

replication

compatibility, 5-48

database migration overview, E-2

downgrading, 7-28

obsolete procedures, E-20

upgrading, 3-11, D-5

requirements

Export utility, 8-3

import utility, 8-3

restricted ROWIDs, D-38

ROLLBACK FORCE command, D-5

rollback segments

upgrading, D-3

rosbild.sql script, B-17

ROSFILES

nmcbild.sql script, B-17

nmcgrnt.sql script, B-17

rosbild.sql script, B-17

rosgrnt.sql script, B-17

rosgrnt.sql script, B-17

ROWIDs

extended, D-38

restricted, D-38

rowids

compatibility, 5-32

client access, D-37

conversion from Oracle7 format, D-34

examples, D-36

DBMS_ROWID compatibility package, D-34

migration, D-32

snapshot refresh, D-37

S
SAVEPOINT keyword

behavior differences, 5-26

schema objects

compatibility, 5-30

scripts

downgrading, 7-22

rerunning, 7-22

upgrading, 3-22

SecurID authentication, B-2

SERIALIZABLE initialization parameter

compatibility, A-6

Server Manager

differences with SQL*Plus

ampersands, C-12

blank lines, C-9

commands, C-3
Index-12

comments, C-7

COMMIT command, C-14

CREATE LIBRARY command, C-13

CREATE TYPE command, C-13

hyphen continuation character, C-10

startup, C-2

syntax, C-7

migrating scripts to SQL*Plus, C-1

not supported in Oracle9i, 4-15, C-1

server parameter file

migrating to, 4-15

service naming

Net8, 5-50

SERVICE_NAME parameter, B-4

SERVICE_NAMES initialization parameter, B-8

SET COMPATIBILITY command

SQL*Plus scripts, 6-10

SET_SESSION_LONGOPS procedure

syntax change, 5-38

shared server

requirements for running, 5-49

shared structures

interoperability, 5-21

SHARED_POOL_SIZE initialization parameter

changes in behavior, 4-16

parallel execution allocation, A-8

SID networking parameter, B-5

SID, configuring on the listener, B-11

SID_NAME parameter, B-11

snapshot sites

upgrading, E-8

snapshots

refresh

physical ROWIDs, D-37

upgrading to primary key, E-15

SORT_AREA_SIZE initialization parameter

compatibility, A-6

SORT_DIRECT_WRITES initialization parameter

compatibility, A-6

SOURCE_ROUTE parameter, B-7

space requirements

for MIG utility, D-3

SPOOL

MIG utility option, D-10

SPX protocol, B-3

SQL

removing incompatibilities for

downgrading, 7-20

SQL commands

COMMIT FORCE, D-5

ROLLBACK FORCE, D-5

SQL*Module

for Ada, 5-23

SQL*Net

coexistence issues, B-4 to B-6

Oracle9i databases, B-4

using SERVICE_NAME networking

parameter, B-4

using SID networking parameter, B-5

migrating to Oracle Net, 5-49

migrating to Oracle Net Services, B-8 to B-11

configuration files, B-9

listener.ora file, B-11

software on client, B-9

software on server, B-9

tnsnames.ora file, B-10

verifying service name and instance

name, B-8

relinking, 6-3

SID networking parameter, B-5

upgrading from V1 to V2, 5-49

upgrading to Oracle Names release 1

(9.0.1), B-12

upgrading to Oracle Net Services, 4-21

use with Oracle9i, 6-3

SQL*Plus

differences with Server Manager

ampersands, C-12

blank lines, C-9

commands, C-3

comments, C-7

COMMIT command, C-14

CREATE LIBRARY command, C-13

CREATE TYPE command, C-13

hyphen continuation character, C-10

startup, C-2

syntax, C-7

migrating scripts from Server Manager, C-1

scripts

upgrading, 6-9
Index-13

standby database

compatibility, 5-45

upgrading, 4-8

STARTUP

compatibility, 5-27

statements

ALTER DATABASE RESET

COMPATIBILITY, 5-10

ALTER DATABASE RESET LOGS, D-5

static data dictionary views

changes, D-40

changes in Oracle9i, A-14

deprecated, A-14

obsolete, 5-30, A-16

with columns that may return nulls, A-18

with dropped columns, A-17

with renamed columns, A-16

statistics tables

upgrading, 4-19

SUBSTR operator, 5-19

subtypes

downgrading, 7-19

SYS schema

user-created objects in, 5-30

SYSDBA

connecting in Pro*C/C++, 5-22

connecting in Pro*COBOL, 5-23

SYSTEM tablespace

MIG utility, D-3

space

insufficient for upgrading, D-25

T
tablespaces

automatic segment-space managed

removing, 7-8

compatibility, 5-27

upgrading offline tablespaces, D-6

tempfiles

data dictionary information, 5-29

temporary tablespace

space

insufficient for upgrading, D-25

terminology

database migration, 1-2

testing

applications for upgrade, 2-12

developing a plan, 2-8

EXPLAIN PLAN, 2-11

functional for upgrade, 2-9

integration for upgrading, 2-9

INTO clause, 2-11

minimal for upgrade, 2-9

performance for upgrade, 2-10

pre-upgrade and post-upgrade, 2-11

the upgrade process, 2-12

the upgraded test database, 2-12

upgrading results, 4-22

volume/load stress for upgrade, 2-10

thread safety

compatibility, 5-21

tnsnames.ora file

migrating, B-10

parameters

FAILOVER, B-7

LOAD_BALANCE, B-7

SERVICE_NAME, B-4

SID, B-5

SOURCE_ROUTE, B-7

upgrading, B-10

TO_LABEL function

desupported, 5-36

TO_LOB function, 4-7

transactions

pending, D-5

Transparent Application Failover (TAF)

