Oracle9iAS Containers for J2EE

Services Guide,

Release 2 (9.0.3)

August 2002
Part No. A97690-01

ORACLE

Oracle9iAS Containers for J2EE Services Guide, Release 2 (9.0.3)

Part No. A97690-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.

Contributing Authors: Elizabeth Hanes Perry, Janis Greenberg, and Mark Kennedy

Contributors: Ashok Banerjee, Ellen Barnes, Rachel Chan, Gary Gilchrist, Min-Hank Ho, Sunil
Kunisetty, Stella Li, Sastry Malladi, Sheryl Maring, Raymond Ng, Thomas Van Raalte, Mike Sanko,
Anirruddha Thakur, Brian Wright, Irene Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

SENA US YOUT COMMEINTS ...ttt ettt ettt n et ee et st eae e sen s st eeneenns XXiii
P I A C ..o ettt ettt ettt ettt ettt ettt ettt XXV
101 (=Y g Lo (10 I AN U o [11 o (o1 ISR XXV
Documentation ACCESSIDIIILYccooiiiiiiiie e e XXV
RS {1 103 11 XXVi
REIATEA DOCUIMEBNTS.eiiiitie it ee ettt ettt e ettt e e st e e e bt e e e s et e e sab b e e sbaaessbbessssbesesabassssbaesssbasessaanssssbanas XXVii
(O00] 9 LV/=T 1 To] o 1T TR XXX

1 Introduction

Java Naming and Directory Interface (JINDI).......ccocvioiiiiieiinine e 1-2
Java Authentication and Authorization Service (JAAS) ... ieirecie e 1-2
Java MeSSage SEIVICE (JIMIS). .ot ettt b e bt bbb e b e 1-2
J2EE Interoperability and Remote Method Invocation (RMI).......ccccoveevvevinccecece e, 1-2
DIALA SOUITES ...ttt sttt s et b bt E e bt e bt e bRt ee b s b e ehe e s bk e e st ab e et et b nn et e 1-3
Java TranSaCTiON APT (JTA) . e ettt b e s b bbb e be b b neenes 1-3
Java ConNECLOr ArCRITECTUIEcooiiii bbb 1-3
N oA = N @ o] 1= A @V o - 1-4
L I I OSSO 1-4

2 Java Naming And Directory Interface

{1 f0To 18 w1 4 To] o NPT 2-1
LT I OT0] 0] (= 2-2

Constructing @ INDIT CONTEXL.....c..oiiiiciiiie ettt se e se e ereerestesnesresre s 2-3

The INDIT ENVIFONMIENT ...ttt bbb e et s bbbt be et et benbe b e eans 2-3
INIIAL CONTEXE FACTOMTES......iiiiiicie ittt st bbb 2-4
ApplicationClientINitial CoNteXtFACtOrY ..o 2-5
ENVIFONMENT PrOPEITIES.eouiiiiiiei ittt ettt s 2-5

Remote CHENt EXAMPIEcv ettt 2-7
SErVEr-SIAE CHIBNTS ..o bbbt sne s 2-7
ApplicationINitial CONTEXTFACTONYcoiiiie i 2-7
ez 10] 0 - TSRS 2-8
RMIINItIAlCONTEXIFACTONYcviiiieiiie e bbb 2-9
Remote CHENt EXAMPIE ..o b e 2-10

3 Overview of JAAS in Oracle9iAS

JAAAS SUPPOIT .tttk bttt b bt e e bt h e e bt e e b e e e e s b e eb e ebeen bt eb e et e ebeeanesbeenneanean 3-1
What Are Authentication, Authorization, and Delegation?...........cccccocvve e, 3-2
Foundations Of the JAAS PrOVIOET ..ot e e 3-2
JAAS e bbbttt et ettt et b neetens 3-2

JAVA2 SECUTILY MOAEL ...t 3-2

Java AppPlication ENVIFONIMENTS. ..ottt e sbe e sie e 3-3

e o1V To T 1Y o 1= SO R PRTURO VRPN 3-3
LDAP-BaSed ProVider TYPE.....vciiiiieiiseie et ee et e ettt saeesaesaensesaesesnesnesseneesnens 3-3
XML-BaSEA PrOVIAET TYPE ..ottt et ettt et 3-4

What Is the Java2 Security MOOEI7oco e 3-4
WAL IS JAAST? ettt bt h s bbb bbb bbb R e bt b bbb bt en et 3-7
PIrINCIPAIS. ..ottt b bbb b st bt st e et be et e nbe e beeneens 3-7
10 o] [=T o] £SO PSR 3-8
Login Module AUheNTICALIONccvviiiiiiee e e 3-9
ROIES .. bbbt b e bbb st b et et E e e e Rt e E R R b e bbbt b e aenae e 3-9
REAIMS ...ttt b ekt b bt bbb et be e b st et bt R bennenre s 3-10

N o 0 1 To= 14 T LTSS 3-10
POLICIES ANA PEIMISSIONS. ...ttt bbbttt b et sbe bt se e e eneas 3-10
File-Based POliCY EXAMPIE ..ottt 3-11

DA I ST 1Y To [e U o] o] =SS 3-11

JAAS ProVIAEr FEATUIESc.iitiiiiiieti ettt ettt b et et b bt ee s 3-13
JAAS ProVider USEBE SEIVICESciiiiiiiiie ittt ettt se e b ettt bt e bbb sbe e s 3-14

Capability Model of Access CONLIOLcccoveiieccecs e 3-14

Role-Based Access CONtIol (RBAC) ...ttt s 3-14
0] [o 1= - U o] o | S 3-15
ROIE ACHIVALION ..o 3-15

JAAS Provider Realm and Policy Management ... 3-16

Realm and Policy Management TOOISccocvcviviiriieieecce s 3-16

JAAS Provider Realm FramMeWOIKcco oot 3-18

Realm Management in LDAP-Based ENVIFONMENTSc.ccciiiiiinine i 3-18
LDAP-Based REAIM TYPESccviiiirieiirierieise e s se ettt e ss e e e e sne st sresne e e nsens 3-18
LDAP-Based Realm Data STOragecoceurieireririie et s 3-22

REAIM HIBFArCNYouiieiiie e 3-23
Security Measures For Java Authorization SEervice...........ccoocvoveevvinevsivninncesienennns 3-24
LDAP-Based Realm PermiSSIONSccoieiiirieirieesese st sre s 3-25

Realm Management in XML-Based ENVIFONMENTSccociiiiiinine i 3-25
XML-Based REAIM TYPESvvviueiririerieriirieiereseereses e sreste et sres et ss et e e e eneereenesnesresseans 3-25
XML-Based Realm and Policy Information Storage...........ccccoceveieniiinene e 3-25

JAAS Provider Policy AdmMiNiStration.........ccoccoi i 3-27
Oracle Internet Directory Administrationcccceveieviiciniesie s 3-28
AdMINPErmMiSSION CIaSScoiiiiiiiiiie e bbb e 3-28
POLICY PartitioNinNgcoeiiiiie ettt bbbttt s 3-29

Quick Start JAAS Provider Demo

Quick Start JAAS Provider DemMO OVEIVIEWcccceeiviiiiciiieeiteee et sre e st stessaesreevenas 4-1
SettiNg UP the DEMO ..ottt e e et e aeere s bestesrene e ee e ensenes 4-2
Task 1: Modifying OC4J Configuration Files ... 4-3
Task 2: Changing Default Configurations (Optional) ... 4-3
L0 o T T I ¢ TN I 1= o o TS 4-4
Viewing the Results of the callerInfo DemO ... 4-5
Testing the JAZN AdMINTOOL.........oiii e e e 4-6

Integrating the JAAS Provider with Java2 Applications

Java2 Application ENVIroNMENtS OVEIVIBWccccciiiiieiiiiieie ettt 5-1
Oracle Components Available on the Java2 Platform..........ccccoooviviivivincicncseere e 5-2
JAAS Provider Integration in J2SE Application ENVIrONMentsccccovevinenienice e, 5-2
A Typical Scenario in the J2SE ENVIFONMENTcccooiiiiiiiii e 5-3

JAAS Provider Integration in J2EE Application ENVIrONMEeNtscccccoovvvvvneveneneniennnannns 5-3

Oracle9iAS Containers for J2EE (OCA)) ..ottt 5-3
JAZINUSEIIMEANAGE ...ttt ettt sttt e bt e bt a st e e sb e e e bt e ssbess b e e beeenbeesbeesnbeenbe et 5-4
Replacing PrinCipalS. XMl ..o e 5-4
JAZINUSErMaNager FEALUIEScc.eiiuiiiiiieiee ittt sttt se e n e sae e 5-5
Authentication ENVIFONMENTS........ccoiiiiiieiree s 5-7
Integrating the JAAS Provider with SSO-Enabled Applications............ccocoviiniiennnceenne 5-8
SSO-Enabled J2EE Environments: A Typical SCENArioccoovvereiiniieneieeeee e 5-8
Integrating the JAAS Provider with SSL-Enabled Applicationsccccecevvvvveicivnnennn, 5-10
SSL-Enabled J2EE Environments: A Typical SCENAriocccoevveeieniniene e 5-11
Integrating the JAAS Provider with Basic Authenticationccccocvoniieneneicicnieenn 5-12
Basic Authentication J2EE Environments: Typical Scenario........ccccecevcervereivsinrnsnennnn, 5-13
J2EE and JAAS Provider ROIE MapPingcoocuririiiiiiiie et 5-15
J2EE SECUTITY ROIES ...ttt bbb bbbt 5-15
JAAS Provider ROIES AN USEIS ..o 5-16
OC4J Group Mapping to J2EE Security ROIES.........ccocoiiiiiiiriiie e 5-16
HOW DO | GEE STAMEA? ...t ettt ettt ebe bbb e 5-17

6 Managing the JAAS Provider

JAAS Provider Management OVEIVIEWcociiiiiaiieie ettt 6-1
LDAP-Based and XML-Based JAAS ProVIiders ... 6-3
Using the Oracle Enterprise Manager Interface with the JAAS Providerc.ccccoeveneene. 6-3
ACCESSING The JAAS PrOVIAET ...ttt ettt 6-4
Task 1: Managing JAAS POLICYocviiiiiie et sttt ettt s 6-5
Searching for And Viewing EXisting Grant ENtries...........ccoccooiiieiiiinencnenene e 6-6
Deleting Grant ENTIIEScovo ittt st sb e e st e 6-6
Creating @ NEW Grant ENTIY ..o sne e 6-7

Task 2: Managing Java PermiSSIONSccciuriiiiieiie et 6-10
Searching for And Viewing EXisting PermisSions..........ccccooviiireieicincscne e 6-10
Revoking Permissions Assigned to a Principal........ccccccovviiiiiiiinn e, 6-12

Using the JAZIN AdMINTOOL ..o bbb 6-12
USBGE EXAMPIES ...ttt bbb b b bbbt e et et ne b 6-12

(00 0 aTanT-TaTe @] o] dTo] o 30T 6-13
REAIM OPEIALIONS ...ttt ettt bbb be s b be b sbe e e e e e e aneas 6-14
Adding and RemoVving REAIMS ... e 6-14

Vi

Adding and REMOVING ROIEScc.civiiiiiiieiise st 6-15

Adding and ReMOVING USEIScoouiuiiiiiiinieiie ettt st 6-15
CheCKiNg PaSSWOIAScccviiiiiiiiiese ittt e sttt st et sae e e s nenrenre e 6-16
Granting and ReVOKING ROIES........cccccciriiiicccce e 6-16
LISTING REAIMS.....eieii e ettt b bbb b b e 6-16
I3] o 0] =TSSR 6-16
LISTING USBIS.c ittt ettt b e bbb e et e e e e et eb e et e e beebesbebesaen 6-17
SEttING @ PASSWOIMoouiiiiiiiie et bttt et sb e se e e 6-17
o] [oY @ T=1 = L4 [] LU 6-17
Adding and RemoVing PErmISSIONS.........cccoiiiiiiiierieniirieie et 6-17
Adding and RemoVving PrinCIPalSccocoveiiiiiiiiiee e 6-17
Granting and RevoKing PermiSSIONS..........ccocveivvvieiineneienieee e s 6-18
LiSTING PEIMISSIONSccuiiiiiiitiii ettt ettt b ettt st sb e b e ebeeeaeenea 6-18
Listing Permission INfOrmation............ccooiiiiiiiii e 6-18
Listing PriNCIPal CIaSSES.......uiuiueieiiieire e s se e sies e e et see e e aere e enesreneennens 6-18
Listing Principal Class INformation ... 6-18
INTEFACTIVE SNEIL ..o b ettt eb e b 6-19
Starting the JAZN AdMintool Shell ..o 6-19
Getting XML Configuration INformation ... 6-19
MiIGration OPEIAtIONS.ciiiiiiiiteee ettt ettt bbbttt e e ebesbenbesbens 6-19
Migrating Principals from the principals.xml Fileccccoovviviiinicce e 6-19
GILING HEIP ..ttt st sbe e ee e e s 6-20
JAZIN SHEI TNTEITACE ...t ettt sttt eb bbbt e 6-20
JAZN Shell COMMANDS ..o s 6-21
Using the Is Command to List JAAS Provider Dataccccooeieieicinieiiicsene e 6-22
Using the cd Command to Navigate JAAS Provider Dataccooveeveienincieienns 6-22
Using the mkdir, mk, or add Commands to Create JAAS Provider Data.................. 6-22
Using the pwd Command to Display the Current Shell Working Directory............. 6-23
Using the help Command to List JAAS Provider Commandscccocoovvivinieiennenn. 6-23
Using the man Command to Display Detailed JAAS Provider Commands.............. 6-23
Using the clear Command to Clear the SCreenc.cooiiiiiiiiiiiiiscn e 6-23
Using the exit Command to Exit the JAZN Shell ... 6-23
Managing LDAP Provider Data with Java Programscccccceoveveiininnsinnesinnesese e 6-24
About the SAMPIE JAVA COUEooiiieiee e e 6-24
The JAZNContext and JAZNCONTIG ClaSSES......ccouiiiiririerie et 6-25

vii

viii

Y E=T o Vo [T o T 2T Lo 6-25

REAIM CrEALION ..ottt ettt ettt bbbttt e bbb e 6-26
Creating an EXternal REAIMccooiviiiiii e ene 6-26
Creating an Application REAIMcccoviiivcciccc e 6-28
Dropping @ REAIM ... bbbt e e 6-29
V=TT Vo T o T YT TR SSSS 6-29
MANAGING ROIES ... ittt bbbt bbb e bbb e b e e e ne et e b e 6-29
CrEAtING ROIES ...t bbbt ne st sae 6-30
Granting ROIES ...c.voveiicieecee ettt ettt st e te e ae s e saa e enesreenennens 6-30
DIropPinNg ROIES ...t bbb e bbbttt 6-32

Y =Yg To T aTo =] 0 0 11S1S] [o] LTSRS 6-32
Managing JAAS ProVider POIICYccoicieiiicesie ettt 6-33
Managing Policy with JAAS Provider PaCKages.........ccooveiiiriieninene e 6-33
Managing XML-Based Provider Data with the XML Schemaccoccooiiiiiiiiininicine 6-33
Managing Realms, Users, Roles, and Permissionsccocvvevvverinnensneieneeseeesese e 6-34
DTD fOr JAZN-AAtA.XIMI ... bbb e 6-34
OTNEE UTHTIES ..ottt b bbbt e e st e et ebe bt b nen 6-36
PermissionClassManager INTErfaCeccivvevireriiiccis e 6-36
PrincipalClassManager INTErface....... ..ot 6-36
LOGINMOAUIEIMANGAGETecuiiiiiieiieieeiete ettt ettt bbbt bbb et e e e b b et e 6-37

Developing Secure J2SE Applications

Developing Secure J2SE Applications OVEIVIEW...........cccoiiiiiiineieieneie e 7-1
Authentication in the J2SE ENVIFONMENT ... 7-2
Authorization in the J2SE ENVIFONMENT ..o s 7-3
101 o] [=Tod i (0] AN OO P SO URURP R 7-3
SecurityManager.CheCKPEIrMISSIONcvviiiiieicee s nens 7-3
PrIVIIEOEAACTION ...ttt bbb bbbt b bbb e 7-3
Testing and Executing an APPLICALIONccooviiiiiiice e 7-4
Starting with RealmLoginMOodUIE............ccocviiiiicccr s 7-4
Starting without RealmLoginMOdUIE...........ccoiiii s 7-4
SaMPIe J2SE APPHICALION ..o ettt st se e b e 7-5
RETa0] o] [NV SIVAY o] o] [o714 o] o 1 @o o L= 7-7
Discussion of the J2SE Sample Client Login and Application Code...........c.ccoceveiiininennns 7-7

8 Developing Secure J2EE Applications

Developing Secure J2EE Applications OVEIVIEW...........cciiiiiiiiieneceieeeeie et 8-1
Authentication in the J2EE ENVIFONMENT.........ccoiiiiiiin e 8-2
Running with an Authenticated [deNTitYcccceviriericicire e 8-2
Intercepting ServIet INVOCALIONccoiiiiiiiiee e 8-2
Retrieving Authentication INformation............ccccveiviiciiiiic s 8-3
Authorization in the J2EE ENVIFONMENT...........coiiiiiiiii e e 8-4
Testing and Executing the J2EE APPlication ... 8-4
E3T=] T [0 o SRS 8-4
Task 1: Installing ANt (OPLIONAL)ccoiiiiiiiiie e s 8-5
Task 2: Modifying OCAJ FIlEScoiiiiiiiiiie e e et 8-5
Modifying OC4J Files Where OC4J is NOt RUNNINGcovoveiviiiiieieeieeece e seeeieeeas 8-5
Deploying an Application When the OCA4J Server IS RUNNING.........coceieiiiiniiiinenenn. 8-5

Task 3: Changing Default Configurations ... 8-6
Using XML-Based Realms (Default)...........ccocvviiiieiiicciesce e 8-6

Using LDAP-Based REAIMScoiiiiiiieieei et s 8-6

UsiNg SSL and SSO INTEGIatioNcceiiiiiiiieieee et e 8-7

LS [T S 8-7

Task 4: BUilding the DIFECLONYcouiiiiiiie ettt e 8-7
Starting an APPLICALIONc.oiiiiii et sbe et nen 8-8
ST=Ta gl o] (I I2A S S AN o] 0] o= 11 [0} o [PSS 8-9
Discussion of the J2EE Sample Application Codeccoviiiiiiniiiniecee s 8-10

9 Java Message Service

OVEIVIBWY ..ttt et bttt a e st b e st b2 E bt H £ e bt S E e e E e £ H e b e e b e e et e R b et e Rt e Rt e b e ebeebeebenbenbenbeneas 9-1
RESOUICE PrOVITEIS ...ttt bbb bbbttt b et et sbe b e e e 9-2
Configuring a Custom ReSOUICE PrOVIAETcccvvviiriieie e se e snens 9-2
Using a CuStom RESOUICE PrOVIAEN ..ottt 9-2
Using Oracle JIMS as @ RESOUICE PrOVIAETcocoiiiiiiiiiiie e 9-3
Configuring the RESOUICE PrOVIAENccccveiiiie et nnen 9-3
USING MeSSAge-DITVEN BEANScouiiiiiiiiiiiiieiieie ittt sttt ettt sbe b e e 9-4
Using Third-Party ReSOUICE PrOVIAEIS.ccooiiiiiiiiiie et 9-5
Using MQSeries as @ RESOUICE PIrOVIAETcovvviiiiie it 9-5

1070] a1 o U] £ 1o o [RET T TSSOSO U RO 9-5

Using SonicMQ as @ RESOUICE PrOVIAETc.ciiuiiiiiiiiiie et 9-6

Using SWiftMQ as @ ReSOUICE PrOVIAETcccvvviiiicieice st e 9-8

10 Interoperability and RMI Tunneling

Introduction to EJB INteroperabilitycccccoooiiieiiiieccec e e 10-1
=T 0 T o [OOSR 10-2
K=o 1) Y PSSR 10-2
QLI 1 1T Tod {0 o SO PSSO RURURUR 10-2

Switching to Interoperable TranSPOIT.cuiiiiiiie et e 10-2
SiMple INteroPerability ... 10-3
Advanced INTEroPerability ... e 10-3
The COrbaNaME URL ..ot ettt et eb e 10-4
The rmMiC.Jar COMPIIET ..o et eer et e erennes 10-5
EXCEPLION IMAPPING ..ottt ettt ettt bt sbe e be st e et enesbeane b 10-7
Invoking OC4J-Hosted Beans from a Non-OC4J CONtaINer...........ccooveiinereneneiseseeeeees 10-7

Configuring OC4J for INteroperability ..o 10-7
Interoperability OCA) FIAgSccooiiiiiiiee ettt 10-8
Interoperability Configuration FIles ... 10-8

SEIVEI-WIOE FIlES ..o 10-8
APPLIcation-SPECITIC FIlESoouiiiiii e 10-8
EJB Server Security Properties (internal-settings.Xxml)ccocooiiinnininnine e 10-9
CSIV2 SECUNILY PrOPEITIESecvieeciece st ettt st e e e 10-10
CSIv2 Security Properties (internal-settings.Xml) ... 10-11
CSIv2 Security Properties (ejb_SeC.properties)cccireiiiere e 10-12
Trust REatiONSNIPS.ocviiiee et ene s 10-12
CSIv2 Security Properties (orion-gjb-jar Xml) ... 10-13
The <transport-config=> eleMENTccciiiiiiiiie e 10-13
The <as-CoNteXt™ EIEMENT..........iii s 10-14
The <Sas-CoNtEXt™> EIEMENT ..ot e 10-14
DD ettt bbb bbb bbb bbbttt 10-15

EJB Client Security Properties (ejb_SEC.Properties)ccoovererernieerrnesieseseseseseene e 10-15
JNDI Properties for Interoperability (jndi.properties)ccccoevrineieniieiseniere e 10-17

Configuring RMI TUNNEHING.ccueiiiiiiee ettt ene 10-17
Configuring RMI in server.xml and rmi.Xml.........ccocovieiiiiiiiiccccse e 10-18

EItiNg SENVEE XM ..ottt bbb 10-18
EAiting FMIEXIMI ..ot bbb 10-18

11

010 o AT TSP PR T PSP PP P PSR 10-19
015} T Lo 1= S 10-19
(1T - 1o oL SR 10-19
0 0] o AT TP U PSP URT TP PRRURPR 10-19
02151111V] o S 10-19

