Oracle9iAS Containers for J2EE

Servlet Developer’s Guide

Release 2 (9.0.3)

August 2002
Part No. A97680-01

ORACLE

Oracle9iAS Containers for J2EE Servlet Developer’s Guide, Release 2 (9.0.3)
Part No. A97680-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Tim Smith

Contributors: Jasen Minton, Bryan Atsatt, Debu Panda, Joyce Yang, Sunil Kunisetty, Ashok Banerjee,
Charlie Shapiro, Philippe Le Mouel, Paolo Ramasso, Olaf Heimburger, Sheryl Maring, Mike Sanko, Ellen
Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, SQL*Plus, and Oracle Store are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt vii
PRI AIC ettt ettt ettt ettt ettt ettt ettt et enene iX
1oL (T gL (10 I AN U o [11 g o1 ISR X
DocuUmMENtation ACCESSIDIIITY ...coiiiii it ettt X
OFGANITZATION ...ttt e bbb e e e e b e bbb e eh s st eh s s s s n s Xi
Related DOCUMENTATIONoocieiiiiiiies ettt ettt e e st e e e e et e s et e e s st e ee s et b e e saste s s sasaesssbaeesaseessnsens Xi
(O00] 0 1VZ=T o] Ao] o F-THUTU TP Xiv

1 Servlet Overview

INTrOAUCEION 10 SEIVIBLS ... ettt e e e s e e e ene s 1-2
Review Of SErvIet TECANOIOQYccooviiriiiiiii it 1-2
AAVANTAGES OF SEIVIETS ..ottt 1-3
The Servlet Interface and Request and Response ODJECESccovvveriieieieieie e 1-4
Serviets and the SErvIet CONTAINETcocoiiiiiiece e e 1-5
INtroduction 1O SErVIEt SESSIONSc..i i e e e eneees 1-7
=] YA) A O] g (= £ ST 1-9
INtroduction 0 SErVIEt FItEIS ..ot s e e 1-11
INtroduction t0 EVENT LISTENEISoiiie ittt s enen 1-11
Other J2EE COMPONENT TYPESoiiviietiietirietenie sttt sttt se ettt e ebese et ne b se bbb sbesesbesennas 1-12

A FIrSt SErVIET EXAMPIE ..ottt e s s 1-13
HEIO WOKIA COUE.......oiiiiieci et ettt bbb st et s e enaa 1-13
Compiling and Deploying the SErVIET ... 1-14
RUNNING TN SEIVIET. ... et b e 1-15

2

Servlet Development

Servlet Development Basics and Key CoNSIderations ... 2-2
(o To [T =10 0] o] - (-SSR 2-3
Serviet Loading and LIifECYCIE ... e e 2-4
SEIVIEL PrelOATING ... ottt ettt b ettt sttt en e 2-4
SErVIEt Class LOAAING ...cvueiiieieiee ettt e sttt ettt bt 2-5
Serviet Information EXChanGe............coo ittt 2-7
SEIVIEE TRFEADING ... it ettt b et eb e en e 2-7
Serviet Security CONSIAEIATIONS.........ccoi ittt et e 2-7
OC4] Default Web Application and Key DIreCtOIIESc.coeveeriieniie e 2-9
Oracle9i JDeveloper Support for Serviet DeVelopmeNnt ... 2-9

SEIVIET INVOCALION ...t e s ettt b et 2-11
Servlet Invocation by Class Name During OC4J Developmentcccccooveveneenecinenencens 2-11
Servlet Invocation in an Oracle9iAS Production ENVIronmMentcovevcincincinenens 2-13
Servlet Invocation in an OC4J Standalone ENVIroNMEeNt..........c.ccooevieneeeneeene e 2-14

SEIVIET SESSTIONS ...ttt e bbbt et b et bt bbb 2-16
SESSION TTACKING ...ttt ettt b et b et b et e b b 2-16
SESSION CANCEIIALION ... bbb en e 2-19
SeSSION SErVIEt EXAMPIE ..o 2-20
SESSION REPICALION ...ttt b en e 2-23

USE OF JIDBC 1N SEIVIETS ..o et 2-24
Database QUETY SEIVIEL........cuiiiiiiii ittt bbbt 2-24
Deployment and Testing of the Database QUery ServiIet..........ccoooiiiiiinncencine 2-27

EJIB Calls TrOM SEIVIELS ..ot ettt 2-30
Local EJB Lookup within the Same ApPlication ..o 2-31
Remote EJB Lookup within the Same APPlCationcccovivieiiniee e 2-38
EJB Lookup Outside the APPHCALION.coioiiiiiiiiri e 2-39
EJB 2.0 LOCAI INTEITACES ...ttt sttt 2-41

Deployment and Configuration

Introduction to Web Application Deployment and Configurationccoccoevvvniiniinennn, 3-2
Deployment and Configuration with OC4J Standalone ..o 3-2
OC4J Deployment and Configuration with Oracle9iAS and Enterprise Manager 3-3
Overview of Configuration FIleS ... 3-4

APPHCAtION ASSEMBIY ..o bbb ettt re bbb 3-7

Web Application MOAUIES ..o e 3-7

APPLIcation DIreCLOrY STFUCTUIEcci ittt ettt ettt e 3-8
Application Build MEChANISMScooiiiiie et e s et 3-9
APPLICAtion PACKAGING.......cocoiiiiii i 3-10
Configuration File DeSCrIPLIONScccociiiiiiii ettt 3-13
Syntax Notes for Element DOCUMENTALIONcooeviieiinieieie et 3-13
The global-web-application.xml and orion-web.Xxml Files.............ccocooviniinciniincnes 3-14
The default-web-site.xml, http-web-site.xml, and Other Web Site XML Files.................. 3-30
Web Module Configuration in Oracle Enterprise Manager..........ccccoveireneniesne s 3-38
Enterprise Manager OC4J HOME PAJEooveuiiiiiiiieiiie ettt 3-39
Enterprise Manager Deploy Web Application Pagecccooieiieniiencieneencine e 3-40
Enterprise Manager Website Properties Pageccuoeiieiieieie ittt 3-41
Enterprise Manager Web Module PAge ... 3-42
Enterprise Manager Web Module Properties Pageccocoevieiieneeeneeeneee e 3-44
Enterprise Manager Web Module Mappings Pageccooeiierienieeneeeneee e 3-47
Enterprise Manager Web Module Filtering and Chaining Page............cccccooevvieieie e 3-49
Enterprise Manager Web Module ENVIronment Pagecccovvieiieeneeene e 3-50
Enterprise Manager Web Module Advanced Properties Page..........ccccoeveieneeinnincineenn, 3-51

4 Servlet Filters and Event Listeners

SEIVIBE FIITEIS ..ot et e e e te e e et e e et e st e e s ae st e et e et aesbeeteenbesneaanas 4-2
OVEIVIEW OF SEIVIEL FIITEIS. ..ot bbb ea s 4-2
How the Servlet Container INVOKES FIlTEIS.......ccociiiiiiiie e 4-3
FIIEEE EXAIMIPIES. ..ottt bbb e e e b e e b e ebe e eb e eb et ne et e 4-4

EVENT LESTEINEIS ..ottt ettt ettt st et s be et e s beebaesbeebesabeeaesabesnsaseesnsesresseesbaetaees 4-16
Event Categories and Listener INterfaces.........oocviiiiiiieiie i 4-16
Typical EVENT LISTENEr SCENAITOcouiiiiiiiiiiiie ettt e s 4-17
Event Listener Declaration and INVOCAtIONc.ccceeviiiiiiiiie e 4-18
Event Listener Coding and Deployment GUIAEIINESccoueiriiieiiniiiie e 4-19
Event Listener Methods and Related ClasSesS.........ccovviviiiiiiiiiesiiciie sttt se e e 4-19
EVENT LISTENET SAMPIE ..ottt 4-22

A Third Party Licenses

APACNE HT TP SEIVET ..ottt bbbttt b et bbb A-2
The ApPache SOFtWAIE LICENSEcoiiieie sttt et A-2

Apache JServ.......ccccviincens

Apache JServ Public License

Index

vi

Send Us Your Comments

Oracle9iAS Containers for J2EE Servlet Developer’s Guide, Release 2 (9.0.3)
Part No. A97680-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgreader_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

vii

viii

Preface

This guide describes the servlet container of the Oracle9iAS Containers for J2EE
(0OC4)), including discussion of basic servlets, data-access servlets, and servlet filters
and event listeners. It also provides an overview of OC4J deployment and
configuration, with detailed descriptions of key configuration files.

Because this manual is intended for developers, its content is largely targeted
toward users of the OC4J standalone development environment; however, there is
ample consideration of OC4J within an Oracle9iAS production environment.

As for Oracle9iAS release 2 (9.0.3), the OC4J servlet container fully complies with
the Sun Microsystems Java Servlet Specification, Version 2.3.

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Organization

« Related Documentation

= Conventions

Intended Audience

The guide is intended for J2EE developers who are writing Web applications that
use servlets and possibly JavaServer Pages (JSP). It provides the basic information
you will need regarding the OC4J servlet container. It does not attempt to teach
servlet programming in general, nor does it document the Java Servlet API in detail.

You should be familiar with the Sun Microsystems Java(TM) Servlet Specification,
Version 2.3. This is especially true if you are developing a distributable Web
application, in which sessions can be replicated to servers running under more than
one Java virtual machine (JVM).

Because this is a developer’s guide, and development and testing are more
convenient in an OC4J standalone environment, key aspects of OC4J standalone are
discussed, and the assumption is that most developers will be using a standalone
environment.

If you are developing applications that primarily use JavaServer Pages, refer to the
Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. cont accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "Servlet Overview"

Summarizes servlet technology and servlet development in general, introduces the
OC4J servlet container, and provides a simple "Hello World" example.

Chapter 2, "Servlet Development"

Describes how the OC4J servlet container supports servlet development and
invocation, including a discussion of key development considerations. Provides
several complete examples.

Chapter 3, "Deployment and Configuration"

Discusses how to configure the OC4J servlet environment and deploy a Web
application in OC4J.

Chapter 4, "Servlet Filters and Event Listeners"

Explains the use of filters to affect servlet input or output, and event listeners to
track session and application events and manage resources accordingly. These
features are new in the Servlet 2.3 specification.

Appendix A, "Third Party Licenses"

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document.

Related Documentation

See the following additional OC4J documents available from the Oracle Java
Platform group:

= Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

xi

Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4l.

Oracle9iAS Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, INDI, JMS, JAAS/JAZN, and the Oracle9i Application
Server Java Object Cache.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

Oracle9i JDBC Developer’s Guide and Reference
Oracle9i SQLJ Developer’s Guide and Reference
Oraclei JPublisher User’s Guide

Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:

il

Oracle9i Application Server Administrator’s Guide

Oracle Enterprise Manager Administrator’s Guide

Oracle HTTP Server Administration Guide

Oracle9i Application Server Performance Guide

Oracle9i Application Server Globalization Support Guide
Oracle9iAS Web Cache Administration and Deployment Guide
Oracle9i Application Server Migrating to Release 2 (9.0.3)

The following are available from the JDeveloper group:

Oracle JDeveloper online help
Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracl e. con product s/ j dev/ content . ht m

The following documents from the Oracle Server Technologies are also of possible
interest:

Oracle9i XML Developer’s Kits Guide - XDK

Oracle9i Application Developer’s Guide - Fundamentals
Oracle9i Supplied Java Packages Reference

Oracle9i Supplied PL/SQL Packages and Types Reference
PL/SQL User’s Guide and Reference

Oracle9i SQL Reference

Oracle9i Net Services Administrator’s Guide

Oracle Advanced Security Administrator’s Guide
Oracle9i Database Reference

Oracle9i Database Error Messages

You can obtain the Sun Microsystems Java Servlet Specification, Version 2.3 at the
following location:

http://jcp.orglabout Java/ communit yprocess/ first/jsr053/index. htm

For servlet APl documentation, refer to the Javadoc available from Sun
Microsystems at the following location:

http://java.sun. com products/servlet/2.3/javadoc/index. htm

In North America, printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: // waw or acl ebookshop. comi

xiii

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. con

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e. coni docs/ i ndex. ht m

To access the documentation search engine directly, please visit

http://tahiti.oracle.com

The following resources are available from Sun Microsystems:
= Web site for Java servlet technology, including the latest specifications:

http://java. sun. com product s/ servl et/ i ndex. ht m

= Web site for JavaServer Pages, including the latest specifications:

http://java. sun. com product s/ j sp/i ndex. ht m

Conventions

Xiv

This section describes the conventions used in the text and code examples of this
document. It describes:

= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Italics

UPPERCASE
nonospace
(fixed-width)
font

| ower case
nonospace
(fixed-width)
font

| ower case
italic
nonospace
(fixed-width)
font

Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUVBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the data files and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t nent _nane,
and | ocat i on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parametertot r ue.

Connect as oe user.

The JRepUt i | class implements these
methods.

You can specify the paral | el _cl ause.

Run Uol d_rel ease. SQL where
ol d_r el ease refers to the release you
installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usernane FROM dba _users WHERE usernane = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

(]

Other notation

Italics

UPPERCASE

| ower case

Brackets enclose one or more optional
items. Do not enter the brackets.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
enpl oyees;
acctbal NUMBER(11, 2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em passwor d
DB_NAMVE = dat abase_nane
SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER_TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr
CREATE USER nj ones | DENTI FI ED BY t y3M.B;

XVi

1

Servlet Overview

Oracle9iAS Containers for J2EE (OC4J) enables you to develop and deploy standard
J2EE-compliant applications. Applications are packaged in standard EAR
(Enterprise ARchive) deployment files, which include standard WAR (Web
ARchive) files to deploy the Web modules, and JAR files for any EJB and
application client modules in the application.

With Oracle9iAS release 2 (9.0.3), OC4J complies with the J2EE 1.3 specification,
including full servlet 2.3 compliance in the OC4J servlet container.

The most important concepts to understand about servlet development under OC4J
are how the Web application is built and how it is deployed. If you are new to
servlets, see Chapter 2, "Servlet Development". If OC4J is a new development
environment for you, see Chapter 3, "Deployment and Configuration”, to learn how
applications are deployed under OC4J.

This chapter introduces the Java servlet and provides an example of a basic servlet.
It also briefly discusses how you can use servlets in a J2EE application to address
some server-side programming issues.

This chapter is organized as follows:
« Introduction to Servlets

« AFirst Servlet Example

Servlet Overview 1-1

Introduction to Servlets

Introduction to Servlets

This section offers a brief introduction to servlet technology, covering the following
topics:

« Review of Servlet Technology

« Advantages of Servlets

« The Servlet Interface and Request and Response Objects
« Servlets and the Servlet Container

= Introduction to Servlet Sessions

= Servlet Contexts

« Introduction to Servlet Filters

« Introduction to Event Listeners

«» Other J2EE Component Types

Review of Servlet Technology

In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic HTML pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). The servlet takes an HTTP request from a browser, generates
dynamic content (such as by querying a database), and provides an HTTP response
back to the browser.

Prior to servlets, Common Gateway Interface (CGI) technology was used for
dynamic content, with CGI programs being written in languages such as Perl and
being called by a Web application through the Web server. CGI ultimately proved
less than ideal, however, due to its architecture and scalability limitations.

Most servlets generate HTML text, which is then sent back to the client for display
by the Web browser, or is sent on to other components in the application. Servlets
can also generate XML, to encapsulate data, and send this to the client or to other
components.

A servlet runs in a J2EE application server, such as OC4J. Servlets are one of the
main application component types of a J2EE application, along with EJBs, another
server-side J2EE component type. These are used in conjunction with client-side
components such as applets (part of the Java 2 Standard Edition specification) and

1-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

application client programs. A Web application might consist of any number of any
of these components.

Advantages of Servlets

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage is
that a servlet runs in the server, which is usually a robust machine with many
resources, minimizing use of client resources. An applet, by contrast, is downloaded
into the client browser and runs there. Another advantage is more direct access to
the data. The Web server or data server in which a servlet is running is on the same
side of the network firewall as the data being accessed. An applet running on a
client machine, outside the firewall, requires special measures (such as signed
applets) to allow the applet to access any server other than the one from which it
was downloaded.

Servlet programming also offers advantages over earlier models of server-side Web
application development, including the following:

= Servlets outperform earlier technologies for generating dynamic HTML, such as
server-side "includes" or CGlI scripts. Once a servlet is loaded into memory, it
can run on a single lightweight thread; CGI scripts must be loaded in a different
process for every request.

« Servlet technology, in addition to improved scalability, offers the well-known
Java advantages of object orientation, platform independence, security, and
robustness.

« Servlets are fully integrated with the Java language and its standard APIs, such
as JDBC (for Java database connectivity, of particular interest to database
programmers).

« Servlets are fully integrated into the J2EE framework, which provides an
extensive set of services that your Web application can use, such as JNDI, JMS,
and RMI.

= Aservlet handles concurrent requests (through either a single servlet instance
or multiple servlet instances, depending on the thread model), and servlets
have a well-defined lifecycle. For higher performance, servlets can be loaded
when OC4J starts. (See "Servlet Preloading" on page 2-4.)

« The servlet request and response objects provide a convenient way to handle
HTTP requests and send text and data back to the client.

Servlet Overview 1-3

Introduction to Servlets

Because servlets are written in the Java programming language, they are supported
on any platform that has a Java virtual machine and a Web server that supports
servlets. Servlets can be used on different platforms without recompiling. You can
package servlets together with associated files such as graphics, sounds, and other
data to make a complete Web application. This simplifies application development
and deployment.

In addition, you can port a servlet-based application from another Web server to
OC4J with little effort. If your application was developed for a J2EE-compliant Web
server, then the porting effort is minimal.

The Servlet Interface and Request and Response Objects

A Java servlet, by definition, implements the j avax. servl et . Ser vl et interface.
This interface specifies methods to initialize a servlet, process requests, get the
configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, you can implement the Ser vl et interface by extending the
javax.servlet. http. H t pServl et abstract class. (Alternatively, for
protocol-independent servlets, you can extend the

javax. servl et. GenericServl et class.) The Ht t pSer vl et class includes the
following methods:

« init(...)—Thisistoinitialize the servlet.

« destroy(...)—Thisis to terminate the servlet.

« doCet(...)—Thisisfor HTTP GET requests.

« doPost(...)—Thisisfor HTTP POST requests.

« doPut(...)—Thisisfor HTTP PUT requests.

« doDelete(...)—Thisisfor HTTP DELETE requests.

« service(...)—Thisistoreceive HTTP requests and, by default, dispatch
them to the appropriate doXXX() methods.

« getServletlnfo(...)—Thisisfor use by the servlet to provide information
about itself.

A servlet class that extends Ht t pSer vl et implements some or all of these
methods, as appropriate, overriding the original implementations as necessary to
process the request and return the response as desired. For example, most servlets
override the doGet () method or doPost () method or both to process HTTP GET
and POST requests.

1-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Each method takes as input an Ht t pSer vl et Request instance (an instance of a
class that implements the j avax. servl et. http. Ht t pSer vl et Request
interface) and an Ht t pSer vl et Response instance (an instance of a class that
implements the j avax. servl et. http. Ht t pSer vl et Response interface).

The Ht t pSer vl et Request instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The Ht t pSer vl et Response instance provides HTTP-specific
functionality in sending the response, such as specifying the content length and
MIME type and providing the output stream.

Servlets and the Servlet Container

Unlike a Java client program (but like an applet), a servlet has no static mai n()
method. Therefore, a servlet must execute under the control of an external
container.

Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. It is the servlet container that calls servlet methods and provides services
that the servlet needs when executing. A servlet container is usually written in Java
and is either part of a Web server (if the Web server is also written in Java) or
otherwise associated with and used by a Web server.

The servlet container provides the servlet easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called (such as when
a servlet is specified by URL), the Web server passes the HTTP request to the servlet
container. The container, in turn, passes the request to the servlet. In the course of
managing a servlet, a servlet container performs the following tasks:

« ltcreates an instance of the servlet and callsitsi ni t () method to initialize it.

« Itconstructs a request object to pass to the servlet. The request includes, among
other things:

— any HTTP headers from the client

— parameters and values passed from the client (for example, names and
values of query strings in the URL)

— the complete URI of the servlet request
« It constructs a response object for the servlet.

« Itinvokes the servlet ser vi ce() method. Note that for HTTP servlets, the
generic service method is usually overridden in the Ht t pSer vl et class. The

Servlet Overview 1-5

Introduction to Servlets

service method dispatches requests to the servlet doGet () or doPost ()
methods, depending on the HTTP header in the request (GET or POST).

« Itcallsthe destroy() method of the servlet to discard it when appropriate, so
that it can be garbage collected. (For performance reasons, it is typical for a
servlet container to keep a servlet instance in memory for reuse, rather than
destroying it each time it has finished its task. It would be destroyed only for
infrequent events, such as Web server shutdown.)

Figure 1-1 shows how a servlet relates to the servlet container and to a client, such
as a Web browser. When the Web listener is the Oracle HTTP Server (powered by
Apache), the connection to the OC4J servlet container goes through the nod_oc4;j
module. See the Oracle HTTP Server Administration Guide for details.

Figure 1-1 Servlets and the Servlet Container

- Web
l ' listener

Servlet Container

>

1sanbay
Response

h 4 | R

Servlet

4 Data Source

S

JDBC Connection

1-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Introduction to Servlet Sessions

Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful
way. Servlet session tracking is similar in nature to session tracking in previous
technologies, such as CGl.

This section provides an introduction to servlet sessions. See "Servlet Sessions" on
page 2-16 for more information and examples.

HttpSession Interface

In the standard servlet API, each user is represented by an instance of a class that
implements the j avax. servl et. htt p. Ht t pSessi on interface. Servlets can set
and get information about the session in this Ht t pSessi on object, which must be
of application-level scope.

A servlet uses the get Sessi on() method of an Ht t pSer vl et Request object to
retrieve or create an Ht t pSessi on object for the user. This method takes a boolean
argument to specify whether a new session object should be created for the user if
one does not already exist.

The Ht t pSessi on interface specifies the following public methods to get and set
session information:

« Vvoid setAttribute(String nane, bject val ue)
This method binds the specified object to the session, under the specified name.
« Object getAttribute(String nane)

This method retrieves the object that is bound to the session under the specified
name (or nul | if there is no match).

Depending on the implementation of the servlet container and the servlet itself,
sessions may expire automatically after a set amount of time or may be invalidated
explicitly by the servlet. Servlets can manage session lifecycle with the following
methods, specified by the Ht t pSessi on interface:

« void invalidate()
This method immediately invalidates the session, unbinding any objects from it.
« void setMaxlnactivelnterval (int interval)

This method sets a session timeout interval, in seconds, as an integer.

Servlet Overview 1-7

Introduction to Servlets

« boolean i sNew()

This method returns t r ue within the request that created the session; it returns
f al se otherwise.

« |long getCreationTine()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

« |long getlLastAccessedTi me()

This method returns the time of the last request associated with the client,
measured in milliseconds since midnight, January 1, 1970.

For complete information about Ht t pSessi on methods, you can refer to the Sun
Microsystems Javadoc at the following location:

http://java.sun. com products/servlet/2.3/javadoc/index. htn

Introduction to Session Tracking

Servlets provide convenient ways to keep the client and a server session in
synchronization, enabling stateful servlets to maintain session state on the server
over the whole duration of a client browsing session.

The following session-tracking mechanisms are supported. See "Session Tracking"
on page 2-16 for more information.

= cookies

The servlet container sends a cookie to the client, which returns the cookie to
the server upon each HTTP request. This associates the request with the session
ID indicated by the cookie. This is the most frequently used mechanism and is
supported by any servlet container that adheres to the servlet 2.2 or higher
specification.

« URL rewriting

In case cookies might be disabled, the servlet can call the encodeURL()
method of the response object, or the encodeRedi r ect URL() method for
redirects, to append a session ID to the URL path for each request. This allows
the request to be associated with the session. This is the most frequently used
mechanism where clients do not accept cookies.

1-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Servlet Contexts

A servlet context is used to maintain state information for all instances of a Web
application within any single JVM (that is, for all servlet and JSP page instances that
are part of the Web application). This is similar to the way a session maintains state
information for a single client on the server; however, a servlet context is not
specific to any single user and can handle multiple clients. There is usually one
servlet context for each Web application running within a given JVM. You can think
of a servlet context as an "application container".

Any servlet context is an instance of a class that implements the
j avax. servl et . Servl et Cont ext interface, with such a class being provided
with any Web server that supports servlets.

A Ser vl et Cont ext object provides information about the servlet environment
(such as name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

A servlet context maintains the session objects of the users who are running the
application, and provides a scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct class loader and
its runtime objects are distinct from those of any other application. In particular, the
Ser vl et Cont ext object is distinct for an application, much as each Ht t pSessi on
object is distinct for each user of the application.

Beginning with the Sun Microsystems Java Servlet Specification, Version 2.2, most
implementations can provide multiple servlet contexts within a single host, which is
what allows each Web application to have its own servlet context. (Previous
implementations usually provided only a single servlet context with any given
host.)

The Ser vl et Cont ext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that
the servlet can retrieve application-level environment and state information.
Methods specified in Ser vl et Cont ext include those listed here. For complete
information, you can refer to the Sun Microsystems Javadoc at the following
location:

http://java.sun. com products/servlet/2.3/javadoc/index. htm

Servlet Overview 1-9

Introduction to Servlets

« void setAttribute(String nane, bject val ue)

This method binds the specified object to the specified attribute name in the
servlet context. Using attributes, a servlet container can give information to the
servlet that is not otherwise provided through the Ser vl et Cont ext interface.

