Index
A B C D E F G I J K L M N O P R S T U
A
- Adaptive Bayes Network
- sample programs, A-2
- Adaptive Bayes Network (ABN), 1-2, 1-10
- algorithms, 1-9
- settings for, 1-19
- API
- ODM, 2-1
- apply result object, 1-26
- ApplyContentItem, 3-11
- Apriori algorithm, 1-4, 1-18
- Association Rules, 1-2, 1-4, 1-7
- sample programs, A-4
- support and confidence, 1-8
- Attribute Importance, 1-2, 1-4, 1-8, 1-17
- sample programs, A-4
- using, 2-4
- attribute names and case, 1-26
- attributes
- find, 2-4
- use, 2-4
- automated binning (see also discretization), 1-2
B
- balance
- in data sample, 1-5
- Bayes' Theorem, 1-12, 1-13
- best model
- find, 2-3
- in Model Seeker, 1-14
- binning, 1-29
- automated, 1-30
- for k-means, 1-15
- for O-Cluster, 1-16
- manual, 1-30
- sample programs, A-5
- build data
- describe, 3-3
- build model, 3-6
- build result object, 1-26
C
- categorical data type, 1-2
- character sets
- CLASSPATH, 2-2
- classifcation
- specifying Naive Bayes, 3-5
- classification, 1-4
- sample program, A-2
- specifying default algorithm, 3-5
- CLASSPATH for ODM, 2-1
- clustering, 1-2, 1-4, 1-6, 1-15
- sample programs, A-3
- compiling sample programs, A-5
- Complete single feature, ABN parameter, 1-12
- computing Lift, 1-21
- confidence
- of associatioin rule, 1-8
- confusion matrix, 1-26, 1-27
- figure, 1-27
- costs
- of incorrect decision, 1-5
- cross-validation, 1-13
D
- data
- scoring, 3-7
- data format
- figure, 1-24
- data mining API, 1-3
- data mining components, 1-3
- data mining functions, 1-4
- data mining server
- connect to, 3-3, 3-9
- data mining server (DMS), 1-3, 1-19, 1-24
- data mining tasks, 1-19
- data mining tasks per function, 1-19
- data preprocessing, 1-6
- data scoring
- main steps, 3-8
- output data, 3-10
- prerequisites, 3-8
- data types, 1-2
- data usage specification (DUS) object, 1-25
- decision tree models
- sample programs, A-2
- decision trees, 1-2, 1-10
- discretization (binning), 1-29
- sample programs, A-5
- distance-based clustering model, 1-15
- DMS
- connect to, 3-3, 3-9
E
- enhanced k-means algorithm, 1-15
- executing sample programs, A-5
F
- feature
- definition, 1-11
- feature selection, 1-2
- features
- new, 1-2
- function settings, 1-19
- functions
- data mining, 1-4
G
- grid-based clustering model, 1-16
I
- incremental approach
- in k-means, 1-15
- input
- to apply phase, 1-28
- input columns
- including in mining apply output, 3-12
- input data
- data scoring, 3-9
- describe, 3-9
J
- jar files
- ODM, 2-1
- Java Data Mining (JDM), 1-3
- Java Specification Request (JSR-73), 1-3
K
- key fields, 1-2
- k-means, 1-2
- k-means algorithm, 1-4, 1-15
- binning for, 1-15
- k-means and O-Cluster (table), 1-17
L
- learning
- supervised, 1-2, 1-4
- unsupervised, 1-2, 1-4
- leave-one-out cross-validation, 1-13
- lift result object, 1-26
- location access data
- apply output, 3-10
- build, 3-3
- data scoring, 3-9
- logical data specification (LDS) object, 1-25
M
- market basket analysis, 1-7
- max build parameters
- in ABN, 1-10
- MaximumNetworkFeatureDepth, ABN parameter, 1-10
- metadata repository, 1-3
- MFS, 3-4
- validate, 3-6
- mining algorithm settings object, 1-25
- mining apply
- output data, 3-10
- mining apply output, 1-27