Data Sources

INEFOAUCTION <.ttt 11-2
DefiNiNg Data SOUITES.......cviiiiitirieiiite ettt ettt bbb et b et e bt ebe et e besbesbesbesbenbeneas 11-2
Defining Location of the Data Source XML Configuration Filecccccooiviiniiiinnnns 11-2
DefiNiNG DAta SOUICEScvvvveiiiiiierierieteeise st st e e stet et sa e te e testesteseesae st e see e eneesesneesesreseesnens 11-2
Retrieving a Connection from @ Data SOUICE..........ccciriiiiirinine e 11-4
TYPES OF DALA SOUICESeiieiieiieieie ettt bttt ettt s b e b et ee e b e se e e et en e et e s beebesbenbesbens 11-5
EMulated Data SOUICES ... 11-5
NON-EMUIALEA DAta SOUICES.....ccuieiiiiiieirieeiietese sttt sttt sb e b b se et e b sbenbesaeas 11-7
INON-JTA DALA SOUICEScoeiiiiiiieiietiiti ettt ettt ettt esbeshe e bt st e b e e e e ebeeaeesaeebeabeesbesbeeseesieans 11-8
Non-Emulated Data Sources Cannot MiX Transaction TYPESc.covvvvvvvererereenieiesreneneens 11-8
MIXING DALA SOUFTESueviitiiiitiiteie ettt et e ettt b et sbesbe b e ee e et e e e ebesbenbesbens 11-9
Two-Phase COmMMIts aNd Data SOUICESciiiiieiiiiieie ettt 11-10
USING DALA SOUICES. .. .cuveuieiiieetieiesie sttt ste st e ste e se e s e e eseeseete s e s testestesbesesteseesteneesaeseeneareenesnearenees 11-12
Configuring Data SOUFCE ODJECLScuiiiiiiiirie et ene s 11-12
CoNFIGUIATION FIIES ... bbb et 11-13
Data SOUICE ALLITDULES ... 11-13
Data SOUFCE IMETNOAScoiiiiiieee et bbbt 11-15
Portable Data SOUFCE LOOKUPcviiiiiieiiiesie sttt et sne e 11-16
Using Oracle JIDBC EXIENSIONSccviiiiiriiieieseeereeeerseseete e ste et ssesse e seessessesaeseensssessesssssesees 11-17
Behavior of a Non-Emulated Data SoUurce ODjJecCt ..o 11-18
Retrieving a Connection Outside a Global Transaction.............cccocveiiiinc e 11-18
Retrieving a Connection Within a Global Transactionccccccevviviiiivinc v 11-18
Using Database Caching SChEMES ... 11-19
Connection Retrieval Error CONAITIONS...........coiiiiiiiiiiiieeie e 11-20
Using Different Usernames for Two Connections to a Single Data Source.........c..c........ 11-20
USING the OCT JDBC DIIVELS.....ccci ittt st e bt sbe e 11-21
USING DataDireCt DIFIVEIS.ottt bbb et b e ettt ebe e 11-21

Xi

12 Java Transaction API

1 o110 o L1 o1 A o] o KOOSO UR PRSP 12-1
SiNGIE-Phase COMMIL........cociiiiii ettt sn et eene e ereenen 12-2
ENlisting @ SiNQIE RESOUICEocueviiciieiecece sttt s nesrennenne s 12-2
Configuring the Data SOUICEcc.ciiiiiiieiiine e et 12-3
Retrieving the Data Source CONNECLIONcocvvviiiiie e 12-4
Performing JNDI Lookup on Data Source Definition...........ccccooiiniiencicinen 12-4

Performing JNDI Lookup Using ENVIrONMEeNt............cccoviiiiene e 12-4
Demarcating the TranSaCtioNccvviveieiisieie e en 12-6
Container-Managed Transactional Demarcation............cc.ccooveiinienienenene e 12-6
Bean-Managed TranSaACHIONScccoi ittt st 12-8
Programmatic Transaction Demarcation..........c.ccocovevveieieninee s s 12-8

Client-side Transaction DemarCationcccocevereirerinieine e 12-8

JTA TrANSACTIONSceiuieteiietee ettt b e bt e e bt e se bt e e beebe b 12-8

JDBC TFANSACTIONS ...vitiviitiite ettt sttt b et bbb e 12-8
TWO-PaS@ COMUMIT.....cuiiiiiiiiiii ettt bbb e bbb se s et e et sbesbeeas 12-10
Configuring Two-Phase COmMMIt ENGINE.........ccooiiiiiiiiieiiieieeee e 12-10
Two-Phase Commit Elements in the orion-application.xml DTD.........ccccceevvivveivivinannns 12-14

13 J2EE Connector Architecture

INEFOAUCTION ..ot n ettt 13-1
RESOUICE AGBPTEIS ...ttt ettt b e bttt b e b e be et bes e bt es e et e e ebeebenbesbe b 13-2
APPIICAtION CONTIACES ...ttt et b bbbt et b e b e 13-3
Quality Of SErVICE CONTIACES....cc.ciieeiciese e st reeneere s 13-3
Support for OPtioNal FEAtUIES ...t e 13-4
Deploying RESOUICE AQAPTEIS.oiiiiiiiiieieeeieie ettt ettt sbe bbb e 13-4
THE FAXIMI DESCIIPTONcui it iiiiece ettt ettt sa et se et eneenaereaneerenees 13-4
The 0C4J-ra. XMl DESCIIPLOL ...c..iiiiiiiieiieieete ettt bbb ettt et ebenes 13-4
The <connection-pooling> EIEMENTt............ccoi i 13-5

The <security-config> EIEMENt.........cccociiiiie e 13-6

The 0CAJ-Fa.XIMI DTD ..ottt ettt e b e 13-8

The 0c4j-conNectors. XM DESCHIPTONc.ciuiiiiiiiee et s 13-9
The 0c4j-conNeCtors. XMI DTDcccoiviiviiiirie et se e seene s 13-10
Deploying Standalone Resource Adapter Archives ... 13-11
Deploying USING @M. jar..... ... ebe e 13-11

Xii

Deploying ManUAITYcccoiieccce et 13-12

REMOVING RESOUICE AGAPLEIS ...c.uiiiieeieiieeie ettt ettt b et ere s 13-12
Deploying Embedded ReSOUIrce AAPLErSccveivveiiiiie et 13-13
Specifying Container-Managed or Component-Managed Sign-On.........ccccccevvvveiverenvennnnn, 13-14
Authentication in Container-Managed SigN-ON.........cccooiiiiiiiiniienie e 13-15
JAAS Pluggable AUthentication ..o 13-16
The InitiatingPrincipal and InitiatingGroup Classesccccovvevirirenineieienese e 13-17

JAAS and the <connector-factory> EIemMentcccccooiiiiiiiiiiiiiicie e 13-17
User-Created Authentication CIaSSES..........cociirrieiiieie e 13-18
Extending AbstractPrinCcipalMappingccoccoiiiiiiiiiiece e 13-21
MOAITYING OCAJ-TAXIMI...cuiiiiiiii ettt b e 13-23

14 Working with Java Object Cache

Java ODjJect CaChe CONCEPLSc.eiuiiiiiieiiie ettt bbbttt b bbb b e e 14-2
Java Object Cache BasiC ATCHITECTUIEcciveveieirecse e 14-3
Distributed Object ManagemMeNTccouiiiiiiiie et s 14-4

How the Java Object Cache WOIKSccooiiiiiieiiee et 14-5

(O 1ol g T @ T (o - U a1 L 0] o SO SS 14-6
Java ODJeCt CaChE FEALUIEScciiiie ittt e ettt 14-7
Java Object Cache ODJECE TYPESc.vciiiiiiiie ittt be bbb 14-8
V1= 0 Lo YA @ o] =Tt £SO 14-8

(D 1] 1 @]] 1= ox £ SO SR UPUR PR 14-9
STreaMACCESS ODJECES ... bbb et be b 14-9
00T I @7 o] =T o1 £ S PPSPR 14-10
Java Object Cache ENVIFONIMENT ...t e 14-10
CACNE REGIONS ...ttt ettt bbb b bt bbb e et e b e et b ebe e 14-11
(0= 1o LIS U o] (=T | o] o 1 SRRSO 14-11
(0= T o Lol €] {01 U] o1 J OSSO 14-12
Cache ODJECt ALLFIDULES ... e 14-12
Using Attributes Defined Before Object Loading........ccccovvveveiviviivninninne e 14-13

Using Attributes Defined Before or After Object Loading.......c.ccccovvveieiinicinicnicnncns 14-15
Developing Applications Using Java Object Cache ..o 14-17
Importing the Java Object Cache.........ccccv v s 14-17
Defining @ Cache REJIONoiiiiii e e et 14-17
DefiNing @ CACNE GrOUP ...c..oviiiiiiiie ettt bbbt bbbttt 14-18

Xiii

Defining a Cache SUBIEQION ..o s 14-18

Defining and Using Cache ODJECTS.coiiiiiiiiii e s 14-19
Implementing @ CacheLOA Tc..coviiiiiiie e re e ene s 14-20
Using CacheLoader Methods Within the Load Method...........c..cccceveiiiviiinncicnnnn, 14-21
INvalidating Cache ODJECTS.coiiiiii bbb eae s 14-22
Destroying Cache ODJECTS........uicieieieieie sttt a e es e e eneerenes 14-23
Setting Cache Configuration Properti€s. ... e 14-24
Implementing @ Cache EVENT LISTENEN ..ot 14-26
Restrictions and Programming POINTEISc.ccvciviiieiine i 14-29
Working With DisSK ODJECLS ..o e s 14-30
Configuring Properties for Using the Disk Cache ..o 14-31
Setting the diskPath Configuration Propertyccccvvviereriiecisesie s 14-31

Local and Distributed Disk Cache ODJECES........ccoiiiiiiiiiie e 14-31

[0 Tor= LI @ o] [=To! £ J USRS PRTRTPRPRRN 14-31
(D15 A T 010 (=To @] o1 SRS 14-32
Adding Objects t0 the DiSK CaChe..........cciiiiiiie e 14-32
Automatically Adding ODJECTScoiiiiiiiieeeee e 14-32

(S0 o] [To1 1 4 YA AXe [T o @] o] (=T o1 £ TSP PS 14-33

Using Objects that Reside Only in Disk Cache ..o 14-33
Working with StreamACCESS ODJECTSooiiiiiiiii s 14-35
Creating a StreamACCESS ODJECTcvii e 14-36
WOrking With POOI ODJECESccuiiiiiiiiiee et e e 14-37
Creating POOI ODJECLSoiiiiiie et bbb et 14-37

R [alo @] o] =Tot (3 o] 4 1= T 20 T | 14-38
Implementing a Pool Object INStaNCe FACLONYcocviiiiiiiniie e 14-39
RUNNING 1N LOCAI IMOAE ...t bbbttt 14-40
Running in Distributed MOAE ..o e 14-40
Configuring Properties for Distributed MoOde..........cccocoiiiiiiiiiii e 14-40
Setting the Distribute Configuration Property.........cccoieiiiiininie e 14-41

Setting the DiscoveryAddress Configuration Property..........cccoceveveviencinivenesnneens 14-41

Using Distributed Objects, Regions, Subregions, and Groupsccccceeerienenenenesienens 14-41
Using the REPLY Attribute with Distributed Objects..........ccccoeeeiiiiiiineieicce, 14-42

Using SYNCHRONIZE and SYNCHRONIZE_DEFAULTccoovniiennmnreeennnnns 14-43

Cached Object CONSISIENCY LEVEIS.....c.ociiiiiieiie e 14-46
USING LOCAI OBDJECLS ...t b 14-47

Xiv

Propagating Changes Without Waiting for a ReplYccccceevviviiiinviniescncieeseaen 14-47

Propagating Changes and waiting for a Reply ... 14-47
Serializing Changes Across Multiple Caches...........ccocvviviiicciccs e 14-47
Sharing Cached Objects in an OC4J SErVIEL..........ccceeeiiiieire e 14-48

15 Oracle HTTPS for Client Connections

PrEIEQUISITES ...ttt ettt bbb bbbt b e e b e et e st e et ebe et e e re bt ebe e ee 15-2
F A E o I 1o (ol OSSP 15-2
ADOUL OraCle HTTPS ... 15-3
HTTPCONNECHION CIASS.... ittt ettt st sb e b sb et e b b e b b 15-4
OracleSSLCredential ClassS........c.co i et 15-4
Overview of Oracle HTTPS FEALUIES. ..o 15-5
SSL Cipher Suites Supported by Oracle HTTPS ..o 15-6
Certificate and Key Management with Oracle Wallet Manager...........ccccooveniiencicnnnnn 15-7
Access Information About Established SSL CONNECLIONS..........ccovvviieinnsrcicnresrecees 15-8
Security-Aware APPliCatioNs SUPPOITcviiiiiiiireeee e 15-8
java.net.URL FrameWOrkK SUPPOITcoi ittt ettt 15-8
Specifying Default SysStem Properti€s..... ..ot 15-9
JAVAXNEE.SSLIKBYSTOTE. ...ttt bbb b ettt sne s 15-10
JaVax.Net.SSILKEYSTOrEPASSWOITccooiiiiiiii ittt e 15-10
Potential Security Risk with Storing Passwords in System Propertiesc.c.co..... 15-10
Oracle.ssl.defaultCipPNErSUILES.c..oi it e 15-10
OFACIE HTTPS APIS ..ottt ettt sttt sttt sttt b b e 15-11
Public Class: HTTPCONNECTION.........coiiiieireieseee e 15-11
Public Class: OracleSSLCredential...........cooiieiiiiiiiie e 15-12

(670 11 1 (U To1 (o] O OO USROS UPRTUPOTPTUR 15-12
MELNODS ... s 15-12

Oracle HTTPS EXAMPIE ...ttt bbbt 15-14
INitializing SSL CredentialS........c.ooiiiiiiie e e 15-16
Verifying Connection INfOrmation.........ccccceeiiici s 15-16
TraNSTErTiNG DAtacc.oiiiiiieiee bbb e sb et et ebe bt e 15-17

A JAAS Provider APIs

JAAS ProVider APT OVEINVIEWccciiiiiiiiiiieeeiee ettt bbb A-1
Package OraCle.SECUITLY. JAZN ..ottt ne e A-2

XV

=] k= oL A-2

PEISISTADIE ... bbb bbb e ene s A-2
CIASSES ...t R R r s A-2
04 NN L@ o T A-2
JAZINCONTEXT. ...ttt b ettt b e bbb e s b e e h b e e bt e nb e ebe et e sbeeanesaeennesneas A-3
JAZINPEITNISSION ... A-3
JAZNWEDAPPCONTIG. .ttt bbbt ea A-4
(=] o ([LTS RO PRSP A-4
7AW N1 @o] a1 110] SoCeT=] o | o] o SR A-4
JAZINEXCEPLION ..ottt etttk b e bbbt eb et ebe e b e et e s bt sbesbenaesan A-4
JAZININIEEXCEPTION ...ttt bbb e ettt sb st nae b A-4
JAZNNAMINGEXCEPTION ...ovviiiciiece sttt e e re s neere e A-4
JAZNODJECTEXISTSEXCEPTION ...t e A-4
JAZNODjeCtNOtFOUNAEXCEPTION ...ceiiiiiiiiitiiie ettt A-4
JAZNRUNLIMEEXCEPTION.....ocuiciicce ettt ere e A-4
Package oracle.security.jazn.dogino s A-4
L0 I TSP PO USSR A-5
[IoTo T1a]\Y, oTe [WY T=11V/ - UaT=To [TSRS A-5
Package oracle.Security.jazn.POLICYo e A-5
INEEITACES ...ttt bbb bt b bbb et et R e b et b e bbb eene e A-5
(€1 o o7 1 =] |)Y/ A-5
JAZINPOIICY ... ettt b bt ee b st eae et et e st ebesbe b b A-5
PermisSioNCIaSSIMANAGET ..ottt ettt sttt sb e bbb e A-5

0T [0 Y4V U =T 1= SRR A-6
PrinCIPalCIasSIMABNAGETccii ittt ettt sttt b et b A-6
REAIMPOTICY ...t b e bbb bbbt b bbb A-6
CIASSES ...t A-6
AAMINPEIMISSION ...ttt bbbt bt bt e et ebe bt ebesbesbesbenbesaen A-6

LT =g | (T TSP U TR P VR UPTUPOTRPRUIO A-7
PermMisSSIONCIASSDESC.........vcveiirieireecerree et A-7
PriNCIPAICIASSDESCcueieiiitieie sttt ettt b b bbb e et be b e nbesaens A-7
ROIEAAMINPEIMISSION ...ttt ettt bbb b A-7
Package oracle.Security.jazn.realMm ... s A-7
INEEITACES ...ttt bbb bbb e bR b et R et b et b e bbb ne e A-7
INItREAIMINTO.REAIMTYPE ..o e A-7

XVi

REAIM. LD APPIOPEITY ...ttt et b bbbttt A-8
T L gL T aTod o - | A-8
REAIMROIE. ...t ettt sttt e A-8
REAIMUSEN ...ttt bbb et b s e e st e s bt e e s e be et e be bbb e A-8
0] L1V - U =T 1= S A-8
(01T |V F=T g F=To [T o ST T RO U UR TP PROPRURO A-8
CIASSES ...ttt bbb et bbb E Rt R bRt R h R R e R b e e R e Rt b e bbbt e e e e A-8
INTEREAIMINTO .ttt eb e sbere s A-8
ReAIMLOGINMOAUIE ..o e bt A-9
REAIMIMANAGET ...t ettt b bbbt bbb b neenes A-9
REAIMPEIMIISSION ..ottt bbb bbb bbb A-9

B JAAS Provider Standards and Samples

Sample JazN-data. XMl COUEccceiiviiiieceeee et sr e eeaenes B-2
Supplemental Code SAMPIES ..o bbb e beneas B-7
Supplementary Code Sample: Creating an Application Realmccccooivniiiniiniiinns B-8
Supplementary Code Sample: Modifying User PErmMIiSSIONS........cccccovevevervsiesinsnseseneeninnnns B-9

Index

XVii

XViii

List of Examples

External Realm Creation COE ..ot 6-27
Granting RoIES Code SAMPIE.......ccooiiiiiee e 6-31
CHENT LOGIN COOE ...ttt ettt ettt b e sbesee st e 7-5
Sample APPLICAtION COAEc..oouiiiiiieiiei e bbb e ene s 7-7
Mapping Logical INDI Name to Actual INDI Name..........ccocoveiiienininineeenee e 11-17
Retrieving a Connection Using Portable JNDI LOOKUP.......cccoviiinineneneieinece e 12-5
Setting Cache ATFIDULES. ..o e 14-20
Implementing @ CacheLOAEr ..ot 14-22
Implementing a CacheEVENTLISIENETccooiiiiiiieiee s 14-27
Setting a Cache Event Listener on an ODJeCt..........cccooviiiiiiiiiiiie e 14-28
Setting a Cache Event LiStener 0N & GrOUPcooeieeerieieenesinie et 14-28
Creating a Disk Object in @ CaCheLOaderccoeiuiiiiiiiiiiiic e 14-34
Application Code that Uses a Disk ODJECt..........cccooiiiiiniiiiii e 14-35
Creating a StreamAccess Object in a Cache Loader..........cococvviviienenine e 14-36
Creating @ POOI ODJECLc..oiiieie e e 14-38
USING @ POOIACCESS ODJECToiiiiiiiieieie et 14-39
Implementing Pool Instance Factory Methods.........ccccoiiiiiiiiiine e 14-39
Distributed Caching USIiNg REPIYcoviiiiiiiiee e e 14-42
Distributed Caching Using SYNCRHONIZE and SYNCHRONIZE_DEFAULT.... 14-44
Sample jazn-data. XMl File ... B-2
Application Realm Creation COE.........ocuiiiiiiiiiieiee et B-8
Modifying User Permissions COUEcoooiiiiiiiiie ettt B-10

XiX

List of Figures

3-1 Java2 SECUNILY IMOGEL..........oii e 3-5
3-2 Role-Based ACCESS CONTIOL.........cuiiiiiiiiiie e 3-15
3-3 Simplified Directory Information Tree for the External Realm............ccccooiiinenennn. 3-20
3-4 Simplified Directory Information Tree for the Subscriber Realmcccccovenee. 3-21
3-5 Simplified Directory Information Tree for the Application Realm..............ccccoennee. 3-22
3-6 Global JAZNCONEXTE SUDTIEEcoviiiiiiiiiiieiiieeie e 3-23
3-7 A Realm-SPecific SUDLIEEcoiii e 3-24
3-8 Subscriber JAZNCONEXT SUDTIEE.........ciiiiiriiiiieie e 3-24
5-1 Oracle Component Integration in J2SE ENVIronment ..., 5-2
5-2 J2EE APPLICAtioN MOGELcuiiiiiit e et 5-6
5-3 Oracle Component Integration in SSO-Enabled J2EE Environments.............ccoccoeeenee 5-8
5-4 Oracle Component Integration In SSL-Enabled J2EE Environmentsccccccueu.... 5-10
5-5 Oracle Component Integration in j2ee ENVIrONMENT ..o 5-13
6-1 JAZN Shell DireCtOry STrUCTUIE.c.ooiiiiiie et et ene s 6-20
6-2 Hustrated Shell DireCtory STrUCTUIEocvii i e 6-21
12-1 Two-Phase COMMIt DIAQIaMcooiiiiiiiiiie e e et 12-10
13-1 Java ConNector AFChITECIUIEcoi it 13-2
14-1 Java Object Cache BasiC ArChiteCTUNEc.cooiiiiiiiiiie e 14-4
14-2 Java Object Cache Distributed ArchiteCtureocooiiiiiiiiii i 14-5
14-3 Java Object Cache BasiC APIS. ... e e 14-6

XX

List of Tables

2-1 INItIAICONTEXE PrOPEITIES ...ovvviveieeeete ettt s eeneerennennens 2-4
2-2 JNDI-Related ENVIronmMent ProPertiescccoiveivieiiesiesieseseseseeeeseseeese e steseeseeeensenens 2-6
3-1 Java Permission INStance EIEMENTS.........coviiiininiieeesee s 3-5
3-2 JAAS Provider Permission CIaSSES ... 3-6
3-3 o [T | ol o V=10 =] (T TSRS 3-11
3-4 JAAS ProVIider FEATUIES. ..ottt ettt en e 3-13
3-5 USEE PEIMISSIONS ...ttt bbbt 3-14
3-6 Realm and Policy Management TOOIS. ..o 3-17
3-7 Implementation Of REAIM TYPES ..o 3-19
3-8 External Realm ReSpONSIDIITIESoooiiiiiii s 3-20
3-9 Subscriber Realm ResponSiDIlItIes ... 3-21
3-10 Application Realm ReSpONSIDITITIES.coieiiiiiiesere e 3-22
311 ADMIN OPtion EXAMPIE .c.ooiieiiiiiiieiee ettt bbb 3-29
5-1 Getting Started with the JAAS Provider ... 5-17
6-1 Tools For Managing XML-Based and LDAP-Based Provider Environments.............. 6-2
62 JAAS Provider Management ...ttt s neneas 6-3
6-3 Objects in Sample External Realm Creation Code..........ccccooiiiiiiiiiiiiene e 6-27
64 RoleManager METNOAS ..o e 6-29
6-5 Objects in Sample Granting ROIES COEcouviuiiiiiiiicce e 6-31
6—6 Description of jazn-data.Xml FIle ... 6-33
7-1 Sample Clent LOGIN COEc.ooiiiiiiiie ettt 7-5
7-2 Objects in Sample ApPlIcatioN COOE.........cooiiiiiiiiie e 7-7
10-1 Java-CORBA EXCEPLiON MapPPiNgS ...ccooeiuerieriiieieeieeisiesesie sttt st sae e 10-7
10-2 EJB SErver SECUNItY PrOPEITIES.cociiiiiiiiiieitiie ettt s 10-9
10-3 EJB Client SECUNItY PrOPEITIES ...c.ooviiciciiiiieetite et 10-16
11-1 Data SOUrCe ALIIIDULES.........ciiiiii e 11-14
11-2 Database Caching SCREMES........ccoiiiiiiiiie e 11-19
12-1 Transaction ATIIDULES ... e 12-7
14-1 Cache Organizational CONSIIUCTcoiiiiiiie e e 14-7
14-2 Java Object Cache Attributes—Set at Object Creation...........c.ccocveveniieienecieieeeee, 14-14
14-3 Java Object Cache AFIDULEScccoiiiiiiieee s 14-16
14-4 CachelLoader Methods Used in 10ad().......cccoouririririiiiineie e 14-21
14-5 Java Object Cache Configuration Properties...........coceriieineniene e 14-25
15-1 Cipher Suites Supported By Oracle HTTPS ... 15-7
A-1 JAZNPermission Target NAMIES..........ccoiiiiiiieee et et A-3
A-2 RealmPermission ACtiON NAMES.........coiiiiiiiee e A-9
B-1 Objects In Sample Application Realm Creation Codeccccooeieiiieiiiiciienee e B-8
B-2 Objects In Sample Modifying User Permissions COdeccocceirerininienenenese s B-10

XXi

XXii

Send Us Your Comments

Oracle9iAS Containers for J2EE Services Guide, Release 2 (9.0.3)
Part No. A97690-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What FEATUREs did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgreader_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXiii

XXiv

Preface

This Services Guide describes the services provided by Oracle9iAS Containers for
J2EE (OC4)).

