Oracle9iAS Containers for J2EE

Enterprise JavaBeans Developer’s Guide

Release 2 (9.0.3)

August 2002
Part No. A97677-01

ORACLE

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide, Release 2 (9.0.3)
Copyright © 2000, 2002 Oracle Corporation. All rights reserved.
Primary Author: Sheryl Maring

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Portions of this software are copyrighted by Data Direct Technologies, 1991-2001.

Contents

SENA US YOUT COMIMENTS ..o ettt e et ettt e et et ettt e et ettt et et er et ee et e Xi
o Y= (o1 < NSO Xiii

1 EJB Overview

NEW FEAtUreS OF EJIB 2.0cuiiiiiiiiii ettt b b bttt ettt et 1-2
LOCAl INLEITACE SUPPOIT......e ittt ettt ettt sttt ettt et 1-2
Home Interface BUSINESS IMETNOMAS.cuiiiiiiiiiiiciee e 1-3
MESSAGE-DIIVEN BEANS ..ottt ettt bbbttt sttt ettt st be et 1-4
Enterprise JavaBeans Query Language (EJB QL) ...coiiiiiiieinie et 1-4
CIMP REIATIONSNIPS .ottt et 1-5
CORBA SUupport - RMI-0VEI-TTOPcoiiiiiiiiit ettt 1-6

INVOKING ENLErPriSe JAVABEANSc.viiiiiiiiiiie e e 1-7

IMPIEMENTING BN EJB ..ottt e s e 1-9
BeanN IMPIEMENTALIONc.ooiiiiiiiieii et et sttt ettt st en e en e nes 1-10
ParameEter PASSINGcuiiiiiii ettt st et et et sttt ettt e e s ten e es 1-10
ParamMETEr ODJECES ...ttt ettt e st st es et ettt eeenenaneas 1-10

TYPES OF EIBS ..ottt bttt e b e b e b ek ee ek r bt bbb er b er e 1-11
SESSTON BRANS ...ttt ettt eb ettt e b bt btk ee ke bt ettt bbb er et 1-11
ENEITY BOANS ...ttt ettt et ettt etk et e e s et r et et neebe et en et 1-16
M ESSAGE-DITVEN BERAMNS.ciiiiiee ittt ettt ettt e et es et et b et e et e beeee e beseesneraneas 1-23

Difference Between Session and Entity BEansc.ociiiiiiinie e 1-25

2 An EJB Primer For OC4J

DEVEIOP EJIBS ..ottt ettt e e e b e b et h e ek etk b b e bbb bbb n et ner et 2-2
Create the DevelopmENt DIFECLOIY ... ciiiiie e ettt en e es 2-2
IMPIEMENT TNE BIB ...ttt 2-4
Create the Deployment DESCIIPLONooviiiiirci ettt sttt 2-11
Archive the EJB APPLCATION ..ot 2-12

Prepare the EJB Application for ASSEmMDBIY ... 2-13
Modify the ApPlication. XML FIle ..o s 2-13
Create the EAR FIle ... e et ettt et 2-14

Deploy the Enterprise Application t0 OCATccoviiiiiieiie et 2-15

AACCESS ThE EJB ...ttt b bt h bt e sttt bbb et 2-15

3 CMP Entity Beans

ENLILY BEAN OVEIVIBWoiiiiiiiiiii ettt s bbb e e et ettt bttt 3-2
Creating ENTITY BEANS.......cuiiiiiii bt bttt ettt b ettt et en e 3-3
HOME INTEITACE ..ottt bbbt 3-4
COMPONENT INTEITACES ...ttt ettt et ettt et en e 3-5
ENTILY BEAN CIASS ..vetiiiiiiiiet ittt bbbttt b ettt ettt 3-6
PIIMAIY KBY ..ottt e e e eh s es s eh b es s st h bbbt n s 3-9
Defining the Primary Key iN @ CIaSS........ccooiiiiiiii ittt 3-10
Defining an Auto-Generated Primary KEY ...ttt 3-11
PEISISTENCE FIEIASeiie it s s bbbt 3-12
Default Mapping of Persistent Fields to the Database............ccocovvieieveiee v 3-14
Explicit Mapping of Persistent Fields to the Database...........ccccoeviiiiiniincince e 3-15
CIMP TYPES ettt e e et e et h kRt e R R n e ettt re e 3-17
R [ag] o] (S =L c= W Y/ o =T TSP S R UPRRSPR 3-18
SEMIAIIZADIE ClASSES ...ttt ettt ettt b ettt 3-19
Other Entity Beans OF COECTIONSccoociiiiiriciiiciiietie ettt 3-19

4 Entity Relationship Mapping

Defining Entity-To-Entity RelatioNShiPSccociiiiiiii e 4-2
Choosing Cardinality and Dir€CIONcuioiiiiiiiiie et 4-2
DefiNiNg RelatiONSNIPScc.iiii e et ettt se e se et see e e e enea 4-3

Mapping Relationship Fields to the Database............ccocoeiiiieiiieiiiie s 4-10

Default Mapping of Relationship Fields to the Database............cccocooniiniiniiniini 4-11
Explicit Mapping of Relationship Fields to the Database............c.cooeoeniiiniiencincincie 4-19

5 EJB Query Language

EJB QL OVEIVIBW ...ttt et ettt ettt ettt e e se e es e e2 st ere et e neene et e bt et e beeeeee e e anben e e e 5-2
QUETY METNOAS OVEIVIBW.ociiiiiiiieiie ettt ettt e bbb et et e b en b en b anebeanas 5-2

FINAET MEENOGS ...t e 5-2

SEIECE IMIELNOTS ... e bbbt e et bbbt 5-3
Deployment DesCriptor SEMANTICSccooiiiiiiiiiiiiti ettt 5-4
Finder Method EXamIPIE ...ttt e 5-5
Select Method EXAMPIE ..o e et et sr et en b an et aner e 5-7

6 BMP Entity Beans

Creating BMP ENIty BRANSc.oviiiiiiiiie et 6-2
Component and HOME INTEIFACES.......ooviiiiicic e et 6-3
BMP Entity Bean ImMplementation ... et 6-3
The ejbCreate IMPIEMENTATIONc.oiiiiiii e e 6-3
The ejbFindByPrimaryKey Implementation...........ccocoiiiiiie e 6-7
Other FINAEr METNOAS ..o e 6-7
The ejbStore IMPIEMENTALIONcc.oi it e 6-8
The ejbLoad IMPIemMENtation ..o e e 6-9
The ejbPassivate IMPIeMENTAtION ..o e 6-9
The ejbActivate IMplemMentation ..o e 6-10
The ejpbRemove IMPIEeMENTATIONccooiiiiii e e 6-10
Modify XML Deployment DESCIIPLOIScciiiiiieiiieiieeie ettt 6-11
Create Database Table and Columns for Entity Data..........ccococevieniencienciencencineeeeceee 6-12

7 Message-Driven Beans

IMIDB OVEIVIBW ...ttt ettt et e e bt h et h e e h et ekt bt bt h bbbkttt et ettt e 7-2
CrEatiNG IMIDBS ... et e b e bt e bt e b ee b er b er bbb bbb bn s 7-3
Install And Configure The ReSOUICe ProVIAer..........coiiiiiiiniiieiiiceciine e 7-4
Bean Class IMplementation..... ... e e 7-8
Configure DeploymMeNnt DESCIIPLONS.cviiiiiiee it ettt ettt st sr e aneas 7-10
Deploy the ENLItY BEANc.oiiie ettt et et ettt ettt see e e aneas 7-13

ACCESSING IMIDIBS ...ttt ettt ettt b ettt be ettt 7-13
Using Logical Names in the JIMS INDI LOOKUPccveoiiviiiiiiiiici s 7-15

8 Advanced EJB Subjects

Vi

ACCESSTNG EIBS ...ttt ettt ettt bbbtk ettt b et b ettt ettt eb e en e 8-2
Client Installation 0f OCAJJAR ..ottt ettt 8-3
EJB Reference INFOrMation ...t 8-3
SEttiNG INDI PrOPEITIES . ..ottt e ettt ettt ettt ettt en e 8-4
Configuring RMI or JMS Port for Standalone EJB CHENtS........c.ccoveiiincinicence e 8-6
Using the Initial Context FACtOry CIaSSES........ccuiiiiiiiiiiiiiiiieiiti ettt 8-6
AcCessing an EJB iN @ REMOLE SEIVEN ..ot 8-8
Packaging and SNAring ClaSSES.......cuiiuiiiiiiii ittt et 8-8
Entity Bean Concurrency and Database Isolation Modes ... 8-10
Database 1SOlatioN IMOAES ..ottt 8-10
Entity Bean ConCUITENCY MOGES ..ottt sttt sttt et 8-11
Exclusive Write Access t0 the Database ... 8-12
Effects of the Combination of Isolation and Concurrency Modes............cccccoeneeniiineninen 8-13
Affects of Concurrency Modes 0N CIUSTEFINGooviiiiiiiine e 8-13
Configuring Pool Sizes FOr ENtity BEANS ..ottt 8-13
Techniques for Updating PErSISTENCEcoooiiiiiiiiieiie e e 8-14
Configuring ENVIronmMent REFEIENCESociiiiiiii e 8-15
ENVIFONMENT VANTADIES ..ottt ettt et 8-15
Environment References To Other Enterprise JavaBeans.........c.cccovveniincincenicinc 8-16
Environment References To Resource Manager Connection Factory References............. 8-20
CONTIGUITNG SECUTTLY ..ottt bbbt ettt b et ettt 8-26
Granting PermisSSiONS IN BIrOWSETcccouiiriiieiini ittt sttt sttt ettt 8-27
Authenticating and Authorizing EJB Applicationsccooviiiiiie i 8-27
Specifying Credentials in EJB CHENTScoiiiiiii e 8-36
Setting Performance OPTIONS ...t es e ettt et enesreneas 8-38
Performance Command-Line OPLIONScc.ooiiiiiiiiie e 8-38
THread POOI SEELINGS.ceie ettt e ettt e e e s e et es bt eb e 8-39
STALEMENT CACNING ...ttt ettt ettt b et es e et an bt ne et sneeneneas 8-42
Task Manager GranUIATTLYc.oo ittt ettt en e 8-42
Using DNS for Load BalanCiNg...........coiieieiiiieiie ettt e 8-43
COMIMON EFTOIS ..ottt e ettt ettt b ettt be sh st et se et bbbt r e nn et 8-44

10

NamMINGEXCEPLION TRFOWN ...ttt sttt 8-44
DeadloCK CONAITIONS.ottt ettt ettt ettt 8-44
(04 1= = 1] 1 = (od=] o)1 1o o ISP 8-44

EJB Clustering

EJB CIUSLENTNG OVEIVIBW ...ttt ettt ettt bbbttt st stttk st sttt ettt 9-2
Stateless Session Bean ClUSTEIING.......cuiiiiiiie it 9-4
Stateful SeSSioN BEaN CIUSTEIINGc..iiiiiiiiiit et 9-4
ENtity BEAN CIUSTEIING ...uiiiiie ittt et e et eb e et e ebe et ne et nn et an b e 9-4
Combination of HTTP and EJB CIUSTEIINGcoceiiiiiiiiiiie it 9-5

ENabling ClIUSTErING FOr EIBS......coiiiie ittt st ettt e 9-5
Configure Nodes With Multicast Address and ldentifier ... 9-5
EJB Replication CONFIQUIALIONc..ciiiiiiiieiieciieiiet ettt sttt snenenas 9-7
Deploy EJB Application TO A NOES ... 9-8
Application Client Retrieval Of Clustered NOAESccociiiiiiiiiincre e 9-8

Load BalanCing OPTIONSc.iiiiiiiiiit ittt bbbt ettt ettt e 9-9

Active Components for Java

Future Needs of BUSINeSS APPHICALIONSccciiiiiiiiiiiiiii e 10-2
AATCIITTECTUTES .. bbbt bbb bbbttt b et ettt eb e 10-3
Remote Procedure Call MOAEL..........cooooiiiiie e 10-3
Database Transactional QuUeueing MOElcouiiiiiiiiiiiiie e 10-5
ACAT SOTULION ..ttt ettt e ettt es s e et et es et et e s e ete et e e ne e aeeseeeaneas 10-6
ACAT ATCRITECTUIE ...t bbbttt ettt b ettt ekt et er e 10-8
Introduction t0 ACAJ COMPONENTScuiiiiiiieiieiiee ettt ettt st e eenee e e e 10-8
AACTIVE EIBS....oieiittiite e bbbt st et b bbbttt b e 10-10
LY =T = Tol £ o] o IR TR TP RPPTRPPPROO 10-11
PIOCESSES ...t e e b e 10-12
[T To1 1] 1O ST 10-13
DAt TOKEINS ...ttt ettt et ettt etttk eb ettt eeen et ee et eb et et re et e 10-16
DIALA BUS ...ttt ettt e btttk b ke ae bt et e e £ eh e e £ b e b bttt b ben e bt anbteas 10-17
Configuring Oracle Databases t0 SUPPOIt ACATcoco it 10-20
AC4] Data Bus XML ConfigQUIationccocooiiiie it e e 10-21
YO N T o] o] L= SO PTUR PR URPRPR 10-23
Asynchronous Request t0 AN ACHIVE EJB ..o 10-25

Vii

Active EJB Processes the Client’s REQUESTccvieiieiie i 10-30

Asynchronous Response to the Requesting ACtiVe EJB...........ccooeveriienincinenceee 10-34
Asynchronous Response t0 the CHENT ..o 10-34
ResSpoNse from the CHENT ..o e e et 10-35
ACA) ACtiVe EJB DEPIOYMENT ...ttt et sraie e 10-38
AAMINISTENTNG ACA ..ottt b et ekttt bttt bbb 10-40
Administering Oracle Databases to SUPPOIt ACA] ... e 10-40
Description of the JEM PL/ZSQL PACKAGE.coiiiiiiiie i 10-40
Description of the createDatabusTpc Package Public Method ... 10-41
Description of the dropDatabusTpc Package Public Method.............cccociiiiiinicinenne 10-41
Description of the JEM Schema OBJECScccoiiiiiiiiii e 10-42

A EJB 1.1 CMP Entity Beans

Creating ENTITY BEANS.......cuiiiiii ittt bt et ettt bttt ettt A-2
HOME INTEITACE ..ottt et A-3
REMOLE INTEITACEcve e bbbt bbb A-4
ENTILY BEAN CIASS ..vetiiiiitiietie sttt bbbttt ettt ettt et b A-4
PEISISTENT DATA.eieeitieeie ettt bbbttt et bbbttt et A-7
PIIMANY KBY ..ottt bbb b bttt b et et b ettt bt et A-8
Deploying the ENTILY BEAN ...t A-10

Advanced CMP ENTILY BRANS........oiiiiiiii e A-11
EJB 1.1 Advanced Finder Methods ... A-11
EJB 1.1 Object-Relational Mapping of Persistent Fields............ccooiiiininincee A-13

B OC4J-Specific DTD Reference

OC4J-Specific Deployment Descriptor fOr EIBS.........cccoiiiiiiiirie et B-3
ENTErprise BEANS SECTIONc.uiiiiiiiii ittt ettt bbbttt ettt B-3
ASSEMDBIY DESCHIPLON SECLION ...ttt e ettt e B-20

EIemMENT DESCIIPLION ...viviitieie ittt ettt ee st es s s s es s st ea s B-21

C Third Party Licenses

APACNE HT TP SEIVET ...ttt e e e e bt e bt e b et er ek as et aseb bt ben e C-2
The APache SOTIWAIE LICENSEc.e ittt ettt C-2
YN o L= To] o oI K T= Y SRRSO C-4

vii

Index

Apache JServ Public License

Send Us Your Comments

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’'s Guide, Release 2 (9.0.3)
Part No. A97677-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgreader_us@oracle.com

FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xi

Xii

Preface

This guide gets you started building Enterprise JavaBeans for OC4J. It includes code
examples to help you develop your application.

Who Should Read This Guide?

Anyone developing Enterprise JavaBeans for OC4J will benefit from reading this
guide. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in EJB applications. To use
this guide effectively, you must have a working knowledge of J2EE.

Prerequisite Reading
Before consulting this Guide, you should read the following:
= Any J2EE book that enables you to understand the basics of J2EE programming.

« The Oracle9iAS Containers for J2EE User’s Guide. This guide helps you to
understand the minimum requirements for a J2EE application in the OC4J
environment.

« The Sun Microsystems EJB 2.0 specification as a supplement to this guide. This
guide assumes that you already have a base understanding of the EJB 2.0
specification details.

xiii

Suggested Reading

Books
« Professional Java Server Programming, J2EE Edition, Wrox Press Ltd, 2000.

« Mastering Enterprise JavaBeans and the Java2 Platform Enterprise Edition, by Ed
Roman. Wily Computer Publishing, 1999.

« Designing Enterprise Applications with the Java2 Platform, Enterprise Edition,
Addison-Wesley, 2000.

« Core Java by Cornell & Horstmann, second edition, Volume Il (Prentice-Hall,
1997) demonstrates several Java concepts relevant to EJBs.

« The Developer’s Guide to Understanding Enterprise JavaBeans, an overview of EJBs,
is available athtt p: / / www. Nova- Labs. com

Online Sources

There are many useful online sources of information about Java. For example, you
can view or download guides and tutorials from the Sun Microsystems home page
on the Web:

http://ww. sun. com

The current 2.0 EJB specification is available at:

http://java. sun. coni pr oduct s/ ej b/ docs. ht m

Another popular Java Web site is:

http://ww. ganmel an. com

For Java APl documentation, see:

http://ww. j avasoft.com

How This Guide Is Organized
This guide consists of the following:
Chapter 1, "EJB Overview", presents a brief overview of EJBs.

Chapter 2, "An EJB Primer For OC4J", discusses a stateless session bean
development for the OC4J server.

Xiv

Chapter 3, "CMP Entity Beans", discusses a CMP entity bean and advanced issues
connected with CMP entity beans.

Chapter 4, "Entity Relationship Mapping", discusses container-managed
relationships (CMR) within the entity bean for OC4J.

Chapter 5, "EJB Query Language", provides an overview and examples of setting up
query methods that use EJB QL.

Chapter 6, "BMP Entity Beans", discusses a BMP entity bean.

Chapter 7, "Message-Driven Beans", discusses an MDB entity bean.

Chapter 8, "Advanced EJB Subjects”, discusses advanced issues for EJBs.
Chapter 9, "EJB Clustering", discusses how to cluster EJBs across OC4J nodes.

Chapter 10, "Active Components for Java", introduces a new methodology to merge
the advantages of both asynchronous and request/response communication.

Appendix A, "EJB 1.1 CMP Entity Beans" contains the EJB 1.1 CMP entity bean
methodology.

Appendix B, "OC4J-Specific DTD Reference" describes the OC4J-specific
deployment descriptor.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //ww or acl e. cont accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

XV

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Notational Conventions

This guide follows these conventions:

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Couri er Courier font denotes Java program names, file names, path
names, and Internet addresses.

Java code examples follow these conventions:

{1} Braces enclose a block of statements.

I A double slash begins a single-line comment, which extends
to the end of a line.

[* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

| ower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

M xed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.

XVi

1

EJB Overview

This chapter discusses EJB concepts that are specified fully in the J2EE specification.
The remainder of the chapters in this book show only the tasks necessary to develop
your EJBs.

For more details and examples of the concepts presented in this chapter, refer to
books written by Sun Microsystems that discuss EJBs and J2EE Blueprint
Architecture recommendations.

This chapter includes the following topics:

New Features of EJB 2.0
Invoking Enterprise JavaBeans
Implementing an EJB

Types of EJBs

Difference Between Session and Entity Beans

EJB Overview 1-1

New Features of EJB 2.0

New Features of EJB 2.0

The following sections describe the new features to EJB 2.0:
« Local Interface Support

« Home Interface Business Methods

« Message-Driven Beans

« Enterprise JavaBeans Query Language (EJB QL)

« CMP Relationships

« CORBA Support - RMI-over-110P

Local Interface Support
Oracle9iAS provides complete support for local interfaces.

A client may access a session or an entity bean only through the methods defined in
the bean's interfaces which define the client's view of a bean. All other aspects of the
bean - method implementations, deployment descriptor settings, abstract schemas,
database access calls - are hidden from the client providing modularity and
encapsulation. Well designed interfaces simplify the development and maintenance
of J2EE applications by shielding clients from any complexities in the business logic
and also allowing the EJBs to change internally without affecting the clients. EJBs
support two types of client access - remote or local.

Remote Access
A remote client of an enterprise bean has the following traits:

1. It may run on a different machine and a different Java Virtual Machine (JVM)
than the enterprise bean it accesses.

2. It can be a web component, a J2EE application client, or another enterprise
bean.

3. To aremote client, the location of the enterprise bean is transparent. To create an
enterprise bean with remote access, you must code a remote interface and a
home interface. The remote interface defines the business methods that are
specific to the bean.

Local Access
A local client has these characteristics:

1-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

New Features of EJB 2.0

1. It must runin the same JVM as the enterprise bean it accesses.
2. It may be a web component or another enterprise bean.

3. To the local client, the location of the enterprise bean it accesses is not
transparent.

4. ltis often an entity bean that has a container-managed relationship with
another entity bean. To build an enterprise bean that allows local access, you
must code a local interface and a local home interface. The local interface
defines the bean's business methods and the local home interface defines its
life-cycle and finder methods.

Local Interfaces and Container-Managed Relationships

If an entity bean is the target of a container-managed relationship, then it must have
local interfaces. Further, if the relationship between the EJBs is bi-directional, both
beans must have local interfaces. Moreover, since they require local access, entity
beans that participate in a container-managed relationship must reside in the same
EJB container. The primary benefit of this locality is increased performance - local
calls are usually faster than remote calls.

Local Compared to Remote Access

The decision on whether to allow local or remote access depends on the following
factors:

1. Container-Managed Relationships - If an entity bean is the target of a
container-managed relationship, it must use local access.

2. Tight or Loose Coupling of Related Beans - tightly coupled beans depend on
one another. For example, a completed sales order must have one or more line
items, which cannot exist without the order to which they belong. The
O der EJBand Li nel t enEJB beans that model this relationship are tightly
coupled. Tightly coupled beans are good candidates for local access. Since they
fit together as a logical unit, they probably call each other often and would
benefit from the increased performance that is possible with local access.

Home Interface Business Methods

Home interface business methods are used for public usage of methods that do not
use entity bean persistent data. If you want to supply methods that perform duties
for you that are not associated with any specific bean, a home interface business
method allows you to publicize this method.

EJB Overview 1-3

New Features of EJB 2.0

Message-Driven Beans

You can implement EJB 2.0 message-driven beans with Oracle IMS. A full example
is provided in Chapter 7, "Message-Driven Beans".

Enterprise JavaBeans Query Language (EJB QL)

EJB QL defines the queries for the finder and select methods of an entity bean with
container-managed persistence. A subset of SQL92, EJB QL has extensions that
allow navigation over the relationships defined in an entity bean's abstract schema.
The abstract schema is part of an entity bean's deployment descriptor and defines
the bean's persistent fields and relationships. The term "abstract" distinguishes this
schema from the physical schema of the underlying datastore. The abstract schema
name is referenced by EJB QL queries since the scope of an EJB QL query spans the
abstract schemas of related entity beans that are packaged in the same EJB JAR file.
For an entity bean with container-managed persistence, an EJB QL query must be
defined for every finder method (except f i ndByPr i mar yKey). The EJB QL query
determines the query that is executed by the EJB container when the finder method
is invoked.

Oracle9iAS provides complete support for EJB QL with the following important
features:

« Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle9iAS, the
container automatically translates the queries into the SQL dialect of the target
data store. Because of this translation, entity beans with container-managed
persistence are portable -- their code is not tied to a specific type of data store.

« Optimized SQL Code Generation: Further, in generating the SQL code,
Oracle9iAS makes several optimizations such as the use of bulk SQL, batched
statement dispatch, etc. to make database access efficient.

« Support for Oracle and Non-Oracle Databases: Further, Oracle9iAS provides the
ability to execute EJB QL against any database - Oracle, MS SQL-Server, IBM
DB/2, Informix, and Sybase.

« CMP with Relationships: Oracle9iAS supports EJB QL for both single entity
beans and also with entity beans that have relationships, with support for any
type of multiplicity and directionality.

1-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

New Features of EJB 2.0

CMP Relationships

The EJB 2.0 specification enables the specification of relationships between entity
beans. An entity bean can be defined so as to have a relationship with other entity
beans. For example, in a project management application the Pr oj ect EJB and
TaskEJB beans would be related because a project is made up of a set of tasks. You
implement relationships differently for entity beans with bean-managed-persistence
than those entity beans that utilize container-managed-persistence. With
bean-managed persistence, the code that you write implements the relationships.
With container-managed persistence, the EJB container takes care of the
relationships for you. For this reason, relationships in entity beans with
container-managed persistence are often referred to as container-managed
relationships.

= Relationship Fields - A relationship field in an EJB identifies a related bean. A
relationship field is virtual and is defined in the enterprise bean class with
access methods. Unlike a persistent field, a relationship field does not represent
the bean's state.

« Multiplicity in Container-Managed Relationships - There are four types of
multiplicities all of which are supported by Oracle9iAS:

— One-to-One - Each entity bean instance is related to a single instance of
another entity bean.

— One-to-Many - An entity bean instance is related to multiple instances of
the other entity bean.

— Many-to-One - Multiple instances of an entity bean may be related to a
single instance of the other entity bean. This multiplicity is the opposite of
one-to-many.

— Many-to-Many - The entity bean instances may be related to multiple
instances of each other.

« Direction in Container-Managed Relationships - The direction of a relationship
may be either bi-directional or unidirectional. In a bi-directional relationship,
each entity bean has a relationship field that refers to the other bean. Through
the relationship field, an entity bean's code can access its related object. If an
entity bean has a relative field, then we often say that it "knows" about its
related object. For example, if an Pr oj ect EJB bean knows what TaskEJB
beans it has and if each TaskEJB bean knows what Pr oj ect EJB bean it belongs
to, then they have a bi-directional relationship. In a unidirectional relationship,
only one entity bean has a relationship field that refers to the other. Oracle9iAS
supports both unidirectional and bi-directional relationships between EJBs.

EJB Overview 1-5

New Features of EJB 2.0

« EJBQL and CMP With Relationships - EJB QL queries often navigate across
relationships. The direction of a relationship determines whether a query can
navigate from one bean to another. With Oracle9iAS, EJBQL queries can
traverse CMP Relationships with any type of multiplicity and with both
unidirectional and bi-directional relationships.

Oracle9iAS Object-Relational Mapping

Oracle9iAS furnishes, out of the box, its own persistence manager for entity beans,
which supplies both simple (1:1) mapping and complex relationship (1:n, m:n)
mapping. Oracle9iAS provides complete support for the EJB 2.0 O-R mapping
specification.

Third Party O-R Mappings - TopLink Integration

Oracle9iAS integrates leading third party O-R mapping solutions including
TopLink for Java, with the EJB container. TopLink provides developers with the
flexibility to map objects and Enterprise Java Beans to a relational database schema
with minimal impact. TopLink for Java provides advanced mapping capabilities
such as bean/object identity mapping, type and value transformation, relationship
mapping (1:1, 1:n and m:n), object caching and locking, batch writing, and
advanced and dynamic query capabilities. TopLink offers a GUI mapping tool - the
TopLink Mapping Workbench - which simplifies the process of mapping J2EE
components to database objects. TopLink provides EJB 2.0 support, automatic or
developer-configured bi-directional relationship maintenance, automatic or
developer-configured cache synchronization session management via XML, and
optimistic read locking. Oracle9iAS is also integrated with other leading O-R
mapping solutions in the market.

CORBA Support - RMI-over-IIOP

RMI over IIOP is part of the J2EE 1.3 Specification and provides two important
benefits:

« RMl over IIOP provides the ability to write CORBA applications for the Java
platform without learning CORBA Interface Definition Language (IDL).

« |IOP eases legacy application and platform integration by allowing applications
written in C++, Smalltalk, and other CORBA supported languages to
communicate with J2EE components.

Oracle9iAS supports RMI-over-11OP providing the following important facilities:

1-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Invoking Enterprise JavaBeans

« Automatic IDL Stub and Helper Class Generation - To work with CORBA
applications in other languages, IDL, CORBA stubs and skeletons can be
generated:

1. Automatically by Oracle9iAS when the J2EE Application is deployed to it.

2. IDL can also be generated from J2EE interfaces using the rmic compiler
with the -i dl option. Further, developers can use the r mi ¢ compiler with
the -i i op option to generate 1IOP stub and tie classes, rather than Java
Remote Messaging Protocol (JRMP) stub and skeleton classes.

« Obijects-By-Value - The Oracle9iAS RMI-IIOP implementation provides
flexibility by allowing developers to pass any serializable Java object (Objects
By Value) between application components.

« POA Support - The Portable Object Adapter (POA) is designed to provide an
object adapter that can be used with multiple ORB implementations with a
minimum of rewriting needed to deal with different vendors' implementations.
The POA is also intended to allow persistent objects -- at least, from the client's
perspective. That is, as far as the client is concerned, these objects are always
alive, and maintain data values stored in them, even though physically, the
server may have been restarted many times, or the implementation may be
provided by many different object implementations. Oracle9iAS provides
complete POA support.

« Interoperating with Other ORBs - The Oracle9iAS RMI-1IOP implementation
will interoperate with other ORBs that support the CORBA 2.3 specification. It
will not interoperate with older ORBs, because these are unable to handle the
IIOP encodings for Objects By Value. This support is needed to send RMI value
classes (including strings) over 1HOP. Oracle9iAS also provides complete
support for the Interoperable Naming, Security, and Transactions elements in
the J2EE 1.3 specification allowing developers to build J2EE applications and
interoperate them with J2EE applications on other Application Servers and with
legacy systems through CORBA.

See the RMI/Interoperability chapter in the Oracle9iAS Containers for J2EE Services
Guide for more information.

Invoking Enterprise JavaBeans

Enterprise JavaBeans (EJBs) can be one of three types: session beans, entity beans, or
message-driven beans.

« Session beans can be stateful or stateless and are used for business logic
functionality.

EJB Overview 1-7

Invoking Enterprise JavaBeans

— Stateless session beans are used for business services. They do not retain
client state across calls.

— Stateful session beans do maintain state across client calls. Thus, these
beans manage business functions for a specific client for the life of that
client.

« Entity beans are normally used for managing persistent data.

« Message-driven beans are used for receiving messages from a JMS queue or
topic.

An EJB has two client interfaces:

« Remote interface—The remote interface specifies the business methods that the
clients of the object can invoke.

« Home interface—The home interface defines EJB life cycle methods, such as a
method to create and retrieve a reference to the bean object.

The client uses both of these interfaces when invoking a method on a bean.

Figure 1-1 Events In A Stateless Session Bean

myapp EJB
Servlet
create Bean
nmBean x=hone. create(); Home Instance
Interface
set X(42, "hiya"); Remote
r3=get X(); invoke Interface
methods

Figure 1-1 demonstrates a stateless session bean and corresponds to the following
steps:

1. The client, which can be a standalone Java client, servlet, JSP, or an applet,
retrieves the home interface of the bean—normally through JNDI.

1-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Implementing an EJB

The client invokes the cr eat e method on the home interface reference (home
object). This creates the bean instance and returns a reference to the remote
interface of the bean.

The client invokes a method defined in the remote interface, which delegates
the method call to the corresponding method in the bean instance (through a
stub).

The client can destroy the bean instance by invoking the r enove method that is
defined in the remote interface. Some beans, such as stateless session beans,
cannot call the r enbve method. In this case, the container removes the bean.

Implementing an EJB

You must create the following four major components to develop an EJB:

the home interface
the remote interface
the implementation of the bean

a deployment descriptor for each EJB

Component Description

The home interface Specifies the interface to an object that the container itself

implements: the home object. The home interface contains the life
cycle methods, such as the cr eat e() methods that specify how
a bean is created.

The remote interface Specifies the business methods that you implement in the bean.

The bean must also implement additional container service
methods. The EJB container invokes these methods at different
times in the life cycle of a bean.

The bean Contains the Java code that implements the methods defined in
implementation the home interface (life cycle methods), remote interface

(business methods), and the required container methods
(container callback functions).

The deployment Specifies attributes of the bean for deployment. These designate
descriptor configuration specifics, such as environment, interface names,

transactional support, type of EJB, and persistence information.

EJB Overview 1-9

Implementing an EJB

Bean Implementation

Your bean implements the methods within either the Sessi onBean, Enti t yBean,
or MessageDr i venBean interface. The implementation contains logic for lifecycle
methods defined in the home interface, business methods defined in the remote
interface, and container callback functions defined in the Sessi onBean, Enti ty-
Bean, or MessageDr i venBean interface.

Parameter Passing

When you implement an EJB or write the client code that calls EJB methods, you
must be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method—or a return value from a bean
method—can be any Java type that is serializable. Java primitive types, such asi nt,
doubl e, are serializable. Any non-remote object that implements the

java.io. Serializabl e interface can be passed. A non-remote object that is
passed as a parameter to a bean or returned from a bean is passed by value, not by
reference. So, for example, if you call a bean method as follows:

public class theNunber {
int x;

}

bean. net hod1(t heNunber) ;

then met hod1() in the bean receives a copy of t heNunber . If the bean changes the
value of t heNunber object on the server, this change is not reflected back to the
client, because of pass-by-value semantics.

If the non-remote object is complex—such as a class containing several fields—only
the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is
passed. A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean, and remote objects as
return values.

Parameter Objects

The Enpl oyeeBean get Enpl oyee method returns an EnpRecor d object, so this
object must be defined somewhere in the application. In this example, an
EnmpRecor d class is included in the same package as the EJB interfaces.

1-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

The class is declared as publ i ¢ and must implement the
java.io. Serializabl e interface so that it can be passed back to the client by
value, as a serialized remote object. The declaration is as follows:

package enpl oyee;

public class EnpRecord inplenents java.io.Serializable {
public Sring enane;
public int enpno;
publ i c doubl e sal;

}
Note: Thejava.io. Seri al i zabl e interface specifies no
methods; it just indicates that the class is serializable. Therefore,
there is no need to implement extra methods in the EmpRecor d
class.
Types of EJBs

There are three types of EJBs: session beans, entity beans, and message-driven beans.
« Session Beans
« Entity Beans

« Message-Driven Beans

Session Beans

A session bean implements one or more business tasks. A session bean might
contain methods that query and update data in a relational table. Session beans are
often used to implement services. For example, an application developer might
implement one or several session beans that retrieve and update inventory data in a
database.

Session beans are transient because they do not survive a server crash or a network
failure. If, after a crash, you instantiate a bean that had previously existed, the state
of the previous instance is not restored. State can be restored only to entity beans.

A session bean implements the j avax. ej b. Sessi onBean interface, which has
the following definition:

public interface javax.ejb. Sessi onBean extends javax. ej b. Enter pri seBean {
public abstract void ejbActivate();
public abstract void ej bPassivate();

EJB Overview 1-11

Types of EJBs

public abstract void ej bRenove();
public abstract void set Sessi onCont ext (Sessi onCont ext ctx);

}

At a minimum, an EJB must implement the following methods, as specified in the
j avax. ej b. Sessi onBean interface:

ej bCreat e() The container invokes this method right before it
creates the bean. Stateless session beans must do
nothing in this method. Stateful session beans can
initiate state in this method.

ej bActivate() The container invokes this method right after it
reactivates the bean.

ej bPassi vat e() The container invokes this method right before it
passivates the bean.

ej bRenmove() A container invokes this method before it ends the
life of the session object. This method performs any
required clean-up—for example, closing external
resources such as file handles.

set Sessi onCont ext This method associates a bean instance with its

(Sessi onCont ext ctx) contextinformation. The container calls this method
after the bean creation. The enterprise bean can store
the reference to the context object in an instance
variable, for use in transaction management. Beans
that manage their own transactions can use the
session context to get the transaction context.

Using setSessionContext

You use this method to obtain a reference to the context of the bean. Session beans
have session contexts that the container maintains and makes available to the beans.
The bean may use the methods in the session context to make callback requests to
the container.

The container invokes set Sessi onCont ext method, after it first instantiates the
bean, to enable the bean to retrieve the session context. The container will never call
this method from within a transaction context. If the bean does not save the session
context at this point, the bean will never gain access to the session context.

1-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

When the container calls this method, it passes the reference of the Sessi onCon-

t ext object to the bean. The bean can then store the reference for later use. The fol-
lowing example shows the bean saving the session context in the sessct x variable.
inport javax.ejb.*;

inport oracl e.oas. €j b. *;

public class nyBean inpl enents Sessi onBean {
Sessi onCont ext sessct X;

voi d set Sessi onCont ext (Sessi onCont ext ct x) {
sessctx = ctx; /] session context is stored in
/! instance variable

}

/1 other nethods in the bean
}
The j avax. ej b. Sessi onCont ext interface has the following definition:

public interface SessionContext extends javax.ejb. EJBGontext {
public abstract EIBMbj ect get EIBChj ect();
}
And the j avax. ej b. EJBCont ext interface has the following definition:

public interface EJBGontext {

publ i ¢ EJBHone get EJBHone() ;

public Properties get Envi ronnent () ;

public Principal get Cal | erPrincipal ();

publ i ¢ bool ean i sGall erl nRol e(String rol eNane) ;
publ i c User Transaction get User Transacti on() ;

publ i ¢ bool ean get Rol | backnl y();

public void set Rol | backnl y() ;

}

A bean needs the session context when it wants to perform the operations listed in
Table 1-1.

EJB Overview 1-13

Types of EJBs

Table 1-1 SessionContext Operations

Method Description

get Envi ronment () Get the values of properties for the bean.

get User Transaction() Geta transaction context, which allows you to demarcate
transactions programmatically. This is valid only for beans
that have been designated transactional.

set Rol | backOnl y() Set the current transaction so that it cannot be committed.

get Rol | backOnl y() Check whether the current transaction has been marked for
rollback only.

get EJBHome() Retrieve the object reference to the corresponding EJBHone

(home interface) of the bean.

There are two types of session beans:

« Stateless Session Beans—Stateless session beans do not share state or identity
between method invocations. They are useful mainly in middle-tier application
servers that provide a pool of beans to process frequent and brief requests.

« Stateful Session Beans—Stateful session beans are useful for conversational
sessions, in which it is necessary to maintain state, such as instance variable
values or transactional state, between method invocations. These session beans
are mapped to a single client for the life of that client.

Stateless Session Beans

A stateless session bean does not maintain any state for the client. It is strictly a
single invocation bean. It is employed for reusable business services that are not
connected to any specific client, such as generic currency calculations, mortgage
rate calculations, and so on. Stateless session beans may contain client-independent,
read-only state across a call. Subsequent calls are handled by other stateless session
beans in the pool. The information is used only for the single invocation.

The EJB container maintains a pool of these stateless beans to service multiple
clients. An instance is taken out of the pool when a client sends a request. There is
no need to initialize the bean with any information. There is implemented only a
single cr eat e/ ej bCr eat e with no parameters—containing no initialization for
the bean within these methods. There is no need to implement any actions within
ther enove/ ej bRenove, ej bPassi vat e, ej bAct i vat e, and

set Sessi onCont ext methods. In addition, there is no need for the intended use

1-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

for these methods in a stateless session bean. Instead, these methods are used
mostly for EJBs with state—for stateful session beans and entity beans. Thus, these
methods should be empty or extremely simple.

Implementation Methods

Home Interface Extendsj avax. ej b. EJBHone and requires a single cr eat e()
factory method, with no arguments, and a single r emove()
method.

Remote Interface Extendsj avax. ej b. EJBObj ect and defines the business logic

methods, which are implemented in the bean implementation.

Bean implementation Implements Sessi onBean. This class must be declared as
public, contain a public, empty, default constructor, no
final i ze() method, and implements the methods defined in
the remote interface. Must contain a single ej bCr eat e method,
with no arguments, to match the cr eat e() method in the home
interface. Contains empty implementations for the container
service methods, such as ej bRenove, and so on.

Stateful Session Beans

A stateful session bean maintains its state between method calls. Thus, there is one
instance of a stateful session bean created for each client. Each stateful session bean
contains an identity and a one-to-one mapping with an individual client. The state
of this type of bean is maintained across several calls through serialization of its
state, called passivation. This is why the state that you passivate must be
serializable. However, this information does not survive system crashes.

To maintain state for several stateful beans in a pool, it serializes the conversational
state of the least recently used stateful bean to a secondary storage. When the bean
instance is requested again by its client, the state is activated to a bean within the
pool. Thus, all resources are used performantly, and the state is not lost.

The type of state that is saved does not include resources. The container invokes the
ej bPassi vat e method within the bean to provide the bean with a chance to clean
up its resources, such as sockets held, database connections, and hash tables with
static information. All these resources can be reallocated and recreated during the
ej bActi vat e method.

If the bean instance fails, the state can be lost—unless you take action within your
bean to continually save state. However, if you must make sure that state is
persistently saved in the case of failovers, you may want to use an entity bean for
your implementation. Alternatively, you could also use the

Sessi onSynchr oni zat i on interface to persist the state transactionally.

EJB Overview 1-15

Types of EJBs

For example, a stateful session bean could implement the server side of a shopping
cart on-line application, which would have methods to return a list of objects that
are available for purchase, put items in the customer’s cart, place an order, change a
customer’s profile, and so on.

Implementation Methods

Home Interface Extendsj avax. ej b. EJBHone and requires one or more
creat e() factory methods, and a single r enove() method.

Remote Interface Extendsj avax. ej b. EJBObj ect and defines the business logic
methods, which are implemented in the bean implementation.

Bean implementation Implements Sessi onBean. This class must be declared as
public, contain a public, empty, default constructor, no
final i ze() method, and implement the methods defined in the
remote interface. Must contain ej bCr eat e methods equivalent
to the cr eat e() methods defined in the home interface. That is,
each ej bCr eat e method is matched—by its parameter
signature—to a cr eat e method defined in the home interface.
Implements the container service methods, such as ej bRenove,
and so on. Also, implements the Sessi onSynchr oni zati on
interface for Container-Managed Transactions, which includes
af t er Begi n, bef or eConpl eti on, and af t er Conpl eti on.

Entity Beans

An entity bean is a complex business entity. An entity bean models a business entity
or models multiple actions within a business process. Entity beans are often used to
facilitate business services that involve data and computations on that data. For
example, an application developer might implement an entity bean to retrieve and
perform computation on items within a purchase order. Your entity bean can
manage multiple, dependent, persistent objects in performing its necessary tasks.

An entity bean is a remote object that manages persistent data, performs complex
business logic, potentially uses several dependent Java objects, and can be uniquely
identified by a primary key. Entity beans are normally coarse-grained persistent
objects, because they utilize persistent data stored within several fine-grained
persistent Java objects.

Entity beans are persistent because they do survive a server crash or a network
failure. When an entity bean is re-instantiated, the state of previous instances is
automatically restored.

1-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

Uniquely Identified by a Primary Key

Each entity bean has a persistent identity associated with it. That is, the entity bean
contains a unique identity that can be retrieved if you have the primary key—given
the primary key, a client can retrieve the entity bean. If the bean is not available, the
container instantiates the bean and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

Managing Persistent Data

The persistence for entity bean data is provided both for saving state when the bean
is passivated and for recovering the state when a failover has occurred. Entity beans
are able to survive because the data is stored persistently by the container in some
form of data storage system, such as a database. Entity beans persist business data
using one of the two following methods:

« Automatically by the container using a container-managed persistent (CMP)
entity bean.

« Programmatically through methods implemented in a bean-managed persistent
(BMP) entity bean. These methods use JDBC or SQLJ to manage persistence.

An entity bean manages its data persistence through callback methods, which are
defined in the j avax. ej b. Ent i t yBean interface. When you implement the

Ent i t yBean interface in your bean class, you develop each of the callback
functions as designated by the type of persistence that you choose: bean-managed
persistence or container-managed persistence. The container invokes the callback
functions at designated times.

The j avax. ej b. Enti t yBean interface has the following definition:

public interface javax.ej b. EntityBean extends j avax. ej b. Ent erpri seBean {
public abstract void ejbActivate();
public abstract void ejbLoad();
public abstract void ej bPassivate();
public abstract void ej bRenove();
public abstract void ej bStore();
public abstract void setEntityContext(EntityContext ctx);
public abstract voic unsetEntityGontext();

}

The container expects these methods to have the following functionality:

EJB Overview 1-17

Types of EJBs

« ejbCreate

« ejbPostCreate

« ejbRemove

« ejbStore

« ejblLoad

« setEntityContext

You must implement an ej bCr eat e method
corresponding to each cr eat e method declared in
the home interface. When the client invokes the

cr eat e method, the container first invokes the
constructor to instantiate the object, then it invokes
the corresponding ej bCr eat e method. The

ej bCr eat e method performs the following:

« creates any persistent storage for its data, such
as database rows

« intializes a unique primary key and returns it

The container invokes this method after the
environment is set. For each ej bCr eat e method,
an ej bPost Cr eat e method must exist with the
same arguments. This method can be used to
initialize parameters within or from the entity
context.

The container invokes this method before it ends
the life of the session object. This method can
perform any required clean-up, for example
closing external resources such as file handles.

The container invokes this method right before a
transaction commits. It saves the persistent data to
an outside resource, such as a database.

The container invokes this method when the data
should be reinitialized from the database. This
normally occurs after activation of an entity bean.

Associates the bean instance with context
information. The container calls this method after
the bean creation. The enterprise bean can store the
reference to the context object in an instance
variable, for use in transaction management. Beans
that manage their own transactions can use the
session context to get the transaction context.

You can also allocate any resources that will exist
for the lifetime of the bean within this method. You
should release these resources in

unset Enti t yCont ext.

1-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

« unsetEntityContext Unsetthe associated entity context and release any
resources allocated in set Ent i t yCont ext.

« ejbActivate The container calls this method directly before it
activates an object that was previously passivated.
Perform any necessary reaquisition of resources in
this method.

« ejbPassivate The container calls this method before it passivates
the object. Release any resources that can be easily
re-created in ej bAct i vat e, and save storage
space. Normally, you want to free resources that
cannot be passivated, such as sockets or database
connections. Retrieve these resources in the
ej bActi vat e method.

Using ejbCreate and ejbPostCreate An entity bean is similar to a session bean because
certain callback methods, such as ej bCr eat e, are invoked at specified times. Entity
beans use callback functions for managing its persistent data, primary key, and
context information. The following diagram shows what methods are called when
an entity bean is created.

Figure 1-2 Creating the Entity Bean

dient Entity Bean
<Bean> constructor
ej bCreate(...)
create primary key constructor

ej bSet Ent it yCont ext ()
ej bPost Create(...){

Using setEntityContext An entity bean instance uses this method to retain a reference
to its context. Entity beans have contexts that the container maintains and makes
available to the beans. The bean may use the methods in the entity context to
retrieve information about the bean, such as security, and transactional role. Refer to
the Enterprise JavaBeans specification from Sun Microsystems for the full range of
information that you can retrieve about the bean from the context.

EJB Overview 1-19

Types of EJBs

The container invokes the set Ent i t yCont ext method, after it first instantiates
the bean, to enable the bean to retrieve the context. The container will never call this
method from within a transaction context. If the bean does not save the context at
this point, the bean will never gain access to the context.

Note: You can also use the set Ent i t yCont ext and
unset Enti t yCont ext methods to allocate and destroy any
resources that will exist for the lifetime of the instance.

When the container calls this method, it passes the reference of the Ent i t yCon-
t ext object to the bean. The bean can then store the reference for later use. The fol-
lowing example shows the bean saving the context in the t hi s. ct x variable.

public void set EntityContext (EntityContext ctx) { this.ctx =ctx; }

Using ejpbRemove When the client invokes the r enove method, the container invokes
the methods shown in Figure 1-3.

Figure 1-3 Removing the Entity Bean

dient Entity Bean

ej bUnset Ent i t yCont ext ()

renmove ej bRemove()

Using ejbStore and ejbLoad In addition, the ej bSt or e and ej bLoad methods are
called for managing your persistent data. These are the most important callback
methods—for bean-managed persistent beans. Container-managed persistent beans
can leave these methods empty, because the persistence is managed by the
container.

« Theej bSt or e method is called by the container before the object is passivated
or whenever a transaction is about to end. Its purpose is to save the persistent
data to an outside resource, such as a database.

« Theej bLoad method is called by the container before the object is activated or
whenever a transaction has begun, or when an entity bean is instantiated. Its
purpose is to restore any persistent data that exists for this particular bean
instance.

1-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

Container-Managed Persistence

You can choose to have the container manage your persistent data for the bean. You
do not have to implement some of the callback methods to manage persistence for
your bean’s data, because the container stores and reloads your persistent data to
and from the database. When you use container-managed persistence, the container
invokes a persistence manager class that provides the persistence management
business logic. In addition, you do not have to provide management for the primary
key: the container provides this key for the bean.

« Callback methods—The container still invokes the callback methods, so you can
add logic for other purposes. At the least, you must provide an empty
implementation for all callback methods.

« Primary key—The primary key fields in a CMP bean must be declared as
container-managed persistent fields in the deployment descriptor. All fields
within the primary key are restricted to be either primitive, serializable, and
types that can be mapped to SQL types.

The following table details the implementation requirements for the callback
functions of the bean class:

Callback Method Functionality Required

ej bCreate You must initialize all container-managed persistent fields,
including the primary key.

ej bPost Creat e You have the option to provide any additional initialization,
which can involve the entity context.

ej bRemove No functionality for removing the persistent data from the
outside resource is required. You must at least provide an
empty implementation for the callback, which means that
you can add logic for performing any cleanup functionality
you require.

ej bFi ndByPr i mar yKey No functionality is required for returning the primary key to
the container. The container manages the primary key—after
it is initialized by the ej bCr eat e method. You still must
provide an empty implementation for this method.

ej bStore No functionaltiy is required for saving persistent data within
this method. The persistent manager saves all persistent data
to the database for you. However, you must provide at least
an empty implementation.

EJB Overview 1-21

Types of EJBs

Callback Method

Functionality Required

ej bLoad

set Enti t yCont ext

unset Ent i t yCont ext

No functionality is required for restoring persistent data
within this method. The persistence manager restores all
persistent data for you. However, you must provide at least
an empty implementation.

Associates the bean instance with context information. The
container calls this method after the bean creation. The
enterprise bean can store the reference to the context object
in an instance variable, for use in transaction management.
Beans that manage their own transactions can use the session
context to get the transaction context.

You can also allocate any resources that will exist for the
lifetime of the bean within this method. You should release
these resources in unset Ent i t yCont ext .

Unset the associated entity context and release any resources
allocated inset Enti t yCont ext .

Differences Between Bean and Container-Managed Persistence

There are two methods for managing the persistent data within an entity bean:
bean-managed (BMP) and container-managed persistence (CMP). The main
difference between BMP and CMP beans is defined by who manages the persistence
of the entity bean’s data. With CMP beans, the container manages the
persistence—the bean deployment descriptor specifies how to map the data and
where the data is stored. With BMP beans, the logic for saving the data and where it
is saved is programmed within designated methods. These methods are invoked by
the container at the appropriate moments.

In practical terms, the following table provides a definition for both types, and a
summary of the programmatic and declarative differences between them:

1-22 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Types of EJBs

Bean-Managed Persistence

Container-Managed Persistence

Persistence management

Finder methods allowed

Defining CMP fields

Mapping CMP fields to
resource destination

Definition of persistence
manager

You are required to implement the
persistence management within the

ej bStore, ej bLoad, ej bCr eat e, and
ej bRenpve EntityBean methods.
These methods must contain logic for

saving and restoring the persistent data.

For example, the ej bSt or e method
must have logic in it to store the entity
bean’s data to the appropriate database.
If it does not, the data can be lost.

The f i ndByPr i mar yKey method and
other finder methods are allowed.

N/A

N/A

N/A

The management of the persistent data
is done for you. That is, the container
invokes a persistence manager on behalf
of your bean.

You use ej bSt or e and ej bLoad for
preparing the data before the commit or
for manipulating the data after it is
refreshed from the database. The
container always invokes the ej bSt or e
method right before the commit. In
addition, it always invokes the ej bLoad
method right after reinstating CMP data
from the database.

The f i ndByPri mar yKey method and
other finder methods clause are allowed.

Required within the EJB deployment
descriptor. The primary key must also
be declared as a CMP field.

Required. Dependent on persistence
manager.

Required within the Oracle-specific
deployment descriptor. See the next
section for a description of a persistence
manager.

Message-Driven Beans

Message-Driven Beans (MDB) provide an easier method to implement asychronous
communication than using straight IMS. MDBs were created to receive
asynchronous JMS messages. The container handles much of the setup required for
JMS queues and topics. It sends all messages to the interested MDB.

Previously, EJBs could not send or receive JMS messages. It took creating MDBs for
an EJB-type object to receive IMS messages. This provides all of the asynchronous

and publish/subscribe abilities to an enterprise object that is able to be synchronous
with other Java objects.

The purpose of an MDB is to exist within a pool and to receive and process
incoming messages from a JMS queue. The container invokes a bean from the queue
to handle each incoming message from the queue. No object invokes an MDB

EJB Overview 1-23

Types of EJBs

directly: all invocation for an MDB comes from the container. After the container
invokes the MDB, it can invoke other EJBs or Java objects to continue the request.

A MDB is similar to a stateless session bean because it does not save conversational
state and is used for handling multiple incoming requests. Instead of handling
direct requests from a client, MDBs handle requests placed on a queue. Figure 1-4
demonstrates this by showing how clients place requests on a queue. The container
takes the requests off of the queue and gives the request to an MDB in its pool.

Figure 1-4 Message Driven Beans

JMS Queue EJB Container

e

Pool of MDBs

MDBs implement the j avax. ej b. MessageDr i venBean interface, which also
inherits the j avax. j ms. MessagelLi st ener methods. Within these interfaces, the
following methods must be implemented:

Method Description

onMessage(nsg) The container dequeues a message from the JMS
gueue associated with this MDB and gives it to this
instance by invoking this method. This method
must have an implementation for handling the
message appropriately.

set MessageDri venCont ext (ct x) After the bean is created, the
set MessageDr i venCont ext method is invoked.
This method is similar to the EJB
set Sessi onCont ext and set Ent i t yCont ext
methods.

ej bCreat e() This method is used just like the stateless session
bean ej bCr eat e method. No initialization should
be done in this method. However, any resources
that you allocate within this method will exist for
this object.

1-24 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Difference Between Session and Entity Beans

Method Description

ej bRermove() Delete any resources allocated within the
ej bCr eat e method.

The container handles JMS message retrieval and acknowledgment. Your MDB does
not have to worry about JMS specifics. The MDB is associated with an existing JMS
gueue. Once associated, the container handles dequeuing messages and sending
acknowledgments. The container communicates the JMS message through the
onMessage method.

Difference Between Session and Entity Beans

The major differences between session and entity beans are that entity beans
involve a framework for persistent data management, a persistent identity, and
complex business logic. The following table illustrates the different interfaces for
session and entity beans. Notice that the difference between the two types of EJBs
exists within the bean class and the primary key. All of the persistent data
management is done within the bean class methods.

Entity Bean Session Bean
Remote interface Extends Extends

j avax. ej b. EJBOhj ect j avax. ej b. EJBOhj ect
Home interface Extendsj avax. ej b. EJBHome Extendsj avax. ej b. EJBHome
Bean class Extends Extends

javax. ej b. EntityBean j avax. ej b. Sessi onBean
Primary key Used to identify and retrieve Not used for session beans.

specific bean instances Stateful session beans do have

an identity, but it is not
externalized.

EJB Overview 1-25

Difference Between Session and Entity Beans

1-26 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

2

An EJB Primer For OC4J

After you have installed Oracle9iAS Containers for J2EE (OC4J) and configured the
base server and default Web site, you can start developing J2EE applications. This
chapter assumes that you have a working familiarity with simple J2EE concepts and
a basic understanding for EJB development.

This chapter demonstrates simple EJB development with a basic OC4J-specific
configuration and deployment. Download the stateless session bean example
(statel ess. j ar) from the OC4J sample code page at

http://otn.oracl e. com sanmpl e_

code/tech/javal/ oc4dj/ htdocs/ oc4j sanpl ecode/ oc4j -denp-ej b. ht m
on the OTN Web site.

To develop and deploy EJB applications with OC4J, do the following:

« Develop EJBs—Developing and testing an EJB module within the standard J2EE
specification.

« Prepare the EJB Application for Assembly—Before deploying, you must modify
an XML file that acts as a manifest file for the enterprise application.

« Deploy the Enterprise Application to OC4J—Archive the enterprise Java
application into an Enterprise ARchive (EAR) file and deploy it to OC4J.

« Access the EJlB—Develop the client to access the bean through the remote or
local interface.

An EJB Primer For OC4J 2-1

Develop EJBs

Develop EJBs

You develop EJB components for the OC4J environment in the same way as in any
other standard J2EE environment. Here are the steps to develop EJBs:

1. Create the Development Directory—Create a development directory for the
enterprise application (as Figure 2-1 shows).

2. Implement the E}JB—Develop your EJB with its home interfaces, component
interfaces, and bean implementation.

3. Create the Deployment Descriptor—Create the standard J2EE EJB deployment
descriptor for all beans in your EJB application.

4. Archive the EJB Application—Archive your EJB files into a JAR file.

Create the Development Directory

Although you can develop your application in any manner, we encourage you to
use consistent naming for locating your application easily. One method would be to
implement your enterprise Java application under a single parent directory
structure, separating each module of the application into its own subdirectory.

Our employee example was developed using the directory structure mentioned in
the Oracle9iAS Containers for J2EE User’s Guide. Notice in Figure 2-1 that the EJB and
Web modules exist under the enpl oyee application parent directory and are
developed separately in their own directory.

2-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Develop EJBs

Figure 2-1 Employee Directory Structure

...l enpl oyee/

META- | NF/
appl i cation. xm

<ej b_nodul e>/

EJB classes (Enpl oyee.class, ...)

META- | NF/
ej b-jar.xn

<web_nodul e>/

i ndex. ht ni

JSP pages

T/\EB-I NF/

L web. xn

1 cl asses/
|7Servl et cl asses
i b/ (Enpl oyeeSer vl et . cl ass)

dependent libraries

Note: For EJB modules, the top of the module (ej b_nodul e)
represents the start of a search path for classes. As a result, classes
belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to a
package class 'nyapp. Enpl oyee. cl ass’ is expected to be located
in"...enpl oyee/ ej b_nodul e/ myapp/ Enpl oyee. cl ass".

An EJB Primer For OC4J 2-3

Develop EJBs

Implement the EJB

When you implement an EJB, create the following:

1. The home interfaces for the bean. The home interface defines the cr eat e
method for your bean. If the bean is an entity bean, it also defines the finder
method(s) for that bean.

a. The remote home interface extends j avax. ej b. EJBHorre.
b. The local home interface extends j avax. ej b. EJBLocal Home.
2. The component interfaces for the bean.

a. The remote interface declares the methods that a client can invoke remotely.
It extends j avax. ej b. EJBObj ect .

b. The local interface declares the methods that a collocated bean can invoke
locally. It extends j avax. ej b. EJBLocal Obj ect.

3. The bean implementation includes the following:

a. The implementation of the business methods that are declared in the
component interfaces.

b. The container callback methods that are inherited from either the
j avax. ej b. Sessi onBean orj avax. ej b. Ent i t yBean interfaces.

c. TheejbCreate andej bPost Cr eat e methods with parameters matching
those of the cr eat e method as defined in the home interfaces.

Creating the Home Interfaces

The home interfaces (remote and local) are used to create the bean instance; thus,
they define the cr eat e method for your bean. Each type of EJB can define the
cr eat e method in the following ways:

EJB Type Create Parameters
Stateless Session Bean Can have only a single cr eat e method, with no parameters.
Stateful Session Bean Can have one or more cr eat e methods, each with its own

defined parameters.

Entity Bean Can have zero or more cr eat e methods, each with its own
defined parameters. All entity beans must define one or more
finder methods, where at least one isa f i ndByPri mar yKey
method.

2-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Develop EJBs

For each cr eat e method, a corresponding ej bCr eat e method is defined in the
bean implementation.

Remote Invocation Any remote client invokes the EJB through its remote interface.
The client invokes the cr eat e method that is declared within the remote home
interface. The container passes the client call to the ej bCr eat e method—with the
appropriate parameter signature—within the bean implementation. You can use the
parameter arguments to initialize the state of the new EJB object.

