
Oracle9iAS Containers for J2EE

Support for JavaServer Pages Developer’s Guide

Release 2 (9.0.3)

August 2002

Part No. A97679-01

Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide, Release 2 (9.0.3)

Part No. A97679-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, Gael Stevens, Sumathi Gopalakrishnan, Ping Guo,
Olga Peschansky, YaQing Wang, Song Lin, Helen Zhao, Hal Hildebrand, Jasen Minton, Ashok Banerjee,
Matthieu Devin, Jose Alberto Fernandez, Jerry Schwarz, Clement Lai, Shinji Yoshida, Kenneth Tang,
Robert Pang, Kannan Muthukkaruppan, Ralph Gordon, Shiva Prasad, Sharon Malek, Jeremy Lizt, Kuassi
Mensah, Susan Kraft, Sheryl Maring, Ellen Barnes, Angie Long, Sanjay Singh

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, SQL*Plus, and Oracle Store are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Intended Audience .. xiv
Documentation Accessibility ... xiv
Organization .. xv
Related Documentation ... xvii
Conventions... xx

1 General JSP Overview

Introduction to JavaServer Pages... 1-2
What a JSP Page Looks Like.. 1-2
Convenience of JSP Coding Versus Servlet Coding .. 1-3
Separation of Business Logic from Page Presentation: Calling JavaBeans 1-5
JSP Pages and Alternative Markup Languages.. 1-6

Overview of JSP Syntax Elements... 1-7
Directives ... 1-7
Scripting Elements.. 1-9
JSP Objects and Scopes .. 1-12
Standard Actions: JSP Tags ... 1-16
Bean Property Conversions from String Values .. 1-22
Custom Tag Libraries... 1-24

JSP Execution ... 1-26
JSP Containers in a Nutshell ... 1-26
iii

JSP Execution Models... 1-26
JSP Pages and On-Demand Translation .. 1-27
Requesting a JSP Page .. 1-28

2 Overview of the Oracle JSP Implementation

Overview of the Oracle9i Application Server and JSP Support.. 2-2
Overview of the Oracle9i Application Server... 2-2
Overview of OC4J ... 2-3
Overview of the JSP Implementation in OC4J.. 2-6
Role of the Oracle HTTP Server and mod_oc4j.. 2-10

Oracle9i JDeveloper JSP Support .. 2-12
Overview of Oracle Value-Added Features ... 2-13

Overview of Tag Libraries and Utilities Provided with OC4J ... 2-13
Overview of Oracle-Specific Features.. 2-19
Overview of Tags and API for Caching Support ... 2-21
Support for the JavaServer Pages Standard Tag Library .. 2-21

3 Getting Started

Some Initial Considerations ... 3-2
Application Root Functionality .. 3-2
Classpath Functionality ... 3-3
JSP Security Considerations .. 3-4
Default Package Imports ... 3-5
JSP File Naming Conventions ... 3-6

Key Support Files Provided with OC4J .. 3-7
JSP Configuration in OC4J ... 3-8

JSP Container Setup.. 3-8
JSP Configuration Parameters .. 3-9
OC4J Configuration Parameters for JSP .. 3-21

Key OC4J Configuration Files.. 3-23
JSP Configuration in Oracle Enterprise Manager .. 3-25

4 Basic Programming Considerations

JSP-Servlet Interaction ... 4-2
iv

Invoking a Servlet from a JSP Page.. 4-2
Passing Data to a Servlet Invoked from a JSP Page... 4-3
Invoking a JSP Page from a Servlet.. 4-3
Passing Data Between a JSP Page and a Servlet... 4-4
JSP-Servlet Interaction Samples.. 4-5

JSP Data-Access Support and Features... 4-7
Introduction to JSP Support for Data Access.. 4-7
JSP Data-Access Sample Using JDBC .. 4-8
Use of JDBC Performance Enhancement Features .. 4-10
EJB Calls from JSP Pages ... 4-14
JSP Support for Oracle SQLJ ... 4-15
OracleXMLQuery Class ... 4-19

JSP Resource Management ... 4-20
Standard Session Resource Management: HttpSessionBindingListener 4-20
Overview of Oracle Value-Added Features for Resource Management............................ 4-25

Runtime Error Processing ... 4-26
Servlet and JSP Runtime Error Mechanisms .. 4-26
JSP Error Page Example... 4-27

5 JSP XML Support

JSP XML Documents and JSP XML View: Overview and Comparison................................... 5-2
Details of JSP XML Documents ... 5-4

Summary Table of JSP XML Syntax... 5-5
JSP XML root Element and JSP XML Namespaces.. 5-7
JSP XML Directive Elements ... 5-8
JSP XML Declaration, Expression, and Scriptlet Elements... 5-9
JSP XML Standard Action and Custom Action Elements .. 5-10
JSP XML Text Elements and Other Elements ... 5-10
Sample Comparison: Traditional JSP Page Versus JSP XML Document 5-11

Details of the JSP XML View.. 5-15
Transformation from a JSP Page to the XML View ... 5-15
The jsp:id Attribute for Error Reporting During Validation.. 5-16
Example: Transformation from Traditional JSP Page to XML View 5-17
v

6 Additional Considerations

JSP Programming Strategies, Tips, and Traps ... 6-2
JavaBeans Versus Scriptlets... 6-2
Static Includes Versus Dynamic Includes ... 6-3
When to Consider Creating and Using JSP Tag Libraries .. 6-5
Use of a Central Checker Page.. 6-6
Workarounds for Large Static Content in JSP Pages ... 6-7
Method Variable Declarations Versus Member Variable Declarations 6-8
Page Directive Characteristics .. 6-10
JSP Preservation of White Space and Use with Binary Data .. 6-13

JSP Runtime Considerations and Optimization... 6-17
Dynamic Page Retranslation and Class Reloading.. 6-17
Optimization Considerations.. 6-18

7 JSP Translation and Deployment

Functionality of the JSP Translator.. 7-2
Features of Generated Code.. 7-2
General Conventions for Output Names .. 7-4
Generated Package and Class Names.. 7-5
Generated Files and Locations.. 7-6
Oracle JSP Global Includes .. 7-9

The ojspc Pre-Translation Utility ... 7-13
Overview of Basic ojspc Functionality... 7-13
Overview of ojspc Batch Pre-Translation.. 7-14
Option Summary Table for ojspc.. 7-16
Command-Line Syntax for ojspc .. 7-20
Option Descriptions for ojspc ... 7-20
Summary of ojspc Output Files, Locations, and Related Options....................................... 7-32

JSP Deployment Considerations ... 7-34
Overview of EAR/WAR Deployment... 7-34
Application Deployment with Oracle9i JDeveloper.. 7-36
JSP Pre-Translation ... 7-37
Deployment of Binary Files Only ... 7-40
vi

8 JSP Tag Libraries

Overview: Tag Library Framework ... 8-2
Overview of a Custom Tag Library Implementation.. 8-2
Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications 8-4

Tag Library Descriptor Files ... 8-8
Overview of TLD File Validation and Features ... 8-8
Use of the tag Element ... 8-10
Other Key Elements and Their Subelements: validator and listener.................................. 8-15

Tag Library and TLD Setup and Access ... 8-16
Overview: Specifying a Tag Library with the taglib Directive .. 8-16
Specifying a Tag Library by Physical Location .. 8-17
Packaging and Accessing Multiple Tag Libraries in a JAR File .. 8-18
Oracle Extension for Tag Library Sharing .. 8-20
Use of web.xml for Tag Libraries ... 8-21
Example: Multiple Tag Libraries and TLD Files in a JAR File ... 8-22

Tag Handlers .. 8-25
Overview of Tag Handlers.. 8-25
Attribute Handling, Conversions from String Values .. 8-26
Custom Tag Processing, with or without Tag Bodies ... 8-27
Summary of Integer Constants for Body Processing... 8-29
Simple Tag Handlers without Iteration... 8-30
Simple Tag Handlers with Iteration .. 8-31
Tag Handlers That Access Body Content ... 8-33
TryCatchFinally Interface.. 8-35
Access to Outer Tag Handler Instances .. 8-37

OC4J JSP Tag Handler Features ... 8-38
Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse.............................. 8-38
Tag Handler Code Generation ... 8-40

Scripting Variables, Declarations, and Tag-Extra-Info Classes.. 8-41
Using Scripting Variables .. 8-41
Scripting Variable Scopes .. 8-42
Variable Declaration Through TLD variable Elements... 8-42
Variable Declaration Through Tag-Extra-Info Classes ... 8-44

Validation and Tag-Library-Validator Classes .. 8-46
TLD validator Element .. 8-46
vii

Key TLV-Related Classes and the validation() Method.. 8-48
TLV Processing.. 8-48
Validation Mechanisms ... 8-49

Tag Library Event Listeners .. 8-50
TLD listener Element.. 8-50
Activation of Tag Library Event Listeners .. 8-51
Access of TLD Files for Event Listener Information.. 8-52

End-to-End Custom Tag Examples .. 8-53
Example: Using the IterationTag Interface ... 8-53
Example: Using the IterationTag Interface and a Tag-Extra-Info Class 8-57

Compile-Time Tags ... 8-62
General Compile-Time Versus Runtime Considerations ... 8-62
JSP Compile-Time Versus Runtime JML Library... 8-62

9 JSP Globalization Support

Content Type Settings .. 9-2
Content Type Settings in the page Directive .. 9-2
Dynamic Content Type Settings ... 9-5
Oracle Extension for the Character Set of the JSP Writer Object ... 9-6

JSP Support for Multibyte Parameter Encoding... 9-8
Standard setCharacterEncoding() Method ... 9-8
Overview of Oracle Extensions for Older Servlet Environments .. 9-9

A Servlet and JSP Technical Background

Background on Servlets ... A-2
Review of Servlet Technology .. A-2
The Servlet Interface... A-3
Servlet Containers... A-3
Servlet Sessions ... A-4
Servlet Contexts .. A-6
Application Lifecycle Management Through Event Listeners .. A-7
Servlet Invocation ... A-8

Web Application Hierarchy .. A-9
Standard JSP Interfaces and Methods .. A-12
viii

B The Apache JServ Environment

Getting Started in a JServ Environment... B-2
Adding Files to the Apache JServ Web Server Classpath... B-2
Mapping JSP File Name Extensions for JServ .. B-3
JSP Configuration Parameters for JServ .. B-4
Setting JSP Parameters in JServ .. B-15
Using ojspc for JServ .. B-16

Considerations for the JServ Environment.. B-17
The mod_jserv Apache Mod... B-17
JSP Container Features for Application Root Support in JServ ... B-17
Overview of Application and Session Framework for JServ ... B-18
JSP and Servlet Session Sharing in JServ... B-18
Dynamic Includes and Forwards in JServ .. B-19
JServ Directory Alias Translation... B-21
JSP Security Considerations in JServ ... B-24
Multibyte Parameter Encoding in JServ.. B-24

JSP Application and Session Support for JServ ... B-32
Overview of globals.jsa Functionality ... B-32
Overview of globals.jsa Syntax and Semantics .. B-34
The globals.jsa Event-Handlers .. B-37
Global Declarations and Directives ... B-41
Migration from globals.jsa .. B-44

Samples Using globals.jsa for Servlet 2.0 Environments ... B-46
A globals.jsa Example for Application Events: lotto.jsp... B-46
A globals.jsa Example for Application and Session Events: index1.jsp B-50
A globals.jsa Example for Global Declarations: index2.jsp .. B-52

C Third Party Licenses

Apache HTTP Server.. C-2
The Apache Software License... C-2

Apache JServ .. C-4
Apache JServ Public License ... C-4

Index
ix

x

Send Us Your Comments

Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide, Release 2 (9.0.3)

Part No. A97679-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgreader_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This document introduces and explains the Oracle implementation of JavaServer
Pages (JSP) technology, specified by Sun Microsystems. It summarizes standard
features, as specified by Sun, but focuses primarily on Oracle implementation
details and value-added features.

The Oracle9iAS Containers for J2EE (OC4J) JSP container in Oracle9iAS release 2
(9.0.3) is a complete implementation of the Sun Microsystems JavaServer Pages
Specification, Version 1.2

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Note: The Sample Applications chapter available in previous
releases has been removed. Applications that were listed there are
available in the OC4J demos, from either of the following locations:

■ the OC4J demo instance, included with the Oracle9iAS product

■ the JSP download page on the Oracle Technology Network
(requiring an OTN membership, which is free):

http://otn.oracle.com/tech/java/servlets/content.html
 xiii

Intended Audience
This document is intended for developers interested in creating Web applications
based on JavaServer Pages technology. It assumes that working Web and servlet
environments already exist, and that readers are already familiar with the
following:

■ general Web technology

■ general servlet technology (technical background provided in Appendix A)

■ how to configure their Web server and servlet environments

■ HTML

■ Java

■ Oracle JDBC (for JSP applications accessing an Oracle database)

■ Oracle SQLJ (for JSP database applications using SQLJ)

While some information about standard JSP 1.2 technology and syntax is provided
in Chapter 1 and elsewhere, there is no attempt at completeness in this area. For
additional information about standard JSP 1.2 features, consult the Sun
Microsystems JavaServer Pages Specification, Version 1.2 or other appropriate
reference materials.

The JSP 1.2 specification relies on a servlet 2.3 environment, and this document is
geared largely toward such environments (also considering some JSP 1.1 backward
compatibility issues). The OC4J JSP container has special features for earlier servlet
environments, however, and there is special discussion of these features in
Appendix B as they relate to servlet 2.0 environments, particularly Apache JServ,
which is included with the Oracle9i Application Server.

For documentation of tag libraries and utilities that are provided with the OC4J
product, please refer to the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference (although an overview is provided here, in "Overview of Tag
Libraries and Utilities Provided with OC4J" on page 2-13).

For a quick primer about getting started with JSP pages in OC4J, see the Oracle9iAS
Containers for J2EE User’s Guide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
xiv

assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

Chapter 1, "General JSP Overview"
This chapter highlights standard JSP 1.2 technology. It is not intended as a complete
reference.

Chapter 2, "Overview of the Oracle JSP Implementation"
This chapter provides an overview of the JSP implementation provided with OC4J,
including both portable and Oracle-specific value-added features.

Chapter 3, "Getting Started"
This contains information about required files for the OC4J JSP container, OC4J Web
server configuration, and JSP configuration.
 xv

Chapter 4, "Basic Programming Considerations"
This chapter introduces basic JSP programming considerations, including
JSP-servlet interaction and database access, and provides some examples.

Chapter 5, "JSP XML Support"
This chapter describes JavaServer Pages support for XML, primarily added with the
JSP 1.2 specification. JSP XML syntax and the JSP XML view are described.

Chapter 6, "Additional Considerations"
This chapter discusses a variety of general programming, configuration, and
runtime issues that the developer should be aware of. It also covers considerations
specific to the OC4J environment.

Chapter 7, "JSP Translation and Deployment"
This chapter describes features of the Oracle9iAS JSP translator and Oracle ojspc
pre-translation utility, and discusses general and OC4J-specific deployment
considerations.

Chapter 8, "JSP Tag Libraries"
This chapter describes the standard JSP 1.2 framework for custom tag libraries.
There is also discussion of OC4J extended features for tag library support, and
vendor-specific compile-time tags.

Chapter 9, "JSP Globalization Support"
This chapter covers features for globalization support.

Appendix A, "Servlet and JSP Technical Background"
This appendix provides a brief background of servlet technology and introduces the
standard JSP interfaces for translated pages.

Appendix B, "The Apache JServ Environment"
This appendix provides details for the JServ servlet 2.0 environment, including
deployment, configuration, and special programming considerations.

Appendix C, "Third Party Licenses"
This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document.
xvi

Related Documentation
See the following additional OC4J documents available from the Oracle Java
Platform group:

■ Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for JSP tag libraries, JavaBeans, and other Java utilities provided
with OC4J.

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

■ Oracle9iAS Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS/JAZN, and the Oracle9i Application
Server Java Object Cache.

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle9i JPublisher User’s Guide

■ Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide
 xvii

■ Oracle HTTP Server Administration Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i Application Server Globalization Support Guide

■ Oracle9iAS Web Cache Administration and Deployment Guide

■ Oracle9iAS Web Services Developer’s Guide

■ Oracle9i Application Server Migrating to Release 2 (9.0.3)

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

The following documents from the Oracle Server Technologies group are also of
possible interest:

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Supplied Java Packages Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i SQL Reference

■ Oracle9i Net Services Administrator’s Guide

■ Oracle Advanced Security Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database Error Messages

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/
xviii

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the documentation search engine directly, please visit

http://tahiti.oracle.com

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

■ OTN Web site for Java servlets and JavaServer Pages:

http://otn.oracle.com/tech/java/servlets/

■ OTN JSP discussion forums, accessible through the following address:

http://www.oracle.com/forums/forum.jsp?id=399160

The following resources are available from Sun Microsystems:

■ Web site for JavaServer Pages, including the latest specifications:

http://java.sun.com/products/jsp/index.html

■ Web site for Java Servlet technology, including the latest specifications:

http://java.sun.com/products/servlet/index.html

■ jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to listserv@java.sun.com with the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname
 xix

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions
This section describes the conventions used in the text and code examples of this
document. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xx

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, user names
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents place holders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
 xxi

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates place holders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxii

General JSP Ove
1

General JSP Overview

This chapter reviews standard features and functionality of JavaServer Pages
technology, then concludes with a discussion of JSP execution models. For further
general information, consult the Sun Microsystems JavaServer Pages Specification,
Version 1.2.

JSP 1.2 functionality depends upon servlet 2.3 functionality. You can also refer to the
Sun Microsystems Java Servlet Specification, Version 2.3 for information.

For an overview of the JSP implementation in OC4J, see Chapter 2, "Overview of
the Oracle JSP Implementation". Also note that Appendix A, "Servlet and JSP
Technical Background", provides related background on standard servlet and JSP
technology.

The following topics are covered here:

■ Introduction to JavaServer Pages

■ Overview of JSP Syntax Elements

■ JSP Execution
rview 1-1

Introduction to JavaServer Pages
Introduction to JavaServer Pages
JavaServer Pages(TM) is a technology specified by Sun Microsystems as a
convenient way of generating dynamic content in pages that are output by a Web
application (an application running on a Web server).

This technology, which is closely coupled with Java servlet technology, enables you
to include Java code snippets and calls to external Java components within the
HTML code (or other markup code, such as XML) of your Web pages. JavaServer
Pages (JSP) technology works nicely as a front-end for business logic and dynamic
functionality in JavaBeans and Enterprise JavaBeans (EJBs).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web
page. Anything that you can include in a normal HTML page can be included in a
JSP page as well.

In a typical scenario for a database application, a JSP page will call a component
such as a JavaBean or Enterprise JavaBean, and the bean will directly or indirectly
access the database, generally through JDBC (perhaps using SQLJ).

A JSP page is translated into a Java servlet before being executed, and processes
HTTP requests and generates responses similarly to any other servlet. JSP
technology offers a more convenient way to code the servlet. The translation
typically occurs on demand, but sometimes in advance.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

What a JSP Page Looks Like
Here is an example of a simple JSP page. For an explanation of JSP syntax elements
used here, see "Overview of JSP Syntax Elements" on page 1-7.

<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! :-)</P>
Enter name:
<FORM METHOD=get>

Note: See the OC4J demos for some basic JSP sample applications.
1-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Introduction to JavaServer Pages
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

In a traditional JSP page, Java elements are set off by tags such as <% and %>, as in
the preceding example. (JSP XML syntax is different, as described in "Details of JSP
XML Documents" on page 5-4.) In this example, Java snippets get the user name
from an HTTP request object, print the user name, and get the current date.

This JSP page will produce the following output if the user inputs the name "Amy":

Convenience of JSP Coding Versus Servlet Coding
Combining Java code and Java calls into an HTML page is more convenient than
using straight Java code in a servlet. JSP syntax gives you a shortcut for coding
dynamic Web pages, typically requiring much less code than Java servlet syntax.
Following is an example contrasting servlet code and JSP code.
General JSP Overview 1-3

Introduction to JavaServer Pages
Servlet Code

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Hello extends HttpServlet
{
 public void doGet(HttpServletRequest rq, HttpServletResponse rsp)
 {
 rsp.setContentType("text/html");
 try {
 PrintWriter out = rsp.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>Welcome</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<H3>Welcome!</H3>");
 out.println("<P>Today is "+new java.util.Date()+".</P>");
 out.println("</BODY>");
 out.println("</HTML>");
 } catch (IOException ioe)
 {
 // (error processing)
 }
 }
}

See "The Servlet Interface" on page A-3 for some background information about the
standard HttpServlet abstract class, HttpServletRequest interface, and
HttpServletResponse interface.

JSP Code

<HTML>
<HEAD><TITLE>Welcome</TITLE></HEAD>
<BODY>
<H3>Welcome!</H3>
<P>Today is <%= new java.util.Date() %>.</P>
</BODY>
</HTML>

Note how much simpler JSP syntax is. Among other things, it saves Java overhead
such as package imports and try...catch blocks.
1-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Introduction to JavaServer Pages
Additionally, the JSP translator automatically handles a significant amount of
servlet coding overhead for you in the .java file that it outputs, such as directly or
indirectly implementing the standard javax.servlet.jsp.HttpJspPage
interface (covered in "Standard JSP Interfaces and Methods" on page A-12) and
adding code to acquire an HTTP session.

Also note that because the HTML of a JSP page is not embedded within Java print
statements, as it is in servlet code, you can use HTML authoring tools to create JSP
pages.

Separation of Business Logic from Page Presentation: Calling JavaBeans
JSP technology allows separating the development efforts between the HTML code
that determines static page presentation, and the Java code that processes business
logic and presents dynamic content. It therefore becomes much easier to split
maintenance responsibilities between presentation and layout specialists who may
be proficient in HTML but not Java, and code specialists who may be proficient in
Java but not HTML.

In a typical JSP page, most Java code and business logic will not be within snippets
embedded in the JSP page—instead, it will be in JavaBeans or Enterprise JavaBeans
that are invoked from the JSP page.

JSP technology offers the following syntax for defining and creating an instance of a
JavaBeans class:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This example creates an instance, pageBean, of the mybeans.NameBean class. The
scope parameter will be explained later in this chapter.

Later in the page, you can use this bean instance, as in the following example:

Hello <%= pageBean.getNewName() %> !

Note: The list of packages imported into a JSP page by default
changed in the OC4J 9.0.3 implementation. The default list was
reduced to follow the JSP specification. See "Default Package
Imports" on page 3-5 for more information. (Starting with 9.0.3, the
preceding JSP example requires a configuration setting to import
the java.io package.)
General JSP Overview 1-5

Introduction to JavaServer Pages
This prints "Hello Julie !", for example, if the name "Julie" is in the newName
attribute of pageBean, which might occur through user input.

The separation of business logic from page presentation allows convenient division
of responsibilities between the Java expert who is responsible for the business logic
and dynamic content (the person who owns and maintains the code for the
NameBean class) and the HTML expert who is responsible for the static
presentation and layout of the Web page that the application users see (the person
who owns and maintains the code in the .jsp file for this JSP page).

Tags used with JavaBeans—useBean to declare the JavaBean instance and
getProperty and setProperty to access bean properties—are further discussed
in "Standard Actions: JSP Tags" on page 1-16.

JSP Pages and Alternative Markup Languages
JavaServer Pages technology is typically used for dynamic HTML output, but the
Sun Microsystems JavaServer Pages Specification, Version 1.2 also supports additional
types of structured, text-based document output. A JSP translator does not process
text outside of JSP elements, so any text that is appropriate for Web pages in general
is typically appropriate for a JSP page as well.

A JSP page takes information from an HTTP request and accesses information from
a data server (such as through a SQL database query). It combines and processes
this information and incorporates it, as appropriate, into an HTTP response with
dynamic content. The content can be formatted as HTML, DHTML, XHTML, or
XML, for example.

For information about JSP support for XML, refer to Chapter 5, "JSP XML Support"
and to the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.
1-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
Overview of JSP Syntax Elements
You have seen a simple example of JSP syntax in "What a JSP Page Looks Like" on
page 1-2. Now here is a top-level list of syntax categories and topics:

■ directives—These convey information regarding the JSP page as a whole.

■ scripting elements—These are Java coding elements such as declarations,
expressions, scriptlets, and comments.

■ objects and scopes—JSP objects can be created either explicitly or implicitly and
are accessible within a given scope, such as from anywhere in the JSP page or
the session.

■ actions—These create objects or affect the output stream in the JSP response (or
both).

This section introduces each category, including basic syntax and a few examples.
There is also discussion of bean property conversions, and an introduction to
custom tag libraries (used for custom actions). For more information, see the Sun
Microsystems JavaServer Pages Specification, Version 1.2.

Directives
Directives provide instruction to the JSP container regarding the entire JSP page.
This information is used in translating or executing the page. The basic syntax is as
follows:

<%@ directive attribute1="value1" attribute2="value2"... %>

The JSP 1.2 specification supports the following directives:

■ page—Use this directive to specify any of a number of page-dependent
attributes, such as scripting language, content type and character encoding, a
class to extend, packages to import, an error page to use, the JSP page output
buffer size, and whether to automatically flush the buffer when it is full. For
example:

<%@ page language="java" import="packages.mypackage" errorPage="boof.jsp" %>

Note: This section describes traditional JSP syntax. For
information about JSP XML syntax and JSP XML documents, see
Chapter 5, "JSP XML Support".
General JSP Overview 1-7

Overview of JSP Syntax Elements
or, to enable auto-flush and set the JSP page output buffer size to 20 KB:

<%@ page autoFlush="true" buffer="20kb" %>

or, to unbuffer the page:

<%@ page buffer="none" %>

■ include—Use this directive to specify a resource that contains text or code to
be inserted into the JSP page when it is translated. For example:

<%@ include file="/jsp/userinfopage.jsp" %>

Specify either a page-relative or context-relative path to the resource. (See
"Requesting a JSP Page" on page 1-28 for discussion of page-relative and
context-relative paths.)

Notes:

■ The default buffer size is 8 KB.

■ It is illegal to set autoFlush="true" when buffer="none".

■ A JSP page using an error page must be buffered. Forwarding
to an error page (not outputting it to the browser) clears the
buffer.

■ In the Oracle JSP implementation, "java" is the default
language setting. It is good programming practice to set it
explicitly, however. You can also use a "sqlj" setting for SQLJ
JSP pages.

■ For information about using page directive attributes to set the
content type and character set for the JSP page and response
object, see "Content Type Settings in the page Directive" on
page 9-2.
1-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
■ taglib—Use this directive to specify a library of custom JSP tags that will be
used in the JSP page. Vendors can extend JSP functionality with their own sets
of tags. This directive includes a pointer to a tag library descriptor file and a
prefix to distinguish use of tags from that library. For example:

<%@ taglib uri="/oracustomtags" prefix="oracust" %>

Later in the page, use the oracust prefix whenever you want to use one of the
tags in the library (presume this library includes a tag dbaseAccess):

<oracust:dbaseAccess ... >
...
</oracust:dbaseAccess>

JSP tag libraries and tag library descriptor files are introduced later in this
chapter, in "Custom Tag Libraries" on page 1-24, and discussed in detail in
Chapter 8, "JSP Tag Libraries".

Scripting Elements
JSP scripting elements include the following categories of Java code snippets that
can appear in a JSP page:

■ declarations—These are statements declaring methods or member variables that
will be used in the JSP page.

A JSP declaration uses standard Java syntax within the <%!...%> declaration
tags to declare a member variable or method. This will result in a corresponding
declaration in the generated servlet code.

Notes:

■ The include directive, referred to as a "static include", is
comparable in nature to the jsp:include action discussed
later in this chapter, but jsp:include takes effect at
request-time instead of translation-time. See "Static Includes
Versus Dynamic Includes" on page 6-3.

■ The include directive can be used only between files in the
same servlet context (application).

■ See "JSP File Naming Conventions" on page 3-6 for information
about naming conventions for included files.
General JSP Overview 1-9

Overview of JSP Syntax Elements
For example:

<%! double f1=0.0; %>

This example declares a member variable, f1. In the servlet class code
generated by the JSP translator, f1 will be declared at the class top level.

■ expressions—These are Java expressions that are evaluated, converted into string
values as appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semicolon, and is contained within
<%=...%> tags. For example:

<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>

■ scriptlets—These are portions of Java code intermixed within the markup
language of the page.

A scriptlet, or code fragment, can consist of anything from a partial line to
multiple lines of Java code. You can use them within the HTML code of a JSP
page to set up conditional branches or a loop, for example.

A JSP scriptlet is contained within <%...%> scriptlet tags, using Java syntax.

Example 1:

<% if (pageBean.getNewName().equals("")) { %>
 I don’t know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %>.
<% } %>

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below. (See "Method
Variable Declarations Versus Member Variable Declarations" on
page 6-8 for a comparison between the two.)

Note: A JSP expression in a request-time attribute, such as in a
jsp:setProperty statement, need not be converted to a string
value.
1-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
Three one-line JSP scriptlets are intermixed with two lines of HTML code (one
of which includes a JSP expression, which does not require a semicolon). Note
that JSP syntax allows HTML code to be the code that is conditionally executed
within the if and else branches (inside the Java brackets set out in the
scriptlets).

The preceding example assumes the use of a JavaBean instance, pageBean.

Example 2:

<% if (pageBean.getNewName().equals("")) { %>
 I don’t know you.
 <% empmgr.unknownemployee();
} else { %>
 Hello <%= pageBean.getNewName() %>.
 <% empmgr.knownemployee();
} %>

This example adds more Java code to the scriptlets. It assumes the use of a
JavaBean instance, pageBean, and assumes that some object, empmgr, was
previously instantiated and has methods to execute appropriate functionality
for a known employee or an unknown employee.

■ comments—These are developer comments embedded within the JSP code,
similar to comments embedded within any Java code.

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<% double f2=0.0; %>

This scriptlet declares a method variable, f2. In the servlet class
code generated by the JSP translator, f2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Method Variable Declarations
Versus Member Variable Declarations" on page 6-8.
General JSP Overview 1-11

Overview of JSP Syntax Elements
Comments are contained within <%--...--%> syntax. For example:

<%-- Execute the following branch if no user name is entered. --%>

Unlike HTML comments, JSP comments are not visible when users view the
page source from their browsers.

JSP Objects and Scopes
In this document, the term JSP object refers to a Java class instance declared within
or accessible to a JSP page. JSP objects can be either:

■ explicit—Explicit objects are declared and created within the code of your JSP
page, accessible to that page and other pages according to the scope setting
you choose.

or:

■ implicit—Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

This section covers the following topics:

■ Explicit Objects

■ Implicit Objects

■ Using an Implicit Object

■ Object Scopes

Explicit Objects
Explicit objects are typically JavaBean instances that are declared and created in
jsp:useBean action statements. The jsp:useBean statement and other action
statements are described in "Standard Actions: JSP Tags" on page 1-16, but here is an
example:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This statement defines an instance, pageBean, of the NameBean class that is in the
mybeans package. The scope parameter is discussed in "Object Scopes" on
page 1-15.

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.
1-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
Implicit Objects
JSP technology makes available to any JSP page a set of implicit objects. These are
Java objects that are created automatically by the JSP container and that allow
interaction with the underlying servlet environment.

The following implicit objects are available. For information about methods
available with these objects, refer to the Sun Microsystems Javadoc for the noted
classes and interfaces at the following locations (for servlet 2.2 and servlet 2.3
classes, respectively):

http://java.sun.com/products/servlet/2.2/javadoc/index.html

http://java.sun.com/products/servlet/2.3/javadoc/index.html

■ page

This is an instance of the JSP page implementation class and is created when the
page is translated. The page implementation class implements the interface
javax.servlet.jsp.HttpJspPage. Note that page is synonymous with
this within a JSP page.

■ request

This represents an HTTP request and is an instance of a class that implements
the javax.servlet.http.HttpServletRequest interface, which extends
the javax.servlet.ServletRequest interface.

■ response

This represents an HTTP response and is an instance of a class that implements
the javax.servlet.http.HttpServletResponse interface, which extends
the javax.servlet.ServletResponse interface.

The response and request objects for a particular request are associated
with each other.

■ pageContext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageContext object
is an instance of the javax.servlet.jsp.PageContext class.

The pageContext object has page scope, making it accessible only to the JSP
page instance with which it is associated.
General JSP Overview 1-13

Overview of JSP Syntax Elements
■ session

This represents an HTTP session and is an instance of a class that implements
the javax.servlet.http.HttpSession class.

■ application

This represents the servlet context for the Web application and is an instance of
the javax.servlet.ServletContext class.

The application object is accessible from any JSP page instance running as
part of any instance of the application within a single JVM. (The programmer
should be aware of the server architecture regarding use of JVMs.)

■ out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of the javax.servlet.jsp.JspWriter class,
which extends the java.io.Writer class.

The out object is associated with the response object for a particular request.

■ config

This represents the servlet configuration for a JSP page and is an instance of a
class that implements the javax.servlet.ServletConfig interface.
Generally speaking, servlet containers use ServletConfig instances to
provide information to servlets during initialization. Part of this information is
the appropriate ServletContext instance.

■ exception (JSP error pages only)

This implicit object applies only to JSP error pages—these are pages to which
processing is forwarded when an exception is thrown from another JSP page.
They must have the page directive isErrorPage attribute set to true.

The implicit exception object is a java.lang.Exception instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in the current error page being invoked.

The exception object is accessible only from the JSP error page instance to
which processing was forwarded when the exception was encountered. For an
example of JSP error processing and use of the exception object, see "Runtime
Error Processing" on page 4-26.
1-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
Using an Implicit Object
Any of the implicit objects discussed in the preceding section might be useful. The
following example uses the request object to retrieve and display the value of the
username parameter from the HTTP request:

<H3> Welcome <%= request.getParameter("username") %> ! <H3>

The request object, like the other implicit objects, is available automatically; it is
not explicitly instantiated.

Object Scopes
Objects in a JSP page, whether explicit or implicit, are accessible within a particular
scope. In the case of explicit objects, such as a JavaBean instance created in a
jsp:useBean action, you can explicitly set the scope with the following syntax, as
in the example in "Explicit Objects" on page 1-12:

scope="scopevalue"

There are four possible scopes:

■ scope="page" (default scope)—The object is accessible only from within the
JSP page where it was created. A page-scope object is stored in the implicit
pageContext object. The page scope ends when the page stops executing.

Note that when the user refreshes the page while executing a JSP page, new
instances will be created of all page-scope objects.

■ scope="request"—The object is accessible from any JSP page servicing the
same HTTP request that is serviced by the JSP page that created the object. A
request-scope object is stored in the implicit request object. The request
scope ends at the conclusion of the HTTP request.

■ scope="session"—The object is accessible from any JSP page that is sharing
the same HTTP session as the JSP page that created the object. A session-scope
object is stored in the implicit session object. The session scope ends when
the HTTP session times out or is invalidated.

■ scope="application"—The object is accessible from any JSP page that is
used in the same Web application as the JSP page that created the object, within
any single Java virtual machine. The concept is similar to that of a Java static
variable. An application-scope object is stored in the implicit application
servlet context object. The application scope ends when the application itself
terminates, or when the JSP container or servlet container shuts down.
General JSP Overview 1-15

Overview of JSP Syntax Elements
You can think of these four scopes as being in the following progression, from
narrowest scope to broadest scope:

page < request < session < application

If you want to share an object between different pages in an application, such as
when forwarding execution from one page to another, or including content from
one page in another, you cannot use page scope for the shared object; in this case,
there would be a separate object instance associated with each page. The narrowest
scope you can use to share an object between pages is request. (For information
about including and forwarding pages, see "Standard Actions: JSP Tags" below.)

Standard Actions: JSP Tags
JSP action elements result in some sort of action occurring while the JSP page is
being executed, such as instantiating a Java object and making it available to the
page. Such actions may include the following:

■ creating a JavaBean instance and accessing its properties

■ forwarding execution to another HTML page, JSP page, or servlet

■ including an external resource in the JSP page

For standard actions, there is a set of tags defined in the JSP specification. Although
directives and scripting elements described earlier in this chapter are sufficient to
code a JSP page, the standard tags described here provide additional functionality
and convenience.

Here is the general tag syntax for JSP standard actions:

<jsp:tag attr1="value1" attr2="value2" ... attrN="valueN">
...body...
</jsp:tag>

or, where there is no body:

<jsp:tag attr1="value1", ..., attrN="valueN" />

The JSP specification includes the following standard action tags, which are
introduced and briefly discussed here.

Note: The request, session, and application scopes also
apply to servlets.
1-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
■ jsp:useBean

The jsp:useBean tag accesses or creates an instance of a Java type, typically a
JavaBean class, and associates the instance with a specified name, or ID. The
instance is then available by that ID as a scripting variable of specified scope.
Scripting variables are introduced in "Custom Tag Libraries" on page 1-24.
Scopes are discussed in "JSP Objects and Scopes" on page 1-12.

The key attributes are class, type, id, and scope. (There is also a less
frequently used beanName attribute, discussed below.)

Use the id attribute to specify the instance name. The JSP container will first
search for an object by the specified ID, of the specified type, in the specified
scope. If it does not exist, the container will attempt to create it.

Intended use of the class attribute is to specify a class that can be instantiated,
if necessary, by the JSP container. The class cannot be abstract and must have a
no-argument constructor. Intended use of the type attribute is to specify a type
that cannot be instantiated by the JSP container—either an interface, an abstract
class, or a class without a no-argument constructor. You would use type in a
situation where the instance will already exist, or where an instance of an
instantiable class will be assigned to the type. There are three typical scenarios:

– Use type and id to specify an instance that already exists in the target
scope.

– Use class and id to specify the name of an instance of the class, either an
instance that already exists in the target scope, or an instance to be newly
created by the JSP container.

– Use class, type, and id to specify a class to instantiate and a type to
assign the instance to. In this case, the class must be legally assignable to the
type.

Use the scope attribute to specify the scope of the instance—either page for
the instance to be associated with the page context object, request for it to be
associated with the HTTP request object, session for it to be associated with
the HTTP session object, or application for it to be associated with the
servlet context.

As an alternative to using the class attribute, you can use the beanName
attribute. In this case, you have the option of specifying a serializable resource
instead of a class name. When you use the beanName attribute, the JSP
container creates the instance by using the instantiate() method of the
java.beans.Beans class.
General JSP Overview 1-17

Overview of JSP Syntax Elements
Consider the following examples:

<jsp:useBean id="reqobj" type="mypkg.MyIntfc" scope="request" />

The preceding example uses a request-scope instance reqobj of type MyIntfc.
Because MyIntfc is an interface and cannot be instantiated directly, reqobj
would have to already exist.

<jsp:useBean id="pageobj" class="mybeans.PageBean" scope="page" />

The preceding example uses a page-scope instance pageobj of class
PageBean, first creating it if necessary.

<jsp:useBean id="sessobj" class="mybeans.SessionBean"
 type="mypkg.MyIntfc scope="session" />

The preceding example creates an instance of class SessionBean, and assigns
the instance to the variable sessobj of type MyIntfc.

■ jsp:setProperty

The jsp:setProperty tag sets one or more bean properties. The bean must
have been previously specified in a jsp:useBean tag. You can directly specify
a value for a specified property, or take the value for a specified property from
an associated HTTP request parameter, or iterate through a series of properties
and values from the HTTP request parameters.

The following example sets the user property of the pageBean instance
(defined in the preceding jsp:useBean example) to a value of "Smith":

<jsp:setProperty name="pageBean" property="user" value="Smith" />

The following example sets the user property of the pageBean instance
according to the value set for a parameter called username in the HTTP
request:

<jsp:setProperty name="pageBean" property="user" param="username" />

If the bean property and request parameter have the same name (user), you
can simply set the property as follows:

<jsp:setProperty name="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,
matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values.
1-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
<jsp:setProperty name="pageBean" property="*" />

When you use the jsp:setProperty tag, string input can be used to specify
the value of a non-string property through conversions that happen behind the
scenes. See "Bean Property Conversions from String Values" on page 1-22.

■ jsp:getProperty

The jsp:getProperty tag reads a bean property value, converts it to a Java
string, and places the string value into the implicit out object so that it can be
displayed as output. The bean must have been previously specified in a
jsp:useBean tag. For the string conversion, primitive types are converted
directly, and object types are converted using the toString() method
specified in the java.lang.Object class.

The following example puts the value of the user property of the pageBean
bean into the out object:

<jsp:getProperty name="pageBean" property="user" />

■ jsp:param

You can use jsp:param tags in conjunction with jsp:include,
jsp:forward, and jsp:plugin tags (described below).

Used with jsp:forward and jsp:include tags, a jsp:param tag optionally
provides name/value pairs for parameter values in the HTTP request object.
New parameters and values specified with this action are added to the
request object, with new values taking precedence over old.

Important: For property="*", the JSP 1.2 specification does not
stipulate the order in which properties are set. If order matters, and
if you want to ensure that your JSP page is portable, you should use
a separate jsp:setProperty statement for each property.

Also, if you use separate jsp:setProperty statements, then the
JSP translator can generate the corresponding setXXX() methods
directly. In this case, introspection occurs only during translation.
There will be no need to introspect the bean during runtime, which
is more costly.
General JSP Overview 1-19

Overview of JSP Syntax Elements
The following example sets the request object parameter username to a
value of Smith:

<jsp:param name="username" value="Smith" />

■ jsp:include

The jsp:include tag inserts additional static or dynamic resources into the
page at request-time as the page is displayed. Specify the resource with a
relative URL (either page-relative or application-relative). For example:

<jsp:include page="/templates/userinfopage.jsp" flush="true" />

A "true" setting of the flush attribute results in the buffer being flushed to the
browser when a jsp:include action is executed. The JSP 1.2 specification and
the OC4J JSP container support either a "true" or "false" setting, with
"false" being the default. (The JSP 1.1 specification supports only a "true"
setting, with flush being a required attribute.)

You can also have an action body with jsp:param tags, as shown in the
following example:

<jsp:include page="/templates/userinfopage.jsp" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

Note that the following syntax would work as an alternative to the preceding
example:

<jsp:include page="/templates/userinfopage.jsp?username=Smith&userempno=9876" flush="true" />

Notes:

■ The jsp:include tag, known as a "dynamic include", is
similar in nature to the include directive discussed earlier in
this chapter, but takes effect at request-time instead of
translation-time. See "Static Includes Versus Dynamic Includes"
on page 6-3.

■ The jsp:include tag can be used only between pages in the
same servlet context (application).
1-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
■ jsp:forward

The jsp:forward tag effectively terminates execution of the current page,
discards its output, and dispatches a new page—either an HTML page, a JSP
page, or a servlet.

The JSP page must be buffered to use a jsp:forward tag; you cannot set
buffer="none" in a page directive. The action will clear the buffer, not
outputting contents to the browser.

As with jsp:include, you can also have an action body with jsp:param
tags, as shown in the second of the following examples:

<jsp:forward page="/templates/userinfopage.jsp" />

or:

<jsp:forward page="/templates/userinfopage.jsp" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:forward>

Notes:

■ The difference between the jsp:forward examples here and
the jsp:include examples earlier is that the jsp:include
examples insert userinfopage.jsp within the output of the
current page; the jsp:forward examples stop executing the
current page and display userinfopage.jsp instead.

■ The jsp:forward tag can be used only between pages in the
same servlet context.

■ The jsp:forward tag results in the original request object
being forwarded to the target page. As an alternative, if you do
not want the request object forwarded, you can use the
sendRedirect(String) method specified in the standard
javax.servlet.http.HttpServletResponse interface.
This sends a temporary redirect response to the client using the
specified redirect-location URL. You can specify a relative URL;
the servlet container will convert the relative URL to an
absolute URL.
General JSP Overview 1-21

Overview of JSP Syntax Elements
■ jsp:plugin

The jsp:plugin tag results in the execution of a specified applet or JavaBean
in the client browser, preceded by a download of Java plugin software if
necessary.

Specify configuration information, such as the applet to run and the code base,
using jsp:plugin attributes. The JSP container might provide a default URL
for the download, but you can also specify attribute nspluginurl="url" (for
a Netscape browser) or iepluginurl="url" (for an Internet Explorer
browser).

Use nested jsp:param tags between the <jsp:params> start-tag and the
</jsp:params> end-tag to specify parameters to the applet or JavaBean.
(Note that the jsp:params start-tag and end-tag are not necessary when using
jsp:param in a jsp:include or jsp:forward action.)

Use a <jsp:fallback> start -tag and </jsp:fallback> end-tag to delimit
alternative text to execute if the plugin cannot run.

The following example, from the Sun Microsystems JavaServer Pages Specification,
Version 1.2, shows the use of an applet plugin:

<jsp:plugin type=applet code="Molecule.class" codebase="/html" >
 <jsp:params>
 <jsp:param name="molecule" value="molecules/benzene.mol" />
 </jsp:params>
 <jsp:fallback>
 <p> Unable to start the plugin. </p>
 </jsp:fallback>
</jsp:plugin>

Many additional parameters—such as ARCHIVE, HEIGHT, NAME, TITLE, and
WIDTH—are allowed in the jsp:plugin tag as well. Use of these parameters is
according to the general HTML specification.

Bean Property Conversions from String Values
As noted earlier, when you use a JavaBean through a jsp:useBean tag in a JSP
page, and then use a jsp:setProperty tag to set a bean property, string input can
be used to specify the value of a non-string property through conversions that
happen behind the scenes. There are two conversion scenarios:

■ Typical Property Conversions

■ Conversions for Property Types with Property Editors
1-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
Typical Property Conversions
For a bean property that does not have an associated property editor, Table 1–1
shows how conversion is accomplished when using a string value to set the
property.

Conversions for Property Types with Property Editors
A bean property can have an associated property editor, which is a class that
implements the java.beans.PropertyEditor interface. Such classes can
provide support for GUIs used in editing properties. Generally speaking, there are
standard property editors for standard Java types, and there can be user-defined
property editors for user-defined types. In the OC4J JSP implementation, however,
only user-defined property editors are searched for. Default property editors of the
sun.beans.editors package are not taken into account.

For information about property editors and how to associate a property editor with
a type, you can refer to the Sun Microsystems JavaBeans API Specification, Version
1.01.

You can still use a string value to set a property that has an associated property
editor, as specified in the JavaBeans specification. In this situation, the
setAsText(String text) method specified in the PropertyEditor interface
is used in converting from string input to a value of the appropriate type. (If the

Table 1–1 Attribute Conversion Methods

Property Type Conversion

boolean or Boolean according to valueOf(String) method of Boolean class

byte or Byte according to valueOf(String) method of Byte class

char or Character according to charAt(0) method of String class (inputting an
index value of 0)

double or Double according to valueOf(String) method of Double class

int or Integer according to valueOf(String) method of Integer class

float or Float according to valueOf(String) method of Float class

long or Long according to valueOf(String) method of Long class

short or Short according to valueOf(String) method of Short class

Object as if String constructor is called, using literal string input

The String instance is returned as an Object instance.
General JSP Overview 1-23

Overview of JSP Syntax Elements
setAsText() method throws an IllegalArgumentException, the conversion
will fail.)

Custom Tag Libraries
In addition to the standard JSP tags discussed above, the JSP specification lets
vendors define their own tag libraries, and lets vendors implement a framework that
allows customers to define their own tag libraries as well.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly when manually coding a JSP
page, but they might also be used automatically by Java development tools. A
standard tag library must be portable between different JSP container
implementations.

Import a tag library into a JSP page using the taglib directive introduced in
"Directives" on page 1-7.

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following topics:

■ tag library descriptor files

A tag library descriptor (TLD) file is an XML document that contains information
about a tag library and about individual tags of the library. The file name of a
TLD has the .tld extension.

■ tag handlers

A tag handler specifies the action of a custom tag and is an instance of a Java
class that implements either the Tag, IterationTag, or BodyTag interface (as
appropriate, depending on whether the tag has a body and whether the tag
handler requires access to the body content) in the standard
javax.servlet.jsp.tagext package.

■ scripting variables

Custom tag actions can create server-side objects available for use by the tag
itself or by other scripting elements such as scriptlets. This is accomplished by
creating or updating scripting variables.

Details regarding scripting variables that a custom tag defines are specified in
the TLD file or in a subclass of the TagExtraInfo abstract class (in package
javax.servlet.jsp.tagext). This document refers to a subclass of
TagExtraInfo as a tag-extra-info class. The JSP container uses instances of
these classes during translation.
1-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of JSP Syntax Elements
■ tag-library-validators

A tag-library-validator class has logic to validate any JSP page that uses the tag
library, according to specified constraints.

■ event listeners

You can use servlet 2.3 event listeners with a tag library. This functionality is
offered as a convenient alternative to declaring listeners in the application
web.xml file.

■ use of web.xml for tag libraries

The Sun Microsystems Java Servlet Specification, Version 2.3 describes a standard
deployment descriptor for servlets—the web.xml file. JSP applications can use
this file in specifying the location of a JSP tag library descriptor file.

For JSP tag libraries, the web.xml file can include a taglib element and two
subelements: taglib-uri and taglib-location.

For information about these topics, see Chapter 8, "JSP Tag Libraries". For further
information, see the Sun Microsystems JavaServer Pages Specification, Version 1.2.

For complete information about the tag libraries provided with OC4J, see the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.
General JSP Overview 1-25

JSP Execution
JSP Execution
This section provides a top-level look at how a JSP page is run, including
on-demand translation (the first time a JSP page is run), the role of the JSP container
and the servlet container, and error processing.

JSP Containers in a Nutshell
A JSP container is an entity that translates, executes, and processes JSP pages and
delivers requests to them.

The exact make-up of a JSP container varies from implementation to
implementation, but it will consist of a servlet or collection of servlets. The JSP
container, therefore, is executed by a servlet container. Servlet containers are
summarized in "Servlet Containers" on page A-3.

A JSP container can be incorporated into a Web server if the Web server is written in
Java, or the container can be otherwise associated with and used by the Web server.

JSP Execution Models
There are two distinct execution models for JSP pages:

■ In most implementations and situations, the JSP container translates pages on
demand before triggering their execution; that is, at the time they are requested
by the user.

■ In some scenarios, however, the developer might want to translate the pages in
advance and deploy them as working servlets. Command-line tools are
available to translate the pages, load them, and "publish" them to make them
available for execution. You can have the translation occur either on the client or
in the server. When the end-user requests the JSP page, it is executed directly,
with no translation necessary.

On-Demand Translation Model
It is typical to run JSP pages in an on-demand translation scenario. When a JSP page
is requested from a Web server that incorporates the JSP container, a front-end

Note: The term JSP container first appeared in the Sun
Microsystems JavaServer Pages Specification, Version 1.1, replacing
the term JSP engine that was used in earlier specifications. The two
terms are synonymous.
1-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Execution
servlet is instantiated and invoked, assuming proper Web server configuration. This
servlet can be thought of as the front-end of the JSP container. In OC4J, it is
oracle.jsp.runtimev2.JspServlet.

JspServlet locates the JSP page, translates and compiles it if necessary (if the
translated class does not exist or has an earlier timestamp than the JSP page source),
and triggers its execution.

Note that the Web server must be properly configured to map the *.jsp file name
extension (in a URL) to JspServlet. This is handled automatically during OC4J
installation, as discussed in "JSP Container Setup" on page 3-8.

Pre-Translation Model
As an alternative to the typical on-demand scenario, developers may want to
pre-translate their JSP pages before deploying them. This can offer the following
advantages, for example:

■ It can save time for the end-users when they first request a JSP page, because
translation at execution time is not necessary.

■ It is also useful if you want to deploy binary files only, perhaps because the
software is proprietary or you have security concerns and you do not want to
expose the code.

For more information, see "JSP Pre-Translation" on page 7-37 and "Deployment of
Binary Files Only" on page 7-40.

Oracle supplies the ojspc command-line utility for pre-translating JSP pages. This
utility has options that allow you to set an appropriate base directory for the output
files, depending on how you want to deploy the application. The ojspc utility is
documented in "The ojspc Pre-Translation Utility" on page 7-13.

JSP Pages and On-Demand Translation
Presuming the typical on-demand translation scenario, a JSP page is usually
executed as follows:

1. The user requests the JSP page through a URL ending with a .jsp file name.

2. Upon noting the .jsp file name extension in the URL, the servlet container of
the Web server invokes the JSP container.

3. The JSP container locates the JSP page and translates it if this is the first time it
has been requested. Translation includes producing servlet code in a .java file
and then compiling the .java file to produce a servlet .class file.
General JSP Overview 1-27

JSP Execution
The servlet class generated by the JSP translator extends a class (provided by
the JSP container) that implements the javax.servlet.jsp.HttpJspPage
interface (described in "Standard JSP Interfaces and Methods" on page A-12).
The servlet class is referred to as the page implementation class. This document
will refer to instances of page implementation classes as JSP page instances.

Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing
the HttpJspPage interface and generating code for its service method.

4. The JSP container triggers instantiation and execution of the page
implementation class.

The JSP page instance will then process the HTTP request, generate an HTTP
response, and pass the response back to the client.

Requesting a JSP Page
A JSP page can be requested either directly—through a URL—or
indirectly—through another Web page or servlet.

Directly Requesting a JSP Page
As with a servlet or HTML page, the end-user can request a JSP page directly by
URL. For example, suppose you have a HelloWorld JSP page that is located under
a myapp directory, as follows, where myapp is mapped to the myapproot root
context in the Web server:

myapp/dir1/HelloWorld.jsp

You can request it with a URL such as the following:

http://host[:port]/myapproot/dir1/HelloWorld.jsp

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its JSP container, but it will consist of a servlet or
collection of servlets. For example, there may be a front-end servlet
that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
extended by each page implementation class (because a translated
page is not a pure servlet and cannot be run directly by the servlet
container). A servlet container is required to run each of these
components.
1-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Execution
The first time the end-user requests HelloWorld.jsp, the JSP container triggers
both translation and execution of the page. With subsequent requests, the JSP
container triggers page execution only; the translation step is no longer necessary.

Indirectly Requesting a JSP Page
JSP pages, like servlets, can also be executed indirectly—linked from a regular
HTML page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can
be either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/"; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

The application-relative path in a JSP statement is:

<jsp:include page="/dir1/HelloWorld.jsp" flush="true" />

The page-relative path to invoke HelloWorld.jsp from a JSP page in the same
directory is:

<jsp:forward page="HelloWorld.jsp" />

("Standard Actions: JSP Tags" on page 1-16 discusses the jsp:include and
jsp:forward statements.)

Note: This is just a general example. By default in OC4J in
Oracle9iAS release 2, the context path must start with "/j2ee" if you
want processing to be routed to OC4J through the Oracle HTTP
Server and mod_oc4j, as in a typical production environment.
Oracle HTTP Server and mod_oc4j are introduced in "Role of the
Oracle HTTP Server and mod_oc4j" on page 2-10. General servlet
and JSP invocation are discussed in the Oracle9iAS Containers for
J2EE Servlet Developer’s Guide.
General JSP Overview 1-29

JSP Execution
1-30 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle JSP Implemen
2

Overview of the Oracle JSP Implementation

The JSP container provided with Oracle9iAS Containers for J2EE (OC4J) in the
Oracle9i Application Server is a complete implementation of the Sun Microsystems
JavaServer Pages Specification, Version 1.2. JSP 1.2 functionality depends upon servlet
2.3 functionality, and the OC4J servlet container is a complete implementation of the
Sun Microsystems Java Servlet Specification, Version 2.3.

This chapter provides overviews of the Oracle9i Application Server, OC4J, the OC4J
JSP implementation and features, and custom tag libraries and utilities that are also
supplied (documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference).

The following topics are covered here:

■ Overview of the Oracle9i Application Server and JSP Support

■ Oracle9i JDeveloper JSP Support

■ Overview of Oracle Value-Added Features
tation 2-1

Overview of the Oracle9i Application Server and JSP Support
Overview of the Oracle9i Application Server and JSP Support
This section provides a brief overview of the Oracle9i Application Server, its J2EE
environment, its JSP implementation, and its Web server:

■ Overview of the Oracle9i Application Server

■ Overview of OC4J

■ Overview of the JSP Implementation in OC4J

■ Role of the Oracle HTTP Server and mod_oc4j

Overview of the Oracle9i Application Server
Oracle9i Application Server is a scalable, secure, middle-tier application server. It
can be used to deliver Web content, host Web applications, connect to back-office
applications, and make these services accessible to any client browser. Users can
access information, perform business analysis, and run business applications on the
Internet or corporate intranets or extranets. Major areas of functionality include
business intelligence, e-business integration, J2EE Web services, performance and
caching, portals, wireless, and management and security.

To deliver this range of content and services, the Oracle9i Application Server
incorporates many components, including the Oracle HTTP Server, Oracle9iAS Web
Cache, Oracle9iAS Web Services, Oracle9iAS Portal, Oracle9iAS Wireless,
Oracle9iAS Forms Services and Reports Services (to support Oracle Forms-based
applications and reports generation), Oracle9iAS Personalization, and various
business logic runtime environments that support Enterprise JavaBeans, stored
procedures, and Oracle Business Components for Java.

For its J2EE environment, Oracle9iAS provides the Oracle9iAS Containers for J2EE
(OC4J), which includes the JSP container described in this manual, a servlet
container, and an EJB container.

(In addition, Oracle9iAS includes an Apache JServ servlet environment,
documented in Appendix B, "The Apache JServ Environment".)

Note: Users of earlier Oracle9iAS releases can refer to Oracle9i
Application Server Migrating to Release 2 (9.0.3) for information about
issues in migrating to Oracle9iAS release 2.
2-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle9i Application Server and JSP Support
Overview of OC4J
OC4J is a high-performance J2EE-compliant environment providing a scalable and
reliable server infrastructure by supporting clusters and load balancing. (See the
Oracle9i Application Server Performance Guide for information about clustering.) With
Oracle9iAS release 2 (9.0.3), OC4J complies with the J2EE 1.3 specification.