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Structure

» Related Documents

« Conventions

Intended Audience

This book was written for developers familiar with the J2EE architecture who want
to understand Oracle’s implementation of J2EE Services.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,

XXV

Structure

XXVi

visit the Oracle Accessibility Program Web site at
http://ww. oracl e. com accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

This book contains the following chapters and appendices:

Chapter 1, "Introduction"—Gives an overview of the service technologies included
in OC4J.

Chapter 2, "Java Naming And Directory Interface"—Discusses using the INDI to
look up obijects.

Chapter 3, "Overview of JAAS in Oracle9iAS"—Introduces Oracle’s explanation of
the Java Authentication and Authorization Service.

Chapter 4, "Quick Start JAAS Provider Demo"—Demonstrates how to configure and
start a JAAS-based application, as illustrated by the Cal | er | nf o example.

Chapter 5, "Integrating the JAAS Provider with Java2 Applications"—Discusses
using the JAAS provider from Java-based applications.

Chapter 6, "Managing the JAAS Provider"—Discusses using Oracle Enterprise
Manager to configure and run the JAAS provider.

Chapter 7, "Developing Secure J2SE Applications"—Describes how to use JAAS for
authentication and authorization in a J2SE environment.

Chapter 8, "Developing Secure J2EE Applications"—Describes how to use JAAS for
authentication and authorization in a J2EE environment.

Chapter 9, "Java Message Service"—Discusses plugging Resource Providers into the
JMS.

Chapter 10, "Interoperability and RMI Tunneling"—Discusses OC4J support for
EJB2.0 interoperation using RMI/ZIIOP and other technologies.

Chapter 11, "Data Sources"—Discusses data sources, a higher-level abstraction of a
database connection or other source of information.

Chapter 12, "Java Transaction API"—Discusses Oracle’s implementation of the JTA.

Chapter 13, "J2EE Connector Architecture"— Describes how to use the J2EE
Connector Architecture in an OC4J application.

Chapter 14, "Working with Java Object Cache"—Describes the OC4J Java Object
Cache, including its architecture and programming features.

Chapter 15, "Oracle HTTPS for Client Connections"—Describes using HTTPS for
secure communications.

Chapter A, "JAAS Provider APIs"—Describes the JAAS Provider public packages.

Chapter B, "JAAS Provider Standards and Samples"—Provides sample JAAS
Provider code.

Related Documents

See the following additional OC4J documents available from the Oracle Java
Platform group:

« Oracle9iAS Containers for J2EE User’s Guide

This book presents an overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

« Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

« Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4).

XXVii

XXViii

Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

Oracle9i IDBC Developer’s Guide and Reference
Oracle9i SQLJ Developer’s Guide and Reference
Oracle9i JPublisher User’s Guide

Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:

Oracle9i Application Server Administrator’s Guide
Oracle Enterprise Manager Administrator’s Guide

Oracle HTTP Server Administration Guide

Oracle9i Application Server Performance Guide

Oracle9i Application Server Globalization Support Guide
Oracle Web Cache Administration and Deployment Guide

Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

The following are available from the JDeveloper group:

Oracle JDeveloper online help
Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn. oracl e. com product s/ j dev/ content. ht m

The following documents from the Oracle Server Technologies group may also
contain information of interest:

Oracle9i Application Developer’s Guide - XML

Oracle9i Application Developer’s Guide - Fundamentals

« Oracle9i Supplied Java Packages Reference

« Oracle9i Supplied PL/SQL Packages and Types Reference
« PL/SQL User’s Guide and Reference

« Oracle9i SQL Reference

= Oracle Net Services Administrator’s Guide

« Oracle Advanced Security Administrator’s Guide

« Oracle9i Database Reference

« Oracle9i Database Error Messages

For information about Oracle9iAS Personalization, which is the foundation of the
Personalization tag library, refer to the following documents from the Oracle9iAS
Personalization group:

« Oracle9iAS Personalization Administrator’s Guide

« Oracle9iAS Personalization Recommendation Engine API Programmer’s Guide

In North America, printed documentation is available for sale in the Oracle Store at:
http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from:

ht t p: // waw or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; free registration is available at:

http://otn. oracl e. cont adm n/ account / nenber shi p. ht ni

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at:

http://otn. oracl e. comt docs/ i ndex. ht m

XXiX

The following Oracle Technology Network (OTN) resources are available for further
information about OCA4J:

« OTN Web site for OC4lJ:

http://otn.oracl e.comtech/javal/ oc4j/content. ht m

« OTN OC4J discussion forums, accessible through the following address:

ht t p: // waw or acl e. cond f or uns/ f or umj sp?i d=486963

Conventions

This book generally uses UNIX syntax for file paths and shell variables. In most
cases file names and directory names are the same for Windows NT, unless
otherwise noted. The notation $ORACLE_HOVE indicates the full path of the Oracle
home directory. It is equivalent functionally to the Windows NT environment
variable %0RACLE_HOVMEY, though of course the Oracle installation paths are
different between NT and UNIX.

The following conventions are used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

italicized regular text Italicized regular text is used for emphasis or to indicate a term that
is being defined or will be defined shortly.

<> Angle brackets enclose user-supplied names.

code text Code text (Courier font) within regular text indicates class names,
object names, method names, variable names, Java types, Oracle data
types, file names, URL or URI fragments, and directory names.

% At the beginning of a command, indicates an operating system shell
prompt.

$ At the beginning of a command, indicates an Oracle JVM session
shell prompt.

SQL> At the beginning of a command, indicates a SQL*Plus prompt.

XXX

1

Introduction

Oracle9iAS Containers for J2EE (OC4)J) supports the following technologies, each of
which has its own chapter(s) in this book:

Java Naming and Directory Interface (JNDI)

Java Authentication and Authorization Service (JAAS)

Java Message Service (JMS)

J2EE Interoperability and Remote Method Invocation (RMI)
Data Sources

Java Transaction APl (JTA)

Java Connector Architecture

Java Object Cache

HTTPS

The remainder of this chapter gives a brief overview of each technology in the
above list.

Note: In addition to these technologies, OC4J supports the

JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP); for information about these

technologies, see the Sun J2EE documentation.

Introduction 1-1

Java Naming and Directory Interface (JNDI)

Java Naming and Directory Interface (JNDI)

JNDI provides naming and directory functionality for Java applications. JNDI is
defined independently of any specific naming or directory service implementation.
As a result, INDI enables Java applications to access different, possibly multiple,
naming and directory services using a single API. Different naming and directory
service provider interfaces (SPIs) can be plugged in behind this common API to
handle different naming services. For details, see Chapter 2, "Java Naming And
Directory Interface".

Java Authentication and Authorization Service (JAAS)

JAAS enables applications to authenticate and enforce access control. Oracle9iAS
supports JAAS by implementing a JAAS provider. The JAAS provider provides
application developers with user authentication, authorization, and delegation
services to integrate into their application environments. Instead of devoting
resources to developing these services, application developers can focus on the
presentation and business logic of their applications.

For information about the Oracle implementation, see Chapter 3, "Overview of
JAAS in Oracle9iAS", Chapter 4, "Quick Start JAAS Provider Demo", Chapter 5,
"Integrating the JAAS Provider with Java2 Applications”, Chapter 6, "Managing the
JAAS Provider", Chapter 7, "Developing Secure J2SE Applications”, Chapter 8,
"Developing Secure J2EE Applications”, Appendix A, "JAAS Provider APIs" and
Appendix B, "JAAS Provider Standards and Samples".

Java Message Service (JMS)

JMS provides a common way for Java programs to access enterprise messaging
products. JMS is a set of interfaces and associated semantics that define how a JIMS
client accesses the facilities of an enterprise messaging product. For details, see
Chapter 9, "Java Message Service".

J2EE Interoperability and Remote Method Invocation (RMI)

RMI is one Java implementation of the remote procedure call paradigm, in which
distributed applications communicate by invoking procedure calls and interpreting
the return values.Version 2.0 of the Enterprise Java Beans specification uses RMI
over the IIOP protocol to make it easy for EJB-based applications to invoke one
another across different containers. You can make your existing EJB interoperable
without changing a line of code: simply edit the bean’s properties and redeploy

1-2 Oracle9iAS Containers for J2EE Services Guide

Java Connector Architecture

J2EE uses RMI to provide interoperability between EJB running on different
containers. In addition, OC4J supports invoking RMI over HTTP, a technique

known as "RMI tunneling." For details, see Chapter 10, "Interoperability and RMI
Tunneling".

Data Sources

A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a database
server. For details, see Chapter 11, "Data Sources".

Java Transaction API (JTA)

JTA supplies a standard interface to support communications among the parties to a
distributed transaction. These parties include the resource manager, the application

server, and the transactional applications. For details, see Chapter 12, "Java
Transaction API".

Java Connector Architecture

Java Connector Architecture defines a standard architecture for connecting the J2EE
platform to heterogeneous Enterprise Information Systems (EISs). Examples of EISs
include ERP, mainframe transaction processing, database systems, and legacy
applications not written in the Java programming language.

For details, see Chapter 13, "J2EE Connector Architecture".

Introduction 1-3

Java Object Cache

Java Object Cache

HTTPS

The Java Object Cache (formerly OCS4)) is a set of Java classes designed to manage
Java objects within a process, across processes, and on local disk. The primary goal
of the Java Object Cache is to provide a powerful, flexible, easy to use service that
will significantly improve server performance by managing local copies of objects
that are expensive to retrieve or create. There are no restrictions on the type of object
that can be cached or the original source of the object. The management of each
object in the cache is easily customized. Each object has a set of attributes associated
with it to control such things as how the object is loaded into the cache, where the
object is stored, (in memory, on disk or both), how it is invalidated, (based on time
or by explicit request) and who should be notified when the object is invalidated.
Objects can be invalidated as a group or individually.

For details, see Chapter 14, "Working with Java Object Cache".

HTTPS is vital to securing client-server interactions. Java applications that act as a
clients, such as servlets that initiate connections to other Web servers, need their
own HTTPS implementation to make requests and to receive information securely
from the server. Java application developers who are familiar with the HTTP
package, HTTPC i ent , or the Sun Microsystems, Inc., j ava. net package can
easily use Oracle HTTPS to secure client interactions with a server. For details, see
Chapter 15, "Oracle HTTPS for Client Connections".

1-4 Oracle9iAS Containers for J2EE Services Guide

2

Java Naming And Directory Interface

This chapter describes the Java Naming and Directory Interface (JNDI) service
implemented by Oracle9iAS Containers for J2EE (OC4J) applications. It covers the
following topics:

=« Introduction
« Constructing a JNDI Context
« The JNDI Environment

« Initial Context Factories

Introduction

JNDI, part of the J2EE specification, and provides naming and directory
functionality for Java applications. Because JNDI is defined independently of any
specific naming or directory service implementation, it enables Java applications to
access different, possibly multiple, naming and directory services using a single
API. Different naming and directory service provider interfaces (SPIs) can be plugged
in behind this common API to handle different naming services.

Before reading this chapter, you should be familiar with the basics of INDI and the
JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at:

http://java. sun. conl products/jndi/index. ht m

A JAR file implementing JNDI, j ndi . j ar, is available with OC4J. Your application
can take advantage of the INDI API without having to provide any other libraries or
JAR files. J2EE-compatible applications use JNDI to obtain naming contexts that
enable the application to locate and retrieve objects such as data sources, JMS
services, local and remote EJBs, and many other J2EE objects and services.

Java Naming And Directory Interface 2-1

Introduction

Initial Context

The concept of the initial context is central to JNDI. The two most often-used JNDI
operations in J2EE applications are:

1. Creatinganew | niti al Cont ext object (in the j avax. nam ng package).
2. Usingthel ni ti al Cont ext, looking up a J2EE or other resource.

When OC4J starts up, it constructs a JNDI initial context for each application by
reading each of the application’s configuration XML files that can contain resource
references. Applications are defined in the ser ver . xml configuration file.

Note: After the initial configuration, the INDI tree for each
application is purely memory-based. Additions made to the context
are not persisted. When OC4]J is restarted, any new bindings made
in application code are no longer available.

The following example shows two lines of Java code to use on the server side in a
typical Web or EJB application:

Context ctx = new Initial Context();
nmyEJBHome myhone =
(Hel | oHone) ctx. | ookup("java: conp/env/ej b/ nyEJB");

The first statement creates a new initial context object, using the default
environment. The second statement looks up an EJB home interface reference in the
application’s JNDI tree. In this case, ny EJ B might be the name of a session bean that
is declared in the ori on-web. xm (or web. xnl) configuration file, in an

<ej b-r ef > tag. For example:

<ej b-ref>
<ej b-r ef - nane>ej b/ nyEJIB</ ej b- r ef - nane>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<hone>nyE b. Hel | oHone</ home>
<renot e>nyEj b. Hel | oRenot e</ r enot &>
</ejb-ref>

This chapter focuses on setting up the initial contexts for using JNDI, and
describing how OC4J performs JNDI look ups. For more information about the
other JNDI classes and methods, see the Javadoc at:

http://java. sun. conl products/jndi/1.2/javadoc/index. htm

2-2 Oracle9iAS Containers for J2EE Services Guide

The JNDI Environment

Constructing a JNDI Context

When OC4J starts up, it constructs a JNDI context for each application deployed in
the server (in server. xm). There is always at least one application for an OC4J
server, the global application, which is the default parent for each application in a
server instance. User-written applications inherit properties from the global
application. User-written applications can override property values defined in the
global application, define new values for properties, and define new properties as
required.

In the default OC4J server, as shipped, the global application is the default
application, as defined in ser ver . xm . For more information about configuring the
OC4J server and its contained applications, see the Oracle9iAS Containers for J2EE
User’s Guide, in particular the "Advanced Information” chapter.

The environment that OC4J uses to construct a JNDI initial context can be found in
three places:

« System property values, as set either by the OC4J server or possibly by the
application container.

« Ajndi.properti es file contained in the application EAR file (as part of
application-client.jar).

« Anenvironment specified explicitly in a Hasht abl e passed to the JNDI initial
context constructor.

The JNDI Environment

The JNDI | ni ti al Cont ext has two constructors:

Initial Context()
Initial Context(Hashtable env)

The first constructor creates a Cont ext object using the default context
environment. If this constructor is used in an OC4lJ server-side application, the
initial context is created by OC4J when the server is started, using the default
environment for that application. This constructor is the one typically used in code
that runs on the server side, such as in a JSP, EJB, or servlet.

Java Naming And Directory Interface 2-3

Initial Context Factories

The second constructor takes an environment parameter. The second form of the

I nitial Context constructor is normally used in client applications, where it is
necessary to specify the INDI environment. The env parameter in this constructor is
a Hasht abl e that contains properties required by JNDI. These properties, defined
in the j avax. nani ng. Cont ext interface, are listed in Table 2-1.

Table 2-1 InitialContext Properties

Property Meaning

I NI TI AL_CONTEXT_FACTORY Value for the j ava. nam ng. factory.initi al
property; this property specifies which initial context
factory to use when creating a new initial context
object.

PROVI DER_URL Value for thej ava. nam ng. provi der. url property;
this property specifies the URL that the application
client code uses to look up objects on the server. Also
used by the RM | ni ti al Cont ext Fact ory to search
for objects in different applications.

SECURI TY_PRI NCI PAL Value for the j ava. nam ng. security. princi pal
property; this property specifies the user name.
Required in application client code to authenticate the
client. Not required for server-side code, because the
authentication has already been done.

SECURI TY_CREDENTI AL Value for the j ava. nami ng. security. credenti al
property; this property specifies the password.
Required in application client code to authenticate the
client. Not required for server-side code, because the
authentication has already been done.

See "Remote Client Example" on page 2-10 for a code example that sets these
properties and gets a new JNDI initial context.

Initial Context Factories

The three JNDI initial context factories available for use by application code. They
are

« Applicationdientlnitial ContextFactory
« Applicationlnitial ContextFactory
« RMInitial ContextFactory

2-4 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories

The following sections describe each of these factories and their uses in OC4J
applications.

ApplicationClientinitialContextFactory

When an application client needs to look up a resource that is available in a J2EE
server application, the client uses

Applicationdientlnitial ContextFactoryinthecom evern nd. server
package to construct the initial context.

Consider an application client that consists of Java code running outside the OC4J
server, but that is part of a bundled J2EE application. For example, the client code
running on a workstation and might connect to a server object, such as an EJB, to
perform some application task. In this case, the environment accessible to JNDI
must specify the value of the property j ava. nanmi ng. factory.initial as
Applicationdientlnitial ContextFactory.Thiscan be done in client code,
or it can be specified in the j ndi . properti es that is part of the application’s
application-client.jar filethatisincluded in the EAR file.

In order to have access to remote objects that are part of the application,
Applicationdientlnitial ContextFactory reads the

META- | NF/ application-client.xm and

META- | NF/ ori on-application-client.xmnl filesinthe <application_
nane>-client.jar file.

When clients use the Appl i cationC ientlnitial ContextFactory to
construct JNDI initial contexts, they can look up local objects (objects contained in
the immediate application, or in its parent application) using the j ava: conp/ env
mechanism, and can use ORMI to look up remote objects.

Environment Properties

Applicationdientlnitial ContextFactory invokes
RM I ni ti al Cont ext Fact ory to read the properties listed in Table 2-2 from the
environment.

Java Naming And Directory Interface 2-5

Initial Context Factories

Table 2-2 JNDI-Related Environment Properties

Property

Meaning

dedi cat ed. connecti on

j ava. nam ng. provi der. url

http.tunnel . path

Cont ext . SECURI TY_PRI NCI PAL

2-6 Oracle9iAS Containers for J2EE Services Guide

Each JNDI lookup retrieves a connection to the
server. Each subsequent JNDI lookup for this same
server uses the connection returned by the first JINDI
lookup. That is, all requests are forwarded over and
share the same connection.

The dedi cat ed. connect i on JNDI property
overrides this default behavior. If you set

dedi cat ed. connecti on tot r ue before you
retrieve an | ni ti al Cont ext, you will retrieve a
separate physical connection for each lookup, each
with its own designated username/password.

dedi cat ed. connect i on defaults to f al se. Reset
totrue if:

1. You want to connect using a different
username/password each time. ORMI
connections are associated with an
authenticated ID; setting this property to true
will open a new connection instead of reusing a
cached connection. If this property is set to
false, the first username/password is used for
all subsequent connections, even when an
alternate username/password is supplied.

2. You want to make a remote connection and look
up an object on the remote connection before
looking up the same object locally.

The URL to use when looking for local or remote
objects. The format is either

[http: | https:]orm://hostnane/ appnamne
or cor banane: host name: port . For details on the
cor banane URL, see "The corbaname URL" on
page 10-4.

Multiple hosts (for failover) can be supplied in a
comma-separated list.

Specifies an alternative RM Ht t pTunnel Ser vl et
path. The default path is/ servl et/ rm , as bound
to the target site’s Web application.

The user name. Required in client-side code to
authenticate the client. Not required for server-side
code because authentication has already been done.

Initial Context Factories

Table 2-2 JNDI-Related Environment Properties

Property Meaning

Cont ext . SECURI TY_CREDENTI AL The password. Required in client-side code to
authenticate the client. Not required for server-side
code because authentication has already been done.

Remote Client Example

The following example code shows how JNDI properties can be specified in a client
application:

Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"com everm nd. server. ApplicationCientlnitial ContextFactory");
env. put (Cont ext . PROVI DER_URL, "orni://<host name>/ enpl oyee");
env. put (Cont ext. SECURI TY_PRI NCI PAL, "adnmin");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");

Context context = new Initial Context(env);
//do the | ookups...

Server-Side Clients

Server-side clients need not specify an | ni ti al Cont ext Fact ory to look up
resources defined within the client application. By default, server-side clients have
Initial ContextFactory settoApplicationlnitial ContextFactory. This
allows clients to perform lookups using names in the style j ava: conp: / env.

To look up resources that are not defined within the client application, clients must
setthel ni ti al Cont ext Factory toRM I ni ti al Cont ext Fact ory and look up
the resources or EJB using an explicit URL.

ApplicationInitialContextFactory

When code is running in a server, it is, by definition, part of an application.
Therefore, as part of an application, OC4J can establish defaults for properties that
JNDI uses. For the j ava. nanmi ng. factory.initial property, OC4J sets
Applicationlnitial ContextFactoryinthecom everm nd. server
package as the default value for this system property.

Java Naming And Directory Interface 2-7

Initial Context Factories

When this context factory is being used, the Appl i cat i onCont ext is specific to
the current application, so all the references specified in files such as web. xm ,
ori on-web. xm , orej b-j ar. xm for that application are available. This means
that a lookup using j ava: conp/ env works for any resource that the application
has specified. Lookups using this factory are performed locally in the same virtual
machine.

However, when you use the default Appl i cati onl ni ti al Cont ext Factory,
only application-local resources are available using the j ava: conp/ env lookup
mechanism. If your application needs to look up a remote reference, either a
resource in another J2EE application or perhaps a resource external to any J2EE
application, then you must use RM | ni t i al Cont ext Fact ory.

Example

As a concrete example, consider a servlet that needs to get a data source to perform
a JDBC operation on a database. The data source reference is mapped in
orion-web. xm as:

<resour ce-ref-mappi ng name="j dbc/ O acl eDS1" | ocati on="j dbc/ pool / Oracl eCache" />

The data source location is specified in dat a- sour ces. xm as:

<dat a- sour ce

class="oracl e. j dbc. pool . Oracl eConnect i onCachel npl "

| ocati on="j dbc/ pool / Or acl eCache"

user nane="hr"

passwor d="hr"

url ="j dbc: oracl e: t hi n: @host name>: <TTC port>: <DB | D>"
/>

In this case, the following code in the servlet returns the correct reference to the data
source object:

try {
Initial Context ic = new Initial Context();
ds = (DataSource) ic.lookup("java: conp/env/jdbc/Oracl eDS1");

} o
cat ch (Nam ngException ne) {

t hrow new Servl et Exception(ne);

}

2-8 Oracle9iAS Containers for J2EE Services Guide

Initial Context Factories

No initial context factory specification is necessary, because OC4J sets
Applicationlnitial ContextFactory as the default value of the system
property j ava. nam ng. factory.initial when the application starts.

There is no need to supply a provider URL in this case, because no URL is required
to look up an object contained within the same application or under j ava: conp/ .

Note: Some versions of the JDK on some platforms automatically
set the system property j ava. nam ng. factory. url. pkgs to
include com sun. j ava. *. Check this property and remove

com sun. j ava. * if present.

An application can use the j ava: conp/ env mechanism to look up resources that
are specified not only in its own name space, but also in the name spaces of any
declared parent applications, or in the global application (which is the default
parent if no specific parent application was declared).

RMIInitialContextFactory

Occasions arise for use of the RM | ni ti al Cont ext Fact ory property in the
com everm nd. server. rm package. Using either the default server-side
Applicationlnitial ContextFactory or specifying
Applicationdientlnitial ContextFactory works for most application
purposes.

In some cases, however, an additional context factory must be used:

1. When looking up an object that is part of another J2EE application, and for
which a resource reference either cannot be or is not specified in the current
application’s appl i cati on-client.xnl file.