GLOBAL_DBNAME networking parameter in

listener.ora, B-11

troubleshooting

database fails to open after removing

incompatibilities, 5-10

migration

datafile version integrity, D-30

upgrades

ALTER DATABASE CONVERT

statement, D-27

missing convert file, D-28

MULTIPLIER option, D-27

NOMOUNT database start mode, D-28
Index-14

Oracle7 control file, D-27

upgrading

AUDIT_TRAIL initialization

parameter, D-25

database name mismatch, D-29

MIG utility error messages, D-14

OPTIMAL setting, D-26

password file, D-28

running the MIG utility, D-25

SYSTEM tablespace, D-25

temporary tablespace, D-25

TRUE keyword

behavior differences, 5-26

tuning

after upgrading, 4-22

type evolution

interoperability, 5-34

types

evolved

removing, 7-19

non-final

downgrading, 7-19

U
undo tablespaces

removing, 7-9

upgrade

troubleshooting

MIG utility error messages, D-14

upgrade methods

choosing, 2-3

copying data, 2-7

Database Upgrade Assistant, 2-4

Export/Import, 2-6

manual upgrade, 2-5

upgrading

abandoning, D-31

Advanced Queuing, 4-17

after upgrading, 4-1

ALTER DATABASE CONVERT statement, 3-21

applications, 6-1

compatibility rules, 6-4

options, 6-6

relinking, 6-4

AUDIT_TRAIL initialization parameter, D-25

backup strategy, 2-8

character set, 3-10

control files, 3-15

exclusive password file, D-28

features requiring, E-18

incremental, E-6

initialization parameters, 3-18

listener.ora file, 4-8

master sites, E-3

materialized views, 4-16

MIGRATE user, avoid, D-7

MIGRATE.BSQ script, D-13

NCHAR columns, 4-13

new administrative procedures, 4-10

offline datafiles, D-3

offline tablespaces, D-6

OPTIMAL setting for SYSTEM rollback

segment, D-26

Oracle Forms applications, 6-10

Oracle interMedia, 3-26

Oracle Spatial, 3-26

Oracle Text, 3-26

Oracle Ultra Search, 3-28

Oracle Visual Information Retrieval, 3-26

Oracle9i Real Application Clusters, 3-9

ORADIM, 3-16

OUTLN user, avoid, 3-12

parallel execution, 4-16

post upgrade actions, 4-1

queue tables, 4-17

read-only tablespaces, D-3

recovery catalog, 4-18

replication, 3-11, D-5

rolling upgrades, 1-12

scripts, 3-22

CATALOG.SQL, 3-23, D-3

CATPROC.SQL, 3-23, D-3

snapshot sites, E-8

specific components, 3-25

SQL*Plus scripts, 6-9

standby database, 4-8

statistics tables, 4-19

SYSTEM tablespace, D-25

temporary tablespace, D-25
Index-15

testing, 2-8

testing results, 4-22

to primary key snapshots, E-15

troubleshooting

ALTER DATABASE CONVERT

statement, D-27

AUDIT_TRAIL initialization

parameter, D-25

database name mismatch, D-29

missing convert file, D-28

MULTIPLIER option, D-27

NOMOUNT database start mode, D-28

OPTIMAL setting, D-26

Oracle7 control file, D-27