OC4J General Features
Each OC4J instance runs in a single Java virtual machine. The JVM running an OC4J
instance is referred to as a node. One or more nodes—typically about two to
four—form an island. Multiple islands together form a cluster. For each OC4J cluster,
there is a JVM for each OC4J instance, plus a JVM for the load balancer. (Other types
of clusters are possible in Oracle9iAS as well, as discussed in the Oracle9i Application
Server Administrator’s Guide.)

In addition to load balancing, which improves performance by distributing requests
among multiple servers, the clustering mechanism provides fault tolerance, which
allows any particular server to redirect a client to another server in the event of
failure.

Java applications built with any development tool can be deployed to OC4J, which
supports standard EAR/WAR/JAR deployment. You can debug applications
deployed to OC4J through standard Java profiling and debugging facilities.

In an Oracle9iAS environment, OC4J can be fully managed and configured using
the HTML-based Oracle Enterprise Manager. This includes full support for
managing clustering, configuration, and deployment.

OC4J Services
OC4J supports the following Java and J2EE services:

■ J2EE Connector Architecture (JCA)—JCA defines a standard architecture for
connecting J2EE platforms to heterogeneous enterprise information systems
such as ERP systems, mainframe transaction processing, database systems, and
legacy applications.

■ Java Transaction API (JTA) and two-phase commits—JTA allows simultaneous
updates to multiple resources in a single, coordinated transaction.

■ Java Message Service (JMS) integration—This integration allows compatibility
between the Oracle JMS implementation and those of other JMS providers.

■ Java Naming and Directory Interface (JNDI)—JNDI associates names with
resources for lookup purposes.
Overview of the Oracle JSP Implementation 2-3

Overview of the Oracle9i Application Server and JSP Support
■ Java Authentication and Authorization Service (JAAS)—The Oracle
implementation of JAAS and the Java2 security model provides complete
support for development and deployment of secure applications and for
fine-grained authorization and access control.

OC4J Containers
OC4J supplies the following J2EE containers:

■ a JSP container complying with the Sun JSP 1.2 specification

The JSP bundle also supplies tag libraries to implement Web services, caching
capabilities, SQL access, file access, and other features. For further overview of
the JSP container provided with OC4J, see "Overview of the JSP Implementation
in OC4J" on page 2-6.

■ a servlet container complying with the Sun Microsystems servlet 2.3
specification (see below for key features)

■ an EJB container complying with the Sun EJB 2.0 specification (see below for
key features)

OC4J containers have been instrumented to support the Dynamic Monitoring
Service (DMS) to provide runtime performance data. You can view this data
through Enterprise Manager.

Key Servlet Container Features The OC4J servlet container supports stateful failover
and cluster deployment in addition to the following key features:

■ servlet filtering—This allows transformation of the content of an HTTP request
or response, and modification of header information.

■ application-level and session-level event listeners—This feature allows greater
control over interaction with servlet context and HTTP session objects and,
therefore, greater efficiency in managing resources that the application uses.

■ integration with SSO and OID—This is through the Oracle JAAS
implementation.

Note: Servlet 2.3 compliance is required in order to support JSP
1.2 compliance.
2-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle9i Application Server and JSP Support
Key EJB Container Features The OC4J EJB container supports the following:

■ session beans—A session bean is used for task-oriented requests. You can
define a session bean as stateless or stateful. Stateless session beans cannot
maintain state information across calls, while stateful session beans can
maintain state across calls.

■ entity beans—An entity bean represents data. It can use the container to
maintain the data persistently, which is referred to as container-managed
persistence (CMP), or it can use the bean implementation to manage the data,
which is referred to as bean-managed persistence (BMP).

■ message-driven beans (MDB)—A message-driven bean is used to receive JMS
messages from a queue or topic. It can then invoke other EJBs to process the
JMS message.

EJB support in OC4J also includes these features:

■ clustering for session and entity beans

■ enhanced entity bean concurrency models to support concurrent access from
multiple clients

■ extended locking models for entity beans (optimistic locking mode /
pessimistic locking mode / read-only mode)

■ Active Components for Java (AC4J), to provide a standards-based infrastructure
for coordinating long-running business transactions

OC4J Standalone
In a production environment, it is typical to use OC4J inside a complete Oracle9iAS
environment, including the Oracle HTTP Server (as described in "Role of the Oracle
HTTP Server and mod_oc4j" on page 2-10), Oracle9iAS Web Cache, and Enterprise
Manager.

For a development environment, OC4J is also available as a standalone component
by downloading OC4J_extended.zip from the Oracle Technology Network
(http://otn.oracle.com).

When using OC4J standalone, you can use its own HTTP Web listener through port
8888. For information about OC4J standalone, see the standalone version of the
Oracle9iAS Containers for J2EE User’s Guide (downloadable with OC4J_extended.zip)
and the Oracle9iAS Containers for J2EE Servlet Developer’s Guide.
Overview of the Oracle JSP Implementation 2-5

Overview of the Oracle9i Application Server and JSP Support
Overview of the JSP Implementation in OC4J
The JSP container in OC4J is compliant with the Sun Microsystems JSP 1.2
specification.

In general, a JSP 1.2 environment requires a servlet 2.3 environment, such as the
OC4J servlet container. The Oracle JSP implementation, however, also supports
running on Apache JServ, a servlet 2.0 environment. To make this possible, the OC4J
JSP container emulates required servlet features beyond the 2.0 specification.

For a variety of reasons, though, it is generally advisable to use the OC4J servlet 2.3
environment.

This section offers additional information on the following topics:

■ History and Integration of JSP Containers

■ JSP Front-End Servlet and Configuration

■ OC4J JSP Features for JSP 1.2

■ Configurable JSP Extensions in OC4J

■ Portability Across Servlet Environments

History and Integration of JSP Containers
In Oracle9iAS release 1.0.2.2, the first release to include OC4J, there were two JSP
containers: 1) a container developed by Oracle and known as "OracleJSP"; 2) a
container licensed from Ironflare AB and known as the "Orion JSP container".

The OracleJSP container offered several advantages, including useful value-added
features and enhancements such as for globalization and SQLJ support. The Orion
container also offered advantages, including superior speed, but had disadvantages
as well. It did not always exhibit standard behavior when compared to the JSP
reference implementation (Tomcat), and its support for internationalization and
globalization was not as complete.

Oracle9iAS release 2 (9.0.2) first integrated the OracleJSP and Orion containers into
a single JSP container referred to in this manual as the "OC4J JSP container". This
container offers the best features of both previous versions, runs efficiently as a
servlet in the OC4J servlet container, and is integrated with other OC4J containers as
well. The integrated container primarily consists of the OracleJSP translator and the
Orion container runtime, running with a simplified dispatcher and the OC4J core
runtime classes.
2-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle9i Application Server and JSP Support
JSP Front-End Servlet and Configuration
The JSP container in OC4J uses the front-end servlet
oracle.jsp.runtimev2.JspServlet. See "JSP Configuration in OC4J" on
page 3-8.

For non-OC4J environments, including Apache JServ, use the old front-end servlet,
oracle.jsp.JspServlet. See "Getting Started in a JServ Environment" on
page B-2.

OC4J JSP Features for JSP 1.2
Beginning with the OC4J 9.0.3 implementation, the OC4J JSP container is fully
compliant with the JSP 1.2 specification. Most of the new functionality is in the area
of custom tag libraries. Here is a summary of new features:

■ tag library features

– There is a new tag handler interface that allows iteration through a tag body
without having to maintain and access a body content object.

– You can create a tag-library-validator class and associate it with a tag
library. A validator instance will check any JSP page that uses the library, to
verify that it meets whatever constraints you desire.

– For convenience, you can declare servlet 2.3 event listeners in a tag library
descriptor file instead of in the web.xml file. This enables you to more
conveniently manage application and session resources associated with
usage of the tag library.

– You can package multiple tag libraries and their TLD files inside a single
JAR file.

See Chapter 8, "JSP Tag Libraries" for details about these features, and
"Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications"
on page 8-4 for a more detailed summary.

■ XML features

– The OC4J JSP container previously supported XML-alternative syntax, but
this is now replaced with support according to the JSP 1.2 specification.

– The OC4J JSP container generates an XML view of every translated page,
which is a mapping to an XML document that describes the page. This view
is available for use by tag-library-validator classes.

See Chapter 5, "JSP XML Support" for information about these features.
Overview of the Oracle JSP Implementation 2-7

Overview of the Oracle9i Application Server and JSP Support
■ character encoding features

OC4J JSP supports the pageEncoding attribute of the page directive. This
enables you to specify a character encoding for the page source that is different
than the character encoding for the response (specified in the contentType
attribute).

See "Content Type Settings" on page 9-2.

Configurable JSP Extensions in OC4J
In addition to JSP 1.2 compliance, the OC4J JSP container in Oracle9iAS release 2
(9.0.3) includes the following configurable features.

Also see "Overview of Oracle Value-Added Features" on page 2-13.

The following features are new in the OC4J 9.0.3 implementation:

■ mode switch to avoid JSP translation errors if you have duplicate settings for
the same directive attribute within a single JSP translation unit (OC4J or JServ)

The JSP 1.2 specification mandates translation errors if you have duplicate
settings for the same directive attribute within a single JSP translation unit
(except for the page directive import attribute). These errors may be
unwanted or inappropriate, for example, if a page and an included file both set
an attribute to the same value (such as language="java").

In "JSP Configuration Parameters" on page 3-9, see the description of the
forgive_dup_dir_attr parameter.

■ separate mode switches for XML validation of web.xml file and TLD files
(OC4J or JServ)

Validation of web.xml is disabled by default but can be enabled. Validation of
TLD files is enabled by default but can be disabled.

In "JSP Configuration Parameters" on page 3-9, see the descriptions of the
xml_validate and no_tld_xml_validate parameters.

■ mode flag for extra imports (OC4J or JServ)

Use this to automatically import certain Java packages beyond the JSP defaults.

In "JSP Configuration Parameters" on page 3-9, see the description of the
extra_imports parameter.
2-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle9i Application Server and JSP Support
■ "well-known" location for sharing tag libraries (OC4J or JServ)

You can specify a directory where tag library JAR files can be placed for sharing
across multiple Web applications.

In "JSP Configuration Parameters" on page 3-9, see the description of the
well_known_taglic_loc parameter.

■ configurable JSP timeout

You can specify a timeout value for JSP pages, after which a page is removed
from memory if it has not been requested again. See "OC4J Configuration
Parameters for JSP" on page 3-21.

The following features have been supported since the OC4J 9.0.2 implementation:

■ mode switch for automatic page recompilation and class reloading (OC4J only)

You have a choice of: 1) running JSP pages without any automatic reloading of
classes or recompilation of JSP pages; 2) automatically reloading any classes
that are used by the JSP page and have changed; or 3) automatically
recompiling any JSP pages that have changed, as well as reloading any classes
that have changed.

In "JSP Configuration Parameters" on page 3-9, see the description of the
main_mode parameter.

■ tag handler instance pooling (OC4J or JServ)

To save time in tag handler creation and garbage collection, you can optionally
enable pooling of tag handler instances. They are pooled in application
scope. You can use different settings in different pages, or even in different
sections of the same page. See "Disabling or Enabling Runtime or Compile-Time
Tag Handler Reuse" on page 8-38.

■ output mode for null output (OC4J only)

The OC4J configuration parameter jsp-print-null enables you to print an
empty string instead of the default "null" string for null output from a JSP page.

See "JSP Configuration in OC4J" on page 3-8.

■ single-threaded-model JSP instance pooling (OC4J only)

For single-threaded (non-thread-safe) JSP pages, page instances are pooled.
There is no switch for this feature—it is always enabled.
Overview of the Oracle JSP Implementation 2-9

Overview of the Oracle9i Application Server and JSP Support
Portability Across Servlet Environments
The JSP container is provided as a component of OC4J, but is portable to other
environments. Because the OC4J JSP container itself emulates certain required
servlet features, this portability extends to older servlet environments, in particular
the Apache JServ servlet 2.0 environment. (Generally, a servlet 2.3 environment is
required in order to support JSP 1.2 compliance.)

The servlet 2.0 specification was limited in that it provided only a single servlet
context for each Java virtual machine, instead of a servlet context for each
application. The OC4J JSP servlet emulation allows a full application framework in
a servlet 2.0 environment, including providing applications with distinct
ServletContext and HttpSession objects.

Because of this extended functionality, the OC4J JSP container is not limited by the
underlying servlet environment.

In addition to JServ 1.1, the OC4J JSP container has been tested with Tomcat 3.1
(servlet 2.2) from the Apache Software Foundation, and JSWDK 1.0 (JavaServer Web
Developer’s Kit, servlet 2.1) from Sun Microsystems.

Role of the Oracle HTTP Server and mod_oc4j
Oracle HTTP Server, powered by the Apache Web server, is included with Oracle9i
Application Server as the HTTP entry point for Web applications, particularly in a
production environment. By default, it is the front-end for all OC4J
processes—client requests go through Oracle HTTP Server first.

When the Oracle HTTP Server is used, dynamic content is delivered through
various Apache mod components provided either by the Apache Software
Foundation or by Oracle. Static content is typically delivered from the file system,
which is more efficient in this case. An Apache mod is typically a module of C code,
running in the Apache address space, that passes requests to a particular
mod-specific processor. The mod software will have been written specifically for
use with the particular processor.

Oracle9iAS supplies the mod_oc4j Apache mod, which is used for communication
between the Oracle HTTP Server and OC4J. It routes requests from the Oracle HTTP
Server to OC4J processes, and forwards responses from OC4J processes to Web
clients.

Communication is through the Apache JServ protocol (AJP). AJP was chosen over
HTTP because of a variety of AJP features allowing faster communication,
including use of binary format and more efficient processing of message headers.
2-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Oracle9i Application Server and JSP Support
The following features are provided with mod_oc4j:

■ load balancing capabilities across many back-end OC4J clusters

■ stateless session routing of stateful servlets

This is accomplished through enhanced use of cookies. Routing information is
maintained in the cookie itself to ensure that stateful servlets are always routed
to the same OC4J JVM.

■ high availability

A mod_oc4j module can restart an OC4J instance automatically, if necessary.

Notes:

■ Oracle9iAS also includes mod_jserv, from Apache, for the
JServ servlet environment. This feature is documented in
Appendix B, "The Apache JServ Environment". Additional
Apache mod components provided with Oracle9iAS are not
relevant for JSP applications.

■ It is possible to bypass the Oracle HTTP Server and access OC4J
directly through its own Web listener, which is convenient for
development or basic testing. And for OC4J standalone, Oracle
HTTP Server is not available. For information about port
configuration and default settings, see the Oracle9iAS Containers
for J2EE User’s Guide. For an introduction to OC4J standalone,
see "OC4J Standalone" on page 2-5.
Overview of the Oracle JSP Implementation 2-11

Oracle9i JDeveloper JSP Support
Oracle9i JDeveloper JSP Support
Visual Java programming tools now typically support JSP coding. In particular,
Oracle9i JDeveloper supports JSP development and includes the following features:

■ integration of the OC4J JSP container to support the full application
development cycle—editing, debugging, and running JSP pages

■ debugging of deployed JSP pages

■ an extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

■ the JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

■ support for incorporating custom JavaBeans

■ a deployment option for JSP applications that rely on the JDeveloper Business
Components for Java (BC4J)

See "Application Deployment with Oracle9i JDeveloper" on page 7-36 for more
information about JSP deployment support.

For debugging, JDeveloper can set breakpoints within JSP page source and can
follow calls from JSP pages into JavaBeans. This is much more convenient than
manual debugging techniques, such as adding print statements within the JSP page
to output state into the response stream (for viewing in your browser) or to the
server log (through the log() method of the implicit application object).

For information about JDeveloper, refer to the JDeveloper online help, or to the
following site on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

For an overview of JSP tag libraries provided with JDeveloper, see the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference.
2-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of Oracle Value-Added Features
Overview of Oracle Value-Added Features
OC4J value-added features for JSP pages can be grouped into three major
categories:

■ features implemented through custom tag libraries, custom JavaBeans, or
custom classes that are generally portable to other JSP environments

■ features that are Oracle-specific

■ features supporting caching technologies

The rest of this section provides feature overviews in each of these areas, plus a
brief summary of Oracle support for the JavaServer Pages Standard Tag Library
(JSTL). JSTL support is summarized more fully in the Oracle9iAS Containers for J2EE
JSP Tag Libraries and Utilities Reference.

Overview of Tag Libraries and Utilities Provided with OC4J
This section provides an overview of extended OC4J JSP features that are
implemented through standards-compliant custom tag libraries, custom JavaBeans,
and other classes. These features are fully documented in the Oracle9iAS Containers
for J2EE JSP Tag Libraries and Utilities Reference. Here is a summary list:

■ extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event-handling

■ integration with XML and XSL

■ data-access JavaBeans

■ data-access tag library

■ the JSP Markup Language (JML) custom tag library, which reduces the level of
Java proficiency required for JSP development

■ Oracle Personalization tag library

■ Web services tag library

■ additional utility tags and JavaBeans for uploading files, downloading files,
sending e-mail from within an application, using EJBs, and using miscellaneous
utilities
Overview of the Oracle JSP Implementation 2-13

Overview of Oracle Value-Added Features
Extended Type JavaBeans
JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following type categories is fully suitable for use in JSP pages:

■ primitive types such as int, float, and double

Values of these types cannot have a specified scope—they cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.

■ wrapper classes in the standard java.lang package, such as Integer, Float,
and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, you cannot declare them in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide a zero-argument constructor. Additionally, instances of the wrapper
classes are immutable. To change a value, you must create a new instance and
assign it appropriately.

To work around these limitations, OC4J provides the JmlBoolean, JmlNumber,
JmlFPNumber, and JmlString JavaBean classes in package oracle.jsp.jml to
wrap the most common Java types.

JspScopeListener for Event-Handling
OC4J provides the JspScopeListener interface for lifecycle management of Java
objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet.http.HttpSessionBindingListener interface, but this
handles session-based events only. You can integrate the Oracle
JspScopeListener with HttpSessionBindingListener to handle
session-based events, as well as page-based, request-based, and application-based
events.

Tags Supporting XML
OC4J provides standard JSP XML support as prescribed by the JSP 1.2 specification
and described in Chapter 5, "JSP XML Support". In addition, OC4J offers extended
support through XML-related custom tags.

There are special tags to specify that all or part of a JSP page should be transformed
through an XSL stylesheet before it is output. Input can be from the tag body or
from an XML DOM object, and output can be to an XML DOM object to the
2-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of Oracle Value-Added Features
browser. You can use these tags multiple times in a single JSP page if you want to
specify different style sheets for different portions of the page.

There is additional XML support as well:

■ There is a utility tag to convert data from an input stream to an XML DOM
object.

■ There are several tags, for such things as caching and SQL operations, that now
can take XML objects as input or send them as output.

■ As of the JSP 1.2 specification, any compliant JSP container, including the OC4J
JSP container, supports JSP XML syntax as an alternative to traditional syntax.
See "Details of JSP XML Documents" on page 5-4.

Custom Data-Access JavaBeans
OC4J supplies a set of custom JavaBeans for database access. The following beans
are provided in the oracle.jsp.dbutil package:

■ ConnBean—Open a database connection. This bean also supports data sources
and connection pooling.

■ ConnCacheBean—Use the Oracle connection caching implementation for
database connections.

■ DBBean—Execute a database query.

■ CursorBean—This bean provides general DML support for queries; UPDATE,
INSERT, and DELETE statements; and stored procedure calls.

Note: The custom XML tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. Going forward, for standards compliance, it
is advisable to use JSTL instead of the custom libraries as a general
rule. Oracle is not desupporting the existing tags, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try in the
future to have the features adopted into the JSTL standard as
appropriate.
Overview of the Oracle JSP Implementation 2-15

Overview of Oracle Value-Added Features
Custom Data-Access Tag Library
OC4J provides a custom SQL tag library for database access. The following tags are
provided:

■ dbOpen—Open a database connection. This tag also supports data sources and
connection pooling.

■ dbClose—Close a database connection.

■ dbQuery—Execute a database query.

■ dbCloseQuery—Close the cursor for a query.

■ dbNextRow—Process the rows of a result set.

■ dbExecute—Execute any SQL statement (DML or DDL).

■ dbSetParam—Set a parameter to bind into a dbQuery or dbExecute tag.

■ dbSetCookie—Set a cookie.

JSP Markup Language (JML) Custom Tag Library
Although the Sun Microsystems JavaServer Pages Specification, Version 1.2 supports
scripting languages other than Java, Java is the primary language used. Even
though JavaServer Pages technology is designed to separate the dynamic/Java
development effort from the static/HTML development effort, it is no doubt still a
hindrance if the Web developer does not know any Java, especially in small
development groups where no Java experts are available.

OC4J provides custom tags as an alternative—the JSP Markup Language (JML). The
Oracle JML tag library provides an additional set of JSP tags so that you can script
your JSP pages without using Java statements. JML provides tags for variable
declarations, flow control, conditional branches, iterative loops, parameter settings,

Note: The custom SQL tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. Going forward, for standards compliance, it
is advisable to use JSTL instead of the custom libraries as a general
rule. Oracle is not desupporting the existing tags, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try in the
future to have the features adopted into the JSTL standard as
appropriate.
2-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of Oracle Value-Added Features
and calls to objects. The JML tag library also supports XML functionality, as noted
previously.

The following example shows use of the jml:for tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<<%=i%>>
</jml:for>

Oracle9iAS Personalization Tag Library
Web site personalization is a mechanism to personalize recommendations to users
of a site, based on behavioral and demographic data. Recommendations are made
in real-time, during a user’s Web session. User behavior is saved to a database
repository for use in building models for predictions of future user behavior.

Oracle9iAS Personalization uses data mining algorithms in the Oracle database to
choose the most relevant content available for a user. Recommendations are
calculated by an Oracle9iAS Personalization recommendation engine, using
typically large amounts of data regarding past and current user behavior. This is
superior to other approaches that rely on common-sense heuristics and require
manual definition of rules in the system.

Notes:

■ The custom JML tag library provided with OC4J pre-dates the
JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. Going forward, for standards
compliance, it is advisable to use JSTL instead of the custom
libraries as a general rule. Oracle is not desupporting the
existing tags, however. For features in the custom library that
are not yet available in JSTL, where there seems to be general
usefulness, Oracle will try in the future to have the features
adopted into the JSTL standard as appropriate.

■ Oracle JSP implementations preceding the JSP 1.1 specification
used an Oracle-specific compile-time implementation of the
JML tag library. This implementation is still supported as an
alternative to the standard runtime implementation.
Overview of the Oracle JSP Implementation 2-17

Overview of Oracle Value-Added Features
The Oracle9iAS Personalization tag library brings this functionality to a wide
audience of JSP developers for use in HTML, XML, or JavaScript pages. The tag
interface is layered on top of the lower level Java API of the recommendation
engine.

Web Services Tag Library
The Web services tag library provided with OC4J enables developers to
conveniently create JSP pages for Web service client applications. The
implementation uses a SOAP-based, RPC-style mechanism. A client application
would access a Web Services Definition Language (WSDL) document, then use the
WSDL information to access the operations of a Web service.

The tag library uses Oracle9iAS Web Services and the Oracle implementation of the
dynamic invocation API, described in the Oracle9iAS Web Services Developer’s Guide.
When a client application acquires a WSDL document at runtime, the dynamic
invocation API is the vehicle for invoking any SOAP operation described in the
WSDL document.

JSP Utility Tags
OC4J provides utility tags to accomplish the following from within Web
applications:

■ sending e-mail messages

■ uploading and downloading files

■ using EJBs

■ using miscellaneous utilities

For sending e-mail messages, you can use the sendMail tag or the
oracle.jsp.webutil.email.SendMailBean JavaBean.

For uploading files, you can use the httpUpload tag or the
oracle.jsp.webutil.fileaccess.HttpUploadBean JavaBean. For
downloading, there is the httpDownload tag or the HttpDownloadBean
JavaBean.

For using EJBs, there are tags to create a home instance, create an EJB instance, and
iterate through a collection of EJBs.

There are also utility tags for displaying a date, displaying an amount of money in
the appropriate currency, displaying a number, iterating through a collection,
evaluating and including the tag body depending on whether the user belongs to a
specified role, and displaying the last modification date of the current file.
2-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of Oracle Value-Added Features
Overview of Oracle-Specific Features
This section provides an overview of Oracle-specific programming extensions
supported by the OC4J JSP container:

■ support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

■ global includes, a mechanism to automatically statically include a file or files in
multiple pages

■ Dynamic Monitoring Service support for performance measurements

■ enhanced application framework and globalization support for servlet 2.0
environments

SQLJ Support
Dynamic server pages commonly include data extracted from databases. JSP
developers typically rely on the standard Java Database Connectivity (JDBC) API or
a custom set of database JavaBeans.

SQLJ is a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. The OC4J JSP container
supports SQLJ programming in JSP scriptlets.

SQLJ statements are indicated by the #sql token. You can trigger the JSP translator
to invoke the Oracle SQLJ translator by using the file name extension .sqljsp for
the JSP source code file, or by specifying language="sqlj" in a page directive.

For more information, see "JSP Support for Oracle SQLJ" on page 4-15.

Global Includes
The OC4J JSP container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in (or under)
a specified directory, through virtual JSP include directives. During translation,
the JSP container looks for a configuration file,
/WEB-INF/ojsp-global-include.xml, that specifies the included files and the
directories for the pages.

This enhancement is particularly useful in migrating applications that had used
globals.jsa or translate_params functionality in previous Oracle JSP
releases. For more information, see "Oracle JSP Global Includes" on page 7-9.
Overview of the Oracle JSP Implementation 2-19

Overview of Oracle Value-Added Features
Support for Dynamic Monitoring Service
The Dynamic Monitoring Service (DMS) adds performance-monitoring features to a
number of Oracle9iAS components, including OC4J. The goal of DMS is to provide
information about runtime behavior through built-in performance measurements,
so that users can diagnose, analyze, and debug any performance problems. DMS
provides this information in a package that can be used at any time, including
during live deployment. Data are published through HTTP and can be viewed with
a browser.

The OC4J JSP container supports DMS features, calculating relevant statistics and
providing information to DMS servlets such as the spy servlet and monitoring
agent. Statistics include the following (using averages, maximums, and minimums,
as applicable):

■ processing time of HTTP request

■ processing time of JSP service method

■ number of JSP instances created or available

■ number of active JSP instances

(Counts of JSP instances are applicable only for single-threaded situations, where
isThreadSafe is set to false in a page directive.)

Standard configuration for these servlets is in the OC4J
global-web-application.xml configuration file. Use the Enterprise Manager
to access DMS, display DMS information, and, as appropriate, alter DMS
configuration.

Also see the Oracle9i Application Server Performance Guide, which contains precise
definitions of the JSP metrics and instructions for viewing and analyzing them.

Enhanced Servlet 2.0 Support
OC4J supports special features for the servlet 2.0 JServ environment. It is highly
advisable to migrate to the OC4J servlet 2.3 environment as soon as practical, but in
the meantime, be aware of the following:

■ an enhanced application framework for servlet 2.0 environments

See "JSP Application and Session Support for JServ" on page B-32.

■ extended globalization support for servlet 2.0 environments

See "Multibyte Parameter Encoding in JServ" on page B-24.

The referenced sections include information for migration to OC4J.
2-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of Oracle Value-Added Features
Overview of Tags and API for Caching Support
Faced with Web performance challenges, e-businesses must invest in more
cost-effective technologies and services to improve the performance of their Internet
sites. Web caching, the caching of both static and dynamic Web content, is a key
technology in this area. Benefits of Web caching include performance, scalability,
high availability, cost savings, and network traffic reduction.

OC4J provides the following support for Web caching technologies:

■ the JESI tag set for Edge Side Includes (ESI), an XML-style markup language
that allows dynamic content assembly away from the Web server

The Oracle9iAS Web Cache provides an ESI engine.

■ a tag set and servlet API for the Web Object Cache, an application-level cache
that is embedded and maintained within a Java Web application

The Web Object Cache uses the Oracle9i Application Server Java Object Cache
as its default repository.

These features are documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries
and Utilities Reference.

Support for the JavaServer Pages Standard Tag Library
With Oracle9iAS release 2 (9.0.3), the OC4J JSP product supports the JavaServer
Pages Standard Tag Library (JSTL), as specified in the Sun Microsystems JavaServer
Pages Standard Tag Library, Version 1.0 specification.

JSTL is intended as a convenience for JSP page authors who are not familiar or not
comfortable with scripting languages such as Java. Historically, scriptlets have been
used in JSP pages to process dynamic data. With JSTL, the intent is for JSTL tag
usage to replace the need for scriptlets.

Key JSTL features include the following:

■ JSTL expression language (EL)

The expression language further simplifies the code required to access and
manipulate application data, making it possible to avoid request-time attributes
as well as scriptlets.

■ core tags for expression language support, conditional logic and flow control,
iterator actions, and accessing URL-based resources

■ tags for XML processing, flow control, and XSLT transformations
Overview of the Oracle JSP Implementation 2-21

Overview of Oracle Value-Added Features
■ SQL tags for database access

■ tags for i18n-capable internationalization and formatting

(The term "i18n" refers to an internationalization standard.)

Tag support is broken into four JSTL sublibraries according to these functional
areas.

For a more complete summary of JSTL support, you can refer to the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference. For complete information
about JSTL, refer to the specification at the following location:

http://www.jcp.org/aboutJava/communityprocess/first/jsr052/index.html

Note: The custom JML, XML, and SQL tag libraries provided with
OC4J pre-date JSTL and have areas of duplicate functionality.
Going forward, for standards compliance, it is advisable to use
JSTL instead of the custom libraries as a general rule. Oracle is not
desupporting the existing tags, however. For features in the custom
libraries that are not yet available in JSTL, where there seems to be
general usefulness, Oracle will try in the future to have the features
adopted into the JSTL standard as appropriate.
2-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting S
3

Getting Started

This chapter covers basic issues in your JSP environment, including key support
files, key OC4J configuration files, and configuration of the JSP container. It also
discusses initial considerations such as application root functionality, classpath
functionality, security issues, and file naming conventions.

Before getting started, it is assumed that you can do the following on your system:

■ run Java

■ run a Java compiler (typically the standard javac)

■ run an HTTP servlet

The following topics are covered here:

■ Some Initial Considerations

■ Key Support Files Provided with OC4J

■ JSP Configuration in OC4J

■ Key OC4J Configuration Files

■ JSP Configuration in Oracle Enterprise Manager

Notes: JSP pages will run with any standard browser supporting
HTTP 1.0 or higher. The JDK or other Java environment in the
end-user’s Web browser is irrelevant, because all the Java code in a
JSP page is executed in the Web server.
tarted 3-1

Some Initial Considerations
Some Initial Considerations
This section discusses some initial considerations you should be aware of before
you begin coding or using JSP pages:

■ Application Root Functionality

■ Classpath Functionality

■ JSP Security Considerations

■ Default Package Imports

■ JSP File Naming Conventions

Application Root Functionality
The servlet 2.2 and 2.3 specifications provide for each Web application to have its
own servlet context. Each servlet context is associated with a directory path in the
server file system, which is the base path for modules of the Web application. This is
the application root. Each Web application has its own application root. For a Web
application in a servlet 2.2 or 2.3 environment, servlets, JSP pages, and static files
such as HTML files are all based out of this application root. (By contrast, in servlet
2.0 environments the application root for servlets and JSP pages is distinct from the
doc root for static files.)

Note that a servlet URL has the following general form:

http://host[:port]/contextpath/servletpath

When a servlet context is created, a mapping is specified between the application
root and the context path portion of a URL. The servlet path is defined in the
application web.xml file. The <servlet> element within web.xml associates a
servlet class with a servlet name. The <servlet-mapping> element within
web.xml associates a URL pattern with a named servlet. When a servlet is
executed, the servlet container will compare a specified URL pattern with known
servlet paths, and pick the servlet path that matches. See the Oracle9iAS Containers
for J2EE Servlet Developer’s Guide for more information.

For example, consider an application with the application root
/home/dir/mybankapp/mybankwebapp, which is mapped to the context path
/mybank. Further assume the application includes a servlet whose servlet path is
loginservlet. You can invoke this servlet as follows:

http://host[:port]/mybank/loginservlet
3-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Some Initial Considerations
The application root directory name itself is not visible to the end-user.

To continue this example for an HTML page in this application, the following URL
points to the file /home/dir/mybankapp/mybankwebapp/dir1/abc.html:

http://host[:port]/mybank/dir1/abc.html

For each servlet environment there is also a default servlet context. For this context,
the context path is simply "/", which is mapped to the default servlet context
application root. For example, assume the application root for the default context is
/home/dir/defaultapp/defaultwebapp, and a servlet with the servlet path
myservlet uses the default context. Its URL would be as follows:

http://host[:port]/myservlet

The default context is also used if there is no match for the context path specified in
a URL.

Continuing this example for an HTML file, the following URL points to the file
/home/dir/defaultapp/defaultwebapp/dir2/def.html:

http://host[:port]/dir2/def.html

Classpath Functionality
The JSP container uses standard locations on the Web server to look for translated
JSP pages, as well as.class files and .jar files for any required classes (such as
JavaBeans). The container will find files in these locations without any Web server
classpath configuration, and has the ability to automatically reload classes in these
locations, depending on configuration settings.

The locations for dependency classes are as follows and are relative to the
application root:

/WEB-INF/classes/...
/WEB-INF/lib

The location for JSP page implementation classes (translated pages) is as follows:

.../_pages/...

The /WEB-INF/classes directory is for individual Java .class files. You should
store these classes in subdirectories under the classes directory, according to Java
package naming conventions. For example, consider a JavaBean called LottoBean
whose code defines it to be in the oracle.jsp.sample.lottery package. The
Getting Started 3-3

Some Initial Considerations
JSP container will look for LottoBean.class in the following location relative to
the application root:

/WEB-INF/classes/oracle/jsp/sample/lottery/LottoBean.class

The lib directory is for .jar files. Because Java package structure is specified in
the .jar file structure, the .jar files are all directly in the lib directory (not in
subdirectories). As an example, LottoBean.class might be stored in
lottery.jar, located as follows relative to the application root:

/WEB-INF/lib/lottery.jar

The _pages directory is under the J2EE home directory in OC4J. In Oracle9iAS,
OC4J directory paths are configurable; in OC4J standalone, by default it would be as
follows:

[Oracle_Home]/j2ee/home/application-deployments/app-name/web-app-name/temp

The app-name is determined through an <application> element in the OC4J
server.xml file; the web-app-name, which corresponds to the WAR file name, is
mapped to the app-name through a <web-app> element in the OC4J
default-web-site.xml file (or other Web site XML file). See the Oracle9iAS
Containers for J2EE User’s Guide and the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide for more information.

Generated page implementation classes for translated JSP pages are placed in
subdirectories under the _pages directory according to the locations of the original
.jsp files. See "Generated Files and Locations" on page 7-6 for information.

JSP Security Considerations
With respect to application security, be aware of the following:

■ Verify that the debug_mode parameter has its default false setting if you
want to suppress the display of the physical file path when nonexistent JSP files
are requested. This parameter is described in "JSP Configuration in OC4J" on
page 3-8.

■ There are additional considerations for JServ environments. See "JSP Security
Considerations in JServ" on page B-24.

Important: Implementation details, such as the location of the
_pages directory, are subject to change in future releases.
3-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Some Initial Considerations
Default Package Imports
Beginning with Oracle9iAS release 2 (9.0.3), the OC4J JSP container by default
imports the following packages into any JSP page, in accordance with the JSP
specification. No page directive import settings are required:

javax.servlet.*
javax.servlet.http.*
javax.servlet.jsp.*

In previous releases, the following packages were also imported by default:

java.io.*
java.util.*
java.lang.reflect.*
java.beans.*

The default list of packages to import was reduced to minimize the chance of a
conflict between any unqualified class name you might use and a class by the same
name in any of the imported packages.

However, this might result in migration problems for applications you have used
with previous versions of OC4J. Such applications might no longer compile
successfully. If you need imports beyond the default list, you have two choices:

■ Specify additional package names or fully qualified class names in one or more
page directive import settings. For more information, see the page directive
under "Directives" on page 1-7, and see "Page Directive import Settings Are
Cumulative" on page 6-12.

For multiple pages, you can accomplish this through global includes
functionality. See "Oracle JSP Global Includes" on page 7-9.

■ Specify additional package names or fully qualified class names through the JSP
extra_imports configuration parameter, or by using the ojspc
-extraImports option for pre-translation. Syntax varies between OC4J
configuration parameter settings, JServ configuration parameter settings, and
ojspc option settings, so refer to the following as appropriate:

– "JSP Configuration Parameters" on page 3-9

– "Option Descriptions for ojspc" on page 7-20

– "JSP Configuration Parameters for JServ" on page B-4
Getting Started 3-5

Some Initial Considerations
JSP File Naming Conventions
The file name extension .jsp for JSP pages is required by the Sun Microsystems
Java Servlet Specification, Version 2.3. The servlet 2.3 specification does not, however,
distinguish between complete, translatable pages and page fragments, such as files
brought in through an include directive (as described in "Directives" on page 1-7).

The JSP 1.2 specification recommends the following:

■ Use the .jsp extension for top-level pages—pages that are translatable on their
own.

■ Do not use .jsp for page fragments brought in through include directives.
No particular extension is mandated for such files, but .jspf or .jsf is
recommended.
3-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Key Support Files Provided with OC4J
Key Support Files Provided with OC4J
This section summarizes JAR and ZIP files that are used by the JSP container or JSP
applications. These files are installed on your system and into your classpath with
OC4J.

■ ojsp.jar—classes for the JSP container

■ ojsputil.jar—classes for tag libraries and utilities provided with OC4J

■ xmlparserv2.jar—for XML parsing; required for the web.xml deployment
descriptor and any tag library descriptor files and XML-related tag functionality

■ xsu12.jar / xsu111.jar—for XML functionality on the client (for JDK 1.2.x
or higher, or 1.1.x, respectively)

■ ojdbc14.jar / classes12.jar / classes111.jar—for the Oracle JDBC
drivers (for JDK 1.4, 1.2 or higher, or 1.1, respectively)

■ translator.jar—for the Oracle SQLJ translator

■ runtime12.jar / runtime12ee.jar / runtime11.jar / runtime.jar /
runtime-nonoracle.jar—for the Oracle SQLJ runtime (respectively: for
JDK 1.2.x or higher with Oracle9i JDBC, JDK 1.2.x or higher enterprise edition
with Oracle9i JDBC, JDK 1.1.x with Oracle9i JDBC, any 1.1.x or higher JDK with
any Oracle JDBC version, or any JDK environment with non-Oracle JDBC
drivers)

■ jndi.jar—for JNDI service for lookup of resources such as JDBC data sources
and Enterprise JavaBeans

■ jta.jar—for the Java Transaction API

There are also files relating to particular areas, such as particular tag libraries. These
include the following:

■ mail.jar—for e-mail functionality within applications (standard
javax.mail package)

■ activation.jar—Java activation files for e-mail functionality

■ cache.jar—for the Oracle9i Application Server Java Object Cache (which is
the default back-end repository for the OC4J Web Object Cache)

Note: Some of the .jar files here, such as for JDBC and SQLJ,
also have .zip alternatives.
Getting Started 3-7

JSP Configuration in OC4J
JSP Configuration in OC4J
This section covers the following topics regarding configuration of the JSP
environment:

■ JSP Container Setup

■ JSP Configuration Parameters

■ OC4J Configuration Parameters for JSP

JSP Container Setup
The JSP container is appropriately preconfigured in OC4J. The following settings
appear in the OC4J global-web-application.xml file to map the name of the
front-end JSP servlet, and to map the appropriate file name extensions for JSP
pages:

<orion-web-app ... >
 ...
 <web-app>
 ...
 <servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>oracle.jsp.runtimev2.JspServlet</servlet-class>
 ...
 init_params
 ...
 </servlet>

Notes:

■ Discussion of OC4J configuration files and configuration
parameters, and how to update them manually, generally
assumes an OC4J standalone environment. This is typical
during development. For information about JSP configuration
through Oracle Enterprise Manager in an Oracle9iAS
environment, such as for production deployment, see "JSP
Configuration in Oracle Enterprise Manager" on page 3-25.

■ For non-OC4J environments, including JServ, use the old
oracle.jsp.JspServlet front-end servlet instead of the
oracle.jsp.runtimev2.JspServlet version. See "Getting
Started in a JServ Environment" on page B-2.
3-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
 ...
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.jsp</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.JSP</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.sqljsp</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.SQLJSP</url-pattern>
 </servlet-mapping>

 ...
 </web-app>
 ...
</orion-web-app>

See the Oracle9iAS Containers for J2EE Servlet Developer’s Guide for more information
about the global-web-application.xml file.

JSP Configuration Parameters
The JSP front-end servlet in OC4J, oracle.jsp.runtimev2.JspServlet,
supports a number of configuration parameters to control JSP operation. This
section describes those parameters. There is a summary table, followed by more
complete descriptions, and documentation of how to set them in the OC4J
global-web-application.xml or orion-web.xml file.

JSP Configuration Parameter Summary Table
Table 3–1 summarizes the configuration parameters supported by JspServlet.
For each parameter, the table notes any equivalent ojspc translation options for
pages you are pre-translating, and whether the parameter is for runtime or
compile-time use.
Getting Started 3-9

JSP Configuration in OC4J
Notes: See "The ojspc Pre-Translation Utility" on page 7-13 for a
description of the ojspc options.

Table 3–1 JSP Configuration Parameters, OC4J Environment

Parameter
Related ojspc
Options Description Default

Runtime /
Compile-
Time

check_page_scope (n/a) Set this boolean to true to enable
page-scope checking by
JspScopeListener (OC4J only).

false runtime

debug_mode (n/a) Set this boolean to true to print
the stack trace when a runtime
exception occurs.

false runtime

emit_debuginfo -debug Set this boolean to true to
generate a line map to the original
.jsp file for debugging (for
development).

false compile-time

external_resource -extres Set this boolean to true to place all
static content of the page into a
separate Java resource file during
translation.

false compile-time

extra_imports -extraImports Use this to add imports beyond the
JSP defaults.

null compile-time

forgive_dup_dir_attr -forgiveDupDirAttr Set this boolean to true to avoid
JSP 1.2 translation errors if you
have duplicate settings for the
same directive attribute within a
single JSP translation unit.

false compile-time

javaccmd -noCompile Use this if you want to specify a
javac command line, or if you
want to specify an alternative Java
compiler, optionally with
command-line settings (for
development). If you specify an
alternative compiler, it will be
spawned in a separate JVM. Use a
null setting for the JDK javac
with default settings.

null compile-time
3-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
main_mode (n/a) This determines whether classes
are automatically reloaded or JSP
pages are automatically
recompiled, in case of changes.
Possible settings are justrun,
reload, and recompile.

recompile runtime

no_tld_xml_validate -noTldXmlValidate Set this boolean to true to not
perform XML validation of TLD
files. By default, validation of TLD
files is performed.

false compile-time

old_include_from_top -oldIncludeFromTop Set this boolean to true for page
locations in nested include
directives to be relative to the
top-level page, for backward
compatibility with behavior prior
to Oracle9iAS release 2.

false compile-time

precompile_check (n/a) Set this boolean to true to check
the HTTP request for a standard
jsp_precompile setting.

false runtime

reduce_tag_code -reduceTagCode Set this boolean to true for further
reduction in the size of generated
code for custom tag usage.

false compile-time

req_time_introspection -reqTimeIntrospection Set this boolean to true to enable
request-time JavaBean
introspection whenever
compile-time introspection is not
possible.

false compile-time

sqljcmd -S Use this if you want to specify a
SQLJ command line, or if you want
to specify an alternative SQLJ
translator, optionally with
command-line settings (for
development). If you specify an
alternative translator, it will be
spawned in a separate JVM. Use a
null setting for the Oracle SQLJ
version provided with Oracle9iAS,
with its default option settings.

null compile-time

Table 3–1 JSP Configuration Parameters, OC4J Environment (Cont.)

Parameter
Related ojspc
Options Description Default

Runtime /
Compile-
Time
Getting Started 3-11

JSP Configuration in OC4J
JSP Configuration Parameter Descriptions
This section describes the JSP configuration parameters for OC4J in more detail.

check_page_scope (boolean; default: false)

For OC4J environments, set this parameter to true to enable Oracle-specific
page-scope checking by the JspScopeListener utility. It is false by default for
performance reasons.

This parameter is not relevant for non-OC4J environments. For JServ, Oracle-specific
page-scope checking is always enabled. For other environments, the Oracle-specific
implementation is not used and you must use the checkPageScope custom tag for
JspScopeListener page-scope functionality. See "JspScopeListener for
Event-Handling" on page 2-14 for a brief overview of this utility. See Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference for detailed information.

static_text_in_chars -staticTextInChars Set this boolean to true to instruct
the JSP translator to generate static
text in JSP pages as characters
instead of bytes.

false compile-time

tags_reuse_default (n/a) This specifies the mode for JSP tag
handler reuse: runtime for the
runtime model, compiletime or
compiletime_with_release
for the compile-time model, or
none to disable tag handler reuse.

runtime either

well_known_taglib_loc (n/a) This specifies a directory where tag
library JAR files can be placed for
sharing across multiple Web
applications. The default location is
j2ee/home/jsp/lib/taglib/
under the [Oracle_Home]
directory.

(See
description
column.)

compile-time

xml_validate -xmlValidate Set this boolean to true to perform
XML validation of the web.xml
file. By default, validation of
web.xml is not performed.

false compile-time

Table 3–1 JSP Configuration Parameters, OC4J Environment (Cont.)

Parameter
Related ojspc
Options Description Default

Runtime /
Compile-
Time
3-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
debug_mode (boolean; default: false)

Use the default true setting to print a stack trace whenever a runtime exception
occurs. A false setting disables this feature.

emit_debuginfo (boolean; default: false)

During development, set this flag to true to instruct the JSP translator to generate a
line map to the original .jsp file for debugging. Otherwise, lines will be mapped to
the generated page implementation class .java file.

external_resource (boolean; default: false)

Set this flag to true to instruct the JSP translator to place generated static content
(the Java print commands that output static HTML code) into a Java resource file,
instead of into the service method of the generated page implementation class.

The resource file name is based on the JSP page name, with the .res suffix. With
Oracle9iAS release 2, translation of MyPage.jsp, for example, would create
_MyPage.res in addition to normal output. (The exact implementation might
change in future releases.)

The translator places the resource file into the same directory as generated class
files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for
Large Static Content in JSP Pages" on page 6-7.

Important: When debug_mode is false and a file is not found,
the full path of the missing file is not displayed. This is an
important security consideration if you want to suppress the
display of the physical file path when non-existent JSP files are
requested.

Notes:

■ Oracle9i JDeveloper enables emit_debuginfo.

■ For pre-translating pages, the ojspc -debug option is
equivalent.
Getting Started 3-13

JSP Configuration in OC4J
extra_imports (import list; default: null)

As described in "Default Package Imports" on page 3-5, as of Oracle9iAS release 2
(9.0.3), the OC4J JSP container has a smaller default list of packages that are
imported into each JSP page. This is in accordance with the JSP specification. You
can avoid updating your code, however, by specifying package names or fully
qualified class names for any additional imports through the extra_imports
configuration parameter. See "Setting JSP Configuration Parameters in OC4J" on
page 3-20 for general syntax, and be aware that the names can be either
comma-delimited or space-delimited. Either of the following is okay, for example:

 <init-param>
 <param-name>extra_imports</param-name>
 <param-value>java.util.* java.beans.*</param-value>
 </init-param>
or:

 <init-param>
 <param-name>extra_imports</param-name>
 <param-value>java.util.*,java.beans.*</param-value>
 </init-param>

forgive_dup_dir_attr (forgive duplicate directive attributes; default: false)

Set this boolean to true to avoid translation errors in JSP 1.2 (or higher) if you have
duplicate settings for the same directive attribute within a single JSP translation unit
(a JSP page plus anything it includes through include directives).

The JSP 1.2 specification directs that a JSP container must verify that directive
attributes, with the exception of the page directive import attribute, are not set

Note: For pre-translating pages, the ojspc -extres option is
equivalent.

Note:

■ For pre-translating pages, the ojspc -extraImports option
is equivalent.

■ As an alternative to using extra_imports, you can use global
includes. See "Oracle JSP Global Includes" on page 7-9.
3-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
more than once each within a single JSP translation unit. See "Duplicate Settings of
Page Directive Attributes Are Disallowed" on page 6-11 for more information.

The JSP 1.1 specification does not specify such a limitation. OC4J offers the
forgive_dup_dir_attr parameter for backward compatibility.

javaccmd (compiler executable and options; default: null)

This parameter is useful during development in any of the following circumstances:

■ if you want to set javac command-line options (although default settings are
typically sufficient)

■ if you want to use a compiler other than javac (optionally including
command-line options)

■ if you want to run the Java compiler in a separate process from the JSP
container

Specifying an alternative compiler results in that executable being spawned as a
separate process in a separate JVM, instead of within the same JVM as the JSP
container. You can fully specify the path for the executable, or specify only the
executable and let the JSP container look for it in the system path.

For example, set javaccmd to the value javac -verbose to run the compiler in
verbose mode.

Note: For pre-translating pages, the ojspc
-forgiveDupDirAttr option is equivalent.

Notes:

■ The specified Java compiler must be installed in the classpath,
and any front-end utility (if applicable) must be installed in the
system path.

■ For pre-translating pages, the ojspc -noCompile option
allows similar functionality. It results in no compilation by
javac, so you can compile the translated classes manually,
using any desired compiler.
Getting Started 3-15

JSP Configuration in OC4J
main_mode (mode switch for reloading or recompilation; default: recompile)

This is a flag to direct the mode of operation of the JSP container, particularly for
automatic recompilation of JSP pages and reloading of Java classes that have
changed.

Here are the supported settings:

■ justrun—The runtime dispatcher will not perform any timestamp checking,
so there is no recompilation of JSP pages or reloading of Java classes. This mode
is the most efficient mode for a deployment environment, where code will not
change.

■ reload—The dispatcher will check if any classes have been modified since
loading, including translated JSP pages, JavaBeans invoked from pages, and
any other dependency classes.

■ recompile (default)—The dispatcher will check the timestamp of the JSP
page, retranslate it and reload it if has been modified since loading, and execute
all reload functionality as well.

no_tld_xml_validate (disabling of XML validation of TLD files; default: false)

Set this to true to disable XML validation of the tag library descriptor (TLD) files
of the application. By default, validation of TLD files is performed.

See "Overview of TLD File Validation and Features" on page 8-8 for related
information.

old_include_from_top (backward compatibility for include; default: false)

This is for backward compatibility with Oracle JSP versions prior to Oracle9iAS
release 2, for functionality of include directives. If set to true, page locations in
nested include directives are relative to the top-level page. If set to false, page
locations are relative to the immediate parent page. This complies with the JSP 1.2
specification.

Note: For pre-translating pages, the ojspc
-noTldXmlValidate option is equivalent.

Note: For pre-translating pages, the ojspc
-oldIncludeFromTop option is equivalent.
3-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
precompile_check (jsp_precompile checking; default: false)

Set this to true to check the HTTP request for a standard jsp_precompile
setting. If precompile_check is true and the request enables jsp_precompile,
then the JSP page will be pre-translated only, without execution. Setting
precompile_check to false improves performance and ignores any
jsp_precompile setting in the request.

For more information about jsp_precompile, see "Standard JSP Pre-Translation
without Execution" on page 7-40, and the Sun Microsystems JavaServer Pages
Specification, Version 1.2.

reduce_tag_code (flag for size reduction of custom tag code; default: false)

The Oracle JSP implementation reduces the size of generated code for custom tag
usage, but setting reduce_tag_code to true results in even further size
reduction. There may be performance consequences regarding tag handler reuse,
however. See "Tag Handler Code Generation" on page 8-40.

req_time_introspection (flag for request-time introspection; default: false)

A true setting enables request-time JavaBean introspection whenever compile-time
introspection is not possible. When compile-time introspection is possible and
succeeds, this parameter is ignored and there is no request-time introspection.

As an example of a scenario for use of request-time introspection, assume a tag
handler returns a generic java.lang.Object instance in VariableInfo of the
tag-extra-info class during translation and compilation, but actually generates more
specific objects during request-time (runtime). In this case, if
req_time_introspection is enabled, the JSP container will delay introspection
until request-time. (See "Scripting Variables, Declarations, and Tag-Extra-Info
Classes" on page 8-41 for information about use of VariableInfo.)

Note: For pre-translating pages, the ojspc -reduceTagCode
option is equivalent.

Note: For pre-translating pages, the ojspc
-reqTimeIntrospection option is equivalent.
Getting Started 3-17

JSP Configuration in OC4J
sqljcmd (SQLJ translator executable and options; default: null)

This parameter is useful during development in any of the following circumstances:

■ if you want to set one or more SQLJ command-line options

■ if you want to use a different SQLJ translator, or at least a different version, than
the one provided with OC4J

■ if you want to run SQLJ in a separate process from the JSP container

Specifying a SQLJ translator executable results in its being spawned as a separate
process in a separate JVM, instead of within the same JVM as the JSP container.

You can fully specify the path for the executable, or specify only the executable and
let the JSP container look for it in the system path.

For example, to run SQLJ with online semantics checking as user scott/tiger,
and to generate ISO standard SQLJ code, set sqljcmd to the following value:

sqljcmd=sqlj -user=scott/tiger -codegen=iso

Appropriate SQLJ libraries must be in the classpath, and any front-end utility (such
as sqlj in the example) must be in the system path. For Oracle SQLJ, the
translator ZIP or JAR file and the appropriate SQLJ runtime ZIP or JAR file
must be in the classpath. See "Key Support Files Provided with OC4J" on page 3-7.

static_text_in_chars (flag to generate static text as characters; default: false)

A true setting directs the JSP translator to generate static text in JSP pages as
characters, instead of bytes. Enable this flag if your application requires the ability
to change the character encoding dynamically during runtime, such as in the
following example:

<% response.setContentType("text/html; charset=UTF-8"); %>

(See "Dynamic Content Type Settings" on page 9-5 for related information.)

The false default setting improves performance in outputting static text blocks.

Notes: For pre-translating pages, the ojspc -S option provides
related functionality.

Note: For pre-translating pages, the ojspc
-staticTextInChars option is equivalent.
3-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
tags_reuse_default (setting for tag handler reuse; default: runtime)

Use this parameter to specify the mode of tag handler reuse (tag handler instance
pooling), as follows:

■ Use the setting none to disable tag handler reuse. (You can override this in any
particular JSP page by setting the JSP page context attribute
oracle.jsp.tags.reuse to a value of true.)

■ Use the default setting runtime to enable the runtime model of tag handler
reuse. (You can override this in any particular JSP page by setting the JSP page
context attribute oracle.jsp.tags.reuse to a value of false.)

■ Use the setting compiletime to enable the compile-time model of tag handler
reuse in its basic mode.

■ Use the setting compiletime_with_release to enable the compile-time
model of tag handler reuse in its "with release" mode, where the tag handler
release() method is called between usages of a given tag handler within a
given page.

See "Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse" on
page 8-38 for more information about tag handler reuse.

well_known_taglib_loc (location for shared tag libraries; default: see description)

This specifies a directory where tag library JAR files can be placed for sharing across
multiple Web applications. The default value is the following:

j2ee/home/jsp/lib/taglib/

This is under [Oracle_Home] if [Oracle_Home] is defined. If [Oracle_Home]
is not defined, then this default location is under the current directory.

Note: For backward compatibility, a setting of true is also
supported and is equivalent to runtime, and a setting of false is
supported and is equivalent to none.

Important: Additional steps are also required for tag library
sharing to work. See "Oracle Extension for Tag Library Sharing" on
page 8-20.
Getting Started 3-19

JSP Configuration in OC4J
xml_validate (XML validation of web.xml file; default: false)

Set this to true to enable XML validation of the application web.xml file. Because
the Tomcat reference implementation does not perform XML validation,
xml_validate is false by default.

Setting JSP Configuration Parameters in OC4J
In an OC4J standalone development environment, you can set JSP configuration
parameters in global-web-application.xml, web.xml, or orion-web.xml,
inside the <servlet> element for the JSP front-end servlet. In the portion of
global-web-application.xml shown in "JSP Container Setup" on page 3-8, the
settings would go where the init_params place holder appears. (In an Oracle9iAS
production environment, you should use Enterprise Manager for configuration. See
"JSP Configuration in Oracle Enterprise Manager" on page 3-25.)

The following example lists <servlet> element and subelement settings for the
JSP front-end servlet. This sample enables the precompile_check flag, sets the
main_mode flag to run without checking timestamps, and runs the Java compiler in
verbose mode.

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>oracle.jsp.runtimev2.JspServlet</servlet-class>
 <init-param>
 <param-name>precompile_check</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>main_mode</param-name>
 <param-value>justrun</param-value>
 </init-param>
 <init-param>
 <param-name>javaccmd</param-name>
 <param-value>javac -verbose</param-value>
 </init-param>
</servlet>

You can override any settings in the global-web-application.xml file with
settings in the web.xml file for a particular application, and you can make
deployment-specific overrides of web.xml settings through settings in

Note: For pre-translating pages, the ojspc -xmlValidate
option is equivalent.
3-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in OC4J
orion-web.xml. For information about global-web-application.xml and
orion-web.xml, see the Oracle9iAS Containers for J2EE Servlet Developer’s Guide.

OC4J Configuration Parameters for JSP
There are also OC4J configuration parameters—as opposed to parameters for the
JspServlet front-end servlet of the JSP container—which affect JSP pages. This
section documents JSP-related attributes of the root <orion-web-app> element of
the OC4J global-web-application.xml file or orion-web.xml file. For more
information about these files, see the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide.