2. When performing a general lookup for external JNDI objects, that may or may
not be part of a J2EE application. A generalized JNDI object browser is an
example of this usage.

3. When accessing the entire remote JNDI namespace, in contrast to a specific
application context. For further details, see:

http:// waw. ori onserver. conm docs/ renpt e- access/ renot e- access. xni

Java Naming And Directory Interface 2-9

Initial Context Factories

The RM I ni ti al Cont ext Fact ory uses the same environment properties used by
Applicationdientlnitial ContextFactory—namely:

« dedicated. connection

« java. nam ng. provider.url
« http.tunnel.path

« SECURI TY_PRI NCI PAL

« SECURI TY_CREDENTI ALS

Remote Client Example

You can use the following code to look up a remote object using
RM I ni ti al Cont ext Factory:

Hasht abl e env = new Hashtabl e();
env. put ("java.namng.factory.initial",
"com evermnd. server.rm.RMInitial ContextFactory");
env. put ("java. nam ng. provider.url","orm ://local host/ejbsanmpl es");
env. put ("j ava. nam ng. security. principal","adnin");
env. put ("j ava. naning. security.credential s", "wel cone");
Context context = new Initial Context(env);
/**
* Lookup the Cart home object. The reference should be retrieved fromthe
* application-local context (java:conp/env, the variable is
* specified in the assenbly descriptor; META-INF application-client.xm)
* but for simplicity this exanple uses a global variable.
*|
Systemout.println("Context =" + context);

bj ect homeChj ect = context. | ookup("MCart");
Hasht abl e envl = new Hashtabl e();
envl. put ("java.namng.factory.initial",
"com everm nd. server.rm.RMInitial ContextFactory");
envl. put ("java. nam ng. provider.url","orni://| ocal host/ejbsanpl esl");
envl. put ("java. nam ng. security.principal","admn");
envl. put ("java. nam ng. security. credential s","wel come");
Context contextl = new Initial Context(envl);
(bj ect homeChjectl = contextl. | ookup("MProduct");
Systemout. println("HomeCbjectl =" + honelbjectl);

2-10 Oracle9iAS Containers for J2EE Services Guide

3

Overview of JAAS in Oracle9iAS

This chapter introduces support for Java Authentication and Authorization (JAAS),
in Oracle9iAS Containers for J2EE (OC4J). JAAS enables application developers to
integrate authentication, authorization, and delegation services with their
applications.

This chapter contains these topics:

JAAS Support

JAAS Support

What Are Authentication, Authorization, and Delegation?
What Is the Java2 Security Model?

What Is JAAS?

JAAS Provider Features

JAAS Provider User Services

JAAS Provider Realm and Policy Management

Note: Chapter 7 of the Oracle9i Application Server Security Guide also
contains important information about configuring JAAS.

JAAS is a Java package which enables applications to authenticate and enforce
access control.

Oracle9iAS supports JAAS by implementing a JAAS provider. The JAAS provider
provides application developers with user authentication, authorization, and
delegation services to integrate into their application environments. Instead of

Overview of JAAS in Oracle9iAS 3-1

What Are Authentication, Authorization, and Delegation?

devoting resources to developing these services, application developers can focus
on the presentation and business logic of their applications.

Note: Some class and component names contain the word
"JAZN", which is the internal code name for "JAAS provider".

What Are Authentication, Authorization, and Delegation?

Authentication is the process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to granting this entity access to
resources in a system. For example, when a user enters a username and password to
access resources on a computer, such as a database, the user must first be
authenticated (verified) by means of the login information before being permitted
access to these resources.

Once a user’s username and password have been authenticated, the authorization
process occurs. Authorization is the process of determining the following for the
authenticated user: Who has the right to perform an operation on an object (such as
updating a table in a database)?

Delegation provides support for impersonation of a specified user. An application
can be configured to run with the permissions associated with a specified user by
means of the r un- as element.

Foundations of the JAAS Provider

The JAAS framework and the Java2 Security model form the foundation of the
JAAS provider. That is, the JAAS provider implements JAAS and integrates with
J2SE and J2EE applications that use the Java2 Security model.

JAAS

The JAAS provider implements support for JAAS policies. Policies contain the rules
(permissions) that authorize a user to use resources, such as reading a file. JAAS
enables services to authenticate and enforce access control upon users of these
resources.

Java2 Security Model

The JAAS provider integrates with J2SE and J2EE applications that use the Java?
Security Model. Unlike the original Java security model, under Java2 security, many
levels of restrictions can be configured.

3-2 Oracle9iAS Containers for J2EE Services Guide

What Are Authentication, Authorization, and Delegation?

See Also:
« "What Is JAAS?" on page 3-7
« "What Is the Java2 Security Model?" on page 3-4

Java Application Environments

Developers can easily integrate the JAAS provider with these applications for quick
development and deployment:

« Standalone Java applications in Java2 Platform, Standard Edition (J2SE)
environments

« Web-based applications in Java2 Platform, Enterprise Edition (J2EE)

See Also:

"Integrating the JAAS Provider with Basic Authentication” on
page 5-12 for additional information on the J2SE and J2EE
environments.

Provider Types

The JAAS provider supports two types of repository providers, referred to as
provider types.

These provider types are repositories for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and
JAAS policy (permissions) information.

Use the provider type appropriate to your environment.

LDAP-Based Provider Type

The LDAP-based provider type is based on the Lightweight Directory Access
Protocol (LDAP) for centralized storage of information in a directory. The
Oracle9iAS JAAS Provider uses the LDAP-based Oracle Internet Directory.

Use this provider type if you are using Oracle9iAS and Oracle Internet Directory.

Overview of JAAS in Oracle9iAS 3-3

What Is the Java2 Security Model?

XML-Based Provider Type

The XML-based provider type is used for lightweight storage of information in
XML files.

Use this provider type if you are using an XML file, such asj azn- dat a. xnl , to
store your user and realm information.

Note: Don’t confuse the XML-based provider type with XML files
in general. XML files are used as property and configuration files in
both LDAP-based and XML-based provider types or environments.
If an XML file such as j azn- dat a. xni is used to store realm and
user information, then the provider type is called XML-based.

See Also:

"JAAS Provider Realm and Policy Management" on page 3-16

What Is the Java2 Security Model?

Sun’s Java2 Security Model is fundamental to the JAAS provider.

The Java2 Security Model enables configuration of security at all levels of
restriction. This provides developers and administrators with increased control over
many aspects of enterprise applet, component, servlet, and application security.

The Java2 Security Model is capability-based and enables you to establish
protection domains, and set security policies for these domains. When the JAAS
provider is integrated with applications developed for the J2SE or J2EE
environments, these environments use the Java2 Security Model to different
degrees.

Permissions are the basis of the Java2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission
represents a specific access to a particular resource. Table 3-1 identifies the elements
that comprise a Java permission instance.

3-4 Oracle9iAS Containers for J2EE Services Guide

What Is the Java2 Security Model?

Table 3-1 Java Permission Instance Elements

Element Description Example
Class name The permission class java.io. Fil ePerm ssion
Target The target name (resource) to which Directory / home/ *

this permission applies

Actions The actions associated with this target Read, write, and execute permissions
on directory / hone/ *

Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group
of permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call
to either:

« SecurityManager. checkPer m ssion()
« AccessControll er.checkPermn ssion()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 3-1 shows the basic model for authorization checking at runtime.

Figure 3-1 Java2 Security Model

ACclass Security Policy
File class Protection Domain A
- - - (with read / write pemissions
b class ." Domain A b‘ Parmissions ." on a like named salaries)
a. class (el 0o main 5 == Pormissions | protection Domain B
(with read only parmissions
on a fike named salarias)

Overview of JAAS in Oracle9iAS 3-5

What Is the Java2 Security Model?

Table 3-2 lists the permission classes provided by the JAAS provider that enables
you to enforce access upon users of resources.

Table 3-2 JAAS Provider Permission Classes

Permission Part of Package... Description See Also...
Adm nPer m ssi on oracl e. security. Representsthe righttoadminister "AdminPermission”
jazn.policy a permission (that is, grant or page A-6 for specific

revoke another user’s permission syntax examples
assignment)

Rol eAdm nPer m ssi on oracl e. security. Thegrantee of this permissionis "AdminPermission"”
jazn.policy granted the right to further page A-6
grant/revoke the target role.

JAZNPer mi ssi on oracl e. security. Forauthorization permissions. "JAZNPermission"
jazn JAZNPer m ssi on contains a page A-3 for a list of

name (also called a target name), target names for
but no actions list; you either have JAZNPer mi ssi on,

or do not have the named what the permissior
permission. allow, and the risks |
granting the permis:
Real nPer m ssi on oracl e. security. Represents permission actions for "RealmPermission”
jazn.real m arealm (such ascreat eReal m page A-9 for a list of
dr opReal m and so on). permission actions

Real nPer mi ssi on extends from
java. security. Perm ssion,
and is used like any regular Java

permission.

See Also:

« "JAAS Provider Integration in J2SE Application Environments" on
page 5-2

=« "JAAS Provider Integration in J2EE Application Environments" on
page 5-3

« Chapter 6, "Managing the JAAS Provider"
« SunJava documentation by visiting the following URL.:
http://java. sun. conl security/

3-6 Oracle9iAS Containers for J2EE Services Guide

What Is JAAS?

What Is JAAS?

Principals

The JAAS interface is implemented by the JAAS provider. JAAS is a Java package
that enables applications to authenticate and enforce access controls upon users.

JAAS is designed to complement the existing code-based security in JDK 1.3. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authorization, authentication,
and user community (realm) features. Some of these features are fully supported in
this release of JAAS, while others are not explicitly defined. The JAAS provider
provides enhancements to some of these features.

« Principals

« Subjects

« Login Module Authentication
« Roles

« Realms

=« Policies and Permissions

See Also:

« "JAAS Provider Realm and Policy Management" on page 3-16 for
information on how the JAAS provider enhances JAAS to more
explicitly define key authorization, authentication, and user
community (realm) features

« JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java. sun. coni product s/ j aas/

A principal is a specific identity, such as a user named f r ank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service.

Overview of JAAS in Oracle9iAS 3-7

What Is JAAS?

A principal is represented by an instance of a concrete class that implements the
java. security. Princi pal interface. Each class defines a namespace for its
instances, within which each principal instance has a unique name. The name and
class of a principal instance uniquely describes the instance.

For LDAP-based environments, an X500Pr i nci pal class is defined that accepts the
X.500 style name as the name of the principal.

Subjects

A subject represents a grouping of related information for a single user of a
computing service, such as a person, computer, or process. Such information
includes the subject's identities and security-related attributes (such as passwords
and cryptographic keys).

Subjects can have multiple identities, where principals represent identities in the
subject. A subject becomes associated with a principal (user f r ank) upon successful
authentication to a computing service, that is, the subject provides evidence (such as
a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user f r ank, may
have two principals:

« One binds the principal f r ank doe (name on his driver license) to the subject

« Another binds the identification principal 999- 99- 9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are
stored in a private credential set. Credentials intended to be shared, such as public
key certificates or Kerberos server tickets are stored in a public credential set.
Different permissions are required to access and modify different credential sets.

Subjects are represented by the j avax. security. aut h. Subj ect class.

To perform work as a particular subject, an application invokes the method

Subj ect . doAs(Subj ect, Privil egedAction) (or one of its variations). This
method associates the subject with the current thread's AccessCont r ol Cont ext,
and then executes the specified request.

3-8 Oracle9iAS Containers for J2EE Services Guide

What Is JAAS?

Login Module Authentication

Roles

To associate a principal (such as f r ank) with a subject, a client attempts to log into
an application. In login module authentication, the Logi nCont ext class provides
the basic methods used to authenticate subjects such as users, roles, or computing
services. The Logi nCont ext class consults configuration settings to determine
whether the authentication modules (known as login modules) are configured for
use with the particular application that the subject is attempting to access. Different
login modules can be configured with different applications.

Since the Logi nCont ext separates the application code from the authentication
services, a different login module can be plugged in under an application without
affecting the application code.

Actual authentication occurs with the method Logi nCont ext . | ogi n() . If
authentication succeeds, the authenticated subject can be retrieved by invoking

Logi nCont ext . get Subj ect () . The real authentication process can involve multiple
login modules. JAAS defines a two-phase authentication process to coordinate the
login modules configured for an application.

After retrieving the subject from the Logi nCont ext , the application then performs
work as the subject by invoking Subj ect . doAs() .

See Also:

« "Authentication in the J2SE Environment" on page 7-2

« "Authentication in the J2EE Environment" on page 8-2

JAAS does not explicitly define roles or groups. Instead, roles or groups are
implemented as concrete classes that use interface j ava. security. Princi pal .

JAAS does not define how to support the RBAC role hierarchy (granting a role to a
role). The Sun provider of j avax. securi ty. aut h. Pol i cy recognizes a special type
of principal, as defined by the Pri nci pal Conpar at or interface. However,

Pri nci pal Conpar at or is not fully integrated with the JAAS provider, and is
therefore not supported.

For LDAP-based environments, an X500G oupPri nci pal class is defined that
accepts an X.500 style name as the name of the group.

Overview of JAAS in Oracle9iAS 3-9

What Is JAAS?

Realms

Applications

JAAS does not explicitly define user communities. However, the J2EE reference
implementation (RI) defines a similar concept of user communities called realms. A
realm provides access to users and roles (groups) and optionally provides
administrative functionality. A user community instance is essentially a realm that
is maintained internally by the authorization system. The J2EE Rl Realm API
supports user-defined realms through subclassing. The J2EE Rl Realm API,
however, is:

« Not as fully developed as the JAAS provider realm framework
« Not being proposed as a standard

« Expected to undergo further changes to be integrated with JAAS

See Also:

« "JAAS Provider Realm Framework" on page 3-18 for JAAS provider
enhancements to realms

« "XML-Based Realm and Policy Information Storage" on page 3-25

JAAS does not explicitly define an application or subsystem for partitioning
authorization rules. However, JAAS meets many of the requirements for the
subsystem concept. For example, JAAS defines the notion of a codebase (plus a
signer) as the target and grantee of a grant statement. This enables permissions to be
granted application-specific code. The Java notion of namespace partitioning
through packages also allows for partitioning of permission classes in an
application-specific manner.

Policies and Permissions

A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are
the granted permissions of the grantee?

Policy information is supplied by the JAAS provider. JAAS does not define an
administrative API for policy administration. The administrative API is
implementation specific.

3-10 Oracle9iAS Containers for J2EE Services Guide

What Is JAAS?

Table 3-3 describes Sun’s implementation of policy file parameters.

Table 3-3 Policy File Parameters

Where... Is Defined As... Example
subject one or more principal(s) duke
codesource codebase, signer http://ww. foo.com foo

File-Based Policy Example
The following example shows a typical entry in the JAAS policy file as
implemented by Sun’s implementation of the JAAS file-based policy provider:

grant CodeBase "http://ww. f 0o. conf,
Principal comsun.security.auth. Sol arisPrincipal "duke"

{
b

perm ssion java.io. FilePerm ssion "/hone/ duke", "read, wite";

Code from www. f 0o. com signed by f oo, and running as a Sol ari sPri nci pal with
the username duke, has the permission that permits the executing code to read and
write files in / hone/ duke.

XML-Based Example

The JAAS provider also provides an XML file to store policy information. In the
following example, a segment of the j azn- dat a. xn file grants the j azn. com
/ admi ni st rat or s various permissions:

<I--JAZN Policy Data -->
<j azn-pol i cy>
<grant >
<gr ant ee>
<pri nci pal s>
<princi pal >
<real npj azn. coni r eal m»
<type>rol e/type>
<cl ass>oracl e. security.jazn.spi.xm . XMReal nRol e
</ cl ass>
<nane>j azn. conf adm ni strat or s/ name>
</ princi pal >
</ princi pal s>
</ grant ee>
<perm ssi ons>

Overview of JAAS in Oracle9iAS 3-11

What Is JAAS?

<permi ssi on>
<cl ass>oracl e. security.jazn.policy. Adni nPerm ssi on</ cl ass>
<nane>oracl e. security.jazn.realm
Real nPer m ssi on$j azn. con$nodi f yr eal met adat a</ nane>
</ perm ssi on>
<permi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPermi ssi on</ cl ass>
<nane>or acl e. security.jazn.realm
Real nmPer m ssi on$j azn. con®dr opr eal nx/ name>
</ perm ssi on>
<permi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPermi ssi on</ cl ass>
<name>or acl e. security.jazn.real m Real nPer mi ssi on$j azn.
conscr eat er ol e</ nane>
</ perm ssi on>
<perni ssi on>
<cl ass>oracl e. security.jazn.real m Real nPer m ssi on</ cl ass>
<nane>j azn. conx/ nane>
<actions>creat er eal m</ acti ons>
</ perm ssi on>
</ per m ssi ons>
</ grant>
</jazn-policy>

See Also:

« "Sample jazn-data.xml Code" on page B-2 to view a complete
j azn-dat a. xm file.

« "JAAS Provider Policy Administration" on page 3-27 for
information on JAAS provider enhancements to policies

3-12 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Features

JAAS Provider Features

Table 3-4 lists the JAAS features provided by Oracle9iAS.

Table 3-4 JAAS Provider Features

Feature

Description

See Also...

Realms

Realms provide access to user and role information.
An Oracle Realm API package

(oracl e.security.jazn.real misprovided to
support user and role management. This API
includes a Real nPri nci pal interface that extends
fromj ava. security. Princi pal and associates a
realm with users and roles

"Realms" on page 3-10

"JAAS Provider Realm
Framework" on
page 3-18

Role-based access
control (RBAC)

Support is provided for secure, centralized, and
customizable RBAC management

"Role-Based Access
Control (RBAC)" on
page 3-14

Login Module
Authentication

« Provides a Real nLogi nModul e class for
non-SSO environments

« Integrates with Oracle9iAS Single Sign-On (SSO)
for SSO login authentication in J2EE application
environments

Chapter 7, "Developing
Secure J2SE
Applications"

Chapter 8, "Developing
Secure J2EE
Applications"

JAAS provider type

Several methods for managing JAAS provider type

"JAAS Provider Policy

management information are available: Administration" on
« An Admintool command line tool that supports page 3-27
management of information in both provider Chapter 6, "Managing
types the JAAS Provider"
= An Oracle Enterprise Manager graphical user
interface (GUI) tool that supports management
of information in LDAP-based Oracle Internet
Directory
« Programmatic level management of both
provider types
JAZNUserManager JAZNUser Manager is an implementation of the "JAAS Provider

OC4) User Manager that integrates with both
LDAP-based and XML-based provider types.

Integration in J2SE
Application
Environments" on
page 5-3

Chapter 8, "Developing
Secure J2EE
Applications"

Overview of JAAS in Oracle9iAS 3-13

JAAS Provider User Services

JAAS Provider User Services

The Oracle9iAS implementation of JAAS provides these user services for
application developers to integrate into their applications. This section describes
several JAAS provider authorization features.

« Capability Model of Access Control
« Role-Based Access Control (RBAC)

Capability Model of Access Control

The capability model is essentially a method for organizing authorization
information. The JAAS provider is based on the Java2 Security Model, which uses
the capability model of access control to control access to permissions. With the
capability model, authorization is associated with the principal (a user named

f r ank in the following example). Table 3-5 shows the permissions that user f r ank
is authorized to use:

Table 3-5 User Permissions

User Has These File Permissions...

frank Read and write permissions on a file named sal ari es. t xt in the
/ homre/ user directory

When user f r ank logs in and is successfully authenticated, the permissions
described in Table 3-5 are retrieved from the JAAS provider (whether the LDAP-
based Oracle Internet Directory or XML-based provider type) and granted to user
frank. User f r ank is then free to execute the actions permitted by these
permissions.

See Also:

« "What Is the Java2 Security Model?" on page 3-4
« "Principals" on page 3-7
« "JAAS Provider Policy Administration" on page 3-27

Role-Based Access Control (RBAC)

RBAC enables you to assign permissions to roles. Users are then granted their
permissions by being made members of appropriate roles. Support for RBAC is a
key JAAS provider feature. This section describes the following RBAC features:

3-14 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider User Services

« Role Hierarchy

« Role Activation

Role Hierarchy

RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially
a major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a
role, and users are granted their permissions by being made members of that role.
Multiple roles can be granted to a user. A role can also be granted to another role,
thus forming a role hierarchy that provides administrators with a tool to model
enterprise security policies. Figure 3-2 provides an example.

Figure 3-2 Role-Based Access Control

The HR roke includes the following:
/ Hesdd ancd wrile permissons on a Hie named

HR role] salaries in the momedusan directony
1 — Usars frank, bob, and mary are grantad the
ser frank Usar bob sar mary ©| PErmissions and privileges included with the
- - e many HR roke because they ae members of
the role.

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that
individual user.

For example, if multiple users no longer require write permissions on a file named
sal ari es in the / honme/ user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

Role Activation

A user is typically granted multiple roles. However, not all roles are enabled by
default. The user can selectively enable the required roles to accomplish a specific
task in a user session with the r un- as security identity and Subj ect . doAS() . This

Overview of JAAS in Oracle9iAS 3-15

JAAS Provider Realm and Policy Management

ensures the principle of least privilege. This way, the user is not enabling
permissions or privileges unnecessary for the task. This limits the damage that can
potentially result from an accident or error.

See Also: Sun Java documentation by visiting the following URL:

http://java. sun. conl security/

JAAS Provider Realm and Policy Management

The JAAS provider supports two types of repository providers, referred to as
provider types:

« The LDAP-based provider type used with Oracle Internet Directory (OiD)
« The XML-based provider type used with an XML file, typically j azn- dat a. xni

OiD and j azn- dat a. xnl are repositories used to store realm (users and roles) and
policy (permissions) information. This section discusses the following topics in
relation to the two different provider types:

« Realm and Policy Management Tools
« JAAS Provider Realm Framework

« JAAS Provider Policy Administration

Realm and Policy Management Tools

Several tools are provided for managing realm and policy information. Table 3-6
describes these tools and indicates the environment in which they operate.

3-16 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Table 3-6 Realm and Policy Management Tools

Method/Environment Description See Also...
Oracle Enterprise A graphical user interface tool that enables you "Using the Oracle
Manager to create principals (known as grantees) and Enterprise
assign permissions to these grantees. Manager
Interface with the
LDAP-based only JAAS Provider"
on page 6-3
JAZN Admintool A command line interface tool that enables "Using the JAZN
administrators to create and manage users, Admintool" on
realms, roles, and policies. The JAZN page 6-12
Both LDAP and Admintool:
XML-based

« Uses the JAAS ProviderAPI packages
described in Appendix A, "JAAS Provider
APIs" to perform functions

environments

« Can be executed from the operating system
command line

The JAZN Admintool has the same capabilities
and limitations as the JAAS Provider APIs. For
example, you cannot create users with the
JAZN Admintool if your provider type is
LDAP-based Oracle Internet Directory.
However, you can create users if your provider
type is XML-based.

See Also:

« "What JAAS Provider Components Do You Need to Install?" in the
Oracle9i Application Server Installation Guide for information on
installing the provider type you want to use

« "Realms" on page 3-10
« "Package oracle.security.jazn.realm" on page A-7

Overview of JAAS in Oracle9iAS 3-17

JAAS Provider Realm and Policy Management

JAAS Provider Realm Framework

The J2EE environment defines the concept of user communities. A user community
instance is essentially a realm maintained internally by the authorization system.

The API package or acl e. securi ty. jazn. real mis provided to support realms.
This API package is an enhancement to the JAAS policy provider.