1. The remote home interface must extend the j avax. ej b. EJBHone interface.
2. All cr eat e methods must throw the following exceptions:
« javax.ejb.Creat eException

« eitherjava.rm . Renot eExceptionorjavax. ej b. EJBExcepti on

Example 2-1 Remote Home Interface for Session Bean

The following code sample illustrates a remote home interface for a session bean
called Enpl oyeeHorre.

package enpl oyee;

i nport javax.ejb.*;
inport java.rm.*;

public interface Enpl oyeetbne extends EJBHone
{
publ i ¢ Enpl oyee creat e()
throws O eat eException, RenoteExcepti on;

}

Local Invocation An EJB can be called locally from a client that exists in the same
container. Thus, a collocated bean, JSP, or servlet invokes the cr eat e method that is
declared within the local home interface. The container passes the client call to the
ej bCr eat e method—with the appropriate parameter signature—within the bean
implementation. You can use the parameter arguments to initialize the state of the
new EJB object.

An EJB Primer For OC4J 2-5

Develop EJBs

1. The local home interface must extend the j avax. ej b. EJBLocal Hone
interface.

2. All cr eat e methods must throw the following exceptions:
« javax.ejb.Creat eException

=« javax.ejb. EJBException

Example 2-2 Local Home Interface for Session Bean

The following code sample shows a local home interface for a session bean called
Enpl oyeelLocal Hone.

package enpl oyee;
import javax.ejb.*;

public interface Enpl oyeelLocal Hone extends EJBLocal Hone

{
}

public Enpl oyeelLocal create() throws CreateException, EJBException;

Creating the Component Interfaces

The component interfaces define the business methods of the bean that a client can
invoke.

Creating the Remote Interface The remote interface defines the business methods that a
remote client can invoke. Here are the requirements for developing the remote
interface:

1. The remote interface of the bean must extend the j avax. ej b. EJBObj ect
interface, and its methods must throw the j ava. r ni . Renpt eExcepti on
exception.

2. You must declare the remote interface and its methods as publ i ¢ for remote
clients.

3. The remote interface, all its method parameters, and return types must be
serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshals the object on both
ends.

2-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Develop EJBs

4. Any exception can be thrown to the client, as long as it is serializable. Runtime
exceptions, including EJBExcept i on and Renpt eExcept i on, are transferred
back to the client as remote runtime exceptions.

Example 2-3 Remote Interface Example for Employee Session Bean

The following code sample shows a remote interface called Employee with its
defined methods, each of which will be implemented in the stateless session bean.

package enpl oyee;

i mport javax.ejb.*;
import java.rm.*;
import java.util.*;

public interface Enpl oyee extends EJBObj ect

{
public Col | ection get Enpl oyees()
t hrows Renot eException;
publ i c EnpRecord get Enpl oyee(| nteger enpNo)
t hrows RenoteException;
public voi d set Enpl oyee(l nteger enpNo, String enpNane, Float salary)
throws RenoteException;
public EnpRecord addEnpl oyee(lnteger enpNo, String enpNanme,
Fl oat sal ary)
throws RenoteException;
public voi d renmoveEnpl oyee(l nteger enpNo)
throws RenoteException;
}

Creating the Local Interface The local interface defines the business methods of the
bean that a local (collocated) client can invoke.

1. The local interface of the bean must extend the j avax. ej b. EJBLocal Obj ect
interface.

2. You declare the local interface and its methods as publ i c.

An EJB Primer For OC4J 2-7

Develop EJBs

Example 2-4 Local Interface for Employee Session Bean

The following code sample contains a local interface called Enpl oyeeLocal with
its defined methods, each of which will be implemented in the stateless session
bean.

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;
inport java.util.*;

public interface Enpl oyeelLocal extends EJBLocal Obj ect

{
public Col | ection get Enpl oyees() throws EJBException;

publ i c EnpRecord get Enpl oyee(| nteger enpNo)
throws Finder Exception, EJBException;

public voi d set Enpl oyee(l nteger enpNo, String enpNane, Float salary)
throws Finder Exception, EJBException;

public EnpRecord addEnpl oyee(lnteger enpNo, String enpNanme,
Float salary) throws CreateException, EJBException;

public voi d renmoveEnpl oyee(l nteger enpNo)
throws RenoveException, EJBExcepti on;

Implementing the Bean

The bean contains the business logic for your application. It implements the
following methods:

1. The signature for each of these methods must match the signature in the remote
or local interface.

The bean in the example application consists of one class, Enmpl oyeeBean, that
retrieves an employee’s information.

2. The methods defined in the home interfaces are inherited from the
Sessi onBean or Ent i t yBean interface. The container uses these methods for
controlling the life cycle of the bean. These include the ej b<Act i on> methods,
such as ej bActi vat e, ej bPassi vat e, and so on.

2-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Develop EJBs

The ej bCr eat e methods that correspond to the cr eat e method(s) that are

declared in the home interfaces. The container invokes the appropriate
ej bCr eat e method when the client invokes the corresponding cr eat e
method.

Any methods that are private to the bean or package used for facilitating the

business logic. This includes private methods that your public methods use for

completing the tasks requested of them.

Example 2-5 Employee Session Bean Implementation

The following code shows the bean implementation for the employee example. To
compact this example, the try blocks for error processing are removed. See the full
exampleon http://otn. oracle.com

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;
inport java.util.*;
inport javax.nam ng.*;

public class Enpl oyeeBean extends (bject inplenents SessionBean

{

public SessionContext ctx;
publ i c Enpl oyeelLocal enplLocal;

public Enpl oyeeBean() {}

public EnpRecord addEnpl oyee(lnteger enpNo, String enpNanme,
Float salary) throws CreateException

{
return enpLocal . addEnpl oyee(enpNo, enpNane, salary);
}
public Col | ection get Enpl oyees()
{
return enplLocal . get Enpl oyees();
}

public EnpRecord get Enpl oyee(lnteger enpNo) throws Finder Exception
{

An EJB Primer For OC4J

2-9

Develop EJBs

return enpLocal . get Enpl oyee(enpNo) ;
}

public voi d set Enpl oyee(l nteger enmpNo, String enpNane, Float salary)
throws Finder Exception

{
enpLocal . set Enpl oyee(enpNo, enpNare, sal ary);
}
public voi d removeEnpl oyee(l nteger enpNo) throws RenoveException
{
enpLocal . renoveEnpl oyee(enpNo) ;
}

public void ejbCreate() throws O eateException

{

/] stateless bean has create nethod with no args. This
/1 causes one bean instance to which nultiple enployees cling.

}
public voi d ej bRenove()
{
enpLocal = null;
}

public void ejbActivate() { }
public void ejbPassivate() { }

public voi d set Sessi onCont ext (Sessi onContext ctx) throws EJBException

{

this.ctx = ctx;
Context context = new Initial Context();

/ *Lookup the Enpl oyeeLocal Hone object. The reference is retrieved
fromthe application-local context (java:conp/env). The variable
is specified in the assenbly descriptor (META-INF/ ejb-jar.xm).

*/

(bj ect honme(hj ect =
cont ext . | ookup("java: conp/ env/ Enpl oyeelLocal Bean");

2-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Develop EJBs

/1 Narrow the reference to Enpl oyeeHone.
Enpl oyeeLocal Hone hone = (Enpl oyeelLocal Home) homeQhj ect ;

/] Create renote object and narrow the reference to Enployee.
enpLocal = (Enpl oyeeLocal) hone. create();

}
public voi d unset Sessi onCont ext ()
{
this.ctx = null;
}

}

Create the Deployment Descriptor

After implementing and compiling your classes, you must create the standard J2EE
EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ej b-j ar. xnl file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The
structure for this file is mandated in the DTD file, which is provided at "
http://java. sun.com dtd/ejb-jar_2_0.dtd".

After creation, place the deployment descriptors for the EJB application in the
META- | NF directory that is located in the same directory as the EJB classes. See
Figure 2-1 for more information.

The following example shows the sections that are necessary for the Enpl oyee
example, which implements both a remote and a local interface.

An EJB Primer For OC4J 2-11

Develop EJBs

Example 2-6 XML Deployment Descriptor for Employee Bean

The following is the deployment descriptor for a version of the employee example
that uses a stateless session bean.

<?xm version="1.0" encodi ng="UTF-8" ?>
<I DCCTYPE ej b-jar PUBLIC "-//Sun Mcrosystems, Inc.//DID Enterprise
JavaBeans 2.0//EN' "http://java.sun.com dtd/ejb-jar_2 0.dtd">

<ejb-jar>
<enterpri se-beans>
<sessi on>
<description>Sessi on Bean Enpl oyee Exanpl e</descri ption>
<ej b- nanme>Enpl oyeeBean</ ej b- name>
<hone>enpl oyee. Enpl oyeeHone</ hone>
<renot e>enpl oyee. Enpl oyee</ r enot e>
<l ocal - home>enpl oyee. Enpl oyeeLocal Home</ | ocal - hone>
<l ocal >enpl oyee. Enpl oyeelLocal </ | ocal >
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ ej b- ¢l ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Bean</transacti on-type>
</ sessi on>
</enterprise-beans>
</ejb-jar>

Archive the EJB Application

After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should include
all EJB application files and the deployment descriptor.

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in the Oracle9iAS Containers for J2EE User’s Guide.

For example, to archive your compiled EJB class files and XML files for the
Enpl oyee example into a JAR file, perform the following in the
../ enmpl oyee/ ej b_nodul e directory:

% jar cvf Enployee-ejb.jar .

2-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Prepare the EJB Application for Assembly

This archives all files contained within the ej b_nodul e subdirectory within the
JAR file.

Prepare the EJB Application for Assembly
Before deploying, perform the following:

1. Modify the appl i cation. xm file with the modules of the enterprise Java
application.

2. Archive all elements of the application into an EAR file.

Modify the Application. XML File

The appl i cati on. xn file acts as the manifest file for the application and
contains a list of the modules that are included within your enterprise application.
You use each <nodul e> element defined in the appl i cati on. xm file to
designate what comprises your enterprise application. Each module describes one
of three things: EJB JAR, Web WAR, or any client files. Respectively, designate the
<ej b>, <web>, and <j ava> elements in separate <nodul e> elements.

« The <ej b> element specifies the EJB JAR filename.

« The <web> element specifies the Web WAR filename in the <web- uri >
element, and its context in the <cont ext > element.

« The <j ava> element specifies the client JAR filename, if any.

As Figure 2-2 shows, the appl i cati on. xm file is located under a META- | NF
directory under the parent directory for the application. The JAR, WAR, and client
JAR files should be contained within this directory. Because of this proximity, the
appl i cation. xml file refers to the JAR and WAR files only by name and relative
path—not by full directory path. If these files were located in subdirectories under
the parent directory, then these subdirectories must be specified in addition to the
filename.

An EJB Primer For OC4J 2-13

Prepare the EJB Application for Assembly

Figure 2-2 Archive Directory Format

enpl oyee/
META- | NF/
appl i cation. xm

Enpl oyee-¢ej b. j ar
Enpl oyee- web. war
Enpl oyee-client.jar

For example, the following example modifies the <ej b>, <web>, and <j ava>
module elements within appl i cati on. xm for the Employee EJB application that
also contains a servlet that interacts with the EJB.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DCCTYPE application PUBLIC "-//Sun M crosystens, Inc.//DTD J2EE
Application 1.3//EN" "http://java.sun.conidtd/ application_1_3.dtd">
<appl i cation>
<nmodul e>
<ej b>Enpl oyee-ej b.j ar</ ej b>
</ modul e>
<nodul e>
<weh>
<web- uri >Enpl oyee- web. war </ web- uri >
<cont ext - r oot >/ enpl oyee</ cont ext - r oot >
</ web>
</ modul e>
<nmodul e>
<j ava>Enpl oyee-client.jar</java>
</ modul e>
</ appl i cation>

Create the EAR File

Create the EAR file that contains the JAR, WAR, and XML files for the application.
Note that the appl i cati on. xm file serves as the EAR manifest file.

To create the Enpl oyee. EARfile, execute the following in the employee directory
contained in Figure 2-2:

%jar cvf Enployee.ear .

2-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Access the EJB

This step archives the appl i cati on. xm , the Enpl oyee- ¢ej b. j ar, the
Enpl oyee- web. war, and the Enpl oyee-cl i ent . j ar files into the
Enpl oyee. ear file.

Deploy the Enterprise Application to OC4J

After archiving your application into an EAR file, deploy the application to OCA4J.
See the Oracle9iAS Containers for J2EE User’s Guide for information on how to deploy
your application.

Access the EJB

All EJB clients—including standalone clients, servlets, JSPs, and
JavaBeans—perform the following steps to instantiate a bean, invoke its methods,
and destroy the bean:

1.

Look up the home interface through a JNDI lookup, which is used for the life
cycle management. Follow JNDI conventions for retrieving the bean reference,
including setting up JNDI properties if the bean is remote to the client.

Narrow the returned object from the INDI lookup to the home interface, as
follows:

a. When accessing the remote interface, use the
Por t abl eRenot eCbj ect . nar r ow method to narrow the returned object.

b. When accessing the local interface, cast the returned object with the local
home interface type.

Create instances of the bean in the server through the returned object. Invoking
the cr eat e method on the home interface causes a new bean to be instantiated
and returns a bean reference.

Note: For entity beans that are already instantiated, you can
retrieve the bean reference through one of its finder methods.

Invoke business methods, which are defined in the component (remote or local)
interface.

After you are finished, invoke the r emove method. This will either remove the
bean instance or return it to a pool. The container controls how to act on the
r enove method.

An EJB Primer For OC4J 2-15

Access the EJB

Example 2—7 A Servlet Acting as a Remote Client

The following example is executed from a servlet that acts as a remote client. Any
remote client must set up JNDI properties before retrieving the object, using a JNDI
lookup.

Note: The JNDI name is specified in the <ej b- r ef > element in
the client’s appl i cati on-client.xm file—as follows:

<ej b-ref>
<ej b-r ef - name>Enpl oyeeBean</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<home>enpl oyee. Enpl oyeeHone</ hone>
<r enot e>enpl oyee. Enpl oyee</ r enot e>
</ejb-ref>

This code should be executed within a TRY block for catching errors, but the TRY
block was removed to show the logic clearly. See the example for the full exception
coverage.

public class Enpl oyeeServl et extends HtpServl et
{

Enpl oyeeHone hone;

Enpl oyee enpBean;

public void init() throws ServletException
{
/* initialize JND context by setting factory, url, and credentials
in a hashtable */
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com evernm nd. server.rni. Applicationdientlnitial ContextFactory");
env. put (Cont ext. PROVIDER_URL, "ornmi ://myhost/enpl oyee");
env. put (Cont ext . SECURI TY_PRI NCI PAL, "admi n");
env. put (Cont ext. SECUR TY_CREDENTI ALS, "wel cone");

/*1. Retrieve renote interface using a JND | ookup*/
Context context = new Initial Context();

/'k'k
* Lookup the Enpl oyeeHone object. The reference is retrieved fromthe
* application-local context (java:conp/env). The variable is

2-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Access the EJB

* specified in the application-client.xm).

*/

bj ect homeChj ect = context. | ookup("j ava: conp/ env/ Enpl oyeeBean") ;

112.
I

Narrow the reference to Enpl oyeeHone. Since this is a renote
obj ect, use the Portabl eRenot eChj ect . narrow net hod.

Enpl oyeeHorre hone = (Enpl oyeeHone)

113.

Por t abl eRenot eChj ect . narrow(honehj ect, Enpl oyeeHorre. cl ass) ;

Create the renote object and narrow the reference to Enpl oyee.

Enpl oyee enpBean = (Enpl oyee)

Por t abl eRenot e(hj ect . narrow(hone. create(), Enpl oyee. cl ass);

public voi d doGet (HttpServl et Request request,

Ht t pSer vl et Response response)
throws ServletException, |CException

response. set Content Type("text/htm ");
Servl et Qut put Stream out = response. get Qut put Stream();

114,

I nvoke a business nethod on the renpte interface reference.

Col I ection enps = enpBean. get Enpl oyees();

out.
out.
out.
out.
out .

println("<htm >");
println("<head><titl|e>Enpl oyee Bean</title></head>");
println("<body>");
println("<table border='2">");
println("<tr><td>" + "Enpl oyeeNo"
+ "</ td><td>" + "Enpl oyeeName</ b>"
+ "</ td><td>" + "Sal ar y</ b>"
+ "<ftd></tr>");

Iterator iterator = enps.iterator();

whil e(iterator. hasNext()) {

EnpRecord enp = (EnpRecord)iterator. next();
out.println("<tr><td>" + enp.get EnpNo()
+ "</ td><td>" + enp. get EnpNang()
+ "< td><td>" + enp. get Sal ary()
+ "< td></tr>");

An EJB Primer For OC4J 2-17

Access the EJB

out.println("</table>");
out. println("</body>");
out.printlin("</ htm>");
out. cl ose();

Example 2-8 A Session Bean Acting as a Local Client

The following example is executed from a session bean that is collocated with the
Employee bean. Thus, the session bean uses the local interface, and the JNDI lookup
does not require JNDI properties.

Note: The JNDI name is specified in the <ej b- r ef > element in
the session bean EJB deployment descriptor as follows:

<ej b-1ocal -ref>
<ej b-r ef - name>Enpl oyeelLocal Bean
</ ej b-ref-nane>
<ej b-ref-type>Sessi on</ejb-ref-type>
<l ocal - hone>enpl oyee. Enpl oyeelLocal Hone
</l ocal - hone>
<l ocal >enpl oyee. Enpl oyeeLocal </ | ocal >
</ ej b-1 ocal-ref >

This code should be executed within a TRY block for catching errors, but the TRY
block was removed to show the logic clearly. See the example for the full exception
coverage.

/1 1. Retreive the Hone Interface using a JNDI Lookup
//Retrieve the initial context for JNDI. No properties needed when | ocal
Cont ext context = new Initial Context();

//Retrieve the home interface using a JNDI | ookup using
/1 the java: conp/ env bean environment variable specified in web.xni
(hj ect hone(hj ect = context .| ookup("]java: conp/ env/ Enpl oyeeLocal Bean");

/12. Narrow the returned object to be an Enpl oyeeHone object. Since
/I the client is local, cast it to the correct object type.

2-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Access the EJB

Enpl oyeeLocal Hone honme = (Enpl oyeelLocal Home) homeQhj ect ;

/13. Create the | ocal Enployee bean instance, return the reference
Enpl oyee enpBean = (Enpl oyee) hone.create();

/14. Invoke a business nmethod on the local interface reference.
Col I ection enps = enpBean. get Enpl oyees();

An EJB Primer For OC4J 2-19

Access the EJB

2-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

3

CMP Entity Beans

This chapter demonstrates simple Container Managed Persistence (CMP) EJB
development with a basic configuration and deployment. Download the CMP
entity bean example (cnpapp. j ar) from the OC4J sample code page at
http://otn.oracle.conm sanpl e_code/tech/javal/ oc4j/ ht docs/ oc4j sanpl eco
de/ oc4j - deno- ej b. ht M on the OTN Web site.

This chapter demonstrates the following:

Entity Bean Overview
Creating Entity Beans
Primary Key
Persistence Fields

CMP Types

See Chapter 6, "BMP Entity Beans", for an example of how to create a simple
bean-managed persistent entity bean. For a description of persisting object
relationships between EJBs, see Chapter 4, "Entity Relationship Mapping".

CMP Entity Beans 3-1

Entity Bean Overview

Entity Bean Overview

With EJB 2.0 and the local interface support, most developers agree that entity beans
should be paired with a session bean, servlet, or JSP that acts as the client interface.
The entity bean is a coarse-grain bean that encapsulates functionality and represents
data and dependent objects. Thus, you decouple the client from the data so that if
the data changes, the client is not affected. For efficiency, the session bean, servlet,
or JSP can be collocated with entity beans and can coordinate between multiple
entity beans through their local interfaces. This is known as a session facade design.
Seethe htt p://j ava. sun. comWeb site for more information on session facade
design.

An entity bean can aggregate objects together and effectively persist data and
related objects under the umbrella of transactional, security, and concurrency
support through the container. This and the following chapters focus on how to use
the persistence functionality of the entity bean.

An entity bean manages persistent data in one of two ways: container-managed
persistence (CMP) and bean-managed persistence (BMP). The primary difference
between the two is as follows:

« Container-managed persistence—The EJB container manages data by saving it
to a designated resource, which is normally a database. For this to occur, you
must define the data that the container is to manage within the deployment
descriptors. The container manages the data by saving it to the database.

« Bean-managed persistence—The bean implementation manages the data within
callback methods. All the logic for storing data to your persistent storage must
be included in the ej bSt or e method and reloaded from your storage in the
ej bLoad method. The container invokes these methods when necessary.

3-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

Creating Entity Beans

To create an entity bean, perform the following steps:

1.

Create the component interfaces for the bean. The component interfaces declare
the methods that a client can invoke.

a. The local component interface extends j avax. ej b. EJBLocal Obj ect .
b. The remote component interface extends j avax. ej b. EJBObj ect .

Create the home interfaces for the bean. The home interface defines the cr eat e
and finder methods, including f i ndByPr i mar yKey, for your bean.

a. The local home interface extends j avax. ej b. EJBLocal Hone.
b. The remote home interface extends j avax. ej b. EJBHorre.

Define the primary key for the bean. The primary key identifies each entity
bean instance and is a serializable class. You can use a simple data type class,
such asj ava. | ang. Stri ng, or define a complex class, such as one with two
or more objects as components of the primary key.

Implement the bean. This includes the following:

a. The implementation for the methods that are declared in your component
interfaces.

b. The methods that are defined in the j avax. ej b. Ent i t yBean interface.

c. The methods that match the methods that are declared in your home
interfaces, which include the following:

* Theej bCreat e and ej bPost Cr eat e methods with parameters
matching the associated cr eat e method defined in the home interface.

* Finder methods, other than ej bFi ndByPr i mar yKey and
ej bFi ndAl | , that are defined in the home interface. The container
generates the ej bFi ndByPr i nar yKey and ej bFi ndAl | method
implementations—although you must still provide an empty method
for each of these.

Create the bean deployment descriptor. The deployment descriptor specifies
properties for the bean through XML elements. This step is where you identify
the data within the bean that is to be managed by the container. These
relationships could also entail other objects, which Chapter 4, "Entity
Relationship Mapping" discusses.

CMP Entity Beans 3-3

Creating Entity Beans

6. If the persistent data is saved to or restored from a database and you are not
using the defaults provided by the container, then you must ensure that the
correct tables exist for the bean. In the default scenario, the container creates the
table and columns for your data based on deployment descriptor and
datasource information.

7. Create an EJB JAR file containing the bean, component interface, home
interface, and the deployment descriptors. Once created, configure the
appl i cation. xm file, create an EAR file, and deploy the EJB to OC4J.

The following sections demonstrate a simple CMP entity bean. This example
continues the use of the employee example, as in other chapters—without adding
complexity.

Home Interface

The home interface is primarily used for retrieving the bean reference, on which the
client can request business methods.

« The local home interface extends j avax. ej b. EJBLocal Hone.
« The remote home interface extends j avax. ej b. EJBHore.

The home interface must contain a cr eat e method, which the client invokes to
create the bean instance. Each cr eat e method can have a different signature. For
an entity bean, you must develop a f i ndByPr i mar yKey method. Optionally, you
can develop other finder methods, which are named f i nd<nane>, for the bean.

In addition to creation and retrieval methods, you can provide home interface
business methods within the home interface. The functionality within these
methods cannot access data of a particular entity object. Instead, the purpose of
these methods is to provide a way to retrieve information that is not related to a
single entity bean instance. When the client invokes any home interface business
method, an entity bean is removed from the pool to service the request. Thus, this
method can be used to perform operations on general information related to the
bean.

Our employee example provides the local home interface with acr eat e,

fi ndByPri maryKey, fi ndAl | ,and cal cSal ary methods. The cal cSal ary
method is a home interface business method that calculates the sum of all employee
salaries. It does not access the information of a particular employee, but performs a
SQL inquiry against the database for all employees.

3-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

Example 3-1 Entity Bean Employee Home Interface

The employee home interface provides a method to create the component interface.
It also provides two finder methods: one to find a specific employee by an employee
number and one that finds all employees. Last, it supplies a home interface business
method, cal cSal ary, to calculate how much all employees cost the business.

The home interface is required to extend j avax. ej b. EJBHorre and define the
createandfindByPri naryKey methods.

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;

public interface Enpl oyeeLocal Hone extends EJBLocal Hone

{

publ i c Enpl oyeelLocal create(lnteger enpNo) throws O eateException;

/1 Find an existing enpl oyee
publ i ¢ Enpl oyeeLocal findByPrinaryKey (Integer enpNo) throws F nder Exception;

/1Fnd all enpl oyees
public @l lection findAl() throws F nder Exception;

//Calculate the Salaries of all enployees
public float cal cSal ary() throws Exception;

Component Interfaces

The entity bean component interfaces are the interfaces that the customer sees and
invokes methods upon. The component interface defines the business logic methods
for the entity bean instance.

« The local component interface extends j avax. ej b. EJBLocal Obj ect.
« The remote component interface extends j avax. ej b. EJBObj ect .

The employee entity bean example exposes the local component interface, which
contains methods for retrieving and updating employee information.

package enpl oyee;

i nport javax.ejb.*;

CMP Entity Beans 3-5

Creating Entity Beans

public interface Enpl oyeeLocal extends EJBLocal (bj ect

{
public Integer get EnpNo();
public voi d set EnpNo(| nteger enpNb);

public Sring get EhpNarre() ;
public voi d set EnpNane(String enphNane) ;

public Hoat getSalary();
public voi d setSal ary(Fl oat salary);

Entity Bean Class

The entity bean class implements the following methods:

« The target methods for the methods that are declared in the home interface,
which include the following:

— theej bCreat e method
— any finder methods, including ej bFi ndByPr i mar yKey

— any home interface business methods, which are prepended with ej bHone
in the bean implementation. For example, the cal cSal ar y method is
implemented in the ej bHomeCal cSal ary method.

=« The business logic methods that are declared in the component interfaces.
« The methods that are inherited from the Ent i t yBean interface.

However, with container-managed persistence, the container manages most of the
target methods and the data objects, thereby leaving little for you to implement.

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;

public abstract class Enpl oyeeBean inpl enents EntityBean
{

private EntityQontext ctx;
// Each QW field has a get and set nethod as accessors

public abstract |Integer getEnpNo();
public abstract voi d set EnpNo(| nteger enpNb);

3-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

public abstract Sring get EnpNane();
public abstract void set EnpNane(Sring enpNane);

public abstract Hoat getSalary();
public abstract void setSal ary(Fl oat sal ary);

publ i ¢ voi d Enpl oyeeBean()
{

/] Gonstructor. Do not initialize anything in this method.
/1 Al initialization should be perforned in the e bQeate nethod.
/1 The passivate() nethod nay destroy these attributes when pool i ng

}

public float ejbHoneCal cSalary() throws Exception
{

Gl lection ¢ = null;

try {
¢ = ((Bwl oyeelLocal Hone) t hi s. ct x. get EJBLocal Hone()). findA | ();

Iterator i =c.iterator();
float total Salary = 0;
while (i.hasNext())
{
Enpl oyeeLocal e = (Enpl oyeelLocal)i . next();
total Salary = total Salary + e.getSal ary().fl oat Val ue();
}

return total Sal ary;

catch (Fi nderException e) {
Systemout. println("Gt finder Exception "+e.get Message());
t hr ow new Except i on(e. get Message()) ;
}
}

publ i ¢ Enpl oyeePK ej bQreat e(I nteger enpNo, String enpNanme, Float sal ary)
throws O eat eException
{
set EnpNo(enpN\b) ;
set EnpNane(enpNane) ;
set Sal ary(sal ary);
return new Enpl oyeePK(enpNb) ;
}

public voi d ejbPost Oreate(lnteger enpNo, Sring enpNane, Hoat sal ary)

CMP Entity Beans 3-7

Creating Entity Beans

throws O eat eException

{
/] Called just after bean created; container takes care of inplementation
}
public void ejbStore()
{
/1 Called when bean persisted; container takes care of inplementation
}

public voi d ej bLoad()

/1 Called when bean | oaded; container takes care of inplenentation

}
public voi d ej bRenove() throws RenoveException
{
/1 Called when bean removed; container takes care of inplenentation
}

public voi d ej bActivate()

{
/1 Called when bean activated; container takes care of inplenentation.
/1 1f you need resources, retrieve them here.

}

public voi d ej bPassi vat e()
{

/1 Called when bean deactivated; contai ner takes care of inplenentation.
/] if you set resources in e bActivate, renove them here.

}

public voi d setEntityContext(EntityContext ctx)
{ this.ctx = ctx;

}

public voi d unset EntityContext ()

{ this.ctx = null;

}

}

3-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Primary Key

Primary Key

Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a
complex primary key) as a container-managed persistent field in the deployment
descriptor. All fields within the primary key are restricted to either primitive,
serializable, or types that can be mapped to SQL types. You can define your primary
key in one of two ways:

« Define the type of the primary key to be a well-known type. The type is defined
in the <pri m key- cl ass> in the deployment descriptor. The data field that is
identified as the persistent primary key is identified in the <pri nkey-fi el d>
element in the deployment descriptor. The primary key variable that is declared
within the bean class must be declared as publ i c.

« Define the type of the primary key as a serializable object within a <name>PK
class that is serializable. This class is declared in the <pri m key- cl ass>
element in the deployment descriptor. This is an advanced method for defining
a primary key and is discussed in "Defining the Primary Key in a Class" on
page 3-10.

« Specify an auto-generated primary key: If you specify aj ava. | ang. Obj ect
as the primary key class type in <pri m key- cl ass>, but do not specify the
primary key name in <pri nmkey- fi el d>, then the primary key is
auto-generated by the container. See Defining an Auto-Generated Primary Key
on page 3-11 for more information.

For a simple CMP, you can define your primary key to be a well-known type by
defining the data type of the primary key within the deployment descriptor.

The employee example defines its primary key as aj ava. | ang. | nt eger and uses
the employee number (enpNo) as its primary key.

<ent er pri se- beans>
<entity>
<di spl ay- nane>Enpl oyee</ di spl ay- nane>
<ej b- nane>Enpl oyeeBean</ ej b- nane>
<l ocal - hone>enpl oyee. Enpl oyeelLocal Hone</ | ocal - hone>
<l ocal >enpl oyee. Enpl oyeelocal </ | ocal >
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>
<per si st ence- t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reent rant >Fal se</r eent r ant >
<cnp- ver si on>2. X</ cnp- ver si on>
<abst r act - scherma- name>Enpl oyee</ abst r act - schena- nane>

CMP Entity Beans 3-9

Primary Key

<cnp-fiel d><fi el d- nanme>enpNo</fi el d- name></ cnp-fi el d>
<cnp-fi el d><fi el d- name>enpNane</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d-name>sal ary</ fi el d- nane></ cnp-fi el d>
<pri nkey-fi el d>enpNo</ pri nkey-fi el d>

<entity>

</ enterprise-beans>

Once defined, the container creates a column in the entity bean table for the primary
key and maps the primary key defined in the deployment descriptor to this column.

Defining the Primary Key in a Class

If your primary key is more complex than a simple data type, your primary key
must be a class that is serializable of the name <name>PK. You define the primary
key class within the <pri m key- cl ass> element in the deployment descriptor.

The primary key variables must adhere to the following:

Be defined within a <cnp- f i el d><fi el d- name> element in the deployment
descriptor. This enables the container to manage the primary key fields.

Be declared within the bean class as publ i ¢ and restricted to be either
primitive, serializable, or types that can be mapped to SQL types.

The names of the variables that make up the primary key must be the same in
both the <cnp-fi el d><fi el d- name> elements and in the primary key class.

Within the primary key class, you implement a constructor for creating a primary
key instance. Once the primary key class is defined in this manner, the container
manages the class.

The following example places the employee number within a primary key class.

package enpl oyee;

public class Enpl oyeePK i npl enents java.io. Serializable

{

public Integer enpNb;

publ i ¢ Enpl oyeePK()
{

}

this.enpNo = null;

publ i ¢ Enpl oyeePK(| nt eger enpNb)

3-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Primary Key

{
this. enpNb = enpNb;
}
}

The primary key class is declared within the <pri m key- cl ass> element, and
each of its variables are declared within a<cnp-fi el d><fi el d- nane> elementin
the XML deployment descriptor, as follows:

<enter pri se- beans>
<entity>
<descri ption>no descri pti on</descripti on>
<di spl ay- nane>Enpl oyeeBean</ di spl ay- nane>
<ej b- nane>Enpl oyeeBean</ ej b- nane>
<l ocal - hone>enpl oyee. Local Enpl oyeetbne</ hone>
<l ocal >enpl oyee. Local Enpl oyee</ r enot e>
<gj b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>
<per si st ence- t ype>Cont ai ner </ per si st ence- t ype>
<pri m key- cl ass>enpl oyee. Enpl oyeePK</ pri m key- cl ass>
<reent rant >Fal se</reentrant >
<cnp- ver si on>2. X</ cnp- ver si on>
<abst r act - schena- nane>Enpl oyee</ abst r act - schena- nane>
<cnp-fiel d><fi el d- nane>enpNo</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- name>enpNane</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d-nane>sal ary</fi el d- nane></ cnp-fi el d>
<entity>
</ enterpri se-beans>

Once defined, the container creates a column in the entity bean table for the primary
key and maps the primary key class defined in the deployment descriptor to this
column.

Defining an Auto-Generated Primary Key

If you specify aj ava. | ang. Obj ect as the primary key class type in
<pri m key- cl ass>, but do not specify the primary key name in
<pri nmkey-fi el d>, then the primary key is auto-generated by the container.

The employee example defines its primary key asaj ava. | ang. Obj ect . Thus, the
container auto-generates the primary key.

<enter pri se- beans>
<entity>
<di spl ay- nane>Enpl oyee</ di spl ay- nane>
<ej b- nane>Enpl oyeeBean</ ej b- nane>

CMP Entity Beans 3-11

Persistence Fields

<l ocal - hone>enpl oyee. Enpl oyeelocal Hone</ | ocal - hone>

<l ocal >enpl oyee. Enpl oyeelLocal </ | ocal >

<ej b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>

<per si st ence- t ype>Cont ai ner </ per si st ence- t ype>

<pri m key- cl ass>j ava. | ang. (bj ect </ pri m key- cl ass>

<reent rant >Fal se</reentrant >

<cnp- ver si on>2. X</ cnp- ver si on>

<abst r act - scherma- nanme>Enpl oyee</ abst r act - schena- nane>

<cnp-fiel d><fi el d- nane>enpNo</fi el d- name></ cnp-fi el d>

<cnp-fi el d><fi el d- nane>enpNane</ fi el d- name></ cnp-fi el d>

<cnp-fiel d><fi el d-nane>sal ary</fi el d- nane></ cnp-fi el d>
<entity>

</enterprise-beans>

Once defined, the container creates a column called aut oi d in the entity bean table
for the primary key of type LONG The container uses random numbers for the
primary key values.

Persistence Fields

The persistent data in your CMP bean can be one of the following:

« Persistence field—Simple data type that is persisted to a database table. This
field is a direct attribute of the bean.

« Relationship field—Relationship to another bean.

Each type results in its own complex rules of how to configure. This section
discusses persistence fields. For information on relationship fields, see Chapter 4,
"Entity Relationship Mapping".

In CMP entity beans, you define the persistent data both in the bean instance and in
the deployment descriptor.

« Get/Set methods in the bean instance: For each persistence and relationship
field, both a get and a set method is created. For persistence fields, the data type
of the parameter returned from the get method and passed into the set method
defines the simple data type of the field. The name of the field is designated by
the name of the get and set methods.

The following XML shows the get and set methods for the employee name
persistence field. A St ri ng is passed back from the get method and into the set
method. Thus, the St ri ng is the simple data type of the field. If you remove
the "get" and "set" from the method names and then lower the case of the first

3-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Persistence Fields

letter, you have the persistence field name. In this case, enpNane is the
persistence field name.

public abstract Sring get EnpNane() throws RemoteException;
public abstract void set EnpNane(S ring enpNane) throws Renot eExcepti on;

The deployment descriptor defines these fields as persistent. Each field name
must be defined in a<cnp-fi el d><fi el d- name> element in the EJB
deployment descriptor. In the employee example, three persistence data fields
are defined in the data accessor methods: enpNo, enpNane, and sal ary.

These fields are defined as persistent fields in the e b- j ar. xm deployment
descriptor within the <cnp- f i el d><fi el d- name> element, as follows:

<ent er pri se- beans>

<entity>
<di spl ay- nane>Enpl oyee</ di spl ay- nane>
<gj b- nane>Enpl oyeeBean</ €] b- nane>
<l ocal - hone>enpl oyee. Enpl oyeelocal Hone</ | ocal - hone>
<l ocal >enpl oyee. Enpl oyeelLocal </ | ocal >
<gj b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>
<per si st ence- t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reent rant >Fal se</reentrant >
<cnp- ver si on>2. X</ cnp- ver si on>
<abst r act - scherma- name>Enpl oyee</ abst r act - schena- nane>
<cnp-fiel d><fi el d- nane>enpNo</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- name>enpNane</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d-nane>sal ary</ fi el d- nane></ cnp-fi el d>
<prinkey-fi el d>enpNo</ pri nkey-fiel d>

<entity>

</ enterpri se-beans>

For these fields to be mapped to a database, you can do one of the following:

Accept the defaults for these fields and avoid more deployment descriptor
configuration. See "Default Mapping of Persistent Fields to the Database" on
page 3-14 on how the default mapping occurs.

Map the persistent data fields to columns in a table that exists in a designated
database. The persistent data mapping is configured within the
orion-ejb-jar.xm file. See "Explicit Mapping of Persistent Fields to the
Database" on page 3-15 for more information.

CMP Entity Beans 3-13

Persistence Fields

Default Mapping of Persistent Fields to the Database

If you simply define the persistent fields in the ej b-j ar. xm file, then OC4J
provides the following mappings of these fields to the database:

Database—The default database as set up in your OC4J instance configuration.
For the INDI name, use the <l ocat i on> element for emulated data sources
and <ej b- | ocat i on> element for non-emulated data sources.

Upon installation, the default database is a locally installed Oracle database that
must be listening on port 5521 with a SID of ORACLE.

Note: You must change the "default" database configuration in the
dat a- sour ces. xm file to coordinate with the default installation
for an Oracle database. The default port and SID for an Oracle
database are 1521 and ORCL, respectively.

To customize the default database, change the first configured database to point
to your database.

Table—The container creates a default table where the name of the table is
guaranteed to be unique. For all future redeployments, copy the generated
orion-ejb-jar.xm file with this table name into the same directory as your
ej b-j ar.xm file. Thus, all future redeployments have the same table names
as first generated. If you do not copy this file over, different table names may be
generated.

The table name is constructed with the following names, where each is
separated by an underscore ():

— EJB name defined in <ej b- name> in the deployment descriptor.

— JARfile name, including the .j ar extension. However, all dashes (-) and
periods (.) are converted to underscores (_) to follow SQL conventions. For
example, if the name of your JAR file is enpl oyee. j ar, then
enpl oyee_j ar is appended to the name.

— Application name: This is the name of the application name, which you
define during deployment.

If the constructed name is greater than thirty characters, the name is truncated
at twenty-four characters. Then six characters made up of an alphanumeric
hash code is appended to the name.

3-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Persistence Fields

For example, if the EJB name is EnpBean, the JAR file is enpl . j ar, and the
application name is enpl oyee, then the default table name is
EnpBean_enpl _j ar _enpl oyee.

« Column names—The columns in the entity bean table each have the same name
as the <cnp- fi el d> elements in the designated database. The data types for
the database, translating Java data types to database data types, are defined in
the specific database XML file, such as or acl e. xmi .

Explicit Mapping of Persistent Fields to the Database

As "Default Mapping of Persistent Fields to the Database" on page 3-14 discusses,
your persistent data can be automatically mapped to a database table by the
container. However, if the data represented by your bean is more complex or you do
not want to accept the defaults that OC4J provides for you, then you can map the
persistent data to an existing database table and its columns within the
orion-ejb-jar.xnl file. Once the fields are mapped, the container provides the
persistence storage of the persistent data to the indicated table and rows.

For explicit mapping, Oracle recommends that you do the following:
1. Deploy your application with only the ej b-j ar. xm elements configured.

OC4Jcreates an ori on- ej b-j ar. xm file for you with the default mappings
in them. It is easier to modify these fields than to create them from scratch. This
provides you a method for choosing all or part of the modifications that are
discussed in this section.

2. Modify the <enti t y- depl oynment > element in the ori on- ej b-j ar. xm file
to use the database table and columns you specify.

Once you define persistent fields, each within its own <cnp- f i el d> element, you
can map each to a specific database table and column. Thus, you can map CMP
fields to existing database tables. The mapping occurs with the OC4J-specific
deployment descriptor: ori on-ej b-j ar. xml .

The explicit mapping of CMP fields is completed within an
<enti ty-depl oyment > element. This element contains all mapping for an entity
bean. However, the attributes and elements that are specific to CMP field mapping

is as follows:
<entity-depl oyment name="..." location="..."
table="..." data-source="...">
<pr i nkey- nappi ng>
<cnp-fiel d-mappi ng name="..." persistence-name="..." />

CMP Entity Beans 3-15

Persistence Fields

</ pri nkey- nappi ng>
<cnp-fiel d-nmappi ng name="..." persistence-name="..." />

</entity- depl oynent >

Element or Attribute Name Description

name Bean name, which is defined in the ej b-j ar . xni file in the
<ej b- nane> element.

l ocati on JNDI location

tabl e Database table name

dat a- source Data source for the database where the table resides

pri mkey- mappi ng Definition of how the primary key is mapped to the table.

cnp-fi el d- mappi ng The nane attribute specifies the <cnp-f i el d> in the

deployment descriptor, which is mapped to a table column in
the per si st ence- nane attribute.

You can configure the following within the ori on- ej b-j ar. xn file:

1. Configure the <enti ty- depl oynment > element for every entity bean that
contains CMP fields that will be mapped within it.

2. Configure a<cnp-fi el d- mappi ng> element for every field within the bean
that is mapped. Each <cnp- f i el d- mappi ng> element must contain the name
of the field to be persisted.

a. Configure the primary key in the <pri nkey- mappi ng> element contained
within its own <cnp- fi el d- mappi ng> element.

b. Configure simple data types (such as a primitive, simple object, or
serializable object) that are mapped to a single field within a single
<cnp-fi el d- mappi ng> element. The name and database field are fully
defined within the element attributes.

Example 3-2 Mapping Persistent Fields to a Specific Database Table

The following example demonstrates how to map persistent data fields in your
bean instance to database tables and columns by mapping the employee persistence
data fields to the Oracle database table EMP.

« Thebean is identified in the <ent i t y- depl oyment > name attribute. The JNDI
name for this bean is defined in the | ocat i on attribute.

3-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

CMP Types

CMP Types

The database table name is defined in the t abl e attribute. And the database is
specified in the dat a- sour ce attribute, which should be identical to the

<ej b-1 ocat i on>name of a Dat aSour ce defined in the

dat a- sour ces. xm file.

The bean primary key, enpNo, is mapped to the database table column, EMPNQ,
within the <pri nkey- mappi ng> element.

The bean persistent data fields, enpNamne and sal ar y, are mapped to the
database table columns ENAME and SAL within the <cnp- f i el d- mappi ng>
element.

<entity-depl oynent name="EnpBean" | ocati on="enp/ EnpBean"

w apper =" EnpHbre_Ent i t yHonmeW apper 2" nax-tx-retries="3"
tabl e="enp" dat a- sour ce="j dbc/ Or acl eDS'>
<pr i nkey- mappi ng>

<cnp-fi el d-nmappi ng name="enpNb" per si st ence- name="enpno" />
</ pri nkey- nappi ng>
<cnp-fi el d-mappi ng name="enpNane" per si st ence- nane="enane" />
<cnp-fi el d-nmappi ng name="sal ary" persi st ence-nane="sal" />

</entity-depl oynent >

After deployment, OC4J maps the element values to the following:

Bean Database

enp/ EnpBean EMP table, located at j dbc/ Oracl eDS in the
dat a- sour ces. xm file

enpNo EMPNOcolumn as primary key

enpNarme ENAME column

sal ary SAL column

In defining the container-managed persistent fields in the <cnp- f i el d>and the
primary key types, you can define simple data types and Java user classes that are
serializable.

Simple Data Types
Serializable Classes

Other Entity Beans or Collections

CMP Entity Beans 3-17

CMP Types

Simple Data Types

The following table provides a list of simple data types and the mapping of these

types to SQL types and to Oracle database types.

Table 3-1 Simple Data Types

Known Type (native) SQL type Oracle type
java.lang.String VARCHAR(255) VARCHAR(255)
java.lang.Integer(int) INTEGER NUMBER(20,0)
java.lang.Long(long) INTEGER NUMBER(20,0)
java.lang.Short(short) INTEGER NUMBER(10,0)
java.lang.Double(double) DOUBLE PRECISION NUMBER(30,0)
java.lang.Float(float) FLOAT NUMBER(20,5)
java.lang.Byte(byte) SMALLINT NUMBER(10,0)
java.lang.Character(char) CHAR CHAR(1)
java.lang.Boolean(boolean) BIT NUMBER(1,0)
java.util.Date DATETIME DATE
java.util.Locale VARCHAR(5) VARCHAR(5)
java.sql.Date DATE DATE
java.sql.Clob CLOB CLOB
java.sql.Blob BLOB BLOB
java.sql.Timestamp TIMESTAMP TIMESTAMP
javax.mail.internet.InterenetAddress VARCHAR(127) VARCHAR(127)
java.math.Biglnteger VARCHAR(100) VARCHAR(100)
java.io.Serializable LONGVARBINARY BLOB

You can modify the mapping of these data types in the
confi g/ dat abase- schema/ <db>. xm XML configuration files.

3-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

CMP Types

Serializable Classes

In addition to simple data types, you can define user classes that implement
Seri al i zabl e. These classes are stored in a BLOB in the database.

Other Entity Beans or Collections

You should not define other entity beans or Col | ect i ons as a CMP type. Instead,
these are relationships and should be defined within a CMR field.

= Avrelationship to another entity bean is always defined ina<cnr - fi el d>
relationship.

« Col | ecti ons promote a "many" relationship and should be configured within
a<cnr - fiel d>relationship. Other types, such as Li st s, are sub-interfaces of
Col | ecti ons. Oracle recommends that you use Col | ecti ons.

CMP Entity Beans 3-19

CMP Types

3-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

A

Entity Relationship Mapping

This chapter discusses how to develop entity-to-entity relationships. As a
developer, you can approach entity relationships from either the EJB development
or database development viewpoint.

« EJB development—You can use UML diagrams to design the entity beans, and
the cardinality and direction of the relationship between each bean, from the
perspective of the EJB objects.

« Database development—You can use ERD diagrams to design the database
tables, complete with the cardinality and direction designated by primary and
foreign keys, that support the entity beans. The focus is on how the database
maps each entity bean and the relationships between them.

This chapter starts by discussing entity relationships from the EJB development
viewpoint. Next, it demonstrates how the deployment descriptor maps to database
tables. If you want to design with the database development viewpoint, skip to
"Mapping Relationship Fields to the Database" on page 4-10.

This chapter covers the following topics:
« Defining Entity-To-Entity Relationships
« Mapping Relationship Fields to the Database

Entity Relationship Mapping 4-1

Defining Entity-To-Entity Relationships

Defining Entity-To-Entity Relationships

The following sections describe what an entity bean relationship can be and how to
define them.

« Choosing Cardinality and Direction

« Defining Relationships

Choosing Cardinality and Direction

Cardinality refers to the number of entity objects on each side of the relationship.
Thus, you can define the following types of relationship between EJBs:

= One-to-one
= One-to-many or many-to-one (dependent on the direction)
=« Mmany-to-many

In addition, each relationship can be one-way or two-way. This is referred to as the
direction of the relationship. The one-way relationship is unidirectional; the
two-way relationship is bidirectional. For example, a unidirectional relationship can
be from an employee to an address. With the employee information, you can
retrieve an address. However, with an address, you cannot retrieve the employee.
An example of a bidirectional relationship is with a employee/projects example.
Given a project number, you can retrieve the employees working on the project.
Given an employee number, you can retrieve all projects that the employee is
working on. Thus, the relationship is valid in both directions.

Normally, you use a unidirectional relationship when you want to reuse the target
from multiple entities.

You define the cardinality and direction of the relationship between two beans in
the deployment descriptor.

One-To-One Relationship Overview

A one-to-one relationship is the simplest relationship between two beans. One
entity bean relates only to one other entity bean. If our company office contains only
cubicles, and only a single employee can sit in each cubicle, then you have a
one-to-one relationship: one employee in one designated cubicle. You define a
unidirectional definition for this relationship as follows:

enpl oyee — cubicl e

4-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Defining Entity-To-Entity Relationships

However, if you have a cubicle number and want to determine who is assigned to
it, you can assign a bidirectional relationship. This would enable you to retrieve the
employee and find what cubicle he/she sits in. In addition, you could retrieve the
cubicle number and determine who sits there. You define this bidirectional
one-to-one relationship as follows:

enpl oyee <— cubicle

One-To-Many or Many-To-One Relationship Overview

In a one-to-many relationship, one object can reference several instances of another.
A many-to-one relationship is when many objects reference a single object. For
example, an employee can have multiple addresses: a home address and an office
address. If you define these relationships as unidirectional from the perspective of
the employee, then you can look up the employee and see all of his/her addresses,
but you cannot look up an address to see who lives there. However, if you define
this relationship as bidirectional, then you can look up any address and see who
lives there.

Many-To-Many Relationship Overview

A many-to-many relationship is complex. For example, each employee can be
working on several projects. And each projects has multiple employees working on
it. Thus, you have a many-to-many cardinality. The direction does not matter in this
instance. You have the following cardinality:

enpl oyees <— proj ects

In a many-to-many relationship, many objects can reference many objects. This
cardinality is the most difficult to manage.

Defining Relationships
Here are the restrictions imposed on defining your relationships:

= You can define relationships only between CMP 2.0 entity beans.

=« You must declare both EJBs in the relationship within the same deployment
descriptor.

« Each relationship can use only the local interface of the target EJB.
The following are the requirements to define each cardinality type and its direction:

1. Define the abstract accessor methods (get /set methods) for each relationship
field. The naming follows the same rules as for the persistence field abstract

Entity Relationship Mapping 4-3

Defining Entity-To-Entity Relationships

accessor methods. For example, getAddress and setAddress methods are
abstract accessor methods for retrieving and setting an address.

2. Define each relationship—its cardinality and direction—in the deployment
descriptor. The relationship field name is defined in the <cnr - f i el d- nane>
element. This name must be the same as the abstract accessor methods, without
the get / set and the first letter in lower case. For example, the
<cnr - fi el d- name> would be addr ess to compliment the
get Addr ess/ set Addr ess abstract accessor methods.

3. Declare if you want the cascade delete option for the one-to-one, one-to-many;,
and many-to-one relationships. The cascade delete is always specified on the
"one" side of the relationship.

Define the Get/Set Methods for Each Relationship Field

Each relationship field must have the abstract accessor methods defined for it. In a
relationship that sets or retrieves only a single entity, the object type passed back
and forth must be the local interface of the target entity bean. In a relationship that
sets or retrieves multiple objects, the object type passed back and forth is a Set or
Col I ect i on containing local interface objects.

Example 4-1 Definition of Abstract Accessor Methods for the Employee Example

In this example, the employee can have only a single address, and you can retrieve
the address only through the employee. This defines a one-to-one relationship that
is unidirectional from the perspective of the employee. Then the abstract accessor
methods for the employee bean are as follows:

public AddressLocal getAddress();
public void set Address(AddressLocal address);

Because the cardinality is one-to-one, the local interface of the address entity bean is
the object type that is passed back and forth in the abstract accessor methods.

The cardinality and direction of the relationship are defined in the deployment
descriptor.

Example 4-2 Definition of One-To-Many Abstract Accessor Methods

If the employee example included a one-to-many relationship, the abstract accessor
methods would pass back and forth a Set or Col | ect i on of objects, each of which
contains target bean local interface objects. When you have a "many" relationship,
multiple records are being passed back and forth.

4-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Defining Entity-To-Entity Relationships

A department contains many employees. In this one-to-many example, the abstract
accessor methods for the department retrieves multiple employees. Thus, the
abstract accessor methods pass a Col | ecti on or a Set of employees, as follows:

public Qollection getDept Epl oyees();
public void set Dept Enpl oyees(ol | ecti on dept Enpl) ;

Declare the Relationships in the Deployment Descriptor

You define the relationships between entity beans in the same deployment
descriptor the entity beans are declared. All entity-to-entity relationships are
defined within the <r el at i onshi ps> element and you can define multiple
relationships within this element. Each specific entity-to-entity relationship is
defined within an <ej b-r el at i on> element. The following XML demonstrates
two entity-to-entity relationships defined within an application:

<rel ati onshi ps>
<ej b-rel ati on>

</ejb-rel ati on>
<ej b-rel ation>

</ejb-rel ati on>
</rel ati onshi ps>

The following XML shows the full element structure for relationships:

<rel ati onshi ps>
<ej b-relation>
<ej b-rel ati on- nane> </ gj b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e-nane> </ ej b-rel ati onshi p-rol e- nane>
<multiplicity> </mltiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane> </ ¢j b- nane>
</rel ationshi p-rol e- sour ce>
<cnr-fiel d>
<cmr-fi el d-name> </ cmr-fi el d- name>
<cmr-field-type> </cmr-fiel d-type>
</fcm-field>
</ gj b-rel ati onshi p-rol e>
</ej b-rel ati on>
</rel ati onshi ps>

Entity Relationship Mapping 4-5

Defining Entity-To-Entity Relationships

Table 4-1 describes the usage for each of these elements.

Table 4-1 Description of Relationship Elements of the Deployment Descriptor

Deployment Descriptor Element Description

<ej b-rel ati on> Each entity-to-entity relationship is described in a single
<ej b-rel ati on>element.

<ej b-rel ati on- name> A user-defined name for the entity-to-entity relationship.

<ej b-rel ati onshi p-rol e> Each entity within the relationship is described within its

own <ej b-rel ati onshi p-rol e>. Thus, there are always
two <ej b-rel ati onshi p-r ol e> entities within the
<ej b-rel ation>.

<ej b-rel ati onshi p-rol e- nane> A user-defined name to describe the role or involvement of
the entity bean in the relationship.

<mul tiplicity> The declaration of the cardinality for this entity. The value is
"one" or "many."

<rel ationshi p-rol e- sour ce><ej b- name> The name of the entity bean. This must equal an EJB name
defined in an <ent i t y><ej b- nanme> element.

<cnr -field><cnr-field-nane> A user-defined name to represent the target bean reference.
This name must match the abstract accessor methods. For
example, if the abstract accessor fields are get Addr ess()
and set Addr ess(), the CMR field must be addr ess.

<cnr-field><cnr-field-type> Optional. If "many", this type should be a Col | ect i on or
Set . This is only specified for the "many" side to inform if a
Col | ecti on ora Set is returned.

These relationships can be one-to-one, one-to-many, or many-to-many. The
cardinality is defined within the <rrul ti pl i ci t y>element. Each bean defines its
cardinality within its own relationship. For example,

« One-to-one: For one employee to have a relationship with one address, the
employee bean is declared with a<mul ti pl i ci t y> of one, and the address
bean is declared with a<nul ti pl i ci t y> of one.

« One-to-many, many-to-one: For one department to have a relationship with
multiple employees, the department bean is declared witha<nul ti plicity>
of one, and the employee bean is declared with a <mul ti pl i ci t y> of many.
For many employees to belong to a department, you define the same
<mul tiplicity>.

4-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Defining Entity-To-Entity Relationships

« Many-to-many: For each employee to have a relationship with multiple projects
and each project to have multiple employees working on it, the employee bean
is declared with a <mul ti pl i ci t y>of many, and the project is declared with a
<mul tiplicity>ofmany.

The direction of the relationship is defined by the presence of the <cnr - fi el d>
element. The reference to the target entity is defined within the <cnr - fi el d>. If
you are unidirectional, then only one entity within the relationship contains a
reference to a target. In this case, the <cnr - f i el d> is declared in the source entity
and contains the target bean reference. If bidirectional, both entities should declare
each other’s target bean references withina <cnr - fi el d> element.

The following demonstrates how to declare direction in the one-to-one employee
and address example:

« Unidirectional: Define the <cnt - f i el d> element within the employee bean
section that references the address bean. Do not definea <cnr - fi el d> element
in the address bean section of the relationship.

« Bidirectional: Define a<cnr - f i el d>element in the employee bean section
that references the address bean. In addition, definea<cnr - fi el d>elementin
the address bean section that references the employee bean.

Once you understand how to declare the cardinality and direction of the entity
relationships, configuring the deployment descriptor for each relationship is simple.

Example 4-3 One-To-One Relationship Example

The employee example defines a one-to-one unidirectional relationship in which
each employee has only one address. This relationship is unidirectional because you
can retrieve the address from the employee, but you cannot retrieve the employee
from the address. Thus, the employee object has a relationship to the address object.

In the deployment descriptor, you configure the following:

« The<entity>elements within the <ent er pri se- beans> section for each of
the entity beans involved in the relationship. For this example, these include an
<ent i t y>element for the employee with an <ej b- nane> of EnpBean and an
<ent i t y>element for the address with an <ej b- nane> of Addr essBean.

« An<ejb-rel ati onshi p>element within the <r el ati onshi ps> section for
the one-to-one relationship that contains the following:

— An<ej b-rel ati onshi p-rol e>element for the employee bean that
defines its cardinality as "one" in its <mul ti pl i ci t y> element. The

Entity Relationship Mapping 4-7

Defining Entity-To-Entity Relationships

<rel ati onshi p-rol e- sour ce> element defines the <ej b- name> as
EnpBean, which is the same name in the <ent i t y> element.

— An<ej b-rel ati onshi p-rol e>element for the address bean that
defines its cardinality as "one" in its <rmul ti pl i ci t y>element. The
<rel ati onshi p-rol e- sour ce> element defines the <ej b- name> as
Addr essBean, which is the same name in the <ent i t y> element.

« A<cnr-fiel d>elementin the EnpBean relationship that points to the
Addr essBean. The <cnr - f i el d> element defines addr ess as the
Addr essBean reference. This element name matches the get and set method
names, which are named get Addr ess and set Addr ess. These methods
identify the local interface of the address entity bean as the data type that is
returned from the get method and passed in on the set method.

<ent er pri se- beans>
<entity>

<ej b- nane>EnpBean</ €] b- nane>

<l ocal - hone>enpl oyee. EnpHone</ | ocal - horme>
<l ocal >enpl oyee. Emp</ | ocal >

<ej b- cl ass>enpl oyee. EnpBean</ gj b- cl ass>

</entity>
<entity>

<ej b- nane>Addr essBean</ ej b- narme>

<l ocal - hone>enpl oyee. Addr essHone</ | ocal - horme>
<l ocal >enpl oyee. Addr ess</| ocal >

<ej b- cl ass>enpl oyee. Addr essBean</ gj b- cl ass>

</entity>
</ enterpri se-beans>

<rel ati onshi ps>
<ej b-rel ati on>

<ej b-rel ati on- name>Enp- Addr ess</ ej b-rel at i on- nane>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Enp- has- Addr ess
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</mul tiplicity>
<rel at i onshi p-rol e- sour ce><gj b- nane>EnpBean</ gj b- nane>
</rel ationshi p-rol e- sour ce>
<cnr-fiel d>

<cnt-fi el d- nane>addr ess</ cnr - fi el d- narme>

4-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Defining Entity-To-Entity Relationships

</cm-field>

</ ej b-rel ati onshi p-rol e>

<ej b-rel ationshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Addr ess- has- Enp
</ ej b-rel ati onshi p-r ol e- nane>
<mul tiplicity>ne</ mul tiplicity>
<rel ati onshi p-rol e- sour ce><ej b- nane>Addr essBean</ ej b- nane>
</rel ati onshi p-rol e-source>

</ ej b-rel ati onshi p-rol e>

</ejb-rel ati on>
</rel ati onshi ps>

Decide Whether to Use the Cascade Delete Option

When you have relationships between entity beans and the master entity bean is
deleted, what happens to the slave beans? This question is answered by the cascade
delete option. If you specify cascade delete to happen, the deletion of a master
entity causes the deletion of all its slave relationship entity beans.

The cascade delete is defined in the object that is deleted automatically.

For example, an employee has a relationship with an address object. The employee
object specifies cascade delete. When the employee, as master in this relationship, is
deleted, the address, the slave, is also deleted.

In some instances, you do not want a cascade delete to occur. If you have a
department that has a relationship with multiple employees within the department,
you do not want all employees to be deleted when you delete the department.

You can only specify a cascade delete on a relationship if the master entity bean has
a<mul tiplicity>ofone. Thus, in a one-to-one, the master is obviously a "one".
You can specify a cascade delete in a one-to-many relationship, but not in a
many-to-one or many-to-many relationship.

The cascade delete is specified in the slave entity bean of the one-to-one or
one-to-many relationship. Thus, when the master entity bean is deleted, the slave
entity beans are deleted.