JSP-Related OC4J Configuration Parameter Descriptions
The following <orion-web-app> attributes, in the OC4J
global-web-application.xml file or orion-web.xml file, affect JSP
performance and functionality:

■ jsp-print-null: Set this flag to "false" to print an empty string instead of
the string "null" for null output from a JSP page. The default is "true".

■ jsp-timeout: Specify an integer value, in seconds, after which any JSP page
will be removed from memory if it has not been requested. This frees up
resources in situations where some pages are called infrequently. The default
value is 0, for no timeout.

Setting JSP-Related OC4J Configuration Parameters
To set configuration values that would apply to all applications in an OC4J instance,
use the <orion-web-app> element of the OC4J
global-web-application.xml file. To set configuration values for a particular
application deployment, overriding settings in global-web-application.xml,
use the <orion-web-app> element of the deployment-specific orion-web.xml
file.

Note: The autoreload-jsp-pages and
autoreload-jsp-beans attributes of the <orion-web-app>
element are not supported by the OC4J JSP container in Oracle9iAS
release 2. You can use the JSP main_mode configuration parameter,
described in "JSP Configuration Parameter Descriptions" on
page 3-12, for equivalent functionality.
Getting Started 3-21

JSP Configuration in OC4J
Here is an example:

<orion-web-app ... jsp-print-null="false" ... >
...
</orion-web-app>

Note that the <orion-web-app> element has numerous attributes and
subelements. For a complete discussion, see the Oracle9iAS Containers for J2EE
Servlet Developer’s Guide.

Note: This discussion assumes an OC4J standalone development
environment. In an Oracle9iAS production environment, you
generally must use Enterprise Manager for configuration. However,
as of Oracle9iAS release 2 (9.0.3), jsp-print-null and
jsp-timeout are not yet supported by the Enterprise Manager
JSP Properties Page. Given this fact, any settings must be made
through the Enterprise Manager Web Module Advanced Properties
Page (which enables you to edit orion-web.xml), or directly in
the appropriate XML file. In the latter case, you must then run the
dcmctl utility, which is a command-line alternative to Enterprise
Manager. See "OC4J Deployment Features" on page 7-34.
3-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Key OC4J Configuration Files
Key OC4J Configuration Files
Be aware of the following key configuration files in the OC4J environment.

Global files for all OC4J applications, in the OC4J configuration files directory:

■ server.xml—This has an overall <application-server> element, with an
<application> subelement for each J2EE application. Each <application>
subelement specifies the name of the application and the name and location of
its EAR deployment file. The <application-server> element specifies the
name of the general application source directory, where EAR files are placed for
deployment and extracted, and the application deployment directory, where
OC4J-specific configuration files are generated. Additionally, there is a
<web-site> element for the default Web site, and you can add a <web-site>
element for each additional Web site you want to have on the server.

■ default-web-site.xml (or http-web-site.xml for OC4J standalone, or
other Web site XML file as applicable)—This includes a <web-app> element for
each Web application for the default Web site, mapping the application name to
the "Web application name". The Web application name corresponds to the
WAR deployment file name. Additional Web site XML files, as specified for
additional Web sites in the server.xml file, have the same functionality.

■ global-web-application.xml—This is a global configuration file for OC4J
Web applications. It establishes default configurations and includes setup and
configuration of the JSP front-end servlet, JspServlet.

■ application.xml—This is another parent configuration file for OC4J
applications.

■ data-sources.xml—This specifies data sources for database connections.

(In Oracle9iAS, OC4J directory paths are configurable; in OC4J standalone, the
configuration files directory is j2ee/home/config by default.)

In addition to the global application.xml file, there is a standard
application.xml file, and optionally an orion-application.xml file, for
each application. These files are in the application EAR file.

Also, in an application WAR file, which is inside the application EAR file, there is a
standard web.xml file and optionally an orion-web.xml file. These are for
application-specific and deployment-specific configuration settings, overriding
global-web-application.xml settings or providing additional settings as
appropriate. The global-web-application.xml and orion-web.xml files
support the same elements, which is a superset of those supported by the web.xml
file.
Getting Started 3-23

Key OC4J Configuration Files
If the orion-application.xml and orion-web.xml files are not present in the
archive files, they will be generated during initial deployment, according to settings
in the global-web-application.xml file.

For additional information, see "Overview of EAR/WAR Deployment" on
page 7-34. For complete information about the use of these files, see the Oracle9iAS
Containers for J2EE User’s Guide and the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide.
3-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in Oracle Enterprise Manager
JSP Configuration in Oracle Enterprise Manager
In an Oracle9iAS environment, such as for production deployment, you should
perform most OC4J configuration through Enterprise Manager. This includes
configuration of the front-end JSP servlet for the OC4J JSP container. The following
graphic shows the Enterprise Manager JSP Properties Page for an OC4J instance.

(For information beyond what is described here about using Enterprise Manager to
configure OC4J, see the Oracle9iAS Containers for J2EE User’s Guide. For general
information about using Enterprise Manager to manage your Oracle9iAS
environment, see the Oracle9i Application Server Administrator’s Guide.)
Getting Started 3-25

JSP Configuration in Oracle Enterprise Manager
You can drill down to this page as follows:

1. From the Oracle9iAS Application Server Instance Home Page (the main page
you reach when you first access Enterprise Manager), select the name of an
OC4J instance in the System Components table. Enterprise Manager displays
the OC4J Home Page for the OC4J instance.

2. From the OC4J Home Page, select JSP Container Properties under Instance
Properties in the Administration section of the page.

Configuration Parameters Supported by the JSP Properties Page
Table 3–2 shows the correspondence between JSP container properties shown in the
Enterprise Manager JSP Properties Page, and configuration parameters of the JSP
container front-end servlet as described in "JSP Configuration Parameters" on
page 3-9. See that section for the meanings of the settings.

Possible settings are shown with defaults in bold. Note that Enterprise Manager
defaults are appropriate for a production environment, so are not necessarily the
same as defaults otherwise, which are appropriate for a development environment.

Table 3–2 Enterprise Manager Properties, JSP Configuration Parameters

Enterprise Manager JSP
Container Property

Possible
Settings JSP Configuration Parameter

Possible
Settings

Debug Mode No
Yes

debug_mode false
true

External Resource for Static
Content

No
Yes

external_resource false
true

Generate Static Text as
Bytes

No
Yes

static_text_in_chars false
true

Tags Reuse Default No
Yes

tags_reuse_default none
runtime

Reduce Code Size for
Custom Tags

No
Yes

reduce_tag_code false
true

Emit Debug Info No
Yes

emit_debuginfo false
true

When a JSP Changes Recompile JSP
Reload Classes
Do Nothing

main_mode recompile
reload
justrun

Precompile Check No
Yes

precompile_check false
true
3-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Configuration in Oracle Enterprise Manager
Configuration Parameters Not Supported by the JSP Properties Page
For Enterprise Manager in Oracle9iAS release 2 (9.0.3), the following configuration
parameters are not yet supported through the JSP Properties Page:

■ JSP front-end servlet parameters: check_page_scope, extra_imports,
forgive_dup_dir_attr, no_tld_xml_validate,
old_include_from_top, req_time_introspection, and
well_known_taglib_loc.

■ JSP-related attributes of the <orion-web-app> element in
global-web-application.xml or orion-web.xml: jsp-print-null
and jsp-timeout.

Instead, you must update them in orion-web.xml or other appropriate XML file
(such as web.xml or global-web-application.xml). Edit orion-web.xml or
global-web-application.xml through the Enterprise Manager Web Module

Validate XML No
Yes

xml_validate false
true

SQLJ Command command
string (null by
default)

sqljcmd command
string (null by
default)

Alternate Java Compiler command
string (null by
default)

javaccmd command
string (null by
default)

Notes:

■ In Oracle9iAS release 2 (9.0.3), Enterprise Manager supports
only runtime (not compile-time) tag handler reuse. In other
words, tags_reuse_default settings of compiletime or
compiletime_with_release are not yet directly supported
through Enterprise Manager.

■ The Enterprise Manager JSP container property "Generate
Static Text as Bytes" corresponds to the JSP configuration
parameter static_text_in_chars, but with opposite
orientation. Their defaults are equivalent.

Table 3–2 Enterprise Manager Properties, JSP Configuration Parameters (Cont.)

Enterprise Manager JSP
Container Property

Possible
Settings JSP Configuration Parameter

Possible
Settings
Getting Started 3-27

JSP Configuration in Oracle Enterprise Manager
Advanced Properties Page, as described in the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide. Also see "Setting JSP Configuration Parameters in OC4J" on
page 3-20 and "Setting JSP-Related OC4J Configuration Parameters" on page 3-21
for related information.

Note: If you update an XML configuration file manually in
Oracle9iAS, you must then run the dcmctl utility, which is a
command-line alternative to Enterprise Manager. See "OC4J
Deployment Features" on page 7-34.
3-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Basic Programming Consider
4

Basic Programming Considerations

This chapter discusses basic programming considerations for JSP pages, including
JSP-servlet interaction and database access, with examples provided.

The following topics are included:

■ JSP-Servlet Interaction

■ JSP Data-Access Support and Features

■ JSP Resource Management

■ Runtime Error Processing
ations 4-1

JSP-Servlet Interaction
JSP-Servlet Interaction
Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data, as discussed in
"Reasons to Avoid Binary Data in JSP Pages" on page 6-15.

Therefore, it is sometimes necessary to go back and forth between servlets and JSP
pages in an application. This section discusses how to accomplish this, covering the
following topics:

■ Invoking a Servlet from a JSP Page

■ Passing Data to a Servlet Invoked from a JSP Page

■ Invoking a JSP Page from a Servlet

■ Passing Data Between a JSP Page and a Servlet

■ JSP-Servlet Interaction Samples

Invoking a Servlet from a JSP Page
As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the jsp:include and jsp:forward action tags. (See "Standard
Actions: JSP Tags" on page 1-16.) Following is an example:

<jsp:include page="/servlet/MyServlet" flush="true" />

When this statement is encountered during page execution, the page buffer is
output to the browser and the servlet is executed. When the servlet has finished
executing, control is transferred back to the JSP page and the page continues
executing. This is the same functionality as for jsp:include actions from one JSP
page to another.

And as with jsp:forward actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<jsp:forward page="/servlet/MyServlet" />

Important: This discussion assumes a servlet 2.2 or higher
environment, such as OC4J (servlet 2.3). Appropriate reference is
made to other sections of this document for related considerations
for Apache JServ and other servlet 2.0 environments.
4-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP-Servlet Interaction
Passing Data to a Servlet Invoked from a JSP Page
When dynamically including or forwarding to a servlet from a JSP page, you can
use a jsp:param tag to pass data to the servlet (the same as when including or
forwarding to another JSP page).

You can use a jsp:param tag within a jsp:include or jsp:forward tag.
Consider the following example:

<jsp:include page="/servlet/MyServlet" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

For more information about the jsp:param tag, see "Standard Actions: JSP Tags"
on page 1-16.

Alternatively, you can pass data between a JSP page and a servlet through a
JavaBean of appropriate scope or through attributes of the HTTP request object.
Using attributes of the request object is discussed later, in "Passing Data Between a
JSP Page and a Servlet" on page 4-4.

Invoking a JSP Page from a Servlet
You can invoke a JSP page from a servlet through functionality of the standard
javax.servlet.RequestDispatcher interface. Complete the following steps
in your code to use this mechanism:

1. Get a servlet context instance from the servlet instance:

ServletContext sc = this.getServletContext();

2. Get a request dispatcher from the servlet context instance, specifying the
page-relative or application-relative path of the target JSP page as input to the
getRequestDispatcher() method:

RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

Important: You cannot include or forward to a servlet in JServ or
other servlet 2.0 environments; you would have to write a JSP
wrapper page instead. For information, see "Dynamic Includes and
Forwards in JServ" on page B-19.
Basic Programming Considerations 4-3

JSP-Servlet Interaction
Prior to or during this step, you can optionally make data available to the JSP
page through attributes of the HTTP request object. See "Passing Data Between
a JSP Page and a Servlet" below for information.

3. Invoke the include() or forward() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd.include(request, response);

or:

rd.forward(request, response);

The functionality of these methods is similar to that of jsp:include and
jsp:forward tags. The include() method only temporarily transfers
control; execution returns to the invoking servlet afterward.

Note that the forward() method clears the output buffer.

Passing Data Between a JSP Page and a Servlet
The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object.

You can accomplish this using either of the following approaches:

■ You can append a query string to the URL when you obtain the request
dispatcher, using "?" syntax with name=value pairs. For example:

RequestDispatcher rd =
 sc.getRequestDispatcher("/jsp/mypage.jsp?username=Smith");

In the target JSP page (or servlet), you can use the getParameter() method of
the implicit request object to obtain the value of a parameter set in this way.

Note: The request and response objects would have been obtained
earlier, using standard servlet functionality such as the doGet()
method specified in the javax.servlet.http.HttpServlet
class.
4-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP-Servlet Interaction
■ You can use the setAttribute() method of the HTTP request object. For
example:

request.setAttribute("username", "Smith");
RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

In the target JSP page (or servlet), you can use the getAttribute() method of
the implicit request object to obtain the value of a parameter set in this way.

JSP-Servlet Interaction Samples
This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Servlet.jsp includes the servlet
MyServlet, which includes another JSP page, welcome.jsp.

Code for Jsp2Servlet.jsp

<HTML>
<HEAD> <TITLE> JSP Calling Servlet Demo </TITLE> </HEAD>
<BODY>

<!-- Forward processing to a servlet -->
<% request.setAttribute("empid", "1234"); %>
<jsp:include page="/servlet/MyServlet?user=Smith" flush="true"/>

</BODY>
</HTML>

Code for MyServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.PrintWriter;
import java.io.IOException;

Note: You can use the mechanisms discussed in this section
instead of the jsp:param tag to pass data from a JSP page to a
servlet.
Basic Programming Considerations 4-5

JSP-Servlet Interaction
public class MyServlet extends HttpServlet {

 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 PrintWriter out= response.getWriter();
 out.println("
User:" + request.getParameter("user"));
 out.println
 (", Employee number:" + request.getAttribute("empid") + "");
 this.getServletContext().getRequestDispatcher("/jsp/welcome.jsp").
 include(request, response);
 }
}

Code for welcome.jsp

<HTML>
<HEAD> <TITLE> The Welcome JSP </TITLE> </HEAD>
<BODY>

<H3> Welcome! </H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>
</BODY>
</HTML>
4-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
JSP Data-Access Support and Features
This section discusses OC4J JSP and Oracle features to consider when accessing
data, covering the following topics:

■ Introduction to JSP Support for Data Access

■ JSP Data-Access Sample Using JDBC

■ Use of JDBC Performance Enhancement Features

■ EJB Calls from JSP Pages

■ JSP Support for Oracle SQLJ

■ OracleXMLQuery Class

Introduction to JSP Support for Data Access
Because the JDBC API is simply a set of Java interfaces, JavaServer Pages
technology directly supports its use within JSP scriptlets.

Oracle JDBC provides several driver alternatives: 1) the JDBC OCI driver for use
with an Oracle client installation; 2) a 100%-Java JDBC Thin driver that can be used
in essentially any client situation, including applets; 3) a JDBC server-side Thin
driver to access one Oracle database from within another Oracle database; and 4) a
JDBC server-side internal driver to access the database within which the Java code
is running (such as from a Java stored procedure or Enterprise JavaBean). It is
assumed that you are already at least somewhat familiar with JDBC basics, but for
information about Oracle JDBC you can refer to the Oracle9i JDBC Developer’s Guide
and Reference.

The OC4J JSP container also supports EJB calls as well as SQLJ (embedded SQL in
Java).

Additionally, there are SQL tags in the JavaServer Pages Standard Tag Library
(JSTL), and JavaBeans and custom SQL tags supplied with OC4J. These are all
documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Note: For information about additional OC4J JSP data-access
features—portable JavaBeans and tags for SQL functionality—see
the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.
Basic Programming Considerations 4-7

JSP Data-Access Support and Features
JSP Data-Access Sample Using JDBC
The following example creates a query dynamically from search conditions the user
enters through an HTML form (typed into a box, and entered with an Ask Oracle
button). To perform the specified query, it uses JDBC code in a method called
runQuery() that is defined in a JSP declaration. It also defines a method,
formatResult(), within the JSP declaration to produce the output. The
runQuery() method uses the scott schema with password tiger.

The HTML INPUT tag specifies that the string entered in the form be named cond.
Therefore, cond is also the input parameter to the getParameter() method of the
implicit request object for this HTTP request, and the input parameter to the
runQuery() method (which puts the cond string into the WHERE clause of the
query).

<%@ page language="java" import="java.sql.*" %>
<HTML>
<HEAD> <TITLE> The JDBCQuery JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">
<% String searchCondition = request.getParameter("cond");
 if (searchCondition != null) { %>
 <H3> Search results for <I> <%= searchCondition %> </I> </H3>
 <%= runQuery(searchCondition) %> <HR>

<% } %>
Enter a search condition:
<FORM METHOD="get">
<INPUT TYPE="text" NAME="cond" SIZE=30>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%-- Declare and define the runQuery() method. --%>
<%! private String runQuery(String cond) throws SQLException {

Notes:

■ Another approach to this example would be to define the
runQuery() method in <%...%> scriptlet syntax instead of
<%!...%> declaration syntax.

■ This example uses the JDBC OCI driver, which requires an
Oracle client installation. If you want to run this sample, use an
appropriate JDBC driver and connection string.
4-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");
 stmt = conn.createStatement();
 // dynamic query
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (cond.equals("") ? "" : "WHERE " + cond));
 return (formatResult(rset));
 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {
 if (rset!= null) rset.close();
 if (stmt!= null) stmt.close();
 if (conn!= null) conn.close();
 }
 }
 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else { sb.append("");
 do { sb.append("" + rset.getString(1) +
 " earns $ " + rset.getInt(2) + ".\n");
 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }
%>

The graphic below illustrates sample output for the following input:

sal >= 2500 AND sal < 5000
Basic Programming Considerations 4-9

JSP Data-Access Support and Features
Use of JDBC Performance Enhancement Features
JSP applications in OC4J can use features for the following performance
enhancements, supported through Oracle JDBC extension:

■ caching database connections

■ caching JDBC statements

■ batching update statements

■ prefetching rows during a query
4-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
■ caching rowsets

Most of these performance features are supported by the Oracle ConnBean and
ConnCacheBean data-access JavaBeans (but not by DBBean). These beans are
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Database Connection Caching
Creating a new database connection is an expensive operation that you should
avoid whenever possible. Instead, use a cache of database connections. A JSP
application can get a logical connection from a pre-existing pool of physical
connections, and return the connection to the pool when done.

You can create a connection pool at any one of the four JSP scopes—application,
session, page, or request. It is most efficient to use the maximum possible
scope—application scope if that is permitted by the Web server, or session
scope if not.

The Oracle JDBC connection caching scheme, built upon standard connection
pooling as specified in the JDBC 2.0 standard extensions, is implemented in the
ConnCacheBean data-access JavaBean provided with OC4J. Alternatively, you can
use standard data-source connection pooling functionality, which is supported by
the ConnBean data-access JavaBean. These beans are described in the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference.

It is also possible to use the Oracle JDBC OracleConnectionCacheImpl class
directly, as though it were a JavaBean, as in the following example (although all
OracleConnectionCacheImpl functionality is available through
ConnCacheBean):

<jsp:useBean id="occi" class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 scope="session" />

The same properties are available in OracleConnectionCacheImpl as in
ConnCacheBean. They can be set either through jsp:setProperty tags or
directly through the class setter methods.

Refer to the OC4J demos for examples of using OracleConnectionCacheImpl
directly. For information about the Oracle JDBC connection caching scheme and the
OracleConnectionCacheImpl class, see the Oracle9i JDBC Developer’s Guide and
Reference.
Basic Programming Considerations 4-11

JSP Data-Access Support and Features
JDBC Statement Caching
Statement caching, an Oracle JDBC extension, improves performance by caching
executable statements that are used repeatedly within a single physical connection,
such as in a loop or in a method that is called repeatedly. When a statement is
cached, the statement does not have to be re-parsed, the statement object does not
have to be re-created, and parameter size definitions do not have to be recalculated
each time the statement is executed.

The Oracle JDBC statement caching scheme is implemented in the ConnBean and
ConnCacheBean data-access JavaBeans that are provided with OC4J. Each of these
beans has a stmtCacheSize property that can be set through a
jsp:setProperty tag or the bean setStmtCacheSize() method. The beans are
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Statement caching is also available directly through the Oracle JDBC
OracleConnection and OracleConnectionCacheImpl classes. For
information about the Oracle JDBC statement caching scheme and the
OracleConnection and OracleConnectionCacheImpl classes, see the
Oracle9i JDBC Developer’s Guide and Reference.

Update Batching
The Oracle JDBC update batching feature associates a batch value (limit) with each
prepared statement object. With update batching, instead of the JDBC driver
executing a prepared statement each time its execution method is called, the driver
adds the statement to a batch of accumulated execution requests. The driver will
pass all the operations to the database for execution once the batch value is reached.
For example, if the batch value is 10, then each batch of ten operations will be sent
to the database and processed in one trip.

OC4J supports Oracle JDBC update batching directly, through the executeBatch
property of the ConnBean data-access JavaBean. You can set this property through
a jsp:setProperty tag or through the setter method of the bean. If you use
ConnCacheBean instead, you can enable update batching through Oracle JDBC
functionality in the connection and statement objects you create. These beans are

Important: Statements can be cached only within a single physical
connection. When you enable statement caching for a connection
cache, statements can be cached across multiple logical connection
objects from a single pooled connection object, but not across
multiple pooled connection objects.
4-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

For more information about Oracle JDBC update batching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Row Prefetching
For the population of query result sets, the Oracle JDBC row prefetching feature
enables you to determine the number of rows to prefetch into the client during each
trip to the database. This reduces the number of round-trips to the server.

OC4J supports Oracle JDBC row prefetching directly, through the preFetch
property of the ConnBean data-access JavaBean. You can set this property through
a jsp:setProperty tag or through the setter method of the bean. If you use
ConnCacheBean instead, you can enable row prefetching through Oracle JDBC
functionality in the connection and statement objects you create. These beans are
described in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

For more information about Oracle JDBC row prefetching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Rowset Caching
A cached rowset provides a disconnected, serializable, and scrollable container for
retrieved data. This feature is useful for small sets of data that do not change often,
particularly when the client requires frequent or continued access to the
information. By contrast, using a normal result set requires the underlying
connection and other resources to be held. Be aware, however, that large cached
rowsets consume a lot of memory on the client.

In Oracle9i, Oracle JDBC provides a cached rowset implementation. If you are using
an Oracle JDBC driver, use code inside a JSP page to create and populate a cached
rowset, as follows:

CachedRowSet crs = new CachedRowSet();
crs.populate(rset); // rset is a previously created JDBC ResultSet object.

Once the rowset is populated, the connection and statement objects used in
obtaining the original result set can be closed.

For more information about Oracle JDBC cached rowsets, see the Oracle9i JDBC
Developer’s Guide and Reference.
Basic Programming Considerations 4-13

JSP Data-Access Support and Features
EJB Calls from JSP Pages
JSP pages can call EJBs to perform additional processing or data access. A typical
application design uses JavaServer Pages as a front-end for the initial processing of
client requests, with Enterprise JavaBeans being called to perform the work that
involves reading from and writing to data sources. This section provides an
overview of EJB usage, covering the following topics:

■ Overview of Configuration and Deployment for EJBs

■ Code Steps and Approaches for EJB Calls

■ Use of the OC4J EJB Tag Library

See the OC4J demos for a complete example incorporating JSP pages and EJBs.

Overview of Configuration and Deployment for EJBs
The configuration and deployment steps for calling EJBs from JSP pages are similar
to the steps for calling EJBs from servlets, which are described in the Oracle9iAS
Containers for J2EE Servlet Developer’s Guide. These steps include the following:

■ Define an <ejb-ref> element in the application web.xml file for each EJB
called from a JSP page.

■ Create an ejb-jar.xml deployment descriptor that contains an
<enterprise-beans> element with appropriate subelements, such as
<session> or <entity>, that specify the types of EJBs. Within these
subelements, specify the name, class name, and other details for each called EJB.

■ Package the ejb-jar.xml file in the EJB archive. Deployment requirements
are very similar to the requirements for servlets.

Code Steps and Approaches for EJB Calls
The key steps required for a JSP page to invoke an EJB are the following:

1. Import the EJB package for the bean home and remote interfaces into each JSP
page that makes EJB calls. (In a JSP page, use a page directive for this.)

2. Use JNDI to look up the EJB home interface.

3. Create the EJB remote object from the home.

4. Invoke business methods on the remote object.

Because you can use almost any servlet code in a JSP page in the form of a scriptlet,
one straightforward way to call EJBs from a JSP page is to use the same code in a
4-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
scriptlet that you would use in a servlet. This is one way to accomplish steps 2, 3,
and 4.

Alternatively, you can use tags from the EJB tag library provided with OC4J (as
described in the next section, "Use of the OC4J EJB Tag Library"). These tags
simplify the coding. Essentially, they allow you to treat Enterprise JavaBeans
similarly to regular JavaBeans, which are commonly used in JSP pages.

Use of the OC4J EJB Tag Library
Refer the preceding section, "Code Steps and Approaches for EJB Calls". As in that
section, import the appropriate package in a page directive. Then use the OC4J EJB
tags as follows:

■ Use a taglib directive to specify the tag prefix and the tag library descriptor
(TLD) file that you will use.

■ For step 2 of the code steps, use an EJB useHome tag.

■ For step 3 of the code steps, you can use an EJB createBean tag inside an EJB
useBean tag.

■ For step 4 of the code steps, the EJB iterate tag enables you to apply business
methods to each member of a collection of EJB objects, usually returned by a
find method.

For more information about the EJB tag library, including detailed tag syntax, see
the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.

Deployment requirements are the same for the tag library approach as for the
scriptlet code approach. As with any tag library, the TLD file and the library
support files (tag handler classes and tag-extra-info classes) must be made
accessible to your application.

JSP Support for Oracle SQLJ
SQLJ is a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. The OC4J JSP container
supports Oracle SQLJ, allowing you to use SQLJ syntax in JSP statements. SQLJ
statements are indicated by the #sql token. Oracle SQLJ database access is typically
through the Oracle JDBC drivers.

For general information about Oracle SQLJ programming features, syntax, and
command-line options, see the Oracle9i SQLJ Developer’s Guide and Reference.
Basic Programming Considerations 4-15

JSP Data-Access Support and Features
SQLJ JSP Code Example
Following is a sample SQLJ JSP page. The page directive imports classes that are
typically required by SQLJ.

<%@ page language="sqlj"
 import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" %>
<HTML>
<HEAD> <TITLE> The SQLJQuery JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">
<% String empno = request.getParameter("empno");
if (empno != null) { %>
<H3> Employee # <%=empno %> Details: </H3>
<%= runQuery(empno) %>
<HR>

<% } %>
Enter an employee number:
<FORM METHOD="get">
<INPUT TYPE="text" NAME="empno" SIZE=10>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%!

private String runQuery(String empno) throws java.sql.SQLException {
 DefaultContext dctx = null;
 String ename = null; double sal = 0.0; String hireDate = null;
 StringBuffer sb = new StringBuffer();
 try {
 dctx = Oracle.getConnection("jdbc:oracle:oci8:@", "scott", "tiger");
 #sql [dctx] {
 SELECT ename, sal, TO_CHAR(hiredate,’DD-MON-YYYY’)
 INTO :ename, :sal, :hireDate
 FROM scott.emp WHERE UPPER(empno) = UPPER(:empno) };
 sb.append("<BLOCKQUOTE><BIG><PRE>\n");
 sb.append("Name : " + ename + "\n");
 sb.append("Salary : " + sal + "\n");
 sb.append("Date hired : " + hireDate);
 sb.append("</PRE></BIG></BLOCKQUOTE>");
 } catch (java.sql.SQLException e) {
 sb.append("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {
 if (dctx!= null) dctx.close();
 }
 return sb.toString();
4-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
}

%>

This example uses the JDBC OCI driver, which requires an Oracle client installation.
The Oracle class used in getting the connection is provided with Oracle SQLJ.

Entering employee number 7788 results in output such as the following:
Basic Programming Considerations 4-17

JSP Data-Access Support and Features
For further examples of using SQLJ in JSP pages, refer to the OC4J demos.

Triggering the SQLJ Translator
You can trigger the OC4J JSP translator to invoke the Oracle SQLJ translator in one
of two ways:

■ by using the file name extension .sqljsp for the JSP source file

or:

■ by specifying language="sqlj" in a page directive

Either of these results in the JSP translator generating a .sqlj file instead of a
.java file. The Oracle SQLJ translator is then invoked to translate the .sqlj file
into a .java file.

Using SQLJ results in additional output files—see "Generated Files and Locations"
on page 7-6.

Notes:

■ In case a JSP page is invoked multiple times in the same JVM, it
is recommended that you always use an explicit connection
context, such as dctx in the example, instead of the default
connection context. (Note that dctx is a local method variable.)

■ If you use Oracle SQLJ, the OC4J JSP container requires SQLJ
release 8.1.6.1 or higher.

Important:

■ To use Oracle SQLJ, you must install the SQLJ JAR/ZIP files
that are appropriate for your environment, and add them to
your classpath. See "Key Support Files Provided with OC4J" on
page 3-7.

■ Do not use the same base file name for a .jsp file and a
.sqljsp file in the same application, because this would result
in duplicate generated class names and .java file names.
4-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features
Setting Oracle SQLJ Options
When you execute or pre-translate a SQLJ JSP page, you can specify desired Oracle
SQLJ option settings. This is true both in on-demand translation scenarios and
pre-translation scenarios, as follows:

■ In an on-demand translation scenario, use the JSP sqljcmd configuration
parameter. This parameter, in addition to allowing you to specify a particular
SQLJ translator executable, enables you to set SQLJ command-line options.

For information about sqljcmd, see "JSP Configuration Parameters" on
page 3-9.

■ In a pre-translation scenario with the ojspc pre-translation tool, use the ojspc
-S option. This option enables you to set SQLJ command-line options.

For information, see "Command-Line Syntax for ojspc" on page 7-20 and
"Option Descriptions for ojspc" on page 7-20.

OracleXMLQuery Class
The oracle.xml.sql.query.OracleXMLQuery class is part of the Oracle9i
XML-SQL utility for XML functionality in database queries. This class requires file
xsu12.jar (or xsu111.jar for JDK 1.1.x), which is also required for XML
functionality in some of the custom tags and JavaBeans provided with OC4J. This
file is provided with Oracle9i and Oracle9iAS.

For a JSP sample using OracleXMLQuery, refer to the OC4J demos.

For information about the OracleXMLQuery class and other XML-SQL utility
features, refer to the Oracle9i XML Developer’s Kits Guide - XDK.
Basic Programming Considerations 4-19

JSP Resource Management
JSP Resource Management
This section discusses standard features and Oracle value-added features for
resource management:

■ Standard Session Resource Management: HttpSessionBindingListener (servlet
2.2 or higher environments)

■ Overview of Oracle Value-Added Features for Resource Management
(JspScopeListener for servlet 2.3 environments, globals.jsa for servlet
2.0 environments)

Standard Session Resource Management: HttpSessionBindingListener
A JSP page must appropriately manage resources acquired during its execution,
such as JDBC connection, statement, and result set objects. The standard
javax.servlet.http package provides the HttpSessionBindingListener
interface and HttpSessionBindingEvent class to manage session-scope
resources. Through this mechanism, a session-scope query bean could, for example,
acquire a database cursor when the bean is instantiated and close it when the HTTP
session is terminated. (The example in "JSP Data-Access Sample Using JDBC" on
page 4-8 opens and closes the connection for each query, which adds overhead.)

This section describes use of the HttpSessionBindingListener
valueBound() and valueUnbound() methods.

The valueBound() and valueUnbound() Methods
An object that implements the HttpSessionBindingListener interface can
implement a valueBound() method and a valueUnbound() method, each of
which takes an HttpSessionBindingEvent instance as input. These methods are
called by the servlet container—the valueBound() method when the object is
stored in the session, and the valueUnbound() method when the object is
removed from the session or when the session times-out or becomes invalid.
Usually, a developer will use valueUnbound() to release resources held by the
object (in the example below, to release the database connection).

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the jsp:useBean
statement takes care of this automatically.
4-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Resource Management
"JDBCQueryBean JavaBean Code" below provides a sample JavaBean that
implements HttpSessionBindingListener and a sample JSP page that calls the
bean.

JDBCQueryBean JavaBean Code
Following is the sample code for JDBCQueryBean, a JavaBean that implements the
HttpSessionBindingListener interface. (It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.)

JDBCQueryBean gets a search condition through the HTML request (as described
in "The UseJDBCQueryBean JSP Page" on page 4-23), executes a dynamic query
based on the search condition, and outputs the result.

This class also implements a valueUnbound() method, as specified in the
HttpSessionBindingListener interface, that results in the database connection
being closed at the end of the session.

package mybeans;

import java.sql.*;
import javax.servlet.http.*;

public class JDBCQueryBean implements HttpSessionBindingListener
{
 String searchCond = "";
 String result = null;

 public void JDBCQueryBean() {
 }

 public synchronized String getResult() {
 if (result != null) return result;
 else return runQuery();
 }

 public synchronized void setSearchCond(String cond) {
 result = null;
 this.searchCond = cond;
 }

 private Connection conn = null;

 private String runQuery() {
Basic Programming Considerations 4-21

JSP Resource Management
 StringBuffer sb = new StringBuffer();
 Statement stmt = null;
 ResultSet rset = null;
 try {
 if (conn == null) {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");
 }

 stmt = conn.createStatement();
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (searchCond.equals("") ? "" : "WHERE " + searchCond));
 result = formatResult(rset);
 return result;

 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 }
 finally {
 try {
 if (rset != null) rset.close();
 if (stmt != null) stmt.close();
 }
 catch (SQLException ignored) {}
 }
 }

 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else {
 sb.append("");
 do { sb.append("" + rset.getString(1) +
 " earns $ " + rset.getInt(2) + "\n");
 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // do nothing -- the session-scope bean is already bound
 }
4-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Resource Management

 public synchronized void valueUnbound(HttpSessionBindingEvent event) {
 try {
 if (conn != null) conn.close();
 }
 catch (SQLException ignored) {}
 }
}

The UseJDBCQueryBean JSP Page
The following JSP page uses the JDBCQueryBean JavaBean defined in
"JDBCQueryBean JavaBean Code" above, invoking the bean with session scope. It
uses JDBCQueryBean to display employee names that match a search condition
entered by the user.

JDBCQueryBean gets the search condition through the jsp:setProperty tag in
this JSP page, which sets the searchCond property of the bean according to the
value of the searchCond request parameter input by the user through the HTML
form. (The HTML INPUT tag specifies that the search condition entered in the form
be named searchCond.)

<jsp:useBean id="queryBean" class="mybeans.JDBCQueryBean" scope="session" />
<jsp:setProperty name="queryBean" property="searchCond" />

<HTML>
<HEAD> <TITLE> The UseJDBCQueryBean JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<% String searchCondition = request.getParameter("searchCond");
 if (searchCondition != null) { %>
 <H3> Search results for : <I> <%= searchCondition %> </I> </H3>
 <%= queryBean.getResult() %>
 <HR>

<% } %>

Enter a search condition for the EMP table:

<FORM METHOD="get">

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.
Basic Programming Considerations 4-23

JSP Resource Management
<INPUT TYPE="text" NAME="searchCond" VALUE="ename LIKE ’A%’ " SIZE="40">
<INPUT TYPE="submit" VALUE="Ask Oracle">
</FORM>

</BODY>
</HTML>

Following is sample input and output for this page:

Advantages of HttpSessionBindingListener
In the preceding example, an alternative to the HttpSessionBindingListener
mechanism would be to close the connection in a finalize() method in the
JavaBean. The finalize() method would be called when the bean is
garbage-collected after the session is closed. The HttpSessionBindingListener
interface, however, has more predictable behavior than a finalize() method.
Garbage collection frequency depends on the memory consumption pattern of the
application. By contrast, the valueUnbound() method of the
HttpSessionBindingListener interface is called reliably at session shutdown.
4-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Resource Management
Overview of Oracle Value-Added Features for Resource Management
OC4J JSP provides the following features for managing application and session
resources as well as page and request resources:

■ JspScopeListener interface—This is for managing application-scope,
session-scope, request-scope, or page-scope resources in a servlet 2.3
environment such as OC4J.

This mechanism adheres to servlet and JSP standards in supporting objects of
page, request, session, or application scope. To create a class that
supports session scope as well as other scopes, you can integrate
JspScopeListener with HttpSessionBindingListener by having the
class implement both interfaces. For page scope in OC4J or JServ environments,
you also have the option of using an Oracle-specific runtime implementation.

For information about configuration and how to integrate with
HttpSessionBindingListener, see the Oracle9iAS Containers for J2EE JSP
Tag Libraries and Utilities Reference.

■ globals.jsa file—This is for start and end events for application-scope and
session-scope objects in a servlet 2.0 environment, such as JServ.

See "The globals.jsa Event-Handlers" on page B-37 for information.
Basic Programming Considerations 4-25

Runtime Error Processing
Runtime Error Processing
While a JSP page is executing and processing client requests, runtime errors can
occur either inside the page or outside the page (such as in a called JavaBean). This
section describes error processing mechanisms and provides an elementary
example.

Servlet and JSP Runtime Error Mechanisms
This section describes servlet 2.3 and JSP 1.2 mechanisms for handling runtime
exceptions, including the use of JSP error pages.

General Servlet Runtime Error Mechanism
Any runtime error encountered during execution of a JSP page is handled through
the standard Java exception mechanism in one of two ways:

■ You can catch and handle exceptions in a Java scriptlet within the JSP page
itself, using standard Java exception-handling code.

■ Exceptions that you do not catch in the JSP page will result in forwarding of the
request and uncaught exception, a java.lang.Throwable instance, to an
error resource. This is the preferred way to handle JSP errors. In this case, the
exception instance describing the error is stored in the request object through
a setAttribute() call, using javax.servlet.jsp.jspException as the
name.

You can specify the URL of an error resource by setting the errorPage attribute in
a page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-7.)

In a servlet 2.2 or higher environment, you can also specify a default error page in
the web.xml deployment descriptor with instructions such as the following:

<error-page>
 <error-code>404</error-code>
 <location>/error404.html</location>
</error-page>

See the Sun Microsystems Java Servlet Specification, Version 2.3 for more information
about default error resources.
4-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Runtime Error Processing
JSP Error Pages
You have the option of using another JSP page as the error resource for runtime
exceptions from an originating JSP page. A JSP error page must have a page
directive setting the isErrorPage="true". An error page defined in this way
takes precedence over an error page declared in the web.xml file.

The java.lang.Throwable instance describing the error is accessible in the error
page through the JSP implicit exception object. Only an error page can access this
object. For information about JSP implicit objects, including the exception object,
see "Implicit Objects" on page 1-13.

Be aware that if an originating JSP page has a page directive with
autoFlush="true" (the default setting), and the contents of the JspWriter
object from that page have already been flushed to the response output stream, then
any further attempt to forward an uncaught exception to any error page might not
be able to clear the response. Some of the response may have already been received
by the browser.

See "JSP Error Page Example" below for an example of error page usage.

JSP Error Page Example
The following example, nullpointer.jsp, generates an error and uses an error
page, myerror.jsp, to output contents of the implicit exception object.

Code for nullpointer.jsp

<HTML>
<BODY>
<%@ page errorPage="myerror.jsp" %>
Null pointer is generated below:
<%
 String s=null;
 s.length();
%>
</BODY>
</HTML>
Basic Programming Considerations 4-27

Runtime Error Processing
Code for myerror.jsp

<HTML>
<BODY>
<%@ page isErrorPage="true" %>
Here is your error:
<%= exception %>
</BODY>
</HTML>

This example results in the following output:

Note: The line "Null pointer is generated below:" in
nullpointer.jsp is not output when processing is forwarded to
the error page. This shows the difference between jsp:include
and jsp:forward functionality—with a jsp:forward, the
output from the "forward-to" page replaces the output from the
"forward-from" page.
4-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP XML Su
5

JSP XML Support

Because of additional support for XML in the JSP 1.2 specification, JavaServer Pages
can increasingly be seen as an effective model for producing XML documents. With
these enhancements, JSP technology becomes more complementary to XML
technology and more accessible to XML tools. Another benefit of JSP XML support
is that page validation becomes more powerful and comprehensive.

This chapter describes JavaServer Pages support for XML. This includes support for
XML-style equivalents to JSP syntactical elements, and the concept of the "XML
view" of a JSP page. These features were added in the JSP 1.2 specification, although
the JSP 1.1 specification included optional support for JSP XML syntax and defined
the syntax.

The chapter includes the following topics:

■ JSP XML Documents and JSP XML View: Overview and Comparison

■ Details of JSP XML Documents

■ Details of the JSP XML View

For information about additional JSP support for XML and XSL, furnished in OC4J
through custom tags, refer to the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference.

For general information about XML, refer to the XML specification at the following
Web site:

http://www.w3.org/XML/
pport 5-1

JSP XML Documents and JSP XML View: Overview and Comparison
JSP XML Documents and JSP XML View: Overview and Comparison
Traditional JSP constructs, such as <%@ page...> directives, <%@ include... >
directives, <%...%> for scriptlets, <%!...%> for declarations, and <%=...%> for
expressions, are not syntactically valid within an XML document. Sun
Microsystems first addressed this issue in the JavaServer Pages Specification, Version
1.1 by defining equivalent JSP syntax that is XML-compatible. In JSP 1.1, however,
support for this syntax by a JSP container is optional.

The JavaServer Pages Specification, Version 1.2 offers more complete support for
XML-compatible JSP syntax, adding features and requiring support by compliant
JSP containers.

The term JSP XML document (called JSP document in the JSP 1.2 specification) refers
to a JSP page that uses this XML-compatible syntax. The syntax includes, among
other things, a root element and elements that serve as alternatives to JSP directives,
declarations, expressions, and scriptlets. (Standard tag actions and custom tag
actions already follow XML conventions.) See "Details of JSP XML Documents" on
page 5-4 for details.

A JSP XML document is well formed in pure XML syntax, and is namespace-aware.
It uses XML namespaces to specify the JSP XML core syntax and the syntaxes of any
custom tag libraries used. A traditional JSP page, by contrast, is typically not an
XML document.

A JSP XML document has the same file name extension as a traditional JSP page,
.jsp. However, it is recognizable by the JSP container as an XML document
because of its root element, <jsp:root>. Additionally, the semantic model for JSP
XML documents is the same as for traditional pages. A JSP XML document dictates
the same set of actions and results as a traditional page with equivalent syntax.

Note: The OC4J JSP container, as documented in previous releases
of this manual, supported the optional XML-alternative syntax of
the JSP 1.1 specification. The JSP container now replaces this
implementation with full XML support as prescribed by the JSP 1.2
specification. The JSP 1.1 syntax itself remains unchanged, but there
are now additional aspects of JSP XML support, as described in this
chapter.

In addition, under the JSP 1.1 specification, you could intermix
traditional syntax and XML-alternative syntax within a page. This
is not true in a JSP 1.2 environment.
5-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP XML Documents and JSP XML View: Overview and Comparison
Processing of white space follows XSLT conventions. Once the nodes of a JSP XML
document have been identified, textual nodes that have only white space are
dropped from the document, except within<jsp:text> elements for template
data. The content of <jsp:text> elements is kept exactly as is.

In a JSP 1.2 environment, a JSP XML document can be processed directly by the JSP
container. You can also use a JSP XML document with XML development tools or
other XML tools, which will become increasingly important as such tools become
more popular and prevalent.

Another key feature of XML support in the JSP 1.2 specification is the JSP XML view.
The specification defines this as "the mapping between a JSP page, written in either
XML syntax or traditional syntax, and an XML document describing it". The JSP
container generates it during translation.

In the case of a JSP XML document, the JSP XML view is similar to the page source.
One difference is that the XML view is expanded according to any include
directives. Another (optional) difference, for JSP containers that support it, is that ID
attributes for improved error reporting are added to all XML elements.

In the case of a traditional JSP page, the JSP container performs a series of
transformations to create the XML view from the page. See "Details of the JSP XML
View" on page 5-15 for details.

The key function of the JSP XML view is its use for page validation. Beginning with
the JSP 1.2 specification, any tag library can have a <validator> element in its
TLD file to specify a class that can perform validation. Such classes are referred to as
tag-library-validator (TLV) classes. The purpose of a TLV class is to validate any JSP
page that uses the tag library, verifying that the page adheres to any desired
constraints that you have implemented. A validator class uses the JSP XML view as
the source for its validation.

In summary, you can optionally use JSP XML syntax to create a JSP page that is
XML-compatible. The JSP XML view, in contrast, is a function of the JSP container,
for use in page validation.

Note: Template data consists of any text that is not interpreted by
the JSP translator.
JSP XML Support 5-3

Details of JSP XML Documents
Details of JSP XML Documents
This section describes the syntax of JSP XML documents in further detail. For a
complete description, refer to the Sun Microsystems JavaServer Pages Specification,
Version 1.2.

JSP XML syntax includes the following:

■ a root element, <jsp:root ...>, which includes a namespace specification
for the JSP XML core syntax, and namespace specifications for any custom tag
libraries that are used

■ JSP directive elements (for page and include directives)

■ JSP declaration elements

■ JSP expression elements

■ JSP scriptlet elements

■ JSP standard action elements

■ JSP custom action elements

■ a text element, <jsp:text ... >, for template (static) data

■ other XML elements, if desired, pertaining to template data

Important: You cannot intermix JSP traditional syntax and JSP
XML syntax in a single file. You can, however, make use of both
syntaxes together in a single translation unit through the use of
include directives. For example, a traditional JSP page can
include a JSP XML document.

Note: A JSP XML document does not use a DOCTYPE statement.

Note: A separate mechanism, through xmlns attributes of the
root element, is equivalent to the use of taglib directives. "JSP
XML root Element and JSP XML Namespaces" on page 5-7
describes this.
5-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of JSP XML Documents
This section describes each of these types of elements, followed by an example
comparing a traditional JSP page to the equivalent JSP XML document.

Summary Table of JSP XML Syntax
Table 5–1 summarizes JSP XML syntax, comparing it to JSP traditional syntax as
applicable.

Table 5–1 JSP XML Syntax Versus JSP Traditional Syntax

JSP XML Syntax Corresponding JSP Traditional Syntax

Root element:

<jsp:root
 xmlns:jsp=...
 xmlns:xxx =...
 ...
 version=...
/>

The root element indicates the standard JSP XML
namespace, XML namespaces for any custom tag
libraries, and a JSP version number (required).
See "JSP XML root Element and JSP XML
Namespaces" on page 5-7.

The xmlns settings for tag libraries are
equivalent to JSP taglib directives.

JSP page directive element:

<jsp:directive.page ... />

See "JSP XML Directive Elements" on page 5-8.

<%@ page ... %>

JSP include directive element:

<jsp:directive.include ... />

See "JSP XML Directive Elements" on page 5-8.

<%@ include ... %>

JSP declaration element:

<jsp:declaration>
 declaration
</jsp:declaration>

See "JSP XML Declaration, Expression, and
Scriptlet Elements" on page 5-9.

<%! declaration %>
JSP XML Support 5-5

Details of JSP XML Documents
JSP expression element:

<jsp:expression>
 expression
</jsp:expression>

See "JSP XML Declaration, Expression, and
Scriptlet Elements" on page 5-9.

<%= expression %>

JSP scriptlet element:

<jsp:scriptlet>
 code fragment
</jsp:scriptlet>

See "JSP XML Declaration, Expression, and
Scriptlet Elements" on page 5-9.

<% code fragment %>

JSP standard action (such as jsp:include or
jsp:forward)

See "JSP XML Standard Action and Custom
Action Elements" on page 5-10.

JSP standard action

The traditional standard action syntax is
already XML-compatible.

JSP custom action (any custom tag)

See "JSP XML Standard Action and Custom
Action Elements" on page 5-10.

JSP custom action

The traditional custom action syntax is
already XML-compatible.

JSP request-time attribute expression (within a
standard or custom action):

<foo:bar attr="%=expr%" />

See "JSP XML Standard Action and Custom
Action Elements" on page 5-10.

<foo:bar attr="<%=expr%>" />

Text element:

<jsp:text>
...
</jsp:text>

This is for template data. See "JSP XML Text
Elements and Other Elements" on page 5-10.

Template data

Table 5–1 JSP XML Syntax Versus JSP Traditional Syntax (Cont.)

JSP XML Syntax Corresponding JSP Traditional Syntax
5-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of JSP XML Documents
JSP XML root Element and JSP XML Namespaces
The <jsp:root> element has three primary functions:

■ It establishes the document as a JSP XML document, instructing the JSP
container to treat it accordingly.

■ It identifies, through xmlns attribute settings, required XML namespaces for
the JSP XML core syntax and any custom tag libraries.

■ It specifies a JSP version number (required).

There is always one xmlns attribute to identify the namespace for the core JSP XML
syntax:

xmlns:jsp="http://java.sun.com/JSP/Page"

This xmlns:jsp setting enables the use of standard elements defined in the JSP 1.2
specification.

You must also include an xmlns attribute for each custom tag library you use,
specifying the tag library prefix and namespace—that is, pointing to the
corresponding TLD file for use in validating your tag usage. These xmlns settings
are equivalent to taglib directives in a traditional JSP page.

You can use either a URN or a URI to point to the TLD file. The JSP 1.2 specification
provides the following example, for tag library prefixes eg and temp:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
 xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"
 version="1.2"
>

...body of document...

</jsp:root>

Other XML elements. These may appear
anywhere a <jsp:text> element may appear.

See "JSP XML Text Elements and Other Elements"
on page 5-10.

Template data

Table 5–1 JSP XML Syntax Versus JSP Traditional Syntax (Cont.)

JSP XML Syntax Corresponding JSP Traditional Syntax
JSP XML Support 5-7

Details of JSP XML Documents
A URN indicates an application-relative path and must be of the form
"urn:jsptld:path", where the path is specified in the same way as the uri
attribute in a taglib directive. See "Overview: Specifying a Tag Library with the
taglib Directive" on page 8-16.

A URI can be a complete URL, or it can be according to mapping in the <taglib>
element of the web.xml file or the <uri> element of a TLD file. See "Use of
web.xml for Tag Libraries" on page 8-21 and "Packaging and Accessing Multiple
Tag Libraries in a JAR File" on page 8-18.

Also note the version attribute in the example. This is a required attribute,
specifying the JSP version that the page uses (1.2 or higher).

JSP XML Directive Elements
There are JSP XML elements that are equivalent to page and include directives.
(The taglib directives are replaced by xmlns settings in the <jsp:root>
element, as the preceding section, "JSP XML root Element and JSP XML
Namespaces", describes.)

Transforming a page or include directive to the equivalent JSP XML element is
straightforward, as shown in the following examples.

Example: page Directive The following page directive:

<%@ page language="sqlj"
 import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" %>

is equivalent to the following JSP XML element:

<jsp:directive.page language="sqlj"
 import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" />

Example: include Directive The following include directive:

<%@ include file="/jsp/userinfopage.jsp" %>

is equivalent to the following JSP XML element:

<jsp:directive.include file="/jsp/userinfopage.jsp" />
5-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of JSP XML Documents
JSP XML Declaration, Expression, and Scriptlet Elements
There are JSP XML elements that are equivalent to JSP declarations, expressions,
and scriptlets.

Transforming any of these constructs to the equivalent JSP XML element is
straightforward, as shown in the following examples.

Example: JSP Declaration The following JSP declaration:

<%! public String func(int myint) { if (myint<10) return("..."); } %>

is equivalent to the following JSP XML element:

<jsp:declaration>
 <![CDATA[public String func(int myint) { if (myint<10) return("..."); }]]>
</jsp:declaration>

The XML CDATA (character data) designation is used because the declaration
includes a "<" character, which has special meaning to an XML parser. (If you use an
XML editor to create your JSP XML pages, this would presumably be handled
automatically.) Alternatively, you could write the following, using the "<"
escape character instead of "<":

<jsp:declaration>
 public String func(int myint) { if (myint < 10) return("..."); }
</jsp:declaration>

Example: JSP Expression The following JSP expression:

<%= (user==null) ? "" : user %>

is equivalent to the following JSP XML element:

<jsp:expression> (user==null) ? "" : user </jsp:expression>

Note: The XML view of a page does not contain include
elements, because statically included segments are copied directly
into the view.
JSP XML Support 5-9

Details of JSP XML Documents
Example: JSP Scriptlet The following JSP scriptlet:

<% if (pageBean.getNewName().equals("")) { %>
 ...

is equivalent to the following JSP XML element:

<jsp:scriptlet> if (pageBean.getNewName().equals("")) { </jsp:scriptlet>
 ...

JSP XML Standard Action and Custom Action Elements
Traditional syntax for JSP standard actions (such as jsp:include, jsp:forward,
and jsp:useBean) and custom actions is already XML-compatible. In using
standard actions or custom actions in JSP XML syntax, however, be aware of the
following issues.

■ A standard action or custom action element with an attribute that can accept a
request-time expression value can take that value through the following syntax:

"%=expression%"

Note that there are no angle brackets, "<" and ">", around this syntax and that
white space around expression is not necessary. Evaluation of expression,
after any applicable quoting as in any XML document, is the same as for any
JSP request-time expression.

■ Any quoting must be according to the XML specification.

■ You can introduce template data through <jsp:text> elements or through
chosen XML elements that are neither standard nor custom. See "JSP XML Text
Elements and Other Elements", which follows.

JSP XML Text Elements and Other Elements
A <jsp:text> element denotes template data in a JSP XML document:

<jsp:text>
 ...template data...
</jsp:text>

When a JSP container encounters a <jsp:text> element, it passes the contents to
the current JSP out object (similar to the processing of an XSLT <xsl:text>
element).
5-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of JSP XML Documents
The JSP 1.2 specification also allows, wherever a <jsp:text> element can appear,
the use of arbitrary elements (neither standard action elements nor custom action
elements) for template data. These arbitrary elements are processed in the same
way as <jsp:text> elements, with content being sent to the current JSP out
object.

The following example is from the Sun Microsystems JavaServer Pages Specification,
Version 1.2.

Example: Other JSP XML Elements Consider the following JSP XML document source
text:

<hello><jsp:scriptlet>int i=3;</jsp:scriptlet>
<hi>
<jsp:text> hi you all
</jsp:text><jsp:expression>i</jsp:expression>
</hi>
</hello>

This source text results in the following output from the JSP container:

<hello> <hi> hi you all
3 </hi></hello>

(Note how the white space is treated.)

Sample Comparison: Traditional JSP Page Versus JSP XML Document
This section shows two versions of a JSP page—one in traditional syntax and one in
XML syntax.

For information about deploying and running this example, refer to the following
Web site:

http://otn.oracle.com/tech/java/oc4j/htdocs/how-to-jsp-xmlview.html

(You must register for an Oracle Technology Network membership, but it is free of
charge.)

Sample Traditional JSP Page Here is the sample page in traditional syntax:

<%@ page session = "false" %>

<jsp:useBean id = "picker" class = "oracle.jsp.sample.lottery.LottoPicker"
 scope = "page" />
JSP XML Support 5-11

Details of JSP XML Documents
<% picker.setIdentity(request.getRemoteAddr()); %>

<HTML>
<HEAD>
 <TITLE>Lotto Number Generator</TITLE>
</HEAD>

<BODY BACKGROUND="images/cream.jpg" BGCOLOR="#FFFFFF">

<H1 ALIGN="CENTER"></H1>

<H1 ALIGN="CENTER">Your Specially Picked</H1>
<P ALIGN="CENTER"><IMG SRC="images/winningnumbers.gif" WIDTH="450" HEIGHT="69"
ALIGN="BOTTOM"
BORDER="0"></P>
<P>

<P ALIGN="CENTER">
<TABLE ALIGN="CENTER" BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>
<%
 int [] picks = picker.getPicks();
 for (int i = 0; i < picks.length; i++) {
%>
 <TD>
 <IMG SRC="images/ball<%= picks[i] %>.gif" WIDTH="68" HEIGHT="76"
 ALIGN="BOTTOM" BORDER="0">
 </TD>

<%
 }
%>
</TR>
</TABLE>

</P>

<P ALIGN="CENTER">

<IMG SRC="images/playrespon.gif" WIDTH="120" HEIGHT="73" ALIGN="BOTTOM"
BORDER="0">
5-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of JSP XML Documents
</BODY>
</HTML>

Sample JSP XML Document Here is the same page in XML syntax:

<jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 version="1.2">

<jsp:directive.page session = "false" contentType="text/html"/>

<jsp:useBean id = "picker" class = "oracle.jsp.sample.lottery.LottoPicker"
 scope = "page" />
<jsp:scriptlet>picker.setIdentity(request.getRemoteAddr()); </jsp:scriptlet>
<jsp:text><![CDATA[<HTML>

<HEAD>
 <TITLE>Lotto Number Generator</TITLE>
</HEAD>

<BODY BACKGROUND=’../basic/lottery/images/cream.jpg’ BGCOLOR=’#FFFFFF’>

<H1 ALIGN=’CENTER’></H1>

<H1 ALIGN=’CENTER’>Your Specially Picked</H1>
<P ALIGN=’CENTER’><IMG SRC=’../basic/lottery/images/winningnumbers.gif’
 WIDTH=’450’ HEIGHT=’69’ ALIGN=’BOTTOM’ BORDER=’0’></P>

<P ALIGN=’CENTER’>
<TABLE ALIGN=’CENTER’ BORDER=’0’ CELLPADDING=’0’ CELLSPACING=’0’>
<TR>]]></jsp:text>
<jsp:scriptlet>
 int [] picks = picker.getPicks();
 for (int i = 0; i < picks.length; i++)
 {
</jsp:scriptlet>
<jsp:text><![CDATA[<TD>

</jsp:text>
<jsp:expression>picks[i]</jsp:expression>
<jsp:text>
 <![CDATA[.gif’ WIDTH=’68’ HEIGHT=’76’ ALIGN=’BOTTOM’ BORDER=’0’>
JSP XML Support 5-13

Details of JSP XML Documents
</TD>]]></jsp:text>
<jsp:scriptlet>
 }
</jsp:scriptlet>
<jsp:text><![CDATA[</TR>
</TABLE>
</P>
<P ALIGN=’CENTER’>

<IMG SRC=’../basic/lottery/images/playrespon.gif’ WIDTH=’120’ HEIGHT=’73’
ALIGN=’BOTTOM’ BORDER=’0’>
</BODY>
</HTML>]]></jsp:text>
</jsp:root>
5-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of the JSP XML View
Details of the JSP XML View
When a container that complies with JSP 1.2 translates a JSP page, it creates an XML
version, known as the XML view, of the parsing result. The JSP 1.2 specification
defines the XML view as being a mapping of a JSP page (either a traditional page or
a JSP XML document) into an XML document that describes it. The XML view can
be used by tag-library-validator classes in validating the page. (See "Validation and
Tag-Library-Validator Classes" on page 8-46.) The XML view of a page looks mostly
like the page as you would write it yourself if you were using JSP XML syntax, with
a couple of key differences, as described shortly.

