
Oracle9i Application Server
Best Practices

Release 2 (9.0.3)

Part No. B10578-02

August 2003

Oracle9i Application Server Best Practices, Release 2 (9.0.3)

Part No. B10578-02

Copyright © 2003 Oracle Corporation. All rights reserved.

Contributing Author: Jesse Anton, Jerry Bortvedt, Alice Chan, Christine Chan, Lee Cooper, Helen
Grembowicz, Kurt Heiss, Pavana Jain, Valerie Kane, John Lang, Bill Lankenau, Bruce Lowenthal, Kuassi
Mensah, Mukul Paithane, Debu Panda, Jason Pepper, Shiva Prasad, Kalle Radage, Venkat Ravipati,
Blaise Ribet, Jeffrey Schafer, Daniel Shih, Jerry Silver, Deborah Steiner, Harry K. Wong

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments .. xvii

Preface.. xix

1 Introduction

1.1 About Best Practices.. 1-1
1.2 About Oracle9iAS J2EE and Web Cache Install Type.. 1-2
1.3 Audience... 1-4
1.4 Document Organization... 1-4
1.5 References and Relation to Other Documents .. 1-5

2 Java Language Best Practices

2.1 Avoid or Minimize Synchronization.. 2-2
2.1.1 Synchronize Critical Sections Only ... 2-2
2.1.2 Do Not Use the Same Lock on Objects That Are Not Manipulated Together 2-3
2.1.3 Use Private Fields... 2-3
2.1.4 Use a Thread Safe Wrapper .. 2-4
2.1.5 Use Immutable Objects.. 2-4
2.1.6 Know Which Java Objects Already Have Synchronization Built-in....................... 2-4
2.1.7 Do Not Under-Synchronize .. 2-4
2.2 Monitor Synchronization ... 2-5
2.3 Monitor and Fix Resource Leaks... 2-5
2.4 Always Use a Finally Clause In Each Method to Cleanup.. 2-6
2.5 Discard Objects That Throw Catch-All Exceptions.. 2-7

iv

2.6 Design Transactions Usage Correctly... 2-8
2.7 Put Business Logic In the Right Place... 2-9
2.8 Avoid Common Errors That Can Result In Memory Leaks.. 2-10
2.9 Avoid Creating Objects or Performing Operations That May Not Be Used 2-10
2.10 Replace Hashtable and Vector With Hashmap, ArrayList, or LinkedList If

Possible.. 2-11
2.10.1 Use an Array Instead of an ArrayList If the Size Can Be Fixed............................. 2-11
2.10.2 Use an ArrayList or LinkedList To Hold a List of Objects In a Particular

Sequence .. 2-11
2.10.3 Use HashMap or TreeMap To Hold Associated Pairs of Objects 2-11
2.10.4 Replace Hashtable, Vector, and Stack ... 2-12
2.10.5 Avoid Using String As the Hash Key (If Using JDK Prior to 1.2.2) 2-12
2.11 Reuse Objects Instead of Creating New Ones If Possible.. 2-13
2.11.1 Use a Pool to Share Resource Objects.. 2-13
2.11.2 Recycle Objects ... 2-14
2.11.3 Use Lazy Initialization to Defer Creating the Object Until You Need It.............. 2-14
2.12 Use Stringbuffer Instead of String Concatenation .. 2-15
2.12.1 Use StringBuffer Instead of String Concatenation If You Repeatedly Append to a

String In Multiple Statements .. 2-15
2.12.2 Use Either String or StringBuffer If the Concatenation Is Within One

Statement ... 2-16
2.12.3 Use StringBuffer Instead of String Concatenation If You Know the Size of the

String .. 2-16

3 J2EE Best Practices

3.1 JSP Best Practices ... 3-2
3.1.1 Pre-Translate JSPs Before Deployment ... 3-2
3.1.2 Separate Presentation Markup From Java .. 3-3
3.1.3 Use JSP Template Mechanism .. 3-3
3.1.4 Set Sessions=False If Not Using Sessions.. 3-3
3.1.5 Always Invalidate Sessions When No Longer Used... 3-4
3.1.6 Set Main_Mode Attribute To "justrun" ... 3-4
3.1.7 Use Available JSP Tags In Tag Library ... 3-4
3.1.8 Minimize Context Switching Between Servlets and EJBs .. 3-5
3.1.9 Package JSP Files In EAR File For Deployment Rather Than Standalone 3-5

v

3.1.10 Use Compile-Time Object Introspection... 3-5
3.1.11 Choose Static Versus Dynamic Includes Appropriately .. 3-5
3.1.12 Disable JSP Page Buffer If Not Used ... 3-6
3.1.13 Use Forwards Instead of Redirects .. 3-6
3.1.14 Use JSP Tagged Cache ... 3-7
3.1.15 Use well_known_taglib_loc To Share Tag Libraries... 3-7
3.1.16 Use JSP-Timeout for Efficient Memory Utilization... 3-8
3.1.17 Workarounds for the 64K Size Limit for the Generated Java Method 3-8
3.2 Servlet Best Practices... 3-9
3.2.1 Perform Costly One-Time Operation in Servlet init() Method................................ 3-9
3.2.2 Improve Performance by Loading Servlet Classes at OC4J Startup..................... 3-10
3.2.3 Analyze Servlet Duration for Performance Problems .. 3-11
3.2.4 Understand Server Request Load When Debugging.. 3-11
3.2.5 Find Large Servlets That Require a long Road Time When Debugging.............. 3-12
3.2.6 Watch for Unused Sessions When Debugging .. 3-12
3.2.7 Watch for Abnormal Session Usage When Debugging.. 3-13
3.2.8 Load Servlet Session Security Routines at Startup.. 3-13
3.2.9 Retry Failed Transactions and Idempotent HttpServlet.doGet() Exactly Once.. 3-14
3.2.10 Use HTTP Servlet.doPost() for Requests That Update Database.......................... 3-15
3.2.11 Avoid Duplicating Libraries... 3-16
3.2.12 Use Resource Loading Appropriately... 3-16
3.3 Sessions Best Practices .. 3-17
3.3.1 Persist Session State if Appropriate... 3-18
3.3.2 Replicate Sessions if Persisting is Not an Option .. 3-19
3.3.3 Do Not Store Shared Resources in Sessions ... 3-19
3.3.4 Set Session Timeout Appropriately... 3-19
3.3.5 Monitor Session Memory Usage.. 3-19
3.3.6 Always Use Islands, But Keep Island Size Small .. 3-20
3.3.7 Use a Mix of Cookie and Sessions ... 3-20
3.3.8 Use Coarse Objects Inside HTTP Sessions ... 3-21
3.3.9 Use Transient Data in Sessions Whenever Appropriate .. 3-21
3.3.10 Invalidate Sessions ... 3-21
3.3.11 Miscellaneous Guidelines ... 3-22
3.4 EJB Best Practices... 3-23
3.4.1 Local vs. Remote vs. Message Driven EJB.. 3-23

vi

3.4.2 Decide EJB Use Judiciously... 3-24
3.4.3 Use Service Locator Pattern .. 3-24
3.4.4 Cluster Your EJBs ... 3-25
3.4.5 Cluster Servlets and EJB into Identical Islands .. 3-25
3.4.6 Index Secondary Finder Methods.. 3-25
3.4.7 Understand EJB Lifecycle.. 3-26
3.4.8 Use Deferred Database Constraints... 3-26
3.4.9 Create a Cache with Read Only EJBs... 3-26
3.4.10 Pick an Appropriate Locking Strategy.. 3-27
3.4.11 Understand and Leverage Patterns ... 3-27
3.4.12 When Using Entity Beans, Use Container Managed Aged Persistence

Whenever Possible ... 3-28
3.5 Data Access Best Practices.. 3-29
3.5.1 Datasources Connections Caching and Handling... 3-30
3.5.2 Datasource Initialization ... 3-31
3.5.3 Disable Auto-Commit Mode for Better Performance ... 3-31
3.5.4 Disable Escape Processing for Better Performance ... 3-31
3.5.5 Defining Column Types .. 3-32
3.5.6 Prefetching Rows Improves Performance .. 3-33
3.5.7 Update Batching Improves Performance.. 3-34
3.5.8 Use Emulated Data Sources for Better Performance... 3-36
3.5.9 Use Emulated and Non-Emulated Data Sources Appropriately 3-37
3.5.10 Use the EJB-Aware Location Specified in Emulated Data Sources....................... 3-38
3.5.11 Set the Maximum Open Connections in Data Sources ... 3-39
3.5.12 Set the Minimum Open Connections in Data Sources.. 3-40
3.5.13 Setting the Cache Connection Inactivity Timeout in Data Sources 3-41
3.5.14 Set the Wait for Free Connection Timeout in Data Sources 3-41
3.5.15 Set the Connection Retry Interval in Data Sources.. 3-42
3.5.16 Set the Maximum Number of Connection Attempts in Data Sources.................. 3-42
3.5.17 Use JDBC Connection Pooling and Connection Caching....................................... 3-42
3.5.18 Use JDBC Statement Caching ... 3-43
3.5.19 Avoid Using More Than One Database Connection Simultaneously in the

 Same Request ... 3-44
3.5.20 Tune the Database and SQL Statements ... 3-44
3.6 Java Message Service Best Practices.. 3-46

vii

3.6.1 Set the Correct time_to_live Value .. 3-46
3.6.2 Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role

While There Are Outstanding OJMS Session Blocking on a Dequeue
Operation... 3-47

3.6.3 Close JMS Resources No Longer Needed... 3-47
3.6.4 Reuse JMS Resources Whenever Possible .. 3-47
3.6.5 Use Debug Tracing to Track Down Problems ... 3-48
3.6.6 Understand Handle/Interpret JMS Thrown Exceptions.. 3-48
3.6.7 Ensure You Can Connect to the Server Machine and Database From the

Client Machine.. 3-49
3.6.8 Tune Your Database Based on Load ... 3-49
3.6.9 Make Sure You Tune the OracleOCIConnectionPool... 3-49
3.7 Web Services Best Practices ... 3-50
3.7.1 Create Stateless Web Services Instead of Stateful Web Services Whenever

Possible .. 3-50
3.7.2 UDDI Best Practices ... 3-51

4 Oracle9iAS Framework Best Practices

4.1 Design Frameworks and Patterns... 4-2
4.2 BC4J Best Practices .. 4-3
4.2.1 Code to Interfaces... 4-4
4.2.2 Choose the Right Deployment Configuration ... 4-5
4.2.3 Use Application Module Pooling for Scalability ... 4-5
4.2.4 Use Connection Pooling to Optimize Your Use of Database Connections 4-6
4.2.5 Perform Global Framework Component Customization Using Custom

Framework Subclasses .. 4-6
4.2.6 Use SQL-Only and Forward-only View Objects When Possible 4-7
4.2.7 Do Not Let Your Application Modules Get Too Large .. 4-7
4.2.8 Use the Right Failover Mode.. 4-8
4.2.9 Use View Row Spillover to Lower the Memory Required to Cache a Large

Number of Rows .. 4-8
4.2.10 Implement Query Conditions At Design TIme If Possible 4-8
4.2.11 Use the Right JDBC Fetch Size ... 4-9
4.2.12 Turn Off Event Listening in View Object Used in Batch Processes........................ 4-9
4.2.13 Choose the Right Style of Bind Parameters.. 4-9

viii

4.3 Java Object Cache Best Practices ... 4-10
4.3.1 Allow Cacheaccess Objects to be Released in Error Conditions 4-10
4.3.2 Understand or Delegate Ownership When Doing Synchronize 4-10
4.3.3 Set Open File Descriptor Count to 1024 or Higher.. 4-10
4.3.4 Use System Classloader for Object Cached with Java Object Cache 4-11
4.3.5 Group Messages Take Precedence Over Individual Objects in the Cache 4-11
4.3.6 Understand What Cache Objects Survive Process Termination 4-11
4.3.7 Return Cacheaccess Object to the Pool When Not in Use 4-11
4.3.8 Use 1:1 Correlation Between Cached Object and Cacheaccess Object 4-12
4.3.9 Do Not Share Cacheaccess Object.. 4-12

5 Oracle9iAS Web Cache Best Practices

5.1 Use Partial Page Caching Where Possible ... 5-3
5.2 Use ESI Variables for Improved Cache Hit Ratio for Personalized Pages 5-3
5.3 Leverage JESI Over Hand-Generating the ESI Tags... 5-4
5.4 Use esi:inline and esi:include Tags Appropriately ... 5-4
5.5 Use Basic Invalidation for Single Objects, Advanced for Multiple 5-4
5.6 Build Programmatic Invalidation Into Application Logic... 5-5
5.7 Use Surrogate-Control Headers Instead of Caching Rules ... 5-6
5.8 Improve Performance, Scalabillity, and Availability ... 5-7
5.9 Use Two CPUs and Consider Deploying on Dedicated Hardware 5-8
5.10 Configure Enough Memory ... 5-8
5.11 Allocate Sufficient Network Bandwidth .. 5-9
5.12 Set a Reasonable Number of Network Connections .. 5-9
5.13 Cluster Cache Instances for Better Availability, Scalability, and Performance.......... 5-10
5.14 Optimize Response Time By Tuning Origin Server and Oracle9iAS Web Cache

Settings .. 5-10
5.15 Combine Invalidation and Expiration Policies ... 5-12
5.16 Use Invalidation Propagation in a Cluster... 5-12
5.17 Route All HTTP and HTTPS Traffic Through Oracle9iAS Web Cache 5-13
5.18 Create Custom Apology Pages.. 5-13
5.19 Use Redirection to Cache Entry Pages ... 5-15
5.20 Use the <esi:environment> Tag for Authentication/Authorization Callbacks 5-15
5.21 Use Cookies and URL Parameters to Increase Cache Hit Ratios.................................. 5-16
5.22 Use a Network Load Balancer in Front of Oracle9iAS Web Cache.............................. 5-17

ix

5.23 Use Oracle9iAS Web Cache Load Balancing Functionality for Availability and
Scalability of Origin Servers .. 5-17

5.24 Improve Response Times and Reduce Network Bandwidth With Compression 5-19
5.25 Deploy Caches in Remote Offices for Faster Response Times and Reduced WAN

Traffic .. 5-20
5.26 Turn Off Verbose Logging to Conserve Resources .. 5-20
5.27 Use the Oracle9iAS Web Cache Manager to Avoid Configuration Problems............ 5-21
5.28 Use Web Caching to Help Defend Against Denial-of-Service Attacks 5-21
5.29 Tune Invalidation Performance Using Indexes .. 5-22
5.30 Test Application Upgrades and Patches to Ensure Existing Cache and Session Rules

Still Function Correctly... 5-23
5.31 Use HTTPS for Administration, Invalidation, and Statistics Monitoring................... 5-23

6 Oracle HTTP Server Best Practices

6.1 Configure Appropriately for Modem Connections ... 6-2
6.2 Tune TCP/IP Parameters ... 6-2
6.3 Tune KeepAlive Directives .. 6-3
6.4 Tune MaxClients Directive .. 6-3
6.5 Avoid Any DNS Lookup.. 6-4
6.6 Turn Off Access Login if You Do Not Need to Keep an Access Log............................. 6-4
6.7 Use FollowSymLinks and Not SymLinksIfOwnerMatch.. 6-4
6.8 Set AllowOverride to None ... 6-4
6.9 Use mod_rewrite to Hide URL Changes for End Users .. 6-5

7 Oracle9iAS Portal Best Practices

7.1 Performance Best Practices .. 7-2
7.1.1 Use Appropriate Caching Strategy Depending on Page Content........................... 7-3
7.1.2 Use Web and Database Providers Judiciously... 7-4
7.1.3 Improve Availability and Scalability by Having Multiple OC4J_Portal

Instances .. 7-4
7.1.4 Scale Oracle9iAS Portal Better by Tuning Oracle9iAS Infrastructure

Database Optimally ... 7-5
7.1.5 mod_plsql Tuning Directly Impacts Oracle9iAS Portal Performance.................... 7-5
7.1.6 Leverage Web Provider Session Caching ... 7-6
7.1.7 Increase Execution Speed of Slowest Portlet to Increase Page Assembly Speed.. 7-6

x

7.1.8 Reduce Page Complexity to Improve Cachability... 7-6
7.1.9 Measure Tuning Effectiveness Regularly to Improve Performance 7-7
7.2 Content Management and Publishing Best Practices... 7-7
7.2.1 Use a Single Page Group for Unrestricted Copying, Multiple Page Groups for

Delegating Administration .. 7-8
7.2.2 Research Taxonomy Before Committing to the Pages.. 7-8
7.2.3 Always Use Page Templates Instead of Directly Creating Pages 7-9
7.2.4 Separate Template Content From Layout... 7-9
7.2.5 Understand the Difference Between Attributes, Categories, and Perspectives .. 7-10
7.2.6 Avoid Using Simple Item Types .. 7-11
7.3 Best Practices for Oracle9iAS Portal Export/Import.. 7-12
7.3.1 General Guideline/Best Practices for Oracle9iAS Portal 9.0.2.2 Export/Import 7-13
7.3.2 Best Practices System Checklist Before Performing a Portal Export/Import

Operation ... 7-14
7.3.3 Best Practices for Building Transport Sets .. 7-15
7.3.4 Best Practices For Configuring Your Portal Content For Maximal Portability for

Export/Import Operations .. 7-16
7.3.5 Best Practices for Exporting/Importing Page Groups and Components 7-18
7.3.6 Best Practices for Exporting/Importing Web Providers .. 7-19
7.3.7 Best Practices for Exporting/Importing Users and Groups................................... 7-20
7.3.8 Best Practices for Troubleshooting Oracle9iAS Portal 9.0.2.2 Export/Import 7-23

8 Oracle9iAS Wireless Best Practices

8.1 Development Best Practices ... 8-1
8.1.1 Use Hosted Instance to Test Applications .. 8-1
8.1.2 Download Up-to-Date Device Simulators for Testing Applications 8-2
8.1.3 Use Oracle9iAS Wireless XML ... 8-2
8.1.4 Use JSPs to Generate Oracle9iAS Wireless XML ... 8-2
8.1.5 Use the HTTP Adapter Over a Custom Adaptor .. 8-2
8.1.6 Use Hosted Wireless Web Services (Mobile Modules) for Rapid Development .. 8-2
8.2 Deployment Best Practices ... 8-3
8.2.1 Deploy Own Wireless Infrastructure or Use Hosted Versions................................ 8-3
8.2.2 Deploy Your Applications in Phases... 8-3
8.2.3 Use SMS for Targeted Content in Specific Geographical Regions 8-3
8.2.4 Use Oracle9iAS Web Cache with Oracle9iAS Wireless .. 8-3

xi

9 Security Best Practices

9.1 General Best Practices ... 9-2
9.1.1 Best Practices for HTTPS Use ... 9-3
9.1.2 Assign Lowest Level Privileges Adequate for the Task ... 9-3
9.1.3 Best Practices for Cookie Security.. 9-4
9.1.4 Best Practices in Systems Setup.. 9-5
9.1.5 Best Practices for Certificates Use.. 9-5
9.1.6 Review Code and Content Against Already Known Attacks 9-6
9.1.7 Follow "Common Sense" Firewall Practices... 9-7
9.1.8 Leverage Declarative Security.. 9-7
9.1.9 Use the Oracle Integrated Version of JAAS.. 9-8
9.1.10 Use Switched Connections in DMZ... 9-8
9.1.11 Place Application Server in the DMZ ... 9-8
9.1.12 Tune the SSL SessionCacheTimeout Directive if You Are Using SSL.................... 9-9
9.2 OC4J Security Best Practices .. 9-9
9.2.1 Use the Oracle9iAS JAAS Provider for OC4J User Management in Place of

principals.xml ..9-10
9.2.2 Avoid Writing Custom User Managers and Instead Extend the JAAS Provider,

Oracle9iAS Single Sign-On, and Oracle Internet Directory9-10
9.2.3 Use Oracle9iAS Single Sign-On as the Authentication Mechanism with the JAAS

Provider ...9-10
9.2.4 Use the JAAS Provider’s Declarative Features to Reduce Programming............ 9-11
9.2.5 Use Fine-Grained Access Control Provided by the JAAS Provider and the Java

Permission Model ..9-11
9.2.6 Use Oracle Internet Directory as the Central Repository for the JAAS Provider in

Production Environments ... 9-11
9.2.7 Take Advantage of the Authorization Features of the JAAS Provider 9-11
9.3 Oracle9iAS Single Sign-On Best Practices ... 9-12
9.3.1 Oracle9iAS Single Sign-On Servers Should Be Configured for High

Availability.. 9-12
9.3.2 Leverage Oracle9iAS Single Sign-On Whenever Possible 9-13
9.3.3 Have an Enterprise-Wide Directory in Place ... 9-13
9.3.4 Always Use Oracle9iAS Single Sign-On Instead of Writing Custom

Authentication Logic ... 9-13
9.3.5 For Devloping Single Sign-on Enabled Applications, Use mod_osso and Not the

Single Sign-on SDK ..9-13

xii

9.3.6 Always Use SSL with Oracle9iAS.. 9-14
9.3.7 Train Users to be Wary of Providing Their Oracle9iAS Single Sign-On

Username and Password Anywhere Other Than Through the Oracle9iAS
Single Sign-On URL ... 9-14

9.3.8 Train Users to Log Out So the Cookie Does Not Remain Active 9-15

10 Oracle Enterprise Manager Best Practices

10.1 Monitor Application Performance During Application Development or Test Cycles
Using Oracle Enterprise Manager ... 10-2

10.2 Use Oracle Enterprise Manager to Tune Application SQL ... 10-2
10.3 Use Oracle9iAS Clusters for Application Deployment and Configuration

 Management.. 10-3
10.4 Use the Oracle Enterprise Manager Deployment Wizard to Deploy Application in

Real-Time ... 10-3
10.5 Use Oracle Enterprise Manager Job System to Schedule a Deployment to Occur at a

Certain Time .. 10-3
10.6 Select the Oracle Enterprise Manager Management Framework Options That Best Suit

Your Needs .. 10-4
10.7 Use the Latest Version of Oracle Enterprise Manager for Managing Both Oracle9iAS

and the Oracle Database .. 10-4
10.8 Use the Oracle Enterprise Manager Event System and Notification to Proactively

Monitor System Availability .. 10-5
10.9 Use the Oracle Enterprise Manager Event Management System’s User-Defined Events

to Customize Monitoring of Your Application Servers .. 10-5
10.10 Use Oracle Enterprise Manager to Monitor and Diagnose Performance Bottlenecks and

Availability Problems ... 10-6
10.11 When Monitoring Application Server Performance, Use the Host Home Page to Help

Diagnose Performance Issues ... 10-6
10.12 Use the Oracle Enterprise Manager Job System to Periodically Back Up Your Oracle9iAS

Configuration ... 10-6
10.13 Use Oracle Enterprise Manager to Monitor Rate and Aggregated Performance

Metrics... 10-7
10.14 After Restarting Oracle Enterprise Manager, Navigate to Commonly Used Pages.. 10-7
10.15 Use Oracle Enterprise Manager to Change Configurations.. 10-7

xiii

11 Installation Best Practices

11.1 General Installation Best Practices .. 11-2
11.1.1 Understand the Various Configuration Tools Available with Oracle9iAS 11-2
11.1.2 Try Standard Demos and Associated Applications Before Running Your

Applications .. 11-2
11.1.3 Turn Off Unused Services to Reduce Oracle9iAS Memory Requirement 11-3
11.1.4 Check Metalink Regularly for Updates to Keep Your Installation Current 11-3
11.1.5 Periodically Check the Log Files for Restarts/Errors That Are Masked by Auto

Restart Capability ...11-3
11.1.6 System Administrator and Oracle9iAS Administrator Should Be Different....... 11-3
11.1.7 Use the Appropriate Administration User Accounts ... 11-4
11.1.8 Install All Mid-Tiers on Multiple Smaller Machines, the Infrastructure on Clustered

Larger Machines ...11-4
11.1.9 For a 3-Tier Environment, Install the Infrastructure Instance Twice and Configure

Each Tier Differently .. 11-4
11.1.10 Recommendation for Installing Oracle9iAS Portal ... 11-5
11.2 Hosting Installation Best Practices.. 11-6
11.2.1 Install as Different Users When Installing Multiple Instances on the Same

Machine ... 11-6
11.2.2 Share the Same Security Service Across Multiple Installations But Split the

Metadata Service .. 11-6
11.2.3 Recommendations for Having Large Number of Groups Run the Applications on a

Given Instance .. 11-7

12 Deployment Best Practices

12.1 Deployment Architecture Options ... 12-1
12.1.1 Deploying Oracle9iAS as Independent Instances ... 12-2
12.1.2 Deploying Oracle9iAS Instances with Oracle9iAS Web Cache Cluster............... 12-4
12.1.3 Use Standard Oracle9iAS Clusters .. 12-9
12.1.4 Separate OC4J and Oracle HTTP Server Clusters ... 12-12
12.2 General Deployment Best Practices.. 12-13
12.2.1 Deploy/Re-Deploy Applications During Low Traffic ... 12-13
12.2.2 Use Identical Machines.. 12-14
12.2.3 Rolling Upgrades - Form a New Cluster for Major Upgrades 12-15
12.2.4 Use Network Level Load Balancer for Increase Scalability/Availability.......... 12-16

xiv

12.3 Oracle Internet Directory Deployment Best Practices.. 12-17
12.3.1 Use Utility for Bulk Loading Data to Oracle Internet Directory 12-17
12.3.2 Replicate Oracle Internet Directory for High Availability 12-18
12.3.3 Use SSL Binding for Better Security .. 12-18
12.3.4 Use the Appropriate Backup and Restore Utilities ... 12-19
12.3.5 Recommendations for Audting and Monitoring Oracle Internet Directory 12-20
12.3.6 Assign Correct Oracle Internet Directory Privileges for Oracle9iAS

Installation... 12-20
12.3.7 Change Access Control Policies to Better Administer Users 12-20
12.3.8 Best Practice for Oracle Internet DirectoryOracle Internet Directory Password

Policy .. 12-21
12.3.9 Best Practice for Directory Integration Platform in Third Party Directory

Environments .. 12-21
12.3.10 Recommendations for Migrating Oracle9iAS Application to Existing Oracle Internet

Directory .. 12-24
12.3.11 Recommendation for Moving Oracle9iAS Applications From Test to Production

Oracle Internet Directory ... 12-25

13 Miscellaneous Best Practices

13.1 Simulate Failures and Compute Availability Impact... 13-2
13.2 Pooling and Sharing.. 13-3
13.3 Perform Incremental Performance Evaluation During the Development Cycle 13-3
13.4 Run Your Performance Test on Systems That Will Simulate Your Production

Environment ... 13-4
13.5 Understand How to Configure Your Test Driver and Analyze the Result................. 13-4
13.6 Assign Someone Who is Experienced in Running and Analyzing Performance

 Tests .. 13-4
13.7 Document All Recovery and Repair Procedures, and Practice Them Regularly....... 13-5
13.8 Use Available Tools to Monitor Site Load and Status.. 13-5
13.9 Rolling Period Restarts Avoid Unexpected Errors ... 13-6
13.10 Stock Spares and Have a Backup Schedule ... 13-7

xv

A Oracle9iAS Web Cache Best Practices Appendix

A.1 Use Partial Page Caching Where Possible ... A-2
A.2 Use <esi:inline> Tags for Existing Applications and <esi:include> Tags for New

Applications .. A-4
A.2.1 Using Inline for Non-Fetchable Fragmentation... A-4
A.2.2 Using Include for Fetchable Fragmentation... A-5
A.3 Reduce Invalidation Overhead ... A-6
A.3.1 Send Basic Invalidation Requests for Invalidating One Object............................... A-6
A.3.2 Use Substring Matching for Invalidating Multiple Objects in Advanced

Invalidations ... A-7

xvi

xvii

Send Us Your Comments

Oracle9i Application Server Best Practices, Release 2 (9.0.3)

Part No. B10578-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the document, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

� Electronic mail: iasdocs_us@oracle.com
� FAX: 650-506-7365 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

This document describes the best practices for Oracle9i Application Server
(Oracle9iAS).

This preface contains these topics:

� Audience

� Documentation Accessibility

� Organization

� Related Documentation

� Conventions

xx

Audience
This document is intended for all users of Oracle9iAS: application designers,
developers, deployers, and administrators. It is assumed that the reader has
sufficient knowledge about J2EE and relevant Web technologies and terms.

The reader is also assumed to be familiar with basicOracle9iAS terminology. This
document does not explain the terms to the beginner, but does cover the nuances of
different options that a feature may provide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

xxi

Organization
This document contains:

Chapter 1, "Introduction"
This chapter describes the Oracle9iAS Best Practices document content.

Chapter 2, "Java Language Best Practices"
This chapter describes best practices for Java language.

Chapter 3, "J2EE Best Practices"
This chapter describes best practices for J2EE language.

Chapter 4, "Oracle9iAS Framework Best Practices"
This chapter describes best practices for Oracle9iAS framework.

Chapter 5, "Oracle9iAS Web Cache Best Practices"
This chapter describes best practices for Oracle9iAS Web Cache.

Chapter 6, "Oracle HTTP Server Best Practices"
This chapter describes best practices for Oracle HTTP Server.

Chapter 7, "Oracle9iAS Portal Best Practices"
This chapter describes best practices for Oracle9iAS Portal.

Chapter 8, "Oracle9iAS Wireless Best Practices"
This chapter describes best practices for Oracle9iAS Wireless.

Chapter 9, "Security Best Practices"
This chapter describes best practices for security.

Chapter 10, "Oracle Enterprise Manager Best Practices"
This chapter describes best practices for Oracle Enterprise Manager.

Chapter 11, "Installation Best Practices"
This chapter describes best practices for installation.

xxii

Chapter 12, "Deployment Best Practices"
This chapter describes best practices for deployment.

Chapter 13, "Miscellaneous Best Practices"
This chapter describes best practices for miscellaneous.

Appendix A, "Oracle9iAS Web Cache Best Practices Appendix"
This appendix describes additional best practices for Oracle9iAS Web Cache.

xxiii

Related Documentation
For more information, see these Oracle resources:

� Oracle9iAS Documentation Library CD-ROM

� Oracle9iAS Platform Specific Documentation

� Oracle9i Application Server Install Frequently Asked Questions at:

http://otn.oracle.com/products/ias/install-faq.html

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/content.html

xxiv

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

italic text Italicized text indicates placeholders or variables for which you must
supply particular values.

[] Brackets enclose optional clauses from which you can choose one or
none.

Introduction 1-1

1
Introduction

This document is a collection of common practices regarding development and
deployment of Oracle9iAS. It covers common mistakes, product usage scenarios,
and also provides a review checklist for different phases of Oracle9iAS deployment.
Some of the practices may be generic to Java 2 Enterprise Edition (J2EE) and not
specific to Oracle9iAS.

The document introduces the J2EE and Web Cache install type of Oracle9iAS, and
then discusses the practices associated with each Oracle9iAS component. The
practices are then bound together with some complete deployment examples.

1.1 About Best Practices
A best practice is, in general, a recommendation or a common practice on how to
perform certain tasks and actions. This recommendation may involve a combination
of tools and manual processes to achieve a desired result.

The best practices in this document are deliberately kept brief. They do not include
the detailed steps. Those are covered in other documentation library books.

About Oracle9iAS J2EE and Web Cache Install Type

1-2 Best Practices

1.2 About Oracle9iAS J2EE and Web Cache Install Type
Oracle9iAS Release 2 can be installed in different ways– J2EE and Web Cache install
type offers the most basic install. In this paper, the term Oracle9iAS is used to refer
to this installation type. This book will discuss the following components:

� Oracle9iAS Web Cache: This is the first component of Oracle9iAS to receive
requests. For both static and dynamic requests, it can cache the results, thus
reducing the workload of the Web server machines behind it.

� Oracle HTTP Server: This is the Oracle9iAS component that services HTTP
requests. It responds to requests forwarded to it by Oracle9iAS Web Cache. The
Oracle HTTP Server sub-system is comprised of a Web server (based on
Apache), a Perl execution environment, and a PL/SQL and OC4J routing
system. Unless mentioned otherwise, a reference to Oracle HTTP Server usually
is a reference to the Web server piece within Oracle HTTP Server.

� Oracle9iAS Containers for J2EE (OC4J): This is the J2EE-compliant container in
Oracle9iAS. It provides clustering capabilities for the J2EE components
–servlets, Java Server Pages (JSP), and Enterprise Java Beans (EJB). It also
contains other mechanisms, such as Java Object Cache, which provides
distributed caching capabilities.

� Oracle Enterprise Manager: Oracle Enterprise Manager is a Web-based
administration tool for Oracle9iAS Release 2.

� Infrastructure Repository: This is a database or file-based repository for
Oracle9iAS Release 2. It is used to persist deployment and configuration
information for other Oracle9iAS components.

� Clustering Infrastructure Components: There are some components (Oracle
Process Manager and Notification Service, mod_oc4j, and Distributed
Configuration Manager) that work in tandem to provide significant clustering
capabilities in Oracle9iAS Release 2.

About Oracle9iAS J2EE and Web Cache Install Type

Introduction 1-3

Figure 1–1 below displays the components deployed in a clustered scenario.

Figure 1–1 Clustered Components

For detailed information on Oracle9iAS components and features, refer to the
product documentation.

Browser
client

Load Balancer

Oracle9i Real
Application

Cluster

Database

Database

Database

Distributed
Oracle9iAS

Web Caches

Oracle9i Application Server ClustersInternet

OC4JOracle HTTP
Server

Process

Process

Process

Oracle9iAS
Web Cache

Audience

1-4 Best Practices

1.3 Audience
This document is intended for all users of Oracle9iAS: application designers,
developers, deployers, and administrators. It is assumed that the reader has
sufficient knowledge about J2EE and relevant Web technologies and terms.

The reader is also assumed to be familiar with basic Oracle9iAS terminology. This
document does not explain the terms to the beginner, but does cover the nuances of
different options that a feature may provide.

1.4 Document Organization
This document as a whole focuses on Oracle9iAS Web Cache, Oracle HTTP Server,
OC4J, J2EE programming, Oracle9iAS Portal, Oracle Internet Directory, and
Oracle9iAS deployment. Other mature technologies like Perl and PLSQL have
sufficient associated literature, and are not covered here. An application server
running J2EE applications is still impacted by the basic practices in Java
programming – specially the performance-related practices.

These are covered first, followed by J2EE practices: JSPs, servlets, and EJBs. We then
cover practices on some of the frameworks Oracle9iAS provides, for example, BC4J
and Java Object Cache.

Oracle9iAS Web Cache practices then elaborate the different manners in which
Oracle9iAS Web Cache may be leveraged. The overall security practices then
provide some tips to secure deployment.

This document also describes some deployment architectures with respect to
placing different components along with firewalls.

See Also: Oracle9i Application Server Concepts Guide

References and Relation to Other Documents

Introduction 1-5

1.5 References and Relation to Other Documents
Most of the performance related practices are covered in more detail in the
Oracle9iAS Performance and Tuning Guide. The sections on servlets, BC4J, and data
access rely heavily on this.

In the clustering sections, the following two white papers were referenced:

� Oracle9iAS: Scalability, Availability, and Manageability of J2EE and Web
Clusters at:

http://otn.oracle.com/products/ias/ohs/collateral/r2/clusters.pdf

� mod_oc4j: A Technical Overview at:

http://otn.oracle.com/products/ias/ohs/collateral/r2/mod_oc4j_wp.pdf

Other references as appropriate to certain sections or practices are alluded to within
the description of the best practice.

References and Relation to Other Documents

1-6 Best Practices

Java Language Best Practices 2-1

2
Java Language Best Practices

This chapter describes Java language best practices. The topics include:

� Avoid or Minimize Synchronization

� Monitor Synchronization

� Monitor and Fix Resource Leaks

� Always Use a Finally Clause In Each Method to Cleanup

� Discard Objects That Throw Catch-All Exceptions

� Design Transactions Usage Correctly

� Put Business Logic In the Right Place

� Avoid Common Errors That Can Result In Memory Leaks

� Avoid Creating Objects or Performing Operations That May Not Be Used

� Replace Hashtable and Vector With Hashmap, ArrayList, or LinkedList If
Possible

� Reuse Objects Instead of Creating New Ones If Possible

� Use Stringbuffer Instead of String Concatenation

Avoid or Minimize Synchronization

2-2 Best Practices

2.1 Avoid or Minimize Synchronization
Many performance studies have shown a high performance cost in using
synchronization in Java. Improper synchronization can also cause a deadlock,
which can result in complete loss of service because the system usually has to be
shut down and restarted. But performance overhead cost is not a sufficient reason to
avoid synchronization completely. Failing to make sure your application is
thread-safe in a multithreaded environment can cause data corruption, which can
be much worse than losing performance. The following are some practices that you
can consider to minimize the overhead:

� Synchronize Critical Sections Only

� Do Not Use the Same Lock on Objects That Are Not Manipulated Together

� Use Private Fields

� Use a Thread Safe Wrapper

� Use Immutable Objects

� Know Which Java Objects Already Have Synchronization Built-in

� Do Not Under-Synchronize

2.1.1 Synchronize Critical Sections Only
If only certain operations in the method must be synchronized, use a synchronized
block with a mutex instead of synchronizing the entire method. For example:

private Object mutex = new Object();
 …
 private void doSomething()
 {
 // perform tasks that do not require synchronicity
 …
 synchronized (mutex)
 {
 …
 }
 …
 }

Avoid or Minimize Synchronization

Java Language Best Practices 2-3

2.1.2 Do Not Use the Same Lock on Objects That Are Not Manipulated Together
Every Java object has a single lock associated with it. If unrelated operations within
the class are forced to share the same lock, then they have to wait for the lock and
must be executed one at a time. In this case, define a different mutex for each
unrelated operation that requires synchronization.

Also, do not use the same lock to restrict access to objects that will never be shared
by multiple threads. For example, using Hashtables to store objects that will
never be accessed concurrently causes unnecessary synchronization overhead:

public class myClass
{
 private static myObject1 myObj1;
 private static mutex1 = new Object();
 private static myObject2 myObj2;
 private static mutex2 = new Object();
 …
 public static void updateObject1()
 {
 synchronized(mutex1)
 {
 // update myObj1 …
 }
 }
 public static void updateObject2()
 {

synchronized(mutex2)
 {
 // update myObj2 …
 }
 }
…
}

2.1.3 Use Private Fields
Making fields private protects them from unsynchronized access. Controlling their
access means these fields need to be synchronized only in the class’s critical sections
when they are being modified.

Avoid or Minimize Synchronization

2-4 Best Practices

2.1.4 Use a Thread Safe Wrapper
Provide a thread-safe wrapper on objects that are not thread-safe. This is the
approach used by the collection interfaces in JDK 1.2.

2.1.5 Use Immutable Objects
An immutable object is one whose state cannot be changed once it is created. Since
there is no method that can change the state of any of the object’s instance variables
once the object is created, there is no need to synchronize on any of the object’s
methods.

This approach works well for objects, which are small and contain simple data
types. The disadvantage is that whenever you need a modified object, a new object
has to be created. This may result in creating a lot of small and short-lived objects
that have to be garbage collected. One alternative when using an immutable object
is to also create a mutable wrapper similar to the thread-safe wrapper.

An example is the String and StringBuffer class in Java. The String class is
immutable while its companion class StringBuffer is not. This is part of the
reason why many Java performance books recommend using StringBuffer
instead of string concatenation.

2.1.6 Know Which Java Objects Already Have Synchronization Built-in
Some Java objects (such as Hashtable, Vector, and StringBuffer) already
have synchronization built into many of their APIs. They may not require
additional synchronization.

2.1.7 Do Not Under-Synchronize
Some Java variables and operations are not atomic. If these variables or operations
can be used by multiple threads, you must use synchronization to prevent data
corruption. For example: (i) Java types long and double are comprised of eight
bytes; any access to these fields must be synchronized. (ii) Operations such as ++
and –- must be synchronized because they represent a read and a write, not an
atomic operation.

See Also: Section 2.12, "Use Stringbuffer Instead of String
Concatenation"

Monitor and Fix Resource Leaks

Java Language Best Practices 2-5

2.2 Monitor Synchronization
Java synchronization can cause a deadlock. The best way to avoid this problem is to
avoid the use of Java synchronization. One of the most common uses of
synchronization is to implement pooling of serially reusable objects. Often, you can
simply add a serially reusable object to an existing pooled object. For example, you
can add Java Database Connectivity (JDBC) and Statement object to the instance
variables of a single thread model servlet, or you can use the Oracle JDBC
connection pool rather than implement your own synchronized pool of connections
and statements.