Example 4-4 Cascade Delete Requested in the Employee Example

The following deployment descriptor shows the definition of a one-to-one
relationship with the employee and his/her address. When the employee is deleted,
the slave entity bean—the address—is automatically deleted. You ensure the
deletion by specifying the <cascade- del et e/ > element in the slave entity bean of

Entity Relationship Mapping 4-9

Mapping Relationship Fields to the Database

the relationship. In this case, specify the <cascade- del et e/ > element in the
Addr essBean definition.

<rel ati onshi ps>
<ej b-rel ati on>

<ej b-rel ati on- name>Enp- Addr ess</ €j b-rel at i on- nane>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Enp- has- Addr ess
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</ mul tiplicity>
<rel ati onshi p-rol e- sour ce><ej b- nane>EnpBean</ ej b- nane>
</rel ati onshi p-rol e- sour ce>
<cnr-fiel d>

<cnr - fi el d- name>addr ess</ cnt - fi el d- nane>

</fcm-fiel d>

</ ej b-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>Addr ess- has- Enp
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</ mul tiplicity>

<cascade- del et e/ >

<rel ati onshi p-rol e- sour ce><ej b- nane>Addr essBean</ ej b- nane>
</rel ationshi p-rol e- sour ce>

</ejb-rel ationshi p-rol e>

</ejb-rel ati on>
</rel ati onshi ps>

Mapping Relationship Fields to the Database

Each entity bean maps to a table in the database. Each of its persistent and
relationship fields are saved within a database table in columns. For these fields to
be mapped to a database, do one of the following:

= Accept the defaults for these fields and avoid more deployment descriptor
configuration. See "Default Mapping of Relationship Fields to the Database" on
page 4-11 to learn how the default mapping occurs.

« Map the fields to columns in a table that already exists in a designated database.
The persistent data mapping is configured within the ori on- ej b-j ar. xm
file. See "Explicit Mapping of Relationship Fields to the Database" on page 4-19
for more information.

4-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

Default Mapping of Relationship Fields to the Database

Note: This section discusses how OC4J maps relationship fields to
the database. Chapter 3, "CMP Entity Beans" discusses persistent
field mapping.

If you declare relationship fields only in the ej b-j ar. xm file, then OC4J provides
default mappings of these fields to the database. The default mapping is the same
as for the persistent fields, as described in "Default Mapping of Persistent Fields to
the Database" on page 3-14. describes.

Note: For all future redeployments, copy the generated
orion-ejb-jar.xm file with this table name into the same
directory as your ej b-j ar . xm file. Thus, all future
redeployments have the same table names as first generated. If you
do not copy this file over, different table names may be generated.

In summary, these defaults include:
« Database—The default database as set up in your OC4J instance configuration.

« Default table—Each entity bean in the relationship represents data in its own
database table. The name of the entity bean table is guaranteed to be unique,
and so it is constructed with the following names, where each is separated by
an underscore (_):

— EJB name defined in <ej b- name> in the deployment descriptor.

— JARfile name, including the .j ar extension. However, all dashes (-) and
periods (.) are converted to underscores (_) to follow SQL conventions. For
example, if the name of your JAR file is enpl oyee. j ar, then
enpl oyee_j ar is appended to the name.

— Application name: This is the name of the application name, which you
define during deployment.

If the constructed name is greater than thirty characters, the name is truncated
at twenty-four characters. An underscore and then five characters made up of
an alphanumeric hash code is appended to the name for uniqueness.

Entity Relationship Mapping 4-11

Mapping Relationship Fields to the Database

For example, if the EJB name is EnpBean, the JAR file is enpl . j ar, and the
application name is enpl oyee, then the default table name is
EnpBean_enpl _j ar _enpl oyee.

« Column names in each table—The container generates columns in each table
based on the <cnp- fi el d>and <cnr -fi el d>elements declared in the
deployment descriptor. Each <cnp- f i el d>is a column that relates to the
entity bean data. Each <cnv - f i el d> element represents a relationship. To
establish a unidirectional relationship, only a single entity in the relationship
definesa <cnr - f i el d> in the deployment descriptor. To define a bidirectional
relationship, both entities in the relationship definea <cnr - fi el d>.

For each <cnr - f i el d> element, the container creates a foreign key that points
to the primary key of the relevant object, as follows:

— In aone-to-one relationship, the foreign key is created in the database table
for the source EJB and is directed to the primary key of the target database
table. For example, if one employee has one address, then the foreign key is
created within the employee table that points to the primary key of the
address table.

— In one-to-many, many-to-one, and many-to-many relationships, an
association table (third table) is created. The association table contains two
foreign keys, where each points to the primary key of one of the entity
tables.

The translation rules for converting Java data types to database data types are
defined in the specific database XML file located in
j 2eel/ hone/ confi g/ dat abase- schemas, such asor acl e. xm .

« Primary key generation—Both entity tables contain a primary key. The primary
key can be defined or auto-generated. See "Primary Key" on page 3-9 for a full
description.

— Defined primary key: The primary key is generated as designated in the as
a simple data type or a class.

— Auto-generated primary key: If you specify aj ava. | ang. Qbj ect as the
primary key class type in <pri m key- cl ass>, but do not specify the
primary key name in <pri nkey- fi el d>, then the primary key is
auto-generated by the container.

4-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

Default Mapping of the One-To-One Relationship

The one-to-one entity relationship is managed between the entity tables with a
foreign key. Figure 4-1 demonstrates a one-to-one unidirectional relationship
between the employee and address bean.

Note: Normally, you use a unidirectional relationship when you
want to reuse the target for multiple entities. To reuse a table in the
database, the target table must have the same definition for all
tables using it. The target table does not normally have a foreign
key pointing back to any of the source tables. For this reason, when
you reuse a table, it is normally the target of a unidirectional
relationship.

« The container generates the table names based on the entity bean names, the
JAR file the beans are archived in, and the application name that they are
deployed under. If the JAR filename is enpl . j ar and the application name is
enpl oyee, then the table names are EnpBean_enpl _j ar _enpl oyee and
Addr essBean_enpl _j ar _enpl oyee.

« The container generates columns in each table based on the <cnp- fi el d>and
<cnr - fi el d>elements declared in the deployment descriptor.

The columns for the EnpBean table are enrpno, enpnane, and sal ary. A
foreign key is created called addr ess, from the <cnr - f i el d> declaration,
that points to the primary key column of the Addr Bean table.

The columns for the Addr essBean table are an auto-generated long
primary key and columns for stree, city, state, and zip.

« The primary key for the employee table is designated in the deployment
descriptor as enpno. The Addr essBean is configured for an auto-generated
primary key by specifying only <pri nkey- cl ass>of j ava. | ang. Obj ect.

Entity Relationship Mapping 4-13

Mapping Relationship Fields to the Database

Figure 4-1 One-To-One Employee Relationship Example

PN

enpno |enpNare |sal ary |FK: addr ess autoid|street|city|state|zip

EnpBean_enpl _j ar _enpl oyee Addr essBean_enpl _j ar _enpl oyee

Default Mapping of One-To-Many and Many-To-Many Relationships

You cannot facilitate the one-to-many and many-to-many relationships using only a
primary key and foreign key in the entity tables. To facilitate these relationships, the
container creates an association table. The association table contains two columns,
where each contains a foreign key to each of the entity tables in the relationship.

Figure 4-2 shows the tables that are created for the employee/project relationship.
Each project can have multiple employees, and each employee can belong to several
projects. Thus, the employee and project relationship is a many-to-many
relationship. The container creates three tables to manage this relationship: the
employee table, the project table, and the association table for both of these tables.

Figure 4-2 Many-To-Many Employee Relationship Example

EnpBean_enpl _j ar_enpl oyee Pr oj ect Bean_enpl _j ar_enpl oyee
enpno | enpNane [sal ary autoi d |proj ect Name

FK: EnpBean_enpno FK: Proj ect Bean_aut oi d

Pr oj ect Bean_enpl oyees_Em fj 499

The association table contains a foreign key column that points to the employee
table and a foreign key column that points to the project table. The column names of

4-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

the association table are a concatenation of the entity bean name in <ej b- name>
and its primary key name. If the primary key for the bean is auto-generated, then
"aut oi d" is appended as the primary key name. For example, the foreign key that
points to the employee table is the bean name of EnpBean, followed by the primary
key name of enpno, which results in the column name EnpBean_enpno. The
foreign key that points to the address table is the bean name of Pr o] ect Bean
concatenated with aut oi d, because the primary key is auto-generated, which
results in the column name Pr oj ect Bean_aut oi d.

The following is a demonstration of the association table for the employee/projects
relationship. Employee 1 is assigned to projects a, b, and c. Project a involves
employees 1, 2, and 3. The association table contains the following:

EmpBean_empno ProjectBean_autoid
1 a
1 b
1 c
2 a
3 a

The association table details all relationships between the two entity beans.

Example 4-5 Deployment Descriptor for a Many-To-Many Relationship

To configure the employee/project many-to-many relationship in the deployment
description, create an <ej b-r el at i on> in which each bean defines its

<mul tiplicity>asmany and definesa<cnr-fi el d> to the other bean of type
Col | ecti onor Set.

<enter pri se- beans>
<entity>

<ej b- nane>EnpBean</ gj b- nane>
<l ocal - hone>enpl oyee. EnpHone</ | ocal - hone>
<l ocal >enpl oyee. Enp</ | ocal >

<cnp-fi el d><fi el d- nane>enpNo</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>enpNane</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>sal ary</fi el d- name></ cnp-fi el d>
<prinkey-fi el d>enpNo</ pri nkey-fi el d>

<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>

Entity Relationship Mapping 4-15

Mapping Relationship Fields to the Database

</entity>
<entity>

<ej b- nane>Pr oj ect Bean</ ej b- narme>
<l ocal - hone>enpl oyee. Proj ect Hone</ | ocal - horre>
<l ocal >enpl oyee. Proj ect </l ocal >

<cnp-fi el d><fi el d- name>pr oj ect Nae</ fi el d- nane></ cnp-fi el d>
<pri mkey- cl ass> ava. | ang. (bj ect </ pri m key- cl ass>

</entity>
</ enterpri se-beans>
<rel ati onshi ps>
<ej b-rel ation>
<ej b-rel ati on- name>Enps- Pr oj ect s</ g b-r el at i on- nane>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Pr oj ect - has- Enps</ €] b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</nultiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Pr oj ect Bean</ €] b- nane>
</rel ationshi p-rol e- sour ce>
<cnr-fiel d>
<cnr -fi el d- name>enpl oyees</cnr-fi el d- nane>
<cmr-field-type>java. util. @l lection</cm-field-type>
<fcm-field>
</ gj b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Enp- has- Proj ect s</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- name>EnpBean</ ej b- nane>
</rel ationshi p-rol e- sour ce>
<cnr-fiel d>
<cnr - fi el d- name>pr oj ect s</ cnt-fi el d- nane>
<cmr-field-type>java. util. @l lection</cm-field-type>
</fcm-field>
</ ej b-rel ati onshi p-rol e>
</ej b-rel ati on>
</rel ati onshi ps>

The container maps this definition to the following:

« The container generates the entity tables based on the entity bean names, the
JAR file the beans are archived in, and the application name that they are

4-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

deployed under. If the JAR filename is enpl . j ar and the application name is
enpl oyee, then the table names are EnpBean_enpl _j ar _enpl oyee and
Proj ect Bean_enpl _j ar _enpl oyee.

The container generates columns in each entity table based on the
<cnp- fi el d>elements declared in the deployment descriptor.

The columns for the EnpBean table are enpno, enpnane, and sal ary. The
primary key is designated as the enpno field.

The columns for the Pr oj ect Bean table are aut oi d for an auto-generated
primary key and a pr oj ect Nane column. The primary key is
auto-generated because the <pri m key- cl ass> is defined as

java.l ang. Obj ect,and no <pri nkey-fi el d>element is defined.

The container generates an association table in the same manner as the entity
table.

The association table name is created to include the two <cnr -fi el d>
definitions for each of the entity beans in the relationship. The format for
the association table name consists of the following, separated by
underscores: first bean name, its <cnr - f i el d> to the second bean, second
bean name, its <cnr - f i el d> to the first bean, JAR file name, and
application name. The rule of thirty characters also applies to this table
name, as to the entity tables. Thus, the association table name for the
employee/projects relationship is

Pr oj ect Bean_enpl oyees_EnmpBean_pr oj ects_enpl _j ar _enpl oyee.
Because this name is over thirty characters, it is truncated to twenty-four
characters, and then an underscore plus five characters of a hash code are
added. Thus, the official association table would be something like

Proj ect Bean_enpl oyees_Em fj 49¢g

Two columns in the association table are created. Each column name is a
concatenation of the bean name and the primary key (or aut oi d if
auto-generated). In our example, the column names would be
EnpBean_enpno and Pr oj ect Bean_aut oi d. These columns are foreign
keys to the entity tables that are involved in the relationship. The
EnpBean_enpno foreign key points to the employee table; the

Pr oj ect Bean_aut oi d foreign key points to the projects table.

Entity Relationship Mapping 4-17

Mapping Relationship Fields to the Database

Example 4-6 Deployment Descriptor for One-To-Many Bidirectional Relationship

The following XML demonstrates how to configure a single employee who can
have multiple phone numbers. You can add another source of the phone numbers
table, such as department phone numbers, so that the department entity bean has a
one-to-many relationship with the phone number entity bean. This is why the
employee to phone numbers relationship is unidirectional.

The employee entity bean, EmpBean, defines a <cnr - f i el d> element designating
aCol | ecti on of phoneNumber s within the PhoneBean.

<rel ati onshi ps>

<ej b-rel ation>
<ej b-rel ati on- name>Enp- Phone</ ej b-rel ati on- nane>
<ej b-rel ationshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Enp- PhoneNunber s</ g b-r el at i onshi p-r ol e- nane>
<mil tiplicity>ne</multiplicity>
<rel ati onshi p-rol e-sour ce>
<ej b- nane>EnpBean</ ej b- nane>
</rel ati onshi p-rol e- sour ce>
<cmr-fiel d>
<cnr - fi el d- name>phoneNunber s</ cnr - fi el d- nane>
<cnr-field-type>java. util. ol | ection</cni-fiel d-type>
</cmr-field>
</ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>Phone- has- Enp</ €j b-r el ati onshi p- r ol e- nanme>
<mul tiplicity>Many</ mul tiplicity>
<rel ati onshi p-rol e-sour ce>
<ej b- name>PhoneBean</ gj b- nane>
</rel ati onshi p-rol e- sour ce>
</ ej b-rel ati onshi p-rol e>
</ej b-rel ati on>

</rel ati onshi ps>

The container maps this definition to the following:

The container creates the entity tables, its primary keys, and columns in the
same manner as the many-to-many relationship.

The container creates the association table in the same manner as the
many-to-many.

4-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

Figure 4-3 One-To-Many Relationship Employee Example

EnpBean_enpl _j ar _enpl oyee

PhoneBean_enpl _j ar _enpl oyee

enpno

enmpName

sal ary

b N

aut oi d

phoneNum

P

FK: EnpBean_enpno §

FK: PhoneBean_aut oi d

EnpBean_phoneNunber s_Pho_fj 49g

Explicit Mapping of Relationship Fields to the Database

As "Default Mapping of Relationship Fields to the Database" on page 4-11 discusses,
your relationship fields can be automatically mapped to the database tables by the
container. However, if you do not want to accept the defaults that OC4J provides for
you, then you can map the relationships between entity beans within an existing
database table and its columns in the or i on-ej b-j ar. xml file.

Note: "Explicit Mapping of Persistent Fields to the Database" on
page 3-15 discusses how to explicitly map persistent fields. This
section builds on that information and shows how the relationship
mapping occurs.

For explicit mapping, Oracle recommends that you perform the following steps:

1. Deploy your application with only the ej b-j ar. xm elements configured.

OC4J creates an or i on- ej b-j ar. xm file for you, with the default mappings
in it. It is easier to modify these fields than to create them from scratch. This
provides you with a method for choosing all or part of the modifications that
this discusses.

2. Copy the container-created ori on- ej b-j ar. xm file to your development
environment.

3. Modify the <enti ty- depl oynent >elementinthe ori on-ej b-j ar. xm file
to use the database table and columns you specify.

Entity Relationship Mapping 4-19

Mapping Relationship Fields to the Database

4. Rearchive and redeploy the application.
How you map relationship fields is dependent on the type of relationship:

= One-To-One Relationship Explicit Mapping: the source table contains a foreign
key that points to the primary key of the target table. Thus, explicit mapping of
this relationship field requires modifying the column name of the foreign key.

« One-To-Many and Many-To-Many Relationship Explicit Mapping: an
association table is created that contains two columns, where each column is a
foreign key that points to the primary key of the source and target tables. Thus,
explicit mapping of this relationship requires modifying the association table
name and its column names.

= Option for the One-To-Many Explicit Bidirectional Relationship: you can forego
the association table and have the "many" table contain a foreign key that points
to the "one" table. Thus, explicit mapping of this relationship requires
modifying the "many" table and adding a foreign key that points to the primary
key of the "one" table.

Modify elements and attributes of the <ent i t y- depl oynment > element in the
orion-ejb-jar.xm file toexplicitly map relationship fields.

The following XML shows the relevant elements and attributes for explicit mapping
of a one-to-one relationship:

<entity-depl oynent name=" " |ocation=" " table=" " data-source=" ">
<cnp-fi el d- mappi ng nane=" ">
<entity-ref home=" ">
<cnp-fi el d-nmappi ng name=" " per si st ence- nane=" " />
<entity-ref>
</ cnp-fi el d- nappi ng>
</ enti ty-depl oynent >

The following XML illustrates the relevant elements and attributes for explicitly
identifying the association table for one-to-many or many-to-many:

<entity-depl oyment name=" " location=" " table=" " data-source=" ">
<cnp-fi el d- mappi ng nane=" ">
<col | ecti on-mappi ng tabl e=" ">

<pr i nkey- nappi ng>

<cnp-fi el d-mappi ng name=" " persi st ence-nane=" " />
</ pri nkey- nappi ng>
<val ue- nappi ng type=" ">

<cnp-fi el d- mappi ng>

<entity-ref hone=" ">
<cnp-fiel d-mappi ng name=" " per si st ence- name=" "/ >

4-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

<entity-ref>

</cnp-fi el d- mappi ng>

</ val ue- mappi ng>
</ col | ecti on- mappi ng>
</ cnp-fi el d- mappi ng>
</entity-depl oynent >

Element or Attribute

Description

<entity-depl oynent >

<cnp-fi el d- mappi ng>

<entity-ref>

The nane attribute identifies the <ej b- name> of the
bean.

The | ocat i on attribute identities the INDI name of the
bean.

Thet abl e attribute identifies the database table to which
this entity bean is mapped.

The dat a- sour ce attribute identifies the database in
which the table resides.

Use this element to map a persistent field or a relationship
field. For relationship fields, it will contain either an
<entity-ref > for aone-to-one mapping or a

<col | ect i on- mappi ng> for a one-to-many, many-to-one, or
many-to-many relationship.

The nane attribute identifies the <cnp-fi el d>or
<cnr - fi el d>that is to be mapped.

The per si st ence- name attribute identifies the database
column, which defaults to the <ej b- name> concatenated
with the primary key of that entity bean.

Use this element to identify the primary key to which the
foreign key points. The target bean and its primary key are
identified in this element. The container uses this information
to create a foreign key in the source table to point to the target
table.

The nane attribute identifies the bean name defined in
<ej b- nane>.

The <cnp- f i el d- mappi ng> within this element
identifies the target table column name.

Entity Relationship Mapping 4-21

Mapping Relationship Fields to the Database

Element or Attribute Description

<col | ecti on- mappi ng> Use this element to explicitly map the "many" side of a
relationship.

« Thet abl e attribute identifies the association table. In a
one-to-many bidirectional relationship, you can specify
the table of the "many" in this field to avoid the association
table.

This element defines two elements, one for each column in the
association table:

« <prinkey-mappi ng> identifies the first foreign key in
the association table.

« <val ue- mappi ng> identifies the second foreign key.

<pri nkey- mappi ng> Within the <col | ecti on- mappi ng>, use this element to
identify the first foreign key.

<val ue- mappi ng> Use this element to specify the second foreign key.

Note: This section first describes in detail how logical names
defined in the ej b-j ar. xm file relate to those in the
orion-ejb-jar.xm file, and then how those logical variables
defined in the ori on-ej b-j ar. xm file relate to the database
table and column names. This document specifically chooses
different names so that you can see which names must be the same.
However, for efficiency and ease, you can make all these names the
same. For example, a<cnr - f i el d> defined in the ej b-j ar . xn
file relates to a per si st ence- namne attribute in the
orion-ejb-jar.xm file, which is then translated to a column
name. Your configuration is easier if all these names are the same.

One-To-One Relationship Explicit Mapping

Figure 4-1 shows a one-to-one unidirectional relationship between an employee
and an address. The employee table has a foreign key that points to the primary key
of the employee. A one-to-one bidirectional relationship would add a foreign key to
the address table that points to the employee.

<ent er pri se- beans>
<entity>

<ej b- nane>EnpBean</ gj b- nane>

4-22 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

<l ocal - hone>enpl oyee. EnpHone</ | ocal - hone>
<l ocal >enpl oyee. Enp</ | ocal >
<ej b- cl ass>enpl oyee. EnpBean</ g] b- cl ass>

<cnp-fi el d><fi el d- name>enpNo</ fi el d- name></ cnp-fi el d>
<cnp-fi el d><fi el d- name>enpNane</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>sal ary</fi el d- name></ cnp-fi el d>
<pri nkey-fi el d>enpNo</ pri nkey-fi el d>

<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>

</entity>
<entity>

<ej b- nane>Addr essBean</ ej b- narme>

<l ocal - hone>enpl oyee. Addr essHone</ | ocal - horme>
<l ocal >enpl oyee. Addr ess</| ocal >

<ej b- cl ass>enpl oyee. Addr essBean</ gj b- cl ass>

<cnp-fi el d><fi el d- name>addr essPK</ fi el d- name></cnp-fi el d>

<cnp-fi el d><fi el d- name>addr essDescri pti on</fi el d- nane></ cnp-fi el d>
<prinkey-fi el d>addr essPK</ pri nkey-fi el d>

<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>

</entity>
</ enterpri se-beans>
<rel ati onshi pe>
<ej b-rel ati on>

<ej b-rel ati on- name>Enp- Addr ess</ ej b-rel at i on- nane>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>Enp- has- Addr ess
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</mul tiplicity>
<rel ati onshi p-rol e- sour ce><gj b- nane>EnpBean</ gj b- nane>
</rel ationshi p-rol e- sour ce>
<cnr-fiel d>

<cnt-fi el d- nane>addr ess</ cnr - fi el d- name>

</fcm-field>

</ejb-rel ationship-rol e>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>Addr ess- has- Enp
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</mul tiplicity>
<rel ati onshi p-rol e- sour ce><ej b- nane>Addr essBean</ ej b- nane>
</rel ationshi p-rol e- sour ce>

</ ej b-rel ationshi p-rol e>

Entity Relationship Mapping 4-23

Mapping Relationship Fields to the Database

</ejb-rel ati on>
</rel ati onshi ps

The EnpBean requires a foreign key to the Addr essBean. Thus, the container
modifies the <ent i t y- depl oyment > element for the EnpBean to include a
foreign key to the primary key of the Addr essBean. The following mapping for
this relationship is located in the ori on-ej b-j ar. xnl file:

<entity-depl oynent name="EnpBean" | ocati on="enp/ EnpBean"
wapper =" Enptone_Ent i t yHomeW apper 2" nax-tx-retries="3" tabl e="enp"
dat a- sour ce="j dbc/ O acl eDS' >
<pri nkey- mappi ng>
<cnp-fi el d-nmappi ng nane="enpN\b" per si st ence- nane="enpno" />
</ pri nkey- mappi ng>
<cnp-fi el d- mappi ng nane="enpNane" per si st ence- nane="enane" />
<cnp-fi el d- mappi ng nane="sal ary" persi st ence-nane="sal " />
<cnp-fi el d- mappi ng nane="addr ess" >
<entity-ref hone="AddressBean">
<cnp-fi el d- mappi ng nane="addr ess"
persi st ence- nane="addr essPK' />
<entity-ref>
</ cnp-fi el d- mappi ng>

</ entity-depl oynent >

This mapping specifies:

« The<entity-depl oynment > attributes define the following:
— nane attribute: The name of the source bean is EnpBean.
— | ocati on attribute: The JNDI location is enp/ EnpBean.

— tabl e attribute: The database table in which the persistent data for this
entity bean is stored is enp.

— dat a- sour ce attribute: The database in which this table resides is defined
by the data source j dbc/ Or acl eDS.

« The<cnp-fiel d- mappi ng> elements identify the table columns and the
persistent data to be stored in each: The columns in this table are ermpno,
enane, sal , and addr ess. The enpno column contains the primary key, as
defined in the EnpBean as enpNo. The enpNane and sal ary CMP data are
saved in the enanme and sal columns. The addr ess column is a foreign key
that points to the primary key of the Addr essBean table.

4-24 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

« Theaddr ess foreign key points to the primary key of the Addr essBean. The
<cnp-fi el d- mappi ng> for addr ess describes this, as follows:

<cnp-fi el d-mappi ng name="addr ess" >
<entity-ref hone="AddressBean">
<cnp-fi el d- mappi ng nane="addr ess"
per si st ence- nane="addr essPK' />
<entity-ref>
</ cnp- fi el d- mappi ng>

— Thefirst<cnp-fi el d- mappi ng> namne attribute identifies the
<cnr - fi el d>that was defined in the source bean. This is the column
name for the foreign key called addr ess in the enp table. However, it is
not mapped to the primary key of the target table here.

— The<entity-ref>hone attribute identifies the <ej b- nane> of the
target bean. The target in this example is the Addr essBean. The container
understands the entity table in which Addr essBean is stored.

— Thesecond <cnp- fi el d- mappi ng> nane attribute maps the source
foreign key to the primary key of the target table. Thus, this second name
attribute is identical to the first—addr ess, which is the foreign key of the
EnpBean table. The per si st ence- name attribute identifies the primary
key column name of the target bean. In this example, the primary key of the
Addr essBean table is the addr essPK column.

In the original example, the container auto-generates a primary key for the
target Addr essBean table. For the auto-generated example, the second
<cnp- fi el d>mapping is mapped to an auto-generated primary key;,
known as aut oi d, as follows:

<cnp-fi el d-nmappi ng name="address" per si st ence- nane="autoi d" />

Figure 4-4 displays the relationship mapping of the EnpBean addr ess foreign key
to the Addr essBean addr essPK primary key.

Entity Relationship Mapping 4-25

Mapping Relationship Fields to the Database

Figure 4-4 Demonstration of Explicit Mapping for a One-To-One Relationship

EJB- JAR. XM-

<rel ationshi p-rol e-source>
<ej b- name>EnpBean</ ej b- nane>
</rel ati onshi p-rol e-source>
<cnr-field>
.--<cnr-field-nane>address</cnr-fiel d-name>
</cnr-field>

<rel ati onshi p-rol e-source>
- <ej b- name>Addr essBean</ ej b- nane>

“<rel ationshi p-rol e- source>? ENTI TY TABLES

EnpBean_enpl _j ar _enpl oyee
_:-- - prFK: address

ORI ON- EJB- JAR. XML

\\:A<crrp-f i el d- mappi ng nanme="address">----"""7
s - pm <entity-ref hone="Addr essBean">
<cnp-fi el d- mappi ng name="addr ess"
persi st ence- nanme="addr essPK" />
</entity-ref> -
</ cnp-fi el d- mappi ng> AP add'r(e/ssPK

Addr essBean_enpl _j ar _enpl oyee

In summary, an addr ess column in the EnpBean_enpl _j ar _enpl oyee tableisa
foreign key that points to the primary key, addr essPK, in the

Addr essBean_enpl _j ar _enpl oyee table. For the example in which the

Addr essBean has an auto-generated primary key, an addr ess column in the
EnmpBean_enpl _j ar _enpl oyee table is a foreign key that points to the primary
key, aut oi d, in the Addr essBean_enpl _j ar _enpl oyee table.

One-To-Many and Many-To-Many Relationship Explicit Mapping

Figure 4-3 shows a one-to-many unidirectional relationship between an employee
and his/her phone numbers. Because this involves a "many" in the relationship, an
association table is created. The association table is the same whether this is a
unidirectional or bidirectional, or one-to-many or many-to-many relationship.

Inthe ej b-j ar. xm file, the cardinality is defined in the <r el ati onshi ps>
element. The container knows from this definition whether the relationship is
one-to-many or many-to-many. In the ori on- ej b-j ar. xnl file, the mapping of
this relationship to an association table is described in a<col | ecti on- mappi ng>
element. Because the cardinality is already known, only one entity in the
relationship defines the <col | ect i on- mappi ng> element.

4-26 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

« Inaone-to-many relationship, the "one" entity bean defines the
<col | ecti on- mappi ng> element as it receives back a Col | ecti on or Set of
the target.

« Inamany-to-many relationship, only one of the entity beans in the relationship
fully defines the <col | ecti on- mappi ng> element with the association table
specifications. The other entity bean has an empty <col | ecti on- mappi ng>
element.

Inthe ori on-ej b-jar. xm file for the employee example, the EnpBean

<ent i ty-depl oynent > element defines the <col | ect i on- nappi ng> element
to designate a Col | ect i on of phone numbers. The <col | ecti on- mappi ng>
element defines the association table.

<entity-depl oynent name="EnpBean" | ocati on="enp/ EnpBean"
wapper ="' Enptone_Ent i t yHomeW apper 2" nax-tx-retri es="3"
t abl e=" EnpBean_phoneNunber s_Pho8f j 49g" dat a- sour ce="j dbc/ O acl eCS' >
<pri nkey- mappi ng>
<cnp-fi el d- mappi ng nane="enpNo" per si st ence- nane="enpno" />
</ pri nkey- nappi ng>
<cnp-fi el d-mappi ng name="enpNane" per si st ence- nane="enane" />
<cnp-fi el d-nmappi ng name="sal ary" persi st ence-nane="sal" />
<cnp-fi el d-mappi ng name="phoneNunber s" >
<col | ecti on- mappi ng tabl e="EmpBean_phoneNunber s_Pho8fj 499" >
<pri nkey- nappi ng>
<cnp-fi el d- mappi ng name="enpNo" per si st ence- nane="EnpBean_enpno" />
</ pri nkey- nappi ng>
<val ue- mappi ng type="enpl oyee. PhonelLocal ">
<cnp-fi el d- mappi ng>
<entity-ref home="PhoneBean">
<cnp-fi el d- nappi ng name="phoneNunber s"
per si st ence- name="PhoneBean_aut oi d"/ >
<entity-ref>
</ cnp-fi el d- mappi ng>
</ val ue- mappi ng>
</ col | ect i on- mappi ng>
</ cnp-fi el d- nappi ng>

</ entity-depl oynent >

« The<col | ection-mappi ng>element is contained within the
<cnp-fi el d- mappi ng> for phoneNunber s, which is the EnpBean
<cnr - fi el d>element definition. It defines the association table name in the
t abl e attribute, which currently defines the association table name as
EnpBean_phoneNunber s_Pho8fj 49¢.

Entity Relationship Mapping 4-27

Mapping Relationship Fields to the Database

« Both primary keys of the entity beans are defined in the <pri nkey- nappi ng>
and <val ue- mappi ng> elements respectively.

— The<prinkey- mappi ng> element defines the association table foreign
key of the current entity bean, which is EnpBean_enpno.

— The <val ue- mappi ng> element defines the association table foreign key
of the target bean, which is PhoneBean_aut oi d.

« The column names of the association table are defined by a concatenation of the
entity bean name and the primary key, separated by an underscore (). Thus,
the column names for this example are EnmpBean_enpno and
PhoneBean_aut oi d.

« The<val ue- mappi ng> element specifies the target entity bean.

— Thet ype attribute of the <val ue- nappi ng> element defines the target
bean local interface that is returned to the source entity bean.

— The<ej b- name> of the target entity bean is defined in the <enti ty-ref >
hone attribute.

4-28 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

Figure 4-5 Demonstration of Explicit Mapping for a One-To-Many Relationship

EJB- JAR XM

<rel ati onshi p-rol e-source>
<ej b- name>EnpBean</ ej b- name>
</rel ationshi p-rol e-source>
<cnr-field>
........... <cnr - fi el d- nane>phoneNunbers</cnr-fi el d- name>
i : </cnr-field>

<rel ati onshi p-rol e-source>
S <ej b- nane>PhoneBean</ ej b- name>
' </rel ationship-rol e-source>"

! : ORI ON- EJB- JAR. XML

¢t - P <cnp-fiel d-mappi ng name= phonel\hnbers >

- <col | ecti on- mappi ng tabl e="EnpBean_phoneNunbers_Pho_fj 49g">-------

oo <pri nkey- mappi ng> '

L <cnp-fiel d-mappi ng name="enpNo" persi stence- name="EnpBean_ errpno ">
. </ pri mkey- mappi ng> .

Do <val ue- mappi ng type="enpl oyee. PhoneLocal " :

c <cnp-fi el d- mappi ng>

--------- » <entity-ref home=' PhoneBean >

T p <cnp-field-napping name= phonel\lmbers

persi st ence- name="PhoneBean_ aut0| d />

</entity-ref>
</ cnp-field-mappi ng> '
</ val ue- mappi ng>
</ col | ecti on- mappi ng>
</ cnp-fiel d- mappi ng>

EmpBean_phoneNunmber s_Pho_fj 49g |- e “““
FK: EnpBean_empno | FK: PhoneBean_aut oi d - -

enpno |enpNane |sal ary aut oi d phoneNunber

EnpBean_enpl _j ar _enpl oyee PhoneBean_enpl _j ar _enpl oyee

Entity Relationship Mapping 4-29

Mapping Relationship Fields to the Database

Option for the One-To-Many Explicit Bidirectional Relationship

You can bypass an association table in the one-to-many bidirectional entity
relationship. The "one" relationship has a primary key that points to the "many"; the
"many" has a foreign key that points back. With both tables maintaining primary
keys, and the "many" table maintaining a foreign key back to the "one" table, there is
no need for an association table.

Figure 4-6 shows the department<->employee example, where each employee
belongs to only one department and each department can contain multiple
employees. The department table has a primary key. The employee table has a
primary key to identify each employee and a foreign key to point back to the
employee’s department. If you want to find the department for a single employee, a
simple SQL statement retrieves the department information from the foreign key. To
find all employees in a department, the container performs a JOIN statement on
both the department and employee tables and retrieves all employees with the
designated department number.

Figure 4—6 One-To-Many Bidirectional Relationship Option

PK:deptNo | deptName empno |empName [salary |FK:dept

Dept Bean_enpl _j ar _enpl oyee EnpBean_enpl _j ar _enpl oyee
This is not the default behavior. To have this type of relationship, do one of the
following:

« Specify - Dassoci at eUsi ngThi r dTabl e=f al se on the OC4J.JAR startup
options before deployment. Restart the OC4J instance.

« Manipulate the <col | ecti on- mappi ng> element in the
orion-ejb-jar.xn file.

To manipulate the <col | ecti on- mappi ng> element in the
orion-ejb-jar.xm file, you modify the <ent i t y- depl oynent > element for
the "one" entity bean, which contains the Col | ect i on, as follows:

4-30 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Mapping Relationship Fields to the Database

1. Change the association table in the <col | ecti on- mappi ng>t abl e attribute
to be the "many" table. In this example, you would modify this attribute to be
the EnpBean_enpl _j ar _enpl oyee table.

2. Modify the column names in the per si st ence- nane attribute for each entity
bean in the <col | ect i on- mappi ng> table as follows:

— Thepersistence-nane of the <pri nkey-fi el d>elementshould be the
primary key of the source entity bean and the database column name of the
foreign key in the target entity bean.

— The<val ue- mappi ng> element provides a pointer to the target bean—the
"many" bean. Thus, the <ent i t y- r ef > home attribute should be the target
entity bean name. In the second <cnp- f i el d- mappi ng> element, the
name attribute contains the <cnr - f i el d> defined in the "one" entity bean
inthe ori on-ej b-jar.xm file. The per si st ence- nane attribute
defines the primary key column of the "one" entity bean table.

Figure 4-7 demonstrates how the department/employee one-to-many bidirectional
example is mapped without the use of an association table.

Entity Relationship Mapping 4-31

Mapping Relationship Fields to the Database

Figure 4-7 Explicit Mapping for One-To-Many Bidirectional Relationship Example

EJB- JAR. XM

<rel ati onshi p-rol e-source>
----- P <ej b- nane>EnpBean</ ej b- nane>
' </rel ationshi p-rol e-source>
<cnr-fiel d>
<cnr-field-nane>dept</cnr-field-name>-----------------.
</cnr-field>

<r el at i onshi p-rol e-source> :
<ej b- name>Dept Bean</ ej b- name> .
</rel ati onshi p-rol e-source> '
<cnmr-field>
------ <cnr -fiel d- nane>enpl oyees</cnr-fi el d- nane>
</cnr-field>

Lo ORI ON- EJB- JAR. XML in the <enti ty- depl oynment > for Dept Bean
© --p <cnp-field-mapping nane=' errpl oyees">
. <col | ecti on-mappi ng tabl e="EnpBean_enpl _j ar _enpl oyee">--2-------
<pri nkey- mappi ng> '
<cnp-fiel d-mappi ng name="dept No" per si st ence-nane="dept"/>
</ pri nkey- mappi ng> . ,
J <val ue- mappi ng type="enpl oyee. EnpBeanLocal " : .
: <cnp- fi el d- mappi ng> | :
---------- P <entity-ref home="EnpBean"> '
<cnp-fiel d- mappi ng nane="enpNo"
persi st ence- name="enpno"/ >
</entity-ref> . . :
</ cnp-field-mappi ng> : ! '
</ val ue- mappi ng> . | '
</col | ecti on- mappi ng> : '
</ cnp-fiel d- mappi ng>

PK:deptN¢ deptName PEempno empName¢ salary| FK:dept «&| :

Dept Bean_enpl _j ar _enpl oyee EnpBean_enpl _jar_enployee-g---------------

4-32 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

D

EJB Query Language

In EJB 2.0, you can specify query methods using the standardized query language,
EJB Query Language (EJB QL).

The EJB 2.0 specification and various off-the-shelf books document EJB QL
extensively. This chapter briefly overviews the development rules for these
methods, but does not describe the EJB QL syntax in detail.

Refer to the EJB 2.0 specification and the following books for detailed syntax:
« Enterprise JavaBeans, 3rd Edition by Richard Monson-Haefel, O’'Reilly Publishers

« Special Edition Using Enterprise JavaBeans 2.0 by Chuck Cavaness and Brian
Keeton, Que Publishers

This chapter covers the following subjects:
« EJB QL Overview

« Query Methods Overview

« Deployment Descriptor Semantics

« Finder Method Example

« Select Method Example

EJB Query Language 5-1

EJB QL Overview

EJB QL Overview

EJB QL is a query language that is similar to SQL. In fact, your knowledge of SQL is
beneficial in using EJB QL. SQL applies queries against tables, using column
headings. EJB QL applies queries against entity beans, using the entity bean name
and its CMP and CMR fields within the query. The EJB QL statement retains the
object terminology.

The container translates the EJB QL statement to the appropriate database SQL
statement when the application is deployed. Thus, the container is responsible for
converting the entity bean name, CMP field names, and CMR field names to the
appropriate database tables, primary keys, foreign keys, and column names. EJB QL
is portable to all databases supported by your container.

Query Methods Overview
Query methods can be finder or select methods:
« Finder Methods: Use finder methods to retrieve entity bean references.

« Select Methods: Select methods are for internal use for the entity bean only. Use
them to retrieve either entity bean references or CMP values.

Both query methods must throw the Fi nder Excepti on.

Finder Methods

Finder methods are used to retrieve entity bean references. The

fi ndByPri mar yKey finder method is always defined in both home interfaces
(local and remote) to retrieve the entity reference for this bean using a primary key.
You can define other finder methods in either or both the home interfaces to retrieve
one or several entity bean references.

Do the following to define finder methods:

1. Define the f i nd<name> method in the desired home interface. You can specify
different finder methods in the remote or the local home interface. If you define
the same finder method in both home interfaces, it maps to the same bean class
definition. The container returns the appropriate home interface type.

2. Define the conditional statement for the finder method in the deployment
descriptor. An EJB QL statement is created for each finder method in its own
<guer y> element. The container uses this statement to translate the condition
on how to retrieve the entity bean references into the relevant SQL statements.

5-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Query Methods Overview

If you retrieve only a single entity bean reference, the container returns the same
type as returned in the f i nd<nane> method. If you request multiple entity bean
references, you must define the return type of the f i nd<name> method to return a
Col | ecti on. If you want to ensure that no duplicates are returned, specify the

DI STI NCT keyword in the EJB QL statement. An empty Col | ecti on is returned if
no matches are found.

Backward Compatibility for Finder Methods

In Release 2 (9.0.2) and previous releases, OC4J had its own methodology for finder
methods. These finder methods were configured in the ori on-ej b-j ar. xm file
in a <fi nder - net hod> element. Each <f i nder - met hod> element specified a
partial or full SQL statement in its quer y attribute, as follows:

<finder-nethod query="">
R
<finder-nethod query="$enpnane = $1">

If you have a <f i nder - met hod> with a quer y attribute from a previous release, it
overrides any EJB QL modifications to the same method in the ej b-j ar. xm file.
Theorion-ejb-jar.xm configured <fi nder - met hod> query attribute
definition has higher priority.

To have the previous finder method modified with EJB QL, erase the query
attribute of the <f i nder - met hod> inthe ori on-ej b-j ar. xm file and redeploy
the application. OC4J notes that the quer y attribute is not present and places the
EJB QL equivalent in the <f i nder - net hod> element.

Select Methods

Select methods are for internal use within the bean. These methods cannot be called
from a client. Thus, you do not define them in the home interfaces. Select methods
are used to retrieve entity bean references or the value of a CMP field.

Do the following to define select methods:

1. Define an ej bSel ect <nanme> method in the bean class for each select method.
Each method is defined as publ i c abst r act . The SQL that is necessary for
this method is not included in the implementation.

2. Define the conditional statement for the select method in the deployment
descriptor. An EJB QL statement is created for each select method in its own
<quer y> element. The container uses this statement to translate the condition
into the relevant SQL statements.

EJB Query Language 5-3

Deployment Descriptor Semantics

Return Objects
Here are the rules for defining return types for the select method:

Single object: If you retrieve only a single item, the container returns the same
type as returned in the ej bSel ect <nane> method.

Multiple objects: If you request multiple items, you must define the return type
of the ej bSel ect <name> method as either a Set or Col | ecti on. A Set
eliminates duplicates. A Col | ect i on may include duplicates. For example, if
you want to retrieve all zip codes of all customers, use a Set to eliminate
duplicates. To retrieve all customer names, use a Col | ect i on to retrieve the
full list. An empty Col | ecti on or Set is returned if no matches are found.

— Bean interface: If you return the bean interface, the default interface type
returned within the Set or Col | ecti on is the local bean interface. You can
change this to the remote bean interface in the <r esul t - t ype- nappi ng>
element, as follows:

<resul t-type- mappi ng>Renot e</ resul t - t ype- mappi ng>

— CMP values: If you return a Set or Col | ecti on of CMP values, the
container determines the object type from the EJB QL select statement.

Deployment Descriptor Semantics

The structure required for defining both types of query methods is the same in the
deployment descriptor.

1.

You must define the <abst r act - schema- nane> element for each entity bean
referred to in the EJB QL statement. This element defines the name that
identifies the entity bean in the EJB QL statement. Thus, if you define your
<abstract - schema- name> as Enpl oyee, then the EJB QL uses Enpl oyee in
its EJB QL to refer to the EnpBean entity bean.

You must define the <quer y> element for each query method (finder and
select), except for the f i ndByPr i mar yKey finder method. The <quer y>
element has two main elements:

— The <net hod- name> element identifies the finder or select method. The
finder method is the same name as defined in the component home
interfaces. The select method is the same name as defined in the bean class.

— The<ej b- gl > element contains the EJB QL statement for this method.

5-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Finder Method Example

Example 5-1 Employee FindAll Deployment Descriptor Definition
The following example shows the EnpBean entity bean definition.

« The<entity>element defines its <abst ract - schema- nane> as Enpl oyee.

« A<query>element defines a finder method, f i ndAl | , in which the EJB QL
statement refers to the Enpl oyee name.

<entity>
<di spl ay- nane>EnpBean</ di spl ay- name>
<ej b- nanme>EnpBean</ gj b- nane>

<abst r act - schema- nane>Enpl oyee</ abst ract - schema- nane>
<cnp-fiel d><fiel d-nane>enpNo</fi el d- name></cnp-fiel d>
<cnp-fiel d><fiel d-nane>enpNane</fi el d- name></cnp-fiel d>
<cnp-fiel d><field-name>sal ary</fiel d- name></ cnp-fi el d>
<pri nkey-fiel d>enpNo</ pri nkey-fiel d>
<pri m key-cl ass>j ava. | ang. I nt eger </ pri m key- cl ass>
<query>
<descri ption></description>
<query- net hod>
<net hod- name>f i ndAl | </ net hod- nanme>
<net hod- par ans />
</ quer y- et hod>
<ej b-ql >Sel ect OBJECT(e) From Enpl oyee e</ejb-ql >
</ query>

</entity>

The EJB QL statement for the f i ndAl | method is simple. It selects objects,
identified by the variable e, from the Enpl oyee entity beans. Thus, it selects all
Enpl oyee entity bean objects.

Finder Method Example

To define finder methods in a CMP entity bean, do the following:
1. Define the finder method in one or both of the home interfaces.

2. Define the finder method definition in the deployment descriptor.

EJB Query Language 5-5

Finder Method Example

Define the Finder Method in the Home Interface

You must add the finder method to the home interface. For example, if you want to
retrieve all employees, define the f i ndAl | method in the home interface (local
home interface for this example), as follows:

public Collection findAl () throws FinderException;

To retrieve data for a single employee, define the f i ndByEnpNo in the home
interface, as follows:

public Enpl oyeelLocal findByEnpNo(Integer enpNo)
t hrows Fi nder Excepti on;

The returned bean interface is the local interface, Enpl oyeeLocal . The input
parameter is an employee number, enpNo, which is substituted in the EJB QL ?1
parameter.

Define the Finder Method Definition in the Deployment Descriptor

Each finder method is defined in the deployment descriptor in a <quer y> element.
Example 5-1 contains the EJB QL statement for the f i ndAl | method. The
following example shows the deployment descriptor for the f i ndBy EnpNo
method:

<query>
<descri ption></description>
<query- net hod>
<net hod- name>f i ndBy EnpNo</ net hod- name>
<net hod- par ans>
<net hod- par an®j ava. | ang. | nt eger </ met hod- par an»
</ net hod- par ans>
</ quer y- net hod>
<ej b-ql >SELECT OBJECT(e) FROM Enpl oyee e WHERE e.enpNo = ?1
</ ej b-ql >
</ query>

The EJB QL statement for the f i ndBy EmpName method selects the Enpl oyee
object where the employee number is substituted in the EJB QL ?1 parameter. The ?
symbol denotes a place holder for the method parameters. Thus, the f i ndBy EnpNo
is required to supply at least one parameter. The enpNo passed in on the

f i ndByEnpNo method is substituted in the ?1 position here. The variable, e,
identifies the Enpl oyee object in the WHERE condition.

5-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Select Method Example

Relationship Finder Example

For the EJB QL statement that involves a relationship between entity beans, both
entity beans are referenced within the EJB QL statement. The following example
shows the f i ndByDept No method. This finder method is defined within the
employee bean, which references the department entity bean. This method retrieves
all employees that belong to a department.

<query>
<descri ption></description>
<query- net hod>
<net hod- name>f i ndByDept No</ net hod- nane>
<net hod- par ans>
<net hod- par an®j ava. | ang. | nt eger </ met hod- par an»
</ net hod- par ans>
</ quer y- net hod>
<ej b- gl >SELECT OBJECT(e) From Enpl oyee e, IN (e. dept)
AS d WHERE d. deptNo = ?1
</ ej b-ql >
</ query>

The <abst r act - schena- nane> element for the employee bean is Enpl oyee. The
employee bean defines a relationship with the department bean through a CMR
field, called dept . Thus, the department bean is referenced in the EJB QL through
the dept CMR field. The department primary key is dept No. The department
number that the query is executed with is given in the input parameter and
substituted in ?1.

Select Method Example
To define select methods in a CMP entity bean, do the following:
1. Define the select method in the bean class as ej bSel ect <nane>.

2. Define the select method definition in the deployment descriptor.

Define the Select Method in the Bean Class

Add the select method in the bean class. For example, if you want to retrieve all
employees whose salary falls within a range, define the
ej bSel ect BySal ar yRange method in the bean class, as follows:

public abstract Collection ejbSel ect BySal aryRange(Fl oat s1, Float s2)
throws Fi nderException;

EJB Query Language 5-7

Select Method Example

Because the select method retrieves multiple employees, a Col | ect i on is returned.
The low and high end of the salary range are input parameters, which are
substituted in the EJB QL ?1 and ?2 parameters. The order of the declared method
parameters is the same as the order of the ?1, 72, ... ?n EJB QL parameters.

Define the Select Method Definition in the Deployment Descriptor

Each select method is defined in the deployment descriptor in a <quer y> element.
The following example shows the deployment descriptor for the
ej bSel ect BySal ar yRange method:

<query>
<descri ption></description>
<query- net hod>
<net hod- name>ej bSel ect BySal ar yRange</ met hod- nane>
<net hod- par ans>
<net hod- par anpj ava. | ang. Fl oat </ net hod- par an»
<net hod- par anpj ava. | ang. Fl oat </ net hod- par an»
</ net hod- par ans>
</ quer y- net hod>
<ej b- gl >SELECT DI STINCT OBJECT(e) From Enpl oyee e
WHERE e. sal ary BETWEEN ?1 AND ?2
</ ej b-ql >
</ query>

The ej bSel ect BySal ar yRange method provides two input parameters, both of
type float. The types of these expected input parameters are defined in the
<met hod- par an® elements.

The EJB QL is defined in the <ej b- gl > element. This select method evaluates the
CMP field of salary. It is designated within the EJB QL statement by the e. sal ary.
The e represents the Enpl oyee objects; the sal ar y represents the CMP field
within that object. Separating it with a period shows the relationship between the
entity bean and its CMP field.

The two input parameters designate the low and high salary ranges and are
substituted in the ?1 and ?2 positions respectively.

The DI STI NCT keyword ensures that no duplicate records are returned.

5-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

S

BMP Entity Beans

You must implement the storing and reloading of data in a bean-managed
persistent (BMP) bean. The bean implementation manages the data within callback
methods. All the logic for storing data to your persistent storage is included in the
ej bSt or e method, and reloaded from your storage in the ej bLoad method. The
container invokes these methods when necessary.

This chapter demonstrates simple BMP EJB development with a basic configuration
and deployment. Download the BMP entity bean example (brpapp. j ar) from the
OC4J) sample code page athtt p:// ot n. oracl e. coml sanpl e_
code/tech/javal/ oc4dj/ htdocs/ oc4j sanpl ecode/ oc4j -denp-ej b. ht m
on the OTN site.

The following sections discuss how to implement data persistence:
« Creating BMP Entity Beans

« Component and Home Interfaces

« BMP Entity Bean Implementation

« Create Database Table and Columns for Entity Data

BMP Entity Beans 6-1

Creating BMP Entity Beans

Creating BMP Entity Beans

As Chapter 3, "CMP Entity Beans" indicates, the steps for creating an entity bean are
as follows:

1. Create the component interfaces for the bean. The component interfaces declare
the methods that a client can invoke.

a. The local component interface extends j avax. ej b. EJBLocal Obj ect.
b. The remote component interface extends j avax. ej b. EJBObj ect .

2. Create the home interfaces for the bean. The home interface defines the cr eat e
and finder methods, including f i ndByPr i mar yKey, for your bean.

a. The local home interface extends j avax. ej b. EJBLocal Horre.
b. The remote home interface extends j avax. ej b. EJBHorre.

3. Define the primary key for the bean. The primary key identifies each entity
bean instance and is a serializable class. You can use a simple data type class,
such asj ava. | ang. Stri ng, or define a complex class, such as one with two
or more objects as components of the primary key.

4. Implement the bean. This includes the following:

a. The implementation for the methods that are declared in your component
interfaces.

b. The methods that are defined in the j avax. ej b. Ent i t yBean interface.

c. The methods that match the methods that are declared in your home
interface, which include the following:

* Theej bCreat e and ej bPost Cr eat e methods with parameters
matching the associated cr eat e method defined in the home interface.

* Finder methods that are defined in the home interface. The
ej bFi ndByPr i mar yKey corresponds to the f i ndByPr i mar yKey
method in the home interface. It retrieves the primary key and validates
that it exists. Any other finder methods defined in the home interface
must also be implemented in the bean implementation.

d. The methods defined in the j avax. ej b. Enti t yBean interface. The
ej bCreat e, ej bPost Cr eat e, and ej bFi ndByPr i mar yKey are already
mentioned above. The other methods are as follows:

* Persistent saving of the data within the ej bSt or e method.

6-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

BMP Entity Bean Implementation

* Restoring the persistent data to the bean within your implementation of
the ej bLoad method.

* Passivation of the bean instance within the ej bPassi vat e method.

* Activation of the passivated bean instance within the ej bActi vat e
method.

5. If the persistent data is saved to or restored from a database, you must ensure
that the correct tables exist for the bean.

6. Create the bean deployment descriptor. The deployment descriptor specifies
properties for the bean through XML elements.

7. Create an EJB JAR file containing the bean, component interface, home
interface, and the deployment descriptors. Once created, configure the
appl i cation. xm file, create an EAR file, and deploy the EJB to OC4J.

Component and Home Interfaces

The BMP entity bean definition of the component and home interfaces are identical
to the CMP entity bean. For examples of how the component and home interfaces
are implemented, see "Creating Entity Beans" on page 3-3.

BMP Entity Bean Implementation

Because the container is not managing the primary key nor the saving of the
persistent data, the bean callback functions must include the implementation logic
for these functions. The container invokes the ej bCr eat e,

ej bFi ndByPr i mar yKey, other finder methods, ej bSt or e, and ej bLoad methods
where it is appropriate.

The ejbCreate Implementation

The ej bCr eat e method is responsible primarily for the creation of the primary
key. This includes creating the primary key, creating the persistent data
representation for the key, initializing the key to a unique value, and returning this
key to the container. The container maps the key to the entity bean reference.

The following example shows the ej bCr eat e method for the employee example,
which initializes the primary key, enpNo. It should automatically generate a
primary key that is the next available number in the employee number sequence.

BMP Entity Beans 6-3

BMP Entity Bean Implementation

However, for this example to be simple, the ej bCr eat e method requires that the
user provide the unique employee number.

In addition, because the full data for the employee is provided within this method,
the data is saved within the context variables of this instance. After initialization, it
returns this key to the container.

/] The create nethods takes care of generating a new enpNo and returns

/1 its primary key to the contai ner

public Integer ejbCeate (Integer enpNo, Sring enpNane, H oat sal ary)
throws Q eat eException

{

this. enpNb = enpNb;

thi s. enpNane = enpNarre;

this.salary = sal ary;

return (enpNb);

}

The deployment descriptor defines only the primary key class in the

<pri m key- cl ass> element. Because the bean is saving the data, there is no
definition of persistence data in the deployment descriptor. Note that the
deployment descriptor does define the database the bean uses in the

<r esour ce- r ef > element. For more information on database configuration, see
"Modify XML Deployment Descriptors" on page 6-11.

<enter pri se- beans>
<entity>
<di spl ay- nane>Enpl oyeeBean</ di spl ay- nane>
<ej b- nane>Enpl oyeeBean</ €] b- nane>
<l ocal - hone>enpl oyee. Enpl oyeetHbne</ | ocal - horme>
<l ocal >enpl oyee. Enpl oyee</ | ocal >
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>
<per si st ence-t ype>Bean</ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reent r ant >Fal se</r eent r ant >
<resour ce-ref >
<res-r ef - nane>j dbc/ O acl eD&</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ r es-t ype>
<res-aut h>Appl i cati on</res- aut h>
</resource-ref>
<entity>
</ enterpri se-beans>

Alternatively, you can create a complex primary key based on several data types.
You define a complex primary key within its own class, as follows:

6-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

BMP Entity Bean Implementation

package enpl oyee;

public class Enpl oyeePK i npl enents java.io. Serializable
{

public Integer enpNb;

public Sring enphNane;

public Foat salary;

publ i ¢ Enpl oyeePK(| nt eger enpNb)
{
this. enpNb = enpNb;
this. enpName = nul | ;
this.salary = null;

}

publ i c Enpl oyeePK(I nteger enpNo, String enpNane, Hoat sal ary)
{

this.enpNo = enpNb;

thi s. enpNane = enpNarre;

this.salary = sal ary;

}
}

For a primary key class, you define the class in the <pri m key- cl ass> element,
which is the same for the simple primary key definition.

<ent er pri se- beans>
<entity>
<di spl ay- nane>Enpl oyeeBean</ di spl ay- nane>
<ej b- nane>Enpl oyeeBean</ €] b- nane>
<l ocal - hone>enpl oyee. Enpl oyeetHone</ | ocal - horme>
<l ocal >enpl oyee. Enpl oyee</ | ocal >
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ gj b- cl ass>
<per si st ence-t ype>Bean</ per si st ence-t ype>
<pri mkey- cl ass>enpl oyee. Enpl oyeePK</ pri mkey- cl ass>
<reent rant >Fal se</r eent r ant >
<resour ce-ref >
<res-r ef - nane>j dbc/ O acl eD&</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ r es-t ype>
<res-aut h>Appl i cati on</res- aut h>
</resource-ref>
<entity>
</ enterpri se-beans>

BMP Entity Beans 6-5

BMP Entity Bean Implementation

The employee example requires that the employee number is given to the bean by
the user. Another method would be to generate the employee number by
computing the next available employee number, and use this in combination with
the employee’s name and office location.

After defining the complex primary key class, you would create your primary key
within the ej bCr eat e method, as follows:

publ i c Enpl oyeePK ej bCreate(lnteger enpNo, String enpNane, Hoat sal ary)
throws O eat eException

{
pk = new Enpl oyeePK(enpNo, enpMane, sal ary);

}...

The other task that the ej bCr eat e (or ej bPost Cr eat e) should handle is
allocating any resources necessary for the life of the bean. For this example, because
we already have the information for the employee, the ej bCr eat e performs the
following:

1. Retrieves a connection to the database. This connection remains open for the life
of the bean. It is used to update employee information within the database. It
should be released in ej bPassi vat e and ej bRenpve, and reallocated in
ej bActi vate.

2. Updates the database with the employee information.
This is executed, as follows:

publ i c Enpl oyeePK ej bOreate(| nteger enpNo, String enpNarre, Hoat sal ary)
throws O eateException
{
pk = new Enpl oyeePK(enpNo, enpMNane, sal ary);
conn = get Gonnect i on(dsNane) ;
ps = conn. prepar eX at errent (| NSERT | NTO EMPLOYEEBEAN (EnpNo, EnpNane, SAL)
VALUES (this.enpNo.intValue(), this.enpNane, this.salary.floatVal ue());
ps. cl ose();
return pk;

6-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

BMP Entity Bean Implementation

The ejbFindByPrimaryKey Implementation

The ej bFi ndByPr i mar yKey implementation is a requirement for all BMP entity
beans. Its primary responsibility is to ensure that the primary key is valid. Once it is
validated, it returns the primary key to the container, which uses the key to return
the component interface reference to the user.

This sample verifies that the employee number is valid and returns the primary key,
which is the employee number, to the container. A more complex verification would
be necessary if the primary key was a class.

public Integer ej bA ndByPrimaryKey(lnteger enpNoPK)
throws Fi nder Exception

{
if (enpNoPK == null) {
t hrow new Fi nder Exception("Pri mary key cannot be nul 1");

}

ps = conn. prepar eX at enent (SELECT EMPNO FROM EMPLOYEEBEAN
WERE BEMPNO = ?);

ps.setlnt(1l, enpNoPK intValue());

ps. execut eQuery();

ResultSet rs = ps.get Resul t Set();

if (rs.next()) {

/*PK i s validated because it exists already*/

} else {

t hrow new F nder Excepti on("Failed to select this PK');

}

ps. cl ose();

return enpNoPK;
}

Other Finder Methods

You can create other finder methods beyond the single ej bFi ndByPr i mar yKey.
To create other finder methods, do the following:

1. Add the finder method to the home interface.

2. Implement the finder method in the BMP bean implementation.

These finder methods need only to gather the primary keys for all of the entity
beans that should be returned to the user. The container maps the primary keys to

BMP Entity Beans 6-7

BMP Entity Bean Implementation

references to each entity bean within either a Col | ect i on (if multiple references
are returned) or to the single class type.