This section covers the following topics:

■ Transformation from a JSP Page to the XML View

■ The jsp:id Attribute for Error Reporting During Validation

■ Example: Transformation from Traditional JSP Page to XML View

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.2 for further
details.

Transformation from a JSP Page to the XML View
When translating a JSP page, the JSP container executes the following
transformations in creating the XML view, both for traditional JSP pages and for JSP
XML documents:

■ The container expands the XML view to include files brought in through
include directives.

■ A JSP container that supports the optional jsp:id attribute (for improved error
reporting) inserts that attribute into each XML element in the page. See "The
jsp:id Attribute for Error Reporting During Validation" on page 5-16.

For a JSP XML document, these points constitute the key differences between the
XML view and the original page.

The JSP container executes the following additional transformations for traditional
JSP pages:

■ It adds the <jsp:root> element, with the standard xmlns attribute setting for
JSP XML syntax, and the version attribute for the JSP version. See "JSP XML
root Element and JSP XML Namespaces" on page 5-7.
JSP XML Support 5-15

Details of the JSP XML View
■ It converts each taglib directive into an additional xmlns attribute in the
<jsp:root> element. See "JSP XML root Element and JSP XML Namespaces"
on page 5-7.

■ It converts each page directive into the equivalent element in JSP XML syntax.
See "JSP XML Directive Elements" on page 5-8.

■ It converts each declaration, expression, and scriptlet into the equivalent
element in JSP XML syntax. See "JSP XML Declaration, Expression, and Scriptlet
Elements" on page 5-9.

■ It converts request-time expressions into XML syntax. See "JSP XML Standard
Action and Custom Action Elements" on page 5-10.

■ It creates <jsp:text> elements for template data. See "JSP XML Text Elements
and Other Elements" on page 5-10.

■ It converts JSP quotations into XML quotations.

■ It ignores JSP comments: <%-- comment --%>. They do not appear in the
XML view.

The jsp:id Attribute for Error Reporting During Validation
The JSP 1.2 specification describes an optional jsp:id attribute that the JSP
container can add to each XML element in the XML view. A container does not have
to support this feature to comply with JSP 1.2, but the OC4J JSP container does
support it.

The jsp:id attributes, if present, are used by tag-library-validator classes during
page validation. The purpose of these attributes is to provide improved error
reporting, possibly helping developers pinpoint where errors occur (depending on
how the JSP container implements jsp:id support).

The jsp:id attribute values must be generated by the container in a way that
ensures that each value, or ID, is unique across all elements in the XML view.

Notes:

■ The XML view has no DOCTYPE statement.

■ No "other XML elements", as described in "JSP XML Text
Elements and Other Elements" on page 5-10, appear in the XML
view. Only <jsp:text> elements are used for template data.
5-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Details of the JSP XML View
A tag-library-validator object can use these IDs in the ValidationMessage
objects that it returns. (See "Validation and Tag-Library-Validator Classes" on
page 8-46 for background information about TLV classes.)

In the OC4J JSP implementation, when a ValidationMessage object with IDs is
returned, each ID is transformed to reflect the tag name and source location of the
matching element.

Example: Transformation from Traditional JSP Page to XML View
This example shows traditional page source from one of the OC4J JSP demo
applications, followed by the XML view of the page as generated by the OC4J JSP
translator. (The demo displays the Oracle JSP version number and configuration
parameter values.)

Traditional JSP Page Here is the traditional JSP page:

<HTML>
 <HEAD>
 <TITLE>OJSP Information </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 OJSP Version:

 <%= application.getAttribute("oracle.jsp.versionNumber") %>

 OJSP Init Parameters:

 <%
 for (Enumeration paraNames = config.getInitParameterNames();
 paraNames.hasMoreElements() ;) {
 String paraName = (String)paraNames.nextElement();
 %>
 <%=paraName%> = <%=config.getInitParameter(paraName)%>

 <%
 }
 %>
 </BODY>
</HTML>

XML View of JSP Page Here is the corresponding XML view:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" jsp:id="0" version="1.2">
 <jsp:text jsp:id="1"><![CDATA[<HTML>
 <HEAD>
 <TITLE>OJSP Information </TITLE>
JSP XML Support 5-17

Details of the JSP XML View
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 OJSP Version:
]]></jsp:text>
 <jsp:expression jsp:id="2">
 <![CDATA[application.getAttribute("oracle.jsp.versionNumber")]]>
 </jsp:expression>
 <jsp:text jsp:id="3"><![CDATA[

 OJSP Init Parameters:

]]>
 </jsp:text>
 <jsp:scriptlet jsp:id="4"><![CDATA[
 for (Enumeration paraNames = config.getInitParameterNames();
 paraNames.hasMoreElements() ;) {
 String paraName = (String)paraNames.nextElement();
]]></jsp:scriptlet>
 <jsp:text jsp:id="5"><![CDATA[
]]></jsp:text>
 <jsp:expression jsp:id="6"><![CDATA[paraName]]></jsp:expression>
 <jsp:text jsp:id="7"><![CDATA[=]]></jsp:text>
 <jsp:expression jsp:id="8">
 <![CDATA[config.getInitParameter(paraName)]]>
 </jsp:expression>
 <jsp:text jsp:id="9"><![CDATA[

]]></jsp:text>
 <jsp:scriptlet jsp:id="10"><![CDATA[
 }
]]></jsp:scriptlet>
 <jsp:text jsp:id="11"><![CDATA[
 </BODY>
 </HTML>

]]></jsp:text>
</jsp:root>
5-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Additional Considera
6

Additional Considerations

This chapter discusses an assortment of programming and runtime considerations
in developing and executing JSP applications. The following categories are covered:

■ JSP Programming Strategies, Tips, and Traps

■ JSP Runtime Considerations and Optimization
tions 6-1

JSP Programming Strategies, Tips, and Traps
JSP Programming Strategies, Tips, and Traps
This section discusses issues you should consider when programming JSP pages,
regardless of the particular target environment. The following assortment of topics
are covered:

■ JavaBeans Versus Scriptlets

■ Static Includes Versus Dynamic Includes

■ When to Consider Creating and Using JSP Tag Libraries

■ Use of a Central Checker Page

■ Workarounds for Large Static Content in JSP Pages

■ Method Variable Declarations Versus Member Variable Declarations

■ Page Directive Characteristics

■ JSP Preservation of White Space and Use with Binary Data

JavaBeans Versus Scriptlets
The section "Separation of Business Logic from Page Presentation: Calling
JavaBeans" on page 1-5 describes a key advantage of JavaServer Pages
technology—Java code containing the business logic and determining the dynamic
content can be separated from the HTML code containing the request processing,
presentation logic, and static content. This separation allows HTML experts to focus
on presentation, while Java experts focus on business logic in JavaBeans that are
called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. The sample page in "JSP
Data-Access Sample Using JDBC" on page 4-8, although illustrative, is probably not
an ideal design. Data access, such as in the runQuery() method in the sample, is
usually more appropriate in a JavaBean. However, the formatResult() method
in the sample, which formats the output, is more appropriate for the JSP page itself.

Note: In addition to being aware of what is discussed in this
section, you should be aware of JSP translation and deployment
issues and behavior. See Chapter 7, "JSP Translation and
Deployment".
6-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
Static Includes Versus Dynamic Includes
The include directive, described in "Directives" on page 1-7, makes a copy of the
included page and copies it into a JSP page (the "including page") during
translation. This is known as a static include (or translate-time include) and uses the
following syntax:

<%@ include file="/jsp/userinfopage.jsp" %>

The jsp:include tag, described in "Standard Actions: JSP Tags" on page 1-16,
dynamically includes output from the included page within the output of the
including page, during runtime. This is known as a dynamic include (or runtime
include) and uses the following syntax:

<jsp:include page="/jsp/userinfopage.jsp" flush="true" />

For those familiar with C syntax, a static include is comparable to a #include
statement. A dynamic include is similar to a function call. They are both useful, but
serve different purposes.

Logistics of Static Includes
A static include increases the size of the generated code for the including JSP page,
as though the text of the included page is physically copied into the including page
during translation (at the point of the include directive). If a page is included
multiple times within an including page, multiple copies are made.

A JSP page that is statically included is not required to be an independent,
translatable entity. It simply consists of text that will be copied into the including
page. The including page, with the included text copied in, must then be
translatable. And, in fact, the including page does not have to be translatable prior
to having the included page copied into it. A sequence of statically included pages
can be fragments unable to stand on their own.

Logistics of Dynamic Includes
A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the

Note: You can use static includes and dynamic includes only
between pages in the same servlet context.
Additional Considerations 6-3

JSP Programming Strategies, Tips, and Traps
including page to the included page, as opposed to the text of the included page
being physically copied into the including page.

A dynamic include does increase processing overhead, with the necessity of the
additional call to the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be
independent as well, able to be translated and executed without the dynamic
include.

Advantages, Disadvantages, and Typical Uses
Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (The service
method of the generated page implementation class has a 64 KB size limit—see
"Workarounds for Large Static Content in JSP Pages" on page 6-7.)

Overuse of static includes can also make debugging your JSP pages difficult,
making it harder to trace program execution. Avoid subtle interdependencies
between your statically included pages.

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

■ Statically include a logo or copyright message at the top or bottom of each page
in your application.

■ Statically include a page with declarations or directives (such as imports of Java
classes) that are required in multiple pages.

■ Statically include a central "status checker" page from each page of your
application. (See "Use of a Central Checker Page" on page 6-6.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the
output of other pages. Dynamically included pages can be reused in multiple
including pages without increasing the size of the including pages.

Note: OC4J offers global includes as a convenient way to statically
include a file into multiple pages. See "Oracle JSP Global Includes"
on page 7-9.
6-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
When to Consider Creating and Using JSP Tag Libraries
Some situations dictate that the development team consider creating and using
custom tags. In particular, consider the following situations:

■ JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

■ You want to provide convenient JSP programming access to functionality that
would otherwise require the use of a Java API.

■ Special manipulation or redirection of JSP output is required.

Replacing Java Syntax
Because one cannot count on JSP developers being experienced in Java
programming, they may not be ideal candidates for coding Java logic in the
page—logic that dictates presentation and format of the JSP output, for example.

This is a situation where JSP tag libraries might be helpful. If many of your JSP
pages will require such logic in generating their output, a tag library to replace Java
logic would be a great convenience for JSP developers.

An example of this is the JML tag library provided with OC4J. This library,
documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference, includes tags that support logic equivalent to Java loops and conditionals.

Providing Convenient JSP Programming Access to API Features
Instead of having Web application programmers rely on Java APIs from servlets or
JSP scriptlets to use product functionality or extensions, you can provide a tag
library. A tag library can make the programmer’s task much more convenient, with
appropriate API calls being handled automatically by the tag handlers.

For example, tags as well as JavaBeans are provided with OC4J for e-mail and file
access functionality. There is also a tag library as well as a Java API provided with
the OC4J Web Object Cache. Similarly, while Oracle9iAS Personalization provides a
Java API, OC4J also provides a tag library that you can use instead if you want to
program a personalization application.

Manipulating or Redirecting JSP Output
Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step, or redirection of the output to somewhere other than the browser.
Additional Considerations 6-5

JSP Programming Strategies, Tips, and Traps
An example is to create a custom tag that you can place around a body of text
whose output will be redirected into a log file instead of to a browser, such as in the
following example (where cust is the prefix for the tag library, and log is one of
the tags of the library):

<cust:log>
 Today is <%= new java.util.Date() %>
 Text to log.
 More text to log.
 Still more text to log.
</cust:log>

See "Tag Handlers" on page 8-25 for information about processing of tag bodies.

Use of a Central Checker Page
For general management or monitoring of your JSP application, it may be useful to
use a central "checker" page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution
of each page:

■ Check session status.

■ Check login status (such as checking the cookie to see if a valid login has been
accomplished).

■ Check usage profile (if a logging mechanism has been implemented to tally
events of interest, such as mouse clicks or page visits).

There could be many more uses as well.

As an example, consider a session checker class, MySessionChecker, that
implements the HttpSessionBindingListener interface. (See "Standard
Session Resource Management: HttpSessionBindingListener" on page 4-20.)

public class MySessionChecker implements HttpSessionBindingListener
{
 ...
 valueBound(HttpSessionBindingEvent event)
 {...}

 valueUnbound(HttpSessionBindingEvent event)
 {...}
 ...
}

6-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
You can create a checker page, suppose centralcheck.jsp, that includes
something like the following:

<jsp:useBean id="sessioncheck" class="MySessionChecker" scope="session" />

In any page that includes centralcheck.jsp, the servlet container will call the
valueUnbound() method implemented in the MySessionChecker class as soon
as sessioncheck goes out of scope (at the end of the session). Presumably this is
to manage session resources. You could include centralcheck.jsp at the end of
each JSP page in your application.

Workarounds for Large Static Content in JSP Pages
JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) may result in slow translation and
execution.

There are two primary workarounds for this (either of which will speed
translation):

■ Put the static HTML into a separate file and use a dynamic include
(jsp:include) to include its output in the JSP page output at runtime. See
"Standard Actions: JSP Tags" on page 1-16 for information about the
jsp:include tag.

■ Put the static HTML into a Java resource file.

The JSP translator will do this for you if you enable the external_resource
configuration parameter. This parameter is documented in "JSP Configuration
Parameter Descriptions" on page 3-12.

Note: OC4J offers "global includes" as a convenient way to
statically include a file into multiple pages. See "Oracle JSP Global
Includes" on page 7-9.

Important: A static include directive would not work. It would
result in the included file being included at translation-time, with
its code being effectively copied back into the including page. This
would not solve the problem.
Additional Considerations 6-7

JSP Programming Strategies, Tips, and Traps
For pre-translation, the -extres option of the ojspc tool also offer this
functionality.

Another possible, though unlikely, problem with JSP pages that have large static
content is that most (if not all) JVMs impose a 64 KB size limit on the code within
any single method. Although javac would be able to compile it, the JVM would be
unable to execute it. Depending on the implementation of the JSP translator, this
may become an issue for a JSP page, because generated Java code from essentially
the entire JSP page source file goes into the service method of the page
implementation class. (Java code is generated to output the static HTML to the
browser, and Java code from any scriptlets is copied directly.)

Similarly, it is possible for the Java scriptlets in a JSP page to be large enough to
create a size limit problem in the service method. If there is enough Java code in a
page to create a problem, however, then the code should be moved into JavaBeans.

Method Variable Declarations Versus Member Variable Declarations
In "Scripting Elements" on page 1-9, it is noted that JSP <%! ... %> declarations
are used to declare member variables, while method variables must be declared in
<% ... %> scriptlets.

Be careful to use the appropriate mechanism for each of your declarations,
depending on how you want to use the variables:

■ A variable that is declared in <%! ... %> JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator. In this case, if declaring an object instance, the object can be accessed
simultaneously from multiple requests. Therefore, the object must be
thread-safe, unless isThreadSafe="false" is declared in a page directive.

■ A variable that is declared in <% ... %> JSP scriptlet syntax is local to the
service method of the page implementation class. Each time the method is
called, a separate instance of the variable or object is created, so there is no need
for thread safety.

Note: Putting static HTML into a resource file may result in a
larger memory footprint than the jsp:include workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.
6-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
Consider the following example, decltest.jsp:

<HTML>
<BODY>
<% double f2=0.0; %>
<%! double f1=0.0; %>
Variable declaration test.
</BODY>
</HTML>

This results in something like the following code in the page implementation class:

package ...;
import ...;

public class decltest extends oracle.jsp.runtime.HttpJsp {
 ...
 // ** Begin Declarations
 double f1=0.0; // *** f1 declaration is generated here ***
 // ** End Declarations
 public void _jspService
 (HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 ...
 try {
 out.println("<HTML>");
 out.println("<BODY>");
 double f2=0.0; // *** f2 declaration is generated here ***
 out.println("");
 out.println("");
 out.println("Variable declaration test.");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
 catch(Exception e) {
 try {
 if (out != null) out.clear();
 }
 catch(Exception clearException) {
 }
 finally {
 if (out != null) out.close();
 }
 }
}

Additional Considerations 6-9

JSP Programming Strategies, Tips, and Traps
Page Directive Characteristics
This section discusses the following page directive characteristics:

■ A page directive is static and takes effect during translation—you cannot
specify parameter settings to be evaluated at runtime.

■ Beginning with the JSP 1.2 specification, duplicate settings of directive
attributes are disallowed. In particular, this pertains to the page directive,
although the page directive import attribute is exempt from this limitation.

■ Java import settings in page directives are cumulative within a JSP page or
translation unit.

Page Directives Are Static
A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples.

Example 1 The following page directive is valid.

<%@ page contentType="text/html; charset=EUCJIS" %>

Example 2 The following page directive is not valid and will result in an error.
(EUCJIS is hard-coded here, but the example also holds true for any character set
determined dynamically at runtime.)

<% String s="EUCJIS"; %>
<%@ page contentType="text/html; charset=<%=s%>" %>

For some page directive settings there are workarounds. Reconsidering the second
example, there is a setContentType() method that allows dynamic setting of the
content type, as described in "Dynamic Content Type Settings" on page 9-5.

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by the JSP translator would differ
somewhat.
6-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
Duplicate Settings of Page Directive Attributes Are Disallowed
The JSP 1.2 specification states that a JSP container must verify that directive
attributes, with the exception of the page directive import attribute, are not set
more than once each within a single JSP translation unit (a JSP page plus anything it
includes through include directives). In JSP 1.2, this effectively applies to page
directives only, but in future JSP versions there might be additional relevant
directives.

For backward compatibility to the JSP 1.1 standard, where duplicate settings of
directive attributes are allowed, OC4J provides the forgive_dup_dir_attr
configuration parameter. See "JSP Configuration Parameters" on page 3-9. You
might have previously coded a page with multiple included segments that all set
the page directive language attribute to "java", for example.

For clarity, be aware of the following points.

■ The JSP 1.2 specification allows multiple page directives, as long as they set
different attributes.

The following are okay:

<%@ page buffer="none" %>
<%@ page session="true" %>

or:

<%@ page buffer="10kb" %>
<%@ include file="b.jsp" %>

b.jsp
<%@ page session="false" %>

The following are not okay:

<%@ page buffer="none" %>
<%@ page buffer="10kb" %>

or:

<%@ page buffer="none" buffer="10kb" %>
Additional Considerations 6-11

JSP Programming Strategies, Tips, and Traps
or:

<%@ page buffer="10kb" %>
<%@ include file="b.jsp" %>

b.jsp
<%@ page buffer="3kb" %>

■ A translation unit consists of a JSP page plus anything it includes through
include directives, but not pages it includes through jsp:include tags.
Pages included through jsp:include tags are dynamically included at
runtime, not statically included during translation. See "Static Includes Versus
Dynamic Includes" on page 6-3 for more information.

Therefore, the following is okay:

<%@ page buffer="10kb" %>
<jsp:include page="b.jsp" />

b.jsp
<%@ page buffer="3kb" %>

■ As noted in the opening paragraph above, the page directive import attribute
is exempt from the limitation against duplicate attribute settings. See the next
section, "Page Directive import Settings Are Cumulative".

Page Directive import Settings Are Cumulative
The page directive import attribute is exempt from JSP 1.2 limitations on duplicate
directive attributes. Java import settings in page directives within a JSP page or
translation unit (a JSP page plus anything included through include directives)
are cumulative.

Within any single JSP page or translation unit, the following two examples are
equivalent:

<%@ page language="java" %>
<%@ page import="sqlj.runtime.ref.DefaultContext, java.sql.*" %>
6-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
or:

<%@ page language="java" %>
<%@ page import="sqlj.runtime.ref.DefaultContext" %>
<%@ page import="java.sql.*" %>

After the first page directive import setting, the import setting in the second
page directive adds to the set of classes or packages to be imported, as opposed to
replacing the classes or packages to be imported.

JSP Preservation of White Space and Use with Binary Data
JSP containers generally preserve source code white space, including carriage
returns and linefeeds, in what is output to the browser. Insertion of such white
space may not be what the developer intended, and typically makes JSP technology
a poor choice for generating binary data.

White Space Examples
The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.

Example 1—No Carriage Returns

The following JSP page does not have carriage returns after the Date() and
getParameter() calls. (The third and fourth lines, starting with the Date() call,
actually form a single wraparound line of code.)

nowhitsp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %> <% String user=request.getParameter("user"); %> <%=
(user==null) ? "" : user %>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This code results in the following HTML output to the browser. (Note that there are
no blank lines after the date.)
Additional Considerations 6-13

JSP Programming Strategies, Tips, and Traps
<HTML>
<BODY>
Tue May 30 20:07:04 PDT 2000
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Example 2—Carriage Returns

The following JSP page does include carriage returns after the Date() and
getParameter() calls.

whitesp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %>
<% String user=request.getParameter("user"); %>
<%= (user==null) ? "" : user %>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This code results in the following HTML output to the browser.

<HTML>
<BODY>
Tue May 30 20:19:20 PDT 2000

Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>
6-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Programming Strategies, Tips, and Traps
Note the two blank lines between the date and the "Enter name:" line. In this
particular case the difference is not significant, because both examples produce the
same appearance in the browser, as shown below. However, this discussion
nevertheless demonstrates the general point about preservation of white space.

Reasons to Avoid Binary Data in JSP Pages
For the following reasons, JSP pages are a poor choice for generating binary data.
Generally, you should use servlets instead.

■ JSP implementations are not designed to handle binary data—there are no
methods in the JspWriter class for writing raw bytes.

■ During execution, the JSP container preserves white space. White space is
sometimes unwanted, making JSP pages a poor choice for generating binary
output (a .gif file, for example) to the browser or for other uses where white
space is significant.

Consider the following example:

...
<% out.getOutputStream().write(...binary data...) %>
<% out.getOutputStream().write(...more binary data...) %>
Additional Considerations 6-15

JSP Programming Strategies, Tips, and Traps
In this case, the browser will receive an unwanted newline characters in the
middle of the binary data or at the end, depending on the buffering of your
output buffer. You can avoid this problem by not using a carriage return
between the lines of code, but this is an undesirable programming style.

Trying to generate binary data in JSP pages largely misses the point of JSP
technology anyway, which is intended to simplify the programming of dynamic
textual content.
6-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Runtime Considerations and Optimization
JSP Runtime Considerations and Optimization
This section describes some of the JSP runtime functionality, particularly regarding
dynamic page retranslation and class reloading, and points out some considerations
for optimizing execution. The following topics are covered:

■ Dynamic Page Retranslation and Class Reloading

■ Optimization Considerations

Dynamic Page Retranslation and Class Reloading
By default, particularly for use in development environments where code is in flux,
the JSP container has the following behavior during page execution.

■ For each page being executed, the container checks whether a page
implementation class already exists, compares the .class file timestamp
against the .jsp source file timestamp, and retranslates the page if the .class
file is older (indicating that the page has been modified since the page
implementation class was loaded).

■ For any request that will execute a Java class that was loaded by the JSP class
loader, the container checks to see if the class file has been modified since it was
last loaded. If the class has been modified, then the JSP class loader reloads it.
This applies to class files in the following locations:

– under the /WEB-INF/classes directory

– in JAR files in the /WEB-INF/lib directory

– under the _pages output directory (generated page implementation
classes)

See "Classpath Functionality" on page 3-3 for related information.

■ The container reloads a JSP page (in other words, reloads the generated page
implementation class) in the following circumstances:

– the page is retranslated

– a Java class that is called by the page and was loaded by the JSP class loader
(not the system class loader) is modified

– any page in the same application is reloaded

In a typical production environment, where source code will not change, comparing
timestamps is unnecessary. In this case, you can avoid all timestamp comparisons
Additional Considerations 6-17

JSP Runtime Considerations and Optimization
and any possible retranslation and reloading by setting the JSP main_mode flag to
justrun. This will optimize program execution.

If you want to reload modified class files but not retranslate modified JSP pages,
you can set main_mode to reload.

For more information about the main_mode flag, see "JSP Configuration
Parameters" on page 3-9.

Optimization Considerations
This section describes additional settings you can consider to optimize JSP
performance.

Unbuffering a JSP Page
By default, a JSP page uses an area of memory known as a page buffer. This buffer
(8 KB by default) is required if the page uses dynamic globalization support content
type settings, forwards, or error pages. If it does not use any of these features, you
can disable the buffer in a page directive:

<%@ page buffer="none" %>

This will improve the performance of the page by reducing memory usage and
saving the output step of copying the buffer.

Notes:

■ This discussion is not relevant for pre-translation scenarios.

■ Because of the usage of in-memory values for class file
last-modified times, removing a page implementation class file
from the file system will not by itself cause retranslation of the
associated JSP page source.

■ The page implementation class file will be regenerated when
the memory cache is lost. This happens whenever a request is
directed to this page after the server is restarted or after another
page in this application has been retranslated.

■ In OC4J, if a statically included page is updated (that is, a page
included through an include directive), the page that includes
it will be automatically retranslated the next time it is invoked.
(This is not true in JServ.)
6-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Runtime Considerations and Optimization
Not Using an HTTP Session
If a JSP page does not require an HTTP session (essentially, does not require storage
or retrieval of session attributes), then you can direct that no session be used.
Specify this with a page directive such as the following:

<%@ page session="false" %>

This will improve the performance of the page by eliminating the overhead of
session creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do
use a session. For background information, see "Servlet Sessions" on page A-4.
Additional Considerations 6-19

JSP Runtime Considerations and Optimization
6-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Translation and Deploy
7

JSP Translation and Deployment

This chapter discusses operation of the OC4J JSP translator, then discusses the
ojspc utility and situations where pre-translation is useful, followed by general
discussion of a number of additional JSP deployment considerations.

The chapter is organized as follows:

■ Functionality of the JSP Translator

■ The ojspc Pre-Translation Utility

■ JSP Deployment Considerations
ment 7-1

Functionality of the JSP Translator
Functionality of the JSP Translator
JSP translators generate standard Java code for a JSP page implementation class.
This class is essentially a servlet class wrapped with features for JSP functionality.

This section discusses general functionality of the JSP translator, focusing on its
behavior in on-demand translation scenarios such as in OC4J in the Oracle9i
Application Server. The following topics are covered:

■ Features of Generated Code

■ General Conventions for Output Names

■ Generated Package and Class Names

■ Generated Files and Locations

■ Oracle JSP Global Includes

Features of Generated Code
This section discusses general features of the page implementation class code that is
produced by the JSP translator in translating JSP source (typically .jsp and
.sqljsp files).

Features of Page Implementation Class Code
When the JSP translator generates servlet code in the page implementation class, it
automatically handles some of the standard programming overhead. For both the
on-demand translation model and the pre-translation model, generated code
automatically includes the following features:

■ It extends a wrapper class provided by the JSP container that implements the
standard javax.servlet.jsp.HttpJspPage interface, which extends the
more generic javax.servlet.jsp.JspPage interface, which in turn extends
the standard javax.servlet.Servlet interface.

■ It implements the _jspService() method specified by the HttpJspPage
interface. This method, often referred to generically as the "service" method, is

Important: Implementation details in this section regarding
package and class naming, file and directory naming, output file
locations, and generated code are for illustrative purposes. The
exact details are subject to change from release to release.
7-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Functionality of the JSP Translator
the central method of the page implementation class. Code from any Java
scriptlets, expressions, and JSP tags in the JSP page is incorporated into this
method implementation.

■ It includes code to request an HTTP session, unless your JSP source code
specifically sets session="false" in a page directive.

For introductory information about key JSP and servlet classes and interfaces, see
Appendix A, "Servlet and JSP Technical Background".

Inner Class for Static Text
The service method, _jspService(), of the page implementation class includes
print statements—out.print() or equivalent calls on the implicit out object—to
print any static text in the JSP page. The JSP translator, however, places the static
text itself in an inner class within the page implementation class. The service
method out.print() statements reference attributes of the inner class to print the
text.

This inner class implementation results in an additional .class file when the page
is translated and compiled. In a client-side pre-translation scenario, be aware this
means there is an extra .class file to deploy.

The name of the inner class will always be based on the base name of the .jsp file
or .sqljsp file. For mypage.jsp, for example, the inner class (and its .class
file) will always include "mypage" in its name.

Note: The OC4J JSP translator can optionally place the static text
in a Java resource file, which is advantageous for pages with large
amounts of static text. (See "Workarounds for Large Static Content
in JSP Pages" on page 6-7.) You can request this feature through the
JSP external_resource configuration parameter for on-demand
translation, or the ojspc -extres flag for pre-translation.

When static text is placed in a resource file, the inner class is still
produced and its .class file must be deployed. (This is
noteworthy only if you are in a client-side pre-translation scenario.)
JSP Translation and Deployment 7-3

Functionality of the JSP Translator
General Conventions for Output Names
The JSP translator follows a consistent set of conventions in naming output classes,
packages, files, and directories. However, this set of conventions and other
implementation details may change from release to release.

One fact that is not subject to change, however, is that the base name of a JSP page
will be included intact in output class and file names as long as it does not include
special characters. For example, translating MyPage123.jsp will always result in
the string "MyPage123" being part of the page implementation class name, Java
source file name, and class file name.

In Oracle9iAS release 2, the base name is preceded by an underscore ("_").
Translating MyPage123.jsp results in the page implementation class
_MyPage123 in the source file _MyPage123.java, which is compiled into
_MyPage123.class.

Similarly, where path names are used in creating Java package names, each
component of the path is preceded by an underscore. Translating
/jspdir/myapp/MyPage123.jsp, for example, results in class _MyPage123
being in the following package:

_jspdir._myapp

The package name is used in creating directories for output .java and .class
files, so the underscores are also evident in output directory names. For example, in
translating a JSP page in a directory such as webapp/test, the JSP translator by
default will create a directory such as webappdeployment/_pages/_test for
the page implementation class source. All output directories are created under the
standard _pages directory, as described in "Generated Files and Locations" on
page 7-6.

If you include special characters in a JSP page name or path name, the JSP translator
takes steps to ensure that no illegal Java characters appear in the output class,
package, and file names. For example, translating My-name_foo12.jsp results in
_My_2d_name__foo12 being the class name, in source file
_My_2d_name__foo12.java. The hyphen is converted to a string of
alpha-numeric characters. (An extra underscore is also inserted before "foo12".) In
this case, you can only be assured that alphanumeric components of the JSP page
name will be included intact in the output class and file names. For example, you
could search for "My", "name", or "foo12".

These conventions are demonstrated in examples provided later in this chapter.
7-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Functionality of the JSP Translator
Generated Package and Class Names
Although the Sun Microsystems JavaServer Pages Specification, Version 1.2 defines a
uniform process for parsing and translating JSP text, it does not describe how the
generated classes should be named—that is up to each JSP implementation.

This section describes how the OC4J JSP translator creates package and class names
when it generates code during translation.

Package Naming
In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the doc root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy.

It is important to note, however, that generated package names are always
lowercase, regardless of the case in the URL.

Consider the following URL as an example:

http://host[:port]/HR/expenses/login.jsp

In the current OC4J JSP implementation, this results in the following package
specification in the generated code:

package _hr._expenses;

(Implementation details are subject to change in future releases.)

No package name is generated if the JSP page is at the application root directory,
where the URL is as follows:

http://host[:port]/login.jsp

Class Naming
The base name of the .jsp file (or .sqljsp file) determines the class name in the
generated code.

Note: For information about general conventions that the OC4J
JSP translator uses in naming output classes, packages, and files,
see "General Conventions for Output Names" on page 7-4.
JSP Translation and Deployment 7-5

Functionality of the JSP Translator
Consider the following URL example:

http://host[:port]/HR/expenses/UserLogin.jsp

In the current OC4J JSP implementation, this yields the following class name in the
generated code:

public class _UserLogin extends ...

(Implementation details are subject to change in future releases.)

Be aware that the case (lowercase/uppercase) that end users type in the URL must
match the case of the actual .jsp or .sqljsp file name. For example, they can
specify UserLogin.jsp if that is the actual file name, or userlogin.jsp if that is
the actual file name, but not userlogin.jsp if UserLogin.jsp is the actual file
name.

Currently, the translator determines the case of the class name according to the case
of the file name. For example:

■ UserLogin.jsp results in the class _UserLogin.

■ Userlogin.jsp results in the class _Userlogin.

■ userlogin.jsp results in the class _userlogin.

If you care about the case of the class name, then you must name the .jsp file or
.sqljsp file accordingly. However, because the page implementation class is
invisible to the end user, this is usually not a concern.

Generated Files and Locations
This section describes files that are generated by the JSP translator and where they
are placed. For pre-translation scenarios, ojspc places files differently and has its
own set of relevant options—see "Summary of ojspc Output Files, Locations, and
Related Options" on page 7-32.

Wherever JSP configuration parameters are mentioned, see "JSP Configuration
Parameters" on page 3-9 for more information.

Note: For information about general conventions used in naming
output classes, packages, and files, see "General Conventions for
Output Names" on page 7-4.
7-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Functionality of the JSP Translator
Files Generated by the JSP Translator
This section considers both regular JSP pages (.jsp files) and SQLJ JSP pages
(.sqljsp files or files with language="sqlj" in a page directive) in listing files
that are generated by the JSP translator. For the file name examples, presume a file
Foo.jsp or Foo.sqljsp is being translated.

Source files:

■ A.sqlj file (for example, _Foo.sqlj) is produced by the OC4J JSP translator
if the page is a SQLJ JSP page.

■ A .java file (for example, _Foo.java) is produced for the page
implementation class and inner class. It is produced either directly by the JSP
translator from the.jsp file, or by the SQLJ translator from the.sqlj file if the
page is a SQLJ JSP page. The currently installed Oracle SQLJ translator is used
by default, but you can specify an alternative translator by using the sqljcmd
JSP configuration parameter.

Binary files:

■ In the case of a SQLJ JSP page with ISO code generation, one or more binary
files are produced during SQLJ translation for SQLJ profiles. By default these
are .ser Java resource files, but they will be .class files if you enable the
SQLJ -ser2class option through the sqljcmd configuration parameter. The
resource file or .class file has "Foo" as part of its name. (The default SQLJ
code generation is -codegen=oracle, for Oracle-specific code. No profiles are
generated for Oracle-specific code. For ISO code, use -codegen=iso.)

■ A .class file is produced by the Java compiler for the page implementation
class. The Java compiler is the JDK javac by default, but you can specify an
alternative compiler using the JSP javaccmd configuration parameter.

■ An additional .class file is produced for the inner class of the page
implementation class. This file will have "Foo" as part of its name; in the current
implementation it would be _Foo$__jsp_StaticText.class.

■ A .res Java resource file (for example, _Foo.res) is optionally produced for
the static page content if the external_resource JSP configuration
parameter is enabled.
JSP Translation and Deployment 7-7

Functionality of the JSP Translator
JSP Translator Output File Locations
The JSP translator places generated output files under a base temp/_pages
directory, as in the following example:

[Oracle_Home]/j2ee/home/app-deployment/app-name/web-app-name/temp/_pages/...

Note the following, and refer to "Key OC4J Configuration Files" on page 3-23 for
related information about the noted configuration files:

■ The app-deployment directory is the OC4J deployment directory, specified in
the OC4J server.xml file. It is typically the application-deployments
directory.

■ Also, app-name is the application name, according to an <application>
element in server.xml.

■ And web-app-name is the corresponding "Web application name", mapped to
the application name in a <web-app> element in the OC4J
default-web-site.xml file (or http-web-site.xml for OC4J standalone,
or other Web site XML file as appropriate).

The path under the _pages directory depends on the path of the .jsp file under
the application root directory.

As an example, consider the page welcome.jsp in the examples/jsp
subdirectory under the OC4J standalone default Web application directory. The
path would be as follows:

[Oracle_Home]/j2ee/home/default-web-app/examples/jsp/welcome.jsp

Assuming the default application deployment directory, the JSP translator would
place the output files (_welcome.java, _welcome.class, and
_welcome$__jsp_StaticText.class for the page implementation class inner
class) in the following directory:

[Oracle_Home]/j2ee/home/application-deployments/default/defaultWebApp/temp/_pages/_examples/_jsp

Note: The exact names of generated files for the page
implementation class might change in future releases, but will still
have the same general form. The names would always include the
base name, such as "Foo" in these examples, but may include
variations beyond that.
7-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Functionality of the JSP Translator
Note the following for OC4J standalone. (Directories are configurable through
Oracle Enterprise Manager in an Oracle9iAS environment.)

■ The application-deployments directory is the OC4J default deployment
directory.

■ Also, default is the OC4J default application name and defaultWebApp is
the default Web application name, both used for JSP pages placed in the
default-web-app directory.

■ Because the .jsp source file is in an examples/jsp subdirectory under the
application root directory, the JSP translator generates _examples._jsp as the
package name, and places the output files into an _examples/_jsp
subdirectory under the _pages directory.

Oracle JSP Global Includes
The OC4J JSP container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in (or under)
a specified directory, through virtual JSP include directives. During translation,
the JSP container looks for a configuration file,
/WEB-INF/ojsp-global-include.xml, that specifies the included files and the
directories for the pages.

This enhancement is particularly convenient for migrating applications that used
globals.jsa or translate_params functionality in previous Oracle JSP
releases.

Globally included files can be used for the following, for example:

■ global bean declarations (formerly supported through globals.jsa)

■ common page headers or footers

■ translate_params equivalent code (typically for a JServ environment)

Important: Implementation details, such as the location of
generated output files and use of "_" in output file names, are
subject to change in future releases.
JSP Translation and Deployment 7-9

Functionality of the JSP Translator
The ojsp-global-include.xml File
The ojsp-global-include.xml file specifies the names of files to include,
whether they should be included at the tops or bottoms of JSP pages, and the
locations of JSP pages to which the global includes should apply. This section
describes the elements of ojsp-global-include.xml.

<ojsp-global-include>

This is the root element of the ojsp-global-include.xml file. It has no
attributes.

Subelements:

<include>

<include ... >

Use this subelement of <ojsp-global-include> to specify a file to be included,
and whether it should be included at the top or bottom of JSP pages.

Subelements:

<into>

Attributes:

■ file: Specify the file to be included, such as "/header.html" or
"/WEB-INF/globalbeandeclarations.jsph". The file name setting must
start with a slash ("/"). In other words, it must be context-relative, not
page-relative.

■ position: Specify whether the file is to be included at the top or bottom of JSP
pages. Supported values are "top" (default) and "bottom".

<into ... >

Use this subelement of <include> to specify a location (a directory, and possibly
subdirectories) of JSP pages into which the specified file is to be included. This
element has no subelements.

Attributes:

■ directory: Specify a directory. Any JSP pages in this directory, and optionally
its subdirectories, will statically include the file specified in the file attribute
of the <include> element. The directory setting must start with a slash
("/"), such as "/dir1". The setting can also include a slash after the directory
7-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Functionality of the JSP Translator
name, such as "/dir1/", or a slash will be appended internally during
translation.

■ subdir: Use this to specify whether JSP pages in all subdirectories of the
directory should also have the file statically include. Supported values are
"true" (default) and "false".

Global Include Examples
This section provides examples of global includes.

Example: Header/Footer Assume the following ojsp-global-include.xml file:

<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE ojsp-global-include SYSTEM ’ojsp-global-include.dtd’>

<ojsp-global-include>
 <include file="/header.html">
 <into directory="/dir1" />
 </include>
 <include file="/footer1.html" position="bottom">
 <into directory="/dir1" subdir="false" />
 <into directory="/dir1/part1/" subdir="false" />
 </include>
 <include file="/footer2.html" position="bottom">
 <into directory="/dir1/part2/" subdir="false" />
 </include>
</ojsp-global-include>

This example accomplishes three objectives:

■ The header.html file is included at the top of any JSP page in or under the
dir1 directory. The result would be the same as if each .jsp file in or under
this directory had the following include directive at the top of the page:

<%@ include file="/header.html" %>

■ The footer1.html file is included at the bottom of any JSP page in the dir1
directory or its part1 subdirectory. The result would be the same as if each
.jsp file in those directories had the following include directive at the
bottom of the page:

<%@ include file="/footer1.html" %>
JSP Translation and Deployment 7-11

Functionality of the JSP Translator
■ The footer2.html file is included at the bottom of any JSP page in the part2
subdirectory of dir1. The result would be the same as if each .jsp file in that
directory had the following include directive at the bottom of the page:

<%@ include file="/footer2.html" %>

Example: translate_params Equivalent Code Assume the following
ojsp-global-include.xml file:

<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE ojsp-global-include SYSTEM ’ojsp-global-include.dtd’>

<ojsp-global-include>
 <include file="/WEB-INF/nls/params.jsf">
 <into directory="/" />
 </include>
</ojsp-global-include>

And assume params.jsf contains the following:

<% request.setCharacterEncoding(response.getCharacterEncoding()); %>

The params.jsf file (essentially, the setCharacterEncoding() method call) is
included at the top of any JSP page in or under the application root directory. In
other words, it is included in any JSP page in the application. The result would be
the same as if each .jsp file in or under this directory had the following include
directive at the top of the page:

<%@ include file="/WEB-INF/nls/parms.jsf" %>

Also see "Migration Away from translate_params" on page B-30.

Note: If multiple header or multiple footer files are included into
a single JSP page, the order of inclusion is according to the order of
<include> elements in the ojsp-global-include.xml file.
7-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
The ojspc Pre-Translation Utility
This section describes the ojspc utility, provided with OC4J for pre-translation of
JSP pages. For consideration of pre-translation scenarios, see "JSP Pre-Translation"
on page 7-37 and "Deployment of Binary Files Only" on page 7-40.

The following topics are covered here:

■ Overview of Basic ojspc Functionality

■ Overview of ojspc Batch Pre-Translation

■ Option Summary Table for ojspc

■ Command-Line Syntax for ojspc

■ Option Descriptions for ojspc

■ Summary of ojspc Output Files, Locations, and Related Options

Overview of Basic ojspc Functionality
For a simple JSP (not SQLJ JSP) page, default functionality for ojspc is as follows:

■ It takes a JSP file (typically .jsp), either directly as an argument or from an
archive file taken as an argument.

■ It invokes the JSP translator to translate the JSP file into Java page
implementation class code, producing a .java file. The page implementation
class includes an inner class for static page content.

■ It invokes the Java compiler to compile the .java file, producing two .class
files—one for the page implementation class itself and one for the inner class.

Following is the default ojspc functionality for a SQLJ JSP page:

■ It takes a SQLJ JSP file (a .sqljsp file or a JSP file with language="sqlj" in
a page directive), either directly as an argument or from an archive file taken as
an argument.

Important: To use ojspc, you must be using a Sun Microsystems
JDK (version 1.1.8 or higher) and you must have tools.jar (for
JDK 2.0 or higher) or classes.zip (for JDK 1.1.8) in your
classpath.
JSP Translation and Deployment 7-13

The ojspc Pre-Translation Utility
■ It invokes the JSP translator to translate the SQLJ JSP page into a .sqlj file for
the page implementation class (and inner class).

■ It invokes the Oracle SQLJ translator to translate the .sqlj file. This produces a
.java file for the page implementation class (and inner class). Also, for ISO
code generation, translation produces a SQLJ "profile" file that is, by default, a
.ser Java resource file.

For information about SQLJ profiles and Oracle-specific code generation, see
the Oracle9i SQLJ Developer’s Guide and Reference.

■ It invokes the Java compiler to compile the .java file, producing two .class
files—one for the page implementation class itself and one for the inner class.

Under some circumstances (as noted in the -extres option description), ojspc
options direct the JSP translator to produce a .res Java resource file for static page
content, instead of putting this content into the inner class of the page
implementation class. However, the inner class is still created and must still be
deployed with the page implementation class.

Because ojspc invokes the JSP translator, ojspc output conventions are the same
as for the translator in general, as applicable. For general information about JSP
translator output, including generated code features, general conventions for
output names, generated package and class names, and generated files and
locations, see "Functionality of the JSP Translator" on page 7-2.

Overview of ojspc Batch Pre-Translation
Prior to Oracle9iAS release 2 (9.0.3), ojspc accepted only JSP files (or SQLJ JSP
files) for translation. Now, however, it can also accept archive files—JAR, WAR,
EAR, or ZIP files—for batch pre-translation.

Note: The default SQLJ code generation setting is
-codegen=oracle, for Oracle-specific code (with no profiles). For
ISO code generation, specify -codegen=iso.

Note: The ojspc command-line tool is a front-end utility that
invokes the oracle.jsp.tool.Jspc class.
7-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
When the name of an archive file appears on the ojspc command line, ojspc by
default executes the following steps:

1. Opens the archive file.

2. Translates and compiles all .jsp and .sqljsp files in the archive file.

3. Adds the resulting .class files, and any Java resource files, into the archive
file (and discards .java and .sqlj files that were created in the process). The
.class and resource files are added with directory paths such that upon
extraction, they will be located in the same directory as would be the case if the
original JSP files were translated after extraction.

There are ojspc settings for additional functionality, as follows:

■ You can use the -batchMask option to specify file name extensions for
pre-translation. Whatever you specify is in addition to the defaults, which are
*.jsp and *.sqljsp.

■ You can use the -output option to specify a new archive file name. In this case,
all contents of the original archive file are copied into the specified archive file,
then the output .class files (and any resource files) from pre-translation are
added to the specified file. The original archive file is unaltered, and you would
use the new file instead of the original file for deployment.

■ You can use the -deleteSource option if you do not want the JSP source files
to appear in the resulting archive file. If you use -deleteSource without

Note: The ojspc utility does not depend on the file name
extension to determine whether a file is an archive file. It makes the
determination by examining the internal file structure.

Note: The actual mechanics are that the original archive file is
extracted into a temporary storage area (recursively if there are
nested archive files), a temporary archive file is created, contents of
the original archive file are copied into the temporary file, output
.class and resource files from pre-translation are added to the
temporary file, the original archive file is deleted, and the
temporary file is given the name of the original file. (The original
archive file is extracted in its entirety to ensure successful
compilation of the translated pages.)
JSP Translation and Deployment 7-15

The ojspc Pre-Translation Utility
using the -output option, then the contents of the original archive file are
overwritten so that no pre-translated JSP source files are included. If you use
both -deleteSource and -output, then the new archive file is created
without any pre-translated JSP source files. The -deleteSource option
applies to all JSP files that are pre-translated—*.jsp and *.sqljsp files plus
files with extensions specified in the -batchMask setting.

For examples of these options, see the descriptions of those options under "Option
Descriptions for ojspc" on page 7-20.

Option Summary Table for ojspc
Table 7–1 summarizes the options supported by the ojspc pre-translation utility.
These options are further discussed in "Option Descriptions for ojspc" on page 7-20.

The second column notes comparable or related JSP configuration parameters for
on-demand translation environments, such as OC4J.

Note: For a JServ environment, use the ojspc_jserv command
instead of the ojspc command. See "Using ojspc for JServ" on
page B-16. Be aware that the -staticTextInChars option is not
relevant for JServ, so is not supported by ojspc_jserv.

Table 7–1 Options for ojspc Pre-Translation Utility

Option

Related JSP
Configuration
Parameters Description Default

-addclasspath (none) Specify additional classpath
entries for javac.

empty (no
additional
path entries)

-appRoot (none) Specify the application root
directory for
application-relative static
include directives from the
page.

current
directory

-batchMask (none) For batch pre-translation,
optionally specify additional
file name extensions for
pre-translation.

*.jsp,
*.sqljsp
7-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-d (none) Specify the location where
ojspc should place
generated binary files
(.class and resource). Do
not use this option for batch
pre-translation.

current
directory

-debug emit_debuginfo Enabling this flag directs
ojspc to generate a line
map to the original .jsp file
for debugging.

false

-deleteSource (none) For batch pre-translation,
enabling this flag directs that
JSP source files should be
removed from (or not copied
to) the resulting archive file.

false

-extend (none) Specify the class for the
generated page
implementation class to
extend. Do not use this
option for batch
pre-translation.

empty

-extraImports extra_imports Use this to add imports
beyond the JSP defaults.

empty

-extres external_resource Enabling this flag directs
ojspc to generate an
external resource file for
static text from the .jsp file.

false

-forgiveDupDirAttr forgive_dup_dir_attr Enable this flag in order to
avoid JSP 1.2 translation
errors if you have duplicate
settings for the same
directive attribute within a
single JSP translation unit.

false

-help (or -h) (none) Enabling this flag directs
ojspc to display usage
information.

false

Table 7–1 Options for ojspc Pre-Translation Utility (Cont.)

Option

Related JSP
Configuration
Parameters Description Default
JSP Translation and Deployment 7-17

The ojspc Pre-Translation Utility
-implement (none) Specify an interface for the
generated page
implementation class to
implement. Do not use this
option for batch
pre-translation.

empty

-noCompile javaccmd Enabling this flag directs
ojspc to not compile the
generated page
implementation class.

false

-noTldXmlValidate no_tld_xml_validate Enable this flag in order to
disable XML validation of
TLD files. By default,
validation of TLD files is
performed.

false

-oldIncludeFromTop old_include_from_top Enable this flag in order to
specify that page locations in
nested include directives
are relative to the top-level
page, for backward
compatibility with Oracle
JSP behavior prior to
Oracle9iAS release 2.

false

-output (none) For batch pre-translation,
optionally specify the name
of the output archive file.

original
archive file

-packageName (none) Specify the package name
for the generated page
implementation class.

empty
(generate
package
names
according to
.jsp file
location)

-reduceTagCode reduce_tag_code Enable this flag in order to
specify further reduction in
the size of generated code
for custom tag usage.

false

Table 7–1 Options for ojspc Pre-Translation Utility (Cont.)

Option

Related JSP
Configuration
Parameters Description Default
7-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-reqTimeIntrospection req_time_introspection Enable this flag in order to
allow request-time JavaBean
introspection whenever
compile-time introspection is
not possible.

false

-S-<sqlj_option> sqljcmd Use the -S prefix followed
by an Oracle SQLJ option
(for SQLJ JSP pages).

empty

-srcdir (none) Specify the location where
ojspc should place
generated source files
(.java and .sqlj). Do not
use this option for batch
pre-translation.

current
directory

-staticTextInChars static_text_in_chars Enable this flag in order to
instruct the JSP translator to
generate static text in JSP
pages as characters instead
of bytes.

false

-verbose (none) Enabling this flag directs
ojspc to print status
information as it executes.

false

-version (none) Enabling this flag directs
ojspc to display the JSP
version number.

false

-xmlValidate xml_validate Enable this flag in order to
perform XML validation of
the web.xml file. By default,
validation of web.xml is not
performed.

false

Table 7–1 Options for ojspc Pre-Translation Utility (Cont.)

Option

Related JSP
Configuration
Parameters Description Default
JSP Translation and Deployment 7-19

The ojspc Pre-Translation Utility
Command-Line Syntax for ojspc
Following is the general ojspc command-line syntax (where % is the system
prompt):

% ojspc file_list [option_settings]

The file list can include JSP files, including SQLJ JSP files, or archive files (JAR,
WAR, EAR, or ZIP files).

Be aware of the following syntax notes:

■ If multiple JSP files are translated, they all must use the same character set
(either by default or through page directive settings).

■ Use spaces between file names in the file list.

■ Use spaces as delimiters between option names and option values in the option
list.

■ Option names are not case sensitive, but option values usually are (such as
package names, directory paths, class names, and interface names).

■ Enable boolean options (flags), which are disabled by default, by simply typing
the option name in the command line. For example, type -extres, not
-extres true.

Here are two examples:

% ojspc MyPage.sqljsp MyPage2.jsp -d /myapp/mybindir -srcdir /myapp/mysrcdir -extres

% ojspc myapp.war -deleteSource

Option Descriptions for ojspc
This section describes the ojspc options in more detail.

-addclasspath (fully qualified path; ojspc default: empty)

Use this option to specify additional classpath entries for javac to use when
compiling generated page implementation class source. Otherwise, javac uses
only the system classpath.

Note: The -addclasspath setting is also used by the SQLJ
translator for SQLJ JSP pages.
7-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-appRoot (fully qualified path; ojspc default: current directory)

Use this option to specify an application root directory. The default is your current
directory when you ran ojspc.

The specified application root directory path is used as follows:

■ for static include directives in the page being translated

The specified directory path is prepended to any application-relative
(context-relative) paths in the include directives of the translated page.

■ in determining the package of the page implementation class

The package will be based on the location of the file being translated relative to
the application root directory. The package, in turn, determines the placement
of output files. (See "Summary of ojspc Output Files, Locations, and Related
Options" on page 7-32.)

This option is necessary, for example, so that included files can still be found if you
run ojspc from some other directory.

Consider the following example.

■ You want to translate the following file:

/abc/def/ghi/test.jsp

■ You run ojspc from the current directory, /abc, as follows (where % is a UNIX
prompt):

% cd /abc
% ojspc def/ghi/test.jsp

■ The test.jsp page has the following include directive:

<%@ include file="/test2.jsp" %>

■ The test2.jsp page is in the /abc directory, as follows:

/abc/test2.jsp

This example requires no -appRoot setting, because the default application root
setting is the current directory, which is the /abc directory. The include directive
uses the application-relative /test2.jsp syntax (note the beginning "/"), so the
included page will be found as /abc/test2.jsp.
JSP Translation and Deployment 7-21

The ojspc Pre-Translation Utility
The package in this case is _def._ghi, based on the location of test.jsp relative
to the current directory when you ran ojspc. (The current directory is the default
application root.) Output files are placed accordingly.

If, however, you run ojspc from some other directory, suppose /home/mydir,
then you would need an -appRoot setting as in the following example:

% cd /home/mydir
% ojspc /abc/def/ghi/test.jsp -appRoot /abc

The package is still _def._ghi, based on the location of test.jsp relative to the
specified application root directory.

-batchMask (additional file name extensions; ojspc default: "*.jsp,*.sqljsp")

For batch pre-translation, you can use this option to specify file name extensions for
pre-translation. By default, .jsp and .sqljsp files are pre-translated. Extensions
specified through the -batchMask option are in addition to the default extensions.

Place quotes around the list of file name extensions, and use commas or semicolons
as delimiters within the list. White space before or after a file name extension is
ignored.

The following examples (where % is the system prompt) result in the same action,
given that .jsp and .sqljsp files are pre-translated anyway, and that commas are
equivalent to semicolons as delimiters):

% ojspc myapp.war -batchMask "*.jspf,*.jsph,*.jsp,*.sqljsp"

% ojspc myapp.zip -batchMask "*.jspf; *.jsph"

Note: It is typical for the specified application root directory to be
some level of parent directory of the directory where the translated
JSP page is located.

Notes:

■ File name extensions specified in this option are not
case-sensitive.

■ There is no support for specifying directory paths or Java
packages in the -batchMask setting.
7-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-d (fully qualified path; ojspc default: current directory)

Use this option to specify a base directory for ojspc placement of generated binary
files—.class files and Java resource files. (The .res files produced for static
content by the -extres option are Java resource files, as are .ser profile files
produced by the SQLJ translator for SQLJ JSP pages with SQLJ ISO code
generation.)

The specified path is taken as a file system path (not an application-relative or
page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 7-32 for more information.

The default is to use the current directory (your current directory when you
executed ojspc).

It is recommended that you use this option to place generated binary files into a
clean directory so that you easily know what files have been produced.

-debug (boolean; ojspc default: false)

Enabling this flag instructs ojspc to generate a line map to the original JSP file for
debugging. Otherwise, line-mapping will be to the generated page implementation
class.

This flag is useful for source-level JSP debugging, such as when you use Oracle9i
JDeveloper.

Notes:

■ Do not use -d for batch pre-translation.

■ In environments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.

Note: In an on-demand translation scenario, the JSP
emit_debuginfo configuration parameter provides the same
functionality.
JSP Translation and Deployment 7-23

The ojspc Pre-Translation Utility
-deleteSource (boolean; ojspc default: false)

For batch pre-translation, enable this flag if you do not want JSP source files that
were pre-translated to appear in the resulting archive file. This is all .jsp and
.sqljsp files by default, plus files with name extensions specified in the
-batchMask option.

If you do not use the -output option—that is, if the original archive file is being
updated and is also the output archive file—this means that the contents of the
archive file are overwritten to remove any JSP files that are pre-translated. If you do
use the -output option, this means that any JSP files that are pre-translated will
not be copied to the specified output archive file. (The original archive file is
unaltered.)

-extend (fully qualified Java class name; ojspc default: empty)

Use this option to specify a Java class that the generated page implementation class
will extend.