If you must use synchronization, you should either avoid deadlock, or detect it and
break it. Both strategies require code changes. So, neither can be completely
effective because some system code uses synchronization and cannot be changed by
the application.

To prevent deadlock, simply number the objects that you must lock, and ensure that
clients lock objects in the same order.

Proprietary JVM extensions may be available to help spot deadlocks without having
to instrument code, but there are no standard JVM facilities for detecting deadlock.

2.3 Monitor and Fix Resource Leaks
One way to fix resource leaks is straightforward - a periodic restart. It provides
good protection against slow resource leaks. But it is also important to spot
applications that are draining resources too quickly, so that any software bugs can
be fixed. Leaks that prevent continuous server operation for at least 24 hours must
be fixed in the application code, not by application restart.

Common programming mistakes are:

� Not returning the resource to the pool (or not removing it from the pool) after
handling an error.

� Relying on the garbage collector to invoke finalize() and free resources.
Never rely on the garbage collector to manage any resource other than memory.

� Not discarding old object references which prevent recycling the memory
occupied by the objects.

Monitoring resource usage should be a combination of code instrumentation and
external monitoring utilities. With code instrumentation, calls to an
application-provided interface, or calls to a system-provided interface like Oracle
Dynamic Monitoring System (DMS), are inserted at key points in the application’s

Always Use a Finally Clause In Each Method to Cleanup

2-6 Best Practices

resource usage lifecycle. Done correctly, this can give the most accurate picture of
resource use. Unfortunately, the same programming errors that cause resource leaks
are also likely to cause monitoring errors. That is, you may forget to release the
resource, or forget to monitor the release of the resource.

Operating system commands like vmstat or ps in UNIX, provide process-level
information such as the amount of memory allocated, the number and state of
threads, or number of network connections. They can be used to detect a resource
leak. Some commercially available development tools can also be used to find the
leak.

In addition to compromising availability, resource leaks and overuse decrease
performance.

2.4 Always Use a Finally Clause In Each Method to Cleanup
In Java, it is impossible to leave the try or catch blocks (even with a throw or
return statement) without executing the finally block. If for any reason the
instance variables cannot be cleaned, throw a catch-all exception that should cause
the caller to discard its object reference to this now corrupt object. If, for any reason
the static variables cannot be cleaned, throw an InternalError or equivalent that
will ultimately result in restarting the now corrupt JVM.

See Also: Section 2.8, "Avoid Common Errors That Can Result In
Memory Leaks"

Discard Objects That Throw Catch-All Exceptions

Java Language Best Practices 2-7

2.5 Discard Objects That Throw Catch-All Exceptions
In many cases, these exceptions indicate that the internal state of the invoked object
is corrupt, and that further invocations will also fail. Keep the object reference only
if careful scrutiny of the exception shows it is benign, and further invocations on
this object are likely to succeed.

Adopt a guilty unless proven innocent approach. For example, a SQLException
thrown from an Oracle JDBC invocation could represent one of thousands of error
conditions in the JDBC driver, the network, or the database server. Some of these
errors (for example, subclass SQLWarning) are benign. Some SQLExceptions (for
example, “ORA-3113: end of file on communication channel”) definitely leave the
JDBC object useless. Most SQLExceptions do not clearly specify what state the
JDBC object is left in. The best approach is to enumerate the benign error codes that
could occur frequently in your application and can definitely be retried, such as a
unique key violation for user-supplied input data. If any other error code is found,
discard the potentially corrupt object that threw the exception.

Discard all object references to the (potentially) corrupt object. Be sure to remove the
corrupt object from all pools in order to prevent pools from being poisoned by
corrupt objects. Do not invoke the corrupt object again – instantiate a brandnew
object instead.

When you are sure that the corrupt objects have been discarded and that the
catching object is not corrupt, throw a non catch-all exception so that the caller does
not discard this object.

Design Transactions Usage Correctly

2-8 Best Practices

2.6 Design Transactions Usage Correctly
Transactions should not span client requests because this can tie up shared
resources indefinitely.

Requests generally should not span more than one transaction, because a failure in
mid-request could leave some transactions committed and others rolled back. If this
requires application-level compensation to recover, then availability or data
integrity may be compromised.

Transactions generally should not span more than one database, because
distributed transactions lock shared resources longer, and failure recovery may
require simultaneous availability and coordination of multiple databases.

Applications that require a single client request (for example, a confirm checkout
request in a shopping cart application) to ultimately affect several databases (for
example, credit card, fulfillment, shopping cart, and customer history databases)
should perform the first step with one database, and in the same transaction queue
a message in the first database addressed to the second database. The second
database will perform the second step and queue the third step, and so on. This
queued transaction chain will eventually complete automatically, or an
administrator will see an undeliverable message and will have to manually
compensate.

Put Business Logic In the Right Place

Java Language Best Practices 2-9

2.7 Put Business Logic In the Right Place
In general, you should not implement business logic in your client program.
Instead, put validation and defaulting logic in your entity objects, and put
client-callable methods in application modules, view objects, and view rows.

Working with application module methods allows the client program to
encapsulate task-level custom code in a place that allows data-intensive operations
to be done completely in the middle-tier without burdening the client.

Working with view object methods allows the client program to access the entire
row collection for cross-row calculations and operations.

Working with view row methods allows the client program to operate on individual
rows of data. There are three types of custom view row methods you may want to
create:

� Accessor methods: The oracle.jbo.Row interface (which view rows
implement) contains the methods getAttribute() and setAttribute(),
but these methods are not typesafe. You can automatically generate custom
typesafe accessors when you generate a custom view row class.

� Delegators to entity methods: By design, clients cannot directly access entity
objects. If you want to expose an entity method to the client tier, you should
create a delegator method in a view row.

� Entity-independent calculations: This is useful if the calculation uses attributes
derived from multiple entity objects or from no entity objects.

Avoid Common Errors That Can Result In Memory Leaks

2-10 Best Practices

2.8 Avoid Common Errors That Can Result In Memory Leaks
In Java, memory bugs often appear as performance problems, because memory
leaks usually cause performance degradation. Because Java manages the memory
automatically, developers do not control when and how garbage is collected. To
avoid memory leaks, check your applications to make sure they:

� Release JDBC ResultSet, Statement, or connection.

� Release failures here are usually in error conditions. Use a finally block to
make sure these objects are released appropriately.

� Release instance or resource objects that are stored in static tables.

Perform clean up on serially reusable objects.

An example is appending error messages to a Vector defined in a serially reusable
object. The application never cleaned the Vector before it was given to the next
user. As the object was reused over and over again, error messages accumulated,
causing a memory leak that was difficult to track down.

2.9 Avoid Creating Objects or Performing Operations That May Not Be
Used

This mistake occurs most commonly in tracing or logging code that has a flag to
turn the operation on or off during runtime. Some of this code goes to great lengths
creating and formatting output without checking the flag first, creating many
objects that are never used when the flag is off. This mistake can be quite expensive,
because tracing and logging usually involves many String objects and operations
to translate the message or even access to the database to retrieve the full text of the
message. Large numbers of debug or trace statements in the code make matters
worse.

See Also: Section 2.3, "Monitor and Fix Resource Leaks"

Replace Hashtable and Vector With Hashmap, ArrayList, or LinkedList If Possible

Java Language Best Practices 2-11

2.10 Replace Hashtable and Vector With Hashmap, ArrayList, or
LinkedList If Possible

The Hashtable and Vector classes in Java are very powerful, because they
provide rich functions. Unfortunately, they can also be easily misused. Since these
classes are heavily synchronized even for read operations, they can present some
challenging problems in performance tuning. Hence, the recommendations are:

� Use an Array Instead of an ArrayList If the Size Can Be Fixed

� Use an ArrayList or LinkedList To Hold a List of Objects In a Particular
Sequence

� Use HashMap or TreeMap To Hold Associated Pairs of Objects

� Replace Hashtable, Vector, and Stack

� Avoid Using String As the Hash Key (If Using JDK Prior to 1.2.2)

2.10.1 Use an Array Instead of an ArrayList If the Size Can Be Fixed
If you can determine the number of elements, use an Array instead of an
ArrayList, because it is much faster. An Array also provides type checking, so
there is no need to cast the result when looking up an object.

2.10.2 Use an ArrayList or LinkedList To Hold a List of Objects In a Particular
Sequence

A List holds a sequence of objects in a particular order based on some numerical
indexes. It will be automatically resized. In general, use an ArrayList if there are
many random accesses. Use a LinkedList if there are many insertions and
deletions in the middle of the list.

2.10.3 Use HashMap or TreeMap To Hold Associated Pairs of Objects
A Map is an associative array, which associates any one object with another object.
Use a HashMap if the objects do not need to be stored in sorted order. Use TreeMap
if the objects are to be in sorted order. Since a TreeMap has to keep the objects in
order, it is usually slower than a HashMap.

Replace Hashtable and Vector With Hashmap, ArrayList, or LinkedList If Possible

2-12 Best Practices

2.10.4 Replace Hashtable, Vector, and Stack
– Replace a Vector with an ArrayList or a LinkedList.

– Replace a Stack with a LinkedList.

– Replace a Hashtable with a HashMap or a TreeMap.

Vector, Stack, and Hashtable are synchronized-views of List and Map.
For example, you can create the equivalent of a Hashtable using:

private Map hashtable = Collections.synchronizedMap (new HashMap());

However, bear in mind that even though methods in these synchronized-views
are thread-safe, iterations through these views are not safe. Therefore, they
must be protected by a synchronized block.

2.10.5 Avoid Using String As the Hash Key (If Using JDK Prior to 1.2.2)
In Java’s HashMap or TreeMap implementation, the hashCode() method on the
key is invoked every time the key is accessed. If the hash key is a String, each
access to the key will invoke the hashCode() and the equals() methods in the
String class. Prior to JDK release 1.2.2, the hashcode() method in the String
class did not cache the integer value of the String in an int variable; it had to scan
each character in the String object each time. Such an operation can be very
expensive. In fact, the longer the length of the String, the slower the hashCode()
method.

Reuse Objects Instead of Creating New Ones If Possible

Java Language Best Practices 2-13

2.11 Reuse Objects Instead of Creating New Ones If Possible
Object creation is an expensive operation in Java, with impact on both performance
and memory consumption. The cost varies depending on the amount of
initialization that needs to be performed when the object is to be created. Here are
ways to minimize excess object creation and garbage collection overhead:

� Use a Pool to Share Resource Objects

� Recycle Objects

� Use Lazy Initialization to Defer Creating the Object Until You Need It.

2.11.1 Use a Pool to Share Resource Objects
Examples of resource objects are threads, JDBC connections, sockets, and complex
user-defined objects. They are expensive to create, and pooling them reduces the
overhead of repetitively creating and destroying them. On the down side, using a
pool means you must implement the code to manage it and pay the overhead of
synchronization when you get or remove objects from the pool. But the overall
performance gain you get from using a pool to manage expensive resource objects
outweighs that overhead.

However, be cautious on implementing a resource pool. The following mistakes in
pool management are often observed:

� a resource object which should be used only serially is given to more than one
user at the same time

� objects that are returned to the pool are not properly accounted for and are
therefore not reused, wasting resources and causing a memory leak

� elements or object references kept in the pool are not reset or cleaned up
properly before being given to the next user

These mistakes can have severe consequences including data corruption, memory
leaks, a race condition, or even a security problem. Our advice in managing your
pool is: keep your algorithm simple.

The J2EE section in this document includes examples showing how you can use
Oracle’s built-in JDBC connection caching and the servlet’s SingleThreadModel
to help manage a shared pool without implementing it yourself.

Reuse Objects Instead of Creating New Ones If Possible

2-14 Best Practices

2.11.2 Recycle Objects
Recycling objects is similar to creating an object pool. But there is no need to
manage it because the pool only has one object. This approach is most useful for
relatively large container objects (such as Vector or Hashtable) that you want to
use for holding some temporary data. Reusing these objects instead of creating new
ones each time can avoid memory allocation and reduce garbage collection.

Similar to using a pool, you must take precautions to clear all the elements in any
recycled object before you reuse it to avoid memory leak. The collection interfaces
have the built-in clear() method that you can use. If you are building your object,
you should remember to include a reset() or clear() method if necessary.

2.11.3 Use Lazy Initialization to Defer Creating the Object Until You Need It.
Defer creating an object until it is needed if the initialization of the object is
expensive or if the object is needed only under some specific condition.

public class myClass
{
 private mySpecialObject myObj;
 …
 public mySpecialObject
 getSpecialObject()
 {
 if (myObj == null)
 myObj = new mySpecialObject();
 return myObj;
 }
 …
}

Use Stringbuffer Instead of String Concatenation

Java Language Best Practices 2-15

2.12 Use Stringbuffer Instead of String Concatenation
The String class is the most commonly used class in Java. Especially in Web
applications, it is used extensively to generate and format HTML content.

String is designed to be immutable; in order to modify a String, you have to
create a new String object. Therefore, string concatenation can result in creating
many intermediate String objects before the final String can be constructed.
StringBuffer is the mutable companion class of String; it allows you to modify
the String. Therefore, StringBuffer is generally more efficient than String
when concatenation is needed.

This section also features the following practices:

� Use StringBuffer Instead of String Concatenation If You Repeatedly Append to
a String In Multiple Statements

� Use Either String or StringBuffer If the Concatenation Is Within One Statement

� Use StringBuffer Instead of String Concatenation If You Know the Size of the
String

2.12.1 Use StringBuffer Instead of String Concatenation If You Repeatedly Append to
a String In Multiple Statements

Using the “+=” operation on a String repeatedly is expensive.

For example:

String s = new
String();
 [do some work …]
s += s1;
 [do some more work…]
s += s2;

Replace the above string concatenation with a StringBuffer:

StringBuffer strbuf = new StringBuffer();
 [do some work …]
strbuf.append(s1);
 [so some more work …]
strbuf.append(s2);
String s = strbuf.toString();

Use Stringbuffer Instead of String Concatenation

2-16 Best Practices

2.12.2 Use Either String or StringBuffer If the Concatenation Is Within One Statement
String and StringBuffer perform the same in some cases; so you do not need
to use StringBuffer directly.

 String s = “a” + “b” + “c”;
to
 String s = “abc”;

Optimization is done automatically by the compiler.

� The Java2 compiler will automatically collapse the above.

� The Java2 compiler will also automatically convert the following:

 String s = s1 + s2;
 to
 String s = (new StringBuffer()).append(s1).append(s2).toString();

In these cases, there is no need to use StringBuffer directly.

2.12.3 Use StringBuffer Instead of String Concatenation If You Know the Size of the
String

The default character buffer for StringBuffer is 16. When the buffer is full, a new
one has to be re-allocated (usually at twice the size of the original one). The old
buffer will be released after the content is copied to the new one. This constant
reallocation can be avoided if the StringBuffer is created with a buffer size that is big
enough to hold the String.

The following will be more efficient than using a String concatenation.

 String s = (new StringBuffer(1024)).
append(s1).append(s2). toString();

will be faster than

 String s = s1 + s2;

J2EE Best Practices 3-1

3
J2EE Best Practices

This chapter describes the J2EE best practices. The topics include:

� JSP Best Practices

� Servlet Best Practices

� Sessions Best Practices

� EJB Best Practices

� Data Access Best Practices

� Java Message Service Best Practices

� Web Services Best Practices

JSP Best Practices

3-2 Best Practices

3.1 JSP Best Practices
This section describes JSP best practices. It includes the following topics:

� Pre-Translate JSPs Before Deployment

� Separate Presentation Markup From Java

� Use JSP Template Mechanism

� Set Sessions=False If Not Using Sessions

� Always Invalidate Sessions When No Longer Used

� Set Main_Mode Attribute To "justrun"

� Use Available JSP Tags In Tag Library

� Minimize Context Switching Between Servlets and EJBs

� Package JSP Files In EAR File For Deployment Rather Than Standalone

� Use Compile-Time Object Introspection

� Choose Static Versus Dynamic Includes Appropriately

� Disable JSP Page Buffer If Not Used

� Use Forwards Instead of Redirects

� Use JSP Tagged Cache

� Use well_known_taglib_loc To Share Tag Libraries

� Use JSP-Timeout for Efficient Memory Utilization

� Workarounds for the 64K Size Limit for the Generated Java Method

3.1.1 Pre-Translate JSPs Before Deployment
You can use Oracle’s ojspc tool to pre-translate the JSPs and avoid the translation
overhead that has to be incurred when the JSPs are executed the first time. You can
pre-translate the JSPs on the production system or before you deploy them. Also,
pre-translating the JSPs allows you the option to deploy only the translated and
compiled class files, if you choose not to expose and compromise the JSP source
files.

JSP Best Practices

J2EE Best Practices 3-3

3.1.2 Separate Presentation Markup From Java
Separating presentation markup such as HTML from Java code is a good practice to
get better performance from your application. The following are a few tips:

� Use JavaBeans for the business logic and JSPs only for the view. Thus, JSPs
should primarily contain logic for HTML (or other presentation markup)
generation only.

� Use stylesheets when appropriate to provide even more separation of the
aspects of HTML that a user can control better.

� JSPs containing a large amount of static content, including large amounts of
HTML code that does not change at runtime, which may result in slow
translation and execution. Use dynamic includes, or better, enable the external
resource configuration parameter to put the static HTML into a Java resource
file.

3.1.3 Use JSP Template Mechanism
Using the JSP code out.print("<html>") requires more resources than
including static template text. For performance reasons, it is best to reserve the use
of out.print() for dynamic text.

3.1.4 Set Sessions=False If Not Using Sessions
The default for JSPs is session=”true”. If your JSPs do not use any sessions, you
should set session=”false” to eliminate the overhead of creating and releasing these
internal sessions created by the JSP runtime. To disable sessions, set the directive as
follows:

<%@page session=”false” %>

JSP Best Practices

3-4 Best Practices

3.1.5 Always Invalidate Sessions When No Longer Used
Sessions add performance overhead to your Web applications. Each session is an
instance of the javax.servlet.http.HttpSession class. The amount of
memory used per session depends on the size of the session objects created.

If you use sessions, ensure that you explicitly cancel each session using the
invalidate() method to release the memory occupied by each session when you
no longer need it.

The default session timeout for OC4J is 30 minutes. You can change this for a
specific application by setting the <session-timeout> parameter in the
<session-config> element of web.xml.

3.1.6 Set Main_Mode Attribute To "justrun"
This attribute, found in global-web-application.xml, determines whether
classes are automatically reloaded or JSPs are automatically recompiled. In a
deployment environment set main_mode to justrun. The runtime dispatcher does
not perform any timestamp checking, so there is no recompilation of JSPs or
reloading of Java classes. This mode is the most efficient mode for a deployment
environment where code is not expected to change.

If comparing timestamps is unnecessary, as is the case in a production deployment
environment where source code does not change, you can avoid all timestamp
comparisons and any possible retranslations and reloads by setting the main_mode
parameter to the value justrun. Using this value can improve the performance of
JSP applications.

Note that before you set main_mode to justrun, make sure that the JSP is
compiled at least once. You can compile the JSP by invoking it through a browser or
by running your application (using the recompile value for main_mode). This
assures that the JSP is compiled before you set the justrun flag.

3.1.7 Use Available JSP Tags In Tag Library
JSP tags make the JSP code cleaner, and more importantly, provide easy reuse. In
some cases, there is also a performance benefit. Oracle9iAS ships with a very
comprehensive JSP tag library that will meet most needs. In cases where custom
logic is required or if the provided library is insufficient, you can build a custom tag
library, if appropriate.

JSP Best Practices

J2EE Best Practices 3-5

3.1.8 Minimize Context Switching Between Servlets and EJBs
Minimize context switching between different Enterprise JavaBeans (EJB) and
servlet components especially when the EJB and Web container processes are
different. If context switching is required, co-locate EJBs whenever possible.

3.1.9 Package JSP Files In EAR File For Deployment Rather Than Standalone
Oracle9iAS Release 2 supports deploying of JSP files by copying them to the
appropriate location. This is very useful when developing and testing the pages.
However, this is not recommended for releasing your JSP-based application for
production. You should always package JSP files into an Enterprise Archive (EAR)
file so that they can be deployed in a standard manner - even across multiple
application servers.

3.1.10 Use Compile-Time Object Introspection
Developers should try to rely on compile-time object introspection on the beans and
objects generated by the tag library instead of request-time introspection.

3.1.11 Choose Static Versus Dynamic Includes Appropriately
JSP pages have two different include mechanisms:

1. Static includes which have a page directive such as:

 <%@ include file=”filename.jsp” %>

2. Dynamic includes which have a page directive such as:

 <jsp:include page="filename.jsp" flush="true" />

Static includes create a copy of the include file in the JSP. Therefore, it increases the
page size of the JSP, but it avoids additional trips to the request dispatcher. Dynamic
includes are analogous to function calls. Therefore, they do not increase the page
size of the calling JSP, but they do increase the processing overhead because each
call must go through the request dispatcher.

Dynamic includes are useful if you cannot determine which page to include until
after the main page has been requested. Note that a page that can be dynamically
included must be an independent entity, which can be translated and executed on
its own.

JSP Best Practices

3-6 Best Practices

3.1.12 Disable JSP Page Buffer If Not Used
In order to allow part of the response body to be produced before the response
headers are set, JSPs can store the body in a buffer.

When the buffer is full or at the end of the page, the JSP runtime will send all
headers that have been set, followed by any buffered body content. This buffer is
also required if the page uses dynamic contentType settings, forwards, or error
pages. The default size of a JSP page buffer is 8 KB. If you need to increase the
buffer size, for example to 20KB, you can use the following JSP attribute and
directive:

<%@page buffer=”20kb” %>

If you are not using any JSP features that require buffering, you can disable it to
improve performance; memory will not be used in creating the buffer, and output
can go directly to the browser. You can use the following directive to disable
buffering:

<%@ page buffer="none" %>

3.1.13 Use Forwards Instead of Redirects
For JSPs, you can pass control from one page to another by using forward or
redirect, but forward is always faster. When you use forward, the forwarded target
page is invoked internally by the JSP runtime, which continues to process the
request. The browser is totally unaware that such an action has taken place.

When you use redirect, the browser actually has to make a new request to the
redirected page. The URL shown in the browser is changed to the URL of the
redirected page, but it stays the same in a forward operation.

Therefore, redirect is always slower than the forward operation. In addition, all
request scope objects are unavailable to the redirected page because redirect
involves a new request. Use redirect only if you want the URL to reflect the actual
page that is being executed in case the user wants to reload the page.

JSP Best Practices

J2EE Best Practices 3-7

3.1.14 Use JSP Tagged Cache
Using the Java Object Cache in JSP pages, as opposed to servlets, is particularly
convenient because JSP code generation can save much of the development effort.
OracleJSP provides the following tags for using the Java Object Cache:

� ojsp:cache

� ojsp:cacheXMLObj

� ojsp:useCacheObj

� ojsp:invalidateCache

Use the ojsp:cacheXMLObj or ojsp:cache tag to enable caching and specify
cache settings. Use ojsp:useCacheObj to cache any Java serializable object. Use
the ojsp:invalidateCache tag to invalidate a cache block. Alternatively, you
can arrange invalidation through the invalidateCache attribute of the
ojsp:cacheXMLObj or ojsp:cache tag.

3.1.15 Use well_known_taglib_loc To Share Tag Libraries
As an extension of standard JSP "well-known URI" functionality described in the
JSP 1.2 specification, the OC4J JSP container supports the use of a shared tag library
directory where you can place tag library JAR files to be shared across multiple Web
applications. The benefits are:

� avoidance of duplication of tag libraries between applications

� allow easy maintenance as the TLDs can be in a single JAR file

� application size is minimized

OC4J JSP well_known_taglib_loc configuration parameter specifies the
location of the shared tag library directory. The default location is
j2ee/home/jsp/lib/taglib/ under the ORACLE_HOME directory. If ORACLE_
HOME is not defined, it is the current directory (from which the OC4J process was
started).

The shared directory must be added to the server-wide CLASSPATH by specifying it
as a library path element. The default location is set in the application.xml file
in the OC4J configuration files directory (j2ee/home/config by default) and can
be altered.

JSP Best Practices

3-8 Best Practices

3.1.16 Use JSP-Timeout for Efficient Memory Utilization
Resource utilization is a key factor for any efficient application. Oracle9iAS 9.0.3
introduces the <orion-web-app> attribute jsp-timeout that can be specified in
the OC4J global-web-application.xml file or orion-web.xml file. The
jsp-timeout attribute specifies an integer value, in seconds, after which any JSP
page will be removed from memory if it has not been requested. This frees up
resources in situations where some pages are called infrequently. The default value
is 0, for no timeout.

Like other attributes use the <orion-web-app> element of the OC4J
global-web-application.xml file to apply to all applications in an OC4J
instance. To set configuration values to a specific application, use the
<orion-web-app> element of the deployment-specific orion-web.xml file.

3.1.17 Workarounds for the 64K Size Limit for the Generated Java Method
The Java Virtual Machine (JVM) limits the amount of code to 65536 bytes per Java
method. Sometimes, as the JSPs grow larger, there is a possibility of hitting this
limit. The following are some suggestions to workaround this limitation:

� As a general rule, design smaller JSPs for your web application.

� If your JSP uses tag libraries heavily, and if you are hitting the 64k limit, use the
reduce_tag_code config parameter to reduce the size of generated code for
custom tag usage. Note that this may impact performance.

Servlet Best Practices

J2EE Best Practices 3-9

3.2 Servlet Best Practices
This section describes servlet best practices. It includes the following topics:

� Perform Costly One-Time Operation in Servlet init() Method

� Improve Performance by Loading Servlet Classes at OC4J Startup

� Analyze Servlet Duration for Performance Problems

� Understand Server Request Load When Debugging

� Find Large Servlets That Require a long Road Time When Debugging

� Watch for Unused Sessions When Debugging

� Watch for Abnormal Session Usage When Debugging

� Load Servlet Session Security Routines at Startup

� Retry Failed Transactions and Idempotent HttpServlet.doGet() Exactly Once

� Use HTTP Servlet.doPost() for Requests That Update DatabaseAvoid
Duplicating Libraries

� Use Resource Loading Appropriately

3.2.1 Perform Costly One-Time Operation in Servlet init() Method
Use a servlet’s init() method to perform any costly one-time initialization
operations. Examples include:

1. Setting up resource pools.

2. Retrieving common data from a database that can be cached in the mid-tier to
reduce warm-up time.

The destroy() method can be used to execute operations that release resources
acquired in the init() method.

Servlet Best Practices

3-10 Best Practices

3.2.2 Improve Performance by Loading Servlet Classes at OC4J Startup
By default, OC4J loads a servlet when the first request for it is made. OC4J also
allows you to load servlet classes when the JVM that runs the servlet is started. To
do this, add the <load-on-startup> sub-element to the <servlet> element in
the application’s web.xml configuration file.

For example, add the <load-on-startup> as follows:

<servlet>
<servlet-name>viewsrc</servlet-name>
<servlet-class>ViewSrc</servlet-class>
<load-on-startup>
</servlet>

Using the load-on-startup facility increases the start-up time for your OC4J process
but decreases first-request latency for servlets.

Using Oracle Enterprise Manager, you can also specify that OC4J load an entire Web
module on startup. To specify that a Web module is to be loaded on startup, select
the Web site Properties page for an OC4J instance, and then select the Load on
Startup checkbox.

Servlet Best Practices

J2EE Best Practices 3-11

3.2.3 Analyze Servlet Duration for Performance Problems
It is useful to know the average duration for servicing servlet and JSP requests in
your J2EE enterprise application. By understanding how long a servlet takes to
service requests when the system is not under load, you can more easily determine
the cause of a performance problem when the system is loaded. The average
response time of a given servlet is reported in the metric service.avg 1 for that
servlet. You should only examine this value after making many calls to the servlet
so that any startup overhead such as class loading and database connection
establishment is amortized.

As an example, suppose you have a servlet for which you notice the service.avg
to be 32 milliseconds. And, suppose you notice a response time increase when your
system is loaded but not CPU bound. When you examine the value of
service.avg, you might find that the value is close to 32 ms, in which case you
can assume the degradation is probably due to your system or application server
configuration rather than your application. If, on the other hand, you notice that
service.avg has increased significantly, you should look for the problem in your
application. For example, multiple users of the application may be contending for
the same resources, including but not limited to database connections.

3.2.4 Understand Server Request Load When Debugging
In debugging servlet and JSP problems, it is often useful to know how many
requests your OC4J processes are servicing. If the problems are performance related,
it is always helpful to know if they are aggravated by a high request load. You can
track the requests for a particular OC4J instance using Oracle Enterprise Manager or
by viewing an application’s Web module metrics.

See Also: Oracle9i Application Server Performance Guide

Servlet Best Practices

3-12 Best Practices

3.2.5 Find Large Servlets That Require a long Road Time When Debugging
You may find that a servlet application is especially slow the first time it is used
after the server is started or that it is intermittently slow. It is possible that when this
happens, the server is heavily loaded, and response times are suffering as a result. If
there is no indication of a high load, which you can detect by monitoring your
access logs, periodically monitoring CPU utilization, or by tracking the number of
users that have active requests to the HTTP server(s) and OC4J instance(s), then you
may have a large servlet that takes a long time to load.

You can see if you have a slow loading servlet by looking at service.maxTime,
service.minTime, and service.avg. If the time to load the servlet is much
longer than the time it takes to service the first request after loading, the first user
that accesses the servlet after your system is started will feel the delay, and
service.maxTime will be large. You can avoid this by configuring the system to
initialize your servlet when it starts.

3.2.6 Watch for Unused Sessions When Debugging
You should regularly monitor your applications to look for unused sessions. It is
easy to inadvertently write servlets that do not invalidate their sessions. Without
access to application source code, you may not be aware that it could be causing
problems for your production host(s), but sooner or later you may notice higher
memory consumption than expected. You can check for unused sessions or sessions
which are not being properly invalidated using the session metrics:
sessionActivation.time, sessionActivation.completed, and
sessionActivation.active.

Servlet Best Practices

J2EE Best Practices 3-13

3.2.7 Watch for Abnormal Session Usage When Debugging
The following is an example that shows an application that creates sessions but
never uses them.

The following are metrics for a JSP under
/oc4j/<application>/WEBs/<context>:

session.Activation.active: 500 ops
session.Activation.completed: 0 ops

This application created 500 sessions that are all still active. Possibly, this indicates
that the application makes unnecessary use of the sessions. Over time, it will cause
memory or CPU consumption problems.

A well-tuned application shows sessionActivation.active with a value that
is less than sessionActivation.completed before the session time out. This indicates
that the sessions are probably being used and cleaned up.

Suppose you have a servlet that uses sessions effectively and invalidates them
appropriately. Then, you might see a set of metrics such as the following:

session.Activation.active: 2 ops
session.Activation.completed: 500 ops

The fact that two sessions are active when more than 500 have been created and
completed indicates that sessions are being invalidated after use.

3.2.8 Load Servlet Session Security Routines at Startup
OC4J uses the class java.security.SecureRandom for secure seed generation.
The very first call to this method is time consuming. Depending on how your
system is configured for security, this method may not be called until the very first
request for a session-based servlet is received. One alternative is to configure the
application to load on startup in the application’s web.xml configuration file and to
create an instance of SecureRandom during the class initialization of the
application. The result will be a longer OC4J startup time in lieu of a delay in
servicing the first request.

Servlet Best Practices

3-14 Best Practices

3.2.9 Retry Failed Transactions and Idempotent HttpServlet.doGet() Exactly Once
Retries are discouraged in general because if every catch block of an N frame
try..catch stack performs M retries, the innermost method gets retried (MN)/2
times. This is likely to be perceived by the end user as a hang, and hangs are worse
than receiving an error message.

If you could pick just one try..catch block to retry, it would be best to pick the
outermost block. It covers the most code, and therefore, also covers the most
exceptions. Of course, only idempotent operations should be retried. Transactions
guarantee that database operations can be retried as long as the failed try results in
a rollback and all finally blocks restore variables to a state consistent with the rolled
back database state. Often, the case will be that a servlet’s doGet() method will
perform the retry, and a servlet’s doPost() method will rollback any existing
transaction and retry with a new transaction.

Other cases where a retry is warranted are:

� The semantics of a checked exception suggest a retry using a different method
or different parameters. For example, ShoppingCart.insert() might throw
an ItemExists exception, and this should be caught and
ShoppingCart.incrementQuantity() should be tried.

� Several object replicas exist (usually in different processes). A failure of one (for
example, a remote exception) could be caught and another replica could be
tried. Retry only if the operation is idempotent. Most catch-all exceptions do not
guarantee that all effects from the failed invocation are undone.

For example, if the database tier uses Oracle Real Application Clusters (ORAC),
then a new connection may be to any available database server machine that
mounts the desired database. For JDBC, the DataSource.getConnection()
method is usually configured to pick among ORAC machines.

Also review the following:

� Do One-time Resource Allocation and Cleanup in init() and destroy() Methods.

3.2.9.1 Do One-time Resource Allocation and Cleanup in init() and destroy()
Methods.
init() and destroy() methods are only called during the servlet initialization
and destruction respectively.

Servlet Best Practices

J2EE Best Practices 3-15

3.2.10 Use HTTP Servlet.doPost() for Requests That Update Database
The HTTP specification states that the GET method should be idempotent and free
of side effects. Proxies and caches along the route from client to mid-tier, as well as a
user pressing the reload button, could cause the GET method at the mid-tier to be
called more than once.

HTTP POST is not assumed to be idempotent. Browsers typically require client
confirmation before another POST operation, and intermediate proxies/caches do
not retry or cache the result of a POST. However, a failure may require the client to
manually retry (press RELOAD or press BACK on the browser and then re-submit),
which is not safe unless the update is idempotent.

Hence, it is important to use POST instead of GET for these kinds of updates. Some
practices to be aware of are:

� Applications can warn users about potential duplicate requests. This can be
implemented by encoding a unique request-id in a hidden form field and
writing the request-id of each update request to the database. An update
request first compares its request-id with those of already-processed requests in
the database and warns the user about a potential duplicate if there is a match.
Because the user may have intended to submit two separate and unique
updates, the system cannot make duplicate suppression transparent.

Another good practice is to label non-idempotent submit buttons with advice
against reloading or re-submitting the current page and provide instructions on
which application level logs should be consulted should a failure occur. Because
this is easier to do than implementing request-ids, this is a more common practice.

Servlet Best Practices

3-16 Best Practices

3.2.11 Avoid Duplicating Libraries
Avoid duplicating copies of the same library at different location in your
application server. Duplication of class libraries can lead to several classloading
problems and may consume additional memory and disk space. If your class library
is used by multiple applications, then you can put it at the application server level
by using the <library> tag in application.xml. Or, use the <parent>
attribute in server.xml to share libraries in two applications.

If you have a library that is shared between multiple modules in the same
application, i.e. two web modules in the same EAR file, then use the WAR file
manifest’s CLASSPATH to share the class libraries between the modules instead of
duplicating the libraries in the WEB-INF/lib for every module. In order to enable
the CLASSPATH in a WAR file manifest, the following has to be defined in
orion-web.xml:

<web-app-class-loader include-war-manifest-class-path="true" />

3.2.12 Use Resource Loading Appropriately
If you are using dynamic classloading or are loading a resource, for example,
properties file in your application, use the correct loader.

If you call Class.forName(), always explicitly pass the loader returned by
Thread.currentThread().getContextClassLoader.

If you are loading a properties file, use
Thread.currentThread().getContextClassLoader().getResourceAsS
tream().

Sessions Best Practices

J2EE Best Practices 3-17

3.3 Sessions Best Practices
This section describes session best practices. It includes the following topics:

� Persist Session State if Appropriate

� Replicate Sessions if Persisting is Not an Option

� Do Not Store Shared Resources in Sessions

� Set Session Timeout Appropriately

� Monitor Session Memory Usage

� Always Use Islands, But Keep Island Size Small

� Use a Mix of Cookie and Sessions

� Use Coarse Objects Inside HTTP Sessions

� Use Transient Data in Sessions Whenever Appropriate

� Invalidate Sessions

� Miscellaneous Guidelines

Sessions Best Practices

3-18 Best Practices

3.3.1 Persist Session State if Appropriate
HTTP Sessions are used to preserve the conversation state with a browser. As such,
they hold information, which if lost, could result in a client having to start over the
conversation.

Hence, it is always safe to save the session state in database. However, this imposes
a performance penalty. If this overhead is acceptable, then persisting sessions is
indeed the best approach.

There are trade-offs when implementing state safety that affect performance,
scalability, and availability. If you do not implement state-safe applications, then:

� A single JVM process failure will result in many user session failures. For
example, work done shopping online, filling in a multiple page form, or editing
a shared document will be lost, and the user will have to start over.

� Not having to load and store session data from a database will reduce CPU
overhead, thus increasing performance.

� Having session data clogging the JVM heap when the user is inactive reduces
the number of concurrent sessions a JVM can support, and thus decreases
scalability. In contrast, a state safe application can be written so that session
state exists in the JVM heap for active requests only, which is typically 100 times
fewer than the number of active sessions.

To improve performance of state safe applications:

� Minimize session state. For example, a security role might map to detailed
permissions on thousands of objects. Rather than store all security permissions
as session state, just store the role id. Maintain a cache, shared across many
sessions, mapping role id to individual permissions.

� Identify key session variables that change often, and store these attributes in a
cookie to avoid database updates on most requests.

� Identify key session variables that are read often, and use HttpSession as a
cache for that session data in order to avoid having to read it from the database
on every request. You must manually synchronize the cache, which requires
care to handle planned and unplanned transaction rollback.

Sessions Best Practices

J2EE Best Practices 3-19

3.3.2 Replicate Sessions if Persisting is Not an Option
For the category of applications where the HTTP session state information cannot
be persisted and retrieved on each HTTP request (due to the performance
overhead), OC4J provides an intermediate option – replication.

It can replicate the session state information across an island of servers (which are in
the same cluster). This provides a performance improvement because the sessions
remain in memory, and fault tolerance – because Oracle HTTP Server automatically
routes the HTTP requests to a different server in the island, if the original OC4J (and
the session it contains) is down.

Hence, the best practice here is to at least setup two servers in an island, so that they
can back session state for each other.

3.3.3 Do Not Store Shared Resources in Sessions
Objects that are stored in the session objects will not be released until the session
times out (or is invalidated). If you hold any shared resources that have to be
explicitly released to the pool before they can be reused (such as a JDBC
connection), then these resources may never be returned to the pool properly and
can never be reused.

3.3.4 Set Session Timeout Appropriately
Set session timeout appropriately (setMaxInactiveInterval()) so that neither
sessions timeout frequently nor does it live for ever this consuming memory.

3.3.5 Monitor Session Memory Usage
Monitor the memory usage for the data you want to store in session objects. Make
sure there is sufficient memory for the number of sessions created before the
sessions time out.

Sessions Best Practices

3-20 Best Practices

3.3.6 Always Use Islands, But Keep Island Size Small
Setting up an island of OC4J JVMs causes the sessions to be replicated across all
JVMs. This provides better fault tolerance, since a server crash does not necessarily
result in a lost session. Oracle9iAS automatically re-routes request to another server
in the island – thus an end-user never finds out about a failure.

However, this replication overhead increases as more servers are added to the
island. For example: if your session object requires 100KB per user, and there are 100
users per server. This results in a 10MB memory requirement for session replication
per server. If you have 5 servers in an island, the memory requirement jumps
five-fold. Since islands provide session replication, it is, in general, not prudent to
exceed an island size beyond 3.

Hence, setting up multiple islands, with few servers in an island is a better choice
compared to having a fewer number of larger sized islands.

3.3.7 Use a Mix of Cookie and Sessions
Typically, a cookie is set on the browser (automatically by the container), to track a
user session. In some cases, this cookie may last a much longer duration than a
single user session. (Example: one time settings, such as to determine the end-user’s
geographic location).

Thus, a cookie that persists on the client’s disk could be used to save information
valid for the long-term, while a server side session will typically include
information valid for the short-term.

In this situation, the long-term cookie should be parsed on only the first request to
the server – when a new session established. The session object created on the
server should contain all the relevant information, so as not to require re-parsing
the cookie on each request.

A new client side cookie should then be set that contains only an id to identify the
server side session object. This is automatically done for any JSP page that uses
sessions.

This gives performance benefit since the session object contents do not have to be
re-created from the long-term cookie. The other option is of course to save the user
settings in a database on the server, and have the user login. The unique userid can
then be used to retrieve the contents from the database and store the information in
a session.

Sessions Best Practices

J2EE Best Practices 3-21

3.3.8 Use Coarse Objects Inside HTTP Sessions
Oracle9iAS automatically replicates sessions when session object is updated. If a
session object contains granular objects, for example a person’s name), it results in
too many update events to all the servers in the island.