Realms can be managed in both provider type environments:
« LDAP-based Oracle Internet Directory

Provides for centralized storage of realms and JAAS policy in a directory
« XML-based

Provide a lightweight form of storage for realms and JAAS policy

Realm Management in LDAP-Based Environments

A realm provides user and role management. An LDAP-based realm's data can be
managed:

« Internally by creating and managing user information with the JAAS provider.
See Chapter 6, "Managing the JAAS Provider".

« Externally by creating and managing user and role information with Oracle
Internet Directory, and then integrating it with the JAAS provider.

LDAP-Based Realm Types

The JAAS provider supports three types of realms for LDAP-based environments.
Each realm provides different user and role management capabilities. Table 3-7
describes these realms.

3-18 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Table 3-7 Implementation of Realm Types
Realms Type Description Use This Realm... See Also...
External « Supports external, read-only For non-hosting Figure 3-3 on
Realm user and role management environments page 3-20
« Integrates existing user "Creating an
communities with the JAAS External Realm"
provider on page 6-26
Subscriber « Created through In a hosting Figure 3-4 on
Realm provisioning tools environment (with page 3-21
Used in hostin subscriber-based
- environments 9 customers) where
multiple customers
« Supports external, read-only or companies
user and role management subscribe to shared
services
Application .« Supports external, read-only If you want to use Figure 3-5on
Realm user management the JAAS provider page 3-22
« Supports internal roles][ole management "Creating an
eature M
management Application
Realm" on
page 6-28

Each realm type consists of:

« Arole manager for role management

. A user manager for user management

User and role managers internally perform their duties (through JAAS provider
permissions) or externally (through OiD Delegated Administration Service (DAS)).

Note:

The JAAS provider does not provide an internal user

manager for creating users. Instead, you can create users with DAS
or acommand line tool such as | dapadd.

Overview of JAAS in Oracle9iAS 3-19

JAAS Provider Realm and Policy Management

Figure 3-3 shows a sample LDAP directory information tree (DIT) containing an
External Realm that is registered as an instance with the JAAS provider. The realm
type is created below a Realms container.

Figure 3-3 Simplified Directory Information Tree for the External Realm

Default Oracle
External users and roles Context
outside of JAZN Context
Abc.com JAZN Contaxt

N

Users \ Realms

Extemal Realm
Rolas + {abcRealm)

Table 3-8 describes the user and role management responsibilities of the External
Realm.

Table 3-8 External Realm Responsibilities

External Realm Name Role Management User Management
abcReal m Retrieves external, read-only Retrieves external, read-only
roles users

Figure 3—-4 shows a sample LDAP directory information tree (DIT) containing a
Subscriber Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

3-20 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Figure 3-4 Simplified Directory Information Tree for the Subscriber Realm

External users and roles
outside of JAZHN Context

Subscribers

BastCOM com

PR

Default Oracle
Context

JAZN Contaxt

Realms

/

Roles

Usars

Subscriber Realm
(BastCOMRealm)

Table 3-9 describes the user and role management responsibilities of the Subscriber

Realm.

Table 3-9 Subscriber Realm Responsibilities

Subscriber Realm Name Role Management

User Management

Best COVReal m

Retrieves external,
read-only roles of a
subscriber

Retrieves external, read-only users
of a subscriber

Overview of JAAS in Oracle9iAS 3-21

JAAS Provider Realm and Policy Management

Figure 3-5 shows a sample LDAP directory information tree (DIT) containing an
Application Realm that is registered as an instance with the JAAS provider. The
realm type is created below a Realms container.

Figure 3-5 Simplified Directory Information Tree for the Application Realm

Default Omacle
Context

JAZN Contaxt

TN\

Application Raalm
Vsers (devRealm)

v

Holas

Table 3-10 describes the user and role management responsibilities of the
Application Realm.

Table 3-10 Application Realm Responsibilities

Application Realm Name Role Management User Management

devReal m Internally creates and Retrieves external, read-only
manages modifiable roles users

LDAP-Based Realm Data Storage

The realm framework provides a means for registering realm instances with the
JAAS Provider and managing their information.

A Realms container object is created under the site-wide JAAS context. (For
example, see the Realms container in Figure 3-3 on page 3-20.) For each registered
realm instance, a corresponding realm entry is created under the Realms container
that stores the realm's attributes. This directory hierarchy is known to the JAAS

3-22 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

provider, which enables the JAAS provider to create new realm instances in the
desirable directory location and find all the registered realms in runtime.

For example, the distinguished name (DN) for a realm called or acl e can be
"cn=or acl e, cn=r eal s, cn=JAZNCont ext, cn=site root".

Upon successful installation of the JAAS provider, a default realm (External Realm)
instance is installed. Predefined realm properties are configured for starting the
default realm. Any realm type must provide concrete implementations for the
system defined Java interfaces User Manager and Rol eManager. In runtime, the
JAAS provider finds all the registered realms and their attributes (name, user
manager implementation class, role manager implementation class, and their
properties) from the provider type (Oracle Internet Directory) and instantiates the
realm's implementation class with the properties for initialization.

Realm Hierarchy As Figure 3-6 illustrates, JAZN stores its entries within the product
container cn=JAZNCont ext . Beneath cn=JAZNCont ext is a cn=Real ns container,
which stores realm entries, and a cn=Pol i cy container, which stores global JAZN
policies. The cn=Pol i cy container in turn stores two types of entries,

cn=Per m ssi ons and cn=G ant ees.

Note that JAZN has its own Groups and Users containers. The first contains the
groups JAZNAdn nG oup and JAZNC! i ent Gr oup. The second contains the users that
populate these groups. These user entries fall under the headings JAZNAdni nUser
and JAZNC i ent . JAZNAdni nUser is the JAZN superuser and is, by default, a
member of JAZNAdnmi nG oup.

Figure 3-6 Global JAZNContext Subtree

on=CTaclelont ent

cn=Praducts
“n=JAZHCant ext

STi=Groug ‘r""d—

en=lasaps Cr=F el

cn=Policy

=T e T m=Grant ses

Figure 3—-7 shows the directory entries that are placed under the hypothetical realm
cn=sanpl eReal m The entry cn=user ngr stores information related to user
management while the entry cn=r ol engr stores information related to role (group)

Overview of JAAS in Oracle9iAS 3-23

JAAS Provider Realm and Policy Management

management. The policy-related entries under cn=sanpl eReal mstore realm-specific
policies.

Figure 3-7 A Realm-Specific Subtree

cn=Fealme

crzaamplafaaln
SRS cn=Policy

cn=Permios i enelrant ses

In a subscriber-based environment, a subscriber is registered as a realm. Using the
subscriber DN, JAZN locates the subscriber-specific Oracle Context and creates a
cn=JAZNCont ext subtree. In this case, JAZN stores the entries cn=user ngr and
cn=r ol engr and policy-related entries under the subscriber’s JAZNCont ext .

In Figure 3-8 cn=or acl e is a subscriber.

Figure 3-8 Subscriber JAZNContext Subtree

m=oTacle

mm=OraclsContext
m=Productes

= B ont et
cn=Ralioy

SR sUSe LT

enaParmiamicr snarantass

Security Measures For Java Authorization Service JAZN directory entries are protected
by ACLs at the root of the product subtree. These ACLs grant the group

JAZNAdm nGr oup and the JAZN superuser JAZNAdni nUser full privileges (read,
write) for JAZN directory objects. Members of JAZNC i ent G- oup have read-only
privileges. Users who are not members of one of these groups are denied access to
JAZN entries.

3-24 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

Because subscriber JAZNCont ext subtrees are mirror images of their site-wide
parents, the security measures that they use to protect entries are the same.

See Also: Oracle9i Application Server Java Authorization
Developer’s Guide

LDAP-Based Realm Permissions

A Real nPer ni ssi on class is defined to represent realm permissions.
Real nPer i ssi on extends from j ava. security. Pernission. Itisused like any
regular Java permission. Real nPer ni ssi on has the following characteristics:

« Realm name, also known as target name
« List of actions (permissions applicable to the realm, such as creating a realm,
dropping a role, and so on)
See Also:

« "RealmPermission” on page A-9

« The JAAS Provider API Reference (Javadoc) is located in the Oracle9i
Application Server Documentation Library on the J2EE & Internet
Applications tab

Realm Management in XML-Based Environments

A realm provides user and role management. For XML-based environments, realm
management is less restrictive and faster: a more lightweight implementation than
LDAP-based realm management.

XML-Based Realm Types

The JAAS provider enables you to create a single realm type for an XML-based
environment.

See Also: "Using the JAZN Admintool" on page 6-12 for
instructions on creating realm types.

XML-Based Realm and Policy Information Storage
An XML-based realm enables you to:

=« Create realms, users, and roles
= Grantroles to users and to other roles

« Assign permissions to specific users and roles (principals)

Overview of JAAS in Oracle9iAS 3-25

JAAS Provider Realm and Policy Management

This information is stored in an XML file, typically, j azn- dat a. xnl . The following
example shows the structure used in aj azn- dat a. xni file to create realms, users,
and roles

<I'--JAZN Real mData -->

<j azn-real mp

<real np
<nane>j azn. conx/ name>
<user s>
<user >
<name>adni n</ name>
<di spl ayName>Real m Adni ni st rat or </ di spl ayName>
<description>Adm ni strator for this real m</description>
<credential s>Q +w7NJul LM=</ credenti al s>
</ user>
<user >
<name>anonynous</ name>
<descri ption>The default guest/anonymous
user </ descri ption>
</ user>
</ users>
<rol es>
<rol e>
<nane>guest s</ nane>
<nenber s>
<nenber >
<t ype>user</type>
<name>adni n</ name>
</ nenber >
<nenber >
<type>user</type>
<nane>anonynous</ nang>
</ nenber >
</ menber s>
</rol e>
<rol e>

<name>adm ni strat or s</ nane>
<di spl ayName>Real m Adm n Rol e</ di spl ayNane>
<description>Adm nistrative role for this
real mx/ description>
<nenber s>
<nenber >
<t ype>user</type>
<nanme>adm n</ name>

3-26 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

</ menber >
</ menber s>
</rol e>
<rol e>
<nane>user s</ name>
<menber s>
<menber >
<type>user</type>
<nanme>adni n</ name>
</ nenber >
</ menber s>
</rol e>
</rol es>

</real nm»
</jazn-real n»

See Also: "Sample jazn-data.xml Code" on page B-2 for a
completed j azn-dat a. xn file.

Note: Setting the <cr edent i al s> element as follows enables you
to use clear (readable) passwords in the j azn- dat a. xni file the first
time.

. <credentials clear="true">wel cone</credenti al s>
« <credential s>!'wel cone</credential s>

This enables the administrator to directly editj azn- dat a. xm with a text
editor. When the file is read and persistence occurs, the password in
j azn-dat a. xnl is obfuscated and becomes unreadable.

JAAS Provider Policy Administration

The JAAS provider implementation of j avax. securi ty. aut h. Pol i cy uses either
an LDAP-based Oracle Internet Directory or XML-based provider type for storing
policy (authorization rules). The JAAS provider administrator uses various grant
and revoke methods of the JAZNPol i cy class to create authorization policies for
principals.

The provider must be administered in a secure manner. There are several ways to
administer the JAAS provider policy:

« Oracle Enterprise Manager (LDAP environments only)
« JAZN Admintool

Overview of JAAS in Oracle9iAS 3-27

JAAS Provider Realm and Policy Management

« Oracle Internet Directory Administration

« AdminPermission Class

See Also: Table 3-6 on page 3-17 for information on Oracle
Enterprise Manager and "Using the JAZN Admintool" on page 6-12
for information on the JAZN Admintool

Oracle Internet Directory Administration

For LDAP-based application environments, you manage realm and policy data as
Oracle Internet Directory entries through:

« The OiD DAS and Oidadmin administrative tools

« Definition of access control lists in Oracle Internet Directory

Two possible administrative groups can manage the data:

« A JAAS provider site-wide administrative group that is granted permissions to
access and modify the site-wide JAZNCont ext and any subscriber-specific
JAZNCont ext

« A realm-specific administrative group for each realm instance or administrative
user

In hosted application environments, part of the policy data may be partitioned
along subscriber boundaries and thus stored in a subscriber subtree. That policy
data cannot be administered by the realm-specific administrative group. The same
is true with role information.

With the JAAS provider policy data (including realm data), only users that belong
to JAZNC i ent G oup or JAZNAdni nGr oup have read-access capabilities on provider
data.

The LDAP-based environment caches provider policy data; for details, see
“Managing JAAS Provider Policy” on page 33.

See Also: Oracle Internet Directory Administrator’s Guide

AdminPermission Class
The Admi nPer mi ssi on class can be used in either LDAP-based or XML-based
environments.

The Adni nPer mi ssi on class represents the right to administer a permission. This
enables a grantee (such as a user named f r ank) to further grant and revoke the
granted right/permission to other grantees. Instances of this permission class

3-28 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Realm and Policy Management

include instances of other permissions. Since this is a permission about permission,
it varies slightly from the permission definition, which includes a simple name,
actions pair. This variation is resolved by encoding a permission instance as a string
and using that as the name of the Adnmi nPer ni ssi on instance. Table 3-11 provides
an example:

Table 3-11 ADMIN Option Example

If User... Then User...

f r ank is granted the Adni nPer ni ssi on for f r ank can further grant and revoke
java.io.FilePerm ssion("/tnmp/*","read, any permissionimplied by the
wite") embedded permission (that is,

Fi | ePer mi ssi on in this instance).

When expressed in the format recognized by the policy provider, this results in the
following:

grant Principal comoracle.security.jazn. JAZNPrincipal "frank"

{

perm ssion comoracle.security.jazn.policy. Adm nPerm ssi on
"class=java.io.FilePermssion, name=\"/tnp/*\", actions=\"read, wite\""

h

Note that another permission instance is encoded in the target name for this
Admi nPer mi ssi on instance.

Recursive embedding of Admi nPer ni ssi on (that is, an Adni nPer ni ssi on instance
embedded within another Adni nPer mi ssi on instance) is not supported. In the
initial policy, the JAAS user is granted Admi nPer ni ssi on to

java. security. Al'| Permi ssi on, enabling the JAAS user to grant and revoke all
permissions to anyone.

A Rol eAdni nPer mi ssi on class is defined for roles. This means that when role hr is
granted to f r ank, f r ank is granted both role hr and a Rol eAdni nPer ni ssi on that
enables f r ank to further grant and revoke role hr.

See Also: "Policies and Permissions" on page 3-10 for an example
of an XML-based policy file

Policy Partitioning

The JAAS provider supports policy partitioning among realms (that is, each realm
has its own realm-specific policy). This realm-specific policy is administered by the
realm-specific administrative group.

Overview of JAAS in Oracle9iAS 3-29

JAAS Provider Realm and Policy Management

In a hosted environment, a subscriber is represented by a realm and the
subscriber-specific information subtree is stored under a subscriber-specific
JAZNCont ext . This subscriber-specific subtree, however, is primarily administered
by the JAAS Provider administrative group from the perspective of the LDAP
server (Oracle Internet Directory).

3-30 Oracle9iAS Containers for J2EE Services Guide

A

Quick Start JAAS Provider Demo

This chapter describes how to quickly configure and run a sample Java2 Platform,
Enterprise Edition (J2EE) application that uses the JAAS Provider, the Oracle9iAS
Containers for J2EE (OC4J) user authentication, authorization, and delegation
service.

This chapter contains these topics:

« Quick Start JAAS Provider Demo Overview
« Setting Up the Demo

« Running the Demo

« Testing the JAZN Admintool

Notes: For the purpose of this Quick Start demonstration, many
terms and concepts in this chapter are described at a high level.
Where appropriate, references are provided to other sections in this
and other guides for specific information on these terms and
concepts.

This example provides instructions for use with the standalone
version of OCA4J. Please refer to the OC4J User’s Guide for
instructions on using the example with the complete Oracle9iAS
installation.

Quick Start JAAS Provider Demo Overview

This Quick Start demo is designed to get you up and running with JAAS provider
using the sample demo application, cal | er | nf 0. It also demonstrates the use of
the JAZN Admintool.

Quick Start JAAS Provider Demo 4-1

Setting Up the Demo

The cal | er | nf o demo indicates whether or not the user attempting to log into the
application has succeeded and with which roles and permissions.

The cal | er | nf o demo application demonstrates use of the following features:

« OC4Jas the HTTP listener that listens for user login requests and functions as
the Web container that stores the cal | er | nf o application

« Basic authentication for validating the login credentials of the user attempting
to access the cal | er I nf o demo application (authentication)

« The JAAS provider for enforcing the roles and permissions assigned to the
authenticated user (authorization)

« The XML-based provider type as the JAAS provider repository provider for
storing users, roles, and permissions

« The J2EE environment to run the application
See Also: The following sections for more detailed information
on the concepts covered in this Quick Start demo:

. Oracle9iAS Containers for J2EE User’s Guide for further
information on OC4J configuration

« Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

« Integrating the JAAS Provider with Basic Authentication” on
page 5-12 for further information on Basic authentication

« "Realm Management in XML-Based Environments" on
page 3-25 for further information on using XML files as the
JAAS Provider environment type

« "JAAS Provider Integration in J2SE Application Environments"
on page 5-2 for further information on the J2EE environment

Setting Up the Demo

These are the basic tasks you must perform to set up the Quick Start demo:
« Task 1: Modifying OC4J Configuration Files
« Task 2: Changing Default Configurations (Optional)

4-2 Oracle9iAS Containers for J2EE Services Guide

Setting Up the Demo

Task 1: Modifying OC4J Configuration Files

In order to use the cal | er | nf o demo, you must modify two OC4J files in
$ORACLE_HOME/ j 2ee/ horre/ confi g/ .

1. Modify the server. xm file by removing the comments around:

<application name="cal |l erInfo" path="../jazn/deno/callerlnfo/callerlnfo.ear" />

2. Modify the def aul t - web-site. xm file by removing the comments around:

<web- app application="cal |l erInfo" name="cal |l erl nfo-web" root="/jazn" />

See Also:

. Oracle9iAS Containers for J2EE User’s Guide for further
information on OC4J configuration

« Oracle9i Application Server Security Guide for further information
on JAAS Provider configuration

Task 2: Changing Default Configurations (Optional)

The sample cal | er | nf o application is installed with several default configuration
settings that enable you to immediately run the JAAS provider. If you want to run
the JAAS provider using these default settings, you can skip this section and go to
"Running the Demo" on page 4-4.

If you make any changes to the default configurations, rebuild the directory with jar
or Ant.

For the purpose of this demo, two different realms are available for
experimentation. Realms provide access to users and roles. The two realms are
contained in j azn- dat a. xm files located in the directory

j 2eel/ hone/ j azn/ confi g/:

« Asample realm, sanpl e_subr eal m is defined in the j azn- dat a. xm file.
sanpl e_subr eal mand the j azn- dat a. xm file are the current defaults.

« A more complex sample realm, j azn. com is defined in the j azn- dat al. xni
file.

To use a realm other than the default sanpl e_subr eal m you must modify the
j azn element of the OC4J ori on- appl i cati on. xm (in the directory
jazn/ deno/ cal | eri nf o/ et c/) as follows:

Quick Start JAAS Provider Demo 4-3

Running the Demo

« Change the realm, def aul t - r eal m from the default value,
sanpl e_subr eal mtoj azn. comor any realm that you have created.

« Changel ocat i on from the default value, j azn- dat a. xni , to
j azn-dat al. xm or any properly configured data file that you have created.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 6-33 for further information on the
jazn-data. xm file

Running the Demo

To start OC4J and connect to the demo application:
1. Start OC4J with the JAAS provider as follows:

java -jar ocdj.jar
For the purposes of this Quick Start demo, an insecure and simple manner for

starting OC4J is presented. For more information about starting OC4J in secure
mode, see "Starting an Application" on page 8-8.

2. Runthecal |l er | nf o application from a Web browser:
http:// host nane: 8888/ j azn

3. Follow instructions on the Web page.
4. Log in with either of the following usernames and passwords:
« adm n/wel cone

Username admi n is assigned the role manager, which is mapped to
sr_nmanager.

= user/456

Username user is assigned the role devel oper, which is mapped to
sr_devel oper.

4-4 Oracle9iAS Containers for J2EE Services Guide

Running the Demo

See Also:

. Oracle9iAS Containers for J2EE User’s Guide

« "Testing and Executing the J2EE Application" on page 8-4 for further
information on starting OC4J with the JAAS provider

« Chapter 8, "Developing Secure J2EE Applications” to view the code for
the cal | er | nf o demo used in this Quick Start demo

Viewing the Results of the callerinfo Demo

When the call to the cal | er | nf o demo application is successful, with the
username user, for example, the browser displays a message similar to the
following:

Time stanp: Fri Aug 24 19:11:37 PDT 2001 request.get RenoteUser =
sanpl e_subreal n user

request.isUserlnRole(' FOO) = fal se

request.isUserlnRol e('ar_manager') = fal se

request.isUserlnRol e('ar_devel oper') = true

request . get User Princi pal = ([JAZNUser Adapt or: user=[XM_Real mJser :
sanpl e_subreal m user])

In summary, this Quick Start demo performed the following:

« The login request from username user used basic authentication to access the
cal | er I nf o demo application.

« The OCA4J listener listened for the login request from username user.

« The JAAS provider enforced the roles and permissions assigned to the
authenticated user user.

« The users, roles, and permissions were retrieved from the XML-based JAAS
provider type.

Quick Start JAAS Provider Demo 4-5

Testing the JAZN Admintool

Testing the JAZN Admintool

The JAZN Admintool is a Java console application that manages provider data from
the command prompt.

You can invoke the JAZN Admintool from the UNIX command line interface as
follows:

java -jar jazn.jar -listusers sanple_subrealm

These are a few of the command options that you can experiment with from a
command-line interface.

-listusers [realm[-role rol el -perm pernission]]
-listroles [realm[user|-role role]|-perm perm ssion]
-listreal ms

-listperns {realmuser |-role role|-real mreal n}
-hel p

The JAZN Admintool also includes a shell. The following screen listing shows how
to access the JAZN Admintool shell and some basic shell commands that you can
run, with results.

> java -jar jazn.jar -shel

JAZN:. > |'s

real ms policy
JAZN > cd real ns
JAZN > |'s

sanpl e_subreal m

JAZN > cd sanpl e_subreal m
JAZN sampl e_subreal m> | s
users rol es

JAZN sampl e_subreal m> cd users
JAZN sampl e_subreal m> | s
adni n

rache

naresh

ray

stella

anonynous

4-6 Oracle9iAS Containers for J2EE Services Guide

Testing the JAZN Admintool

JAZN sampl e_subreal m> add scott tiger
JAZN sampl e_subreal m> | s

anonynous

rache

ray

scott

stella

admin

nar esh

JAZN sampl e_subreal m> rm scott
JAZN sampl e_subreal m> | s

adni n

rachel

naresh

ray

stella

anonynous

JAZN sampl e_subreal m> exit
JAZN sampl e_subreal >

See Also: "Using the JAZN Admintool" on page 6-12

Quick Start JAAS Provider Demo 4-7

Testing the JAZN Admintool

4-8 Oracle9iAS Containers for J2EE Services Guide

D

Integrating the JAAS Provider with Java2

Applications

This chapter describes how to integrate the JAAS provider with applications
developed for Java2 environments in Oracle9iAS Containers for J2EE (OCA4)).

This chapter contains these topics:

Java2 Application Environments Overview

JAAS Provider Integration in J2SE Application Environments
JAAS Provider Integration in J2EE Application Environments
How Do | Get Started?