-extraImports (import list; ojspc default: empty)

As described in "Default Package Imports" on page 3-5, as of Oracle9iAS release 2
(9.0.3) the OC4J JSP container has a smaller default list of packages that are
imported into each JSP page. This is in accordance with the JSP specification. You
can avoid updating your code, however, by specifying package names or fully
qualified class names for any additional imports through the -extraImports
option. Be aware that the names must be comma-delimited, with no spaces, as in
the following example:

% ojspc foo.jsp -extraImports java.util.*,java.io.*

Note: As in any situation where JSP source files are not deployed,
after you have used -deleteSource the target JSP runtime
environment must be configured to operate properly without
having source files available. See "Configuring the OC4J JSP
Container for Execution with Binary Files Only" on page 7-41.

Note: Do not use -extend for batch pre-translation.
7-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-extres (boolean; ojspc default: false)

Enabling this flag instructs ojspc to place generated static content (the Java print
commands that output static HTML code) into a Java resource file instead of into an
inner class of the generated page implementation class.

The resource file name is based on the JSP page name. In the current OC4J JSP
implementation, it will be the same core name as the JSP name (unless special
characters are included in the JSP name), but with an underscore ("_") prefix and
.res suffix. Translation of MyPage.jsp, for example, would create _MyPage.res
in addition to normal output. The exact implementation for name generation might
change in future releases, however.

The resource file is placed in the same directory as .class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for
Large Static Content in JSP Pages" on page 6-7.

-forgiveDupDirAttr (boolean; ojspc default: false)

Enabling this flag avoids translation errors in JSP 1.2 (or higher) if you have
duplicate settings for the same directive attribute within a single JSP translation unit
(a JSP page plus anything it includes through include directives).

The JSP 1.2 specification directs that a JSP container must verify that directive
attributes, with the exception of the page directive import attribute, are not set

Note:

■ In an on-demand translation scenario, the JSP extra_imports
configuration parameter provides the same functionality.

■ As an alternative to using -extraImports, you can use global
includes. See "Oracle JSP Global Includes" on page 7-9.

Notes:

■ The inner class is still created and must still be deployed.

■ In an on-demand translation scenario, the JSP
external_resource configuration parameter provides the
same functionality.
JSP Translation and Deployment 7-25

The ojspc Pre-Translation Utility
more than once each within a single JSP translation unit. See "Duplicate Settings of
Page Directive Attributes Are Disallowed" on page 6-11 for more information.

The JSP 1.1 specification does not specify such a limitation. OC4J offers the
-forgiveDupDirAttr option for backward compatibility.

-help (boolean; ojspc default: false)

Use this option to have ojspc display usage information and then exit. As a
shortcut, -h is also accepted.

-implement (fully qualified Java interface name; ojspc default: empty)

Use this option to specify a Java interface that the generated page implementation
class will implement.

-noCompile (boolean; ojspc default: false)

Enabling this flag directs ojspc to not compile the generated page implementation
class Java source. This is in case you want to compile it later for some reason, such
as with an alternative Java compiler.

Note: In an on-demand translation scenario, the JSP
forgive_dup_dir_attr configuration parameter provides the
same functionality.

Note: Do not use -implement for batch pre-translation.

Notes:

■ In an on-demand translation scenario, the JSP javaccmd
configuration parameter provides related functionality. It
enables you to specify a complete Java compiler command line,
optionally using an alternative compiler.

■ For a SQLJ JSP page, enabling -noCompile does not prevent
SQLJ translation, just Java compilation.
7-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-noTldXmlValidate (boolean; ojspc default: false)

Enable this flag if you do not want XML validation of tag library descriptor (TLD)
files of the application. By default, validation of TLD files is performed.

See "Overview of TLD File Validation and Features" on page 8-8 for related
information.

-oldIncludeFromTop (boolean; ojspc default: false)

This is for backward compatibility with Oracle JSP versions prior to Oracle9iAS
release 2, for functionality of include directives. If you enable this flag, page
locations in nested include directives are relative to the top-level page. Otherwise,
page locations are relative to the immediate parent page. This complies with the JSP
1.2 specification.

-output (archive file name; ojspc default: none)

For batch pre-translation, use the -output option if you want to specify a new
archive file for output. In this case, all contents of the original archive file are copied
into the specified archive file, then the output .class files (and any resource files)
from pre-translation are added to the specified file. The original archive file is
unaltered, and you would use the new file instead of the original file for
deployment.

Without the -output option, the original archive file is updated to add output
.class (and resource) files; no new archive file is created.

Here is an example of -output usage:

% ojspc myapp.war -output myappout.war

Note: In an on-demand translation scenario, the JSP
no_tld_xml_validate configuration parameter provides the
same functionality.

Note: In an on-demand translation scenario, the JSP
old_include_from_top configuration parameter provides the
same functionality.
JSP Translation and Deployment 7-27

The ojspc Pre-Translation Utility
-packageName (fully qualified package name; ojspc default: per .jsp file location)

Use this option to specify a package name for the generated page implementation
class, using Java "dot" syntax.

Without setting this option, the package name is determined according to the
location of the .jsp file relative to your current directory when you ran ojspc.

Consider an example where you run ojspc from the /myapproot directory, while
the .jsp file is in the /myapproot/src/jspsrc directory (where % is a UNIX
prompt):

% cd /myapproot
% ojspc src/jspsrc/Foo.jsp -packageName myroot.mypackage

This results in myroot.mypackage being used as the package name.

If this example did not use the -packageName option, the JSP translator (in its
current implementation) would use _src._jspsrc as the package name, by
default. (Be aware that such implementation details are subject to change in future
releases.)

-reduceTagCode (boolean; ojspc default: false)

The Oracle JSP implementation reduces the size of generated code for custom tag
usage, but enabling this flag results in even further size reduction. There may be
performance consequences regarding tag handler reuse, however. See "Tag Handler
Code Generation" on page 8-40.

-reqTimeIntrospection (boolean; ojspc default: false)

Enabling this flag allows request-time JavaBean introspection whenever
compile-time introspection is not possible. When compile-time introspection is
possible and succeeds, this parameter is ignored and there is no request-time
introspection.

As a sample scenario for request-time introspection, assume a tag handler returns a
generic java.lang.Object instance in the VariableInfo instance of the
tag-extra-info class during translation and compilation, but actually generates more
specific objects during request-time (runtime). In this case, if

Note: In an on-demand translation scenario, the JSP
reduce_tag_code configuration parameter provides the same
functionality.
7-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
req_time_introspection is enabled, the JSP container will delay introspection
until request-time. (See "Scripting Variables, Declarations, and Tag-Extra-Info
Classes" on page 8-41 for information about use of VariableInfo.)

-S-<sqlj_option> <value> (-S followed by SQLJ option setting; ojspc default: empty)

For SQLJ JSP pages, use the ojspc -S option to pass an Oracle SQLJ option to the
SQLJ translator. You can use multiple occurrences of -S, where each specifies one
SQLJ option setting.

Unlike when you run the SQLJ translator directly, use a space between a SQLJ
option and its value (this is for consistency with other ojspc options).

For example (where % is a UNIX prompt):

% ojspc MyPage.jsp -S-codegen iso -d /myapproot/mybindir

This directs SQLJ to generate ISO standard code instead of the default
Oracle-specific code.

Here is another example:

% ojspc MyPage.jsp -S-codegen iso -S-ser2class true -d /myapproot/mybindir

This again directs SQLJ to generate ISO standard code, and also enables the
-ser2class option in order to convert the profile to a .class file.

Note the following for particular Oracle SQLJ options:

■ Do not use the SQLJ -encoding option; instead, use the contentType or
pageEncoding attribute in a page directive in the JSP page.

■ Do not use the SQLJ -classpath option if you use the ojspc
-addclasspath option.

Note: In an on-demand translation scenario, the JSP
req_time_introspection configuration parameter provides
the same functionality.

Note: As the preceding example shows, you must use an explicit
true setting in enabling a SQLJ boolean option through the -S
option setting. This is in contrast to ojspc boolean options, which
do not take an explicit true setting.
JSP Translation and Deployment 7-29

The ojspc Pre-Translation Utility
■ Do not use the SQLJ -compile option if you use the ojspc -noCompile
option.

■ Do not use the SQLJ -d option if you use the ojspc -d option.

■ Do not use the SQLJ -dir option if you use the ojspc -srcdir option.

For information about Oracle SQLJ translator options, see the Oracle9i SQLJ
Developer’s Guide and Reference.

-srcdir (fully qualified path; ojspc default: current directory)

Use this option to specify a base directory location for ojspc placement of
generated source files—.sqlj files (for SQLJ JSP pages) and .java files.

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 7-32 for more information.

The default is to use the current directory (your current directory when you
executed ojspc).

It is recommended that you use this option to place generated source files into a
clean directory so that you conveniently know what files have been produced.

Note: In an on-demand translation scenario, the JSP sqljcmd
configuration parameter provides related functionality. It enables
you to enter a complete SQLJ command line, with desired option
settings and optionally an alternative SQLJ compiler.

Notes:

■ Do not use -srcdir for batch pre-translation.

■ In environments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.
7-30 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
-staticTextInChars (boolean; ojspc default: false)

Enabling this flag directs the JSP translator to generate static text in JSP pages as
characters instead of bytes. The default setting is false, which improves
performance in outputting static text blocks.

Enable this flag if your application requires the ability to change the character
encoding dynamically during runtime, such as in the following example:

<% response.setContentType("text/html; charset=UTF-8"); %>

-verbose (boolean; ojspc default: false)

Enabling this flag directs ojspc to report its translation steps as it executes.

The following example shows -verbose output for the translation of
myerror.jsp. (In this example, ojspc is run from the directory where
myerror.jsp is located; assume % is a UNIX prompt.)

% ojspc myerror.jsp -verbose
Translating file: myerror.jsp
1 JSP files translated successfully.
Compiling Java file: ./_myerror.java

-version (boolean; ojspc default: false)

Use this option to have ojspc display the JSP version number and then exit.

-xmlValidate (boolean; ojspc default: false)

Enable this flag if you want XML validation of the application web.xml file.
Because the Tomcat JSP reference implementation does not perform XML
validation, this flag is disabled by default.

Note: In an on-demand translation scenario, the JSP
static_text_in_chars configuration parameter provides the
same functionality.

Note: In an on-demand translation scenario, the JSP
xml_validate configuration parameter provides the same
functionality.
JSP Translation and Deployment 7-31

The ojspc Pre-Translation Utility
Summary of ojspc Output Files, Locations, and Related Options
By default, ojspc generates the same set of files that are generated by the JSP
translator in an on-demand translation scenario, and (not considering batch
pre-translation) places them in or under your current directory when you ran
ojspc.

Here are the files:

■ for SQLJ JSP pages—a .sqlj source file (for batch pre-translation, discarded
after compilation)

■ a .java source file (for batch pre-translation, discarded after compilation)

■ a .class file for the page implementation class

■ a .class file for the inner class for static text

■ for SQLJ JSP pages using ISO code generation—a Java resource file (.ser), or
optionally a .class file, for the SQLJ profile

■ optionally, a Java resource file (.res) for the static text of the page

For more information about files that are generated by the JSP translator, see
"Generated Files and Locations" on page 7-6.

To summarize some of the commonly used options described under "Option
Descriptions for ojspc" on page 7-20, you can use the following ojspc options to
affect file generation and placement:

■ -appRoot to specify an application root directory

■ -srcdir to place source files in a specified location (not relevant for batch
pre-translation)

■ -d to place binary files (.class files and Java resource files) in a specified
location (not relevant for batch pre-translation)

■ -noCompile to not compile the generated page implementation class source

As a result of this, no .class files are produced. In the case of SQLJ JSP pages,
translated .java files are still produced, but not compiled.

■ -extres to put static text into a Java resource file

■ -S-ser2class (SQLJ -ser2class option, for SQLJ JSP pages only, and for
ISO standard SQLJ code generation only) to generate the SQLJ profile in a
.class file instead of a .ser Java resource file
7-32 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The ojspc Pre-Translation Utility
For output file placement (not considering batch pre-translation), the directory
structure underneath the current directory (or directories specified by the -d and
-srcdir options, as applicable) is based on the package. The package is based on
the location of the file being translated relative to the application root, which is
either the current directory or the directory specified in the -appRoot option.

For example, suppose you run ojspc as follows (where % is a UNIX prompt):

% cd /abc
% ojspc def/ghi/test.jsp

Then the package is _def._ghi, and output files will be placed in the directory
/abc/_def/_ghi, where the _def/_ghi subdirectory structure is created as part
of the process.

If you specify alternate output locations through the -d and -srcdir options, a
_def/_ghi subdirectory structure is created under the specified directories.

Now presume that you run ojspc from some other directory, as follows:

% cd /home/mydir
% ojspc /abc/def/ghi/test.jsp -appRoot /abc

The package is still _def._ghi, according to the location of test.jsp relative to
the specified application root. Output files will be placed in the directory
/home/mydir/_def/_ghi or in a _def/_ghi subdirectory under locations
specified through the -d and -srcdir options. In either case, the _def/_ghi
subdirectory structure is created as part of the process.

Note: It is advisable that you run ojspc once for each directory of
your JSP application, so files in different directories can be given
different package names, as appropriate.
JSP Translation and Deployment 7-33

JSP Deployment Considerations
JSP Deployment Considerations
This section covers general deployment considerations and scenarios, mostly
independent of your target environment.

It discusses the following topics:

■ Overview of EAR/WAR Deployment

■ Application Deployment with Oracle9i JDeveloper

■ JSP Pre-Translation

■ Deployment of Binary Files Only

Overview of EAR/WAR Deployment
This section provides an overview of OC4J deployment features and standard WAR
deployment features.

See Oracle9iAS Containers for J2EE User’s Guide for detailed information about
deployment to OC4J in an Oracle9iAS environment.

OC4J Deployment Features
In OC4J, deploy each application through a standard EAR (Enterprise archive) file.
Specify the name of the application and the name and location of the EAR file
through an <application> element in the OC4J server.xml file. (This file is in
the OC4J configuration files directory. In Oracle9iAS, directory paths are
configurable; in OC4J standalone, the configuration files directory is
j2ee/home/config by default.)

For production, use Enterprise Manager for deployment. Enterprise Manager is
recommended for managing OC4J and other components of Oracle9iAS in a
production environment. Refer to the Oracle9i Application Server Administrator’s
Guide and Oracle Enterprise Manager Administrator’s Guide for information.

OC4J also supports the admin.jar tool for deployment, typically in an OC4J
standalone development environment. This modifies server.xml and other
configuration files for you, based on settings you specify to the tool. Or you can
modify the configuration files manually (not generally recommended). Note that if
you modify configuration files in Oracle9iAS without going through Enterprise
Manager, you must run the dcmctl tool, using its updateConfig command, to
inform Oracle9iAS Distributed Configuration Management (DCM) of the updates.
(This does not apply in an OC4J standalone mode, where OC4J is being run apart
from Oracle9iAS.)
7-34 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Deployment Considerations
Here is the dcmctl command:

dcmctl updateConfig -ct oc4j

The dcmctl tool is documented in the Oracle9i Application Server Administrator’s
Guide.

The EAR file includes the following:

■ a standard application.xml configuration file, in /META-INF

■ optionally, an orion-application.xml configuration file, in /META-INF

■ a standard WAR (Web archive) file

The WAR file includes the following:

■ a standard web.xml configuration file, in /WEB-INF

In the web.xml file for any particular application, you can override global
settings for individual configuration parameters or for the definition of the JSP
servlet (oracle.jsp.runtimev2.JspServlet by default). Each application
uses its own instance of the JSP servlet.

■ optionally, an orion-web.xml configuration file, in /WEB-INF

■ classes necessary to run the application (servlets, JavaBeans, and so on), under
WEB-INF/classes and in JAR files in WEB-INF/lib

■ JSP pages and static HTML files

The EAR file goes in the OC4J applications directory, which is specified in the
application-directory setting in the <application-server> element of
the server.xml file (for example, j2ee/home/applications). This would be
the same directory as is specified for the EAR file location in the <application>
element in server.xml.

Through the OC4J auto-deployment feature, a new EAR file in the applications
directory (as specified in server.xml) is detected automatically and hierarchically
extracted.

See the Oracle9iAS Containers for J2EE User’s Guide for more information about
deployment to Oracle9iAS. See the standalone version of this document for
information about admin.jar (which has additional uses as well). Also see "Key
OC4J Configuration Files" on page 3-23 for a summary of important configuration
files in OC4J.
JSP Translation and Deployment 7-35

JSP Deployment Considerations
Standard WAR Deployment
The Sun Microsystems JavaServer Pages Specification, Version 1.1 (and higher)
supports the packaging and deployment of Web applications, including JavaServer
Pages, according to version 2.2 and higher of the Sun Microsystems Java Servlet
Specification.

In typical JSP 1.2 implementations, you can deploy JSP pages through the WAR
mechanism, creating WAR files through the JAR utility. The JSP pages can be
delivered in source form and are deployed along with any required support classes
and static HTML files.

According to the servlet specification, versions 2.2 and higher, a Web application
includes a deployment descriptor file—web.xml—that contains information about
the JSP pages and other components of the application. The web.xml file must be
included in the WAR file.

The servlet specification also defines an XML DTD for web.xml deployment
descriptors and specifies exactly how a servlet container must deploy a Web
application to conform to the deployment descriptor.

Through these logistics, a WAR file is the best way to ensure that a Web application
is deployed into any standard servlet environment exactly as the developer intends.

Deployment configurations in the web.xml deployment descriptor include
mappings between servlet paths and the JSP pages and servlets that will be
invoked. You can specify many additional features in web.xml as well, such as
timeout values for sessions, mappings of file name extensions to MIME types, and
mappings of error codes to JSP error pages.

For more information about standard WAR deployment, see the Sun Microsystems
Java Servlet Specification, Version 2.2 or Version 2.3.

Application Deployment with Oracle9i JDeveloper
Oracle9i JDeveloper supports many types of deployment profiles, including simple
archive, J2EE application (EAR file), J2EE EJB module (EJB JAR file), J2EE Web
module (WAR file), J2EE client module (client JAR file), tag library for JSP 1.2 (tag
library JAR file), business components EJB session bean profile, business
components CORBA server for VisiBroker, and business components archive
profile.

When creating a Business Components for Java (BC4J) Web application using
Oracle9i JDeveloper, a J2EE Web module deployment archive is generated,
containing both the BC4J and the Web application files.
7-36 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Deployment Considerations
The JDeveloper deployment wizards create all the necessary code to deploy
business components as a J2EE Web module. Typically, a JSP client accesses the
BC4J application in a J2EE Web Module configuration. The JSP client can also use
data tags, data Web beans, or UIX tags to access the business components. (See the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference for an overview
of the BC4J and UIX tag libraries.)

A J2EE Web module is packaged as a WAR file that contains one or more Web
components (servlets and JSP pages) and web.xml, the deployment descriptor file.

JDeveloper lets you create the deployment profile containing the Web components
and the web.xml file, and packages them into a standard J2EE EAR file for
deployment. JDeveloper takes the resulting EAR file and deploys it to one or more
Oracle9iAS instances.

For information about JDeveloper, refer to the JDeveloper online help, or to the
following site on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

JSP Pre-Translation
JSP pages are typically used in an on-demand scenario, where pages are translated
as they are invoked, in a sequence that is invisible to the user. Another approach is
to pre-translate JSP pages, which offers at least two advantages:

■ It saves end users the translation overhead the first time a page is invoked.

■ It ensures that the developer or deployer, instead of end users, will see any
translation or compilation errors.

You also might want to pre-translate pages so that you can deploy binary files only,
as discussed in "Deployment of Binary Files Only" on page 7-40.

OC4J users can employ the Oracle ojspc utility for pre-translation, either
specifying individual files, or specifying archive files (JAR, WAR, EAR, or ZIP) for
batch pre-translation. There is also a standard jsp_precompile mechanism. These
topics are covered in the following subsections:

■ Techniques for Page Pre-Translation with ojspc

■ Batch Pre-Translation with ojspc

■ Standard JSP Pre-Translation without Execution
JSP Translation and Deployment 7-37

JSP Deployment Considerations
Also see "The ojspc Pre-Translation Utility" on page 7-13 for detailed information
about this utility.

Techniques for Page Pre-Translation with ojspc
When you pre-translate with ojspc (not considering batch pre-translation), use the
-d option to set an appropriate output base directory for placement of generated
binary files.

Consider the example in "JSP Translator Output File Locations" on page 7-8, where
the JSP page is located in the examples/jsp subdirectory under the OC4J
standalone default Web application directory:

[Oracle_Home]/j2ee/home/default-web-app/examples/jsp/welcome.jsp

A user would invoke this with a URL such as the following:

http://host[:port]/examples/jsp/welcome.jsp

(This is just a general example and does not consider OC4J default configuration for
the context path.)

In an on-demand translation scenario for this page, as explained in the example, the
JSP translator would by default use the following base directory for placement of
generated binary files:

[Oracle_Home]/j2ee/home/application-deployments/default/defaultWebApp/temp/_pages

When you pre-translate, set your current directory to the application root directory,
then in ojspc set the _pages directory as the output base directory. This results in
the appropriate package name and file hierarchy. Continuing the example (where %
is a UNIX prompt):

% cd [Oracle_Home]/j2ee/home/default-web-app
% ojspc examples/jsp/welcome.jsp
-d [Oracle_Home]/j2ee/home/application-deployments/default/defaultWebApp/temp/_pages

(This assumes you specify the appropriate Oracle_Home directory.) The ojspc
command is a single wraparound command, translating
examples/jsp/welcome.jsp and specifying the _pages directory as the base
output directory.

The URL noted above specifies an application-relative path of
examples/jsp/welcome.jsp, so at execution time the JSP container looks for the
binary files in an _examples/_jsp subdirectory under the _pages directory. This
7-38 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Deployment Considerations
subdirectory would be created automatically by ojspc if it is run as in the above
example.

At execution time, the JSP container would find the pre-translated binaries and
would not have to perform translation, assuming that either the source file was not
altered after pre-translation, or the JSP main_mode flag is set to justrun.

Batch Pre-Translation with ojspc
Beginning with the OC4J 9.0.3 implementation, there are ojspc features for batch
pre-translation of JSP files in archive files (JAR, WAR, EAR, or ZIP files). When you
specify an archive file on the ojspc command line, by default all .jsp and
.sqljsp files in the contents will be pre-translated, and the archive file will be
updated to include the output .class files and any Java resource files (but not
.java or .sqlj files). You would then deploy the resulting archive file.

In addition to this basic functionality, you can use ojspc options to specify any of
the following:

■ Use the -batchMask option to specify file name extensions for pre-translation
in addition to the default extensions *.jsp and *.sqljsp.

■ Use the -output option to specify a new archive file for output. After
pre-translation, this file will have copies of all the contents of the original
archive file, as well as the output .class files (and any resource files) resulting
from pre-translation. The original archive file will be unaltered.

■ Use the -deleteSource option to specify that pre-translated JSP files will not
be included in the resulting archive file. If you use the -output option, the JSP
files will not appear in the specified output archive file. If you do not use the
-output option, the JSP files will be removed from the original archive file.
This applies to whatever JSP files are pre-translated (.jsp and .sqljsp files
plus any files according to the -batchMask setting).

Note: OC4J JSP implementation details, such as use of
underscores ("_") in output directory names, are subject to change
from release to release. This documentation applies specifically to
Oracle9iAS release 2.
JSP Translation and Deployment 7-39

JSP Deployment Considerations
Standard JSP Pre-Translation without Execution
It is also possible to specify JSP pre-translation, without execution, when you
invoke the page in the normal way. Accomplish this as follows:

1. Enable the JSP precompile_check configuration parameter. (See "JSP
Configuration Parameters" on page 3-9.)

2. Enable the standard jsp_precompile request parameter when invoking the
JSP page from the browser.

Following is an example of using jsp_precompile:

http://host[:port]/foo.jsp?jsp_precompile=true

or:

http://host[:port]/foo.jsp?jsp_precompile

(The "=true" is optional.)

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.2, for more
information about this mode of operation.

Deployment of Binary Files Only
You can avoid exposing your JSP source, for proprietary or security reasons, by
pre-translating the pages and deploying only the translated and compiled binary
files. Pages that are pre-translated, either from previous execution in an on-demand
translation scenario or by using ojspc, can be deployed to any standard J2EE
environment. This involves two steps:

1. You must archive and deploy the binary files appropriately.

2. In the target environment, the JSP container must be configured to run pages
without the JSP source being available.

Archiving and Deploying the Binary Files
You must take steps to create and archive the binary files in an appropriate
hierarchy.

■ If you pre-translate with ojspc, you must first set your current directory to the
application root directory. After running ojspc, archive the output files using
the ojspc output directory as the base directory for the archive. See "The ojspc
Pre-Translation Utility" on page 7-13 for general information about this utility.
7-40 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Deployment Considerations
■ If you are archiving binary files produced during previous execution in an
on-demand translation environment, then archive the output directory
structure, typically under the _pages directory.

In the target environment, place the archive JAR file in the /WEB-INF/lib
directory; or restore the archived directory structure under the appropriate
directory, typically under the _pages directory.

Configuring the OC4J JSP Container for Execution with Binary Files Only
If you have deployed binary files to an OC4J environment, set the JSP configuration
parameter main_mode to the value justrun or reload to execute JSP pages
without the original source.

Without this setting, the JSP translator will always look for the JSP source file to see
if it has been modified more recently than the page implementation .class file,
and terminate with a "file not found" error if it cannot find the source file.

With main_mode set appropriately, the end user can invoke a page with the same
URL that would be used if the source file were in place.

For how to set configuration parameters in the OC4J environment, see "Setting JSP
Configuration Parameters in OC4J" on page 3-20.
JSP Translation and Deployment 7-41

JSP Deployment Considerations
7-42 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Tag Lib
8

JSP Tag Libraries

This chapter discusses custom tag libraries, covering the basic framework that
vendors can use to provide their own libraries. There is also discussion of Oracle
extensions, and a comparison of standard runtime tags versus vendor-specific
compile-time tags. The chapter is organized as follows:

■ Overview: Tag Library Framework

■ Tag Library Descriptor Files

■ Tag Library and TLD Setup and Access

■ Tag Handlers

■ OC4J JSP Tag Handler Features

■ Scripting Variables, Declarations, and Tag-Extra-Info Classes

■ Validation and Tag-Library-Validator Classes

■ Tag Library Event Listeners

■ End-to-End Custom Tag Examples

■ Compile-Time Tags

The chapter offers a detailed overview of standard tag library functionality. For
complete information, refer to the Sun Microsystems JavaServer Pages Specification,
Version 1.2 (or higher). For information about the tag libraries provided with OC4J,
see the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.

Custom tag syntax largely follows XML conventions. For general information about
XML, you can find the specification at the following Web site:

http://www.w3.org/XML/
raries 8-1

Overview: Tag Library Framework
Overview: Tag Library Framework
JavaServer Pages technology allows vendors to create custom JSP tag libraries. A
tag library defines a collection of custom actions. The tags can be used directly by
developers in manually coding a JSP page, or automatically by Java development
tools.

This section provides an overview of the JSP tag library framework, as well as a
summary of new tag library features in the JSP 1.2 specification.

For information beyond what is provided here regarding tag libraries and the
standard JavaServer Pages tag library framework, refer to the following resources:

■ Sun Microsystems JavaServer Pages Specification, Version 1.2

■ Sun Microsystems Javadoc for the javax.servlet.jsp.tagext package, at
the following Web site:

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/jsp/tagext/package-summary.html

Overview of a Custom Tag Library Implementation
A custom tag library is made accessible to a JSP page through a taglib directive of
the following general form:

<%@ taglib uri="URI" prefix="prefix" %>

Note the following points about implementation and usage of a tag library.

■ The tags of a library are defined in a tag library descriptor (TLD) file, as "Tag
Library Descriptor Files" on page 8-8 describes.

■ The URI in the taglib directive is a pointer to the TLD file, as "Overview:
Specifying a Tag Library with the taglib Directive" on page 8-16 discusses. It is
possible to use URI shortcuts, as "Use of web.xml for Tag Libraries" on page 8-21
explains.

■ The prefix in the taglib directive is a string of your choosing that you use in
your JSP page with any tag from the library.

Assume that the taglib directive specifies a prefix oracust:

<%@ taglib uri="URI" prefix="oracust" %>
8-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview: Tag Library Framework
Further assume that there is a tag, mytag, in the library. You might use mytag
as follows:

<oracust:mytag attr1="...", attr2="..." />

Using the oracust prefix informs the JSP translator that mytag is defined in
the TLD file that can be found through the URI specified in the above taglib
directive.

■ The entry for a tag in the TLD file provides specifications about use of the tag,
including whether the tag uses attributes (as mytag does), and the names of
those attributes.

■ The semantics of a tag—the actions that occur as the result of using the tag—are
defined in a tag handler class, as "Tag Handlers" on page 8-25 describes. Each tag
has its own tag handler class, and the class name is specified in the TLD file.

■ A tag attribute can be of any standard Java type or an object type—either the
generic java.lang.Object or a user-defined type.

You typically set an attribute of a standard Java type as a string value. The
appropriate conversion is handled automatically.

You can also set an attribute of type Object with a string value—the string is
converted to an Object instance and passed in to the corresponding setter
method in the tag handler instance. This feature complies with the JSP 1.2
specification.

An attribute of a user-defined type must be set using a request-time expression
that returns an instance of the type.

■ The TLD file indicates whether a tag uses a body.

A tag without a body is used as in the following example:

<oracust:mytag attr1="...", attr2="..." />

By contrast, a tag with a body is used as in the following example:

<oracust:mytag attr1="...", attr2="..." >
 ...body...
</oracust:mytag>

■ A custom tag action can create one or more server-side objects that are available
for use by the tag itself or by other JSP scripting elements, such as scriptlets.
These objects are known as scripting variables.
JSP Tag Libraries 8-3

Overview: Tag Library Framework
You can declare a scripting variable through a <variable> element in the TLD
file or through a tag-extra-info class. See "Scripting Variables, Declarations, and
Tag-Extra-Info Classes" on page 8-41 for more information.

A tag can create and use scripting variables with syntax such as in the following
example, which creates the object myobj:

<oracust:mytag id="myobj" attr1="...", attr2="..." />

■ The TLD file can optionally declare a tag-library-validator class for use with the
tag library. This class would have logic to validate any JSP page that uses the
tag library, according to specified constraints. See "Validation and
Tag-Library-Validator Classes" on page 8-46.

■ The TLD file can optionally declare one or more event listeners for use with the
tag library. This functionality is offered as a convenient alternative to declaring
listeners in the application web.xml file. See "Tag Library Event Listeners" on
page 8-50.

■ The tag handler of a nested tag can access the tag handler of an outer tag, in
case this is required for any of the processing or state management of the nested
tag. See "Access to Outer Tag Handler Instances" on page 8-37.

The remainder of this chapter provides details about these topics.

Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications
The JSP 1.2 specification adds features for improved tag library support in the
following areas:

■ tag library descriptor features

New features are outlined in the next section, "Summary of TLD File Changes
Between the JSP 1.1 and 1.2 Specifications". "Tag Library Descriptor Files" on
page 8-8 describes TLD features in detail.

■ support for multiple tag libraries and their TLD files in a single JAR file

According to the JSP 1.1 specification, you cannot have multiple TLD files
packaged in a single JAR file. The JSP 1.2 specification adds support for this,
however. See "Tag Handlers" on page 8-25.

Note: The OC4J JSP container supports tag library features for the
JServ environment as well, with the exception of tag library event
listeners.
8-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview: Tag Library Framework
■ tag handler features

New features are summarized in "Summary of Tag Handler Changes Between
the JSP 1.1 and 1.2 Specifications" on page 8-7. Tag handler features are
described in detail in "Tag Handlers" on page 8-25.

■ tag library validators

This feature is new in JSP 1.2. See "Validation and Tag-Library-Validator
Classes" on page 8-46.

■ tag library event listeners

This feature is also new in JSP 1.2. See "Tag Library Event Listeners" on
page 8-50.

■ support for tag attributes of type Object

JSP 1.2 adds support for tag attributes of type java.lang.Object. The OC4J
JSP container supports this feature, as described in the previous section,
"Overview of a Custom Tag Library Implementation".

Summary of TLD File Changes Between the JSP 1.1 and 1.2 Specifications
The following list is a summary of features in TLD syntax and functionality that
were introduced in the JSP 1.2 specification. These changes were not available until
Oracle9iAS release 2 (9.0.3). "Tag Library Descriptor Files" on page 8-8 includes
information about these features.

■ the <validator> element and its subelements, allowing you to declare a
tag-library-validator class for the tag library

■ the <listener> element and its subelement, allowing you to declare event
listeners for the tag library

■ the <variable> subelement, and its own subelements, under the <tag>
element, allowing you to declare scripting variables directly through the TLD

■ the <type> subelement under the <attribute> subelement of the <tag>
element, for noting the datatype of the attribute

Important: In Oracle9iAS release 2 (9.0.3), the OC4J JSP container,
by default, expects JSP 1.1—not JSP 1.2—tag syntax and usage. To
use JSP 1.2 features described in the following sections, specify the
JSP 1.2 TLD DTD, as shown in "Overview of TLD File Validation
and Features" on page 8-8.
JSP Tag Libraries 8-5

Overview: Tag Library Framework
■ the <display-name>, <large-icon>, and <small-icon> elements, and
also subelements of the same name under the <tag> element, for use by
authoring tools

■ renamed elements since the JSP 1.1 specification, as follows:

– The <info> element, and the subelement of the same name under the
<tag> element, were renamed to <description>.

– The <tlibversion> element was changed to <tlib-version>.

– The <jspversion> element was changed to <jsp-version>.

– The <shortname> element was changed to <short-name>.

– The <tagclass>, <teiclass>, and <bodycontent> subelements under
the <tag> element were changed to <tag-class>, <tei-class>, and
<body-content>.

Notes:

■ The OC4J JSP container, beginning with Oracle9iAS release 2
(9.0.3), enables XML validation of TLD files separately from
validation of the web.xml file. Validation of TLD files is
enabled by default; validation of web.xml is disabled by
default. (See "JSP Configuration Parameters" on page 3-9 for
information about the no_tld_xml_validate and
xml_validate parameters.) In Oracle9iAS release 2 (9.0.2)
and prior, TLD files and web.xml were all validated through
the xml_validate parameter, which was disabled by default.

■ OC4J provides a sample XSL template that you can use with a
standard XSLT program, such as oraxsl, to convert a JSP
1.1-compliant TLD file into one that is JSP 1.2-compliant. This
template is located in the misc directory under the OC4J
demos. See ojspdemos/misc/index.html for instructions.
8-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview: Tag Library Framework
Summary of Tag Handler Changes Between the JSP 1.1 and 1.2 Specifications
The JSP 1.1 specification has two interfaces that can be implemented by tag
handlers—Tag, for tags without bodies, and BodyTag, for tags with bodies. The JSP
1.2 specification adds the IterationTag interface, for tags that call for iteration
through a tag body, but do not require access to the tag body content through a
body content object. IterationTag extends Tag and is extended by BodyTag.

Also in JSP 1.2, the int constant EVAL_BODY_TAG, which indicates that there is a
tag body to be processed, is deprecated and replaced by EVAL_BODY_AGAIN and
EVAL_BODY_BUFFERED. EVAL_BODY_AGAIN is used with tags that iterate through
a tag body, to specify that iteration should continue. EVAL_BODY_BUFFERED is
used with tags that require access to body content, to direct that a BodyContent
object be created.

The JSP 1.2 specification also adds the TryCatchFinally interface, which any tag
handler can implement for improved data integrity and resource management
when exceptions occur.

The JSP 1.2 changes were not available until Oracle9iAS release 2 (9.0.3). "Tag
Handlers" on page 8-25 includes information about these new features.
JSP Tag Libraries 8-7

Tag Library Descriptor Files
Tag Library Descriptor Files
A tag library descriptor (TLD) file is an XML-style document that contains
information about a tag library and individual tags of the library. The name of a
TLD file has the .tld extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library. The taglib directive in a JSP page informs the
JSP container where to find the TLD file. (See "Overview: Specifying a Tag Library
with the taglib Directive" on page 8-16.)

This section provides an overview and general information about TLD file syntax
and usage, referring ahead to other sections as appropriate for more information
about related topics. This section covers the following topics:

■ Overview of TLD File Validation and Features

■ Use of the tag Element

■ Other Key Elements and Their Subelements: validator and listener

For complete information, refer to the Sun Microsystems JavaServer Pages
Specification, Version 1.2.

See "Example: Using the IterationTag Interface and a Tag-Extra-Info Class" on
page 8-57 for a sample TLD file.

Overview of TLD File Validation and Features
The OC4J JSP container uses the DOCTYPE declaration of a TLD file to determine
which TLD DTD version to validate against, unless TLD validation has been
disabled. By default, as of Oracle9iAS release 2 (9.0.3), the JSP container assumes the
JSP 1.1 TLD DTD. To use the JSP 1.2 TLD DTD, list the following as the system ID
(DTD location):

http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd

Note: By default, the OC4J JSP container performs XML
validation of TLD files. To disable this, set the
no_tld_xml_validate JSP configuration parameter to true.
(See "JSP Configuration Parameters" on page 3-9 for more
information.) For pre-translation, use the ojspc
-noTldXmlValidate option. (See "Option Descriptions for ojspc"
on page 7-20.)
8-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files
Here is an example:

<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

When TLD validation is enabled, the XML parser must be able to reference the
appropriate DTD, which it can do with the above DOCTYPE declaration for JSP 1.2.
(TLD validation is enabled if the JSP no_tld_xml_validate parameter has its
default false setting, or, for pre-translation, if the ojspc
-noTldXmlValidation flag is not used.)

A TLD file provides definitions for the tag library as a whole as well as for each
individual tag. For each tag, it defines the tag name, its attributes (if any), its
scripting variables (if any), and the name of the class that handles tag semantics. See
"Use of the tag Element" on page 8-10.

For the library as a whole, TLD definitions can include a tag-library-validator class
and event listeners. See "Other Key Elements and Their Subelements: validator and
listener" on page 8-15.

A TLD file also provides additional definitions for the library as a whole, as follows.

■ The required <tlib-version> element specifies the version number of the
tag library (whatever version number you want to give it).

■ The required <jsp-version> element specifies the JSP version upon which
this tag library depends (such as 1.2).

■ The <uri> element can specify a string value that uniquely identifies this tag
library. In particular, this is useful in situations where multiple tag libraries and

Note: According to the JSP 1.2 specification, use an absolute URL
to specify the system ID. If a TLD file does not use a public external
DOCTYPE declaration with an absolute URL, the OC4J JSP container
will assume that the JSP 1.1 TLD DTD is intended.

Note: The <tag>, <validator>, and <listener> elements and
the elements listed below are top-level subelements under the
<taglib> root element of the TLD file.
JSP Tag Libraries 8-9

Tag Library Descriptor Files
their TLD files are packaged in a single JAR file. See "Packaging and Accessing
Multiple Tag Libraries in a JAR File" on page 8-18.

■ The required <short-name> element specifies a convenient default name for
the library, for possible use by authoring tools. You could also use the short
name as a preferred tag prefix for the library, for use in the taglib directive.

■ There are also additional elements that you can use, typically for authoring
tools—the <display-name> element for a display name of the tag library, and
the <large-icon> and <small-icon> elements for the file names (.jpg or
.gif) of a large icon, a small icon, or both. Icon file locations are relative to the
TLD file.

■ The <description> element can provide a description of the tag library.

Use of the tag Element
Each tag of a tag library is specified in a <tag> element, under the root <taglib>
element of the TLD file. There must be at least one <tag> element in a TLD file.
This section describes its usage and subelements.

Subelements of the tag Element
The subelements of a <tag> element define a tag, as follows:

■ The required <name> subelement specifies the name of the tag.

■ The required <tag-class> subelement specifies the name of the
corresponding tag handler class. See "Tag Handlers" on page 8-25 for
information about tag handler classes.

Note: Several descriptive elements were added to the JSP 1.2 TLD
DTD. In addition to the <description> element directly under
the root <taglib> element, there are <description>
subelements under the <tag>, <variable>, and <attribute>
elements. There is also an <example> subelement under the
<tag> element. These subelements can provide information for
end-users of the tag library. In particular, a TLD can be processed,
such as through an XSLT stylesheet, to provide end-user
documentation from the material in the descriptive elements. This
information can be displayed in the help windows of tools such as
Oracle9i JDeveloper, for example.
8-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files
■ The <body-content> subelement indicates how the tag body (if any) should
be processed. See the example and accompanying discussion in "Sample tag
Element and Use of Its body-content Subelement" on page 8-12.

■ Each <variable> subelement (if any), with its further subelements, defines a
scripting variable. See "Scripting Variables, Declarations, and Tag-Extra-Info
Classes" on page 8-41 for information about scripting variables. The
<variable> element is for relatively uncomplicated situations, where the logic
for the scripting variable does not require a tag-extra-info class. The variable
name is specified through either the <name-given> subelement, to specify the
name directly, or the <name-from-attribute> subelement, to specify the
name of a tag attribute that specifies the variable name. There is also a
<variable-class> subelement to specify the class of the variable, a
<scope> subelement to specify the scope of the variable, and a <declare>
subelement to specify whether the variable is to be newly defined. See "Variable
Declaration Through TLD variable Elements" on page 8-42 for more
information. Another subelement under <variable> is an optional
<description> element.

■ Each <tei-class> subelement (if any) specifies the name of a tag-extra-info
class that defines a scripting variable. This is for situations where declaring the
variable through a <variable> element is not sufficient. See "Variable
Declaration Through Tag-Extra-Info Classes" on page 8-44 for more
information.

■ Each <attribute> subelement (if any), with its further subelements, provides
information about an attribute of the tag—a parameter that you can specify
when you use the custom tag. Subelements of <attribute> include the
<name> element to specify the attribute name, the <type> element to
optionally note the Java type of the attribute value, the <required> element to
specify whether the attribute is required (default false), and the
<rtexprvalue> element to specify whether the attribute can accept runtime
expressions as values (default false). See the example and accompanying
discussion below. Another subelement under <attribute> is an optional
<description> element.
JSP Tag Libraries 8-11

Tag Library Descriptor Files
■ As with the tag library as a whole, each tag can have its own
<display-name>, <large-icon>, and <small-icon> subelements for use
by authoring tools.

■ The <description> subelement can provide a description of the tag.

■ The <example> subelement can provide an example of how to use the tag.

Sample tag Element and Use of Its body-content Subelement
Here is a sample TLD file entry for a tag myaction:

<tag>
 <name>myaction</name>
 <tag-class>examples.MyactionTag</tag-class>
 <tei-class>examples.MyactionTagExtraInfo</tei-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>attr1</name>
 <required>true</required>

Notes: As of Oracle9iAS release 2 (9.0.3), the OC4J JSP container
ignores the <type> element. It is for informational use only, for
anyone examining the TLD file. Additionally, note the following:

■ For literal attribute values, where <rtexprvalue> specifies
false, the <type> value (if any) should always be
java.lang.String.

■ When <rtexprvalue> specifies true, then the type of the tag
handler property corresponding to this tag attribute determines
what you should specify for the <type> value (if any).

Notes:

■ A custom tag name must qualify as an NMTOKEN according to
the XML specification. For example, it cannot start with a
numeric character.

■ Attribute names must follow naming conventions for XML
attributes, and their setter methods in tag handler classes must
follow the JavaBeans specification.
8-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files
 </attribute>
 <attribute>
 <name>attr2</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

According to this entry, the tag handler class is MyactionTag and the
tag-extra-info class is MyactionTagExtraInfo. The attribute attr1 is required;
the attribute attr2 is optional and can take a runtime expression as its value.

The <body-content> element indicates how the tag body (if any) should be
processed. There are three choices:

■ A value of empty indicates that the tag uses no body. In this case, the OC4J JSP
translator will return an exception if there is a tag body.

■ A value of JSP (the default) indicates that the tag body should be processed as
JSP source code and translated.

■ A value of tagdependent indicates that the tag body should not be translated.
Any text in the body is treated as template data.

Consider the following example:

<foo:bar>
 <%=blah%>
</foo:bar>

If the bar tag has a <body-content> value of JSP, then the body is processed by
the JSP translator, and the expression is evaluated. With a <body-content> value
of tagdependent, the JSP translator does not process the body. In this case, the
characters "<", "%", "=", and ">" have no special meaning—they are treated as literal
characters, along with the rest of the body, and are part of the JSP out object passed
straight through to the tag handler .

There are additional considerations for JSP XML documents. In this case, because
the document is parsed by the XML parser, it is not appropriate to implement
support for a value of tagdependent. This value is essentially meaningless in a
JSP XML document.

One reason for this is that in XML, there is already a convenient mechanism for
escaping body content—using the CDATA token. But beyond that, there are many
scenarios where it would actually be undesirable to pass content straight through as
JSP Tag Libraries 8-13

Tag Library Descriptor Files
a tagdependent implementation would do. Consider an example using a tag for
SQL queries, comparing the following traditional syntax:

<foosql:query ... >
 select ... where salary > 1000
</foosql:query>

to the following JSP XML syntax:

<foosql:query ... >
 <![CDATA[select ... where salary > 1000]]>
</foosql:query>

In the traditional syntax, a <body-content> value of tagdependent would
result in the query statement being passed straight through to the JSP out object,
presumably the desired result.

In the XML syntax, the CDATA token (or, alternatively, a ">" escape character) is
required, because otherwise the character ">" has special meaning to the XML
parser.

In this example, if an implementation of tagdependent were used, the entire body
would be passed through to the out object:

<![CDATA[select ... where salary > 1000]]>

But presumably, the information that should really be passed through is only the
SQL query itself:

select ... where salary > 1000

This is what would happen by processing the body through a <body-content>
value of JSP, and using the CDATA token for the XML parser. This is more
appropriate behavior than what would happen with a tagdependent
implementation.

See "Details of JSP XML Documents" on page 5-4 for more information about JSP
XML syntax.
8-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files
Other Key Elements and Their Subelements: validator and listener
The TLD <validator> and <listener> elements are new in the JSP 1.2
specification.

A <validator> element and its subelements specify information about a
tag-library-validator (TLV) class that can validate JSP pages that use this tag library.
The <validator> element has three subelements: <validator-class>,
<description>, and <init-param>. The <init-param> subelement has the
same functionality as <init-param> subelements within <servlet> elements in
the web.xml file. It has <param-name> and <param-value> subelements to
specify each parameter. See "Validation and Tag-Library-Validator Classes" on
page 8-46 for more information.

A <listener> element and its <listener-class> subelement specify an event
listener for use with the tag library, such as in creating and destroying resource
pools used by the library. See "Tag Library Event Listeners" on page 8-50 for more
information.
JSP Tag Libraries 8-15

Tag Library and TLD Setup and Access
Tag Library and TLD Setup and Access
This section discusses the packaging, placement, and access of tag libraries and
their TLD files. It covers the following topics:

■ Overview: Specifying a Tag Library with the taglib Directive

■ Specifying a Tag Library by Physical Location

■ Packaging and Accessing Multiple Tag Libraries in a JAR File

■ Oracle Extension for Tag Library Sharing

■ Use of web.xml for Tag Libraries

■ Example: Multiple Tag Libraries and TLD Files in a JAR File

Overview: Specifying a Tag Library with the taglib Directive
This section summarizes the use of taglib directives, discussing original
functionality under the JSP 1.1 specification and new functionality under the JSP 1.2
specification.

Import a custom library into a JSP page by using a taglib directive, of the
following general form:

<%@ taglib uri="URI" prefix="prefix" %>

The prefix setting specifies a string of characters that stipulates when tags from
this library are being used. For example, if mytag is in a library that has a specified
prefix of oracust, use mytag as follows:

<oracust:mytag attr1="..." attr2="..." >
...
</oracust:mytag>

Under the JSP 1.1 specification, the uri setting can indicate a file location as in
either of the following scenarios, either directly or through a "shortcut" URI:

■ It can indicate the physical location, within a WAR file structure, of the TLD file
that defines the desired tag library.

Note: Prefixes must follow the naming conventions of the XML
namespaces specification.
8-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library and TLD Setup and Access
■ It can indicate the physical location of the JAR file that contains the components
and TLD file of the desired tag library. Under the JSP 1.1 specification, there can
be only one tag library and only one TLD file in the JAR file.

See "Specifying a Tag Library by Physical Location" on page 8-17 for more
information.

Under the JSP 1.2 specification, the uri setting can still indicate the physical
location of a TLD file or the location of a JAR file containing one tag library and its
TLD file, but it can also be used as follows:

■ It can specify one of multiple tag libraries packaged in a single JAR file, by
specifying a value that matches the <uri> element value in one of the TLD files
in the JAR file. In this case, the uri setting is intended to be a unique key, not a
pointer to a physical location.

As under JSP 1.1, you can also use a shortcut URI.

See "Packaging and Accessing Multiple Tag Libraries in a JAR File" on page 8-18 for
more information. For information about shortcut URIs, see "Use of web.xml for Tag
Libraries" on page 8-21.

Specifying a Tag Library by Physical Location
As first defined in the JSP 1.1 specification, the taglib directive of a JSP page can
fully specify the name and physical location, within a WAR file structure, of the
TLD file that defines a particular tag library, as in the following example:

<%@ taglib uri="/WEB-INF/oracustomtags/tlds/mytld.tld" prefix="oracust" %>

Specify the location as application-relative, by starting with "/" as in this example.
See "Requesting a JSP Page" on page 1-28 for discussion of application-relative
syntax.

Be aware that the TLD file should be in the WEB-INF directory or a subdirectory.

Alternatively, as also defined since JSP 1.1, the taglib directive can specify the
name and application-relative physical location of a JAR file instead of a TLD file,
where the JAR file contains a single tag library and the TLD file that defines it. In
this scenario, the TLD file must be located and named as follows in the JAR file:

META-INF/taglib.tld

You must place the JAR file in the /WEB-INF/lib directory.
JSP Tag Libraries 8-17

Tag Library and TLD Setup and Access
Here is an example of a taglib directive that specifies a tag library JAR file:

<%@ taglib uri="/WEB-INF/lib/mytaglib.jar" prefix="oracust" %>

Also see "Packaging and Accessing Multiple Tag Libraries in a JAR File", following,
which describes a scenario that is newly supported by the JSP 1.2 specification.

Packaging and Accessing Multiple Tag Libraries in a JAR File
The preceding section, "Specifying a Tag Library by Physical Location", discusses
the JSP 1.1 scenarios of using a taglib directive to specify a TLD file by physical
location, or to specify a JAR file that contains a single tag library and its TLD file.

In addition to these scenarios, the JSP 1.2 specification allows the packaging of
multiple tag libraries, and the TLD files that define them, in a single JAR file. Inside
the JAR file, these TLD files must be located under the /META-INF directory or a
subdirectory.

While a single TLD file in a JAR file is packaged as /META-INF/taglib.tld
(although this is no longer s strict requirement under JSP 1.2), a JAR file with
multiple TLD files must use unique names or subdirectories. Here are a couple of
possibilities, for example, for packaging three TLD files in a JAR file:

/META-INF/abctags.tld
/META-INF/deftags.tld
/META-INF/ghitags.tld

or:

/META-INF/abc/taglib.tld
/META-INF/def/taglib.tld
/META-INF/ghi/taglib.tld

In each TLD file, there is a <uri> element under the root <taglib> element. Use
this feature as follows:

■ The <uri> element must specify a value that is to be matched by the uri
setting of a taglib directive in any JSP page that wants to use the
corresponding tag library.

Note: In either scenario discussed in this section, the taglib
directive can specify a "shortcut" URI that corresponds to the
complete URI value according to settings in the web.xml file. See
"Use of web.xml for Tag Libraries" on page 8-21.
8-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library and TLD Setup and Access
■ Each <uri> value must be unique across all <uri> values in all TLD files on
the server.

The value of the <uri> element can be arbitrary—it is simply used as a key and
does not indicate a physical location. By convention, however, its value is of the
form of a physical location, such as in the following example:

<uri>http://www.mycompany.com/j2ee/jsp/tld/myproduct/mytags.tld</uri>

A <uri> value must follow the XML namespace convention.

A JAR file with multiple TLD files must be placed in the /WEB-INF/lib directory
or in the OC4J "well-known" URI location described in "Oracle Extension for Tag
Library Sharing" on page 8-20. During translation, the JSP container searches these
two locations for JAR files, searches each JAR file for TLD files, and accesses each
TLD file to find its <uri> element.

Example: URI Settings for Multiple Tag Libraries in a JAR File Consider a JAR file,
myapptags.jar, that includes the following TLD files:

/META-INF/mytaglib1.tld
/META-INF/mytaglib2.tld

Assume that mytaglib1.tld specifies the following:

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>shorty</short-name>
 <uri>http://www.foo.com/jsp/mytaglib1</uri>
 <description>example TLD</description>
 <tag>
 <name>mytag1</name>

Notes:

■ A <uri> element and the corresponding taglib directive can
specify a "shortcut" URI setting. This corresponds to settings in
the web.xml file, as "Use of web.xml for Tag Libraries" on
page 8-21 explains.

■ A JSP 1.2-compliant JSP container, such as the OC4J JSP
container, supports the multiple TLD file packaging mechanism
for JSP 1.1 TLD files as well as JSP 1.2 TLD files.
JSP Tag Libraries 8-19

Tag Library and TLD Setup and Access
 ...
 </tag>
 ...
</taglib>

To use mytag1 or any other tag defined in mytaglib1.tld, a JSP page could have
the following taglib directive:

<%@ taglib uri="http://www.foo.com/jsp/mytaglib1" prefix="myprefix1" %>

URI values in this scenario (multiple tag libraries in a single JAR file) are used as
keywords only. They can be arbitrary.

For a more complete example, see "Example: Multiple Tag Libraries and TLD Files
in a JAR File" on page 8-22.

Oracle Extension for Tag Library Sharing
As an extension of standard JSP "well-known URI" functionality described in the
JSP 1.2 specification, the OC4J JSP container supports the use of a shared tag library
directory where you can place tag library JAR files to be shared across multiple Web
applications.

The directory location is according to the setting of the OC4J JSP
well_known_taglib_loc configuration parameter, with the specified location
being under [Oracle_Home] if [Oracle_Home] is defined, or under the current
directory (from which the OC4J process was started) if [Oracle_Home] is not
defined. The default value of well_known_taglib_loc is as follows:

j2ee/home/jsp/lib/taglib/

Also see "JSP Configuration Parameters" on page 3-9 for a description of the
well_known_taglib_loc parameter.

The shared directory must be added to the server-wide classpath by specifying it as
a library path element. The default location is set in the application.xml file in
the OC4J configuration files directory (j2ee/home/config by default in OC4J
standalone); you can alter the setting there as desired. See the Oracle9iAS Containers
for J2EE User’s Guide for information about application.xml.

TLD files to be shared across a set of applications must be placed in a JAR file. There
can be multiple JAR files in the well-known location. Each tag library will be
uniquely identified through the <uri> element in its TLD file. Also see "Packaging
and Accessing Multiple Tag Libraries in a JAR File" on page 8-18.
8-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library and TLD Setup and Access
Use of web.xml for Tag Libraries
Versions 2.2 and higher of the Sun Microsystems Java Servlet Specification describe a
standard deployment descriptor for servlets—the web.xml file. JSP pages can use
this file in specifying the location or URI identifier of a JSP TLD file.

For JSP tag libraries, the web.xml file can include <taglib> elements and two
subelements:

■ <taglib-uri>

■ <taglib-location>

For the scenario of an individual TLD file, or the scenario of a JAR file that contains
a single tag library and its TLD file, the <taglib-location> subelement
indicates the application-relative physical location (by starting with "/") of the TLD
file or tag library JAR file. See "Specifying a Tag Library by Physical Location" on
page 8-17 for related information.

For the scenario of a JAR file that contains multiple tag libraries and their TLD files,
a <taglib-location> subelement indicates the unique identifier of a tag library.
In this case, the <taglib-location> value actually indicates a key, not a location,
and corresponds to the <uri> value in the TLD file of the desired tag library. See
"Packaging and Accessing Multiple Tag Libraries in a JAR File" on page 8-18 for
related information.

The <taglib-uri> subelement indicates a shortcut URI to use in taglib
directives in your JSP pages, with this URI being mapped to the physical location or
URI identifier specified in the accompanying <taglib-location> subelement.

Following is a sample web.xml entry for a TLD file:

<taglib>
 <taglib-uri>/oracustomtags</taglib-uri>
 <taglib-location>/WEB-INF/oracustomtags/tlds/mytld.tld</taglib-location>
</taglib>

This entry makes /oracustomtags equivalent to
/WEB-INF/oracustomtags/tlds/mytld.tld in taglib directives in your JSP
pages.

Given this example, the following directive in your JSP page results in the JSP
container finding the /oracustomtags URI in web.xml and, therefore, finding
the accompanying name and location of the TLD file (mytld.tld):

<%@ taglib uri="/oracustomtags" prefix="oracust" %>
JSP Tag Libraries 8-21

Tag Library and TLD Setup and Access
This statement enables you to use any of the tags of this custom tag library in a JSP
page.

See the Sun Microsystems Java Servlet Specification, Version 2.3, and the Sun
Microsystems JavaServer Pages Specification, Version 1.2, for more information about
the web.xml deployment descriptor.

Example: Multiple Tag Libraries and TLD Files in a JAR File
This example presents key aspects of tag library packaging for some of the Oracle
JSP demo applications. This is a situation where multiple tag libraries are packaged
in a single JAR file. The JAR file includes tag handler classes, tag-library-validator
classes, and TLD files for multiple libraries. The following shows the contents and
structure of the JAR file:

examples/BasicTagParent.class
examples/ExampleLoopTag.class
examples/BasicTagChild.class
examples/BasicTagTLV.class
examples/TagElemFilter.class
examples/XMLViewTagTLV.class
examples/TagFilter.class
examples/XMLViewTag.class
META-INF/xmlview.tld
META-INF/exampletag.tld
META-INF/basic.tld
META-INF/MANIFEST.MF

Important: Using the <taglib> element in web.xml is required
in the case of a TLD file that is located in the JSP shared tag library
directory and has <listener> elements. This is the only way that
the TLD file can be found and accessed in order to activate its
listeners. See "Oracle Extension for Tag Library Sharing" on
page 8-20 and "Tag Library Event Listeners" on page 8-50.
8-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library and TLD Setup and Access
Key TLD File Entries for Multiple-Library Example
This section illustrates the <uri> elements of the TLD files.