Note: For aservlet context,set Attri bute() isa local operation
only—it is not intended to be distributed to other JVMs within a
cluster. (This is in accordance with the servlet 2.3 specification.)

« Object getAttribute(String nane)

This method returns the attribute with the given name, or nul | if there is no
attribute by that name. The attribute is returned asaj ava. | ang. Obj ect
instance.

« java.util.Enumeration getAttributeNanes()

This method returnsaj ava. util . Enuner at i on instance containing the
names of all available attributes of the servlet context.

« Vvoid renoveAttribute(String attrnane)
This method removes the specified attribute from the servlet context.
« String getlnitParameter(String nane)

This method returns a string that indicates the value of the specified
context-wide initialization parameter, or nul | if there is no parameter by that
name. This allows access to configuration information that is useful to the Web
application associated with this servlet context (the name of a system that has
critical information, for example).

« Enuneration getlnitParanmet er Nanes()

This method returnsaj ava. util . Enuner at i on instance containing the
names of the initialization parameters of the servlet context.

« Request Di spat cher get NamedDi spat cher (String nane)

Thisreturns aj avax. servl et . Request Di spat cher instance that acts as a
wrapper for the specified servlet.

« Request Di spat cher get Request Di spat cher (String path)

Thisreturns aj avax. servl et . Request Di spat cher instance that acts as a
wrapper for the resource located at the specified path.

1-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

« String getReal Path(String path)
This returns the real path, as a string, for the specified virtual path.
« URL get Resource(String path)

This returns aj ava. net . URL instance with a URL to the resource that is
mapped to the specified path.

« String getServerlnfo()
This method returns the name and version of the servlet container.
« String getServl et Cont ext Name()

This returns the name of the Web application with which the servlet context is
associated, according to the <di spl ay- nane> element of the web. xm file.

Introduction to Servlet Filters

Request objects (instances of a class that implements Ht t pSer vl et Request) and
response objects (instances of a class that implements Ht t pSer vl et Response) are
typically passed directly between the servlet container and a servlet.

The servlet 2.3 specification, however, allows servlet filters, which are Java programs
that execute on the server and can be interposed between the servlet (or group of
servlets) and the servlet container for special request or response processing.

If there is a filter or a chain of filters to be invoked before the servlet, these are called
by the container with the request and response objects as parameters. The filters
pass these objects, perhaps modified, or alternatively create and pass new objects, to
the next object in the chain using the doChai n() method.

See "Servlet Filters" on page 4-2 for more information.

Introduction to Event Listeners

The servlet 2.3 specification adds the capability to track key events in your Web
applications, through event listeners. This functionality allows more efficient
resource management and automated processing based on event status.

When creating listener classes, there are standard interfaces you can implement for
servlet context lifecycle events, servlet context attribute changes, HTTP session
lifecycle events, and HTTP session attribute changes. A listener class can implement
one, some, or all of the interfaces as appropriate.

Servlet Overview 1-11

Introduction to Servlets

An event listener class is declared in the web. xm deployment descriptor and
invoked and registered upon application startup. When an event occurs, the serviet
container calls the appropriate listener method.

See "Event Listeners" on page 4-16 for more information.

Other J2EE Component Types

In addition to servlets, a Web application might include other server-side
components such as JavaServer Pages (JSP) and Enterprise JavaBeans (EJB).

While servlets are managed by the OC4J servlet container, EJBs are managed by the
OC4J EJB container and JSP pages are managed by the OC4J JSP container. These
containers form the core of OC4J.

JSP pages also involve the servlet container, because the JSP container itself is a
servlet and is therefore executed by the servlet container. The JSP container
translates JSP pages into page implementation classes, which are executed by the
JSP container but function similarly to servlets.

For more information about JSP pages and EJBs, see the following:
« JSPand EJB primer chapters in the Oracle9iAS Containers for J2EE User’s Guide
« Oracle9iAS Containers for J2EE Support for JavaServer Pages Developer’s Guide

« Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

1-12 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A First Servlet Example

A First Servlet Example

Looking at a basic example is the best way to demonstrate the general framework
for writing a servlet. This section shows the code for a simple servlet, but with a
twist for globalization. The code is commented to explain the basics of servlet
development.

Hello World Code

This servlet prints the date and a greeting back to the client, but in Swedish.
Here is the code:

inport java.io.*;

inport java.text.?*;

inport java.util.*;

Il The first three package inports support 1/0 and the locale info and date
I/ formatting. The next two inports include the packages that support

/] servlet devel opnent.

inport javax.servlet.*;

inport javax.servlet.http.*;

/| HTTP servlets extend the javax.servlet.http. HtpServlet class.

public class Hel | oWorldServlet extends HtpServlet {

public void doGet (HtpServl et Request req, HtpServletResponse res)
throws ServletException, |CException {
/] doGet() overrides the HtpServliet method. Each nmethod of this class
/] has request and/or response paraneters.

/] Set the content type of the response.
res. set Content Type("text/plain");

/] Get a print witer streamto wite output to the response. You
/] could also get s ServletQutputStreamobject to do this.
PrintWiter out = res.getWiter();

/] This statenment tells the client the | anguage of the content--Swedish.
/] However, many Wb browsers will ignore this info.

res. set Header (" Cont ent - Language", "sv");

/1 Set the locale information, so the date will be formatted in a Swedi sh-
/] friendly way, and the right words are used for nonths and so on.

Local e local e = new Local e("sv", "");

/1l Get the date format.

Servlet Overview 1-13

A First Servlet Example

Dat eFormat dat eFormat = Dat eFor mat . get Dat eTi mel nst ance(Dat eFor mat . LONG,
Dat eFor mat . LONG,
locale);

Il Al'so set the local time zone.
dat eFormat . set Ti neZone(Ti meZone. get Defaul t ());

/1 Now use the printer object to send some HTM. header info to the
/1 output stream

out. println("<HTM.><HEAD><TI TLE>Hej WA u00ed4r| den! </ Tl TLE></ HEAD>");
out.println("<BODY>");

/1 Send the date to the output.
out.println(dateFormat.fornat(new Date()));

/] And then, greet the client--
out.printIn("<p>n Swedish (p\uOOE5 Svenska):");
out.println("<H2>Hej VA uOOE4r| den! </ H2>");

/] Don't forget to close the HTM tags.
out. println("</BODY></ HTM.>");
}
}

Compiling and Deploying the Servlet

To try out this servlet in your OC4J server, enter the code using your favorite text
editor, and save itas Hel | owbr | dServl et . j ava inthe/ WEB- | NF/ cl asses
directory of the OC4J default Web application. (See "OC4J Default Web Application
and Key Directories" on page 2-9.) Next, compile the servlet, using a Java
1.3.x-compliant compiler.

For convenience during development and testing, use the OC4J auto-compile
feature for servlet code. This is enabled through the setting devel oprment ="t r ue"
in the <or i on- web- app> element of the gl obal - web- appl i cati on. xm filein
the OC4J configuration files directory. The sour ce- di r ect or y attribute may also
have to be set appropriately. With auto-compile enabled, after you change the
servlet source and save it in a specified directory, the OC4J server automatically
compiles and redeploys the servlet the next time it is invoked.

See "Element Descriptions for global-web-application.xml and orion-web.xml" on
page 3-16 for more information about devel oprment and sour ce-di rectory.

1-14 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A First Servlet Example

Running the Servlet

Assuming the OC4J server is up and running, by default you can invoke the servlet
and see its output from a Web browser as follows, where <host > is the name of the
host that the OC4J server is running on, and <por t > is the Web listener port:

http://<host><: port>/servlet/HelloWrldServl et
If you are developing in an OC4J standalone environment, use port 8888 to access
the OC4J) Web listener directly.

This example assumes that "/ " is the context path of the Web application, as is true
by default in OC4J standalone for an application deployed to the default Web
application.

See "Servlet Invocation" on page 2-11 for general information about invoking
servlets in OC4J in various situations and environments.

Servlet Overview 1-15

A First Servlet Example

1-16 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

2

Servlet Development

This chapter provides basic information for developing servlets for OC4J and the
Oracle9i Application Server, covering the following topics:

Servlet Development Basics and Key Considerations
Servlet Invocation

Servlet Sessions

Use of JDBC in Servlets

EJB Calls from Servlets

Note: The assumption in this chapter is that you are in an OC4J
standalone development environment. For considerations in
configuring and deploying a production application with Oracle
Enterprise Manager in an Oracle9iAS environment, see "OC4J
Deployment and Configuration with Oracle9iAS and Enterprise
Manager" on page 3-3.

Servlet Development 2-1

Servlet Development Basics and Key Considerations

Servlet Development Basics and Key Considerations

Most HTTP servlets follow a standard form. They are written as public classes that
extend the Ht t pSer vl et class. A servlet overrides thei nit () and destroy()
methods when code is required for initialization work at the time the servlet is
loaded by the container, or for finalization work when the container shuts the
servlet down. Most servlets override either the doGet () method or the doPost ()
method of Ht t pSer vl et , to handle HTTP GET or POST requests. These two
methods take request and response objects as parameters.

This chapter provides sample servlets that are more advanced than the

Hel | owbr | dSer vl et in "A First Servlet Example" on page 1-13. For simplicity,
you can test each of these servlets using the OC4J standalone default Web
application. To do this, save the Java source files in the / VEB- | NF/ cl asses
directory of the default Web application.

To test some of the servlets, you might have to make changes to the web. xm file in
the default Web application / WEB- | NF directory, as directed. When you change and
save the web. xm file, OC4J restarts and picks up the changes to the default Web
application.

This section covers features and issues to consider before developing your
applications. In all, the following topics are covered:

« Code Template

« Servlet Loading and Lifecycle

« Servlet Preloading

« Servlet Class Loading

« Servlet Information Exchange

« Servlet Threading

« Servlet Security Considerations

« OC4] Default Web Application and Key Directories

« Oracle9i JDeveloper Support for Servlet Development

2-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

Code Template

Here is a code template for servlet development:

public class myServlet extends HttpServliet {

public void init(ServletConfig config) {
}

public void destroy() {
}

public void doGet (HtpServl et Request request, HttpServletResponse)
throws ServletException, |CException {

}

public void doPost (HttpServletRequest request, HttpServletResponse)
throws ServletException, |CException {

}

public String getServletinfo() {
return "Sone information about the servliet.";

}

Overriding the i nit (),destroy(),and get Servl et | nf o() methods is
optional. The simplest servlet just overrides either doGet () or doPost ().

The reason for overriding the i ni t () method would be to perform special actions
that are required only once in the servlet lifetime, such as the following:

establishing data source connections

getting initialization parameters from the configuration and storing the values
in local variables

recovering persistent data that the servlet requires
creating expensive session objects such as hashtables

logging the servlet version to the | og() method of the Ser vl et Cont ext
object

Servlet Development 2-3

Servlet Development Basics and Key Considerations

Servlet Loading and Lifecycle
Servlets have a predictable and manageable lifecycle:

=« When the servlet is loaded, its configuration details are read from web. xni .
These can include initialization parameters.

« There is only one instance of a servlet. Client requests share servlet instances.

« Client requests invoke the ser vi ce() method of the generic servlet, which
then delegates the request to doGet () or doPost () (or another overridden
request-handling method), depending on the information in the request
headers.

« Filters can be interposed between the container and the servlet to modify the
servlet behavior, either during request or response. See "Servlet Filters" on
page 4-2 for more information.

« Aservlet can forward requests to other servlets.

« The servlet creates a response object, which the container passes back to the
client in HTTP response headers. Servlets can write to the response using a
java.io.PrintWiter orjavax. servl et. Servl et Qut put Stream
object.

= The container calls the dest r oy() method before the servlet is unloaded.

Also see the next section, "Servlet Preloading".

Servlet Preloading

Typically, the servlet container instantiates and loads a servlet class when it is first
requested. However, you can arrange the preloading of servlets through settings in
the Web site XML file (such as def aul t - web-site. xm or

ht t p- web-si t e. xm) and the web. xm file. Preloaded servlets are loaded and
initialized when the OC4J server starts up, or when the Web module is deployed or
redeployed.

Preloading requires the following steps:

1. Specify the attribute setting | oad- on- st art up="t r ue" in the <web- app>
subelement of the <web- si t e> element of the Web site XML file. See "The
default-web-site.xml, http-web-site.xml, and Other Web Site XML Files" on
page 3-30 for information about Web site XML files.

2-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

2. For any servlet you want to preload, there must be a <I oad- on-start up>
subelement under the <ser vl et > element in the web. xnl file for the Web
module.

Table 2-1 explains the behavior of the <l oad- on- st art up> element in web. xni .

Table 2-1 File web.xml <load-on-startup> Behavior

Value Range Behavior
Less than zero (<0) Servlet is not preloaded.
For example:

<l oad- on- st art up>- 1</ | oad- on- st art up)

Greater than or equal to zero (>=0) Servlet is preloaded. The order of its

loading, with respect to other

preloaded servlets in the same Web

<l oad- on- startup>1</l oad- on-start up> application, is according to the
load-on-startup value, lowest number
first. (For example, 0 is loaded before
1, which is loaded before 2.)

For example:

Empty element The behavior is as if the

load-on-startup value is

I nt eger . MAX_VALUE, ensuring that

<l oad- on-startup/> the servlet is loaded after any servlets
with load-on-startup values greater
than or equal to zero.

For example:

Servlet Class Loading
Regarding class loading for servlets, there are two important considerations in
OC4l:
« Wwhether to load WAR file classes before system classes

« how to load classes so that cached Java objects can be shared across servlets

Loading WAR File Classes Before System Classes in 0C4J

The servlet 2.3 specification recommends, but does not require, loading "local
classes"—classes in the WAR file—before system classes. By default, the OC4J
servlet container does not load local classes first, but this is configurable through the
<web- app- cl ass- | oader > element in gl obal - web- appl i cati on. xm or

ori on-web. xm . This element has two attributes, listed here.

Servlet Development 2-5

Servlet Development Basics and Key Considerations

« search-1local -cl asses-first:Setthisto"t rue" tosearch and load WAR
file classes before system classes. The default is "f al se".

« include-war-manifest-class-path: Setthisto"f al se"to not include the
class path specified in the WAR file manifest Cl ass- Pat h attribute when
searching and loading classes from the WAR file (regardless of the
search-1ocal - cl asses-first setting). The defaultis "t r ue".

Also see "Element Descriptions for global-web-application.xml and orion-web.xml"
on page 3-16.

Sharing Cached Java Objects Across OC4J Servlets

In order to take advantage of the distributed functionality of the Oracle9i
Application Server Java Object Cache, or to share a cached object between servlets,
some minor modification to an application deployment is necessary. Any
user-defined objects that will be shared between servlets or distributed between
JVMs must be loaded by the system class loader; however, by default, objects
loaded by a servlet are loaded by the context class loader. Objects loaded by the
context class loader are visible only to the servlets within the servlet context
corresponding to that class loader. The object definition would not be available to
other servlets or to the cache in another JVM. If an object is loaded by the system
class loader, however, the object definition will be available to other servlets and to
the cache on other JVMs.

With OC4J, the system classpath is derived from the manifest of the oc4j . j ar file
and any associated . j ar files, including cache. j ar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, the

. ¢l ass file should either be copied to the following directory:

[Oracl e_Hone] /j avacache/ shar edobj ect s/ cl asses

or it should be added to the following . j ar file:

[Oracl e_Hone] /j avacache/ cachedobj ect s/ share. j ar

Both the cl asses directory and the shar e. j ar file are included in the manifest
for cache. j ar, and are therefore included in the system classpath.

For information about the Oracle9i Application Server Java Object Cache, see the
Oracle9iAS Containers for J2EE Services Guide.

2-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

Servlet Information Exchange

A servlet typically receives information from one or more sources, including the
following:

« parameters from the request object
« the HTTP session object
« the servlet context object

» information from data sources outside the servlet (for example: databases, file
systems, or external sensors)

The servlet adds information to the response object, and the container sends the
response back to the client.

Servlet Threading

If there is an additional servlet request while a servlet is already running, servlet
container behavior depends on whether the servlet uses a single-thread model or a
multiple-thread model. In a single-thread case, the servlet container prevents
multiple simultaneous ser vi ce() calls from being dispatched to a single servlet
instance—it may spawn multiple separate servlet instances instead. In a
multiple-thread model, the container can make multiple simultaneous ser vi ce()
calls to a single servlet instance, using a separate thread for each call.

When a servlet can be invoked from more than one thread, you must ensure that the
servlet code is thread-safe. One option, though not generally advisable, is to
synchronize the servlet (specifically, the ser vi ce() method). This can significantly
reduce performance.

As an alternative, the servlet specification provides that a servlet can implement the
j avax. servl et. Si ngl eThr eadMbdel interface to guarantee synchronized
access to the whole servlet. For stateful servlets, it is advisable to use this
single-thread model.

Servlet Security Considerations

There are several considerations regarding the security of your Web application
running in the OC4J servlet container:

« OC4Jincludes standard support for security constraints and security roles
through the <securi t y- r ol e>element of the web. xm deployment
descriptor. For general information, refer to the Sun Microsystems Java Servlet
Specification, Version 2.3. OC4J also offers related support through the

Servlet Development 2-7

Servlet Development Basics and Key Considerations

gl obal - web- application. xm file<security-rol e- mappi ng>element.
See "The global-web-application.xml and orion-web.xml Files" on page 3-14.

« Secure Socket Layer (SSL) and HTTPS support are through Oracle HTTP Server,
not OC4J.

In Oracle9iAS release 2, the OC4J servlet container does not directly support
SSL and HTTPS. This affects some def aul t - web- si te. xm elements and
attributes, specifically:

— <web-site>elementsecure and pr ot ocol attributes—Some settings
are unsupported or not recommended.

— <web-site>element <ssl - conf i g>subelement—This is unsupported.

See "The default-web-site.xml, http-web-site.xml, and Other Web Site XML
Files" on page 3-30 for information about these elements and attributes.

« There is a significant security risk when users are allowed to invoke servlets by
class name. (Invoking by class is described in "Servlet Invocation by Class
Name During OC4J Development" on page 2-11.)

Invoking by class name bypasses security constraints specified in the web. xm
file, and should be considered only in a development environment. It is also
true that when a servlet is invoked by class, any exception it throws may reveal
the physical path of the servlet location, which is highly undesirable.

To resolve this problem, particularly in a production environment, configure the
application so that the ser vl et - webdi r attribute of the <or i on- web- app>
element of the gl obal - web- appl i cati on. xm file does not start with a slash
("/ ™). This effectively disables the dynamic servlet class name lookup. Note that
the default setting, "/ ser vl et ", does start with a slash.

The following configuration, for example, would remedy the situation:
<orion-web-app ... servlet-webdir="null" ... >

</ orion-web-app>

» To guard against having session ID numbers guessed or "hacked" for possibly
destructive purposes, OC4J uses j ava. securi ty. Secur eRandom
functionality to generate random session 1D numbers.

2-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

0C4J Default Web Application and Key Directories

OC4Jis installed with a default configuration that includes a default Web site and a
default application. The default application includes a default Web application.
Therefore, you can start OC4J immediately without any additional configuration.

For simplicity, this chapter assumes you are using an OC4J standalone environment
and deploying to the default Web application. An OC4J standalone environment
includes the following key directories.

« J2EE home:[Oracl e_Hone]/j 2ee/ hone
This will be referred to as j 2ee/ home in the remainder of this document.
« configuration files directory: j 2ee/ home/ confi g

In addition, there are the following key directories of the OC4J standalone default
Web application:

« default Web application root: j 2ee/ hone/ def aul t - web- app

« default Web application classes:
j 2ee/ hone/ def aul t - web- app/ V\EB- | NF/ cl asses

Note: Inan Oracle9iAS environment, directories are configurable
using Enterprise Manager. See the Oracle9iAS Containers for J2EE
User’s Guide.

Oracle9i JDeveloper Support for Servlet Development

Visual Java programming tools now typically support servlet coding. In particular,
Oracle9i JDeveloper supports servlet development and includes the following
features:

= Wwizards to help generate servlet code

« integration of the OC4J servlet container to support the full application
development cycle—editing, debugging, and running servlets

« debugging of deployed servlets

« an extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

« the JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

Servlet Development 2-9

Servlet Development Basics and Key Considerations

= support for incorporating custom JavaBeans

« adeployment option for servlet applications that rely on the JDeveloper
Business Components for Java (BC4J)

2-10 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Invocation

Servlet Invocation

A servlet or JSP page is invoked by the container when a request for the servlet
arrives from a client. The client request might come from a Web browser or a Java
client application, or from another servlet in the application using the request
forwarding mechanism, or from a remote object on a server.

A servlet is requested through its URL mapping. The URL mapping for a servlet
consists of two parts: the context path and the servlet path. The context path is that
part of the URL from the first forward slash after the host name or port number, up
to the servlet path. The servlet path continues from the slash at the end of the
context path (if there is a context path) to the end of the URL string, or until a’?’ or
;" that delimits the servlet path from the additional material such as query strings
or rewritten parts of the URI. In a typical deployment scenario, the context path and
servlet path are determined through settings in a standard web. xmi file.

The remainder of this section covers the following topics, including some special
OC4J features for invoking a servlet by class name in a development scenario:

« Servlet Invocation by Class Name During OC4J Development
= Servlet Invocation in an Oracle9iAS Production Environment

« Servlet Invocation in an OC4J Standalone Environment

Servlet Invocation by Class Name During OC4J Development

For a development or testing scenario in OC4J, there is a mechanism for invoking a
servlet by class name. This might simplify the URL for invocation. The presumption
here is that you would use this in an OC4J standalone environment while
developing your application.

The ser vl et - webdi r attribute in the <or i on- web- app> element of the

gl obal - web- application.xm fileorori on-web. xm file defines a special
URL component. Anything following this URL component is assumed to be a
servlet class name, including applicable package information, within the
appropriate servlet context. By default in OC4)J, this setting is"/ servl et ".

The following URL shows how to invoke a servlet called Sessi onSer vl et , with
explanations following. In this example, assume Sessi onSer vl et is in package

f 0o. bar, and executes in the OC4J default Web application. Also assume a context
path of "/ " (the default for the default Web application in OC4J standalone).

http://<host><:port>/servlet/foo.bar.SessionServl et

Servlet Development 2-11

Servlet Invocation

http:// The network protocol. Other protocols are or ni ,
ftp,https,andsoon.

<host > The network name of the server that the Web
application is running on. If the Web client is on the
same system as the application server, you can use
| ocal host . Otherwise, use the host name (as
defined in / et ¢/ host s on a UNIX system, for
example).

<:port> The port that the Web server listens on. (If you do
not specify a port, most browsers assume port 80.)
For AJP protocol through Oracle HTTP Server, the
server port is defined in the por t attribute of the
<web- si t e>elementin def aul t - web-si te. xm
(or other OC4J Web site XML file, as appropriate).
For HTTP protocol in OC4J standalone, the port is
according to the port attribute of the <web-si t e>
elementin htt p- web-site. xnm .

/ servl et This is according to the default ser vl et - webdi r
setting.

/ f 0o. bar. Sessi onSer vl et Because thereisaser vl et - webdi r setting, this
portion of the URL is simply the servlet package and
class name.

This mechanism applies to any servlet context, however, and not just for the default
Web application. If the context path is f 0o, for example, the URL to invoke by class
name would be as follows:

http://<host><: port>/foo/servlet/foo.bar.SessionServl et

Important: Allowing the invocation of servlets by class name
presents a significant security risk; OC4J should not be configured
to operate in this mode in a production environment. See "Servlet
Security Considerations" on page 2-7 for information.

2-12 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Invocation

Note: See the Oracle9iAS Containers for J2EE User’s Guide for
information about defined ports and what listeners they are
mapped to, and for information about how to alter these settings.

Servlet Invocation in an Oracle9iAS Production Environment

In a production environment, using the ser vl et - webdi r attribute in

gl obal - web-appl i cation.xm ororion-web. xm isinadvisable for security
reasons. Instead, standard servlet settings and mappings in the application

web. xm file specify the context path and servlet path.

Inweb. xm , the <ser vl et - name> subelement of the <ser vl et > element defines
a name for the servlet and relates it to a servlet class. The <ser vl et - mappi ng>
subelement relates servlet names to path mappings. The servlet name as well as the
mapping names are arbitrary—it is not necessary for the class that is invoked to
have the same base name, or even a similar base name, to either the

<servl et - nane> or any of the <ser vl et - mappi ng> settings.

In an Oracle9iAS environment, the context path is "/ j 2ee" to use AJP protocol
through the Oracle HTTP Server for an application that is deployed to the OC4J
default Web application. Here is an example:

http://<host><: port>/j2eel/ MyServl et

Use port 7777 for access through the Oracle HTTP Server with Oracle9iAS Web
Cache enabled.

If you are not using the default Web application, specify the context path while
deploying the application, in the Enterprise Manager page where you are prompted
for "URL binding". See the Oracle9iAS Containers for J2EE User’s Guide for more
information. That document also has information about OC4J port settings and
other default settings. For general information about Enterprise Manager, see the
Oracle Enterprise Manager Administrator’s Guide.

Servlet Development 2-13

Servlet Invocation

Notes:

» This discussion assumes the Web application is bound to a Web
site that uses AJP protocol, according to settings in the
def aul t - web-si te. xnl file.

« For production applications, Oracle recommends that you
always use the Oracle HTTP Server, as discussed in this section.
See the Oracle HTTP Server Administration Guide for general
information.