password file, D-28

running the MIG utility, D-25

SYSTEM tablespace, D-25

temporary tablespace, D-25

tuning after, 4-22

using the Database Upgrade Assistant, 3-4

upgrading a database

ALTER DATABASE CONVERT statement, D-2

ALTER DATABASE OPEN RESETLOGS

MIGRATE statement, D-3

block size minimums, D-4

choosing an upgrade method, 2-3

distributed database considerations, D-5

manually, 3-9

prepare the database, 3-12, D-5

overview of steps, 1-4

overview of the MIG utility, D-2

performing a manual upgrade, 2-4

preparing to, 2-2

role of application developer, 1-8

role of database administrator, 1-7

rollback segments, D-3

using Export/Import, 8-3

using the Database Upgrade Assistant, 2-3

UROWIDs

interoperability, 5-32

Use Options Compatible with Net8 8.0 Clients

option, B-7

Use Oracle8 Release 8.0 Compatible Identification

option, B-7

user-created objects

in SYS schema, 5-30

user-defined aggregate functions

dropping for downgrading, 7-19

user-defined datatypes

compatibility, 5-34

interoperability, 5-35

new format, 5-35

UTLCHN1.SQL script, 5-36

UTLCONST.SQL script, 4-20

UTLEXPT1.SQL script, 5-37

UTLINCMP.SQL script, 7-3

V
VALUE$ view

NCHAR and NLS, 5-33

VARCHAR2

maximum size

change, 5-19

varrays

stored as LOBs

compatibility, 5-35

W
word size

changing, 1-11, 4-22

X
XMLD817.SQL script, 7-29

XMLD901.SQL script, 7-29
Index-16

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	Terminology
	Oracle Releases
	Database Migration

	Overview of Database Migration
	Overview of Upgrade Steps
	Role of the Database Administrator During the Upgrade
	Role of the Application Developer During the Upgrade

	Running Multiple Oracle Releases
	Install Databases in Multiple Oracle Homes on the Same Computer
	Install Databases in Multiple Oracle Homes on Separate Computers
	Upgrade a Database to the Current Release
	Upgrade Clients to the Current Release

	Using Optimal Flexible Architecture (OFA)
	Changing Word Size
	Rolling Upgrades
	Deinstalling Options

	2 Preparing to Upgrade
	Prepare to Upgrade
	Become Familiar with the Features of the New Release
	Determine Your Upgrade Path to the New Release
	Choose an Upgrade Method
	Choose an Oracle Home Directory for the New Release
	Prepare a Backup Strategy
	Develop a Testing Plan

	Test the Upgrade Process
	Test the Upgraded Test Database

	3 Upgrading a Database to the New Oracle9i Release
	Install the Release 9.2 Oracle Software
	Running the Database Upgrade Assistant Independently

	Upgrade the Database Using the Database Upgrade Assistant
	Upgrade the Database Manually
	System Considerations and Requirements
	Prepare the Database to be Upgraded
	Upgrade the Database
	Upgrading Specific Components