Java2 Application Environments Overview

The JAAS provider integrates into applications developed for several Java2
environments:

Java2 Platform, Standard Edition (J2SE)

For developing, deploying, and managing standalone Java applications

See Also: "JAAS Provider Integration in J2SE Application
Environments" on page 5-2

Java2 Platform, Enterprise Edition (J2EE)

For developing, deploying, and managing multi-tier, Web-based applications

See Also: "JAAS Provider Integration in J2EE Application
Environments" on page 5-3

Integrating the JAAS Provider with Java2 Applications 5-1

JAAS Provider Integration in J2SE Application Environments

Oracle Components Available on the Java2 Platform

When the JAAS provider is integrated with applications developed for the Java2
Platform, the following Oracle components are available to developers:

« The JAAS provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The JAAS provider supports two possible repositories or provider
types:

« LDAP-based Oracle Internet Directory (available only with Oracle9iAS
Infrastructure installation)

« XML-Based Provider Type
« Login modules, such as the JAAS provider Real nLogi nModul e

See Also: «"Provider Types" on page 3-3 for further information
about provider types

« Chapter 7 of the Oracle9i Application Server Security Guide for
required components

JAAS Provider Integration in J2SE Application Environments

Figure 5-1 is an overview of an application running in a J2SE environment.

Figure 5-1 Oracle Component Integration in J2SE Environment

Client Oracle9AS JAAS Provider
— {for storing realm information

JDK /. JVM (users and roles) and policy

information (permissions))

Java Application

JAAS | BoaimLoginModule I Ior o
ac

— Internet
DrackDid 5 JAAS B e :| g Directory
Palicy 14—

5-2 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

A Typical Scenario in the J2SE Environment

The following section describes the responsibilities of the Oracle components
illustrated in Figure 5-1 when a client request is initiated.

1. Aclient attempts to access a local, desktop application.

2. Real nLogi nModul e or another Logi nMbdul e authenticates the client’s login
attempt.

3. The Java virtual machine (JVM) examines the authorization context associated
with the current thread, consults the JAAS provider policy, determines that the
current subject has the required permission to write to the file, and returns
checkPer m ssi on() safely.

See Also: Your Sun Java documentation for more information on
J2SE by visiting the following URL:
http://java. sun. conlj 2se/

JAAS Provider Integration in J2EE Application Environments

When the JAAS provider is integrated with applications developed for the J2EE
environment, the functionality of the J2SE environment extends to the enterprise
level. Additional features in the J2EE environment include:

« Oracle9iAS Containers for J2EE (OC4J)
« JAZNUserManager

Oracle9iAS Containers for J2EE (0C4J)

OC4J is a key component of the JAAS provider integration in the J2EE environment.
OC4J is a Web container that accepts HTTP and RMI client connections. These
connections permit access to servlets, Java Server Pages (JSPs), and Enterprise
JavaBeans (EJBs).

J2EE containers separate business logic from resource and lifecycle management.
This enables developers to focus on writing business logic, rather than writing
enterprise infrastructure. For example, Java servlets simplify Web development by
providing an infrastructure for component, communication, and session
management in a Web container integrated with a Web server.

Integrating the JAAS Provider with Java2 Applications 5-3

JAAS Provider Integration in J2EE Application Environments

The JAAS provider is also integrated with OC4J to enhance application security.
This integration provides the following benefits:

Integration with either single sign-on (SSO) and nod_osso or secure socket
layer (SSL) and nod_ossl

Fine-grained access control through Java2 permissions

r un- as identity support, delegation support (from servlet to Enterprise
JavaBeans)

Secure file-based storage of passwords

JAZNUserManager

Another key component of JAAS provider integration in the J2EE environment is
JAZNUser Manager. JAZNUser Manager is an implementation of the OC4J
User Manager interface.

Replacing principals.xml

JAZNUser Manager permits secure replacement for or migration from the OC4J
princi pal s. xm file with the following:

Secure storage of obfuscated passwords
Full role-based access control (RBAC), including hierarchical roles
Full support for the Java2 permission model and JAAS

Secure implementation based on the Java2 permission model, to allow
untrusted (or partially trusted) code to run in the same JVM as the JAAS
provider

See Also: For information on using the JAZN Admintool to
migrate from pri nci pal s. xnm , "Migrating Principals from the
principals.xml File" on page 6-19

5-4 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

JAZNUserManager Features

In addition to the features mentioned in "Replacing principals.xml" on page 5-4,
JAZNUser Manager provides many other features, including:

Single Sign-On (SSO) integration with OC4)J

Real mLogi nMbdul e integration in non-SSO environments

Identity propagation

Location, reading, editing, removal, and management of user and group objects
Enforcement of security constraints

A filter for changing the content of HTTP requests, responses, and header
information.

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on the JaznUser Manager

Integrating the JAAS Provider with Java2 Applications 5-5

JAAS Provider Integration in J2EE Application Environments

Figure 5-2 provides an overview of an application running in a J2EE environment.

Figure 5-2 J2EE Application Model

First Tier Web Tier
Buginess Logic
{includes Web
application) -
Services Database

!

Cracle9iAS JAAS Provider
{for storing realm information
{users and rolas) and policy
informaticn (parmissions))

S

Intermet
Directary

XML Files

5-6 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

Authentication Environments

The JAAS provider integrates with three different login authentication
environments in a J2EE applications.

« SSO
Uses Oracle9iAS Single Sign-On to authenticate logins
= SSL
« Uses Secure Socket Layers for client certificate-based authentication

« Uses alogin module (for example, Real nLogi nModul e) to authenticate
logins

=« Basic Authentication

« Prompts user directly for username and password, without going through
Oracle9iAS Single Sign-On

« Uses alogin module (for example, Real nLogi nModul e) to authenticate
logins

The following sections discuss how the JAAS provider integrates with each of these
authentication types.

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide for information on configuring authentication methods

Integrating the JAAS Provider with Java2 Applications 5-7

JAAS Provider Integration in J2EE Application Environments

Integrating the JAAS Provider with SSO-Enabled Applications

SSO lets a user access multiple accounts and applications with a single set of login
credentials. Figure 5-3 shows JAAS provider integration in an application running
in an SSO-enabled J2EE environment.

Figure 5-3 Oracle Component Integration in SSO-Enabled J2EE Environments

. RMI Enterprise
OracleDiAS Conta —
Apache JSetv |t J2EE JUDK m
, Protocol

7| wWebApp A1
=
a1 52 JDBC
WebApp A2

51 52

OracleSiAS JAAS

JAZNUszerManager

JAAS

OracleDif s
JAAS Palicy

HTTP

[Bas | Oracle9iAS JAAS Provider
{for storing realm infarmartion
{users and roles) and policy
infarmation {permissions))

I I
Oracle
Internet
Directory

L J

XML Files

SSO-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSO-enabled J2EE environment.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

5-8 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

mod_osso/Oracle HTTP Server receives the request and:

« Determines that WebApp Al application requires Web-based SSO for
authenticating HTTP clients

« Redirects the HTTP client request to the Web-based SSO Oracle9iAS Single
Sign-On (since it has not yet been authenticated).

The HTTP client is authenticated by Oracle9iAS Single Sign-On through HTTP
or public key infrastructure (PKI) Authentication. Oracle9iAS Single Sign-On
then:

« Validates the user's stored login credentials

« Sets the SSO cookie (including the user’s distinguished name and realm)
« Redirects back to the WebApp Al application (in OC4J)

The JAAS provider retrieves the SSO user.

The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:
a. The target servlet is invoked.
If the r unas- node is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs() . The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
get Per m ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per mi ssi ons() .

b. The servlet's code runs under the AccessCont r ol Cont ext of the SSO
user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Secur i t yManager . checkPer m ssi on().

Integrating the JAAS Provider with Java2 Applications 5-9

JAAS Provider Integration in J2EE Application Environments

d. The JVM then:
— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

e. SecurityManager. checkPer m ssi on() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with SSL-Enabled Applications

SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 5-4 shows the JAAS provider integration in an
application running in an SSL-enabled J2EE environment.

Figure 5-4 Oracle Component Integration In SSL-Enabled J2EE Environments

HTTPS
Cllenl

HTTPS

i RMI n
s Oracle9iAS Containers —p Enterprise
A e I v for J2EE / JDK

Protocol
nod oci | « S —

st 52 JDBC
+—> Database

Oracle

HTTP
il WebApp A2
sarnviet sarviet
s1 52
Oracle9iAS JAAS

JAZNUserManager

JAAS

COrackeSiAs
JAAS Policy

L J
Oracle9iAS JAAS Provider
(for storing realm information

(users and roles) and policy
information (permissions))

I I Oracle
Internet
= Directory

XML Files

5-10 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

SSL-Enabled J2EE Environments: A Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSL-enabled J2EE environment. In this environment,
Oracle9iAS Single Sign-On is not used. A login module (for example,

Real mLogi nMbdul e) is used.

1.

An HTTP client attempts to access a Web application (named WebApp Al)
hosted by OC4J (the Web container for executing servlets). Oracle HTTP Server
(using an Apache listener) handles the request.

mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp Al application requires SSL server authentication for HTTP clients.

If a server and/or client wallet certificate is configured, the HTTP client is
prompted to accept the server certificate and provide the client certificate.

The JAAS provider retrieves the SSL client certificate.
The JAAS provider retrieves the SSL user.

The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:
a. The target servlet is invoked.
If the r unas- node is set to true, then the following happens:

a. The JAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs() . The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults for permissions
associated with the SSL user through the get Per mi ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per mi ssi ons() .

b. The servlet's code runs under the AccessCont r ol Cont ext of the SSL
user.

Integrating the JAAS Provider with Java2 Applications 5-11

JAAS Provider Integration in J2EE Application Environments

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Securi t yManager . checkPer mi ssi on().

d. The JVM then:
— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

e. SecurityManager. checkPer mi ssion() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with Basic Authentication

Basic authentication bypasses Oracle9iAS Single Sign-On. Figure 5-5 shows specific
JAAS provider integration in an application configured for Basic authentication in a
J2EE environment.

5-12 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

Figure 5-5 Oracle Component Integration in j2ee Environment

Oracle9iAS Contai
Apache.B:enr fara.‘jQEEIJDI?‘ iners JavaBeans

Pr
== -
s1 52 JDBC
— Database
WebApp A2
serviet serviet
s1 52
Oracle9iAS JAAS

JAZNUserManagar

&
JAAS -

OracleSiAs
JAAS Policy

Oracle9iAS JAAS Provider
(for storing realm information
(usars and roles) and policy
information (permissions))

I I COracle
Internet
= Directory
el
XML Files

Basic Authentication J2EE Environments: Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment configured for Basic authentication.
In this environment, Oracle9iAS Single Sign-On is not used. A login module (for
example, Real m_ogi nMbdul e) is used.

Note: If you have configured BASIC authentication, OC4J invokes
the Real mLogi nMbdul e whenever the user credentials are
required. For example, when a request hits a protected page, OC4J
will ask the JAAS provider to authenticate the user, then the

Real m_Logi nMbdul e will be invoked to authenticate the user,
using the credentials sent by the user via the browser over HTTP.

Integrating the JAAS Provider with Java2 Applications 5-13

JAAS Provider Integration in J2EE Application Environments

1. An HTTP client attempts to access a Web application (named WebApp Al)
hosted by OC4J (the Web container for executing servlets). The OC4J listener
handles the request.

2. The JAAS provider retrieves the user.

3. The final step or steps depend on the setting of the r unas- node in the
j azn- web- app element.

If the r unas- node is set to false, then the following happens:

a.

The target servlet is invoked.

If the r unas- node is set to true, then the following happens:

a.

The JAAS provider invokes the target servlet's ser vi ce() method within
aPrivil egedActi on block through Subj ect . doAs() . The
JAZNUser Manager enforces security constraints.

— When Subj ect . doAs() is called, JAAS consults the provider for
permissions associated with the SSO user through the
get Per m ssi ons() method.

— The provider retrieves the permissions associated with the given
grantee from the provider type (Oracle Internet Directory or
XML-based), and updates the policy cache as appropriate. The provider
then returns the granted set of permissions to JAAS runtime.

— JAAS runtime constructs a new AccessCont r ol Cont ext based on
the permissions returned from get Per m ssi ons() .

The servlet's code runs under the AccessCont r ol Cont ext of the user.

The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to Secur i t yManager . checkPer m ssi on().

The JVM then:
— Examines the authorization context associated with the current thread

— Determines that the current subject has the required permissions to
write to the file

Securi t yManager . checkPer i ssi on() returns safely and the client
HTTP request proceeds.

5-14 Oracle9iAS Containers for J2EE Services Guide

JAAS Provider Integration in J2EE Application Environments

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL:

http://java. sun. conlj 2ee/

J2EE and JAAS Provider Role Mapping

Two distinct roles types are available to application developers creating JAAS
provider-integrated applications in J2EE environments: J2EE roles and JAAS
provider roles. When these role types are mapped together using OC4J group
mappings, users can access an application with a defined set of role permissions for
as long as the user is mapped to this role.

This section describes these role types and how which they are mapped together.
« J2EE Security Roles

« JAAS Provider Roles and Users

« OC4J) Group Mapping to J2EE Security Roles

J2EE Security Roles

The J2EE development environment includes a portable security roles feature
defined in the web. xni file for servlets and Java Server Pages (JSPs). Security roles
define a set of resource access permissions for an application. Associating a
principal (in this case, a JAAS provider user or role) with a security role assigns the
defined access permissions to that principal for as long as they are mapped to the
role. For example, an application defines a security role called sr _devel oper:

<security-rol e>
<rol e-nane>sr_devel oper </ rol e- nane>
</security-rol e>

You also define the access permissions for the sr _devel oper role.

<security-constraint>
<web-r esour ce-col | ection>
<web- r esour ce- nane>access to the entire application</ web-resource-name>
<url-pattern> *</url-pattern>
</ web-resour ce-col | ection>
<l-- authorization -->
<aut h-constrai nt >
<rol e-nane>sr_devel oper </ rol e- name>
</ aut h-constrai nt >
</security-constraint>

Integrating the JAAS Provider with Java2 Applications 5-15

JAAS Provider Integration in J2EE Application Environments

JAAS Provider Roles and Users

JAAS provider roles and Users are defined depending on the provider type,
LDAP-based Oracle Internet Directory or XML-based.

For example, with the XML-based provider type, devel oper is listed as a
role element in the jazn-data.xm file:

<rol e>
<nane>devel oper </ nane>
<menber s>
<menber >
<t ype>user <t ype>
<nane>j ochn<nane>
</ menber >
</ menber s>
</rol e>

0C4J Group Mapping to J2EE Security Roles

OC4J enables you to map portable J2EE security roles defined in the J2EE web. xni
file to groups inan ori on- appl i cati on. xm file.

The roles and users defined in your provider environment are mapped to the OC4J
devel oper group role inthe ori on-appl i cati on. xn file.

For example, the sr _devel oper security role is mapped to the group named
devel oper.

<security-rol e- mappi ng name="sr_devel oper">
<group nane="devel oper" />
</security-rol e- mappi ng>

This association permits the devel oper group to access the resources allowed for
the sr_devel oper security role.

User j ohn is listed as a member of the devel oper role. Because the devel oper
group is mapped to the J2EE security role sr _devel oper in the
orion-application.xm file,j ohn has access to the application resources
defined by the sr _devel oper role.

5-16 Oracle9iAS Containers for J2EE Services Guide

How Do | Get Started?

How Do | Get Started?

You are now ready to get started with the JAAS Provider. To get started quickly,
follow the sections in Table 5-1 in the exact order listed:

Table 5-1 Getting Started with the JAAS Provider
To... See...

Identify and install the JAAS The Oracle9i Application Server Installation Guide for your
provider components required operating system

for applications developed in

the J2SE and J2EE environments

Configure the JAAS provider Chapter 7 of the Oracle9i Application Server Security Guide
after installation

Create realms and associated Chapter 6, "Managing the JAAS Provider"
components with the provider

Create secure J2SE and J2EE Chapter 7, "Developing Secure J2SE Applications”
applications with the JAAS

provider Chapter 8, "Developing Secure J2EE Applications"

Integrating the JAAS Provider with Java2 Applications 5-17

How Do | Get Started?

5-18 Oracle9iAS Containers for J2EE Services Guide

6

Managing the JAAS Provider

This chapter describes how to manage the Oracle9iAS Containers for J2EE (OC4J)
JAAS Provider in Java?2 Platform, Standard Edition (J2SE) and Java2 Platform,
Enterprise Edition (J2EE) environments.

This chapter contains these topics:

JAAS Provider Management Overview

Using the Oracle Enterprise Manager Interface with the JAAS Provider
Using the JAZN Admintool

Managing LDAP Provider Data with Java Programs

Managing XML-Based Provider Data with the XML Schema

Other Utilities

JAAS Provider Management Overview

Managing the JAAS provider in the J2SE and J2EE environments involves creating
and managing realms, users, roles, permissions, and policy.

How you manage the JAAS provider depends on two things:

Whether your provider is XML-based or LDAP-based Oracle Internet Directory
Which of the available tools (alone or in combination) you are using:

« Oracle Enterprise Manager (policy and permission management, only with
this release)

« JAZN Admintool, a command-line tool

« Java Programs for LDAP Management, based on the JAAS Provider APls

Managing the JAAS Provider 6-1

JAAS Provider Management Overview

Other Utilities including:
- Per mi ssi onCl assManager
- Pri nci pal d assManager

- Logi nMbdul eManager

Note: Based on the provider type you are using, these tools are
used in slightly different contexts and are not necessarily directly
parallel in function. For example, the JAZN Admintool enables you
to create users if your provider type is the XML-Based Provider
Type, but not if your provider type is LDAP-based.

Therefore, if you are planning to rely on either the Oracle
Enterprise Manager or the JAZN Admintool, also read the
appropriate section, "Managing LDAP Provider Data with Java
Programs" on page 6-24 or "Managing XML-Based Provider Data
with the XML Schema" on page 6-33, for a fuller understanding of
the functions available in each environment.

Table 6-1 describes the general functionality of each tool in both XML-based and
LDAP-based provider type environments.

Table 6-1 Tools For Managing XML-Based and LDAP-Based Provider Environments

UsingThis Tool... With LDAP-Based provider With XML-Based provider type
type

Oracle Enterprise You can create principals This tool is not available.

Manager (known as grantees) and assign
permissions to these grantees.

JAZN Admintool A broad range of functions is A broad range of functions is
available, including several not available, including several not
included in the API. included in the API.

Java Programs for You have access to all the JAAS This tool is not available.

LDAP Management Provider API functionality

available in an LDAP
environment.

6-2 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

LDAP-Based and XML-Based JAAS Providers

XML-based and LDAP-based JAAS providers enable different functionalities as
described in Table 6-2.

Table 6-2 JAAS Provider Management

JAAS Provider Description See Also...

LDAP-based Enables you to: "Realm Management in

Available with the « Create realms LDAP-Based Environments
on page 3-18

Oracle9iAS Infrastructure

installation type) « Manage roles (in an External

Realm or Subscriber Realm) Managing Realms" on

page 6-25
« Manage or create roles (in
an Application Realm)
« Assign permissions
XML-based Enables you to: "Realm Management in
(Available with all « Create and manage realms, ;(r']vl La-B:s;gsEnwronments
installation types users, and roles pag

"Managing XML-Based
Provider Data with the XML
Schema" on page 6-33

« Assign permissions

Using the Oracle Enterprise Manager Interface with the JAAS Provider

You can use Oracle Enterprise Manager to perform two JAAS provider tasks:
« Manage JAAS Policy

« Manage Java Permissions

See Also: Your Oracle Enterprise Manager documentation for
instructions on starting Oracle Enterprise Manager

Oracle Enterprise Manager functionality for the JAAS provider is currently only
available for the LDAP provider environment and only for policy management
tasks.

Note: Oracle Enterprise Manager windows use Add buttons that
operate as follows: You enter or select items to be acted upon or
searched for, add them to a list using the Add button, and finally
process the items.

Managing the JAAS Provider 6-3

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Accessing the JAAS Provider

To use the Oracle Enterprise Manager to perform JAAS provider tasks, navigate to
the Oracle9i Application Server entry, then to the OC4J system component, and
select the application default as follows:

To access the JAAS Provider:

1. Choose the appropriate Oracle9i Application Server entity in the Application
Servers Name column.

2. Choose OC4J in the System Components list.

The System Components panel appears:

System Components

Select Component and... (stan) (Stop) (" Restart)
Select MName Type Status (Uptime (days) |CPU Usage (%0) (Memory Usage (RMB)

& |@eb Cache Web Cache)

o OID-1 Oracle Internet Directory Server ‘?Iﬂ

0 |apache 7777 HTTE Server 4 |am 29 411544

s Syndication Server | Syndication Server plﬂ

' 8ere 7777 IServ v

O loca oc4l v

Copyright 2001, Oracle Corp.

Targets | Preferences | Help

Privacy Statement

3. Choose Oracle9i Application Server from the list of Application Defaults.

The main window for the JAAS provider appears:

6-4 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

ORACLE

Freferances Help

Enterprise Manager Targets

JAAS

Java Permissions

Policy Management

Grant Entries

Overview

The JAAS Policy
contains a list of Grant
Entries. Each Grant
Entry authorizes a set of
Java Permissions for
one of more Java
Principials.

Search: @
¢ Mew Grant)
Results { Delete)
& Previous Im Mext & &
Select/Grant Entry

&

mutiPrinPerm

multiPrinperm3

ocdj?

testd22

DI DO D

testMeedCodeBase

Copyright 2001, Oracle Corp.

Targets | Preferences | Help

Task 1: Managing JAAS Policy

Policies, which store JAAS authorization rules, consist of one or more grants or
grant entries. Grant entries are grantees (principals and codesource (optional)) and

their a

ssigned permissions.

Managing JAAS Policy enables you to:

Frivacy Statement

« Search for existing grant entries and view grant entry data

« Delete grant entries

« Create new grant entries by assigning JAAS provider permissions to principals

Managing the JAAS Provider 6-5

Using the Oracle Enterprise Manager Interface with the JAAS Provider

Note: To manage JAAS policy, the policy cache must be disabled.
This is the default setting.

Searching for And Viewing Existing Grant Entries
To search for and view grant entry data:

1.

Choose JAAS Policy from the tab on the left of the main window.

The JAAS Policy Management window appears. This is the same as the main
JAAS provider window. See "Accessing the JAAS Provider" on page 6-4.

The window immediately displays a results list that you can modify by entering
a search phrase or using arrows that guide you to subsequent sections of the
results list.

Enter the codesource URL, if any.

If the grant name you are searching for does not appear immediately on the
results list, enter it.

Wild cards are implied, that is, if you enter several letters, the results list shows
all entries that begin with those letters, assuming the case is the same.

Choose Go or press Enter.

When the grant name you are searching for appears in the results list, click the
name to view the grant entry data.

For the grant name you have entered, the following data appears:
« Principal Names and classes
« Permission Names and classes

« The codesource, if any, assigned to the grant entry

Deleting Grant Entries
To delete grant entry data:

1.

Perform the search functions as described "Searching for And Viewing Existing
Grant Entries" on page 6-6.

Select the grant entry from the results list by choosing the radio button besides
the name.

6-6 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

3. Choose Delete.

Creating a New Grant Entry
To create a new grant entry:

1. Choose JAAS Policy from the tab on the left.
The JAAS Policy Management window appears.
2. Choose New Grant.

The New Grant: Name/CodeSource window appears, and enables you to enter
a name for the new grant entry and define a codesource. The codesource is the
code associated with the policy entry.

ORACL.E . Freferances Help
Enterprise Manager Targets
JBAS Policy)

p—y
Mame/Code Source Principal{s) Permissionis)

Java Permissions

New Grant:Name/Code Source

Name/Code Source

Grant Mame: Igary@work

URL: |http:ﬂweb.us.0racl§.com

(" cancel) Step1of3 | Mext
Targets | Preferences | Help

Copyright 20041, Oracle Corp. Frivacy Statement

3. Enter a grant name and codesource.

4. Choose Next.

See Also: "Policies and Permissions" on page 3-10 for information
on codesources

Managing the JAAS Provider 6-7

Using the Oracle Enterprise Manager Interface with the JAAS Provider

The New Grant: Principal(s) window appears and enables you to select the
principal type and enter one or more principals to define the grant entry.