There is also a relevant element in the def aul t - web- si t e. xn file (or other Web
site XML file). The <f r ont end> subelement of the <web- si t e> element specifies
a perceived front-end host and port of the Web site as seen by HTTP clients. When
the site is behind something like a load balancer or firewall, the <f r ont end>
specification is necessary to provide appropriate information to the Web application
for functionality such as URL rewriting. Attributes are host , for the name of the
front-end server (such as " www. acne. coni'), and por t, for the port number of the
front-end server (such as " 80"). Using this front-end information, the back-end
server that is actually running the application knows to refer to www. acne. com
instead of to itself in any URL rewriting. This way, subsequent requests properly
come in through the front-end again, instead of trying to access the back-end
directly.

Servlet Invocation in an OC4J Standalone Environment

The information about servlet configuration through web. xni in the previous
section, "Servlet Invocation in an Oracle9iAS Production Environment", also applies
in an OC4J standalone environment if you are not invoking by class name.

When testing with OC4J standalone, you can use port 8888 to access OC4J through
its own Web listener. The default context path is "/ ". Here is an example:

http://<host>: 8888/ MyServl et

2-14 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Invocation

Note: The OC4J standalone Web site uses HTTP protocol without
going through the Oracle HTTP Server and AJP, and is configured
according to settings in the ht t p- web- si t e. xm file . These
settings include the context path, for example (according to the

r oot attribute of the <web- app> subelement under the

<web- si t e> element).

Servlet Development 2-15

Servlet Sessions

Servlet Sessions

Servlet sessions were introduced in "Introduction to Servlet Sessions" on page 1-7.
This section provides details and examples, covering the following topics:

« Session Tracking
« Session Cancellation
« Session Servlet Example

« Session Replication

Session Tracking

This section provides an overview of servlet session tracking and features, then
describes the OC4J implementation.

Overview of Session Tracking

The HTTP protocol is stateless by design. This is fine for stateless servlets that
simply take a request, do a few computations, output some results, and then in
effect go away. But many, if not most, server-side applications must keep some state
information and maintain a dialogue with the client. The most common example of
this is a shopping cart application. A client accesses the server several times from
the same browser, and visits several Web pages. The client decides to buy some of
the items offered for sale at the Web site, and clicks the BUY ITEM buttons. If each
transaction were being served by a stateless server-side object, and the client
provided no identification on each request, it would be impossible to maintain a
filled shopping cart over several HTTP requests from the client. In this case, there
would be no way to relate a client to a server session, so even writing stateless
transaction data to persistent storage would not be a solution.

When a servlet creates an HTTP session object (through the request object
get Sessi on() method), the client interaction is considered to be stateful.

Session tracking involves identifying user sessions by ID numbers and tying
requests to their session through use of the ID number. The typical mechanisms for
this are cookies or URL rewriting.

2-16 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Sessions

Note: Do notuse Ht t pSessi on objects to store persistent
information that must last beyond the normal duration of a session.
You can store persistent data in a database if you need the
protection, transactional safety, and backup that a database offers.
Alternatively, you can save persistent information on a file system
or in a remote object.

Cookies

A number of approaches have been used in attempting to add a measure of
statefulness to the HTTP protocol. The most widely accepted is the use of cookies,
used to transmit an identifier between server and client, in conjunction with stateful
servlets that can maintain session objects. Session objects are simply dictionaries
that store values (Java objects) together with their associated keys (Java strings).

Cookie usage is as follows:

1. With the first response from a stateful servlet after a session is created, the
server (container) sends a cookie with a session identifier back to the client,
often along with a small amount of other useful information (all less than 4 KB).
The container sends the cookie, named JSESSI ONI D, in the HTTP response
header.

2. Upon each subsequent request from the same Web client session, if the client
supports cookies it sends the cookie back to the server as part of the request,
and the cookie value is used by the server to look up session state information
to pass to the servlet.

3. With subsequent responses, the container sends the updated cookie back to the
client.

The servlet code is not required to do anything to send a cookie; this is handled by
the container. Sending cookies back to the server is handled automatically by the
Web browser, unless the end-user disables cookies.

The container uses the cookie for session maintenance. A servlet can retrieve
cookies using the get Cooki es() method of the Ht t pSer vl et Request object,
and can examine cookie attributes using the accessor methods of the

j avax. servl et. http. Cooki e objects.

URL Rewriting

An alternative to using cookies is URL rewriting, through the encodeURL()
method of the response object. This is where the session ID is encoded into the URL

Servlet Development 2-17

Servlet Sessions

path of a request. See "Session Servlet Example" on page 2-20 for an example of URL
rewriting.

The name of the path parameter isj sessi oni d, as in the following example:
http://<host><:port>/ nyapp/index. htm ?j sessi oni d=6789

Similarly to the functionality of cookies, the value of the rewritten URL is used by
the server to look up session state information to pass to the servlet.

Although cookies are typically enabled, the only way for you to ensure session
tracking is to use encodeURL() inyour servlets, or encodeRedi r ect URL() for
redirects.

Note: Inthe OC4Jimplementation, calls to the encodeURL() and
encodeRedi r ect URL() methods will result in no action if
cookies are enabled.

Other Session Tracking Methods

Other techniques have been used in the past to relate client and server sessions.
These include server hidden form fields and user authentication mechanisms to
store additional information. Oracle does not recommend these techniques in OC4J
applications, because they have many drawbacks, including performance penalties
and loss of confidentiality.

Session Tracking in OC4J

For session-tracking in OC4J, the servlet container will first attempt to accomplish
tracking through cookies. If cookies are disabled, session tracking can be
maintained only by using the encodeURL() method of the response object, or the
encodeRedi r ect URL() method for redirects. You must include the
encodeURL() or encodeRedi rect URL() calls in your servlet if cookies might be
disabled.

The use of session cookies is disabled by the following setting in the
gl obal - web-application.xm ororion-web. xm file:

<sessi on-tracki ng cooki es="di sabl ed" ... >
</ sessi on-tr acki ng>

Cookies are enabled by default.

2-18 Oracle9iAS Containers for J2EE Servlet Developer's Guide

Servlet Sessions

Notes:

« OC4J does not support auto-encoding, where session IDs are
automatically encoded into the URL by the servlet container.
This is a non-standard and expensive process.

« AnencodeURL() orencodeRedirect URL() call will not
encode the session ID into the URL if the cookie mechanism is
found to be working properly.

« TheencodeURL() method replaces the servlet 2.0
encodeUr | () method (note capitalization), which is
deprecated.

Session Cancellation

Ht t pSessi on objects persist for the duration of the server-side session. A session
is either terminated explicitly by the servlet, or it "times out" after a certain period
and is cancelled by the container.

Cancellation Through a Timeout

The default session timeout for the OC4J server is 20 minutes. You can change this
for a specific application by setting the <sessi on-t i meout > subelement under
the <sessi on- confi g> element of web. xm . For example, to reduce the session
timeout to five minutes, add the following lines to the application web. xm :

<sessi on- confi g>
<sessi on-ti meout >5</ sessi on-ti meout >
</ session-config>

The <sessi on- ti meout > element takes integer values. According to the serviet
2.3 specification, a value of 0 (zero) or less specifies the default behavior that a
session never times out. For example:

<sessi on- confi g>
<session-ti meout >- 1</ sessi on-ti meout >
</ session-config>

Servlet Development 2-19

Servlet Sessions

Cancellation by the Servlet

A servlet explicitly cancels a session by invoking the i nval i dat e() method on
the session object. You must obtain a new session object by invoking the
get Sessi on() method of the Ht t pSer vl et Request object.

Session Servlet Example

The Sessi onSer vl et code below implements a servlet that establishes an
Ht t pSessi on object and prints some interesting data held by the request and
session objects.

SessionServlet Code

inport java.io.*;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.util.Date;

public class SessionServlet extends HtpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, |CException {

Il Get the session object. Create a newone if it doesn't exist.
Ht t pSessi on session = req. get Session(true);

res. setContent Type("text/htm");
PrintWiter out = res.getWiter();

out.println("<head><title>" + "SessionServlet Qutput " +
"</ title></head><body>");
out.println("<hl> SessionServlet Qutput </hl>");

/1 Set up a session hit counter. "sessionservlet.counter" is just the
/] conventional way to create a key for the value to be stored in the
/] session object "dictionary".
Integer ival =

(I'nteger) session.getAttribute("sessionservlet.counter");
if (ival == null) {

ival = new Integer(1);

}
el se {

ival = new Integer(ival.intValue() + 1);
}

2-20 Oracle9iAS Containers for J2EE Servlet Developer's Guide

Servlet Sessions

/] Save the counter val ue.
session.set Attribute("sessionservlet.counter", ival);

/1 Report the counter val ue.
out.printIn(" You have hit this page " +
ival + " tines.<p>");

/1 This statement provides a target that the user can click on
I/ to activate URL rewriting. It is not done by default.
out.printIn("dick <a href=" +
res.encodeURL(Htt pUtils. get Request URL(req).toString()) +
">here");
out.printIn(" to ensure that session tracking is working even " +
"if cookies aren’t supported.
");
out.printIn("Note that by default URL rewiting is not enabled" +
" due to its large overhead.");
/] Report data from request.
out.println("<h3>Request and Session Data</h3>");
out.printIn("Session IDin Request: " +
req. get Request edSessionld());
out.printIn("
Session IDin Request is froma Cookie: " +
req.i sRequest edSessi onl dFr onCooki e()) ;
out.println("
Session IDin Request is fromthe URL: " +
req.i sRequest edSessi onl dFr onlURL()) ;
out.printIn("
Valid Session ID " +
req.i sRequest edSessi onl dvalid());

/] Report data fromthe session object.
out. println("<h3>Sessi on Data</h3>");

out.println("New Session: " + session.isNew());

out.println("
 Session ID: " + session.getld());

out.printIn("
 Creation Time: " + new Date(session.getCreationTine()));
out.println("
Last Accessed Tine: " +

new Dat e(session. get Last AccessedTime()));

out.println("</body>");
out.close();

}

public String getServletinfo() {
return "A sinple session servliet";

}
}

Servlet Development 2-21

Servlet Sessions

Deploying and Testing

Enter the preceding code into a text editor, and save it in the file

Sessi onSer vl et. j ava in the OC4J default Web application

/ VIEB- | NF/ cl asses directory. If you use the setting devel oprment ="t rue" in
the <or i on- web- app> element of the gl obal - web- appli cati on. xm file, the
servlet can be recompiled and redeployed automatically the next time it is invoked.
You may also have to set the sour ce- di r ect or y attribute appropriately. See
"Element Descriptions for global-web-application.xml and orion-web.xml" on

page 3-16 for more information about these attributes.

Figure 2-1 shows the output of this servlet when it is invoked the second time in a
session by a Web browser that has cookies enabled. Experiment with different Web
browser settings—for example, by disabling cookies—then select the HREF that
causes URL rewriting.

Figure 2-1 Session Servlet Display

- SessionServlet Output - Netscape

ile Edit “iew Go Communicator Help

Biach Fopward Reload Home Search Metzcape Frint Security Shop Stop m

w‘ " Bookmarks £ Location:l d @' What's Related

SessionServlet Qutput

Tou hawve hit this page 2 times.

Click here to ensure that session traclang is worldang even if coclies aren't supported.
Mete that by default TEL rewriting 12 not enabled due to itz large overhead.

Request and Session Data

Zession ID i Bequest: 295e32774%aedc0babesfde 182834412
Zesston ID i Bequest iz from a Coolde: true

Zession ID in Bequest iz from the TTEL: falze

Walid Session ID: true

Session Data

Mew Session: false

Zesston [0 290eB32774 %aed clbabeefde 15af34d12

Creation Time: Tue Aug 28 03:37.55 GRIT-02:00 2001

Last Accessed Tine: Tue Aug 28 08:37:59 GhT-05:00 2001

’E == | |Document: Done

2-22 Oracle9iAS Containers for J2EE Servlet Developer's Guide

Servlet Sessions

Session Replication

The session object of a stateful servlet can be replicated to other OC4J servers in a
load-balanced cluster island. If the server handling a request to a servlet should fail,
the request can "failover" to another JVM on another server in the cluster island. The
session state will still be available. The Web application must be marked as
distributable in the web. xm file, by use of the standard <di st ri but abl e>
element.

Objects that are stored by a servlet in the Ht t pSessi on object are replicated, and
must be serializable or remoteable for replication to work properly.

Note that a slight but noticeable delay occurs when an application is replicated to
other servers in a load-balanced cluster island. It is, therefore, possible that the
servlet could have been replicated by the time a failure occurred in the original
server, but that the session information had not yet been replicated.

Servlet Development 2-23

Use of JDBC in Servlets

Use of JDBC in Servlets

A servlet can access a database using a JDBC driver. The recommended way to use
JDBC is by using an OC4J data source to get the database connection. See
Oracle9iAS Containers for J2EE Services Guide for information about OC4J data
sources. For more information about JDBC, see the Oracle9i JDBC Developer’s Guide
and Reference.

Database Query Servlet

Part of the power of servlets comes from their ability to retrieve data from a
database. A servlet can generate dynamic HTML by getting information from a
database and sending it back to the client. A servlet can also update a database,
based on information passed to it in the HTTP request.

The example in this section shows a servlet that gets some information from the

user through an HTML form and passes the information to a servlet. The servlet
completes and executes a SQL statement, querying the sample HR schema to get
information based on the request data.

A servlet can get information from the client in many ways. This example reads a
query string from the HTTP request.

HTML Form

The Web browser accesses a form in a page that is served through the Web listener.
First, copy the following text into a file, naming the file Enpl nf 0. ht mi .

<HTM.>

<HEAD>

<TI TLE>Get Enpl oyee Information</ Tl TLE>
</ HEAD>

<BODY>

<FORM METHOD=GET ACTI ON="/ ser vl et / Get Enpl nf 0" >

The query is

SELECT LAST_NAME, EMPLOYEE_| D FROM EMPLOYEES WHERE LAST NAME LIKE ?.<p>

Enter the WHERE cl ause ? paraneter (use % for wldcards).

Exanpl e: ' S% :

<I NPUT TYPE=TEXT NAME="queryVal ">

<p>

<INPUT TYPE=SUBM T VALUE="Send I nfo">

</ FORW>

2-24 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

</ BODY>
</ HTM.>

Then save this file in the root directory of the OC4J default Web application.

Servlet Code: GetEmplnfo

The servlet that the preceding HTML page calls takes the input from a query string.
The input is the completion of the WHERE clause in the SELECT statement. The
servlet then appends this input to complete the database query. Most of the code in
this servlet consists of the JDBC statements required to connect to the data server
and retrieve the query rows.

This servlet makes use of the i ni t () method to do a one-time lookup of a data
source, using JNDI. The data source lookup assumes a data source such as the
following has been defined in the dat a- sour ces. xm file in the OC4J
configuration files directory:

<dat a- source
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="Cr acl eDS"
| ocati on="j dbc/ Or acl eCor eDS"
xa- 1 ocation="j dbc/ xal Or acl eXADS"
ej b-1ocation="j dbc/ Oracl eDS"
connection-driver="oracle.jdbc.driver.Oracl eDriver"
usernane="scott"
password="tiger"
url ="j dbc: oracl e: thi n: @ocal host: 5521: oracl e"
inactivity-timeout="30"

/>

In Oracle9iAS release 2, it is advisable to use only the ej b- | ocat i on INDI nhame
in the JNDI lookup for a data source. See the Oracle9iAS Containers for J2EE Services
Guide for more information about data sources.

Here is the servlet code:

inport java.io.*;

inport java.sql.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

Il These packages are needed for the JNDI | ookup.

i nport javax.nam ng.*;

/| These packages support SQ operations and Oracle JDBC drivers.
inport javax.sql.*;

inport oracle.jdbc.*;

Servlet Development 2-25

Use of JDBC in Servlets

public class GetEnplnfo extends HttpServlet {
Dat aSource ds = nul | ;

public void init() throws ServletException {
try {
Initial Context ic = new Initial Context();
ds = (DataSource) ic.lookup("java:conp/env/jdbc/ O aclebS");
}
catch (NamingException ne) {
throw new Servl et Exception(ne);
}
}

public void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, |CException {

String queryVal = req.getParaneter("queryVval");
String query =
"sel ect last_name, enployee_id from enpl oyees " +
"where |ast_nane like " + queryVal;

resp. set Content Type("text/htm");

PrintWiter out = resp.getWiter();
out.println("<htm>");
out.println("<head><title>CGetEnplnfo</title></head>");
out. println("<body>");

try {
Connection conn = ds. get Connection();

Statement stmt = conn.createStatement();
Result Set rs = stnt.executeQuery(query);

out.println("<table border=1 width=50%");
out.println("<tr><th w dth=75%1Last Name</th>" +
"<th width=25%Enpl oyee |D</th></tr>");

for (int count = 0; ; count++) {
if (rs.next()) {
out.println("<tr><td>" + rs.getString(1l) + "</td><td>" +
rs.getint(2) + "</td></tr>");

2-26 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

el se {
out.println("</tabl e><h3>" + count + " rows retrieved</h3>");
break;

}
}

conn. cl ose();
rs.close();
stnt.close();

}
catch (SQLException se) {
se. printStackTrace(out)

}

out. println("</body></htm >");
}

public void destroy() {

}
}

Deployment and Testing of the Database Query Servlet

To deploy this example, save the HTML file in the document root of the OC4J
default Web application, and save the Java servlet in the / WEB- | NF/ cl asses
directory of the default Web application. The Get Enpl nf 0. j ava file is
automatically compiled when the servlet is invoked by the form.

To test the example directly through the OC4] listener, such as in OC4J standalone,
invoke the Enpl nf 0. ht m page from a Web browser as follows:

http://<host>: 8888/ Enpl nf o. ht m

This assumes "/ " is the context path of the OC4J standalone default Web
application.

Complete the form and click Submit Query.

Note: For general information about invoking servlets in OC4J,
see "Servlet Invocation" on page 2-11.

Servlet Development 2-27

Use of JDBC in Servlets

When you invoke Enpl nf 0. ht ml , you will see a browser window that looks
something like Figure 2-2.

Figure 2-2 Employee Information Query

Get Some Information - Netscape

File Edit “iew Go Communicator Help

7 o - = ; o
e e A S a2 <+ & B i N
i Biach Fopward Reload Home Search Metzcape Frint Security Shop Stop
v w‘ " Bookmarks £ Location:l j @' What's Related
The rquery is
SELECT LAST MAWE, EMPLOYEE ID FROM EMPLOYEES WHERE LAST MNAWE
LIKE 7.

Enter the WHEEE clause ¥ parameter (use %0 for wildcards).
Ezxample: '2%"

Submit Query |

’E == | |Document: Done

2-28 Oracle9iAS Containers for J2EE Servlet Developer's Guide

Use of JDBC in Servlets

Entering '’ S% in the form and pressing Submit Query calls the Get Enpl nf o
servlet, and the results look something like Figure 2-3.

Figure 2-3 Employee Information Results

_ GetEmplnfo - Netscape

File Edit “iew Go Communicator Help
1 4 @ 3 4 a & & O 3N
i Back Fopward Reload Home Search Metzcape Frint Security Shop Stop
v W'thookmarks .3 Location:l j @'W’hat's Related
Employee
Last Name 1]J:DY
[Sciarra [111
[Stiles [133
[seo [139
[Suly [157
[Srmith 158
[Sewall [151
[Srmith [171
[Sultivan [182
|Sarchand |184
9 rows retrieved.
[[=B=| |Document: Dane

Servlet Development 2-29

EJB Calls from Servlets

EJB Calls from Servlets

A servlet or a JSP page can call an EJB to perform additional processing. A typical
application design often uses servlets as a front-end to do the initial processing of
client requests, with EJBs being called to perform the business logic that accesses or
updates a database. Container-managed-persistence (CMP) entity beans, in
particular, are well-suited for such tasks.

There are three general scenarios for servlet-EJB interactions:

The servlet calls an EJB within the same application, performing a local lookup.
"Local" is the default lookup mode, so no special action is required. You just
have to complete standard configuration for EJB usage, such as ensuring the
definition of a reference name in an <ej b- r ef > element in the web. xni file.
See "Local EJB Lookup within the Same Application" below, which includes a
detailed example.

The servlet calls an EJB within the same application, but performs the lookup

remotely. This may be useful, for example, in a load-balancing situation where
the Web tier and EJB tier are running in different OC4J instances. See "Remote
EJB Lookup within the Same Application” on page 2-38.

The servlet looks up an EJB from another application. This is a remote lookup
unless the specified host and port are the same as for the calling servlet. See
"EJB Lookup Outside the Application" on page 2-39.

Notes:

« The EJB material that follows is from an EJB 1.1 perspective;
however, there is a brief introduction to EJB 2.0 local interfaces
in "EJB 2.0 Local Interfaces" on page 2-41. For more information
about EJB 2.0 features, and EJBs in general, refer to the
Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s
Guide and Reference.

« For additional servlet-EJB examples, see the demo programs
that come with the OC4J distribution.

« OC4J provides an EJB tag library. See the Oracle9iAS Containers
for J2EE JSP Tag Libraries and Utilities Reference for information.

2-30 Oracle9iAS Containers for J2EE Servlet Developer's Guide

EJB Calls from Servlets

Local EJB Lookup within the Same Application

This section presents an example of a single servlet, Hel | oSer vl et , that calls a
single EJB, Hel | oBean, within the same application using a local lookup.

Here are the key steps of the servlet code:
Imports the EJB package for access to the bean home and remote interfaces.
Prints a message from the servlet.
Creates an output string, with an error default.

1
2
3
4. Uses JNDI to look up the EJB home interface.
5. Creates the EJB remote object from the home.
6

Invokes the hel | owor | d() method on the remote object, which returns a
St ri ng object.

7. Prints the message from the EJB.

Servlet Code: HelloServlet
package myServlet;

I/ Step 1. Inport the EJB package.

inport nyEjb.*;

inport java.io.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

i mport javax. nam ng.*; /1 for JNDI

public class HelloServlet extends HtpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws Servl et Exception, |CException {

response. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();

out.println("<htm ><head><title>Hello from Servlet</title></head>");
/] Step 2: Print a message fromthe servlet.
out.println("<body><hl>Hello fromhello servlet!</hl></body>");

/] Step 3: Create an output string, with an error default.
String s = "If you see this message, the ejb was not invoked properly!!";
/] Step 4: Use JNDI to look up the EJB hone interface.

Servlet Development 2-31

EJB Calls from Servlets

try {
Hel I oHome hh = (Hel | oHone)

(new Initial Context()).|ookup("java:conp/env/ejb/HelloBean");

/| Step 5. Create the EJB remnte |F.
Hel | oRemot e hr = hh.create();
/] Step 6: Invoke the helloWrld() method on the renote object.
s = hr. hel I oWorld();

} catch (Exception e) {
e.printStackTrace(out);

}

[l Step 7: Print the message fromthe EJB.

out.println("
" + s);

out.println("</htm>");

}
}

Figure 2-4 shows the output to a Web browser when you invoke the servlet. The
output from the servlet is printed in H1 format at the top, then the output from the
EJB is printed in text format below that.

2-32 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

Figure 2-4 Output from HelloServlet

Hello from Servlet - Netscape

File Edit “iew Go Communicator Help

Biach Fopward Reload Home Search Metzcape Frint Security Shop Stop m
i W'thookmarks .3 Location:l d @'W’hat's Related
Hello from hello servlet!
Hello from myEjh HelloBean
[=B= |Document: Done = 2 AN

EJB Code: HelloBean Stateful Session Bean

The EJB, as shown here, implements a single method—hel | oWor | d() —that
returns a greeting to the caller. The home and remote EJB interface code is also
shown below.

package myEjb;

i nport java.rni.RenoteException;
inport javax.ejb.*;

public class Hel |l oBean inplements Sessi onBean

{
public String hel loWrld () throws RenoteException {

return "Hell o from nyEj b. Hel | oBean";
}

Servlet Development 2-33

EJB Calls from Servlets

public void ejbCreate () throws RenoteException, CreateException {}
public void ejbRemove () {}

public void setSessionContext (SessionContext ctx) {}

public void ejbActivate () {}

public void ejbPassivate () {}

EJB Interface Code: Home and Remote Interfaces
Here is the code for the home interface:

package nyEjb;

inport java.rni.RenoteException;
i nport javax.ej b. EJBHoneg;
i nport javax.ejb. CreateException;

public interface HelloHone extends EJBHone

{

public Hell oRenbte create () throws RenpteException, CreateException;
}
Here is the code for the remote interface:
package nyEjb;

inport java.rni.RenoteException;
i nport javax.ejb. EJBOhj ect;

public interface Hell oRenote extends EJBObj ect

{
public String helloWrld () throws RenoteException;

}

Deployment of the Servlet-EJB Application

This section discusses the deployment steps for the Servlet-EJB sample application,
including the Web archive, EJB archive, and application-level descriptor.

See Chapter 3, "Deployment and Configuration”, for general information about
deployment to OC4J.