The following example shows the implementation of a finder method that returns
all employee records.

public Qollection e bFindA I () throws F nder Exception
{

Vector recs = new Vector();

ps = conn. prepar eX at ement (SELECT EMPNO FROM EMPLOYEEBEAN) ;
ps. execut eQuery();
ResultSet rs = ps.get Resul t Set();

int i =0;

while (rs.next())

{
ret EnpNo = new Integer(rs.getint(1));
recs. add(ret EnpNb) ;

}

ps. cl ose();
return recs;

}

The ejbStore Implementation

The container invokes the ej bSt or e method when the persistent data should be
saved to the database. This includes whenever the primary key is "dirtied", or
before the container passivates the bean instance or removes the instance. The BMP
bean is responsible for ensuring that all data is stored to some resource, such as a
database, within this method.

public void e bSore()

{

// Contai ner invokes this nethod to instruct the instance to

//synchroni ze its state by storing it to the underlying database

ps = conn. prepar eX at enent (UPDATE BMPLOYEEBEAN SET EMPNAME=?,
SALARY=? WHERE BEMPNC=?) ;

ps.setSring(1l, this.enphane);

ps.setH oat (2, this.salary.floatValue());

ps.setlnt(3, this.enpNo.intValue());

if (ps.executelpdate() '=1) {

6-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

BMP Entity Bean Implementation

t hrow new EJBExcepti on("Failed to update record");

}

ps. cl ose();

}

The ejbLoad Implementation

The container invokes the ej bLoad method after activating the bean instance. The
purpose of this method is to repopulate the persistent data with the saved state. For
most ej bLoad methods, this implies reading the data from a database into the
instance data variables.

public void ej bLoad()
{
/] Gontai ner invokes this method to instruct the instance to
/1synchronize its state by loading it fromthe underlying database
this.enpNo = ctx. get Pri naryKey();
ps = conn. prepar eX at enent (SELECT EMP_NQ BEWP_NAME, SALARY WHERE BEVPNAME=?") ;
ps.setInt(1, this.enpNo.intValue());
ps. execut eQuery();
ResultSet rs = ps.get Resul t Set();
if (rs.next()) {
this.enpNb = new I nteger(rs.getint(1));
this. enpName = new String(rs.getString(2));
this.salary = new Hoat(rs.getH oat(3));
} else{
t hrow new Fi nder Exception("Failed to select this PK');

ps. cl ose();

The ejbPassivate Implementation

The ej bPassi vat e method is invoked directly before the bean instance is
serialized for future use. Normally, this is invoked when the instance has not been
used in a while. It will be re-activated, through the ej bAct i vat e method, the next
time the user invokes a method on this instance.

Before the bean is passivated, you should release all resources and release any static
information that would be too large to be serialized. Any large, static information
that can be easily regenerated within the ej bAct i vat e method should be released
in this method.

BMP Entity Beans 6-9

BMP Entity Bean Implementation

In our example, the only resource that cannot be serialized is the open database
connection. It is closed in this method and reopened in the ej bAct i vat e method.

public void ej bPassivate()
{

/1 Container invokes this method on an instance before the instance
/1 becomes disassociated with a specific EIB obj ect
conn. cl ose();

}

The ejbActivate Implementation

As the ej bPassi vat e method section states, the container invokes this method
when the bean instance is reactivated. That is, the user has asked to invoke a
method on this instance. This method is used to open resources and rebuild static
information that was released in the ej bPassi vat e method.

Our employee example opens the database connection where the employee
information is stored.

public void ej bActivate()

{

/1 Container invokes this method when the instance is taken out
/1 of the pool of available instances to become associated wth
/1 a specific EIB object

conn = get Gonnect i on(dsNane) ;

}

The ejbRemove Implementation

The container invokes the ej bRenbve method before removing the bean instance
itself or by placing the instance back into the bean pool. This means that the
information that was represented by this entity bean should be removed—both by
the instance being destroyed and removed from within persistent storage. The
employee example removes the employee and all associated information from the
database before the instance is destroyed. Close the database connection.

public voi d ej bRenmove() throws RermoveException
{

// Contai ner invokes this nmethod befor it renoves the EIB object
//that is currently associated wth the instance

ps = conn. prepar e at enent (DELETE FROM BEMPLOYEEBEAN WHERE BEMPNC=?) ;
ps.setlnt(1, this.enpNo.intValue());

if (ps.executelpdate() '=1) {

t hr ow new RenoveExcepti on("Failed to delete record");

6-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Modify XML Deployment Descriptors

}
ps. cl ose();
conn. cl ose();

}

Modify XML Deployment Descriptors

In addition to the configuration described in "Creating Entity Beans" on page 3-3,
you must modify and add the following to your ej b-j ar. xm deployment
descriptor:

1. Configure the persistence type to be "Bean" in the <per si st ence-type>
element.

2. Configure an resource reference for the database persistence storage in the
<resour ce-r ef > element.

Our employee used the database environment element of "j dbc/ Or acl eDS".
This is configured in the <r esour ce- r ef > element as follows:

<resour ce-ref >
<r es- r ef - nane>j dbc/ O acl eDS</ r es- r ef - nane>
<r es- t ype>j avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Appl i cat i on</ r es- aut h>
</resource-r ef >

The database specified in the <r es- r ef - nane> element maps to a

<ej b-1 ocati on>element in the dat a- sour ces. xni file. Our

"j dbc/ Or acl eDS" database is configured in the dat a- sour ces. xm file, as
shown below:

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="Q acl e"
| ocati on="j dbc/ O acl eCor eDS'
pool ed- | ocati on="j dbc/ pool / O acl ePool DS’
ej b-1 ocati on="j dbc/ O acl eDS'
xa- | ocati on="j dbc/ xa/ O acl eXADS'
connecti on-driver="oracl e.jdbc.driver. Qacl eDriver"
url ="j dbc: oracl e: t hi n: @ocal host : 5521: orcl "
user name="scot t"
password="ti ger"
max- connect i ons="300"
m n- connect i ons="5"
nax- connect - at t enpt s="10"

BMP Entity Beans 6-11

Create Database Table and Columns for Entity Data

connection-retry-interval ="1"
i nactivity-ti neout ="30"
wai t -ti neout =" 30"

/>

Create Database Table and Columns for Entity Data

If your entity bean stores its persistent data within a database, you need to create
the appropriate table with the proper columns for the entity bean. This table must
be created before the bean is loaded into the database. The container will not create
this table for BMP beans, but it will create it automatically for CMP beans.

In our employee example, you must create the following table in the database
defined in the dat a- sour ces. xni file:

Table Columns

EMPLOYEEBEAN « employee number (EMPNO)
« employee name (EMPNAME)
« salary (SALARY)

The following shows the SQL commands that create these fields.

CREATE TABLE EMPLOYEEBEAN (
EVPNO NUMVBER NOT NLLL,
EVPNAME VARCHARR(255) NOT NULL,
SALARY FLOAT NOT NLLL,
QONSTRAI NT EMPND PR MARY KEY

)

6-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

v

Message-Driven Beans

A Message-Driven Bean (MDB) is a Java Messaging Service (JMS) message listener
that can reliably consume messages from a queue or a subscription of a topic. The
advantage of using an MDB instead of a JMS message listener is that you can use
the asynchronous nature of a JMS listener with the benefit of the EJB container
performing the following:

« The consumer is created for the listener. That is, the appropriate
QueueRecei ver or Topi cSubscri ber is created by the container.

« The MDB is registered with the consumer. The container registers the MDB with
the QueueRecei ver or Topi cSubscri ber and its factory at deployment
time.

« The message acknowledgment mode is specified.
An MDB is an easy method for creating a JMS message listener.

The following sections discuss the tasks in creating an MDB in Oracle9iAS
Containers for J2EE (OC4J) and demonstrate MDB development with a basic
configuration to use Oracle JMS as the resource provider.

« MDB Overview
« Creating MDBs
« Accessing MDBs

Download the MDB example from the OC4J sample code page at
http://otn.oracl e.com sanmpl e_

code/ tech/j aval/ oc4j / htdocs/ oc4j sanpl ecode/ oc4j - denp-ej b. ht m
on the OTN web site.

Message-Driven Beans 7-1

MDB Overview

MDB Overview

An MDB is a unique EJB whose function is to read or write J]MS messages from a
JMS Dest i nat i on (topic or queue).

The OC4J MDB interacts with Oracle JMS, which must be installed and configured
appropriately. Oracle JMS is installed and configured on an Oracle database. Within
this database, the appropriate queue or table is created.

1. The MDB opens a JMS connection to the database using a data source with a
username and password. The data source represents the Oracle JMS resource
provider and uses a JDBC driver to facilitate the JMS connection.

2. The MDB opens a JMS session over the JMS connection.

3. Any message for the MDB is routed to the onMessage method of the MDB
from the queue or topic. Other clients may have access to the same queue or
topic to put on messages for the MDB.

Figure 7-1 Demonstration of an MDB Interacting with an Oracle JMS Destination

0OC4)

JMS connection over a
DS Queue or
JDBC connection Topic

CLIENT

7-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating MDBs

Creating MDBs

MDBs interact with queues and topics furnished by the Oracle JMS resource
provider. A full description of how to use this resource provider is discussed in the
JMS chapter in the Oracle9iAS Containers for J2EE Services Guide.

The JMS chapter details the following steps that enable each resource provider:

1. Install and configure the resource provider. For Oracle JMS, this includes the
following:

a.

Create an RDBMS user through which the MDB connects to the database.
Grant this user appropriate access privileges to perform Oracle JMS
operations.

Create the tables and queues to support the JMS Dest i nat i on objects.

Configure the Oracle JMS resource provider by configuring a data source
with the capabilities that are appropriate for the functionality within your
application.

2. Configure the location of the resource provider in the OC4J XML files.

To create an MDB that uses the resource provider, perform the following steps:

1. Implement the bean, which includes the following:

a.

The bean class must implement the j avax. ej b. MessageDri venBean
and j avax. j ms. Messageli st ener interfaces, which includes the
following:

* the onMessage method in the MessagelLi st ener interface

* theset MessageDri venCont ext method in the
MessageDr i venBean interface

The bean class must implement the container callback methods that
normally match methods in the EJB home interface. A remote, local, and
home interface are not implemented with an MDB. However, some of the
callback methods required for these interfaces are implemented in the bean
implementation. These methods include the following:

* anej bCreat e method

* anej bRemove method

2. Create the MDB deployment descriptors.

Message-Driven Beans 7-3

Creating MDBs

a. Define the JMS connection factory and Dest i nat i on used in the EJB
deployment descriptor. Define if any durable subscriptions are used.

b. Map the JMS connection factory and Dest i nat i on type to the MDB in the
OC4J-specific deployment descriptor—or i on-ej b-j ar. xm .

c. Ifthe MDB is a container-managed transaction, specify the onMessage
method in the <cont ai ner-transacti on>element.

3. Create an EJB JAR file containing the bean and the deployment descriptors.
Configure the application-specific appl i cati on. xm file, create an EAR file,
and install the EJB in OCA4J.

The following sections demonstrate a simple MDB, using Oracle JMS as the
resource provider. For directions on configuring other resource providers, see the
JMS chapter in the Oracle9iAS Containers for J2EE Services Guide.

« Install And Configure The Resource Provider
« Bean Class Implementation
« Configure Deployment Descriptors

« Deploy the Entity Bean

Install And Configure The Resource Provider

Before you can use the MDB within the application, you must choose and configure
a resource provider for the JMS Dest i nat i on objects used by the MDB. The
following sections discuss how to configure Oracle JMS.

« Create User and Assign Privileges
« Create JMS Destination Objects
« Configure the DataSource

« Configure the Resource Provider

Create User and Assign Privileges

Create an RDBMS user through which the MDB connects to the database. Grant
access privileges to this user to perform Oracle JMS operations. The privileges that
you need depend on what functionality you are requesting. Refer to the Oracle9i
Application Developer’s Guide - Advanced Queuing for more information on privileges
necessary for each type of function.

7-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating MDBs

The following example creates MYUSER with privileges required for Oracle IMS
operations:

create user WUSER identified by MYPASSWIRD,
grant connect, resource to MYUSER

grant execute on sys.dbns_agadm to MWUSER
grant execute on sys. dbns_aq to MUSER
grant execute on sys.dbns_agin to MUSER
grant execute on sys.dbns_agjns to MWUSER

connect IMYUSER MYPASSWIRD,

You may need to grant other privileges, such as two-phase commit (requires FORCE
ANY TRANSACTI ON) or system administration privileges, based on what the user
needs.

Create JMS Destination Objects

Each resource provider requires its own method for creating the JMS Dest i nati on
object. Refer to the Oracle9i Application Developer’s Guide - Advanced Queuing for
more information on the DBMS_ AQADMpackages and Oracle JMS messages types.
For our example, Oracle JMS requires the following methods:

Note: The SQL for creating the tables for the Oracle IMS example
is included in the MDB example available from OTN.

1. Create the tables that handle the JMS Dest i nat i on (queue or topic).

In Oracle JMS, both topics and queues use a queue table. The Oracle JMS
example within this chapter creates two tables: QTque for a queue and QTt pc
for a topic.

To create the queue table, execute the following SQL:
DBVB AQMDM CREATE QUELE TABLE(

Queue_tabl e => ' Qrque’,
Queue_payl oad type => ' SYS AQs_JMB BYTES MESSACE ,
nmul ti pl e_consuner s = false);

The type of message is defined as one of the following:

« Bytes: SYS. AQs_JIVS_BYTES MESSAGE

Message-Driven Beans 7-5

Creating MDBs

« Map: SYS. AQGG_INMS_MAP_MESSAGE

« String: SYS. AGG_JMS_STRI NG_MESSAGE
. Text: SYS. AQ6_JMS_TEXT MESSAGE

« Object: SYS. AQS_JMS_OBJECT_MESSAGE

The third parameter denotes whether there are multiple consumers or not; thus,
is always false for a queue and true for a topic.

To create the topic table, execute the following SQL:
DBVB AQADM CREATE QUELE TABLE(

Queue_t abl e =>"Qltpc’,
Queue_payl oad_type => ' SYS AQF_JIMS BYTES MESSACE ,
nmul ti pl e_consuner s = TRUE);

2. Create the IMS Dest i nati on. If you are creating a topic, you must add each
subscriber for the topic. This example chooses to use durable subscribers, which
results in additional configuration within the deployment descriptors.

The Oracle JMS example within this chapter requires a single topic with two
subscribers—t opi ¢1 with MDBSUB and MDBSUB2—and a single
queue—queuel.

The following creates a topic called t opi c1 within the topic table QTt pc with
max retries set to 2. After creation, two durable subscribers are added to the
topic. Finally, the topic is started.

DBVB AQADM CREATE QUBUH("topicl’, 'Qltpc’);

DBVBE AQADM ADD SUBSCR BER('topi c1', sys. ag$ agent (" MDSUB, null, null));
DBVB AQADM ADD SUBSCR BER('topi c1', sys.aqg$_agent (" MDSUB2', null, null));
DBVE_ AQADM START _QUELE(' topi cl');

The following creates a queue called queuel within the queue table QTque
with max retries set to 2. After creation, the queue is started.

DBVS AQADM CREATE QUEUE(' queuel’ |, ' QIque’);

DBVS AQADM START_QUELE(' queuel’) ;

Configure the DataSource

Configure the Oracle JMS resource provider by configuring a data source. The
topics and queues connect to the database and use database tables and queues to
facilitate messaging.

The type of data source you use depends on the functionality you want.

7-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating MDBs

Transactional Functionality For no transactions or single-phase transactions, you can
use either an emulated or non-emulated data sources. For two-phase commit
transaction support, you can use only a non-emulated data source.

Example 7-1 Non-Emulated With Thin JDBC Driver

The following example contains a non-emulated data source that uses the thin JDBC
driver. It can support a two-phase commit transaction; it cannot support session
pooling.

The example is displayed in the format of an XML definition; see the Oracle9iAS
Containers for J2EE User’s Guide for directions on adding a new data source to the
configuration.

<dat a- sour ce
cl ass="com ever m nd. sgl . O i onCM'Dat aSour ce"
nane="nyDS"
| ocati on="j dbc/ M/DS'
connect i on-driver="oracl e. j dbc. driver. O acl eDri ver"
user namre="nyuser"
passwor d="nypasswd"
url ="j dbc: oracl e: t hi n: @yhost . f oo. com 1521: nydb"
i nactivity-ti meout =" 30"
/>

Configure the Resource Provider
Identify the INDI name of the data source that is to be used as the resource provider
within the <r esour ce- pr ovi der > element.

« If this is to be the resource provider for all applications (global), configure the
global appl i cati on. xm file.

« Ifthisis to be the resource provider for a single application (local), configure the
orion-application.xm fileof the application.

The following code sample shows how to configure the resource provider using
XML syntax for Oracle JMS.

« cl ass attribute—The Oracle JMS resource provider is implemented by the
oracl e. jms. § nmsCont ext class, which is configured in the cl ass attribute.

« property attribute—Identify the data source that is to be used as this resource
provider in the pr oper t y element. The topic or queue connects to this data
source to access the tables and queues that facilitate the messaging.

Message-Driven Beans 7-7

Creating MDBs

The following example demonstrates that the data source identified by
"j dbc/ Cart Enul at edDS" is to be used as the Oracle JMS resource provider. This
JNDI name is identified in the ej b- | ocat i on element in Example 7-1.

<resour ce-provi der class="oracl e.jns. g nsGontext" name="cartoj nsl">
<descri pti on> QIMY AQ </ descri pti on>
<property nane="dat asource" val ue="j dbc/ nyDS'></ property>

</ r esour ce- provi der >

Bean Class Implementation

Most MDBs receive messages from a queue or a topic, then invoke an entity bean to
process the request contained within the message.

The following example is a MessageBean MDB. Its functionality is to print out a
message sent to it through a durable topic. The topic is identified in the deployment
descriptors.

As an MDB, it is responsible for the following:

« implements the j avax. ej b. MessageDr i venBean and
j avax.j nms. Messageli st ener interfaces

« defined as publ i c (notfi nal orabstract)

« implements a constructor and the following methods:
set MessageDri venCont ext , ej bCr eat e, onMessage, and ej bRenove

package cart. gj b;
i nport com ever nind. server. ThreadSt at e;

inport java.io. Serializable;

i nport java.rm . Renot eExcepti on;

i nport javax. ej b. MessageDri venBean;

i nport javax. ej b. MessageDri venCont ext ;
i nport javax.ejb. Oreat eExcepti on;

i nport javax.nam ng. *;

i nport javax.transaction.*;

i nport javax.jmns.*;
inport oracle. AQ*;
inport oracle.jns.*;

public class MessageBean inpl enents javax. ej b. MessageDr i venBean,
j avax. j ms. Messageli st ener

{

7-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating MDBs

private transient MessageDrivenContext ndbQx = null;

/* QGonstructor, which is public and takes no argunents.*/
public MessageBean() { }

/* set MessageDri venCont ext et hod */

public void set MessageDri ven(ont ext (MessageDri venCont ext nuc)

{

/* As with all EJBs, you nust set the context in order to be
able to use it at another tine within the MB net hods. */

this. ndbGQ x = nuc;

}

/* ejbCreate nethod, declared as public (but not final or

* static), with areturn type of void, and with no argunents.

*/

public void ejbQeate() throws Exception

{

/* no inplenentation is necessary for this MB */

/* An MDB does not carry state for an individual client. However, you can
retrieve state for use across nmany calls for mitiple clients - state
such as an entity bean reference or a database connection. If so,
retrieve these within the ejbOreate and renove themin the
ej bRemove nethod. */

}

/* ej bRenove nethod */
public void ej bRenove()

{

/* no inplenentation is necessary for this MB*/

}

/**

* onMessage net hod

* Casts the incomng Message to a Text Message and di spl ays

* the text.

*/

public voi d onMessage(Message nsg)

/* The whol e point for this nessage MB is to receive and print
nessages. It is not conplicated, but it shows how MBs are set up to
recei ve JM5 nessages fromqueues and topics. */

Byt esMessage nsgBytes = nul | ;

Message-Driven Beans 7-9

Creating MDBs

try
{

/* This nessage was created as a JMB Byt esMessage. */
if (msg instanceof BytesMessage)

{
/* Convert the BytesMessage into printable text... */

nsgByt es = (Byt esMessage) nsg;
byte[] nsgdata = ((AQ nsByt esMessage) nsgBytes).get BytesDat a();
Sring txt = new Sring(nsgdata);
/* Print out nessage */
Systemout . println("Mssage recei ved=" + txt);
}

}
catch (Exception e)

{

throw new RuntineBxception("onMessage throws exception");

}
}

Configure Deployment Descriptors
The deployment descriptors define MDB configuration in the <message- dri ven>
element.

« The EJB deployment descriptor (ej b-j ar . xm) specifies whether a queue or a
topic is used. This example uses a durable topic.

« The OC4J-specific deployment descriptor (or i on-ej b-j ar. xm) associates
the queue or topic with the actual IMS Dest i nat i on created in the resource
provider.

EJB Deployment Descriptor for the MDB

Within the EJB deployment descriptor (ej b-j ar. xm), define the MDB name,
class, INDI reference, and JMS Dest i nat i on type (queue or topic) in the
<message- dri ven> element. If a topic is specified, you must also define whether
it is durable.

The following example demonstrates the deployment information for the
MessageBean MDB in the <message- dr i ven> element, as follows:

« MDB name specified in the <ej b- name> element.

« MDB class defined in the <ej b- cl ass> element.

7-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating MDBs

« JMSDestinationtypeisaTopi c thatis specified in the
<message- dri ven-destinati on><j ms-desti nati on-type> element.

« The topic is durable, which is specified in the
<message-dri ven-destinati on><subscri ption-durability>
element. Options are "Dur abl e" or "nonDur abl e."

« The type of transaction to use is defined in the <t r ansact i on-t ype>
element. The value can be Cont ai ner or Bean. If Cont ai ner is specified,
define the onMessage method within the <cont ai ner-transacti on>
element with the type of CMT support.

ejb-jar.xml
<?xm version="1.0" encodi ng="UTF 8" ?>

<! DOCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterpri se JavaBeans
2.0//EN' "http://java.sun.conidtd/ejb-jar_2 0.dtd">

<gj b-jar>
<descri pti on>A deno cart bean package. </ descri ption>
<di spl ay- nane>A sinpl e cart j ar</di spl ay- nane>

<ent er pri se- beans>

<message- dri ven>
<descri pti on></ descri pti on>
<di spl ay- nane>MessageBeanTpc</ di spl ay- nane>
<ej b- nane>MessageBeanTpc</ g b- nane>
<ej b-cl ass>cart . €] b. MessageBean</ gj b- cl ass>
<transact i on-t ype>Cont ai ner </transacti on-t ype>
<message- dri ven- desti nati on>
<desti nati on-type>j avax. j ns. Topi c</ desti nati on-type>
<subscri pti on-durabi | i t y>Dur abl e</ subscri pti on-durabi | i ty>
</ message-dri ven-desti nati on>
</ message- dri ven>

<assenbl y-descri pt or >
<cont ai ner -t ransact i on>

<net hod>
<ej b- nane>MessageBeanTpc</ €j b- nane>
<net hod- nane>onMessage</ net hod- nane>

</ net hod>

<trans-attribute>Required</trans-attribute>

</ cont ai ner -t ransact i on>

Message-Driven Beans 7-11

Creating MDBs

</ assenbl y- descri pt or >
</enter pri se- beans>

0C4J-Specific Deployment Descriptor

Once you have configured the MDB and the JMS Dest i nat i on type, inform the
container which JMS Dest i nat i on to associate with the MDB. To identify the
Desti nat i on that is to be associated with the MDB, map the Dest i nati on
location and connection factory to the MDB through the

<nmessage- dri ven-depl oyment > elementin the ori on-ej b-j ar. xm file.

The following is the or i on- ej b-j ar. xm deployment descriptor for the
MessageBean example. It maps an Oracle JMS Topi ¢ to the MessageBean MDB,
providing the following:

MDB name, as defined in the <message- dri ven><ej b- nane> in the EJB
deployment descriptor, is specified in the nane attribute.

JMS Dest i nati on Connecti on Fact ory is specified in the
connection-factory-I| ocati on attribute. The syntax is

"j ava: conp/ r esour ce" + resource provider name +

"Topi cConnecti onFact ori es" or "QueueConnecti onFact ori es" + user
defined name. The xxxConnect i onFact or i es details what type of factory is
being defined. For this example, the resource provider name is defined in the
<resour ce- provi der >element in the appl i cati on. xn file as

cart oj ms1l and the user defined name is aqTcf .

JMS Dest i nat i on is specified in the dest i nati on- | ocat i on attribute. The
syntax is"j ava: conp/ r esour ce" + resource provider name + "Topi cs" or
"Queues" + Dest i nati on name. The Topi ¢ or Queue details what type of
Desti nati on is being defined. The Dest i nat i on name is the actual queue or
topic name defined in the database.

For this example, the resource provider name is defined in the
<resour ce- provi der >element in the appl i cati on. xnl file as
cart oj ms1l. In this example, the topic name ist opi c1.

Because this is a topic, the subscription name is defined in the

Csubscri pti on- name attribute. Two subscriptions were created from the
SQL in the database: MDBSUB and MDBSUB2. This topic uses the MDBSUB
subscription.

Listener threads, as defined in the |l i st ener -t hr eads attribute. The listener
threads are spawned off when MDBs are deployed and are used to listen for

7-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing MDBs

incoming JMS messages on the topic or queue. These threads concurrently
consume JMS messages. The default is one thread.

transaction timeout, as defined in the t ransacti on-ti meout attribute. This
attribute controls the transaction timeout interval for any container-managed
transactional MDB. The default is one day. If the transaction has not completed
in this timeframe, the transaction is rolled back.

After you specify all of these in the <nessage- dri ven- depl oynent > element,
the container knows how to map the MDB to the correct IMS Dest i nati on.

<enter pri se- beans>

<message- dri ven- depl oynent

connect i on-factory-1| ocati on=

"j ava: conp/ r esour ce/ cart oj ns1/ Topi cConnect i onFact ori es/ aqTcf"
name="MssageBeanTpc"
destinati on-1 ocation="j ava: conp/ r esour ce/ cart oj ns1/ Topi cs/t opi c1"
subscri pt i on- name="MBSUB'
|istener-threads=50 transaction-ti neout =172800>

</ enterpri se-beans>

Deploy the Entity Bean

Archive your EJB into a JAR file. You deploy the MDB in the same way as the
session bean, which "Prepare the EJB Application for Assembly" on page 2-13 and
"Deploy the Enterprise Application to OC4J" on page 2-15 describe.

Accessing MDBs

The client sends a message to the MDB through a JIMS Dest i nati on. The MDB is
associated with the JMS Dest i nat i on by the container.

To send a JMS message to an MDB, perform the following:

1.

Retrieve both the configured JMS Dest i nat i on and its connection factory
using a JINDI lookup.

Create a connection from the connection factory. For a queue, start the
connection.

Create a session over the connection.

Providing the retrieved JMS Dest i nat i on, create a sender for a queue, or a
publisher for a topic.

Message-Driven Beans 7-13

Accessing MDBs

5. Create the message.
6. Send out the message using either the queue sender or the topic publisher.

7. Close the queue session. Close the connection for either JMS Dest i nat i on
types.

The following code sends a message over a topic to the MessageBean MDB.

Qontext ic = new Initial Context();
/*1. Retrieve an Oracl e JM5 Topic and connection factory through JND */
topic = (Topic) ic.lookup("java: conp/ resour ce/ oj ns/ Topi cs/t opi c1");
/*Retrieve the Oacle JMB Topi ¢ connection factory */
t opi cConnect i onFactory = (Topi cConnecti onFactory) ic.| ookup

("j ava: conp/ resour ce/ oj s/ Topi cGonnect i onFact ori es/ aqTcf ") ;

/*2. Oreate a Topi ¢ connection */
t opi cConnect i on = topi cGonnecti onFact ory. cr eat eTopi cConnect i on();

/*3. Oeate a Topi c session over the connection */
t opi cSessi on = topi cQonnecti on. creat eTopi cSessi on(tr ue,
Sessi on. AUTO ACKNOANLEDCE) ;

/*4. Oreate a publisher to send a nessage to the MB -- The creat ePubl i sher
net hod is invoked off of the session object, but requires the retrieved
topic as its input. */

t opi cPubl i sher = t opi cSessi on. creat ePubl i sher (topic);

/*5. Oreate the nessage to send to the MB */
nessage = topi cSessi on. cr eat eText Message() ;

for (int i =0; i <NMMGS i++) {
nessage. set Text ("This is nessage " + (i + 1));
Systemout . printl n("Sendi ng nessage: " +
nessage. get Text ());

/*6. Send the message using the topic publisher */
t opi cPubl i sher . publ i sh(message);

}

/*7. After nessage is sent, close the connection */
t opi cConnect i on. cl ose();

7-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing MDBs

Using Logical Names in the JMS JNDI Lookup

If you have another EJB acting as the MDB client, you can retrieve the connection
factory and the JMS Dest i nat i on using logical references that have been
configured in the client-side deployment descriptor.

The following defines logical names in the client-side deployment descriptor. If the
client is a true Java client, this would be in its appl i cati on-client.xm file. If
the client is another EJB, these additions would be added in the ej b-j ar. xn file.

= The connection factory is defined in a <r esour ce- r ef > element.

— The logical name of the connection factory is defined in the
<r es-ref - name> element.

— Theclass type is defined in the <r es- t ype> element:
j avax. j ns. Queue@nnect i onFact ory or j avax. j ns. Topi cGonnect i onFact ory.

— The authentication responsibility (Cont ai ner or Bean) is defined in the
<r es- aut h>element.

— The sharing scope (Shar eabl e or Unshar eabl e) is defined in the
<res-shari ng- scope> element.

« TheJMS Desti nati on is defined in a<r esour ce- env-r ef > element.

— The logical name of the topic or queue is defined in the
<resour ce- env-ref - nane> element.

— Theclass type is defined in the <r esour ce- env-r ef -t ype> element:
javax. j ns. Queue or j avax. j ns. Topi c.

The following shows an example of how to define a queue and a topic.

<resour ce-ref >
<res-r ef - nane>j s/ Queue/ sender QueueCnnect i onFact or y</ r es-r ef - nane>
<res-type>j avax. j ns. QueueConnect i onFact or y</ r es- t ype>
<res-aut h>Cont ai ner </ r es- aut h>
<res- shari ng- scope>Shar eabl e</ r es- shar i ng- scope>
</resource-r ef >
<resour ce- env-r ef >
<resour ce- env-r ef - nane>j ns/ Queue/ sender Queue</ r esour ce- env- r ef - nane>
<resour ce- env-ref -t ype>j avax. j ns. Queue</ r esour ce- env-r ef - t ype>
</resour ce-env-ref >
<resour ce-ref >
<res-ref - nane>j ns/ Topi ¢/ sender Topi cConnect i onFact or y</ r es-r ef - nanme>
<res-type>j avax. j ns. Topi cConnect i onFact or y</ r es- t ype>
<res-aut h>Cont ai ner </ r es- aut h>

Message-Driven Beans 7-15

Accessing MDBs

<res- shari ng- scope>Shar eabl e</ r es- shar i ng- scope>

</resource-ref >

<resour ce- env-r ef >
<resour ce- env-r ef - nane>j ns/ Topi ¢/ sender Topi c</ r esour ce- env- r ef - nane>
<resour ce- env-ref -t ype>j avax. j ns. Topi c</ r esour ce- env-r ef - t ype>

</ resour ce-env-ref >

Then, you map the logical names to actual names in the OC4J deployment
descriptor. If the client is a true Java client, these additions would be within the
orion-application-client.xm.Iftheclientisanother EJB, these additions
are added tothe ori on-ej b-jar. xn .

The logical names in the client’s deployment descriptor are mapped as follows:

« The connection factory defined in the <r esour ce- r ef > element is mapped to
its INDI name in the <r esour ce- r ef - mappi ng> element.

« TheJMS Desti nati on defined in the <r esour ce- env-r ef > element is
mapped to its INDI name in the <r esour ce- env-r ef - mappi ng> element.

The following example maps the logical names for the connection factories, topic

and queue defined above in the client deployment descriptor to their actual JNDI

names. Specifically, the topic defined logically as "j ns/ Topi ¢/ sender Topi ¢"in
the ej b-j ar. xm file is mapped to its INDI name of

"j ava: conp/ resource/ cartoj nsl/ Topi cs/topicl.”

<sessi on- depl oynent nane="MGCart" nax-instances="10" |ocati on="M/GCart">

<r esour ce- r ef - mappi ng
nanme="j ns/ Topi ¢/ sender Topi cConnect i onFact ory"
| ocat i on="]j ava: conp/ r esour ce/ cart oj ns1/ Topi cQonnect i onFact ori es/ aqTcf ">
</ r esour ce-r ef - mappi ng>

<r esour ce- env-r ef - mappi ng

nane="j ns/ Topi ¢/ sender Topi c"

| ocat i on="] ava: conp/ r esour ce/ cart oj ms1/ Topi cs/ t opi c1">
</ r esour ce- env- r ef - mappi ng>

<resour ce-r ef - mappi ng

nane="j ns/ Queue/ sender QieueConnect i onFact or y"

| ocat i on="j ava: conp/ r esour ce/ cart oj ms1/ QueueConnect i onFact ori es/ aqQ@f ">
</ r esour ce-r ef - mappi ng>

<r esour ce- env-r ef - mappi ng
nane="j s/ Queue/ sender Queue"
| ocat i on="] ava: conp/ r esour ce/ cart oj ms1/ Queues/ queuel" >

7-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing MDBs

</resour ce- env- r ef - nappi ng>
</ sessi on- depl oynent >

Once the mapping is complete, you can modify your JNDI lookup to use the logical
name, as follows:

Qontext ic = new Initial Context();
/*Retrieve an Oracl e JM5 Topi ¢ and connection factory through JNDI */
topic = (Topic) ic.lookup("jns/ Topi c/ sender Topi c");
/*Retrieve the Oacle JMB Topi ¢ connection factory */
t opi cConnect i onFactory = (Topi cConnecti onFactory) ic.| ookup
("j s/ Topi ¢/ sender Topi cConnect i onFact ory");

Message-Driven Beans 7-17

Accessing MDBs

7-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

8

Advanced EJB Subjects

This chapter discusses how to extend beyond the basics mentioned in each of the
previous chapters. This chapter covers the following subjects:

Accessing EJBs

Packaging and Sharing Classes

Entity Bean Concurrency and Database Isolation Modes
Configuring Pool Sizes For Entity Beans

Techniques for Updating Persistence

Configuring Environment References

Configuring Security

Setting Performance Options

Common Errors

Advanced EJB Subjects 8-1

Accessing EJBs

Accessing EJBs

To access an EJB from a client, you must do the following:

1.

Download the oc4j . j ar file. This JAR contains only the classes necessary for
client interaction.

Set up JNDI properties for the connection. If the client is a standalone EJB client,
you must determine the RMI or JMS port to which the client sends the request.
This is denoted in the INDI properties as well as the opmm. xmi file.

Determine which | ni t i al Cont ext you will use for the connection.

Retrieve an EJB using an EJB reference, which is configured in the deployment
descriptor.

These subjects are discussed in the following sections:

Client Installation of OC4J.JAR

EJB Reference Information

Setting JNDI Properties

Using the Initial Context Factory Classes

Accessing an EJB in a Remote Server

Within your client code, you retrieve an EJB reference to the target bean in order to
execute methods on that bean. In OC4J, you use JNDI to retrieve this reference.
Most of the time, you must specify the target bean in an <ej b- r ef > element in the
originator’s XML configuration file that is used in the j ava: conp/ env logical
name to designate the target bean to JNDI.

The method for accessing EJBs depends on where your client is located relative to
the bean it wants to invoke. Consider the following when implementing the JNDI
retrieval of the EJB reference of the bean:

1.

2.

Do you want to set up a logical name for the target bean?

— Yes: Modify the XML configuration file to set up the <ej b- r ef > element
with the target bean information. The logical name specified in the
<ej b-r ef - nane> element is used in the INDI lookup.

— No: The actual name of the bean is used in the JNDI lookup. This name has
been specified in the target bean’s XML deployment descriptors in the
<ej b- nanme> element.

Where does the client exist relative to the target bean?

8-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing EJBs

— Collocated with the target bean? Deployed in the same application? Or is
the target bean part of an application that is this client’s parent? You do not
need to set up any JNDI properties.

— Otherwise, you must set up JNDI properties. There are two methods for
setting up JNDI properties. See "Setting JNDI Properties" on page 8-4 for
more information

Client Installation of OC4J.JAR

In order to access EJBs, the client-side must download the oc4j . j ar file. This JAR
contains only the classes necessary for client interaction. If you download this JAR
into a browser, you must grant certain permissions. See <<<>>> for a list of these
permissions.

EJB Reference Information

Specify the EJB reference information for the remote EJB in the <ej b- r ef > element
inthe application-client.xm , ejb-jar.xm, orweb.xm files. A full
description or how to set up the <ej b- r ef > element is given in "Configuring
Environment References" on page 8-15.

For example, the following specifies the reference information for the employee
example:

<application-client>
<di spl ay- nane>Enpl oyeeBean</ di spl ay- nane>
<ej b-ref>
<ej b-ref - name>Enpl oyeeBean</ ej b-r ef - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<hone>enpl oyee. Enpl oyeeHone</ honme>
<renot e>enpl oyee. Enpl oyee</ r enot e>
<l ocal - home>enpl oyee. Enpl oyeelLocal Home</ | ocal - horme>
<l ocal >enpl oyee. Enpl oyeelLocal </| ocal >
</ejb-ref>
</ application-client>

OC4J maps the logical name to the actual INDI name on the client-side. The
server-side receives the JNDI name and resolves it within its JNDI tree.

For more information and examples of the <ej b- r ef > element, see "Configuring
Environment References" on page 8-15.

Advanced EJB Subjects 8-3

Accessing EJBs

Setting JNDI Properties

If the client is collocated with the target, exists within the same application as the
target, or the target exists within its parent, then you do not need a JNDI properties
file. If not, you must initialize your JNDI properties either within a

j ndi . properti es file, in the system properties, or within your implementation,
before the JNDI call. The following sections discuss these three options:

« No JNDI Properties
= JNDI Properties File
« JNDI Properties Within Implementation

To specify credentials within the INDI properties, see "Specifying Credentials in EJB
Clients" on page 8-36.

No JNDI Properties

A servlet that is collocated with the target bean automatically accesses the JNDI
properties for the node. Thus, accessing the EJB is simple: no JNDI properties are
required.

//Get the Initial Context for the JNDI |ookup for a |ocal EJB
Initial Context ic = new Initial Context();

//Retrieve the Home interface using JND | ookup

(bj ect enphject = ic.lookup("java: conp/ env/ enpl oyeeBean");

This is also true if the target bean is in the same application or an application that
has been deployed as this application’s parent. See "The default parent is the global
application. The children see the namespace of its parent application. This is used in
order to share services such as EJBs among multiple applications. See the
Oracle9iAS Containers for J2EE User’s Guide for directions on how to specify a
parent application.” on page 8-9 for more information on setting the parent
application.

JNDI Properties File

If setting the JNDI properties within the j ndi . pr operti es file, set the properties
as follows. Make sure that this file is accessible from the CLASSPATH.

Factory
java.naning.factory.initial=
com everm nd. server. ApplicationdientInitial ContextFactory

8-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing EJBs

Location

The ORMI default port number is 23791, which can be modified inr m . xnl . Thus,
set the URL inthe j ndi . properti es, in one of the two ways:

java. nanming. provi der. url =orm ://<host name>/ <appl i cat i on- nane>

or

j ava. naning. provi der. url =orm ://<host nane>: 23791/ <appl i cat i on- nane>

Security

When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the j ndi . properti es file
deployed with the client’s code.

java. nanming. security. principal =<user name>
j ava. naming. security. credential s=<passwor d>

JNDI Properties Within Implementation

Set the properties with the same values, only with different syntax. For example,
JavaBeans running within the container pass their credentials within the
I ni tial Context,which iscreated to look up the remote EJBs.

To pass INDI properties within the Hasht abl e environment, set these as shown
below:

Hasht abl e env = new Hasht abl e();

env. put ("j ava. nam ng. provider.url", "orm://nyhost/ejbsanpl es");

env. put ("java. namng.factory.initial",
"com everm nd. server. Appl i cationdientlnitial ContextFactory");

env. put (Cont ext . SECURI TY_PRI NCl PAL, "guest");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");

Context ic = new Initial Context (env);

(bj ect honeChj ect = ic.lookup("java: conp/ env/ enpl oyeeBean");

/1 Narrow the reference to a Tenpl at eHone.
Enpl oyeeHone enpHone =
(Enpl oyeeHone) Port abl eRenot e(bj ect . nar r ow(honej ect ,
Enpl oyeeHone. cl ass);

Advanced EJB Subjects 8-5

Accessing EJBs

Configuring RMI or JMS Port for Standalone EJB Clients

OC4J is configured to assign an RMI or JMS port dynamically within set ranges.
However, if you have a standalone EJB client, you must know an exact port number
to direct your request.

1. Pick a port number that is not being used by the OC4J process.

2. Modify the oprm. xmi file within the Enterprise Manager Advanced Properties
within the OPMN configuration. Change the RMI or JMS range to the specified
port number. The following demonstrates setting the RMI port to 3202 in the
opm. xm file:

<port ajp="..." jme="..." rm ="3202"/>

3. Restart the OC4J process to initialize the new port numbers.

4. Configure the same port number within the INDI properties within the
standalone client. The following demonstrates setting the same RMI port
number in the INDI properties for the EJB client:

java. nanming. provi der. url=orm://myhost: 3202/ nyapp

Using the Initial Context Factory Classes

For most clients, set the initial context factory class to
ApplicationCientlnitial ContextFactory.Ifyouarenotusing a logical
name defined in the <ej b- r ef > in your XML configuration file, then you must
provide the actual INDI name of the target bean. In this instance, you must use a
different initial context factory class, the

com everm nd. server. RM I ni tial Cont ext Fact ory class.

Example 8-1 Servlet Accessing EJB in Remote OC4J Instance

The following servlet uses the INDI name for the target bean:

/ crrpapp/ enpl oyeeBean. Thus, this servlet may provide the INDI properties in
anRM I ni ti al Cont ext object, instead of the

ApplicationCientlnitial Context object. The environment is initialized as
follows:

« Thel NI TI AL_CONTEXT_FACTORY is initialized to a
RM I ni ti al Cont ext Fact ory.

« Instead of creating a new | ni t i al Cont ext, itis retrieved.’

« The actual INDI name is used in the lookup.

8-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Accessing EJBs

Hasht abl e env = new Hasht abl e();
env. put (Cont ext . PROVI DER_URL, "ormi://|ocal host/cnpapp");
env. put (Cont ext . SECURI TY_PRI NCl PAL, "admin");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");
env. put (Cont ext. | Nl TI AL_CONTEXT_FACTCRY,
"comevernm nd. server.rni. RMInitial ContextFactory");

Context ic =
new com everni nd. server.rm . RM I nitial Context Factory().
getlnitial Context(env);

(bj ect homeChj ect = ic.lookup("/cnpapp/ enpl oyeeBean");

/1 Narrow the reference to a Tenpl at eHone.
Enpl oyeeHorre enpHone =
(Enpl oyeeHore) Port abl eRenot eChj ect . nar r ow(homej ect,
Enpl oyeeHone. cl ass);

An Initial Context Factory Specific to DNS Load Balancing

To use round-robin DNS for your incoming load balancing, you must do the
following:

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Then, the incoming calls are
randomly routed to one of the back-end machines.

2. Within each client, use the RM LBI ni t i al Cont ext Fact ory as your initial
context. Each client must use this initial context for DNS round-robin load
balancing to work properly.

When you perform a successful host name lookup from the name server, the value
is cached. DNS load balancing does not occur if every lookup returns the same
value from the cache. When you use the RM LBI ni ti al Cont ext Fact ory in the
client, then a new context class is returned on each lookup.

Example 8-2 RMILBInitialContextFactory Example

java.naning.factory.initial=

com everm nd. server.rni.RM LBl nitial ContextFactory
java. nanming. provi der. url=orm ://DNSserver: 23792/ appl name
java. nanming. security. principal =adnin
java. nanming. security. credential s=wel cone

Advanced EJB Subjects 8-7

Packaging and Sharing Classes

dedi cat ed. rm cont ext =tr ue

Accessing an EJB in a Remote Server

If an application is installed in the OC4J server with a JSP or servlet that wants to
invoke an EJB in a remote server, do the following:

1. Deploy the intended EJB with the JSP/servlet in the same application.

2. Set'r enot e=t r ue" attribute in the <ej b- modul e> element in
orion-application.xm forthe EJB module deployed in the local
application. The local EJB will be ignored.

3. Configure the remote server where the remote EJB has been deployed in the
<server>elementinrm . xm . You provide the hostname, port number,
username, and password, as follows:

<server host=<renot e_host > port=<renpte_port> user=<user name>
passwor d=<passwor d>

If multiple servers are configured, the OC4J container will search all remote servers
for the intended EJB application. Thus, the JSP or servlet in one OC4J container will
invoke an EJB deployed in another OC4J container.

Packaging and Sharing Classes

When you have an EJB or Web application that references other shared EJB classes,
you should place the referenced classes in a shared JAR. In certain situations, if you
copy the shared EJB classes into WAR file or another application that references
them, you may receive a Cl assCast Except i on because of a class loader issue. To
be completely safe, never copy referenced EJB classes into the WAR file of its
application or into another application.

Web application: The Web application copies referenced EJB classes in its WAR file
in the same application. As described in the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide, you can specify where to load the classes from in the

<web- app- cl ass- | oader > element. However, when executing, the Web
application retrieves the EJB bean reference using JNDI, the following may occur:

« Ifthe bean reference is loaded from within the EJB JAR file, no exceptions are
thrown and the execution continues correctly.

« Ifthe bean reference is loaded from the copied classes within the WAR file, a
Cl assCast Except i on is thrown.

8-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Packaging and Sharing Classes

Separate application: A separate application copies referenced EJB classes into its
EAR file. If both applications are executing within the same process and the bean
reference is retrieved using JNDI lookup, one of the following occurs:

If the bean reference is loaded from the source classes, no exceptions are thrown
and the execution continues correctly.

If the bean reference is loaded from the copied classes, a
Cl assCast Except i on is thrown.

To avoid this problem, do one of the following:

If two EJBs use the same classes, include these classes in one of the EJBs. Place
both EJBs in the same JAR file. After deployment, both EJBs can use the
common classes.

Place the shared classes in its own JAR file in the application. Reference the
shared JAR file in the cl ass- pat h of the EJB JAR nani f est . nf file, as
follows:

cl ass- pat h: shared_cl asses.j ar

The location of the shar ed_cl asses. j ar is relative to where the JAR that
references it is located in the EAR file. In this example, the shar ed_
cl asses. j ar file is at the same level as the EJB JAR.

If all applications reference these classes, archive the shared classes in a JAR file
and place this JAR file in the shared library directory of the default application.
You can set shared library directories in the General Properties page of the
default application. The hore/ | i b is a default shared library.

If you want only certain applications to reference these classes, archive the
shared classes in its own application, deploy the EAR for the application, and
have the applications that reference the shared classes declare the shared classes
application as its parent.

The default parent is the global application. The children see the namespace of
its parent application. This is used in order to share services such as EJBs among
multiple applications. See the Oracle9iAS Containers for J2EE User’s Guide for
directions on how to specify a parent application.

Advanced EJB Subjects 8-9

Entity Bean Concurrency and Database Isolation Modes

Entity Bean Concurrency and Database Isolation Modes

In order to avoid resource contention and overwriting each others changes to
database tables while allowing concurrent execution, entity bean concurrency and
database isolation modes are provided.

« Database Isolation Modes

« Entity Bean Concurrency Modes

Database Isolation Modes

Thej ava. sqgl . Connect i on object represents a connection to a specific database.
Database isolation modes are provided to define protection against resource
contention. When two or more users try to update the same resource, a lost update
can occur. That is, one user can overwrite the other user’s data without realizing it.
The j ava. sqgl . Connect i on standard provides four isolation modes, of which
Oracle only supports two of these modes. These are as follows:

« TRANSACTI ON_READ COWM TTED: Dirty reads are prevented; non-repeatable
reads and phantom reads can occur. This level only prohibits a transaction from
reading a row with uncommitted changes in it.

« TRANSACTI ON_SERI ALI ZABLE: Dirty reads, non-repeatable reads and
phantom reads are prevented. This level includes the prohibitions in
TRANSACTI ON_REPEATABLE_READ and further prohibits the situation where
one transaction reads all rows that satisfy a WHERE condition, a second
transaction inserts a row that satisfies that WHERE condition, and the first
transaction rereads for the same condition, retrieving the additional "phantom"
row in the second read.

You can configure one of these database isolation modes for a specific bean. That is,
you can specify that when the bean starts a transaction, the database isolation mode
for this bean be what is specified in the OC4J-specific deployment descriptor.
Specify the isolation mode on what is important for the bean: parallel execution or
data consistency. The isolation mode for this bean is set for the entire transaction.

The isolation mode can be set for each entity bean in the <enti t y- depl oyment >
elementin thei sol ati on attribute. The values can be conmi tt ed or

seri al i zabl e. The defaultisconmmi t t ed. To change itto seri al i zabl e,
configure the following in the ori on- ej b-j ar. xm for the intended bean:

<entity-deployment ... isolation="serializable"

</ entity-depl oynent >

8-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Entity Bean Concurrency and Database Isolation Modes

There is always a trade-off between performance and data consistency. The
seri al i zabl e isolation mode provides data consistency; the conmi t t ed
isolation mode provides for parallel execution.

Note: There is a danger of lost updates with the seri al i zabl e
mode if the max-t x-retri es element in the OC4J-specific
deployment descriptor is greater than zero. The default for this
value is three. If this element is set to greater than zero, then the
container retries the update if a second blocked client receives a
ORA- 8177 exception. The retry would find the row unlocked and
the update would occur. Thus, the second client’s update succeeds
and overwrites the first client’s update. If you use seri al i zabl e,
you should consider setting the max-t x-retri es element to zero
for data consistency.

If you do not set an isolation mode, you receive the mode that is configured in the
database. Setting the isolation mode within the OC4J-specific deployment
descriptor temporarily overrides the database configured isolation mode for the life
of the global transaction for this bean. That is, if you define the bean to use the

seri al i zabl e mode, then the OC4J container will force the database to be

seri al i zabl e for this bean only until the end of the transaction.

Entity Bean Concurrency Modes

OC4J also provides concurrency modes for handling resource contention and
parallel execution within container-managed persistence (CMP) entity beans.
Bean-managed persistence entity beans manage the resource locking within the
bean implementation themselves. The concurrency modes configure when to block
to manage resource contention or when to execute in parallel.

The concurrency modes are as follows:

« PESSI M STI C: This manages resource contention and does not allow parallel
execution. Only one user at a time is allowed to execute the entity bean at a
single time.

« OPTI M STI C: Multiple users can execute the entity bean in parallel. It does not
monitor resource contention; thus, the burden of the data consistency is placed
on the database isolation modes.

Advanced EJB Subjects 8-11

Entity Bean Concurrency and Database Isolation Modes

« READ- ONLY: Multiple users can execute the entity bean in parallel. The
container does not allow any updates to the bean’s state.

To enable the CMP entity bean concurrency mode, add the appropriate concurrency
value of "pessi m sti c", "optim stic" or"read-onl y"tothel ocki ng- node

attribute of the <ent i t y- depl oynment > element in the OC4J-specific deployment
descriptor (ori on-ej b-j ar. xm). The default is "opt i m sti c". To modify the

concurrency mode to pessi m sti c, do the following:

<entity-depl oynent ... | ocking-nmode="pessimstic"
</ entity-depl oynent >

These concurrency modes are defined per bean and the effects of locking apply on
the transaction boundaries.

Parallel execution requires that the pool size for wrapper and bean instances are set
correctly. For more information on how to configure the pool sizes, see "Configuring
Pool Sizes For Entity Beans" on page 8-13.

Exclusive Write Access to the Database

The excl usi ve-writ e- access attribute of the <enti t y- depl oynent >
element states that this is the only bean that accesses its table in the database and
that no external methods are used to update the resource. It informs the OC4J
instance that any cache maintained for this bean will only be dirtied by this bean.
Essentially, if you set this attribute to true, you are assuring the container that this is
the only bean that will update the tables used within this bean. Thus, any cache
maintained for the bean does not need to constantly update from the back-end
database.

This flag does not prevent you from updating the table; that is, it does not actually
lock the table. However, if you update the table from another bean or manually, the
results are not automatically updated within this bean.

The default for this attribute is false. Because of the effects of the entity bean
concurrency modes, this element is only allowed to be set to true for ar ead- onl y
entity bean. OC4J will always reset this attribute to false for pessi m sti ¢ and
opti m sti ¢ concurrency modes.

<entity-deployment ... exclusive-wite-access="true"

</ entity-depl oynent >

8-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Pool Sizes For Entity Beans

Effects of the Combination of Isolation and Concurrency Modes

For the pessi mi sti c and r ead- onl y concurrency modes, the setting of the
database isolation mode does not matter. These isolation modes only matter if an
external source is modifying the database.

If you choose opt i mi sti c with conmi tt ed, you have the potential to lose an
update. If you choose opt i mi sti ¢ withseri al i zabl e, you will never lose an
update. Thus, your data will always be consistent. However, you can receive an
ORA- 8177 exception as a resource contention error.

Differences Between Pessimistic and Optimistic/Serializable

An entity bean with the pessi m st i ¢ concurrency mode does not allow multiple
clients to execute the bean instance. Only one client is allowed to execute the
instance at any one moment. An entity bean with the opt i m st i ¢ concurrency
mode allows multiple instances of the bean implementation to execute in parallel.
Setting the database isolation mode to seri al i zabl e does not allow these
multiple bean implementation instances to update the same row at the same time.
Thus, the only difference between a pessi ni st i ¢ concurrency bean and an
optim stic/serializabl ebean iswhere the blocking occurs. A pessi nmi stic
bean blocks at the bean instance; the other blocks at the database row.

Affects of Concurrency Modes on Clustering

All concurrency modes behave in a similar manner whether they are used within a
standalone or a clustered environment. This is because the concurrency modes are
locked at the database level. Thus, even if a pessimistic bean instance is clustered
across nodes, the instant one instance tries to execute, the database locks out all
other instances.

Configuring Pool Sizes For Entity Beans

You can set the minimum and maximum number of both the following instance
pools:

=« The bean instance pool contains EJB implementation instances that currently do
not have assigned state. While the bean instance is in pool state, it is generic and
can be assigned to a wrapper instance.

« The wrapper instance is OC4J-generated wrapper code that provides for the
services requested in the deployment descriptor. Before the bean instance is

Advanced EJB Subjects 8-13

Techniques for Updating Persistence

invoked, the client retrieves a handle to the wrapper instance. When the client
invokes the bean, the wrapper is associated with a bean instance.

You can set the pool number of each instance type with the following attributes of
the <enti t y- depl oynent > element.

« Themax-i nst ances attribute sets the maximum entity bean instances to be
allowed in the pool. An entity bean is set to a pooled state if not associated with
a wrapper instance. Thus, it is generic.

The default is 10. Set the maximum bean implementation instances as follows:

<entity-depl oynent ... max-instances="20"
</ entity-depl oynent >

Or the minimum number allowed in the pool as follows:

<entity-depl oyment ... nin-instances="2"
</entity-depl oyment >

« Thedi sabl e- wr apper - cache attribute disables the wrapper instance pool if
true. The default is true. If it is better to create the wrapper instances on
demand, then set this attribute to true. To do so, configure the following:

<entity-deploynment ... disable-wapper-cache="true"

</ entity-depl oynent >

Techniques for Updating Persistence

By default, the container persists only the modified fields in the bean. At the end of
each call, a SQL command is created to update these fields. However, if you want to
have all of your persistence fields updated, set the following attribute to false:

<entity-depl oynent ... update-changed-fields-only="false"
</ entity-depl oynent >

If you choose to have all fields updated, the SQL parsing cache is used. The same
SQL command is used for each update.

8-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

Configuring Environment References

You can create three types of environment elements that are accessible to your bean
during runtime: environment variables, EJB references, and resource managers.
These environment elements are static and can not be changed by the bean.

ISVs typically develop EJBs that are independent from the EJB container. In order to
distance the bean implementation from the container specifics, you can create
environment elements that map to one of the following: defined variables, entity
beans, or resource managers. This indirection enables the bean developer to refer to
existing variables, EJBs, and a JDBC Dat aSour ce without specifying the actual
name. These names are defined in the deployment descriptor and are linked to the
actual names within the OC4J-specific deployment descriptor.

Environment variables

You can create environment variables that your bean accesses through a lookup on
the | ni ti al Cont ext . These variables are defined within an <env-ent ry>
element and can be of the following types: St ri ng, | nt eger, Bool ean, Doubl e,
Byt e, Short, Long, and FI oat . The name of the environment variable is defined
within <env- ent r y- nane>, the type is defined in <env-entry-type>, and its
initialized value is defined in <env- ent ry- val ue>. The <env- entry- nane> is
relative to the "j ava: conp/ env" context.

For example, the following two environment variables are declared within the XML
deployment descriptor for j ava: conp/ env/ ni nBal ance and
j ava: conp/ env/ maxCr edi t Bal ance.

<env-entry>
<env- entry-name>ni nBal ance</ env-ent ry- name>
<env-entry-type>java.l ang. I nteger </ env-entry-type>
<env- entry-val ue>500</ env- entry-val ue>

</ env-entry>

<env-entry>
<env- ent ry- name>maxCr edi t Bal ance</ env-ent ry- nane>
<env-entry-type>java.l ang. I nteger </ env-entry-type>
<env- entry-val ue>10000</ env-ent ry-val ue>

</ env-entry>

Within the bean’s code, you would access these environment variables through the
I ni tial Context,as follows:

Initial Context ic = new Initial Context();

Advanced EJB Subjects 8-15

Configuring Environment References

Integer mn = (Integer) ic.lookup("java: conp/env/m nBal ance");
Integer max = (Integer) ic.lookup("java: conp/env/ maxCr edi t Bal ance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with "j ava: conp/ env/ ", which is the location that the
container stored the environment variable.

If you wanted the value of the environment variable to be defined in the
OC4J-specific deployment descriptor, you can map the <env- ent r y- nanme> to the
<env- ent ry- mappi ng> element in the OC4J-specific deployment descriptor. This
means that the value specified in the or i on-ej b-j ar. xm file overrides any
value that may be specified in the ej b-j ar. xml file. The type specified in the EJB
deployment descriptor stays the same.

Figure 8-1 shows how the ni nBal ance environment variable is defined as 500
within the OC4J-specific deployment descriptor.

Figure 8-1 Environment Variable Mapping

EJB Deployment Descriptor :OC4J-specific Deployment Descriptor
<env-entry> <env-entry-mapping
<env-entry-name>minBalance</env-entry-name: » name="ni nBal ance" >

<env-entry-type>j ava. | ang. | nt eger </env-entry-type> 500</env-entry-mapping>
<env-entry-value>300</env-entry-value>
</env-entry>

Environment References To Other Enterprise JavaBeans

You can define an environment reference to an EJB within the deployment
descriptor. If your bean calls out to another bean, you can enable your bean to
invoke the second bean using a reference defined within the deployment
descriptors. You create a logical name within the EJB deployment descriptor, which
is mapped to the concrete name of the bean within the OC4J-specific deployment
descriptor.

Declaring the target bean as an environment reference provides a level of
indirection: the originating bean can refer to the target bean with a logical name.

To define a reference to another EJB within the JAR or in a bean declared as a
parent, you provide the following:

1. Name—provide a name for the target bean. This name is what the bean uses
within the JNDI URL for accessing the target bean. The name should begin with

8-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

"ej b/ ", such as "ej b/ myEnpl oyee", and will be available within the
"j ava: conp/ env/ ej b" context.

— This name can be the actual name of the bean; that is, the name defined
within the <ej b- name> element in the <sessi on>or<entity>
elements.

— This name can be a logical name that you want to use in your
implementation. But it is not the actual name of the bean. If you use a
logical name, the actual name must either be specified in the <ej b- I i nk>
element in this <ej b- r ef > element or in the <ej b-r ef - mappi ng>
element in the OC4J-specific deployment descriptor.

These options are discussed below.

Type—define whether the bean is a session or an entity bean. Value should be
either "Sessi on"or "Enti ty".

Home—provide the fully qualified home interface name.
Remote—provide the fully qualified remote interface name.

Link—provide a name that links this EJB reference with the actual INDI URL.
This is optional.

