Skip Headers

Oracle9i Data Mining Concepts
Release 2 (9.2)

Part Number A95961-01
Go To Documentation Library
Home
Go To Product List
Book List
Go To Table Of Contents
Contents

Master Index

Feedback

Go to previous page

Index

A  B  C  D  E  F  G  I  J  K  L  M  N  O  P  R  S  T  U 


A

Adaptive Bayes Network
sample programs, A-2
Adaptive Bayes Network (ABN), 1-2, 1-10
algorithms, 1-9
settings for, 1-19
API
ODM, 2-1
apply result object, 1-26
ApplyContentItem, 3-11
Apriori algorithm, 1-4, 1-18
Association Rules, 1-2, 1-4, 1-7
sample programs, A-4
support and confidence, 1-8
Attribute Importance, 1-2, 1-4, 1-8, 1-17
sample programs, A-4
using, 2-4
attribute names and case, 1-26
attributes
find, 2-4
use, 2-4
automated binning (see also discretization), 1-2

B

balance
in data sample, 1-5
Bayes' Theorem, 1-12, 1-13
best model
find, 2-3
in Model Seeker, 1-14
binning, 1-29
automated, 1-30
for k-means, 1-15
for O-Cluster, 1-16
manual, 1-30
sample programs, A-5
build data
describe, 3-3
build model, 3-6
build result object, 1-26

C

categorical data type, 1-2
character sets
CLASSPATH, 2-2
classifcation
specifying Naive Bayes, 3-5
classification, 1-4
sample program, A-2
specifying default algorithm, 3-5
CLASSPATH for ODM, 2-1
clustering, 1-2, 1-4, 1-6, 1-15
sample programs, A-3
compiling sample programs, A-5
Complete single feature, ABN parameter, 1-12
computing Lift, 1-21
confidence
of associatioin rule, 1-8
confusion matrix, 1-26, 1-27
figure, 1-27
costs
of incorrect decision, 1-5
cross-validation, 1-13

D

data
scoring, 3-7
data format
figure, 1-24
data mining API, 1-3
data mining components, 1-3
data mining functions, 1-4
data mining server
connect to, 3-3, 3-9
data mining server (DMS), 1-3, 1-19, 1-24
data mining tasks, 1-19
data mining tasks per function, 1-19
data preprocessing, 1-6
data scoring
main steps, 3-8
output data, 3-10
prerequisites, 3-8
data types, 1-2
data usage specification (DUS) object, 1-25
decision tree models
sample programs, A-2
decision trees, 1-2, 1-10
discretization (binning), 1-29
sample programs, A-5
distance-based clustering model, 1-15
DMS
connect to, 3-3, 3-9

E

enhanced k-means algorithm, 1-15
executing sample programs, A-5

F

feature
definition, 1-11
feature selection, 1-2
features
new, 1-2
function settings, 1-19
functions
data mining, 1-4

G

grid-based clustering model, 1-16

I

incremental approach
in k-means, 1-15
input
to apply phase, 1-28
input columns
including in mining apply output, 3-12
input data
data scoring, 3-9
describe, 3-9

J

jar files
ODM, 2-1
Java Data Mining (JDM), 1-3
Java Specification Request (JSR-73), 1-3

K

key fields, 1-2
k-means, 1-2
k-means algorithm, 1-4, 1-15
binning for, 1-15
k-means and O-Cluster (table), 1-17

L

learning
supervised, 1-2, 1-4
unsupervised, 1-2, 1-4
leave-one-out cross-validation, 1-13
lift result object, 1-26
location access data
apply output, 3-10
build, 3-3
data scoring, 3-9
logical data specification (LDS) object, 1-25