The basic.tld file includes the following:

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>basic</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/basic.tld</uri>

 ...

</taglib>

The exampletag.tld file includes the following:

<taglib xmlns="http://java.sun.com/JSP/TagLibraryDescriptor">

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>example</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/exampletag.tld</uri>

 ...

</taglib>

The xmlview.tld file includes the following:

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>demo</short-name>
 <uri>http://xmlns.oracle.com/j2ee/jsp/tld/demos/xmlview.tld</uri>

 ...

</taglib>
JSP Tag Libraries 8-23

Tag Library and TLD Setup and Access
Key web.xml File Entries for Multiple-Library Example
This section shows the <taglib> elements of the web.xml deployment descriptor,
which map the full URI values (as seen in the <uri> elements of the TLD files in
the previous section) to shortcut URI values used in the JSP pages that access these
libraries.

...

<taglib>
 <taglib-uri>/oraloop</taglib-uri>
 <taglib-location>http://xmlns.oracle.com/j2ee/jsp/tld/demos/exampletag.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>/orabasic</taglib-uri>
 <taglib-location>http://xmlns.oracle.com/j2ee/jsp/tld/demos/basic.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>/oraxmlview</taglib-uri>
 <taglib-location>http://xmlns.oracle.com/j2ee/jsp/tld/demos/xmlview.tld
 </taglib-location>
</taglib>

...

JSP Page taglib Directives for Multiple-Library Example
This section shows taglib directives from the JSP pages of the demos, which
reference the shortcut URI values defined in the web.xml elements listed in the
preceding section.

The page basic1.jsp includes the following directive:

<%@ taglib prefix="basic" uri="/orabasic" %>

The page exampletag.jsp includes the following directive:

<%@ taglib prefix="example" uri="/oraloop" %>

The page xmlview.jsp includes the following directive:

<%@ taglib prefix="demo" uri="/oraxmlview" %>
8-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
Tag Handlers
This section describes tag handlers, which define the semantics of actions that result
from the use of custom tags. It includes the following topics:

■ Overview of Tag Handlers

■ Attribute Handling, Conversions from String Values

■ Custom Tag Processing, with or without Tag Bodies

■ Summary of Integer Constants for Body Processing

■ Simple Tag Handlers without Iteration

■ Simple Tag Handlers with Iteration

■ Tag Handlers That Access Body Content

■ TryCatchFinally Interface

■ Access to Outer Tag Handler Instances

Overview of Tag Handlers
A tag handler is an instance of a Java class that directly or indirectly implements the
standard javax.servlet.jsp.tagext.Tag interface. Depending on whether
there is a tag body and how that body is to be processed, the tag handler
implements one of the following interfaces, in the javax.servlet.jsp.tagext
package:

■ Tag—This interface defines the basic methods for all tag processing, but does
not include tag body processing.

■ IterationTag—This interface extends Tag and is for iterating through a tag
body.

■ BodyTag—This interface extends IterationTag and is for accessing the tag
body content itself.

A tag handler class might implement one of these interfaces directly, or might
extend a class (such as one of the support classes provided by Sun Microsystems)
that implements one of them.

Each custom tag has its own handler class. By convention, the name of the tag
handler class for a tag abc, for example, is AbcTag.

The TLD file of a tag library specifies the name of the tag handler class for each tag
in the library. See "Tag Library Descriptor Files" on page 8-8.
JSP Tag Libraries 8-25

Tag Handlers
A tag handler instance is typically created by the JSP page implementation instance,
by use of a zero-argument constructor, and is a server-side object used at
request-time. The tag handler has properties that are set by the JSP container,
including the page context object for the JSP page that uses the custom tag, and a
parent tag handler object if the use of this tag is nested within an outer tag. A tag
handler, as applicable, supports parameter-passing, evaluation of the tag body, and
access to other objects in the JSP page, including other tag handlers.

"Example: Using the IterationTag Interface and a Tag-Extra-Info Class" on page 8-57
includes code for a sample tag handler class.

Attribute Handling, Conversions from String Values
A tag handler class has an underlying property for each attribute of the custom tag.
These properties are somewhat like JavaBean properties, with at least a setter
method.

Recall that there are two approaches in setting a tag attribute:

■ The first approach is where the attribute is a non-request-time attribute, set
using a string literal value:

nrtattr="string"

For a non-request-time attribute, if the underlying tag handler property is not of
type String, the JSP container will try to convert the string value to a value of
the appropriate type.

Because tag attributes correspond to bean-like properties, their processing, such
as for these type conversions from string values, is similar to that of bean
properties. See "Bean Property Conversions from String Values" on page 1-22.

■ The second approach is where the attribute is a request-time attribute that is set
using a request-time expression:

rtattr="<%=expression%>"

Note: The Sun Microsystems JavaServer Pages Specification, Version
1.2 does not mandate whether multiple uses of the same custom tag
within a JSP page should use the same tag handler instance or
different instances—this is left to the discretion of JSP vendors. See
"OC4J JSP Tag Handler Features" on page 8-38 for information
about the Oracle implementation.
8-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
For request-time attributes, there is no conversion—a request-time expression
can be assigned to the attribute, and to its corresponding tag handler property,
for any property type. This would apply to a tag attribute whose type is
user-defined, for example.

Custom Tag Processing, with or without Tag Bodies
Custom tags, as with standard JSP tags, may or may not have a body. In the case of
a custom tag, even when there is a body, its content may not have to be accessed by
the tag handler.

There are four scenarios:

1. There is no body.

In this case you need only a single tag, not a start-tag and end-tag. Following is
a general example:

<oracust:mytag attr1="...", attr2="..." />

This is equivalent to the following, which is also permissible:

<oracust:mytag attr1="...", attr2="..." ></oracust:abcdef>

In this case, the tag handler should implement the Tag interface.

The <body-content> setting for this tag in the TLD file should be empty.

2. There is a body; access of the body content by the tag handler is not required;
the body is executed no more than once.

In this case, there is a start-tag and an end-tag with a body of statements in
between, but the tag handler does not process the body—body statements are
passed through for normal JSP processing only. Following is a general example
of this scenario:

<foo:if cond="<%= ... %>" >
...body executed if cond is true, but body content not accessed by tag
handler...
</foo:if>

In this case, the tag handler should implement the Tag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.
JSP Tag Libraries 8-27

Tag Handlers
3. There is a body; access of the body content by the tag handler is not required;
the body is executed multiple times (iterated).

This is the same as the second scenario, except there is iterative processing of
the tag body.

<foo:myiteratetag ... >
...body executed multiple times, according to attribute or other settings,
but body content not accessed by tag handler...
</foo:myiteratetag>

In this case, the tag handler should implement the IterationTag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.

4. There is a body that must be processed by the tag handler.

Again, there is a start-tag and an end-tag with a body of statements in between;
however, the tag handler must access the body content.

<oracust:mybodytag attr1="...", attr2="..." >
...body accessed and processed by tag handler...
</oracust:mybodytag>

In this case, the tag handler should implement the BodyTag interface.

The <body-content> setting for this tag in the TLD file should be JSP (the
default) or tagdependent, depending on whether the body content should be
translated or treated as template data, respectively.

Notes:

■ In the first scenario, where there is no body, the action is known
as an empty action. In the second, third, and fourth scenarios,
where there is a body, the action is known as a non-empty action.

■ In the first, second, and third scenarios, where no body content
processing is required by the tag handler, the handler is known
as a simple tag handler.

■ For additional information about the <body-content>
element, see "Use of the tag Element" on page 8-10.
8-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
Summary of Integer Constants for Body Processing
The tag handler interfaces that are described in the following sections specify
methods that you must implement, as applicable, to return appropriate int
constants, depending on the situation.

The possible return values from the doStartTag() method, which is defined in
the Tag interface and inherited by the IterationTag and BodyTag interfaces, are
as follows:

■ SKIP_BODY—Use this value if there is no body or if evaluation of the body
should be skipped.

■ EVAL_BODY_INCLUDE—Use this value to evaluate the body and pass it
through to the current JSP out object. There is no special processing of the body
content; no body content object is created.

■ EVAL_BODY_BUFFERED (for BodyTag classes only)—Use this value to create a
BodyContent object for the content of the tag body, used for evaluation and
processing of the content.

■ EVAL_BODY_TAG—This is deprecated (formerly used if there is a body that
requires special processing by the tag handler). Use EVAL_BODY_AGAIN or
EVAL_BODY_BUFFERED, which both have the same int value as
EVAL_BODY_TAG.

The possible return values from the doAfterBody() method, defined in the
IterationTag interface and inherited by the BodyTag interface, are as follows:

■ SKIP_BODY— Use this value to skip evaluation of the body or, when iterating
through the body, to stop iterating.

■ EVAL_BODY_AGAIN—Use this value to continue iterating through the body.

The possible return values from the doEndTag() method, defined in the Tag
interface and inherited by the IterationTag and BodyTag interfaces, are as
follows:

■ SKIP_PAGE—Use this value to skip the rest of the page after the tag. This
completes the request.

■ EVAL_PAGE—Use this value to evaluate the remainder of the page after the tag.
JSP Tag Libraries 8-29

Tag Handlers
Simple Tag Handlers without Iteration
For a custom tag that does not have a body, or has a body whose content does not
require access and special processing by the tag handler, the tag handler is referred
to as a simple tag handler. The tag handler class can implement the following
standard interface:

■ javax.servlet.jsp.tagext.Tag

However, if there is a tag body that is to be iterated, then the tag handler should
implement the IterationTag interface instead—see "Simple Tag Handlers with
Iteration" on page 8-31.

The standard javax.servlet.jsp.tagext.TagSupport class implements the
Tag interface, but also implements the IterationTag interface. Because of this, it
is inefficient to use the TagSupport class for a tag that does not iterate through the
tag body. This is especially important to consider when migrating code from a JSP
1.1 environment to a JSP 1.2 environment, in case you created tag handlers that
extended TagSupport under JSP 1.1. For simple tag handlers not requiring body
iteration, it is best to implement the Tag interface from scratch.

The Tag interface defines methods for the following key functions:

■ Set up the JSP page context object (pageContext property).

■ Set or get the parent tag handler—the handler for the closest enclosing tag, if
applicable (parent property).

■ Set up the tag attributes.

■ Conditionally process the tag body, as appropriate, according to the return
value of the doStartTag() method. (See immediately following.)

■ Conditionally process the remainder of the JSP page after the tag, as
appropriate, according to the return value of the doEndTag() method. (See
immediately following.)

■ Release state information.

For complete information, see the Sun Microsystems Tag interface Javadoc at:

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/jsp/tagext/Tag.html

In particular, the Tag interface specifies the following key methods:

■ doStartTag()

■ doEndTag()
8-30 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
The tag developer provides code for these methods in the tag handler class, as
appropriate, to be executed as the start-tag and end-tag, respectively, are
encountered. The JSP page implementation class generated by the JSP translator
includes appropriate calls to these methods.

Implement action processing—whatever you want the action tag to accomplish—in
the doStartTag() method. The doEndTag() method implements any
appropriate post-processing. In the case of a tag without a body, essentially nothing
happens between the execution of these two methods.

The Tag interface also specifies getter and setter methods for the pageContext
and parent properties. The JSP page implementation instance invokes the
setPageContext() and setParent() methods before invoking the
doStartTag() and doEndTag() methods.

The doStartTag() method returns an int value. For a tag handler class
implementing the Tag interface, this value is one of the following:

■ SKIP_BODY—Do not evaluate the body, if any. This is the only option if the
TLD file specifies a <body-content> setting of empty for the tag associated
with this handler.

■ EVAL_BODY_INCLUDE—Evaluate the body and pass it through to the current
JSP out object.

The doEndTag() method also returns an int value, one of the following:

■ SKIP_PAGE—Skip the rest of the page after the tag. If the request was
originally from another page, from which the current page was forwarded to or
included, only the remainder of the current page evaluation is skipped.

■ EVAL_PAGE—Evaluate the remainder of the page after the tag.

Simple Tag Handlers with Iteration
For a custom tag that has a body that does not require access and special processing
by the tag handler, but does require repeated reevaluation such as for iteration, the
tag handler class can implement the following standard interface:

■ javax.servlet.jsp.tagext.IterationTag

The IterationTag interface extends the Tag interface. A class that implements
the IterationTag interface is still known as a simple tag handler.
JSP Tag Libraries 8-31

Tag Handlers
The following standard support class implements the IterationTag interface, as
well as the java.io.Serializable interface, and can be used as a base class:

■ javax.servlet.jsp.tagext.TagSupport

In addition to implementing appropriate methods from the Tag and
IterationTag interfaces, the TagSupport class includes a convenience method,
findAncestorWithClass(), that calls the getParent() method defined in the
Tag interface.

The IterationTag interface inherits basic tag-handling functionality, including
the doStartTag() and doEndTag() methods, from the Tag interface. See "Simple
Tag Handlers without Iteration" on page 8-30.

The IterationTag interface also defines the following additional key method:

■ doAfterBody()

This method is called after each evaluation of the tag body, to see if the body should
be evaluated again. It returns one of the following int values:

■ SKIP_BODY—Stop iterating; do not reevaluate the tag body. Call doEndTag()
instead. The SKIP_BODY setting is also used when the body is not to be
evaluated in the first place, and is the only option if the TLD file specifies a
<body-content> setting of empty for the tag associated with this handler.

■ EVAL_BODY_AGAIN—Continue iterating; reevaluate the tag body. After the
body is evaluated, the doAfterBody() method is called again.

Note: It is not advisable to extend the TagSupport class if your
tag handler does not have to support body iteration. Because
TagSupport implements the IterationTag interface, there is
looping logic that would be unnecessary. In addition to being
generally inefficient, this increases the likelihood of methods
exceeding a Java 64K size limit.
8-32 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
Tag Handlers That Access Body Content
For a custom tag with body content that the tag handler must be able to access, the
tag handler class can implement the following standard interface:

■ javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the BodyTag interface, as well as
the java.io.Serializable interface, and can be used as a base class:

■ javax.servlet.jsp.tagext.BodyTagSupport

This class implements appropriate methods from the Tag, IterationTag, and
BodyTag interfaces.

BodyTag Features
The BodyTag interface inherits basic tag-handling functionality from the Tag
interface, including the doStartTag() and doEndTag() methods and their
defined return values. It also inherits functionality from the IterationTag
interface, including the doAfterBody() method and its defined return values. See
"Simple Tag Handlers without Iteration" on page 8-30 and "Simple Tag Handlers
with Iteration" on page 8-31.

Notes:

■ In the JSP 1.1 specification, the doAfterBody() method is
defined in the BodyTag interface. Moving this method
definition to the IterationTag interface in JSP 1.2 allows a
simple iteration tag handler to avoid the overhead of
maintaining a BodyContent object.

■ For a complete example of IterationTag usage, see
"Example: Using the IterationTag Interface" on page 8-53.

Note: Do not use the BodyTag interface (or BodyTagSupport
class) if your tag handler does not actually require access to the
body content. This would result in the needless overhead of
creating and maintaining a BodyContent object. Depending on
whether iteration through the body is required, use the Tag
interface or the IterationTag interface (or TagSupport class)
instead.
JSP Tag Libraries 8-33

Tag Handlers
Along with its inherited features, the BodyTag interface adds functionality to
capture execution results from the tag body. Evaluation of a tag body is
encapsulated in an instance of the javax.servlet.jsp.tagext.BodyContent
class. The page implementation object creates this instance as appropriate. See
"BodyContent Objects" on page 8-35.

As with the Tag interface, the doStartTag() method specified in the BodyTag
interface supports int return values of SKIP_BODY and EVAL_BODY_INCLUDE.
For BodyTag, this method also supports an int return value of
EVAL_BODY_BUFFERED. To summarize the meanings:

■ SKIP_BODY—Do not evaluate the body.

■ EVAL_BODY_INCLUDE—Evaluate the body and pass it through to the JSP out
object without the body content being made available to the tag handler. (This is
essentially the same behavior as in an EVAL_BODY_INCLUDE scenario with a
tag handler that implements the IterationTag interface.)

■ EVAL_BODY_BUFFERED—Create a BodyContent object for processing of the
tag body content.

The BodyTag interface also adds definitions for the following methods:

■ setBodyContent()—Set the bodyContent property (a BodyContent
instance) of the tag handler.

■ doInitBody()—Prepare to evaluate the tag body.

If the doStartTag() method returns EVAL_BODY_BUFFERED, the JSP page
implementation instance executes the following steps, in order:

1. It creates a BodyContent instance.

2. It calls the setBodyContent() method of the tag handler, to pass the
BodyContent instance to the tag handler.

3. It calls the doInitBody() method of the tag handler to perform initialization,
if any, related to the BodyContent instance.

These steps occur before the tag body is evaluated. While the body is evaluated, the
JSP out object will be bound to the BodyContent object.

After each evaluation of the body, as for tag handlers implementing the
IterationTag interface, the page implementation instance calls the tag handler
doAfterBody() method. This involves the following possible return values:

■ SKIP_BODY—Stop iterating; do not reevaluate the tag body. Call doEndTag()
instead. The JSP out object is restored from the page context.
8-34 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
■ EVAL_BODY_AGAIN—Continue iterating; reevaluate the tag body. When the
body is evaluated, it is passed through to the current JSP out object. After the
body is evaluated, the doAfterBody() method is called again.

Once evaluation of the body is complete, for however many iterations are
appropriate, the page implementation instance invokes the tag handler
doEndTag() method.

BodyContent Objects
For tag handlers implementing the BodyTag interface, evaluation results from the
tag body are made accessible to the tag handler through an instance of the
javax.servlet.jsp.tagext.BodyContent class. This class extends the
javax.servlet.jsp.JspWriter class.

A BodyContent instance is created through the pushBody() method of the JSP
page context.

The BodyContent class, in addition to inheriting JspWriter features, adds
methods to accomplish the following:

■ Return its contents as a java.io.Reader object (getReader() method).

■ Write its contents into a java.io.Writer object (writeOut() method).

■ Convert its contents into a String object (getString() method).

■ Clear its contents (clearBody() method).

Typical uses for a BodyContent object include the following:

■ Convert its contents into a String instance and then use the string as a value
for an operation.

■ Write its contents into the JSP out object that was active as of when the start-tag
was encountered.

TryCatchFinally Interface
For data integrity and resource management when exceptions occur during tag
processing, the JSP 1.2 specification adds the
javax.servlet.jsp.tagext.TryCatchFinally interface. Implementing this
interface in your tag handlers is particularly useful for tags that must handle errors,
and for ensuring the proper release of resources.
JSP Tag Libraries 8-35

Tag Handlers
The TryCatchFinally interface specifies the following methods:

■ void doCatch(java.lang.Throwable throw)

This method can be invoked on a tag handler when a Throwable error occurs
during evaluation of a tag body or during a call to the doStartTag(),
doEndTag(), doAfterBody(), or doInitBody() method. The Throwable
object that was encountered is taken as input by the doCatch() method. This
method would not be invoked if the Throwable error occurs during a call to a
setter method.

The doCatch() method may throw an exception (the original Throwable
exception or a new exception) to be propagated through an error chain.

■ void doFinally()

This method is invoked regardless of whether a Throwable error, as discussed
for the doCatch() method, occurs. It would not be invoked, however, if a
Throwable error occurs during a call to a setter method.

The doFinally() method should not throw an exception.

Following is a typical TryCatchFinally invocation (from the Sun Microsystems
JavaServer Pages Specification, Version 1.2):

 h = get a Tag(); // get a tag handler, perhaps from pool

 h.setPageContext(pc); // initialize as desired
 h.setParent(null);
 h.setFoo("foo");

 // tag invocation protocol; see Tag.java
 try {
 h.doStartTag()...

 h.doEndTag()...
 } catch (Throwable t) {
 /* React to exceptional condition; invoked if exception occurs between
 doStartTag() and doEndTag(). */
 h.doCatch(t);
 } finally {
 // restore data invariants and release pre-invocation resources
 h.doFinally();
 /* doFinally() is almost always called, unless Throwable error occurs
 during setter method, or Java thread terminates. */
 }
8-36 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Handlers
Access to Outer Tag Handler Instances
Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which may be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static findAncestorWithClass()
method of the javax.servlet.jsp.tagext.TagSupport class. Even though
the outer tag handler instance is not named in the JSP page context, it is accessible
because it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:bar1 attr="abc" >
 <foo:bar2 />
</foo:bar1>

Within the code of the bar2 tag handler class (class Bar2Tag, by convention), you
can have a statement such as the following:

Tag bar1tag = TagSupport.findAncestorWithClass(this, Bar1Tag.class);

The findAncestorWithClass() method takes the following as input:

■ the this object that is the class handler instance from which
findAncestorWithClass() was called (a Bar2Tag instance in the example)

■ the name of the bar1 tag handler class (presumed to be Bar1Tag in the
example), as a java.lang.Class instance

The findAncestorWithClass() method returns an instance of the appropriate
tag handler class, in this case Bar1Tag, as a javax.servlet.jsp.tagext.Tag
instance.

It is useful for a Bar2Tag instance to have access to the outer Bar1Tag instance in
case the Bar2Tag needs the value of a bar1 tag attribute or needs to call a method
on the Bar1Tag instance.
JSP Tag Libraries 8-37

OC4J JSP Tag Handler Features
OC4J JSP Tag Handler Features
This section describes OC4J JSP extended features for tag handler pooling and code
generation size reduction. It covers the following topics:

■ Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse

■ Tag Handler Code Generation

Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse
In Oracle9iAS release 2, you can specify that tag handler instances be reused within
each JSP page. This is sometimes referred to as tag handler instance pooling. As of
release 2 (9.0.3), there are two models for this:

■ runtime model—The logic and patterns of tag handler reuse is determined at
runtime, during execution of the JSP pages. Tag handler reuse is within
application scope.

■ compile-time model—The logic and patterns of tag handler reuse is determined at
compile-time, during translation of the JSP pages. This is an effective way to
improve performance for an application with very large numbers of tags within
the same page (hundreds of tags, for example).

The JSP tags_reuse_default configuration parameter is relevant in either case.
See "JSP Configuration Parameters" on page 3-9 for further information about this
parameter and how to set it.

Key Points Regarding Tag Handler Reuse
Be aware of the following points about tag handler reuse:

■ In the OC4J 9.0.3 implementation, the default tags_reuse_default setting is
runtime, for use of the runtime model.

■ If you switch from the runtime model (tags_reuse_default value of
runtime) to the compile-time model (tags_reuse_default value of
compiletime or compiletime_with_release), or from the compile-time
model to the runtime model, you must re-translate the JSP pages.

■ The JSP container also supports tag handler reuse in the JServ environment. In
that environment, the default tags_reuse_default setting is none, for no
tag handler reuse.

■ Any given tag handler instance processes only one request at a time.
8-38 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

OC4J JSP Tag Handler Features
Enabling or Disabling the Runtime Model for Tag Handler Reuse
The runtime model can be enabled in either of two ways:

■ Use the default tags_reuse_default value of runtime. (For backward
compatibility, a setting of true is also supported and is equivalent to
runtime.)

or:

■ If tags_reuse_default has a value of none, you can override this in any
particular JSP page by setting the oracle.jsp.tags.reuse attribute in the
JSP page context to true. For example:

pageContext.setAttribute("oracle.jsp.tags.reuse", new Boolean(true));

You can also disable the runtime model in either of two ways:

■ Set tags_reuse_default to a value of none. This also disables the
compile-time model. (For backward compatibility, a setting of false is also
supported and is equivalent to none.)

or:

■ If tags_reuse_default has a value of runtime, you can override this in any
particular JSP page by setting the oracle.jsp.tags.reuse attribute in the
JSP page context to false. For example:

pageContext.setAttribute("oracle.jsp.tags.reuse", new Boolean(false));

Notes:

■ Remember to retranslate your JSP pages when switching from
the compile-time model to the runtime model for tag handler
reuse.

■ You can use separate oracle.jsp.tags.reuse settings in
different pages, or even in different sections of the same page.

■ The oracle.jsp.tags.reuse attribute is ignored with a
tags_reuse_default setting of compiletime or
compiletime_with_release.
JSP Tag Libraries 8-39

OC4J JSP Tag Handler Features
Enabling or Disabling the Compile-Time Model for Tag Handler Reuse
You can switch to the compile-time model for tag-handler reuse in one of two ways:

■ Set the tags_reuse_default configuration parameter to compiletime.

or:

■ Set the tags_reuse_default configuration parameter to
compiletime_with_release.

A compiletime_with_release setting results in the tag handler release()
method being called between usages of the same tag handler within the same page.
This method releases state information, with details according to the tag handler
implementation. For example, if the tag handler is coded so as to assume a release
of state information between tag usages, then compiletime_with_release
would be appropriate. If unsure about the implementation of the tag handler and
about which compile-time setting to use, you might consider experimentation.

To disable the compile-time model, set tags_reuse_default to a value of none.
This also disables the runtime model.

Tag Handler Code Generation
The Oracle JSP implementation reduces the code generation size for custom tag
usage. In addition, there is a JSP configuration flag, reduce_tag_code, that you
can set to true for even further size reduction.

Be aware, however, that when this flag is enabled, the code generation pattern does
not maximize tag handler reuse. Although you can still improve performance by
setting tags_reuse_default to true as described in "Disabling or Enabling
Runtime or Compile-Time Tag Handler Reuse" on page 8-38, the effect is not
maximized when reduce_tag_code is also true.

See "JSP Configuration Parameters" on page 3-9 for further information about these
parameters and how to set them.

Notes:

■ Remember to retranslate your JSP pages when switching from
the runtime model to the compile-time model for tag handler
reuse.

■ The page context oracle.jsp.tags.reuse attribute is
ignored with a tags_reuse_default setting of
compiletime or compiletime_with_release.
8-40 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Scripting Variables, Declarations, and Tag-Extra-Info Classes
Scripting Variables, Declarations, and Tag-Extra-Info Classes
A custom tag action can create one or more server-side objects, known as scripting
variables, that are available for use by the tag itself or by other scripting elements,
such as scriptlets and other tags. A scripting variable can be defined either through
a <variable> element in the TLD file of the tag library, for elementary cases, or
through a tag-extra-info class, for cases where the logic for the scripting variable is
more complex.

This section covers the following topics:

■ Using Scripting Variables

■ Scripting Variable Scopes

■ Variable Declaration Through TLD variable Elements

■ Variable Declaration Through Tag-Extra-Info Classes

Using Scripting Variables
Objects that are defined explicitly in a custom tag can be referenced in other actions
through the JSP page context, using the object ID as a handle. Consider the
following example:

<oracust:foo id="myobj" attr1="..." attr2="..." />

This statement results in the object myobj being available to scripting elements in
the page, according to the declared scope of myobj. (See "Scripting Variable Scopes"
on page 8-42.) The id attribute is a translation-time attribute. You can specify a
variable in one of two ways:

■ Provide a <variable> element for the variable in the TLD file, to specify the
name and type of the variable, along with additional information. See "Variable
Declaration Through TLD variable Elements" on page 8-42.

■ Create a tag-extra-info class to specify the name and type of the variable, along
with additional information and related logic. Specify the tag-extra-info class
name in a <tei-class> element in the TLD file. See "Variable Declaration
Through Tag-Extra-Info Classes" on page 8-44.

Generally, the more convenient <variable> mechanism will suffice.

The JSP container enters myobj into the page context, where it can later be obtained
by other tags or scripting elements using syntax such as the following:

<oracust:bar ref="myobj" />
JSP Tag Libraries 8-41

Scripting Variables, Declarations, and Tag-Extra-Info Classes
The myobj object is passed through the tag handler instances for the foo and bar
tags. All that is required is knowledge of the name of the object (myobj).

Scripting Variable Scopes
Specify the scope of a scripting variable in the <variable> element or
tag-extra-info class of the tag that creates the variable. It can be one of the following
int constants:

■ NESTED—Use this setting for the scripting variable to be available between the
start-tag and end-tag of the action that defines it.

■ AT_BEGIN—Use this setting for the scripting variable to be available from the
start-tag to the end of the page.

■ AT_END—Use this setting for the scripting variable to be available from the
end-tag to the end of the page

Variable Declaration Through TLD variable Elements
In the JSP 1.1 specification, use of a scripting variable for a custom tag requires the
creation of a tag-extra-info (TEI) class. See "Variable Declaration Through
Tag-Extra-Info Classes" on page 8-44. With the JSP 1.2 specification, however, there
is a simpler mechanism—a <variable> element in the TLD file where the
associated tag is defined. This is sufficient for most cases, where logic related to the
variable is simple enough to not require use of a TEI class.

The <variable> element is a subelement under the <tag> element that defines
the tag that uses the variable.

You can specify the name of the variable in one of two ways:

■ Use a <name-given> subelement under <variable> to specify the variable
name directly.

or:

■ Use a <name-from-attribute> subelement under <variable> to specify a
tag attribute whose value, at translation-time, will specify the variable name.

Note: In the example, id and ref are merely sample attribute
names; there are no special predefined semantics for these attribute
names. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.
8-42 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Scripting Variables, Declarations, and Tag-Extra-Info Classes
Along with <name-given> and <name-from-attribute>, the <variable>
element has the following subelements:

■ The <variable-class> element specifies the class of the variable. The
default is java.lang.String.

■ The <declare> element specifies whether the variable is to be a newly
declared variable, in which case the JSP translator will declare it. The default is
true. If false, then the variable is assumed to have been declared earlier in
the JSP page through a standard mechanism such as a jsp:useBean action, a
JSP scriptlet, a JSP declaration, or some custom action.

■ The <scope> element specifies the scope of the variable—NESTED, AT_BEGIN,
or AT_END, as described in "Scripting Variable Scopes" on page 8-42. The
default is NESTED.

Here is an example that declares two scripting variables for a tag myaction. Note
that details within the <tag> element that are not directly relevant to this
discussion are omitted:

<tag>
 <name>myaction</name>
 ...
 <attribute>
 <name>attr2</name>
 <required>true</required>
 </attribute>
 <variable>
 <name-given>foo_given</name-given>
 <declare>false</declare>
 <scope>AT_BEGIN</scope>
 </variable>
 <variable>
 <name-from-attribute>attr2</name-from-attribute>
 <variable-class>java.lang.Integer</variable-class>
 </variable>
</tag>

The name of the first variable is hardcoded as foo_given. By default, it is of type
String. It is not to be newly declared, so is assumed to exist already, and its scope
is from the start-tag to the end of the page.

The name of the second variable is according to the setting of the required attr2
attribute. It is of type Integer. By default, it is to be newly declared and its scope is
NESTED—between the myaction start-tag and end-tag.
JSP Tag Libraries 8-43

Scripting Variables, Declarations, and Tag-Extra-Info Classes
See "Tag Library Descriptor Files" on page 8-8 for more information about related
TLD syntax.

Variable Declaration Through Tag-Extra-Info Classes
For a scripting variable with associated logic that is at least somewhat complicated,
the use of a <variable> element in the TLD file to declare the variable might be
insufficient. In this case, you can specify details regarding the scripting variable in a
subclass of the javax.servlet.jsp.tagext.TagExtraInfo abstract class.
This manual refers to such a subclass as a tag-extra-info class. Tag-extra-info classes
support additional validation of tag attributes and provide additional information
about scripting variables to the JSP runtime.

The JSP container uses tag-extra-info instances during translation. The TLD file
specifies any tag-extra-info classes to use for scripting variables of a given tag. Use
<tei-class> elements, as in the following example:

<tag>
 <name>loop</name>
 <tag-class>examples.ExampleLoopTag</tag-class>
 <tei-class>examples.ExampleLoopTagTEI</tei-class>
 <body-content>JSP</body-content>
 <description>for loop</description>
 <attribute>
 ...
 </attribute>
 ...
</tag>

The following are key related classes, also in the javax.servlet.jsp.tagext
package:

■ TagData—An instance of this class contains translation-time attribute value
information for a tag instance.

■ VariableInfo—Each instance of this class contains information about a
scripting variable that is declared, created, or modified by a tag at runtime.

The key methods of the TagExtraInfo class are as follows:

■ boolean isValid(TagData data)—The JSP translator calls this method
for translation-time validation of the tag attributes, passing it a TagData
instance.

■ VariableInfo[] getVariableInfo(TagData data)—The JSP translator
calls this method during translation, passing it a TagData instance. This
8-44 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Scripting Variables, Declarations, and Tag-Extra-Info Classes
method returns an array of VariableInfo instances, with one instance for
each scripting variable the tag creates.

The tag-extra-info class constructs each VariableInfo instance with the following
information regarding the scripting variable:

■ its name

■ its Java type (not a primitive type)

■ a boolean value indicating whether the variable is to be newly declared, in
which case the JSP translator will declare it

■ its scope

See "Sample Tag-Extra-Info Class: ExampleLoopTagTEI.java" on page 8-59 for
sample code of a tag-extra-info class.

Important: As of the OC4J 9.0.3 implementation, you can have the
getVariableInfo() method return either a fully qualified class
name (FQCN) or a partially qualified class name (PQCN) for the
Java type of the scripting variable. FQCNs were required in
previous releases, and are still preferred to avoid confusion in case
there are duplicate class names between packages. Primitive types
are not supported.
JSP Tag Libraries 8-45

Validation and Tag-Library-Validator Classes
Validation and Tag-Library-Validator Classes
The JSP 1.2 specification adds a feature to optionally associate a "validator" class
with each tag library. These classes are referred to as tag-library-validator (TLV)
classes. The purpose of a TLV class is to validate any JSP page that uses the tag
library, verifying that the page adheres to any constraints that you wish to impose
through your implementation of the TLV class. Although it is probably typical for a
TLV class to check for constraints regarding use of the associated tag library only,
there is no limitation—the TLV class can check any aspect of a JSP page.

A tag-library-validator class must be a subclass of the
javax.servlet.jsp.tagext.TagLibraryValidator class.

This section discusses tag library validation and TLV classes, covering the following
topics:

■ TLD validator Element

■ Key TLV-Related Classes and the validation() Method

■ TLV Processing

■ Validation Mechanisms

TLD validator Element
To specify a TLV class for a tag library, use a <validator> element in the TLD file.
The <validator> element has the following subelements:

■ The <validator-class> subelement specifies the TLV class name.

■ The <description> subelement can be used to provide documentation about
the TLV class.

■ The <init-param> subelement and its own subelements—<param-name>
and <param-value>—can be used to set initialization parameters for the TLV
class. This is similar to how <init-param> subelements work within
<servlet> elements in the application deployment descriptor (web.xml).
There is also an optional <description> subelement under the
<init-param> element.

The following <validator> element examples are from the Sun Microsystems
JavaServer Pages Standard Tag Library, Version 1.0 specification.
8-46 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Validation and Tag-Library-Validator Classes
Example 1 This is an example of a TLV class (ScriptFreeTLV) that can disallow
JSP declarations, JSP scriptlets, JSP expressions, and runtime expressions according
to the settings of its initialization parameters. In this case, JSP expressions and
runtime expressions will be allowed, but not JSP declarations or JSP scriptlets.

<validator>
 <validator-class>
 javax.servlet.jsp.jstl.tlv.ScriptFreeTLV
 </validator-class>
 <init-param>
 <param-name>allowDeclarations</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowScriptlets</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowExpressions</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>allowRTExpressions</param-name>
 <param-value>true</param-value>
 </init-param>
</validator>

Example 2 This is an example of a TLV class (PermittedTagLibsTLV) that allows
tag library usage only as specified in its initialization parameter. In addition to the
tag library with which the TLV class is associated (the use of which is allowed
implicitly), the TLV class allows the libraries specified in a list (with entries
separated by white space) in its initialization parameter setting. In this case, it
allows only the core, xml, fmt, and sql JSTL libraries.

<validator>
 <validator-class>
 javax.servlet.jsp.jstl.tlv.PermittedTaglibsTLV
 </validator-class>
 <init-param>
 <param-name>permittedTaglibs</param-name>
 <param-value>
 http://java.sun.com/jstl/core
 http://java.sun.com/jstl/xml
 http://java.sun.com/jstl/fmt
JSP Tag Libraries 8-47

Validation and Tag-Library-Validator Classes
 http://java.sun.com/jstl/sql
 </param-value>
 </init-param>
</validator>

Key TLV-Related Classes and the validation() Method
As the introduction mentions, a TLV class is a subclass of the
javax.servlet.jsp.tagext.TagLibraryValidator class.

The following related classes are also in the javax.servlet.jsp.tagext
package:

■ PageData—An instance of this class is generated by the JSP translator and
contains information corresponding to the XML view of the page being
translated.

■ ValidationMessage—An instance of this class contains an error message
from a TLV instance, being returned through the TLV validate() method.

Here is the key method of a TLV class:

■ ValidationMessage[] validate
 (String prefix, String uri, PageData page)

The JSP container calls this method each time it encounters a taglib directive
that points to a TLD file that has a <validator> element. The method takes as
input the tag library prefix, the TLD URI, and the PageData object (XML view)
of the page. If errors are encountered during validation, the validate()
method returns an array of validation messages. Because the OC4J JSP
container supports the optional jsp:id attribute, the jsp:id values are
included in the validation messages.

See the next section, "TLV Processing", for more information.

TLV Processing
As each taglib directive is encountered in a JSP page during translation, the JSP
container searches the associated TLD file for a <validator> element that
specifies a TLV class. If one is found, the container executes the following steps
during the translation. See the preceding section, "Key TLV-Related Classes and the
validation() Method", for background information about classes and methods
discussed here.

1. The TLV class is instantiated, with initialization parameter settings according to
any <init-param> subelements of the <validator> element.
8-48 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Validation and Tag-Library-Validator Classes
2. The XML view of the JSP page is exposed to the TLV instance. (See "Details of
the JSP XML View" on page 5-15.)

3. The validate() method of the TLV instance is called to validate the JSP page.
(See the next section, "Validation Mechanisms".) If this method encounters any
errors, it returns an array of ValidationMessage instances. If there are no
errors, the method can return null or an empty ValidationMessage[]
array.

4. Each time a custom tag belonging to this library (the library associated with the
TLV class) is encountered, it is checked for a tag-extra-info class. If one is
specified, then it is instantiated by the JSP container and its isValid() method
is called to validate the attributes of the tag. The isValid() method returns
true if this validation is successful, or false if not.

Validation Mechanisms
The XML view of a JSP page cannot generally be validated against a DTD and does
not include a DOCTYPE statement. There are various namespace-aware mechanisms
that you can use for validation. One mechanism in particular is the W3C XML
Schema language. Refer to the W3C Web site for information:

http://www.w3.org/XML/

More elementary mechanisms may be suitable as well, such as simply verifying that
only a certain set of elements are used in a JSP page, or that a certain set of elements
are not used in a page.

Note: The OC4J JSP container implements an optional JSP 1.2
feature for improved reporting of validation errors—the jsp:id
attribute. See "The jsp:id Attribute for Error Reporting During
Validation" on page 5-16 for information.
JSP Tag Libraries 8-49

Tag Library Event Listeners
Tag Library Event Listeners
The Sun Microsystems Java Servlet Specification, Version 2.3 describes the use of the
following types of event listeners:

■ servlet context listener, implementing interface
javax.servlet.ServletContextListener

■ servlet context attribute listener, implementing interface
javax.servlet.ServletContextAttributeListener

■ HTTP session listener, implementing interface
javax.servlet.http.HttpSessionListener

■ HTTP session attribute listener, implementing interface
javax.servlet.http.HttpSessionAttributeListener

In servlet 2.3 functionality, you can specify event listeners in the application
web.xml file. As a result of this, they are registered with the servlet container and
notified of relevant state changes. Servlet context listeners, for example, are notified
of changes in the application ServletContext object, such as application startup
or shutdown.

The JSP 1.2 specification, for convenience in packaging and deploying tag libraries,
adds support for <listener> elements in TLD files. You can use these elements to
specify event listeners, as an alternative to specifying them in the web.xml file. This
section describes the JSP 1.2 features, covering the following topics:

■ TLD listener Element

■ Activation of Tag Library Event Listeners

■ Access of TLD Files for Event Listener Information

TLD listener Element
In a TLD file, each <listener> element is at the top level underneath the root
<taglib> element. The <listener> element has one subelement, the required
<listener-class> element, which specifies the listener class to be instantiated.
This would be a class that implements the ServletContextListener,
ServletContextAttributeListener, HttpSessionListener, or
HttpSessionAttributeListener interface.
8-50 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Event Listeners
Following is an example:

<taglib>
...
 <listener>
 <listener-class>mypkg.MyServletContextListener</listener-class>
 </listener>
...
</taglib>

Activation of Tag Library Event Listeners
When an application starts, the servlet container will make a call to the JSP
container to perform the following:

1. Find and access TLD files.

2. Read TLD files to find their <listener> elements.

3. Instantiate and register the listeners.

This is a convenient way to manage application-level and session-level resources
that are associated with the usage of a particular tag library. The functionality is
essentially the same as for servlet context listeners specified in the web.xml file.

Notes:

■ For event listeners specified in TLD files, the order in which the
listeners are registered is undefined, but they are all registered
prior to application startup and they are all registered after
listeners that are specified in the web.xml file.

■ If a TLD file is present within the WAR file structure, it will be
scanned for listeners, and any listeners will be registered, even
if the associated tag library is not actually used in the
application.
JSP Tag Libraries 8-51

Tag Library Event Listeners
Access of TLD Files for Event Listener Information
You must take certain standard measures to ensure that the JSP container can access
TLD files to find their <listener> elements. For general information about TLD
file location, accessibility, and packaging, see "Tag Library and TLD Setup and
Access" on page 8-16. That section includes information about the OC4J shared tag
library directory ("well-known" URI location).

In addition, for any TLD file in the well-known tag library directory, you must
specify the tag library in a <taglib> element in the application web.xml file if
you want the application to activate any listeners specified in the TLD file. Without
this step, TLD files in the shared directory are not accessed to search for their
<listener> elements. This is to protect against needless performance impact for
any application that does not use a tag library that happens to be in the shared
directory.
8-52 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

End-to-End Custom Tag Examples
End-to-End Custom Tag Examples
This section provides complete examples of custom tag usage, including sample JSP
pages, tag handler classes, and tag library descriptor files. It includes the following
samples:

■ Example: Using the IterationTag Interface

■ Example: Using the IterationTag Interface and a Tag-Extra-Info Class

Example: Using the IterationTag Interface
This sample shows the use of a custom tag, myIterator, to make the current item
in a collection available as a scripting variable. It defines a scripting variable
through a <variable> element in the TLD file.

For complete information about this example, including unpacking and deploying
it, refer to the following Oracle Technology Network Web site:

http://otn.oracle.com/tech/java/oc4j/htdocs/how-to-jsp-iterationtag.html

(You must register for membership, but registration is free of charge.)

Sample JSP Page: exampleiterator.jsp
The following JSP page uses the myIterator tag:

%@ page contentType="text/html;charset=windows-1252"%>
<HTML>
<HEAD>
<TITLE>
OJSP 1.2 IterationTag Sample
</TITLE>
</HEAD>
<%@ taglib uri="/WEB-INF/exampleiterator.tld" prefix="it"%>
<BODY>

<% java.util.Vector vector = new java.util.Vector();
 vector.addElement("One");
 vector.addElement("Two");
 vector.addElement("Three");

Note: These examples are for illustrative purposes only and do
not necessarily reflect the most realistic or efficient approaches.
JSP Tag Libraries 8-53

End-to-End Custom Tag Examples
 vector.addElement("Four");
 vector.addElement("Five");
%>
 Collection to Iterate over is <%=vector%> <p>

 Iterating ...

 <it:myIterator collection="<%= vector%>" >
 Item <%= item%>

 </it:myIterator>
</p>
</BODY>
</HTML>

Sample Tag Handler Class: MyIteratorTag.java
In this sample tag handler class, MyIteratorTag, the doStartTag() method
checks whether the collection is null. If not, it retrieves the collection object. If the
iterator contains at least one element, then doStartTag() makes the first item in
the collection available as a page-scope object and returns EVAL_BODY_INCLUDE.
This alerts the JSP container to add the contents of the tag body to the response
object and to call the doAfterBody() method.

This class extends the tag handler support class TagSupport, which implements
the IterationTag interface.

package oracle.taglib;

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/**
 * MyIteratorTag extends TagSupport. The TagSupport class in JSP 1.2 implements
the IterationTag
 */

public class MyIteratorTag extends TagSupport
{
 private Iterator iterator;
 private Collection _collection;

 public void setCollection(Collection collection)
 {
 this._collection = collection;
8-54 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

End-to-End Custom Tag Examples
 }

 public int doStartTag() throws JspTagException
 {
 if (_collection == null)
 {
 throw new JspTagException("No collection with name "
 + _collection
 + " found");
 }

 iterator = _collection.iterator();
 if (iterator.hasNext())
 {
 pageContext.setAttribute("item", iterator.next());
 return EVAL_BODY_INCLUDE;
 }
 else
 {
 return SKIP_BODY;
 }
 }

 public int doAfterBody()
 {

 if (iterator.hasNext())
 {
 pageContext.setAttribute("item", iterator.next());
 return EVAL_BODY_AGAIN;
 }
 else
 {
 return SKIP_BODY;
 }
 }

}

JSP Tag Libraries 8-55

End-to-End Custom Tag Examples
Sample Tag Library Descriptor File: exampleiterator.tld
Here is a sample TLD file to define the myIterator tag. This example takes
advantage of the JSP 1.2 feature allowing definition of scripting variables directly in
TLD files through <variable> elements. This TLD file defines the scripting
variable item of type java.lang.Object. (In a JSP 1.1 environment, this would
require use of a tag-extra-info class.) The variable is to be newly declared.

The myIterator tag has an attribute collection to specify the collection. This
attribute is required and can be set as a runtime expression. The tag also has a
<body-content> value of JSP, which means the JSP translator should process and
translate the body code.

For JSP 1.2 syntax, be sure to specify the JSP 1.2 tag library DTD path.

<?xml version = ’1.0’ encoding = ’windows-1252’?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>iterate</short-name>
 <description>This tag lib implements new JSP 1.2 IterationTag
 interface</description>
 <tag>
 <name>myIterator</name>
 <tag-class>oracle.taglib.MyIteratorTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>collection</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <variable>
 <name-given>item</name-given>
 <variable-class>java.lang.Object</variable-class>
 <declare>true</declare>
 <!-- default scope: nested -->
 <description>Scripting Variable item</description>
 </variable>
 </tag>
</taglib>
8-56 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

End-to-End Custom Tag Examples
Example: Using the IterationTag Interface and a Tag-Extra-Info Class
This section provides an end-to-end example of the definition and use of a custom
tag, loop, that is used to iterate through the tag body a specified number of times.
It defines a scripting variable through a tag-extra-info class.

Included in the example are the following:

■ JSP source code for a page that uses the tag

■ source code for the tag handler class

■ source code for the tag-extra-info class

■ the TLD file

Sample JSP Page: exampletag.jsp
Following is a sample JSP page, exampletag.jsp, that uses the loop tag,
specifying that the outer loop be executed five times and the inner loop three times:

<%@ taglib uri="/WEB-INF/exampletag.tld" prefix="foo" %>
<% int num=5; %>

<pre>
<foo:loop index="i" count="<%=num%>">
body1here: i expr: <%=i%>
 i property: <jsp:getProperty name="i" property="value" />
 <foo:loop index="j" count="3">
 body2here: j expr: <%=j%>
 i property: <jsp:getProperty name="i" property="value" />
 j property: <jsp:getProperty name="j" property="value" />
 </foo:loop>
</foo:loop>
</pre>

Note: Sample code here uses extended datatypes in the
oracle.jsp.jml package. "Extended Type JavaBeans" on
page 2-14 has an overview of these types. For more information,
refer to the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference.
JSP Tag Libraries 8-57

End-to-End Custom Tag Examples
Sample Tag Handler Class: ExampleLoopTag.java
This section provides source code for the tag handler class, ExampleLoopTag.
Note the following:

■ The tag handler class extends the standard TagSupport class to implement the
IterationTag interface.

■ The doStartTag() method returns the integer constant
EVAL_BODY_INCLUDE so that the tag body (essentially, the loop) is processed.

■ After each pass through the loop, the doAfterBody() method increments the
counter. It returns EVAL_BODY_AGAIN if there are more iterations left, and
SKIP_BODY after the last iteration.

■ This class does not define a doEndTag() method—the underlying
implementation from TagSupport is used.

Here is the code:

package examples;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.util.Hashtable;
import java.io.Writer;
import java.io.IOException;
import oracle.jsp.jml.JmlNumber;

public class ExampleLoopTag
 extends TagSupport
{

 String index;
 int count;
 int i;
 JmlNumber ib;

 public ExampleLoopTag() {
 resetAttr();
 }

 public void release() {
 resetAttr();
 }

 private void resetAttr() {
8-58 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

End-to-End Custom Tag Examples
 index=null;
 count=0;
 i=0;
 ib=null;
 }

 public void setIndex(String index)
 {
 this.index=index;
 }
 public void setCount(String count)
 {
 this.count=Integer.parseInt(count);
 }

 public int doStartTag() throws JspException {
 ib=new JmlNumber();
 pageContext.setAttribute(index, ib);
 i++;
 ib.setValue(i);
 return EVAL_BODY_INCLUDE;
 }

 public int doAfterBody() throws JspException {
 if (i >= count) {
 return SKIP_BODY;
 } else
 pageContext.setAttribute(index, ib);
 i++;
 ib.setValue(i);
 return EVAL_BODY_AGAIN;
 }
}

Sample Tag-Extra-Info Class: ExampleLoopTagTEI.java
This section provides the source code for the tag-extra-info class that describes the
scripting variable used by the loop tag.

A VariableInfo instance is constructed that specifies the following for the
variable:

■ The variable name is according to the index attribute.
JSP Tag Libraries 8-59

End-to-End Custom Tag Examples
■ The variable is of the type oracle.jsp.jml.JmlNumber, which you must
specify as a fully qualified class name.

■ The variable is to be newly declared (by the JSP translator).

■ The variable scope is NESTED.

In addition, the tag-extra-info class has an isValid() method that determines
whether the count attribute is valid—it must be an integer.

package examples;

import javax.servlet.jsp.tagext.*;

public class ExampleLoopTagTEI extends TagExtraInfo {
 public VariableInfo[] getVariableInfo(TagData data) {
 return new VariableInfo[]
 {
 new VariableInfo(data.getAttributeString("index"),
 "oracle.jsp.jml.JmlNumber",
 true,
 VariableInfo.NESTED)
 };
 }

 public boolean isValid(TagData data)
 {
 String countStr=data.getAttributeString("count");
 if (countStr!=null) // for request-time case
 {
 try {
 int count=Integer.parseInt(countStr);
 }
 catch (NumberFormatException e)
 {
 return false;
 }
 }
 return true;
 }
}

8-60 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

End-to-End Custom Tag Examples
Sample Tag Library Descriptor File: exampletag.tld
This section presents the TLD file for the tag library. In this example, the library
consists of only the one tag, loop.

This TLD file follows JSP 1.2 syntax, specifying the following for the loop tag:

■ The tag handler class is examples.ExampleLoopTag.

■ The tag-extra-info class is examples.ExampleLoopTagTEI.

■ The body-content specification is JSP. This means that the JSP translator
should process and translate the body code.

■ There are attributes index and count, both required. The count attribute can
be a request-time JSP expression.

Here is the TLD file:

<?xml version = ’1.0’ encoding = ’ISO-8859-1’?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>simple</short-name>
 <description>
 A simple tab library for the examples
 </description>
 <!-- example tag -->
 <!-- for loop -->
 <tag>
 <name>loop</name>
 <tag-class>examples.ExampleLoopTag</tag-class>
 <tei-class>examples.ExampleLoopTagTEI</tei-class>
 <body-content>JSP</body-content>
 <description>for loop</description>
 <attribute>
 <name>index</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>count</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>
JSP Tag Libraries 8-61

Compile-Time Tags
Compile-Time Tags
Standard tag libraries, as described in the Sun Microsystems JavaServer Pages
Specification, Version 1.2, use a runtime support mechanism. They are typically
portable, not requiring any particular JSP container.

It is also possible for vendors to support custom tags through vendor-specific
functionality in their JSP translators. Such tags are not portable to other containers.

It is generally advisable to develop standard, portable tags that use the runtime
mechanism, but there may be scenarios where tags using a compile-time
mechanism are appropriate, as this section discusses.

General Compile-Time Versus Runtime Considerations
The JSP 1.2 specification describes a runtime support mechanism for custom tag
libraries. This mechanism, using an XML-style TLD file to specify the tags, is
covered earlier in this chapter.

Creating and using a tag library that adheres to this model generally assures that
the library will be portable to any standard JSP environment.

There are, however, reasons to consider compile-time implementations:

■ A compile-time implementation can produce more efficient code.

■ A compile-time implementation allows the developer to catch errors during
translation and compilation, instead of the end-user seeing them at runtime.

JSP Compile-Time Versus Runtime JML Library
OC4J provides a portable tag library called the JSP Markup Language (JML) library.
This library uses the standard JSP 1.2 runtime mechanism. However, the JML tags
are also supported through a compile-time mechanism. This is because the tags
were first introduced with JSP implementations that preceded the JSP 1.1
specification, which is when the runtime mechanism was introduced. The
compile-time tags are still supported for backward compatibility.

The general advantages and disadvantages of compile-time implementations apply
to the Oracle JML tag library as well. There may be situations where it is
advantageous to use the compile-time JML implementation. There are also a few
additional tags in that implementation, and some additional expression syntax that
is supported.

The Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference describes
both the runtime version and the compile-time version of the JML library.
8-62 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Globalization Su
9

JSP Globalization Support

The JSP container in OC4J provides standard globalization support (also known as
National Language Support, or NLS) according to the Sun Microsystems JavaServer
Pages Specification, Version 1.2, and also offers extended support for servlet
environments that do not support multibyte parameter encoding.

Standard Java support for localized content depends on the use of Unicode for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets. (The Unicode version depends on the JDK
version. You can find the Unicode version through the Sun Microsystems Javadoc
for the java.lang.Character class.)

This chapter describes key aspects of JSP support for globalization and
internationalization. The following topics are covered:

■ Content Type Settings

■ JSP Support for Multibyte Parameter Encoding

Note: For detailed information about Oracle9iAS Globalization
Support, see the Oracle9i Application Server Globalization Support
Guide.
pport 9-1

Content Type Settings
Content Type Settings
This section covers standard ways to statically or dynamically specify the content
type for a JSP page. It also discusses an Oracle extension method that enables you to
specify a non-IANA (Internet Assigned Numbers Authority) character set for the
JSP writer object. The section is organized as follows:

■ Content Type Settings in the page Directive

■ Dynamic Content Type Settings

■ Oracle Extension for the Character Set of the JSP Writer Object

Content Type Settings in the page Directive
The page directive has two attributes, pageEncoding and contentType, that
affect the character encoding of the JSP page source (during translation) or response
(during runtime). The contentType attribute also affects the MIME type of the
response. The function of each attribute is as follows:

■ You can use contentType to set the character encoding of the page source and
response, and the MIME type of the response.

■ You can use pageEncoding to set the character encoding of the page source.
The main purpose of this attribute, which was added in the JSP 1.2
specification, is to allow you to set a page source character encoding that is
different than the response character encoding. However, this setting also acts
as a default for the response character encoding if there is no contentType
attribute that specifies a character set.

(There is more information about the relationship between contentType and
pageEncoding later in this section.)

Use the following syntax for contentType:

contentType="TYPE; charset=character_set"

or, to set the MIME type while using the default character set:

contentType="TYPE"

Use the following syntax for pageEncoding:

pageEncoding="character_set"
9-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Content Type Settings
Use the following syntax to set everything:

<%@ page ... contentType="TYPE; charset=character_set"
 pageEncoding="character_set" ... %>

TYPE is an IANA MIME type; character_set is an IANA character set. When
specifying a character set through the contentType attribute, the space after the
semicolon is optional.

Here are some examples of contentType and pageEncoding settings:

<%@ page language="java" contentType="text/html" %>

or:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" %>

or:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="US-ASCII" %>

Without any page directive settings, default settings are as follows:

■ The default MIME type is text/html for traditional JSP pages; it is text/xml
for JSP XML documents.

■ The default for the page source character encoding (for translation) is
ISO-8859-1 (also known as Latin-1) for traditional JSP pages; it is UTF-8 or
UTF-16 for JSP XML documents.

■ The default for the response character encoding is ISO-8859-1 for traditional
JSP pages; it is UTF-8 or UTF-16 for JSP XML documents.

The determination of UTF-8 versus UTF-16 is according to "Autodetection of
Character Encodings" in the XML specification, at
http://www.w3.org/TR/REC-xml.html.

Be aware, however, that there is a relationship between pageEncoding and
contentType regarding character encodings, as documented in the following
table.
JSP Globalization Support 9-3

Content Type Settings
Be aware of the following important usage notes.

■ A page directive that sets contentType or pageEncoding should appear as
early as possible in the JSP page.

■ When a page is a JSP XML document, any pageEncoding setting is ignored.
The JSP container will instead use the XML encoding declaration of the
document. Consider the following example:

<?xml version="1.0" encoding="EUC-JP" ?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">
<jsp:directive.page contentType="text/html;charset=Shift_Jis" />
<jsp:directive.page pageEncoding="UTF-8" />
...

The effective page encoding would be EUC-JP, not UTF-8.