The available principal types are:
« Solaris User
« LDAP User

« Realm User

ORACLE . Frefarences Help
Enterprise Manager Targets

JAAS Palicy
Principalis}) Permissionis)
Java Permissions

New Grant:Principal(s)

Add Principals

Type:ISolaris User j Narne: |ggilchri /EJ

Principal(s) (Rermove)
& Previous Il—l of 1 v| MNext &

Select|Principal Class Principal Name
& |com.sun. security. auth. SolarisPrincipal |ggilchri

(cancal) (" Back | Step 2 of 3 | Next
Targets | Preferences | Help

Copyright 2001, Oracle Corp. Privacy Statement

5. Select the type and enter the name of a principal.

If you have selected the LDAP type, the name must be an X.500 distinguished
name. Although the system accepts other names, they will be rejected when you
finish. For other types, you can enter any name.

6. Choose Add to add this principal to the list of principals being added to this
grant.

6-8 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

7. Repeat Steps 5 and 6 until all principals are added to the list of principals.
8. Choose Next to add all principals on the list to the grant.

The New Grant: Permission window appears and enables you to enter the
permission class, target, and action for the grant entry. These are essentially
what the user is authorized to do with your application.

« Theclass is the Java permission being assigned to the policy (for example,
java.io. Fil ePernission).

« The target is the resource to which this permission applies (for example,
files in a directory named / hone/ *).

« The action is the actions associated with this target (for example, read and
write privileges on all files in / hone/ *).

ORACLE . Freferences Help
Enterprise Manager Targets
JAAS Palicy

Permission(s}

Java Permissions

New Grant:Permission(s)

Add Permissions

Class: IPﬂePemusslon 'l fjzva.io. FileParmisgion

Target: |<<ALL_PILES>> j Ifhomeflog.txt
Action: Iread j Iwrite

(" aad)
Permission(s) (" Rermove)
& Previous |1-1 of 1 Vl Mext &

Select|Permission Class Target Action
o hava.io.FiIePermission ‘homedsalary . txt read

("cancel) (Back|Step3or3 (Finisn)

Managing the JAAS Provider 6-9

Using the Oracle Enterprise Manager Interface with the JAAS Provider

9. Select the class, target, and action from the drop-down list boxes on the left or
enter the names directly in the fields on the right.

10. Choose Add to add this permission to the list of permissions to be added the
grant.

11. Repeat Steps 9 and 10 until all permissions have been added to the list of
permissions.

12. Choose Finish.

The entry is now granted these permissions on the designated target. The grant
entry is complete.

Task 2: Managing Java Permissions

The Java Permissions task enables you to search for and view the permissions of a
principal on a given codesource and revoke these permissions. You can search by
principal class or principal name.

Searching for And Viewing Existing Permissions
To search for permissions on a principal:

1. Choose Java Permissions from the tab on the left.

The Permission Management window appears:

6-10 Oracle9iAS Containers for J2EE Services Guide

Using the Oracle Enterprise Manager Interface with the JAAS Provider

ORACLE

Preferences Help

Enterprise Manager Targets

JAAS Policy

Java Permissions

Permission Management

Search Permissions granted to Principals

Code Source

URL: |

Principal(s)

Type: ISolarisUser j Marme:

'

Add

Overview

Specify one or more Java
Principals in the Principals
table and search for
Permissions granted in the
JAAS Policy. Optionally,
the search may be refined
to return Permissions that
are granted for a particular
Code Source URL. You
may revoke any granted
Permissions for the
selected the Principalis).

./.
Remove)

Select|PrincipaI Class

Principal Name

o |com.sun.security.auth.SoIarisF’rincipaI

izhang

4 Get Permissionds))

Results

5
. Revoke)

& Previous Il—l of 1 'I Mext &

Select|Permission Class

Permission Target/Actions

o Ijava.io.FiIeF'ermission

<<ALL_FILES=> write

Enter the codesource URL.

Select the principal type from the drop-down list.

The available principal types are:

« Solaris User
« LDAP User

« Realm User

Enter the name of a principal from the principal type.

Choose Add to add a principal to the search list. You can search for multiple

principals at once.

Managing the JAAS Provider

6-11

Using the JAZN Admintool

6. Repeat Steps 4 and 5 until all principals have been added to the search list.
7. Choose Search.

The results display on-screen including permission class, permission target, and
permission actions, but the codesource does not appear.

Revoking Permissions Assigned to a Principal
To revoke permissions assigned to a principal:

1. Perform the search function as described in "Searching for And Viewing
Existing Permissions" on page 6-10.

2. Revoke permissions by selecting the radio button of an appropriate permission.
You can only revoke one permission at a time.

3. Choose Revoke.

Using the JAZN Admintool

The JAZN Admintool can manage both XML-based and LDAP-based JAAS
provider data from the command prompt.

The JAZN Admintool is a flexible Java console application, with functions that can
be called directly from the command line or through the shell interface of the
Admintool. The shell uses UNIX-derived commands to perform specific JAAS
provider functions.

This section includes the following topics:
« Usage Examples

« Command Options

« Realm Operations

= JAZN Shell Interface

= JAZN Shell Commands

Usage Examples

The following examples illustrate the different ways that the JAZN Admintool
commands can be used.

6-12 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

To list all users in realm foo:
From the UNIX command line:

java -jar jazn.jar -listusers foo

From the shell interface of the Admintool (using command-line options):

JAZN. > |istusers foo

From the shell interface of the Admintool (through modified UNIX commands):

JAZN. > cd /real ns/fool users
JAZN. foo> |'s

To add the role fooRole to realm foo:
From the UNIX command line:

java -jar jazn.jar -addrole foo fooRole

From the shell interface of the Admintool (using command-line options):
JAZN: > addrol e foo fooRol e

From the JAAS provider shell (through modified UNIX commands):

JAZN. > cd /real ns/fool users
JAZN: f 00> nkdir fooRol e

Command Options

The JAZN Admintool provides the following command options, which are
described in greater detail in the following sections. The JAZN Admintool
command options can be invoked several different ways as described in "Usage
Examples" on page 6-12. Error messages display if the syntax or parameters
specified are incorrect.

Realm Operations

-addreal mreal madm n {adm npwd adni nrol e| admi nrol e
userbase rol ebase real ntype}

-addrole realmrole

-adduser real musernanme password

-checkpasswd real muser [-pw password]

-grantrole role realm{user|-role to_rol e}

Managing the JAAS Provider 6-13

Using the JAZN Admintool

-listreal ms

-listroles [realm[user|-role role]|-perm perm ssion]
-listusers [real m[-role rol e|-perm pernission]]
-renrealmrealm

-renmrole realmrole

-renuser real muser

-revokerole role real m{user|-role to_rol e}

-set passwd real muser ol d_pwd new_pwd

Policy Operations

-addper m perm ssi on pernmission_class action target [description]
-addprncpl principal _nanme prncpl _class params [description]
-grantpermreal m{user|-role rol e} pernission_class
perm ssion_actions
-listperns real m{user |-role role|-realmrealn}
-1istperm permssion
-listprncpls
-listprncpl principal _name
- renperm perni ssion
-renprncpl principal _nane
-revokepermreal m{user|-role role} permssion_class
perm ssion_actions

Interactive Shell
-shel |

Configuration Operations
-getconfig default_real madm n password

Migration Operations
-convert filenane realm

Miscellaneous

-hel p
-version

Realm Operations

Adding and Removing Realms

-addreal mreal madnm n {adm npwd adninrole | adminrol e userbase rol ebase
real ntype}

6-14 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

-remrealmrealm

The - addr eal moption creates a realm of the specified type with the specified
name, and - r enr eal mdeletes a realm.
Valid realm types are;
« LDAP Environment: external and application
« XML Environment: XML
The user must provide the following:
« Foran XML provider type:
« realmname
« administrator username
« administrator password
« administrator role
« For LDAP:
« realmname
« administrator name
« administrator role
« user search base in the directory
« role search base in the directory

« realm type

Adding and Removing Roles

-addrole realmrole
-remole realmrole

The - addr ol e option creates a role in the specified realm, and - r ent ol e deletes a
role from the realm.

Adding and Removing Users

-adduser real musernane password
-renuser real muser

Managing the JAAS Provider 6-15

Using the JAZN Admintool

The - adduser option adds a user to a specified realm, and - r enuser deletes a
user from the realm.

Checking Passwords
-checkpasswd [real nj user [-pw password]

The - checkpasswd option indicates whether the given user requires a password
for authentication. If - pwis used, it displays a message indicating whether the
specified password authenticates the user.

Granting and Revoking Roles

-grantrole role real m{user|-role to_rol e}
-revokerol e role realm{user|-role to_rol e}

The - gr ant r ol e option grants the specified role to a user (when called with a user
name) or a role (when called with - r ol e). The - r evoker ol e option revokes the
specified role from a user or role.

Listing Realms
-listreal ns

The -1i streal s option displays all realms in the current JAAS provider
environments.

Listing Roles
-listroles [real m[user|-role role|-perm pernission]]

The -1i strol es option displays a list of roles that match the list criteria. This
option lists the following:

« Allrolesin all realms, when called without any parameters
« Allroles granted to a user, when called with a realm name and user name

« Roles that are granted the specified r ol e, when called with a realm name and
the option-rol e

« Roles that are granted the specified per m ssi on, when called with a realm
name and the option - perm

6-16 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Listing Users
-listusers [realm[-role role|-permpermssion]]

The - 1i st user s option displays a list of users that match the list criteria. This
option lists the following:

« Allusers in all realms, when called without any parameters
« Allusersin arealm, when called with a realm name

« Users that are granted a certain role or permission, when called with a realm
name and the option -rol e or - perm

Setting a Password
-setpasswd real muser old_pwd new pwd

The - set passwd option allows administrators to reset the password of a user
given the old password.

Policy Operations

Adding and Removing Permissions

-addper m perm ssi on pernission_class action target [description]
-renperm perm ssi on

The - addper moption registers a permission with the JAAS provider

Per mi ssi onCl assManager. The - r enper moption unregisters the specified
permission class. per m ssi on and descri pti on can be multiple words if
enclosed by quotation marks ().

Adding and Removing Principals

-addprncpl principal _nane prncpl _cl ass parans [description]
-renprncpl principal _nane

The - addpr ncpl option registers a principal with the JAAS Provider

Princi pal Cl assManager. The - r enpr ncpl option unregisters the specified
principal class. pri nci pal _name and descri pti on can be multiple words if
enclosed by quotation marks ().

Managing the JAAS Provider 6-17

Using the JAZN Admintool

Granting and Revoking Permissions

-grantpermreal m{user|-role role} pernission_class perm ssion_actions
-revokepermreal m{user|-role role} permssion_class pernission_actions

The - gr ant per moption grants the specified permission to a user (when called
with a username) or a role (when called with - r ol €). The - r evokeper moption
revokes the specified permission from a user or role. A permission is denoted by its
explicit class name (for example, or acl e. security.jazn.real m

Real nmPer mi ssi on) and its action and target parameters (for Real nPer ni ssi on,

r eal mane act i on). Note that there may be multiple action and target parameters.

Listing Permissions
-listperns real m{user |-role role|l realmrealn}

The -1 i st per ns option displays all permissions that match the list criteria. This
option lists the following:

« All permissions registered with the JAAS Provider Per i ssi onCl assManager

« Permissions that are granted a role, when called with a realm name and the
option-rol e

Listing Permission Information
-1 i st perm pernission

The -1 i st per moption displays detailed information about the specified

permission, including the permission’s display name, class, description, actions,
and targets.

Listing Principal Classes
-listprncpls

The -1i st prncpl s option lists all principal classes registered with the
Pri nci pal d assManager.

Listing Principal Class Information
-listprncpl principal _name

The-1i st prncpl option displays detailed information about the specified
principal, including the display name, class, description, and actions.

6-18 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Interactive Shell

Starting the JAZN Admintool Shell
-shel |

The - shel | option starts an JAAS provider interface shell. The JAAS Provider shell
provides interactive administration of JAAS provider principals and policies
through a UNIX-derived interface.

Configuration Operations

Getting XML Configuration Information
-getconfig default_real madmn password

The - get conf i g option displays the current configuration setting inj azn. xni .

Migration Operations

Migrating Principals from the principals.xml File
-mgrates filename real n

The - mi gr at e option migrates the OC4J pri nci pal s. xm file into the specified
realm of the current JAAS provider. f i | enane specifies the name and location of
the OC4J principals file (typically stored in j 2ee/ home/ confi g/ pri nci pal s. xm).

The migration converts pri nci pal s. xm users to JAAS Provider Real mser s and
princi pal s. xm groups to JAAS Provider roles. All permissions previously
granted to a pri nci pal s. xnl group are mapped to the JAAS Provider role. All
users that were deactivated at the time of migration are not migrated. This is to
ensure that no users can inadvertently gain access through the migration.

An error is returned if the specified file contains errors.

See Also: "Replacing principals.xml" on page 5-4 for additional
information on migration and replacement of pri nci pal s. xni

Managing the JAAS Provider 6-19

Using the JAZN Admintool

Miscellaneous

Getting Help
-hel p

The - hel p option displays a list of command options available with the JAZN
Admintool.

JAZN Shell Interface

The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN
shell provides an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure 6-1 shows the node structure:

Figure 6-1 JAZN Shell Directory Structure

permisson-
classas

raalm principak

clesas

Lsars i
permission

principal

rokes *’ permissions
panmissions

:

(1 I8 permission user role permission

In this structure, the user and r ol e nodes are linked together. Consequently, if you
are at/ real ns/ real musers/ user/rol es in the tree and type cd r ol e, you are
takento/real ns/real mrol es/rol e.

Another way to look at this, is thatrol e 1 is a symbolic link torol e 2.

6-20 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Figure 6-2 shows nodes of the xml Real mcreated by the j azn- dat a. xmi file in
"Sample jazn-data.xml Code" on page B-2.

Figure 6-2 lllustrated Shell Directory Structure

abcHaalm principaks-

classes

permission-
classes

permissions

mangger role penmission
java. o File, Permisson

The JAZN shell can be recognized by the shell prompt JAZN: >. At any point in time,
the prompt indicates which realm the administrator is managing. The following is
an example:

JAZN > cd foo
JAZN foo> |'s
To start the shell, invoke the JAZN Admintool with the - shel | option, as follows:

java -jar jazn.jar -shell

JAZN Shell Commands

Shell commands consists of the command options in "Realm Operations" on
page 6-14 and the following series of UNIX derived commands for viewing the
principals and policies in the structured way. Relative and absolute paths are
supported for all relevant commands.

Managing the JAAS Provider 6-21

Using the JAZN Admintool

Using the Is Command to List JAAS Provider Data
| s [path]

The | s command mirrors its UNIX counterpart and lists the contents of the current
directory or node. For example, if the current directory is the root, | s lists all realms.
If the current directory is/ r eal m users, then | s lists all users in the realm. The
results of the listing depends on the current directory. The | s command can operate
with the * wildcard.

Using the cd Command to Navigate JAAS Provider Data
cd path

The cd command, mirroring its UNIX counterpart, allows users to navigate the
directory tree. Relative and absolute path names are supported. To exit a directory,
typecd ... Entering cd / returns the user to the root node. An error message is
displayed if the specified directory does not exist.

Using the mkdir, mk, or add Commands to Create JAAS Provider Data
nkdir directory_nane [other_paraneter]

nk directory_name [other_paraneter]
add directory_nane [other_parameter]

The nkdi r, nk, and add commands are synonyms of a command that creates a new
subdirectory or node in the current directory. For example, if the current directory is
the root, it creates a realm. If the current directory is/ r eal ni user s, it creates a user.
The effect of mkdi r depends upon the current directory. Some commands require
additional parameters in addition to the name.

Using the rm Command to Remove JAAS Provider Data
rmdirectory_name

The rm command mirrors its UNIX counterpart and removes the directory or node
in the current directory. For example, if the current directory is the root, it removes
the specified realm. If the current directory is/ r eal m user s, it removes the
specified user. The effect of r mdepends on the current directory. An error message
is displayed if the specified directory does not exist.

The r mcommand can operate with the * wildcard.

6-22 Oracle9iAS Containers for J2EE Services Guide

Using the JAZN Admintool

Using the pwd Command to Display the Current Shell Working Directory
pwd

The pwd command displays the current location of the user through the UNIX
directory format. Undefined values are left blank in this listing.

Using the help Command to List JAAS Provider Commands
hel p
The hel p command displays a list of all valid commands.

Using the man Command to Display Detailed JAAS Provider Commands

man conmand_option
man shel | _command

The nan command mirrors its UNIX counterpart and displays more detailed usage
information for the specified shell command or JAZN Admintool command option.
Where information presented by the man page and this document conflict, this
document contains the correct usage for the command.

Using the clear Command to Clear the Screen
cl ear

The cl ear command clears the terminal screen by displaying 80 blank lines.

Using the exit Command to Exit the JAZN Shell

exit

The exi t command exits the JAZN shell.

Managing the JAAS Provider 6-23

Managing LDAP Provider Data with Java Programs

Managing LDAP Provider Data with Java Programs

You can manage JAAS provider data by creating Java programs using the JAAS
Provider APIs.

This section discusses the JAAS provider in LDAP environments. The emphasis is
on Java programming, but it also provides useful information for those using Oracle
Enterprise Manager or the JAZN Admintool.

This section contains the following topics:

« About the Sample Java Code

« The JAZNContext and JAZNConfig Classes
« Managing Realms

« Managing Users

« Managing Roles

« Managing Permissions

« Managing JAAS Provider Policy

About the Sample Java Code

Some sample Java programs for managing LDAP environments are provided for
you. In the example code, objects to be modified are presented in bold.

In most cases, relationships between examples are discussed after the code. The
following chapters contain JAAS provider examples:

« Chapter 6, "Managing the JAAS Provider" (this chapter)
« Chapter 7, "Developing Secure J2SE Applications"

« Chapter 8, "Developing Secure J2EE Applications"

« Appendix B, "JAAS Provider Standards and Samples"
The example relationships discussed include the following:

« An example demonstrates creating a realm type, such as an Application Realm.
A later example contains the code for dropping that same Application Realm.

« An example demonstrates setting permissions on a specific application. In a
later section, the user granted those permissions is shown starting and running
that application.

6-24 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

The JAZNContext and JAZNConfig Classes

The JAZNCont ext and JAZNConf i g classes of the package or acl e. security. jazn
serve as a starting point for the JAAS provider. The JAZNCont ext and JAZNConfi g
classes contain methods such as get Pol i cy, get Proper ty, and get Real mivanager
that automatically retrieve information specific to the current JAAS provider
instance.

The JAZNConf i g class is designed for use with multiple instances of the JAAS
provider.

The following code sample illustrates how JAZNCont ext or JAZNConf i g are used in
creating a realm in an LDAP-based environment:

Real mvanager real m\gr = JAZNCont ext . get Real mvanager () ;

real m = real m\Wr. creat eReal n{"abcReal nf, real minfo);

Managing Realms

After you have installed and configured the required components, you must create
realms. A realm is a user community instance maintained by the authorization
system. Realms consist of a user manager and role manager, and provides access to
an LDAP-based provider environment of users and roles (groups).

This section contains the following topics:
» Realm Creation

« Creating an External Realm

« Creating an Application Realm

« Dropping a Realm

Managing the JAAS Provider 6-25

Managing LDAP Provider Data with Java Programs

Realm Creation

Realms are created using the cr eat eReal n{) method of the Real mvanager class,
which requires the following information:

The realm name

The role name (admi nRol e) given to the administrator. This role can then be
granted to others, giving them administrative privileges

Other properties in name/value pairs, including the location that contains the
users and roles of the realm’s organization in Oracle Internet Directory

A user’s searchbase property for locating the administrator and any user of the
realm. This is required for External Realm and Application Realm.

A role’s searchbase property for locating the administrative role and any role
for the realm. This is required for External Realm.

Optional properties:

« The administrator name (adni nUser), a user with administrative privileges

« A user object class to use as a filter to search for users

« Avrole object class to use as a filter to search for roles

See Also:

"Role-Based Access Control (RBAC)" on page 3-14

"Realms" on page 3-10

"JAAS Provider Realm and Policy Management" on page 3-16
"The JAZNContext and JAZNConfig Classes" on page 6-25
"Package oracle.security.jazn.realm" on page A-7

"LDAP-Based Realm Types" on page 3-18 for definitions of
realm types

Creating an External Realm

An External Realm is an LDAP-based realm that integrates existing user
communities (user and role information not currently stored under the JAAS
Provider context) with the JAAS provider.

User and role management in an External Realm must be handled by an Oracle
Internet Directory tool.

6-26 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

The following code sample creates an External Realm with the objects shown in
Table 6-3. The objects to be modified are presented in bold.

Table 6-3 Objects in Sample External Realm Creation Code

Objects Names

sample organization abc. com
adm nUser (optional) John. Si ngh
adm nRol e adm ni strator

sample realm name abcReal m

Example 6-1 External Realm Creation Code

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;
inport oracle.security.jazn.realm*;

inport java.util.*;

/**

* (reates an external realm
*/

public class CreateReal mextends Qbject

{
public CreateReal m() {};

public static void main (String[] args) {
CreateReal mtest = new CreateReal m);
test.creat eExt Real m();

}

voi d createExtReal m() {
Real mreal nenul | ;

try {
Hasht abl e prop = new Hashtabl e();

prop. put (Real m LDAPPr operty. USERS_SEARCHBASE, "cn=user s, o=abc. conf') ;
prop. put (Real m LDAPPr operty. ROLES_SEARCHBASE, "cn=r ol es, o=abc. conl') ;

Managing the JAAS Provider 6-27

Managing LDAP Provider Data with Java Programs

Il specifying the followi ng LDAP directory object class
Il is optional. Wen specified, it wll

Il be used as a filter to search for users

prop. put (Real m LDAPPr operty. USERS_OBJ_CLASS, "orcl User");

/1 adm nUser is optional
String adm nUser = "John. Si ngh";

String adm nRol e = "admi ni strator”;
Real mvanager real m\Wgr = JAZNCont ext . get Real mvanager () ;

InitReal M nfo realmnfo = new
I ni t Real m nf o(1 nit Real m nf 0. Real nifype. EXTERNAL_REALM adni nUser,
adm nRol e, prop);

real m = real m\Wr. creat eReal n{"abcReal nf, real mnfo);

}

catch (Exception e) {
e.printStackTrace();
}
}
}

Creating an Application Realm
An Application Realm is an LDAP-based realm that supports external read-only
users and internal role management.

The code for creating an Application Realm is similar to the code for creating an
External Realm, with the following exceptions:

« The property name for I ni t Real m nf 0. Real niType is APPLI CATI ON_REALM

« An Application Realm does not need to include the setting to search for roles as
defined in pr op. put (Real m LDAPPr operty. ROLES SEARCHBASE,
"cn=rol es, o=def aul t Or gani zati on");

See Also: "Supplementary Code Sample: Creating an Application
Realm" on page B-8 for a complete code sample

Note: If both adni nUser and admi nRol e exist, then admi nRol e is
granted to adni nUser, using RBAC.

6-28 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

Dropping a Realm

The Real mvanager class of package or acl e. security. jazn. real menables you to
drop a realm.

The following code sample shows how to drop a realm:

Real mvanager real mWgr = JAZNCont ext . get Real mvanager () ;
real mvgr . dr opReal n{ "abcReal nt');

The JAAS provider administrator and the realm administrator both have
permission to drop a realm.