2-34 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

Web Archive To deploy this application, an EJB deployment descriptor
(ej b-j ar. xm) and a Web deployment descriptor (web. xm) are required. The
contents of web. xm for this example are as follows:

<?xm version="1.0"?>
<! DOCTYPE W\EB- APP PUBLI C "-//Sun M crosystens, Inc.//DTD Wb Application
2.2//EN" "http://java.sun.com j2ee/ dtds/web-app_2_2.dtd">

<web- app>
<di spl ay- name>Hel | oSer vl et </ di spl ay- name>
<description> Hel | oServl et </description>
<serv| et>
<servlet-nane> ServletCallingE b </servlet-nanme>
<servlet-class> nyServlet.HelloServlet </servlet-class>
</servlet>
<servl et - mappi ng>
<servlet-nane> ServletCallingE b </servlet-nanme>
<url-pattern> /doubl eHell o </url-pattern>
</ servl et - mappi ng>
<wel conme-file-1ist>
<wel cone-file> index.htm </welcone-file>
</wel cone-file-list>
<ejb-ref>
<ej b-ref - name>ej b/ Hel | oBean</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<hone>nyEj b. Hel | oHonme</ home>
<r enot e>nyEj b. Hel | oRenot e</ r enot e>
</ejb-ref>
</ web- app>

Next, create the directory structure that is required for Web application deployment,
and move the Web deployment descriptor (web. xmi) and the compiled servlet
class file into the structure. The web. xm file must be in a / WEB- | NF directory, and
the servlet class files (in their respective packages, as applicable) must be under the
/ VEEB- | NF/ cl asses directory. Once you create the directory structure and
populate the directories, create a WAR file to contain the files. From the Web root
directory, create the WAR file as follows:

%jar cvf nyapp-web.war *

When created, the WAR file should look like this:

%jar -tf nyapp-web.war
META- | NF/
META- | NF/ MANI FEST. MF

Servlet Development 2-35

EJB Calls from Servlets

VIEB- | NF/

WEB- | NF/ cl asses/

WEB- | NF/ cl asses/ nyServl et/

WEB- | NF/ ¢l asses/ nyServl et/ Hel | oServl et. cl ass
VAEB- | NF/ web. xm

EJB Archive The contents of ej b-j ar. xml are as follows. Note that the
<ej b- nane> value here corresponds to the <ej b- r ef - nane> value in the
web. xm file above.

<?xm version="1.0"?>
<I DOCTYPE ej b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DTD Enterprise JavaBeans
1.12//EN' "http://java.sun.com j2ee/ dtds/ejb-jar_1_1.dtd">
<ej b-jar>
<ent erprise-beans>
<sessi on>
<descri pti on>Hel | o Bean</description>
<ej b- name>ej b/ Hel | oBean</ ej b- nane>
<honme>nyEj b. Hel | oHone</ honme>
<renot e>nyEj b. Hel | oRenot e</ r enot e>
<ej b-cl ass>nyEj b. Hel | oBean</ ej b-cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transacti on-type>Contai ner</transaction-type>
</ session>
</enterprise-beans>
<assenbl y-descri pt or>
</ assenbl y- descri ptor>
</ejb-jar>

Create a JAR file to hold the EJB components. The JAR file should look like this:

%jar tf myapp-ejb.jar
META- | NF/

META- | NF/ MANI FEST. MF
nyEj b/

META- | NF/ €] b-j ar. xm
myEj b/ Hel | oBean. cl ass
myEj b/ Hel | oHone. cl ass
myEj b/ Hel | oRenot e. cl ass

Application-Level Descriptor To deploy the application, create an application
deployment descriptor—appl i cat i on. xm . This file describes the modules in the
application.

2-36 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

<?xm version="1.0"?>
<! DOCTYPE application PUBLIC "-//Sun M crosystens, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.conm j2ee/dtds/application_1_2.dtd">

<appli cation>
<di spl ay- name>Ser vl et _cal I i ng_ej b_exanpl e</ di spl ay- name>
<nodul e>
<web>
<web- ur i >myapp- web. war </ web-uri >
<cont ext - r oot >/ f 0o</ cont ext - r oot >
</ web>
</ nodul e>
<nodul e>
<ej b>nyapp-ej b.jar</ej b>
</ modul e>
</ appl i cation>

However, presuming you are developing in an OC4J standalone environment
(where OC4J runs apart from Oracle9iAS), the <cont ext - r oot > element is
ignored. You must specify the context root through appropriate entries in

ht t p- web- si t e. xm or the relevant Web site XML file.

(In an Oracle9iAS production environment, for a new context root—such as/ f 0o in
this example—to route properly to OC4J through Oracle HTTP Server, there must
be an appropriate Oc4j Mount command in the nod_oc4j . conf file. Assuming
you use Enterprise Manager to deploy the application, this is handled
automatically. This discussion assumes the Web application is bound to a Web site
that uses AJP protocol, according to settings in def aul t - web- site. xm or the
relevant Web site XML file.)

Finally, create an EAR file to hold the application components. The EAR file should
look like this:

%;jar tf myapp.ear
META- | NF/

META- | NF/ MANI FEST. MF
myapp-ej b.jar

myapp- web. war

META- | NF/ appl i cation. xnl

Deployment Configuration To perform the application deployment for testing
purposes, add the following entry to the server . xm file in the OC4J
configuration files directory (specifying the appropriate path information).

Servlet Development 2-37

EJB Calls from Servlets

<application
nanme="nyapp"
pat h="<your_path_to>/1i b/ nmyapp. ear"
auto-start="true"

/>

In an OC4J standalone development environment, you can accomplish this through
the admi n. j ar tool. That tool is documented in the Oracle9iAS Containers for J2EE

User’s Guide, OC4J standalone version.

Then bind the Web module to a Web site. You will need the following entry in the
Web site XML file in the OC4J configuration files directory:

<web- app
appl i cation="nyapp"
nane="rmyapp- web"
root ="/ nmyapp"

/>

Notes:

« Inan Oracle9iAS production environment, use Enterprise
Manager for deployment and configuration.

« See "Introduction to Web Application Deployment and
Configuration” on page 3-2 for additional information and
important considerations.

Remote EJB Lookup within the Same Application

To perform a remote EJB lookup in OC4J, enable the EJB r enpt e flag. This is an
attribute in the <ej b- nodul e> subelement of an <or i on- appl i cati on>
elementin the ori on- appl i cati on. xm file for the application to which the
calling servlet belongs. (The default setting is r ennt e="f al se".) Here is an
example of enabling this flag:

<orion-application ... >
<ej b-nodul e remote="true" ... />

</ orion-application>

2-38 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

No changes are necessary to the servlet code. Recall the local EJB lookup from
"Servlet Code: HelloServlet" on page 2-31:

Hel | oHome hh = (Hel | oHone)
(new Initial Context()).lookup("java:conp/env/ejb/HelloBean");

Givenarenot e="true" setting, this code would result in a remote lookup of
ej b/ Hel | oBean. Where the lookup is performed is according to how EJB
clustering is configured in the application r mi . xni file.

Remote servers are configured inr mi . xml in <ser ver > elements, through the
host, port,user, and passwor d attributes as appropriate. If multiple servers are
configured, OC4J will search all of them, as necessary, for the intended EJB.

See the Oracle9iAS Containers for J2EE Services Guide for information about
rm.xm.

EJB Lookup Outside the Application

This section discusses servlet coding steps to look up an EJB from a different
application (deployed to a different OC4J instance). This functionality uses RMI
protocol, and you must specify an appropriate initial context factory for the lookup.
As of the OC4J 9.0.3 implementation, you can use RMI over either ORMI or 1IOP to
look up an EJB that is in a different application.

The r enot e flag discussed in the preceding section, "Remote EJB Lookup within
the Same Application", is not relevant—the lookup is according to the ORMI or
IIOP URL. If the host and port are the same as for the calling servlet, then the
lookup is local; otherwise, the lookup is remote.

EJB Lookup Outside the Application over ORMI

Here are the servlet coding steps for EJB lookup outside the application (to a
different OC4J instance) using RMI over ORMI. Assume that the EJB remote and
home interfaces are packaged in the application WAR file.

1. Populate the environment entries for the lookup. These are static fields of the
j avax. nam ng. Cont ext interface, which is implemented by the
javax. nam ng. | ni ti al Cont ext class.

Hasht abl e env = new Hashtabl e();
env. put (Context. | NI TI AL_CONTEXT_FACTCRY,

"com everm nd. server.rm .RMInitial ContextFactory");
env. put (Cont ext. SECURI TY_PRI NCI PAL, "admin");

Servlet Development 2-39

EJB Calls from Servlets

env. put (Cont ext . SECURI TY_CREDENTI ALS, "debu");
env. put (Cont ext. PROVIDER_URL, "ormi://renm s/ejbsanples");

— Thel NI TI AL_CONTEXT_FACTORY setting specifies the initial context
factory to use. This example specifies the OC4J initial context factory for
ORMILI.

— The SECURI TY_PRI NCI PAL setting specifies the identity of the principal
for authenticating the caller to the service.

— The SECURI TY_CREDENTI ALS setting specifies the credentials of the
principal for authenticating the caller to the service.

— The PROVI DER_URL setting specifies the URL for the lookup.

Notes:

« Ifyou omit the host and port in the ORMI (or I1OP) URL, the
host is assumed to be | ocal host and a local lookup is
performed.

« Insituations such as in this example, where an ORMI or 110OP
initial context factory is specified, EIB references declared in
web. xm cannot be looked up.

« Ifnoinitial context factory is specified, then
Appl i cationlnitial ContextFactory is used by default.
This is appropriate when you want to use the context of the
application for lookup. EJB references are looked up in
web. xm in this case.

2. Look up the remote EJB and create the bean instance.

Context ctx = new Initial Context(env);

bj ect obj = ctx.lookup("MyCart");

home = (CartHone) Port abl eRenot eObj ect . narr ow(obj, Cart Home. cl ass) ;
cart = (Cart)Portabl eRenot eCbj ect. narrow hone. create(), Cart.class);

The EJB must be defined with the name MyCart intheej b-jar. xml file of the
application where it is being looked up.

2-40 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

EJB Lookup Outside the Application over IIOP

To use RMI over IIOP instead of over ORMI, you must specify the OC4J IIOP initial
context factory, I | OPI ni ti al Cont ext Fact ory, as in the following example:

env. put (Context. | NI TI AL_CONTEXT_FACTCRY,
"comoracle.iiop.server.|lICOPlnitial ContextFactory");

In this case, any principal (user name) and credentials (password) specified through
the environment entries are not used. Instead, assuming Common Secure
Interoperability version 2 (CSIv2) is enabled, the available credentials are taken
from the current "subject” (a standard JAAS concept) as follows:

« If private credentials are available from the subject, then they are used to
authenticate.

« Otherwise, if public credentials are available from the subject, then the identity
of the originating client is delegated. This also depends on the configured CSIv2
policies of the bean being invoked.

You would also have to specify a PROVI DER_URL setting that is appropriate for
IIOP, using a corbaname URL scheme. Given that IIOP is the default when using a
corbaname, the following PROVI DER_URL setting for IIOP would be equivalent to
the PROVI DER_URL setting given earlier for ORMI

(orm ://renm s/ ejbsanpl es):

cor baname: : | ocal host : port #/renni s/ ej bsanpl es

(The "#" is part of the syntax.)

See the Oracle9iAS Containers for J2EE Services Guide for additional information
about I1OP and related syntax.

Note: CSIv2 is required by J2EE 1.3 and used by I1OP.

EJB 2.0 Local Interfaces

In the EJB 1.1 specification, an EJB (except for message-driven beans) has a remote
interface that extends j avax. ej b. EJBObj ect and a home interface that extends

j avax. ej b. EJBHone. In this model, all EJBs are defined as remote objects, adding
unnecessary overhead to EJB calls in situations where the EJBs are actually local
(packaged in the same application, for example).

The EJB 2.0 specification adds support for local connections through local interfaces.
An EJB is classified as local if it implements the local versions of the remote and

Servlet Development 2-41

EJB Calls from Servlets

home interfaces—j avax. ej b. EJBLocal Obj ect and
j avax. ej b. EJBLocal Hone, respectively.

For a complete example of the use of local interfaces, see the OC4J How-To
document at the following location:

http://otn.oracle.contech/javaloc4j/htdocs/howto-ejb-1ocal-interfaces. htn

For additional information, refer to the Oracle9iAS Containers for J2EE Enterprise
JavaBeans Developer’s Guide and Reference.

2-42 Oracle9iAS Containers for J2EE Servlet Developer's Guide

3

Deployment and Configuration

This chapter provides an overview of OC4J deployment and describes how to
assemble and configure a Web application in OC4J. It covers the following topics:

« Introduction to Web Application Deployment and Configuration
« Application Assembly
« Configuration File Descriptions

« Web Module Configuration in Oracle Enterprise Manager

Deployment and Configuration 3-1

Introduction to Web Application Deployment and Configuration

Introduction to Web Application Deployment and Configuration

Because this is a developer’s guide, much of it targets an OC4J standalone user. In a
standalone environment, you can use the admi n. j ar tool for configuration, and
optionally deploy to the OC4J default Web application for simplicity.

In a production environment, OC4J is installed within Oracle9iAS with the goal of
managing J2EE enterprise systems. Oracle9iAS can manage multiple clustered OC4J
processes and is managed and configured through the Oracle Enterprise Manager.
Through Enterprise Manager, you can manage and configure your OC4J processes
across multiple application server instances and hosts. Thus, you cannot locally
manage your OC4J process by using the admni n. j ar tool or by hand-editing the
configuration files. This undermines the management provided by Enterprise
Manager.

This section discusses each of these scenarios a little further, and provides an
overview OC4J configuration files, organized as follows:

« Deployment and Configuration with OC4J Standalone
« OC4J Deployment and Configuration with Oracle9iAS and Enterprise Manager

« Overview of Configuration Files

Note: Users of previous Oracle9iAS releases, can refer to Oracle9i
Application Server Migrating to Release 2 (9.0.3) for information about
issues in migrating to Oracle9iAS release 2.

For information about standard J2EE deployment, refer to the J2EE specification,
which is available at the following location:

http://java.sun.com j2ee/ docs. htm

Deployment and Configuration with OC4J Standalone

For application development, or perhaps for a relatively simple Web solution, you
can use a single OC4J instance—known as OC4J standalone—outside of the
Oracle9iAS environment. To accomplish this, download the oc4j _ext ended. zi p
file from the Oracle Technology Network (OTN). Any standalone OC4J process is
not managed by Enterprise Manager and cannot be used within an Oracle9iAS
enterprise environment.

3-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Web Application Deployment and Configuration

You can start, manage, and control standalone OC4J instances through oc4j . j ar
(the OC4lJ standalone executable) and the admi n. j ar command-line tool. Update
configuration files through the adni n. j ar tool or by modifying the XML
configuration files by hand (though this is generally not recommended). The

admi n. j ar tool modifies ser ver . xm and other configuration files for you, based
on settings you specify to the tool. For information about adm n. j ar and about
how to start, stop, configure, and manage your standalone process, download the
standalone version of the Oracle9iAS Containers for J2EE User’s Guide along with
OC4J_ext ended. zi p.

In a simple testing mode, you can also deploy to the OC4J default Web application.
The default Web application is introduced and its key directories are documented in
"OC4J Default Web Application and Key Directories" on page 2-9.

Note: During development, also consider the Oracle9i JDeveloper
visual development tool for development and deployment. This
tool offers a number of conveniences, as described in "Oracle9i
JDeveloper Support for Servlet Development" on page 2-9.

0C4J Deployment and Configuration with Oracle9iAS and Enterprise Manager

In Oracle9iAS production environments, use Enterprise Manager to manage OC4J
and other components and to deploy and configure your applications. The Web
module configuration pages are discussed under "Web Module Configuration in
Oracle Enterprise Manager" on page 3-38. See the Oracle9iAS Containers for J2EE
User’s Guide for further information about using Enterprise Manager with OC4J.
You can also refer to the Oracle9i Application Server Administrator’s Guide and Oracle
Enterprise Manager Administrator’s Guide for additional general information about
Enterprise Manager.

Configure each OC4J instance and its properties—within the context of an
application server instance—using Enterprise Manager. After configuration, you
start, manage, and control all OC4J] instances through Enterprise Manager. You can
group several OC4J processes in a cluster. You must use either the Enterprise
Manager tool or its command-line tools for starting, stopping, restarting,
configuring, and deploying applications. You cannot use the OC4J standalone
tool—admi n. j ar —for managing OC4J instances created in an Oracle9iAS
instance.

Note that in an Oracle9iAS release 2 environment, if you modify configuration files
without going through Enterprise Manager, you must run the dcnct | tool, using
its updat eConf i g command, to inform Oracle9iAS Distributed Configuration

Deployment and Configuration 3-3

Introduction to Web Application Deployment and Configuration

Management (DCM) of the updates. (This does not apply in an OC4] standalone
mode, where OC4J is being run apart from Oracle9iAS.) Here is the dcntt |
command:

denct! updateConfig -ct océj

The dcntt | tool is documented in the Oracle9i Application Server Administrator’s
Guide.

For additional information about deploying an application that has EJB modules,
see the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference.

Overview of Configuration Files

This section lists key XML configuration files supported by OCA4J, primarily of
interest in an OC4J standalone environment (given that Enterprise Manager in
Oracle9iAS automates much of the configuration process). You can divide these
configuration files into three categories:

= server configuration files

These files, located in the OC4J configuration files directory, are used by OC4J
to configure the server on startup. (The configuration files directory is

j 2ee/ home/ confi g in a standalone environment, and is configurable in an
Oracle9iAS environment.)

« J2EE-standard application-level configuration files
These are industry standard files, used to configure a particular application.
« OC4J-specific application-level configuration files

These are OC4J-specific files, used to configure a particular application. For the
most part, they correspond to the J2EE standard files, supporting OC4J-specific
extended functionality.

Among the server configuration files are the following:
« server.xmn

« application.xm

« gl obal -web-application.xm

« default-web-site.xm (http-web-site.xm for OC4Jstandalone)

3-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Introduction to Web Application Deployment and Configuration

The gl obal - web- appl i cati on. xm and xxx-web-si te. xml files and their
elements and attributes are described later in this chapter—see "The
global-web-application.xml and orion-web.xml Files" on page 3-14 and "The
default-web-site.xml, http-web-site.xml, and Other Web Site XML Files" on

page 3-30. For more information about OC4J server configuration files, see
Oracle9iAS Containers for J2EE User’s Guide.

Standard application-level configuration files include the following:
« application.xm

« web.xm

« ejb-jar.xm

« application-client.xm

These are described in J2EE standard documentation. The web. xmi file, of
particular interest to servlet developers, is described in the Sun Microsystems Java
Servlet Specification, Version 2.3.

OC4J-specific application-level configuration files include the following:
« orion-application.xm

« orion-web.xm

« orion-web-jar.xm

« orion-application-client.xm

« oc4dj-ra.xm

For information, see Oracle9iAS Containers for J2EE User’s Guide and Oracle Enterprise
Manager Administrator’s Guide.

Deploying a Web application on OC4J involves at least the following configuration
files:

= server.xm

« default-web-site.xnl http-web-site.xm,orappropriate Web site
XML file

« gl obal -web-application.xm
« web.xm

« optionally ori on-web. xmi

Deployment and Configuration 3-5

Introduction to Web Application Deployment and Configuration

Note: Notice that one of the server configuration files is a global
appl i cation. xm file, which is for overall defaults that apply to
any application. In addition, each application has its own
application. xml file, which applies to the particular application
only.

3-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Application Assembly

Application Assembly

How you design, assemble, and build your application is largely up to you.
Presumably you will be designing J2EE-compliant modules. Also, a standard
directory structure is required for JAR and WAR deployment files, and it is simplest
if you follow that when developing the application.

This section covers the following topics:
« Web Application Modules

« Application Directory Structure

« Application Build Mechanisms

« Application Packaging

Web Application Modules

An OC4J application can consist of one or more J2EE-compliant modules, including:

= Web application modules consist of JSP pages, servlet class files, HTML pages, and
other resources that the application might require (such as data files, images,
and sound files).

= EJB modules contain classes that implement Enterprise JavaBeans.

= Aclient module consists of Java class files that form a client application. The
client application runs on a system that may or may not be the same as the
server host, but typically is not the same.

A J2EE application might consist of only a single Web application module, the client
being a Web browser. Or, it might consist of just a Java client and one or more EJB
modules. Most business applications include both a Web application module
(servlets, JSP pages, and HTML pages) and one or more EJB modules. Optionally, a
Java client might be adopted as the front-end for the application, although there are
many large applications that rely solely on a Web browser for client access.

The examples in this chapter are derived from the sample application st at el ess,
which is provided with OC4J. The actual application name is enpl oyee. This
application includes both a Web and an EJB module, but building and deploying
the Web module follows the same practice as a Web-only application. The sample is
also available at the following location:

http://otn.oracle.com sanpl e_code/tech/javal/ oc4j/ htdocs/ oc4j sanpl ecode/ oc4j - deno- ej b. ht n #Ser vl et

Deployment and Configuration 3-7

Application Assembly

Application Directory Structure

Figure 3-1, shows the directory structure under the application root directory for a
typical Web application. In OC4J, the root directory is

<app- nanme>/ <web- app- nanme>, according to the application name and
corresponding Web application name. The application name is defined in the
server. xmnl file and mapped to a Web application name in the

def aul t - web-site. xnl file, htt p-web-site.xm file, or other Web site XML
file. (The def aul t - web- si t e. xm file is for Oracle9iAS environments;

ht t p- web- si t e. xnl is for OC4J standalone. See "The default-web-site.xml,
http-web-site.xml, and Other Web Site XML Files" on page 3-30.)

Figure 3-1 Application Directory Structure

; YWAR file:
H WEB-INF/
|

ErmployeeSerdet.class

myJar. jar
L add.jsp

.| delete.jsp
edit.jsp

1 index. html

N

3-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Application Assembly

For easier application assembly and deployment, it is advisable to set up your Web
application files in a pattern that is required for the deployment WAR file. The
general rules are as follows:

Put HTML files, JSP pages, and other resource files in the application root
directory. The root directory is defined through the r oot attribute of the
<web- app> element of the xxx- web- si t e. xni file for a particular Web site.

Put servlet classes under the

<app_nane>/ <web- app- name>/ VEEB- | NF/ cl asses directory, in
subdirectories named after packages as appropriate. For example, if you have a
servlet called Enpl oyeeSer vl et in the enpl oyee package, then the class file
should be as follows:

<app_name>/ <web- app- name>/ WEB- | NF/ ¢l asses/ enpl oyee/ EnpServl et. cl ass

Put library files, such as JARs, that are required for the application in
<app_nane>/ <web- app- name>/ \EB- | NF/ | i b.

Application Build Mechanisms

To build an application, if you are not using Oracle9i JDeveloper, you have several
options:

or:

or:

Create abui | d. xmi file at the application root and use the ant utility to build
the application. This utility is open-source and portable (between application
servers, as well as operating systems), and is therefore ideal for Java-based
applications. You can obtain ant and accompanying documentation at the
following site:

http://jakarta. apache. org/ ant/

Some of the sample applications that come with OC4J are set up to use ant . You
can study the accompanying bui | d. xm files for models.

Create a make file to automate the compilation and assembly process and use a
standard UNIX meke utility or the open-source grmeke utility to execute it.

Compile each Java source file manually, using a Java 1.3.x-compatible compiler.
This is a potentially error-prone process, perhaps appropriate for just the early
stages of development.

Deployment and Configuration 3-9

Application Assembly

Abuil d. xm file or make file might include steps to create EAR, WAR, and JAR
files as appropriate for deployment, or you can create them manually as described
in the next section, "Application Packaging".

Application Packaging

This section describes the step for packaging an application for deployment. Once
you have completed these steps, the application is ready to deploy as appropriate,
depending on the target environment (such as OC4J standalone or Oracle9iAS). See
"Introduction to Web Application Deployment and Configuration" on page 3-2 for
an overview of OC4J deployment. The Oracle9iAS Containers for J2EE User’s Guide
covers deployment in detail for an Oracle9iAS environment. The standalone version
of the user’s guide, available with the OC4J standalone download from OTN,
covers deployment for the standalone scenario.

For J2EE-compatible deployment, each module requires a JAR file for EJB and client
modules, or a WAR (Web ARchive) file for Web modules such as servlets and JSP

pages.

The top-level archive file, for the entire application, is the EAR (Enterprise ARchive)
file, which wraps any WAR and JAR files.

You can create these archive files using the standard Java JAR utility.
To deploy the application, follow these steps:

1. Ensure the creation of an appl i cat i on. xml file to specify the application
modules. See the OC4J demos (such as the st at el ess application) and the
Oracle9iAS Containers for J2EE User’s Guide for more information about creating
this file.

2. For each Web module in the application, create aweb. xm descriptor file. This
file is defined in the Servlet 2.3 specification. In addition, there is some
introductory information about web. xm in "The global-web-application.xml
and orion-web.xml Files" on page 3-14.

3. Ifyour application has one or more EJB modules, create an ej b-j ar. xn file
for each. See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s
Guide and Reference for more information about deploying EJB modules.

4. Create the WAR file for the Web module. When you are in the application root,
issue the command:

%jar -cvf <app_nane>. war .

3-10 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Application Assembly

This creates a JAR file with a. war extension. You can also examine the contents
of the WAR file using the j ar command. Here is an example, taken from the
WAR file of the OC4J st at el ess sample application:

% cd <app_root >/ web

%jar -tf enployee-web. war
META- | NF/

META- | NF/ MANI FEST. MF

VIEB- | NF/

WEB- | NF/ cl asses/

VEB- | NF/ ¢l asses/ enpl oyee/
VEB- | NF/ ¢l asses/ enpl oyee/ Enpl oyeeSer vl et . cl ass
WEB- | NF/ or i on-web. xm

V\EB- | NF/ web. xm

del ete.jsp

list.jsp

i ndex. ht m

edit.jsp

add. j sp

The JAR utility creates the META- | NF/ MANI FST. MF file. You should not have
to modify it.

Create the EAR file for the Web application. Use the j ar command to create
this file, as in the following example:

%jar -cvf enployee. EAR .