■ You should use pageEncoding only for pages where the byte sequence
represents legal characters in the target character set.

■ You should use contentType only for pages or response output where the
byte sequence represents legal characters in the target character set.

■ The target character set of the response output (as specified by contentType,
for example) should be a superset of the character set of the page source. For
example, UTF-8 is the superset of Big5, but ISO-8859-1 is not.

■ The parameters of a page directive are static. If a page discovers during
execution that a different character set specification is necessary for the
response, it can do one of the following:

– Use the servlet response object API to set the content type during execution,
as described in "Dynamic Content Type Settings" on page 9-5.

contentType Encoding Is
Specified

contentType Encoding Is
Not Specified

pageEncoding Is
Specified

Page source encoding is
according to pageEncoding.

Response encoding is
according to contentType.

Page source encoding is
according to pageEncoding.

Response encoding is
according to pageEncoding.

pageEncoding Is
Not Specified

Page source encoding is
according to contentType.

Response encoding is
according to contentType.

Page source encoding is
according to the default.

Response encoding is
according to the default.
9-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Content Type Settings
or:

– Forward the request to another JSP page or to a servlet.

■ A traditional JSP page source (not a JSP XML document) written in a character
set other than ISO-8859-1 must set the appropriate character set in a page
directive (through the contentType or pageEncoding attribute). The
character set for the page encoding cannot be set dynamically, because the JSP
container has to be aware of the setting during translation.

■ This manual, for simplicity, assumes the typical case that the page text, request
parameters, and response parameters all use the same encoding (although other
scenarios are technically possible). Request parameter encoding is controlled by
the browser, although Netscape and Internet Explorer browsers follow the
setting you specify for the response parameters.

The IANA maintains a registry of MIME types at the following site:

ftp://www.isi.edu/in-notes/iana/assignments/media-types/media-types

The IANA maintains a registry of character encodings at the following site. Use the
indicated "preferred MIME name" if one is listed.

http://www.iana.org/assignments/character-sets

You should use only character sets from the IANA list, except for any additional
Oracle extensions as described in "Oracle Extension for the Character Set of the JSP
Writer Object" on page 9-6.

Dynamic Content Type Settings
For situations where the appropriate content type for the HTTP response is not
known until runtime, you can set it dynamically in the JSP page. The standard
javax.servlet.ServletResponse interface specifies the following method for
this purpose:

void setContentType(java.lang.String contenttype)

Important: To use dynamic content type settings in an OC4J
environment, you must enable the JSP static_text_in_chars
configuration parameter. See "JSP Configuration Parameters" on
page 3-9 for a description.
JSP Globalization Support 9-5

Content Type Settings
The implicit response object of a JSP page is a
javax.servlet.http.HttpServletResponse instance, where the
HttpServletResponse interface extends the ServletResponse interface.

The setContentType() method input, like the contentType setting in a page
directive, can include a MIME type only, or both a character set and a MIME type.
For example:

response.setContentType("text/html; charset=UTF-8");

or:

response.setContentType("text/html");

As with a page directive, the default MIME type is text/html for traditional JSP
pages or text/xml for JSP XML documents, and the default character encoding is
ISO-8859-1.

Set the content type as early as possible in the page, before writing any output to
the JspWriter object.

The setContentType() method has no effect on interpreting the text of the JSP
page during translation. If a particular character set is required during translation,
that must be specified in a page directive, as described in "Content Type Settings in
the page Directive" on page 9-2.

Oracle Extension for the Character Set of the JSP Writer Object
In standard usage, the character set of the content type of the response object, as
determined by the page directive contentType parameter or the
response.setContentType() method, automatically becomes the character set
of the JSP writer object as well. The JSP writer object is a
javax.servlet.jsp.JspWriter instance.

Note: In servlet 2.2 and higher environments, such as OC4J, the
response object has a setLocale() method that takes a
java.util.Locale object as input and sets the character set
based on the specified locale. For example, the following method
call results in a character set of Shift_JIS:

response.setLocale(new Locale("ja", "JP"));

For dynamic specification of the character set, the most recent call
to setContentType() or setLocale() takes precedence.
9-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Content Type Settings
There are some character sets, however, that are not recognized by IANA and
therefore cannot be used in a standard content type setting. For this reason, OC4J
provides the static setWriterEncoding() method of the
oracle.jsp.util.PublicUtil class:

static void setWriterEncoding(JspWriter out, String encoding)

You can use this method to specify the character set of the JSP writer directly,
overriding the character set of the response object. The following example uses
Big5 as the character set of the content type, but specifies MS950, a non-IANA
Hong Kong dialect of Big5, as the character set of the JSP writer:

<%@ page contentType="text/html; charset=Big5" %>
<% oracle.jsp.util.PublicUtil.setWriterEncoding(out, "MS950"); %>

Note: Use the setWriterEncoding() method as early as
possible in the JSP page.
JSP Globalization Support 9-7

JSP Support for Multibyte Parameter Encoding
JSP Support for Multibyte Parameter Encoding
The Sun Microsystems servlet 2.3 specification has a method,
setCharacterEncoding(), in the javax.servlet.ServletRequest
interface. This method is useful in case the default encoding of the servlet container
is not suitable for multibyte request parameters and bean property settings, such as
for a getParameter() call in Java code or a jsp:setProperty tag to set a bean
property in JSP code.

The setCharacterEncoding() method and equivalent Oracle extensions affect
parameter names and values, specifically:

■ request object getParameter() method output

■ request object getParameterValues() method output

■ request object getParameterNames() method output

■ jsp:setProperty settings for bean property values

This section covers the following topics:

■ Standard setCharacterEncoding() Method

■ Overview of Oracle Extensions for Older Servlet Environments

Standard setCharacterEncoding() Method
Effective with the servlet 2.3 specification, the setCharacterEncoding()
method is specified in the javax.servlet.ServletRequest interface as the
standard mechanism for specifying a nondefault character encoding for reading
HTTP requests. The signature of this method is as follows:

void setCharacterEncoding(java.lang.String enc)
 throws java.io.UnsupportedEncodingException

The enc parameter is a string specifying the name of the desired character encoding
and overrides the default character encoding. Call this method before reading
request parameters or reading input through the getReader() method (also
specified in the ServletRequest interface).

There is also a corresponding getter method:

String getCharacterEncoding()
9-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Support for Multibyte Parameter Encoding
Overview of Oracle Extensions for Older Servlet Environments
In pre-2.3 servlet environments, the setCharacterEncoding() method is not
available. For such environments, particularly the JServ servlet 2.0 environment,
Oracle provides two alternative mechanisms:

■ oracle.jsp.util.PublicUtil.setReqCharacterEncoding() static
method (preferred)

■ translate_params configuration parameter (or equivalent code)

For information about these mechanisms, see "Multibyte Parameter Encoding in
JServ" on page B-24.
JSP Globalization Support 9-9

JSP Support for Multibyte Parameter Encoding
9-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Servlet and JSP Technical Backgr
A

Servlet and JSP Technical Background

This appendix provides technical background on servlets and JavaServer Pages.
Although this document is written for users who are well grounded in servlet
technology, the servlet information here may be a useful refresher for some.

Standard JavaServer Pages interfaces, implemented automatically by generated JSP
page implementation classes, are briefly discussed as well. Most readers, however,
will not require this information.

The following topics are covered:

■ Background on Servlets

■ Web Application Hierarchy

■ Standard JSP Interfaces and Methods

Note: For more information about servlets and the OC4J servlet
container, refer to the Oracle9iAS Containers for J2EE Servlet
Developer’s Guide.
ound A-1

Background on Servlets
Background on Servlets
Because JSP pages are translated into Java servlets, a brief review of servlet
technology may be helpful. Refer to the Sun Microsystems Java Servlet Specification,
Version 2.2 or Version 2.3 for more information about the concepts discussed here.

For information about the methods this section discusses, refer to Sun Microsystems
Javadoc at the following locations (for servlet 2.2 and 2.3, respectively):

http://java.sun.com/products/servlet/2.2/javadoc/index.html

http://java.sun.com/products/servlet/2.3/javadoc/index.html

Review of Servlet Technology
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic HTML pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). The servlet takes an HTTP request from a browser, generates
dynamic content (such as by querying a database), and provides an HTTP response
back to the browser.

Prior to servlets, CGI (Common Gateway Interface) technology was used for
dynamic content, with CGI programs being written in languages such as Perl and
being called by a Web application through the Web server. CGI ultimately proved
less than ideal, however, due to its architecture and scalability limitations.

Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of object orientation, platform independence, security, and robustness.
Servlets can use all standard Java APIs, including the JDBC API (for Java database
connectivity, of particular interest to database programmers).

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage is
that a servlet runs in the server, which is usually a robust machine with many
resources, minimizing use of client resources. An applet, by contrast, is downloaded
into the client browser and runs there. Another advantage is more direct access to
the data. The Web server or data server in which a servlet is running is on the same
side of the network firewall as the data being accessed. An applet running on a
client machine, outside the firewall, requires special measures (such as signed
applets) to allow the applet to access any server other than the one from which it
was downloaded.
A-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Background on Servlets
The Servlet Interface
A Java servlet, by definition, implements the standard javax.servlet.Servlet
interface. This interface specifies methods to initialize a servlet, process requests, get
the configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, you can implement the Servlet interface by extending the
standard javax.servlet.http.HttpServlet abstract class. The
HttpServlet class includes the following methods:

■ init(...) and destroy(...)—to initialize and terminate the servlet,
respectively

■ doGet(...)—for HTTP GET requests

■ doPost(...)—for HTTP POST requests

■ doPut(...)—for HTTP PUT requests

■ doDelete(...)—for HTTP DELETE requests

■ service(...)—to receive HTTP requests and, by default, dispatch them to
the appropriate doXXX() methods

■ getServletInfo(...)—for use by the servlet to provide information about
itself

A servlet class that subclasses HttpServlet must implement some of these
methods, as appropriate. Each method takes as input a standard
javax.servlet.http.HttpServletRequest instance and a standard
javax.servlet.http.HttpServletResponse instance.

The HttpServletRequest instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The HttpServletResponse instance provides HTTP-specific
functionality in sending the response, such as specifying the content length and
MIME type and providing the output stream.

Servlet Containers
Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. A servlet container is usually written in Java and is either part of a Web
server (if the Web server is also written in Java) or otherwise associated with and
used by a Web server.
Servlet and JSP Technical Background A-3

Background on Servlets
When a servlet is called (such as when a servlet is specified by URL), the Web server
passes the HTTP request to the servlet container. The container, in turn, passes the
request to the servlet. In the course of managing a servlet, a simple container
performs the following:

■ It creates an instance of the servlet and calls its init() method to initialize it.

■ It calls the service() method of the servlet.

■ It calls the destroy() method of the servlet to discard it when appropriate, so
that it can be garbage-collected.

For performance reasons, it is typical for a servlet container to keep a servlet
instance in memory for reuse, rather than destroying it each time it has finished
its task. It would be destroyed only for infrequent events, such as Web server
shutdown.

If there is an additional servlet request while a servlet is already running, servlet
container behavior depends on whether the servlet uses a single-thread model or a
multiple-thread model. In a single-thread case, the servlet container prevents
multiple simultaneous service() calls from being dispatched to a single servlet
instance—it may spawn multiple separate servlet instances instead. In a
multiple-thread model, the container can make multiple simultaneous service()
calls to a single servlet instance, using a separate thread for each call, but the servlet
developer is responsible for managing synchronization.

Servlet Sessions
Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful
way. Servlet session-tracking is similar in nature to HTTP session-tracking in
previous technologies, such as CGI.

HttpSession Interface
In the standard servlet API, each user is represented by an instance of a class that
implements the standard javax.servlet.http.HttpSession interface.
Servlets can set and get information about the session in this HttpSession object,
which must be of application-level scope.

A servlet uses the getSession() method of an HttpServletRequest object
(which represents an HTTP request) to retrieve or create an HttpSession object
for the user. This method takes a boolean argument to specify whether a new
session object should be created for the user if one does not already exist.
A-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Background on Servlets
The HttpSession interface specifies the following methods to get and set session
information:

■ public void setAttribute(String name, Object value)

This method binds the specified object to the session, under the specified name.

■ public Object getAttribute(String name)

This method retrieves the object that is bound to the session under the specified
name (or null if there is no match).

Depending on the implementation of the servlet container and the servlet itself,
sessions may expire automatically after a set amount of time or may be invalidated
explicitly by the servlet. Servlets can manage session lifecycle with the following
methods, specified by the HttpSession interface:

■ public boolean invalidate()

This method immediately invalidates the session and unbinds any objects from
it.

■ public boolean setMaxInactiveInterval(int interval)

This method sets a timeout interval, in seconds, as an integer.

■ public boolean isNew()

This method returns true within the request that created the session; it returns
false otherwise.

■ public boolean getCreationTime()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

■ public boolean getLastAccessedTime()

This method returns the time of the last request associated with the client,
measured in milliseconds since midnight, January 1, 1970.

Note: Older servlet implementations use putValue() and
getValue() instead of setAttribute() and
getAttribute(), with the same signatures.
Servlet and JSP Technical Background A-5

Background on Servlets
Session Tracking
The HttpSession interface supports alternative mechanisms for tracking sessions.
Each involves some way to assign a session ID. A session ID is an intermediate
handle that is assigned and used by the servlet container. Multiple sessions by the
same user can share the same session ID, if appropriate.

The following session-tracking mechanisms are supported:

■ cookies

The servlet container sends a cookie to the client, which returns the cookie to
the server upon each HTTP request. This associates the request with the session
ID indicated by the cookie. This is the most frequently used mechanism and is
supported by any servlet container that adheres to the servlet 2.2 or higher
specification.

■ URL rewriting

The servlet container appends a session ID to the URL path, as in the following
example:

http://host[:port]/myapp/index.html?jsessionid=6789

This is the most frequently used mechanism where clients do not accept
cookies.

■ SSL Sessions

SSL (Secure Sockets Layer, used in the HTTPS protocol) includes a mechanism
to take multiple requests from a client and define them as belonging to a single
session. Some servlet containers use the SSL mechanism for their own session
tracking as well.

Servlet Contexts
A servlet context is used to maintain state information for all instances of a Web
application within any single JVM (that is, for all servlet and JSP page instances that
are part of the Web application). This is similar to the way a session maintains state
information for a single client on the server; however, a servlet context is not
specific to any single user and can handle multiple clients. There is usually one
servlet context for each Web application running within a given JVM. You can think
of a servlet context as an application container.

Any servlet context is an instance of a class that implements the standard
javax.servlet.ServletContext interface, with such a class being provided
with any Web server that supports servlets.
A-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Background on Servlets
A ServletContext object provides information about the servlet environment
(such as name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

A servlet context maintains the session objects of the users who are running the
application and provides a scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct class loader and
its runtime objects are distinct from those of any other application. In particular, the
ServletContext object is distinct for an application, as is the HttpSession
object for each user of the application.

Beginning with the Sun Microsystems Java Servlet Specification, Version 2.2, most
implementations can provide multiple servlet contexts within a single host, which is
what allows each Web application to have its own servlet context. (Previous
implementations usually provided only a single servlet context with any given
host.)

The ServletContext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that
the servlet can retrieve application-level environment and state information.

Application Lifecycle Management Through Event Listeners
The Sun Microsystems Java Servlet Specification, Version 2.2 first provided limited
application lifecycle management through the standard Java event-listener
mechanism. HTTP session objects can use event listeners to make objects stored in
the session object aware of when they are added or removed. Because the typical
reason for removing objects within a session object is that the session has become
invalid, this mechanism allows the developer to manage session-based resources.
Similarly, the event-listener mechanism also allows the managing of page-based
and request-based resources.

The Java Servlet Specification, Version 2.3 provides additional support for event
listeners, defining interfaces you can implement for event listeners that can be
informed of changes in the servlet context lifecycle, servlet context attributes, the

Note: In early versions of the servlet specification, the concept of
servlet contexts was not sufficiently defined. Beginning with
version 2.1(b), however, the concept was further clarified, and it
was specified that an HTTP session object could not exist across
multiple servlet context objects.
Servlet and JSP Technical Background A-7

Background on Servlets
HTTP session lifecycle, and HTTP session attributes. See the Oracle9iAS Containers
for J2EE Servlet Developer’s Guide for more information.

Servlet Invocation
A servlet, like an HTML page, can be directly invoked through a URL. The servlet is
launched according to how servlets are mapped to URLs in the Web server
implementation. Following are the possibilities:

■ A specific URL can be mapped to a specific servlet class.

■ An entire directory can be mapped so that any class in the directory is executed
as a servlet. For example, the special /servlet directory can be mapped so
that any URL of the form /servlet/servlet_name executes a servlet.

■ A file name extension can be mapped so that any URL specifying a file whose
name includes that extension executes a servlet.

This mapping would be specified as part of the Web server configuration. In OC4J,
this is according to settings in the global-web-application.xml file.

A servlet can also be invoked indirectly, like a JSP page, such as through a
jsp:include or jsp:forward tag. See "Invoking a Servlet from a JSP Page" on
page 4-2.
A-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Web Application Hierarchy
Web Application Hierarchy
The entities relating to a Web application (which consists of some combination of
servlets and JSP pages) do not follow a simple hierarchy but can be considered in
the following order:

1. servlet objects (including page implementation objects)

There is a servlet object for each servlet and for each JSP page implementation
in a running application (and possibly more than one object, depending on
whether a single-thread or multiple-thread execution model is used). A servlet
object processes request objects from a client and sends response objects back to
the client. A JSP page, as with servlet code, specifies how to create the response
objects.

You can think of multiple servlet objects as being within a single request object
in some circumstances, such as when one page or servlet "includes" or forwards
to another.

A user will typically access multiple servlet objects in the course of a session,
with the servlet objects being associated with the session object.

Servlet objects, as well as page implementation objects, indirectly implement
the standard javax.servlet.Servlet interface. For servlets in a Web
application, this is accomplished by subclassing the standard
javax.servlet.http.HttpServlet abstract class. For JSP page
implementation classes, this is accomplished by implementing the standard
javax.servlet.jsp.HttpJspPage interface.

2. request and response objects

These objects represent the individual HTTP requests and responses that are
generated as a user runs an application.

A user will typically generate multiple requests and receive multiple responses
in the course of a session. The request and response objects are not contained in
the session, but are associated with the session.

As a request comes in from a client, it is mapped to the appropriate servlet
context object (the one associated with the application the client is using)
according to the virtual path of the URL. The virtual path will include the root
path of the application.

A request object implements the standard
javax.servlet.http.HttpServletRequest interface.
Servlet and JSP Technical Background A-9

Web Application Hierarchy
A response object implements the standard
javax.servlet.http.HttpServletResponse interface.

3. session objects

Session objects store information about the user for a given session and provide
a way to identify a single user across multiple page requests. There is one
session object for each user.

There may be multiple users of a servlet or JSP page at any given time, each
represented by their own session object. All these session objects, however, are
maintained by the servlet context that corresponds to the overall application. In
fact, you can think of each session object as representing an instance of the Web
application associated with a common servlet context.

Typically, a session object will sequentially make use of multiple request objects,
response objects, and page or servlet objects, and no other session will use the
same objects; however, the session object does not actually contain those objects.

A session lifecycle for a given user starts with the first request from that user. It
ends when the user session terminates (such as when the user quits the
application) or there is a timeout.

HTTP session objects implement the javax.servlet.http.HttpSession
interface.

4. servlet context object

A servlet context object is associated with a particular path in the server. This is
the base path for modules of the application associated with the servlet context,
and is referred to as the application root.

There is a single servlet context object for all sessions of an application in any
given JVM, providing information from the server to the servlets and JSP pages
that form the application. The servlet context object also allows application
sessions to share data within a secure environment isolated from other
applications.

The servlet container provides a class that implements the standard
javax.servlet.ServletContext interface, instantiates this class the first

Note: Prior to the 2.1(b) version of the servlet specification, a
session object could span multiple servlet context objects.
A-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Web Application Hierarchy
time a user requests an application, and provides this ServletContext object
with the path information for the location of the application.

The servlet context object typically has a pool of session objects to represent the
multiple simultaneous users of the application.

A servlet context lifecycle starts with the first request (from any user) for the
corresponding application. The lifecycle ends only when the server is shut
down or otherwise terminated.

For additional introductory information about servlet contexts, see "Servlet
Contexts" on page A-6.

5. servlet configuration object

The servlet container uses a servlet configuration object to pass information to a
servlet when it is initialized—the init() method of the Servlet interface
takes a servlet configuration object as input.

The servlet container provides a class that implements the standard
javax.servlet.ServletConfig interface and instantiates it as necessary.
Included within the servlet configuration object is a servlet context object (also
instantiated by the servlet container).
Servlet and JSP Technical Background A-11

Standard JSP Interfaces and Methods
Standard JSP Interfaces and Methods
Two standard interfaces, both in the javax.servlet.jsp package, are available
to be implemented in code that is generated by a JSP translator:

■ JspPage

■ HttpJspPage

JspPage is a generic interface that is not intended for use with any particular
protocol. It extends the javax.servlet.Servlet interface.

HttpJspPage is an interface for JSP pages using the HTTP protocol. It extends
JspPage and is typically implemented directly and automatically by any servlet
class generated by a JSP translator.

JspPage specifies the following methods for use in initializing and terminating
instances of the generated class:

■ jspInit()

■ jspDestroy()

If you want any special initialization or termination functionality, you must provide
a JSP declaration to override the relevant method, as in the following example:

<%! void jspInit()
 {
 ...your implementation code...
 }
%>

HttpJspPage adds specification for the following method:

■ _jspService()

Code for this method is typically generated automatically by the translator and
includes the following:

■ code from scriptlets in the JSP page

■ code resulting from any JSP directives

■ any static content of the page

(JSP directives provide information for the page, such as specifying the Java
language for scriptlets and providing package imports. See "Directives" on
page 1-7.)
A-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Standard JSP Interfaces and Methods
As with the Servlet methods, the _jspService() method takes an
HttpServletRequest instance and an HttpServletResponse instance as
input.

The JspPage and HttpJspPage interfaces inherit the following methods from the
Servlet interface:

■ init()

■ destroy()

■ service()

■ getServletConfig()

■ getServletInfo()

Refer back to "The Servlet Interface" on page A-3 for a discussion of the Servlet
interface and its key methods.
Servlet and JSP Technical Background A-13

Standard JSP Interfaces and Methods
A-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

The Apache JServ Environ
B

The Apache JServ Environment

The primary Web application environment supplied with the Oracle9i Application
Server is Oracle9iAS Containers for J2EE (OC4J). In addition, as of Oracle9iAS
release 2, an Apache JServ servlet environment is provided. (In fact, JServ was the
primary servlet environment in earlier releases of the Oracle9i Application Server.)

For those who use the JServ environment (presumably for backward compatibility),
there are special considerations relating to servlet and JSP usage, as with any servlet
2.0 environment. This appendix covers these considerations.

Specifically, the following topics are discussed:

■ Getting Started in a JServ Environment

■ Considerations for the JServ Environment

■ JSP Application and Session Support for JServ

■ Samples Using globals.jsa for Servlet 2.0 Environments
ment B-1

Getting Started in a JServ Environment
Getting Started in a JServ Environment
This section provides information about configuring JServ to run JSP pages,
covering the following topics:

■ Adding Files to the Apache JServ Web Server Classpath

■ Mapping JSP File Name Extensions for JServ

■ JSP Configuration Parameters for JServ

■ Setting JSP Parameters in JServ

Adding Files to the Apache JServ Web Server Classpath
To add files to the Web server classpath in a JServ environment, insert appropriate
wrapper.classpath commands into the jserv.properties file in the JServ
conf directory. Note that jsdk.jar should already be in the classpath. This file is
from the Sun Microsystems JSDK 2.0 and provides servlet 2.0 versions of the
javax.servlet.* packages that are required by JServ. Additionally, files for your
JDK environment should already be in the classpath.

The following example (which happens to use UNIX directory paths) includes files
for JSP, JDBC, and SQLJ. Replace [Oracle_Home] with your Oracle home path.

servlet 2.0 APIs (required by JServ, from Sun JSDK 2.0):
wrapper.classpath=jsdk2.0/lib/jsdk.jar
#
servlet 2.2 APIs (required and provided by OC4J):
wrapper.classpath=[Oracle_Home]/ojsp/lib/servlet.jar
JSP packages:
wrapper.classpath=[Oracle_Home]/ojsp/lib/ojsp.jar
wrapper.classpath=[Oracle_Home]/ojsp/lib/ojsputil.jar
XML parser (used for servlet 2.2 web deployment descriptor):
wrapper.classpath=[Oracle_Home]/ojsp/lib/xmlparserv2.jar
JDBC libraries for Oracle database access (JDK 1.2.x environment):
wrapper.classpath=[Oracle_Home]/ojsp/lib/classes12.zip
SQLJ translator (optional):
wrapper.classpath=[Oracle_Home]/ojsp/lib/translator.zip
SQLJ runtime (optional) (for JDK 1.2.x enterprise edition):
wrapper.classpath=[Oracle_Home]/ojsp/lib/runtime12.zip
B-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment
Now consider an example where you have the following useBean command:

<jsp:useBean id="queryBean" class="mybeans.JDBCQueryBean" scope="session" />

You can add the following wrapper.classpath command to the
jserv.properties file. (This example happens to be for a Windows NT
environment.)

wrapper.classpath=D:\Apache\Apache1.3.9\beans\

And then JDBCQueryBean.class should be located as follows:

D:\Apache\Apache1.3.9\beans\mybeans\JDBCQueryBean.class

Mapping JSP File Name Extensions for JServ
In a JServ environment, mapping each JSP file name extension to
oracle.jsp.JspServlet—the JSP front-end servlet for JServ—requires an
ApJServAction command in either the jserv.conf file or the
mod_jserv.conf file. These configuration files are in the JServ conf directory.

(In older versions, you must instead update the httpd.conf file in the Apache
conf directory. In newer versions, the jserv.conf or mod_jserv.conf file is
included into httpd.conf during execution—look at the httpd.conf file to see
which one it includes.)

Following is an example (which happens to use UNIX syntax):

Map file name extensions (.sqljsp and .SQLJSP are optional).
ApJServAction .jsp /servlets/oracle.jsp.JspServlet
ApJServAction .JSP /servlets/oracle.jsp.JspServlet
ApJServAction .sqljsp /servlets/oracle.jsp.JspServlet
ApJServAction .SQLJSP /servlets/oracle.jsp.JspServlet

The path you use in this command for oracle.jsp.JspServlet is not a literal
directory path in the file system. The path to specify depends on your JServ servlet
configuration—how the servlet zone is mounted, the name of the zone properties
file, and the file system directory that is specified as the repository for the servlet.

Important: If servlet.jar (provided with OC4J for servlet 2.2
or higher versions of javax.servlet.* packages) is in your
classpath in a JServ environment, jsdk.jar must precede it.
The Apache JServ Environment B-3

Getting Started in a JServ Environment
"Servlet zone" is a JServ term that is similar conceptually to "servlet
context"—consult your JServ documentation for more information.

JSP Configuration Parameters for JServ
This section describes the configuration parameters supported by the Oracle
JspServlet for the JServ environment.

For information about JSP configuration parameters for OC4J, see "JSP
Configuration Parameters" on page 3-9.

Configuration Parameter Summary Table for JServ
Table 9–1 summarizes the configuration parameters supported by the original
Oracle JSP front-end servlet, oracle.jsp.JspServlet. This is the front-end used
for the JServ environment. (OC4J uses the front-end servlet
oracle.jsp.runtimev2.JspServlet.) For each parameter, the table notes the
following:

■ the correspondence (if any) to OC4J configuration parameters

■ equivalent or related ojspc options for pre-translation

■ a brief description of the option

■ the default value

■ whether it is used at compile-time or runtime

Notes:

■ See "The ojspc Pre-Translation Utility" on page 7-13 for
information about the equivalent ojspc options.

■ The main_mode, precompile_check, and
static_text_in_chars parameters, offered for OC4J, are
not available for JServ environments. For JServ, however,
outputting static text as characters is the default.
B-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment

/

me
Table 9–1 JSP Configuration Parameters, JServ Environment

Parameter

Relation to
Config Params
in OC4J

Related ojspc
Options Description Default

Runtime
Compile-
Time

alias_translation not applicable
in OC4J

(n/a) Set this boolean to
true to work around
JServ limitations in
directory aliasing for
JSP page references.

false both

bypass_source migrated to
main_mode
flag, justrun
setting

(n/a) Set this boolean to
true for the JSP
container to ignore
FileNotFound
exceptions on .jsp
source. Uses
pre-translated and
compiled code when
source is not available.

false runtime

classpath not applicable
in OC4J

-addclasspath
(related, but different
functionality)

This is for additional
classpath entries for
JSP class loading.

null
(no addl.
path)

both

debug_mode same (n/a) Set this boolean to
true for the JSP
container to print the
stack trace when a
runtime exception
occurs.

false runtime

developer_mode migrated to
main_mode
flag

(n/a) Set this boolean to
false to not check
timestamps to see if
page retranslation and
class reloading is
necessary when a page
is requested.

true runtime

emit_debuginfo same -debug Set this boolean to
true to generate a line
map to the original
.jsp file for
debugging.

false compile-ti
The Apache JServ Environment B-5

Getting Started in a JServ Environment

me

me

me

me

me

/
external_resource same -extres Set this boolean to
true for the JSP
translator to place all
static content of the
page into a separate
Java resource file
during translation.

false compile-ti

external_resource_timeout equivalent
functionality in
jsp-timeout

(n/a) Set this for a timeout
value to free external
resources (relevant if
external_resource
is enabled).

0 (no
timeout)

runtime

extra_imports same -extraImports Use this to add imports
beyond the JSP
defaults.

null compile-ti

forgive_dup_dir_attr same -forgiveDupDirAttr Set this boolean to
true to avoid JSP 1.2
translation errors if you
have duplicate settings
for the same directive
attribute within a
single JSP translation
unit.

false compile-ti

javaccmd same -noCompile This is for a Java
compiler command
line—javac options,
or an alternative Java
compiler to run in a
separate JVM. Set it to
null for JDK javac
with default options.

null compile-ti

no_tld_xml_validate same -noTldXmlValidate Set this boolean to
true to not perform
XML validation of TLD
files. By default,
validation of TLD files
is performed.

false compile-ti

Table 9–1 JSP Configuration Parameters, JServ Environment (Cont.)

Parameter

Relation to
Config Params
in OC4J

Related ojspc
Options Description Default

Runtime
Compile-
Time
B-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment

me

me

me

/
old_include_from_top same -oldIncludeFromTop Set this boolean to
true for page locations
in nested include
directives to be relative
to the top-level page,
for backward
compatibility with
Oracle JSP behavior
prior to Oracle9iAS
release 2.

false compile-ti

reduce_tag_code same -reduceTagCode Set this boolean to
true for further
reduction in the size of
generated code for
custom tag usage.

false compile-ti

req_time_introspection same -reqTimeIntrospection Set this boolean to
true to enable
request-time JavaBean
introspection when
compile-time
introspection is not
possible.

false compile-ti

send_error not applicable
in OC4J

(n/a) Set this boolean to
true to output
standard "404" errors
for file-not-found, and
"500" errors for
compilation failure
(instead of outputting
customized messages).

false runtime

session_sharing
(for use with
globals.jsa)

not applicable
in OC4J

(n/a) For applications using
globals.jsa, set this
boolean to true for JSP
session data to be
propagated to the
underlying servlet
session.

true runtime

Table 9–1 JSP Configuration Parameters, JServ Environment (Cont.)

Parameter

Relation to
Config Params
in OC4J

Related ojspc
Options Description Default

Runtime
Compile-
Time
The Apache JServ Environment B-7

Getting Started in a JServ Environment

me

/
sqljcmd same -S This is for a SQLJ
command line—sqlj
options, or alternative
SQLJ translator to run
in a separate JVM. Set
this to null for the
Oracle SQLJ version
provided with OC4J,
with default option
settings.

null compile-ti

tags_reuse_default same (n/a) This boolean specifies a
default setting for JSP
tag handler pooling
(true to enable by
default, false to
disable by default).
This default setting can
be overridden for any
particular JSP page.

false runtime

translate_params not applicable
in OC4J

(n/a) Set this boolean to
true to override
servlet containers that
do not perform
multibyte encoding.

false runtime

Table 9–1 JSP Configuration Parameters, JServ Environment (Cont.)

Parameter

Relation to
Config Params
in OC4J

Related ojspc
Options Description Default

Runtime
Compile-
Time
B-8 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment

me

me

/
Configuration Parameter Descriptions for JServ
This section describes configuration parameters for the JServ environment in more
detail.

alias_translation (boolean; default: false)

This parameter allows the OC4J JSP container to work around limitations in the
way JServ handles directory aliasing. For information about the current limitations,
see "JServ Directory Alias Translation" on page B-21.

You must set alias_translation to true for httpd.conf directory aliasing
commands, such as the following example, to work properly in the JServ servlet
environment:

Alias /icons/ "/apache/apache139/icons/"

unsafe_reload not applicable
in OC4J

(n/a) Set this boolean to
true to not restart the
application and
sessions whenever a
JSP page is retranslated
and reloaded.

false runtime

well_known_taglib_loc same (n/a) This specifies a
directory where tag
library JAR files can be
placed for sharing
across multiple Web
applications. The
default location is
j2ee/home/jsp/lib
/taglib/ under the
[Oracle_Home]
directory.

per
previous
column

compile-ti

xml_validate same -xmlValidate Set this boolean to
true for XML
validation to be
performed on the
web.xml file.

false compile-ti

Table 9–1 JSP Configuration Parameters, JServ Environment (Cont.)

Parameter

Relation to
Config Params
in OC4J

Related ojspc
Options Description Default

Runtime
Compile-
Time
The Apache JServ Environment B-9

Getting Started in a JServ Environment
bypass_source (boolean; default: false)

Normally, when a JSP page is requested, the JSP container throws a FileNotFound
exception if it cannot find the corresponding .jsp source file, even if it can find the
page implementation class. This is because, by default, the JSP container checks the
page source to see if it has been modified since the page implementation class was
generated.

Set this parameter to true for the JSP container to proceed and execute the page
implementation class even if it cannot find the page source.

If bypass_source is enabled, the container still checks for retranslation if the
source is available and is needed. One of the factors in determining whether it is
needed is the setting of the developer_mode parameter.

classpath (fully qualified path; default: null)

Use this parameter to add classpath entries to the JSP default classpath for use
during translation, compilation, or execution of JSP pages.

Overall, the JSP container loads classes from its own classpath (including entries
from this classpath parameter), the system classpath, the Web server classpath,
the page repository, and predefined locations relative to the root directory of the JSP
application.

Be aware that classes that are loaded through the path specified in the classpath
setting are loaded by the JSP class loader, not by the system class loader. During JSP
execution, classes that are loaded by the JSP class loader cannot access (or be
accessed by) classes that are loaded by the system class loader or by any other class
loader.

Notes:

■ The bypass_source option is useful in deployment
environments that have the generated classes only, not the
source. (For related discussion, see "Deployment of Binary Files
Only" on page 7-40.)

■ Oracle9i JDeveloper enables bypass_source so that you can
translate and run a JSP page before you have saved the JSP
source to a file.
B-10 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment
debug_mode (boolean; default: false)

This flag has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

developer_mode (boolean; default: true)

Set this flag to false to instruct the JSP container to not routinely compare the
timestamp of the page implementation class to the timestamp of the .jsp source
file when a page is requested. With developer_mode set to true, the container
checks every time to see if the source has been modified since the page
implementation class was generated. If that is the case, the JSP translator
retranslates the page. With developer_mode set to false, the JSP container will
check only upon the initial request for the page or application. For subsequent
requests, it will simply reexecute the generated page implementation class.

This flag also affects dynamic class reloading for JavaBeans and other support
classes called by a JSP page. With developer_mode set to true, The JSP container
checks to see if such classes have been modified since being loaded by the JSP class
loader.

Oracle generally recommends setting developer_mode to false, particularly in a
production environment where code is not likely to change and where performance
is a significant issue.

Also see "Dynamic Page Retranslation and Class Reloading" on page 6-17.

emit_debuginfo (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

Notes:

■ Runtime automatic class reloading applies only to classes in the
JSP classpath. This includes paths specified through this
classpath parameter. (See "Dynamic Page Retranslation and
Class Reloading" on page 6-17 for information about this
feature.)

■ When you pre-translate pages, the ojspc -addclasspath
option offers some related, though different, functionality. See
"Option Descriptions for ojspc" on page 7-20.
The Apache JServ Environment B-11

Getting Started in a JServ Environment
external_resource (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

external_resource_timeout (integer; default: 0, no timeout)

If external_resource is enabled, you can use external_resource_timeout
to specify a timeout value, in seconds, for JSP page resources. If a JSP page has not
been accessed in this amount of time, then its external resources will be freed. They
will be reloaded the next time the page is requested.

extra_imports (import list; default: null)

As described in "Default Package Imports" on page 3-5, as of Oracle9iAS release 2
(9.0.3) the OC4J JSP container has a smaller default list of packages that are
imported into each JSP page. This is in accordance with the JSP specification. You
can avoid updating your code, however, by specifying package names or fully
qualified class names for any additional imports through the extra_imports
configuration parameter. See "Setting JSP Parameters in JServ" on page B-15 for
general syntax, and be aware that the list of names must be quoted and
space-delimited, as in the following example:

servlet.oracle.jsp.JspServlet.initArgs=extra_imports=’java.util.* java.io.*’

forgive_dup_dir_attr (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

javaccmd (compiler executable and options; default: null)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

Note: In OC4J, the jsp-timeout flag frees external resources,
along with the page as a whole. This is an attribute of the
<orion-web-app> element in the
global-web-application.xml file or orion-web.xml file.
See "OC4J Configuration Parameters for JSP" on page 3-21.
B-12 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment
no_tld_xml_validate (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

old_include_from_top (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

reduce_tag_code (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

req_time_introspection (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

send_error (boolean; default: false)

Set this flag to true to direct the JSP container to output generic "404" messages for
file-not-found conditions, and generic "500" messages for compilation errors.

This is in contrast to outputting customized messages that provide more
information (such as the name of the file not found). Some environments, such as
JServ, do not allow output of a customized message if a "404" or "500" message is
output.

session_sharing (boolean; default: true) (for use with globals.jsa)

When you use a globals.jsa file for an application, presumably in a servlet 2.0
environment, each JSP page uses a distinct JSP session wrapper attached to the
single overall servlet session object provided by the servlet container.

In this situation, the true (default) setting of the session_sharing parameter
results in JSP session data being propagated to the underlying servlet session. This
allows servlets in the application to access the session data of JSP pages in the
application.

If session_sharing is false (which parallels standard behavior in most JSP
implementations), JSP session data is not propagated to the servlet session. As a
result, application servlets would not be able to access JSP session data.
The Apache JServ Environment B-13

Getting Started in a JServ Environment
This parameter is meaningless if globals.jsa is not used. For information about
globals.jsa, see "JSP Application and Session Support for JServ" on page B-32.

sqljcmd (SQLJ translator executable and options; default: null)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

tags_reuse_default (boolean; default: false)

This has the same use in JServ as in OC4J, but in JServ is false by default. See "JSP
Configuration Parameter Descriptions" on page 3-12.

translate_params (boolean; default: false)

Set this flag to true to override servlet containers that do not encode multibyte
(globalization support) request parameters or bean property settings. With this
setting, the JSP container encodes request parameters and bean property settings.
Otherwise, it returns the parameters from the servlet container unchanged.

For more information about the functionality and use of translate_params,
including situations where it should not be used, see "Multibyte Parameter
Encoding in JServ" on page B-24.

unsafe_reload (boolean; default: false)

By default, the JSP container restarts the application and sessions whenever a JSP
page is dynamically retranslated and reloaded (which occurs when there is a .jsp
source file with a more recent timestamp than the corresponding page
implementation class).

Set this parameter to true to instruct the JSP container to not restart the application
after dynamic retranslations and reloads. This avoids having existing sessions
become invalid. A true setting is appropriate for deployment environments. The
false (default) setting is appropriate for development environments.

Note: It is preferable to use the
PublicUtil.setReqCharacterEncoding() method instead of
the translate_params parameter. See "The
setReqCharacterEncoding() Method" on page B-24.
B-14 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Getting Started in a JServ Environment
For a given JSP page, this parameter has no effect after the initial request for the
page if developer_mode is set to false (in which case the JSP container never
retranslates after the initial request).

well_known_taglib_loc (directory path; default: j2ee/home/jsp/lib/taglib/)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

xml_validate (boolean; default: false)

This has the same use in JServ as in OC4J. See "JSP Configuration Parameter
Descriptions" on page 3-12.

Setting JSP Parameters in JServ
Each Web application in a JServ environment has its own properties file, known as a
zone properties file. In Apache terminology, a zone is essentially the same as a servlet
context.

The name of the zone properties file depends on how you mount the zone. (See the
Apache JServ documentation for information about zones and mounting.)

To set JSP configuration parameters in a JServ environment, set the JspServlet
initArgs property in the application zone properties file, as in the following
example (which happens to use UNIX syntax):

servlet.oracle.jsp.JspServlet.initArgs=developer_mode=false,
sqljcmd=sqlj -user=scott/tiger -ser2class=true,classpath=/mydir/myapp.jar

(This is a single wraparound line.)

The servlet path, servlet.oracle.jsp.JspServlet, also depends on how you
mount the zone. It does not represent a literal directory path.

Be aware of the following:

■ The effects of multiple initArgs commands are cumulative and overriding.
For example, consider the following two commands (in order):

servlet.oracle.jsp.JspServlet.initArgs=foo1=val1,foo2=val2
servlet.oracle.jsp.JspServlet.initArgs=foo1=val3

This combination is equivalent to the following single command:

servlet.oracle.jsp.JspServlet.initArgs=foo1=val3,foo2=val2
The Apache JServ Environment B-15

Getting Started in a JServ Environment
In the first two commands, the val3 value overrides the val1 value for foo1,
but does not affect the foo2 setting.

■ Because initArgs parameters are comma-delimited, there can be no commas
within a parameter setting. Spaces and other special characters (such as "=" in
this example) do not cause a problem, however.

Using ojspc for JServ
Using ojspc for a JServ environment requires a different command—use
ojspc_jserv instead of ojspc. This executes the same class,
oracle.jsp.tool.Jspc, but is set up with a classpath appropriate for JServ.

The ojspc -staticTextInChars option has no effect for JServ, because in a
JServ environment static text is output as characters by default. You cannot disable
this.

Important: To use ojspc_jserv (as with ojspc), you must be
using a Sun Microsystems JDK (version 1.1.8 or higher) and you
must have tools.jar (for JDK 2.0 or higher) or classes.zip
(for JDK 1.1.8) in your classpath.
B-16 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
Considerations for the JServ Environment
There are special considerations in running JSP pages in the JServ environment,
because it is a servlet 2.0 environment. The servlet 2.0 specification lacks support for
some significant features that are available in servlet 2.2 and higher environments.

For information about how to configure a JServ environment for JSP pages, see
"Getting Started in a JServ Environment" on page B-2.

This section discusses the following considerations for the JServ environment:

■ The mod_jserv Apache Mod

■ JSP Container Features for Application Root Support in JServ

■ Overview of Application and Session Framework for JServ

■ JSP and Servlet Session Sharing in JServ

■ Dynamic Includes and Forwards in JServ

■ JServ Directory Alias Translation

■ JSP Security Considerations in JServ

■ Multibyte Parameter Encoding in JServ

The mod_jserv Apache Mod
The mod_jserv component, supplied by Apache, delegates HTTP requests to JSP
pages or servlets running in the JServ servlet container in a middle-tier JVM. The
middle-tier environment may or may not be on the same physical host as the
back-end Oracle9i database.

Communication between mod_jserv and middle-tier JVMs uses the proprietary
Apache JServ protocol (AJP) over TCP/IP. The mod_jserv component can delegate
requests to multiple JVMs in a pool for load balancing.

Refer to Apache documentation for mod_jserv configuration information. This
documentation is provided with Oracle9iAS.

JSP Container Features for Application Root Support in JServ
JServ and other servlet 2.0 environments have no concept of application roots,
because there is only a single application environment. The Web server doc root is
effectively the application root. By default, JSP pages and servlets running in the
JServ environment of the Oracle9i Application Server are routed through the
The Apache JServ Environment B-17

Considerations for the JServ Environment
Apache mod_jserv module provided with JServ, and use the Apache JServ doc
root. This is typically some .../htdocs directory. In addition, it is possible to
specify "virtual" doc roots through alias settings in the httpd.conf
configuration file.

The OC4J JSP container does, however, offer additional functionality regarding doc
roots and application roots in the JServ environment. Through the OC4J JSP
globals.jsa mechanism, you can designate a directory under the doc root to
serve as an application root for any given application. This is accomplished by
placing a globals.jsa file as a marker in the desired directory. See "Overview of
globals.jsa Functionality" on page B-32 for more information.

The application root directory can be located in any of the following locations, listed
in the order they are searched:

1. the Web server directory to which the application is mapped

2. the Web server document root directory

3. the directory containing the globals.jsa file

Overview of Application and Session Framework for JServ
Because the concept of a Web application is not well defined in the servlet 2.0
specification, in JServ there is only one servlet context for each servlet container.
Additionally, there is only one session object for each servlet container.

OC4J, however, supports a special application framework for use in the JServ
environment. It accomplishes this through a file, globals.jsa, that you can use as
an application marker. This allows distinct servlet contexts and session objects for
each application.

For more information, see "Distinct Applications and Sessions Through globals.jsa"
on page B-33.

JSP and Servlet Session Sharing in JServ
To share HTTP session information between JSP pages and servlets in a JServ
environment, you must configure your environment so that
oracle.jsp.JspServlet, the servlet that acts as the front-end of the JSP
container in a JServ environment, is in the same zone as the servlet or servlets that
you want your JSP pages to share a session with. Consult your Apache
documentation for more information.
B-18 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
To verify proper zone setup, some browsers allow you to enable a warning for
cookies. In an Apache environment, the cookie name includes the zone name.

Additionally, when you use a globals.jsa file for an application, presumably in a
servlet 2.0 environment such as JServ, each JSP page uses a distinct JSP session
wrapper attached to the single overall servlet session object provided by the servlet
container.

In this situation, the true (default) setting of the JSP session_sharing
configuration parameter results in JSP session data being propagated to the
underlying servlet session. This allows servlets in the application to access the
session data of JSP pages in the application.

If session_sharing is false (which parallels standard behavior in most JSP
implementations), JSP session data is not propagated to the servlet session. As a
result, application servlets would not be able to access JSP session data.

This parameter is meaningless if globals.jsa is not used. For information about
globals.jsa, see "JSP Application and Session Support for JServ" on page B-32.

Also see these sections for related information:

■ "JSP Application and Session Support for JServ" on page B-32

■ "JSP Configuration Parameters for JServ" on page B-4

■ "Setting JSP Parameters in JServ" on page B-15

Dynamic Includes and Forwards in JServ
JSP dynamic includes (using the jsp:include tag) and forwards (using the
jsp:forward tag) rely on request dispatcher functionality that is present in servlet
2.2 and higher environments, but not in servlet 2.0 environments.

The OC4J JSP container, however, provides extended functionality to allow dynamic
includes and forwards from one JSP page to another JSP page or to a static HTML
file in JServ and other servlet 2.0 environments.

This functionality for servlet 2.0 environments does not, however, allow dynamic
forwards or includes to servlets. (Servlet execution is controlled by the JServ or
other servlet container, not the JSP container.)

If you want to include or forward to a servlet in JServ, however, you can create a JSP
page that acts as a wrapper for the servlet.
The Apache JServ Environment B-19

Considerations for the JServ Environment
The following example shows a servlet, and a JSP page that acts as a wrapper for
that servlet. In a JServ environment, you can effectively include or forward to the
servlet by including or forwarding to the JSP wrapper page.

Servlet Code Presume that you want to include or forward to the following servlet,
TestServlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends HttpServlet {

 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 System.out.println("initialized");
 }

 public void destroy()
 {
 System.out.println("destroyed");
 }

 public void service
 (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML><BODY>");
 out.println("TestServlet Testing");
 out.println("<H3>The local time is: "+ new java.util.Date());
 out.println("</BODY></HTML>");
 }
}

JSP Wrapper Page Code You can create the following JSP wrapper (wrapper.jsp)
for the preceding servlet.

<%-- wrapper.jsp--wraps TestServlet for JSP include/forward --%>
<%@ page isThreadSafe="true" import="TestServlet" %>
<%!
 TestServlet s=null;
B-20 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
 public void jspInit() {
 s=new TestServlet();
 try {
 s.init(this.getServletConfig());
 } catch (ServletException se)
 {
 s=null;
 }
 }
 public void jspDestroy() {
 s.destroy();
 }
%>
<% s.service(request,response); %>

Including or forwarding to wrapper.jsp in a servlet 2.0 environment has the same
effect as directly including or forwarding to TestServlet in a servlet 2.2 or higher
environment.

JServ Directory Alias Translation
Apache JServ supports directory aliasing by allowing you to create a "virtual
directory" through an Alias command in the httpd.conf configuration file. This
allows Web documents to be placed outside the default doc root directory.

Consider the following sample httpd.conf entry:

Alias /icons/ "/apache/apache139/icons/"

Notes:

■ Whether to set isThreadSafe to "true" or "false" in the
wrapper JSP page depends on whether the original servlet is
thread-safe.

■ As an alternative to using a wrapper JSP page for this situation,
you can add HTTP client code to the original JSP page (the one
from which the jsp:include or jsp:forward action is to
occur). You can use an instance of the standard java.net.URL
class to create an HTTP request from the original JSP page to
the servlet. (Note that you cannot share session data or security
credentials in this scenario.)
The Apache JServ Environment B-21

Considerations for the JServ Environment
This command results in icons being usable as an alias for the
/apache/apache139/icons/ path. In this way, for example, the file
/apache/apache139/icons/art.gif, could be accessed by the following URL:

http://host[:port]/icons/art.gif

Currently, however, this functionality does not work properly for servlets and JSP
pages, because the Apache JServ getRealPath() method returns an incorrect
value when processing a file under an alias directory.

The OC4J JSP container supports an Apache-specific configuration parameter,
alias_translation, that works around this limitation when you set it to true.
(The default setting is false.)

Be aware that setting alias_translation to true also results in the alias
directory becoming the application root. Therefore, in a jsp:include or
jsp:forward tag where the target file name starts with "/", the expected target file
location will be relative to the alias directory.

Consider the following example, which results in all JSP and HTML files under
/private/foo being effectively under the application /mytest:

Alias /mytest/ "/private/foo/"

And assume there is a JSP page located as follows:

/private/foo/xxx.jsp

The following jsp:include tag will work, because xxx.jsp is directly below the
aliased directory, /private/foo, which is effectively the application root:

<jsp:include page="/xxx.jsp" flush="true" />

JSP pages in other applications or in the general doc root cannot forward to or
include JSP pages or HTML files under the /mytest application. It is possible to
forward to or include pages or HTML files only within the same application
(according to the servlet 2.2 and 2.3 specifications).
B-22 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
Also be aware that there are issues when two aliases begin with the same partial
directory path. Consider the following two aliases as an example:

Alias /foo/bar1 "/path/to/my/dir/x/bar1"
Alias /foo/bar2 "/path/to/my/dir/y/bar2"

An initial request for /foo/bar1/bar1.jsp will work, but a subsequent request
for /foo/bar2/bar2.jsp will incorrectly look in /path/to/my/dir/x for
bar2.jsp, and will fail with a FileNotFound exception. This is due to further
limitations with the JServ getRealPath() implementation, which returns
incorrect information. There are the following workarounds for this situation.

■ Have only one alias, with real directories underneath:

Alias /foo "/path/to/my/dir"

Here, the bar1 and bar2 directories would physically exist as
/path/to/my/dir/bar1 and /path/to/my/dir/bar2, and there would
not be a problem.

or:

■ Have more than one alias, but arrange it so that the physical directories do not
have the same names as the alias directories:

Alias /foo/bar1 "/path/to/my/dir/x_bar1"
Alias /foo/bar2 "/path/to/my/dir/y_bar2"

Note the use of x_bar1 instead of bar1 and y_bar2 instead of bar2. In the
problematic example earlier, the first alias used bar1, which is the same as the
directory name, and the second alias used bar2, which is the same as the
directory name.

Notes:

■ An implicit application is created for the Web server document
root and each aliasing root.

■ For information about how to set JSP configuration parameters
in a JServ environment, see "Setting JSP Parameters in JServ" on
page B-15.
The Apache JServ Environment B-23

Considerations for the JServ Environment
JSP Security Considerations in JServ
In a JServ environment, be aware of the following security considerations:

■ It is highly advisable for access to be denied to any _pages directory. By
default, access is already denied to the default _pages directory. In addition, if
you are using aliases, you should deny access to any _pages directory under
each alias. See "Generated Files and Locations" on page 7-6 for general
information about the _pages directory.

■ It is also highly advisable for access to be denied to the globals.jsa file.
Access is already denied by default. For information about globals.jsa, see
"JSP Application and Session Support for JServ" on page B-32.

Multibyte Parameter Encoding in JServ
This section describes Oracle extensions to support multibyte request parameters
and bean property settings in a JServ or other servlet 2.0 environment, such as for a
getParameter() call in Java code or for a jsp:setProperty tag to set a bean
property in JSP code. There are two mechanisms for this:

■ oracle.jsp.util.PublicUtil.setReqCharacterEncoding() static
method (preferred)

■ translate_params configuration parameter (or equivalent code)

The discussion of translate_params is followed by a discussion of how to
migrate away from its use when you move to an OC4J environment.

For general information about multibyte parameter encoding, see "JSP Support for
Multibyte Parameter Encoding" on page 9-8.

The setReqCharacterEncoding() Method
For pre-2.3 servlet environments, Oracle provides a
setReqCharacterEncoding() method that is useful in case the default encoding
for the servlet container is not appropriate. Use this method to specify the encoding
of multibyte request parameters and bean property settings, such as for a
getParameter() call in Java code or a jsp:setProperty tag to set a bean
property in JSP code. If the default encoding is already appropriate, then it is not
necessary to use this method, and in fact using it may create some performance
overhead in your application.
B-24 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
The setReqCharacterEncoding() method is a static method in the
PublicUtil class of the oracle.jsp.util package, with the following
signature:

public static void setReqCharacterEncoding
 (HttpServletRequest req, String encoding)
 throws java.io.UnsupportedEncodingException

This method affects parameter names and values, specifically:

■ request object getParameter() method output

■ request object getParameterValues() method output

■ request object getParameterNames() method output

■ jsp:setProperty settings for bean property values

When invoking the method, input a request object and a string that specifies the
desired encoding, as follows:

oracle.jsp.util.PublicUtil.setReqCharacterEncoding(request, "EUC-JP");

JSP translate_params Configuration Parameter
Set this boolean flag to true to override servlet containers that do not encode
multibyte (globalization support) request parameters or bean property settings.
(The default setting is false.) With a true setting, the JSP container decodes and
encodes request parameters and bean property settings. Otherwise, it returns the
parameters from the servlet container unchanged.

Note that you should not enable translate_params in any of the following
circumstances:

■ when the servlet container properly handles multibyte parameter encoding
itself

Setting translate_params to true in this situation may cause incorrect
results. It is known, however, that JServ 1.1 does not properly handle multibyte
parameter encoding.

Note: The setReqCharacterEncoding() method is
forward-compatible with the method
request.setCharacterEncoding() of the servlet 2.3 API.
The Apache JServ Environment B-25

Considerations for the JServ Environment
■ when the request parameters use a different encoding from what is specified for
the response in the JSP page directive or setContentType() method

■ when code with workaround functionality equivalent to what
translate_params accomplishes is already present in the JSP page

(See "Code Equivalent to the translate_params Configuration Parameter" on
page B-26.)

Effect of translate_params in Overriding Non-Multibyte Servlet Containers
Setting translate_params to true overrides insufficient functionality of servlet
containers that cannot decode and encode multibyte request parameters and bean
property settings. (For information about how to set JSP configuration parameters,
see "Setting JSP Parameters in JServ" on page B-15.)

When this flag is enabled, the JSP container encodes the request parameters and
bean property settings based on the character set of the response object, as
indicated by the response.getCharacterEncoding() method.

Code Equivalent to the translate_params Configuration Parameter
There may be situations where you cannot use or do not want to use the
translate_params configuration parameter. It is useful to be aware of equivalent
functionality that you can implement through scriptlet code in the JSP page, for
example:

<%@ page contentType="text/html; charset=EUC-JP" %>
...
String paramName="XXYYZZ"; // where XXYYZZ is a multibyte string
paramName =
 new String(paramName.getBytes(response.getCharacterEncoding()), "ISO8859_1");
String paramValue = request.getParameter(paramName);
paramValue= new String(paramValue.getBytes("ISO8859_1"), "EUC-JP");
...

This code accomplishes the following:

■ It sets XXYYZZ as the parameter name to search for. (Presume XX, YY, and ZZ are
three Japanese characters.)

■ It encodes the parameter name to ISO-8859-1, the servlet container character
set, so that the servlet container can interpret it. (First a byte array is created for
the parameter name, using the character encoding of the request object.)
B-26 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
■ It gets the parameter value from the request object by looking for a match for
the parameter name. (It is able to find a match because parameter names in the
request object are also in ISO-8859-1 encoding.)

■ It encodes the parameter value to EUC-JP for further processing or output to
the browser.

See the next two sections for a globalization sample that depends on
translate_params being enabled and one that contains the equivalent code so
that it does not depend on the translate_params setting.

Globalization Sample Depending on translate_params
The following sample accepts a user name in Japanese characters and correctly
outputs the name back to the browser. In a servlet environment that cannot encode
multibyte request parameters, this sample depends on setting the JSP configuration
parameter translate_params to true.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

(See the next section for a sample that has the code equivalent of the
translate_params functionality, thereby not depending on the
translate_params setting.)