M

market basket analysis, 1-7
max build parameters
in ABN, 1-10
MaximumNetworkFeatureDepth, ABN parameter, 1-10
metadata repository, 1-3
MFS, 3-4
validate, 3-6
mining algorithm settings object, 1-25
mining apply
output data, 3-10
mining apply output, 1-27
mining attribute, 1-25
mining function settings
build, 3-4
creating, 3-4
validate, 3-6
mining function settings (MFS) object, 1-24
mining model object, 1-26
mining result object, 1-26
mining tasks, 1-3
MiningApplyOutput object, 3-10
MiningFunctionSettings object, 3-4
missing values, 1-29
model
apply, 3-1
build
synchronous, 3-6
building, 3-1
score, 3-1
model apply, 3-7, 3-13
ApplyContentItem, 3-11
ApplyMutipleScoringItem, 3-11
ApplyTargetProbabilityItem, 3-11
asynchronous, 3-14
generated columns in output, 3-11
including input columns in output, 3-12
input data, 3-9
main steps, 3-8
physical data specification, 3-9
specify output format, 3-10
synchronous, 3-13
validate output object, 3-13
model apply (figure), 1-22
model apply (scoring), 1-22
model build
asynchronous, 3-7
model building, 1-19
main steps, 3-2
outline, 2-2
overview, 3-2
prerequisites, 3-2
model building (figure), 1-20
Model Seeker, 1-2, 1-14
sample programs, A-3
using, 2-3
model testing, 1-21
multi-record case (transactional format), 1-23

N

Naive Bayes, 1-2
algorithm, 1-12
building models, 3-1
sample programs, A-2
specifying, 3-5
nontransactional data format, 1-23
numerical data type, 1-2, 1-15, 1-16

O

O-Cluster, 1-2
algorithm, 1-16
sample programs, A-3
ODM
basic usage, 3-1
ODM algorithms, 1-9
ODM API, 2-1
ODM functionality, 1-23
ODM functions, 1-4
ODM jar files, 2-1
ODM models
building, 3-1
ODM objects, 1-23
ODM programming
basic usage, 3-1
overview, 2-1
ODM programs
compiling, 2-1
executing, 2-1
ODM sample programs, A-1
ODMprogramming
common tasks, 2-2
Oracle9i Data Mining API, 1-3

P

physical data specification
build
nontransactional, 3-4
transactional, 3-4
data scoring, 3-9
model apply, 3-9
nontransactional, 3-9
transactional, 3-9
physical data specification (PDS), 1-23
PhysicalDataSpecification, 3-9
PMML
sample programs, A-4
PMML export
sample program, A-4
PMML import
sample program, A-4
Predictive Model Markup Language (PMML), 1-2, 1-3, 1-31
predictor attribute, 1-4
Predictor Variance algorithm, 1-17
preprocessing
data, 1-6
priors information, 1-5

R

rules
decision tree, 1-10

S

sample programs, A-1
Adaptive Bayes Network, A-2
Association Rules, A-4
Attribute Importance, A-4
basic usage, A-2
binning, A-5
classification, 3-5, A-2
compiling and executing, A-5, A-7
decision tree models, A-2
discretization, A-5
Model Seeker, A-3
Naive Bayes, A-2
O-Cluster, A-3
PMML export, A-4
PMML import, A-4
short, 3-1
short programs, A-2
scoring, 1-5, 1-16, 1-22
by O-Cluster, 1-17
output data, 3-10
prerequisites, 3-8
scoring data, 3-7
sequence of ODM tasks, 2-3
short sample programs, A-2
compiling and executing, A-5
single-record case (nontransactional format), 1-24
skewed data sample, 1-5
SQL/MM for Data Mining, 1-3
summarization
in k-means, 1-15
supervised learning, 1-2, 1-4
support
of association rule, 1-8

T

target attribute, 1-4
test result object, 1-26
transactional data format, 1-23

U

unsupervised learning, 1-2, 1-4
unsupervised model, 1-14

Go to previous page
Oracle
Copyright © 2002 Oracle Corporation.

All Rights Reserved.
Go To Documentation Library
Home
Go To Product List
Book List
Go To Table Of Contents
Contents

Master Index

Feedback