Hence, it is recommended to use coarse objects, (for example the person object, as
opposed to the name attribute), inside the session.

3.3.9 Use Transient Data in Sessions Whenever Appropriate
Oracle9iAS does not replicate transient data in a session across servers in the island.
This reduces the replication overhead (and also the memory requirements). Hence,
use transient type liberally.

3.3.10 Invalidate Sessions
The number of active users is generally quite small compared to the number of
users on the system (ex. of the 100 users on a Web site, only 10 may actually be
doing something).

A session is typically established for each user on the system, which costs memory.

Simple things – like a logout button - provide opportunity for quick session
invalidation and removal. This avoids memory usage growth since the sessions on
the system will be closer to the number of active users, as opposed to all those that
have not timed out yet.

Sessions Best Practices

3-22 Best Practices

3.3.11 Miscellaneous Guidelines
� Use sessions as light-weight mechanism by verifying session creation state.

� Use cookies for long-standing sessions.

� Put recoverable data into sessions so that they can be recovered if the session is
lost.

� Store non-recoverable data persistently (in file system or in database using
JDBC). However, storing every data persistently is an expensive thing. Instead,
one can save data in sessions and use HttpSessionBindingListener or
other events to flush data into persistent storage during session close.

� Sticky vs Distributable Sessions

– Distributable session data must be serializable, useful for failover, but are
expensive, as the data has to be serialized & replicated among peer
processes.

– Sticky sessions affect load-balancing across multiple JVMs, but are less
expensive as there is no state replication.

EJB Best Practices

J2EE Best Practices 3-23

3.4 EJB Best Practices
This section describes EJB best practices. It includes the following topics:

� Local vs. Remote vs. Message Driven EJB

� Decide EJB Use Judiciously

� Use Service Locator Pattern

� Cluster Your EJBs

� Cluster Servlets and EJB into Identical Islands

� Index Secondary Finder Methods

� Understand EJB Lifecycle

� Use Deferred Database Constraints

� Create a Cache with Read Only EJBs

� Pick an Appropriate Locking Strategy

� Understand and Leverage Patterns

� When Using Entity Beans, Use Container Managed Aged Persistence Whenever
Possible

3.4.1 Local vs. Remote vs. Message Driven EJB
EJBs can be local or remote. If you envision calls to an EJB to originate from the
same container as the one running the EJB, local EJBs are better since they do not
entail the marshalling, unmarshalling, and network communication overhead. The
local beans also allow you to pass an object-by-reference, thus, improving
performance further.

Remote EJBs allow clients to be on different machines and/or different application
server instances to talk to them. In this case, it is important to use the value object
pattern to improve performance by reducing network traffic.

If you choose to write an EJB, write a local EJB over a remote EJBObject. Since the
only difference is in the exception on the EJBObject, almost all of the
implementation bean code remains unchanged.

Additionally, if you do not have a need for making synchronous calls, message
driven beans are more appropriate.

EJB Best Practices

3-24 Best Practices

3.4.2 Decide EJB Use Judiciously
An EJB is a reusable component backed by component architecture with several
useful services: persistence, transactions security, naming, etc. However, these
additions make it "heavy."

If you just require abstraction of some functionality and are not leveraging the EJB
container services, you should consider using a simple JavaBean, or implement the
required functionality using JSPs or servlets.

3.4.3 Use Service Locator Pattern
Most J2EE services and/or resources require “acquiring” a handle to them via an
initial Java Naming and Directory Interface (JNDI) call. These resources could be an
EJBHomeObject, or, a JMS topic.

This results in expensive calls to the server machine to resolve the JNDI reference,
even though the same client may have gone to the JNDI service for a different
thread of execution to fetch the same data!

Hence, it is recommended to have a “Service Locator”, which in some sense is a
local proxy for the JNDI service, so that the client programs talk to the local service
locator, which in turn talks to the real JNDI service, and that only if required.

The Java Object Cache bundled with the product may be used to implement this
pattern.

This practice improves availability since the service locator can hide failures of the
backend server or JNDI tree by having cached the lookup. Although this is only
temporary since the results still have to be fetched.

Performance is also improved since trips to the back-end application server are
reduced.

EJB Best Practices

J2EE Best Practices 3-25

3.4.4 Cluster Your EJBs
OC4J in Oracle9iAS Release 2 provides a mechanism to cluster EJBs. Leveraging this
mechanism gives significant benefits:

1. Load Balancing: The EJB client(s) are load balanced across the servers in the
EJB cluster.

2. Fault Tolerance: The state (in case of stateful session beans) is replicated across
the OC4J processes in the EJB cluster. If the proxy classes on the client cannot
connect to an EJB server, they will attempt to connect to the next server in the
cluster. The client does not see the failure.

3. Scalability: Since multiple EJB servers behaving as one can service many more
requests than a single EJB server, a clustered EJB system is more scalable. The
alternative is to have stand-alone EJB systems, with manual partitioning of
clients across those servers. This is difficult to configure and does not have fault
tolerance advantages.

3.4.5 Cluster Servlets and EJB into Identical Islands
Both servlets and EJBs in OC4J support session state replication, through islands.

An island is a group of servers configured for state replication. A servlet (or JSP)
island could be different from an EJB island. Thus you could have a group of
servers within an EJB island (sometimes also referred to as an EJB cluster), and a
group of servers within a JSP/servlet island. However, this gets confusing and the
benefits are fewer.

Hence, it is recommended to configure deployments so as to have a servlet island
identical to an EJB island.

Note that to leverage EJB clustering fully, you will need to use remote EJBs, which
have some performance implications over local EJBs (discussed in earlier best
practice). If you use local EJBs and save a reference to them in a servlet (or JSP)
session, when the session is replicated this reference is not valid. It is important to
be aware of this trade-off.

3.4.6 Index Secondary Finder Methods
When finder methods, other than findByPrimaryKey and findAll, are created
they may be extremely inefficient if appropriate indexes are not created that help to
optimize execution of the SQL generated by the container.

EJB Best Practices

3-26 Best Practices

3.4.7 Understand EJB Lifecycle
As a developer, it is imperative that you understand the EJB lifecycle. Many
problems can be avoided by following the lifecycle and the expected actions during
call backs more closely.

This is especially true with entity beans and stateful session beans. An example
might be: in a small test environment during testing, a bean may never get
passivated, and thus a mis-implementation (or non-implementation) of
ejbPassivate() and ejbActivate() may not show up until later. Moreover,
since these are not used for stateless beans, they may confuse new developers.

3.4.8 Use Deferred Database Constraints
For those constraints that may be invalid for a short time during a transaction but
will be valid at transaction boundaries, use deferred database constraints. For
example, if a column is not populated during an ejbCreate(), but will be set
prior to the completion of the transaction, then you may want to set the not null
constraint for that column to be deferred. This also applies to foreign key
constraints that are mirrored by EJB relationships with EJB 2.0.

3.4.9 Create a Cache with Read Only EJBs
For those cases where data changes very slowly or not at all, and the changes are
not made by your EJB application, read-only beans may make a very good cache. A
good example of this is a country EJB. It is unlikely that it will change very often
and it is likely that some degree of stale data is acceptable.

To do this:

1. Create read-only entity beans.

2. Set exclusive-write-access="true".

3. Set the validity timeout to the maximum acceptable staleness of the data.

EJB Best Practices

J2EE Best Practices 3-27

3.4.10 Pick an Appropriate Locking Strategy
It is critical that an appropriate locking strategy be combined with an appropriate
database isolation mode for properly performing and highly reliable EJB
applications.

Use optimistic locking where the likelihood of conflict in updates is low. If a lost
update is acceptable or cannot occur because of application design, use an isolation
mode of read-committed. If the lost updates are problematic, use an isolation mode
of serializable.

Use pessimistic locking where there is a higher probability of update conflicts. Use
an isolation mode of read-committed for maximum performance in this case. Use
read-only locking when the data will not be modified by the EJB application.

3.4.11 Understand and Leverage Patterns
With the wider industry adoption, there are several common (and generally)
acceptable ways of solving problems with EJBs. These have been widely published
in either books or discussion forums, etc. In some sense, these patterns are best
practices for a particular problem. These should be researched and followed.

Here are some examples:

� Session Façade: Combines multiple entity bean calls into a single call on a
session bean, thus reducing the network traffic.

� Message Façade: Use MDBs if you do not need a return status from your
method invocation.

� Value Object Pattern: A value object pattern reduces the network traffic by
combining multiple data values that are usually required to be together, into a
single value object.

A full discussion on the large number of patterns available is outside the scope of
this document, but the references section contains some useful books and/or Web
sites on this subject.

EJB Best Practices

3-28 Best Practices

3.4.12 When Using Entity Beans, Use Container Managed Aged Persistence
Whenever Possible

Although there are some limitations to container-managed persistence (CMP), CMP
has a number of benefits. One benefit is portability. With CMP, decisions like
persistence mapping and locking model selection become a deployment activity
rather than a coding activity. This allows deployment of the same application in
multiple containers with no change in code. This is commonly not true for Bean
Managed Persistence (BMP) since SQL statements and concurrency control must be
written into the entity bean and are therefore specific to the container and/or the
data store.

Another benefit is that, in general, J2EE container vendors provide quality of service
(QoS) features such as locking model variations, lazy loading, and performance and
scalability enhancements, which may be controlled via deployment configuration
rather than by writing code. Oracle9iAS includes features such as read-only entity
beans, minimal writing of changes, and lazy loading of relations, which would have
to be built into code for BMP.

A third benefit of CMP is container-managed relationships. Through declarations,
not unlike CMP field mapping, a CMP entity bean can have relationships between
two entity beans managed by the container with no implementation code required
from application developers.

Last but least, tools are available to aid in the creation of CMP entity beans so that
minimal work is required from developers for persistence. This allows developers
to focus on business logic, which allows them to be more efficient. JDeveloper9i is a
perfect example where, through modeling tools and wizards, very little work is
required to create CMP entity beans including creation of both the generic EJB
descriptors and the Oracle9iAS specific descriptors.

Overall, there are cases where CMP does not meet the requirements of an
application, but the development effort saved, and the optimizations that J2EE
containers like OC4J provide make CMP much more attractive than BMP.

Data Access Best Practices

J2EE Best Practices 3-29

3.5 Data Access Best Practices
This section describes data access best practices. It includes the following topics:

� Datasources Connections Caching and Handling

� Datasource Initialization

� Disable Auto-Commit Mode for Better Performance

� Disable Escape Processing for Better Performance

� Defining Column Types

� Prefetching Rows Improves Performance

� Update Batching Improves Performance

� Use Emulated Data Sources for Better Performance

� Use Emulated and Non-Emulated Data Sources Appropriately

� Use the EJB-Aware Location Specified in Emulated Data Sources

� Set the Maximum Open Connections in Data Sources

� Set the Minimum Open Connections in Data Sources

� Setting the Cache Connection Inactivity Timeout in Data Sources

� Set the Wait for Free Connection Timeout in Data Sources

� Set the Connection Retry Interval in Data Sources

� Set the Maximum Number of Connection Attempts in Data Sources

� Use JDBC Connection Pooling and Connection Caching

� Use JDBC Statement Caching

� Avoid Using More Than One Database Connection Simultaneously in the Same
Request

� Tune the Database and SQL Statements

Data Access Best Practices

3-30 Best Practices

3.5.1 Datasources Connections Caching and Handling
Connections must not be closed within finalize() methods. This can cause the
connection cache to run out of connections to use, since the connection is not closed
until the object that obtained it is garbage collected.

The current connection cache does not provide any mechanism to detect
"abandoned" connections, reclaim them, and return them to the cache. All
connections must be explicitly closed by the application.

If a connection is declared as static, then it is possible that the same connection
object is used on different threads at the same time. Do not declare connections as
static objects.

Use the FIXED_WAIT_SCHEME when using the connection cache, especially when
writing Web applications. This guarantees enforcement of the MaxLimit on the
connection cache as well as retrieval of a connection from the cache when a
connection is returned to the cache.

Always use Connection Cache Timeouts such as CacheInactivityTimeout to
close unused physical connections in the cache and cause "shrinking" of the cache,
thus releasing valuable resources.

Also review the following:

� DataSource Connection Caching Strategies

3.5.1.1 DataSource Connection Caching Strategies
In order to minimize the lock up of resources for long periods of time but allow for
recycling of connections from the connection cache, you should use the most
appropriate strategy for obtaining and releasing connections as follows:

� Many clients, few connections - Open and close a connection in the same
method that needs to use the connection. In order to ensure that connections are
returned to the pool, all calls to this method should happen within try-catch,
try-finally, or try-catch-finally blocks. This strategy is useful when you have a
large number of clients sharing a few connections at the cost of the overhead
associated with getting and closing each connection.

� Private client pool - Take advantage of the BMP life cycle. Get a connection
within setEntityContext() and release the connection in
unsetEntityContext(). Make connections available to all methods by
declaring it a member instance.

� Combined strategy - You may take further advantage of BMP life cycle and
implement a strategy which combines the two above.

Data Access Best Practices

J2EE Best Practices 3-31

3.5.2 Datasource Initialization
It is a good practice to put the JNDI lookup of a DataSource as part of the
application initialization code, since DataSources are simply connection factories.

For example, when using servlets, it is a good idea to put the DataSource lookup
code into the init() method of the servlet.

3.5.3 Disable Auto-Commit Mode for Better Performance
Auto-commit mode indicates to the database whether to issue an automatic commit
operation after every SQL operation. Being in auto-commit mode can be expensive
in terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit() method of the connection
object (either java.sql.Conection or oracle.jdbc.OracleConnection).

For better application performance, disable auto-commit mode and use the
commit() or rollback() method of the connection object to manually commit or
rollback your transaction.

The following example illustrates how to do this. It assumes you have imported the
oracle.jdbc.* and java.sql.* interfaces and classes.

//ds is a DataSource object
Connection conn = ds.getConnection();
// It's faster when auto commit is off
conn.setAutoCommit (false);
// Create a Statement
Statement stmt = conn.createStatement ();
...

3.5.4 Disable Escape Processing for Better Performance
Escape processing for SQL92 syntax is enabled by default, which results in the JDBC
driver performing escape substitution before sending the SQL code to the database.
If you want the driver to use regular Oracle SQL syntax, which is more efficient
than SQL92 syntax and escape processing, then disable escape processing using the
following statement:

stmt.setEscapeProcessing(false);

Data Access Best Practices

3-32 Best Practices

3.5.5 Defining Column Types
Defining column types provides the following benefits:

� Saves a roundtrip to the database server.

� Defines the datatype for every column of the expected result set.

� For VARCHAR, VARCHAR2, CHAR and CHAR2, specifies their maximum length.

The following example illustrates the use of this feature. It assumes you have
imported the oracle.jdbc.* and java.sql.* interfaces and classes.

//ds is a DataSource object
Connection conn = ds.getConnection();
PreparedStatement pstmt = conn.prepareStatement("select empno, ename, hiredate from emp");

//Avoid a roundtrip to the database and describe the columns
((OraclePreparedStatement)pstmt).defineColumnType(1,Types.INTEGER);

//Column #2 is a VARCHAR, we need to specify its max length
((OraclePreparedStatement)pstmt).defineColumnType(2,Types.VARCHAR,12);
((OraclePreparedStatement)pstmt).defineColumnType(3,Types.DATE);
ResultSet rset = pstmt.executeQuery();
while (rset.next())
System.out.println(rset.getInt(1)+","+rset.getString(2)+","+rset.getDate(3));
pstmt.close();
…

Data Access Best Practices

J2EE Best Practices 3-33

3.5.6 Prefetching Rows Improves Performance
Row prefetching improves performance by reducing the number of round trips to a
database server. For most database-centric applications, Oracle recommends the use
of row prefetching as much as possible. The recommended prefetch size is 10.

The following example illustrates the use of row prefetching. It assumes you have
imported the oracle.jdbc.* and java.sql.* interfaces and classes.

//ds is a DataSource object Connection conn = ds.getConnection();

//Set the default row-prefetch setting for this connection
((OracleConnection)conn).setDefaultRowPrefetch(7);

//The following statement gets the default row-prefetch value for

//the connection, that is, 7 Statement stmt = conn.createStatement();

//Subsequent statements look the same, regardless of the row

//prefetch value. Only execution time changes.
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());
while(rset.next ())
System.out.println(rset.getString (1));

//Override the default row-prefetch setting for this

//statement
((OracleStatement)stmt).setRowPrefetch (2);
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());
while(rset.next())
System.out.println(rset.getString (1));
stmt.close();
…

Data Access Best Practices

3-34 Best Practices

3.5.7 Update Batching Improves Performance
Update Batching sends a batch of operations to the database in one trip. When
using it:

� Always disable auto-commit mode with Update Batching.

� Use a batch size of around 10.

� Don't mix the standard and Oracle models of Update Batching.

Also review the following:

� Oracle Update Batching

� Standard Update Batching

Data Access Best Practices

J2EE Best Practices 3-35

3.5.7.1 Oracle Update Batching
The following example illustrates how you use the Oracle Update Batching

feature. It assumes you have imported the oracle.driver.* interfaces.

//ds is a DataSource object
Connection conn = ds.getConnection();
//Always disable auto-commit when using update batching
conn.setAutoCommit(false);
PreparedStatement ps =
conn.prepareStatement("insert into dept values (?, ?, ?)");
//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);
//--------#1------------
ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution
//--------#2------------
ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution
//--------#3------------
ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of
3
//JDBC sends the requests to the database
//--------#1------------
ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution
((OraclePreparedStatement)ps).sendBatch(); // JDBC sends the
//queued request
conn.commit();
ps.close();
...

Data Access Best Practices

3-36 Best Practices

3.5.7.2 Standard Update Batching
This example uses the standard “Update Batching” feature. It assumes you have
imported the oracle.driver.* interfaces.

//ds is a DataSource object
Connection conn = ds.getConnection();
//Always disable auto-commit when using update batching
conn.setAutoCommit(false);
Statement s = conn.createStatement();
s.addBatch("insert into dept values ('23','Sales','USA')");
s.addBatch("insert into dept values ('24','Blue
Sky','Montana')");
s.addBatch("insert into dept values
('25','Applications','India')");
//Manually execute the batch
s.executeBatch();
s.addBatch("insert into dept values ('26','HR','Mongolia')");
s.executeBatch();
conn.commit();
ps.close();
...

3.5.8 Use Emulated Data Sources for Better Performance
For speed and performance reasons emulated data sources are preferred over
non-emulated ones.

A non-emulated datasource provides JDBC v2.0 compliance and additional
capabilities such as XA which may not be required for all applications.

Data Access Best Practices

J2EE Best Practices 3-37

3.5.9 Use Emulated and Non-Emulated Data Sources Appropriately
Some of the performance related configuration options have different affects,
depending on the type of the data source. OC4J supports two types of data sources,
emulated and non-emulated.

The pre-installed default data source is an emulated data source. Emulated data
sources are wrappers around Oracle data sources. If you use these data sources,
your connections are extremely fast, because they do not provide full XA or JTA
global transactional support. Oracle recommends that you use these data sources
for local transactions or when your application requires access or update to a single
database. You can use emulated data sources for Oracle or non-Oracle databases.
You can use the emulated data source to obtain connections to different databases
by changing the values of the url and connection-driver parameters.

The following is a definition of an emulated data source:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
location="jdbc/OracleCoreDS"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@localhost:5521:oracle"
inactivity-timeout="30"
/>

Non-emulated data sources are pure Oracle data sources. These are used by
applications that want to coordinate access to multiple sessions within the same
database or to multiple databases within a global transaction.

Data Access Best Practices

3-38 Best Practices

3.5.10 Use the EJB-Aware Location Specified in Emulated Data Sources
Each data source is configured with one or more logical names that allow you to
identify the data source within J2EE applications. The ejb-location is the logical
name of an EJB data source. In addition, use the ejb-location name to identify
data sources for most J2EE applications, where possible, even when not using EJBs.
The ejb-location only applies to emulated data sources. You can use this option
for single phase commit transactions or emulated data sources.

Using the ejb-location, the data source manages opening a pool of connections,
and manages the pool. Opening a connection to a database is a time-consuming
process that can sometimes take longer than the operation of getting the data itself.
Connection pooling allows client requests to have faster response times, because the
applications do not need to wait for database connections to be created. Instead, the
applications can reuse connections that are available in the connection pool.

Oracle recommends that you only use the ejb-location JNDI name in emulated
data source definitions for retrieving the data source. For non-emulated data
sources, you must use the location JNDI name.

Data Access Best Practices

J2EE Best Practices 3-39

3.5.11 Set the Maximum Open Connections in Data Sources
The max-connections option specifies the maximum number of open
connections for a pooled data source. To improve system performance, the value
you specify for the number max-connections depends on a combination of
factors including the size and configuration of your database server, and the type of
SQL operations that your application performs. The default value for
max-connections and the handling of the maximum depends on the data source
type, emulated or non-emulated.

For emulated data sources, there is no default value for max-connections, but
the database configuration limits that affect the number of connections apply. When
the maximum number of connections, as specified with max-connections, are all
active, new requests must wait for a connection to be become available. The
maximum time to wait is specified with wait-timeout.

For non-emulated data sources, there is a property, cacheScheme, that determines
how max-connections is interpreted. The following lists the values for the
cacheScheme property (DYNAMIC_SCHEME is the default value for
cacheScheme).

FIXED_WAIT_SCHEME: In this scheme, when the maximum limit is reached, a
request for a new connection waits until another client releases a connection.

FIXED_RETURN_NULL_SCHEME: In this scheme, the maximum limit cannot be
exceeded. Requests for connections when the maximum has already been reached
return null.

For some applications you can improve performance by limiting the number of
connections to the database (this causes the system to queue requests in the
mid-tier).

For example, for one application that performed a combination of updates and
complex parallel queries into the same database table, performance was improved
by over 35% by reducing the maximum number of open connections to the database
by limiting the value of max-connections.

Data Access Best Practices

3-40 Best Practices

3.5.12 Set the Minimum Open Connections in Data Sources
The min-connections option specifies the minimum number of open connections
for a pooled data source.

For applications that use a database, performance can improve when the data
source manages opening a pool of connections, and manages the pool. This can
improve performance because incoming requests don't need to wait for a database
connection to be established; they can be given a connection from one of the
available connections, and this avoids the cost of closing and then reopening
connections.

By default, the value of min-connections is set to 0. When using connection pooling
to maintain connections in the pool, specify a value for min-connections other
than 0.

For emulated and non-emulated data sources, the min-connections option is
treated differently.

For emulated data sources, when starting up the initial min-connections
connections, connections are opened as they are needed and once the
min-connections number of connections is established, this number is
maintained.

For non-emulated data sources, after the first access to the data source, OC4J then
starts the min-connections number of connections and maintains this number of
connections.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure
that your database is configured to allow at least as large a number of open
connections as the total of the values specified for all the data sources
min-connections options, as specified in all the applications that access the
database.

Data Access Best Practices

J2EE Best Practices 3-41

3.5.13 Setting the Cache Connection Inactivity Timeout in Data Sources
The inactivity-timeout specifies the time, in seconds, to cache unused
connections before closing them.

To improve performance, you can set the inactivity-timeout to a value that
allows the data source to avoid dropping and then re-acquiring connections while
your J2EE application is running.

The default value for the inactivity-timeout is 60 seconds, which is typically
too low for applications that are frequently accessed, where there may be some
inactivity between requests. For most applications, to improve performance, Oracle
recommends that you increase the inactivity-timeout to 120 seconds.

To determine if the default inactivity-timeout is too low, monitor your
system. If you see that the number of database connections grows and then shrinks
during an idle period, and grows again soon after that, you have two options: you
can increase the inactivity-timeout, or you can increase the min-connections.

3.5.14 Set the Wait for Free Connection Timeout in Data Sources
The wait-timeout specifies the number of seconds to wait for a free connection if the
connection pool does not contain any available connections (that is, the number of
connections has reached the limit specified with max-connections and they are
all currently in use).

If you see connection timeout errors in your application, increasing the
wait-timeout can prevent the errors. The default wait-timeout is 60 seconds.

If database resources, including memory and CPU are available and the number of
open database connections is approaching max-connections, you may have limited
max-connections too stringently. Try increasing max-connections and
monitor the impact on performance. If there are not additional machine resources
available, increasing max-connections is not likely to improve performance.

You have several options in the case of a saturated system:

� Increase the allowable wait-timeout.

� Evaluate the application design for potential performance improvements.

� Increase the system resources available and then adjust these parameters.

Data Access Best Practices

3-42 Best Practices

3.5.15 Set the Connection Retry Interval in Data Sources
The connection-retry-interval specifies the number of seconds to wait
before retrying a connection when a connection attempt fails.

If the connection-retry-interval is set to a small value, or a large number of
connection attempts is specified with max-connect-attempts this may degrade
performance if there are many retries performed without obtaining a connection.

The default value for the connection-retry-interval is 1 second.

3.5.16 Set the Maximum Number of Connection Attempts in Data Sources
The max-connect-attempts option specifies the maximum number of times to
retry making a connection. This option is useful to control when the network is not
stable, or the environment is unstable for any reason that sometimes makes
connection attempts fail.

If the connection-retry-interval option is set to a small value, or a large
number of connection attempts is specified with max-connect-attempts this
may degrade performance if there are many retries performed without obtaining a
connection.

The default value for max-connect-attempts is 3.

3.5.17 Use JDBC Connection Pooling and Connection Caching
Constant creation and destruction of resource objects can be very expensive in Java.
Oracle suggests using a resources pool to share resources that are expensive to
create. The JDBC connections are one of the most common resources used in any
Web application that requires database access. They are also very expensive to
create. Oracle has observed overhead from hundreds of milliseconds to seconds
(depending on the load) in establishing a JDBC connection on a mid-size system
with 4 CPUs and 2 GB memory.

In JDBC 2.0, a connection-pooling API allows physical connections to be reused. A
pooled connection represents a physical connection, which can be reused by
multiple logical connections. When a JDBC client obtains a connection through a
pooled connection, it receives a logical connection. When the client closes the logical
connection, the pooled connection does not close the physical connection. It simply
frees up resources, clears the state, and closes any statement objects associated with
the instance before the instance is given to the next client. The physical connection
is released only when the pooled connection object is closed directly.

Data Access Best Practices

J2EE Best Practices 3-43

The term pooling is extremely confusing and misleading in this context. It does not
mean there is a pool of connections. There is just one physical connection, which
can be serially reused. It is still up to the application designer to manage this pooled
connection to make sure it is used by only one client at a time.

To address this management challenge, Oracle’s extension to JDBC 2.0 also includes
connection caching, which helps manage a set of pooled connections. It allows each
connection cache instance to be associated with a number of pooled connections, all
of which represent physical connection to the same database and schema. You can
use one of Oracle’s JDBC connection caching schemes (dynamic, fixed with no wait,
or fixed wait) to determine how you want to manage the pooled connections, or
you can use the connection caching APIs to implement your own caching
mechanisms.

3.5.18 Use JDBC Statement Caching
Use JDBC statement caching to cache a JDBC PreparedStatement or
OracleCallableStatement that is used repeatedly in the application to:

� prevent repeated statement parsing and recreation

� reduce the overhead of repeated cursor creation

The performance gain will depend on the complexity of the statement and how
often the statement has to be executed. Since each physical connection has its own
statement cache, the advantage of using statement caching with a pool of physical
connections may vary. That is, if you execute a statement in a first connection from a
pool of physical connections, it will be cached with that connection. If you later get
a different physical connection and want to execute the same statement, then the
cache does you no good.

See Also: Oracle JDBC Developer’s Guide and Reference

Data Access Best Practices

3-44 Best Practices

3.5.19 Avoid Using More Than One Database Connection Simultaneously in the
Same Request

Using more than one database connection simultaneously in a request can cause a
deadlock in the database. This is most common in JSPs. First, a JSP will get a
database connection to do some data accessing. But then, before the JSP commits
the transaction and releases the connection, it invokes a bean which gets its own
connection for its database operations. If these operations are in conflict, they can
result in a deadlock.

Furthermore, you cannot easily roll back any related operations if they are done by
two separate database connections in case of failure.

Unless your transaction spans multiple requests or requires some complex
distributed transaction support, you should try to use just one connection at a time
to process the request.

3.5.20 Tune the Database and SQL Statements
Current Web applications are still very database-centric. From 60% to 90% of the
execution time on a Web application can be spent in accessing the database. No
amount of tuning on the mid-tier can give significant performance improvement if
the database machine is saturated or the SQL statements are inefficient.

Monitor frequently executed SQL statements. Consider alternative SQL syntax, use
PL/SQL or bind variables, pre-fetch rows, and cache rowsets from the database to
improve your SQL statements and database operations. See Oracle’s Server Tuning
Guide for more information.

Web applications often access a database at the backend. One must carefully
optimize handling of database resources, since a large number of concurrent users
and high volumes of data may be involved. Database performance tuning can be
divided into two categories:

� Tuning of SQL tables and statements

� Tuning of JDBC calls to access the SQL database

Also refer to the following JDBC tuning topics:

� JDBC Tuning

� JDBC Connection Caching

� JDBC Statement Caching

� JDBC Cached Rowsets

Data Access Best Practices

J2EE Best Practices 3-45

3.5.20.1 JDBC Tuning
JDBC objects such Connections, Statements, and Result Sets are quite often used for
database access in Web applications. Frequent creation & destruction of these
objects can be quite detrimental to the performance and scalability of the
application as these objects are quite heavy-weight. So it is always desirable to
cache these JDBC resources.

3.5.20.2 JDBC Connection Caching
� Reuse database connections thus avoiding frequent session creations and

tear-downs.

� EJBs, servlets, JSPs can use/share the connection cache within a JVM.

� Create at startup as singleton object so that they can be shared across multiple
requests.

3.5.20.3 JDBC Statement Caching
� Avoids cursor creation and teardown

� Avoid cursor parsing

� Two types of statement caching:

– Implicit: Saves Metadata of cursor but clears the State and Data content
of the cursor across calls

– Explicit: Saves Metadata, Data, and State of the cursor across calls

� Can be used with Pooled Connection and Connection Cache

� For example: conn.setStmtCacheSize(<cache-size>)

3.5.20.4 JDBC Cached Rowsets
� Result set implementation that is disconnected, serializable, and scrollable

� Free up connections and cursors faster

� Local scrolling on cached data

� Specially useful for:

– small read-only data set

– scrolling for long time

Java Message Service Best Practices

3-46 Best Practices

3.6 Java Message Service Best Practices
This section describes Java message service (JMS) best practices. It include the
following topics:

� Set the Correct time_to_live Value

� Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role
While There Are Outstanding OJMS Session Blocking on a Dequeue Operation

� Close JMS Resources No Longer Needed

� Reuse JMS Resources Whenever Possible

� Use Debug Tracing to Track Down Problems

� Understand Handle/Interpret JMS Thrown Exceptions

� Ensure You Can Connect to the Server Machine and Database From the Client
Machine

� Tune Your Database Based on Load

� Make Sure You Tune the OracleOCIConnectionPool

3.6.1 Set the Correct time_to_live Value
JMS message expiration is set in the JMSExpiration header field. If this value is
set to zero (the default), then the message will never expire. If the amount of used
table space (memory for OC4J) is a concern, then optimally setting the time_to_
live parameter will keep messages from accumulating. This is especially true in
the publish-subscribe domain where messages may sit forever waiting for the final
durable subscriber to return to retrieve the message.

Java Message Service Best Practices

J2EE Best Practices 3-47

3.6.2 Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role
While There Are Outstanding OJMS Session Blocking on a Dequeue Operation

This might cause the granting operation to be blocked and even time-out. Granting
calls should be executed before other OJMS operations.

Another way to avoid the blocking or time out is to grant roles instead of granting
specific privileges to the user directly. AQ has an AQ_ADMINISTRATOR_ROLE that
can be used, or users may create their own tailored role. You can then grant the
execute privilege of a PL/SQL package to this role. Provided the role was created
before hand, the granting of the role to the user does not require a lock on the
package. This will allow the granting of the role to be executed concurrently with
any other OJMS operation.

3.6.3 Close JMS Resources No Longer Needed
When JMS objects like JMS connections, JMS sessions, and JMS consumers are
created, they acquire and hold on to server-side database and client-side resources.
If JMS programs do not close JMS objects when they are done using them either
during the normal course of operation or at shutdown, then database and
client-side resources held by JMS objects are not available for other programs to use.
The JVM implementation does not guarantee that finalizers will kick in and
clean-up JMS object held resources in a timely fashion when the JMS program
terminates.

3.6.4 Reuse JMS Resources Whenever Possible
JMS objects like JMS connections are heavy weight and acquire database resources
not unlike JDBC connection pools. Instead of creating separate JMS connections
based on coding convenience, it is recommended that a given JMS client program
create only one JMS connection against a given database instance for a given
connect string and reuse this JMS connection by creating multiple JMS sessions
against it to perform concurrent JMS operations.

JMS administrable objects like queues, queue tables, durable subscribers are costly
to create and lookup. This is because of the database round trips and in some cases,
JDBC connection creation and teardown overhead. It is recommended that JMS
clients cache JMS administrable objects once they are created or looked up and
reuse them rather than create or look them up each time the JMS client wants to
enqueue or dequeue a message. The Oracle9iAS Java Object Cache could be used to
facilitate this caching.

Java Message Service Best Practices

3-48 Best Practices

3.6.5 Use Debug Tracing to Track Down Problems
OJMS allows users to turn debug tracing by setting oracle.jms.traceLevel to
values between 1 and 5 (1 captures fatal errors only and 5 captures all possible trace
information including stack traces and method entries and exits). Debug tracing
allows one to track down silent or less understood error conditions.

3.6.6 Understand Handle/Interpret JMS Thrown Exceptions
OJMS is required by the JMS specification to throw particular JMS defined
exceptions when certain error/exception conditions occur. In some cases the JMS
specification allows or expects OJMS to throw runtime exceptions when certain
conditions occur. The JMS client program should be coded to handle these
conditions gracefully.

The catch all JMS exception, JMSException, that OJMS is allowed to throw in
certain error/exception cases provides information as to why the error/exception
occurred as a linked exception in the JMSException. JMS programs should be
coded to obtain and interpret the linked exception in some cases.

For instance, when resources like processes, cursors, or tablespaces run out or when
database timeouts/deadlocks occur, SQL exceptions are thrown by the backend
database, which are presented to the JMS client program as linked SQL exceptions
to the catch all JMSException that is thrown. It would be useful for JMS programs
to log or interpret the ORA error numbers and strings so that the administrator of
the database can take corrective action.

The code segment below illustrates a way to print both the JMSException and its
linked Exception:

try

{...}
catch (JMSException jms_ex)
{
 jms_ex.printStackTrace();
 if (jms_ex.getLinkedException() != null)
 jms_ex.getLinkedException().printStackTrace();
}

Java Message Service Best Practices

J2EE Best Practices 3-49

3.6.7 Ensure You Can Connect to the Server Machine and Database From the Client
Machine

When debugging JMS connection creation problems or problems with receiving
asynchronous messages/notifications make sure that you can:

� Ping the database using tnsping

� Connect to the database with its connect string using sqlplus

� Are able to resolve the name or the IP address of the server box from the client
(by using a simple program that accesses a socket) and vice versa

3.6.8 Tune Your Database Based on Load
OJMS performance is greatly improved by proper database tuning. OJMS
performance is dependent on AQ enqueue/dequeue performance. AQ performance
will not scale even if you run the database on a box with better physical resources
unless the database is tuned to make use of those physical resources.

3.6.9 Make Sure You Tune the OracleOCIConnectionPool
If a JDBC OCI driver is specified when creating a JMS connection, OJMS creates an
OracleOCIConnectionPool instance from which to obtain the JDBC OCI
connections. Depending on the number of JMS session instances that need to be
created against the JMS connection and the number of blocking receives that are
expected to be performed at a given time against the given JMS connection, the
underlying OracleOCIConnectionPool instance can be tuned. This is because
the OracleOCIConnectionPool instance is not self-tuning and is created with a
default maximum number of logical connections that can be created from it. Each
blocking receive holds onto a logical JDBC OCI connection, and this connection is
not available to share. The JMS developer/application, depending on load, can tune
the OracleOCIConnectionPool instance on-the-fly by obtaining a handle to the
OracleOCIConnectionPool instance and using its administrative API's.

Web Services Best Practices

3-50 Best Practices

3.7 Web Services Best Practices
This section describes Web services best practices. It includes the following topics:

� Create Stateless Web Services Instead of Stateful Web Services Whenever
Possible

� UDDI Best Practices

3.7.1 Create Stateless Web Services Instead of Stateful Web Services Whenever
Possible

For interactive Web sites, one or a combination of three common techniques is
typically used to maintain server-side state between page serves: Cookies, URL
injection or embedding state (reference) information in hidden form fields.
Unfortunately, none of these techniques work reliably with XML Web services. The
Web services core technology stack (Simple Object Access Protocol (SOAP), Web
Services Description Language (WSDL)) does not define how to maintain state
across multiple client invocations. Vendors who support stateful Web services
implement this feature using HTTP cookies and Session ID, but using them comes
with its own set of challenges.

First, cookies are an optional feature of HTTP and a client can freely choose either
not to support them at all or to return them inconsistently (possibly consulting the
user for permission). While this may sometimes be desirable for interactive Web
sites because of privacy concerns, XML Web services are entirely different by nature
because they are a method for coupling systems and not merely a presentation
technique. The fact that support for cookies is entirely optional creates a big
problem for Web services.

Another problem is that cookies are transport dependent and are valid only for a
distinct peer-to-peer connection. Cookies do not work with routing, they do not
work with programmatic redirects to Web service replicas (for wide-area load
balancing), and they do not work with any transport other than HTTP.

Also, cookie management becomes a major hassle when Web services call other Web
services. The cookies returned by any subordinate Web services must be explicitly
stored in the main Web service's state, which is, in turn, referenced by a cookie
returned to the client. This is even more difficult to manage when the business code
that is called from the main Web service and that calls subordinate Web services
itself, isn't aware that it is called from within a Web services environment.

Web Services Best Practices

J2EE Best Practices 3-51

3.7.2 UDDI Best Practices
Since the UDDI specification allows for various types of services to be published
(for example, phone, fax, directory services) in addition to Web services, there is no
defined relationship between a WSDL document and its representation in the
registry. The document “Using WSDL in a UDDI Registry”
(http://uddi.org/bestpractices.html) recommends a standard convention for
representing WSDL using the UDDI information model. For example, a WSDL
document may contain service access details because the UDDI model separates
service implementation description from access details; the WSDL document
should be modified to remove service access details to produce just an interface
WSDL document. Service access information can be stored in a bindingTemplate
and the URL for the interface WSDL document can be referenced in the
overviewDoc entry in a new wsdlSpec tModel. The bindingTemplate can then
reference the new tModel; this allows multiple access points to be registered for the
same interface WSDL.

There are also other published UDDI.org technical notes recommended for
designing applications and configuring registry taxonomies at:

http://uddi.org/technotes.html

The description includes:

� Using WSCL in a UDDI Registry 1.02

� Versioning Taxonomy and Identifier Systems

� Providing a Taxonomy for Use in UDDI Version 2

Review the following UDDI best practices:

� Invocation Patterns

� Taxonomy Development

Web Services Best Practices

3-52 Best Practices

3.7.2.1 Invocation Patterns
In addition to design-time querying when developing a client application, the
UDDI registry can also be used for dynamic, run-time querying of Web services for
invocation. This is useful for an application that needs to reliably deliver service
invocation responses, for example, if the service provider has changed access points
or decided to refer all requests to an affiliate provider.

This can be accomplished by caching binding information in the client application
upon the initial query for the Web service, and then only re-querying if the service
invocation fails. The client application needs to cache the bindingTemplate, and
retrieve the associated tModel that references the Web service (i.e. wsdlSpec
tModel); the application will use this information for subsequent service
invocations. Upon an invocation failure, the application should then use the
bindingKey value and get_bindingTemplate call to retrieve a current version
of the bindingTemplate. If this bindingTemplate differs from the cached one,
replace the cached version with the new one and retry the call; if the call still fails,
return an error. If the bindingTemplate is identical to the cached version, return
an error, as the service provider needs to be contacted to update the access
information in the registry.

Another example for run-time UDDI access is finding an optimal access point for a
particular Web service, based on geographic-based metadata or uptime for that
service. The client could find all access points that implement a particular Web
service, and from that list, cull only the ones that are closest in physical proximity,
or that have a certain guarantee on uptime. Another example using the same
methodology is that a client could also gather all the responses for a particular Web
service by cycling through the associated access points.