If you have two beans in the JAR: BeanA and BeanB. If BeanB creates a reference to
BeanA, you can define this reference in one of three methods:

Provide the actual name of the bean. BeanB would define the following
<ej b- r ef > within its definition:

<ej b-ref>
<ej b-ref - name>nyBeans/ BeanA</ ej b- r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref -type>
<home>nyBeans. BeanAHone</ hone>
<r enot e>nyBeans. BeanA</ r enot e>

</ejb-ref>

No <ej b- | i nk> is necessary for this method. However, the BeanB
implementation must refer to BeanA in the INDI retrieval, which would use
j ava: conp/ env/ myBeans/ BeanA for retrieval within an EJB or Java client
and use "myBeans/ BeanA" within a Servlet.

Advanced EJB Subjects 8-17

Configuring Environment References

Note: Servlets do not require the prefix of "j ava: conp/ env"in
the JNDI lookup. Thus, they will always either reference just the
actual INDI name or the logical name of the EJB.

« Provide the actual name of the bean in the <ej b- | i nk> element. This method
allows you to use any logical name in your bean implementation for the JNDI
retrieval:

<ej b-ref>
<ej b-ref - name>ej b/ next Val </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref -type>
<home>nyBeans. BeanAHone</ hone>
<r enot e>nyBeans. BeanA</ r enot e>
<ej b-li nk>nyBeans/ BeanA</] b- 1 i nk>
</ejb-ref>

BeanBwould use j ava: conp/ env/ ej b/ next Val in the JNDI retrieval of
BeanA.

« Provide the logical name of the bean in the <ej b- r ef - name> and the actual
name of the bean in the <ej b- r ef - mappi ng> element in the OC4J-specific
deployment descriptor.

The reference in the EJB deployment descriptor would be as follows:

<ej b-ref>
<ej b-ref - name>ej b/ next Val </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref -type>
<home>nyBeans. BeanAHone</ hone>
<r enot e>nyBeans. BeanA</ r enot e>
</ejb-ref>

The "ej b/ next Val " logical name is mapped to an actual name in the
OC4J-deployment descriptor as follows:

<ej b-ref -mappi ng nane="ej b/ next Val " | ocati on="nyBeans/ BeanA"/ >
BeanBwould use j ava: conp/ env/ ej b/ next Val in the JNDI retrieval of
BeanA

As shown in Figure 8-2, the logical name for the bean is mapped to the JINDI name
by providing the same name, "ej b/ next Val ", in both the <ej b- r ef - nane> in the

8-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

EJB deployment descriptor and the nane attribute within the
<ej b-r ef - mappi ng> element in the OC4J-specific deployment descriptor.

Figure 8-2 EJB Reference Mapping

EJB Deployment Descriptor .OC4lJ-specific Deployment Descriptor

<ejb-ref> <ejb-ref-mapping
<ejb-ref-name>ejb/nextVal</ejb-ref-name> » name="¢j b/ next Val "
location="myBeans/BeanA" />

</ejb-ref>

Example 8-3 Defining an EJB Reference Within the Environment
The following example defines a reference to the Hel | o bean, as follows:

1. The logical name used for the target bean within the originating bean is
"j ava: conp/ env/ ej b/ Hel | owor | d".

2. The target bean is a session bean.
3. Its home interface is hel | 0. Hel | oHone; its remote interface is hel | 0. Hel | o.

4. The link to the JNDI URL for this bean is defined in the OC4J-specific
deployment descriptor under the "Hel | oWbr | dBean" name.

<ej b-ref >
EJB <description>Hell o Wrl d Bean</description>
<ej b-ref-name>ej b/ Hel | oWor | d</ ej b-r ef - nane>
Deplo_yment <ej b-ref-type>Sessi on</ej b-ref-type>
Descriptor <home>hel | o. Hel | oHorme</ hore>

<r enot e>hel | 0. Hel | o</ renot e>
</ ejb-ref>

As shown in Figure 8-2, the <ej b- | i nk> is mapped to the name attribute within
the <ej b-r ef - mappi ng> element in the OC4J-specific deployment descriptor by
providing the same logical name in both elements. The Oracle-specific deployment
descriptor would have the following definition to map the logical bean name of

"j ava: conp/ env/ ej b/ Hel | owor | d" to the INDI URL "/ t est/ myHel | 0".

- ifi <ej b-ref - mappi ng>
gg ?é Sr%%cr:{m name="ej b/ Hel | oWbr | d"
Despcri>r/)tor location="/test/nyHel |l o"/>

Advanced EJB Subjects 8-19

Configuring Environment References

To invoke this bean from within your implementation, you use the

<ej b-r ef - nane> defined in the EJB deployment descriptor. In EJB or pure Java
clients, you prefix this name with "j ava: conp/ env/ ej b/ ", which is where the
container places the EJB references defined in the deployment descriptor. Servlets
only require the logical name defined in the <ej b- r ef - name>.

The following is a lookup from an EJB client:

Initial Context ic = new Initial Context();
Hel | oHone hh = (Hel | oHore)i c. | ookup("j ava: conp/ env/ ej b/ Hel | oWor |1 d");

The following is a lookup from a Servlet, if the Servlet defines the logical name of
"ej b/ Hel | oWor 1 d"in <ej b-ref>initsweb. xm file and maps it to the actual
name of "/ t est / myHel | 0" within the ori on- web. xn file.

Initial Context ic = new Initial Context();
Hel | oHone hh = (Hel | oHone)i c. | ookup("ej b/ Hel | oVWrld");

Environment References To Resource Manager Connection Factory References

The resource manager connection factory references can include resource managers
such as JMS, Java mail, URL, and JDBC Dat aSour ce objects. Similar to the EJB
references, you can access these objects from JNDI by creating an environment
element for each object reference. However, these references can only be used for
retrieving the object within the bean that defines these references. Each is fully
described in the following sections:

« JDBC DataSource
=« Mail Session

« URL

JDBC DataSource

You can access a database through JDBC either using the traditional method or by
creating an environment element for a JDBC Dat aSour ce. In order to create an
environment element for your JDBC Dat aSour ce, you must do the following:

1. Define the Dat aSour ce in the dat a- sour ces. xni file.

2. Create a logical name within the <r es- r ef - name> element in the EJB
deployment descriptor. This name should always start with "j dbc". In the bean
code, the lookup of this reference is always prefaced by
"j ava: conp/ env/j dbc".

8-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

3. Map the logical name within the EJB deployment descriptor to the INDI name,
created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "j ava: conp/ env/j dbc"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 8-3, the JDBC Dat aSour ce uses the JNDI name

"t est/ Or der Dat aSour ce". The logical name that the bean knows this resource as
is"j dbc/ Or der DB". These names are mapped together within the OC4J-specific
deployment descriptor. Thus, within the bean’s implementation, the bean can
retrieve the connection to Or der Dat aSour ce by using the

"j ava: conp/ env/j dbc/ Or der DB" environment element.

Figure 8-3 JDBC Resource Manager Mapping

EJB Deployment Descriptor

<enterprise-beans> OC4J-specific Deployment Descriptor

<resource-ref> <resource-ref-mapping
<res-ref-name>j dbc/ Or der DB</res-ref-name: » name="j dbc/ Or der DB"
<res-type>javax.sql.DataSource</res-type> location="test/OrderDataSource"/>
<res-auth>Application</res-auth>

</resource-ref>
</enterprise-beans>

Example 8-4 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "j dbc/ Or der DB", its type of
j avax. sql . Dat aSour ce, and the authenticator of "Appl i cati on".

<resource-ref>

EJB <res-ref - nane>j dbc/ Or der DB</ r es- r ef - name>
Deployment <res-type>j avax. sql . Dat aSour ce</res-type>
Descriptor <r es- aut h>Appl i cati on</r es- aut h>

</ resource-ref>

The environment element of "j dbc/ Or der DB" is mapped to the JNDI bound name
for the connection, "t est / Or der Dat aSour ce" within the Oracle-specific
deployment descriptor.

Advanced EJB Subjects 8-21

Configuring Environment References

_ P <resource-ref-nmappi ng
8C4IJ spemf;c nane="j dbc/ Or der DB"
Dg?c(r)i%rt%ern | ocati on="/test/Order Dat aSource"/ >

Once deployed, the bean can retrieve the JDBC Dat aSour ce as follows:

j avax. sql . Dat aSour ce db;
java. sql . Connection conn;

db = (javax. sql . Dat aSource)
initCx.lookup("java: conp/env/jdbc/ Order DB");
conn = db. get Connection();

Note: This example assumes that a Dat aSour ce is specified in
the dat a- sour ces. xm file with the JNDI name of
"/t est/ Or der Dat aSour ce".

Mail Session

You can create an environment element for a Java mail Sessi on object through the
following:

1. Bindthej avax. mail . Sessi on reference within the JNDI name space in the
application.xm fileusingthe <mai | - sessi on> element, as follows:

<nai | - session | ocation="mai |/ Mil Sessi on"

snt p- host ="nmysnt p. or acl ecorp. cont' >

<property name="nuail .transport.protocol" value="sntp"/>

<property name="mail.sntp.fronm val ue="enail address@racl e. cont'/ >
</ mai | - sessi on>

The location attribute contains the INDI name specified in the location attribute of
the <r esour ce- r ef - mappi ng> element in the OC4J-specific deployment
descriptor.

2. Create a logical name within the <r es- r ef - name> element in the EJB
deployment descriptor. This name should always start with "mai | ". In the bean

8-22 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

code, the lookup of this reference is always prefaced by
"j ava: conp/ env/ mail "

3. Map the logical name within the EJB deployment descriptor to the INDI name,
created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "j ava: conp/ env/ mai | "
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 8-4, the Sessi on object was bound to the JNDI name

"/t est/ myMai | Sessi on". The logical name that the bean knows this resource as
is"mai | /t est Mai | Sessi on". These names are mapped together within the
OC4J-specific deployment descriptor. Thus, within the bean’s implementation, the
bean can retrieve the connection to the bound Sessi on object by using the

"j ava: conp/ env/ mai | / t est Mai | Sessi on" environment element.

Figure 8-4 Session Resource Manager Mapping

EJB Deployment Descriptor

OC4J-specific Deployment Descriptor
<enterprise-beans>

<resource-ref> <resource-ref-mapping
<res-ref-name>nai | / t est Mai | Sessi on</res-ref-name » name="nai I/test Mai | Sessi on"
<res-type>javax.mail.Session</res-type> location="/test/myMailSession" />

<res-auth>Application</res-auth>
</resource-ref>
</enterprise-beans>

This environment element is defined with the following information:

Element Description

<res-ref-nanme> The logical name of the Sessi on object to be used within the
originating bean. The name should be prefixed with "mai | /". In
our example, the logical name for our ordering database is
"mai | /t est Mai | Session".

<res-type> The Java type of the resource. For the Java mail Sessi on object,
thisisj avax. nai | . Sessi on.

<r es-aut h> Define who is responsible for signing on to the database. The
value can be "Appl i cat i on" or "Cont ai ner " based on who
provides the authentication information.

Advanced EJB Subjects 8-23

Configuring Environment References

Example 8-5 Defining an environment element for Java mail Session

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "mai | / t est Mai | Sessi on", its type of
j avax. mai | . Sessi on, and the authenticator of "Appl i cati on".

<resource-ref>

EJB <res-ref-name>mail /test Mai | Sessi on</res-ref-nane>
Deplo_yment <res-type>javax. mai | . Sessi on</res-type>
Descriptor <r es-aut h>Appli cati on</res-aut h>

</ resource-ref>

The environment element of "mai | / t est Mai | Sessi on" is mapped to the INDI
bound name for the connection, "t est / myMai | Sessi on" within the OC4J-specific
deployment descriptor.

PP <resource-ref-nmappi ng
OC4IJ-SDECIfIC name="nail /test Mai | Sessi on"
Bg?croi%rtr:)ernt | ocati on="/test/myMai | Sessi on" />

Once deployed, the bean can retrieve the Sessi on object reference as follows:

Initial Context ic = new Initial Context();
Session session = (Session)
i c. | ookup("java: conp/ env/ mail/testMil Session");

//The foll owing uses the mail session object
/I Oreate a message object
M meMessage nmsg = new M neMessage(session);

// Construct an address array

String mail To = "whosit @racl e. conf';

I nternet Address addr = new I nternet Address(nailto);
I nternet Address addrs[] = new I nternet Address[1];
addrs[0] = addr;

//set the nessage paraneters

msg. set Reci pi ent s(Message. Reci pi ent Type. TO, addrs);
msg. set Subj ect ("testSend()" + new Date());

msg. set Content (nsgText, "text/plain");

8-24 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Environment References

//send the mail nessage
Transport. send(nsg);

URL
You can create an environment element for a Java URL object through the following:

1. Create a logical name within the <r es- r ef - nane> element in the EJB
deployment descriptor. This name should always start with "ur | “. In the bean
code, the lookup of this reference is always prefaced by
"j ava: conp/ env/url "

2. Map the logical name within the EJB deployment descriptor to the URL within
the OC4J-specific deployment descriptor.

3. Lookup the object reference within the bean with the "j ava: conp/ env/ url "
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 8-5, the URL object was bound to the URL "www. my URL.com".
The logical name that the bean knows this resource as is "ur | / t est URL". These
names are mapped together within the OC4J-specific deployment descriptor. Thus,
within the bean’s implementation, the bean can retrieve the connection to the bound
Sessi on object by using the "j ava: conp/ env/ url /t est URL" environment
element.

Figure 8-5 URL Resource Manager Mapping

EJB Deployment Descriptor

<enterprise-beans> OC4J-specific Deployment Descriptor

<resource-ref> <resource-ref-mapping
<res-ref-name>ur | / t est URL</res-ref-name> » name="url / t est URL"
<res-type>java.net URL</res-type> location="www.myURL.com" />

<res-auth>Application</res-auth>
</resource-ref>
</enterprise-beans>

This environment element is defined with the following information:

Element Description

<res-ref-nanme> The logical name of the URL object to be used within the
originating bean. The name should be prefixed with "ur | /". In
our example, the logical name for our ordering database is
"url/test URL".

Advanced EJB Subjects 8-25

Configuring Security

Element Description

<res-type> The Java type of the resource. For the Java URL object, this is
java. net . URL.

<res-aut h> Define who is responsible for signing on to the database. At this
time, the only value supported is "Appl i cat i on". The
application provides the authentication information.

Example 8-6 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "ur | / t est URL", its type of j ava. net . URL, and the
authenticator of "Appl i cati on".

<resource-ref>

EJB <res-ref-name>url/test URL</res-ref-name>
Deplo_yment <res-type>java. net. URL</res-type>
Descriptor <res-aut h>Appli cati on</res-aut h>

</ resource-ref>

The environment element of "ur | / t est URL" is mapped to the URL
"www. my URL. cont' within the OC4J-specific deployment descriptor.

e <resource-ref - mappi ng
OC4IJ-SpECIfIC name="url/test URL"
Deployment | ocati on="www. myURL. cont' />

Descriptor I

Once deployed, the bean can retrieve the URL object reference as follows:
Initial Context ic = new Initial Context();
URL url = (URL) ic.lookup("java:conp/env/url/testUR");

//The fol | owi ng uses the URL object
URLConection conn = url.openConnection();

Configuring Security

EJB security involves two realms: granting permissions if you download into a
browser and configuring your application for authentication and authorization.
This section covers the following:

8-26 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

« Granting Permissions in Browser
« Authenticating and Authorizing EJB Applications
« Specifying Credentials in EJB Clients

Granting Permissions in Browser

If you download the EJB application as a client where the security manager is
active, you must grant the following permissions before you can execute:

permi ssion java.net. SocketPerm ssion "*:*" "connect,resolve";
perm ssion java.lang. RuntinePerni ssion "created assLoader";
perm ssion java.l ang. RuntinePerni ssion "getC assLoader";

perm ssion java.util.PropertyPermssion "*", "read";
perm ssion java.util.PropertyPerm ssion "LoadBal anceOnlLookup”,
"read, wite";

Authenticating and Authorizing EJB Applications

For EJB authentication and authorization, you define the principals under which
each method executes by configuring of the EJB deployment descriptor. The
container enforces that the user who is trying to execute the method is the same as
defined within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which
each method is allowed to execute. These methods are mapped to users or groups
in the OC4J-specific deployment descriptor. The users and groups are defined
within your designated security user managers, which uses either the JAZN or
XML user manager. For a full description of security user managers, see the
Oracle9iAS Containers for J2EE User’s Guide and Oracle9iAS Containers for J2EE
Services Guide.

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece
of your security within the deployment descriptors, as follows:

« The EJB deployment descriptor describes access rules using logical roles.

« The OC4J-specific deployment descriptor maps the logical roles to concrete
users and groups, which are defined either the JAZN or XML user managers.

Users and groups are identities known by the container. Roles are the logical
identities each application uses to indicate access rights to its different objects. The

Advanced EJB Subjects 8-27

Configuring Security

username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 8-6.

Figure 86 Role Mapping

<security-role-ref><role-link> = <S€curity_role> | o p i ar xpi

:

<security_role_mapping> orion-ejb-jar.xn
Y
<group>
principal s. xm
| |

<user> <user> <user>

Defining users, groups, and roles are discussed in the following sections:
« Specifying Users and Groups

« Specifying Logical Roles in the EJB Deployment Descriptor

« Specifying Unchecked Security for EJB Methods

« Specifying the runAs Security Identity

« Mapping Logical Roles to Users and Groups

« Specifying a Default Role Mapping for Undefined Methods

« Specifying Users and Groups by the Client

Specifying Users and Groups

OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or
application-specific users and groups within either the JAZN or XML user
managers. See the Oracle9iAS Containers for J2EE User’s Guide and Oracle9iAS
Containers for J2EE Services Guide. for directions.

8-28 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

Specifying Logical Roles in the EJB Deployment Descriptor

As shown in Figure 8-7, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct database role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on

page 8-34 for more information.

Figure 8-7 Security Mapping

EJB Deployment Descriptor

<enterprise-beans>

<security-role-ref>
<role-name>POMgr</role-name>
<role-link>myMgr</role-link>——

<security-role-ref

</enterprise-beans>
<assembly-descriptor>

<security-role>
<role-name>myMgr</role-name>&————

</security-role>

<method-permission>
<role-name>myMgr</role-name>¢——7——!
<method>. . .</method>

</method-permission>

27assembly-descri ptor>

If you use a logical name for a database role within your bean implementation for
methods such asi sCal | er | nRol e, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <ent er pri se- beans> section
<security-rol e-ref>element. For example, to define a role used within the
purchase order example, you may have checked, within the bean’s
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the
bean to not need to be aware of database roles, you can check
i sCal | erl nRol e on a logical name, such as POMgr, since only purchase order
managers can sign off on the order. Thus, you would define the logical security
role, POMgr within the <securi ty-rol e-r ef ><r ol e- name> element
within the <ent er pri se- beans> section, as follows:

Advanced EJB Subjects 8-29

Configuring Security

<enter pri se- beans>

<security-rol e-ref>
<rol e- name>PCMyr </ r ol e- nane>
<rol e-li nk>nyMyr</r ol e-1i nk>
</security-rol e-ref>
</ enterpri se-beans>

The <r ol e- I i nk> element within the <securi ty-rol e-ref >element can
be the actual database role, which is defined further within the

<assenbl y- descri pt or > section. Alternatively, it can be another logical
name, which is still defined more in the <assenbl y- descri pt or > section
and is mapped to an actual database role within the Oracle-specific deployment
descriptor.

Note: The<security-rol e-ref>elementisnotrequired. You
only specify it when using security context methods within your
bean.

Define the role and the methods that it applies to. In the purchase order
example, any method executed within the Pur chaseOr der bean must have
authorized itself as myMyr. Note that Pur chaseOr der is the name declared in
the<entity | sessi on><ej b- name> element.

Thus, the following defines the role as myMyr, the EJB as Pur chaseOr der, and
all methods by denoting the "*’ symbol.

Note: The myMgr role in the <security-rol e>elementis the
same as the <r ol e- | i nk> element within the

<ent er pri se- beans> section. This ties the logical name of
POWgr to the myMyr definition.

8-30 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

<assenbl y- descri pt or >
<security-rol e>
<descri pti on>Rol e needed purchase order authorizati on</description>
<rol e- nane>nyMyr </ r ol e- nane>
</security-rol e>
<met hod- per m ssi on>
<rol e- name>nyMyr </ r ol e- nane>
<net hod>
<gj b- nane>Pur chaseQ der </ ej b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ et hod- per ni ssi on>

</ assenbl y-descri pt or >

After performing both steps, you can refer to POMgr within the bean’s
implementation and the container translates POMgr to myMr.

Note: If you define different roles within the

<met hod- per m ssi on> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

The <nmet hod- per m ssi on><net hod> element is used to specify the security role
for one or more methods within an interface or implementation. According to the
EJB specification, this definition can be of one of the following forms:

1.

Defining all methods within a bean by specifying the bean name and using the
** character to denote all methods within the bean, as follows:

<net hod- per m ssi on>
<r ol e- nane>nyMr </ r ol e- nane>
<net hod>
<ej b- nane>EIBNAME</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ et hod- per m ssi on>

Advanced EJB Subjects 8-31

Configuring Security

Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<net hod- per n ssi on>
<r ol e- nane>nyMr </ r ol e- nane>
<net hod>
<ej b- nane>nyBean</] b- nane>
<rmret hod- nane>nyMet hodl nM/Bean</ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Defining a method with a specific signature among many overloaded versions,
as follows:

<net hod- per ni ssi on>
<r ol e- nane>nyMr </ r ol e- nane>
<net hod>
<ej b- nane>nyBean</ ej b- nane>
<net hod- nane>nyMet hod</ net hod- nane>
<net hod- par ans>
<met hod- par an®j avax. | ang. & ri ng</ net hod- par an»
<met hod- par an®j avax. | ang. & ri ng</ net hod- par an»
</ net hod- par ans>
</ et hod>
</ net hod- per m ssi on>

The parameters are the fully-qualified Java types of the method’s input
parameters. If the method has no input arguments, the <net hod- par ans>
element contains no elements. Arrays are specified by the array element’s type,
followed by one or more pair of square brackets, such asi nt [][].

Specifying Unchecked Security for EJB Methods

If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

8-32 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

<net hod- per m ssi on>
<unchecked/ >
<net hod>
<ej b- name>EJBNAVE</ €] b- nanme>
<met hod- name>* </ et hod- nane>
</ met hod>
</ met hod- per m ssi on>

Instead of a <r ol e- nane> element defined, you define an <unchecked/ >
element. When executing any methods in the EJBNAME bean, the container does not
check for security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity

You can specify that all methods of an EJB execute under a specific identity. That is,
the container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller’s identity as the security
identity.

Specify the runAs security identity in the <securi ty-i dentit y>element, which
is contained in the <ent er pri se- beans> section. The following XML
demonstrates that the POMgr is the role under which all the entity bean methods
execute.

<ent er pri se- beans>
<entity>

<security-identity>
<run- as>
<r ol e- name>POMyr </ r ol e- nane>
</run-as>
</security-identity>

</lentity>
</ enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

Advanced EJB Subjects 8-33

Configuring Security

<ent er pri se- beans>
<entity>

<security-identity>
<use-caller-identity/>
</security-identity>

</entity>
</ enterpri se-beans>

Mapping Logical Roles to Users and Groups

You can use logical roles or actual users and groups in the EJB deployment
descriptor. However, if you use logical roles, you must map them to the actual users
and groups defined either in the JAZN or XML User Managers.

Map the logical roles defined in the application deployment descriptors to JAZN or
XML User Manager users or groups through the <securi ty-rol e- mappi ng>
element in the OC4J-specific deployment descriptor.

« The nan® attribute of this element defines the logical role that is to be mapped.

=« Thegrouporuser element maps the logical role to a group or user name. This
group or user must be defined in the JAZN or XML User Manager
configuration. See Oracle9iAS Containers for J2EE User’s Guide and Oracle9iAS
Containers for J2EE Services Guide for a description of the JAZN and XML User
Managers.

Example 8-7 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the manager s group in the
orion-ejb-jar.xm file. Any user that can log in as part of this group is
considered to have the POMGR role; thus, it can execute the methods of

Pur chaseOr der Bean.

<security-rol e- mappi ng nane="POVGR'>
<group name="nmnagers" />
</ security-rol e- mappi ng>

8-34 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

Note: You can map a logical role to a single group or to several
groups.

To map this role to a specific user, do the following:

<security-rol e- mappi ng nane="POVGR'>
<user nane="guest" />
</ security-rol e- mappi ng>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-rol e- mappi ng nane="POMR'>
<group name="nmnagers" />
<user name="guest" />

</ security-rol e- mappi ng>

As shown in Figure 8-8, the logical role name for POMGR defined in the EJB

deployment descriptor is mapped to manager s within the OC4J-specific
deployment descriptor in the <securi ty-r ol e- mappi ng> element.

Figure 8-8 Security Mapping

EJB Deployment Descriptor OC4J-specific Deployment Descriptor

<security-role> <assembly-descriptor>
<role-name>POMGR</role-name> P<security-role-mapping name="POMGR">

</security-role> <group name="managers">

<method-permission> . .
<role-name>POMGR</role-name> </security-role-mapping>
<method>. . .</method> </assembly-descriptor>

</method-permission>

;'/assembly-descri ptor>

Notice that the <r ol e- name> in the EJB deployment descriptor is the same as the
name attribute in the <securi ty-r ol e- mappi ng> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Advanced EJB Subjects 8-35

Configuring Security

Specifying a Default Role Mapping for Undefined Methods

If any methods have not been associated with a role mapping, they are mapped to
the default security role through the <def aul t - met hod- access> element in the
orion-ejb-jar.xm file. The following is the automatic mapping for any
insecure methods:

<def aul t - net hod- access>
<security-rol e-mappi ng nane="< defaul t-ejb-caller-rol e>"
inpliesAll="true" />
</security-rol e- mappi ng>
</ defaul t - met hod- access>

The default role is <def aul t - e b- cal | er - r ol e>and is defined in the nane
attribute. You can replace this string with any name for the default role. The

i mpl i esAl' | attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check
for this default role on these methods.

If thei npl i esAl' | attribute is false, you must map the default role defined in the
nane attribute to a JAZN or XML user or group through the <user > and <gr oup>
elements. The following example shows how all methods not associated with a
method permission are mapped to the "ot her s" group.

<def aul t - net hod- access>
<security-rol e-mappi ng nane="defaul t-role" inpliesAll="fal se" />
<group nane="ot hers" />
</security-rol e- mappi ng>
</ defaul t - met hod- access>

Specifying Users and Groups by the Client

In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the JAZN
or XML User Manager recognizes. And the user or group must be the same one as
designated in the security role for the intended method. See "Specifying Credentials
in EJB Clients" on page 8-36 for more information.

Specifying Credentials in EJB Clients

When you access EJBs in a remote container, you must pass valid credentials to this
container.

8-36 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Security

« Stand-alone clients define their credentials in the j ndi . properti es file
deployed with the EAR file.

= Servlets or JavaBeans running within the container pass their credentials within
the I ni ti al Cont ext, which is created to look up the remote EJBs.

Credentials in JNDI Properties

Indicate the username (principal) and password (credentials) to use when looking
up remote EJBs in the j ndi . properti es file.

For example, if you want to access remote EJBs as POMGR/ wel corre, define the
following properties. The f act ory. i ni ti al property indicates that you will use
the Oracle JNDI implementation:

java. naning. security. princi pal =POMR

java. nanming. security. credential s=wel cone
java.nanming.factory.initial=

com everm nd. server. Applicationdientlnitial ContextFactory
java. naming. provider.url=orm:/ /| ocal host/ ej bsanpl es

In your application program, authenticate and access the remote EJBs, as shown
below:

Initial Context ic = new Initial Context();
Cust oner Hone =
(Cust oner Hone) i c. | ookup("j ava: conp/ env/ pur chaseOr der Bean") ;

Credentials in the InitialContext

To access remote EJBs from a servlet or JavaBean, pass the credentials in the
I nitial Context object, as follows:

Hasht abl e env = new Hasht abl e();
env. put ("j ava. nam ng. provider.url", "orm://local host/ej bsanpl es");
env. put("java.nanming.factory.initial",
"com evern nd. server. Appl i cationdientlnitial ContextFactory");

env. put (Cont ext . SECURI TY_PRI NCl PAL, "POMCR');
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");
Context ic = new Initial Context (env);
Cust omer Horre =

(CustonerHone)i c. | ookup("j ava: conp/ env/ pur chaseCr der Bean")

Advanced EJB Subjects 8-37

Setting Performance Options

Setting Performance Options

Most performance settings are discussed in the Oracle9i Application Server
Performance Guide. This section discusses other performance options.

You can manage these performance settings yourself from either the OC4J
command-line option or by editing the appropriate XML file element.

Performance Command-Line Options
Thread Pool Settings

Statement Caching

Task Manager Granularity

Using DNS for Load Balancing

Performance Command-Line Options

Each - Dcommand-line option, except for the dedi cat ed. r m cont ext option,
defaults to the recommended setting. However, you can modify these options by
providing each - Dcommand-line option as an OC4J option. See the Oracle9iAS
Containers for J2EE User’s Guide for an example.

dedi cat ed. r mi cont ext =t r ue/ f al se. The default value is false. This
replaces the deprecated dedi cat ed. connect i on setting. When two or more
clients in the same process retrieve an | ni t i al Cont ext , OC4J returns a
cached context. Thus, each client receives the same | ni ti al Cont ext, which is
assigned to the process. Server lookup, which results in server load balancing,
happens only if the client retrieves its own | ni t i al Cont ext . If you set

dedi cat ed. r mi cont ext =t r ue, then each client receives its own

I nitial Context instead of a shared context. When each client has its own

I nitial Context,then the clients can be load balanced.

This parameter is for the client. You can also set this in the INDI properties. See
Example 8-10 for an example.

oracl e. dms. gat e=t rue/ f al se. You can turn on and off collecting
Oracle9iAS built-in performance metrics. The default value is true, which turns
on the collection. To turn off the collection, set this option to false. This
parameter should be set on the OC4J server.

Def i neCol umType=t rue/f al se. The default is true. If true, you avoid a
round-trip when executing a select over the JDBC driver. You should be
concerned with this flag only when you are using a non-Oracle JDBC driver.

8-38 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Setting Performance Options

With a non-Oracle JDBC driver, you want to turn this flag to false. This
parameter should be set on the OC4J server.

When you change the value of this option and restart OC4J, it is only valid for
applications deployed after the change. Any applications deployed before the
change are not affected.

The Def i neCol ummType extension saves a round trip to the database that
would otherwise be necessary to describe the table. When the Oracle JDBC
driver performs a query, it first uses a round trip to an Oracle database to
determine the types that it should use for the columns of the result set. Then,
when JDBC receives data from the query, it converts the data, as necessary, as it
populates the result set. When you specify column types for a query with the
Def i neCol utmType extension, you avoid the first round trip to the database.
The server, which is optimized to do so, performs any necessary type
conversions. If you want OC4J] to perform this optimization for you, then set
this option to true, which is the default. If you do not, then set this option to
false.

Thread Pool Settings

You can specify one or two thread pools for an OC4J process through the
gl obal -t hr ead- pool elementinthe server. xm file. If you do not specify this
element, then an infinite number of threads can be created.

There are two types of threads in OC4J:

« short lived threads: A worker thread that is process intensive and uses database
resources. These threads are mapped Appl i cat i onSer ver Thr eadPool .

« long lived threads: A connection thread that is not process intensive. It listens
for events or processes socket 10s. These threads are mapped to
Connect i onThr eadPool .

OC4J always maintains a certain amount of worker threads, so that any client
connection traffic bursts can be handled.

If you specify a single thread pool, then both short and long lived threads exist in
this pool. The risk is that all the available threads in the pool are one type of thread.
Then, performance can be poor because of a lack of resources for the other type of
thread. However, OC4J always guarantees a certain amount of worker threads,
which are normally mapped to short lived threads. If a need for a worker thread
arises and no short lived thread is available, the work is handled by a long lived
thread.

Advanced EJB Subjects 8-39

Setting Performance Options

If you specify two thread pools, then each pool contains one type of thread.

To create a single pool, configure the m n, max, queue, and keepAl i ve attributes.
To create two pools, configure the mi n, max, queue, and keepAl i ve attributes for
the first pool and the cx- m n, cx- max, cx- queue, and cx- keepAl i ve attributes

for the second pool.

The gl obal -t hr ead- pool element provides the following attributes:

Table 8-1 The Thread Pool Attributes

Thread Pool Attributes

Description

m n

queue

keepAlive

cx-mn

CX- max

CX-queue

The minimum number of threads that OC4J can
simultaneously execute. By default, a minimum number of
threads are preallocated and placed in the thread pool when
the container starts. Value is an integer. The default is 20. The
minimum value you can set this to is 10.

The maximum number of threads that OC4J can
simultaneously execute. New threads are spawned if the
maximum size is not reached and if there are no idle threads.
Idle threads are used first before a new thread is spawned.
Value is an integer. The default is 40.

The maximum number of requests that can be kept in the
queue. Value is an integer. The default is 80.

The number of milliseconds to keep a thread alive (idle) while
waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the
thread is destroyed. The minimum time is a minute. Time is set
in milliseconds. To never destroy threads, set this timeout to a
negative one.

Value is a long. The default is 600000 milliseconds.
The minimum number of threads that OC4J can

simultaneously execute. Value is an integer. The default is 20.
The minimum value you can set this to is 10.

The maximum number of threads that OC4J can
simultaneously execute. Value is an integer. The default is 40.

The maximum number of requests that can be kept in the
queue. Value is an integer. The default is 80.

8-40 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Setting Performance Options

Table 81 The Thread Pool Attributes (Cont.)

Thread Pool Attributes Description

cx- keepAlive The number of milliseconds to keep a thread alive (idle) while

waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the
thread is destroyed. The minimum time is a minute. Time is set
in milliseconds. To never destroy threads, set this timeout to a
negative one.

Value is a long. The default is 600000 milliseconds.

debug If true, print the application server thread pool information at

startup. The default is false.

Recommendations:

The queue attributes should be at least twice the size of the maximum number
of threads.

The minimum and maximum number of worker threads should be a multiple
of the number of CPUs installed on your machine and fairly small. The more
threads you have, the more burden you put on the operating system and the
garbage collector. The minimum that you should set it to is 10.

The cx- m n and cx- max sets the thread pool size for the connection threads;
thus, they are relative to the number of the physical connections you have at
any point in time. The cx- queue handles burst in connection traffic.

When running benchmarks or in a production environment, once you figure
out the right number of threads, set the minimum to the maximum number and
the keepAl i ve attribute to negative one.

Example 8-8 Setting Thread Pool

The following example initializes two thread pools for the OC4J process. Each
contains at minimum 10 threads and maximum of 100 threads. The number of
requests outstanding in each queue can be 200 requests. Also, idle threads are kept
alive for 700 seconds. The thread pool information is printed at startup.

<application-server ...>

<gl obal - t hread- pool nin="10" max="100" queue="200"

keepAl i ve=700000" cx-nin="10" cx-max="100" cx-queue="200"
cx- keepAl i ve=700000" debug="true"/>

Advanced EJB Subjects 8-41

Setting Performance Options

</ application-server>

Statement Caching

You can cache database statements, which prevents the overhead of repeated cursor
creation and repeated statement parsing and creation. In the Dat aSour ce
configuration, you enable JDBC statement caching, which caches executable
statements that are used repeatedly. A JDBC statement cache is associated with a
particular physical connection. See Oracle9i JDBC Developer’s Guide and Reference for
more information on statement caching.

You can dynamically enable and disable statement caching programmatically
through the set St nt CacheSi ze() method of your connection object or through
the st nt - cache- si ze XML attribute in the Dat aSour ce configuration. An
integer value is expected with the size of the cache, which must be a value greater
than 60. The cache size you specify is the maximum number of statements in the
cache. The user determines how many distinct statements the application issues to
the database. Then, the user sets the size of the cache to this number.

If you do not specify this element, this cache is disabled.

Example 89 Statement Caching
The following XML sets the statement cache size to 200 statements.

<dat a- sour ce>

st nt - cache- si ze="200"
</ dat a- sour ce>

Task Manager Granularity

The task manager is a background process that performs cleanup. However, the
task manager can be expensive. You can manage when the task manager performs
its duties through the t askmanager - gr anul ari ty attribute in server . xn .
This element sets how often the task manager is kicked off for cleanup. Value is in
milliseconds. Default is 1000 milliseconds.

<application-server ... taskmanager-granularity="60000" ...>

8-42 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Setting Performance Options

Using DNS for Load Balancing
To use DNS for your incoming load balancing, you can do one of the following:

« UseRM LBI ni tial Cont ext Fact ory object: If you use this initial context
factory, the OC4J client selects a randomly chosen host from the configured
machines.

« UseRM Initial ContextFact ory object for DNS round-robin lookup, and
turn off DNS caching: If you use this option, the OC4J client uses the DNS
round-robin algorithm to choos between the configured IP hosts.

You must start each OC4J process that is involved in load balancing on separate IP
addresses, but with the same port number. Each IP address used must be
configured in the DNS server.

Using RMILBInitialContextFactory Object
To retrieve a randomly selected machine from DNS, do the following:

1. Within DNS, map a single host name to several IP addresses. Each of the OC4J
RMI port numbers must be the same for each IP address.

2. Within each client, use the RM LBI ni ti al Cont ext Fact or y as your initial
context.

Then, the incoming calls are randomly routed to one of the back-end machines.

Example 8-10 RMILBInitialContextFactory Example

java.naning.factory.initial=

com evermi nd. server.rmi . RM LBInitial ContextFactory
j ava. naming. provi der. url =orm ://DNSserver: 23792/ appl nane
java. nanming. security. principal =adnin
java. nanming. security. credential s=wel cone
dedi cat ed. rni cont ext =tr ue

Using RMIInitialContextFactory Object
You can choose to use the RM | ni t i al Cont ext Fact ory object. In order for DNS
round-robin to work properly, you must do the following:

1. Within DNS, map a single host name to several IP addresses and configure DNS
for round-robin lookups. Each of the OC4J RMI port numbers must be the same
for each IP address.

Advanced EJB Subjects 8-43

Common Errors

2. Turn off DNS caching on the client. For Solaris machines, you must turn off
DNS caching as follows:

a. Kill the NSCD daemon process on the client.
b. Start the OC4J client with the - Dsun. net . i net addr . t t | =0 option.

The incoming calls are routed in a round-robin fashion to one of the back-end
machines.

Common Errors
The following are common errors that may occur when executing EJBs:
« NamingException Thrown
« Deadlock Conditions

« ClassCastException

NamingException Thrown

If you are trying to remotely access an EJB and you receive an

j avax. nam ng. Nam ngExcept i on error, your JNDI properties are probably not
initialized properly. See "Accessing EJBs" on page 8-2 for a discussion on setting up
JNDI properties when accessing an EJB from a remote object or remote servlet.

Deadlock Conditions

If the call sequence of several beans cause a deadlock scenario, the OC4J container
notices the deadlock condition and throws a Remote exception that details the
deadlock condition in one of the offending beans.

ClassCastException

When you have an EJB or Web application that references other shared EJB classes,
you should place the referenced classes in a shared JAR. In certain situations, if you
copy the shared EJB classes into WAR file or another application that references
them, you may receive a Cl assCast Except i on because of a class loader issue. To
be completely safe, never copy referenced EJB classes into the WAR file of its
application or into another application.

See "Packaging and Sharing Classes" on page 8-8 for more information.

8-44 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

9

EJB Clustering

EJB clustering offers improved scalability and high-availability through the
following circumstances:

« Atacertain point, too many incoming client requests can overpower the
abilities of your server. You can set up your environment to balance the load of
incoming client requests among several servers.

« Servers failing and connections dropping occasionally happens. You can
configure several servers in a cluster, so that communication is rerouted to
another server in a failover situation.

The methods for providing load balancing and clustering for failover are different
for HTTP requests than for EJB communications because Web components use
different protocols than EJB components. This chapter discusses EJB clustering; the
instructions for setting up the HTTP failover and load balancing environment is
detailed in Oracle9i Application Server Performance Guide.

The following is discussed in this chapter:
« EJB Clustering Overview

« Enabling Clustering For EJBs

EJB Clustering 9-1

EJB Clustering Overview

EJB Clustering Overview

To create an EJB cluster, you specify OC4J nodes that are to be involved in the
cluster, configure each of them with the same multicast address, username, and
password, and deploy the EJB to be clustered to each of the nodes in the cluster.

Unlike HTTP clustering, OC4J nodes included in an EJB cluster are not currently
grouped in an island and do not have a load balancer as a front-end. Instead, the
EJB client container stubs discover—either statically or dynamically—all the OC4J
nodes in the EJB cluster, shuffle the destination addresses, and choose one from this
group for the connection. Thus, the only method for load balancing and failover is a
random methodology.

As Figure 9-1 demonstrates, the client container stubs chose server "s1" for its EJB
connection. However, sometime during the conversation, the connection went
down. At this point, the client container stubs shuffle the remaining OC4J node
addresses and choose another server to connect to for the failover. In this example,
server "s3" from the OC4J cluster resumes the conversation.

Figure 9-1 EJB Clustering Diagram

sl s2 s3

\/
/\

Client

The client container stubs discover the OC4J server addresses by one of the
following methods:

« static cluster discovery method

The JNDI addresses of all OC4J nodes that should be contacted for load
balancing and failover are provided in the lookup URL, and each address is

9-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

EJB Clustering Overview

separated by a comma. For example, the following URL definition provides the
client container with three OC4J nodes to use for load balancing and failover.

java. naming. provider.url=orm://sl: 23791/ ej bsanpl es,
orm ://s2:23793/ ej bsanpl es, orm://s3:23791/ ej bsanpl es;

dynamic cluster discovery method

The JNDI addresses of all OC4J nodes that can be contacted for load balancing
and failover are dynamically discovered during the first INDI lookup. The
client must perform a lookup with a "I ookup: " prefix, as follows:

i c.lookup("l ookup:orm://sl:23971/ej bsanpl es");

During the JNDI lookup, server "s1" contacts the other OC4J nodes in the
cluster, which are identified as a cluster if they all have the same multicast
address (host/port), and retrieves their or m addresses. These addresses are
sent back to the client container. From this point forward, the client container
shuffles these addresses for any load balancing or failover needs.

However, the client container never tries to rediscover these addresses.
Therefore, if you remove a node from the cluster and add another one during
the connection, the client container will be unaware of it until the next time the
client re-discovers the cluster nodes through the "I ookup: " method.

The state of all beans are replicated at the end of every method call to all nodes in
the cluster. This option is the most reliable in that the state of the bean is replicated
to all nodes in the cluster, using a JIMS multicast topic to all nodes in the
cluster—which uses the same multicast address. This state stays in the topic until it
is needed. Then when a method call comes in on the alternate node, the latest state
for the bean is found in the JMS topic, reinstated, and the bean invocation
continues.

These methods have different repercussions for each of the EJB types, which are
discussed in the following sections:

Stateless Session Bean Clustering

Stateful Session Bean Clustering

Entity Bean Clustering

Combination of HTTP and EJB Clustering

EJB Clustering 9-3

EJB Clustering Overview

Stateless Session Bean Clustering

Stateless session beans do not require any state to be replicated among nodes in a
cluster. Thus, the only use of the clustering methods that stateless session beans
have is load balancing between nodes. Both the dynamic and state cluster discovery
methods can be used for stateless session beans. Failover defaults to the remote
invocation handler by redirecting a request.

Stateful Session Bean Clustering

Stateful session beans require state to be replicated among nodes. In fact, stateful
session beans must send all their state between the nodes, which can have a
noticeable effect on performance. Thus, the following replication modes are
available to you to decide on how to manage the replication performance cost:

« JVM termination replication mode—T he state of the stateful session bean is
replicated to only one other node in the cluster when the JVM is terminating,
which uses JDK 1.3 shutdown hooks. Thus, you must use JVM version 1.3 or
later. Within the JVM shutdown process, the state of all stateful session beans
within this JVM is replicated to another server on the same multicast address.
This is the most performant option, because the state is replicated only once.
However, it is not very reliable, for the following reasons:

— Your state will not be replicated if the power is shut off unexpectedly.

— The state of the bean exists only on a single node at any time; the depth of
failure is equal to one node.

« Stateful session context replication model—This is a finer-grain replication
mode. In HTTP clustering, you can manage when and the type of information
that is replicated through the set At t r i but e method of the HTTPSessi on
object. Oracle offers a similar method through a new OC4J-specific class:
com everm nd. server. ej b. st at ef ul Sessi onCont ext . Although this
option is a performant and reliable mechanism, it does not comply with the
J2EE specification. Thus, if you provide this within your server code, you
cannot port this application to any non-Oracle J2EE server.

Entity Bean Clustering

The state of the entity bean is saved in a persistent storage, such as a database.
Thus, when the client loses the connection to one node in the cluster, it can switch to
another node in the cluster without worrying about replication of the entity bean
state. However, to ensure that the state is updated from the persistent storage when
the load balancing occurs, the entity bean that changes state notifies other nodes

9-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Enabling Clustering For EJBs

that their state is no longer in synch. That is, that their state is "dirty". At this point,
nothing is done. If failover occurs and the client accesses another node for this
entity bean, then the bean notices that its cache is dirty and resynchronizes its cache
to the "READ_COWM TTED" state within the database.

Combination of HTTP and EJB Clustering

If you have a servlet that invokes an EJB, you must include both the HTTP and EJB
clustering. For HTTP clustering options, see the HTTP clustering white paper. The
type of EJB clustering you choose is based on the EJB type. If you do not configure
for both types, you will not have the proper state replication for the type for which
you did not configure.

If the HTTP invokes an EJB that is colocated, the EJBRef er ence cannot be
replicated to another node unless EJB clustering has been enabled. Instead, a null
pointer will be copied to the other node. So, you must provide for both types of
clustering in order for all of the correct information to be replicated.

Enabling Clustering For EJBs
To enable the OC4J nodes for EJB clustering, you must perform the following steps:

1. Configure each node in the cluster with the multicast address, an island
identifier, and a unique node identifier.

2. Configure state replication for any stateful session beans.
3. Deploy the EJB to be clustered on all nodes.

4. Modify the client to use either the dynamic or static method for retrieving the
cluster node addresses. The dynamic method is recommended.

Configure Nodes With Multicast Address and Identifier

When you are configuring each OC4J node included in the EJB cluster, you must
configure the following:

« Configure each node with an identical multicast address (host and port
number), username, and password.

« Configure the island in which the OC4J JVM will be involved.

« Configure each node in the cluster with its own unique identifier within the
cluster.

EJB Clustering 9-5

Enabling Clustering For EJBs

You can test a network for multicast ability by pinging the following hosts:
« To ping all multicast hosts, execute: pi ng 224. 0. 0. 1.
= To ping all multicast routers, execute: pi ng 224. 0. 0. 2.

Modify ther m . xm file and add the <cl ust er > tag to configure the multicast
address, username, password, island identifier, and unique node identifier for the
OC4J node, as follows:

<cluster host=<multi_host> port=<nul ti_port>
usernanme=<mul ti_user> password=<nmul ti _pwd> id=<island_id> />

where each variable should be the following:

« multi_host: The multicast host used for the EJB cluster that communicates
among the nodes in the cluster. The IP addresses that you can use for multicast
are between 224.0.0.0 and 239.255.255.255. You must specify this variable.

« multi_port: The multicast port used for the EJB cluster for communication
among the nodes in the cluster.

« multi_user/nmulti_pwd: The username and password used to authenticate
itself to other nodes in the cluster. If the username and password are different
for other nodes in the cluster, they will fail to communicate. You can have
multiple username and password combinations within a multicast address.
Those with the same username/password combinations will be considered a
unique cluster.

« i sland_i d: The identifier that designates what cluster the EJBs on this OC4J
JVM are included.

For example, the following cluster definition identifies a cluster on mulitcast
address of host=230.0.0.1, port=9127, username=mul t 1, password=hwdr, and
id="1":

<cluster host="230.0.0.1" port="9127"
usernane="mul t1" password="hwdr" id="1" />
Specify the unique node identifier number as follows:

= Specify the node identifier in the ser ver . xmi file with the <cl ust er > tag, as
follows:

<cluster id="123"/>

9-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Enabling Clustering For EJBs

« Ifnoidentifier is specified, a default identifier consists of the host IP address
and port of the node itself.

Note: The dynamic peer discovery mechanism uses RMI as the
mechanism for communication. You must have an RMI listener
configured in ther mi . xm file with the following syntax:

<rm _server host="<hostname>" port="<port>" />

The host name must be the actual name of your node. Do not use
the "l ocal host " variable.

EJB Replication Configuration

Modify the ori on- ej b-j ar. xm file to add the state replication configuration for
stateful session beans. Since you configure the replication type for the stateful
session bean within the bean deployment descriptor, each bean can use a different
type of replication.

VM Termination Replication Set ther epl i cati on attribute of the
<sessi on- depl oynent > tag inthe ori on-ej b-j ar. xm file to
"VMTer mi nat i on". This is shown below:

<sessi on-depl oynent replication="VMrernination" .../>

End of Call Replication Setthe repl i cati on attribute of the
<sessi on- depl oynent >tag in the ori on-ej b-j ar. xm fileto "endOf Cal | ".
This is shown below:

<sessi on-depl oynent replication="EndOfCall" .../>

Stateful Session Context No static configuration is necessary when using the stateful
session context to replicate information across the clustered nodes. To replicate the
desired state, set the information that you want replicated and execute the

set At tri but e method within the St at ef ul Sessi onCont ext class in the server
code. This enables you to designate what information is replicated and when it is
replicated. The state indicated in the parameters of this method is replicated to all
nodes in the cluster that share the same multicast address, username, and
password.

EJB Clustering 9-7

Enabling Clustering For EJBs

Deploy EJB Application To All Nodes

Deploy the EJB application to all nodes in the cluster. If you do not do so, the client
container shuffles through the nodes in the cluster until it finds a node with the EJB
deployed on it. This will affect your performance.

You can either deploy the application to each node individually using the
- ¢l ust er option of the admi n. j ar tool or you can use Oracle Enterprise Manager
(OEM), which can deploy your application for you to multiple nodes.

Use the following syntax with the adni n. j ar tool:

java -jar admn.jar orm://nyhost adm n wel cone
-depl oy -file bnpapp. ear -depl oynent Nane bnpapp -cl uster

Application Client Retrieval Of Clustered Nodes

The client container designates randomly within the nodes in the cluster where to
direct the client request. As discussed above, the container discovers the nodes
within the cluster through one of the following methods:

« Static Retrieval

« Dynamic Retrieval

Static Retrieval

The JNDI addresses of all OC4J nodes that should be contacted for load balancing
and failover are supplied in the lookup URL, and each address is separated by a
comma. For example, the following URL definition provides the client container
with three OC4J nodes to use for load balancing and failover.

java. nanming. provi der.url=orm://sl: 23791/ ej bsanpl es,
orm://s2:23793/ ej bsanpl es, orm://s3:23791/ ej bsanpl es;

Dynamic Retrieval

The INDI addresses of all OC4J nodes that can be contacted for load balancing and
failover are dynamically discovered during the first INDI lookup. The client must
perform a lookup with a "l ookup: " prefix, as follows:

i c.lookup("l ookup:ormi://sl:23971/¢ejbsanpl es");
During the JNDI lookup, server "s1" contacts the other OC4J nodes in the cluster,

which are identified as a cluster if they all have the same multicast address
(host/port), and retrieves their or mi addresses. These addresses are sent back to the

9-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Load Balancing Options

client container. From this point forward, the client container shuffles these
addresses for any load balancing or failover needs.

The client container never tries to rediscover these addresses, though. Therefore, if
you remove a hode from the cluster and add another one during the connection, the
client container will be unaware of it until the next INDI lookup.

Load Balancing Options

If you configure for load balancing, it balances the load at the connection level.
However, if you want load balancing to occur on each JNDI lookup, configure the
LoadBal anceOnLookup property to true in the INDI properties before retrieving
the InitialContext, as follows:

env. put ("LoadBal anceOnLookup", "true");

EJB Clustering 9-9

Load Balancing Options

9-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

10

Active Components for Java

Active Components for Java (AC4J) enables applications to interact as peers in a
loosely coupled manner. Two or more applications participating in a business
interaction exchange information for the purpose of requesting service and
responding with results.

This document describes software Oracle provides to manage loosely coupled
interactions between autonomous applications. It also discusses the architecture
necessary to run the software.

Future Needs of Business Applications
Architectures

ACA4] Architecture

Configuring Oracle Databases to Support AC4J
AC4J) Example

Administering AC4J

Active Components for Java 10-1

Future Needs of Business Applications

Future Needs of Business Applications

The future of business applications requires the ability to perform loosely coupled
interactions. That is, applications should be able to exchange information with other
applications over a long period of time, without limiting resources, and by
surviving system crashes. Loosely coupled interactions have the following
requirements:

1.

Autonomous peer—Each application, when interacting with another
application, exists as an autonomous peer. That is, the responding application
can choose to ignore the request, or to execute one or more functions on behalf
of the requester (possibly different from the one that the requester asked for),
before responding to the initiating application. As peers, both applications can
make requests to each other, but neither can require submission from the other.
Neither application can assume control over the resources that its peer
application owns.

No time constraints—Because the tasks that are performed sometimes take
days, even months, to complete, there must be no time limits imposed.

Asynchronous exchange of information—Loosely coupled interactions require
that all exchange of information exists within an asynchronous environment.
The inter-peer interaction performs one of the following:

« Distribute information interaction—Sometimes an application must be able
to distribute information asynchronously to its peer where no response is
required. However, reliability of the delivery for this message must be
ensured.

= Request or respond to interaction between components in an asynchronous
manner—Applications use a request and response mode of communication,
in which each entity knows where to respond with the results.

Reliability—For any application to exist over a period of time, the application
must be reliable; that is, recoverable and restartable, in case of system failures
during that time.

Scalability—The application must be scalable; that is, a long-running
application cannot block execution or lock resources for long periods of time.
For the application to execute in a reasonable time frame, the framework must
provide performance enhancements through concurrently executing
computations.

Monitoring ability—The application must be able to define and track its
business processes and their interaction patterns, including the following:

10-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Architectures

« What business processes have started or completed under what business
conditions

« What business processes are pending, and waiting for what business
documents

« What the pattern of interaction of the business processes is, where processes
can exchange information, and what information they are authorized to
push to or pull from other processes

« What the sequencing of execution of the defined processes is

Architectures
Until AC4J, the following two architectures were available:

« Remote Procedure Call Model—Provides a tightly coupled environment that
uses request-response mechanisms in communication.

« Database Transactional Queueing Model—Provides a loosely coupled
environment that uses a one-way mechanism for communication.

The following sections briefly describe these models and show why they do not
offer the basis necessary for the six goals presented in “Future Needs of Business
Applications” on page 10-2. After the two architectures are described, AC4J is
shown to be not just a new technology, but one that builds on the two architectures,
eliminating their negatives and drawing on their positives. AC4J has the look and
feel of Remote Procedure Call and database queueing, which it uses as building
blocks.

Remote Procedure Call Model

One of the building blocks of AC4J, the Remote Procedure Call (RPC) programming
model, facilitates a tightly coupled environment that provides for request-response
communication. Transactional RPC implementations provide for ACID (atomicity,
consistency, isolation, and durability) qualities.

Most RPC implementations currently provide two modes of method invocations:
synchronous and deferred synchronous.

Transactional RPC Synchronous Invocation

The client program blocks when a remote invocation is made, and waits until the
results arrive or an exception is thrown. Examples of application types that use

Active Components for Java 10-3

Architectures

transactional RPC implementations are EJB and most CORBA applications. Web
services are also based on the RPC model, but are not transactional.

Advantage This model of communication—also known as online or connected—is
based on the request-response paradigm, in which the requester and responder of
the service are tightly coupled. Tightly coupled applications understand how to
reply transparently to the requester.

Disadvantage The programs must be available and running for the application to
work. In the event of a network or system failure, or when the application
providing the service is busy, the application is not able to continue forward with its
processing work. In this case, the state is inconsistent and the application must roll
back to a consistent state through JTA (Java Transaction API). In addition, the
application is not autonomous. One application can control resources of other
applications for a long time.

JTA is based on the two-phase commit specification. The two-phase commit
protocol can cause loss of application autonomy in the case of network
disconnection, where the coordinator is incapable of making a coherent global
decision over the outcome of the global transaction for a long period of time.

Example If a purchase order is created and the customer wants to purchase 20
widgets, then the transactional RPC application must do two things:
« Check inventory for 20 widgets and ask for them to be shipped to the customer

« Check the customer’s credit to see if the customer has the ability to purchase
these widgets

In this example, an RPC synchronous application would (within a global
transaction) do the following:

« Send arequest to the inventory database and block until the answer returns
« Send arequest to the credit bureau and block until the answer returns

If both requests come back with a satisfactory report, then the transaction is
committed, and the purchase order is forwarded on to shipping. If one of the two
requests fails, the transaction is rolled back; of course, to prevent rollback, the
application could perform the following alternatives:

« Ifthe inventory is not available, ask if the customer will wait for a back order.

« Ifthe credit check fails, ask the customer for another method of payment.

10-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Architectures

If the transaction is rolled back, the purchase order is voided (unless one of the
alternatives is performed).

RPC Deferred Synchronous Invocation

An RPC-deferred synchronous invocation is queue-oriented. The client places a
request in a queue and is then able to continue processing without blocking for the
response. An example of this is a CORBA DIl (Dynamic Invocation Interface)
application.

Advantages The client does not need to wait for a reply to the request. Instead, the
client continues processing. Then when the client wants to receive a response, it
blocks or polls for the availability of the response. A response can be delivered only
to the same process that made the original deferred request. Thus, if multiple
deferred requests are pending, only one response is processed at a time.

Disadvantage If the client is nonexistent, then the response is lost. Thus, for deferred
execution to work correctly in the presence of network, system, and application
failures, the requests must be stored persistently and processed exactly once.

Example In the purchase order example, the requests to the inventory and credit
bureau can be made in parallel. After executing both requests, the client can poll for
both responses. The disadvantages are the same as listed within the RPC
synchronous invocation example.

Database Transactional Queueing Model

Another of the building blocks, the database transactional queueing model,
supports a loosely coupled environment where applications use one-way
communication. Oracle AQ is an implementation of a database transactional
gueueing model.

Applications need to process and deliver each message exactly once, even in the
presence of multiple failures of the sender or the receiver. Mixing the transactional
ACID construct with queue processing creates a model that enables applications to
reliably process messages with the ACID guarantees.

Applications can be disconnected for long periods of time, and occasionally they
can reconnect to communicate, using messages. By decoupling the applications that
send messages from the applications that receive messages and process them,
gueueing facilitates complex scheduling of autonomous applications. Each message
can be durably saved until processed exactly once. Processing of the data is

Active Components for Java 10-5

Architectures

performed in a time-independent fashion, even in a situation in which a message
receiver is temporarily unavailable.

Advantage Delivers and processes messages exactly once, no matter whether the
network or receiver application is available.

Disadvantage This model is based on sending and receiving messages, not on
requesting and responding to service requests. Sending and receiving messages is
the foundation of all business protocols for loosely coupled applications. To satisfy
this requirement, the application is responsible for creating and parsing each
message. Both sides must know the format, security, and headers required for each
message. There is no automatic mechanism for routing messages and executing
business methods. The implementation of application logic for these mechanisms is
the responsibility of the applications. If a response is called for, the application
cannot easily reply, because there is no context that captures the relationship
between a requester and a responder application; this is not true for RPC. This
model is not intended for a request-response environment, so if the client needs a
response back from the destination object, it must receive and parse a separate
message off of its own queue.

Exception handling describes communication failures—not application exceptions.

There is no guarantee for the consistency of the business transactions. Instead, the
program itself must guarantee that the application semantic rollbacks (semantics of
undoing a process but not necessarily restoring the original state) occur
appropriately in a failure situation.

Example In the purchase order example, the client would enqueue a message to the
inventory queue and another to the credit bureau queue. Both must be reliably
processed once for the transaction to commit. If either the inventory is not available
or the client’s credit is not good, the business transaction cannot be successfully
completed, and another message must be created to semantically roll back the one
message that was processed positively.

AC4J Solution

The RPC and transactional database queueing models both have advantages and
disadvantages. The disadvantages keep them from being the best solution. The
disadvantages within J2EE application types, and the reasons that previous
methods did not work, are as follows:

« Thetightly coupled, synchronous communication of EJBs does not allow
loosely coupled interactions or autonomous peer communication.

10-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Architectures

« Theloosely coupled, asynchronous communication of JMS offers no correlation
of messages nor does it support application consistency. JMS provides only a
transport with no syntax for one-way messages.

« Theloosely coupled, asynchronous communication of JIMS does not enable
request-response interaction between entities.

« The need for the JTA Coordinator to control all resources in the two-phase
commit cannot include autonomous resources in the global transaction.