Here is an example of an EAR file for the sample application st at el ess:

%jar -tf enployee. ear

META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ appl i cation. xm
META- | NF/ ori on-appl i cation. xm
enpl oyee-ejb.jar

enpl oyee- web. war

enpl oyee-client.jar

For more information about EAR files, see the Oracle9iAS Containers for J2EE
User’s Guide.

If your application has one or more EJB modules, also include the EJB
deployment descriptor in the EAR file. Here is a sample EJB JAR file:

%jar -tf enployee-ejb.jar

Deployment and Configuration 3-11

Application Assembly

META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ €] b-j ar. xm

META- | NF/ ori on-ej b-jar. xn
enpl oyee/

enpl oyee/ EnpRecord. cl ass
enpl oyee/ Enpl oyee. cl ass

enpl oyee/ Enpl oyeeBean. cl ass
enpl oyee/ Enpl oyeeHone. cl ass

See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for information about creating an EJB deployment descriptor and
deploying an EJB application.

3-12 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

Configuration File Descriptions

This section discusses XML configuration files that are central to servlet
development and invocation in an OC4J environment, including detailed element
and attribute descriptions. The following topics are covered:

« Syntax Notes for Element Documentation
« The global-web-application.xml and orion-web.xml Files

« The default-web-site.xml, http-web-site.xml, and Other Web Site XML Files

Note: The detailed discussion in this section regarding
configuration files and their elements and attributes assumes an
OC4J standalone development environment. In an Oracle9iAS
environment using Enterprise Manager, configuration is through
Enterprise Manager Web module pages, and many of the files and
their properties are invisible to the user.

For considerations in configuring and deploying a production
application with Enterprise Manager in Oracle9iAS, see "OC4]
Deployment and Configuration with Oracle9iAS and Enterprise
Manager" on page 3-3.

Syntax Notes for Element Documentation

The elements described here do not use body values unless noted, and do not have
subelements unless noted. Element attribute settings are in quotes. Here is the
general syntax for an element with attributes but no subelements or body value:

<el ementname attri1="val uel" attr2="value2" ... />

If there are subelements (that have no subelements or body value themselves), the
syntax is as follows:

<el ementname ... >
<subel ementl ... />
<subel ement2 ... />

</ el ement name>

If a body value is used, the syntax is as follows:

<el ementnane ... >val ue</ el ement nanme>

Deployment and Configuration 3-13

Configuration File Descriptions

The global-web-application.xml and orion-web.xml Files

This section describes the OC4J-specific gl obal - web- appl i cati on. xm and
orion-web. xm files, and their relationships to the standard web. xni file.
Overviews of these files and their features are followed by detailed descriptions of
the elements supported by gl obal - web- appl i cati on. xm and

ori on-web. xm . This section is organized as follows:

« Overview of global-web-application.xml, orion-web.xml, and web.xml

« Standard Descriptor Configurations

» OC4J Descriptor Configurations

« Element Descriptions for global-web-application.xml and orion-web.xml

« Default global-web-application.xml File

Overview of global-web-application.xml, orion-web.xml, and web.xml

The file gl obal - web- appl i cati on. xnl, in the OC4J configuration files
directory, is the descriptor for the OC4J "global Web application". The elements in
this file define the default behavior of an OC4J Web application.

There is also, for each Web application, an application-specific web. xm file and an
optional deployment-specific or i on- web. xmi file. Both of these files should be in
the application / VEB- | NF directory. Use of web. xm is standard, according to the
Servlet 2.3 specification. Elements defined for the ori on-web. xm file are a
superset of those defined for web. xml , adding elements for OC4J-specific features.
The ori on-web. xm DTD is also used for

gl obal - web-appl i cati on. xm —the two files support the same elements.

On deployment of a Web application, OC4J generates an or i on- web. xm file,
using the settings from the parent gl obal - web- appl i cati on. xn file. You can
then update or i on- web. xm as desired to override default values. You can also
package ori on-web. xm as part of your EAR file if you want to specify resource
mappings or OC4J-specific configuration.

Note: Ifyou update ori on-web. xm and later redeploy, you will
lose your changes unless you include the updated
orion-web. xm file in the application EAR file.

The gl obal - web- application. xm ,orion-web. xm , and web. xm files all
support a <web- app> element, which has many subelements. As you can see in

3-14 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

"Default global-web-application.xml File" on page 3-27, the

gl obal - web- appl i cation. xm file typically defines defaults for many settings
of the <web- app> element and its subelements. The <web- app> element and
subelements in the web. xm file are for desired settings specific to an application.
When deploying an application, the <web- app> element and subelements in

ori on-web. xm are for overriding any settings of the web. xm <web- app>
element for this particular deployment.

OC4J-specific features are supported through the <or i on- web- app> element and
its many subelements in the gl obal - web- appl i cati on. xm and

orion-web. xm files. The <web- app> element in these files is a subelement of
<ori on- web- app>. This element and its subelements in ori on- web. xm can
override gl obal - web- appl i cati on. xm settings of OC4J features for a
particular application deployment.

Standard Descriptor Configurations

The web. xm descriptor file specifies the following servlet 2.3 standard
configurations, among many others:

« names and classes of servlets in the Web module
= hames of JSP pages

= servlet context initialization parameters

« URIs of any application-specific JSP tag libraries
= mappings of servlet names to URL patterns

« EJB references, including the JNDI names for looking up EJB home and remote
interfaces

(Only the Home interface INDI name is provided, because only the Home
interface is looked up through JNDI.)

= Security constraints and security roles

= error code and error page mappings

= session timeout

« names of any filters in the Web application

« filter mappings—URL patterns that cause servlet filters to be triggered

(Filter settings are outside the <web- app> element.)

Deployment and Configuration 3-15

Configuration File Descriptions

OC4J Descriptor Configurations

The gl obal - web- applicati on. xm and ori on-web. xm descriptor files, in
addition to being able to specify almost all the same configurations as in the
web. xm <web- app> element and subelements, can specify the following
OC4J-specific configurations:

« additional servlet filtering and "servlet chaining"
= buffering

« character sets

« directory browsing

« document root

« locales

« classpath

« MIME mappings

« virtual directories

= access mask (to limit access to the servlet)
« clustering

= request and session tracking

« JNDI mappings

= security role mappings

« EJB mappings

= resource expiration settings

« class loading

Element Descriptions for global-web-application.xml and orion-web.xml

The element descriptions in this section are applicable to either

gl obal - web- appl i cation. xm ortoan application-specific or i on- web. xm
configuration file. The gl obal - web- appl i cati on. xm file configures the global
application and sets defaults, and the ori on- web. xm can override these defaults
for a particular application deployment as appropriate.

See "Syntax Notes for Element Documentation™ on page 3-13 for general syntax
information.

3-16 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

<orion-web-app ... >
This is the root element for specifying OC4J-specific configuration of a Web
application.

Note: The aut or el oad-j sp- pages and

aut or el oad- j sp- beans attributes of the <or i on- web- app>
element are not supported by the OC4J JSP container in Oracle9iAS
release 2. You can use the JSP mai n_node configuration parameter
for equivalent functionality. See the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Developer’s Guide for information about
this parameter.

Subelements:

<cl asspat h>

<cont ext - par am mappi ng>
<mi ne- mppi ngs>
<virtual -directory>
<access- mask>

<cl ust er-config>
<servl et - chai ni ng>
<request-tracker>
<servlet-filter>

<sessi on-tracki ng>
<resource-ref - mappi ng>
<env-entry- mappi ng>
<security-rol e- mappi ng>
<ej b-ref - mappi ng>
<expiration-setting>
<web- app- cl ass- | oader >
<web- app>

Attributes:

def aul t - buf f er - si ze: Specifies the default size of the output buffer for
servlet responses, in bytes. The default is " 2048" .

def aul t - char set : This is the ISO character set to use by default. The default
is"i so-8859-1".

depl oynent - ver si on: This is the version of OC4J under which this Web
application was deployed. If this value does not match the current version, then

Deployment and Configuration 3-17

Configuration File Descriptions

the application is redeployed. This is an internal server value and should not be
changed.

« devel opnent: This is a convenience flag during development. If
devel opnent issetto"true", then each time you change the servlet source
and save it in a particular directory, the OC4J server automatically compiles and
redeploys the servlet the next time it is invoked. The directory is determined by
the setting of the sour ce- di r ect or y attribute. Supported values for
devel opnent are"true" and"fal se" (default).

« source-directory: Specifies where to look for source files for classes to be
auto-compiled if the devel opnent attribute issetto"true". The default is
"WEB- | NF/ src" ifit exists, otherwise " VEEB- | NF/ cl asses" .

« directory-browsi ng: Specifies whether to allow directory browsing.
Supported values are " al | ow' and " deny" (default).

« document - r oot : Defines the path-relative or absolute directory to use as the
root for served pages. The default settingis". . /"

« file-nodification-check-interval:Thisistheamountoftime,in
milliseconds, for which a file-modification check is valid. Within that time
period of the last check, further checks are not necessary. Zero or a negative
number specifies that a check always occurs. The default is " 1000" .

« get-local e-from user: Specifies whether to determine the specific locale of
the logged-in user before looking at the request headers for the information.
Supported values are "t rue" and " f al se" (default, for performance reasons).

=« jsp-print-null:Setthisflag to "f al se" to print an empty string instead of
the default "null" string for null output from a JSP page. The defaultis "t r ue".

=] sp-timeout: Specify an integer value, in seconds, after which any JSP page
will be removed from memory if it has not been requested. This frees up
resources in situations where some pages are called infrequently. The default
value is 0 (zero), for no timeout.

= persi stence- pat h: Specifies where to store Ht t pSessi on objects for
persistence across server restarts. Session objects must contain properly
serializable or remoteable values, or EJB references, for this to work. There is no
default.

« servl et-webdi r: Specifies the servlet runner path for invoking a servlet by
name—anything appearing after this in a URL is assumed to be a class name.
The default setting is "/ ser vl et ". This is typically for use in an OC4J
standalone environment during development and testing. For deployment, the

3-18 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

standard web. xm mechanisms for defining the context path and servlet path
should be used.

Important: The default setting of ser vl et - webdi r, or any
setting that starts with a slash ("/ "), presents a significant security
risk and should not be used in a production environment. See
"Servlet Security Considerations" on page 2-7 for more information.

« tenporary-directory:Thisis the absolute or relative path to a temporary
directory that can be used by servlets and JSP pages for scratch files. The default
isthe . / t enp directory.

Note: The Fi | e object for a scratch file can be retrieved by the
following code in a servlet or JSP page, according to the servlet
specification:
File file = (File)application.getAttribute(
"javax.servlet.context.tenmpdir");

<classpath ... >

This specifies a codebase where classes used by this application can be found
(servlets and JavaBeans, for example).

Attribute:

« pat h: This is the path or URL for the codebase, either absolute or relative to the
location of the or i on-web. xm file.

<context-param-mapping ... >deploymentValue</context-param-mapping>

Inori on-web. xm , this overrides the value of a cont ext - par amsetting in the
web. xm file. It is used to keep the EAR assembly clean of deployment-specific
values. The new value is specified in the tag body.

Attribute:
= nane: This is the name of the cont ext - par amsetting to override.

<mime-mappings ... >
This defines the path to a file containing MIME mappings to use.

Deployment and Configuration 3-19

Configuration File Descriptions

Attribute:

« pat h: This is the path or URL for the file, either absolute or relative to the
location of the or i on-web. xm file.

<virtual-directory ... >

This adds a virtual directory mapping, used to include files that do not physically
reside under the document root among the Web-exposed files.

Attributes:

« real -path:Thisisareal path,suchas/usr/| ocal / real pat h on UNIX or
C:\testdir inWindows.

« Vvirtual - pat h: Thisis a virtual path to map to the specified real path.

<access-mask ... >

Use subelements of <access- nask> to specify optional access masks for this
application. You can use host names or domains to filter clients, through

<host - access> subelements, or you can use IP addresses and subnets to filter
clients, through <i p- access> subelements, or you can do both.

Subelements:
<host - access>
<i p-access>
Attribute:

« def aul t: Specifies whether to allow requests from clients that are not
identified through a <host - access> or <i p- access> subelement.
Supported values are " al | ow' (default) and " deny" . There are separate node
attributes for the <host - access> and <i p- access> subelements, which are
used to specify whether to allow requests from clients that are identified
through those subelements.

<host-access ... >

This subelement of <access- mask> specifies a host name or domain to allow or
deny access.

Attributes:
= donmi n: This is the host or domain.

« node: Specifies whether to allow or deny access to the specified host or domain.
Supported values are "al | ow" (default) or "deny".

3-20 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

<ip-access ... >

This subelement of <access- mask> specifies an IP address and subnet mask to
allow or deny access.

Attributes:
« i p:Thisisthe IP address, as a 32-bit value (example: " 123. 124. 125. 126").
« net mask: This is the relevant subnet mask (example: " 255. 255. 255. 0").

« node: Specifies whether to allow or deny access to the specified IP address and
subnet mask. Supported values are "al | ow" (default) or "deny".

<cluster-config ... >

Use this element if, and only if, the application is to be clustered. Remove it or
comment it out otherwise. Clustered applications have their Ser vl et Cont ext and
Ht t pSessi on data shared between the applications in the cluster. Shared objects
must either be serializable or be remote RMI objects implementing the

j ava. rm . Renot e interface.

See the Oracle9i Application Server Performance Guide for general information about
clustering.

Attributes:

« host: This is the multicast host/IP for transmitting and receiving cluster data.
The defaultis " 230. 0. 0. 1".

« i d:Thisis the ID (number) of this cluster node to identify itself within the
cluster. The default is based on the local machine IP.

« port: This is the port through which to transmit and receive cluster data. The
defaultis " 9127".

<servlet-chaining ... >

This element specifies a servlet to call when the response of the current servlet is set
to a specified MIME type. The specified servlet will be called after the current
servlet. This is known as servlet chaining and is useful for filtering or transforming
certain kinds of output. Servlet chaining is an older servlet mechanism that is
similar to servlet filtering. (See <servl et-fil ter>below.)

Attributes:

« mme-type: Thisis the MIME type to trigger the chaining, such as
"text/htm".

« servl et-nane: This is the servlet to call when the specified MIME type is
encountered. The servlet name is tied to a servlet class through its definition in

Deployment and Configuration 3-21

Configuration File Descriptions

the <web- app> element of gl obal - web- appl i cation. xm ,web. xm , or
orion-web. xn .
<request-tracker ... >

This element specifies a servlet to use as the request tracker. A request tracker is
called for each request, for use as desired. A request tracker might be useful for
logging information, for example.

Attribute:
« servl et-nane: This is the servlet to call as the request tracker.

<servlet-filter ...>

This element specifies a servlet to use as a filter. Filters are invoked for every
request, and can be used to either preprocess the request or post-process the
response. Optionally, the filter would apply only to requests from servlets that
match a specified URL pattern. Using <servl et -fi | t er > to post-process a
response is similar in nature to using <ser vl et - chai ni ng> (see above), but is not
based on MIME type.

Attributes:

« servl et-nane: Thisis the servlet to call as the filter. The servlet name is tied
to a servlet class through its definition in the <web- app> element of
gl obal - web-application.xm ,web. xm ,orori on-web. xm .

« url-pattern:Thisisanoptional URL pattern to use as a qualifier for requests
that are passed through the filter. For example:

url-pattern="/the/*. pattern"

For general information about servlet filters, see "Servlet Filters" on page 4-2.

Note: The functionality of the <servl et-filter>elementis
equivalent to that of the standard <f i | t er > subelement of the
web. xm <web- app> element. You can use either mechanism, but
remember that web. xm settings override

gl obal - web-appl i cation. xm settings, and settings to

ori on-web. xm through Enterprise Manager (or directly to the
file in the application deployment directory, for OC4J standalone)
override web. xml settings.

3-22 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

<session-tracking ... >

This element specifies the session-tracking settings for this application. Session
tracking is accomplished through cookies, assuming a cookie-enabled browser.

Note: If cookies are disabled, session tracking can be achieved
only if your servlet explicitly calls the encodeURL() method of the
response object, or the encodeRedi r ect URL() method for
redirects.

For general information about servlet sessions, see "Servlet Sessions" on page 2-16.

The servlet to use as the session tracker is specified through a subelement.

Subelement:

<sessi on-tracker>

Attributes:

aut oj oi n- sessi on: Specifies whether users should be assigned a session as
soon as they log in to the application. Supported values are "t r ue" and
"fal se" (default).

cooki es: Specifies whether to send session cookies. Supported values are
"enabl ed" (default) and " di sabl ed".

cooki e- dommi n: This is the relevant domain for cookies. This is useful for
sharing session state between nodes of a Web application running on different
hosts.

cooki e- max- age: This number is sent with the session cookie and specifies a
maximum interval (in seconds) for the browser to save the cookie. By default,
the cookie is kept in memory during the browser session and discarded
afterward.

<session-tracker ... >

This subelement of <sessi on-t r acki ng> specifies a servlet to use as the session
tracker. Session trackers are invoked as soon as a session is created and are useful
for logging information, for example.

Attribute:

ser vl et - nane: This is the servlet to call.

Deployment and Configuration 3-23

Configuration File Descriptions

<resource-ref-mapping ... >

Use this element to declare a reference to an external resource such as a data source,
JMS queue, or mail session. This ties a resource reference name to a JNDI location
when deploying.

Subelement:

<l ookup- cont ext >

Attributes:

« |l ocation:Thisisthe JNDI location from which to look up the resource. For
example:

| ocati on="j dbc/ TheDS"

« hane: This is the resource reference name, which matches the name of a
resour ce-ref elementinthe web. xm file. For example:
name="j dbc/ TheDSVar "

<lookup-context ... >

This subelement of <r esour ce- r ef - mappi ng> specifies an optional

j avax. nam ng. Cont ext that will be used to retrieve the resource. This is useful
when connecting to third-party modules, such as a third-party JMS server, for
example. Either use the context implementation supplied by the resource vendor, or,
if none exists, write an implementation that in turn negotiates with the vendor
software.

Subelement:

<context-attribute>

Attribute:

« | ocation:Thisis the name to look for in the foreign (such as third-party)
context when retrieving the resource.

<context-attribute ... >

This subelement of <| ookup- cont ext > (which is a subelement of
<resour ce-r ef - mappi ng>) specifies an attribute to send to the foreign context.

The only mandatory attribute in INDI isj ava. nam ng. factory.initial,
which is the class name of the context factory implementation.

3-24 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

Attributes:
« nane: Specifies the name of the attribute.
« Vval ue: Specifies the value of the attribute.

<env-entry-mapping ... >deploymentValue</env-entry-mapping>

Inori on-web. xm , this element overrides the value of an env- ent r y setting in
the web. xm file. It is used to keep the EAR assembly clean of deployment-specific
values. The new value is specified in the tag body.

Attribute:
= nane: This is the name of the env- ent r y setting to override.

<security-role-mapping ... >

This element maps a security role to specified users and groups, or to all users. It
maps to a security role of the same name in the web. xmi file. The i npl i esAl |
attribute or an appropriate combination of subelements—<gr oup>, <user >, or
both—should be used.

Subelements:
<group>
<user>
Attributes:

« i npliesAll:Specifies whether this mapping implies all users. Supported
valuesare"true" or"fal se" (default).

« nane: This is the name of the security role. It must match a name specified in a
<r ol e- name> subelement of a<securi ty-rol e>elementinweb. xn .

Important: OC4J has an automatic security mapping feature. By
default, if a security role defined in web. xm has the same name as
an OC4J group defined in pri nci pal s. xml , then OC4J will map
them. However, this feature is completely disabled if you do any
explicit mapping through the <securi ty-r ol e- mappi ng>
element. If you use <security-rol e- mappi ng> atall, OC4J
assumes that you want explicit mapping only. This is to prevent
unintended implicit mappings when a user might intend to declare
explicit mappings only.

Deployment and Configuration 3-25

Configuration File Descriptions

<group ... >
Use this subelement of <securi t y-r ol e- mappi ng> to specify a group to map to
the security role of the parent <securi ty-r ol e- mappi ng> element. All the
members of the specified group are included in this role.

Attribute:
« nane: This is the name of the group.

<user... >

Use this subelement of <securi t y-r ol e- mappi ng> to specify a user to map to
the security role of the parent <securi ty-r ol e- mappi ng> element.

Attribute:
= nane: This is the name of the user.

<ejb-ref-mapping ... >
This element creates a mapping between an EJB reference, defined in an
<ej b-r ef > element, and a INDI location when deploying.

The <ej b- r ef > element can appear within the <web- app> element of
ori on-web. xm orweb. xm , and is used to declare a reference to an EJB.

Attributes:
« | ocation:Thisisthe JNDI location from which to look up the EJB home.

« nane: This is the EJB reference name, which matches the <ej b- r ef - nane>
setting of the <ej b- r ef > element.

<expiration-setting ... >
This element sets the expiration for a given set of resources. This is useful for
caching policies, such as for not reloading images as frequently as documents.

Attributes:

= expires: This is the number of seconds before expiration, or " never" for no
expiration.

« url-pattern:Thisisthe URL pattern that the expiration applies to, such as in
the following example:

url -pattern="*.gif"

<web-app-class-loader ... >
Use this element for class loading instructions.

3-26 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

Attributes:

« search-1local -cl asses-first:Setthisto"t rue" tosearch and load WAR
file classes before system classes. The default is "f al se".

« include-war-manifest-class-path: Setthisto"f al se" to not include the
class path specified in the WAR file manifest Cl ass- Pat h attribute when
searching and loading classes from the WAR file (regardless of the
search-1ocal - cl asses-first setting). The defaultis "t r ue".

<web-app ... >

This element is used as in the standard web. xm file; see the Servlet 2.3
specification for details. In gl obal - web- appl i cati on. xml , defaults for
<web- app> settings can be established. In web. xm , application-specific
<web- app> settings can override the defaults. In ori on- web. xm ,
deployment-specific <web- app> settings can override the settings in web. xm .

Note: Inagl obal -web-application.xm or

orion-web. xm file, filter settings within the <web- app> element
are not supported, because that would conflict with the

<servl et-filter>subelement under the <ori on- web- app>
element.

Default global-web-application.xml File

This is an example of a default gl obal - web- appl i cati on. xm file (may be
subject to change in the shipped product):

<?xnml version="1.0" standal one="yes' ?>
<! DOCTYPE ori on-web-app PUBLIC ' //Everm nd//Orion web-application’
"http://xmns.oracl e.conias/ dtds/orion-web.dtd >

<orion-web-app
j sp-cache-directory="./persistence"
servl et-webdir="/servlet"
devel opment ="f al se"

<l-- The mi me-mappings for this server -->
<m ne- mappi ngs path="./n ne.types" />
<web- app>

<l--
<servlet>

Deployment and Configuration 3-27

Configuration File Descriptions

<servl et - name>xsl </ ser vl et - nane>
<servl et-class>com everni nd. servl et. XSLSer vl et
</ servlet-class>
<init-paranp
<par am nane>def aul t Cont ent Type</ par am name>
<par am val ue>t ext/ ht </ par am val ue>
</init-paran>

</servl et>
>
<servlet>

<servl et - nane>j sp</ servl et - nane>
<servlet-class>oracle.jsp.runtinmev2.JspServl et
</ servlet-class>

</servl et>

<servlet>
<servl et - nane>r m </ servl et - nane>
<servl et-class>com evernind.server.rnm.RM Htt pTunnel Servl et
</servlet-class>
</servlet>

<servl et>
<servl et - nane>r n p</servl et - name>
<servl et-class>com evernind.server.rni.RMHttpTunnel ProxyServl et
</servl et-class>
</servl et>

<servlet>
<servl et - nane>ssi </ servl et - nane>
<servlet-class>com everni nd. server. http. SSI Servl et
</servlet-class>

</servl et>

<servlet>
<servl et - nane>cgi </ servl et - nane>
<servlet-class>com everni nd. server. http. CG Servl et
</ servlet-class>

</servl et>

<servlet>
<servl et - name>per| </ servl et - name>
<servlet-class>com everni nd. server. http. CG Servl et
</ servlet-class>
<init-paranp

3-28 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

<par am nane>i nt er pr et er </ par am name>
<par am val ue>per| </ param val ue>
<linit-paranp
</servl et>

<servlet>
<servl et - nane>php</ servl et - nane>
<servlet-class>com evernind. server. http. CGl Servl et
</ servlet-class>
<init-paranp
<param nane>i nt er pret er </ par am name>

<par am val ue>php</ param val ue>

</init-paran>

</servl et>

<servl et - mappi ng>
<servl et - nane>j sp</ servl et - nane>
<url-pattern>/*. jsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>j sp</ servl et - nane>
<url-pattern>/*. JSP</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>j sp</ servl et - nane>
<url-pattern>/*.sqgljsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>j sp</ servl et - nane>
<url-pattern>/*. SQLISP</url - pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>cgi </ servl et - nane>
<url-pattern>/*.cgi</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>per| </ servl et - name>
<url-pattern>/*. pl</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>

<servl et - nane>php</ servl et - nane>
<url-pattern>/*. php</url-pattern>

Deployment and Configuration 3-29

Configuration File Descriptions

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>php</ servl et - nane>
<url-pattern>/*. php3</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>php</ servl et - nane>
<url-pattern>/*. phtm </url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>ssi </ servl et - nane>
<url-pattern>/*. shtm </url-pattern>
</ servl et - mappi ng>

<wel cone-file-list>
<wel cone-fil e>i ndex. ht m </ wel cone-file>
<wel conme-fil e>defaul t.jsp</wel cone-file>
</wel come-file-list>
</ web- app>
</ ori on-web- app>

The default-web-site.xml, http-web-site.xml, and Other Web Site XML Files

This section describes OC4J Web site XML files, including def aul t - web- si t e. xm
for the default OC4J Web site in Oracle9iAS, and ht t p- web- si t e. xm for OC4]
standalone. The documentation includes descriptions of the elements and attributes
of these files. (All Web site XML files use the same DTD.)