3.7.2.2 Taxonomy Development
An important consideration in publishing Web services to a UDDI registry is
classification; without this, service descriptions cannot be realistically searched for
and retrieved, based on some required criteria. The UDDI specification itself does
not specify any set taxonomies; it is up to the UDDI registry host to decide which
taxonomies to specify. For example, the Universal Business Registry (UBR) includes
four major taxonomies by which business entities, services, bindingTemplate, and
tModels can be classified; they are the uddi-org types, NAICS, ISO 3166, and
UNSPSC taxonomies. Each taxonomy type is defined as a tModel, while the valid
categories and their IDs are defined using the specific UDDI registry vendor's
available tools.

Web Services Best Practices

J2EE Best Practices 3-53

There are two types of categorizations specified by UDDI: checked and unchecked.
It is useful to understand the trade-offs between the two, and which one to
implement for a given registry.

A checked categorization indicates that the registry will validate any keyValue
associated with that categorization for any publish or inquiry API call. If that value
is not part of the categorization, the API message will return an error message
saying that the value is invalid. This type of categorization can help reduce the
occurrence of garbage data from being published; also, having a checked
categorization allows browsers and tools to present these categories to the user. The
downsides of checked categorizations are that effort is required to develop the
taxonomy, and they can potentially change over time.

An unchecked categorization has no a priori knowledge of valid category values; all
inquiry and publishing API calls using this categorization will succeed and not be
validated. The advantage of this is that developing and maintaining taxonomies are
outside the scope of the registry. Of course, using this type of categorization allows
the user to more likely introduce garbage data into the registry, as well as
preventing UDDI registry administration tools from presenting a category hierarchy
listing to the user.

Ideally, and by most what can be read about proper XML Web service architecture
nowadays, XML Web services are implemented in an entirely stateless manner. This
common recommendation is based on the fact that today the term "XML Web
Services" is largely equivalent to the combination of XML and the web's core
protocol HTTP. HTTP is a fully stateless protocol and the surrounding
infrastructure works best of the code that's driven by HTTP is implemented in an
HTTP-aware manner.

Web Services Best Practices

3-54 Best Practices

Oracle9iAS Framework Best Practices 4-1

4
Oracle9iAS Framework Best Practices

This chapter describes Oracle9iAS framework best practices. The topics include:

� Design Frameworks and Patterns

� BC4J Best Practices

� Java Object Cache Best Practices

Design Frameworks and Patterns

4-2 Best Practices

4.1 Design Frameworks and Patterns
Freeware such as Struts and Webwork can run on top of Oracle9iAS. For features
that leverage more of Oracle9iAS with closer integration, Oracle9iAS and
JDeveloper include frameworks such as an MVC framework, UIX, and BC4J.

The selection of an architecture solution is a crucial decision with major impact. A
de-facto standard architecture that fulfills the above stated objectives is the
Model-View-Controller (MVC) architecture.

The central idea of the MVC architecture is to separate business logic, presentation,
and program flow. By using the MVC architecture in a J2EE application, core data
access functionality is separated from the presentation and control logic that uses
this functionality. Such separation allows multiple views to share the same
enterprise data model, which makes supporting multiple clients easier to
implement, test, and maintain. The key concepts of MVC architecture are:

� The “model” represents enterprise data and the business rules that govern
access to and updates of this data.

� The “model” often serves as a software approximation to a real-world process.
This is represented by EJBs or Java Beans in the J2EE framework.

� A “view” renders the content of a model. It accesses enterprise data through the
model and specifies how that data should be presented. JSP is typically used for
the presentation logic.

� A “controller” translates interactions with the view into actions to be performed
by the model. The user actions appear as HTTP GET and POST requests and
trigger activating business processes or state changes. The controller is usually a
servlet or a JSP.

BC4J Best Practices

Oracle9iAS Framework Best Practices 4-3

4.2 BC4J Best Practices
This section describes BC4J best practices and includes:

� Code to Interfaces

� Choose the Right Deployment Configuration

� Use Application Module Pooling for Scalability

� Use Connection Pooling to Optimize Your Use of Database Connections

� Perform Global Framework Component Customization Using Custom
Framework Subclasses

� Use SQL-Only and Forward-only View Objects When Possible

� Do Not Let Your Application Modules Get Too Large

� Use the Right Failover Mode

� Use View Row Spillover to Lower the Memory Required to Cache a Large
Number of Rows

� Implement Query Conditions At Design TIme If Possible

� Use the Right JDBC Fetch Size

� Turn Off Event Listening in View Object Used in Batch Processes

� Choose the Right Style of Bind Parameters

BC4J Best Practices

4-4 Best Practices

4.2.1 Code to Interfaces
The business components framework is organized around interfaces in the
oracle.jbo package, such as oracle.jbo.ApplicationModule,
oracle.jbo.ViewObject, and oracle.jbo.Row. By coding your client to these
interfaces, rather than the classes that implement them, your code can stay
tier-independent. If, for example, you choose to deploy your business components
as an EJB, you can use the same client code you used for testing when your business
components were deployed locally, because the interfaces are always accessible in
the client tier. Your code doesn't need to use a wire protocol; the business
components framework handles all issues of cross-tier communication for you.

The interfaces in oracle.jbo are implemented by classes in the package
oracle.jbo.server. For example, oracle.jbo.ApplicationModule is
implemented by oracle.jbo.server.ApplicationModuleImpl. You should
not directly call methods on these implementation classes, because if you deploy
remotely, these classes will not be available on the client tier. Invoking the classes
would prevent you from ever deploying your application remotely. Instead, you
should call methods on the interfaces.

Similarly, when you create your own application modules and view links, you
should not call methods on their implementation classes. Instead, you should
export methods to create custom interfaces that contain them. These interfaces
extend oracle.jbo.ApplicationModule or oracle.jbo.ViewObject and
are also always accessible in the client tier. When you downcast a business
component, always downcast to your interface and never to your implementation
class.

BC4J Best Practices

Oracle9iAS Framework Best Practices 4-5

4.2.2 Choose the Right Deployment Configuration
Your application will have the best performance and scalability if you deploy your
business components to the Web module with your client. Unless you have strong
reasons (such as wanting to use distributed transactions or EJB security features),
we recommend Web module deployment of business components over EJB
deployment.

Note that both Web module deployment and EJB deployment are fully
J2EE-compliant, and the BC4J framework makes it easy to switch between them.
You can test your application in both modes to see which gives you the best
performance.

4.2.3 Use Application Module Pooling for Scalability
A client can use application module instances from a pool, called application
module pooling. Application module pooling has these advantages:

� reduces the amount of time to obtain server-side resources

� allows a small number of instances to serve a much larger number of requests

� addresses the requirements of Web applications that must handle thousands of
incoming requests

� lets you preserve session state and provides failover support

For example, in the case of a Web application, you may have 1,000 users but you
know that only 100 will be using a certain application module at one time. Hence,
you can use an application module pool. When a client needs an application
module instance, it takes a free one from the pool and releases it to the pool after
either committing or rolling back the transaction. Because the instance is
pre-created, end users are saved the time it takes to instantiate the application
module when they want to perform a task. Typically, Web-based JSP clients use
pools. If you want to make sure that the application module pool has a maximum of
100 application module instances, you can customize the default application
module pool.

BC4J Best Practices

4-6 Best Practices

If your client needs to keep track of application module state, we recommend using
stateful mode. In a stateful JSP application, the client does not reserve the
application module instance, making it available to other clients if the number of
application modules exceeds the recycle threshold. State is, instead, preserved in
one of two ways: the application module pool returns a client's original application
module if the application module has not been recycled, and the pool persists the
state of recycled application modules in the database to be available to clients that
request them later.

When you release an application module at the end of a user's session, be sure to
use stateless (rather than stateful or reserved) release mode. This frees up database
space and allows the pool to recycle the application module immediately.

4.2.4 Use Connection Pooling to Optimize Your Use of Database Connections
Opening a connection to a database is a time-consuming process that can sometimes
take longer than getting the data itself. The advantage of connection pooling is that
clients that need to instantiate a new application module can have faster response
times because they are saved the time of creating the database connection. With
database connection pooling, they can reuse a connection that another application
module instance already created.

4.2.5 Perform Global Framework Component Customization Using Custom
Framework Subclasses

Particularly in large organizations, you may want specific functionality shared by
all components of a particular type--for example, by all view objects. An architect
can create a thin layer of classes such as MyOrgViewObjectImpl that implement
the desired behavior. Individual developers can extend MyOrgViewObjectImpl
instead of ViewObjectImpl, and you can use the "substitutes" feature to extend
MyOrgViewObjectImpl in legacy code.

BC4J Best Practices

Oracle9iAS Framework Best Practices 4-7

4.2.6 Use SQL-Only and Forward-only View Objects When Possible
Basing a view object on an entity object allows you to use the view object to insert,
update, and delete data, and helps keep view objects based on the same data
synchronized. However, if your view object is only going to be used for read-only
queries, and there is no chance that the data being queried in this view object will
have pending changes made through another view object in the same application
module, you should use a SQL-only view object that has no underlying entities.
This will give you improved performance since rows do not need to be added to an
entity cache.

If you are scrolling through data in one direction, such as formatting data for a Web
page, or for batch operations that proceed linearly, you can use a forward-only view
object. Forward-only mode prevents data from entering the view cache. Using
forward-only mode can save memory resources and time, because only one view
row is in memory at a time. Note that if the view object is based on one or more
entity objects, the data does pass to the entity cache in the normal manner, but no
rows are added to the view cache.

4.2.7 Do Not Let Your Application Modules Get Too Large
A root application module should correspond to one task--anything that you would
include in a single database transaction. Do not put more view objects or view links
than you will need for a particular task in a single application module.

In addition, consider deferring the creation of view links by creating them
dynamically with createViewLink(). If you include all view links at design time,
the business logic tier will automatically execute queries for all detail view objects
when your client navigates through a master view object. Deferring view link
creation will prevent the business logic tier from executing queries for detail view
objects that you do not yet need.

For example, for a form in which detail rows are displayed only on request (rather
than automatically), including a view link at design time would force the business
logic tier to automatically execute a query that might well be unnecessary. To
prevent this, you should create a view link dynamically when the detail rows are
requested. By contrast, for a form in which detail rows are displayed as soon as a
master is selected, you should use a view link created at design time to avoid the
runtime overhead of calling createViewLink().

BC4J Best Practices

4-8 Best Practices

4.2.8 Use the Right Failover Mode
By default, the application module pool supports failover, which saves an
application module's state to the database as soon as the application module is
checked into the pool. If the business logic tier or the database becomes inoperable
in mid-transaction (due to a power failure or system crash, for example), the client
will be able to instantiate a new application module with the same state as the lost
one, and no work will be lost.

However, some applications do not require this high level of reliability. If you're not
worried about loss of work due to server problems, you may want to disable
failover. When failover is disabled, the application module's state exists only in
memory until it is committed to the database (at which point the application
module's state is discarded) or recycled (at which point the state is saved so that the
client can retrieve it). By not saving the application module state every time the
application module is checked in, failover-disabled mode can improve
performance.

4.2.9 Use View Row Spillover to Lower the Memory Required to Cache a Large
Number of Rows

While the business logic tier is running, it stores view rows in a cache in memory
(the Java heap). When the business logic tier needs to store many rows at once, you
need to make sure it doesn't run out of memory. To do so, you can specify that when
the number of rows reaches a certain size, the rows "overflow" to your database to
be stored on disk. This feature is called view row spillover. If your application
needs to work with a large query result, view row spillover can help the cache
operate more efficiently.

4.2.10 Implement Query Conditions At Design TIme If Possible
You should include any portion of your query condition that you know in advance
in the WHERE clause field in the View Object wizard. Only use setWhereClause()
for genuinely dynamic query conditions. Even if your query conditions are
genuinely dynamic, you may be able to use parameterized queries instead of the
setWhereClause(). For example, if your view object needs to execute a query
with the WHERE clause “EMPLOYEE_ID=<x>” for various values of x, use a
parameterized WHERE clause such as “EMPLOYEE_ID=:1”. This is more efficient
than repeatedly calling setWhereClause().

BC4J Best Practices

Oracle9iAS Framework Best Practices 4-9

4.2.11 Use the Right JDBC Fetch Size
The default JDBC fetch size is optimized to provide the best trade-off between
memory usage and network usage for many applications. However, if network
performance is a more serious concern than memory, consider raising the JDBC
fetch size.

4.2.12 Turn Off Event Listening in View Object Used in Batch Processes
In non-interactive, batch processes, there is no reason for view objects to listen for
entity object events. Use ViewObject.setListenToEntityEvents(false) on
such view objects to eliminate the performance overhead of event listening.

4.2.13 Choose the Right Style of Bind Parameters
Oracle-style bind parameters (:1,:2, and so on) are perform better than JDBC-style
bind parameters.

There are only two reasons to use JDBC-style bind parameters:

� Use JDBC-style bind parameters if you may use a non-Oracle JDBC driver.

� Use JDBC-style bind parameters if you have more than one occurrence of the
same parameter in the WHERE clause.

Java Object Cache Best Practices

4-10 Best Practices

4.3 Java Object Cache Best Practices
This section describes Java object cache best practices and includes the following
topics:

� Allow Cacheaccess Objects to be Released in Error Conditions

� Understand or Delegate Ownership When Doing Synchronize

� Set Open File Descriptor Count to 1024 or Higher

� Use System Classloader for Object Cached with Java Object Cache

� Group Messages Take Precedence Over Individual Objects in the Cache

� Understand What Cache Objects Survive Process Termination

� Return Cacheaccess Object to the Pool When Not in Use

� Use 1:1 Correlation Between Cached Object and Cacheaccess Object

� Do Not Share Cacheaccess Object

4.3.1 Allow Cacheaccess Objects to be Released in Error Conditions
If a CacheAccess.waitForResponse or CacheAccess.releaseOwnership
method call times out, it must be called again until it returns successfully. Or, one of
the following should be eventually called to free up resources:

� CacheAccess.cancelResponse

� CacheAccess.releaseOwnership with a time out value of “-1”

4.3.2 Understand or Delegate Ownership When Doing Synchronize
When an object or group is defined as SYNCHRONIZE, ownership is required to load
or replace the object, but it is not required for general access to the object or to
invalidate the object.

4.3.3 Set Open File Descriptor Count to 1024 or Higher
On Solaris by default, a process is allowed only 64 open file descriptors. This is
insufficient for most disk cache use. 1024 or greater is a more appropriate value.

Java Object Cache Best Practices

Oracle9iAS Framework Best Practices 4-11

4.3.4 Use System Classloader for Object Cached with Java Object Cache
In general, objects stored in the cache should be defined using the system class
loader (defined in CLASSPATH when the JVM is initialized) rather than in user
defined class loaders. Specifically, any objects that will be shared between
applications or may be saved or spooled to disk need to be defined in the system
CLASSPATH. Failure to do so may result in ClassNotFoundExceptions or
ClassCastExceptions.

4.3.5 Group Messages Take Precedence Over Individual Objects in the Cache
When destroy or invalidate is called on a group, if there are conflicts between
local and distributed definitions of the group and objects in the group, distributed
wins. That is, if the group is distributed, all objects in the group will be
invalidated/destroyed across the entire cache system regardless if the individual
objects or associated groups are defined as local. If the group is defined as local,
then local objects within the group will only be invalidated locally, distributed
objects will be invalidated throughout the entire cache system.

4.3.6 Understand What Cache Objects Survive Process Termination
Local objects (objects not defined with the Attributes.DISTRIBUTE flag) saved
to disk using the CacheAccess.save method will not survive the termination of
the process. By definition, local cache objects are only visible to the cache instance
they were loaded into. If that cache instance goes away for any reason, the objects it
manages, including those on disk, are lost. If an object needs to survive process
termination, both the object and the cache need to be defined as DISTRIBUTE.

The cache environment, region, group, and object definitions, are local to a cache.
They are not saved to disk nor propagated to other caches. This environment
should be defined during the initialization of the application.

4.3.7 Return Cacheaccess Object to the Pool When Not in Use
A CacheAccess object should always be closed when it is no longer used. The
CacheAccess objects are pooled. and acquire other cache resources on behalf of
users. If access objects are not closed when they are no longer used, these resources
will not be returned to the pool and will not be cleaned up until they are garbage
collected by the JVM. If CacheAccess objects are continually allocated and not
closed, they can cause a significant loss in available resources and a consequent
degradation in performance.

Java Object Cache Best Practices

4-12 Best Practices

4.3.8 Use 1:1 Correlation Between Cached Object and Cacheaccess Object
A CacheAccess object only holds a reference to one cached object at a time. If
multiple cached objects are being accessed concurrently, multiple CacheAccess
objects should be used. For objects stored in memory, the consequences of not doing
this are minor since Java will prevent the cached object from being garbage
collected even if the cache believes it is not being referenced.

For objects stored on disks, if the cache reference is not maintained, the underlying
file could be removed by another user or by time-based invalidation, causing
unexpected exceptions. It is best to always keep the cache reference open as long as
the cached object is being used. This allows the cache system to better manage its
resources.

4.3.9 Do Not Share Cacheaccess Object
The CacheAccess object should not be shared between threads. This object
represents a "user" to the caching system. It contains the current state of that user's
access to the cache, which object is currently being accessed, which objects are
currently "owned", etc. Trying to share the CacheAccess object is unnecessary and
can result in non-deterministic behavior.

Oracle9iAS Web Cache Best Practices 5-1

5
Oracle9iAS Web Cache Best Practices

This chapter describes Oracle9iAS Web Cache best practices. The topics include:

� Use Partial Page Caching Where Possible

� Use ESI Variables for Improved Cache Hit Ratio for Personalized Pages

� Leverage JESI Over Hand-Generating the ESI Tags

� Use esi:inline and esi:include Tags Appropriately

� Use Basic Invalidation for Single Objects, Advanced for Multiple

� Build Programmatic Invalidation Into Application Logic

� Use Surrogate-Control Headers Instead of Caching Rules

� Improve Performance, Scalabillity, and Availability

� Use Two CPUs and Consider Deploying on Dedicated Hardware

� Configure Enough Memory

� Allocate Sufficient Network Bandwidth

� Set a Reasonable Number of Network Connections

� Cluster Cache Instances for Better Availability, Scalability, and Performance

� Optimize Response Time By Tuning Origin Server and Oracle9iAS Web Cache
Settings

� Combine Invalidation and Expiration Policies

� Use Invalidation Propagation in a Cluster

� Route All HTTP and HTTPS Traffic Through Oracle9iAS Web Cache

� Create Custom Apology Pages

5-2 Best Practices

� Use Redirection to Cache Entry Pages

� Use the <esi:environment> Tag for Authentication/Authorization Callbacks

� Use Cookies and URL Parameters to Increase Cache Hit Ratios

� Use a Network Load Balancer in Front of Oracle9iAS Web Cache

� Use Oracle9iAS Web Cache Load Balancing Functionality for Availability and
Scalability of Origin Servers

� Improve Response Times and Reduce Network Bandwidth With Compression

� Deploy Caches in Remote Offices for Faster Response Times and Reduced WAN
Traffic

� Turn Off Verbose Logging to Conserve Resources

� Use the Oracle9iAS Web Cache Manager to Avoid Configuration Problems

� Use Web Caching to Help Defend Against Denial-of-Service Attacks

� Tune Invalidation Performance Using Indexes

� Test Application Upgrades and Patches to Ensure Existing Cache and Session
Rules Still Function Correctly

Use ESI Variables for Improved Cache Hit Ratio for Personalized Pages

Oracle9iAS Web Cache Best Practices 5-3

5.1 Use Partial Page Caching Where Possible
Many Web pages, such as portal pages, are composed of fragments with unique
caching properties. For these pages, full-page caching is not feasible. However,
Oracle9iAS Web Cache provides a partial page caching feature that enables each
Web page to be divided into a template and multiple fragments that can in turn be
further divided into templates and lower level fragments. Each fragment or
template is stored and managed independently; a full page is assembled from the
underlying fragments upon request. Fragments can be shared among different
templates, so that common fragments are not duplicated to waste precious cache
space. Sharing can also greatly reduce the number of updates required when
fragments expire. Depending on the application, updating a fragment can be
cheaper than updating a full page. In addition, each template or fragment may have
its own unique caching policies such as expiration, validation, and invalidation, so
that each fragment in a full Web page can be cached as long as possible, even when
some fragments are not cached or are cached for a much shorter period of time.

Oracle9iAS Web Cache uses Edge Side Includes (ESI) to achieve flexible partial-page
caching. ESI is a simple markup language for partial-page caching. Applications can
mark up HTTP responses with two different kinds of tags, <esi:inline> and
<esi:include>, that define the fragment/template structure in the response.

5.2 Use ESI Variables for Improved Cache Hit Ratio for Personalized
Pages

Personalized information often appears in Web pages, making them unique for each
user. For example, many Web pages contain tens or hundreds of hyperlinks
embedding application session IDs.

To resolve this, create your ESI pages with variables. Because variables can be
resolved to different pieces of request information or response information, the
uniqueness of templates and fragments can be significantly reduced when personal
information abounds. This in turn results in better cache hit ratios.

See Also: Appendix A, "Oracle9iAS Web Cache Best Practices
Appendix"

See Also: Appendix A, "Oracle9iAS Web Cache Best Practices
Appendix"

Leverage JESI Over Hand-Generating the ESI Tags

5-4 Best Practices

5.3 Leverage JESI Over Hand-Generating the ESI Tags
In dynamic applications, you can use ESI tags for better caching in two ways: hand
generating the tags, or using Edge Side Includes for Java (JESI) tags. The latter is
recommended for two reasons:

� Reducing hand coding errors, which may not be obvious and may result in
more cache misses.

� Facilitating only a partial execution of the JSP page when a cache miss request
comes for a specific fragment.

Oracle Corporation recommends that you use JESI to write JSP-based applications.

5.4 Use esi:inline and esi:include Tags Appropriately
If a partial page fragment can be fetched independently, such as with a
URLPortlet, it should always be referenced with an <esi:include> template.
This enables Oracle9iAS Web Cache to fetch the fragment independently of the rest
of the page or fragments. However, if the fragment cannot be generated
independently of the surrounding page, then the <esi:inline> tag enables
Oracle9iAS Web Cache to cache the inline fragment and re-use it in different
contexts. This also results in a single update or invalidation message as opposed to
requiring multiple invalidation/updates.

5.5 Use Basic Invalidation for Single Objects, Advanced for Multiple
When you need to invalidate one object in the cache, send a basic rather than an
advanced invalidation request to avoid cache traversal. Advanced invalidation
requests should be reserved for invalidation of multiple objects.

Further, use substring matching to invalidate all objects that match a certain criteria
to speed up invalidation.

See Also: Appendix A, "Oracle9iAS Web Cache Best Practices
Appendix"

See Also: Appendix A, "Oracle9iAS Web Cache Best Practices
Appendix"

See Also: Appendix A, "Oracle9iAS Web Cache Best Practices
Appendix"

Build Programmatic Invalidation Into Application Logic

Oracle9iAS Web Cache Best Practices 5-5

5.6 Build Programmatic Invalidation Into Application Logic
Oracle9iAS Web Cache is designed for caching highly dynamic Web pages. There
are several ways to safeguard the correctness of the cached content. For those
cached pages with content that changes following unpredictable actions by Web site
users, the most effective way to ensure correct content is to build programmatic
invalidation into application logic.

The application Web server and database are two areas that may benefit from
embedded programmatic invalidation. On the application Web server, you can
build invalidation into CGI’s, JSPs and Java servlets using the Oracle9iAS Web
Cache Java invalidation API jawc.jar. jawc.jar is located in the $ORACLE_
HOME/webcache/jlib directory on UNIX and ORACLE_HOME\webcache\jlib
directory on Windows. For example, page A displays information about a certain
bike in stock. This page is cacheable. Page B provides users a way to reserve one
bike for purchase. On the mid-tier there is a Java servlet or JSP to service page B. To
make this servlet cache-aware, use jawc.jar to invalidate page A.

Similarly, you can build invalidation into PL/SQL applications using the
Oracle9iAS Web Cache PL/SQL invalidation API wxvutil.sql and
wxvappl.sql. This way, developers can embed the invocation of invalidation
PL/SQL procedure calls into the PL/SQL Web page. wxvutil.sql and
wxvappl.sql are located in the $ORACLE_HOME/webcache/examples directory
on UNIX and ORACLE_HOME\webcache\examples directory on Windows.

Use Surrogate-Control Headers Instead of Caching Rules

5-6 Best Practices

In order to facilitate the caching of JSPs, developers can use the JESI custom tag
library included with OC4J and Oracle JDeveloper9i. One of the tags is
<jesi:invalidate>, which enables programmatic invalidation when the JSP
engine processes a page containing this tag. For more information about JESI, see
the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.

Alternatively, developers can tie invalidation logic to database updates. In the same
bike example, you can use a PL/SQL invalidation procedure call to invalidate pages
that rely on inventory data stored in the database. In other words, you can apply a
database trigger to the row or table containing information about the bike.

For more information about invalidation, see Chapter 8, "Administering Oracle9iAS
Web Cache," of the Oracle9iAS Web Cache Administration and Deployment Guide.

5.7 Use Surrogate-Control Headers Instead of Caching Rules
There are two ways to specify the caching properties of an HTTP response using
Oracle9iAS Web Cache:

� Administrators can configure caching rules using the Oracle9iAS Web Cache
Manager interface.

and/or

� Application developers can set caching policies via the Surrogate-Control
response header. If a given property is set in both a response header and the
configuration, the value set by Surrogate-Control overrides rules specified
in the configuration.

Although caching rules support the setting of more properties than the
Surrogate-Control header, it is generally more manageable to set properties in
the Surrogate-Control header whenever possible. For example, if you need to
set the expiration policy and the multiple-version property for a document, it is
preferable to use the Surrogate-Control header.

Caching rules can be less manageable when there are many different categories of
cacheable and non-cacheable documents. In these circumstances, you need to
carefully define rule selectors and rule priorities so that the appropriate rule is used
for any document. Since a Surrogate-Control response header is only
associated with one response and overrides the configuration, the properties set in
Surrogate-Control will not be mistakenly replaced by other configuration rules
or newly created configuration rules.

Improve Performance, Scalabillity, and Availability

Oracle9iAS Web Cache Best Practices 5-7

On the other hand, sometimes the configuration approach is more convenient. If a
small number of rules are sufficient to describe all the caching properties of all
documents that Oracle9iAS Web Cache can receive from an origin server, then
editing the configuration using the Oracle9iAS Web Cache Manager administration
interface may be simpler than generating Surrogate-Control headers for many
documents.

Often, a combination of the two approaches is best.

5.8 Improve Performance, Scalabillity, and Availability
Oracle9iAS Web Cache improves the scalability, performance and availability of
e-business Web sites. Using Oracle9iAS Web Cache, your applications benefit from
higher throughput, shorter response times and lower infrastructure costs.

� Unlike legacy cache servers that only handle static data, Oracle9iAS Web Cache
combines caching, compression and assembly technologies to accelerate the
delivery of both static and dynamically generated Web content.

� As the first application server to implement Edge Side Includes (ESI), Oracle9i
Application Server boasts the industry's fastest edge server (Oracle9iAS Web
Cache), with support for partial-page caching, personalization and dynamic
content assembly at the network edge.

� Oracle9iAS Web Cache includes patent-pending clustering functionality that
increases capacity for content storage and ensures scalability and availability for
cacheable content, even when a member cache experiences a failure or is taken
offline for maintenance.

� Oracle9iAS Web Cache also provides back-end origin server load balancing,
failover, and surge protection features that ensure consistent application
performance and greater overall reliability.

Using Oracle9iAS Web Cache and its ESI features, your business application’s
performance can improve by several orders of magnitude with very little
development effort. The return on investment is also significant, both in terms of
developer resources (you no longer need to build your own dynamic caching
solution) and hardware cost savings.

Use Two CPUs and Consider Deploying on Dedicated Hardware

5-8 Best Practices

5.9 Use Two CPUs and Consider Deploying on Dedicated Hardware
You can deploy Oracle9iAS Web Cache on the same node as the application Web
server or on a separate node. When making your decision, consider system
resources, such as the number of CPUs. Oracle9iAS Web Cache is designed to use
one or two CPUs. Because Oracle9iAS Web Cache is an in-memory cache, it is rarely
limited by CPU cycles. Additional CPUs do not increase performance significantly.
However, the speed of the processors is critical; use the fastest CPUs you can afford.

If other resources are competing with Oracle9iAS Web Cache for CPU usage, then
you should take the requirements of those resources into account when determining
the number of CPUs needed. You can derive a significant performance benefit from
Oracle9iAS Web Cache running on the same node as the application Web server,
although a separate node for Oracle9iAS Web Cache is often optimal.

For a Web site with more than one Oracle9iAS Web Cache instance, consider
installing each instance on a separate two-CPU node, either as part of a cache
cluster or as standalone instances. When Oracle9iAS Web Cache instances are on
separate nodes, you are less likely to encounter operating system limitations,
particularly in network throughput. For example, two caches on two separate
two-CPU nodes are less likely to encounter operating system limitations than two
caches on one four-CPU node.

5.10 Configure Enough Memory
To avoid swapping objects in and out of the cache, it is crucial to configure enough
memory for the cache. Generally, the amount of memory (maximum cache size) for
Oracle9iAS Web Cache should be set to at least 256 MB.

To determine the maximum amount of memory required, take the following steps:

1. Determine what objects you want to cache, how many are smaller than 4 KB
and how many are larger than 4 KB. Determine the average size of the objects
that are larger than 4 KB. Determine the expected peak load; the maximum
number of objects to be processed concurrently.

2. Calculate the amount of memory needed based on the number and size of the
objects. Chapter 6, “Initial Setup and Configurations,” of the Oracle9iAS Web
Cache Administration and Deployment Guide provides a formula to use in
calculating the amount of memory needed to cache your objects.

Set a Reasonable Number of Network Connections

Oracle9iAS Web Cache Best Practices 5-9

5.11 Allocate Sufficient Network Bandwidth
When you use Oracle9iAS Web Cache, make sure that each node has sufficient
network bandwidth to accommodate the throughput load. Otherwise, the network
may be saturated even though Oracle9iAS Web Cache has additional capacity. For
example, if your application generates more than 100 megabits of data per second,
10/100 Megabit Ethernet will likely be saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario
to avoid network collisions, retransmissions, and bandwidth starvations.
Additionally, consider using two separate network cards: one for incoming client
requests and one for requests from the cache to the application Web server.

If system monitoring tools reveal that the network is under utilized and throughput
is less than expected, check whether or not the CPUs are saturated.

5.12 Set a Reasonable Number of Network Connections
It is important to specify a reasonable number for the maximum connection limit
for the Oracle9iAS Web Cache server. If you set a number that is too high,
performance can be affected, resulting in slower response time. If you set a number
that is too low, fewer requests will be satisfied. You must strike a balance between
response time and the number of requests processed concurrently.

For information about setting the number of network connections, see the
Oracle9iAS Web Cache Administration and Deployment Guide.

Cluster Cache Instances for Better Availability, Scalability, and Performance

5-10 Best Practices

5.13 Cluster Cache Instances for Better Availability, Scalability, and
Performance

To increase the availability, scalability, and performance of your Web site, you can
configure multiple instances of Oracle9iAS Web Cache to run as members of a cache
cluster. A cache cluster is a loosely coupled collection of cooperating Oracle9iAS
Web Cache instances working together to provide a single logical cache.

Cache clusters provide failure detection and failover of caches, increasing the
availability of your Web site. If a cache fails, other members of the cache cluster
detect the failure and take over ownership of the cached content of the failed cluster
member.

By distributing the Web site's content across multiple Oracle9iAS Web Caches, more
content can be cached and more client connections can be supported, expanding the
capacity of your Web site and improving its performance.

For more information about cache clusters, see Chapter 3, "Cache Clustering," of the
Oracle9iAS Web Cache Administration and Deployment Guide.

5.14 Optimize Response Time By Tuning Origin Server and Oracle9iAS
Web Cache Settings

If you have not configured the origin server or the cache correctly, response time
may be slower than anticipated. If the origin server is responding more slowly than
expected or if the origin server is not responding to requests from the cache because
it has reached its capacity, check the origin server and the Oracle9iAS Web Cache
settings.

First, check the following:

� The origin server configuration, particularly the MaxClients parameter limit.
The MaxClients parameter, which limits the number of clients that can
simultaneously connect to the origin server, should be large enough to allow
connections (requests) from the caches. See the Oracle9i Application Server
Performance Guide for more information about setting limits for the origin server.

� The origin server capacity as set through the Oracle9iAS Web Cache Manager.
See Chapter 6, "Initial Setup and Configuration," of the Oracle9iAS Web Cache
Administration and Deployment Guide for information about setting origin server
capacity.

Optimize Response Time By Tuning Origin Server and Oracle9iAS Web Cache Settings

Oracle9iAS Web Cache Best Practices 5-11

� The MaxClients parameter limit on the origin server should be greater than or
equal to the origin server capacity as set through the Oracle9iAS Web Cache
Manager.

Then, if the origin server is still busier than anticipated, it may mean that the cache
cannot process the requests and is routing more requests to the origin server. Check
the following Oracle9iAS Web Cache settings:

� The number of cache connections (Maximum Incoming Connections) in the
Resource Limits page (Cache-Specific Configuration > Resource Limits) of the
Oracle9iAS Web Cache Manager

� The memory size for the cache (Maximum Cache Size) in the Resource Limits
page

� The cache cluster capacity. In a cluster, if cluster capacity is too low, a cache may
not receive a response for owned content from a peer cache within the specified
interval. As a result, the request is sent to the origin server.

For information on specifying these settings, see the Oracle9iAS Web Cache
Administration and Deployment Guide.

If these resources are set reasonably, check the following:

� Caching rules. Make sure that you are caching the appropriate objects including
popular objects.

� Priority rankings of the caching rules. If you have a large number of rules,
parsing of rules will take additional time.

If the settings for the origin server and Oracle9iAS Web Cache are set correctly, but
the response times are still higher than expected, check system resources, especially:

� Network bandwidth. See Section 5.11, "Allocate Sufficient Network Bandwidth"

� CPU usage. See Section 5.9, "Use Two CPUs and Consider Deploying on
Dedicated Hardware"

Combine Invalidation and Expiration Policies

5-12 Best Practices

5.15 Combine Invalidation and Expiration Policies
With expiration rules, cached objects are marked as invalid after a certain amount of
time in the cache. Expirations are useful if it can be accurately predicated when
content will change on an origin server or database. To prevent documents from
remaining in the cache indefinitely, Oracle Corporation recommends creating
expiration rules for all cached documents.

With invalidation requests, an HTTP POST message specifies which objects to mark
as invalid. Invalidation requests are intended for less predictable, more frequently
changing content. Send invalidation requests when you know objects have been
refreshed on the origin server. Invalidation policies can be automated, as described
in Section 5.6, "Build Programmatic Invalidation Into Application Logic".

5.16 Use Invalidation Propagation in a Cluster
In a cache cluster, you can send invalidation messages to a particular cache cluster
member that acts as the invalidation coordinator. The coordinator can also be chosen
at random when invalidation messages are sent via the network load balancer
deployed in front of the cluster. The coordinator propagates the invalidation
messages to the other cache cluster members.

The benefits of invalidation propagation include data consistency across cluster
members and ease of use for the administrator.

However, under the following circumstances, you may want to disable invalidation
propagation and send the invalidation messages to each individual member of the
cluster:

� When the cluster membership is in flux. For example, as you begin deployment,
you may have made changes to cluster members but have not yet propagated
the configuration changes to all members. In this case, the invalidation
messages are not propagated to the members with different configurations.

� If you do not want to invalidate data for all cluster members. For example,
because of time zone differences, you want to send invalidation messages to
only some of the cluster members at one time.

Note that if you do not invalidate data for all cluster members, the cached data may
become inconsistent. In addition, cluster members may serve stale data, not only in
response to requests from clients, but also in response to requests from their peers.

For more information about invalidation propagation, see the Oracle9iAS Web Cache
Administration and Deployment Guide.

Create Custom Apology Pages

Oracle9iAS Web Cache Best Practices 5-13

5.17 Route All HTTP and HTTPS Traffic Through Oracle9iAS Web Cache
In general, you should route all HTTP and HTTPS requests through Oracle9iAS
Web Cache. Ensure documents, especially HTTPS documents, are sent to authorized
users through careful use of caching rules.

Depending on the application, you may or may not want requests for secure pages
to go through the cache. If every HTTPS request is a non-cacheable page that is
unique for each user session or is too sensitive for caching a copy, then route this
traffic directly to the origin server. Because no traffic will be cached in this case,
routing traffic to the origin server avoids extra encryption/decryption processing
time at the Oracle9iAS Web Cache layer.

5.18 Create Custom Apology Pages
By default, Oracle9iAS Web Cache ships and is configured to serve the following
two apology pages:

� network_error.html: This file is served when Oracle9iAS Web Cache
encounters network problems while connecting, sending, or receiving a
response from an origin server for a cache miss request.

� busy_error.html: This file is served when origin server capacity has been
reached.

For a production environment, Oracle Corporation advises that you modify the
defaults or create entirely new apology pages to be consistent with other error
pages generated by your application.

To create or modify default apology page:

1. Create or modify an apology page in $ORACLE_HOME/webcache/docs on
UNIX and %ORACLE_HOME%webcache\docs on Windows.

2. Specify the file name of the apology page in the Apology Page (General
Configuration > Apology Pages) of the Oracle9iAS Web Cache Manager
administrative interface.

Create Custom Apology Pages

5-14 Best Practices

Because ESI has its own language elements for exceptions, there is no default
apology page for <esi:include> errors. If you plan to use <esi:include> tags
for partial-page caching and you do not implement the onerror attribute or the
try|attempt|except block, then you must create an apology page. The onerror
attribute is used before the try|attempt|except block. If the
try|attempt|except block does not exist, then the exception handling is
propagated to the parent or template page. The parent page will use the apology
page, onerror attribute, or try|attempt|except block to handle the error.
(Note that for the Oracle9iAS Web Cache 2.0.0.x and 9.0.2.x releases, when an
apology page is configured, Oracle9iAS Web Cache bypasses any ESI programmatic
exception handling code as described in bug 2412543.)

To configure exception handling:

1. Try to use the ESI onerror attribute or the try|attempt|except block for
exception handling.

2. When it is not possible to use ESI language elements for exception handling,
create an apology page in $ORACLE_HOME/webcache/docs on UNIX
and%ORACLE_HOME%\webcache\docs on Windows: If there are many ESI
fragments and you do not want display errors for each fragment, then configure
Oracle9iAS Web Cache to serve a one-byte blank apology page for ESI errors. If
you want to display a generic error message for each fragment that fails, then
configure Oracle9iAS Web Cache to serve an apology page containing the error
message.

3. Specify the file name of the apology page in the Apology Page (General
Configuration > Apology Pages) section of the Oracle9iAS Web Cache Manager
administration interface.

Use the <esi:environment> Tag for Authentication/Authorization Callbacks

Oracle9iAS Web Cache Best Practices 5-15

5.19 Use Redirection to Cache Entry Pages
For some popular site entry pages, such as "/", that typically require session
establishment, session establishment effectively makes the page non-cacheable to all
new users without a session. To cache these pages while preserving session
establishment, you can either:

� Create a blank page that provides session establishment for all initial requests
and redirects to the real popular page. This way, subsequent redirected requests
to the popular page will carry the session, enabling the popular page to be
served out of the cache.

� Use a JavaScript that sets a session cookie for the popular pages.

For more information on configuring caching rules for pages requiring session

establishment, see Chapter 7, “Creating Caching Rules,” of the Oracle9iAS Web
Cache Administration and Deployment Guide.

5.20 Use the <esi:environment> Tag for Authentication/Authorization
Callbacks

Some applications protect certain Web pages with authentication or authorization
or validate session information in the HTTP request. Even though the page content
can be cached, every HTTP request must be authenticated, authorized, or validated
by the origin server. For these pages, it is not appropriate to cache the full page.
While it is possible to utilize JavaScript to achieve authentication, authorization,
and validation through a separate HTTP request, the <esi:environment> tag
provides a better solution to this problem.

An ESI environment is a type of fragment with a response that defines a set of
variables that can be accessed by response variable occurrences in the enclosing
template. The tag itself does not contribute to the final assembled output. If a page
has cacheable content but requires mandatory authentication, authorization, and
session validation, you can enclose an <esi:environment> tag in the page
referencing a non-cacheable environment, and cache the enclosing page as desired.
When the cached page is requested, an HTTP request that specifies the environment
will always be sent to the origin server, making a callback to the application. In this
callback request, if you want to validate a cookie in the enclosing page request for
session validation, authorization, or authentication, then specify the
<esi:environment> tag to include that cookie in its request. It is also possible to
include other information from the page request in the environment request.