The disadvantages prevent each model from solving the business goals laid out in
“Future Needs of Business Applications” on page 10-2. Thus, a new model is
necessary to incorporate the advantages of both models and exclude the
disadvantages.

Arising out of and building upon the previous two models, AC4J is a manager of
loosely coupled interactions between autonomous EJB applications. You can
partition the application into concurrently executing active units of work—known
as reactions—whose execution is driven by data availability, and its purpose is to
execute business logic and produce new data. AC4J coordinates the flow of data
between reactions. When data become available on AC4J, the conditions specified
by all registered reactions are checked and, if satisfied, then the execution of the
methods of all matched reactions is triggered.

Active Components for Java 10-7

AC4J Architecture

AC4J Architecture

AC4] allows EJBs to interact in a loosely coupled fashion. It provides the following
features:

It furnishes support for reliable asynchronous, disconnected, one-way, or
request-response types of interaction with complexities of IMS programming
removed, using the following:

« It hides queues and topics and related JMS constructs from applications.
« It supplies automatic definition of communication message formats.
« Itautomatically packs and unpacks messages.
« Itautomatically routes service requests to the appropriate service provider.
« Itautomatically propagates the security context.
« It supplies authorization and identity impersonation.
« It provides automatic exception routing and handling.
All the preceding features are integrated in the EJB framework.

It offers transactional data-driven execution of EJB applications. It does this
with composite matching on available data based on specified rules, which
describe under which conditions these data can fire which EJB method. AC4J
also offers transparent scheduling and activation of EJBs and execution of their
methods.

It furnishes support for forking and joining operations. This involves parallel
invocation of EJB methods and synchronization on their results.

It provides automatic tracking of the work in progress.

Introduction to AC4J Components

AC4] provides a framework for loosely coupled interactions, which are included in
the following components, each described more fully after this section:

Active EJBs: An Active EJB contains the business logic. An Active EJB business
object (stateless session or entity bean) is instantiated and its method is invoked
when a reaction fires.

Interaction: An interaction is a long-lived unit of work that reflects the behavior
of a business transaction. It groups a series of data exchanges (with

10-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

asynchronous, concurrent, and request-response characteristics) between
processes.

= Processes: A process represents a business task. It encapsulates the units of
work—reactions—that perform the detailed work of a business task.

« Reactions: A reaction performs the detailed work of a business task and is used
to do the following:

push data to and pull data from the data bus
process service requests
request service from other Active EJBs

return results to the caller Active EJB business task or to the application
client

enforce business constraints that preserve the consistency of a business
transaction

provide application restartability in case of failures

« Data Tokens: A data token describes a request for service, or a response from a
service request, or an exception condition, such as an expiration of a timer.

« Data Bus: The data bus is the fundamental component in AC4J. Applications
attach to the data bus to exchange data and request services. The data bus is
responsible for routing and matching of data tokens with registered reactions
and enables transparent load-balancing of the attached application.

Figure 10-1 demonstrates the relationship of these components to each other. The
sections following (up to, but not including, “Configuring Oracle Databases to
Support AC4J” on page 10-20) describe each component.

Active Components for Java 10-9

AC4J Architecture

Figure 10-1 AC4J Relationship Diagram

JEMPurchaseOrderBean JEMChecklnventoryBean
ActiveEJB N . ActiveEJB
Meraction 1 \ . s \
takeOrder Process checkINV Process

=0
C:@ata Token(s)
—O

Reaction

) fireReactionIn(takeOrder Progss) \

3) retugl To(takeOrder Process)

1) call(EERALEREEES 2) fireReactionIn(gheckINV Process)

DATABUS

N /

Active EJBs

An EJB provides a natural way for describing a business object—such as a customer,
purchase order, or invoice. The externally visible business tasks of a business object,
which is accessible by other applications, are separated from their internal
implementation details and are described in the EJB interface.

Traditional EJBs are passive: they must be ready to immediately service a request
from a client and return results quickly. Failure to deliver on these promises causes

10-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

Interaction

an EJB to be unusable. AC4J allows standard stateless session and entity EJBs to
become active. Active EJBs permit requests for service to be decoupled from the
actual service execution. The policies that control when and which EJB methods are
actually invoked are controlled by the service provider EJB. This de-coupling
permits service request and service providers to interact as autonomous peers.

An application can create or look up a JEMHandl e and then request service from a
business task, which is exposed in the EJB interface.

An Active EJB is uniquely identified by a JEMHand| e object. A JEMHand| e object
encapsulates the following:

« Active EJB name

« J2EE application name

. EJB JAR name

. EJB name

« Class name

« EJB home interface name

« EJB remote interface name

« Instance name (SID) of the database in which the data bus resides

« Primary key (available only for entity beans) of the EJB

An interaction is a long-lived unit of work that reflects the behavior of a business
transaction. A business transaction can span multiple applications that reside in
different organizations. Contrary to the life of a local or a global transaction, the
duration of these business transactions in this disconnected environment can be
long.

The interaction represents a business goal that you want to complete. For example,
if a customer wants to buy something from a business, all the actions necessary to
allow the customer to pay for and receive the item he wants is characterized as an
interaction. The interaction groups a series of business data exchanges by providing
the global execution context of the business transaction.

These applications can run in isolation and commit or roll back their own data
without knowledge of other applications. However, these applications should not
be considered as different pieces, because the relationships formed among them
must be coordinated and their consistency maintained. When a business transaction

Active Components for Java 10-11

AC4J Architecture

Processes

becomes inconsistent, its participating applications may need to recover. The
application recovery can be obtained by registering compensating reactions. For
example, when the supplier has confirmed the purchase order request back to the
buyer, the buyer must register a compensating reaction that monitors additional
responses from the supplier that may inform him that, for example, the purchase
order cannot be fulfilled because the manufacturing department is running late. If
the supplier’s confirmation of the request is cancelled, then the buyer’s
compensating reaction is matched and then fired to allow the buyer application to
recover its application consistency. This reaction can pick a new supplier and
request the item from the supplier or abandon the purchase order process
completely.

An interaction is uniquely identified by an interaction identifier (11D). An
interaction can contain multiple processes.

A process identifies a business task. In our purchase order example, a process exists
for each of the following business tasks: creating a purchase order, checking
inventory, checking customer credit, and shipping the order.

Each process does the following:
« Encapsulates the reactions that perform its detailed work

« Encapsulates data tokens, which contain the business task input parameters
and its responses

« Maintains the data flow context that determines how to return the response to
the invoking business task

Figure 10-2 demonstrates an Active EJB, an interaction, and two of its processes.

10-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

Reactions

Figure 10—2 Relationship of Active EJB, Interaction, and Processes

ﬂneraetion 1 \

takeOrder Process

g %3% JEMPurchaseOrderBean
(o]
E Reaction /—\
8 . §
S ~
E Sring clientNare
P Reaction int cr edi t Car dN\unber
8 Sring itenhane
int quantity

cancelOrder Process EJB Business Object State

EJB Interface
Reaction

Data Tokens

~/

A process is uniquely identified by a JEMPor t Handl e object, which encapsulates
the process context and the JEMHand| e of the Active EJB that the process belongs
to. The process context is a union of an interaction identifier and the process
activation identifier. AC4J automatically creates the interaction and process
activation identifiers within a cal | operation. Alternatively, the application can
supply them in the AC4J JEMSessi on: : cal | operation.

-~

A reaction performs the detailed work of a process. Using this construct, an
application can specify its persistence interest in the availability of a collection of
correlated data tokens that trigger the execution of an Active EJB method. A
reaction is a combination of the following:

« Avreaction template is a set of rules designating when the reaction will match,
what data tokens are required to be pulled before firing, and under what
conditions the reaction is allowed to fire.

« An Active EJB method is executed when the reaction fires.

Active Components for Java 10-13

AC4J Architecture

When a process is created as the result of a AC4J cal | operation, AC4J implicitly
creates a base reaction. Additionally, an application can explicitly create a reaction
at run time, using the JEMReact i on: : regi st er React i on operation to
synchronize on data tokens. The implicit or explicit r egi st er React i on operation
specifies the reaction template and the Active EJB method to be executed when
matching succeeds.

Reactions (EJB methods) can access and modify shared database objects. These
objects can be traditional database objects—thus, facilitating coarse grain information
sharing in a transactional manner. Similarly, the reactions exchange fine grain
information—such as Active EJB method input parameters and return values—using
the AC4)J data bus.

The reaction processes incoming requests, returns results based on the request, and
enforces business constraints to preserve application consistency. When a reaction is
fired, it can consume one or more input data parameters, process them, and then
possibly produce one or more output data tokens for other reactions. Figure 10-3
illustrates how, when all data tokens are available and the conditions are matched,
the reaction fires, which causes the method to execute. This method can return
results that are converted to data tokens by the AC4J infrastructure and routed to
the caller. This method can request additional services from other Active EJBs to
complete the business task. These requests result in the creation of new data tokens,
which are pushed and routed by the AC4J data bus.

Figure 10-3 Firing a Reaction

data
token

—3)

all data
tokens are

Reagtion Matching Conditions

10-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

Reactions inside a process context instance can push data tokens to the AC4J data
bus in the following ways:

« By issuing one or more JEMReact i on: : cal | operations that request service
from other processes in the same or different interaction context instance

« By returning or throwing exception operations to the caller processes

« By registering a timer, using the JEMReact i on: : regi st er Reacti onTi ner
operation

When the timer expires, AC4J pushes a time-out exception data token in the
current reaction context instance.

Reactions inside a process context instance can pull data tokens from the AC4J data
bus by registering one or more reactions in the current process context instance,
using the JEMReact i on: : r egi st er React i on method.

One or more reactions can exist for each business task. A reaction is used for the
request and another for the response to support the asynchronous nature in a
request-response environment. The number of reactions depends on the number of
requests and responses necessary.

The following example demonstrates how one can receive an asynchronous
communication between processes, but still have a request-response environment.
Thet akeOr der process is the business task for creating the purchase order. To
create the purchase order, you must check the inventory and the customer’s credit.
Thus, the t akeOr der reaction invokes the following processes:

« checkl NV—Under the conditions that the customer asks for a new purchase
and provides the data of the items wanted, the checkl NV process is activated,
its JEM nvent or yBean Active EJB is instantiated, and its base
reaction—checkl NV—reacts. Later, it returns its results to the t akeOr der
process and its JEMPur chaseOr der Bean Active EJB.

« checkCRED—This process is activated, its JEMCr edi t Bean Active EJB is
instantiated, and its base reaction—check CRED—reacts to check the customer’s
credit. Later, it returns its results to the t akeOr der process and its
JEMPur chaseOr der Bean Active EJB.

After sending the asynchronous requests to the checkl NV and check CRED
processes, the t akeOr der reaction registers another reaction in the same
process—pr oc PO—that waits for the responses back from both the checkCRED and
checkl NV processes. When all data tokens expected from these processes are
available, the pr ocPOreaction fires and processes the responses. As Figure 10-4

Active Components for Java 10-15

AC4J Architecture

shows, both the t akeOr der and pr ocPOreactions exist in the same process,
because they are components of the same request-response communication.

Figure 104 Relationship of JEMPurchaseOrderBean Interface Methods

JEMPurchaseOrderBean

[public void takeQ der(

/ String client Nane,
, int creditCar d\Nunber,
String iteniane,

. / int quantity)
takeOrder Reaction “

takeOrder Process

public Sring procPQ

/ bool ean i nvent or yExi st s,
String creditlnfo)

/
procPO Reaction “
cancelOrder Process public void cancel O der(
String client Nang,
/ int credit Car d\unber,
/ String itenhane,
int newQuantity)
/
cancelOrder Reaction / KEJB Interface

Note: To satisfy the AC4J requirement of not locking resources,
the call should be an asynchronous AC4J call. However, you can
still perform synchronous EJB calls to another bean.

Data Tokens

The activation of a reaction is triggered by the availability of data tokens.
Availability is defined by the arrival of one or more data tokens, with the right
conditions, and the right access mode.

10-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

Data Bus

When an application is requesting a service by using an AC4J call operation, the
system automatically pushes a request data token, which comprises the following:

« A process descriptor, which specifies the service that is requested (such as
t akeOr der)

« Avrequest JEMPor t Handl e object of the service provider to whom the request
is destined

« Avresponse JEMPor t Handl e object, which contains the process context
(interaction and process activation identifiers) instance and the JEMHand| e of
the requester process that will later receive the results from the service provider

« Business task input arguments, which the service provider uses to honor the
service

Later, when a reaction returns a response data token that is automatically generated
by AC4Jwhen an active EJB returns or throws an exception, AC4J fills in the routing
information needed for sending the returned information to the caller process and
fills the port handle object of the response data token. In the case in which the caller
of the returning process is a client and not another process, then the data bus stores
the response data token to a special data bus area from where the client can retrieve
it, using the JEMSessi on: : r ecei veReact i onResponsebj ect | nst ance
operation.

The data types of the objects carried inside an input or output data token can be
basic data types (such as integer, string, float, boolean) or constructed class types
(such as Java serializable objects).

Improving the autonomy, scalability, and availability of applications requires
components that are requesting services to be unaware of the identity, location, and
number of components that provide these services. In AC4J, applications are
attached to a data bus before starting their operation. The AC4J data bus is
responsible for routing and matching data tokens that are pushed and must be
pulled by registered reactions. Additionally, the data bus enables scheduling,
activation, and execution of the matched reactions.

Matching Reactions

The data bus routing subsystem is responsible for making the different types of data
tokens available at the specified destination, the process context instance that
comprises the interaction identifier and the process activation identifier, specified
by a JEMPor t Handl e object.

Active Components for Java 10-17

AC4J Architecture

When data tokens are routed and become available in the data bus inside a process
context instance, AC4J tries to match these data tokens with all registered reactions
that are available in that context instance. The system tries to match the data token
tags that are specified in a reaction template, evaluating all constraint conditions
against the matched data tokens to filter and discard the inappropriate ones.

Availability of some data tokens does not mean that a registered reaction will match
immediately. Only when all data tokens required by a reaction become available
does matching succeed. For example, inside t akeOr der process the t akeOr der
base reaction has registered the pr ocPOreaction that is waiting for the check CRED
and checkl NV processes to respond. When the checkl NV process responds to the
t akeOr der process, the pr ocPOreaction is not matched because it is also waiting
for the check CRED process to respond. When the check CRED process responds to
thet akeOr der process, the pr ocPOreaction is matched.

Additionally, data tokens that are available in the data bus can be matched with a
reaction that will be registered in the future. This can be used for sequencing
processes, where the completion of one process can enable another process. Inside
the same interaction, the t akeOr der process must be completed before the

cancel Or der process can start executing. If the t akeOr der process has not
completed but the cancel Or der process is requested from a client, then its base
reaction, which is implicitly created by the system, will not be matched, because it is
waiting for the completion data token of the t akeOr der process to be available. If
the t akeOr der process has completed (thus having already pushed its completion
data token), then the cancel Or der process is requested from a client, and it will be
immediately matched, because the completion data token of the t akeOr der
process is already available.

Matching data tokens with reactions triggers the activation of zero, one, or more
reactions, which are executed in parallel if they do not conflict for shared resources.

Firing Reactions

Each method of the remote interface of an Active EJB implements the application
business logic. When the data tokens become available, and are matched with a
reaction, AC4J verifies that the types (primitive or class types) of the data tokens
matched on the tags also match the types of the reaction Active EJB method types.
Then ACA4J verifies that the matched reaction is authorized to pull the available
matched data tokens. If everything passes successfully, AC4J schedules the
activation of the reaction.

When the matched reaction is fired, the AC4J container begins a JTA transaction and
instantiates the requested Active EJB (stateless session bean or entity EJB) using the

10-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

ACA4J Architecture

primary key inside the JEMHandl| e request object. Then the EJB method of the fired
reaction, is executed using the matched data tokens of the reaction.

AC4J) automatically commits the current reaction at the end of every Active EJB
method. A reaction commit marks the end of a JTA transaction so that all its
changes to shared data tokens, and all its service requests and responses that have
been sent, become visible. The activation of a reaction has “exactly once” semantics
(that is, the code specifies that it executes exactly once) if the reaction commits. If a
failure occurs after a commit, then the reaction cannot be rolled back and the
changes will persist. If a failure occurs before or during a commit, then the
container rolls back the current reaction. A reaction rollback reverses all changes to
shared data tokens, and the service requests and responses are never sent to any
recipient component. In case of failures, the data bus will retry to fire the reaction
for a preconfigured number of times. The reaction is marked as completed, with
exception completion status if the maximum retry attempts are reached.

In traditional databases, where the duration of a transaction is short, abnormal
situations cause the whole transaction to be undone, so all performed work is lost
and must be submitted again for execution. Since interactions have usually long
duration and contain a large number of reactions, AC4J provides additional
mechanisms to handle exceptions (such as an Oracle9iAS node crash or an Oracle
database node crash).

AC4j automatically makes a reaction persist in the data bus if it completes
successfully. The state that is saved (process input variable data, process local
variable data, and data flow context information) can be used to continue the
application with minimum restart time from the last reaction. When a node crashes,
all reactions that were running and did not end successfully are rolled back. AC4J
then reexecutes the interrupted reactions in another OC4J instance.

AC4J uses a mechanism to capture, propagate, and match the application state and
control flow information needed for resuming an application after the crash.
Additionally, because reaction execution is data-driven, there is no need for the
system to keep a volatile or persistent copy of the entire program state (such as
program execution stack) to facilitate the storage of the control flow descriptors or
the storage of data variables.

Relationships of Data Bus, Data Tokens, and Reactions

Figure 10-5 demonstrates how data tokens cause reactions to fire, and how
reactions send new data tokens to other reactions over the data bus. The data bus
coordinates and matches the data tokens with its reactions.

Active Components for Java 10-19

Configuring Oracle Databases to Support AC4J

Figure 10-5 Data Bus, Data Tokens, and Reactions

Reaction

all
data tokens

are available,

data so reaction data data bus

token —1 fires and tokens reactions
executes the

EJB method

After the method completes, the reaction sends information in the form of a data
token to another reaction. All data tokens are sent asynchronously from one
reaction to another over a data channel known as the AC4J data bus. The AC4J data
bus routes the data tokens from a producer reaction to one or more consumer
reactions.

Configuring Oracle Databases to Support AC4J

Before you can execute any interactions, you must initialize an Oracle9i database as
a repository for the AC4J data bus. You must configure it to include the following:

« AC4J connection and session capabilities: This defines the number of threads
AC4]J can observe in the data bus

« AC4] system tablespace:

« AC4Jsuperuser: This must be created and needs special privileges for
transactions, security, and administration

« AC4] data bus: This must be configured with the number of tables and the AQ
topics and queues

= One or more client users

You can add the elements of the preceding list to your Oracle9i database with
scripts that are contained in the ac4j - sql . j ar file that was downloaded with
your Oracle9iAS installation. Unzip this JAR file, which contains a READVE. TXT file
that discusses the different SQL command options that are available to you. These
commands are also described in the following:

10-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Oracle Databases to Support AC4J

To create AC4J capabilities, you must execute one of the following SQL scripts as a
SYS user on the same system as the database.

« createall:Tocreate all the defaults, including the default data bus, AC4J
superuser, and default client user (JEMCLI USER), execute the cr eat eal | SQL
script.

« Createjentabl espace: To create the table space for your AC4J system,
execute the cr eat ej ent abl espace SQL script. You must provide the SYS
username and password and the TNSENTRY of this database where the data bus
is created.

« createj emToinstall and create the data bus, execute the cr eat ej emSQL
script. This requires the SYS username and password, TNS_ENTRY, and an AC4)]
client username.

« createclient:Tocreate another client on an existing data bus, execute the
createcl i ent SQL script. Provide the SYS username and password, client
username and password, and client tablespace.

« recreatedat abus: To re-create an existing data bus, which deletes the
existing data bus and all its contents and then re-creates it, execute the
recr eat edat abus script. Provide the SYS username and password and
TNSENTRY of the database where the data bus resides.

« recreateclient:Tore-create an existing client, execute the
recreateclient SQL script. Provide the SYS username and password and
the client username and password.

AC4J Data Bus XML Configuration

The interaction supports JTA global transactions within the database that the data
bus exists in. Thus, you need a nonemulated data source for the superuser to handle
the two-phase commit, and a nonemulated data source for the client to send its
asynchronous requests to the data bus. See the DataSource and JTA Chapters in the
Oracle9iAS Containers for J2EE Services Guide for a full description of this
configuration.

For our purchase order example, the following data sources are configured in the
dat a- sour ces. xm file for the two-phase commit.

<!I'--NON Emul at ed DataSource for two-phase commit used by super user-->
<dat a- sour ce
cl ass="com ever m nd. sgl . O i onQVIDat aSour ce"

Active Components for Java 10-21

Configuring Oracle Databases to Support AC4J

| ocati on="j dbc/ j enBuper user 08’

user nane="j enuser"

passwor d="j enpasswd"

url ="j dbc: oracl e: thin: @ost : port: CRCL-S D'

inactivity-tineout="60" >

<property nane="dbl i nk"

val ue="JEM.QOPBACKLI NK REGRESS. RDB\VS. DEV. US. CRALE QM />

</ dat a- sour ce>

<I--NONEmil ated DataSource for the client user -->
<dat a- sour ce
cl ass="com ever m nd. sgl . O i onOMIDat aSour ce"
| ocati on="j dbc/jend i ent DS
user nane="j entl i user"
passwor d="j entl i passwd"
url ="j dbc: oracl e: t hin: @ost : port: CRCL- S D'
inactivity-tinmeout ="60" >
<property nane="dbl i nk"
val ue="JEM.OOPBACKLI NK REGRESS. RDBMS, DEV. LS. (RACLE. COM! />
</ dat a- sour ce>

Both of these users were created as defaults with the SQL scripts listed earlier. The

j emuser is the superuser username, and the j entl i user is the default client
username. The DBLI NK is the link to the database that contains the data bus. For the
superuser data source, the DBLI NK is a loopback link.

10-22 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

AC4J Example

AC4] is designed for complex applications that interact with each other over long
periods of time. This section illustrates the usage of AC4J with a portion of the
purchase order example shown in Figure 10-6. To simplify the example, the code
sample does not show error handling or import statements. Download the full
example off the OTN site at ht t p: / / ot n. or acl e. conf sanpl e_
code/tech/javal/ oc4dj/ htdocs/ oc4j sanpl ecode/ oc4j -denp-ejb. htm .

Example 10-1 Purchase Order Example

For the purchase order, the PO nt er act i on is created. Within the interaction,
several business tasks exist as follows:

« Create purchase order (thet akeOr der process)

« Check inventory (the checkl NV process)

« Check customer credit (the check CRED process)

« Process responses from previous checks requests (the pr ocPOreaction)
The example includes the following:

« ThetakeOrder reaction, which pushes two data tokens:

— A data token that asks the checkl NV process if the inventory contains the
desired items.

— A data token that asks the check CRED process if the credit card given by
the customer is able to make the purchase.

« The pr ocPOreaction, which acts on the responses from the inventory and credit
check processes. If the inventory is available and the credit check goes well,
then the pr ocPOreturns the purchase order confirmation to the client.

Figure 10-6 illustrates the information flow inside an interaction. Figure 10-6 also
demonstrates how all of the reactions act on data tokens and provide data tokens to
other processes. This assumes that the customer data has already been made
available to the t akeOr der process. The numbers designate the order in which the
reactions fire. That is, the pr ocPOis dependent on data tokens from both the
checkl NV and check CRED processes; thus, it cannot fire until both return their
responses back to the t akeOr der process.

Active Components for Java 10-23

AC4J Example

Figure 10-6 Information Flow Inside An Interaction

Pur chasel nteraction, 11D = "user1"
/ t akeOrder Process checkl NV Process \
Process AID = "AID_105_user1" Process AID = AC4J Generated
t akeOr derCReact i on checkl NV Reacti on
ion.cal
|
L
)
(et
e

f/'on

¥heckCRED Process
Process AID = AC4J Generat ed

NieckCRED Reacti on
WWV‘%%

Here is a summary of the steps in processing the Purchase Order example of
Figure 10-6:

1. Client sends an asynchronous request to an Active EJB: The client requests a service
from an Active EJB, JEMPur chaseQ der Bean. The client starts a new purchase
order by sending an asynchronous request through the data bus (not shown) to
atakeQ der process.

2. Active EJB processes the client’s request: The t akeOr der process starts a
t akeOr der base reaction. This base reaction starts a new purchase order. To
complete the purchase order, it must perform three things:

a. Send an asynchronous request to the checkl NV process of
JEM nvent or yBean to verify that the items are in inventory

b. Send an asynchronous request to the check CRED process of
JEMCr edi t Bean to verify that the customer’s credit is satisfactory

c. Register a pr ocPOreaction in the current process to receive the results from
the preceding two processes

10-24 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

Asynchronous response to the requesting Active-EJB: Both the checkl NV and
check CRED processes return responses to the t akeOr der process.

Asynchronous response to the client: The pr ocPOreaction, within the t akeOr der
process, reacts to the information provided by the checkl NV and check CRED
processes. If satisfactory, the pr ocPOreaction sends the confirmation to the
client through the AC4J data bus.

Client receives the response: The client retrieves the response from the data bus.

Asynchronous Request to An Active EJB

The following code sample shows the steps in performing loosely coupled
interactions in AC4J.

Example 10-2 Client Asynchronously Invoking Active EJB

public static void main(String[] args) throws @ assNot FoundException, Exception

{

/1 0. create a JND context
Qontext context = new Initial Gontext();

/1 1. 1ook up a datasource where Databus exists
Dat aSour ce clientDS = (DataSour ce)

cont ext . | ookup("j ava: conp/ env/ j dbc/jend i entD8');
/1 2. Get a JOBGconnection to the database where Databus resi des
Gonnection conn = client DS get Connection("j entliuser", "jentlipasswd");

/l 3. Greate an ACAJ connection using the JDBC connection
JEMDnnecti on ACAJGonn = new JEMDonnect i on(conn);

/1 4. Qreate an ACAJ session over an ACAJ connection to the Databus
JEMBessi on ACAJSess = new JBEMBessi on(AC4AJConn) ;

/1 5. Look up the Active EIB handl e using the j emnane defi ned

/1l inthe orion-ejb-jar.xm

JBEMndl e activeBEIBHandl e =

(JEMHNdI €) cont ext . | ookup(" JBMPur chaseQ der Bean") ;

/1 6. Gather the base Reaction input paraneters. These i nput paraneters are

/1l required by the receiving nethod, takeQ der.

(oject[] inputParans = new (bject[] { ((bject) new Sring("userl"),
(oj ect) new Integer("1234-119"),
(oject) new String("pens"),
(oject) new Integer("3") };

Active Components for Java 10-25

AC4J Example

/1 7. Geate the Process Gontext, Interaction-1D and Activation ID
/1l NOTE 11D = "userl" = requester’s name
/1l AD=AD-=AD105_userl = A D <PO nunber>_<cust _name>

/1 8. Make the call over the ACAJ session providing the paraneters.
JEMENi t Token req = ACAJSess. cal | ("user1", "AID 105 userl",
acti veBJBHandl e, "takeQrder",
null, inputParans, null, O, 0);

/1 9. Conmt the changes to the Databus by committing the transaction
conn. commit ();

/1l 10. The client nust close the ACAJ session and connection because it
/1l does not exist within an ACAJ contai ner, which would nornally
/] cl ose these.

conn. cl ose() ;

ACGAIConn. cl ose() ;

j ensess. cl ose() ;

The client exists outside of an AC4J server and is requesting a service from an
Active EJB through the AC4J data bus. The AC4J data bus is the conduit and
controls the asynchronous communication between the client and all reactions.
Thus, every client residing outside of an AC4J server must first connect to the AC4J
data bus and create a new session for interaction to occur.

After you have retrieved a connection to the AC4J data bus and created an AC4J
session within it, you can send asynchronous messages to Active EJBs in the same
or other AC4J instances. The AC4J data bus coordinates the asynchronous messages
and acts as a transactional manager for all AC4J beans in the transaction. “Connect
to the AC4J Data Bus” on page 10-26 describes the steps in creating an AC4J-session
and completing the client’s request.

Connect to the AC4J Data Bus

The following steps detail how to create an AC4J session on the AC4J data bus.
These steps are a subset of the steps (those numbered 0 to 4) contained in
Example 10-2.

1. Retrieve an AC4J connection.
An AC4J connection exists above a JDBC connection. Perform the following:

a. Retrieve the Dat aSour ce defined for the database acting as the AC4J
conduit. The Dat aSour ce you use should be defined in the dat a-

10-26 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

sour ces. xm file as a nonemulated data source with a <dbl i nk> defined
to the database where the AC4J data bus resides. See “AC4J Data Bus XML
Configuration” on page 10-21 for more information.

Context context = new Initial Context();
Dat aSource clientDS = (DataSource)
cont ext. | ookup("j ava: conp/ env/j dbc/jend i ent DS");

Retrieve the JDBC connection off of the Dat aSour ce object.

Oracl eConnection conn = (Oracl eConnection)clientDS. get Connection();

Create an AC4J connection off of the JDBC connection object.
JEMConnection AC4JConn = new JEMConnection(conn);

Create an AC4J session in a specified data bus. Using the AC4J connection to
the database and providing the name of the data bus you are interested in,
create a session within the data bus in the indicated Oracle database.

JEMSessi on ACAJSess = new JEMSession(AC4Jconn);

Executing an Asynchronous Request

After you have created an AC4J session on the AC4J data bus, the client can send
asynchronous messages to Active EJBs. The client must provide the Active EJB
handle, the process handle, and all the required input parameters to the base
reaction. The following steps explain the details of the call that the client must make
to complete the AC4J request.

1.

Process Context: To identify the context where the process exists, you must
provide both the interaction identifier and the process activation identifier. The
combination of both of these identifiers is the processing context. There are two
ways of providing a processing context:

CLIENT PROVIDES—The AC4J data bus uses the identifiers provided by the
client to uniquely identify the processing context. The client uses the same
identifiers to either retrieve the response to the current request or send
additional parameters to the process. In the current example, the client
supplies the interaction identifier (I11D) as a customer’s name, and process
activation identifier (P-AID) as a union of the purchase order number and
the customer’s name, as shown:

Sring iid = "user1"; // = custoner_nane
Sring p_aid = "AD 105 userl"; // = A D <PO nunber>_<cust oner _nane>
JEMENi t Token req = AC4JSess.call (iid, p_aid, ..all other

Active Components for Java 10-27

AC4J Example

paraneters..);

« AUTOMATIC CONTEXT—The interaction and process activation identifiers are
optional and can be omitted or can be null, in which case the system
automatically creates them. If a client fails to provide either of these
identifiers, then the AC4J data bus creates them to uniquely identify a
processing context. However, the client has to retrieve these identifiers and
use them later to pull the response from the AC4J data bus.

JEMENi t Token req =
ACAJSess.cal | (null, null, ...all other paraneters...);
JEMPor t Handl e port Handl e = req. get Port Handl e() ;
Sring iid = portHandl e. getlid();
String p_aid = portHandl e. get A d();

Active EJB handle: In a synchronous EJB environment, you would use a remote
EJB handle for invocation. In an AC4J asynchronous environment, you must
provide a similar handle of class type JEMHandl e that identifies an active EJB.
OU can get the active EJB handle by looking up the j em nane defined in the
orion-ejb-jar.xm file (see “AC4J Active EJB Deployment” on page 10-38).

Qontext context = new Initial Gontext();
JMHandl e acti veEIBHandl e =

(JBvHandl €) cont ext . | ookup(" JEMPur chaseQr der Bean") ;
JEMENit Token req = ACAJSess.cal | (...., activeBE)BHandle,);

Reaction name and input parameters: Client provides the base reaction (method)
name and all or part of its input parameters that it wishes to call. In the current
example, the client provides all the input parameters to complete the AC4J
session call as follows:

/1 collect input values for the takeQrder nethod
(oj ect[] inputParans = new (oject[] { (Chbject) new Sring("userl"),
(oj ect) new I nteger("1234-123"),
(oj ect) new Sring("pens"),
(Moj ect) new I nteger("3")
¥
JEMENit Token req = ACAJSess. cal | (..., "takeQder", null, inputParans,

L)

« Ifthe client provides only some of the parameters to this reaction, then it
must supply a set of input parameter types, and the indexes of the input
parameters as well. The following example shows how a client can

10-28 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

complete a call by furnishing the first two parameters for the t akeOr der
process:

/] input paraneter types (java-class) for takeQrder nethod
A ass[] takeQderl nput d assTypes =
new A ass[] { Sring.class, |nteger. TYPE
Sring.class, Integer.TYFE };

/1 indexes of input paraneters you w sh to provide for takeQ der nethod
int[] indexCrlnputParans = new int[] {0, 1};

/1 input val ues corresponding to the indexes for takeQ der nethod
(oj ect[] inputParans = new Chject[] { (Cbject) new Sring("userl"),
(Chj ect) new I nteger("1234-123")
¥
/1 renmenber the interaction and process-activation ids for this call
JEMENi t Token req =
ACAJSess.call(iid, p_aid, ..., "takeQder",
t akeQ der | nput A assTypes,
i ndexCXf | nput Par ans, inputParans, ...);

When the client provides the remaining two parameters, it must use the
same process context (interaction and process activation identifiers) that it
used in the first call it made to the process. During the second invocation
the steps are:

/1 input paraneter types (java-class) for takeQ der method
A ass[] takeQderl nput d assTypes =
new d ass[] { Sring.class, Integer.TYPE
Sring.class, Integer.TYPE };

/1 indexes of input paraneters you w sh to provide for takeQ der nethod
/1l NOTE now, client provides the last 2-input paraneters
int[] indexCflnputParans = newint[] {2, 3};

/1 input val ues corresponding to the indexes for takeQder nethod
(oj ect[] inputParans = new (oject[] { (Cbject) new Sring("pens"),
(oj ect) new I nteger("3")
b
/1 use the sane interaction and process activation ids as those in the
/] previous call
JEMENi t Token req =

ACAJSess.call(iid, p_aid, ..., "takeQder",

t akeQ der | nput A assTypes,

Active Components for Java 10-29

AC4J Example

i ndexX | nput Par ans, i nput Parans, ...);

AC4] Session call: Send all asynchronous requests for any Active EJB to the AC4J
Session, using the JEMSessi on: : cal | method.

When a reaction wants to provide data to an active EJB method (to the base
reaction of the process), it executes a JEMSessi on: : cal | with this
information. The JEMSessi on: : cal | contains the interaction identifier of the
EJB, the process activation identifier to identify the process where the method is
instantiated, and the JEMHandl e of the active EJB. The interaction and process
activation identifier are optional and can be omitted or can be null, in which
case the system automatically creates them. The data bus identifies the context
of the process and routes the data tokens to the intended process. Thus, all EJB
calls are invoked asynchronously, through the mediation of the data bus.

Commit Transaction: The client must commit the changes to the AC4J data bus. If
the client forgets to commit the transaction, then the request is lost and is not
visible to the AC4J data bus. To make the request visible to the AC4J data bus,
perform the JDBC commit as follows:

conn. comit();

Finally, the client must close the JDBC connection, the AC4J session, and the
connection, because the client does not exist within an AC4J container. The
AC4J container normally closes the AC4J session and connection objects.

conn.close(); // client as well an application-code nust close
AC4JConn.close(); // client nust close
jemsess.close(); // client nust close

Active EJB Processes the Client’s Request

Once the client commits the request, the AC4J data bus matches the data tokens
provided by the client with those of the requested reaction, and internally schedules
the instantiation of the JEMPur chaseQr der Bean Active EJB and activation of the

t akeOr der process. Thet akeOr der process starts at akeOr der base reaction,
which starts a new purchase order. As shown in Figure 7-6, this reaction,

t akeOr der, processes the client’s request by invoking additional services from the
other Active EJBs, JEM nvent or yBean and JEMX edi t Bean. This is shown in the
following code sample:

Example 10-3 Active EJB Asynchronously Invoking Another Active EJB
public void takeQder(Sring clientNane, int creditCardNunber,

10-30 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

String iteniNane, int quantity)
throws Renot eException, Test Exception

/1 0. create a JNDI context
Qontext context = new Initial Gontext();

/1 1. Retrieve the current ACAJ Reaction.
JBEMReacti on current AC4JReaction = (JEMReaction) JEMReacti on. get Reaction();

/1 2. Look up the Active EIB handl e using the jemname defi ned
/1l inthe orion-¢jb-jar.xm
JBEMndl e activel nvHandl e = (JEMHandl €) cont ext . | ookup(" JEM nvent or yBean") ;

/1 3. Gather all input and return paranmeters for the checkl N\V Reacti on.
/1 Define input and return paraneter types and the paraneter val ues
(oj ect[] checkl NV nput Par amVal ues =
new oj ect[] { (pj ect)iteniane,
(j ect) new Integer (quantity) };
A ass[] checkl N\VRet urnd assType = new A ass[] { Bool ean. TYPE };

/1 4. Request a service from JEMBeancheckl NV t hrough Dat abus
JEMEN t Token i nvent or yRequest =
current AAJReact i on. cal | (activel nvHandl e, "checkl NvV', nul |,

checkl NV nput Par anVal ues,
checkl NVRet ur nd assType,
nul, null, 0, 0);

/1 5. Repeat Steps 2-4 above to request a service fromanot her

1/ Active BEJB, JEMXeditBean. The returned JEMEMt Token i s

/1l named credit Request .

/!l 6. Register a Reaction, procPQ that will be activated when the
/1l responses fromthe above two asynchronous calls to the
/1l active-EJBs return
A ass[] procPd nputd assTypes = new dass[] { Bool ean. TYPE, String.class };
JEMENi t Token[] requests = new JEMEnit Token[] { invent oryRequest,
credi t Request };
cur rent JEMReact i on. regi st er React i on
("procPO', procPQa nputd assTypes, requests, 1, null, null, 0);

The AC4J data bus instantiates the Active EJB, JBMPur chaseQ der Bean
(corresponding to the JEMHandl e provided by the client), in an AC4J server. The

Active Components for Java 10-31

AC4J Example

t akeOr der process starts at akeOr der base reaction. Here are the steps in the
completion of this initiation process:

1.

Process Context: The current reaction, t akeOr der, is running in an AC4J server.
Therefore, it already has a process context and can be used by the application
(or Active Bean) code. The application code can retrieve the process context
through the demarcation, as follows:

/1 retrieve the current-Reaction context--a static method

JEMReaction current ACAJReacti on = (JEMReaction) JEMReaction. getReaction();
String iid = current ACAJReaction. getlid();

String p_aid = current AC4JReaction. getAid();

— The application may use these identifiers to make additional asynchronous
JEMSessi on: : cal | calls by co-relating the business transaction.

— Alternatively, the application code can use the cur r ent AC4JReact i on to
make the additional calls with request-response characteristics. The AC4J
data bus then creates a new process context for the next invocation by using
the current interaction identifier and a new process activation identifier. The
current example uses this approach with the cur r ent AC4JReact i on.

AC4J handle: The base reaction, t akeQ der, starts the purchase order initiation
process by requesting services from two other Active EJBs,

JEM nvent or yBean and JEMCr edi t Bean. The application code must
retrieve the AC4J handles to these Active EJBs by doing the following:

Context context = new Initial Context();
/1 call to JEM nventoryBean
JEMHandl e activelnvHandl e = (JEMHandl e) context.| ookup("JEM nvent oryBean");
JEMEN t Token invent or yRequest =
current AC4AJReaction. cal | (activelnvHandle,);

/] call to JEMCreditBean
JEMHandl e activeCreditHandl e = (JEMHandl e) context.| ookup("JEMCreditBean");
JEMEN t Token credit Request =

current ACAJReaction. cal | (activeCreditHandle,);

Reaction name, return parameter type, and input parameters: The client (now a

t akeOr der reaction) provides the base reaction (method) name, the java-class
type of the return parameter and all or part of its input parameters that it
wishes to call. In the current example (which started at “Connect to the AC4J
Data Bus” on page 10-26), the client provides all the input parameters needed
by the called reactions (checkl NV, Check CRED) as follows:

/] collect input values for the checkl NV net hod

10-32 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

(oj ect[] checkl NVl nput Par anVal ues =

new (oject[] { ((pject)itenhane,
(oj ect) new Integer (quantity)
¥

/] state the return A ass type of checkl NV net hod
A ass[] checkl N\VRet urnd assType = new A ass[] { Bool ean. TYPE };

/1 nake the call to the checkl NV met hod
JBEMEN t Token i nvent or yRequest =
current AAJReaction.call (..., "checklNV', null,
checkl NV nput Par anVal ues,
checkl NvRet ur nd assType,);

/1 collect input values for the checkCRED net hod
(pj ect[] checkCredi t | nput Par anVal ues =
new (oject[] { ((bject) clientNang,
(Qoj ect) new Integer (creditCardNunber),
(ject) new Hoat (quantity * 1.4) };

/] state the return A ass type of checkl NV net hod
A ass[] checkO editReturnd assType = new d ass[] { Sring.class };

/1 nmake the call ro checkCRED net hod
JEMEN t Token credi t Request =
current AAJReaction.call (..., "checkCGRED', null,
check(edi t | nput Par anVal ues,
checkCredi t Returnd assType,);

Register a return reaction: The application code then registers a new reaction,
pr ocPQ, in the same process context of the cur r ent ACAJReact i on. This
registration of the reaction requires the reaction name, pr ocPOin this example,
the input parameter types of the new pr ocPOreaction, and the

JEMENi t Tokens retrieved from the call to the cur r ent AC4JReact i on. If
the new reaction has multiple input parameters and is receiving them from
different processes, then the Array of JEMENM t Token must be constructed in
proper order. For example, in the following code the first parameter

(" procP0") is waiting for the reply from the JEM nvent or yBean, and the
second one (pr ocPO nput Cl assTypes) is waiting for the reply from
JEMCr edi t Bean.

A ass[] procPd nputd assTypes = new dass[] { Bool ean. TYPE, String.class };
JEMEN t Token[] requests = new JEMEnit Token[] { invent oryRequest,
credi t Request };

Active Components for Java 10-33

AC4J Example

current JEMReact i on. regi st er Reacti on
("procPO', procPQa nputd assTypes, requests, 1, null, null, 0);

Asynchronous Response to the Requesting Active EJB

The t akeOr der base reaction is completed only after the AC4J infrastructure
commits the transaction that includes the calls to the other two Active EJBs and a
registered reaction. The checkl NV and check CRED processes receive the requests
from the AC4J data bus as if they were invoked from any other EJB. The

JEM nvent or yBean and JEMCr edi t Bean Active EJBs are instantiated. The
checkl NV and check CRED base reactions are fired when they receive the data
tokens from the AC4J data bus, which were initiated from the t akeOr der reaction.
Both of them receive the request, perform their tasks, and return. The returned
values are forwarded by the AC4J data bus to the registered reaction—pr oc PO

The code sample in Example 10-4 shows the checkl NV method. The check CRED
method is similar in its AC4J responsibilities.

Example 10-4 checkINV Processes Request

publ i c bool ean checkl N\(String iteniNane, int quantity)
throws Rerot eException, Test Exception

{
bool ean i nventoryExi sts = fal se;
// The logic in the next step is onmtted
i nvent oryExi sts = query its own database for the itemand quantity;
return inventoryExi sts;
}

Asynchronous Response to the Client

Both the checkl NV and check CRED processes return their responses to the

pr ocPOreaction through the AC4J data bus. The AC4J data bus makes sure that the
return data-tokens have valid t akeOr der process context and matches the input
parameter types of the pr ocPOreaction. When both parameters arrive, the pr ocPO
reaction fires and executes the pr ocPOmethod of the JEMPur chaseQr der Bean
Active EJB, which reacts to the information provided by the checkl NV and

check CRED processes. It completes the client’s request by posting the result to the
AC4) data bus. The code sample in Example 10-5 shows the pr oc PO method.

Example 10-5 procPO Reaction Fires

public Sring procPQbool ean inventoryExists, String creditlnfo)
throws Renot eException, Test Exception

10-34 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

String poSatus = "Not Shipped";
if(creditinfo == null)

return postatus;
if (inventoryExists)

{
i f(creditlnfo.equal sl gnoreCase("Qedit approved"))
poStat us = " Shi pped”;
else if (creditlnfo.equal slgnoreCase("Cedit failed"))
poStatus = "Qedit failed";
}
el se

poStatus = "Itens unavail abl e";

return postatus;

Response from the Client

The client needs to know the response to its purchase order request. As stated
earlier, each request (or call) is identified by a process context (interaction 1D and
activation ID). Using the process context, the client can pull the response from the
AC4] data bus.

The received JEMENi t Token from the response can then be parsed by the client. If
the client existed inside the OC4J container, the container would deconstruct the
JEMENi t Token to the required type. Instead, the client must parse out the response
correctly, as shown below:

Example 10-6 Client Processes Return

public static void nmain(String[] args) throws @ assNotFoundException, Exception

{

/1 0. create a JND context
Gontext context = new Initial Gontext();

/] 1. Look up a data source where the databus exists
Dat aSource clientDS = (Dat aSour ce)
cont ext . | ookup("j ava: conp/ env/j dbc/jend i ent DS');

/1 2. Get a JDBG connection to the database where Dat abus resi des
Gonnection conn = client DS get Connection("j entliuser", "jentlipasswd");

/1 3. Geate an ACAJ connection using the JDBC connection

Active Components for Java 10-35

AC4J Example

}

JEMDonnecti on ACAJGonn = new JBEMDonnect i on(conn);

/1 4. Geate an ACAJ session over an ACAJ connection to the Databus
JBMBessi on ACAJSess = new JEMBessi on(AC4AJConn) ;

/1 5. Look up the Active EIB handl e using the jemname defi ned
/1l in the orion-¢jb-jar.xm
JBEMBNdl e activeBEIBHandl e =

(JEMNdl e) cont ext . | ookup(" JBMPur chaseQ der Bean") ;

/! 6. Retrieve the Response using the Process context w th which
/1l the initial request was nade.
JEMENi t Token rcvresp = ACAJSess. recei veReact i onResponse
("user1", "AID 105 userl", activeElBHandle, "takeQder", 0);

/1 7. The get Reacti onResponse(hj ect | nstance net hod parses the ret urned
/1 paraneter into an java.lang. (bj ect .
(hj ect obj = rcvresp. get React i onResponsej ect | nst ance() ;
/1 8 Print out results
if (obj instanceof java.lang. String)
Sring ret = (Sring) obj;

/1 9. The client nust coomt the transaction
conn. commt();

/1 10. The client nust close the ACAJ session and connection because it
/1] does not exist within an ACAJ contai ner, which would nornal |y
/] cl ose these.

conn. cl ose() ;

j ensess. cl ose() ;

ACGAIConn. cl ose() ;

As seen earlier, the pr oc POreaction reacts to the information provided by the
checkl NV and check CRED processes. It completes the client’s request by posting
the result to the AC4J data bus. The client must connect to the AC4J data bus to
retrieve its response by providing a proper process context. The steps in connecting
to the AC4J data bus were described in Example 10-3. After receiving the response,
the client can retrieve aj ava. | ang. Obj ect instance that must be processed
further.

10-36 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

Retrieving an Asynchronous Response

After creating an AC4J session on the AC4J data bus, the client can retrieve the
response by performing the following steps:

1.

Process Context: The client must provide a proper process context that identifies
where the request was made, and both the interaction identifier and the process
activation identifier. In the example under discussion, the client provides the
interaction ldentifier (11D) as a customer’s name and process activation
identifier (P-AlID) as a union of purchase order number and the customer’s
name, as shown:

String iid = "userl"; /I = custoner_name
String p_aid = "AID 105_user1"; // = Al D_<PO nunber>_<custoner _name>
JEMEni t Token rcvresp = AC4JSess. receiveReacti onResponse

(iid, p_aid, ...);

Active EJB handle: The client must supply the Active EJB handle to which the
initial request was made. The Active EJB handle can be obtained by looking up
the j em nane defined in the ori on-ej b-j ar. xm file (see “AC4J Active EJB
Deployment” on page 10-38).

Context context = new Initial Context();
JMHandl e activeEJBHandl e =
(JEMHandl e) cont ext. | ookup("JEMPurchaseOr der Bean");
JEMENi t Token rcvresp = ACAJSess. recei veReacti onResponse
(..., activeEJBHandle, ...);

Reaction Name: The client may need to provide the process name to which it
initiated the call, which, in this case, is the t akeOr der process.

JEMENi t Token rcvresp = ACAJSess. recei veReacti onResponse
(..., "takeOrder", ...);
Retrieve Object: The JEMEmM t Token received from the
recei veReact i onResponse can be used to retrieve the Object instance, as
follows:

bj ect obj = rcvresp. get Reacti onResponsebj ect I nstance();

Commit Transaction: The client must commit the changes to the AC4J data bus. If
the client forgets to commit the transaction, then the client can pull the response
multiple times. However, we do not a recommend this mode of operation. To let

the AC4)J data bus know that the response was properly retrieved, perform the
following:

conn.comit();

Active Components for Java 10-37

AC4J Example

AC4J Active EJB Deployment

The active EJB is developed as any other EJB. The changes that enable the EJB to be
used in an AC4J interaction are in the OC4J-specific deployment descriptor. These
are discussed below:

Deploy the EJB with AC4J element specifications in the OC4J-specific deployment
descriptor. The following example defines the t akeOr der EJB as an active EJB.

« The<jemserver-extensi on>element defines the database with the data
bus that the active EJBs in this JAR file use for their AC4J communication.

<j em server - ext ensi on dat a- sour ce-| ocati on="j dbc/ j enBuper user DS' >
<descri pti on>AC4J dat asour ce | ocati on</descri pti on>
</j em ser ver - ext ensi on>

« The<jemdepl oynent >elementin theori on-ej b-jar. xnl file identifies
the EJB defined in the ej b-j ar. xm file as an active EJB. This element
provides an AC4J name (j em nane) that is used to identify the bean within the
AC4] calls. For example, this bean is defined as JEMPur chaseOr der Bean,
which was used in the JEMHandl e creation. The identity of the caller, which is
allowed to request services and retrieve responses from the Active EJB, can be
declared in the cal | ed- by tag. This cal | er tag identifies the user in the data
bus. For example, JEMCLI USER is the user name that was used to create a
j em sessi on,

<j em depl oynent j em nane="JEMPur chaseQ der Bean"
€ b- name="Pur chaseQ der Bean" >
<descri pti on>AC4J EJB</ descri pti on>
<cal | ed- by>
<caller caller-identity="JEMLIUSER'/>
</cal | ed- by>
</j em depl oynent >

The following is the entire or i on- ej b-j ar. xm file for the three Active EJBs.

<?xm version="1.0"?>
<IDOCTYPE orion-gj b-jar PUBLIC "-//Bvermnd//DID Enterprise JavaBeans 1.1
runtine//EN' "http://ww orionserver. comdtds/orion-ejb-jar.dtd" >

<orion-ej b-jar depl oynent -versi on="1. 4.5" depl oynent - t i me="e60df f cea9" >
<enter pri se- beans>
<j em ser ver - ext ensi on
dat a- sour ce- | ocat i on="j dbc/ nonEmul at edCS"
schedul i ng-t hreads="1">
<descri pti on>ACAJ depl oyrent </ descri pti on>

10-38 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

AC4J Example

</ j em ser ver - ext ensi on>

<j emdepl oynent j em nane="JEMPur chaseQ der Bean"
€j b- name="Pur chaseQ der Bean" >
<descri ption>Acti ve Purchase O der bean</description>

<cal | ed- by>
<caller caller-identity="JEMLIUSER'/>
</ cal | ed- by>

<security-identity>
<description>using the caller identity </description>
<use-cal l er-identity>true</use-caller-identity>
</security-identity>
</j em depl oynent >

<j emdepl oynent j em nane="JEM nvent or yBean"
ej b- nane="1 nvent or yBean" >
<description>Active |nventory bean</ descri ption>

<cal | ed- by>
<caller caller-identity="JEMLIUSER'/>
</ cal | ed- by>

<security-identity>
<description>using the caller identity </description>
<use-cal l er-identity>true</use-caller-identity>
</security-identity>
</j em depl oynent >

<j emdepl oynent j em nane="JEMY edi t Bean"
€] b- name="C edi t Bean" >
<description>Active Oedit bean</description>

<cal | ed- by>
<caller caller-identity="JEMLIUSER'/>
</ cal | ed- by>

<security-identity>
<description>using the caller identity </description>
<use-cal l er-identity>true</use-caller-identity>
</security-identity>
</j em depl oynent >

</ enterpri se-beans>

Active Components for Java 10-39

Administering AC4J

Administering AC4J

The remainder of this chapter shows the structure of the AC4J data bus within an
Oracle database and refers to administering OC4J to support AC4J.

Administering Oracle Databases to Support AC4J

The cr eat ej emscript creates a complete JEM repository in the database; the
repository is administered by a PL/SQL package called JEMDat abus.

Note: JEMis an internal name that is equivalent to AC4J.

The complete AC4J packages are shown in the Javadoc, which can be found on the
documentation CD accompanying this product or on OTN.

Description of the JEM PL/SQL package
Under the JEMUSER schema the following package is created:

create or replace package JBEMDatabus
procedure set Dat abusProperties(df busname | N VARCHARZ,
tokttldiff NUMBER
tokttlcal I diff NJUMBER
tokttldatdiff NUMBER
rxnttldiff NUMBER
gceycl e NUMBER) ;

procedure setToktt!diff(
df busnane | N VARCHAR?,

tokttldiff NUMBER) ;

procedure setTokttlcalldiff(
df busnane | N VARCHAR?,

tokttlcalldiff NUMVBER) ;

procedure setTokttldatdiff(
df busnane | N VARCHAR?,

tokttl datdiff NUMBER) ;

procedure setTokclnttldiff(
df busnane | N VARCHAR?,

tokclnttldiff NUMBER) ;

10-40 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

procedure setRxnttldiff(
df busnane | N VARCHAR2,
rxnttldiff NUMBER) ;
procedure set Gtycl e(
df busnane | N VARCHAR2,
gceycl e NUMBER) ;
procedure creat eDat abusTpc(
df busnane I'N
description IN
max_retries IN
retry_del ay IN
retention_tine IN
gceycl e IN
procedure dropDat abusTpc(df busnarre
procedure creat eAppG oupSubscri ber (
dbusnane IN VARCHAR?,
subnane IN VARCHAR2 CEFALLT
procedure dropAppQ oupSubscri ber (
dbusnane | N VARCHAR?,
subname IN VARCHAR2 DEFAULT

end JBEMDat abus;

Description of the createDatabusTpc Package Public Method
The following PL/SQL procedure creates a databus:
procedure creat eDat abusTpc(

df busnane IN VARCHAR2
description IN VARCHAR2
nax_retries IN NUMBER
retry_del ay IN NUMBER
retention_tine IN NUMBER
gceycl e IN NUMBER

Description of the dropDatabusTpc Package Public Method
The following PL/SQL procedure drops a databus:

VARCHAR2 DEFALLT NULL,
VARCHAR2 DEFALLT NULL,
NUVBER DEFAULT 1,
NUVBER DEFALLT 0,
NUVBER DEFALLT 0,
NUVBER CEFALLT 10000);

IN VARCHAR2 DEFALLT NULL);

' JEMBLB) ;

"JBEVBLB);

DEFALLT NULL,
DEFALLT NULL,
DEFALLT 1,
DEFALLT 0,
DEFALLT 0,
DEFALLT 10000) ;

Active Components for Java 10-41

Administering AC4J

procedure dropDat abusTpc(df busnane |N VARCHAR2 DEFALLT NULL);

Description of the JEM Schema Objects

When you create a databus, the following schema objects are created under the
JEMUSER schema:

« Database tables
« Advanced Queueing queues
« Database views

The process also creates unique sequence-numbers and indexes for these tables. It
creates multi-consumer queues using DBMS_AQADM package. All the views are
created with a publ i ¢c- synonymand are granted to view for public.

Table 10-1 Database Tables

Table Name Description

TABDFB + df busname data bus table

TABPRS + df busnanme process table

TABRXN + df busname reaction table

TABRTL + df busnane match-tuple (reaction template) table
TABTOK + df busnane token table (active-data)

TABTRK + df busname tracking table

In Table 10-1, the table name consists of the characters in the Table Name column,
with an appended name, represented by df busnane. This appended name is
provided by the user that creates the data bus; the default is the empty string. For
example, if the user provides the string _EDB, then the data bus table would be
named TABDFB_EDB; if the user makes no specification when creating the data bus,
then the data bus table would simply be named TABDFB.

The remainder of this section describes the tables created.

Data Bus Table

Narre = "TABDFB' + df busnane
PR MARY KEY = Instance-1D (or Qacle S D

Gol unn- Nane Gol unn- Type

10-42 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

--9 D of the database the Databus resides in
instid VARCHAR2(50) PR MARY KEY,

--version of the Databus
versi on VARCHAR2(20) ,

- - Dat abus Descri ption
description VARCHAR2(2000) ,

--Lat est Databus version nunber

scn NUMBER

sysiid VARCHAR2(50) , --Systemgenerated uni que ids
sysai d VARCHAR2(150), --Systemgenerated uni que ids
gbiid VARCHAR2(50) , --Systemgenerated uni que ids
gl bai d VARCHAR2(150), --Systemgenerated uni que ids
i xnai d VARCHAR2(150), --Systemgenerated uni que ids

--Default Retry nunber of a Reaction
naxrxnretry NUMBER,

--Sate of the Databus (not used now:
--CPEN

- - SUSPENDED

state VARCHAR2(30) ,

--creation date of this DATABUS
creatdat e VARCHAR2(30) ,

--The follow ng Data Token types can exist in the Databus:

--CALL =created aresult of a Session/Reaction call operation

--STCRE =creat ed aresult of a Reaction storeData operation

--RET =creat ed aresult of a Reaction return result operation

--BEXC =creat ed aresult of a Reaction throw exception operation

--S\D =created as a result of a Reaction sendData operation

--SOHD =Systemtoken, used for triggering a scheduling of a Reaction firing
- - REMATCH=Syst emt oken, used for triggering the garbage collector to

-begi n scanni ng

-- for Processes, Reaction and Data Tokens to nake unavail abl e

-- and then potentially cl ean.

-- The garbage coll ector does the foll owing every ' gccycl e peri od:

-- Conpact TabTokens:

-- Mark as ' INVALID versions of all Tokens that have passed the
-- Ti neToLi ve (TTL) nark; no more reader/witer Reactions will be

as
as
as
as

Active Components for Java 10-43

Administering AC4J

-- able to be natched

-- using this Data Token.