<%@ page contentType="text/html; charset=EUC-JP" %>

<HTML>
<HEAD>
<TITLE>Hello</TITLE></HEAD>
<BODY>
<%
 //charset is as specified in page directive (EUC-JP)
 String charset = response.getCharacterEncoding();
%>

 encoding = <%= charset %>

<%

String paramValue = request.getParameter("XXYY");

if (paramValue == null || paramValue.length() == 0) { %>
 <FORM METHOD="GET">
 Please input your name: <INPUT TYPE="TEXT" NAME="XXYY" value="AABB" size=20>

 <INPUT TYPE="SUBMIT">
The Apache JServ Environment B-27

Considerations for the JServ Environment
 </FORM>
<% }
else
{ %>
 <H1> Hello, <%= paramValue %> </H1>
<% } %>
</BODY>
</HTML>

Following is the sample input:
B-28 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
and the sample output:

Globalization Sample Not Depending on translate_params
The following sample, as with the preceding sample, accepts a user name in
Japanese characters and correctly outputs the name back to the browser. This
sample, however, has the code equivalent of translate_params functionality, so
does not depend on the translate_params setting.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

Important: If you use translate_params-equivalent code, do
not also enable the translate_params flag. This may cause
incorrect results.
The Apache JServ Environment B-29

Considerations for the JServ Environment
For an explanation of the critical code in this sample, see "Code Equivalent to the
translate_params Configuration Parameter" on page B-26.

<%@ page contentType="text/html; charset=EUC-JP" %>

<HTML>
<HEAD>
<TITLE>Hello</TITLE></HEAD>
<BODY>
<%
 //charset is as specified in page directive (EUC-JP)
 String charset = response.getCharacterEncoding();
%>

 encoding = <%= charset %>

<%
String paramName = "XXYY";

paramName = new String(paramName.getBytes(charset), "ISO8859_1");

String paramValue = request.getParameter(paramName);

if (paramValue == null || paramValue.length() == 0) { %>
 <FORM METHOD="GET">
 Please input your name: <INPUT TYPE="TEXT" NAME="XXYY" value="AABB" size=20>

 <INPUT TYPE="SUBMIT">
 </FORM>
<% }
else
{
 paramValue= new String(paramValue.getBytes("ISO8859_1"), "EUC-JP"); %>
 <H1> Hello, <%= paramValue %> </H1>
<% } %>
</BODY>
</HTML>

Migration Away from translate_params
The global includes functionality in the OC4J JSP container, described in "Oracle JSP
Global Includes" on page 7-9, is useful in migrating applications that have
previously used translate_params for globalization.
B-30 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Considerations for the JServ Environment
In this case, the globally included file can consist of a scriptlet similar to one of the
following to achieve functionality that is equivalent to that of translate_params.

■ Hardcode the request character set:

<% request.setCharacterEncoding("desired_charset"); %>

or:

■ Use the character set of the response as the character set of the request, where
the character set of the response is specified in a JSP page directive:

<% request.setCharacterEncoding(response.getCharacterEncoding()); %>

or:

■ Use the character set of the response as the character set of the request, where
the character set of the response is determined dynamically by Java logic:

<% String yourCharSet = yourLogicToDetermineCharset();
 response.setContentType("text/html; charset="+yourCharSet);
 request.setCharacterEncoding(response.getCharcterEncoding());
 // NOTE: The relative ordering of response.setContentType()
 // and request.setCharacterEncoding() is important.
%>
The Apache JServ Environment B-31

JSP Application and Session Support for JServ
JSP Application and Session Support for JServ
OC4J supports a file, globals.jsa, as a mechanism for implementing the JSP
specification in a servlet 2.0 environment. Web applications and servlet contexts are
not fully defined in the servlet 2.0 specification.

This section discusses the globals.jsa mechanism and covers the following
topics, including information about migrating away from globals.jsa when you
move to an OC4J environment:

■ Overview of globals.jsa Functionality

■ Overview of globals.jsa Syntax and Semantics

■ The globals.jsa Event-Handlers

■ Global Declarations and Directives

■ Migration from globals.jsa

For sample applications, see "Samples Using globals.jsa for Servlet 2.0
Environments" on page B-46.

Overview of globals.jsa Functionality
Within any single Java virtual machine, you can use a globals.jsa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications in the following areas:

■ application deployment—through its role as an application location marker to
define an application root

■ distinct applications and sessions—through its use in providing distinct servlet
context and session objects for each application

Important:

■ For security reasons, it is highly advisable for access to be
denied to the globals.jsa file. This is already the case by
default.

■ Use all lowercase for the globals.jsa file name. Mixed case
works in a non-case-sensitive environment, but makes it
difficult to diagnose resulting problems if you port the pages to
a case-sensitive environment.
B-32 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
■ application lifecycle management—through start and end events for sessions
and applications

The globals.jsa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

Application Deployment through globals.jsa
To deploy a JSP application that does not incorporate servlets, copy the directory
structure into the Web server, and create a file called globals.jsa to place at the
application root directory.

The globals.jsa file can be of zero size. The JSP container will locate it, and its
presence in a directory defines that directory, as mapped from the URL virtual path,
as the root directory of the application.

The JSP container also defines default locations for JSP application resources. For
example, application beans and classes in the application-relative
/WEB-INF/classes and /WEB-INF/lib directories will automatically be loaded
by the JSP classloader without the need for specific configuration.

Distinct Applications and Sessions Through globals.jsa
The servlet 2.0 specification does not have a clearly defined concept of a Web
application and there is no defined relationship between servlet contexts and
applications, as there is in later servlet specifications. In a servlet 2.0 environment
such as JServ, there is only one servlet context object for each JVM. A servlet 2.0
environment also has only one session object.

The globals.jsa file, however, provides support for multiple applications and
multiple sessions in a Web server, particularly for use in a servlet 2.0 environment.

Where a distinct servlet context object would not otherwise be available for each
application, the presence of a globals.jsa file for an application allows the JSP
container to provide the application with a distinct ServletContext object.

Additionally, where there would otherwise be only one session object (with either
one servlet context or across multiple servlet contexts), the presence of a
globals.jsa file allows the JSP container to provide a proxy HttpSession
object to the application. This prevents the possibility of session variable-name

Note: For an application that does incorporate servlets, especially
in a servlet environment preceding the servlet 2.2 specification,
manual configuration is required as with any servlet deployment.
The Apache JServ Environment B-33

JSP Application and Session Support for JServ
collisions with other applications, although unfortunately it cannot protect
application data from being inspected or modified by other applications. This is
because HttpSession objects must rely on the underlying servlet session
environment for some of their functionality.

Application and Session Lifecycle Management Through globals.jsa
An application must be notified when a significant state transition occurs. For
example, applications often want to acquire resources when an HTTP session begins
and release resources when the session ends, or restore or save persistent data when
the application itself is started or terminated.

A globals.jsa file supports this functionality with the following four events:

■ session_OnStart

■ session_OnEnd

■ application_OnStart

■ application_OnEnd

You can write event handlers in the globals.jsa file for any of these events that
the server should respond to.

The session_OnStart event and session_OnEnd event are triggered at the
beginning and end of an HTTP session, respectively.

The application_OnStart event is triggered for any application by the first
request for that application within any single JVM. The application_OnEnd
event is triggered when the JSP container unloads an application.

For more information, see "The globals.jsa Event-Handlers" on page B-37.

Overview of globals.jsa Syntax and Semantics
This section is an overview of general syntax and semantics for a globals.jsa
file.

Each event block in a globals.jsa file—a session_OnStart block, a
session_OnEnd block, an application_OnStart block, or an
application_OnEnd block—has an event start-tag, an event end-tag, and a body
(everything between the start-tag and end-tag) that includes the event-handler
code.
B-34 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
The following example shows this pattern:

<event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
</event:session_OnStart>

The body of an event block can contain any valid JSP tags—standard tags as well as
tags defined in a custom tag library.

The scope of any JSP tag in an event block, however, is limited to only that block.
For example, a bean that is declared in a jsp:useBean tag within one event block
must be declared again in any other event block that uses it. You can avoid this
restriction, however, through the globals.jsa global declaration
mechanism—see "Global Declarations and Directives" on page B-41.

For details about each of the four event handlers, see "The globals.jsa
Event-Handlers" on page B-37.

JSP implicit objects are available in globals.jsa event blocks as follows:

■ The application_OnStart block has access to the application object.

■ The application_OnEnd block has access to the application object.

■ The session_OnStart block has access to the application, session,
request, response, page, and out objects.

■ The session_OnEnd block has access to the application and session
objects.

Example of a Complete globals.jsa File This example shows you a complete
globals.jsa file, using all four event handlers.

<event:application_OnStart>

 <%-- Initializes counts to zero --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

Important: Static text as used in a regular JSP page can reside in a
session_OnStart block only. Event blocks for session_OnEnd,
application_OnStart, and application_OnEnd can contain
only Java scriptlets.
The Apache JServ Environment B-35

JSP Application and Session Support for JServ
</event:application_OnStart>

<event:application_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>

</event:application_OnEnd>

<event:session_OnStart>

 <%-- Acquire beans --%>
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 sessionCount.setValue(sessionCount.getValue() + 1);
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>

 Starting session #: <%=sessionCount.getValue() %>

 There are currently <%= activeSessions.getValue() %> active sessions <p>

</event:session_OnStart>

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 activeSessions.setValue(activeSessions.getValue() - 1);
 %>

</event:session_OnEnd>
B-36 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
The globals.jsa Event-Handlers
This section provides details about each of the four globals.jsa event-handlers.

The application_OnStart Event Handler
The application_OnStart block has the following general syntax:

<event:application_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
</event:application_OnStart>

The body of the application_OnStart event handler is executed when the JSP
container loads the first JSP page in the application. This usually occurs when the
first HTTP request is made to any page in the application, from any client.
Applications use this event to initialize application-wide resources, such as a
database connection pool or data read from a persistent repository into application
objects.

The event handler must contain only JSP tags (including custom tags)—it cannot
contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the JSP container and logged using the servlet
context of the application. Event handling then proceeds as if no error had occurred.

Example: application_OnStart The following application_OnStart example is
from the "A globals.jsa Example for Application Events: lotto.jsp" on page B-46. In
this example, the generated lottery numbers for a particular user are cached for an
entire day. If the user re-requests the picks, he or she gets the same set of numbers.
The cache is recycled once a day, giving each user a new set of picks. To function as
intended, the lotto application must make the cache persistent when the application
is being shut down, and must refresh the cache when the application is reactivated.

The application_OnStart event handler reads the cache from the lotto.che
file.

<event:application_OnStart>

<%
 Calendar today = Calendar.getInstance();
 application.setAttribute("today", today);
 try {
 FileInputStream fis = new FileInputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectInputStream ois = new ObjectInputStream(fis);
The Apache JServ Environment B-37

JSP Application and Session Support for JServ
 Calendar cacheDay = (Calendar) ois.readObject();
 if (cacheDay.get(Calendar.DAY_OF_YEAR) == today.get(Calendar.DAY_OF_YEAR)) {
 cachedNumbers = (Hashtable) ois.readObject();
 application.setAttribute("cachedNumbers", cachedNumbers);
 }
 ois.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnStart>

The application_OnEnd Event Handler
The application_OnEnd block has the following general syntax:

<event:application_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
</event:application_OnEnd>

The body of the application_OnEnd event handler is executed when the JSP
container unloads the JSP application. Unloading occurs whenever a previously
loaded page is reloaded after on-demand dynamic re-translation (unless the JSP
unsafe_reload configuration parameter is enabled), or when the JSP container,
which itself is a servlet, is terminated by having its destroy() method called by
the underlying servlet container. Applications use the application_OnEnd event
to clean up application level resources or to write application state to a persistent
store.

The event handler must contain only JSP tags (including custom tags)—it cannot
contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the JSP container and logged using the servlet
context of the application. Event handling then proceeds as if no error had occurred.

Example: application_OnEnd The following application_OnEnd example is from
the "A globals.jsa Example for Application Events: lotto.jsp" on page B-46. In this
event handler, the cache is written to file lotto.che before the application is
terminated.
B-38 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
<event:application_OnEnd>

<%
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (cachedNumbers.isEmpty() ||
 now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 File f = new File(application.getRealPath("/")+File.separator+"lotto.che");
 if (f.exists()) f.delete();
 return;
 }

 try {
 FileOutputStream fos = new FileOutputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(today);
 oos.writeObject(cachedNumbers);
 oos.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnEnd>

The session_OnStart Event Handler
The session_OnStart block has the following general syntax:

<event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 Optional static text...
</event:session_OnStart>

The body of the session_OnStart event handler is executed when the JSP
container creates a new session in response to a JSP page request. This occurs for
each client, whenever the first request is received for a session-enabled JSP page in
an application.

Applications might use this event for the following purposes:

■ to initialize resources tied to a particular client

■ to control where a client starts in an application
The Apache JServ Environment B-39

JSP Application and Session Support for JServ
Because the implicit out object is available to session_OnStart, this is the only
globals.jsa event handler that can contain static text in addition to JSP tags.

The session_OnStart event handler is called before the code of the JSP page is
executed. As a result, output from session_OnStart precedes any output from
the page.

The session_OnStart event handler and the JSP page that triggered the event
share the same out stream. The buffer size of this stream is controlled by the buffer
size of the JSP page. The session_OnStart event handler does not automatically
flush the stream to the browser—the stream is flushed according to general JSP
rules. Headers can still be written in JSP pages that trigger the session_OnStart
event.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the JSP container and logged using the servlet
context of the application. Event handling then proceeds as if no error had occurred.

Example: session_OnStart The following example makes sure that each new session
starts on the initial page (index.jsp) of the application.

<event:session_OnStart>

 <% if (!page.equals("index.jsp")) { %>
 <jsp:forward page="index.jsp" />
 <% } %>

</event:session_OnStart>

The session_OnEnd Event Handler
The session_OnEnd block has the following general syntax:

<event:session_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
</event:session_OnEnd>

The body of the session_OnEnd event handler is executed when the JSP container
invalidates an existing session. This occurs in either of the following circumstances:

■ The application invalidates the session by calling the
session.invalidate() method.

■ The session expires ("times out") on the server.

Applications use this event to release client resources.
B-40 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
The event handler must contain only JSP tags (including tag library tags)—it cannot
contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the JSP container and logged using the servlet
context of the application. Event handling then proceeds as if no error had occurred.

Example: session_OnEnd The following example decrements the "active session"
count when a session is terminated.

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <%
 activeSessions.setValue(activeSessions.getValue() - 1);
 %>

 </event:session_OnEnd>

Global Declarations and Directives
In addition to holding event handlers, a globals.jsa file can be used to globally
declare directives and objects for the JSP application. You can include JSP directives,
JSP declarations, JSP comments, and JSP tags that have a scope parameter (such as
jsp:useBean).

This section covers the following topics:

■ Global JSP Directives

■ Declarations in globals.jsa

■ Global JavaBeans

■ The globals.jsa Structure

■ Global Declarations and Directives Example
The Apache JServ Environment B-41

JSP Application and Session Support for JServ
Global JSP Directives
Directives used within a globals.jsa file serve a dual purpose:

■ They declare the information that is required to process the globals.jsa file
itself.

■ They establish default values for succeeding pages.

A directive in a globals.jsa file becomes an implicit directive for all JSP pages in
the application, although a globals.jsa directive can be overwritten for any
particular page.

A globals.jsa directive is overwritten in a JSP page on an attribute-by-attribute
basis. If a globals.jsa file has the following directive:

<%@ page import="java.util.*" bufferSize="10kb" %>

and a JSP page has the following directive:

<%@page bufferSize="20kb" %>

then this would be equivalent to the page having the following directive:

<%@ page import="java.util.*" bufferSize="20kb" %>

Declarations in globals.jsa
If you want to declare a method or data member to be shared across any of the
event handlers in a globals.jsa file, use a JSP <%!... %> declaration within the
globals.jsa file.

Note that JSP pages in the application do not have access to these declarations, so
you cannot use this mechanism to implement an application library. Declaration
support is provided in the globals.jsa file for common functions to be shared
across event handlers.

Global JavaBeans
Probably the most common elements declared in globals.jsa files are global
objects. Objects declared in a globals.jsa file become part of the implicit object
environment of the globals.jsa event handlers and all the JSP pages in the
application.

An object that is declared in a globals.jsa file (such as by a jsp:useBean tag)
need not be declared again in any of the individual JSP pages of the application.
B-42 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
You can declare a global object using any JSP tag or extension that has a scope
parameter, such as the standard jsp:useBean tag or the JML useVariable tag.
Globally declared objects must be of either session or application scope (not
page or request scope).

Nested tags are supported. Thus, a jsp:setProperty tag can be nested in a
jsp:useBean tag. (A translation error occurs if jsp:setProperty is used
outside a jsp:useBean tag.)

The globals.jsa Structure
When a global object is used in a globals.jsa event handler, the position of its
declaration is important. Only those objects that are declared before a particular
event handler are added as implicit objects to that event handler. For this reason,
developers are advised to structure their globals.jsa file in the following
sequence:

1. global directives

2. global objects

3. event handlers

4. globals.jsa declarations

Global Declarations and Directives Example
The sample globals.jsa file below accomplishes the following:

■ It defines the JML tag library (in this case, the compile-time implementation) for
the globals.jsa file, as well as for all subsequent pages. By including the
taglib directive in the globals.jsa file, the directive does not have to be
included in any of the individual JSP pages of the application.

■ It declares three application variables for use by all pages (in the jsp:useBean
statements).

For an additional example of using globals.jsa for global declarations, see "A
globals.jsa Example for Global Declarations: index2.jsp" on page B-52.

<%-- Directives at the top --%>

 <%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

<%-- Declare global objects here --%>

 <%-- Initializes counts to zero --%>
The Apache JServ Environment B-43

JSP Application and Session Support for JServ
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<%-- Application lifecycle event handlers go here --%>

 <event:application_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 </event:application_OnStart>

 <event:application_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
 </event:application_OnEnd>

 <event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 </event:session_OnStart>

 <event:session_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
 </event:session_OnEnd>

<%-- Declarations used by the event handlers go here --%>

Migration from globals.jsa
The OC4J JSP front-end servlet in Oracle9iAS release 2 no longer supports
globals.jsa. If an existing application uses globals.jsa, you should migrate
away from this usage. The following substitutions for globals.jsa functionality
are recommended:

■ Instead of using globals.jsa as an application marker, use standard WAR
packaging to denote the application structure.

■ Instead of using globals.jsa start-session, end-session, start-application, and
end-application events, use standard servlet 2.3 listener functionality. For
example, equivalent capabilities are offered through the standard
javax.servlet.ServletContextListener and
javax.servlet.http.HttpSessionListener interfaces.

■ Instead of using globals.jsa for global variable declarations, make the
declarations in a single source file and use "global include" functionality of the
OC4J JSP engine. See "Oracle JSP Global Includes" on page 7-9.
B-44 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Application and Session Support for JServ
If you cannot migrate your code immediately, an application that uses
globals.jsa can still run in OC4J if you use the previous
oracle.jsp.JspServlet front-end servlet instead of the
oracle.jsp.runtimev2.JspServlet front-end. You can specify this in the
<servlet> element in the application web.xml file, which overrides definitions in
the OC4J global-web-application.xml file. This should be for short-term use
only, however, given that the runtimev2 front-end servlet has improved features,
supports additional configuration parameters, and offers improved performance.
The Apache JServ Environment B-45

Samples Using globals.jsa for Servlet 2.0 Environments
Samples Using globals.jsa for Servlet 2.0 Environments
This section has examples of how the Oracle globals.jsa mechanism can be used
in servlet 2.0 environments to provide an application framework and
application-based and session-based event handling. The following examples are
provided:

■ A globals.jsa Example for Application Events: lotto.jsp

■ A globals.jsa Example for Application and Session Events: index1.jsp

■ A globals.jsa Example for Global Declarations: index2.jsp

For information about globals.jsa usage, see "JSP Application and Session
Support for JServ" on page B-32.

A globals.jsa Example for Application Events: lotto.jsp
This sample illustrates globals.jsa event handling through the
application_OnStart and application_OnEnd event handlers. In this
sample, numbers are cached on a per-user basis for the duration of the day. As a
result, only one set of numbers is ever presented to a user for a given lottery
drawing. In this sample, users are identified by their IP addresses.

Code has been written for application_OnStart and application_OnEnd to
make the cache persistent across application shutdowns. The sample writes the
cached data to a file as it is being terminated and reads from the file as it is being
restarted (presuming the server is restarted the same day that the cache was
written).

Note: The examples in this section base some of their functionality
on application shutdown. Many servers do not allow an application
to be shut down manually, however. In this case, globals.jsa
cannot function as an application marker. But you can cause the
application to be automatically shut down and restarted
(presuming developer_mode is set to true) by updating either
the lotto.jsp source or the globals.jsa file. (The JSP
container always terminates a running application before
retranslating and reloading an active page.)
B-46 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Samples Using globals.jsa for Servlet 2.0 Environments
The globals.jsa File for lotto.jsp
<%@ page import="java.util.*, oracle.jsp.jml.*" %>

<jsp:useBean id = "cachedNumbers" class = "java.util.Hashtable" scope = "application" />

<event:application_OnStart>

<%
 Calendar today = Calendar.getInstance();
 pageContext.setAttribute("today", today, PageContext.APPLICATION_SCOPE);
 try {
 FileInputStream fis = new FileInputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Calendar cacheDay = (Calendar) ois.readObject();
 if (cacheDay.get(Calendar.DAY_OF_YEAR) == today.get(Calendar.DAY_OF_YEAR)) {
 cachedNumbers = (Hashtable) ois.readObject();
 pageContext.setAttribute(
 "cachedNumbers", cachedNumbers, PageContext.APPLICATION_SCOPE);
 }
 ois.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnStart>

<event:application_OnEnd>

<%
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (cachedNumbers.isEmpty() ||
 now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 File f = new File(application.getRealPath("/")+File.separator+"lotto.che");

Note: This sample uses the setAttribute() method specified
in the ServletContext interface in servlet 2.1 or higher
environments. To use this feature in JServ, include the servlet 2.2 or
servlet 2.3 JAR file—[Oracle_Home]/lib/servlet.jar—in
your classpath.
The Apache JServ Environment B-47

Samples Using globals.jsa for Servlet 2.0 Environments
 if (f.exists()) f.delete();
 return;
 }

 try {
 FileOutputStream fos = new FileOutputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(today);
 oos.writeObject(cachedNumbers);
 oos.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnEnd>

The lotto.jsp Source
<%@ page session = "false" %>
<jsp:useBean id = "picker" class = "oracle.jsp.sample.lottery.LottoPicker" scope = "page" />

<HTML>
<HEAD><TITLE>Lotto Number Generator</TITLE></HEAD>
<BODY BACKGROUND="images/cream.jpg" BGCOLOR="#FFFFFF">
<H1 ALIGN="CENTER"></H1>

<!-- <H1 ALIGN="CENTER"> IP: <%= request.getRemoteAddr() %>
 -->
<H1 ALIGN="CENTER">Your Specially Picked</H1>
<P ALIGN="CENTER"><IMG SRC="images/winningnumbers.gif" WIDTH="450" HEIGHT="69" ALIGN="BOTTOM"
BORDER="0"></P>
<P>

<P ALIGN="CENTER">
<TABLE ALIGN="CENTER" BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>
<%
 int[] picks;
 String identity = request.getRemoteAddr();

 // Make sure it’s not tomorrow
B-48 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Samples Using globals.jsa for Servlet 2.0 Environments
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 System.out.println("New day....");
 cachedNumbers.clear();
 today = now;
 pageContext.setAttribute("today", today, PageContext.APPLICATION_SCOPE);
 }

 synchronized (cachedNumbers) {
 if ((picks = (int []) cachedNumbers.get(identity)) == null) {
 picks = picker.getPicks();
 cachedNumbers.put(identity, picks);
 }
 }
 for (int i = 0; i < picks.length; i++) {
%>
 <TD>
 <IMG SRC="images/ball<%= picks[i] %>.gif" WIDTH="68" HEIGHT="76" ALIGN="BOTTOM" BORDER="0">
 </TD>

<%
 }
%>
</TR>
</TABLE>

</P>

<P ALIGN="CENTER">

</BODY>
</HTML>
The Apache JServ Environment B-49

Samples Using globals.jsa for Servlet 2.0 Environments
A globals.jsa Example for Application and Session Events: index1.jsp
This example uses a globals.jsa file to process applications and session lifecycle
events. It counts the number of active sessions, the total number of sessions, and the
total number of times the application page has been hit. Each of these values is
maintained at the application scope. The application page (index1.jsp)
updates the page hit count on each request. The globals.jsa
session_OnStart event handler increments the number of active sessions and
the total number of sessions. The globals.jsa session_OnEnd handler
decrements the number of active sessions by one.

When a new session starts, the session counters are output. The page counter is
output on every request. The final tally of each value is output in the globals.jsa
application_OnEnd event handler.

Note the following in this example:

■ When the counter variables are updated, access must be synchronized, because
these values are maintained at application scope.

■ The count values use the oracle.jsp.jml.JmlNumber extended datatype,
which simplifies the use of data values at application scope. For information
about the JML extended datatypes, refer to the Oracle9iAS Containers for J2EE
JSP Tag Libraries and Utilities Reference.

The globals.jsa File for index1.jsp
<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

<event:application_OnStart>

 <%-- Initializes counts to zero --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%-- Consider storing pageCount persistently -- If you do read it here --%>

</event:application_OnStart>

<event:application_OnEnd>
 <%-- Acquire beans --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>
B-50 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Samples Using globals.jsa for Servlet 2.0 Environments
 <%-- Consider storing pageCount persistently -- If you do write it here --%>

</event:application_OnEnd>

<event:session_OnStart>

 <%-- Acquire beans --%>
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <%
 synchronized (sessionCount) {
 sessionCount.setValue(sessionCount.getValue() + 1);
 %>

 Starting session #: <%= sessionCount.getValue() %>

 <%
 }
 %>

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>
 There are currently <%= activeSessions.getValue() %> active sessions <p>
 <%
 }
 %>

</event:session_OnStart>

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() - 1);
 }
 %>

</event:session_OnEnd>
The Apache JServ Environment B-51

Samples Using globals.jsa for Servlet 2.0 Environments
The index1.jsp Source
<%-- Acquire beans --%>
<jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<%
 synchronized(pageCount) {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

This page has been accessed <%= pageCount.getValue() %> times.

<p>

A globals.jsa Example for Global Declarations: index2.jsp
This example uses a globals.jsa file to declare variables globally. It is based on
the event handler sample in "A globals.jsa Example for Application and Session
Events: index1.jsp" on page B-50, but differs in that the three application counter
variables are declared globally. (In the original event-handler sample, by contrast,
each event handler and the JSP page itself must provide jsp:useBean tags to
locally declare the beans they access.)

Declaring the beans globally results in implicit declaration in all event handlers and
the JSP page.

The globals.jsa File for index2.jsp
<%-- globally declares variables and initializes them to zero --%>

<jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
<jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
<jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<event:application_OnStart>

 <%-- Consider storing pageCount persistently -- If you do read it here --%>

</event:application_OnStart>

<event:application_OnEnd>

 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
B-52 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Samples Using globals.jsa for Servlet 2.0 Environments
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>

 <%-- Consider storing pageCount persistently -- If you do write it here --%>

</event:application_OnEnd>

<event:session_OnStart>

 <%
 synchronized (sessionCount) {
 sessionCount.setValue(sessionCount.getValue() + 1);
 %>

 Starting session #: <%= sessionCount.getValue() %>

 <%
 }
 %>

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>
 There are currently <%= activeSessions.getValue() %> active sessions <p>
 <%
 }
 %>

</event:session_OnStart>

<event:session_OnEnd>

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() - 1);
 }
 %>

</event:session_OnEnd>
The Apache JServ Environment B-53

Samples Using globals.jsa for Servlet 2.0 Environments
The index2.jsp Source
<%-- pageCount declared in globals.jsa so active in all pages --%>

<%
 synchronized(pageCount) {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

This page has been accessed <%= pageCount.getValue() %> times.

<p>
B-54 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Third Party Lice
C

Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document. Topics include:

■ Apache HTTP Server

■ Apache JServ
nses C-1

Apache HTTP Server
Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
C-2 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Apache HTTP Server
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */
Third Party Licenses C-3

Apache JServ
Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
C-4 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Apache JServ
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
Third Party Licenses C-5

Apache JServ
C-6 Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

Index

Symbols
_jspService() method, A-12

A
action tags

forward tag, 1-21
getProperty tag, 1-19
in JSP XML pages, 5-10
include tag, 1-20
overview of standard actions, 1-16
param tag, 1-19
plugin tag, 1-22
setProperty tag, 1-18
useBean tag, 1-17

activation.jar, Java activation files for e-mail, 3-7
addclasspath, ojspc option, 7-20
alias translation, JServ

alias_translation config param, B-9
overview, B-21

Apache JServ--see JServ
application events

servlet application lifecycles, A-7
with globals.jsa, B-37

application framework for JServ, B-18
application hierarchy, A-9
application object (implicit), 1-14
application root functionality, 3-2
application scope (JSP objects), 1-15
application support

servlet application lifecycles, A-7
through globals.jsa, B-33

application_OnEnd tag, globals.jsa, B-38

application_OnStart tag, globals.jsa, B-37
application-relative path, 1-29
application.xml, OC4J configuration file, 3-23
appRoot, ojspc option, 7-21
autoreload-jsp-pages, autoreload-jsp-beans (not

supported), 3-21

B
batch pre-translation

ojspc -batchMask option, 7-22
ojspc -deleteSource option, 7-24
ojspc -output option, 7-27
overview of ojspc batch features, 7-14

batch updates--see update batching
batchMask, ojspc option, 7-22
binary data, reasons to avoid in JSP, 6-15
binary file deployment, 7-40
binary file location, ojspc d option, 7-23
bypass_source config param (JServ), B-10

C
cache.jar, for Java Object Cache, 3-7
caching support, overview, 2-21
call servlet from JSP, JSP from servlet, 4-2
check_page_scope config param, 3-12
checker pages, 6-6
class naming, translator, 7-5
classesXX.zip, for JDBC, 3-7
classpath

classpath config param (JServ), B-10
JSP classpath functionality, 3-3

classpath configuration (JServ), B-2
Index-1

clustering (OC4J), 2-3
code, generated by translator, 7-2
comments (in JSP code), 1-11
compilation

javaccmd config param, 3-15
ojspc noCompile option, 7-26

config object (implicit), 1-14
configuration

JSP configuration in Oracle Enterprise
Manager, 3-25

JSP configuration parameters, 3-9
JSP configuration parameters for JServ, B-4
JSP container setup, 3-8
JSP-related OC4J configuration parameters, 3-21
key JAR and ZIP files, 3-7
key OC4J configuration files, 3-23
map file name extensions, JServ, B-3
optimization of execution, 6-18
setting JSP configuration parameters, 3-20
setting JSP-related OC4J configuration

parameters, 3-21
setting parameters, JServ, B-15

connection caching, overview, 4-11
containers

JSP containers, 1-26
servlet containers, A-3

content type settings
dynamic (setContentType method), 9-5
static (page directive), 9-2

context path, 3-2
context-relative path, 1-29
cookies, A-6
custom tags--see tag libraries

D
d, ojspc option (binary output dir), 7-23
data-access features, 4-7
data-sources.xml, OC4J configuration file, 3-23
debug_mode config param, 3-13
debugging

debug, ojspc option, 7-23
debug_mode config param, 3-13
emit_debuginfo config param, 3-13
through JDeveloper, 2-12

declarations
global declarations, globals.jsa, B-42
member variables, 1-9
method variable vs. member variable, 6-8
XML declaration elements, 5-9

default-web-site.xml, OC4J configuration file, 3-23
deleteSource, ojspc option, 7-24
deployment, general considerations

deploying pages with JDeveloper, 7-36
deployment of binary files only, 7-40
general pre-translation without execution, 7-40
ojspc for batch pre-translation, 7-39
ojspc for page pre-translation, 7-38
overview, 7-34
WAR deployment, 7-34

developer_mode config param (JServ), B-11
directives

forgive_dup_dir_attr config param, 3-14
global directives, globals.jsa, B-42
include directive, 1-8
ojspc forgiveDupDirAttr option, 7-25
overview, 1-7
page directive, 1-7
taglib directive, 1-9
XML directive elements, 5-8

directory alias translation--see alias translation
DMS support, 2-20
dynamic forward, special support for JServ, B-19
dynamic include

action tag, 1-20
for large static content, 6-7
logistics, 6-3
special support for JServ, B-19
vs. static include, 6-3

Dynamic Monitoring Service--see DMS
dynamic page retranslation, 6-17

E
EAR file, 3-23, 7-34
EJBs

calling from JSP pages, 4-14
use of OC4J EJB tag library, 4-15

emit_debuginfo config param, 3-13
empty actions (tag libraries), 8-28
Index-2

Enterprise Manager--see Oracle Enterprise Manager
error processing (runtime), 4-26
event-handling

servlet application lifecycles, A-7
with globals.jsa, B-37
with HttpSessionBindingListener, 4-20

exception object (implicit), 1-14
execution models for JSP pages, 1-26
execution of a JSP page, 1-26
explicit JSP objects, 1-12
expressions

expression syntax, 1-10
XML expression elements, 5-9

extend, ojspc option, 7-24
extensions

DMS support, 2-20
overview of caching support, 2-21
overview of data-access JavaBeans, 2-15
overview of extended types, 2-14
overview of global includes, 2-19
overview of JML tag library, 2-16
overview of JSP utility tags, 2-18
overview of JspScopeListener, 2-14
overview of Oracle-specific extensions, 2-19
overview of personalization tag library, 2-17
overview of portable extensions, 2-13
overview of programmatic extensions, 2-13
overview of SQL tag library, 2-16
overview of SQLJ support, 2-19
overview of Web services tag library, 2-18
overview of XML-related tags, 2-14

external resource file
for static text, 6-7
through external_resource parameter, 3-13
through ojspc extres option, 7-25

external_resource config param, 3-13
external_resource_timeout config param

(JServ), B-12
extra_imports config param, 3-14
extraImports, ojspc option, 7-24
extres, ojspc option, 7-25

F
fallback tag (with plugin tag), 1-22

Feiner, Amy (welcome), 1-3
file naming conventions, JSP files, 3-6
files

generated by translator, 7-7
key JAR and ZIP files, 3-7
locations, ojspc d option, 7-23
locations, ojspc srcdir option, 7-30
locations, translator output, 7-8

forgive_dup_dir_attr config param, 3-14
forgiveDupDirAttr, ojspc option, 7-25
forward tag, 1-21

G
generated code, by translator, 7-2
generated output names, by translator, 7-4
getProperty tag, 1-19
global includes (Oracle extension)

general use, 7-9
use in migrating from translate_params, B-30

globalization support
charset settings of JSP writer, 9-6
content type settings (dynamic), 9-5
content type settings (static), 9-2
multibyte parameter encoding, 9-8
overview, 9-1
sample depending on translate_params, B-27
sample not depending on translate_

params, B-29
globals.jsa

application and session lifecycles, B-34
application deployment, B-33
application events, B-37
distinct applications and sessions, B-33
event-handling, B-37
example, declarations and directives, B-43
extended support for servlet 2.0, B-32
file contents, structure, B-43
global declarations, B-42
global JavaBeans, B-42
global JSP directives, B-42
migration from, B-44
overview of functionality, B-32
overview of syntax and semantics, B-34
sample application, application and session
Index-3

events, B-50
sample application, application events, B-46
sample application, global declarations, B-52
sample applications, B-46
session events, B-39

global-web-application.xml, OC4J configuration
file, 3-23

H
help, ojspc option, 7-26
HttpJspPage interface, A-12
HttpSession interface, A-4
HttpSessionBindingListener, 4-20

I
id attribute (XML view), 5-16
implement, ojspc option, 7-26
implicit JSP objects

overview, 1-13
using implicit objects, 1-15

imports, default packages, 3-5
include directive, 1-8
include tag, 1-20
inner class for static text, 7-3
interaction, JSP-servlet, 4-2
Internet Application Server--see Oracle9i

Application Server
invoke servlet from JSP, JSP from servlet, 4-2

J
JavaBeans

global JavaBeans, globals.jsa, B-42
use for separation of business logic, 1-5
use with useBean tag, 1-17
vs. scriptlets, 6-2

javaccmd config param, 3-15
JDBC in JSP pages

performance enhancements, 4-10
sample of use, 4-8

JDeveloper
JSP support, 2-12
use for deploying JSP pages, 7-36

jndi.jar, for data sources and EJBs, 3-7
JServ

alias translation, B-21
classpath configuration, B-2
config, map file name extensions, B-3
configuration parameters, B-4
error processing, send_error config param, B-13
JSP application framework, B-18
JSP dynamic include support, B-19
mod_jserv module, B-17
overview of JSP-servlet session sharing, B-18
overview of special considerations, B-17
session sharing, session_sharing config

param, B-13
setting configuration parameters, B-15
use of ojspc for JServ, B-16
use with Oracle9i Application Server, B-1

jsp fallback tag (with plugin tag), 1-22
jsp forward tag, 1-21
jsp getProperty tag, 1-19
jsp id attribute (XML view), 5-16
jsp include tag, 1-20
jsp param tag, 1-19
jsp plugin tag, 1-22
jsp root element (XML syntax), 5-7
jsp setProperty tag, 1-18
jsp text element (XML syntax), 5-10
JSP translator--see translator
jsp useBean tag

syntax, 1-17
JSP XML document, 5-2
JSP XML syntax--see XML syntax
JSP XML view--see XML view
JspPage interface, A-12
jsp-print-null flag, 3-21
JspScopeListener, overview, 2-14
jspService() method, A-12
JSP-servlet interaction

invoking JSP from servlet, request
dispatcher, 4-3

invoking servlet from JSP, 4-2
passing data, JSP to servlet, 4-3
passing data, servlet to JSP, 4-4
sample code, 4-5

jsp-timeout flag, 3-21
Index-4

JspWriter object, 1-14
JSTL, overview of support, 2-21
jta.jar, for Java Transaction API, 3-7

L
listeners, tag libraries, 8-50

M
mail.jar, for e-mail from applications, 3-7
member variable declarations, 6-8
method variable declarations, 6-8
migration

from globals.jsa, B-44
from translate_params, B-30

mods, Apache, 2-10
multibyte parameter encoding

general/standard, 9-8
JServ environment, B-24

N
namespaces (XML syntax), 5-7
naming conventions, JSP files, 3-6
National Language Support--see Globalization

Support
NLS--see Globalization Support
no_tld_xml_validate config param, 3-16
noCompile, ojspc option, 7-26
non-empty actions (tag libraries), 8-28
noTldXmlValidate, ojspc option, 7-27
null data, print mode, 3-21

O
objects and scopes (JSP objects), 1-12
OC4J

general overview, 2-3
overview of JSP implementation, 2-6
standalone, 2-5

ojspc pre-translation tool
command-line syntax, 7-20
option descriptions, 7-20
option summary table, 7-16

output files, locations, related options, 7-32
overview, 7-13
overview of basic functionality, 7-13
overview of batch pre-translation, 7-14
use for batch pre-translation, 7-39
use for JServ, B-16
use for page pre-translation, 7-38

ojsp.jar, for JSP container, 3-7
ojsputil.jar, for JSP tag libraries and utilities, 3-7
old_include_from_top config param, 3-16
oldIncludeFromTop, ojspc option, 7-27
on-demand translation (runtime), 1-26, 1-27
optimization

not using HTTP session, 6-19
unbuffering a JSP page, 6-18

Oracle Enterprise Manager, use for JSP
configuration, 3-25

Oracle HTTP Server
overview, use of Apache mods, 2-10
with mod_jserv, B-17

Oracle platforms supporting JSP
JDeveloper, 2-12
Oracle9i Application Server, 2-2

Oracle9i Application Server
brief overview, 2-2
JSP support, 2-2
use of JServ, B-1

out object (implicit), 1-14
output files

generated by translator, 7-7
locations, 7-8
locations and related options, ojspc, 7-32
ojspc d option (binary location), 7-23
ojspc srcdir option (source location), 7-30

output names, conventions, 7-4
output, ojspc option, 7-27

P
package imports, default, 3-5
package naming

by translator, 7-5
ojspc packageName option, 7-28

packageName, ojspc option, 7-28
page directive
Index-5

characteristics, 6-10
contentType setting for globalization

support, 9-2
overview, 1-7

page implementation class
generated code, 7-2
overview, 1-28

page object (implicit), 1-13
page retranslation, dynamic, 6-17
page scope (JSP objects), 1-15
pageContext object (implicit), 1-13
page-relative path, 1-29
param tag, 1-19
parent property (tag handlers), 8-30
plugin tag, 1-22
precompile_check config param, 3-17
prefetching rows--see row prefetching
pre-translation

ojspc utility, 7-13
without execution, general, 7-40

print null flag, 3-21

R
reduce_tag_code config param, 3-17
reduceTagCode, ojspc option, 7-28
req_time_introspection config param, 3-17
reqTimeIntrospection, ojspc option, 7-28
request dispatcher (JSP-servlet interaction), 4-3
request objects

JSP implicit request object, 1-13
overview, A-9

request scope (JSP objects), 1-15
RequestDispatcher interface, 4-3
requesting a JSP page, 1-28
resource management

overview of JSP extensions, 4-25
standard session management, 4-20

response objects
JSP implicit response object, 1-13
overview, A-9

retranslation of page, dynamic, 6-17
root element (XML syntax), 5-7
row prefetching, 4-13
rowset caching, 4-13

runtimeXX.zip, for SQLJ, 3-7

S
S, ojspc option (for SQLJ options), 7-29
sample applications

custom tag definition and use, 8-57
globalization, depending on translate_

params, B-27
globalization, not depending on translate_

params, B-29
globals.jsa samples, B-46
globals.jsa, application and session events, B-50
globals.jsa, application events, B-46
globals.jsa, global declarations, B-52
HttpSessionBindingListener sample, 4-21
IterationTag definition and use, 8-53
JSP-servlet interaction, 4-5
SQLJ example, 4-16
traditional vs. XML syntax, 5-11
transformation to XML view, 5-17

scopes (JSP objects), 1-15
scripting elements

comments, 1-11
declarations, 1-9
expressions, 1-10
overview, 1-9
scriptlets, 1-10

scripting variables (tag libraries)
declaration through TEI class, 8-44
declaration through TLD, 8-42
scopes, 8-42
using, 8-41

scriptlets
scriptlet syntax, 1-10
vs. JavaBeans, 6-2
XML scriptlet elements, 5-9

security
considerations in JServ, B-24
general considerations, 3-4

send_error config param (JServ), B-13
server.xml, OC4J configuration file, 3-23
service method, JSP, A-12
servlet 2.0 environments

added support through globals.jsa, B-32
Index-6

globals.jsa sample applications, B-46
JSP container features for application root

functionality, B-17
servlet containers, A-3
servlet contexts

overview, A-6
servlet context objects, A-10

servlet path, 3-2
servlet sessions

HttpSession interface, A-4
session tracking, A-6

servlet-JSP interaction
invoking JSP from servlet, request

dispatcher, 4-3
invoking servlet from JSP, 4-2
passing data, JSP to servlet, 4-3
passing data, servlet to JSP, 4-4
sample code, 4-5

servlets
application lifecycle management, A-7
request and response objects, A-9
review of servlet technology, A-2
servlet configuration objects, A-11
servlet containers, A-3
servlet context objects, A-10
servlet contexts, A-6
servlet interface, A-3
servlet invocation, A-8
servlet objects, A-9
servlet sessions, A-4
session objects, A-10
session sharing, JSP, JServ, B-18
technical background, A-2
wrapping servlet with JSP page, B-20

session events
with globals.jsa, B-39
with HttpSessionBindingListener, 4-20

session objects
JSP implicit session object, 1-14
overview, A-10

session scope (JSP objects), 1-15
session sharing, overview, JSP-servlet, JServ, B-18
session support through globals.jsa (JServ), B-33
session tracking, A-6
session_OnEnd tag, globals.jsa, B-40

session_OnStart tag, globals.jsa, B-39
session_sharing config param (JServ), B-13
setCharacterEncoding() method, 9-8
setContentType() method, globalization

support, 9-5
setProperty tag, 1-18
setReqCharacterEncoding() method, multibyte

parameter encoding (JServ), B-24
setWriterEncoding() method, globalization

support, 9-6
shortcut URI (tag librarires), 8-21
simple tag handlers (tag libraries)

with body iteration, 8-31
without body iteration, 8-30

source file location, ojspc srcdir option, 7-30
SQLJ

JSP code example, 4-16
JSP support for, 4-15
ojspc S option for SQLJ options, 7-29
setting Oracle SQLJ options, 4-19
sqljcmd config param, 3-18
sqljsp files, 4-18
triggering SQLJ translator, 4-18

sqljcmd config param, 3-18
sqljsp files for SQLJ, 4-18
srcdir, ojspc option, 7-30
SSL sessions, A-6
statement caching, 4-12
static include

directive, 1-8
logistics, 6-3
vs. dynamic include, 6-3

static text
external resource file, 6-7
external resource, ojspc extres option, 7-25
external_resource parameter, 3-13
generated inner class, 7-3
workaround for large static content, 6-7

static_text_in_chars config param, 3-18
staticTextInChars, ojspc option, 7-31
syntax (overview), 1-7

T
tag handlers (tag libraries)
Index-7

access to outer tag handlers, 8-37
accessing body content, 8-33
body processing, 8-27
changes between JSP 1.1 and 1.2, 8-7
constants for body processing, 8-29
empty actions, 8-28
non-empty actions, 8-28
OC4J tag handler code generation, 8-40
OC4J tag handler instance reuse / pooling, 8-38
overview, 8-25
sample tag handler classes, 8-54, 8-58
simple tag handlers, with body iteration, 8-31
simple tag handlers, without body

iteration, 8-30
tag libraries

defining and using, end-to-end example, 8-57
IterationTag, end-to-end example, 8-53
multiple tag libraries in a JAR file, 8-18
namespaces, XML support, 5-7
overview of functionality, 1-24
overview of standard implementation, 8-2
runtime vs. compile-time implementations, 8-62
scripting variables, 8-41
sharing across applications, 8-20
single tag library in a JAR file, 8-17
standard framework, 8-2
strategy, when to create, 6-5
tag handlers, 8-25
tag library descriptor files, 8-8
tag library listeners, 8-50
tag library namespaces (XML syntax), 5-7
taglib directive, 8-16
tag-library-validator classes, 8-46
web.xml use, 8-21
well-known URI, 8-20

tag library descriptor files
changes between JSP 1.1 and 1.2, 8-5
defining shortcut URI in web.xml, 8-21
listener element and subelements, 8-15
overview of functionality, 8-8
sample files, 8-56, 8-61
specifying individual TLD, 8-17
specifying single TLD in a JAR file, 8-17
specifying TLDs for multiple tag libraries in a

JAR file, 8-18

tag element and subelements, 8-10
taglib directive, 8-16
TLD validation config param, 3-16
TLD validation ojspc option, 7-27
validator element and subelements, 8-15

tag-extra-info classes (tag libraries)
general use, getVariableInfo() method, 8-44
sample tag-extra-info class, 8-59

taglib directive
general use, 8-16
syntax, 1-9

tag-library-validator classes, 8-46
tags_reuse_default config param, 3-19
template data, 5-3
text element (XML syntax), 5-10
timeout settings

for JServ, B-12
for OC4J, 3-21

tips
avoid JSP use with binary data, 6-15
JavaBeans vs. scriptlets, 6-2
JSP page as servlet wrapper, B-20
JSP preservation of white space, 6-13
key configuration issues, 6-17
method vs. member variable declaration, 6-8
page directive characteristics, 6-10
static vs. dynamic includes, 6-3
using a "checker" page, 6-6
when to create tag libraries, 6-5
workaround, large static content, 6-7

TLD file--see tag library descriptor file
translate_params config param (JServ)

code equivalent, B-26
effect in overriding non-multibyte servlet

containers, B-26
general information, B-14, B-25
globalization sample depending on it, B-27
globalization sample not depending on it, B-29
migration from, B-30

translation, on-demand (runtime), 1-27
translator

generated class names, 7-5
generated code features, 7-2
generated files, 7-7
generated inner class, static text, 7-3
Index-8

generated names, general conventions, 7-4
generated package names, 7-5
Oracle JSP global includes, 7-9
output file locations, 7-8

translator.zip, for SQLJ, 3-7
type extensions, 2-14

U
unsafe_reload config param (JServ), B-14
update batching, 4-12
URL rewriting, A-6
useBean tag, 1-17

V
validation, tag libraries, 8-46
variable element (tag libraries), 8-42
verbose, ojspc option, 7-31
version, ojspc option, 7-31

W
WAR deployment, 7-34
WAR file, 3-23, 7-34
Web application hierarchy, A-9
web.xml, usage for tag libraries, 8-21
well-known URI (tag libraries), 8-20
wrapping servlet with JSP page, B-20

X
XML support

JSP XML document, 5-2
JSP XML documents and JSP XML view,

overview, 5-2
JSP XML syntax, 5-4
XML validation config param, 3-20
XML validation ojspc option, 7-31
XML view, 5-15

XML syntax
custom action elements, 5-10
declaration elements, 5-9
directive elements, 5-8
expression elements, 5-9

root element and tag library namespaces, 5-7
sample, traditional vs. XML syntax, 5-11
scriptlet elements, 5-9
standard action elements, 5-10
summary table of JSP XML syntax, 5-5
text element and other elements, 5-10

XML view
jsp id attribute for validation, 5-16
sample transformation, 5-17
transformation from JSP page to XML

view, 5-15
xml_validate config param, 3-20
xmlparserv2.jar, for XML validation, 3-7
xmlValidate, ojspc option, 7-31
xsu12.jar or xsu111.jar, for XML, 3-7
Index-9

Index-10

	Contents
	Send Us Your Comments
	Preface
	1 General JSP Overview
	Introduction to JavaServer Pages
	What a JSP Page Looks Like
	Convenience of JSP Coding Versus Servlet Coding
	Separation of Business Logic from Page Presentation: Calling JavaBeans
	JSP Pages and Alternative Markup Languages

	Overview of JSP Syntax Elements
	Directives
	Scripting Elements
	JSP Objects and Scopes
	Standard Actions: JSP Tags
	Bean Property Conversions from String Values
	Custom Tag Libraries

	JSP Execution
	JSP Containers in a Nutshell
	JSP Execution Models
	JSP Pages and On-Demand Translation
	Requesting a JSP Page

	2 Overview of the Oracle JSP Implementation
	Overview of the Oracle9i Application Server and JSP Support
	Overview of the Oracle9i Application Server
	Overview of OC4J
	Overview of the JSP Implementation in OC4J
	Role of the Oracle HTTP Server and mod_oc4j

	Oracle9i JDeveloper JSP Support
	Overview of Oracle Value-Added Features
	Overview of Tag Libraries and Utilities Provided with OC4J
	Overview of Oracle-Specific Features
	Overview of Tags and API for Caching Support
	Support for the JavaServer Pages Standard Tag Library

	3 Getting Started
	Some Initial Considerations
	Application Root Functionality
	Classpath Functionality
	JSP Security Considerations
	Default Package Imports
	JSP File Naming Conventions

	Key Support Files Provided with OC4J
	JSP Configuration in OC4J
	JSP Container Setup
	JSP Configuration Parameters
	OC4J Configuration Parameters for JSP

	Key OC4J Configuration Files
	JSP Configuration in Oracle Enterprise Manager

	4 Basic Programming Considerations
	JSP-Servlet Interaction
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples

	JSP Data-Access Support and Features
	Introduction to JSP Support for Data Access
	JSP Data-Access Sample Using JDBC
	Use of JDBC Performance Enhancement Features
	EJB Calls from JSP Pages
	JSP Support for Oracle SQLJ
	OracleXMLQuery Class

	JSP Resource Management
	Standard Session Resource Management: HttpSessionBindingListener
	Overview of Oracle Value-Added Features for Resource Management

	Runtime Error Processing
	Servlet and JSP Runtime Error Mechanisms
	JSP Error Page Example

	5 JSP XML Support
	JSP XML Documents and JSP XML View: Overview and Comparison
	Details of JSP XML Documents
	Summary Table of JSP XML Syntax
	JSP XML root Element and JSP XML Namespaces
	JSP XML Directive Elements
	JSP XML Declaration, Expression, and Scriptlet Elements
	JSP XML Standard Action and Custom Action Elements
	JSP XML Text Elements and Other Elements
	Sample Comparison: Traditional JSP Page Versus JSP XML Document

	Details of the JSP XML View
	Transformation from a JSP Page to the XML View
	The jsp:id Attribute for Error Reporting During Validation
	Example: Transformation from Traditional JSP Page to XML View

	6 Additional Considerations
	JSP Programming Strategies, Tips, and Traps
	JavaBeans Versus Scriptlets
	Static Includes Versus Dynamic Includes
	When to Consider Creating and Using JSP Tag Libraries
	Use of a Central Checker Page
	Workarounds for Large Static Content in JSP Pages
	Method Variable Declarations Versus Member Variable Declarations
	Page Directive Characteristics
	JSP Preservation of White Space and Use with Binary Data

	JSP Runtime Considerations and Optimization
	Dynamic Page Retranslation and Class Reloading
	Optimization Considerations

	7 JSP Translation and Deployment
	Functionality of the JSP Translator
	Features of Generated Code
	General Conventions for Output Names
	Generated Package and Class Names
	Generated Files and Locations
	Oracle JSP Global Includes

	The ojspc Pre-Translation Utility
	Overview of Basic ojspc Functionality
	Overview of ojspc Batch Pre-Translation
	Option Summary Table for ojspc
	Command-Line Syntax for ojspc
	Option Descriptions for ojspc
	Summary of ojspc Output Files, Locations, and Related Options

	JSP Deployment Considerations
	Overview of EAR/WAR Deployment
	Application Deployment with Oracle9i JDeveloper
	JSP Pre-Translation
	Deployment of Binary Files Only

	8 JSP Tag Libraries
	Overview: Tag Library Framework
	Overview of a Custom Tag Library Implementation
	Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications

	Tag Library Descriptor Files
	Overview of TLD File Validation and Features
	Use of the tag Element
	Other Key Elements and Their Subelements: validator and listener

	Tag Library and TLD Setup and Access
	Overview: Specifying a Tag Library with the taglib Directive
	Specifying a Tag Library by Physical Location
	Packaging and Accessing Multiple Tag Libraries in a JAR File
	Oracle Extension for Tag Library Sharing
	Use of web.xml for Tag Libraries
	Example: Multiple Tag Libraries and TLD Files in a JAR File

	Tag Handlers
	Overview of Tag Handlers
	Attribute Handling, Conversions from String Values
	Custom Tag Processing, with or without Tag Bodies
	Summary of Integer Constants for Body Processing
	Simple Tag Handlers without Iteration
	Simple Tag Handlers with Iteration
	Tag Handlers That Access Body Content
	TryCatchFinally Interface
	Access to Outer Tag Handler Instances

	OC4J JSP Tag Handler Features
	Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse
	Tag Handler Code Generation

	Scripting Variables, Declarations, and Tag-Extra-Info Classes
	Using Scripting Variables
	Scripting Variable Scopes
	Variable Declaration Through TLD variable Elements
	Variable Declaration Through Tag-Extra-Info Classes

	Validation and Tag-Library-Validator Classes
	TLD validator Element
	Key TLV-Related Classes and the validation() Method
	TLV Processing
	Validation Mechanisms

	Tag Library Event Listeners
	TLD listener Element
	Activation of Tag Library Event Listeners
	Access of TLD Files for Event Listener Information

	End-to-End Custom Tag Examples
	Example: Using the IterationTag Interface
	Example: Using the IterationTag Interface and a Tag-Extra-Info Class

	Compile-Time Tags
	General Compile-Time Versus Runtime Considerations
	JSP Compile-Time Versus Runtime JML Library

	9 JSP Globalization Support
	Content Type Settings
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	Oracle Extension for the Character Set of the JSP Writer Object

	JSP Support for Multibyte Parameter Encoding
	Standard setCharacterEncoding() Method
	Overview of Oracle Extensions for Older Servlet Environments

	A Servlet and JSP Technical Background
	Background on Servlets
	Review of Servlet Technology
	The Servlet Interface
	Servlet Containers
	Servlet Sessions
	Servlet Contexts
	Application Lifecycle Management Through Event Listeners
	Servlet Invocation

	Web Application Hierarchy
	Standard JSP Interfaces and Methods

	B The Apache JServ Environment
	Getting Started in a JServ Environment
	Adding Files to the Apache JServ Web Server Classpath
	Mapping JSP File Name Extensions for JServ
	JSP Configuration Parameters for JServ
	Setting JSP Parameters in JServ
	Using ojspc for JServ

	Considerations for the JServ Environment
	The mod_jserv Apache Mod
	JSP Container Features for Application Root Support in JServ
	Overview of Application and Session Framework for JServ
	JSP and Servlet Session Sharing in JServ
	Dynamic Includes and Forwards in JServ
	JServ Directory Alias Translation
	JSP Security Considerations in JServ
	Multibyte Parameter Encoding in JServ

	JSP Application and Session Support for JServ
	Overview of globals.jsa Functionality
	Overview of globals.jsa Syntax and Semantics
	The globals.jsa Event-Handlers
	Global Declarations and Directives
	Migration from globals.jsa

	Samples Using globals.jsa for Servlet 2.0 Environments
	A globals.jsa Example for Application Events: lotto.jsp
	A globals.jsa Example for Application and Session Events: index1.jsp
	A globals.jsa Example for Global Declarations: index2.jsp

	C Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