Overview of Web Site XML Files

A Web site XML file contains the configurations for an OC4J Web site. The file

def aul t - web-si t e. xnl , in the OC4J configuration files directory, configures the
default OC4J Web site for Oracle9iAS and also defines default configurations for
any additional Web site XML files. The file ht t p- web- si t e. xm configures the
HTTP Web site for an OC4J standalone environment.

The names of any additional Web site XML files are defined in the ser ver . xml
file, in the pat h attribute of any <web- si t e> elements. See the Oracle9iAS
Containers for J2EE User’s Guide for more information about the ser ver. xm file.

3-30 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

Configuration settings in Web site XML files include the following:
« host name/IP as well as virtual host settings for this site

« porttolisten on

« default Web application for this site

« additional Web applications for this site

« access-log format

« settings for user Web applications (for /~user/ sites)

Note: Thedef aul t-web-site.xmnl file, for an Oracle9iAS
production environment, sets up a default Web site that accesses
OC4J through the Oracle HTTP Server and AJP (Apache JServ
protocol).

The htt p- web-si te. xm file, for an OC4J standalone
development environment, sets up a default Web site that accesses
the OC4J listener directly, using a protocol setting of ht t p instead
of aj p13.

Element Descriptions for Web Site XML Files

The element descriptions in this section apply to def aul t - web-site. xn,

ht t p- web- si t e. xnl , and the Web site XML files for any additional OC4J Web
sites.

See "Syntax Notes for Element Documentation™ on page 3-13 for general syntax
information.

<web-site ... >
This is the root element for configuring an OC4J Web site.

Subelements:

<description>
<frontend>

<web- app>

<def aul t - web- app>
<user - web- apps>
<access-| og>

Deployment and Configuration 3-31

Configuration File Descriptions

Attributes:

cl uster-i sl and: A cluster island is two or more Web servers that share
session failover state for replication. Use the cl ust er - i sl and attribute when
clustering the Web tier between multiple OC4J instances in Oracle9iAS. If this
attribute is set to a cluster island ID (humber spawning from 1 and up), then
this Web site will participate as a back-end server in the island specified by the
ID. The ID is a chosen number that depends on your clustering configuration. If
only one island is used, the ID is always 1.

See the Oracle9i Application Server Performance Guide for general information
about clustering.

di spl ay- name: This is for a user-friendly or informal Web site name to display
in GUI configuration tools when the site is being administered.

host : This is the host IP address for this site. If " [ALL] " is specified, then all IP
addresses of the server are used.

| og- request - i nf o: Specifies whether to log information about the incoming
request (such as headers) if an error occurs. Supported values are "t r ue" and
"fal se" (default).

max- r equest - si ze: Sets a maximum size, in bytes, for incoming requests. If a
client sends a request that exceeds this maximum, it will receive a "request
entity too large" error. The default maximum is 15000.

secur e: Specifies whether to support SSL (Secure Socket Layer) functionality.
Possible values are "t rue" and " f al se" (default); however, because the OC4J
servlet container in Oracle9iAS release 2 does not directly support SSL, leave
this at the "f al se" setting.

Note: SSL and HTTPS functionality is currently available through
the Oracle HTTP Server.

pr ot ocol : Specifies the protocol that the Web site is using. Possible values are
"http","https",and"aj p1l3" (Apache JServ Protocol, or AJP—default);
however, in a production environment with Oracle9iAS release 2, you should
use only the "aj p13" setting. The AJP protocol is for use with Oracle HTTP
Server and nod_oc4j . Note that each port must have a corresponding protocol,
and vice versa.

The "ht t p" setting is for development environments or OC4J standalone only.
The "ht t ps" setting is not currently supported.

3-32 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

« port: This is the port number for this Web site. Each port must have a
corresponding protocol, and vice versa. Also note that for AJP, port 0 has a
special meaning. Any nonzero port number is static, but with a port setting of
" 0", the servlet container dynamically accesses any available port. This
functionality is invisible to the user, who is only aware of the Oracle HTTP
Server port specified through the browser (such as 7777, typical for access
through the Oracle HTTP Server with Oracle9iAS Web Cache enabled).

In OC4J standalone, a por t setting of 8888 is used for direct access to the OC4J
listener.

= Uuse-keep-alives: Typical behavior for a servlet container is to close a
connection once a request has been completed. With a use- keep-al i ves
setting of "t r ue", however, a connection is maintained across requests. For
AJP protocol, connections are always maintained and this attribute is ignored.
For other protocols, the defaultis "t r ue" ; disabling it may cause major
performance loss.

« Vvirtual - host s: This optional setting is useful for virtual sites sharing the
same IP address. The value is a comma-delimited list of host names tied to this
Web site.

<description>This is the description.</description>
You can use the body of this element for a brief description of the Web site.

<frontend ... >

This specifies a perceived front-end host and port of this Web site as seen by HTTP
clients. When the site is behind something like a load balancer or firewall, the

<f r ont end> specification is necessary to provide appropriate information to Web
application code for functionality such as URL rewriting. Using the host and port
specified in the <f r ont end> element, the back-end server that is actually running
the application knows to refer to the front-end instead of to itself in any URL
rewriting. This way, subsequent requests properly come in through the front-end
again instead of trying to access the back-end directly.

Attributes:
« host: This is the host name of the front-end server, such as " www. acrre. coni'.
« port: This is the port number of the front-end server, such as " 80" .

<web-app ... >

This element creates a reference to a Web application—a J2EE application, defined
in the server. xml file, that is bound to this particular Web site. Each instance of a
J2EE application bound to a particular Web site is a separate Web entity.

Deployment and Configuration 3-33

Configuration File Descriptions

The Web application is bound at the location specified by the r oot attribute.

Attributes:

appl i cati on: This is the name of the J2EE application, as specified by the
appl i cati on attribute of an <appl i cati on> elementin the server. xm
file.

| oad- on- st art up: Optional attribute to specify whether this Web application
should be preloaded on application startup. Otherwise, it is loaded upon the
first request for it. Supported values are "t rue" and " f al se" (default).

Preloading of individual servlets, through <| oad- on- st art up> elements in
the application web. xmi file, is possible only if this <web- app> element

| oad- on- st art up attribute is enabled. See "Servlet Preloading" on page 2-4
for more information.

max-inactivity-ti me: Optional attribute to specify a period of minutes of
inactivity after which the Web application will automatically be shut down. The
default is no automatic shutdown.

name: This is the desired Web application name. For example, if the J2EE
application name is My App, and this is the second of several Web sites, you
might want a setting of MyWebApp2. This name must be the same as the
corresponding name specified in a <web- nodul e> element in the
application. xm file, to be bound to this Web site under the specified root
context.

r oot : The path on this Web site to which the Web application should be bound.
For example, if the Web application Cat al ogApp at Web site www. si t e. comis
bound to the root setting "/ cat al 0g", then it can be accessed as follows:

http://ww.site. con catal og/ Cat al ogApp

shar ed: This indicates whether multiple bindings (different Web sites and
context roots) can be shared. Supported valuesare "t rue" and " f al se"
(default). Sharing implies the sharing of everything that makes up a Web
application, including sessions, servlet instances, and context values. A possible
use for this mode would be to share a Web application between an AJP site and
an HTTP site at the same context path.

If an HTTPS Web application is marked as shared, its session tracking strategy
reverts from SSL session tracking to session tracking through cookies or URL
rewriting. This could possibly make the Web application less secure, but might
be necessary to work around issues such as SSL session timeouts not being
properly supported in some browsers. Oracle HTTP Server supports HTTPS.

3-34 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

<default-web-app ... >
This element creates a reference to the default Web application of this Web site.

The default Web application is bound to "/ j 2ee" by default in
def aul t - web-si te. xm for an Oracle9iAS environment. In OC4J standalone, the
default Web application is bound to "/ " by default in ht t p- web-si te. xm .

Attributes are the same as for the <web- app> element described immediately
above, with the following exceptions:

« Thereisno need for ar oot attribute.
« The default setting of | oad-on-startupis"true".

<user-web-apps ... >

Use this element to support user directories and applications. Each user has his or
her own Web application and associated web- appl i cati on. xm file. User
applications are reached at / user name/ from the server root.

Attributes:

« max-inactivity-time:Optional attribute to specify a period of minutes of
inactivity after which the user application will automatically be shut down. The
default is no automatic shutdown.

« pat h: This is a path to specify the local directory of the user application,
including a wildcard for the user name. The default path setting on UNIX, for
example, is "/ home/ user nane", where user nane is replaced by the
particular user name.

<access-log ... >

This element specifies information about the access log for this Web site, including
the path and what information is included. This is where incoming requests are
logged.

Attributes:

« format: Specify one or more of several supported variables that result in
information being prepended to log entries. Supported variables are $t i me
$request, $i p, $host, $pat h, $si ze, $net hod, $pr ot ocol , $user,
$st at us, $referer, $ti ne, $agent, $cooki e, $header, and $m ne.
Between variables, you can type in any separator characters that you want to
appear between values in the log message. The default setting is as follows:

"$ip - $user - [$tine] '$request’ $status $size"

Deployment and Configuration 3-35

Configuration File Descriptions

As an example, this would result in log messages such as the following (with
the second message wrapping around to a second line):

148.87.1.180 - - [06/Nov/2001:10:23:18 -0800] 'GET / HTTP/1.1" 200 2929
148.87.1.180 - - [06/Nov/2001:10: 23: 53 -0800] ' CGET
/webservi ces/ stateful Test HTTP/ 1.1 200 301

The user is null, the time is in brackets (as specified in the f or mat setting), the
request is in quotes (as specified), and the status and size in the first message
are 200 and 2929, respectively.

= pat h: Specifies the path and name of the access log, suchas". / access. | 0g".
The default setting in def aul t - web-si t e. xm is the following:

pat h="../1og/ def aul t - web-access. | og"
« split: Specifies how often to begin a new access log. Supported values are

"“none" (never), "hour","day","week", or"nont h".For a value other than
"none", logs are named according to the suf f i x attribute.

« suf fix: Specifies timestamp information to append to the base file name of the
logs (as specified in the pat h attribute) if splitting is used, to make a unique
name for each file. The format used is that of
j ava. t ext. Si npl eDat eFor mat , and symbols used in suf f i x settings are
according to the symbology of that class. For information about
Si npl eDat eFor mat and the format symbols that is uses, refer to the Sun
Microsystems Javadoc at the following location:

http://java.sun. com products/jdk/ 1.2/ docs/ api/index. htm

The default suf fi x settingis"-yyyy- Mt dd" . These characters are
case-sensitive, as described in the Si npl eDat eFor mat documentation.

As an example, assume the following <access- | 0g> element (using the
default suf f i x value):

<access-1og path="c:\foo\web-site.log" split="day" />

Log files would be named such as in the following example:
c:\foo\web-site-2001-11-17.1 0g

3-36 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Configuration File Descriptions

Default default-web-site.xml File

This is an example of a default def aul t - web- si t e. xm file (may be subject to
change in the shipped product):

<?xnml version="1.0" standal one="yes' ?>
<! DOCTYPE web-site PUBLIC "Oracl e9i AS XM. Wéb-site"
"http://xmns.oracle.confias/dtds/web-site.dtd">

<l'-- change the host nane bel ow to your own host name. Local host will -->
<l-- not work with clustering -->
<I-- also add cluster-island attribute as bel ow
<web-site host="local host" port="0" protocol ="aj p13"
di spl ay-name="Default Oracle 9i AS Java \WebSite" cluster-island="1" >
-->

<web-site port="0" protocol ="ajpl3"
di spl ay- name="Default Oracle9i AS Containers for J2EE Wb Site">

<l-- Uncoment the followi ng |ine when using clustering -->

<l-- <frontend host="your_host_name" port="80" /> -->

<l-- The default web-app for this site, bound to the root -->
<defaul t -web-app application="default" nane="defaul t WebApp"

root="/j2ee" />
<web- app application="default" name="dns" root="/dmsoc4j" />

<web- app application="ojspdenos" name="oj spdenos-web"
root ="/ oj spdenos" />

<l-- Uncomment the following to access these apps.
<web- app application="callerlnfo" nane="call erlnfo-web" root="/jazn" />
<web- app application="news" name="news-web" root="/news" />
<web- app application="Iogger" name="nessagel ogger - web"
root ="/ messagel ogger" />
<web- app application="ws_exanpl " nane="ws_exanpl e"
root="/webservices" />
>
<l-- Access Log, where requests are logged to -->
<access-1og path="../1og/def aul t-web-access.log" />
</ web-sit e>

Deployment and Configuration 3-37

Web Module Configuration in Oracle Enterprise Manager

Web Module Configuration in Oracle Enterprise Manager

The direct use of gl obal - web- appl i cati on. xm ,ori on-web. xn , and

def aul t - web-si t e. xm elements and attributes described earlier in this chapter
is generally for development in an OC4J standalone environment. In an Oracle9iAS
environment, such as for production deployment, use Enterprise Manager for such
configuration. This section covers Enterprise Manager pages related to Web module
configuration and deployment. Some of the pages allow you to alter

ori on-web. xm , gl obal - web-appl i cation.xm ,and

def aul t - web- si t e. xnl settings. Other pages display web. xm settings, which
you can override through or i on- web. xni settings.

The following Enterprise Manager pages are discussed:

« Enterprise Manager OC4J Home Page

« Enterprise Manager Deploy Web Application Page

« Enterprise Manager Website Properties Page

« Enterprise Manager Web Module Page

« Enterprise Manager Web Module Properties Page

« Enterprise Manager Web Module Mappings Page

« Enterprise Manager Web Module Filtering and Chaining Page
« Enterprise Manager Web Module Environment Page

« Enterprise Manager Web Module Advanced Properties Page

Each page description notes the corresponding web. xm , ori on- web. xm (or

gl obal - web-appl i cation. xm), ordefaul t-web-site.xm elementsand
attributes. The ori on-web. xm elements and attributes are documented in
"Element Descriptions for global-web-application.xml and orion-web.xml" on

page 3-16. The def aul t - web-si t e. xm elements and attributes are covered in
"Element Descriptions for Web Site XML Files" on page 3-31. For information about
web. xm elements, refer to the Sun Microsystems Java Servlet Specification, Version
2.3.

See the Oracle9iAS Containers for J2EE User’s Guide for further information about
using Enterprise Manager with OC4J. For general information about using
Enterprise Manager to manage your Oracle9iAS environment, see the Oracle9i
Application Server Administrator’s Guide.

3-38 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

Enterprise Manager OC4J Home Page

From the Oracle9iAS Application Server Instance Home Page (the main page you
reach when you first access Enterprise Manager), you can drill down to any of the
running OC4J instances by selecting the name of the instance (OC4J_hone, for
example) in the System Components table. Enterprise Manager will display the
OC4J Home Page for that instance.

Figure 3-2 and Figure 3-3 show portions of the OC4J Home Page for the
OC4J_hone instance.

Figure 3-2 Enterprise Manager OC4J Home Page (1 of 2)

OC4J_home
Refreshed at Wednesday, July 17, 2002 6:06:25 PM PDT EE-?
General Status
= Status Up (ctop) ([Restat CPU Usage (%) 0.4
) Start Time Unavailable \—) \—) Memary Usage (MB)] 30.938
Yirtual Machines 1 Heap Usage (MB) Unavailable
JDBC Usage Response - Servlets and JSPs

Active Sessions 3

Active Heguests 1
Request Processing Time (secs) Unavailable
Requests per Second Unavailable

Open JDBC Connections
Total JOBC Connections
Active Transactions
Transaction Commits
Transaction Rollbacks

cooooo

Response - EJBs

Active EJB Methods 0
Wlethod Execution Rate (per sec) 0

Deployment and Configuration 3-39

Web Module Configuration in Oracle Enterprise Manager

Figure 3-3 Enterprise Manager OC4J Home Page (2 of 2)

Deployed Applications
Default Application

Mame default
Path application.xml

Applications
. Deploy EAR file) . Deploy WAR file)
Select an Application and... | Edit) | Undeploy) | Redeploy)
|1-1 of 1 'l
Reguest
Processing Active
Parent Active Time EJB
Select Name Path Application Requests (secs) Methods
& Br4J . fapplications/BC4J. ear default 0 Unavailable 0
Administration
Instance Properties Application Defaults
Server Properties Data Sources
Webhsite Properties Security
JSP Container Properties Global Web tadule

Replication Properties
Advanced Properties

The OC4J Home Page enables you to access instance properties. In particular,
relating to topics covered in this manual, note the following:

« Selecting Website Properties under Instance Properties in the Administration
section of the page provides access to the Website Properties Page, through
which you can access a variety of pages to update Web module properties.

« Clicking the Deploy WAR file button provides access to the Deploy Web
Application Page.

Enterprise Manager Deploy Web Application Page

Figure 3-4 shows the key portion of the Enterprise Manager Deploy Web
Application Page, which is the page for deploying a WAR file. Drill down to this
page from any OC4J Home Page, such as the page for OC4J_hone, by clicking the
Deploy WAR file button.

3-40 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

Figure 3-4 Enterprise Manager Deploy Web Application Page

Deploy Web Application

Select the Web Application {war file) you wish to deploy. This web application will be wrapped into a J2EE application [ear file) before
deployrent.

Web Application I Browse... |

Specify the name you would like this application to be called and the URL to map this web application to.

Application Name |
Map to URL |

| Cancel) . Deploy)

In the Deploy Web Application Page, click the Browse button to select a WAR file to
deploy. Then specify the application name along with a URL to map to the
application. Specifying the application name will result in an entry in the

server. xmnl file, and there will also be a resulting entry in the

def aul t - web-si te. xm file mapping the application name to the URL. This is
accomplished through the appl i cati on and r oot attributes of a <web- app>
subelement of the <web- si t e> element. In addition, the nod_oc4j . conf
configuration file for the Oracle HTTP Server nod_oc4j Apache mod is updated
with appropriate mount points.

Enterprise Manager Website Properties Page

Figure 3-5 shows the key portion of the Enterprise Manager Website Properties
Page for an OC4J instance. Drill down to this page from the OC4J Home Page, such
as the page for OC4J_hone, by selecting Website Properties under Instance
Properties in the Administration section of the page.

Deployment and Configuration 3-41

Web Module Configuration in Oracle Enterprise Manager

Figure 3-5 Enterprise Manager Website Properties Page

Website Properties
Refreshed at Monday, July 15, 2002 2:42:14 PM POT EE?
Default Web Module
Mame defaultWebApp

Parent Application default
Load on startup true

URL Mappings for Web Modules

|1-3 of 3 'l
Load on
Name Application URL Binding startup
cabo BCAJ Jcabo |
drns default fdmsocd -
wehapp BCAJ Fuebapp |

| Revert) | Apply)

Among other things, this page enables you to specify whether each application
should be loaded automatically when OCA4J starts. (Otherwise, an application is not
loaded until the first request for it.) This corresponds to the | oad- on- st art up
attribute of the appropriate <web- app> subelement of the <web- si t e> element in
the def aul t - web- si t e. xm file. (For general information about loading an
application at OC4J startup, see "Servlet Preloading" on page 2-4.)

From the Website Properties Page, drill down to the Web Module Page for any
particular Web module. In the sample page above, for example, you can select
webapp to drill down to the Web Module Page for that module.

Enterprise Manager Web Module Page

Figure 3-6 shows the key portion of the Enterprise Manager Web Module Page for
the module webapp. Drill down to the Web Module Page for a particular module
by selecting the module name in the Website Properties Page.

3-42 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

Figure 3—6 Enterprise Manager Web Module Page

Web Module: webapp

Refreshed at Wednesday, July 17, 2002 6:11:35 PM POT EE-?

General Response and Load
Status Loaded Active Sessions 3
URL Binding /webapp Active Feguests 0
Referenced EJBs Reguest Client Time (secs) 0
Request Load Time (secs) 0
Request Overhead Time (secs) 0
Requests per Second 0
Reguests Processed 11
SerV'etS/JSPS A Return to TDE
|1—1 of 1 'l
Reqguest
Client |Requests|
Name Active |Time [per Startup
Status |Type |Source Requests|isecs) |Second |Priority|
EMDSerdet Loaded Serdet oraclejbo.server.ermd EMDSerdet 0]]
Administration A Retun to Top
Properties Security
General General
Mappings

Filtering and Chaining
Environrnent

Advanced Properties

From the Web Module Page, you can access several categories of Web module
properties through the following links under Properties in the Administration
section of the page:

« General (to drill down to the Web Module Properties Page)
« Mappings (to drill down to the Web Module Mappings Page)

« Filtering and Chaining (to drill down to the Web Module Filtering and
Chaining Page)

« Environment (to drill down to the Web Module Environment Page)

« Advanced Properties (to drill down to the Web Module Advanced Properties
Page)

Deployment and Configuration 3-43

Web Module Configuration in Oracle Enterprise Manager

Enterprise Manager Web Module Properties Page

Figure 3-7 and Figure 3-8 show portions of the Enterprise Manager Web Module
Properties Page for a particular module. Drill down to this page by selecting
General under Properties in the Administration section of the Web Module Page.

Figure 3-7 Enterprise Manager Web Module Properties Page (1 of 2)

Properties

Refreshed at Wednesday, July 17, 2002 6:11:57 PM PDT EE-?

General

Digplay Mame
Description BC4J Web Application
Distributable true
Document Root ../

Servlet Directory Ifservlet.-’

Temporary Directary I.ftemp

Response Buffer Size (bytes) I2DfiB

File Check Interval (milliseconds) |1000

Get Locale from User Mo =

Session Configuration

Use Cookies |Yes 'l
Session Auto Join [Mo 'l

Session Timeout (minutes)

30
Cookie Max Age (seconds) I

|

|

A Return to Top

Cookie Dormain

Session Storage Directory

3-44 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

Figure 3-8 Enterprise Manager Web Module Properties Page (2 of 2)

Class Paths A Return to Top
Specifies where java classes used by this application can be found.

Select Path
(Mo items found)

| Add Class Path)

Session Trackers A Return to Top
Specifies a servlet to use as a session tracker. Session trackers are invoked as soon as a session is created and
are useful for logging purposes.

Select Servlet Name

(Mo iterns found)
. Add Session Tracker)

Virtual Directories A Return to Top
“irtual directories may be used to expose web files that don't physically reside below the document root.

Select Real Path Virtual Path
(Mo iterms found)

| Add Yirtual Directony)

Tag Libraries A Return to Top
Atag library is a collection of custom tags that encapsulate functionality used within JSP pages.

Name Location
(Mo iterns found in J2EE deployment descriptor)

Correspondence of these settings to or i on- web. xni elements is as follows.
In the General section:

« Servlet Directory corresponds to the ser vl et - webdi r attribute of the
<ori on- web- app> element.

« Temporary Directory corresponds to the t enpor ar y- di r ect or y attribute of
the <ori on- web- app> element.

« Response Buffer Size corresponds to the def aul t - buf f er - si ze attribute of
the <ori on- web- app> element.

Deployment and Configuration 3-45

Web Module Configuration in Oracle Enterprise Manager

File Check Interval corresponds to the
file-nodification-check-interval attribute of the <ori on- web- app>
element.

Get Locale from User corresponds to the get - | ocal e-from user attribute of
the <ori on- web- app> element.

In the Session Configuration section:

Use Cookies corresponds to the cooki es attribute of the
<sessi on-tracki ng> element, which is a subelement of the
<ori on- web- app> element.

Session Auto Join corresponds to the aut oj oi n- sessi on attribute of the
<sessi on-tracki ng>element.

Session Timeout corresponds to the <sessi on-t i meout > subelement of the
<sessi on- conf i g> subelement of the standard <web- app> element. You can
use a <web- app> subelement under <or i on- web- app>inori on- web. xm
for deployment-specific overrides of <web- app> settings in the application
web. xm file.

Cookie Max Age corresponds to the cooki e- max- age attribute of the
<sessi on-tracki ng>element.

Cookie Domain corresponds to the cooki e- domai n attribute of the
<sessi on-tracki ng>element.

Session Storage Directory corresponds to the per si st ence- pat h attribute of
the <or i on- web- app> element.

In the Class Paths section:

Adding a classpath here corresponds to setting the pat h attribute of a
<cl asspat h> subelement of the <or i on- web- app> element.

In the Session Trackers section:

Adding a session tracker here corresponds to setting the ser vl et - nane
attribute of a <sessi on-t r acker > element, which is a subelement of the
<sessi on-tracki ng>element.

In the Virtual Directories section:

Adding a virtual directory here corresponds to setting the r eal - pat h and
vi rtual - pat h attributes of a <vi rt ual - di r ect or y> subelement of the
<ori on- web- app> element.

3-46 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

In the Tag Libraries section:

« This lists JSP tag libraries that are used in the application, according to contents
of the WAR file.

Enterprise Manager Web Module Mappings Page

Figure 3-9 and Figure 3-10 show portions of the Enterprise Manager Web Module
Mappings Page for a particular module. Drill down to this page by selecting
Mappings under Properties in the Administration section of the Web Module Page.

Figure 3-9 Enterprise Manager Web Module Mappings Page (1 of 2)

Mappings

Refreshed at Sunday, July 14, 2002 3:17:07 PM FDT E

Servlet Mappings
Defines a mapping between a sendet and a url pattermn.