-- Gar bageCol | ect Tokens:

-- Delete all 'INVALID versions of all Data Tokens when al |
--reader/witer Reactions

-- are gone (the reader reference counts and the excl usi ve

-- nodification state of

-- the Data Token are nulled) and the tokclnttl has passed

-- Gar bageCol | ect Rxns:

-- Delete all Reactions that are their state i s UNVARTGHED (no

-- suitabl e Data Tokens) or

-- QCOMPLETED and the rxnttl has passed. Mitched Reactions are not
-- del eted, since

-- the Reaction firing can be schedul ed nust |ater of the Reaction
-- natching either

-- because of resource unavail ability or because of user directives
-- Gar bageQol | ect Processes:

-- Delete all Processes that encapsul ate no Reactions

--Default Tine a Gall Data Token is available for matching in the Databus
--after it is stored in the Databus

tokttlcalldiff NUMBER

--Default Tine a Return, Exception or StreamData Token
--is available for matching will live in the Databus
--after it is stored in the Databus

tokttldatdiff NUMBER

--Default Tine a Serialized Data Token is available for matching in the Databus
--after it is stored in the Databus

tokttldiff NUMBER

--Default Tine a Data Token is retai ned since having being unavail abl e for
--matching in the Databus
tokclnttldiff NUMBER

--Default Tine a Reaction is available to be matched with avail abl e Dat a Tokens
--in the Databus
--after it is created in the Databus

rxnttldiff NUMBER,
--How of ten the Databus garbage col | ector runs:
gceycl e NUMBER
epoch NUMBER,
epochnext NUMBER

10-44 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

The TABDBF databus table is initialized with the foll ow ng val ues:

ver si on = "1.0"

sysiid = "JEMSSYSI I D'

sysai d = "JEMSSYSA D'

gbiid = "JBEMABl D

gl bai d = "JEMABA D'

i xnai d = "JBvBI XNA D
state = "DFBST_INT
dateformat = "DD MN YYYY. HH M : SS'

Process Table

Nane = "TabPRS' +df busnarre
PRIMARY KEY = (iid, aid)

Gol unn- Nane Gol unn- Type

prsseq NUMBER

--interaction-1D, identifies the callee interaction
iid VARCHAR2(50) NOT NLLL,
--activation-1D identifies the callee process activation
ai d VARCHAR?(150)

--return 1D identifies the caller interaction
retiid VARCHAR2(50) ,

--return AD identifies the caller process activation
retad VARCHAR2(150),

--JBvandl e; identifies the callee Active EIB

handl e BLCB,

handl el en NUMVBER,

--JBvandl e; identifies the caller Active EIB

ret handl e BLCB,

ret handl el en NUMVBER,

--process-nane; identifies the callee Active EIB nethod nane of the base
--Reaction
prspei d VARCHAR2(100),

Active Components for Java 10-45

Administering AC4J

funpol yt up BLCB,

f unpol yt upl en NUVBER,

ret pol yt up BLCB,

ret pol yt upl en NUVBER,

excr et pol yt up BLCB,

excr et pol yt upl en NUVBER,

cnpl t ag VARCHAR2(250) ,
cal I'i ndx NUVBER,

--Not used

state VARCHAR2(50) ,
fl ags NUVBER,

--start tine for the process
prsstart VARCHAR2(30) ,

--end tine for the process
pr send VARCHAR2(30) ,

--user-1D of starter of the Process activation
ixnoriginatorusrid VARCHAR2(50),

epoch NUMBER

- creates a unique index ("Idx1Prs"+df busnane)
on (" TabPRS'+df busnane+pr sseq)

Reaction Table

Nane = "TabRXN' +df busnane
PR MARY KEY = (iid, aid, rid, recursid)
Gol unn- Nane Gol unn- Type
rxnseq NUMBER

identifies the callee interaction
VARCHAR2(50) NOT NULL,

--interaction-1D
iid

10-46 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

--activation-1D identifies the callee process activation

ai d VARCHAR2(150)

--reaction-1D, identifies the reaction

rid VARCHAR2(100) ,

recursid NUMBER

--JEMBndle; identifies the callee Active EIB
handl e BLCB,

handl el en NUMBER

--process-nane; identifies the callee Active EIB net hod nane of the base
-Reaction
prspei d VARCHAR2(100) ,

--reaction nane; identifies the callee Active EIB nethod nane of the fired
-Reaction

--prspeid is the sane as rxnpeid for the base Reaction of a Process

rxnpei d VARCHAR2(100) ,

grpid VARCHAR2(100) ,
vi d NUMBER
f unpol yt up BLCB,

f unpol yt upl en NUMBER,

--nunber of natching tuples (Data Tokens) that nust be natched in order for the
-Reaction to be

--narked as st at e=MATCHED

t ot mat t ups NUMBER

nat t upspr ops BLCB,
nat t upspropsl en NUMBER

--retry count of the Reaction in case of a Reaction rol | back; when this count
-reaches the

--maxi mumattenpts the Reaction is narked stat e=COMPLETED wi t h st at us=max
-retries reached

retrycnt NUMBER

--Reaction states:

Active Components for Java 10-47

Administering AC4J

-- UNWATGHED when the Data Tokens needed for natching

-- are not available (not arrived in the Databus, not visible yet,
-have conflict in

-- the interest node)

-- MATGHED : when the Data Tokens needed for natching are avail abl e

-- CQOWLETED when the Reaction comits or rollbacks with exception status

- message

state VARCHAR2(50) ,

--Reacti on stat uses:

-- PRSUNVATCHED:

-- RXANVAXRETRY :

- AW TED

st atus VARCHAR2(50) ,

--Type of the Reaction:

-- CALL : if it is a base Reaction (inplicitly created by the Databus)

-- MATCH if it is not a base Reaction (explicitly created by the application)
type VARCHAR2(50) ,

fl ags NUMBER

--Reaction priority: Reactions registered in a Process when matched are firing
-ordered by the

--tine of registration if they have the sane priority.

--The firing ordering is:

-- order by ReactionPriority descending, ReactionRegistrationTi ne ascendi ng
rXnpr i NUMBER

--tine-to-live for the reaction
rxnttl VARCHAR2(30) ,

--description of this reaction
descr VARCHAR2(2000) ,

--date of the reaction registration as Julian date
rxndat e NUMBER

--date of the reaction registration
rxnst art VARCHAR2(30) ,

--date of the reaction commt
rxnend VARCHAR2(30) ,

10-48 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

--user-1D of registered this reaction

schenausri d VARCHAR2(50) ,
schenansgi d VARCHAR2(50) ,
auxct x BLCB,

auxct xI en NUMBER,

epoch NUMBER,

--Tine a Gall Data Token is available for nmatching in the Databus
--after it is stored in the Databus
tokttlcalldiff NJUMBER

--Tine a Return, Exception or Stream Data Token
--is available for matching will live in the Databus
--after it is stored in the Databus

tokttldatdi ff NUMBER

--Tine a Serialized Data Token is avail able for natching in the Databus
--after it is stored in the Databus
tokttldiff NUMBER

--Time a Data Token i s retained since having being unavail abl e for matchi ng
--in the Databus

tokclnttldiff NUMBER

--Tine a Reaction is available to be matched with avail abl e Dat a Tokens
--in the Databus

--after it is created in the Databus

rxnttldiff NUMBER

- creates a unique index ("Idx1RXN'+df busnane)
on (" TabRXN'+df busnane+' "+(iid, aid, rid, recursid, prspeid, rxnpeid, grpid,
state))

- create a unique i ndex ("l dx2RXN'+df busnane)
"on (" TabRXN'+df busnane+" "+ xnseq)

Reaction Template Table
Nane = "TabRTL" +df busnane

Gol unn- Nane Gol unn- Type

Active Components for Java 10-49

Administering AC4J

mat t upseq NUMBER

--every Reaction tenpl ate needed for natching a Data Token has an i ndex,
-starting fromO

--This is used for a conposite Reaction matchi ng

mat i ndx VARCHAR2(50) NOT NULL,

--1. Frst level of matching:
-- The following 3 conditions need to be valid for a tenplate to match with a
-Data Token

--1.1: Interaction-IDthat needs to match with a Data Token's Interacti on-1D

tokiid VARCHAR2(50) ,

--1.2: Activation-1D that needs to match with a Data Token's Activation-1D
t okai d VARCHAR2(150) ,

--1.3: tag name that needs to match with a Data Token's tag nane

tag VARCHAR2(250) ,

vid NUMBER

vi dt ype VARCHAR2(50) ,

--2. Second | evel of natching:

--The filter conditions specified here need to be true for the propereties of
-the Data Token matched in the first |evel

pol ycnd acs,

pol ycndl en NUVBER,

--Interaction-1D of the Reaction this tenplate bel ongs to
iid VARCHAR2(50) NOT NULL,

--Activation-1D of the Reaction this tenplate bel ongs to
ai d VARCHAR2(150)

--Reaction-1D of the Reaction this tenplate belongs to

rid VARCHAR2(100) ,
recursid NUVBER

--java-class type of the object value that is needed for matchi ng
obj cl assname VARCHAR2('1000) ,

--Reaction tenpl ate states:

10-50 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

-- UNWVATGHED when the Data Token needed for mat chi ng
-- is not available (not arrived in the Databus, not visible yet,

-have conflict in the interest node)

-- MATGHED : when the Data Token needed for matching is available

--points to the Data Token when this tenplate is MATGHED ot herwi se nul |

--Scope Interaction-1D used to mininize the matching process phase

--Scope Activation-1D, used to minimze the natching process phase

state VARCHAR2(50)
type VARCHAR2(50) ,
fl ags NUMBER

--Sanme as Reaction priority
rxnpri NUVBER

ti meout NUMBER

--Sare as Reaction rxnttl
rxnttl VARCHAR?(30),
--Samre as Reaction rxndate
rxndat e NUMBER

t okseq NUMBER

scpiid VARCHAR2(1000) ,
scpai d VARCHAR2(1000) ,
epoch NUMBER

- creates an index ("l|dx1RTL"+df busnarre)

on ("TabRTL"+df busnane+' "+(iid, aid, rid, recursid, state))
- creates an index ("ldx2RTL"+df busnarre)

on (" TabRTL"+df busname+" "+(tokiid, tokaid, tag))
- create a unique i ndex ("l dx3RTL"+df busnane)

"on (" TabRTL"+df busnane+"

Token (Active Data) Table

Narre = "TabT(K' +df busnane
PR MARY KEY = sequence- nunber

"+mat t upseq)

Active Components for Java 10-51

Administering AC4J

--identifies uniquely this Data Token. A matched Reaction tenplate
--points to this id
t okseq NUMBER PR MARY KEY,

--Data Tokens are chai ned:
--seq-nunber of the previous version of the Data Token
pr evt okseq NUVBER

--seq-nunber of the next version of the Data Token
next t okseq NUMBER,

aliastokseq NUMBER

--Interaction-1D of this data-token

iid VARCHAR2(50) NOT NULL,
--Activation-1D of this data-token
aid VARCHAR2(150) ,

tag VARCHAR2(250) ,

cl asst ag VARCHAR2(10) ,

vid NUMBER

prewid NUVBER

nextvid NUMVBER

pol ycnd acs

pol ycndl en NUVBER

obj i nst BLCB,
objinstlen NUMVBER
texti nst acB,

textinstlen NJUMBER

undoent ry BLCB,
undoentryl en NUMBER

--used t o describe the nunber of Reactions having natched a query interest
--on this Data Token

10-52 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

readers NUMBER
consuner VARCHAR2(100) ,

--Data Token states:

-- U\WVATCHED when the Data Token is not natched by a Reaction tenplate or
--matched in query interest node

-- MATGHEDX : when the Data Token is nmatched by a Reaction tenplate in
--excl usi ve nodification interest node

state VARCHAR2(50) ,

--Data Token st at uses:

-- VALID : Tok is available; so readers can see it and a witer can reserve
it

-- INVALID Tok is unavail abl e because its tinme-to-live has expired; nobody

can
--access it
st at us VARCHAR2(50) ,
-- CALL
-- MATCH
-- STCRE
-- RET
-- EXC
-- S\D
-- REMATCH
.- QT
op VARCHAR2(50) ,
reason VARCHAR2(50) ,
type VARCHAR2(50) ,
fl ags NUMVBER

--Tine Data Token is available for natching in the Databus
--after it is stored in the Databus
tokttl VARCHAR2(30) ,

--Tine a Data Token is retained since havi ng bei ng unavail abl e for matching

--in the Databus
tokcl nttl VARCHAR2(30) ,

Active Components for Java 10-53

Administering AC4J

--date of the Data Token creation
tokti ne VARCHAR2(50) ,

--user-1D of the who created this Data Token
schenausrid VARCHAR2(50),

schenansgid VARCHAR2(50),

auxct x BLCB,
auxct x| en NUVBER

--description of this Data Token
descr VARCHAR2(2000) ,

epoch NUMBER

- creates an unique index ("ldx1TCK'+df bushane)
on ("TabTCK'+df busnane+' "+(iid, aid, tag, vid))

Tracking Table

Narre = "TabTRK' +df busnane
PR MARY KEY = sequence- nunber

Gol unn- Nane Gol unn- Type

--token seg- nunber
t okseq NUMVBER

--instance-1D = Cacle SID
instid VARCHAR2(100) ,

--Interaction-1D identifies the caller interaction
iid VARCHAR?(50) ,

--Activation-1D identifies the caller process activation
ai d VARCHAR2(150)

--JBvandl e; identifies the caller Active EIB
handl e VARCHAR2(2000) ,

10-54 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

--reaction ID identifies the caller Reaction

rid

VARCHARY(100) ,

recursid NUMBER

--Data Token push operation; see above

op

VARCHAR?(50) ,

--Data Token push reason; see above
reason VARCHAR2(50) ,

--Interaction-1D, identifies the callee interaction
toiid VARCHAR2(50) ,

--Activation-ID identifies the callee process activation
toai d VARCHAR2(150) ,

--JEMBndle; identifies the callee Active EIB
t ohandl e VARCHAR2(100) ,

--process-nane; identifies the callee Active EIB net hod nane of the base
-Reaction
t oprspei d VARCHAR2(100) ,

--reaction nane; identifies the callee Active EIB nethod nane of the fired
-Reaction

--prspeid is the sane as rxnpeid for the base Reaction of a Process

t orxnpei d VARCHAR2(100) ,

--description of this tracking info
description VARCHARZ2(2000),

--date of the Data Token push
trkdate VARCHAR2(30) ,

--user-1D of the who pushed the Data Token
schenausrid VARCHAR2(50),

schenansgid VARCHAR2(50),

Drection of the push:
S\D at the sending side (caller with a call operation, callee with a

--return operation)

RCV: at the receiving side (callee with a call operation, caller with a

--return operation)
di rection VARCHAR2(50) ,

Active Components for Java 10-55

Administering AC4J

epoch NUVBER

Table 10-2 Advanced Queueing Topics

AQ Topic Name Description
JEMUSER. QT + df busnane gueue table
JEMUSER. MQ+ df busnane match queue
JEMUSER. SQ+ df busnane scheduling queue
JEMUSER. FQ+ df busnane foreign queue
JEMUSER. AQ$_QT + df busnanme + E exception queue

In Table 10-2, the queue name consists of the characters in the AQ Topic Name
column, plus an appended string, represented by df busname. This appended name
is provided by the user that creates the data bus; the default is the empty string. For
example, if the user provides the string _EDB, then the scheduling queue would be
named JEMUSER. SQ_EDB; if the user makes no specification when creating the
data bus, then the scheduling queue would simply be named JEMJUSER. SQ In the
case of the exception queue, the character E is appended at the end.

The remainder of this section describes the AQ schema objects created.

Create AQ Queue table, topics, and default subscriber to all topics using AQ
PL/SQL Packages. For every J2EE application deployed to OC4J, the JEM runtime
system will add a subscriber to all topics with the J2EE application name deployed
used as the subscriber name.

In the following descriptions, df busnan® is the string provided by the user that
creates the data bus; the default is the empty string.

Queue Table
DBVS AQADM CREATE. QUELE TABLE
Queue_tabl e => quet abl enane,
Mul ti pl e_consuner s = TRE,
Queue_payl oad_type => ' SYS. A5 _JMS BYTES MESSACE ,
conpati bl e ='8.1.5);

Match Queue
DBVS_AQADM CREATE. QUELE(

Qieue_nane => mat chquenane,

10-56 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

Queue_tabl e => quet abl enane,
nax_retries => nmax_retries,
retry_del ay => retry_del ay,
retention_tine => retention_tine);

Qeate and add the subscriber to MATCH Queue
subscriber : =

sys.ag$_agent (' JEMBUB || dfbusnane, null, null);

CBVE_AQADM ADD SLBSCR BER(
gueue_nane => mat chquenane,
subscri ber => subscri ber);

Scheduling Queue
DBVB_AQMDM CREATE. QUEUE(

Queue_nane => schedquenane,
Queue_tabl e => quet abl enane,
nax_retries => nax_retries,
retry_del ay => retry_del ay,
retention_tine => retention_tine);

CQeate and add the subscriber to SGHEDULI NG Queue
subscri ber :=

sys. ag$_agent (' JEMBUB || dfbusnane, null, null);

DBVE_AQADM ADD SLBSCR! BER(
queue_nhane => schedquenane,
subscri ber => subscri ber);

Foreign Queue
DBVS_AQADM CREATE. QUEUE(

Queue_nane => f or ei gnquenane,
Queue_tabl e => quet abl enane,
nax_retries => nax_retries,
retry_del ay => retry_del ay,
retention_tine => retention_tine);

Geate and add the subscriber to FOREI G\ Queue
subscri ber :=

sys. ag$_agent (' JEMBUB || dfbusnane, null, null);

DBVE_AQADM ADD SLBSCR! BER(
gueue_nhane => f or ei ghquenane,

Active Components for Java 10-57

Administering AC4J

subscri ber => subscri ber);

Table 10-3 Database Views

View Name Description

DFB + df busnane data bus view

PRS + df busnane process view

RXN + df busnane reaction view

RTL + df busnane reaction template view
TOK + df busnane token view (active-data)
TRK + df busnane tracking view

In Table 10-3, the view name consists of the characters in the View Name column,
plus an appended string, represented by df busnamne. This appended name is
provided by the user that creates the data bus; the default is the empty string. For
example, if the user provides the string _EDB, then the data bus view would be
named DFB_EDB; if the user makes no specification when creating the data bus,
then the data bus table would simply be named DFB.

Data Bus View
Narre = ("DFB'+dfbusnane) [from (" TabDFB'+df busnane)]

instid, (I'nstance-1D or Qacle-SID
ver si on,
maxrxnretry,
state,
creat dat e,
tokttldiff,
tokttlcal ldiff,
tokttl datdiff,
tokclnttldiff,
rxnttldiff,
gceycl e

Process View
Nane = "PRS'+df busnane

10-58 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

Reaction View

retiid
retaid

ret handl el en
pr spei d

cnpl t ag
state

fl ags
prsstart

pr send

(I'nteraction-1D)
(Activation-1D
(return 11D
(return AD

(process name=met hod nane)

Nae="RXN'" +df busnane [from (" TabRXN' +df busnane)]

rid
recursid
pr spei d
rxnpei d
grpid

t ot nat t ups
retrycnt
state

st at us
type

fl ags
rXnpri
rxnttl
descr

r xndat e
rxnstart
r xnend

Reaction Template View
Narre = "RIL"+df busnarme [from (" TabRTL" +df busnane)]

Gol unm- Nane

(I'nteraction-1D)
(Activation-1D
(Reaction-1D)

(process narre)
(reaction nane)

Active Components for Java 10-59

Administering AC4J

nat t upseq
mat i ndx
tokiid

t okai d
tag

vid

vi dt ype
iid

aid

rid
recursid
pol ycnd
obj cl assnane
state
type

fl ags
rXnpri

ti meout
t okseq
scpiid
scpai d

Token (Active Data) View

(I'nteraction-1D)
(Activation-1D
(Reaction-1D

(java-cl ass nane of the obj for reaction)

(priority of the reaction)
(tinmeout for the reaction)

= "TX'+df busnane

Gol unn- Narre
t okseq

pr evt okseq
next t okseq
al i ast okseq
reader s
consurrer
stat us

iid

aid

tag

vid

prewid
nextvid

pol ycnd
textinst
textinstl en

(Interaction-1D)
(Activation-1D

10-60 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administering AC4J

Tracking View

state)

op

r eason ,
type)
fl ags ,
tokttl ,
tokcl nttl ,
toktine

Nare = " TRK'+df busnane [from " TabTRK'+df busnane and from " TabTOK " +df busnane]
= trk.tokseq = tok.tokseq AND

fromdual)))

Gondi tion

.tokseq

. prevt okseq
. next t okseq
.al i astokseq
.readers

. consuner
.status
.iid

.aid

.tag

.vid
.prevvid
.nextvid

. pol yend
.state
.type
.flags
.tokttl
.tokel nttl
.toktine
.instid
.iid

.aid

.rid
.recursid
.op

. reason

1

1

1

trk. schemausrid = (sel ect UPPER user)

(seqg- nunber if the token)
(prev seg-nunber for the token)
(next seg-nunber for the token)

(Interaction-1D of the token)
(Activation-1D of the token)

(tinme-to-live for the token)

(instance-1D or Qacle-SID
(Interaction-1D for tracking)
(Activation-1D for tracking)

(Reaction-1D for tracking)

Active Components for Java 10-61

Administering AC4J

trk.toiid ,
trk.toaid ,
trk.tohandl e ,
trk.toprspei d ,
trk.torxnpeid ,
trk.description
trk.direction ,
trk.trkdate

10-62 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

A

EJB 1.1 CMP Entity Beans

If you have EJB 1.1 CMP entity beans from last release, this appendix informs you of
how OC4J maps your EJB 1.1 CMP deployment descriptor elements to
OC4J-specific mappings. Oracle encourages you to migrate to using the EJB 2.0
method for CMP entity beans; however, Oracle supports both specifications.

This chapter demonstrates simple CMP EJB 1.1 development with a basic
configuration and deployment. Download the CMP entity bean example
(cnpapp. j ar) from the OC4J sample code page at

http://otn.oracl e. com sanmpl e_

code/tech/javal/ oc4dj/ htdocs/ oc4j sanpl ecode/ oc4j -denp-ej b. ht m
on the OTN site.

This chapter demonstrates the following:

« Creating Entity Beans—Demonstrates how to create a simple
container-managed persistent entity bean.

« Advanced CMP Entity Beans—Demonstrates advanced configuration for finder
methods, object-relational mapping, and so on.

See Chapter 3, "CMP Entity Beans" for details on CMP EJB 2.0 entity beans.

EJB 1.1 CMP Entity Beans A-1

Creating Entity Beans

Creating Entity Beans
To create an entity bean, perform the following steps:

1. Create a remote interface for the bean. The remote interface declares the
methods that a client can invoke. It must extend j avax. ej b. EJIBObj ect .

2. Create a home interface for the bean. The home interface must extend
j avax. ej b. EJBHon®. It defines the cr eat e and finder methods, including
fi ndByPri mar yKey, for your bean.

3. Define the primary key for the bean. The primary key identifies each entity
bean instance. The primary key must be either a well-known class, such as
j ava. |l ang. Stri ng, or defined within its own class.

4. Implement the bean. This includes the following:

a. The implementation for the methods that are declared in your remote
interface.

b. The methods that are defined in the j avax. ej b. Ent i t yBean interface.

c. The methods that match the methods that are declared in your home
interface. This includes the following:

* theej bCreat e and ej bPost Cr eat e methods with parameters
matching the associated cr eat e method defined in the home interface

* anej bFi ndByPri mary key method, which corresponds to the
fi ndByPri mar yKey method of the home interface

* any other finder methods that were defined in the home interface

5. Create the bean deployment descriptor. The deployment descriptor specifies
properties for the bean through XML elements. This step is where you identify
the data within the bean that is to be managed by the container.

6. If the persistent data is saved to or restored from a database and you are not
using the defaults provided by the container, then you must ensure that the
correct tables exist for the bean. In the extreme default scenario, the container
will actually create the table and columns for your data based on deployment
descriptor and datasource information.

7. Create an EJB JAR file containing the bean, the remote and home interfaces, and
the deployment descriptor. Once created, configure the appl i cati on. xni
file, create an EAR file, and install the EJB in OC4J.

A-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

The following sections demonstrate a simple CMP entity bean. This example
continues the use of the employee example, as in other chapters—without adding
complexity.

Home Interface

The home interface must contain a cr eat e method, which the client invokes to
create the bean instance. Each cr eat e method can have a different signature. For
an entity bean, you must develop a f i ndByPr i mar yKey method. Optionally, you
can develop other finder methods for the bean, which are named f i nd<name>.

Example A-1 Entity Bean Employee Home Interface
To demonstrate an entity bean, this example creates a bean that manages a purchase
order. The entity bean contains a list of items that were ordered by the customer.

The home interface extends j avax. ej b. EIBHome and defines the cr eat e and
fi ndByPri mar yKey methods.

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;

public interface Enpl oyeeHone extends EJBHone

{

public Enpl oyee create(lnteger enpNo)
throws CreateException, RenoteException;

/1 Find an existing enpl oyee
public Enpl oyee findByPrimaryKey (Integer enpNo)
throws Fi nderException, RenoteException;

[IFind all enployees

public Collection findAll ()
throws Fi nderException, RenoteException;

EJB 1.1 CMP Entity Beans A-3

Creating Entity Beans

Remote Interface

The entity bean remote interface is the interface that the customer sees and invokes
methods upon. It extends j avax. ej b. EJBObj ect and defines the business logic
methods. For our employee entity bean, the remote interface contains methods for
adding and removing employees, and retrieving and setting employee information.

package enpl oyee;
inport javax.ejb.*;

inport java.rm.*;
inport java. util.*;

public interface Enployee extends EJBObject
{

/] getter renote nethods

public Integer getEmpNo() throws RenoteException;
public String get EnpName() throws RenoteExcepti on;
public Float getSalary() throws RenoteException;

/'l setter renote nethods
public void setEnpName(String newEnpName) throws RenpteException;
public void setSalary(Fl oat newSal ary) throws RenoteException;

Entity Bean Class

The entity bean class must implement the following methods:

« the target methods for the methods that are declared in the home interface,
which includes the ej bCr eat e method and any finder methods, including
ej bFi ndByPri mar yKey

« the business logic methods that are declared in the remote interface
« the methods that are inherited from the Ent i t yBean interface

However, with container-managed persistence, the container manages most of the
target methods and the data objects. This leaves little for you to implement.

package enpl oyee;

inport javax.ejb.*;
inport java.rm.*;

public class Enpl oyeeBean extends Cbject inplenments EntityBean
{

A-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

public Integer enpNo;

public String enmpNane;

public Float salary;

public EntityContext entityContext;

public Enpl oyeeBean()
{

/1 Constructor. Do not initialize anything in this method.
[/ Al initialization should be perforned in the ejbCreate method.

}

public Integer getEmpNo()

{
return enpNo;
}
public String get EnpNane()
{
return enpNaneg;
}
public Float getSalary()
{
return salary;
}
public void setEnpName(String enpNane)
{
this. enpNane = enpNane;
}

public void setSalary(Float salary) {
this.salary = salary;

}

public Integer ejbCreate(lnteger enpNo)
throws CreateException, RenoteException

{
this. enpNo = enpNo;
return enmpNo;

}

public void ejbPostCreate(lnteger enpNo)
throws CreateException, RenoteException

EJB 1.1 CMP Entity Beans A-5

Creating Entity Beans

}

just after bean created; container takes care of inplementation

ej bStore()

when bean persisted; container takes care of inplenentation

ej bLoad()

when bean | oaded; container takes care of inplementation

ej bRenove()

when bean renoved; container takes care of inplenentation

ej bActivate()

when bean activated; container takes care of inplementation
need resources, retrieve themhere

ej bPassi vate()

when bean deactivated; container takes care of inplenmentation

set resources in ejbActivate, renove them here

setEntityContext (EntityContext entityContext)

this.entityContext = entityContext;

/1 Called
}
public void
{
/1 Called
}
public void
{
/1 Called
}
public void
/1 Called
}
public void
{
/1 Called
/1 1f you
}
public void
{
/1 Called
[l if you
}
public void
{
}
public void
{

this.entityContext =

}

unset Enti tyCont ext ()

null;

A-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

Persistent Data

In CMP entity beans, you define the persistent data both in the bean instance and in
the deployment descriptor. The declaration of the data fields in the bean instance
creates the resources for the fields. The deployment descriptor defines these fields
as persistent.

In our employee example, the data fields are defined in the bean instance, as
follows:

public Integer enpNo;
public String enpNane;
public Float salary;

These fields are defined as persistent fields in the ej b- j ar. xm deployment
descriptor within the <cnp- f i el d><fi el d- name> element, as follows:

<enterpri se-beans>

<entity>
<di spl ay- name>Enpl oyee</ di spl ay- name>
<ej b- name>Enpl oyeeBean</ ej b- nanme>
<honme>enpl oyee. Enpl oyeeHone</ home>
<r enmot e>enpl oyee. Enpl oyee</ r enot e>
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ ej b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-type>
<pri mkey-cl ass>j ava.l ang. | nteger</primkey-class>
<reentrant >Fal se</reentrant >
<cnp-fiel d><fi el d- name>enpNo</ fi el d- name></ cnp-fi el d>
<cnp-fiel d><fiel d-name>enpNane</fi el d- nane></ cnp-fiel d>
<cnp-fiel d><fi el d-name>sal ary</fi el d- name></cnp-fi el d>
<pri mkey-fiel d>empNo</ prinkey-fiel d>

</entity>

</enterprise-beans>

In most cases, you map the persistent data fields to columns in a table that exists in
a designated database. However, you can accept the defaults for these fields—thus,
avoiding more deployment descriptor configuration.

OC4J contains some defaults for mapping these fields to a database and its table.

« Database—The default database as set up in your OC4J instance configuration.
For the INDI name, use the <l ocat i on> element for emulated data sources
and <ej b- | ocat i on> element for non-emulated data sources.

EJB 1.1 CMP Entity Beans A-7

Creating Entity Beans

Primary Key

Upon installation, the default database is a locally installed Oracle database that
must be listening on port 5521 with a SID of ORACLE.

Note: Unfortunately, you must change the "default" database
configuration in the dat a- sour ces. xm file to coordinate with
the default installation for an Oracle database. The default port and
SID for an Oracle database are 1521 and ORCL, respectively.

To customize the default database, change the first configured database
(including its <ej b- | ocat i on>) to point to your database.

Table with correct column names—The container creates a default table with the
same name as the bean name (defined in <ej b- nanme>), with columns having
the same name as the <cnp- f i el d>elements in the designated database. The
data types for the database, translating Java data types to database data types,
are defined in the specific database XML file, such as or acl e. xm .

If you want to designate another database or generate a table that has a different
naming convention, see "EJB 1.1 Object-Relational Mapping of Persistent Fields" on
page A-13 for a description of how to customize your database, table, and column
names.

Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a
complex primary key) as a container-managed persistent field in the deployment
descriptor. All fields within the primary key are restricted to either primitive,
serializable, or types that can be mapped to SQL types. You can define your primary
key in one of two ways:

Define the type of the primary key to be a well-known type. The type is defined
in the <pri m key- cl ass> in the deployment descriptor. The data field that is
identified as the persistent primary key is identified in the <pri nkey-fi el d>
element in the deployment descriptor. The primary key variable that is declared
within the bean class must be declared as publ i c.

Define the type of the primary key as a serializable object within a <name>PK
class that is serializable. This class is declared in the <pri m key- cl ass>
element in the deployment descriptor. This is an advanced method for defining
a primary key, so it is discussed in "Defining the Primary Key in a Class" on
page A-9.

A-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating Entity Beans

For a simple CMP, you can define your primary key to be a well-known type by
defining the data type of the primary key within the deployment descriptor.

The employee example defines its primary key asaj ava. | ang. | nt eger and uses
the employee number (enpNo) as its primary key.

<enterpri se-beans>

<entity>
<di spl ay- nane>Enpl oyee</ di spl ay- name>
<ej b- name>Enpl oyeeBean</ ej b- name>
<honme>enpl oyee. Enpl oyeeHone</ home>
<renot e>enpl oyee. Enpl oyee</ rennt e>
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ ej b-cl ass>
<per si stence-t ype>Cont ai ner </ per si stence-type>
<pri mkey-cl ass>j ava. | ang. I nteger </ pri m key- cl ass>
<reentrant >Fal se</reentrant >
<cnp-fiel d><fi el d-name>enpNo</ fi el d- nanme></ cnp-fi el d>
<cnp-fiel d><fi el d- name>enpNane</fi el d- nane></ cnp-fiel d>
<cnp-fiel d><fi el d-name>sal ary</fi el d- name></cnp-fi el d>
<pri nkey-fiel d>empNo</ pri nkey-fiel d>

</entity>

</ enterprise-beans>

Defining the Primary Key in a Class

If your primary key is more complex than a simple data type, your primary key
must be a class that is serializable of the name <name>PK. You define the primary
key class within the <pri m key- cl ass> element in the deployment descriptor.

The primary key variables must adhere to the following:

« Be defined withina <cnp- f i el d><fi el d- name> element in the deployment
descriptor. This enables the container to manage the primary key fields.

« Be declared within the bean class as publ i ¢ and restricted to be either
primitive, serializable, or types that can be mapped to SQL types.

Within the primary key class, you implement a constructor for creating a primary
key instance. Once defined in this manner, the container manages the primary key,
as well as storing the persistent data.

The following example is a complex primary key made up of employee number and
country code. Our company is so large that it reuses employee numbers in different
countries. Thus, the combination of both the employee number and the country
code uniquely identifies each employee.

EJB 1.1 CMP Entity Beans A-9

Creating Entity Beans

package enpl oyee;

public class EnpPK inplenents java.io.Serializable
{

public Integer enpNo;

public String countryCode;

[/ construct or

public EnmpPK () { }
}

The primary key class is declared within the <pri m key- cl ass> element and its
variables, each within a <cnp- f i el d><fi el d- name> element in the XML
deployment descriptor, as follows:

<enterprise-beans>
<entity>
<di spl ay- name>Enpl oyee</ di spl ay- name>
<ej b- name>Enpl oyeeBean</ ej b- name>
<home>enpl oyee. Enpl oyeeHone</ hone>
<r enot e>enpl oyee. Enpl oyee</ r enot e>
<ej b- cl ass>enpl oyee. Enpl oyeeBean</ ¢j b- ¢l ass>
<persi st ence-t ype>Cont ai ner </ persi stence-type>
<pri mkey- cl ass>enpl oyee. EnpPK</ pri m key- cl ass>
<reentrant >Fal se</reentrant >
<cnp-fi el d><fi el d- nanme>enpNo</ fi el d- name></ cnp-fi el d>
<cnp-fiel d><fi el d-name>count ryCode</fi el d- name></cnp-fi el d>
</entity>

</enterpri se-beans>

Deploying the Entity Bean

Archive your EJB into a JAR file. You deploy the entity bean in the same way as the
session bean, which "Prepare the EJB Application for Assembly" on page 2-13 and
"Deploy the Enterprise Application to OC4J" on page 2-15 explain in detail.

A-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Advanced CMP Entity Beans

Advanced CMP Entity Beans

This section discusses how to implement your bean beyond the simple CMP entity
bean. It includes the following sections:

« EJB 1.1 Advanced Finder Methods
« EJB 1.1 Object-Relational Mapping of Persistent Fields

EJB 1.1 Advanced Finder Methods

Specifying the f i ndByPr i mar yKey method is easy to do in OC4J. All the fields for
defining a simple or complex primary key are specified within the ej b-j ar. xm
deployment descriptor. However, if you want to define other finder methods in a
CMP entity bean, you must do the following:

1. Add the finder method to the home interface.

2. Addthe EJB 1.1 finder method definition to the OC4J-specific deployment
descriptor—the or i on-ej b-j ar. xml file.

Add the Finder Method to Home Interface

You must first add the finder method to the home interface. For example, with the
employee entity bean, if we wanted to retrieve all employees, the f i ndAl | method
would be defined within the home interface, as follows:

public Collection findAll() throws FinderException, RenmpteException;

Add the EJB 1.1 Finder Method Definition to the OC4J-Specific Deployment
Descriptor

After specifying the finder method in the home interface, modify the
orion-ejb-jar.xm file with the EJB 1.1 finder method specifics. The container
identifies the correct query necessary for retrieving the required fields.

The EJB 1.1 <f i nder - net hod> element defines all finder methods—excluding the
fi ndByPri mar yKey method. The simplest finder method to define is the

fi ndByAl | method. The query attribute in the <f i nder - net hod> element
specifies the WHERE clause for the query. If you want all rows retrieved, then an
empty query (quer y="") returns all records.

The following example retrieves all records from the Enpl oyeeBean. The method
nameisfi ndAl |, and it requires no parameters because it returns a Col | ecti on
of all employees.

EJB 1.1 CMP Entity Beans A-11

Advanced CMP Entity Beans

<finder-method query="">
<net hod>
<ej b- name>Enpl oyeeBean</ ej b- name>
<net hod- name>f i ndAl | </ et hod- nane>
<net hod- par ans></ net hod- par ans>
</ net hod>
</ finder-net hod>

After deploying the application with this bean, OC4J adds the following statement
of what query it invokes as a comment in the finder method definition:

<finder-method query="">
<!-- Generated SQ.: "select EnployeeBean.enpNo, Enpl oyeeBean. enpNane,
Enpl oyeeBean. sal ary from Enpl oyeeBean" -->
<net hod>
<ej b- name>Enpl oyeeBean</ ej b- name>
<net hod- name>f i ndAl | </ et hod- nane>
<net hod- par ams></ net hod- par ans>
</ met hod>
</ finder-net hod>

Verify that it is the type of query that you expect.

To be more specific, modify the quer y attribute with the appropriate WHERE clause.
This clause refers to passed in parameters using the '$’ symbol: the first parameter
is denoted by $1, the second by $2. All <cnp- f i el d> elements that are used within
the WHERE clause are denoted by $<cnp-fi el d> name.

The following example specifies a f i ndBy Name method (which should be defined
in the home interface) where the name of the employee is given as in the method
parameter, which is substituted for the $1. It is matched to the CMP name,
"erpNane". Thus, our quer y attribute is modified to contain the following for the
VWHERE clause: "$enmpnanme=$1".

<finder-nmethod query="$enpnane = $1">
<net hod>
<ej b- name>Enpl oyeeBean</ ej b- name>
<met hod- nanme>f i ndByName</ net hod- name>
<net hod- par ans>
<met hod- par an®j ava. | ang. String</ met hod- par an>
</ met hod- par ans>
</ net hod>
</finder-method>

A-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Advanced CMP Entity Beans

If you have more than one method parameter, each parameter type is defined in
successive <nmet hod- par an® elements and referred to in the query statement by
successive $n, where n represents the number.

Note: You can also specify a SQL JOIN in the quer y attribute.

If you wanted to specify a full query and not just the section after the WHERE
clause, specify the parti al attribute to FALSE and then define the full query in the
query attribute. The default value for par ti al is true, which is why it is not
specified on the previous finder-method example.

<finder-method partial ="fal se"
query="sel ect * from EMP where $enmpNane = $1">
<l-- Cenerated SQL: "select * from EMP where EMP. ENAME = ?" -->
<net hod>
<ej b- name>Enpl oyeeBean</ ej b- nanme>
<met hod- nanme>f i ndByNane</ net hod- nane>
<net hod- par ans>
<met hod- par an®j ava. | ang. Stri ng</ net hod- par an>
</ met hod- par ans>
</ net hod>
</ finder-net hod>

Specifying the full SQL query is useful for complex SQL statements.

EJB 1.1 Object-Relational Mapping of Persistent Fields

As "Persistent Data" on page A-7 discusses, your persistent data can be
automatically mapped to a database table by the container. However, if the data
represented by your bean is more complex or you do not want to accept the defaults
that OC4J provides for you, then map the CMP designated fields to an existing
database table and its applicable rows within the ori on- ej b-j ar. xm file. Once
mapped, the container provides the persistence storage of the CMP data to the
indicated table and rows.

Before configuring the object-relational mapping, add the Dat aSour ce used for the
destination within the <r esour ce- r ef > element in the ej b-j ar. xni file.

EJB 1.1 CMP Entity Beans A-13

Advanced CMP Entity Beans

Mapping EJB 1.1 CMP Fields to a Database Table and Its Columns
Configure the following within the ori on- ej b-j ar. xm file:

1. Configure the <enti ty- depl oynment > element for every entity bean that
contains CMP fields that will be mapped within it.

2. Configure a<cnp-fi el d- mappi ng> element for every field within the bean
that is mapped. Each <cnp- f i el d- mappi ng> element must contain the name
of the field to be persisted.

a. Configure the primary key in the <pri nkey- mappi ng> element contained
within its own <cnp- f i el d- mappi ng> element.

b. Configure simple data types (such as a primitive, simple object, or
serializable object) that are mapped to a single field within a single
<cnp-fi el d- mappi ng> element. The name and database field are fully
defined within the element attributes.

c. Configure complex data types using one of the many sub-elements of the
<cnp-fi el d- mappi ng> element. These can be one of the following:

* If you define an object as your complex data type, then specify each
field or property within the object in the <f i el ds> or <properti es>
element.

* If you specify a field defined in another entity bean, then define the
home interface of this entity bean in the <enti t y- r ef > element.

* |fyou defineaLi st, Col | ecti on, Set, or Map of fields, then define
these fields within the <I i st - mappi ng>, <col | ecti on- mappi ng>,
<set - mappi ng>, <map- mappi ng> elements.

Examples for simple and complex O-R mappings are shown in the following
sections:

« EJB 1.1 One-to-One Mapping Example

« EJB 1.1 One-to-Many Mapping Example

EJB 1.1 One-to-One Mapping Example The following example demonstrates how to
map EJB 1.1 persistent data fields in your bean instance to database tables and

columns by mapping the employee persistence data fields to the Oracle database
table EMP.

« Thebean is identified in the <ent i t y- depl oyment > name attribute. The JNDI
name for this bean is defined in the | ocat i on attribute.

A-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Advanced CMP Entity Beans

« The database table name is defined in the t abl e attribute. And the database is
specified in the dat a- sour ce attribute, which should be identical to the
<ej b-1 ocat i on>name of a Dat aSour ce defined in the
dat a- sour ces. xm file.

« The bean primary key, enpNo, is mapped to the database table column, EMPNO,
within the <pri nkey- mappi ng> element.

« The bean persistent data fields, enpNane and sal ar y, are mapped to the
database table columns ENAME and SAL within the <cnp- f i el d- mappi ng>
element.

<entity-depl oynent nane="EnpBean" |ocation="enp/ EnpBean"
wr apper =" EnpHone_Ent i t yHomeW apper 2" max-tx-retries="3"
t abl e="enp" dat a- sour ce="j dbc/ Oracl eDS">
<pri nkey- mappi ng>
<cnp-fi el d- mappi ng nane="enpNo" persi st ence- name="enpno" />
</ prinkey- mappi ng>
<cnp-fi el d- mappi ng nane="enpName" persi stence-nane="enane" />
<cnp-fi el d- mappi ng nane="sal ary" persistence-nane="sal" />

</entity-depl oyment >

After deployment, OC4J maps this to the following:

Bean Database

enp/ EnpBean EMP table, located at j dbc/ Oracl eDS in the
dat a- sour ces. xm file

enpNo EMPNOcolumn as primary key

enpNarme ENAME column

sal ary SAL column

EJB 1.1 One-to-Many Mapping Example If you have two beans that access two tables for
their data, you must map the persistent data from both beans to the respective
tables.

We added a department number to our employee example. Each employee belongs
to a department; each department has multiple employees. The container will
handle this object-relational mapping; however, you must specify how the data is
stored.

EJB 1.1 CMP Entity Beans A-15

Advanced CMP Entity Beans

The employee data maps to the employee database table; the department data is
mapped to the database department table. The employee database table also
contains a foreign key of the department number to link this information together.

The XML configuration for the employee bean, EnpBean, is as follows:

« Same XML configuration details for the employee bean as stated above, with
the addition of the definition of the department number as part of the employee
entity bean.

« The department number is defined in the bean instance as dept no, which
relates to the department number defined in the Dept Bean. Thus, the
Dept Bean, its dept no field, and its mapping to the database column, dept no,
is configured within a <cnp- fi el d- mappi ng><entity-ref > element, as
follows:

<entity-depl oynment name="EnpBean" | ocation="enp/ EnpBean"
wrapper =" EnpHome_Ent i t yHomeW apper 2" max-tx-retries="3" tabl e="enp"
dat a- sour ce="j dbc/ Or acl eDS">
<pri nkey- mappi ng>
<cnp-fiel d-mappi ng nane="enpNo" persi st ence-name="enpno" />
</ prinkey- mappi ng>
<cnp-fiel d- mappi ng name="enpNane" persi st ence- name="enane" />
<cnp-fiel d-mappi ng name="sal ary" persistence-nane="sal" />
<cnp- fi el d- mappi ng name="dept ">
<entity-ref home="dept/DeptBean">
<cnp-fi el d- mappi ng name="dept" persistence-nane="dept no" />
</entity-ref>
</ cnp-fiel d- mappi ng>
<finder-method query="">
<l-- Cenerated SQL: "select EMP.enpno, EMP.ename, EMP.sal,
EMP. deptno from EMP" -->
<met hod>
<ej b- name>EnpBean</ ¢j b- nanme>
<net hod- name>f i ndAl | </ et hod- nane>
<net hod- par ams></ net hod- par ans>
</ met hod>
</finder-nethod>
</ entity-depl oynent >

Note: This definition within the EnpBean configuration refers to
the definition of the dept no within the Dept Bean configuration.

The XML configuration for the department bean, Dept Bean, is as follows:

A-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Advanced CMP Entity Beans

« Thebean isidentified in the <ent i t y- depl oyment > name attribute. The JNDI
name for this bean is defined in the | ocat i on attribute.

« The database table name is defined in the t abl e attribute. And the database is
specified in the dat a- sour ce attribute, which should be identical to the
<ej b-1 ocat i on>name of a Dat aSour ce defined in the
dat a- sour ces. xm file.

« The bean primary key, dept No, is mapped to the dept database table in its
DEPTNOcolumn within the <pr i nkey- mappi ng> element.

« The bean persistent data field, dept Namne, is mapped to the DEPT database
table in its DNAME column within a <cnp- f i el d- mappi ng> element.

« The bean persistent data field, enpl oyees, is actually a bean—the employee
bean. Thus, the example uses the <col | ect i on- mappi ng> element to specify
all fields within the employee bean. A Col | ect i on containing the employee
information is returned. See the bold text in the example below.

— The employees field maps to the EnpBean entity bean. Its home interface
reference is defined in the hone attribute of the <enti t y-r ef > element.

— The primary key used to retrieve the employees is defined as dept No
within the <pri nkey- mappi ng> element and is mapped to the database
column DEPTNO,

— Allfields that are of interest to the department bean are defined within
<cnp-fi el d- mappi ng> elements. The bean instance fields within the
EnpBean that are of interest are enpNo, enpNane, and sal ary. Their
respective database columns are also specified: EMPNO, ENANME, and SAL.
The database table itself is defined in the EnpBean
<ent i ty-depl oynent > definition.

<entity-depl oynent name="Dept Bean" | ocation="dept/Dept Bean"
wr apper =" Dept Home_Ent i t yHomeW apper 2" max-tx-retries="3" tabl e="dept"
dat a- sour ce="j dbc/ Or acl eDS">
<pri nkey- mappi ng>
<cnp- fiel d- mappi ng nane="dept No" persi stence-nane="deptno" />
</ pri nkey- mappi ng>
<cnp- fiel d- mappi ng nanme="dept Name" persi st ence-nane="dnanme" />
<cnp-fiel d- mappi ng name="enpl oyees" >
<col | ecti on-mappi ng tabl e="enp">
<pri nkey- mappi ng>
<cnp- fiel d- mappi ng name="dept No" persi st ence- nane="dept no" />
</ pri nkey- mappi ng>
<val ue- mappi ng type="enp. Enp">

EJB 1.1 CMP Entity Beans A-17

Advanced CMP Entity Beans

<cnp- fi el d- mappi ng>
<entity-ref home="enp/ EnpBean">
<cnp-fiel d- mappi ng name="enpNo" persi st ence- name="enpno"/ >
<cnp-fiel d- mappi ng nane="enpName" persi st ence-name="enane"/>
<cnp-fiel d- mappi ng nane="sal ary" persistence-nane="sal "/>
</entity-ref>
</ cnp-fiel d- mappi ng>
</ val ue- mappi ng>
</ col | ecti on- mappi ng>
</ cnp-fi el d- mappi ng>

</ entity-depl oyment >

A-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

B

OC4J-Specific DTD Reference

This appendix describes the elements contained within the OC4J-specific EJB
deployment descriptor: or i on- ej b-j ar. dt d. This appendix covers the structure
and briefly describes the elements in this DTD; however, most of these elements are
fully described in other sections of this book.

The DTD is located at
http://xm ns.oracle.conias/dtds/orion-ejb-jar.dtd.

The description of this deployment descriptor has been divided into the following
sections:

« Overall description of each element section—Each section of elements of this
XML file is described in "OC4J-Specific Deployment Descriptor for EJBs" on
page B-3.

« Element description—An alphabetical listing and description for each element
is discussed in "Element Description" on page B-21.

Whenever you deploy an application, OC4J automatically generates the
OC4J-specific XML file with the default elements. If you want to change these
defaults, you must copy the ori on- ej b-j ar. xm file to where your original

ej b-j ar. xm file is located and change it in this location. If you change the XML
file within the deployed location, OC4J simply overwrites these changes when the
application is deployed again. The changes only stay constant when changed in the
development directories.

Oracle recommends that you add your OC4J-specific XML files within the
recommended development structure as shown in Figure B-1.

0OC4J-Specific DTD Reference B-1

Figure B-1 Development Application Directory Structure

appl i cati ons/ <appnane>/

META- | NF/
appl i cation. xm

<ej b_nodul e>/
L FJBclasses (ny.ejb.class maps to /ny/ejb/class)
META- | NF/

ej b-jar. xm
orion-ejb-jar. xm

<web_nodul e>/

i ndex. ht
JSP pages
WEB- | NF/
web. xm
orion-web. xm
cl asses/
Servl et cl asses
lib/
.Servlet to /ny/Servl et
l—(drgpendent [i brarniyes)

<cli ent _nmodul e>/
dient classes
META- | NF/

application-client.xm
orion-application-client.xn

B-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

0C4J-Specific Deployment Descriptor for EJBs

The OC4J-specific deployment descriptor contains extended deployment
information for session beans, entity beans, message driven beans, and security for
these EJBs. The major element structure within this deployment descriptor has the
following structure:

<orion-gj b-jar depl oynent-tine=... deploynent-version=..>
<ent er pri se- beans>
<sessi on- depl oynent ... ></sessi on- depl oynent >
<entity-depl oynent ...>< entity-depl oynent >
<message- dri ven- depl oynent ...></ nessage-dri ven-depl oynent >
<j emdepl oynent ...></jem depl oynent >
<j emserver-extension ...></jemserver-extensi on>
</ ent er pri se- beans>
<assenbl y- descri pt or >
<security-rol e-nmappi ng ...></security-rol e-mappi ng>
<def aul t - net hod- access></ def aul t - net hod- access>
</ assenbl y- descri pt or >
</orion-ejb-jar>

Each section under the <or i on- ej b-j ar > main tag has its own purpose. These
are described in the sections below:
« Enterprise Beans Section

« Assembly Descriptor Section

Enterprise Beans Section

The <ent er pri se- beans> section defines additional deployment information for
all EJBs: session beans, entity beans, and message driven beans. There is a section
for each type of EJB.

The following sections describe the elements within <ent er pri se- beans>
element;

« Session Bean Section

« Entity Bean Section

« Message Driven Bean Section

« EJB 1.1 CMP Field Mapping Section
« Method Definition

0OC4J-Specific DTD Reference B-3

0C4J-Specific Deployment Descriptor for EJBs

Session Bean Section

The <sessi on- depl oynent > section provides additional deployment
information for a session bean deployed within this JAR file. The
<sessi on- depl oynent > section contains the following structure:

<sessi on- depl oynent pool - cache-tineout=... call-tineout=... copy-by-value=. ..
location=... nmax-instances=... mn-instances=... nax-tx-retries=...
name=. .. persistence-filenane=... timeout= .. wapper=...

| ocal - wr apper=. . .
<i or-security-config>
<transport - confi g>
<integrity></integrity>
<confidentiality><confidentiality>
<establish-trust-in-target></establish-trust-in-target>
<establish-trust-in-client></establish-trust-in-client>
</transport - confi g>
<as- cont ext >
<aut h- net hod></ aut h- net hod>
<real nr</real nm»
<requi red></requi r ed>
</ as- cont ext >
<sas- cont ext >
<cal | er-propagat i on></ cal | er - pr opagat i on>
</ sas- cont ext >
</ior-security-confi g>
<env-entry-nappi hg hanme=...> </ env-ent ry- mappi ng

<ej b-ref-nmapping | ocation=... nane=... />
<resour ce-ref -nappi ng | ocation=... name=... >
<l ookup- context |ocation=...>
<context-attribute nane=... value=... />

</ | ookup- cont ext >
</ resour ce-r ef - mappi ng>
<resour ce-env-ref-mappi ng location=... nanme=... />
</ sessi on- depl oynent >

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

« A session bean example, which includes the <sessi on- depl oynent >
element, is described in "Create the Deployment Descriptor” on page 2-11 in
Chapter 2, "An EJB Primer For OC4J".

« The<ior-security-config>elementisan interoperability element, which
is discussed fully in the Interoperability chapter in the Oracle9iAS Containers for
J2EE Services Guide.

B-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

« The <env-ent ry- mappi ng>element maps environment variables to JNDI names
and is discussed in "Environment variables" on page 8-15.

« The <ej b-ref - nappi ng> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 8-20.

« The <resour ce-ref - mappi ng>element maps any EJB references to JNDI names
and is discussed in "Environment References To Resource Manager Connection
Factory References" on page 8-20.

« The <resour ce- env-r ef - mappi ng> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory
object and a destination object. These objects are retrieved at the same time from
JNDI. The <r esour ce- r ef > element declares the JMS factory and the
<resour ce- env-ref >elment is used to declare the destination. Thus, the
<resour ce- env-ref - mappi ng> element maps the destination object. See
"Using Logical Names in the JMS JNDI Lookup" on page 7-15 for more
information.

The attributes for the <sessi on- depl oynment > element are as follows:

Table B-1 Attributes for <session-deployment> Element

Attribute Description

pool - cache-ti neout The pool-cache-timeout applies for stateless session EJBs. This
parameter specifies how long to keep stateless sessions cached
in the pool.

For stateless session beans, if you specify a pool-cache-timeout,
then at every pool-cache-timeout interval, all beans in the pool,
of the corresponding bean type, are removed. If the value
specified is zero or negative, then the pool-cache-timeout is
disabled and beans are not removed from the pool.

Default Value: 60 (seconds)

cal I -timeout This parameter specifies the maximum time to wait for any
resource to make a business/life-cycle method invocation. This
is not a timeout for how long a business method invocation can
take.

If the timeout is reached, a Ti nedQut Except i on is thrown.
This excludes database connections.

Default Values: 90000 milliseconds. Set to 0 if you want the
timeout to be forever. See the EJB section in the Oracle9i
Application Server Performance Guide for more information.

0OC4J-Specific DTD Reference B-5

0C4J-Specific Deployment Descriptor for EJBs

Table B-1 Attributes for <session-deployment> Element (Cont.)

Attribute Description

copy- by-val ue Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to "false’ if you are certain that your
application does not assume copy-by-value semantics for a
speed-up. The default is "true’.

| ocati on The JNDI-name to which this bean will be bound.

max- i nst ances The number of maximum bean implementation instances to be
kept instantiated or pooled. The default is 100. This setting is
valid for stateless session beans only.

m n-i nst ances The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. This setting is
valid for stateless session beans only.

max-tx-retries This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures.

Generally, we recommend that you start by setting
max-tx-retries to 0 and adding retries only where errors are
seen that could be resolved through retries. For example, if you
are using serializable isolation and you want to retry the
transaction automatically if there is a conflict, you might want
to use retries. However, if the bean wants to be notified when
there is a conflict, then in this case, you should set
max-tx-retries=0.

Default Value: 3. See the EJB section in the Oracle9i
Application Server Performance Guide for more information.

nane The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor
(ej b-jar.xm).

persi stence-fil enane Path to the file where sessions are stored across restarts.

B-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

Table B-1 Attributes for <session-deployment> Element (Cont.)

Attribute Description

ti meout The timeout applies for stateful session EJBs. If the value is
zero or negative, then all timeouts are disabled.

The timeout parameter is an inactivity timeout for stateful
session beans. Every 30 seconds the pool clean up logic is
invoked. Within the pool clean up logic, only the sessions that
timed out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful
session beans. For example, if stateful session beans are not
removed explicitly by your application, and the application
creates many stateful session beans, then you may want to
lower the timeout value.

If your application requires that a stateful session bean be
available for longer than 30 minutes, then adjust the timeout
value accordingly.

Default Value: 30 (minutes)

wr apper Name of the OC4J wrapper class for this bean. This is an
internal server value and should not be edited.

| ocal - w apper Name of the OC4J local home wrapper class for this bean. This
is an internal server value and should not be edited.

Entity Bean Section

The <enti t y- depl oynent > section provides additional deployment information
for an entity bean deployed within this JAR file. The <ent i t y- depl oynent >
section contains the following structure:

<entity-depl oynent call-tineout=... clustering-schena-=...
copy-by-val ue=... data-source=... exclusive-wite-access=...
do- sel ect-before-insert=... instance-cache-tineout=... isolation=...
location=... |ocking-node=... max-instances=... nin-instances=...
nax-tx-retries=. .. update-chnaged-fields-only=...
di sabl e-wr apper - cache=... nane=... pool -cache-tineout =. ..
table=... validity-timeout=... force-update=...
wapper=... |local -wapper=...>

<i or-security-config>
<t ransport - confi g>
<integrity></integrity>
<confi dentiality></confidentiality>
<establish-trust-in-target></establish-trust-in-target>
<establish-trust-in-client></establish-trust-in-client>

0C4J-Specific DTD Reference B-7

0C4J-Specific Deployment Descriptor for EJBs

</transport - confi g>
<as- cont ext >
<aut h- net hod></ aut h- net hod>
<real ne</real n»
<requi red></requi r ed>
</ as- cont ext >
<sas- cont ext >
<cal | er-propagat i on></ cal | er - pr opagat i on>
</ sas- cont ext >
</ior-security-confi g>
<pri nkey- mappi ng>

<cnp-fi el d-nmappi ng €j b-reference-hone=... nane=...

per si st ence-type=. . . ></cnp-fi el d- mappi ng>
</ pri nkey- nappi ng>

<cnp-fi el d- mappi ng ej b-ref erence-hone=... nane-=...

per si st ence-type=...> </ cnp-fi el d- nappi ng>
<finder-nethod partial=... query=.. >
<net hod></ net hod>
</fi nder - met hod>
<env-entry-nappi ng hanme=. . .></ env-entry- nappi ng>

<ej b-ref-nmapping | ocation=... nane=... />
<resour ce-ref -nappi ng | ocation=. .. name=... >
<l ookup- context |ocation=...>
<context-attribute nane=... value=... />

</ | ookup- cont ext >
</ resour ce-r ef - mappi ng>

<resour ce-env-ref-mappi ng location=... nanme=... />

</ enti ty-depl oynent >

per si st ence- narre=. . .

per si st ence- nane=. . .

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

B-8 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Entity bean examples, which includes the <ent i t y- depl oynent > element,
are described in Chapter 3, "CMP Entity Beans", Chapter 4, "Entity Relationship
Mapping", Chapter 5, "EJB Query Language", and Chapter 6, "BMP Entity

Beans".

The <i or - securi ty- conf i g>element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the

Oracle9iAS Containers for J2EE Services Guide.

The <pr i nkey- mappi ng> element maps the primary key to the CMP field it
represents. See "Explicit Mapping of Persistent Fields to the Database" on

page 3-15 for more information.

0C4J-Specific Deployment Descriptor for EJBS

=« The<cnp-fiel d- mappi ng>element maps each <cnp-fi el d>element to its
database row. See "Explicit Mapping of Persistent Fields to the Database" on
page 3-15 for more information.

= The<finder-nmet hod>element is used to create finder methods for EJB 1.1
entity beans. To create EJB 2.0 finder methods, see "Entity Relationship
Mapping". To continue to use EJB 1.1 finder methods with this element, see "EJB
1.1 Advanced Finder Methods" on page A-11.

« The <env-ent ry- mappi ng>element maps environment variables to JNDI names
and is discussed in "Environment variables" on page 8-15.

« The <ej b-ref - nappi ng> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 8-20.

« The <resour ce-ref - mappi ng>element maps any EJB references to JNDI names
and is discussed in "Environment References To Resource Manager Connection
Factory References" on page 8-20.

« The <resour ce- env-r ef - mappi ng> element is used to map an administered object
for aresource. For example, to use JMS, the bean must obtain both a JMS factory
object and a destination object. These objects are retrieved at the same time from
JNDI. The <r esour ce- r ef > element declares the JMS factory and the
<resour ce- env-ref >elment is used to declare the destination. Thus, the
<resour ce-env-ref - mappi ng> element maps the destination object. See
"Using Logical Names in the JMS JNDI Lookup" on page 7-15 for more
information.

The attributes for the <ent i t y- depl oyment > element are as follows:

Table B-2 Attributes for <entity-deployment> Element

Attribute Description

cal I -timeout This parameter specifies the maximum time to wait for any
resource to make a business/life-cycle method invocation.
This is not a timeout for how long a business method
invocation can take.

If the timeout is reached, a Ti nredQut Excepti on is
thrown. This excludes database connections.

Default Values: 90000 milliseconds. Set to 0 if you want the
timeout to be forever. See the EJB section in the Oracle9i
Application Server Performance Guide for more
information.

0C4J-Specific DTD Reference B-9

0C4J-Specific Deployment Descriptor for EJBs

Table B-2 Attributes for <entity-deployment> Element (Cont.)

Attribute

Description

cl ustering-schema

Do not use. Not needed in this release.

copy- by-val ue

Whether or not to copy (clone) all the incoming and
outgoing parameters in EJB calls. Set to "false’ if you are
certain that your application does not assume
copy-by-value semantics for a speed-up. The default is
‘true’.

dat a- source

The name of the data source used if using
container-managed persistence.

excl usive-write-access

Whether or not the EJB-server has exclusive write (update)
access to the database backend. This can be used only for
entity beans that use a"r ead_onl y" locking mode. In this
case, it increases the performance for common bean
operations and enables better caching.

This parameter corresponds to which commit option is
used (A, B or C, as defined in the EJB specification). When
exclusive-write-access = true, this is commit option A.

Default is false for beans with locking-mode=optimistic or
pessimistic and true for locking-mode=read-only.

The exclusive-write-access is forced to false if locking is
pessimistic or optimistic, and is not used with EJB
clustering. The exclusive-write-access can be false with
read-only locking, but read-only won't have any
performance impact if exclusive-write-access=false, since
ejbStores are already skipped when no fields have been
changed. To see a performance advantage and avoid doing
ejbLoads for read-only beans, you must also set
exclusive-write-access=true.