Use Cookies and URL Parameters to Increase Cache Hit Ratios

5-16 Best Practices

If authentication, authorization, and validation are passed, your application should
return HTTP status code 200 and any ESI environment response. Oracle9iAS Web
Cache will proceed to finish assembling the page. If the authentication,
authorization, and validation fail, then your application should return an
appropriate HTTP status code at or above 500 to denote a server error, or between
400 and 499 to denote a client request error. Oracle9iAS Web Cache will then
recognize that this environment has failed, and resort to standard ESI exception
handling to abort this page or output an alternative error page or login page.

For more information about using the <esi:environment> tag or implementing
ESI exception handling, see Appendix D, “Edge Side Includes Language,” of the
Oracle9iAS Web Cache Administration and Deployment Guide.

5.21 Use Cookies and URL Parameters to Increase Cache Hit Ratios
Oracle9iAS Web Cache can cache different versions of a document with the same
URL based on request cookies or headers. To use this feature, applications may
need to implement some simple change, such as creating a cookie or header that
differentiates the pages.

On the opposite side of the spectrum, some applications contain some insignificant
URL parameters that lead to different URLs representing essentially the same
content. If the documents are cached under their full URLs, then the cache-hit ratio
becomes very low. You can configure Oracle9iAS Web Cache to ignore the
non-differentiating URL parameter values when composing the “cache key” for
documents, so a single document will be cached for different URLs, greatly
increasing cache hit ratios.

Sometimes the content for a set of pages is nearly identical, but not exactly the
same. For example, the pages may contain hyperlinks composed of the same URL
parameters with different session-specific values, or they may include some
personalized strings in the page text, such as welcome greetings and shopping cart
totals. In this case, Oracle9iAS Web Cache can still store one single copy of the
document with placeholders for the embedded URL parameters and/or the
personalized strings, and dynamically substitute the correct values into the
placeholders when serving the document to clients.

Use Oracle9iAS Web Cache Load Balancing Functionality for Availability and Scalability of Origin Servers

Oracle9iAS Web Cache Best Practices 5-17

You can also control whether a cached document can be served to a client based on
its session state.

For more information on multiple version documents, sessions, ignoring URL
parameter values, simple personalization, and how to control whether a cached
document can be served to a request based on sessions, see Chapter 2, “Caching
Concepts,” of the Oracle9iAS Web Cache Administration and Deployment Guide.

5.22 Use a Network Load Balancer in Front of Oracle9iAS Web Cache
Many customers deploy a single instance of Oracle9iAS Web Cache in front of their
application Web server farm. In such deployments, the Oracle9iAS Web Cache acts
as the virtual IP address for the application, in addition to providing caching and
load balancing services. This deployment is both functionally sufficient and
cost-effective for customers that do not require 100 percent application uptime. The
Oracle9iAS Web Cache is highly stable and, in the event of a failure, a process
monitor will automatically restart the cache.

For customers who cannot tolerate a single point of failure, Oracle Corporation
recommends that two or more nodes running Oracle9iAS Web Cache be deployed
behind a third-party hardware load balancing device. In turn, customers should use
the built-in load balancing functionality in Oracle9iAS Web Cache to distribute
cache miss traffic over the application Web server farm. Please refer to Chapter 4,
“Deploying Oracle9iAS Web Cache,” of the Oracle9iAS Web Cache Administration and
Deployment Guide for more information.

5.23 Use Oracle9iAS Web Cache Load Balancing Functionality for
Availability and Scalability of Origin Servers

Situated between browser clients and the origin servers, the Oracle9iAS Web Cache
introduces a new tier into the traditional Web farm architecture. To reduce
complexity and to avoid the cost of purchasing additional load balancing hardware,
Oracle9iAS Web Cache includes built-in load balancing and failover detection
features to ensure that cache misses are directed to the most available, highest
performing origin server in the farm. The cache supports both stateless and stateful
load balancing mechanisms, including the use of cookies and URL parameters to
maintain server affinity when required. In addition, Oracle9iAS Web Cache
maintains a pool of HTTP connections between the cache and the origin Web
servers to reduce connection establishment overhead and improve cache miss
performance.

Use Oracle9iAS Web Cache Load Balancing Functionality for Availability and Scalability of Origin Servers

5-18 Best Practices

To avoid a single point of failure, two or more nodes running Oracle9iAS Web
Cache should be deployed behind a third-party hardware load-balancing device.
However, Oracle Corporation also recommends that customers use the built-in load
balancing and failure detection functionality in Oracle9iAS Web Cache to route
cache miss requests to origin Web servers. Deploying additional load balancing
hardware between the Oracle9iAS Web Cache and origin server tiers is not
recommended for the following reasons:

� Cost: Using another tier of load balancing hardware adds significant cost to a
deployment, in part because these devices must also be deployed in pairs for
high availability reasons.

� Complexity: Another tier of load balancing hardware is another set of systems
to configure, manage, and troubleshoot.

� Features: Oracle9iAS Web Cache includes patent-pending performance
assurance and surge protection features that enable customers to sustain higher
loads with less application and database server hardware. These features
depend on the capacity-based load balancing algorithms in Oracle9iAS Web
Cache.

For more information on load balancing, performance assurance and surge
protection functionality, see the Oracle9iAS Web Cache Administration and Deployment
Guide and various technical white papers on Oracle9iAS Web Cache

Improve Response Times and Reduce Network Bandwidth With Compression

Oracle9iAS Web Cache Best Practices 5-19

5.24 Improve Response Times and Reduce Network Bandwidth With
Compression

Oracle9iAS Web Cache features automatic compression of dynamically generated
content. On average, using the standard GZIP algorithm, Oracle9iAS Web Cache is
able to compress text files, such as HTML and XML by a factor of four. Because
compressed objects are smaller in size, they require less bandwidth to transmit and
can be delivered faster to browsers. With compression, everyone benefits: Internet
Service Providers (ISPs), Hosting Service Provider (HSPs), corporate networks and
content providers reduce their transmission costs, while end-users enjoy more rapid
response times. Since 1997, all major browsers support the expansion of GZIP
encoded documents.

Most application Web servers on the market are capable of serving compressed
pages, but few enable caching of compressed output. With Oracle9iAS Web Cache,
compression is a simple Yes/No option that an administrator selects when
specifying a caching rule. Because Oracle9iAS Web Cache supports regular
expression for caching rules, compression can be applied to responses using criteria
other than just file extension. Regular expression makes it very easy to select which
pages to compress and which pages not to compress, as well as whether or not a
particular browser should receive compressed content. Unlike the typical
application Web server, Oracle9iAS Web Cache offers compression and caching for
pages that have been dynamically generated. By caching compressed output,
Oracle9iAS Web Cache reduces the processing burden on the application Web
server, which would otherwise have to re-generate and compress dynamic pages
each time they are requested. Because compressed objects are smaller in size, they
are delivered faster to browsers with fewer round-trips, reducing overall latency. In
addition, compressed objects consume less cache memory.

Do not compress images, such as GIFs and JPEGs, as well as executables and files
that are already zipped with utilities like WinZip and GZIP. Compressing these files
incurs additional overhead without the benefits of compression. Also, do not
compress JavaScript includes (.js) and Cascading Style Sheets (.css), as some
browsers have difficulty expanding these file types.

For more information on compression, see the Oracle9iAS Web Cache Administration
and Deployment Guide.

Deploy Caches in Remote Offices for Faster Response Times and Reduced WAN Traffic

5-20 Best Practices

5.25 Deploy Caches in Remote Offices for Faster Response Times and
Reduced WAN Traffic

Oracle9iAS Web Cache offers hierarchical caching features that enable customers to
easily create Content Delivery Networks (CDNs). For high availability and
performance, many Internet businesses mirror their Web sites in strategic
geographical locations. Caching is an excellent low-cost alternative to full-scale
mirroring. Caching may also be used to serve local markets in order to shorten
response times to these markets, and to reduce bandwidth and rack space costs for
the content provider. Within the corporate intranet, so-called "Enterprise" CDNs
(eCDNs) provide shorter response times for branch office users of e-business
applications. Compared to application mirroring and database replication, eCDN is
a more manageable and cost-effective model of distributed computing. Using
Oracle9iAS Web Cache, customers can distribute the content assembly and delivery
functions of their applications to key network access points, while maintaining
centralized management of application logic and data.

In setting up an eCDN, customers typically deploy Oracle9iAS Web Cache in each
branch office data center as well as in the central office where the application and
database are maintained. For example, a U.S.-based company might deploy
instances of Oracle9iAS Web Cache in its U.S., Japanese, and Australian offices. The
central cache residing in the U.S. serves as the origin server for the caches in Japan
and Australia. Using various commercially available DNS routing techniques,
requests are handled by the cache that is closest to the end user. A browser request
made by a Japanese employee, for instance, is handled by the cache instance in
Japan, thereby reducing WAN traffic and eliminating long-haul network latencies.
In a distributed cache hierarchy, the central cache is aware of the branch office
caches. As a result, any content invalidation messages sent to the central cache
automatically propagate to the remote caches. This invalidation propagation feature
ensures content consistency across the CDN and simplifies the management of
cache hierarchies.

5.26 Turn Off Verbose Logging to Conserve Resources
Verbose event logs are useful for debugging purposes. However, verbose event
logging consumes system resources. Unless you need the verbose event log to
diagnose problems, you should disable verbose mode. Oracle9iAS Web Cache will
write only typical events to the event log.

For information on specifying these settings, see Chapter 8, “Administering
Oracle9iAS Web Cache,” of the Oracle9iAS Web Cache Administration and Deployment
Guide.

Use Web Caching to Help Defend Against Denial-of-Service Attacks

Oracle9iAS Web Cache Best Practices 5-21

5.27 Use the Oracle9iAS Web Cache Manager to Avoid Configuration
Problems

The Oracle9iAS Web Cache Manager is a graphical user interface for administering,
configuring, and managing caches. Oracle Corporation recommends that you use it
rather than manually editing the configuration files to make configuration changes.

In cache clusters, it is especially important to use Oracle9iAS Web Cache Manager
to modify the configuration and to propagate it to the other cluster members. If you
manually edit the configuration files, you may encounter problems. For example:

If you do not set the site name properly for each cluster member, identical objects
could be cached in each cluster member, but the objects may be known by a
different name in the different caches. For example, you could have the same object
cached as:

mysite:7777:document1.html
myste:7777:document1.html

If the site names are not consistent, the objects with the variant site name will not be
invalidated even if you use invalidation propagation.

5.28 Use Web Caching to Help Defend Against Denial-of-Service
Attacks

Oracle9iAS Web Cache was designed from the ground up to provide high
performance, reliability and scalability on low-cost commodity hardware. A single
Oracle9iAS Web Cache instance can be configured to support thousands of
concurrent inbound HTTP connections. The throughput (requests/second) that a
single cache instance can sustain scales linearly with CPU speed. Additionally,
Oracle9iAS Web Cache fully supports the HTTP/1.0 and HTTP/1.1 header fields,
including Keep-Alive. Keep-Alive reduces the frequency of connection
establishment and improves performance and scalability under heavy load.

When clustered, the capacity – the amount of content stored in RAM – of the cache
tier scales linearly, as well. Cache clustering achieves high availability by failing
over among cluster nodes, as well as high scalability by utilizing memory and
processing power of multiple inexpensive computing hardware units in parallel.

Tune Invalidation Performance Using Indexes

5-22 Best Practices

Not surprisingly, many customers have reported the successful use of Oracle9iAS
Web Cache to prevent distributed and single-source denial-of-service attacks.
Denial-of-service attacks attempt to prevent access to Web sites either by flooding
sites with traffic volumes that surpass throughput and connection capacities or by
sending malicious requests intended to exploit software flaws that cause servers to
crash. By caching responses to denial-of-service requests, Oracle9iAS Web Cache
helps address the throughput and scalability limitations of Web sites, while creating
a crucial barrier between malicious queries and a site’s origin application and
database servers.

The guidelines for configuring connection limits, caching rules, and cache clusters
are outlined in the Oracle9iAS Web Cache Administration and Deployment Guide.

5.29 Tune Invalidation Performance Using Indexes
To improve performance of advanced invalidation requests that use
QUERYSTRING_PARAMETER to match objects with the same embedded URL
parameters, manually create an invalidation index. Because an invalidation index
creates more depth to an internal invalidation tree used by Oracle9iAS Web Cache,
Oracle9iAS Web Cache is able to categorize objects in the cache for faster lookup
and traversal. To use this feature for a URL or a request POST body, consider
moving the URI or BODY value to QUERYSTRING_PARAMETER instead.

To specify an invalidation index, add an INVALIDATIONINDEX element to the
webcache.xml file that specifies the substring value used for QUERYSTRING_
PARAMETER:

<SECURITY>
...
</SECURITY>
<INVALIDATIONINDEX>
 <INDEXPARAM VALUE="VALUE_of_QUERYSTRING_PARAMETER"/>
 <INDEXPARAM VALUE="VALUE_of_QUERYSTRING_PARAMETER"/>
</INVALIDATIONINDEX>
<WATCHDOG ENABLE="YES|NO"/>

Oracle Corporation recommends using invalidation indexes to create more depth to
flat directory structures.

For more information about invalidation, see Chapter 8, “Administering Oracle9iAS
Web Cache,” of the Oracle9iAS Web Cache Administration and Deployment Guide.

Use HTTPS for Administration, Invalidation, and Statistics Monitoring

Oracle9iAS Web Cache Best Practices 5-23

5.30 Test Application Upgrades and Patches to Ensure Existing Cache
and Session Rules Still Function Correctly

Though there is a growing trend to use options provided by Oracle9iAS Web Cache
for specifying the caching rules dynamically with the Surrogate-Control response
header, some sites will continue to use Oracle9iAS Web Cache Manager for
configuring the rules statically. Typically this configuration is done at the start of the
deployment cycle. After adequate testing in a staging area to validate the rules,
Oracle9iAS Web Cache is deployed in a production environment. Problems arise
when the backend application is upgraded for patches or with new versions and
some or all of the earlier statically configured rules become not applicable and void.
For example, if a site uses a session-related caching rule and, after applying a patch
the name of the session cookie or session-embedded URL parameter changes, all the
pages related to that rule will no longer be cacheable, resulting in poor performance
for the site.

When applying application upgrades and patches, it is important to understand the
extent of the application changes and then verify and tune the related cacheability
rules in Oracle9iAS Web Cache. By periodically checking the cache-hit percentage
and ensuring that it remains more or less constant, you can guard against
unexpected behavior. Whenever there is a major change in the database or the
mid-tier layer, such as for upgrades or application patches, you should validate
cacheability rules much the same way as you did during the initial deployment
cycle, including but not limited to using verbose event logging. And if possible,
include Oracle9iAS Web Cache in your application regression test cycle.

5.31 Use HTTPS for Administration, Invalidation, and Statistics
Monitoring

The default configuration for Oracle9iAS Web Cache does not enable HTTPS for
administration, invalidation, or statistics monitoring requests. Instead, these ports
are configured for HTTP basic authentication. On an insecure network, the
passwords for the administrator user and the invalidator user can be
decoded if they are sniffed out of the HTTP traffic. To avoid breach of security
information for unprotected and insecure networks, set the communication protocol
to HTTPS for administration and invalidation operations in the Operation Ports
page (Cache-Specific Configuration > Operations Ports) of Oracle9iAS Web Cache
Manager.

Use HTTPS for Administration, Invalidation, and Statistics Monitoring

5-24 Best Practices

Oracle HTTP Server Best Practices 6-1

6
Oracle HTTP Server Best Practices

This chapter describes Oracle HTTP Server best practices. The topics include:

� Configure Appropriately for Modem Connections

� Tune TCP/IP Parameters

� Tune KeepAlive Directives

� Tune MaxClients Directive

� Avoid Any DNS Lookup

� Turn Off Access Login if You Do Not Need to Keep an Access Log

� Use FollowSymLinks and Not SymLinksIfOwnerMatch

� Set AllowOverride to None

� Use mod_rewrite to Hide URL Changes for End Users

Configure Appropriately for Modem Connections

6-2 Best Practices

6.1 Configure Appropriately for Modem Connections
Most Web sites have visitors connecting from slow modems. Sometimes, it takes
longer for data to transfer over these slow connections than for data to be computed
by the application server. Thus, an Oracle HTTP Server process can be blocked
doing the transfer, and CPU processing power is not available for another request to
perform computation.

If this is perceived to be a problem in your environment, you should front-end
Oracle HTTP Server with either (a) Oracle9iAS Web Cache, which has a threaded
architecture, or, (b) Oracle HTTP Server in reverse proxy mode, which can spawn
more light weight processes to handle the transfer. In both cases, the backend
Oracle HTTP Server is reserved to do the computation work.

This separation of data computation and data transfer responsibilities buffers a site
from latency due to slow modem connections.

6.2 Tune TCP/IP Parameters
Setting TCP/IP parameters can improve Oracle HTTP Server performance
dramatically.

See the chapter titled “Optimizing Oracle HTTP Server” in the Oracle9i Application
Server Performance Guide for a detailed explanation of each of these parameters.

Tune MaxClients Directive

Oracle HTTP Server Best Practices 6-3

6.3 Tune KeepAlive Directives
The KeepAlive, KeepAliveTimeout, and MaxKeepAliveRequests directives
are used to control persistent connections. Persistent connections are supported in
HTTP1.1 to allow a client to send multiple sequential requests through the same
connection.

Setting KeepAlive to “On” allows Apache to keep the connection open for that
client when the client requests it. This can improve performance, because the
connection has to be set up only once. The trade-off is that the httpd server process
cannot be used to service other requests until either the client disconnects, the
connection times out (controlled by the KeepAliveTimeout directive), or the
MaxKeepAliveRequests value has been reached.

You can change these KeepAlive parameters to meet your specific application
needs, but you should not set the MaxKeepAliveRequests to 0. A value of 0 in
this directive means there is no limit. The connection will be closed only when the
client disconnects or times out.

You may also consider setting KeepAlive to “Off” if your application has a large
population of clients who make infrequent requests.

6.4 Tune MaxClients Directive
The MaxClients directive controls the maximum number of clients who can
connect to the server simultaneously. This value is set to 1024 by default.

If your requests have a short response time, you may be able to improve
performance by setting MaxClients to a lower value. However, when this value is
reached, no additional processes will be created, causing other requests to fail.

In general, increasing the value of MaxClients does not improve performance
when the system is saturated.

If you are using persistent connections, you may require more concurrent httpd
server processes, and you may need to set the MaxClients directive to a higher
value. You should tune this directive according to the KeepAlive parameters.

Avoid Any DNS Lookup

6-4 Best Practices

6.5 Avoid Any DNS Lookup
Any DNS lookup can affect Apache performance. The HostNameLookups directive
in Apache informs Apache whether it should log information based on the IP
address (if the directive is set to “Off”), or look up the hostname associated with the
IP address of each request in the DNS system on the Internet (if the directive is set
to “On”).

Oracle has found that performance degraded by a minimum of about 3% in our
tests with HostNameLookups set to on. Depending on the server load and the
network connectivity to your DNS server, the performance cost of the DNS lookup
could be much higher. Unless you really need to have host names in your logs in
real time, it is best to log IP addresses and resolve IP addresses to host names
off-line.

6.6 Turn Off Access Login if You Do Not Need to Keep an Access Log
It is generally useful to have access logs for your Web server, both for load tracking
and for the detection of security violations. However, if you find that you don’t
need these data, you should turn it off and reduce the overhead of writing the data
to this log file.

6.7 Use FollowSymLinks and Not SymLinksIfOwnerMatch
The FollowSymLinks and SymLinksIfOwnerMatch options are used by Apache
to determine if it should follow symbolic links. If the SymLinksIfOwnerMatch
option is used, Apache will check the symbolic link and make sure the ownership is
the same as that of the server.

6.8 Set AllowOverride to None
If the AllowOverride directive is not set to None, Apache will check for directives
in the .htaccess files at each directory level until the requested resource is found
for each URL request. This can be extremely expensive.

Use mod_rewrite to Hide URL Changes for End Users

Oracle HTTP Server Best Practices 6-5

6.9 Use mod_rewrite to Hide URL Changes for End Users
Oracle9iAS includes a component that can transparently map the URLs visible to
the end users to a different URL – without requiring a round-trip to the browser, or,
any code change.

This feature makes it very easy to re-organize directories on the server side, or,
other changes even after an application has been developed and deployed. There is
a slight performance impact, however, as this configuration change for mod_rewrite
is generally preferred over unfriendly URLs.

Use mod_rewrite to Hide URL Changes for End Users

6-6 Best Practices

Oracle9iAS Portal Best Practices 7-1

7
Oracle9iAS Portal Best Practices

This chapter describes Oracle9iAS Portal best practices. It features the following
sections:

� Performance Best Practices

� Content Management and Publishing Best Practices

� Best Practices for Oracle9iAS Portal Export/Import

In addition to the following, more Oracle9iAS Portal best practices can be found at:

http://portalcenter.oracle.com

On that Web page, click on Product Information

Performance Best Practices

7-2 Best Practices

7.1 Performance Best Practices
This section describes performance best practices. It features the following topics:

� Use Appropriate Caching Strategy Depending on Page Content

� Use Web and Database Providers Judiciously

� Improve Availability and Scalability by Having Multiple OC4J_Portal Instances

� Scale Oracle9iAS Portal Better by Tuning Oracle9iAS Infrastructure Database
Optimally

� mod_plsql Tuning Directly Impacts Oracle9iAS Portal Performance

� Leverage Web Provider Session Caching

� Increase Execution Speed of Slowest Portlet to Increase Page Assembly Speed

� Reduce Page Complexity to Improve Cachability

� Measure Tuning Effectiveness Regularly to Improve Performance

Performance Best Practices

Oracle9iAS Portal Best Practices 7-3

7.1.1 Use Appropriate Caching Strategy Depending on Page Content
Oracle9iAS Portal provides two different mechanisms of caching to improve
performance. These include out-of-the-box integration with Oracle's award winning
in-memory cache solution, Oracle9iAS Web Cache, and a persistent file-based cache.

The file-based cache is always maintained at the same time as Web cache, providing
redundant cover should the in-memory solution fail. It is also useful for things like
persistent sessions. In the future, persistent content may be used for cache warming
of Web cache. Further, file-cache performance improvements can be achieved by
locating the cache on a RAM Disk.

By default, Oracle9iAS Portal issues dynamic caching instructions to Oracle9iAS
Web Cache, to allow caching of default content (e.g. page). The page designer can
use the different cache options (whole page, page definition, or none) to ensure that
the correct balance is maintained between speedy delivery of cached content and
avoiding the delivery of stale content. It is, however, important that the page or
portlet designer understand that the degree of dynamism of a web page is inversely
proportional to its cachability. Understanding validation, expiration, and
invalidation-based caching will help the designer select the most appropriate cache
method.

For superior performance, Oracle9iAS Web Cache should be deployed on a
dedicated machine - by default, it is installed, configured, and co-located with the
Oracle9iAS Portal middle-tier. Review the Oracle9iAS Web Cache best practices for
further details.

Performance Best Practices

7-4 Best Practices

7.1.2 Use Web and Database Providers Judiciously
There are two different types of providers: web provider and database provider.
Database providers are implemented in Java or PL/SQL and executed as stored
procedures within the Oracle database. The Oracle9iAS Portal middle-tier
communicates with these providers in two ways: through mod_plsql, if the
provider resides in the local portal database; or by SOAP over HTTP, if the provider
resides in a remote database. (In Oracle9iAS Portal 3.0.x, Net8 connections were
used in both cases. SOAP over HTTP allows easier communication with remote
database providers through firewalls.) Note that execution in the database does not
place any restrictions on the functionality of a portlet; database facilities allow for
external communication in many ways, including HTTP connections to external
content. Database providers are particularly appropriate for portlets that require
significant interaction with the database and in situations where the development
team has extensive Oracle PL/SQL development experience.

Web providers are implemented in any Web deployment environment (e.g. Java,
ASP, Perl) and executed as an application external to Oracle9iAS Portal. Oracle9iAS
Portal also communicates with these providers using SOAP over HTTP. Web
providers are most appropriate for external information sources (e.g. Internet
news/business information) and in environments where developers have
experience using Java and other Web development languages.

7.1.3 Improve Availability and Scalability by Having Multiple OC4J_Portal Instances
Oracle9iAS Portal provides a parallel page engine (PPE) stateless servlet that fetches
the page meta data, assembles the page, and manages the cache. This is a key
component, and its stateless nature allows it to be deployed across multiple OC4J
instances.

By default, Oracle9iAS is installed with a single OC4J_Portal instance where this
PPE servlet is deployed. From a scalability perspective, it is highly recommended to
have at least one other (if not more) OC4J instance with this PPE servlet deployed.
Alternatively, you can increase the number of OC4J processes dedicated to this
instance. Oracle HTTP Server load balance routing will distribute requests across
the multiple instances or processes, providing better scalability for the system.

Performance Best Practices

Oracle9iAS Portal Best Practices 7-5

7.1.4 Scale Oracle9iAS Portal Better by Tuning Oracle9iAS Infrastructure Database
Optimally

Oracle9iAS Infrastructure provides important functionality to Oracle9iAS Portal: all
the metadata, database providers, etc. reside in the database. Hence, conventional
database tuning (e.g. putting portal Indexes on a separate disk) is important.
However, it is not recommended to analyze the schema for further fine tuning since
this has already been done and CBO (Cost Based Optimizer) used where
appropriate.

Moreover, there are also standard ongoing jobs that re-tune the schema based on
collected statistics on a regular basis.

Another aspect of tuning is the SQL*NET tuning between the mod_plsql (i.e. Oracle
HTTP Server) machine and the database itself. You should also consider Real
Application Clusters (RAC) as an option for the availability and scalability of the
Oracle9iAS Portal database.

7.1.5 mod_plsql Tuning Directly Impacts Oracle9iAS Portal Performance
mod_plsql maintains it's own connection pool thus negating the need in most cases
for the use of MTS. There are, however, some tuning parameters that can be
adjusted to give optimal mod_plsql performance and ensure that processes are not
shut down heavily:

� To reduce latch contention, ensure that the DAD setting for Session
Management Type is set to STATELESS_FAST_RESET.

� Set MaxClients=MaxSpareServers=average system load.

� Set MaxRequestPerchild=10000

� Set MinSpareServer=1

� Set KeepAlive to off for heavily loaded sites.

Tuning these parameters will affect the performance of Oracle HTTP Server with
respect to nonmod_plsql requests. Therefore, if you wish to service other types of
requests with the same installation, you can employ a dual listener strategy where
you start two Apache listeners, one tuned for standard content requests and one
tuned for mod_plsql content requests. Further information about this approach and
other factors can be read in the mod_plsql section of the Oracle9i Application Server
Performance Guide.

Performance Best Practices

7-6 Best Practices

7.1.6 Leverage Web Provider Session Caching
When registering a web provider, it is possible (by selecting a checkbox) to request
that session specific information such as session id and user login time be cached
for each request. Whilst this is a mandatory requirement for web providers who
rely on session information to ensure the validity of atomic transactions, those
providers who do not rely on session level information should turn this option off
as it improves the portlet cache hit rate.

7.1.7 Increase Execution Speed of Slowest Portlet to Increase Page Assembly Speed
Portlet execution speed is the average time required to execute all uncached portlets
on a page. Since portlets execute in parallel, this measure will be equal to the
execution speed of the slowest portlet, plus page assembly overhead.

The portlet execution speed will differ from site to site since each site will have a
different mix of content and applications in their portal. Estimating this number
will require running your own benchmark tests (if you already have applications
that you plan to expose through portlets, you will already have a sense of the
execution times). In general, the speed of page assembly will be limited by the
execution speed of the slowest portlet on the page (when the portlet output is not
cached).

7.1.8 Reduce Page Complexity to Improve Cachability
Page security and the number of tabs and portlets on a page will affect the time it
takes to generate page metadata. The number of portlets on a page will affect page
assembly times in the middle tier especially if each portlet must be contacted for a
validity check or content refresh.

Page complexity, a function of page security and the number of tabs, items, and
portlets on a page, affects throughput by increasing the amount of metadata that
needs to be generated as well as the number of security and validity checks. Page
complexity does not affect page assembly time in the middle-tier but may affect the
time it takes to validate and refresh portlet content.

Content Management and Publishing Best Practices

Oracle9iAS Portal Best Practices 7-7

7.1.9 Measure Tuning Effectiveness Regularly to Improve Performance
One of the ways to evaluate whether the practices mentioned here or elsewhere are
effective is to measure the resulting performance, and use the measurements to
further fine tune the system.

To get granular results from system internals, append &_DEBUG=1 to the end of
the portal page URL you wish to measure performance for. The resultant output is a
report from the parallel page engine. It will provide details of performance of each
component on the page, whether a cache miss or hit occurred and how long page
loading took.

Periodic monitoring of this information will help keep the system fine-tuned for
better performance.

7.2 Content Management and Publishing Best Practices
This section describes content management and publishing best practices. It
features the following topics:

� Use a Single Page Group for Unrestricted Copying, Multiple Page Groups for
Delegating Administration

� Research Taxonomy Before Committing to the Pages

� Always Use Page Templates Instead of Directly Creating Pages

� Separate Template Content From Layout

� Understand the Difference Between Attributes, Categories, and Perspectives

� Avoid Using Simple Item Types

Content Management and Publishing Best Practices

7-8 Best Practices

7.2.1 Use a Single Page Group for Unrestricted Copying, Multiple Page Groups for
Delegating Administration

Oracle9iAS Portal allows portal pages to be organized within page groups. The
default and easiest way to get started is with a single page group. This has the
advantage of being able to easily copy or move content elements across pages
within the group.

However, in a larger environment, you may want different people to administer
different areas of the site - and this delegation of administration is easier if you
separate your site into multiple page groups. Currently, it is not possible to copy or
move content elements between page groups, or to use templates, styles, and
metadata elements (categories, perspectives, attributes, and item types) owned by
one page group in another page group.

Templates, styles, and metadata that need to be used across page groups can be
placed in the supplied Shared Object Page Group. In addition, any page can be
published as a portlet, which allows the content on that page to be viewed on any
other page in any page group.

7.2.2 Research Taxonomy Before Committing to the Pages
There are several different ways to organize the set of content that your portal needs
to provide to its end users. This organization is referred to as a taxonomy.

You can create a physical taxonomy consisting of pages and sub-pages. You can also
create virtual taxonomies consisting of categories and perspectives. Users can
browse a taxonomy, which appears as a hierarchy of pages. Each category and
perspective page is built dynamically by searching for content belonging to the
selected category or perspective when the page is rendered.

Reorganizing the physical taxonomy is easy and can be done by moving pages
around within a page group and by moving items between pages (however, pages
and items cannot be moved between page groups, as described above). Currently, it
is not possible to reorganize categories and perspectives. While content can be
reassigned to a different category or perspective, this can be a cumbersome process
if you have a large number of items or pages.

Therefore, carefully plan your category and perspective hierarchies before you start
to add content to your pages.

Content Management and Publishing Best Practices

Oracle9iAS Portal Best Practices 7-9

7.2.3 Always Use Page Templates Instead of Directly Creating Pages
Creating pages with Oracle9iAS Portal is easy, and it may be tempting to start
adding pages quickly at the onset of your portal development project without first
defining page templates. To ensure a consistent look-and-feel to your site and to
minimize maintenance effort, it is recommended that you always base your pages
on page templates. A template cannot be applied to a page once the page has been
created.

It is also a good idea to manage your templates in the Shared Objects page group, as
templates cannot be promoted from another page group to Shared Objects.

This also implies that you should define your templates before you create your
content page groups, as you will want the root page for your page group to use one
of your standard templates. The root page of a page group is automatically created,
and you cannot replace the root page with another page.

7.2.4 Separate Template Content From Layout
A page template defines the layout (the placement of item and portlet regions) for
pages. A template can also contain content, in the form of portlets and items that
you want to appear on all its pages. However, changes made to a template are seen
immediately in its dependent pages. Making changes to the content on a template
will take some period of time (minutes or even hours, depending on the extent of
the changes). During this time, the pages themselves will be in a state of flux as the
template is modified. This can have an undesirable impact on your portal users and
may require that the affected pages be unavailable while performing template
maintenance.

This situation can be avoided by managing template content on navigation pages.
For example, use a navigation page to contain the banner for your template,
including such elements as the page name smart text, company logo, and various
smart links such as the "Customize" icon and the "Home Page" link. When you want
to modify the banner, copy the navigation page and make changes to the copy.
When you are satisfied with the changes, replace the original banner navigation
page portlet on the template with the modified copy. This can be done very quickly
and will have minimal impact on portal users. The same recommendation applies
to navigation bars, page footers, and other content that you want to include on the
template.

Content Management and Publishing Best Practices

7-10 Best Practices

7.2.5 Understand the Difference Between Attributes, Categories, and Perspectives
One of the big advantages of Oracle9iAS Portal is the ability to define and associate
metadata with any content. Oracle9iAS Portal provides three types of metadata:

1. Categories – "what is it?"

2. Perspectives – "who is the audience?"

3. Attributes for any other descriptive information.

It is important to understand the characteristics of these metadata elements in terms
of their impact on content organization, maintenance, presentation, and search. For
example, they all aid in searching for content but have different styles for search
submission and for presentation in search results. There are also important
differences in terms of how content contributors assign metadata values to content
and in how these elements are presented on pages.

The following Table 7–1 summarizes the characteristics of the metadata elements:

Table 7–1 Metadata Elements

Characteristic
Custom
Attribute Categories Perspectives

Can be mandatory on Add/Edit
item.

Yes Yes No

Can be selected for Group By in
Region display.

No Yes No

Can be arranged in a navigable
hierarchy

No Yes Yes

Allows multiple values for a
single item.

No No Yes

Select values from Static List of
Values

Yes Yes Yes

Select values from Dynamic List
of Values (based on SQL Query)

Yes No No

Can be associated with an icon. No Yes Yes

Searchable Yes Yes Yes

Can be shown in Item display Yes Yes Yes

Can be shown in Search Results Yes Yes Yes

Content Management and Publishing Best Practices

Oracle9iAS Portal Best Practices 7-11

7.2.6 Avoid Using Simple Item Types
Simple Item Types (e.g. Simple Text, Simple File, Simple URL, Simple Image) are
very basic item types that contain a minimum number of attributes (the Display
Name and the item type's distinguishing attribute, such as the text box for Simple
Text and the file upload box for Simple File). Custom item types (including the
pre-defined types Text, File, URL, Image, etc.) are based on the simple types but can
contain any number of additional attributes and can be modified anytime to add or
remove attributes.

While Simple Item Types present a very simple interface for end users to add
content, it is important to understand that they cannot be extended to include
additional attributes, and you cannot change the type of an item once that item has
been created. Therefore, if you anticipate that you will want to add additional
attributes to your content, avoid the use of simple item types by following these
steps:

1. If you want to present a simple interface for adding items, create new item
types that look like the simple types.

2. Configure your page groups to hide the Simple Item Types and to make only
custom types visible.

Can be used to order a custom
query (using SQL against the
WWSBR_ALL_ITEMS repository
view)

No Yes No

Translatable Yes Yes Yes

Data Types Boolean, Date,
File, Number,
PL/SQL, Text
(Single or
Multi-Line),
URL

Text Only Text Only

Table 7–1 Metadata Elements(Cont.)

Characteristic
Custom
Attribute Categories Perspectives

Best Practices for Oracle9iAS Portal Export/Import

7-12 Best Practices

Note that items created through the WebDAV interface (Web folders) are always
created as Simple File. While WebDAV makes it very convenient to add content
from the desktop, that convenience may be offset by the restriction on adding
attributes to the Simple File item type. If you need the flexibility associated with a
custom item type, create your file items through the Add Item wizard in the
browser. Any file item can be edited through WebDAV, even if it belongs to a
custom item type. In a future release of Oracle9iAS Portal, you will be able to
specify a custom type for items created through WebDAV.

7.3 Best Practices for Oracle9iAS Portal Export/Import
Oracle9iAS Portal provides a set of export/import utilities which enable customers
to copy portal content between portal installations. A typical example where these
utilities would be used is to copy or update portal page groups and application
components between a development instance and a production instance of
Oracle9iAS Portal.

The following is a summary of recommendations and best practices developed for
Export/Import functionality as provided in Oracle9iAS Portal version 9.0.2.2:

� General Guideline/Best Practices for Oracle9iAS Portal 9.0.2.2 Export/Import

� Best Practices System Checklist Before Performing a Portal Export/Import
Operation

� Best Practices for Building Transport Sets

� Best Practices For Configuring Your Portal Content For Maximal Portability for
Export/Import Operations

� Best Practices for Exporting/Importing Page Groups and Components

� Best Practices for Exporting/Importing Web Providers

� Best Practices for Exporting/Importing Users and Groups

� Best Practices for Troubleshooting Oracle9iAS Portal 9.0.2.2 Export/Import

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-13

7.3.1 General Guideline/Best Practices for Oracle9iAS Portal 9.0.2.2 Export/Import
If you are not sharing the same Oracle Internet Directory instance between your
source and target systems, Oracle recommends the following procedure for
export/import:

� Develop your portal objects (page groups, content, applications, etc.) on your
source/development system.

� To simplify the task of export/import, assign users, groups and privileges
ONLY on your production system.

� Use Export/Import to promote your portal objects to your target/production
system.

� Apply users and privileges to imported portal objects as needed.

If however, you are able to share a single Oracle Internet Directory instance between
your source and target systems, we would recommend the following procedure:

� Develop your portal objects (page groups, content, applications, etc.) on your
source/development system.

� Assign users, groups and privileges from your source system.

� Use Export/Import with "Export Security" checkbox enabled to promote your
portal objects and privileges to your target/production system.

Best Practices for Oracle9iAS Portal Export/Import

7-14 Best Practices

7.3.2 Best Practices System Checklist Before Performing a Portal Export/Import
Operation

Before exporting or importing, ensure that your system meets the minimum system
requirements. You will also need to know the following information about your
configuration on both your export and import portal environments:

� Portal Schema Name

� Portal Schema Password

� Portal Connect String Information

� Portal User Name

� Portal User Password

� Company Name (used only for hosted portal installations) - leave blank in most
cases.

Also, plan to perform the export and import process during non-business hours,
and to disable access to Oracle9iAS Portal during the process. To disable access to
portal temporarily for all other users, one way is to configure your listener for a
different port number during the duration of the export and revert it back to the
original port when your export is complete.

Each export or import process sets up a background process. Therefore, verify that
the job_queue_processes database parameter is set appropriately.

To check the value of the job_queue_processes parameter, simply perform the
following query from SQL*Plus:

select name, value from v$parameter where name='job_queue_processes'

The value for job_queue_processes should be at least 2 to allow toe execution
of background jobs.

An alternative way of checking the job_queue_processes parameter is to
simply examine the init.ora file in your database's ORACLE_HOME.

Also, for Oracle9iAS Portal version 9.0.2.2, please be sure to download the latest
patchset for Export/Import from Metalink. The current patchset as of this writing is
patchset 2617359.

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-15

7.3.3 Best Practices for Building Transport Sets
Once the minimum requirements are verified, your goal is to create a transport set.
Transport sets contain the portal objects that you are planning to export to your
destination portal environment. The steps below outline the basic process of
creating a transport set for export. Please refer to the online documentation for the
precise series of steps.

� Mark objects for export (from the Navigator, or search results > Bulk Actions for
page groups).

� Select either: Export this Transport Set Immediately or Export Later, more
objects have to be added.

� When all desired objects have been added to your transport set, select Export
This Transport Set Immediately.

� Check the log in your transport set manager for any errors.

� Choose an appropriate export script based on your Operating system, and save
the resulting file to the location where you will want to run the export utility
(generally this location should be where your export portal resides).

� Run the script using -mode export as the option. This script will create a dump
file that you will name.

� Using FTP, transfer your dump file and export/import script to the machine
where your destination Oracle9iAS Portal repository resides.

Best Practices for Oracle9iAS Portal Export/Import

7-16 Best Practices

7.3.4 Best Practices For Configuring Your Portal Content For Maximal Portability for
Export/Import Operations

Before exporting/importing, please review Section 4 of the Oracle9iAS Portal 9.0.2
release notes, summarized here below:

1. User and group privileges for given objects are not exported by default:: For
information on exporting users and groups refer to Section 7.3.1, "General
Guideline/Best Practices for Oracle9iAS Portal 9.0.2.2 Export/Import" and
Section 7.3.7.1, "Export/Import of Objects (With Security) Between Portals
Using Different Oracle Internet Directory Servers in 9.0.2".

2. Web providers: Web Provider registration details are migrated, however, if a
web provider with the same name exists in the target, that provider is reused. If
one does not exist, then a new web provider is created.