-

Servlet Name URL Pattern
(Mo iterms found in J2EE deployment descriptor)

MIME Mappings

Defines a mapping between and an extension and a mime type.

A Return to Top

|1-2 of 2 'l
MIME Type Extension
textthtml html
text/plain tat

Deployment and Configuration 3-47

Web Module Configuration in Oracle Enterprise Manager

Figure 3-10 Enterprise Manager Web Module Mappings Page (2 of 2)

Welcome Files
Welcome files will be served to the user for incoming requests without a file specified (an existing directory is

A Return to Top

specified).

File Name

(Mo iterns found in J2EE deployrment descriptor)

Error Pages A Return to Tap
Defines a mapping between an error code or java exception type and the location of a resource.

Error Code/Exception Class Location

(Mo items found in J2EE deployment descriptor)

These settings all correspond to subelements of the <web- app> element in the
web. xm file. You can use a <web- app> subelement under <or i on- web- app>in
ori on-web. xm for deployment-specific overrides of these settings. You can use
the Advanced Properties Page for this purpose—see "Enterprise Manager Web
Module Advanced Properties Page" on page 3-51.

In the Servlet Mappings section:

« Aservlet name and URL pattern specified here correspond to settings in the
<servl et - name>and <ur | - pat t er n> subelements of a
<servl et - mappi ng> subelement of the <web- app> element.

In the MIME Mappings section:

« A MIME type and extension specified here correspond to settings in the
<mi me-t ype> and <ext ensi on> subelements of a <m me- mappi ng>
subelement of the <web- app> element.

In the Welcome Files section:

« Afile name specified here corresponds to the setting in a <wel cone-fil e>
subelement of the <wel come-fil e-1i st > subelement of the <web- app>
element.

In the Error Pages section:

« An error code and location specified here correspond to settings in the
<error-code>and <l ocat i on> subelements of an <err or - page>
subelement of the <web- app> element.

3-48 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

= An exception class and location specified here correspond to settings in the
<exception-type>and <l ocat i on>subelements of an <err or - page>
subelement of the <web- app> element.

Enterprise Manager Web Module Filtering and Chaining Page

Figure 3-11 shows the key portion of the Enterprise Manager Web Module Filtering
and Chaining Page for a particular module. Drill down to this page by selecting
Filtering and Chaining under Properties in the Administration section of the Web
Module Page.

Figure 3-11 Enterprise Manager Web Module Filtering and Chaining Page

Filtering and Chaining

Refrezshed at Sunday, July 14, 2002 3420358 PM FDT E

Servlet Filtering

Specifies a servlet to use as a filter. Filters are invoked for every request and have the option of handling the
reguest or simply ignoting it and passing it on for normal processing.

Select URL Pattern Servlet Name
(Mo items found)

(" addFitter)

Servlet Chaining

Specifies a servlet to use as chainer for a specified mime-type. Useful to filtertransform certain kinds of output.

Select MIME Type Servlet Name
(Mo items found)

| AddChain)
| Revert) | Apphy)

Correspondence of these settings to or i on- web. xni elements is as follows.
In the Servlet Filtering section:

« Adding afilter here is equivalent to setting the ser vl et - name and
url - patternattributes ofa <servl et - fil t er > subelement of the
<ori on- web- app> element. The servlet name you specify is tied to a servlet
class through its standard configuration in the web. xmi file.

Deployment and Configuration 3-49

Web Module Configuration in Oracle Enterprise Manager

In the Servlet Chaining section:

« Adding a chain here is equivalent to setting the ser vl et - name and
m ne-t ype attributes of a <ser vl et - chai ni ng> subelement of the
<ori on- web- app> element. The servlet name you specify is tied to a servlet
class through its standard configuration in the web. xmi file.

Enterprise Manager Web Module Environment Page

Figure 3-12 shows most of the Enterprise Manager Web Module Environment Page
for a particular module. Drill down to this page by selecting Environment under
Properties in the Administration section of the Web Module Page.

Figure 3-12 Enterprise Manager Web Module Environment Page

Environment

Refrezshed at Sunday, July 14, 2002 3:47:22 P PDT E‘

Servlet Context Parameters
Owerrides the value of the web application's servlet context initialization parameters.

Name Value Deployed Value

(Mo items found in J2EE deployment descriptor)

Environment Entries A Return to Top
Overrides the value of environment entries specified in the assembly descriptor.

Name Type Description Value Deployed Value

(Mo items found in J2EE deployment descriptor)

Resource References A Return to Tap

Associates the declaration of a reference to an external resource such as a datasource, JMS queue or mail
session with a JMDI-lacation when deploying.

JNDI Lookup
Name Type Authorization Description Location Context

(Mo items found in J2EE deployment
descriptor)

[Bevert.) | Apphy)

3-50 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Web Module Configuration in Oracle Enterprise Manager

This page shows settings for servlet context parameter overrides, environment
entry overrides, and resource references. The overrides indicate settings in the
ori on-web. xm file that override corresponding web. xmi settings.

Correspondence of these settings to web. xm and or i on- web. xm elements is as
followvs.

In the Servlet Context Parameters section:

« This section displays settings of web. xm <cont ext - par an® elements that
can be overridden for this deployment, along with any Deployed Value
overrides that have already been specified. Enter a new value in the Deployed
Value column to specify a new override. Doing so creates a
<cont ext - par am mappi ng> entry in ori on- web. xml .

In the Environment Entries section:

= This section displays settings of web. xnl <env- ent r y> elements that can be
overridden for this deployment, along with any Deployed Value overrides that
have already been specified. Enter a new value in the Deployed Value column
to specify a new override. Doing so creates an <env- ent r y- mappi ng> entry
inorion-web. xm .

In the Resource References section:

« This section displays a combination of web. xm and ori on-web. xml settings.
The name and type of a resource reference correspond to <r es- r ef - name>
and <r es- t ype> subelements under a <r esour ce- r ef > subelement of the
<web- app> element in the web. xni file. The JNDI location and lookup context
correspond to settings under a <r esour ce- r ef - mappi ng> element and its
<l ookup- cont ext > subelement, under the <or i on- web- app> element in
the ori on-web. xm file.

Enterprise Manager Web Module Advanced Properties Page

Figure 3-13 shows the key portion of the Enterprise Manager Web Module
Advanced Properties Page for a particular module. Drill down to this page by
selecting Advanced Properties under Properties in the Administration section of
the Web Module Page.

You can use the Web Module Advanced Properties Page to edit ori on- web. xnl or
gl obal - web- appl i cation. xm for any settings not covered by the previously
discussed Enterprise Manager Web module pages. (In fact, you can make any
orion-web. xm or gl obal - web- appl i cation. xm entries through the

Deployment and Configuration 3-51

Web Module Configuration in Oracle Enterprise Manager

Advanced Properties Page; however, it is advisable to use the previously described
pages whenever possible because of their error handling and reporting features.)

Figure 3-13 Enterprise Manager Web Module Advanced Properties Page

& Warning

Changes to most OC4J server configuration files will trigger an automatic restart. Typographic errors in the content of a configuration
file can prevent the server from restarting. Click Help for information about restoring your ariginal settings.

Edit orion-web.xml
This configuration file is located at orion-web.xml

<?uml version = "1.0'7= ;I
<IDOCTYPE orion-web-app PUBLIC "-//Evermind//DTD Orion WWeb Application

2.3EN" "http: fxmins. oracle. comfias/dtds/orion-web. dtd"=

<otion-web-app deployment-version="8.0.2.0.0" jsp-cache-directory="./persistence” temparary-directory="./temp"

internationalize-resources="false" default-mime-type="application/octet-stream” sendet-webdir="/serlet/" >
=forion-web-app=

[

| Revert) | Apply)

3-52 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

A

Servlet Filters and Event Listeners

This chapter describes the following servlet features, which are new in the servlet
2.3 specification:

= Servlet Filters

= Event Listeners

Servlet Filters and Event Listeners 4-1

Servlet Filters

Servlet Filters

Servlet filters are used for preprocessing Web application requests and
post-processing responses. While this is new functionality in the servlet 2.3
specification, earlier Web servers have supported similar constructs.

This section covers the following topics:
= Overview of Servlet Filters
= How the Servlet Container Invokes Filters

« Filter Examples

Overview of Servlet Filters

When the servlet container calls a method in a servlet on behalf of the client, the
HTTP request that the client sent is, by default, passed directly to the servlet. The
response that the servlet generates is, by default, passed directly back to the client,
with its content unmodified by the container. So, normally, the servlet must process
the request and generate as much of the response as the application requires.

But there are many cases where some preprocessing of the request for servlets
would be useful. In addition, it is sometimes useful to modify the response from a
class of servlets. One example is encryption. A servlet, or a group of servlets in an
application, might generate response data that is sensitive and should not go out
over the network in clear-text form, especially when the connection has been made
using a non-secure protocol such as HTTP. A filter can encrypt the responses. Of
course, in this case the client must be able to decrypt the responses.

A common scenario for a filter is where you want to apply preprocessing or
post-processing to requests and responses for a group of servlets, not just a single
servlet. If you need to modify the request or response for just one servlet, there is no
need to create a filter—just do what is required directly in the servlet itself.

Note that filters are not servlets. They do not implement and override
Ht t pSer vl et methods such as doGet () or doPost () . Rather, a filter implements
the methods of the j avax. servl et. Fi | t er interface. The methods are:

« init()
« destroy()
« doFilter()

4-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Filters

How the Servlet Container Invokes Filters

Figure 4-1 shows how the servlet container invokes filters. On the left is a scenario
where no filters are configured for the servlet being called. On the right, several
filters (1, 2, ..., N) have been configured in a chain to be invoked by the container
before the servlet is called. The web. xm file specifies which servlets or JSP pages
cause the container to invoke the filters.

Figure 4-1 Servlet Invocation with and without Filters

Web Web
listener listener
Y f
w
Servlet Container Servlet Container
A - A
7 g T :
2 2 ©filter1 :
g © : :
! |
- filter2
Serviet | |
- filterN: &
v [
Serviet

The order in which filters are invoked depends on the order in which they are
configured in the web. xmi file. The first filter in web. xn1 is the first one invoked
during the request, and the last filter in web. xml is the first one invoked during the
response (note the reverse order during the response).

Servlet Filters and Event Listeners 4-3

Servlet Filters

Filter Examples
This section lists and describes three servlet filter examples.

Filter Example 1

This section provides a simple filter example. Any filter must implement the three
methods in the j avax. servl et . Fi | t er interface or must extend a class that
implements them. So the first step is to write a class that implements these methods.
This class, which we will call Gener i cFi | t er, can be extended by other filters.

Generic Filter Here is the generic filter code. Assume this generic filter is part of the
com acne. filter package, so you should set up a corresponding directory
structure somewhere.

package comacne.filter; 111,
inport javax.servlet.*;

public

class GenericFilter inplements javax.servliet.Filter {
public FilterConfig filterConfig; 112,
public void doFilter(final ServletRequest request, 113.

final ServletResponse response,
FilterChain chain)
throws java.io.lOException, javax.servlet.ServletException {

chai n. doFi | ter(request, response); /14,
}
public void init(final FilterConfig filterConfig) { /15.
this.filterConfig = filterConfig;
}
public void destroy() { /186.
}

}

Save this code in a file called Generi cFi | t er. j ava in the package directory. The
numbered code notes refer to the following:

1. The filter examples in this chapter are kept in this package.
2. This declares a variable to save the filter configuration object.

3. ThedoFil ter () method contains the code that implements the filter.

4-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Filters

4. Inthe generic case, just call the filter chain.
5. Theinit() method saves the filter configuration in a variable.

6. Thedestroy() method can be overridden to accomplish any required
finalization.

Filter Code: HelloWorldFilter.java This filter overrides the doFi | t er () method of the
Generi cFi | t er classabove. It prints a message on the console when it is called on
entrance, next adds a new attribute to the servlet request, then calls the filter chain.
In this example there is no other filter in the chain, so the container passes the
request directly to the servlet. Enter the following code in a file called

Hel | oWworl dFil ter.java:

package comacne.filter
inport javax.servlet.*;

public class Hel | oWorldFilter extends GenericFilter {
private FilterConfig filterConfig

public void doFilter(final ServletRequest request
final ServletResponse response
FilterChain chain)
throws java.io.|OException, javax.servlet. ServletException ({
Systemout.printin("Entering Filter");
request.setAttribute("hello","Hello Wrld");
chai n. doFi | ter(request, response);
Systemout.printin("Exiting Hell oWrldFilter");
}
}

JSP Code: filter.jsp To keep the example simple, the "servlet" to process the filter
output is written as a JSP page. Here it is:

<HTM.>

<HEAD>

<TI TLE>Fi | ter Exanple 1</TITLE>

</ HEAD>

<BODY>

<HR>
<P><%request.getAttribute("hello")%</ P>
<P>Check your consol e output!</P>

<HR>

</ BODY>

Servlet Filters and Event Listeners 4-5

Servlet Filters

</ HTM.>

The JSP page gets the new request attribute, hel | o, that the filter added, and prints
its value on the console. Putthefi | t er.j sp page in the document root of the
OC4J standalone default Web application and make sure your console window is
visible when you invoke fi | t er. j sp from your browser.

Setting Up Example 1 To test the filter examples in this chapter, the OC4J standalone
default Web application will be used. The filter should be configured in the

web. xm file in the default Web application / WEB- | NF directory. You will need the
following entries in the <web- app> element:

<I-- Filter Exanple 1 -->

<filter>
<filter-name>hel | oWorl d</filter-nane>
<filter-class>comacne.filter.HelloWrldFilter</filter-class>

</[filter>

<filter-mappi ng>
<filter-name>hel | oWorl d</filter-nane>
<url-pattern>/filter.jsp</url-pattern>

</filter-mappi ng>

<I-- end Filter Exanple 1 -->

The <f i | t er > element defines the name of the filter and the Java class that
implements the filter. The <f i | t er - mappi ng> element defines the URL pattern
that specifies to which targets the <f i | t er - name> should apply. In this simple
example, the filter applies to only one target: the JSP codeinfil ter.j sp.

Note: Thereisa<servlet-filter>elementforthe

gl obal - web-appl i cation. xm fileorori on-web. xm file
that has equivalent functionality. You can use either mechanism,
but remember that web. xm settings override

gl obal - web-appl i cation. xm settings, and settings to
orion-web. xm through Oracle Enterprise Manager (or directly
to the file in the application deployment directory, for OC4J
standalone) override web. xm settings.

Running Example 1 Invokefil t er.j sp from your Web browser. The console output
should look something like this:

<host name>% Entering Filter
Exiting HelloWrldFilter

4-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Filters

The output to the Web browser is something like what is shown in Figure 4-2.

Figure 4-2 Example 1 Output

ilter Example 1 - Netscape

File Edit “iew Go Communicator Help

Back Forward Reload Hime Search Metscape Print Security Eﬂ

v wu! T Bookmarks Location:l j @' ‘what's Related

Hello World!

Check your console output!

| (== |Document: Done

Filter Example 2

A filter can be configured with initialization parameters in the web. xm file. This
section provides a filter example that uses the following web. xm entry, which
demonstrates a parameterized filter:

<I-- Filter Exanple 2 -->

<filter>
<filter-name>nessage</filter-nanme>
<filter-class>comacne.filter.MessageFilter</filter-class>

Servlet Filters and Event Listeners 4-7

Servlet Filters

<init-paranp
<par am nane>message</ par am nanme>
<par am val ue>A message for you! </ paramval ue>
<linit-paranp
</[filter>
<filter-mappi ng>
<filter-name>nessage</filter-name>
<url-pattern>/filter2.jsp</url-pattern>
</filter-mappi ng>
<I-- end Filter Exanple 2 -->

Here, the filter named message has been configured with an initialization
parameter, also called message. The value of the message parameter is "A
message for you!"

Filter Code: MessageFilterjava The code to implement the message filter example is
shown below. Note that it uses the Generi cFi | t er class from "Filter Example 1"
on page 4-4.

package comacne.filter;
inport javax.servlet.*;

public class MessageFilter extends GenericFilter {
public void doFilter(final ServletRequest request,
final ServletResponse response,
FilterChain chain)
throws java.io.lOException, javax.servlet. ServletException {
Systemout.println("Entering MessageFilter");
String message = filterConfig.getlnitParameter("message");
request.setAttribut e(" nessage", message);
chain. doFi | ter(request, response);
Systemout.println("Exiting MessageFilter");
}
}

This filter usesthe fi | t er Conf i g object that was saved in the generic filter. The
filterConfig.getlnitParaneter() method returns the value of the
initialization parameter.

4-8 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Servlet Filters

JSP Code: filter2.jsp As in the first example, this example uses a JSP page to
implement the "servlet" that tests the filter. The filter named in the <ur| - pat t er n>
tag aboveisfil t er 2. j sp. Here is the code, which you can enter into a file
filter2.]jspinthe OC4Jstandalone default Web application root directory:

<HTM.>

<HEAD>

<TI TLE>Lesson 2</TI TLE>

</ HEAD>

<BODY>

<HR>
<P><%request . get Attribute("message") %</ P>
<P>Check your consol e output!</P>
<HR>

</ BODY>

</ HTM.>

Running Example 2 Make sure that the filter configuration has been entered in the
web. xm file, as shown above. Then access the JSP page with your browser. The
console output should show something like the following:

Aut o-depl oying file:/private/tssmith/appserver/default-web-app/ (Assenbly had
been updated)...

Entering MessageFilter

Exiting MessageFilter

Note the message from the server showing that it redeployed the default Web
application after the web. xm file was edited, and note the messages from the filter
as it was entered and exited. The Web browser screen should show something like
what is shown in Figure 4-3.

Servlet Filters and Event Listeners 4-9

Servlet Filters

Figure 4-3 Example 2 Output

Filter Example 2 - Netscape

File Edit Yiew Go Communicator Help

Back Forward Feload Heme Search Metscape Frint Security Em

v wtv Bookmarks & Location:l j @'What's Related

A message for youl

Checl your console output!

’E == |Document: Done

Filter Example 3

A particularly useful function for a filter is to manipulate the response to a request.
To accomplish this, use the standard

javax.servlet. http. H t pServl et ResponseW apper class, a custom

j avax. servl et . Servl et Qut put St r eamobject, and a filter. To test the filter,
you also need a target to be processed by the filter. In this example, the target that is
filtered is a JSP page.

There are three new classes to write to implement this example:

« FilterServl et Qut put St r eam—This is a new implementation of
Ser vl et Qut put St r eamfor response wrappers.

4-10 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Servlet Filters

« GenericResponseW apper —This is a basic implementation of the response
wrapper interface.

« PrePost Fil ter—This is the code that implements the filter.

This example uses the Ht t pSer vl et ResponseW apper class to wrap the
response before it is sent to the target. This class is an object that acts as a wrapper
for the Ser vl et Response object (using a Decorator design pattern, as described in
software design textbooks). It is used to wrap the real response so that it can be
modified after the target of the request has delivered its response.

The HTTP servlet response wrapper developed in this example uses a custom
servlet output stream that lets the wrapper manipulate the response data after the
servlet (or JSP page, in this example) is finished writing it out. Normally, this cannot
be done after the servlet output stream has been closed (essentially, after the servlet
has committed it). That is the reason for implementing a filter-specific extension to
the Ser vl et Qut put St r eamclass in this example.

Output Stream: FilterServletOutputStream.java The Fi | t er Ser vl et Qut put St r eam
class is used to manipulate the response of another resource. This class overrides
the three wr i t e() methods of the standard j ava. i 0. Qut put St r eamclass.

Here is the code for the new output stream:
package com acne.filter;
inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.io.*;

public
class FilterServletQutputStream extends ServletQutputStream {

private DataCutput Stream stream

public FilterServletQutputStream OutputStream output) {
st ream = new Dat aCut put St ream(out put) ;

}

public void wite(int b) throws | OException {
streamwite(b);

}

public void wite(byte[] b) throws |OException {
streamwite(b);

Servlet Filters and Event Listeners 4-11

Servlet Filters

}

public void wite(byte[] b, int off, int len) throws | OException {
streamwite(b, off,len);

}
}

Save this code in the following directory under the default Web application root
directory, and compile it:

/ VEB- | NF/ cl asses/comf acne/ filter

Servlet Response Wrapper: GenericResponseWrapper.java To use the custom

Ser vl et Qut put St r eamclass, implement a class that can act as a response object.
This wrapper object is sent back to the client in place of the original response
generated by the servlet (or JSP page).

The wrapper must implement some utility methods, such as to retrieve the content
type and content length of its content. The Gener i cResponseW apper class
accomplishes this:

package com acne.filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class Generi cResponseW apper extends HttpServl et ResponseW apper {
private ByteArrayQutputStream out put;
private int contentlength;
private String contentType;

public GenericResponseW apper (HttpServl et Response response) {
super (response);
out put =new Byt eArrayQut put Streanm();

}

public byte[] getData() {
return output.toByteArray();
}

public ServletQutputStream get Qut put Stream() {
return new FilterServletQutputStreanoutput);

4-12 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Servlet Filters

}

public PrintWiter getWiter() {
return new PrintWiter(getQutputStream),true);
}

public void setContentLength(int |ength) {
this.contentLength = | ength;
super . set Cont ent Lengt h(l ength);

}

public int getContentlLength() {
return contentLength;

}

public void setContentType(String type) {
this. content Type = type;
super . set Cont ent Type(type);

}

public String get Content Type() {
return contentType;

}
}

Save this code in the following directory under the default Web application root
directory, and compile it:

/ VEB- | NF/ cl asses/comf acne/ filter

Writing the Filter This filter adds content to the response of the servlet (or JSP page)
after that target is invoked. This filter extends the filter from "Generic Filter" on
page 4-4.

Here is the filter code, PrePost Fil ter. j ava:

package com acne.filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class PrePostFilter extends CGenericFilter {

Servlet Filters and Event Listeners 4-13

Servlet Filters

public void doFilter(final ServletRequest request,
final ServletResponse response,
FilterChain chain)

throws | OException, ServletException {

Qut put Stream out = response. get Qut put Strean();

out.wite("<HR>PRE<HR>". get Bytes());

Gener i cResponseW apper wrapper = new

CGeneri cResponseW apper ((Htt pServl et Response) response);

chai n. doFi | ter (request, w apper);

out.wite(wapper.getData());

out.wite("<HR>POST<HR>". get Byt es());

out.close();

}

}

Save this code in the following directory under the default Web application root
directory, and compile it:

/ VEB- | NF/ cl asses/ comf acne/ filter

As in the previous examples, create a simple JSP page and place it in the root
directory of the default Web application. Hereisfil ter3.j sp:

<HTM.>

<HEAD>

<TITLE>Fi | ter Exanple 3</TITLE>

</ HEAD>

<BODY>

This is a testpage. You shoul d see

this text when you invoke filter3.jsp,

as well as the additional material added

by the PrePostFilter.

<hr>

</ BODY>

</ HTM.

Save this JSP code infi | t er 3.] sp in the root directory of the default Web
application.

Configuring the Filter The following <fi | t er > element must be added to web. xmi ,
after the configuration of the nessage filter:

<I-- Filter Exanple 3 -->

<filter>
<filter-name>prePost</filter-name>
<di spl ay- name>pr ePost </ di spl ay- name>

4-14 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Servlet Filters

<filter-class>comacne.filter.PrePostFilter</filter-class>
<[filter>
<filter-mappi ng>
<filter-name>prePost</filter-name>
<url-pattern>/filter3.jsp</url-pattern>
</filter-mappi ng>
<I-- end Filter Exanple 3 -->

Running Example 3 Invoke the servlet in your Web browser. You should see a page
that looks something like what is shown in Figure 4-4.

Figure 4-4 Example 3 Output

ilter Example 3 - Netscape

File Edit Yiew Go Communicator Help

Back Forward Feload Heme Search Metscape Frint Security Em

v wtv Bookmarks & Location:l j @'What's Related

PEE

This 1z a testpage. T ou should see

this text when you inveke filter3 jsp,

as well as the additional matenal added
by the PrePostFilter.

POET

’E == |Document: Done

Servlet Filters and Event Listeners 4-15

Event Listeners

Event Listeners

The servlet 2.3 specification adds the capability to track key events in your Web
applications through event listeners. This functionality allows more efficient resource
management and automated processing based on event status. This section
describes servlet event listeners, covering the following topics:

« Event Categories and Listener Interfaces

= Typical Event Listener Scenario

« Event Listener Declaration and Invocation

« Event Listener Coding and Deployment Guidelines
« Event Listener Methods and Related Classes

« Event Listener Sample

Event Categories and Listener Interfaces
There are two levels of servlet events:

« servlet context (application) level event

This involves resources or state held at the level of the JVM in which the
application is running; that is, associated with the application servlet context
object.

= session level event

This involves resources or state associated with the series of requests from a
single user session; that is, associated with the HTTP session object.

At each of these two levels, there are two event categories:
« lifecycle changes
« attribute changes

You can create one or more event listener classes for each of the four event
categories. A single listener class can monitor multiple event categories.

Create an event listener class by implementing the appropriate interface or
interfaces of the j avax. servl et package orj avax. servl et . htt p package.
Table 4-1 summarizes the four categories and the associated interfaces.