	4 After Upgrading a Database
	Tasks to Complete After Upgrading Your Database
	Back Up the Database
	Change Passwords for Oracle-Supplied Accounts
	Migrate Your Oracle Managed Files
	Upgrade Oracle OLAP
	Migrate Tables from LONGs to LOBs
	Modify Your listener.ora File
	Upgrade Your Standby Database
	Add New Features as Appropriate
	Develop New Administrative Procedures as Needed
	Adjust Your Parameter File for the New Release
	Normalize Filenames on Windows Operating Systems
	Tasks to Complete Only After Upgrading a Release 8.1.7 or Lower Database
	Tasks to Complete Only After Upgrading a Release 8.0.6 or Lower Database
	Upgrading the Recovery Catalog
	Upgrading Statistics Tables Created by the DBMS_STATS Package
	Tasks to Complete Only After Upgrading a Release 7.3.4 Database

	Test the Database and Compare Results
	Tune the Upgraded Database

	Changing the Word Size of Your Current Release

	5 Compatibility and Interoperability
	What Is Compatibility?
	The COMPATIBLE Initialization Parameter
	Setting the COMPATIBLE Initialization Parameter

	Features Requiring a COMPATIBLE Setting
	What Is Interoperability?
	Compatibility and Interoperability Issues Between Release 9.2 and Release 9.0.1
	Locally Managed SYSTEM Tablespace
	Dictionary Managed Tablespaces
	Change in Compatibility for Automatic Segment-Space Managed Tablespaces
	Compatibility and Object Types
	Oracle Managed Files
	Oracle OLAP
	Log Format Change with Parallel Redo
	Oracle Dynamic Services
	Oracle Syndication Server

	Compatibility and Interoperability Issues Between Release 9.2 and Previous Releases
	Applications
	The STARTUP Command
	Tablespaces and Datafiles
	Data Dictionary
	Schema Objects
	Datatypes
	User-Defined Datatypes
	SQL and PL/SQL
	Advanced Queuing (AQ)
	Procedures and Packages
	Oracle Optimizer
	Oracle9i Real Application Clusters
	Database Security
	Database Backup and Recovery
	Distributed Databases
	SQL*Net or Oracle Net
	Miscellaneous Compatibility and Interoperability Issues

	6 Upgrading Your Applications
	Overview of Upgrading Applications
	Compatibility Issues for Applications

	Upgrading Precompiler and OCI Applications
	Understanding Software Upgrades and Your Client/Server Configuration
	Compatibility Rules for Applications When Upgrading Oracle Software
	Upgrading Options for Your Precompiler and OCI Applications

	Upgrading SQL*Plus Scripts
	Upgrading Oracle7 Forms or Oracle Developer Applications

	7 Downgrading a Database Back to the Previous Oracle Release
	Perform a Full Offline Backup
	Remove Incompatibilities
	Checking the Compatibility Level of Your Database
	Identifying Incompatibilities
	Removing Release 9.2 Incompatibilities
	Removing Release 9.0.1 Incompatibilities

	Reset Database Compatibility
	Downgrade the Database

	8 Database Migration Using Export/Import
	Export Dump File Compatibility
	Export/Import Usage on Data Incompatible with a Previous Release

	Source Database and Target Database
	Export Utility Requirements
	Import Utility Requirements

	Upgrade the Source Database Using Export/Import

	A Changes to Initialization Parameters and the Data Dictionary
	Initialization Parameter Changes
	Deprecated Initialization Parameters
	Obsolete Initialization Parameters

	Compatibility Issues with Initialization Parameters
	New Default Value for DB_BLOCK_CHECKSUM
	Maximum Number of Job Queue Processes
	The ORACLE_TRACE_ENABLE Parameter
	The SERIALIZABLE Parameter
	SORT_AREA_SIZE and SORT_DIRECT_WRITES Parameters
	New Default Value for LOG_CHECKPOINT_TIMEOUT
	The O7_DICTIONARY_ACCESSIBILITY Parameter
	The DML_LOCKS Parameter
	The DB_DOMAIN Parameter
	Parallel Execution Allocated from Large Pool
	Archive Log Destination Parameters