3. Portal export/import does not provide support for external and partner
applications, and password stores: Any object from these placed on a page
may not work as expected when the page is migrated from one portal to
another. For example, if you have an external applications portlet imported on a
portal page from your source system, it will display the external applications
native to the target system. As another example, if you have other external
applications as portlets, and are having issues on your target system, you may
want to remove the external application portlet first from your source system,
import the page, and then add it back.

4. Custom search is reset upon import. These customizations will have to be
re-entered.

5. Custom Item Types - Portal Export/Import of pages overwrites all attribute
values of items based on custom item types with custom attributes in the target
portal. For this reason, you should create items (based on custom item types) on
the source portal only, and migrate them to the target through the
export-import process for that page.

6. Item URL behavior: Item URLs are likely to change after import. To minimize
any potential problems, be sure to follow these important guidelines on how to
refer to image items via URL.

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-17

7. Page URL behavior: Always use page link item types or direct access URLs
when creating links to portal pages. Do NOT use "raw" portal page URLs.

By default, portal page URLs generated by Oracle9iAS Portal contain installation
specific ID numbers that change when the object is exported. This causes broken
links when pages are imported into a different site.

Here is an example of a URL generated for a page. If the page is imported on
another site, this PAGEID will change.

http://my.portal.com/servlet/page?_pageid=47,49&_dad=portalr2&_schema=portal

If you are using URLs such as the above as manually-entered links, we recommend
instead the use of Direct Access URLs or Page Link item types instead.

The same page has this direct access URL:

http://my.portal.com/pls/portal/url/PAGE/HRPAGEGROUP/HRHOME/HRBENEFITS

To find the direct access URL for a page, look at the page property sheet. A link to
the property sheet can be displayed by adding a Property Sheet Smart Link item to
the page.

Also, you can also use a Page Link item type to create a link to a page. The Page
Link item type dynamically generates the correct link at runtime.

To ensure that links do not 'break' when pages are imported into a different site,
always use Page Link item types or direct access URLs when creating links to pages.

For more information, refer to 'Direct Access URLs' and 'Page Links' in the
Oracle9iAS Portal online help.

Best Practices for Oracle9iAS Portal Export/Import

7-18 Best Practices

7.3.5 Best Practices for Exporting/Importing Page Groups and Components
Page groups and their associated components may be moved from development to
production via the export/import utilities described in this document. In addition
to page groups as a whole, individual components within page groups such as
subpages, categories, perspectives, page styles can be migrated individually to the
import system, provided that the entire page group has been imported to the
import system earlier.

Some considerations and best practices to keep in mind are the following:

� The first export to your target system should migrate the entire page group
from the source portal to the target portal instance. Subsequent transport sets
can then export an individual page, or other page group component on the
destination portal installation, all new or existing content on a page will be
overwritten when a page of the same name is being re-imported to the
destination from elsewhere.

� You can only migrate objects within a page group to the same page group of the
same name on the destination portal.

� After an initial import operation to your target system, if you change the name
of the page group on the target system, subsequent import attempts to that
page group will fail.

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-19

7.3.6 Best Practices for Exporting/Importing Web Providers
In the current Oracle9iAS Portal 9.0.2.2 release, your import operation will fail with
a MERGE_FAILED error if your web providers cannot be reached or cannot be
registered successfully during import.

Before importing on your target system, all web providers referenced by your
transport set must either exist already or be able to be registered successfully during
the import on your target system.To ensure successful registration, ensure that your
web providers meet the following conditions on your target system:

� Ensure that you have connection to your web providers during the import
operation. Your web providers must be up during the import operation.

� If you are using web proxies on either your import or export portal
installations, ensure that your proxies are configured correctly on your import
installation before importing.

� An alternative to keep in mind is to consider registering your web providers
manually in advance of performing your import on the target system to help
ensure that your import operation goes smoothly.

� If you register your web providers manually, they need to be the same name as
the corresponding web provider(s) on your export system.

� If you have portal pages that reference database providers (application
components), be sure also to import your database providers (application
components) either first, or concurrently in the same transport set with your
page groups.

� Another alternative is to remove offending web provider portlets (for those web
providers that may not be contactable/available during the import operation)
from pages before exporting, and then to add them back in after importing.

Best Practices for Oracle9iAS Portal Export/Import

7-20 Best Practices

7.3.7 Best Practices for Exporting/Importing Users and Groups
As with the export/import of portal content, the need to export users and groups
depends primarily upon whether your Oracle9iAS Portal instances are sharing the
same Oracle Internet Directory instance or not.

Review the following topics:

� Export/Import of Objects (With Security) Between Portals Using Different
Oracle Internet Directory Servers in 9.0.2

7.3.7.1 Export/Import of Objects (With Security) Between Portals Using Different
Oracle Internet Directory Servers in 9.0.2
1. Use Oracle Internet Directory utilities to migrate Users/Groups from source

Oracle Internet Directory server to target Oracle Internet Directory server.

2. In Oracle9iAS Portal, migrate portal objects with "export security" enabled from
source portal to target portal.

3. (MANUAL) For the imported users, set the guid to null (WWSEC_
PERSON$.GUID)

4. (MANUAL) For the imported groups, update the guid using the instructions
found in the section below on how to update the GUID.

Please refer to the Oracle Internet Directory documentation on how to migrate users
and groups between Oracle Internet Directory servers.

At the end of the 4 step process, you should be able to edit the user or group profile
and also see them in the imported objects access list. Keep in mind the order of the
process outlined above. All the steps are required and must be carried out
sequentially.

7.3.7.1.1 How to update the GUID

First of all you have to use the following steps to determine whether or not the
specific group you want to synchronize is a local group:

By default, all local groups are created within the portal group install base. You can
find the group install base by running the following commands in the portal
schema from SQL*Plus:

set serveroutput on
exec dbms_output.put_line(wwsec_oid.get_group_install_base)

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-21

If the tail of the group's distinguished name matches the value thus returned then
the group is within the group install base else it is not. For instance, if the group
install base is " cn=portal_groups,cn=groups,o=oracle,dc=com " and the
group that you want to synchronize has a DN " cn=Supervisors,cn=PORTAL_
GROUPS,cn=Groups,o=oracle,dc=com ", then the tail is considered as
matching and it is a local group. To confirm whether this is true or not you can try
the following in the portal schema from SQL*Plus (please substitute the required
group name for <enter_group_name_here>)

select guid, dn from wwsec_group$ where name = upper('<enter_group_name_
here>');

If you see a row with the GUID and DN values then it is a local group else it is not.

Depending on whether or not it is a group within the portal group install base in
Oracle Internet Directory you can use the following steps to synchronize the GUID
of a specific group:

1. For local groups (groups within the portal group install base)

Use the following steps to get the GUID:

� Run the following SQL*Plus command in the portal schema:

set serveroutput on
exec dbms_output.put_line(wwsec_oid.get_group_info(p_group_name =>
'<enter_group_name_here>', p_check_local => false).guid)

This will display the GUID for the group.

Use the following steps to update the group entry in the portal schema

� Pass the value of GUID to replace <enter_guid_here> in the next command:

update wwsec_group$ set guid = '<enter_guid_here>' where name =
upper('<enter_group_name_here>'); commit;

2. For non-local groups (groups outside the portal group install base)

You have to know the Oracle Internet Directory host, port, the administrator's
DN and password to run the following command. You also have to either know
the Distinguished Name of the group or you should be able to determine by
looking at a DN whether or not it pertains to the group that you are interested
in. Use the following steps to get the GUID:

� Run the following command to find out the GUID of the group:

ldapsearch -h <enter_OID_host_name_here> -p <enter_OID_port_number_here>

Best Practices for Oracle9iAS Portal Export/Import

7-22 Best Practices

-D <enter_OID_admin_DN_here> -w <enter_OID_admin_password_here> -s sub
-b "<enter_subscriber_DN_here>"
"(&(objectclass=groupOfUniqueNames)(cn=<enter_group_name_here>))"
orclguid

Example:

ldapsearch -h oid.oracle.com -p 389 -D cn=orcladmin -w welcome1 -s sub
-b "o=oracle,dc=com"
"(&(objectclass=groupOfUniqueNames)(cn=Supervisors))" orclguid

Best Practices for Oracle9iAS Portal Export/Import

Oracle9iAS Portal Best Practices 7-23

This will display a list of all groups under the specified subscriber whose
name matches the specified group name. Every group will be displayed in
two lines, the first line will have the DN of the group and the second line
will have its GUID.

Get the DN and the GUID that you are interested in.

� Use the following steps to update the group entry in the portal schema.

Pass the value of GUID to replace <enter_guid_here> and DN to replace
<enter_DN_here> in the next command:

update wwsec_group$ set name = '(<enter_guid_here>)', guid = '<enter_
guid_here>' where dn = wwsec_oid.get_normalized_dn('<enter_DN_here>');
commit;

For example if the DN and GUID obtained from the previous step are

"cn=Supervisors,cn=OTHER_
GROUPS,cn=Groups,o=oracle,dc=com" and the GUID is
"A729208AFBCA4C38E0340800208A8B00 " respectively then the above
update query will become:

 update wwsec_group$ set name = '(A729208AFBCA4C38E0340800208A8B00)',
guid = 'A729208AFBCA4C38E0340800208A8B00' where dn = wwsec_oid.get_
normalized_dn('cn=Supervisors,cn=OTHER_
GROUPS,cn=Groups,o=oracle,dc=com');
commit;

These steps should allow you to synchronize a specific group in the portal
schema. Repeat this process if there are multiple groups involved.

7.3.8 Best Practices for Troubleshooting Oracle9iAS Portal 9.0.2.2 Export/Import
As mentioned earlier, be sure to review the latest information and FAQs on
Oracle9iAS Portal Export/Import located in the Export/Import Migration and
Upgrade folder at the following URL:

http://portalcenter.oracle.com

Please be sure to look for FAQs and documentation specific to Oracle9iAS Portal
9.0.2.2, as procedures and best practices for subsequent and prior releases of
Oracle9iAS Portal do vary.

Best Practices for Oracle9iAS Portal Export/Import

7-24 Best Practices

Oracle9iAS Wireless Best Practices 8-1

8
Oracle9iAS Wireless Best Practices

This chapter describes Oracle9iAS Wireless best practices. The topics include:

� Development Best Practices

� Deployment Best Practices

8.1 Development Best Practices
This section describes development best practices. The topics include:

� Use Hosted Instance to Test Applications

� Download Up-to-Date Device Simulators for Testing Applications

� Use Oracle9iAS Wireless XML

� Use JSPs to Generate Oracle9iAS Wireless XML

� Use the HTTP Adapter Over a Custom Adaptor

� Use Hosted Wireless Web Services (Mobile Modules) for Rapid Development

8.1.1 Use Hosted Instance to Test Applications
Since it takes some effort to install the appropriate Oracle9iAS Wireless
infrastructure to test your multi-channel applications for all mobile browsers, Short
Message Service (SMS) devices and voice, a hosted instance is available on the
Mobile Studio. The URL to the hosted instance is:

http://studio.oraclemobile.com.

Development Best Practices

8-2 Best Practices

8.1.2 Download Up-to-Date Device Simulators for Testing Applications
Some devices constantly change their presentation format (represented by
corresponding stylesheets in Oracle9iAS Wireless). Hence, you should always
download and test with the latest simulators for the devices you are developing for.
You can generally go to the device manufacturers web site to download the
simulators.

8.1.3 Use Oracle9iAS Wireless XML
If you are developing a multi-channel application, use Oracle9iAS Wireless XML.
The value that Oracle9iAS Wireless XML adds is the ability to write an application
once for all channels. You need not develop separate presentation code for each
mobile device your application supports. Hence, development effort and cycles are
reduced as the complexities of developing for each specific device browser is
removed.

8.1.4 Use JSPs to Generate Oracle9iAS Wireless XML
For J2EE applications, we recommend that you output Oracle9iAS Wireless XML
using JSPs. The presentation model parallels that of using JSPs to output HTML for
HTML browsers. In the JSPs, replace HTML tags with Oracle9iAS Wireless XML.
Your J2EE applications can then be delivered to any device including voice.

8.1.5 Use the HTTP Adapter Over a Custom Adaptor
The HTTP adapter allows you to separate the application logic from the application
server, and use the application server as a smart browser. This method allows for
easier application management, easier application server upgrades, and simpler
porting.

8.1.6 Use Hosted Wireless Web Services (Mobile Modules) for Rapid Development
Oracle9iAS Wireless offers location and messaging web services (also called Mobile
Modules) as added value to your wireless applications. These services
location-enable and message-enable your applications without requiring you to
write the implementation logic for them. It is possible to deploy these services
internally in your own deployment of Oracle9iAS Wireless. However, Oracle offers
hosted versions of these services, which your applications can connect to over the
Internet. Using the hosted versions reduces your development and deployment
cycles as you do not need to deploy and provision your own version of these
services.

Deployment Best Practices

Oracle9iAS Wireless Best Practices 8-3

8.2 Deployment Best Practices
This section describes deployment best practices. It features the following topics:

� Deploy Own Wireless Infrastructure or Use Hosted Versions

� Deploy Your Applications in Phases

� Use SMS for Targeted Content in Specific Geographical Regions

� Use Oracle9iAS Web Cache with Oracle9iAS Wireless

8.2.1 Deploy Own Wireless Infrastructure or Use Hosted Versions
If you wish to have low initial costs, you can deploy your Oracle9iAS Wireless
(middle tier) and applications in-house. Then, all the other infrastructures can be
hosted by a service provider. Oracle provides wireless infrastructure as a hosted
service.

8.2.2 Deploy Your Applications in Phases
The best method in deployment is to take a phased approach, where you release
new channels in phases. Deploy channels based on your goals, for example, sales
force PDA users who require your application urgently or a channel, which returns
the quickest adoption rate or ROI. A common approach is to start with the PDA
channel and then to voice.

8.2.3 Use SMS for Targeted Content in Specific Geographical Regions
SMS provides a way to make a simple request to get necessary information and is
widely used in Europe and Asia. It is easy to get distracted with fancy images when
developing for PDAs. SMS makes sure that only the vital content is made available,
and the content is received in the most concise manner.

8.2.4 Use Oracle9iAS Web Cache with Oracle9iAS Wireless
Using Oracle9iAS Web Cache with Oracle9iAS Wireless can save bandwidth and
server CPU cycles. The savings are in terms of device adaptation costs due to the
fact that content can be shared across users and sessions. Additionally, applications
are transformed only once (per device) from its multi-channel Oracle9iAS Wireless
XML format.

Deployment Best Practices

8-4 Best Practices

Security Best Practices 9-1

9
Security Best Practices

This chapter describes security best practices. The topics include:

� General Best Practices

� OC4J Security Best Practices

� Oracle9iAS Single Sign-On Best Practices

General Best Practices

9-2 Best Practices

9.1 General Best Practices
This section describes general best practices. The topics include:

� Best Practices for HTTPS Use

� Assign Lowest Level Privileges Adequate for the Task

� Best Practices for Cookie Security

� Best Practices in Systems Setup

� Best Practices for Certificates Use

� Follow "Common Sense" Firewall PracticesReview Code and Content Against
Already Known Attacks

� Leverage Declarative Security

� Use the Oracle Integrated Version of JAAS

� Use Switched Connections in DMZ

� Place Application Server in the DMZ

� Tune the SSL SessionCacheTimeout Directive if You Are Using SSL

General Best Practices

Security Best Practices 9-3

9.1.1 Best Practices for HTTPS Use
The following are recommended for using HTTPS with Oracle9iAS:

� Configure Oracle9iAS to fail attempts to use weak encryption. Oracle9iAS can
be configured to use only specific encryption ciphers for HTTPS connections.
Thus, connections from all old browsers that have not upgraded the client-side
SSL libraries to 128-bit can be rejected. This ability is especially useful for banks
and other financial institutions because it provides server-side control of the
encryption strength for each connection.

� Use HTTPS to HTTP appliances for accelerating HTTP over SSL. You should
in general use HTTPS everywhere you need to. However, the huge performance
overhead of HTTPS forces a trade-off in some situations. Use of HTTPS to
HTTP appliances can change throughput from 20/30 transactions per second
on a 500MHz Unix to 6000 transactions per second for a relatively low cost,
making this trade-off decision easier. Moreover, these are much better solutions
than the math/crypto cards, which can be added to UNIX/NT/Linux boxes.

� Ensure that sequential HTTPS transfers are requested through the same Web
server. Expect 40/50 milliseconds CPU time for initiating SSL sessions on a 500
MHz machine. Most of this CPU time is spent in the key exchange logic, where
the bulk encryption key is exchanged. Caching the bulk encryption key will
significantly reduce CPU overhead on subsequent accesses, provided that the
accesses are routed to the same Web server. This improves performance.

� Keep secure pages and pages not requiring security on separate servers.
While it may be easier to place all pages for an application on one HTTPS
server, the resulting performance cost is very high. Reserve your HTTPS server
for pages needing SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files that would be
displayed on the same screen, it is probably not worth the effort to segregate secure
from non-secure static content. The SSL key exchange (a major consumer of CPU
cycles) is likely to be called exactly once in any case, and the overhead of bulk
encryption is not that high.

9.1.2 Assign Lowest Level Privileges Adequate for the Task
When assigning privileges to module(s), use the lowest levels adequate to perform
the module(s) function(s). This is essentially "fault containment" which means if
security is compromised, it is contained within a small area of the network and
cannot invade the entire intranet.

General Best Practices

9-4 Best Practices

9.1.3 Best Practices for Cookie Security
Use the following as guidelines for cookies:

� Make sure that cookies have proper expiration dates. Permanent cookies
should have relatively short expiration dates of about three months or less. This
will avoid cluttering client browsers, which may cause errors if the browser
cannot transmit all the valid cookies. Non-permanent cookies should be set to
expire when the relevant application exits.

� Make sure that information in cookies should be “MAC'ed”. Method
Authentication should be used to ensure that cookie data has not been changed
since the application set the data. This helps ensure that the cookie cannot be
modified and “trick” the application. Also, this helps prevent application
failures if the cookie is inadvertently corrupted.

� Make sure that the size and varieties of cookies are kept low. There is a finite
number and aggregate size of cookies that browsers support. If this is exceeded,
then the browsers will not send all the relevant cookies leading to application
failures. Also, very large cookies can result in performance degradation.

� Carefully use cookie domain name facilities. Use of cookie domains should
ensure that the domain is the smallest possible. Making the domain oracle.com,
for instance, would mean that ANY host in oracle.com would get the cookie.
With hundreds of applications on different parts of oracle.com, a domain of
oracle.com for each of them results in attempts to send hundreds of cookies for
each HTTP input operation.

General Best Practices

Security Best Practices 9-5

9.1.4 Best Practices in Systems Setup
Use the following as guidelines for system setup:

� Apply all relevant security patches. Check Metalink and TechNet for current
security alerts. Many of these patches address publicly announced security
holes.

� When deploying software, change all default passwords and close accounts
used for samples and examples.

� Remove unused services from all hosts. Examples of unused services are FTP,
SNMP, NFS, BOOTP, and NEWS. It is almost always worthwhile finding ways
to eliminate FTP because it is especially noxious. HTTP or WebDAV may be
good alternatives.

� Limit the number of people with root and administrative privileges.

� In UNIX, disable the ‘r’ commands if you do not need them. For example,
rhost, rcp.

9.1.5 Best Practices for Certificates Use
Use the following guidelines when using certificates:

� Ensure that certificate organization unit plus issuer fields uniquely identify
the organization across the Internet. One way to accomplish this would be to
include the Dun and Bradstreet or IRS identification as identification for the
issuer and the organizational unit within the certificate.

� Ensure that certificate issuer plus distinguished name uniquely identify the
user. If the combination of issuer and distinguished name is used as
identification, there is no duplication risk.

� Include expiring certificates in tests of applications using certificates.
Expiration is an important consideration for a number of reasons. Unlike most
username/password-based systems, certificates expire automatically. With
longer duration certificates, fewer re-issues are required, but revocation lists
become larger.

In systems where certificates replace traditional usernames/passwords,
expiring certificate situations may result in unexpected bugs. Careful
consideration of the effects of expiration is required and new policies will have
to be developed because most application and infrastructure developers have
not worked in systems where authorization might change during transactions.

General Best Practices

9-6 Best Practices

� Use certificate re-issues to update certificate information. Because certificates
expire, infrastructure for updating expired certificates will be required. Take
advantage of the re-issue to update organizational unit or other fields. In cases
of mergers, acquisitions, or status changes of individual certificate holders,
consider re-issuing even when the certificate has not yet expired. But pay
attention to key management. If the certificate for a particular person is updated
before it expires, for example, put the old certificate on the revocation list.

� Audit certificate revocations. Revocation audit trails can help you reconstruct
the past when necessary. An important example is replay of a transaction to
ensure the same results on the replay as during the original processing. If the
certificate of a transaction participant was revoked between the original and the
replay, failures may occur which would not have occurred when the original
transaction was processed. For these cases, the audit trail should be viewed to
simulated authentication at the time when the transaction was initially
processed.

9.1.6 Review Code and Content Against Already Known Attacks
It is quite common for viruses or known attacks to resurface in slightly altered
shape or form. Thus, just because a threat has been apparently eliminated does not
mean it won't resurface. Use the following as guidelines to minimize the recurrence
of the threat:

� Ensure that programs are reviewed against double encoding attacks. There
area many cases where special characters, such as <, >, | are encoded to prevent
cross-site scripting attacks or for other reasons. For example, '<' might be
substituted for '>'. In a double encoding, the attacker might encode the '&' so
that later decoding might involve the inadvertent processing of a >, <, or |
character as part of a script. Prevention of this attack, unfortunately, can only be
provided by careful program review, although some utilities can be used to
filter escape characters that might result in double encoding problems in later
processing.

� Ensure that programs are reviewed against buffer overflow for received data.

� Ensure that programs are reviewed against cross-site scripting attacks. This
attack typically tricks HTML and XML processing via input from browsers (or
processes which act like browsers) to invoke scripting engines inappropriately.
However, it is not limited to the Web technologies, and all code should be
evaluated for this.

General Best Practices

Security Best Practices 9-7

9.1.7 Follow "Common Sense" Firewall Practices
The following are some common recommended practices pertaining to firewalls.

While not unique to Oracle9iAS, these are important to overall Oracle9iAS security.

� Place servers providing Internet services behind an exterior firewall of the
stateful inspection type. Stateful inspection means that the firewall keeps track
of various sessions by protocol and ensures that illegal protocol transitions are
disallowed through the firewall. This blocks the types of intrusion, which
exploit illegal protocol transitions.

� Set exterior firewall rules to allow Internet-initiated traffic only through specific
IP and PORT addresses where SMTP, POP3, IMAP, or HTTP services are
running. Some protocols (e.g. IIOP) leave ports open with no receiving
processes. PORT and IP combinations, which are not assigned to running
programs, should not be permitted.

� Set interior firewall rules to allow messages through to the intranet only if they
originate from servers residing on the perimeter network. All incoming
messages must first be processed in the perimeter network.

� Send outgoing messages through proxies on the perimeter network.

� Do not store the information of record on bastion hosts. Information and
processing should be segmented such that bastion hosts (fortified servers on the
perimeter network) provide initial protocol server processing and generally do
not contain information of a sensitive nature. The database of record and all
sensitive processing should reside on the intranet.

� Disallow all traffic types unless specifically allowed. allow only the traffic
required by Oracle9iAS(e.g. HTTP, AJP, OCI, LDAP) for better security.

9.1.8 Leverage Declarative Security
Oracle HTTP Server has several features that provide security to an application
without requiring the application to be modified. These should be leveraged and/or
evaluated before programming similar functionality as those features into the
application. Specifically:

� Authentication - Oracle HTTP Server can authenticate users and pass the
authenticated user-id to an application in a standard manner. (REMOTE_
USER). It also supports single sign-on, thus reusing existing login mechanisms.

General Best Practices

9-8 Best Practices

� Authorization - Oracle HTTP Server has directives that can allow access to your
application only if the end user is authenticated and authorized. Again, no code
change is required.

� Encryption - Oracle HTTP Server can provide transparent SSL communication
to end customers without any code change on the application.

These three features should be leveraged heavily before designing any application
specific security mechanisms.

9.1.9 Use the Oracle Integrated Version of JAAS
Oracle9iAS provides a J2EE compliant version of JAAS. One can use the
infrastructure provided by Sun for configuring and managing users, roles and
privileges or one can use JAAS integrated with Oracle9iAS Single Sign-On and
Oracle Internet Directory infrastructure. The latter is better integrated with the rest
of the Oracle infrastructure and results in less programming, better manageability,
and more control than the standard offering. In addition, use of the Oracle
infrastructure can greatly improve the scalability, failover, and management by
substituting Oracle Internet Directory and other Oracle infrastructure for the text
file administration of the standard offering.

9.1.10 Use Switched Connections in DMZ
It is recommended that all DMZ attached devices be connected by switched, not
bussed connections. Furthermore, devices such as the Cisco 11000 series devices,
which can provide IP, port, and protocol rules between each pair of connected
devices are preferred.

9.1.11 Place Application Server in the DMZ
Application servers should be in the DMZ. In this architecture Oracle9iAS Web
Cache only forwards requests to boxes containing Web servers; Web servers only
forward requests to application servers (or via PL/SQL to database servers);
application servers only forward inward requests to the database or, perhaps,
special message processing processors in the intranet. This provides excellent fault
containment because, except for PL/SQL which has special security, a compromised
Web server must somehow compromise an application server before the database
can be attacked - a very difficult and improbable situation.

OC4J Security Best Practices

Security Best Practices 9-9

9.1.12 Tune the SSL SessionCacheTimeout Directive if You Are Using SSL
The Apache server in Oracle9iAS caches a client's SSL session information by
default. With session caching, only the first connection to the server incurs high
latency.

In a simple test to connect and disconnect to an SSL-enabled server, the elapsed
time for 5 connections was 11.4 seconds without SSL session caching as opposed to
1.9 seconds when session caching was enabled.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of
a SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessionCacheTimeout directive in httpd.conf file to meet
your application needs.

9.2 OC4J Security Best Practices
This section describes OC4J security best practices. The topics include:

� Use the Oracle9iAS JAAS Provider for OC4J User Management in Place of
principals.xml

� Avoid Writing Custom User Managers and Instead Extend the JAAS Provider,
Oracle9iAS Single Sign-On, and Oracle Internet Directory

� Use Oracle9iAS Single Sign-On as the Authentication Mechanism with the
JAAS Provider

� Use the JAAS Provider’s Declarative Features to Reduce Programming

� Use Fine-Grained Access Control Provided by the JAAS Provider and the Java
Permission Model

� Use Oracle Internet Directory as the Central Repository for the JAAS Provider
in Production Environments

� Take Advantage of the Authorization Features of the JAAS Provider

OC4J Security Best Practices

9-10 Best Practices

9.2.1 Use the Oracle9iAS JAAS Provider for OC4J User Management in Place of
principals.xml

In the earlier releases of Oracle9iAS, the J2EE application server component stored
all user information in a file called principals.xml (including storing passwords
in cleartext). The Oracle9iAS JAAS Provider provides a similar simple security
model as a default without storing passwords in cleartext. However, it also
provides tight integration with Oracle9iAS Infrastructure (including Oracle9iAS
Single Sign-On and Oracle Internet Directory) out of the box. Hence, we strongly
recommend that you leverage the Oracle9iAS JAAS Provider for J2EE security in
OC4J.

9.2.2 Avoid Writing Custom User Managers and Instead Extend the JAAS Provider,
Oracle9iAS Single Sign-On, and Oracle Internet Directory

The OC4J container continues to provide several methods and levels of extending
security providers. Although the UserManager class can be extended to build a
custom user manager, leveraging the rich functionality provided by the JAAS
Provider, Oracle9iAS Single Sign-On, and Oracle Internet Directory will allow
developers more time to focus on actual business logic instead of infrastructure
code. Both Oracle9iAS Single Sign-On and Oracle Internet Directory provide APIs
to integrate with external authentication servers and directories respectively.

9.2.3 Use Oracle9iAS Single Sign-On as the Authentication Mechanism with the
JAAS Provider

Oracle9iAS JAAS Provider allows different authentication options. However, Oracle
strongly recommends leveraging the Oracle9iAS Single Sign-On server whenever
possible for the following reasons:

1. It is the default mechanism for most Oracle9iAS components such as Portal,
Forms, Reports, Wireless etc.

2. It is easy to setup in a declarative fashion and does not require any custom
programming.

3. It provides a seamless way for PKI integration.

OC4J Security Best Practices

Security Best Practices 9-11

9.2.4 Use the JAAS Provider’s Declarative Features to Reduce Programming
Since most of the features in the Oracle9iAS JAAS Provider are controlled
declaratively, particularly in the area of authentication, their setup can be
postponed until deployment time. This not only reduces the programming tasks for
integrating a JAAS based application, it also enables the deployer to control the
same J2EE application via his/her environment-specific security models.

9.2.5 Use Fine-Grained Access Control Provided by the JAAS Provider and the Java
Permission Model

Unlike the "coarse-grained" J2EE authorization model as it exists today, the JAAS
Provider integrated with OC4J allows any protected resource to be modeled using
Java permissions. The Java permission model (and associated Permission class) is
extensible and allows a flexible way to define fine-grained access control.

9.2.6 Use Oracle Internet Directory as the Central Repository for the JAAS Provider
in Production Environments

Although the JAAS Provider supports a flat-file XML-based repository useful for
development and testing environments, it should be configured to use Oracle
Internet Directory for production environments. Oracle Internet Directory provides
LDAP standard features for modeling administrative metadata and is built on the
Oracle database platform inheriting all of the database properties of scalability,
reliability, manageability, and performance.

9.2.7 Take Advantage of the Authorization Features of the JAAS Provider
In addition to the authorization functionality defined in the JAAS 1.0 specification,
the Oracle9iAS JAAS Provider supports:

� hierarchical, role-based access control (RBAC)

� the ability to partition security policy by subscriber (i.e. each user community).

Both of these extensions allow a more scalable and manageable framework for
security policies covering a large user population.

Oracle9iAS Single Sign-On Best Practices

9-12 Best Practices

9.3 Oracle9iAS Single Sign-On Best Practices
This section describes Oracle9iAS Single Sign-On best practices. The topics include:

� Oracle9iAS Single Sign-On Servers Should Be Configured for High Availability

� Leverage Oracle9iAS Single Sign-On Whenever Possible

� Have an Enterprise-Wide Directory in Place

� Always Use Oracle9iAS Single Sign-On Instead of Writing Custom
Authentication Logic

� For Devloping Single Sign-on Enabled Applications, Use mod_osso and Not the
Single Sign-on SDK

� Always Use SSL with Oracle9iAS

� Train Users to be Wary of Providing Their Oracle9iAS Single Sign-On Username
and Password Anywhere Other Than Through the Oracle9iAS Single Sign-On
URL

� Train Users to Log Out So the Cookie Does Not Remain Active

9.3.1 Oracle9iAS Single Sign-On Servers Should Be Configured for High Availability
Single sign-on failure is catastrophic since it means no single sign-on protected
application can be accessed. Two recommendations for high availability of
Oracle9iAS Single Sign-On are:

1. Carefully consider inclusion of any other types of processing on the single
sign-on servers since this can make instability more likely.

2. Consider deploying multiple single sign-on servers fronted by load balancing
hardware to protect against failures in single sign-on listeners. In this case, the
address of the load balancer is used as the single sign-on address and the single
sign-on listener configuration information is replicated. It is also recommended
that the database be Real Application Cluster (RAC) configured for additional
improvements in availability. Configuration details for multiple single sign-on
servers can be found in the Oracle Technology Network.

Oracle9iAS Single Sign-On Best Practices

Security Best Practices 9-13

9.3.2 Leverage Oracle9iAS Single Sign-On Whenever Possible
Oracle9iAS Single Sign-On should be used as the primary point of security. This is a
benefit administratively and a major convenience to application customers. Also,
Oracle9iAS Single Sign-On is well integrated with the rest of Oracle infrastructure
and can, via Oracle Internet Directory and other means, be integrated with
non-Oracle application and infrastructure. Also, as single sign-on becomes a single
point for authentication, opportunities to attack the multiple authentication entities
of sites today are reduced. Finally, single sign-on's single authenticated user for all
applications allows better control for more uniform authorization.

9.3.3 Have an Enterprise-Wide Directory in Place
In order to deploy an effective single sign-on solution, the user population must be
centralized in a directory, preferably an LDAP-based directory such as Oracle
Internet Directory. Having users represented in multiple systems (e.g. in multiple
Windows NT domains) makes setting up the infrastructure for a common identity
more difficult. In addition, clearly defining and automating the user provisioning
process makes managing the single sign-on environment much easier.

9.3.4 Always Use Oracle9iAS Single Sign-On Instead of Writing Custom
Authentication Logic

Oracle9iAS Single Sign-On provides the infrastructure to validate credentials and
allows for various different authentication mechanisms such as
username/password, X.509 certificates. Moreover, since these can be shared across
different applications and web sites, end users do not have to create a new
username/password for each different corporate application.

9.3.5 For Devloping Single Sign-on Enabled Applications, Use mod_osso and Not
the Single Sign-on SDK

Oracle9iAS Single Sign-On provides an SDK, which can be leveraged to develop a
partner application. This SDK was commonly used in earlier releases of Oracle9iAS.
However, beginning in Release 2, all of the common usage patterns have been
embodied in a new Oracle HTTP Server module, mod_osso, that requires
significantly less programming than the SDK. By single sign-on enabling an
application with mod_osso, the application will automatically get future
enhancements without changing any code.

Oracle9iAS Single Sign-On Best Practices

9-14 Best Practices

9.3.6 Always Use SSL with Oracle9iAS
The Oracle9iAS Single Sign-On server simplifies user interaction by providing a
mechanism to have a single username and password that can be used by multiple
partner applications. However, with this ease, comes the caution that the single
sign-on server should always be accessed in the correct fashion; a breach of the
common password can now put all the partner applications at risk. Hence, the
single sign-on server should always be configured to allow connections in SSL
mode only. This protects the end user's credentials going across the wire.
Applications where security and data confidentiality is important should also be
protected by SSL. From a performance perspective, use of SSL hardware
accelerators is recommended.

9.3.7 Train Users to be Wary of Providing Their Oracle9iAS Single Sign-On Username
and Password Anywhere Other Than Through the Oracle9iAS Single Sign-On URL

The Oracle9iAS Single Sign-On server provides a standard login screen. This login
page is serviced from the single sign-on server machine, which is typically a
different machine from the one the end user is trying to access. Thus, it is critical
that before the end user enters her login and password, she ensures that she is at a
valid single sign-on screen that looks the same as it always has - from a valid login
server computer. This prevents users from unknowingly providing their
username/password to inappropriate servers.

Oracle9iAS Single Sign-On Best Practices

Security Best Practices 9-15

9.3.8 Train Users to Log Out So the Cookie Does Not Remain Active
This is generic and not really single sign-on specific, but it is of particular
importance when leveraging single sign-on. Most users do not log out of Internet
applications and this creates problems at two levels:

1. A security risk - since someone else walking to the station can now reuse the
cookie. Also, since the session remains valid until it times out, a hacker from
another machine has a longer time window to guess the session id/cookie
value.

2. The system resources on the server associated with the cookie are not released
until the session is ended or invalidated.

For application developers and administrators, single sign-on session duration and
inactivity timeouts should be configured appropriately (for example, one hour
inactivity timeouts for sensitive applications).

For external apps, single sign-on cannot logout users from external apps - so closing
all browser windows is important in this case.

Oracle9iAS Single Sign-On Best Practices

9-16 Best Practices

Oracle Enterprise Manager Best Practices 10-1

10
Oracle Enterprise Manager Best Practices

This chapter describes Oracle Enterprise Manager best practices. It features the
following topics:

� Monitor Application Performance During Application Development or Test
Cycles Using Oracle Enterprise Manager

� Use Oracle Enterprise Manager to Tune Application SQL

� Use Oracle9iAS Clusters for Application Deployment and Configuration
Management

� Use the Oracle Enterprise Manager Deployment Wizard to Deploy Application
in Real-Time

� Use Oracle Enterprise Manager Job System to Schedule a Deployment to Occur
at a Certain Time

� Select the Oracle Enterprise Manager Management Framework Options That
Best Suit Your Needs

� Use the Latest Version of Oracle Enterprise Manager for Managing Both
Oracle9iAS and the Oracle Database

� Use the Oracle Enterprise Manager Event System and Notification to
Proactively Monitor System Availability

� Use the Oracle Enterprise Manager Event Management System’s User-Defined
Events to Customize Monitoring of Your Application Servers

� Use Oracle Enterprise Manager to Monitor and Diagnose Performance
Bottlenecks and Availability Problems

� When Monitoring Application Server Performance, Use the Host Home Page to
Help Diagnose Performance Issues

Monitor Application Performance During Application Development or Test Cycles Using Oracle Enterprise Manager

10-2 Best Practices

� Use the Oracle Enterprise Manager Job System to Periodically Back Up Your
Oracle9iAS Configuration

� Use Oracle Enterprise Manager to Monitor Rate and Aggregated Performance
Metrics

� After Restarting Oracle Enterprise Manager, Navigate to Commonly Used
Pages

� Use Oracle Enterprise Manager to Change Configurations

10.1 Monitor Application Performance During Application Development
or Test Cycles Using Oracle Enterprise Manager

During application development and testing, you can use the Oracle Enterprise
Manager Web site to monitor the application's resource usage and identify
bottlenecks. For example, during a performance or load test you can view memory
and CPU use for the Oracle9iAS instance overall and for the application. You can
also drill down to find sessions, modules, EJB's, methods, etc., that may be
bottlenecks in the application.

10.2 Use Oracle Enterprise Manager to Tune Application SQL
Applications that access the database using SQL can be tuned using Oracle
Enterprise Manager SQL tuning tools. During development you can use Oracle SQL
Analyze to tune your SQL statements before they are deployed on a test system.
SQL Analyze can automatically examine your SQL statements and rewrite the
statement to improve performance, such as altering the statement so an index can
be used. You can also use Oracle Enterprise Manager to view a graphical display of
the execution plan for your SQL statement and compare plans and statistics for
different versions of your SQL statement.

During testing of your application you can use Oracle Enterprise Manager to
monitor SQL performance and make further tuning improvements. For example,
you can use Oracle Expert to recommend a better indexing strategy to improve data
access performance.

Use Oracle Enterprise Manager Job System to Schedule a Deployment to Occur at a Certain Time

Oracle Enterprise Manager Best Practices 10-3

10.3 Use Oracle9iAS Clusters for Application Deployment and
Configuration Management

Using Oracle9iAS clusters simplifies management and maintenance of your
application servers. Clustering enforces consistent configurations across all
members of the cluster. So, if you want to make a configuration change in every
instance, you only need to make the change once. The clustering mechanism
ensures that the new configuration is propagated to all members.

Similarly, clustering also enforces consistency of deployed applications across all
application server instances. If you wish to deploy a new application or update an
existing deployment on every application server instance in the cluster, you only
need to deploy or update the application once. Again, the clustering mechanism
ensures that the application is properly deployed to all members. deployment
wizard, which can be accessed from the Oracle9iAS Instance home page. The
wizard walks you systematically through all the essential deployment options to
ensure that your application is deployed correctly.

10.4 Use the Oracle Enterprise Manager Deployment Wizard to Deploy
Application in Real-Time

A simple way to deploy an application is to use the Oracle Enterprise Manager
deployment wizard, which can be accessed from the Oracle9iAS Instance home
page. The wizard walks you systematically through all the essential deployment
options to ensure that your application is deployed correctly.

10.5 Use Oracle Enterprise Manager Job System to Schedule a
Deployment to Occur at a Certain Time

In some cases, you may want to deploy an application during off-hours or at a
certain scheduled time. You can use the Oracle Enterprise Manager job system to
schedule a deployment to occur at a selected time. Simply create a script containing
the DCM command-line dcmctl deployApplication command and schedule the
script via the Oracle Enterprise Manager job system. You can also choose to be
alerted when the deployment completes or if there is an error.

Select the Oracle Enterprise Manager Management Framework Options That Best Suit Your Needs

10-4 Best Practices

10.6 Select the Oracle Enterprise Manager Management Framework
Options That Best Suit Your Needs

There are various ways to deploy Oracle Enterprise Manager, which gives you the
flexibility to select the configuration that best suits your needs. If you are working
in a simple development or test environment, or if you have a single Oracle9iAS
instance to manage, you would probably need only to install the Oracle Enterprise
Manager Web site. The Web site allows you to directly access all the pages for
managing and monitoring the instance. This is the simplest management
configuration and is automatically installed with all Oracle9iAS install types.