- mining attribute, 1-25
- mining function settings
- build, 3-4
- creating, 3-4
- validate, 3-6
- mining function settings (MFS) object, 1-24
- mining model object, 1-26
- mining result object, 1-26
- mining tasks, 1-3
- MiningApplyOutput object, 3-10
- MiningFunctionSettings object, 3-4
- missing values, 1-29
- model
- apply, 3-1
- build
- synchronous, 3-6
- building, 3-1
- score, 3-1
- model apply, 3-7, 3-13
- ApplyContentItem, 3-11
- ApplyMutipleScoringItem, 3-11
- ApplyTargetProbabilityItem, 3-11
- asynchronous, 3-14
- generated columns in output, 3-11
- including input columns in output, 3-12
- input data, 3-9
- main steps, 3-8
- physical data specification, 3-9
- specify output format, 3-10
- synchronous, 3-13
- validate output object, 3-13
- model apply (figure), 1-22
- model apply (scoring), 1-22
- model build
- asynchronous, 3-7
- model building, 1-19
- main steps, 3-2
- outline, 2-2
- overview, 3-2
- prerequisites, 3-2
- model building (figure), 1-20
- Model Seeker, 1-2, 1-14
- sample programs, A-3
- using, 2-3
- model testing, 1-21
- multi-record case (transactional format), 1-23
N
- Naive Bayes, 1-2
- algorithm, 1-12
- building models, 3-1
- sample programs, A-2
- specifying, 3-5
- nontransactional data format, 1-23
- numerical data type, 1-2, 1-15, 1-16
O
- O-Cluster, 1-2
- algorithm, 1-16
- sample programs, A-3
- ODM
- basic usage, 3-1
- ODM algorithms, 1-9
- ODM API, 2-1
- ODM functionality, 1-23
- ODM functions, 1-4
- ODM jar files, 2-1
- ODM models
- building, 3-1
- ODM objects, 1-23
- ODM programming
- basic usage, 3-1
- overview, 2-1
- ODM programs
- compiling, 2-1
- executing, 2-1
- ODM sample programs, A-1
- ODMprogramming
- common tasks, 2-2
- Oracle9i Data Mining API, 1-3
P
- physical data specification
- build
- nontransactional, 3-4
- transactional, 3-4
- data scoring, 3-9
- model apply, 3-9
- nontransactional, 3-9
- transactional, 3-9
- physical data specification (PDS), 1-23
- PhysicalDataSpecification, 3-9
- PMML
- sample programs, A-4
- PMML export
- sample program, A-4
- PMML import
- sample program, A-4
- Predictive Model Markup Language (PMML), 1-2, 1-3, 1-31
- predictor attribute, 1-4
- Predictor Variance algorithm, 1-17
- preprocessing
- data, 1-6
- priors information, 1-5
R
- rules
- decision tree, 1-10
S
- sample programs, A-1
- Adaptive Bayes Network, A-2
- Association Rules, A-4
- Attribute Importance, A-4
- basic usage, A-2
- binning, A-5
- classification, 3-5, A-2
- compiling and executing, A-5, A-7
- decision tree models, A-2
- discretization, A-5
- Model Seeker, A-3
- Naive Bayes, A-2
- O-Cluster, A-3
- PMML export, A-4
- PMML import, A-4
- short, 3-1
- short programs, A-2
- scoring, 1-5, 1-16, 1-22
- by O-Cluster, 1-17
- output data, 3-10
- prerequisites, 3-8
- scoring data, 3-7
- sequence of ODM tasks, 2-3
- short sample programs, A-2
- compiling and executing, A-5
- single-record case (nontransactional format), 1-24
- skewed data sample, 1-5
- SQL/MM for Data Mining, 1-3
- summarization
- in k-means, 1-15
- supervised learning, 1-2, 1-4
- support
- of association rule, 1-8
T
- target attribute, 1-4
- test result object, 1-26
- transactional data format, 1-23
U
- unsupervised learning, 1-2, 1-4
- unsupervised model, 1-14