See "Exclusive Write Access to the Database" on page 8-12
for more information.

do-sel ect-before-insert

Recommend setting to false to avoid the extra select before
insert which checks if the entity already exists before doing
the insert. This will then detect a duplicate, if there is one,
during the insert. Default Value: true

i nst ance-cache-ti neout

The amount of time in seconds that entity wrapper
instances are assigned to an identity. If you specify 'never’,
you retain the wrapper instances until they are garbage
collected. The default is 60 seconds.

| ocati on

The JNDI-name to which this bean will be bound.

B-10 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

Table B-2 Attributes for <entity-deployment> Element (Cont.)

Attribute

Description

i sol ation

Specifies the isolation-level for database actions. The valid
values for Oracle databases are serializable’ and
‘committed’. The default is ‘committed’. Non-Oracle
databases can be the following: 'none’, ‘committed’,
‘serializable’, 'uncommitted’, and 'repeatable_read’.

For more information, see "Entity Bean Concurrency and
Database Isolation Modes" on page 8-10 and Oracle9i
Application Server Performance Guide .

| ocki ng- node

The concurrency modes configure when to block to
manage resource contention or when to execute in parallel.
For more information, see "Entity Bean Concurrency and
Database Isolation Modes" on page 8-10 and Oracle9i
Application Server Performance Guide . The concurrency
modes are as follows:

« PESSI M STI C: This manages resource contention and
does not allow parallel execution. Only one user at a
time is allowed to execute the entity bean at a single
time.

« OPTI M STI C Multiple users can execute the entity
bean in parallel. It does not monitor resource
contention; thus, the burden of the data consistency is
placed on the database isolation modes. This is the
default.

=« READ- ONLY: Multiple users can execute the entity
bean in parallel. The container does not allow any
updates to the bean’s state.

max- i nst ances

The number of maximum bean implementation instances
to be kept instantiated or pooled. The default is 100. See
"Configuring Pool Sizes For Entity Beans" on page 8-13 for
more information.

m n-instances

The number of minimum bean implementation instances to
be kept instantiated or pooled. The default is 0. See
"Configuring Pool Sizes For Entity Beans" on page 8-13 for
more information.

0OC4J-Specific DTD Reference B-11

0C4J-Specific Deployment Descriptor for EJBs

Table B-2 Attributes for <entity-deployment> Element (Cont.)

Attribute

Description

max-tx-retries

This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level
failures.

Generally, we recommend that you start by setting
max-tx-retries to 0 and adding retries only where errors are
seen that could be resolved through retries. For example, if
you are using serializable isolation and you want to retry
the transaction automatically if there is a conflict, you
might want to use retries. However, if the bean wants to be
notified when there is a conflict, then in this case, you
should set max-tx-retries=0.

Default Value: 3. See the EJB section in the Oracle9i
Application Server Performance Guide for more
information.

updat e- changed-
fields-only

Specifies whether the container updates only
modified fields or all fields to persistence storage for
CMP entity beans when ej bSt or e is invoked. The
default is true, which specifies to only update
modified fields. See "Techniques for Updating
Persistence" on page 8-14 for more information.

di sbl e-wr apper-cache

If true, a pool of wrapper instances is not maintained.
The default is true. See "Configuring Pool Sizes For
Entity Beans" on page 8-13 for more information.

name

The name of the bean, which matches the name of a bean in
the assembly section of the EJB deployment descriptor
(ej b-jar.xm).

pool - cache-ti nmeout

The amount of time in seconds that the bean
implementation instances are to be kept in the
"pooled" (unassigned) state, specifying 'never’
retains the instances until they are garbage collected.
The default is 60.

tabl e

The name of the table in the database if using
container-managed persistence.

B-12 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

Table B-2 Attributes for <entity-deployment> Element (Cont.)

Attribute

Description

val i di ty-ti neout

The maximum amount of time (in milliseconds) that an
entity is valid in the cache (before being reloaded). Useful
for loosely coupled environments where rare updates from
legacy systems occur. This attribute is only valid for entity
beans with locking mode of r ead_onl y and when
exclusive-write-access="true" (the default).

We recommend that if the data is never being modified
externally (and therefore you've set
exclusive-write-access=true), that you can set this to 0 or -1,
to disable this option, since the data in the cache will
always be valid for read-only EJBs that are never modified
externally.

If the EJB is generally not modified externally, so you're
using exclusive-write-access=true, yet occasionally the
table is updated so you need to update the cache
occasionally, then set this to a value corresponding to the
interval you think the data may be changing externally.

force-update

If OC4J does not believe that any of the persistence data
has changed, the f or ce- updat e attribute set to true
means that OC4J will still execute the EJB lifecycle by
invoking the ej bSt or e method. This manages data in
transient fields and sets appropriate persistent fields
during the ej bSt or e method. For example, an image
might be kept in one format in memory, but stored in a
different format in the database. The default is false.

wr apper

Name of the OC4J remote home wrapper class for this
bean. This is an internal server value and should not be
edited.

| ocal - wr apper

Name of the OC4J local home wrapper class for this bean.
This is an internal server value and should not be edited.

del ay- updat es-until -
conmi t

This attribute is valid only for CMP entity beans. Defers the
flushing of transactional data until commit time or not. The
default is true. Set this value to false to update persistence
data after completion of every EJB method invocation -
except ej bRenove() and the finder methods.

Message Driven Bean Section

The <message- dri ven- depl oynment > section provides additional deployment
information for a message driven bean deployed within this JAR file. The
<message- dri ven- depl oynment > section contains the following structure:

0OC4J-Specific DTD Reference B-13

0C4J-Specific Deployment Descriptor for EJBs

<message- dri ven- depl oynent cache-tineout=.. connection-factory-location=...

destination-location=... name=. .. subscription-nane=...
listener-threads=... transaction-tineout=...>

<env-entry-nappi ng hanme=. . .></ env-entry- nappi ng>

<ej b-ref-nmapping | ocation=... nane=... />

<resour ce-ref -nappi ng | ocation=. .. name=... >

<l ookup- context location=...>
<context-attribute name=... value=... />

</ | ookup- cont ext >
</ resour ce-r ef - mappi ng>
<resour ce-env-ref-mappi ng location=... nanme=... />

</ message- dri ven- depl oynent >

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

A message-driven bean example, which includes the
<message- dri ven- depl oyment > element, is described in Chapter 7,
"Message-Driven Beans".

The <env- ent ry- mappi ng>element maps environment variables to JNDI names
and is discussed in "Environment variables" on page 8-15.

The <ej b-r ef - nappi ng> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 8-20.

The <r esour ce-r ef - mappi ng> element maps any EJB references to JNDI names
and is discussed in "Environment References To Resource Manager Connection
Factory References" on page 8-20.

The <r esour ce- env-r ef - nrappi ng> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory
object and a destination object. These objects are retrieved at the same time from
JNDI. The <r esour ce- r ef > element declares the JMS factory and the
<resour ce- env-ref >elmentis used to declare the destination. Thus, the
<resour ce-env-ref - mappi ng> element maps the destination object. See
"Using Logical Names in the JMS JNDI Lookup" on page 7-15 for more
information.

The attributes for the <message- dri ven- depl oynment > element are as follows:

B-14 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

Table B-3 Attributes for <message-driven-deployment> Element

Attribute

Description

cache-ti neout

Do not use this element.

connecti on-factory-
| ocation

The JNDI location of the connection factory to use. The
JMS Dest i nati on Connecti on Fact ory is specified
intheconnect i on-factory-1| ocati on attribute. The
syntax is "j ava: conp/ r esour ce" + resource provider
name + "Topi cConnecti onFact ori es" or
"QueueConnect i onFact ori es" + user defined name.
The xxxConnect i onFact or i es details what type of
factory is being defined. For more information, see
"OC4J-Specific Deployment Descriptor” on page 7-12.

destination-location

The JNDI location of the destination (queue/topic) to
use. The JMS Dest i nat i on is specified in the

desti nati on-1 ocati on attribute. The syntax is

"j ava: conp/ r esour ce" + resource provider name +
"Topi cs" or "Queues" + Dest i nati on name. The
Topi ¢ or Queue details what type of Dest i nati onis
being defined. The Dest i nat i on name is the actual
gueue or topic name defined in the database. For more
information, see "OC4J-Specific Deployment Descriptor"
on page 7-12.

max- i nst ances

Do not use this element. Use | i st ener -t hr eads instead

m n-instances

Do not use this element.

name

The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor
(ej b-jar.xm).

subscri ption- name

If this is a topic, the subscription name is defined in the
subscri pti on- name attribute. For more information, see
"OC4J-Specific Deployment Descriptor” on page 7-12.

|i stener-threads

The listener threads are used to concurrently consume JMS
messages. The default is one thread. For more information, see
"OC4J-Specific Deployment Descriptor” on page 7-12.

transaction-ti meout

This attribute controls the transaction timeout interval for any
container-managed transactional MDB. The default is one day.
If the transaction has not completed in this timeframe, the
transaction is rolled back. For more information, see
"OC4J-Specific Deployment Descriptor” on page 7-12.

0OC4J-Specific DTD Reference B-15

0C4J-Specific Deployment Descriptor for EJBs

AC4J Active EJB Section

The <j em ser ver - ext ensi on> section defines the INDI name of the database
where the AC4J Databus is installed. The <j em ser ver - ext ensi on> contains the
following structure:

<j em server-ext ensi on dat a-sour ce-1 ocati on=... schedul i ng-threads=...>
<descri pti on></ descri pti on>
<dat a- bus dat a-bus-nane=... url=.../>

</j em ser ver - ext ensi on>

For more information on this element, see Chapter 10, "Active Components for
Java".

The <j em depl oynment > section provides additional deployment information for
an active EJB deployed within this JAR file. The <j em depl oynent > section
contains the following structure:

<j emdepl oyment jemnane=... ejb-nane=...>
<descri pti on></ descri pti on>
<dat a-bus dat a-bus-nanme=... url=.../>
<cal | ed- by>

<caller caller-identity=.../>
</ cal | ed- by>
<security-identity>
<descri pti on></ descri pti on>
<use-cal l er-identity></use-call er-identity>
</security-identity>
</j em depl oynent >

The cal | ed- by element lets the application deployer to control or restrict the
usage of the asynchronous methods defined on the AC4J bean. In the following
example "CLIUSER", "SVRUSER" and "XTRAUSER" can invoke all methods defined
on AC4JBeanA, which corresponds to the EJB with name="ABean". If "USER1" or
"USER2" invoke this AC4JBeanA, then the container throws Securi t yExcept i on.

<j emdepl oyrment j em nane="ACAJBeanA' ej b- nane="ABean">
<cal | ed- by>
<caller caller-identity="ClUSER'/>
<caller caller-identity="SVRUSER'/>
<caller caller-identity="XTRAUSER'/ >
</ cal | ed- by>
</j em depl oynent >

If the application deployer defines a security-role for the ABean EJB with
role="USER1", then "USER1" can invoke all the methods on the ABean EJB

B-16 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

synchronously. However, "USER1" can not invoke the same asynchronous methods
in AC4JBeanA unless the cal | ed- by element is defined for "USER1".

For more information on this element, see Chapter 10, "Active Components for
Java".

EJB 1.1 CMP Field Mapping Section
If you still use EJB 1.1 CMP entity beans, you use the following elements to map the
CMP fields to the database. See "Mapping EJB 1.1 CMP Fields to a Database Table

and Its Columns" on page A-14 for a discussion on mapping EJB 1.1 CMP data
fields.

The following are the XML elements used for CMP persistent data field mapping
within the ori on-ej b-j ar. xm file:

<cnp-fi el d-nappi ng €j b-reference-home=... nane=... persistence-nane=. ..

per si stence-type=...>

<fields>
<cnp-fi el d-nmappi ng €j b-reference-home=... nane=... persistence-name=. ..

per si st ence-type=. .. ></ cnp-fi el d- nappi ng>

</fiel ds>

<properti es>
<cnp-fi el d-nmappi ng €j b-reference-honme=... nane=... persistence-name=. ..

per si st ence-type=. .. ></cnp-fi el d- mappi ng>
</properties>
<entity-ref home=...>
<cnp-fi el d-mappi ng ej b-reference-hone=... nanme=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
<entity-ref>
<list-mapping table=...>
<pr i nkey- nappi ng>
<cnp-fiel d-mappi ng ej b-reference-hone=... nanme=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ pri nkey- nappi ng>
<val ue- nappi ng i mut abl e="true| fal se" type=...>
<cnp-fi el d-mappi ng ej b-reference-hone=... nane=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ val ue- mappi ng>
</ li st -nappi ng>
<col | ecti on-nmappi ng table=...>
<pr i nkey- nappi ng>
<cnp-fi el d-mappi ng ej b-reference-hone=... nanme=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ pri nkey- nappi ng>

0OC4J-Specific DTD Reference B-17

0C4J-Specific Deployment Descriptor for EJBs

<val ue-nappi ng i mut abl e="true| fal se" type=...>
<cnp-fi el d-nappi ng €j b-reference-home=... nane=... persistence-name=. ..
persi st ence-type=. . .></ cnp-fi el d- mappi ng>
</ val ue- mappi ng>
</ col | ecti on- mappi ng>
<set-napping table=...>
<pr i nkey- mappi ng>
<cnp-fiel d-nappi ng €j b-reference-home=... nane=... persistence-name=. ..
persi st ence-type=. . .></ cnp-fi el d- mappi ng>
</ pri nkey- nappi ng>
<val ue-nappi ng i mut abl e="true| fal se" type=...>
<cnp-fi el d-nappi ng €j b-reference-home=... nane=... persistence-name=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ val ue- mappi ng>
</ set - nappi ng>
<map- nappi ng table=...>
<pri nkey- mappi ng>
<cnp-fiel d-nappi ng €j b-reference-home=... nane=... persistence-name=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ pri nkey- nappi ng>
<map- key- nappi ng type=...>
<cnp-fiel d-mappi ng ej b-reference-hone=... nanme=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ map- key- nappi ng>
<val ue- mappi ng i mut abl e="true| fal se" type=...>
<cnp-fiel d-mappi ng ej b-reference-hone=... nanme=... persistence-nare=. ..
per si st ence-type=. .. ></ cnp-fi el d- mappi ng>
</ val ue- mappi ng>
</ map- mappi ng>
</ cnp-fi el d- nappi ng>

Method Definition

The following structure is used to specify the methods (and possibly parameters of
that method) of the bean.

<net hod>
<descri pti on></ descri pti on>
<ej b- nane></ gj b- nane>
<net hod-i nt f ></ net hod- i nt f >
<net hod- nane></ net hod- narme>
<net hod- par ans>

<net hod- par an»</ et hod- par an»

</ net hod- par ans>

</ et hod>

B-18 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

0C4J-Specific Deployment Descriptor for EJBS

The style used can be one of the following:

1. When referring to all the methods of the specified enterprise bean's home and
remote interfaces, specify the methods as follows:

<met hod>
<ej b- nane>EIBNAME</ €] b- nane>
<net hod- name>* </ et hod- nane>
</ net hod>

2. When referring to multiple methods with the same overloaded name, specify
the methods as follows:

<net hod>
<ej b- nane>EIBNAME</ €] b- nane>
<net hod- nane>METHOD</ net hod- nane>
</ net hod>>

3. When referring to a single method within a set of methods with an overloaded
name, you can specify each parameter within the method as follows:

<net hod>
<ej b- nane>EIBNAME</ €] b- nane>
<net hod- nane>METHCD</ et hod- nane>
<net hod- par ans>
<net hod- par an»PARAM 1</ net hod- par an»
<net hod- par an»PARAM 2</ net hod- par an»

<net hod- par an»PARAM n</ net hod- par an»
</ met hod- par ans>
</ met hod>

The <nmet hod> element is used within the security and MDB sections. See

"OC4J-Specific Deployment Descriptor” on page 7-12 and "Specifying Logical Roles
in the EJB Deployment Descriptor" on page 8-29 for more information.

0OC4J-Specific DTD Reference B-19

0C4J-Specific Deployment Descriptor for EJBs

Assembly Descriptor Section

In addition to specifying deployment information for individual beans, you can also
specify addition deployment mapping information for security in the

<assenbl y- descri pt or > section. The <assenbl y- descri pt or > section
contains the following structure:

<assenbl y-descri pt or >

<security-rol e-mapping inpliesAl=.. nane=..>
<group nane=... />
<user name=... />

</ security-rol e- mappi ng>
<def aul t - net hod- access>

<security-role-mapping inpliesAl=... nane=...>
<group nane=... />
<user nane=... />

</ security-rol e- mappi ng>
</ def aul t - net hod- access>
</ assenbl y-descri pt or >

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

« The<security-rol e-mappi ng>element is described in "Mapping Logical
Roles to Users and Groups" on page 8-34.

« The<default-nmethod-access>elementis described in "Specifying a
Default Role Mapping for Undefined Methods" on page 8-36.

B-20 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

Element Description

<assembly-descriptor>
The mapping of the assembly descriptor elements.

<called-by>

Enables the application deployer to control or restrict the usage of the asynchronous
methods defined on the AC4J bean. You specify the user identity that is allowed to
execute all methods of the bean in this element. The identities that can be execute
the AC4J beans are identified in one or more <cal | er > elements.

<caller>

Each caller identity allowed to execute methods on the AC4J bean are defined in a
single <cal | er > element.

Attributes:

« caller-identity - The security role that is allowed to execute the AC4J bean
methods.

<cmp-field-mapping>

Deployment information for a container-managed persistence field. If no subtags
are used to define different behavior, the field is persisted through serialization or
native handling of "recognized" primitive types.

Attributes:

« ejb-reference-home - The INDI-location of the fields remote EJB-home if the
field is an entity EJBObject or an EJBHome.

« hame - The name of the field.
« persistence-name - The name of the field in the database table.

« persistence-type - The database type (valid values varies from database to
database) of the field.

<collection-mapping>

Specifies a relational mapping of a Collection type. A Collection consists of n
unordered items (order isnt specified and not relevant). The field containing the
mapping must be of type java.util.Collection.

Attiributes:

« table - The name of the table in the database.

0OC4J-Specific DTD Reference B-21

Element Description

<context-attribute>

An attribute sent to the context. The only mandatory attribute in JNDI is the
‘j ava. nam ng. factory.initial’which is the classname of the context factory
implementation.

Attributes:
= name - The name of the attribute.
= Vvalue - The value of the attribute.

<data-bus>
The name and url of a specific Databus for an AC4J object.

Attributes:
« data-bus-name - The user-defined name of the Databus.
« url - The URL of the Databus, which is similar to a JDBC URL.

<default-method-access>
The default method access policy for methods not tied to a method-permission.

<description>
A short description.

<ejb-name>

The ejb-name element specifies an enterprise bean’s name. This name is assigned by
the ejb-jar file producer to name the enterprise bean in the ejb-jar file’s deployment
descriptor. The name must be unigue among the names of the enterprise beans in
the same ejb-jar file. The enterprise bean code does not depend on the name;
therefore the name can be changed during the application-assembly process
without breaking the enterprise bean’s function. There is no architected relationship
between the ejb-name in the deployment descriptor and the INDI hame that the
Deployer will assign to the enterprise bean’s home. The name must conform to the
lexical rules for an NMTOKEN.

<ejb-ref-mapping>

The ej b-r ef element that is used for the declaration of a reference to another
enterprise bean’s home. The ej b- r ef - mappi ng element ties this to a
JNDI-location when deploying.

Attributes:
« location - The JNDI location to look up the EJB home from.

« name - The ejb-ref’s name. Matches the name of an ejb-ref in ejb-jar.xml.

B-22 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

<enterprise-beans>
The beans contained in this EJB JAR file.

<entity-deployment>
Deployment information for an entity bean.

Attributes:

« call-timeout - The time (long milliseconds in decimal) to wait for any resource
that the EJB uses, except database connections, if it is busy (before throwing a
Renot eExcept i on, treating it as a deadlock). This is also used as a SQL query
timeout. If the timeout occurs before the SQL query finishes, a SQL exception is
thrown. If zero, the timeout is disabled. The default is 90 seconds.

« clustering-schema - Not recommended to use.

« copy-by-value - Whether or not to copy all the incoming/outgoing parameters
for all incoming and outgoing EJB calls. Set to 'false’ if your application does
not assume copy-by-value semantics for these parameters. The default is "true’.

« data-source - The name of the data source used if using container-managed
persistence.

« delay-updates-until-commit - Defers the flushing of transactional data until
commit time or not. The default is true. If you want each change to be updated
in the database, set this element to false.

« disable-wrapper-cache - If true, a pool of wrapper instances is not maintained.
The default is true. See "Configuring Pool Sizes For Entity Beans" on page 8-13 for
more information.

« do-select-before insert - Recommend setting to false to avoid the extra select
before insert which checks if the entity already exists before doing the insert.
This will then detect a duplicate, if there is one, during the insert. Default Value:
true.

« exclusive-write-access - Whether or not the EJB-server has exclusive write
(update) access to the database backend. This can be used only for entity beans
that use a "r ead_onl y" locking mode. In this case, it increases the performance
for common bean operations and enables better caching. The default is false.
See "Exclusive Write Access to the Database" on page 8-12 for more information.

« instance-cache-timeout - The amount of time in seconds that entity wrapper
instances are assigned to an identity. If you specify 'never’, you retain the
wrapper instances until they are garbage collected. The default is 60 seconds.

0OC4J-Specific DTD Reference B-23

Element Description

isolation - Specifies the isolation-level for database actions. The valid values for
Oracle databases are ’serializable’ and ’committed’. The default is 'committed’.
Non-Oracle databases can be the following: 'none’, ‘committed’, "serializable’,
‘uncommitted’, and 'repeatable_read’. For more information, see "Entity Bean
Concurrency and Database Isolation Modes" on page 8-10 and Oracle9i
Application Server Performance Guide .

local-wrapper - Name of the OC4J local home wrapper class for this bean. This
is an internal server value and should not be edited.

location - The INDI-name this bean will be bound to.

locking-mode - The concurrency modes configure when to block to manage
resource contention or when to execute in parallel. For more information, see
"Entity Bean Concurrency and Database Isolation Modes" on page 8-10 and
Oracle9i Application Server Performance Guide . The concurrency modes are as
follows:

— PESSI M STI C: This manages resource contention and does not allow
parallel execution. Only one user at a time is allowed to execute the entity
bean at a single time.

— OPTI M STI C Multiple users can execute the entity bean in parallel. It does
not monitor resource contention; thus, the burden of the data consistency is
placed on the database isolation modes. This is the default.

— READ- ONLY: Multiple users can execute the entity bean in parallel. The
container does not allow any updates to the bean’s state.

max-instances - The number of maximum bean implementation instances to be
kept instantiated or pooled. The default is 100. See "Configuring Pool Sizes For
Entity Beans" on page 8-13 for more information.

min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. See "Configuring Pool Sizes For Entity
Beans" on page 8-13 for more information.

max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 3. Consider setting to zero if using
the serializable isolation level. Within a transaction, the container uses the
max-tx-retries value of the first invoked bean within the transaction. The
performance guide recommends that you set this value to 0 and add retries only
where errors are seen that could be resolved through a retry.

name - The name of the bean, this matches the name of a bean in the assembly
descriptor (ej b-j ar. xm).

B-24 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

pool-cache-timeout - The amount of time in seconds that the bean
implementation instances are to be kept in the "pooled" (unassigned) state,
specifying 'never’ retains the instances until they are garbage collected. The
default is 60.

table - The name of the table in the database if using container-managed
persistence.

validity-timeout - The maximum amount of time (in milliseconds) that an entity
is valid in the cache (before being reloaded). Useful for loosely coupled
environments where rare updates from legacy systems occur. This attribute is
only valid for entity beans with locking mode of r ead_onl y and when
exclusive-write-access="true" (the default).

We recommend that if the data is never being modified externally (and
therefore you've set exclusive-write-access=true), that you can set this to 0 or -1,
to disable this option, since the data in the cache will always be valid for
read-only EJBs that are never modified externally.

If the EJB is generally not modified externally, so you're using
exclusive-write-access=true, yet occasionally the table is updated so you need to
update the cache occasionally, then set this to a value corresponding to the
interval you think the data may be changing externally.

update-changed-fields-only - Specifies whether the container updates only
modified fields or all fields to persistence storage for CMP entity beans when
ej bSt or e is invoked. The default is true, which specifies to only update
modified fields. See "Techniques for Updating Persistence" on page 8-14 for
more information.

wrapper - Name of the OC4J remote home wrapper class for this bean. (internal
server attribute, do not edit)

<entity-ref>

Specified the configuration for persisting an entity reference via it’s primary key.
The child-tag of this tag is the specification of how to persist the primary key.

Attributes:

home - JNDI location of the EJBHome to get lookup the beans at.

<env-entry-mapping>
Overrides the value of an env- ent ry in the assembly descriptor. It is used to keep
the EAR clean from deployment-specific values. The body is the value.

Attribute:

0OC4J-Specific DTD Reference B-25

Element Description

« hame - The name of the context parameter.

<fields>

Specifies the configuration of a field-based (java class field) mapping persistence for
this field. The fields that are to be persisted have to be public, non-static, non-final
and the type of the containing object has to have an empty constructor.

<finder-method>

The definition of a container-managed finder method. This defines the selection
criteria in a f i ndBy XXX() method in the bean’s home.

Attributes:

« partial - Whether or not the specified query is a partial one. A partial query is
the 'where’ clause or the 'order’ (if it starts with order) clause of the SQL query.
Queries are partial by default. If partial="false" is specified then the full query is
to be entered as value for the query attribute and you need to make sure that
the query produces a result-set containing all of the CMP fields. This is useful
when doing advances queries involving table joins and similar.

« query - The query part of an SQL statement. This is the section following the
WHERE keyword in the statement. Special tokens are $Snumber which denotes
an method argument number and $name which denotes a cmp-field name. For
instance the query for "findByAge(int age)" would be (assuming the cmp-field
is named ’age’): "$1 = $age".

<group>

A group that this <securi t y-r ol e- mappi ng>implies. That is, all members of

the specified group are included in this role.

Attributes:

« name - The name of the group.

<ior-security-config>

The <i or - securi ty-confi g>element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the
Oracle9iAS Containers for J2EE Services Guide.

B-26 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

<jem-deployment>
Specifies an active EJB for deployment into the AC4J container.
Attributes:

= jem-name - An AC4J name that is used to identify the bean within the AC4J
calls

« ejb-name - Identifies the EJB defined in the ej b-j ar . xmi file as an active EJB.

<jem-server-extension>
Describes the database server where the Databus is installed

Attributes:

« data-source-location - Provides the JNDI data source definition of the database
where the Databus exists. The data source is configured in the
dat a- sour ces. xm file.

« scheduling-threads - If greater than 1, then multiple OC4J threads can act in
parallel. Default is 1.

<list-mapping>
Specifies a relational mapping of a List type. A List is a sequential (where

order/index is important) Collection of items. The field containing the mapping
must be of type java.util.List or the legacy types java.util.Vector or Typel[].

Attributes:
.« table - The name of the table in the database.

<lookup-context>

The specification of an optional j avax. nam ng. Cont ext implementation used
for retrieving the resource. This is useful when using third party modules, such as a
third party JMS server. Either use the context implementation supplied by the
resource vendor or, if none exists, write an implementation that negotiates with the
vendor software.

Attribute:

« location - The name looked for in the foreign context when retrieving the
resource.

<map-key-mapping>
Specifies a mapping of the map key. Map keys are always immutable.

Attributes:

0OC4J-Specific DTD Reference B-27

Element Description

« type - The fully qualified class name of the type of the value. Examples are
com.acme.Product, java.lang.String etc.

<map-mapping>

Specifies a relational mapping of a Map type. A Map consists of n unigue keys and
their mapping to values. The field containing the mapping must be of type
java.util.Map or the legacy types java.util.Hashtable or java.util.Properties.

Attributes:
« table - The name of the table in the database.

<message-driven-deployment>
Deployment information for a MDB.

Attributes:

« connection-factory-location: The JNDI location of the connection factory to use.
The JMS Dest i nati on Connecti on Fact ory is specified in the
connection-factory-I| ocati on attribute. The syntax is
"j ava: conp/ r esour ce" + resource provider name +
"Topi cConnecti onFact ori es" or "QueueConnecti onFact ori es" + user
defined name. The xxxConnect i onFact ori es details what type of factory is
being defined.

« destination-location: The JNDI location of the destination (queue/topic) to use.
The JMS Dest i nat i on is specified in the desti nati on-1 ocat i on attribute.
The syntax is "j ava: conp/ r esour ce" + resource provider name + "Topi ¢s"
or"Queues" + Dest i nati on name. The Topi ¢ or Queue details what type of
Desti nati on is being defined. The Dest i nat i on name is the actual queue or
topic name defined in the database.

« hame - The name of the bean, this matches the name of a bean in the assembly
descriptor (ej b-j ar. xnml).

« subscription-name: If this is a topic, the subscription name is defined in the
subscri pti on- nane attribute.

« listener-threads: The listener threads are used to concurrently consume JMS
messages. The default is one thread.

« transaction-timeout: This attribute controls the transaction timeout interval for
any container-managed transactional MDB. The default is one day. If the
transaction has not completed in this timeframe, the transaction is rolled back.

<method>

Specify the methods (and possibly parameters of that method) of the bean.

B-28 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

<method-intf>

The method-intf element allows a method element to differentiate between the
methods with the same name and signature that are defined in both the remote and
home interfaces. The method-intf element must be one of the following: Home or
Remote.

<method-name>

The method-name element contains a name of an enterprise bean method, or the
asterisk (*) character. The asterisk is used when the element denotes all the methods
of an enterprise bean’s remote and home interfaces.

<method-param>

The method-param element contains the fully-qualified Java type name of a method
parameter.

<method-params>

The method-params element contains a list of the fully-qualified Java type names of
the method parameters.

<orion-ejb-jar>

Anorion-ejb-jar.xm file contains the OC4J-specific deployment information
for an EJB. It is used to specify initial deployment properties. After each

deployment the deployment file is reformatted and altered by the server for
additional information.

Attributes:

« deployment-time - The time (long milliseconds in decimal) of the last
deployment, if not matching the last editing date the jar will be redeployed.
(internal server value, do not edit)

« deployment-version - The version of OC4J this jar was deployed with, if it’s not
matching the current version then it will be redeployed. (internal server value,
do not edit)

<primkey-mapping>

Designates how the primary key is mapped.

<properties>

Specifies the configuration of a property-based (bean properties) mapping
persistence for this field. The properties have to adhere to the usual JavaBeans
specification and the type of the containing object has to have an empty constructor
This is also designated within the EJB specification.

0OC4J-Specific DTD Reference B-29

Element Description

<resource-ref-mapping>

Theresour ce-ref element is used for the declaration of a reference to an external
resource such as a data source, JMS queue, or mail session. The
resour ce-ref - mappi ng ties this to a INDI-location when deploying.

Attributes:
« location - The JNDI location to look up the resource factory from.

« hame-Theresource-ref name. Matches the name of anr esour ce-r ef in
ej b-jar.xm.
<resource-env-ref-mapping>

Theresour ce-env-ref - mappi ng element element is used to map an
administered object for a resource. For example, to use JMS, the bean must obtain
both a JMS factory object and a destination object. These objects are retrieved at the
same time from JNDI. The <r esour ce- r ef > element declares the JMS factory and
the <r esour ce- env-r ef > elment is used to declare the destination. Thus, the
<resour ce-env-ref - mappi ng> element maps the destination object. See "Using
Logical Names in the JMS JNDI Lookup" on page 7-15 for more information.

Attributes:
« location - The JNDI location from which to look up the administered resource.
« name-Theresource-env-ref nameinejb-jar.xm .

<role-name>

The security role that the AC4J EJB methods are run under when using the
<run-as-specified-identity>element.

<run-as-specified-identity>

You can specify that all methods of an AC4J EJB execute under a specific identity.
That is, the container does not check different roles for permission to run specific
methods; instead, the container executes all of the AC4J EJB methods under the
specified security identity.

<security-identity>

Describes if the AC4J Databus should use the caller or run-as identity for the AC4J
bean security.

<security-role-mapping>
The runtime mapping (to groups and users) of a role. Maps to a security-role of the
same name in the assembly descriptor.

Attributes:

B-30 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

impliesAll - Whether or not this mapping implies all users. The default is false.

name - The name of the role

<session-deployment>
Deployment information for a session bean.

Attributes:

pool-cache-timeout—How long to keep stateless sessions cached in the pool.
Only applies to stateless session beans. Legal values are positive integer values
or'never . For stateless session beans, if you specify a pool-cache-timeout,
then at every pool-cache-timeout interval, all beans in the pool, of the
corresponding bean type, are removed. If the value specified is zero or negative,
then the pool-cache-timeout is disabled and beans are not removed from the
pool.

Default Value: 60 (seconds)

call-timeout—The time (long milliseconds in decimal) to wait for any resource
that the EJB uses, excluding database connections, if it is busy. After this times
out, a Renot eExcept i on is thrown and the EJB is treated as involved in a
deadlock. If value is set to 0, OC4J waits for the EJB "forever". This is the
default.

copy-by-value—Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to 'false’ if you are certain that your application
does not assume copy-by-value semantics for a speed-up. The default is "true’.

local-wrapper—Name of the OC4J wrapper class for this bean. This is an
internal server value and should not be edited.

location—The JNDI-name that this bean will be bound to.

max-instances - The number of maximum bean implementation instances to be
kept instantiated or pooled. The default is 100. This applies only to stateless
session beans.

min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. This applies only to stateless
session beans.

max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 3. Within a transaction, the container
uses the max-tx-retries value of the first invoked bean within the transaction.
The performance guide recommends that you set this value to 0 and add retries
only where errors are seen that could be resolved through a retry.

0OC4J-Specific DTD Reference B-31

Element Description

« hame—The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor (ej b-j ar . xm).

« persistence-filename—~Path to the file where sessions are stored across restarts.

« timeout—Inactivity timeout in seconds. If the value is zero or negative, then all
timeouts are disabled. The default is 30 minutes. Every 30 seconds, the pool
clean up logic is invoked. Within the pool clean up logic, only the sessions that
timed out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful session beans. For
example, if stateful session beans are not removed explicitly by your
application, and the application creates many stateful session beans, then you
may want to lower the timeout value.

If your application requires that a stateful session bean be available for longer
than 30 minutes, then adjust the timeout value accordingly.

« wrapper—Name of the OC4J wrapper class for this bean. This is an internal
server value and should not be edited.

<set-mapping>

Specifies a relational mapping of a Set type. A Set consists of n unique unordered
items (order is not specified and not relevant). The field containing the mapping
must be of type java.util.Set.

Attributes:
« table - The name of the table in the database.

<use-caller-identity>
You can specify that all methods of an AC4J EJB execute under the caller’s identity.

<user>
A user that this security-role-mapping implies.

Attributes:
= name - The name of the user.

<value-mapping>
Specified a mapping of the primary key part of a set of fields.

Attributes:

= immutable - Whether or not the value can be trusted to be immutable once
added to the Col | ect i on/ Map. Setting this to true will optimize database

B-32 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Element Description

operations extensively. The default value is "true” for set-mapping and
map-mappings and "false" for collection-mapping and list-mapping.

type - The fully qualified class name of the type of the value. Examples are
com acnme. OrderEntry,java. | ang. Stri ng, and so on.

0OC4J-Specific DTD Reference B-33

Element Description

B-34 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

C

Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle9i Application Server. Topics include:

« Apache HTTP Server
« Apache JServ

Third Party Licenses C-1

Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License

* The Apache Software License, Version 1.1

* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.

* Redistribution and use in source and binary forns, with or wthout
* nodification, are pernitted provided that the follow ng conditions
* are net:

* 1. Redistributions of source code nust retain the above copyright
* notice, this list of conditions and the fol |l owing disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the following disclainmer in
* the docunentation and/or other materials provided with the
* distribution.

* 3. The end-user docunentation included with the redistribution,

* if any, must include the follow ng acknow edgnent:

* "This product includes software devel oped by the

* Apache Software Foundation (http://ww. apache.org/)."

* Alternately, this acknow edgnent nay appear in the software itself,
* if and wherever such third-party acknow edgnments normal |y appear.

* 4. The names "Apache" and "Apache Software Foundation" nust

* not be used to endorse or promote products derived fromthis
software without prior witten pernission. For witten

perm ssion, please contact apache@pache.org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their name, without prior witten

C-2 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Apache HTTP Server

perm ssion of the Apache Software Foundation.

TH S SOFTWARE IS PROVIDED ‘“AS IS’ AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, | NCLUDING BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE

DI SCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT
LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS CR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY,
OR TORT (| NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY OUT
OF THE USE OF THI S SOFTWARE, EVEN |F ADVI SED OF THE POSSI BI LI TY OF
SUCH DAMAGE.

Thi s software consists of voluntary contributions made by many

i ndi vi dual s on behal f of the Apache Software Foundation. For nore
i nformation on the Apache Software Foundation, please see
<http://ww. apache. org/ >.

Portions of this software are based upon public domain software

originally witten at the National Center for Superconputing Applications,
University of Illinois, U bana-Chanpaign.

Third Party Licenses C-3

Apache JServ

Apache JServ

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

= Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

« Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

« All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

=« The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

« Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

« Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

C-4 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Apache JServ

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Third Party Licenses C-5

Apache JServ

C-6 Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide

Symbols

<abstract-schema-name> element, 5-4,5-7

<assembly-descriptor> element, B-20, B-21

<caller> element, B-21

<cascade-delete/> element, 4-9

<cmp-field-mapping> element, 4-24, 4-25, 4-27,
4-31, B-9, B-21

<cmr-field> element, 3-19, 4-6, 4-12, 4-27, 4-31

<cmr-field-name> element, 4-4, 4-6

<cmr-field-type> element, 4-6

<collection-mapping> element, 4-26, 4-27, 4-30,
B-21

<context-attribute> element, B-22

<default-method-access> element, 8-36, B-20, B-22

<delay-updates-until-commit> attribute, B-23

<description> element, B-22

<ejb>element, 2-13

<ejb-link> element, 8-18, 8-19

<ejb-location> element, 6-11

<ejb-mapping> element, 8-19

<ejb-module> element, 8-8

<ejb-name> element, 8-19, B-22

<ejb-ql>, 5-4

<ejb-ql> element, 5-8

<ejb-ref> element, 8-2, 8-6, 8-19

<ejb-ref-mapping> element, 8-19, B-5, B-9, B-14,
B-22

<ejb-ref-name> element, 8-2, 8-19, 8-20

<ejb-ref-type> element, 8-19

<ejb-relation> element, 4-6

<ejb-relation-name> element, 4-6

<ejb-relationship-role> element, 4-6

<ejb-relationship-role-name> element, 4-6

Index

<enterprise-beans> element, B-3, B-23
<entity-deployment> element, 4-20, 4-24, 8-10,
8-12, B-7, B-8, B-23
<entity-ref> element, B-25
<env-entry>element, 8-15
<env-entry-mapping> element, B-5, B-9, B-14, B-25
<env-entry-name> element, 8-15
<env-entry-type> element, 8-15
<env-entry-value> element, 8-15
<fields> element, B-26
<finder-method> element, 5-3, B-9, B-26
<group> element, B-26
<home> element, 8-19
<ior-security-config> element, B-4, B-8, B-26
<java> element, 2-13
<jem-deployment> element, B-16, B-27
<jem-server-extension> element, B-16, B-27
<jndi-name> element, 8-19, 8-23, 8-25
<list-mapping> element, B-27
<lookup-context> element, B-27
<map-key-mapping> element, B-27
<map-mapping> element, B-28
<mapping> element, 8-19, 8-23, 8-25
<max-tx-retries> element, 8-11
<message-driven> element, 7-10
<message-driven-deployment> element, B-13,
B-14, B-28
<method> element, B-18, B-19, B-28
defined, 8-31
<method-intf> element, B-29
<method-name> element, 5-4, B-29
<method-param> element, 5-8, B-29
<method-params> element, B-29
<method-permission> element, 8-28, 8-29, 8-31

Index-1

<module> element, 2-13

<multiplicity> element, 4-6

<orion-gjb-jar> element, B-3, B-29

<persistence-type> element, 6-11

<prim-key-class> element, 3-9, 6-4, A-8

<primkey-mapping> element, 4-28, B-8, B-29

<properties> element, B-29

<query> element, 5-2,5-3, 5-4,5-8

<query> element., 5-6

<relationship-role-source> element, 4-6

<relationships> element, 4-5, 4-26

<remote> element, 8-19

<res-auth> element, 8-23, 8-26

<resource-env-ref> element, 7-15

<resource-env-ref-mapping> element, B-5, B-9,
B-14, B-30

<resource-ref>element, 6-11, 7-15

<resource-ref-mapping> element, 8-23, 8-25, B-5,
B-9, B-14, B-30

<res-ref-name> element, 8-23, 8-25

<res-type> element, 8-23, 8-26

<result-type-mapping> element, 5-4

<role-link> element, 8-28, 8-29, 8-30

<role-name> element, 8-28, 8-29

<run-as> element, 8-33

<security-identity> element, 8-33

<security-role> element, 8-28, 8-29

<security-role-mapping> element, 8-34, 8-35, B-20,
B-30

<security-role-ref> element, 8-28, 8-29

<session-deployment> element, B-4, B-31

<set-mapping> element, B-32

<unchecked/> element, 8-33

<use-caller-identity/> element, 8-34

<user> element, B-32

<value-mapping> element, B-32

<value-mapping> element, 4-28

<web> element, 2-13

A

AC4]), 10-1to 10-62

Active Components for Java, see AC4J

application.xml file, 2-13,7-4
example, 2-14

Index-2

overview,
archiving

directions,

EAR file,

2-13

2-12
2-14

EJBs, 2-12
associateUsingThirdTable option,

B

4-30

bean

accessing remotely, 1-8

activation,
creating,

environment,

1-12

2-4,3-3, A-2

implementation,

interface,
overview,

passivation,

removal,

1-7
1-1

2-15

1-14

2-8

1-12

steps for invocation, 1-8

bean-managed persistent, see BMP

BMP

create database tables, 6-12
creation process,
defined, 6-1

deployment descriptor, 6-11

ejbCreate implementation,
home and remote interfaces,

6-2

implementation details, 6-3

persistence,

C

1-20

6-3
6-3

cache-timeout attribute, B-15

called-by attri

bute,

B-21

caller-identity attribute, B-21

call-timeout attribute,

ClassCastException,

clustering, 9-1to9-9
concurrency mode effect, 8-13
deploying application to all nodes, 9-8

clustering-schema attribute, B-23

CMP
data types,
overview,

3-17
1-21

8-8, 8-44

B-5, B-9, B-23, B-31

persistence update configuration, 8-14
CMR

cardinality, 4-6

cascade delete option, 4-9

default mapping, 4-11

define get/set methods, 4-4

deployment descriptor, 4-5

direction, 4-6

explicit relationship mapping, 4-19

many-to-many, 4-3,4-7,4-14

many-to-one, 4-3, 4-6

mapping relationships, 4-10

one-to-many, 4-3, 4-6, 4-14, 4-26, 4-30

one-to-one, 4-2,4-6, 4-13, 4-22

relationship definition, 4-3

types of relationships, 4-2
Collections, 3-19
command-line options

performance settings, 8-38
concurrency modes, 8-10

clustering, 8-13
connection-factory-location attribute, B-28
context

session, 1-14

transaction, 1-14
copy-by-value attribute, B-6, B-10, B-23, B-31
create method, 2-15, 3-3, 3-4, 3-5, 6-2, A-2, A-3

EJBHome interface, 1-9,2-4
CreateException, 2-5,2-6

D

data types, 3-17
data-bus attribute, B-22
data-source attribute, B-10, B-23
DataSource object, 8-21
data-source-location attribute, B-27
data-sources.xml file, 6-11, 6-12
DBMS_AQADM package, 7-5
deadlock

recovery, 8-44
dedicated.connection setting, 8-38
dedicated.rmicontext setting, 8-38
DefineColumnType setting, 8-38
delay-updates-until-commit attribute, B-13

deployment descriptor, 1-9, 2-11, 3-3, 6-3, A-2

BMP, 6-11

EBQL, 5-4

EJB reference, 8-16

entity bean, A-10, B-7

environment variables, 8-15

JDBC DataSource, 8-20

MDB, 7-3

message-driven bean, B-13

security, 8-28, 8-29, 8-35

session bean, B-5
destination-location attribute, B-28
disable-wrapper-cache attribute, 8-14, B-23
disble-wrapper-cache attribute, B-12
DNS round-robin, 8-7,8-43
do-select-before insert attribute, B-23
do-select-before-insert attribute, B-10
DTD file, 2-11
dynamic cluster discovery, 9-3

E

EAR file, 2-1
creation, 2-14

EJB
archive, 2-12
client

setting JMS port, 8-6

setting RMI port, 8-6
clustering, 9-1to9-9
creating, 2-2,2-4,2-8, 3-3, A-2
deployment descriptor, 2-11
development suggestions, 2-2
difference between session and entity, 1-25
home interface, 2-4
JAR file, 3-4,6-3,7-4, A-2
local interface, 2-7
overview, 1-1
parameter passing, 1-10
referencing other EJBs, 8-8, 8-44
remote interface, 2-6
replication, 9-7
security, 8-27
setting pool size, 8-13
standalone client, 8-6

Index-3

EJB QL
?1, 5-8
deployment descriptor, 5-4
DISTINCT keyword, 5-8
documentation, 5-1
finder method
example, 5-5
overview, 5-2
input parameter syntax, 5-8
overview, 5-2
query methods, 5-2
select method
example, 5-7
overview, 5-3
statement example, 5-5, 5-6
EJB Query Language, see EJB QL
ejpActivate method, 1-12,1-19, 6-3, 6-9, 6-10
EJBContext interface, 1-13
ejbCreate method, 1-18,1-19, 1-21, 2-4, 3-3, 6-2, 6-3,
A-2
initializing primary key, 6-3
MDB, 7-3
SessionBean interface, 1-12
EJBException, 2-5,2-6, 2-7
ejpFindByPrimaryKey method, 1-21, 6-3, 6-7, A-2
EJBHome interface, 2-4, 2-5, 3-3, 3-4, 6-2, A-2
create method, 3-3, 3-4, 3-5, 6-2, A-2, A-3
findByPrimaryKey method, 3-3, 3-5, 6-2, A-2,
A-3
ejb-jar.xml file, 2-11,6-11
ejpLoad method, 1-18, 1-20, 1-21, 1-22, 6-3, 6-9
EJBLocalHome interface, 2-4, 2-6, 3-3, 3-4, 6-2
EJBLocalObject interface, 2-4,2-7, 3-3, 3-5, 6-2
ejb-name attribute, B-27
EJBObject interface, 2-4, 2-6, 3-3, 3-5, 6-2, A-2, A-4
ejbPassivate method, 1-12,1-19, 6-3,6-9
ejpPostCreate method, 1-18, 1-21, 3-3, 6-2, A-2
ejb-reference-home attribute, B-21
ejpRemove method, 1-12,1-18, 1-20, 1-21, 6-10
MDB, 7-3
ejbStore method, 1-18, 1-20, 1-21, 6-2, 6-8
Enterprise Archive file, see EAR file
Enterprise Java Beans, see EJB
entity bean
class implementation, 3-6, A-4

Index-4

clustering, 9-4
context information, 1-19
creating, 1-19, 3-3, 3-4, A-2, A-3
deploy, A-10
deployment descriptor, B-7
finder methods, 3-4, 6-3, A-3
home interface, 3-4, A-3
overview, 1-11,1-16
persistent data, 1-17, 1-20
primary key, 1-17
relationships, see CMR
remote interface, 3-5, A-4
removing, 1-20
EntityBean interface, 1-10, 1-17, 1-21, 2-4, 3-3, 6-2,
A-2
ejbActivate method, 1-19, 6-3
ejbCreate method, 1-18,1-19, 1-21
ejbFindByPrimaryKey method, 1-21, A-2
ejbLoad method, 1-18, 1-20, 1-21, 1-22, 6-3
ejbPassivate method, 1-19, 6-3
ejbPostCreate method, 1-18
ejpRemove method, 1-18, 1-20, 1-21
ejbStore method, 1-18, 1-20, 1-21, 6-2
setEntityContext method, 1-18, 1-19, 1-22
unsetEntityContext method, 1-19
environment references
URL, 8-25
environment, retrieval, 1-14
exclusive-write-access attribute, 8-12, B-10, B-23

F

findByPrimaryKey method, 3-3, 6-2, A-2
finder method

backwards compatibility, 5-3

EJB QL example, 5-5

overview, 5-2
finder methods, 6-3

BMP, 6-7

entity bean, 3-4, A-3

findByPrimaryKey method, 3-5, A-3
force-update attribute, B-13

G

getEJBHome method, 1-14
getEnvironment method, 1-14
getRollbackOnly method, 1-14
getUserTransaction method, 1-14
global-thread-pool element, 8-39

H

home interface
creating, 2-4,3-3,6-2, A-2
lookup, 2-15
overview, 1-8,1-9

immutable attribute, B-32

impliesAll attribute, 8-36, B-31
InitialContext, 8-38

instance-cache-timeout attribute, B-10, B-23
isCallerInRole method, 8-29

isolation attribute, 8-10, B-11, B-24
isolation modes, 8-10

J

JAR
archiving command, 2-12
jar command, 2-12
JAR file, 3-4,6-3,7-4, A-2
EJB, 2-12
Java mail
Session object, 8-22
jem-name attribute, B-27
JMS
handled by MDB, 1-23
port, 8-6
JNDI
lookup, 2-15

L

listener-threads attribute, 7-12, B-15, B-28
Lists, 3-19
load balancing, 9-9

DNS round-robin, 8-7
LoadBalanceOnLookup property, 9-9
local home interface

example, 2-6
local interface

creating, 2-7

example, 2-8
local-wrapper attribute, B-7, B-13, B-24, B-31
location attribute, B-6, B-10, B-24, B-27, B-30, B-31
locking-mode attribute, 8-12, B-11, B-24

M

mail

Session object, 8-22
mapping

relationships, 4-19
max-instances attribute, 8-14, B-6, B-11, B-15, B-24,

B-31

max-tx-retries attribute, B-6, B-12, B-24, B-31
MDB

configuration, 7-10

creation, 7-3

deployment descriptor, 7-3

overview, 1-11,1-23,7-1

performance, 7-12, B-28

transaction timeout, 7-13, B-28
message-driven bean

deployment descriptor, B-13
Message-Driven Beans, see MDB
MessageDrivenBean interface, 1-24,7-3

setMessageDrivenContext method, 7-3
MessageListener interface, 1-24,7-3

onMessage method, 7-3
min-instances attribute, 8-14, B-6, B-11, B-15, B-24,

B-31

N

name attribute, B-6, B-12, B-15, B-24, B-28, B-31,
B-32

narrowing, 2-15

Index-5

O pessimistic conncurrency mode, 8-11
pool
setting size, 8-13
pool-cache-timeout attribute, B-5, B-12, B-25, B-31
PortableRemoteObject
narrow method, 2-15
primary key, 3-3,6-2, A-2
complex class, 6-6

onMessage method, 1-24,7-3
optimisitic concurrency mode, 8-11
optimistic concurrency mode, B-11, B-24
ORA-8177 exception, 8-13
oracle.dms.gate setting, 8-38

P complex definition, 6-4
packaging cregting, 6-3

referenced EJB classes, 8-8, 8-44 entity bean, 1-21, 3-9, A-8
parameters management, 1-19

overview, 1-17,3-9, A-8
simple definition, 6-4
PropertyPermission, 8-27

object types, 1-10

passing conventions, 1-10
parent application, 8-9
partial attribute, B-26
pass by reference, 1-10 Q

pass by value, 1-10
performance setting
command-line options, 8-38

query attribute, B-26

dedicated.connection, 8-38 R
dedicated.rmicontext, 8-38 read-only concurrency mode, 8-12, B-11, B-24
DefineColumnType, 8-38 remote home interface
DNS load balancing option, 8-7, 8-43 example, 2-5
oracle.dms.gatt_e, 8-38 remote interface
statement caching, 8-42 business methods, 2-15
task manager granularity, 8-42 creating, 2-4,2-6, 3-3, 6-2, A-2
thread pools, 8-39 example, 2-7
performance settings, 8-38 to 8-43 overview. 1-8 1-9
permissions, 8-27 RemoteException, 2-5,2-7
persistence remove method, 2-15
bean-_managed, 1-20 EJBHome interface, 1-9
container-managed, 1-21 RMI
container-managed vs. bean-managed, 1-22 port, 8-6
create database tables, 6-12 RMILBInitialContextFactory, 8-7,8-43
data management, 1-19 runAs security identity, 8-33
field modification, 8-14 RuntimePermission, 8-27

managing, 3-4, A-2
managing in BMP, 6-3

overview, 1-17 S
persistence-filename attribute, B-6, B-32 scheduling-threads attribute, B-27
persistence-name attribute, 4-25, 4-31, B-21 security, 8-27
persistence-type attribute, B-21 permissions, 8-27
pessimistic concurrency mode, B-11, B-24 SecurityException, B-16

Index-6

security-identity element, B-30
select method
EJB QL example, 5-7
overview, 5-3
Serializable interface, 1-11
session bean
class implementation, 1-10
context, 1-12
deployment descriptor, B-4, B-5
local home interface, 2-6
methods, 1-12
overview, 1-11
remote home interface, 2-5
removing, 1-12
stateful, 1-8,1-15
stateless, 1-8,1-14
Session object, 8-22
SessionBean interface, 1-10
EJB, 1-11, 2-4
ejpActivate method, 1-12
ejpCreate method, 1-12
ejbPassivate method, 1-12
ejpRemove method, 1-12
setSessionContext method, 1-12
SessionContext
interface, 1-13
setEntityContext method, 1-18, 1-19, 1-22
setMessageDrivenContext method, 1-24,7-3
setRollbackOnly method, 1-14
setSessionContext method, 1-12, 1-20
setStmtCacheSize method, 8-42
SocketPermission, 8-27
stateful session bean
clustering, 9-4
overview, 1-15
stateless session bean
clustering, 9-4
overview, 1-14
statement caching
DataSource
statement caching, 8-42
static cluster discovery, 9-2
stmt-cache-size attribute, 8-42
subscription-name attribute, B-15, B-28

T

table attribute, B-12, B-25, B-27, B-28
task manager granularity, 8-42
taskmanager-granularity attribute, 8-42
thread

pooling, 8-39
TimedOutException, B-5, B-9
timeout attribute, B-7, B-32
transaction

commit, 1-14

context propagation, 1-14

retrieve status, 1-14

rollback, 1-14
TRANSACTION_READ_COMMITTED, 8-10
TRANSACTION_SERIALIZABLE, 8-10
transaction-timeout attribute, 7-13, B-15, B-28
type attribute, B-28, B-33

U

unsetEntityContext method, 1-19, 1-22
update-changed-fields-only attribute, 8-14, B-12,
B-25

Vv

validity-timeout attribute, B-13, B-25

w

wrapper attribute, B-7, B-13, B-25, B-32

X

XML
BMP, 6-11
deployment descriptor, 3-3, 6-3, A-2

Index-7

Index-8

	Send Us Your Comments
	Preface
	1 EJB Overview
	New Features of EJB 2.0
	Local Interface Support
	Home Interface Business Methods
	Message-Driven Beans
	Enterprise JavaBeans Query Language (EJB QL)
	CMP Relationships
	CORBA Support - RMI-over-IIOP

	Invoking Enterprise JavaBeans
	Implementing an EJB
	Bean Implementation
	Parameter Passing
	Parameter Objects

	Types of EJBs
	Session Beans
	Entity Beans
	Message-Driven Beans

	Difference Between Session and Entity Beans

	2 An EJB Primer For OC4J
	Develop EJBs
	Create the Development Directory
	Implement the EJB
	Create the Deployment Descriptor
	Archive the EJB Application

	Prepare the EJB Application for Assembly
	Modify the Application.XML File
	Create the EAR File

	Deploy the Enterprise Application to OC4J
	Access the EJB

	3 CMP Entity Beans
	Entity Bean Overview
	Creating Entity Beans
	Home Interface
	Component Interfaces
	Entity Bean Class

	Primary Key
	Defining the Primary Key in a Class
	Defining an Auto-Generated Primary Key

	Persistence Fields
	Default Mapping of Persistent Fields to the Database
	Explicit Mapping of Persistent Fields to the Database

	CMP Types
	Simple Data Types
	Serializable Classes
	Other Entity Beans or Collections

	4 Entity Relationship Mapping
	Defining Entity-To-Entity Relationships
	Choosing Cardinality and Direction
	Defining Relationships

	Mapping Relationship Fields to the Database
	Default Mapping of Relationship Fields to the Database
	Explicit Mapping of Relationship Fields to the Database

	5 EJB Query Language
	EJB QL Overview
	Query Methods Overview
	Finder Methods
	Select Methods

	Deployment Descriptor Semantics
	Finder Method Example
	Select Method Example

	6 BMP Entity Beans
	Creating BMP Entity Beans
	Component and Home Interfaces
	BMP Entity Bean Implementation
	The ejbCreate Implementation
	The ejbFindByPrimaryKey Implementation
	Other Finder Methods
	The ejbStore Implementation
	The ejbLoad Implementation
	The ejbPassivate Implementation
	The ejbActivate Implementation
	The ejbRemove Implementation

	Modify XML Deployment Descriptors
	Create Database Table and Columns for Entity Data

	7 Message-Driven Beans
	MDB Overview
	Creating MDBs
	Install And Configure The Resource Provider
	Bean Class Implementation
	Configure Deployment Descriptors
	Deploy the Entity Bean

	Accessing MDBs
	Using Logical Names in the JMS JNDI Lookup

	8 Advanced EJB Subjects
	Accessing EJBs
	Client Installation of OC4J.JAR
	EJB Reference Information
	Setting JNDI Properties
	Configuring RMI or JMS Port for Standalone EJB Clients
	Using the Initial Context Factory Classes
	Accessing an EJB in a Remote Server

	Packaging and Sharing Classes
	Entity Bean Concurrency and Database Isolation Modes
	Database Isolation Modes
	Entity Bean Concurrency Modes
	Exclusive Write Access to the Database
	Effects of the Combination of Isolation and Concurrency Modes
	Affects of Concurrency Modes on Clustering

	Configuring Pool Sizes For Entity Beans
	Techniques for Updating Persistence
	Configuring Environment References
	Environment variables
	Environment References To Other Enterprise JavaBeans
	Environment References To Resource Manager Connection Factory References

	Configuring Security
	Granting Permissions in Browser
	Authenticating and Authorizing EJB Applications
	Specifying Credentials in EJB Clients

	Setting Performance Options
	Performance Command-Line Options
	Thread Pool Settings
	Statement Caching
	Task Manager Granularity
	Using DNS for Load Balancing

	Common Errors
	NamingException Thrown
	Deadlock Conditions
	ClassCastException

	9 EJB Clustering
	EJB Clustering Overview
	Stateless Session Bean Clustering
	Stateful Session Bean Clustering
	Entity Bean Clustering
	Combination of HTTP and EJB Clustering

	Enabling Clustering For EJBs
	Configure Nodes With Multicast Address and Identifier
	EJB Replication Configuration
	Deploy EJB Application To All Nodes
	Application Client Retrieval Of Clustered Nodes

	Load Balancing Options

	10 Active Components for Java
	Future Needs of Business Applications
	Architectures
	Remote Procedure Call Model
	Database Transactional Queueing Model
	AC4J Solution

	AC4J Architecture
	Introduction to AC4J Components
	Active EJBs
	Interaction
	Processes
	Reactions
	Data Tokens
	Data Bus

	Configuring Oracle Databases to Support AC4J
	AC4J Data Bus XML Configuration

	AC4J Example
	Asynchronous Request to An Active EJB
	Active EJB Processes the Client’s Request
	Asynchronous Response to the Requesting Active EJB
	Asynchronous Response to the Client
	Response from the Client
	AC4J Active EJB Deployment

	Administering AC4J
	Administering Oracle Databases to Support AC4J
	Description of the JEM PL/SQL package
	Description of the createDatabusTpc Package Public Method
	Description of the dropDatabusTpc Package Public Method
	Description of the JEM Schema Objects

	A EJB 1.1 CMP Entity Beans
	Creating Entity Beans
	Home Interface
	Remote Interface
	Entity Bean Class
	Persistent Data
	Primary Key
	Deploying the Entity Bean

	Advanced CMP Entity Beans
	EJB 1.1 Advanced Finder Methods
	EJB 1.1 Object-Relational Mapping of Persistent Fields

	B OC4J-Specific DTD Reference
	OC4J-Specific Deployment Descriptor for EJBs
	Enterprise Beans Section
	Assembly Descriptor Section

	Element Description

	C Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