In a production environment, you may need to set up events and jobs. To use these
capabilities of Oracle Enterprise Manager, you need to install the Oracle
Management Server, which is part of the infrastructure installation option. This
option also installs the Oracle Enterprise Manager console. The console is a central
location from which you can manage your Oracle9iAS instances, databases, and
your entire Oracle environment. The Oracle Enterprise Manager framework also
supports sharing of information between administrators.

10.7 Use the Latest Version of Oracle Enterprise Manager for Managing
Both Oracle9iAS and the Oracle Database

If you plan to manage both your Oracle9iAS instances and your databases from the
same management console, install the latest version of Oracle Enterprise Manager.
This will ensure that you have the most up-to-date functionality for managing both
types of targets.

Use the Oracle Enterprise Manager Event Management System’s User-Defined Events to Customize Monitoring of Your

Oracle Enterprise Manager Best Practices 10-5

10.8 Use the Oracle Enterprise Manager Event System and Notification
to Proactively Monitor System Availability

The Oracle Enterprise Manager Event System allows you to monitor your systems
for specific conditions, such as loss of service or poor performance. You select tests
to run on managed targets, such as an application server instance, and then set the
threshold parameters for which you want to be notified. Alarms will always display
on the Oracle Enterprise Manager console, but you can also be notified via email or
page. Minimally, you should set up events to alert you when Oracle Enterprise
Manager detects that your critical or production application servers are unavailable.

You can share events with other administrators, in addition to being able to notify
specific administrators when an event condition occurs. This simplifies cooperation
between administrators who share responsibility for the same systems. For some
event tests, you can also choose to execute a fixit job, such as restarting a component
that automatically corrects the problem.

10.9 Use the Oracle Enterprise Manager Event Management System’s
User-Defined Events to Customize Monitoring of Your Application
Servers

The user-defined event test allows you to define your own scripts that monitor
conditions particular to your environment. These event tests can be written in any
scripting language, as long as the node that runs the script has the appropriate
runtime requirements to execute the script.

The power and flexibility of user-defined event tests lie in the ability to integrate
any custom script into the Oracle Enterprise Manager Event System and leverage
the system's multi-administrator, lights-out scheduling and notification capabilities.
You can, for example, write a script to monitor the performance of a user
application, register that script as a user-defined event, and receive alerts from
Oracle Enterprise Manager when performance falls below your specified threshold.

Use Oracle Enterprise Manager to Monitor and Diagnose Performance Bottlenecks and Availability Problems

10-6 Best Practices

10.10 Use Oracle Enterprise Manager to Monitor and Diagnose
Performance Bottlenecks and Availability Problems

Once you have set up Oracle Enterprise Manager to monitor for availability and
performance issues, you will be alerted when a problem is detected. If Oracle
Enterprise Manager detects that an application server component is unavailable,
you can use the Oracle Enterprise Manager Web site to check the status of the
component and restart it if desired. If a performance issue was detected, perhaps
with a component or application, you can drill down to the component's home page
and view detailed performance and diagnostic information. If needed you can also
drill down from the OC4J home page to find the most resource intensive
applications, modules, methods, etc. Using these drill downs, you can diagnose and
resolve performance issues.

10.11 When Monitoring Application Server Performance, Use the Host
Home Page to Help Diagnose Performance Issues

The Oracle Enterprise Manager Oracle9iAS instance home page not only displays
critical performance data and resource usage for the application server instance, it
also includes a link to information for the host. For example, if your application
server is performing poorly you can first drill down to the related Host home page
to determine if the underlying problem is due to resource problems with the host
and other processes, or to services running on the box.

10.12 Use the Oracle Enterprise Manager Job System to Periodically
Back Up Your Oracle9iAS Configuration

Periodically you should back up your application server configuration. By saving
your configurations, you can restore the backed up settings if you ever need to
undo configuration changes made. You can use the DCM command-line utility’s
dcmctl saveInstance command in a script to save the configuration and application
information for an application server instance. You can then schedule the backup
script to run periodically using the Oracle Enterprise Manager job system. This
ensures that backups of your configurations are taken on a regular basis.

Use Oracle Enterprise Manager to Change Configurations

Oracle Enterprise Manager Best Practices 10-7

10.13 Use Oracle Enterprise Manager to Monitor Rate and Aggregated
Performance Metrics

Oracle Enterprise Manager's home pages and drill downs include rate and
aggregated performance data that are not available via command line or other tools.
For example, you can use Oracle Enterprise Manager to view average processing
time for a HTTP request, allowing you to zero in on specific requests that may be
slow.

Oracle Enterprise Manager also displays performance information, such as average
processing time for a servlet for the most recent 5 minutes, in addition to averages
since startup. This allows you to more easily diagnose problems in real-time.

10.14 After Restarting Oracle Enterprise Manager, Navigate to
Commonly Used Pages

After restarting the Oracle Enterprise Manager Web site, you may want to navigate
to commonly used pages on the Oracle Enterprise Manager Web site. This ensures
that UI and other software components are pre-loaded. All subsequent accesses to
these pages will be faster compared to the first time they are accessed.

10.15 Use Oracle Enterprise Manager to Change Configurations
When you edit the configuration of Oracle9iAS components, Oracle HTTP Server,
OC4J, or OPMN, you should do so via the Oracle Enterprise Manager Web site.
Oracle Enterprise Manager will ensure that your configuration changes are properly
updated in the repository. If you edit these configuration files manually, you must
use the DCM command-line utility (dcmctl) to notify the DCM repository of the
changes.

Use Oracle Enterprise Manager to Change Configurations

10-8 Best Practices

Installation Best Practices 11-1

11
Installation Best Practices

This chapter describes installation best practices. It features the following sections:

� General Installation Best Practices

� Hosting Installation Best Practices

General Installation Best Practices

11-2 Best Practices

11.1 General Installation Best Practices
This section describes general installation best practices. It features the following
topics:

� Understand the Various Configuration Tools Available with Oracle9iAS

� Try Standard Demos and Associated Applications Before Running Your
Applications

� Turn Off Unused Services to Reduce Oracle9iAS Memory Requirement

� Check Metalink Regularly for Updates to Keep Your Installation Current

� Periodically Check the Log Files for Restarts/Errors That Are Masked by Auto
Restart Capability

� System Administrator and Oracle9iAS Administrator Should Be Different

� Use the Appropriate Administration User Accounts

� Install All Mid-Tiers on Multiple Smaller Machines, the Infrastructure on
Clustered Larger Machines

� For a 3-Tier Environment, Install the Infrastructure Instance Twice and
Configure Each Tier Differently

� Recommendation for Installing Oracle9iAS Portal

11.1.1 Understand the Various Configuration Tools Available with Oracle9iAS
The appendices of your Oracle9i Application Server Installation Guide Release2 (9.0.3)
provide detailed documentation of the Oracle9iAS Configuration Assistants.
Different installations will use different configuration assistants depending on
configuration options. For more information, also look at the “Troubleshooting”
appendix in these guides.

11.1.2 Try Standard Demos and Associated Applications Before Running Your
Applications

This helps segregate the installation time problems from the application problems
clearly. Additionally, these demos may be a good way to verify your setup on an
ongoing basis before debugging application specific issues.

General Installation Best Practices

Installation Best Practices 11-3

11.1.3 Turn Off Unused Services to Reduce Oracle9iAS Memory Requirement
Oracle9iAS supports a wide variety of applications and services. However, your
particular deployment or use may not need all of them. Hence, it is a good idea to
turn off the unused services. This reduces the memory requirement of Oracle9iAS
and is a recommended security best practice.

11.1.4 Check Metalink Regularly for Updates to Keep Your Installation Current
Oracle Metalink contains a wealth of support related information and also includes
the patches that may be released from time to time. These updates will ensure that
you do not run into the same issues that Oracle may have already resolved. While
there is benefit to not perturbing a working system and thus, some inertia in
updating with the latest patches, at the least, security patches should be applied
immediately. Another good source of information is the installation FAQ on Oracle
Technology Network.

11.1.5 Periodically Check the Log Files for Restarts/Errors That Are Masked by Auto
Restart Capability

With Release 2, Oracle9iAS includes improved fault monitoring and recovery
capabilities. The monitoring processes automatically restart a failed component.
This capability is extremely useful for high availability. However, it could mask the
application failures that should be looked at and fixed. Hence, it is an important
practice to periodically scan for these auto-restart logs within the log file.

11.1.6 System Administrator and Oracle9iAS Administrator Should Be Different
In most deployment scenarios, the operating system and hardware are managed by
different teams. Since almost all tasks associated with Oracle9iAS installation and
configuration can be performed by a user account without acquiring a systems 'root'
privileges, it is required to have a separate account to install and configure
Oracle9iAS.

Moreover, as you look ahead to install multiple instances of Oracle9iAS on the same
machine, it is prudent to have a separate user for each. This further makes it easier
to segregate errors and delegate management for each instance to a different user
ID. Ensure that the second or subsequent install users have privileges to write to
targets.xml file in the first installation. (Note: The Oracle Enterprise Manager
user is per node. Thus, having different system users (for example, on UNIX) does
not help the cause of having different users manage the different instances over the
web. This feature is targeted for a future release.)

General Installation Best Practices

11-4 Best Practices

11.1.7 Use the Appropriate Administration User Accounts
As the number of installations in an environment grows, it is important to either use
similar user names on different machines or, have an algorithm to determine the
same. Moreover, each instance has a number of user accounts required by
Oracle9iAS itself, such as orcladmin, ias_admin, portal admin, sso admin, web
cache admin, etc. (refer to the Oracle9i Application Server Administrator’s Guide for
details of these accounts). Hence, it is a good idea to have an internal matrix
covering these different user types.

11.1.8 Install All Mid-Tiers on Multiple Smaller Machines, the Infrastructure on
Clustered Larger Machines

Oracle9iAS mid-tier supports clustering smaller machines into a larger unit. While
these machines can coordinate process state and routing information with each
other, an individual machine is self-sufficient in processing the requests routed to it.
It has no physical dependency on other mid-tier machines. Thus, several of these
machines can effectively be used to satisfy a larger number of requests providing a
better alternative to more expensive hardware clustering.

On the other hand, the infrastructure installation contains the repository - physical
data store that has to be shared across several mid-tier instances. This metadata
service needs to present the same data to all mid-tier instances and needs to be up
all the time. Hence, it is recommended that the infrastructure installation be carried
out on a hardware cluster (for example, Sun cluster, HP Service Guard).

11.1.9 For a 3-Tier Environment, Install the Infrastructure Instance Twice and
Configure Each Tier Differently

Most security policies will prevent the Oracle9iAS metadata service and repository
from being implemented in the DMZ in a 3-tier installation: Web server, J2EE tier,
and data store. However, Oracle9iAS Infrastructure includes a security service for
single-sign on that has to be accessible from the external world.

Hence, we recommend that you install Oracle9iAS Infrastructure both behind the
firewall and in the DMZ. Only the security service will need to be configured in the
DMZ layer, while only the metadata repository Oracle Internet Directory needs to
be configured in the layer behind the DMZ. This setup requires some manual steps
since, by default, the management console assumes both are deployed on the same
Infrastructure instance.

General Installation Best Practices

Installation Best Practices 11-5

11.1.10 Recommendation for Installing Oracle9iAS Portal
When installing Oracle9iAS Portal through the Portal and Wireless or Business
Intelligence and Forms install types, Oracle9iAS Web Cache is installed and
configured. If you do not use an Oracle9iAS Infrastructure for your Oracle9iAS
Portal metadata and use another existing database, then de-select Oracle9iAS Portal
during the installation process. After installation, launch the Oracle9iAS Portal
Configuration Assistant. Instructions for doing this are in the Oracle9iAS Portal
Configuration Guide.

Hosting Installation Best Practices

11-6 Best Practices

11.2 Hosting Installation Best Practices
This section describes hosting installation best practices. It includes the following
topics:

� Install as Different Users When Installing Multiple Instances on the Same
Machine

� Share the Same Security Service Across Multiple Installations But Split the
Metadata Service

� Recommendations for Having Large Number of Groups Run the Applications
on a Given Instance

11.2.1 Install as Different Users When Installing Multiple Instances on the Same
Machine

While this is a relevant installation practice, it is particularly important in a hosting
environment. Doing so lets you provide the hosting customers (who “own” this
installation) to access their log files or deploy their own applications. You can
always prevent the configuration files from being edited by making them read-only.

11.2.2 Share the Same Security Service Across Multiple Installations But Split the
Metadata Service

In most hosting environments, enterprises provide similar capabilities of certain
applications to both their intranet and Internet users. This requires some
consolidation of services that can be shared to reduce the workload. Security service
is one such example. The different deployments can all point to the common single
sign-on security service, thus avoiding the need to maintain distinct or similar user
IDs in the different security services. Hence, an intranet user may log into the
Internet system by using the same username/password although this user’s
privileges for the application is governed by the Internet application metadata.

Hosting Installation Best Practices

Installation Best Practices 11-7

11.2.3 Recommendations for Having Large Number of Groups Run the Applications
on a Given Instance

Most large enterprises have a separate organization providing the application
server runtime environment as a service to individual organizations in the
enterprise. The latter in turn own the applications running on top of the
environment.

In this scenario, multiple application server instances can be installed and provided
to each target group. However, this increases the maintenance overhead and should
be avoided unless security or resources sharing is of paramount concern (as is the
case for an external ASP). The concerns here are:

� One organization’s bad application should not take down the servers hosting
other divisions’ applications.

� Each division should be able to control its applications.

Oracle recommends that you have several independent OC4J instances within an
Oracle9iAS instance and dedicate each instance to an organization. Depending on
the organization's needs, the number of processes within the OC4J instance can be
varied. Since the J2EE configuration is OC4J instance specific, this gives a fair
amount of leeway to each organization for their applications.

Hosting Installation Best Practices

11-8 Best Practices

Deployment Best Practices 12-1

12
Deployment Best Practices

This chapter describes deployment best practices. The topics include:

� Deployment Architecture Options

� General Deployment Best Practices

� Oracle Internet Directory Deployment Best Practices

12.1 Deployment Architecture Options
The Oracle9iAS J2EE and Web Cache install type provides several choices for
deployment. These are different and there are trade-offs. Thus, there is no single
recommended way to deploy the components.

This section covers a few deployment architectures. It is not possible to cover all
possible scenarios, but the discussion associated with each architecture will allow
you to create a deployment architecture best suited to your environment.

This section contains the following topics:

� Deploying Oracle9iAS as Independent Instances

� Deploying Oracle9iAS Instances with Oracle9iAS Web Cache Cluster

� Use Standard Oracle9iAS Clusters

� Separate OC4J and Oracle HTTP Server Clusters

Deployment Architecture Options

12-2 Best Practices

12.1.1 Deploying Oracle9iAS as Independent Instances
This is the most common deployment scenario and has the least setup overhead.

It is also the only available option for Oracle9iAS instances based on install types
other than J2EE.

Figure 12–1 Independent Oracle9iAS Instances Sharing an Infrastructure

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

Firewall 2

Database

Oracle
HTTP
Server

Firewall 1

Load Balancer

Client

Oracle9iAS
Web Cache

Oracle
HTTP
Server

Oracle9iAS
Web Cache

Oracle
HTTP
Server

Oracle9iAS
Web Cache

Deployment Architecture Options

Deployment Best Practices 12-3

In this scenario, independent Oracle9iAS instances are installed on independent
(identical) machines. These installations share the same infrastructure database.
These multiple installs are glued together with a (fault tolerant) load balancer in the
front, which routes the request to the different back-end servers on a round robin
basis. Sticky session based routing will be required on the load balancer.

The biggest benefit of this approach is that everything works out-of-the-box, and
the only task is application deployment on the back-end machines. The load
balancer provides balancing across machines, the Oracle9iAS Web Cache on each
Oracle9iAS instance provides the basic caching for each instance, and the Oracle
HTTP Server load balancing component (mod_oc4j) provides load balancing across
the individual OC4J processes on each machine.

There are few drawbacks, such as:

� The Web caches are not clustered, and do not benefit from the data cached by
other caches.

� OC4J processes between machines do not replicate state. Thus, the HTTP
conversational state is lost on a machine failure.

� A J2EE application has to be deployed (or other configuration changes have to
be made) on each instance – as opposed to doing it once and propagating it
across the cluster.

However, this option is attractive due to its simplicity. And if you practice state-safe
programming as recommended in this document, some of the drawbacks become
even less relevant.

You can however do some non-standard manual tweaks to remove this restriction,
as documented in the mod_oc4j Technical Overview paper at:

http://technet.oracle.com/products/ias/ohs/collateral/r2/mod_oc4j_wp.pdf.

Deployment Architecture Options

12-4 Best Practices

12.1.2 Deploying Oracle9iAS Instances with Oracle9iAS Web Cache Cluster
Let us say you have the earlier deployment architecture working right, and now
you want to gain the benefits of Oracle9iAS Web Cache clustering and/or introduce
an additional security zone.

Deployment Architecture Options

Deployment Best Practices 12-5

Figure 12–2 Separate Oracle9iAS Web Cache Instances

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

Oracle
HTTP
Server

Oracle
HTTP
Server

Oracle
HTTP
Server

Firewall 1

Firewall 2

Oracle9iAS
Web Cache

Oracle9iAS
Web Cache

Load Balancer

Client

Firewall 3

Database

Deployment Architecture Options

12-6 Best Practices

The architecture shown in Figure 12–2 allows that. You just need to shutdown the
Oracle9iAS Web Cache service on the individual instances on the back-end
machines, and move those instances onto separate suitable machines. These could
then be clustered, so that the different Oracle9iAS Web Cache instances can provide
added fault tolerance and scalability, along with the ease of configuration.

The load balancer and the Oracle9iAS Web Cache instances have been moved into a
security zone of their own: providing added security check before the backend
systems (Oracle HTTP Server and OC4J) can be reached. This architecture is shown
in Figure 12–3.

Deployment Architecture Options

Deployment Best Practices 12-7

Figure 12–3 Separate Instances Without Load Balancer

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

Oracle
HTTP
Server

Oracle
HTTP
Server

Oracle
HTTP
Server

Firewall 2

sql*net sql*net

Firewall 1

Oracle9iAS
Web Cache

Oracle9iAS
Web Cache

Client

Firewall 3

Database

Deployment Architecture Options

12-8 Best Practices

Another variation, as shown above is the removal of load balancer, and using a
single Oracle9iAS Web Cache instance to balance across the multiple back-end
origin servers. This is a cost-effective option since it does not require an expensive
load balancer in front. However, although it violates one of the best practices
discussed in the Oracle9iAS Web Cache chapter.

Deployment Architecture Options

Deployment Best Practices 12-9

12.1.3 Use Standard Oracle9iAS Clusters
Oracle9iAS Release 2 introduces powerful clustering technology, that allows for
session replication across OC4J instances, dynamic restarts, cluster-wide
configuration updates, etc.

Deployment Architecture Options

12-10 Best Practices

Figure 12–4 OC4J and Oracle HTTP Server Clusters

OC4J
OC4J

OC4J

OC4J

OC4J
OC4J

OC4J
OC4J

OC4J

Oracle
HTTP
Server

Oracle
HTTP
Server

Oracle
HTTP
Server

Firewall 2

sql*net

OC4J OC4J

Firewall 3

Database

Firewall 1

Oracle9iAS
Web Cache

Oracle9iAS
Web Cache

Load Balancer

Client

Deployment Architecture Options

Deployment Best Practices 12-11

In Figure 12–4 above, the previous architecture was modified such that all the
Oracle HTTP Server and OC4J are clustered together. Within this cluster, you can
select groups of OC4J processes (instances) to be part of the same island so that they
can provide failover for each other.

It is recommended that this island size be 2 to 3 which is much smaller than the
overall cluster size. It reduces the session replication overhead. This scenario
provides better fault tolerance than any of the earlier scenarios and is the best
option of all recommendations, especially for J2EE and Web Cache deployments.

Deployment Architecture Options

12-12 Best Practices

12.1.4 Separate OC4J and Oracle HTTP Server Clusters
Sometimes it is desirable to separate Oracle HTTP Server from OC4J (the
application server component) into different security zones. This scenario is shown
in the following Figure 12–5.

Figure 12–5 OC4J and Oracle HTTP Server Separate Clusters

OC4JOC4J
OC4J

OC4J

OC4J
OC4J

OC4J
OC4J

OC4J
OC4J

OC4J

Firewall 3

Database

Oracle
HTTP
Server

Oracle
HTTP
Server

Oracle
HTTP
Server

Firewall 1

Firewall 2

sql*netsql*net

OC4J OC4J

sql*net

Oracle9iAS
Web Cache

Client

General Deployment Best Practices

Deployment Best Practices 12-13

It contains two clusters: a cluster containing only Oracle HTTP Server instances and
a cluster containing only OC4J components.

If desired, Oracle9iAS Web Cache can also be clustered, but that will necessitate a
load balancer in front of the Web cache servers.

This scenario requires a fair amount of hand modifying configuration files, so that
the two clusters (Oracle HTTP Server and OC4J) can communicate with each other.
Moreover, it also requires opening of sql*net and LDAP ports on FW-2, in addition
to FW-3.

This scenario also does not benefit from the distributed deployment due to the
required manual edits.

These drawbacks make this option less appealing – simply to move Oracle HTTP
Server out into its own security zone. Hence, we recommend the architecture shown
in Figure 12–4 as the preferred method.

12.2 General Deployment Best Practices
This section describes general deployment best practices. It contains the following
topics:

� Deploy/Re-Deploy Applications During Low Traffic

� Use Identical Machines

� Rolling Upgrades - Form a New Cluster for Major Upgrades

� Use Network Level Load Balancer for Increase Scalability/Availability

12.2.1 Deploy/Re-Deploy Applications During Low Traffic
Oracle9iAS supports applications to be deployed on a production system without
taking the system down.

However, some applications (e.g. EJB-based EAR files) may put additional load on
the production system by requiring compilations, JAR file updates, and Web server
restarts. While this doesn’t result in any lost requests directly, it does introduce
some additional load on the system.

Hence, it is a good practice to avoid deploying during high traffic periods.

General Deployment Best Practices

12-14 Best Practices

12.2.2 Use Identical Machines
Oracle9iAS clustering allows the ability to mix-and-match different hardware in the
same cluster. While this may be attractive and allow for some innovative solutions,
it makes overall manageability and operations harder. Hence, it should be avoided.

Having identical hardware allows for ease of stocking spare parts, better
reproducibility of problems (both software and hardware), and reduces the
per-platform testing cost. This cost, in many cases, will surpass the savings from
re-using existing disparate hardware.

General Deployment Best Practices

Deployment Best Practices 12-15

12.2.3 Rolling Upgrades - Form a New Cluster for Major Upgrades
Oracle9iAS with its distributed configuration management capability makes it easy
for several machines in the cluster to have the same configuration.

However, there is a performance and possible downtime cost associated with
deploying applications to a cluster. To reduce the impact of this, starting a new
cluster is recommended in the following scenarios:

� If your cluster size is big.

� If you are going to be deploying quite a few applications.

� If you are making quite a few configuration changes.

Specifically, the recommendation is:

1. Remove one node from the existing cluster.

2. Make the changes (deploy applications, configuration changes, etc.) on this
node.

3. Start a new cluster Oracle9iAS Web Cache– say new-Production – with just this
node as the member.

4. Now remove nodes from the Production cluster one by one and add them to the
new-Production cluster. Removing a node from a cluster does not cause any
significant performance impact. The node will see performance degradation
(multiple deployments, configuration changes etc.) only when it is joining the
new cluster. However, since it is not receiving requests the overload will not
impact production.

5. Once the new-Production reaches sufficient membership, swap the two clusters
(by either changing the Web cache or external load balancer configuration) to
point to the new-Production machines.

This practice allows you to make major changes to the system without impacting all
machines in the cluster at once. It also results in changes being applied more
reliably.

General Deployment Best Practices

12-16 Best Practices

12.2.4 Use Network Level Load Balancer for Increase Scalability/Availability
Load balancers like Cisco’s CSS 11000 and F5’s BigIP can quickly detect and route
around failed mid-tier servers. For greatest failure isolation, each server should be
an independent computer, although if the availability of the computer and its
operating system is very high, multiple servers may run on the same computer.
Load balancers can also quiescence and take a mid-tier server off-line, so that it can
be restarted or reconfigured without having to handle incoming requests at the
same time.

Ideally, N+2 mid-tier machines should be used, where N is the number of mid-tier
computers needed to serve peak load. One extra computer is a ready-to-go spare,
should one of the N fail. The other extra computer hosts a server that is off-line for
restart or maintenance.

Load balancers have failover configurations to prevent themselves from becoming
single points of failure.

Load balancers can also be used to balance traffic across multiple firewall
computers for scalability and availability. This can be a complex and expensive
option, because you must have a load balancer in each security zone. Most
commercial firewalls have a failover solution that does not require use of a load
balancer, so unless scalability is a concern, use the availability solution
recommended by the firewall vendor.

Oracle Internet Directory Deployment Best Practices

Deployment Best Practices 12-17

12.3 Oracle Internet Directory Deployment Best Practices
This section describes the Oracle Internet Directory deployment best practices. It
includes the following topics:

� Use Utility for Bulk Loading Data to Oracle Internet Directory

� Replicate Oracle Internet Directory for High Availability

� Use SSL Binding for Better Security

� Use the Appropriate Backup and Restore Utilities

� Recommendations for Audting and Monitoring Oracle Internet Directory

� Assign Correct Oracle Internet Directory Privileges for Oracle9iAS Installation

� Change Access Control Policies to Better Administer Users

� Best Practice for Oracle Internet DirectoryOracle Internet Directory Password
Policy

� Best Practice for Directory Integration Platform in Third Party Directory
Environments

� Recommendations for Migrating Oracle9iAS Application to Existing Oracle
Internet Directory

� Recommendation for Moving Oracle9iAS Applications From Test to Production
Oracle Internet Directory

12.3.1 Use Utility for Bulk Loading Data to Oracle Internet Directory
There is a bulkload utility ($ORACLE_HOME/ldap/bin/bulkload.sh) that can be
used for loading large amounts of data, for example, from existing third party
directories. The utility also has a schema check option, to avoid difficult to trace
errors. For smaller amounts of data (less than 10,000 entries), use the ldapadd
utility as it is adequate for the job. If bulkload utility is not used, you should execute
$ORACLE_HOME/ldap/admin/oidstats.sh to collect database statistics so that
the LDAP search operations perform optimally.

The bulkload utility takes a ldif file as input data file. When generating these files
from third party directories, you will have to scrub out some of the operational
attributes as these are generated by Oracle Internet Directory during bulkload.
However, if the input ldif file is from another Oracle Internet Directory instance,
then you must use the restore option in bulkload.sh to preserve these operational
attributes as-is during bulkload.

Oracle Internet Directory Deployment Best Practices

12-18 Best Practices

12.3.2 Replicate Oracle Internet Directory for High Availability
To hide multiple Oracle Internet Directory nodes from client applications, a BIG-IP
or similar device can be used to load balance or provide a single IP and port to the
client applications. If a replicated node goes down, the client applications do not see
the failure, because the BIG-IP device re-routes requests transparently.

Additionally, each Oracle Internet Directory node can run on Oracle9i Real
Application Clusters (RAC). This further improves availability regardless of
whether a BIG-IP set up is used or not. The RAC instances provide increased
database and data availability while presenting the same data via a shared disk
mechanism.

Other high availability solutions deployable with Oracle Internet Directory are
hardware cluster failover and Oracle Data Guard.

12.3.3 Use SSL Binding for Better Security
SSL is considered de facto Internet standard protocol for highly secure
transportation of data. In addition to the strong PKI authentication using digital
certificates, SSL also provides multiple data integrity and data encryption layers to
protect your communication channels. SSL provides multiple cipher suites with
varieties of encryption algorithms for many security levels.

Oracle Internet Directory supports 3 SSL authentication modes:

1. Confidentiality mode (no-authentication mode)

In this mode, SSL cipher suites use the Diffie-Hellman algorithm to generate a
session key for client or server at run time. The session key will be used to
encrypt the communication channel. No server or user SSL wallet is necessary.
In SSL no authentication mode, the channel will be encrypted using a
Diffie-Hellman key.

2. Server Authentication only mode

This mode essentially uses certificates for authentication. The client needs to
verify the server certificate. This mode is most commonly used in the Internet
environment since any client that needs to talk to a SSL server does not require
a certificate. A client can use its user/password to authenticate itself to the
server. The username and password are protected by SSL encryption when
being transferred on the wire.

Oracle Internet Directory Deployment Best Practices

Deployment Best Practices 12-19

3. Server and Client Authentication mode (Mutual authentication)

In this mode, both client and server use RSA certificates to authenticate each
other. First, the client authenticates the server by validating its certificate. In
return, the server also requires the client to send its certificate to prove its
authenticity.

In addition to choosing an authentication mode, one should choose appropriate
security algorithms. Following are the strong security algorithms supported in
Oracle Internet Directory:

� Data integrity algorithm: SHA1

� Data privacy (encryption) algorithms: 3DES, and RC4 –128 bit encryption
algorithms

12.3.4 Use the Appropriate Backup and Restore Utilities
Oracle Internet Directory supports two backup and restore mechanisms for this:
database export import based mechanism, and LdifWriter and bulkloader based
mechanisms.

The former is faster, but it is not flexible - you have to backup/restore the entire
directory, and this cannot be done incrementally. The latter utilities, LdifWriter and
bulkloader provide more control to restore/backup subsets of the directory.
However, they are slower and require more manual steps.

Hence the recommendation is to use the database-based utility when doing a
complete backup-restore, and use the other utilities when you intend to backup and
restore a subset of the directory.

No matter which mechanism is used, make sure the backup-restore is used for the
same versions. For migration purposes - to a different version of Oracle Internet
Directory - ensure you follow the appropriate instructions before bulkloading or
restoring the directory data.

Oracle Internet Directory Deployment Best Practices

12-20 Best Practices

12.3.5 Recommendations for Audting and Monitoring Oracle Internet Directory
You can monitor and audit Oracle Internet Directory in one of three ways:

1. EM's LDAP page provides a very simple way to monitor the LDAP service and
determine if it is up and running and its associated load.

2. You can also check the log files of various LDAP processes to ensure there are
no spurious errors showing up.

3. LDAP audit log service provides more granular information such as security
violation information or sensitive events. The audit log can be further
customized to specific directory operations and events.

Oracle recommends that you perform, at the very least, a weekly review of the
audit and error logs. System administrators can do a more regular review via the
EM health check to provide better availability.

12.3.6 Assign Correct Oracle Internet Directory Privileges for Oracle9iAS Installation
While it is possible to install Oracle9iAS as an Oracle Internet Directory super user,
we highly recommend that this not be done as it provides the user installing
Oracle9iAS more privileges than required.

To install Oracle9iAS, a user needs to be a member of Oracle9iAS Administrator’s
group and should also be an owner of that group.

While installing Oracle9iAS, the directory administrator should add the installation
user as a member and owner of the Administrator’s group, and then remove
him/her as the owner once the installation has completed so that the user does not
have privileges to perform any more installations.

12.3.7 Change Access Control Policies to Better Administer Users
By default, Oracle Internet Directory is installed with the following privileges for
the Oracle Internet Directory administrator: create new users, delete existing users,
and modify user attributes.

The access control setup on a user’s container specifies the default access control
policies regarding user administration. Oracle Internet Directory administrators
should change the default access control policies to better control user
administration as per required.

Oracle Internet Directory Deployment Best Practices

Deployment Best Practices 12-21

12.3.8 Best Practice for Oracle Internet DirectoryOracle Internet Directory Password
Policy

Oracle Internet Directory supports both password value policies and state policies.
The password policies can be enforced on a per-subscriber basis in a hosted
environment. If a given subscriber does not have any applicable policy, the policy
under the root Oracle context will be applied to that subscriber.

The value policies are: password minimum length, minimum number of numeric
characters, disallow the use of current password as new password, and disallow the
use of common words and attribute values as passwords.

The state policies supported are: password expiration, account lockout, expiration
warning, and grace logins.

The best practice password policy is to have a password minimum length of 5
characters with at least one numeric character. Also, it is recommended to have a
password expiration duration of 60 days and lock user accounts after 10 consecutive
login failures. The user account must stay locked for a duration of 24 hours.
Additionally, users must be sent password expiration warnings at least 3 days prior
to expiration and should be allowed a maximum of only three grace logins after
their passwords have expired.

12.3.9 Best Practice for Directory Integration Platform in Third Party Directory
Environments

This section features the following topics:

� Identity Provisioning

� Synchronization Configuration

� Oracle HR Synchronization

Oracle Internet Directory Deployment Best Practices

12-22 Best Practices

12.3.9.1 Identity Provisioning
Directory Integration Platform (DIP) should be used to build connectivity between
Oracle Internet Directory and third party directories so that other Oracle products
can seamlessly work in presence of third party directories in the enterprise and can
also share the same identities with other directories.

The different identities for the same enterprise user from multiple LDAP directories
can be joined/unified into a single global identity in Oracle Internet Directory using
DIP, which would facilitate a true single sign-on environment in an enterprise using
Oracle Internet Directory/Oracle9iAS Single Sign-On.

Oracle Internet Directory supports representation of multiple applications and
multiple subscribers (administration Contexts) in the Oracle Internet Directory DIT.
Various enterprise applications can be provisioned for a single or multiple
subscriber(s). There are automated tools to create new Subscribers (administrative
Contexts) and to provision applications for various subscribers. These tools setup
the various levels of access required by the application to manage the Subscriber.

Data from third party directories should be synchronized with Oracle Internet
Directory into the appropriate subscriber (administrative context) area so that
identity management and group management required by all enterprise
applications can be done without any extra overhead.

12.3.9.2 Synchronization Configuration
The scheduling interval of the profiles, which decides the frequency of
synchronization, should be set to a value based on the enterprise policy in
supporting new users in different environments.

If only selective containers within a domain need to be synchronized, then it will be
better to specify the selective container names in the domain mapping rules rather
than specifying that top level domain name.

The number of attributes to be synchronized needs to be decided based on the
purpose of synchronization. It’s better to specify the minimal set of attributes to
have a minimal network and system loads. If the main purpose is to enable the
users for using applications such as Oracle9iAS Portal, a minimal set of attributes
containing the essential user information to be displayed in DAS should be
configured for synchronization.

A synchronization Profile has to be DISABLED before altering any STATUS
attributes through the ODM. After the change, it needs to be ENABLED once again.

Oracle Internet Directory Deployment Best Practices

Deployment Best Practices 12-23

12.3.9.3 Oracle HR Synchronization
Since the “Last Successful Execution Time” is used to fetch changes from the Oracle
HR Database, to get the entire user population, this attribute should be set to some
old date. Then the profile needs to be ENABLED.

It is a good idea to synchronize user data from the HR database to the public users
container in the subscriber area in the Oracle Internet Directory DIT. This way, all
the users are immediately accessible to the Oracle9iAS Single Sign-On and DAS.

The User Nickname Attribute should be synchronized from the Oracle HR Database
or derived from some other attribute (by mapping) which is unique in the HR
database in order to uniquely identity a user to Oracle9iAS Single Sign-On.

Since the HR Synchronization Profile needs privilege to read write the public users
area under the subscriber, the HR profile DN should be added to the
DASCreateUserGroup, DASEditUserGroup, DASDeleteUserGroup groups for
that subscriber.

Oracle Internet Directory Deployment Best Practices

12-24 Best Practices

12.3.10 Recommendations for Migrating Oracle9iAS Application to Existing Oracle
Internet Directory

Oracle9iAS provides an Oracle Internet Directory instance as part of its
infrastructure installation. However, some organizations may already have an
existing Oracle Internet Directory installation that houses corporate data or they
may have been running the previous versions of Oracle9iAS that already have some
of the information duplicated. In this case, if it is desired that Oracle9iAS should
point to the different Oracle Internet Directory, the following should be adhered to:

1. Before starting the upgrade process, the user keys in the older repository must
be made consistent with the keys used to identify users in Oracle Internet
Directory. This will enable the upgrade process to correlate the private keys
with those present in the production Oracle Internet Directory system.

2. The upgrade process will install a private infrastructure (including a private
Oracle Internet Directory) against which the component can be validated before
switching to the production version of Oracle Internet Directory in the
deployment.

3. Once the upgrade is completed, the upgraded component should be verified for
correctness.

4. Once the verification is complete, migrate applications from using the private
Oracle Internet Directory to the production Oracle Internet Directory.

In case the corporate directory is replicated, some special steps need to be taken by
administrators to create a test replica of the production Oracle Internet Directory.
Then, migrate and verify the components against the test replica before switching to
use the production Oracle Internet Directory.

Oracle Internet Directory Deployment Best Practices

Deployment Best Practices 12-25

12.3.11 Recommendation for Moving Oracle9iAS Applications From Test to
Production Oracle Internet Directory

Like the upgrade case, the presence of a corporate directory in a deployment
influences the process by which the deployment can roll out new services using
Oracle9iAS. The following steps should be considered when deploying an
Oracle9iAS component that uses Oracle Internet Directory:

1. The install process will install a private infrastructure against which the
component can be validated before switching to the production version of
Oracle Internet Directory in the deployment.

2. Once the install is completed, the component should be verified for correctness.

3. Once the verification is complete, migrate the application from using the private
Oracle Internet Directory to the production Oracle Internet Directory. In case
the corporate directory is replicated, some special steps need to be taken by
administrators to create a test replica of the production Oracle Internet
Directory. Then, install and verify the components against the test replica before
switching to the production Oracle Internet Directory.

Oracle Internet Directory Deployment Best Practices

12-26 Best Practices

Miscellaneous Best Practices 13-1

13
Miscellaneous Best Practices

This chapter describes miscellaneous best practices. It features the following
sections:

� Simulate Failures and Compute Availability Impact

� Pooling and Sharing

� Perform Incremental Performance Evaluation During the Development Cycle

� Run Your Performance Test on Systems That Will Simulate Your Production
Environment

� Understand How to Configure Your Test Driver and Analyze the Result

� Assign Someone Who is Experienced in Running and Analyzing Performance
Tests

� Document All Recovery and Repair Procedures, and Practice Them Regularly

� Use Available Tools to Monitor Site Load and Status

� Rolling Period Restarts Avoid Unexpected Errors

� Stock Spares and Have a Backup Schedule

Simulate Failures and Compute Availability Impact

13-2 Best Practices

13.1 Simulate Failures and Compute Availability Impact
For this exercise, adopt a pessimistic, Murphy’s Law attitude: if it can break, it will!
Power off server machines, routers, load balancers, and firewalls. Unplug network
cables. Unplug disk drives.

For each failure, does fail over occur automatically? How long does it take a system
administrator to locate the failure? Ideally, a management framework will issue
specific alerts targeting the failed component until it is repaired. After a real failure,
be sure to order replacement parts promptly.

Finally, what is the impact of repair? Are components hot-pluggable so that the
repair can be effected without shutting down other components? Repair,
reconfiguration, or just adding a new server to a cluster to increase capacity can be
major sources of downtime. Note that if components are not hot-pluggable, you
should be careful not to cause real failures when unplugging components for this
exercise.

Having experienced a simulated failure in training can greatly decrease the risk of a
bad problem being made worse by inexperienced operations staff under pressure.

Perform Incremental Performance Evaluation During the Development Cycle

Miscellaneous Best Practices 13-3

13.2 Pooling and Sharing
Constant creation and destruction of resource objects can be very expensive in Java.
Having a resource pool for such resources to be shared across clients can have
significant performance & scalability gains:

� Shared resources are used by multiple clients at the same time (parallel re-use),
for example: read-only query results from the database

� Pooled resources are used by one client at a time (serial re-use), for example:
JDBC connection pools, stateless Session Beans, and servlets/JSPs.

Following are some objects that can either be cached / shared / pooled:

� BP-JDBC connections and statements can be pooled and used across client
requests.

� Results of expensive queries can be pooled. Read-only queries can even be
shared concurrently too.

� Computed Java / XML objects can either be pooled or shared depending upon
their statefulness.

� Parsed XML files and XSL stylesheets.

� Output of HTTP requests in Oracle9iAS Web Cache, Akamai cache, Inktomi
cache, etc.

You should analyze your system to determine other domain objects that may meet
these criteria.

13.3 Perform Incremental Performance Evaluation During the
Development Cycle

Do not wait until the end of the project to do a test cycle. Performance tests should
be run regularly after each stage of development. New performance test suites
should be added as new features or functions are implemented. If possible, run
performance regression tests regularly to compare performance results.

Run Your Performance Test on Systems That Will Simulate Your Production Environment

13-4 Best Practices

13.4 Run Your Performance Test on Systems That Will Simulate Your
Production Environment

Developers commonly run their functional tests in single-user mode on their
workstation or their desktop, which usually has only one CPU. This setup rarely
represents the production environment, and it is not adequate for running
performance tests. If the application is intended to be used by a large number of
concurrent users running on multiple processors, simulate the production
environment with a representative workload to study the performance impact.