	Static Data Dictionary View Changes
	Deprecated Static Data Dictionary Views
	Obsolete Static Data Dictionary Views
	Static Data Dictionary Views with Renamed Columns
	Static Data Dictionary Views with Dropped Columns
	Static Data Dictionary Views with Columns That May Return Nulls

	Dynamic Performance View Changes
	Deprecated Dynamic Performance Views
	Obsolete Dynamic Performance Views
	Dynamic Performance Views with Renamed Columns
	Dynamic Performance Views with Dropped Columns

	B Upgrade Considerations for Oracle Net Services
	Overview of Unsupported Oracle Net Services Features
	Unsupported Parameters and Control Utility Commands
	Client and Database Coexistence Issues
	Oracle9i Database Connections
	Oracle8 or Oracle7 Database Connections
	Oracle Names

	Using the Oracle Net Manager to Handle Compatibility Issues
	Upgrading to Oracle Net Services
	Step 1: Verify Service Name and Instance Name
	Step 2: Perform Software Upgrade on the Database Server
	Step 3: Perform Software Upgrade on the Client
	Step 4: Perform Functional Upgrade

	Using Oracle Names Version 9
	Upgrading from Oracle Names Version 2 Using a Database
	Upgrading from Oracle Names Version 2 with the Dynamic Discovery Option
	Upgrading from ROSFILES
	Upgrading Region Checkpoint Files to Domain and Topology Checkpoint Files
	Reviewing Upgrade Checklist

	C Migrating from Server Manager to SQL*Plus
	Startup Differences
	Starting Server Manager
	Starting SQL*Plus

	Commands
	Commands Introduced in SQL*Plus Release 8.1
	Commands Common to Server Manager and SQL*Plus
	SQL*Plus Equivalents for Server Manager Commands
	Possible Differences in the SET TIMING Command
	Server Manager Commands Unavailable in SQL*Plus

	Syntax Differences
	Comments
	Blank Lines
	The Hyphen Continuation Character
	Ampersands
	CREATE TYPE and CREATE LIBRARY Commands
	COMMIT Command

	D Upgrading an Oracle7 Database Using the MIG Utility
	Overview of the MIG Utility
	Outline of the Upgrade Process Using the MIG Utility

	System Considerations and Requirements for Using the MIG Utility
	Space Requirements
	Block Size Considerations
	Considerations for SQL*Net
	Considerations for Replication Environments
	Considerations for Migrating from ConText to Oracle Text
	Distributed Database Considerations

	Prepare the Oracle7 Database to be Upgraded
	Review MIG Utility Command-Line Options
	Run the MIG Utility
	Run the MIG Utility on UNIX Operating Systems
	Run the MIG Utility on Windows Platforms
	Check the MIG Utility Results
	Preserve the Oracle7 Database

	MIG Utility Messages
	Troubleshooting MIG Utility Errors
	Problems Using the MIG Utility
	Problems at the ALTER DATABASE CONVERT Statement

	Abandoning the Oracle7 Upgrade
	Migration Issues for Physical Rowids
	Upgrading Applications and Migrating Data
	The DBMS_ROWID Package
	Snapshot Refresh
	Oracle7 Client Compatibility Issues
	ROWID Migration and Compatibility Issues

	Changes to Initialization Parameters and the Data Dictionary in Release 8.0
	Initialization Parameter Changes in Release 8.0
	Static Data Dictionary View Changes in Release 8.0

	E Database Migration and Compatibility for Replication Environments
	Database Migration Overview for Replication
	Upgrading All Sites at Once
	Upgrading Incrementally
	Preparing Oracle7 Master Sites for an Incremental Upgrade
	Incremental Upgrade of Materialized View Sites
	Incremental Upgrade of Master Sites

	Upgrading to Primary Key Materialized Views
	Primary Key Materialized View Conversion at Master Sites
	Primary Key Materialized View Conversion at Materialized View Sites

	Features Requiring an Upgrade to a Higher Release of Oracle
	Features Requiring Oracle9i
	Features Requiring Oracle8i or Higher
	Features Requiring Oracle8 or Higher
	Features That Work with Oracle7 and Higher Releases

	Obsolete Procedures

	Index