4-16 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

Table 4-1 Event Listener Categories and Interfaces

Event Category Event Descriptions Interface

Servlet context Servlet context creation (at which javax.servlet.

lifecycle changes pointit is ready to service its first ServletContextListener
request)

Imminent shutdown of the servlet
context

Servlet context Addition of servlet context attributes javax.servlet.

attribute changes Removal of servlet context attributes ServletContextAttributeListener

Replacement of servlet context

attributes
Session lifecycle Session creation javax.servlet.http.
changes Session invalidation HttpSessionListener
Session timeout
Session attribute Addition of session attributes javax.servlet.http.
changes Removal of session attributes HttpSessionAttributeListener

Replacement of session attributes

Typical Event Listener Scenario

Consider a Web application consisting of servlets that access a database. A typical
use of the event listener mechanism would be to create a servlet context lifecycle
event listener to manage the database connection. This listener might function as
follows:

1. The listener is notified of application startup.

2. Theapplication logs in to the database and stores the connection object in the
servlet context.

3. Servlets use the database connection to perform SQL operations.

4. The listener is notified of imminent application shutdown (shutdown of the
Web server, or removal of the application from the Web server).

5. Prior to application shutdown, the listener closes the database connection.

Servlet Filters and Event Listeners 4-17

Event Listeners

Event Listener Declaration and Invocation

Event listeners are declared in the application web. xm deployment descriptor,
through <l i st ener > elements under the top-level <web- app> element. Each
listener has its own <| i st ener >element, with a <l i st ener - cl ass> subelement
specifying the class name. Within each event category, event listeners should be
specified in the order in which you would like them to be invoked when the
application runs.

After the application starts up, and before the application services the first request,
the servlet container creates and registers an instance of each listener class that you
have declared. For each event category, listeners are registered in the order in which
they are declared. Then, as the application runs, event listeners for each category are
invoked in the order of their registration. All listeners will remain active until after
the last request is serviced for the application.

Upon application shutdown, session event listeners are notified first, in reverse
order of their declarations, then application event listeners are notified in reverse
order of their declarations.

Here is an example of event listener declarations, from the Sun Microsystems Java
Servlet Specification, Version 2.3:

<web- app>
<di spl ay- nane>MyLi st eni ngAppl i cati on</ di spl ay- name>
<li stener>
<listener-class>om acme. MyConnect i onManager </ | i st ener cl ass>
</listener>
<listener>
<l i stener-class>com acne. MyLoggi nghbdul e</ | i st ener - ¢l ass>
</listener>
<servlet>
<di spl ay- nane>Regi strat i onServl et </ di spl ay- nane>

</servl et>
</ web- app>

Assume that MyConnect i onManager and MyLoggi nghbdul e both implement
the Ser vl et Cont ext Li st ener interface, and that MyLoggi nghbodul e also
implements the Ht t pSessi onLi st ener interface.

When the application runs, both listeners will be notified of servlet context lifecycle
events, and the MyLoggi nghbdul e listener will also be notified of session lifecycle
events. For servlet context lifecycle events, the MyConnect i onManager listener
will be notified first, because of the declaration order.

4-18 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

Event Listener Coding and Deployment Guidelines

Be aware of the following rules and guidelines for event listener classes:
« Ina multithreaded application, attribute changes may occur simultaneously.
There is no requirement for the servlet container to synchronize the resulting

notifications—it is the listener classes themselves that are responsible for
maintaining data integrity in such a situation.

« Each listener class must have a public zero-argument constructor.

= Each listener class file must be packaged in the application WAR file, either
under / VEB- | NF/ cl asses or in aJAR filein/ VEB- | NF/ | i b.

Note: In adistributed environment, the scope of event listeners is
one for each deployment descriptor declaration for each JVM.
There is no requirement for distributed Web containers to
propagate servlet context events or session events to additional
JVMs. This is discussed in the Sun Microsystems Java Servlet
Specification, Version 2.3.

Event Listener Methods and Related Classes

This section lists event listener methods, which are called by the servlet container
when a servlet context event or session event occurs. These methods take different
types of event objects as input, so these event classes and their methods are also
discussed.

ServletContextListener Methods, ServletContextEvent Class
The Ser vl et Cont ext Li st ener interface specifies the following methods:

« void contextlnitialized(ServletContextEvent sce)

The servlet container calls this method to notify the listener that the serviet
context has been created and the application is ready to process requests.

« void contextDestroyed(Servl et Cont ext Event sce)

The servlet container calls this method to notify the listener that the application
is about to be shut down.

The servlet container creates aj avax. servl et. Ser vl et Cont ext Event object
that is input for calls to Ser vl et Cont ext Li st ener methods. The

Servlet Filters and Event Listeners 4-19

Event Listeners

Ser vl et Cont ext Event class includes the following method, which your listener
can call:

« Servl et Context get Servl et Context ()

Use this to retrieve the servlet context object that was created or is about to be
destroyed, from which you can obtain information as desired. See "Servlet
Contexts" on page 1-9 for information about the

j avax. servl et. Servl et Cont ext interface.

ServletContextAttributeListener Methods, ServletContextAttributeEvent Class

The Ser vl et Cont ext Attri but eLi st ener interface specifies the following
methods:

« void attributeAdded(Servl et ContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was added to the servlet context.

« void attributeRenmoved(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was removed from the servlet context.

« void attributeRepl aced(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was replaced in the servlet context.

The container creates aj avax. servl et. Servl et Cont ext Attri but eEvent
object that is input for calls to Ser vl et Cont ext Attri but eLi st ener methods.
The Ser vl et Cont ext Att ri but eEvent class includes the following methods,
which your listener can call:

« String getName()
Use this to get the name of the attribute that was added, removed, or replaced.
« Object getValue()

Use this to get the value of the attribute that was added, removed, or replaced.
In the case of an attribute that was replaced, this method returns the old value,
not the new value.

4-20 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

HttpSessionListener Methods, HttpSessionEvent Class
The Ht t pSessi onLi st ener interface specifies the following methods:

voi d sessi onCreated(Htt pSessi onEvent hse)

The servlet container calls this method to notify the listener that a session was
created.

voi d sessi onDestroyed(HttpSessi onEvent hse)

The servlet container calls this method to notify the listener that a session was
destroyed.

The container createsaj avax. servl et. http. H t pSessi onEvent object that is
input for calls to Ht t pSessi onLi st ener methods. The Ht t pSessi onEvent
class includes the following method, which your listener can call:

Ht t pSessi on get Sessi on()

Use this to retrieve the session object that was created or destroyed, from which
you can obtain information as desired. See "Introduction to Servlet Sessions" on
page 1-7 for information about the j avax. servl et. http. Ht t pSessi on
interface.

HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class

The Ht t pSessi onAttri but eLi st ener interface specifies the following
methods:

voi d attributeAdded(Htt pSessi onBi ndi ngEvent hsbe)

The servlet container calls this method to notify the listener that an attribute
was added to the session.

voi d attributeRenmpved(HttpSessi onBi ndi ngEvent hshe)

The servlet container calls this method to notify the listener that an attribute
was removed from the session.

voi d attributeRepl aced(Ht t pSessi onBi ndi ngEvent hsbe)

The servlet container calls this method to notify the listener that an attribute
was replaced in the session.

The container creates a j avax. servl et. http. Ht t pSessi onBi ndi ngEvent
object that is input for calls to Ht t pSessi onAt t ri but eLi st ener methods.

Servlet Filters and Event Listeners 4-21

Event Listeners

The Ht t pSessi onBi ndi ngEvent class includes the following methods, which
your listener can call:

String get Name()
Use this to get the name of the attribute that was added, removed, or replaced.
hj ect get Val ue()

Use this to get the value of the attribute that was added, removed, or replaced.
In the case of an attribute that was replaced, this method returns the old value,
not the new value.

Ht t pSessi on get Sessi on()

Use this to retrieve the session object that had the attribute change.

Event Listener Sample

This section provides code for a sample that uses a servlet context lifecycle and
session lifecycle event listener. This includes the following components:

Sessi onLi f eCycl eEvent Exanpl e—This is the event listener class,
implementing the Ser vl et Cont ext Li st ener and Ht t pSessi onLi st ener
interfaces.

Sessi onCr eat eSer vl et —This servlet creates an HTTP session.
Sessi onDest roySer vl et —This servlet destroys an HTTP session.

i ndex. j sp—This is the application welcome page (the user interface), from
which you can invoke Sessi onCr eat eSer vl et or
Sessi onDestroyServl et.

web. xm —This is the deployment descriptor, where the servlets and listener
class are declared.

To download and run this application, go to the following link:

http://otn.oracle.contech/javalocdj/htdocs/ocdj-how-to. htm

If you do not already have a complimentary Oracle Technology Network
membership, select the membership link at the following address:

http://otn.oracle.cont

4-22 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

Welcome Page—index.jsp

Here is the welcome page, the user interface that enables you to invoke the
session-creation servlet by selecting the Create New Session link, or the
session-destruction servlet by selecting the Destroy Current Session link.

<Y%@bage session="false" %

<H2>0C4J - HttpSession Event Listeners </H2>

<p>

Thi s exanpl e dermonstrates the use of the HtpSession Event and Listener that is
new wi th the Java Servlet 2.3 APl

</ P>

<p>

[Create New Sessi on]
[Destroy Current Session]

</ P>

<p>

Aick the Create link above to start a new HtpSession. An HtpSession
listener has been configured for this application. The servler contai ner
will send an event to this |istener when a new session is created or
destroyed. The output fromthe event listener will be visible in the
consol e wi ndow from where OC4J was started

</ P>

Deployment Descriptor—web.xml

The servlets and the event listener are declared in the web. xm file. This results in
Sessi onLi f eCycl eEvent Exanpl e being instantiated and registered upon
application startup. Because of this, its methods are automatically called by the
servlet container, as appropriate, upon the occurrence of servlet context or session
lifecycle events. Here are the web. xm entries:

<web- app>
<li stener>
<li stener-class>SessionLi f eCycl eEvent Exanpl e</|i st ener - cl ass>
</listener>
<servl et >
<servl et - nane>sessi oncr eat e</ servl et - name>
<servl et-class>Sessi onCreat eServl et </ servl et-cl ass>
</servlet>
<servl et >
<servl et - name>sessi ondest r oy</ ser vl et - nane>
<servl et-class>Sessi onDest royServl et </servl et-cl ass>
</servlet>
<wel conme-file-list>

Servlet Filters and Event Listeners 4-23

Event Listeners

<wel cone-file>index.jsp</wel come-file>
</wel come-file-list>
</ web- app>

Listener Class—SessionLifeCycleEventExample

This is the listener class. Its sessi onCr eat ed() method is called by the servlet
container when an HTTP session is created, which occurs when you select the
Create New Session link ini ndex. j sp. When sessi onCr eat ed() is called, it
calls the | og() method to print a "CREATE" message indicating the ID of the new
session.

The sessi onDest r oyed() method is called when the HTTP session is destroyed,
which occurs when you select Destroy Current Session. When

sessi onDest royed() iscalled, it calls the | og() method to print a "DESTROY"
message indicating the ID and duration of the terminated session.

inport javax.servlet.http.*;
inport javax.servlet.*;

public class SessionLifeCycl eEvent Exanpl e
i npl enents Servl et Cont ext Li stener, HttpSessionListener

{
Ser vl et Cont ext servl et Cont ext;

/* Methods fromthe ServletContextlListener */
public void contextlnitialized(ServletContextEvent sce)

{
servl et Context = sce.get ServletContext();
}
public voi d contextDestroyed(Servl et Context Event sce)
{
}

/* Methods for the HttpSessionListener */
public voi d sessionCreated(HttpSessi onEvent hse)

{
| og(" CREATE", hse) ;
}
public voi d sessionDestroyed(HttpSessi onEvent hse)
{

Htt pSessi on _session = hse. get Session();

4-24 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

long _start = _session.getCreationTine();
long _end = _session. getLast AccessedTi ne();
String _counter = (String)_session.getAttribute("counter");
| og(" DESTROY, Session Duration:"
+ (_end - _start) + "(ms) Counter:" + _counter, hse);

}

protected void | og(String msg, HttpSessionEvent hse)

{
String _ID = hse. get Session().getld();

log("SessionlD:" + _ID+ " "+ nsQ);
}
protected void | og(String nsg)
{
Systemout.printin("[" + getC ass().getName() + "] " + nBQ);
}

Session Creation Servlet—SessionCreateServlet.java
This servlet is invoked when you select the Create New Session link in

i ndex. j sp. Its invocation results in a request object and associated session object
being created by the servlet container. Creation of the session object results in the
servlet container calling the sessi onCr eat ed() method of the event listener

class.

inport java.io.*;

inport java.util.Enuneration;
inport java.util.Date;

inport javax.servlet.*;
inport javax.servlet.http.*;

public class SessionCreateServlet extends HtpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, |OException

/] Get the session object
Ht t pSessi on session = req. get Session(true);

/] set content type and other response header fields first

Servlet Filters and Event Listeners 4-25

Event Listeners

r

es. set Content Type("text/htm");

Il then wite the data of the response
PrintWiter out = res.getWiter();

String _sval = (String)session.getAttribute("counter");

{

nt _counter=1;
f(_sval!'=null)

_counter =l nteger. parselnt(_sval);
_counter ++;

session.setAttribute("counter", String.valueO(_counter));

out

out
out
out

out.

out.
out.

out
out

out.

out

.println("<HEAD><TI TLE> " + "Session Created Successfully ..
Look at OC4J Console to see whether the HttpSessionEvent invoked "
+ "</ TI TLE></ HEAD><BQDY>") ;
.println("<P>[Rel oad</ A>] &bsp;");
.println("[Destroy Session]");
.println("<h2>Session created Successfully</h2>");
println("Look at the OC4J Console to see whether the HttpSessi onEvent

was i nvoked");
println("<h3>Session Data: </h3>");
println("New Session: " + session.isNew());
.println("
Session ID: " + session.getld());
.println("
Creation Tine: " + new Date(session.getCreationTine()));
println("
Last Accessed Tine: " +

new Dat e(sessi on. get Last AccessedTime()));

.println("
Number of Accesses: " + session.getAttribute("counter"));

Session Destruction Servlet—SessionDestroyServlet.java
This servlet is invoked when you select the Destroy Current Session link in

i ndex. j

sp. Its invocation results in a call to the i nval i dat e() method of the

session object. This in turn results in the servlet container calling the
sessi onDest royed() method of the event listener class.

4-26 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

Event Listeners

inport java.io.*;
inport java.util.Enuneration;

inport javax.servlet.*;
inport javax.servlet.http.*;

public class SessionDestroyServlet extends HitpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, |OException

{

//Get the session object

Ht t pSessi on session = req. get Session(true);
/1 Invalidate Session

session.invalidate();

/] set content type and other response header fields first
res. set Content Type("text/htm");

/] then wite the data of the response
PrintWiter out = res.getWiter();

out. println("<HEAD><TI TLE> " + "Session Destroyed Successfully ..
Look at OCAJ Console to see whether the HttpSessionEvent invoked "
+ "</ TI TLE></ HEAD><BODY>") ;
out.println("<P>[Restart]");
out. println("<h2> Session Destroyed Successful | y</h2>");
out.println("Look at the OC4J Console to see whether the
Ht t pSessi onEvent was invoked");
out. cl ose();

Servlet Filters and Event Listeners 4-27

Event Listeners

4-28 Oracle9iAS Containers for J2EE Servlet Developer’'s Guide

A

Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document. Topics include:

« Apache HTTP Server
« Apache JServ

Third Party Licenses A-1

Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracleis required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/*
* The Apache Software License, Version 1.1

* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.

* Redistribution and use in source and binary fornms, with or wthout
* nodification, are pernitted provided that the fol | owi ng conditions
* are net:

* 1. Redistributions of source code nust retain the above copyright
* notice, this list of conditions and the followi ng disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the docunentation and/or other materials provided with the
* distribution.

* 3. The end-user docunentation included with the redistribution,

* if any, must include the follow ng acknow edgnent:

* "This product includes software devel oped by the

* Apache Software Foundation (http://ww. apache.org/)."

* Alternately, this acknow edgnent may appear in the software itself,
* if and wherever such third-party acknow edgnents normal |y appear.

* 4. The nanes "Apache" and "Apache Software Foundation" nust

* not be used to endorse or promote products derived fromthis
* software without prior witten pernission. For witten
* perm ssion, please contact apache@pache. org.

* 5. Products derived fromthis software may not be called "Apache",
* nor may "Apache" appear in their name, without prior witten

A-2 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Apache HTTP Server

perm ssion of the Apache Software Foundation.

TH' S SOFTWARE IS PROVIDED ‘“AS IS’ AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE

DI SCLAIMED. I N NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON OR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG BUT NOT
LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LI ABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY QUT
OF THE USE OF THI'S SOFTWARE, EVEN |F ADVI SED OF THE PCSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many

i ndi vi dual s on behal f of the Apache Software Foundation. For nore
i nformation on the Apache Software Foundation, please see

<ht t p: // www. apache. or g/ >.

Portions of this software are based upon public donain software

originally witten at the National Center for Superconputing Applications,
Uni versity of Illinois, U bana-Chanpaign.

Third Party Licenses A-3

Apache JServ

Apache JServ

Under the terms of the Apache license, Oracleis required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS I1S" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

A-4 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

Apache JServ

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Third Party Licenses A-5

Apache JServ

A-6 Oracle9iAS Containers for J2EE Servlet Developer’s Guide

A

admin.jar tool, 3-2

ant utility, 3-9

application assembly
application build mechanisms, 3-9
application directory structure, 3-8
application modules, 3-7
packaging, 3-10

application.xml config file, 3-10

auto-encoding (not supported), 2-19

autoreload-jsp-pages, autoreload-jsp-beans (not

supported), 3-17

B

build mechanisms, applications, 3-9
build.xml file, application build, 3-9

C

caching, sharing Java Object Cache objects, 2-6

cancellation of session, 2-20

chaining, servlets, 3-21

class loading, servlets in OC4J, 2-5

clustering (OC4J), 3-21,3-32

code template, 2-3

configuration
configuration file descriptions, 3-13
for servlet invocation, 2-13
global-web-application.xml,

orion-web.xml, 3-14

orion-web-app element, 3-17
overview of configuration files, 3-4

Index

Web site XML files, 3-30
web-app element, 3-14, 3-27
web-site element, 3-31

container, servlet, 1-5

context path, 2-11

cookies, 1-8

cookies, use in servlets, 2-17

D

data source, OC4J), 2-24
default Web application (in default application), key
directories, 2-9
default-web-site.xml config file, 3-30
deployment
configuration file descriptions, 3-13
OC4J standalone, admin.jar, 3-2
of EJB sample servlet, 2-34
of JDBC sample servlet, 2-27
overview, 3-2
use of Oracle Enterprise Manager, 3-3
destroy() servlet method, 1-4,2-3
directory structure, applications, 3-8
doDelete() servlet method, 1-4
doFilter() filter method, 4-2
doGet() servlet method, 1-4
doPost() servlet method, 1-4
doPut() servlet method, 1-4

E

EJB calls from servlets, 2-30
EJB 2.0 local interfaces, 2-41
local lookup within application, 2-31

Index-1

lookup outside of application, 2-39
remote lookup within application, 2-38
EJB servlet, deployment, 2-34
ejb-jar.xml config file, 3-10

Enterprise Manager--see Oracle Enterprise Manager

event listeners
coding and deployment guidelines, 4-19

declaration, invocation, use of web.xml, 4-18

event categories, 4-16

event listener interfaces, 4-16
introduction, 1-11

methods and related classes, 4-19
sample code, 4-22

typical scenario, 4-17

E
filters
filter example #1, 4-4
filter example #2, 4-7
filter example #3, 4-10
generic code, 4-4
HelloWorldFilter, 4-5
introduction, 1-11
invocation by servlet container, 4-3
overview, 4-2
using a JSP page, 4-5
G

GET, HTTP request, 2-2
getServletinfo() servlet method, 1-4, 2-3
global-web-application.xml config file, 3-14

H

HTTPS, 2-8,3-32

HttpServlet class, 1-4

HttpSession interface, 1-7
HttpSessionAttributeListener interface, 4-21
HttpSessionBindingEvent class, 4-21
HttpSessionEvent class, 4-21
HttpSessionListener interface, 4-21
http-web-site.xml config file, 3-30

Index-2

init() servlet method, 1-4,2-3
invoking a servlet
by name (OC4J-specific), 2-11
context path and servlet path, 2-11
OC4J standalone, 2-14

Oracle9iAS production environment, 2-13

J

Java Object Cache, sharing objects, 2-6
JDBC in servlets, 2-24
JSP parameters

jsp-print-null, 3-18

jsp-timeout, 3-18

L

lifecycle, servlet, 2-4
listeners--see event listeners
load-on-startup, OC4J), 2-4

M

mod_oc4j module, 1-6

O

OC4J standalone, 3-2
Oracle Enterprise Manager
Deploy Web Application Page, 3-40
OC4JHome Page, 3-39
overview of usage, 3-3
Web Module Advanced Properties Page,
Web Module Environment Page, 3-50
Web Module Filtering and Chaining Page,
Web Module Mappings Page, 3-47
Web Module Page, 3-42
Web Module Properties Page, 3-44
Website Properties Page, 3-41
orion-web-app element, configuration, 3-17
orion-web.xml config file, 3-14

3-51

3-49

P

packaging, application assembly, 3-10
POST, HTTP request, 2-2
preloading, servlets in OC4J), 2-4

R

replication of session state, 2-23

S

sample servlets
event listeners, 4-22
filter example #1, 4-4
filter example #2, 4-7
filter example #3, 4-10
HelloWorldServlet, 1-13
JDBC query, 2-24
session servlet, 2-20
with EJB session bean, 2-31
Secure Socket Layer, 2-8
security considerations, 2-7
service() servlet method, 1-4
servlet chaining, 3-21
servlet container, 1-5
servlet context, 1-9
servlet filters
filter example #1, 4-4
filter example #2, 4-7
filter example #3, 4-10
generic code, 4-4
HelloWorldFilter, 4-5
invocation by servlet container, 4-3
overview, 4-2
using a JSP page, 4-5
Servlet interface, 1-4
servlet path, 2-11

ServletContextAttributeEvent class, 4-20
ServletContextAttributeListener interface,

ServletContextEvent class, 4-19
ServletContextListener interface, 4-19
session

cancellation, 2-20

details and examples, 2-16

introduction, 1-7

replication of state, 2-23
session servlet example, 2-20
session-tracking element, 3-23
timeout, 2-19
tracking, 1-8,2-16
tracking, in OC4J, 2-18
SSL, 2-8,3-32
standalone, OC4J), 3-2
synchronization of code for threading,

T

2-7

template, servlet code, 2-3
threading in servlets, 2-7
timeout of session, 2-19
tracking of sessions, 2-16

U

URL rewriting, 1-8, 2-17

\W

Web site XML config files, 3-30

web-app element, configuration, 3-14, 3-27

web-site element, configuration, 3-31
web.xml file
declaring event listeners, 4-18
general use, 3-14

Index-3

Index-4

	Contents
	Send Us Your Comments
	Preface
	1 Servlet Overview
	Introduction to Servlets
	Review of Servlet Technology
	Advantages of Servlets
	The Servlet Interface and Request and Response Objects
	Servlets and the Servlet Container
	Introduction to Servlet Sessions
	Servlet Contexts
	Introduction to Servlet Filters
	Introduction to Event Listeners
	Other J2EE Component Types

	A First Servlet Example
	Hello World Code
	Compiling and Deploying the Servlet
	Running the Servlet

	2 Servlet Development
	Servlet Development Basics and Key Considerations
	Code Template
	Servlet Loading and Lifecycle
	Servlet Preloading
	Servlet Class Loading
	Servlet Information Exchange
	Servlet Threading
	Servlet Security Considerations
	OC4J Default Web Application and Key Directories
	Oracle9i JDeveloper Support for Servlet Development

	Servlet Invocation
	Servlet Invocation by Class Name During OC4J Development
	Servlet Invocation in an Oracle9iAS Production Environment
	Servlet Invocation in an OC4J Standalone Environment

	Servlet Sessions
	Session Tracking
	Session Cancellation
	Session Servlet Example
	Session Replication

	Use of JDBC in Servlets
	Database Query Servlet
	Deployment and Testing of the Database Query Servlet

	EJB Calls from Servlets
	Local EJB Lookup within the Same Application
	Remote EJB Lookup within the Same Application
	EJB Lookup Outside the Application
	EJB 2.0 Local Interfaces

	3 Deployment and Configuration
	Introduction to Web Application Deployment and Configuration
	Deployment and Configuration with OC4J Standalone
	OC4J Deployment and Configuration with Oracle9iAS and Enterprise Manager
	Overview of Configuration Files

	Application Assembly
	Web Application Modules
	Application Directory Structure
	Application Build Mechanisms
	Application Packaging

	Configuration File Descriptions
	Syntax Notes for Element Documentation
	The global-web-application.xml and orion-web.xml Files
	The default-web-site.xml, http-web-site.xml, and Other Web Site XML Files

	Web Module Configuration in Oracle Enterprise Manager
	Enterprise Manager OC4J Home Page
	Enterprise Manager Deploy Web Application Page
	Enterprise Manager Website Properties Page
	Enterprise Manager Web Module Page
	Enterprise Manager Web Module Properties Page
	Enterprise Manager Web Module Mappings Page
	Enterprise Manager Web Module Filtering and Chaining Page
	Enterprise Manager Web Module Environment Page
	Enterprise Manager Web Module Advanced Properties Page

	4 Servlet Filters and Event Listeners
	Servlet Filters
	Overview of Servlet Filters
	How the Servlet Container Invokes Filters
	Filter Examples

	Event Listeners
	Event Categories and Listener Interfaces
	Typical Event Listener Scenario
	Event Listener Declaration and Invocation
	Event Listener Coding and Deployment Guidelines
	Event Listener Methods and Related Classes
	Event Listener Sample

	A Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