13.5 Understand How to Configure Your Test Driver and Analyze the
Result

Commercial drivers used to simulate HTTP requests can be very effective, but they
are often complicated to configure. Oracle has encountered situations where
customers set up their driver incorrectly, did not know how to interpret the results,
ended up drawing the wrong conclusions, and wasted valuable time in locating the
real problems.

13.6 Assign Someone Who is Experienced in Running and Analyzing
Performance Tests

Running performance tests is not a push-button job that can be delegated to an
inexperienced engineer. It requires someone who has knowledge and experience
with operating systems and databases, and who understands the application that is
to be analyzed.

Use Available Tools to Monitor Site Load and Status

Miscellaneous Best Practices 13-5

13.7 Document All Recovery and Repair Procedures, and Practice
Them Regularly

During a failure, operations staff will be under pressure. It may be difficult to think
clearly. It is not a good time to try a new, risky, or unfamiliar repair procedure.

Document the following:

� Backup files and archived log locations

� Diagnostic tool syntax

� Location of spare parts (disks, network cards)

� How to replace failed parts (what should be powered off/on, what racks,
chassis, or slots. hold what components

� what needs to be restarted

� contacts: supervisors, support personnel, other experts

Conduct periodic fire drills so when a real failure occurs, it will not be the first time
the staff has had to react under pressure. Try to simplify complex repair procedures
to minimize errors.

13.8 Use Available Tools to Monitor Site Load and Status
Oracle9iAS includes tools that provide good status updates without impacting the
production instance.

Some of these (for example dynamic monitoring service) are well integrated with
Oracle Enterprise Manager and provide graphic updates on the Oracle Enterprise
Manager console. Others (for example iHAT, Oracle9iAS Cluster Monitor tool) are
available as utilities on the Oracle Technology Network Web site.

Collectively, these tools provide with a means to monitor a production instance
while not requiring you to be physically on the machine. It is a good practice to use
these, in addition to other system level utilities or tools you may already have in
place.

Rolling Period Restarts Avoid Unexpected Errors

13-6 Best Practices

13.9 Rolling Period Restarts Avoid Unexpected Errors
It is generally a good practice to bounce servers periodically. This recovers slow
memory leaks, temporary disk space build-up, or other hidden problems that may
manifest themselves only after long durations. This is a simple way to avoid
unexpected failures.

Oracle9iAS makes it easy to follow this practice without requiring a client visible
system downtime. You should setup a cluster of servers and setup a staggered
reboot schedule for the individual servers.

When a process is down, Oracle9iAS automatically takes it out of its routing
structure. For http requests, this is ensured by Oracle9iAS Web Cache and for J2EE
requests this is ensured by mod_oc4j and the clustering components.

Thus, the end customer requests are never routed to the down machine and the
restart makes the system perform better! If restarting the machine is overkill,
another option is to just restart the Oracle9iAS instance. If even that is an overkill,
restarting individual OC4J instances is recommended, especially if you have
deployed unproven or new Java applications.

Stock Spares and Have a Backup Schedule

Miscellaneous Best Practices 13-7

13.10 Stock Spares and Have a Backup Schedule
Oracle9iAS provides easy commands to backup and restore configurations.
However, these need to be executed periodically to gain the benefits of these!
Moreover, in general Oracle9iAS will be one piece of a larger puzzle.

Hence, care should be taken that the backup and recovery operational schedule
support restoring the entire Web site. This includes brand-new computers, storage,
and network equipment with less than 24 hours combined downtime and data loss.
This backup and spare parts storage provides a last line of defense against the worst
failures, such as careless employees, botched upgrades, security break-ins, and
software bugs that corrupt stored data.

If a failure requiring restoration of the database from a backup happens once a year
and takes 24 hours to fix, then availability is 99.7%. It is possible to reduce the
database restore time to a few minutes, using a physical standby database. With this
scheme, the standby database is always in recovery mode, and its state lags the
primary database by some fixed period (for example, 15 minutes). When the
primary fails, applications switch to the standby. The hard part here is to detect the
failure, which could be a corrupt infrequently accessed disk block, accidentally run
batch job, or other non-obvious failure. It must be detected within the fixed period
lag, before it possibly gets propagated to the standby.

It is important to backup everything, including router, firewall, and load balancer
configuration, operating systems and their configuration, Oracle9iAS software and
its configuration. But the backend Oracle database should be where most of your
data is stored; it should receive the most attention.

Stock Spares and Have a Backup Schedule

13-8 Best Practices

Oracle9iAS Web Cache Best Practices Appendix A-1

A
Oracle9iAS Web Cache Best Practices

Appendix

This appendix contains lengthier discussions of Oracle9iAS Web Cache best
practices in the main sections of this document. It features the following topic:

� Use Partial Page Caching Where Possible

� Use <esi:inline> Tags for Existing Applications and <esi:include> Tags for New
Applications

� Reduce Invalidation Overhead

Use Partial Page Caching Where Possible

A-2 Best Practices

A.1 Use Partial Page Caching Where Possible
Personalization is common in dynamic content. There are at least three common
challenges when caching personalized content:

1. Many personalized pages cannot be cached for long or at all. Personalization
often creates pages that consist of fragments with different caching properties.
For example, a Portal page may include stock quotes that expire in 20 minutes,
news that expires in three hours, and rotating ad banners that should not be
cached. To serve consistent content, traditional full-page caches need to update
the entire page at the highest change frequency of all its fragments.

2. The customizable combination of fragments creates a vast number of unique
pages. Cache hit ratios will be low even if these unique pages are all cacheable.

3. Personalized information often appears in Web pages, making them unique for
each user. For example, many Web pages contain tens or hundreds of
hyperlinks embedding application session IDs.

To solve the first two challenges, Oracle9iAS Web Cache operates in a partial-page
model, in which each Web page can be divided into a template and multiple
fragments that can in turn be further divided into templates and lower level
fragments. Each fragment or template is stored and managed independently; a full
page is assembled from the underlying fragments upon request. Fragments can be
shared among different templates, so that common fragments are not duplicated to
waste precious cache space. Sharing can also greatly reduce the number of updates
required when fragments expire. Depending on the application, updating a
fragment can be cheaper than updating a full page. In addition, each template or
fragment may have its own unique caching policies such as expiration, validation,
and invalidation, so that each fragment in a full Web page can be cached as long as
possible, even when some fragments are not cached or are cached for a much
shorter period of time.

Oracle9iAS Web Cache uses ESI, to achieve flexible partial-page caching. ESI is a
simple markup language for partial-page caching. Applications can mark up HTTP
responses with two different kinds of tags, inline and include, that define the
fragment/template structure in the response.

To address the third challenge in caching personalized content, Oracle9iAS Web
Cache allows application developers to use variables in an ESI template. Because
variables can be resolved to different pieces of request information or response
information, the uniqueness of templates and fragments can be significantly
reduced when personal information abounds.

Use Partial Page Caching Where Possible

Oracle9iAS Web Cache Best Practices Appendix A-3

There are two kinds of ESI variables: request variables and response variables.
When an ESI template is assembled, a request variable is instantiated to a piece of
request information such as a query string parameter, a cookie, or an HTTP header.
For example, when a request for a dynamic page carries an application session ID in
a query string parameter, this page may contain many hyperlinks with ESI request
variables accessing this session ID, so that generated hyperlinks can carry the
session ID into the next clicked page.

A response variable is similar to a request variable, except that its value comes not
from the request, but from a special fragment called ESI environment. An ESI
environment is essentially a special type of fragment whose response defines a set
of variables that can be accessed by response variable occurrences in the enclosing
template. For example, a dynamic page with a calendar may need to present
personal appointments that cannot be stored in browser cookies due to cookie size
limits. The application can instead reference a “profile” environment fragment in
the template, and refer to all appointments in the environment without making
separate requests for each appointment. In addition, an environment may be used
to merge multiple small fragments into one environment by which each fragment
can be referenced through response variable instantiation. This reduces storage and
retrieval overhead similarly.

To encourage rapid adoption of ESI by Java developers, the creators of ESI have also
published the Edge Side Includes for Java (JESI) specification. JESI is actively
making its way through the Java Community Process standards body as JSR 128. As
a specification and custom JSP tag library that developers can use to automatically
generate ESI code, JESI facilitates the programming of Java Server Pages (JSPs)
using ESI. While developers can always use ESI tags directly within their JSP code,
JESI represents an easy way to express the modularity of JSPs and the caching of
those modules, without requiring developers to learn a new programming syntax.
JESI generates the appropriate ESI tags and headers in the JSP output that instruct
ESI processors, such as Oracle9iAS Web Cache, to cache (or not) templates and
fragments for the appropriate duration. JESI also facilitates the partial execution of
JSPs when an ESI processor requests fragments and templates. Both OracleJSP (part
of Oracle9iAS Containers for J2EE) and Oracle JDeveloper9i support the use of ESI
and JESI, and both currently ship with the JESI tag library.

See Also: � Oracle9iAS Web Cache Administration and Deployment
Guide

� Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference

� http://www.esi.org

Use <esi:inline> Tags for Existing Applications and <esi:include> Tags for New Applications

A-4 Best Practices

A.2 Use <esi:inline> Tags for Existing Applications and <esi:include>
Tags for New Applications

The <esi:inline> and <esi:include> tags enable applications to adopt ESI
page fragmentation and assembly.

Review the following sections:

� Using Inline for Non-Fetchable Fragmentation

� Using Include for Fetchable Fragmentation

A.2.1 Using Inline for Non-Fetchable Fragmentation
Most existing applications are only designed to output an entire Web page to HTTP
requests. These fragments and templates are non-fetchable, meaning they are not to
be fetched independently from the origin server. If a cache needs any of these
fragments or templates, the corresponding full Web page must be requested. To use
ESI page assembly for non-fetchable fragments, an application can output the
full-page response just as it does normally, with the exception that at the beginning
and the end of each fragment, an <esi:inline> tag is inserted with a fragment
name to demarcate the fragment. Oracle9iAS Web Cache stores the enclosed
portions as separate fragments and the original page as page templates without the
enclosed fragments. Fragments are shared if their names are identical.

When an application uses non-fetchable <esi:inline> fragments, the full page
must be requested for every cache miss. At first, it can appear that there is no
apparent cache benefit for cache misses. However, non-fetchable <esi:inline>
fragments improves overall caching by:

� Increasing the cache-hit ratio because shared cacheable fragments can be
extracted and stored only once, the size of the dynamic portion is reduced. A
reduced space requirement results in a higher cache hit ratio than full page
caching.

� Reducing cache update frequency Dynamic shared cacheable fragments require
only one update. For example, a shared stock market fragment may expire
much more frequently than any other parts of the page. With
<esi:inline>fragmentation, only one cache update of any full page
containing this fragment is enough to bring all full pages sharing this fragment
current. Therefore, even non-fetchable <esi:inline> fragments can
significantly reduce cache update frequency. The cost reduction is proportional
to the degree of sharing.

Use <esi:inline> Tags for Existing Applications and <esi:include> Tags for New Applications

Oracle9iAS Web Cache Best Practices Appendix A-5

<esi:inline> is primarily intended for pages with cacheable fragments. If a page
contains non-cacheable, non-fetchable fragments, then the use of <esi:inline> is
not recommended. However, the update of this full page may still offer benefit if it
contains some cacheable fragments that are shared with other pages.

A.2.2 Using Include for Fetchable Fragmentation
The <esi:include> tag is another way to define fragments and templates in an
HTTP output for dynamic content caching and assembly. It is in many ways similar
to the <esi:inline> tag. It defines a name for the defined fragment.

The page including an <esi:include> tag is a template that references the
defined fragment. However, it also has some key differences which makes its
applicable scenarios very different from those of <esi:inline>:

� An <esi:include> tag in a template only defines the reference to a fragment.

It does not enclose an embedded fragment directly in the template.

� A fragment referenced by an <esi:include> tag must always be
independently fetchable by HTTP or HTTPS.

The requested URL is the same as the fragment name. In contrast, an
<esi:inline> tag’s name only identifies the uniqueness of the fragment and is not
used to fetch the actual content. The attribute defining the fragment name in
<esi:include> fragment is src instead of name.

There are at least two scenarios where using <esi:include> tags is beneficial:

� Some applications, such as a Web portal, naturally assemble content from
external sources. The application only provides a template that is used to fetch
various fragments from third-party sources. In this case, the <esi:include>
tags fetch and assemble directly, reducing one layer of redundancy.

� Some applications offer faster responses for template-only or fragment-only
requests than full-page requests that use <esi:inline> tags. If <esi:include>
is used for page fragmentation and assembly, Oracle9iAS Web Cache can miss
only on the templates or fragments when most or all fragments are already
cached, saving effective cache miss cost. In many cases, it is also valuable to
cache the personalized templates because these seldom change.

Reduce Invalidation Overhead

A-6 Best Practices

A.3 Reduce Invalidation Overhead
When Oracle9iAS Web Cache receives an advanced invalidation request, it traverses
the contents of the cache to locate the objects to invalid. Depending on the structure
and number of objects cached, it can take time for Oracle9iAS Web Cache to invalid
content. Here are some ways you can expedite cache content traversal:

� Send basic invalidation requests for invalidating one object.

� Use substring matching for invalidating multiple objects in advanced
invalidations.

Also review the following sections:

� Send Basic Invalidation Requests for Invalidating One Object

� Use Substring Matching for Invalidating Multiple Objects in Advanced
Invalidations

A.3.1 Send Basic Invalidation Requests for Invalidating One Object
When you need to invalidate one object in the cache, send a basic rather than an
advanced invalidation request to avoid cache traversal.

To send a basic invalidation request, use the Basic Invalidation option in the
Content Invalidation page (Administration > Content Invalidation) in Oracle9iAS
Web Cache Manager or specify the BASICSELECTOR element in a manual
invalidation request.

For example, the following request invalidates a document exactly matching
/contacts/contacts.html using the BASICSELECTOR element:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM
"internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <BASICSELECTOR
URI="http://www.company.com:80/contacts/contacts.html"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

Advanced invalidation requests should be reserved for invalidation of multiple
objects.

Reduce Invalidation Overhead

Oracle9iAS Web Cache Best Practices Appendix A-7

To send an advanced invalidation request, use the Advanced Invalidation option in
the Content Invalidation page or specify the ADVANCEDSELECTOR element in a
manual invalidation request.

A.3.2 Use Substring Matching for Invalidating Multiple Objects in Advanced
Invalidations

When multiple objects share a common URL, request POST body, or an embedded
URL parameter, you can express the common elements in multiple ways:

� Common URL:

– Use the URL Regular Expression field in the Content Invalidation page.

– Use the URIEXP attribute of the ADVANCEDSELECTOR element.

– Use the ADVANCEDSELECTOR element’s OTHER element with a NAME
attribute value of URI.

� Common Request POST Body:

– Use the HTTP Method and POST Body Expression fields in the Content
Invalidation page

– Use the ADVANCEDSELECTOR element’s METHOD and BODYEXP attributes

– Use the ADVANCEDSELECTOR element’s OTHER element with a NAME
attribute value of BODY.

� Common Embedded URL Parameter:

– Use the ADVANCEDSELECTOR element’s OTHER element with a NAME
attribute value of QUERYSTRING_PARAMETER.

For the quickest invalidation, Oracle Corporation recommends using the OTHER
element to specify a substring for literal matching rather than regular expression for
pattern matching.

To send an advanced invalidation request with substring matching:

1. Specify the OTHER element in a manual invalidation request that uses the
ADVANCEDSELECTOR element.

2. Specify the NAME attribute to use a value of URI, BODY, or QUERYSTRING_
PARAMETER.

3. Specify the TYPE attribute to use a value of SUBSTRING.

Reduce Invalidation Overhead

A-8 Best Practices

For example, the following request searches for any documents underneath
http://wc-cluster.us.oracle.com:1100/pls/portal/!PORTAL.wwpro_
app_provider.execute_portlet/595897563/, that match the following
criteria:

� The HTTP request method is an HTTP POST request method

� The URI is showPortlet.Show

� The HTTP POST body contains _language=EN-US

� The HTTP requests headers are x-oracle-cache-user and
x-oracle-cache-subid

� The embedded URL parameters are _portlet_id and _provider_id

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM
"http://www.oracle.com/webcache/90200/WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR
URIPREFIX="/pls/portal/!PORTAL.wwpro_app_provider.execute_portl
et/595897563/"
HOST="wc-cluster.us.oracle.com:1100" METHOD="POST">
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING"
VALUE="_portlet_id=2"/>
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING"
VALUE="_provider_id=595897563"/>
 <HEADER NAME="x-oracle-cache-user" VALUE="PORTAL"/>
 <HEADER NAME="x-oracle-cache-subid" VALUE="1"/>
 <OTHER NAME="BODY" TYPE="SUBSTRING" VALUE="_language=EN-US"/>
 <OTHER NAME="URI" TYPE="SUBSTRING"
VALUE="showPortlet.Show"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="0"/>
 <INFO VALUE="Invalidate an old portlet based on portlet ID
and
provider ID"/>
 </OBJECT>
</INVALIDATION>

See Also: Oracle9iAS Web Cache Administration and Deployment
Guide.

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Introduction
	1.1� About Best Practices
	1.2� About Oracle9iAS J2EE and Web Cache Install Type
	1.3� Audience
	1.4� Document Organization
	1.5� References and Relation to Other Documents

	2 Java Language Best Practices
	2.1� Avoid or Minimize Synchronization
	2.1.1� Synchronize Critical Sections Only
	2.1.2� Do Not Use the Same Lock on Objects That Are Not Manipulated Together
	2.1.3� Use Private Fields
	2.1.4� Use a Thread Safe Wrapper
	2.1.5� Use Immutable Objects
	2.1.6� Know Which Java Objects Already Have Synchronization Built-in
	2.1.7� Do Not Under-Synchronize

	2.2� Monitor Synchronization
	2.3� Monitor and Fix Resource Leaks
	2.4� Always Use a Finally Clause In Each Method to Cleanup
	2.5� Discard Objects That Throw Catch-All Exceptions
	2.6� Design Transactions Usage Correctly
	2.7� Put Business Logic In the Right Place
	2.8� Avoid Common Errors That Can Result In Memory Leaks
	2.9� Avoid Creating Objects or Performing Operations That May Not Be Used
	2.10� Replace Hashtable and Vector With Hashmap, ArrayList, or LinkedList If Possible
	2.10.1� Use an Array Instead of an ArrayList If the Size Can Be Fixed
	2.10.2� Use an ArrayList or LinkedList To Hold a List of Objects In a Particular Sequence
	2.10.3� Use HashMap or TreeMap To Hold Associated Pairs of Objects
	2.10.4� Replace Hashtable, Vector, and Stack
	2.10.5� Avoid Using String As the Hash Key (If Using JDK Prior to 1.2.2)

	2.11� Reuse Objects Instead of Creating New Ones If Possible
	2.11.1� Use a Pool to Share Resource Objects
	2.11.2� Recycle Objects
	2.11.3� Use Lazy Initialization to Defer Creating the Object Until You Need It.

	2.12� Use Stringbuffer Instead of String Concatenation
	2.12.1� Use StringBuffer Instead of String Concatenation If You Repeatedly Append to a String In ...
	2.12.2� Use Either String or StringBuffer If the Concatenation Is Within One Statement
	2.12.3� Use StringBuffer Instead of String Concatenation If You Know the Size of the String

	3 J2EE Best Practices
	3.1� JSP Best Practices
	3.1.1� Pre-Translate JSPs Before Deployment
	3.1.2� Separate Presentation Markup From Java
	3.1.3� Use JSP Template Mechanism
	3.1.4� Set Sessions=False If Not Using Sessions
	3.1.5� Always Invalidate Sessions When No Longer Used
	3.1.6� Set Main_Mode Attribute To "justrun"
	3.1.7� Use Available JSP Tags In Tag Library
	3.1.8� Minimize Context Switching Between Servlets and EJBs
	3.1.9� Package JSP Files In EAR File For Deployment Rather Than Standalone
	3.1.10� Use Compile-Time Object Introspection
	3.1.11� Choose Static Versus Dynamic Includes Appropriately
	3.1.12� Disable JSP Page Buffer If Not Used
	3.1.13� Use Forwards Instead of Redirects
	3.1.14� Use JSP Tagged Cache
	3.1.15� Use well_known_taglib_loc To Share Tag Libraries
	3.1.16� Use JSP-Timeout for Efficient Memory Utilization
	3.1.17� Workarounds for the 64K Size Limit for the Generated Java Method

	3.2� Servlet Best Practices
	3.2.1� Perform Costly One-Time Operation in Servlet init() Method
	3.2.2� Improve Performance by Loading Servlet Classes at OC4J Startup
	3.2.3� Analyze Servlet Duration for Performance Problems
	3.2.4� Understand Server Request Load When Debugging
	3.2.5� Find Large Servlets That Require a long Road Time When Debugging
	3.2.6� Watch for Unused Sessions When Debugging
	3.2.7� Watch for Abnormal Session Usage When Debugging
	3.2.8� Load Servlet Session Security Routines at Startup
	3.2.9� Retry Failed Transactions and Idempotent HttpServlet.doGet() Exactly Once
	3.2.9.1� Do One-time Resource Allocation and Cleanup in init() and destroy() Methods.

	3.2.10� Use HTTP Servlet.doPost() for Requests That Update Database
	3.2.11� Avoid Duplicating Libraries
	3.2.12� Use Resource Loading Appropriately

	3.3� Sessions Best Practices
	3.3.1� Persist Session State if Appropriate
	3.3.2� Replicate Sessions if Persisting is Not an Option
	3.3.3� Do Not Store Shared Resources in Sessions
	3.3.4� Set Session Timeout Appropriately
	3.3.5� Monitor Session Memory Usage
	3.3.6� Always Use Islands, But Keep Island Size Small
	3.3.7� Use a Mix of Cookie and Sessions
	3.3.8� Use Coarse Objects Inside HTTP Sessions
	3.3.9� Use Transient Data in Sessions Whenever Appropriate
	3.3.10� Invalidate Sessions
	3.3.11� Miscellaneous Guidelines

	3.4� EJB Best Practices
	3.4.1� Local vs. Remote vs. Message Driven EJB
	3.4.2� Decide EJB Use Judiciously
	3.4.3� Use Service Locator Pattern
	3.4.4� Cluster Your EJBs
	3.4.5� Cluster Servlets and EJB into Identical Islands
	3.4.6� Index Secondary Finder Methods
	3.4.7� Understand EJB Lifecycle
	3.4.8� Use Deferred Database Constraints
	3.4.9� Create a Cache with Read Only EJBs
	3.4.10� Pick an Appropriate Locking Strategy
	3.4.11� Understand and Leverage Patterns
	3.4.12� When Using Entity Beans, Use Container Managed Aged Persistence Whenever Possible

	3.5� Data Access Best Practices
	3.5.1� Datasources Connections Caching and Handling
	3.5.1.1� DataSource Connection Caching Strategies

	3.5.2� Datasource Initialization
	3.5.3� Disable Auto-Commit Mode for Better Performance
	3.5.4� Disable Escape Processing for Better Performance
	3.5.5� Defining Column Types
	3.5.6� Prefetching Rows Improves Performance
	3.5.7� Update Batching Improves Performance
	3.5.7.1� Oracle Update Batching
	3.5.7.2� Standard Update Batching

	3.5.8� Use Emulated Data Sources for Better Performance
	3.5.9� Use Emulated and Non-Emulated Data Sources Appropriately
	3.5.10� Use the EJB-Aware Location Specified in Emulated Data Sources
	3.5.11� Set the Maximum Open Connections in Data Sources
	3.5.12� Set the Minimum Open Connections in Data Sources
	3.5.13� Setting the Cache Connection Inactivity Timeout in Data Sources
	3.5.14� Set the Wait for Free Connection Timeout in Data Sources
	3.5.15� Set the Connection Retry Interval in Data Sources
	3.5.16� Set the Maximum Number of Connection Attempts in Data Sources
	3.5.17� Use JDBC Connection Pooling and Connection Caching
	3.5.18� Use JDBC Statement Caching
	3.5.19� Avoid Using More Than One Database Connection Simultaneously in the Same Request
	3.5.20� Tune the Database and SQL Statements
	3.5.20.1� JDBC Tuning
	3.5.20.2� JDBC Connection Caching
	3.5.20.3� JDBC Statement Caching
	3.5.20.4� JDBC Cached Rowsets

	3.6� Java Message Service Best Practices
	3.6.1� Set the Correct time_to_live Value
	3.6.2� Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role While There Are ...
	3.6.3� Close JMS Resources No Longer Needed
	3.6.4� Reuse JMS Resources Whenever Possible
	3.6.5� Use Debug Tracing to Track Down Problems
	3.6.6� Understand Handle/Interpret JMS Thrown Exceptions
	3.6.7� Ensure You Can Connect to the Server Machine and Database From the Client Machine
	3.6.8� Tune Your Database Based on Load
	3.6.9� Make Sure You Tune the OracleOCIConnectionPool

	3.7� Web Services Best Practices
	3.7.1� Create Stateless Web Services Instead of Stateful Web Services Whenever Possible
	3.7.2� UDDI Best Practices
	3.7.2.1� Invocation Patterns
	3.7.2.2� Taxonomy Development

	4 Oracle9iAS Framework Best Practices
	4.1� Design Frameworks and Patterns
	4.2� BC4J Best Practices
	4.2.1� Code to Interfaces
	4.2.2� Choose the Right Deployment Configuration
	4.2.3� Use Application Module Pooling for Scalability
	4.2.4� Use Connection Pooling to Optimize Your Use of Database Connections
	4.2.5� Perform Global Framework Component Customization Using Custom Framework Subclasses
	4.2.6� Use SQL-Only and Forward-only View Objects When Possible
	4.2.7� Do Not Let Your Application Modules Get Too Large
	4.2.8� Use the Right Failover Mode
	4.2.9� Use View Row Spillover to Lower the Memory Required to Cache a Large Number of Rows
	4.2.10� Implement Query Conditions At Design TIme If Possible
	4.2.11� Use the Right JDBC Fetch Size
	4.2.12� Turn Off Event Listening in View Object Used in Batch Processes
	4.2.13� Choose the Right Style of Bind Parameters

	4.3� Java Object Cache Best Practices
	4.3.1� Allow Cacheaccess Objects to be Released in Error Conditions
	4.3.2� Understand or Delegate Ownership When Doing Synchronize
	4.3.3� Set Open File Descriptor Count to 1024 or Higher
	4.3.4� Use System Classloader for Object Cached with Java Object Cache
	4.3.5� Group Messages Take Precedence Over Individual Objects in the Cache
	4.3.6� Understand What Cache Objects Survive Process Termination
	4.3.7� Return Cacheaccess Object to the Pool When Not in Use
	4.3.8� Use 1:1 Correlation Between Cached Object and Cacheaccess Object
	4.3.9� Do Not Share Cacheaccess Object

	5 Oracle9iAS Web Cache Best Practices
	5.1� Use Partial Page Caching Where Possible
	5.2� Use ESI Variables for Improved Cache Hit Ratio for Personalized Pages
	5.3� Leverage JESI Over Hand-Generating the ESI Tags
	5.4� Use esi:inline and esi:include Tags Appropriately
	5.5� Use Basic Invalidation for Single Objects, Advanced for Multiple
	5.6� Build Programmatic Invalidation Into Application Logic
	5.7� Use Surrogate-Control Headers Instead of Caching Rules
	5.8� Improve Performance, Scalabillity, and Availability
	5.9� Use Two CPUs and Consider Deploying on Dedicated Hardware
	5.10� Configure Enough Memory
	5.11� Allocate Sufficient Network Bandwidth
	5.12� Set a Reasonable Number of Network Connections
	5.13� Cluster Cache Instances for Better Availability, Scalability, and Performance
	5.14� Optimize Response Time By Tuning Origin Server and Oracle9iAS Web Cache Settings
	5.15� Combine Invalidation and Expiration Policies
	5.16� Use Invalidation Propagation in a Cluster
	5.17� Route All HTTP and HTTPS Traffic Through Oracle9iAS Web Cache
	5.18� Create Custom Apology Pages
	5.19� Use Redirection to Cache Entry Pages
	5.20� Use the <esi:environment> Tag for Authentication/Authorization Callbacks
	5.21� Use Cookies and URL Parameters to Increase Cache Hit Ratios
	5.22� Use a Network Load Balancer in Front of Oracle9iAS Web Cache
	5.23� Use Oracle9iAS Web Cache Load Balancing Functionality for Availability and Scalability of O...
	5.24� Improve Response Times and Reduce Network Bandwidth With Compression
	5.25� Deploy Caches in Remote Offices for Faster Response Times and Reduced WAN Traffic
	5.26� Turn Off Verbose Logging to Conserve Resources
	5.27� Use the Oracle9iAS Web Cache Manager to Avoid Configuration Problems
	5.28� Use Web Caching to Help Defend Against Denial-of-Service Attacks
	5.29� Tune Invalidation Performance Using Indexes
	5.30� Test Application Upgrades and Patches to Ensure Existing Cache and Session Rules Still Func...
	5.31� Use HTTPS for Administration, Invalidation, and Statistics Monitoring

	6 Oracle HTTP Server Best Practices
	6.1� Configure Appropriately for Modem Connections
	6.2� Tune TCP/IP Parameters
	6.3� Tune KeepAlive Directives
	6.4� Tune MaxClients Directive
	6.5� Avoid Any DNS Lookup
	6.6� Turn Off Access Login if You Do Not Need to Keep an Access Log
	6.7� Use FollowSymLinks and Not SymLinksIfOwnerMatch
	6.8� Set AllowOverride to None
	6.9� Use mod_rewrite to Hide URL Changes for End Users

	7 Oracle9iAS Portal Best Practices
	7.1� Performance Best Practices
	7.1.1� Use Appropriate Caching Strategy Depending on Page Content
	7.1.2� Use Web and Database Providers Judiciously
	7.1.3� Improve Availability and Scalability by Having Multiple OC4J_Portal Instances
	7.1.4� Scale Oracle9iAS Portal Better by Tuning Oracle9iAS Infrastructure Database Optimally
	7.1.5� mod_plsql Tuning Directly Impacts Oracle9iAS Portal Performance
	7.1.6� Leverage Web Provider Session Caching
	7.1.7� Increase Execution Speed of Slowest Portlet to Increase Page Assembly Speed
	7.1.8� Reduce Page Complexity to Improve Cachability
	7.1.9� Measure Tuning Effectiveness Regularly to Improve Performance

	7.2� Content Management and Publishing Best Practices
	7.2.1� Use a Single Page Group for Unrestricted Copying, Multiple Page Groups for Delegating Admi...
	7.2.2� Research Taxonomy Before Committing to the Pages
	7.2.3� Always Use Page Templates Instead of Directly Creating Pages
	7.2.4� Separate Template Content From Layout
	7.2.5� Understand the Difference Between Attributes, Categories, and Perspectives
	7.2.6� Avoid Using Simple Item Types

	7.3� Best Practices for Oracle9iAS Portal Export/Import
	7.3.1� General Guideline/Best Practices for Oracle9iAS Portal 9.0.2.2 Export/Import
	7.3.2� Best Practices System Checklist Before Performing a Portal Export/Import Operation
	7.3.3� Best Practices for Building Transport Sets
	7.3.4� Best Practices For Configuring Your Portal Content For Maximal Portability for Export/Impo...
	7.3.5� Best Practices for Exporting/Importing Page Groups and Components
	7.3.6� Best Practices for Exporting/Importing Web Providers
	7.3.7� Best Practices for Exporting/Importing Users and Groups
	7.3.7.1� Export/Import of Objects (With Security) Between Portals Using Different Oracle Internet...
	7.3.7.1.1� How to update the GUID

	7.3.8� Best Practices for Troubleshooting Oracle9iAS Portal 9.0.2.2 Export/Import

	8 Oracle9iAS Wireless Best Practices
	8.1� Development Best Practices
	8.1.1� Use Hosted Instance to Test Applications
	8.1.2� Download Up-to-Date Device Simulators for Testing Applications
	8.1.3� Use Oracle9iAS Wireless XML
	8.1.4� Use JSPs to Generate Oracle9iAS Wireless XML
	8.1.5� Use the HTTP Adapter Over a Custom Adaptor
	8.1.6� Use Hosted Wireless Web Services (Mobile Modules) for Rapid Development

	8.2� Deployment Best Practices
	8.2.1� Deploy Own Wireless Infrastructure or Use Hosted Versions
	8.2.2� Deploy Your Applications in Phases
	8.2.3� Use SMS for Targeted Content in Specific Geographical Regions
	8.2.4� Use Oracle9iAS Web Cache with Oracle9iAS Wireless

	9 Security Best Practices
	9.1� General Best Practices
	9.1.1� Best Practices for HTTPS Use
	9.1.2� Assign Lowest Level Privileges Adequate for the Task
	9.1.3� Best Practices for Cookie Security
	9.1.4� Best Practices in Systems Setup
	9.1.5� Best Practices for Certificates Use
	9.1.6� Review Code and Content Against Already Known Attacks
	9.1.7� Follow "Common Sense" Firewall Practices
	9.1.8� Leverage Declarative Security
	9.1.9� Use the Oracle Integrated Version of JAAS
	9.1.10� Use Switched Connections in DMZ
	9.1.11� Place Application Server in the DMZ
	9.1.12� Tune the SSL SessionCacheTimeout Directive if You Are Using SSL

	9.2� OC4J Security Best Practices
	9.2.1� Use the Oracle9iAS JAAS Provider for OC4J User Management in Place of principals.xml
	9.2.2� Avoid Writing Custom User Managers and Instead Extend the JAAS Provider, Oracle9iAS Single...
	9.2.3� Use Oracle9iAS Single Sign-On as the Authentication Mechanism with the JAAS Provider
	9.2.4� Use the JAAS Provider’s Declarative Features to Reduce Programming
	9.2.5� Use Fine-Grained Access Control Provided by the JAAS Provider and the Java Permission Model
	9.2.6� Use Oracle Internet Directory as the Central Repository for the JAAS Provider in Productio...
	9.2.7� Take Advantage of the Authorization Features of the JAAS Provider

	9.3� Oracle9iAS Single Sign-On Best Practices
	9.3.1� Oracle9iAS Single Sign-On Servers Should Be Configured for High Availability
	9.3.2� Leverage Oracle9iAS Single Sign-On Whenever Possible
	9.3.3� Have an Enterprise-Wide Directory in Place
	9.3.4� Always Use Oracle9iAS Single Sign-On Instead of Writing Custom Authentication Logic
	9.3.5� For Devloping Single Sign-on Enabled Applications, Use mod_osso and Not the Single Sign-on...
	9.3.6� Always Use SSL with Oracle9iAS
	9.3.7� Train Users to be Wary of Providing Their Oracle9iAS Single Sign-On Username and Password ...
	9.3.8� Train Users to Log Out So the Cookie Does Not Remain Active

	10 Oracle Enterprise Manager Best Practices
	10.1� Monitor Application Performance During Application Development or Test Cycles Using Oracle ...
	10.2� Use Oracle Enterprise Manager to Tune Application SQL
	10.3� Use Oracle9iAS Clusters for Application Deployment and Configuration Management
	10.4� Use the Oracle Enterprise Manager Deployment Wizard to Deploy Application in Real-Time
	10.5� Use Oracle Enterprise Manager Job System to Schedule a Deployment to Occur at a Certain Time
	10.6� Select the Oracle Enterprise Manager Management Framework Options That Best Suit Your Needs
	10.7� Use the Latest Version of Oracle Enterprise Manager for Managing Both Oracle9iAS and the Or...
	10.8� Use the Oracle Enterprise Manager Event System and Notification to Proactively Monitor Syst...
	10.9� Use the Oracle Enterprise Manager Event Management System’s User-Defined Events to Customiz...
	10.10� Use Oracle Enterprise Manager to Monitor and Diagnose Performance Bottlenecks and Availabi...
	10.11� When Monitoring Application Server Performance, Use the Host Home Page to Help Diagnose Pe...
	10.12� Use the Oracle Enterprise Manager Job System to Periodically Back Up Your Oracle9iAS Confi...
	10.13� Use Oracle Enterprise Manager to Monitor Rate and Aggregated Performance Metrics
	10.14� After Restarting Oracle Enterprise Manager, Navigate to Commonly Used Pages
	10.15� Use Oracle Enterprise Manager to Change Configurations

	11 Installation Best Practices
	11.1� General Installation Best Practices
	11.1.1� Understand the Various Configuration Tools Available with Oracle9iAS
	11.1.2� Try Standard Demos and Associated Applications Before Running Your Applications
	11.1.3� Turn Off Unused Services to Reduce Oracle9iAS Memory Requirement
	11.1.4� Check Metalink Regularly for Updates to Keep Your Installation Current
	11.1.5� Periodically Check the Log Files for Restarts/Errors That Are Masked by Auto Restart Capa...
	11.1.6� System Administrator and Oracle9iAS Administrator Should Be Different
	11.1.7� Use the Appropriate Administration User Accounts
	11.1.8� Install All Mid-Tiers on Multiple Smaller Machines, the Infrastructure on Clustered Large...
	11.1.9� For a 3-Tier Environment, Install the Infrastructure Instance Twice and Configure Each Ti...
	11.1.10� Recommendation for Installing Oracle9iAS Portal

	11.2� Hosting Installation Best Practices
	11.2.1� Install as Different Users When Installing Multiple Instances on the Same Machine
	11.2.2� Share the Same Security Service Across Multiple Installations But Split the Metadata Service
	11.2.3� Recommendations for Having Large Number of Groups Run the Applications on a Given Instance

	12 Deployment Best Practices
	12.1� Deployment Architecture Options
	12.1.1� Deploying Oracle9iAS as Independent Instances
	12.1.2� Deploying Oracle9iAS Instances with Oracle9iAS Web Cache Cluster
	12.1.3� Use Standard Oracle9iAS Clusters
	12.1.4� Separate OC4J and Oracle HTTP Server Clusters

	12.2� General Deployment Best Practices
	12.2.1� Deploy/Re-Deploy Applications During Low Traffic
	12.2.2� Use Identical Machines
	12.2.3� Rolling Upgrades - Form a New Cluster for Major Upgrades
	12.2.4� Use Network Level Load Balancer for Increase Scalability/Availability

	12.3� Oracle Internet Directory Deployment Best Practices
	12.3.1� Use Utility for Bulk Loading Data to Oracle Internet Directory
	12.3.2� Replicate Oracle Internet Directory for High Availability
	12.3.3� Use SSL Binding for Better Security
	12.3.4� Use the Appropriate Backup and Restore Utilities
	12.3.5� Recommendations for Audting and Monitoring Oracle Internet Directory
	12.3.6� Assign Correct Oracle Internet Directory Privileges for Oracle9iAS Installation
	12.3.7� Change Access Control Policies to Better Administer Users
	12.3.8� Best Practice for Oracle Internet DirectoryOracle Internet Directory Password Policy
	12.3.9� Best Practice for Directory Integration Platform in Third Party Directory Environments
	12.3.9.1� Identity Provisioning
	12.3.9.2� Synchronization Configuration
	12.3.9.3� Oracle HR Synchronization

	12.3.10� Recommendations for Migrating Oracle9iAS Application to Existing Oracle Internet Directory
	12.3.11� Recommendation for Moving Oracle9iAS Applications From Test to Production Oracle Interne...

	13 Miscellaneous Best Practices
	13.1� Simulate Failures and Compute Availability Impact
	13.2� Pooling and Sharing
	13.3� Perform Incremental Performance Evaluation During the Development Cycle
	13.4� Run Your Performance Test on Systems That Will Simulate Your Production Environment
	13.5� Understand How to Configure Your Test Driver and Analyze the Result
	13.6� Assign Someone Who is Experienced in Running and Analyzing Performance Tests
	13.7� Document All Recovery and Repair Procedures, and Practice Them Regularly
	13.8� Use Available Tools to Monitor Site Load and Status
	13.9� Rolling Period Restarts Avoid Unexpected Errors
	13.10� Stock Spares and Have a Backup Schedule

	A Oracle9iAS Web Cache Best Practices Appendix
	A.1� Use Partial Page Caching Where Possible
	A.2� Use <esi:inline> Tags for Existing Applications and <esi:include> Tags for New Applications
	A.2.1� Using Inline for Non-Fetchable Fragmentation
	A.2.2� Using Include for Fetchable Fragmentation

	A.3� Reduce Invalidation Overhead
	A.3.1� Send Basic Invalidation Requests for Invalidating One Object
	A.3.2� Use Substring Matching for Invalidating Multiple Objects in Advanced Invalidations