Managing Users

You cannot create or manage users directly in the JAAS provider if you are using an
LDAP-based provider type. For those tasks, use an Oracle Internet Directory tool.

You can add users to a realm using the realm’s User Manager interface, as shown in
the following code;

User Manager userngr = real m get User Manager ();
Real mUser user = userngr.getUser("Chitra. Kumar");

See Also: Oracle Internet Directory Administrator’s Guide for
information on using Oracle Internet Directory tools

Managing Roles

The Rol eManager interface provides methods to manage roles. Table 6-4 describes
some of the methods available with the Rol eManager interface.

Table 6-4 RoleManager Methods

Available to These

Method Description Realms

createRol e Creates a role in a realm Application Realm

grant Rol e Grants arole to a Real nPri nci pal Application Realm

dr opRol e Drops either named roles or a role Application Realm
given in the instance

get Rol es Gets roles in a realm All realms

revokeRol e Revokes a role from a Application Realm

Real nPri nci pal

Managing the JAAS Provider 6-29

Managing LDAP Provider Data with Java Programs

Managing roles requires getting the realm from the Real mvanager as described in
"The JAZNContext and JAZNConfig Classes" on page 6-25. After that, you get an
instance of the Rol eManager interface with the method you are calling.

This section contains these topics:
« Creating Roles
« Granting Roles

« Dropping Roles

Note: You can internally create, grant, drop, and revoke roles in
an Application Realm using the Rol eManager interface.

However, in an External Realm, you cannot use the Rol eManager
interface. Roles can be created, granted, dropped, and revoked with
an Oracle Internet Directory tool.

Creating Roles

Roles are created either externally in an External Realm with an Oracle Internet
Directory tool or internally in an Application Realm with Rol eManager.

The following code sample shows how to create a role with Rol eManager :

Rol eManager rol emgr = real m get Rol eManager () ;
Real nRol e rol e = rol emgr. creat eRol e("devManager _rol e");

Granting Roles
You can grant roles in an Application Realm, but not in an External Realm.

Roles are granted by an instance of Rol eManager .
These lines show how to grant a role:

Rol eManager rol emgr = real m get Rol eManager () ;
rol engr. grant Rol e(user, director_role);

These lines are key to the sample code show in Example 6-2 on page 6-31.

This sample code demonstrates granting a role, manager _r ol e, to another role,
director _rol e, and granting the di rect or _r ol e to a user, Chi tra. Kunar.
Consequently, Chi t r a is granted the di r ect or _r ol e directly, and the manager _
rol e indirectly.

6-30 Oracle9iAS Containers for J2EE Services Guide

Managing LDAP Provider Data with Java Programs

The objects to be modified are presented in bold.

Table 6-5 Objects in Sample Granting Roles Code

Objects Names Comments

Real m devReal m devReal mappears in this code and in
the creation of the sample Application
Realm which can be viewed in
Example B-2 on page B-8.

Real nUser user Chi tra. Kumar

Real nRol e director_role

Real nRol e manager _rol e

sample organization dev. com dev. comdoes not appear in this code

directly, but was acted upon in the
creation of the sample Application
Realm which can be viewed in
Example B-2 on page B-8.

Example 6-2 Granting Roles Code Sample

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;

inport oracle.security.jazn.realm*;
inport java.util.*;

public class GantRole extends Ohject
{
public GantRole() {}
public static void main (String[] args)
{
GantRole test = new GantRol e();
test.grantRole();
}
void grantRole() {

try {

Real mvanager real m\gr = JAZNCont ext . get Real mvanager () ;
Real m real m = real m\yr. get Real m{ " devReal ni');
Rol eManager rol engr = real m get Rol eManager ();
Real mRol e manager _rol e = rol engr. get Rol e(" manager _rol e");
Real mRol e director_role = rol engr. getRRol e("director_role");
User Manager userngr = real m get User Manager ();

Real mJser user = userngr.getUser("Chitra. Kunar");

Managing the JAAS Provider 6-31

Managing LDAP Provider Data with Java Programs

/* grants manager _role to director_role */
rol engr.grantRole(director_role, manager_role);

/* grants director_role to Chitra */
rol engr. grant Rol e(user, director_role);

}

catch (JAZNException e) {
Systemout. println("Exception "+e.get Message());

}
}

Dropping Roles
The following code sample shows how to drop a role with Rol eManager :

Rol eManager rol emgr = real m get Rol eManager () ;
rol engr. dropRol e("devManager _role");

Managing Permissions

Permissions are extended from the j ava. securi ty. Per ni ssi on class. The JAAS
provider provides four classes of permissions representing types of actions that can
be performed. See Table 3-2 on page 3-6 for the list of permissions.

Permissions are all created with constructors such as the following
Real nPer m ssi on:

Real nPerm ssion Perml = new Real nPerm ssi on("devReal ni', "createRole");

See Also: The following for further information on permissions:
« "What Is the Java2 Security Model?" on page 3-4
« "What Is the Java2 Security Model?" on page 3-4

« Java Security documentation by visiting the following URL:
http://java. sun.conlj2se/ 1. 3/ docs/ gui de/ security/

6-32 Oracle9iAS Containers for J2EE Services Guide

Managing XML-Based Provider Data with the XML Schema

Managing JAAS Provider Policy

JAAS provider policy grants permissions to principals, such as users and roles. The
policy can be modified after initialization to grant and revoke permissions to
grantees.

Managing Policy with JAAS Provider Packages
These lines of code are key to the sample class shown in "Modifying User
Permissions Code" on page B-10.

final JAZNPolicy policy = JAZNContext.getPolicy();

policy. grant (new G antee(propset, cs), new
Fil ePerm ssion("report.data", "read"));

Managing XML-Based Provider Data with the XML Schema

You can manage JAAS provider data by modifying XML files used by the JAAS
Provider APIs.

This section discusses the JAAS provider in XML-based provider environments. The
emphasis is on data files that you create yourself based on the XML schema, but it
also provides useful information for those using the JAZN Admintool.

The XML-based environment provides fast, simple, lightweight JAAS provider
management. You can use an XML file (named j azn- dat a. xm in this example) to
manage the JAAS provider realm and policy information. Table 6-6 describes the
sections of the j azn- dat a. xmi file.

Table 6-6 Description of jazn-data.xml File

Section This section enables you to:

Realm data . Create realms, users, and roles
« Grant roles to users and to other roles

Policy data Assign permissions to users and roles defined in the realm data
section of the file

Thej azn-dat a. xni file is specified as follows:
« ForJ2SE:inthej azn. xnl configuration file

« ForJ2EE: in the ori on-appl i cati on. xm configuration file

Managing the JAAS Provider 6-33

Managing XML-Based Provider Data with the XML Schema

See Also: Oracle9i Application Server Security Guide for
configuration information on these two XML files

Managing Realms, Users, Roles, and Permissions

XML realm and provider information is stored in an XML file typically named
j azn-dat a. xm . To work correctly, the XML file must conform to specific policy
schema and DTD standards.

See Also:

« "Sample jazn-data.xml Code" on page B-2 to view an XML
Schema and a sample j azn- dat a. xni file

DTD for jazn-data.xml
The JAAS provider data file must conform to the following DTD:

<I ELEMENT jazn-data (jazn-real n?, jazn-policy?, jazn-perm ssion-classes?,
jazn-principal - cl asses?, jazn-1oginconfig?)>

<l-- RealmData -->

<! ELEMENT jazn-real m (real nt)>

<! ELEMENT real m (nane, users?, roles?, jazn-policy?)>

<I ELEMENT users (user*)>

<I ELEMENT user (name, display-nane?, description?, credentials?)>
<! ELEMENT nane (#PCDATA) >

<! ELEMENT di spl ay- name (#PCDATA) >

<! ELEMENT description (#PCDATA) >

<! ELEMENT credential s (#PCDATA) >

<I ELEMENT rol es (rol e*)>

<l ELEMENT rol e (nanme, display-nane?, description?, menbers)>
<! ELEMENT nenbers (nenber*)>

<! ELEMENT nenber (type, nane)>

<! ELEMENT type (#PCDATA)>

<l-- Policy Data -->

<I ELEMENT jazn-policy (grant*)>

<l ELEMENT grant (grantee, pernissions?)>

<I ELEMENT grantee (display-nane?, principals?, codesource?)>
<! ELEMENT principals (principal*)>

<I ELEMENT princi pal (real mnane?, type?, class, nane)>

<I ELEMENT real m name (#PCDATA) >

6-34 Oracle9iAS Containers for J2EE Services Guide

Managing XML-Based Provider Data with the XML Schema

<! ELEMENT codesource (url)>

<I ELEMENT ur| (#PCDATA) >

<! ELEMENT per m ssi ons (permi ssion+)>

<! ELEMENT perni ssion (class, nane, actions?)>
<I ELEMENT cl ass (#PCDATA) >

<! ELEMENT actions (#PCDATA) >

<I-- Principal dass Data -->

<! ELEMENT j azn-princi pal - cl asses (principal -cl ass*)>

<l ELEMENT princi pal -cl ass (nane, description?, type, class,
name- descri ption- map?) >

<! ELEMENT name- descri ption-nmap (name-description-pair*)>

<! ELEMENT name- descri ption-pair (name, description?)>

<l-- Pernmission Cass Data -->

<I ELEMENT j azn- per m ssi on-cl asses (perm ssion-class*)>

<! ELEMENT permi ssi on-cl ass (name, description?, type, class, target-descriptors,
action-descriptors?)>

<! ELEMENT target-descriptors (target-descriptor*)>

<I ELEMENT target-descriptor (name, description?)>

<! ELEMENT action-descriptors (action-descriptor*)>

<! ELEMENT action-descriptor (name, description?)>

<l-- Login Mdule Data -->

<! ELEMENT j azn-loginconfig (application*)>

<! ELEMENT application (name, |ogin-nodul es)>

<I ELEMENT [ogi n-nodul es (| ogi n- nodul e+) >

<! ELEMENT | ogi n-nodul e (cl ass, control -flag, options?)>
<I ELEMENT control -flag (#PCDATA)>

<! ELEMENT options (option+)>

<! ELEMENT option (name, val ue)>

<I ELEMENT val ue (#PCDATA)>

Managing the JAAS Provider 6-35

Other Utilities

Other Utilities

There are three additional utilities for managing the JAAS provider. These classes
work with both LDAP-based and XML-based provider types. The classes can be
used and managed programmatically. Additionally, two can be managed through
the JAZN Admintool.

« Pernmissiond assManager - Integrates with the JAZN Admintool
« Principal dassManager - Integrates with the JAZN Admintool

« Logi nMbdul eManager - Works only with J2EE applications and is not activated
with the JAZN Admintool

PermissionClassManager Interface

The Per ni ssi onCl assManager is a repository of all registered Permission classes
and a utility to help manage them. Registering a permission class allows access to
stored metadata that provides specific information about a given permission’s
target, action, and/or description. Failure to register a given permission class does
not affect the JAAS provider's ability to use the permission class. That is, the JAAS
provider does not limit permission grants or revocations to those classes registered
with the Per i ssi ond assManager.

Works with the JAZN Admintool to perform these functions:
« "Adding and Removing Permissions" on page 6-17

« "Listing Permissions" on page 6-18

See Also:

« "PermissionClassManager" on page A-5 to view the API

PrincipalClassManager Interface

Princi pal Cl assManager represents the repository of all registered Principal classes
and a utility to help manage them. Registering a principal class allows access to
stored metadata that provides specific information about a given principal's name
and description. Failure to register a given principal class will not affect the JAAS
provider’s ability to use the principal class. That is, the JAAS provider recognizes all
principal classes whether or not they've been registered with the

Pri nci pal d assManager.

6-36 Oracle9iAS Containers for J2EE Services Guide

Other Utilities

The Pri nci pal G assManager works with the JAZN Admintool to perform these
functions:

« "Adding and Removing Principals" on page 6-17
« "Listing Principal Classes" on page 6-18

See Also:

« "PrincipalClassManager" on page A-6 to view the API

LoginModuleManager

Logi nMobdul eManager is the JAAS Provider implementation of the JAAS
Configuration class and provides login configuration support to applications. The
Configuration class is a registry of applications and corresponding login modules
used by a given application and the order they are to be used. There are both
LDAPLogi nMbdul eManager and XM_Logi nMbdul eManager implementations of the
Logi nModul eManager.

Managing the JAAS Provider 6-37

Other Utilities

6-38 Oracle9iAS Containers for J2EE Services Guide

v

Developing Secure J2SE Applications

This chapter describes how to develop secure Java2 Platform, Standard Edition
(J2SE) applications using the Oracle9iAS Containers for J2EE (OC4J) JAAS Provider.

This chapter contains these topics:

Developing Secure J2SE Applications Overview
Authentication in the J2SE Environment
Authorization in the J2SE Environment

Testing and Executing an Application

Sample J2SE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 7, "Developing Secure J2SE
Applications".

Developing Secure J2SE Applications Overview

J2SE application developers develop, deploy, and manage Java applications on local
desktops or servers. Using the JAAS provider enables developers to make these
applications secure.

After the creation of realms and related components described in Chapter 5,
"Integrating the JAAS Provider with Java2 Applications”, the JAAS provider can be
integrated into J2SE applications to provide the following services:

Authentication in the J2SE Environment

Authorization in the J2SE Environment

Developing Secure J2SE Applications 7-1

Authentication in the J2SE Environment

See Also:

=« "JAAS Provider Integration in J2SE Application Environments" on
page 5-2

« "Sample J2SE Application" on page 7-5 for a J2SE application
demonstration

Authentication in the J2SE Environment

Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2SE environment is performed with the following:

« AJAAS Logi nCont ext class

« A JAAS Provider Real m_Logi nMbdul e class or another login module that can be
configured as the default login module

« A callback handler that you must create, following the JAAS model in
javax. security. aut h. cal | back

The constructor for the Logi nCont ext class requires the name of the client login
and a new instance of a callback handler, an object you must implement. The
callback handlers, which are described in JAAS documentation, are required by the
login module to communicate with users.

The user of the computing service is the Subj ect . The Subj ect is passed to the

Logi nCont ext class. The Logi nCont ext . | ogi n() method compares the Subj ect to
configuration settings in the JAAS Provider Real mLogi nMbdul e or other login
module. If | ogi n() is successful, the login module associates the Pri nci pal (a
specific identity) and credentials with the Subj ect .

This authenticates the Subj ect , which can then be retrieved by invoking
Logi nCont ext . get Subj ect in the authorization process.

See Also: JAAS documentation at the following Web site for more
information about authentication, login modules, and callback
handlers:

http://java. sun. coni product s/ j aas/

7-2 Oracle9iAS Containers for J2EE Services Guide

Authorization in the J2SE Environment

Authorization in the J2SE Environment

Subject.doAs

Once a user is successfully authenticated, the authorization policy is enforced upon
the user. Authorization is achieved through the following methods and interface
based on the Java2 and JAAS Security Model:

« javax.security.auth. Subj ect.doAs() method in the client
« java.lang. SecurityManager. checkPer nm ssi on method in the server

« ThePrivil egedActi on interface of j ava. securi ty in the application

After retrieving the authenticated Subj ect from the Logi nCont ext , the client
invokes Subj ect . doAs with the application as a parameter. The application starts,
which activates security checking in the server. An AccessCont r ol Excepti on is
thrown if security checking fails.

SecurityManager.checkPermission

Security checking in J2SE applications requires the use of the JDK 1.3 or greater
java.l ang. Securi t yManager in the server.

The security manager determines whether to permit operations. The classes in Java
packages cooperate with the security manager by asking the application's security
manager for permission to perform certain operations. Each Java application can
have its own security manager object that acts as a full-time security guard.

The Securi t yManager . checkPer ni ssi on method performs security checking.

PrivilegedAction

The application must implement the interface Pri vi | egedAct i on.

See Also: Java security architecture at the following Web site:

http://java. sun. conij2se/ 1. 3/ docs/ gui de/ security/

Developing Secure J2SE Applications 7-3

Testing and Executing an Application

Testing and Executing an Application

In order to test or execute the application, you must start the Securi t yManager at
the command line and, if using a login module to start an application, call it.

This is the first real test of the JAAS provider.

Starting with RealmLoginModule

To start the application using the RealmLoginModule:
1. Go to the computer on which the J2SE application is installed.

2. Start the security manager and test the application at the command prompt:

java -Djava. security. manager -Djava.security. policy=java2. policy
-Dj ava. security.auth. policy=jazn. xn
-Djava. security.auth.login.config=jaas.config MApp

where the client, MyApp, calls your application. The j azn. xni file is the property
file that identifies the provider type you are using (Oracle Internet Directory or
XML-Based Provider Type). The j aas. confi g file indicates that

Real mLogi nMbdul e is required for authentication.

This command can be used with the sample code shown in "Sample J2SE
Application" on page 7-5.

Starting without RealmLoginModule

It is possible to start J2SE applications without using authentication and the

Real mLogi nMbdul e or any login module, but that is not the preferred method. To do
so and use the sample code provided in this chapter, you need to modify the MyApp

code in Example 7-1, "Client Login Code" on page 7-5 so that it does not require the
objects described in "Authentication in the J2SE Environment" on page 7-2.

After you have modified the MyApp code, you can start it.

To start the application without using the RealmLoginModule:
1. Go to the computer that the J2SE application is installed on.

2. Start the security manager and execute the application at the command prompt:
For example, to test a sample application, enter:

java -Djava. security. manager -Djava.security. policy=java2. policy
-Djava. security.auth. policy=jazn.xm M/App

7-4 Oracle9iAS Containers for J2EE Services Guide

Sample J2SE Application

where the client, MyApp, calls your application. The type of JAAS provider you
are using (LDAP-based or XML-based) is identified in the j azn. xni file.

Sample J2SE Application

This section shows a sample client login, MyApp, and a brief test application using
the JAAS provider in a J2SE environment.

Table 7-1 Sample Client Login Code

Objects Names Comments

CallbackHandler myCallbackHandler nyGCal | backHandl er is a callback handler
that you must implement.

sample application AccessTest 1 AccessTest 1 is the application that the
user wants to start. The code for
AccessTest 1 isshow in Example 7-2 on

page 7-7.
sample external realm abcReal m abcReal mwas created in Example 6-1 on
page 6-27.
client user Jane. Sni t h or The client user added in Example 6-1 on
unknown page 6-27. Since Jane. Sni t h is the only

user added; that is, the only name
returned to Pri nci pal p.

The following is executed using the commands described in "Testing and Executing
an Application” on page 7-4.

Example 7-1 Client Login Code

MyApp Code

inport java.io.?*;

inport java.util.*;

inport java.security.Principal;

inport javax.security.auth.*;

inport javax.security.auth. callback. *;
inport javax.security.auth.login.?*;
inport javax.security.auth.spi.*;
inport comsun.security.auth.*;

inport oracle.security.jazn.*;
inport oracle.security.jazn.realm*;

Developing Secure J2SE Applications 7-5

Sample J2SE Application

public class MApp {

public static void main(String[] args) {

Logi nContext Ic = null;
try {
/'l you nust create a Cal | backHandl er cl ass
I ¢ = new Logi nCont ext ("M/App", new nyCal | backHandl er());
} catch (Logi nException le) {
le.printStackTrace();
Systemexit(-1);

}
try {
/] attenpt authentication
lc.login();
} catch (Account ExpiredException aee) {
Systemout. println("Your account has expired. " +

"Please notify your administrator.");
Systemexit(-1);

/'l other exceptions
/1 Credenti al Expi redException
/] Fail edLogi nException
}
/'l checking what Principals the user has
Iterator principallterator = Ic.getSubject().getPrincipals().iterator();
Systemout. println("Authenticated user has the follow ng Principals:");
while (principallterator.hasNext()) {
Principal p = (Principal)principallterator.next();
Systemout.println("\t" + p.toString());
}
Systemout. println("User has " +
| c. get Subj ect (). getPublicCredentials().size() +
" Public Credential (s)");

Il nowtry to execute the sanple application as the authenticated Subject
Subj ect . doAs(| c. get Subj ect (), new AccessTest1());

Systemexit(0);
}

7-6 Oracle9iAS Containers for J2EE Services Guide

Sample J2SE Application

Sample J2SE Application Code

This is the sample application that is executed when a successfully authenticated
principal runs MyApp.

Table 7-2 Objects in Sample Application Code

Objects Names

file report.data

Example 7-2 Sample Application Code

inport java.lang.*;
inport java.security.*;
inport java.io.*;

public class AccessTestl inplements PrivilegedAction {
public Qhject run() {
File f = new File("report.data");

Il Security checking is invoked
if (f.exists()) {
Systemout.println("*** report.data accessed ***");

}

return null;

Discussion of the J2SE Sample Client Login and Application Code

In the MyApp client, once the authentication process is completed, Subj ect . doAs
starts the sample application AccessTest 1.

AccessTest 1 starts and requests to read the r eport . dat a file. This request invokes
security checking in the server, which determines if the user has permission on
AccessTest 1 to read the report . dat a file.

Permission has been granted previously to Jane. Sni t h in Example 6-1 on
page 6-27. If Jane. Snmi t h is the user logging in, AccessTest 1 runs.

If the user is not Jane. Sni t h, the authorization fails because no other users have
been granted this permission.

Developing Secure J2SE Applications 7-7

Sample J2SE Application

7-8 Oracle9iAS Containers for J2EE Services Guide

38

Developing Secure J2EE Applications

This chapter describes how to develop secure Java2 Platform, Enterprise Edition
(J2EE) applications using the JAAS Provider and Oracle9iAS Containers for J2EE
(OC4)).

This chapter contains these topics:

Developing Secure J2EE Applications Overview
Authentication in the J2EE Environment
Authorization in the J2EE Environment

Testing and Executing the J2EE Application
Sample J2EE Application

Note: This chapter assumes that you have followed the
management instructions in Chapter 6, "Managing the JAAS
Provider".

Developing Secure J2EE Applications Overview

J2EE application developers develop, deploy, and manage Web enabled,
server-centric, enterprise level Java applications that are deployed in multiple tier
environments. Using the JAAS provider enables developers to make these
applications secure.

In J2EE applications, the JAAS provider is integrated with OC4J and provides the
JAZNUser Manager, an implementation of the OC4J User Manager.

Developing Secure J2EE Applications 8-1

Authentication in the J2EE Environment

After the creation of realms and related components described in Chapter 6,
"Managing the JAAS Provider", the JAAS Provider can be integrated into J2EE
applications to provide the following services:

« Authentication in the J2EE Environment

« Authorization in the J2EE Environment

See Also: "Oracle9iAS Containers for J2EE (OC4J)" on page 5-3

Authentication in the J2EE Environment

Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2EE environment is performed with the following:

« Oracle9iAS Single Sign-On (for SSO environments) or the JAAS provider
Real m_Logi nMbdul e or other login module (for non-SSO environments)

« JAZNUser Manager for OC4J (Required)

Before HTTP requests can be dispatched to the target servlet, the
JAZNUser Manager gets the authenticated user information (set by mod_0sso)
from the HTTP request object and sets the JAAS subject in OCA4J.

Running with an Authenticated Identity

You can choose to configure the JAZNUser Manager so that a filter enables the
target servlet to run with the permissions and roles associated with an
authenticated identity or run-as identify. To do this, configure the j azn- web- app
element.

See Also: Chapter 7 of the Oracle9i Application Server Security
Guide and "JAZNUserManager" on page 5-4 for further information
on options and configuration of the JAZNUser Manager filter,
including the j azn- web- app element

Intercepting Servlet Invocation

The JAZNUser Manager intercepts calls from Oracle9iAS Single Sign-On or the
JAAS Provider Real mLogi nMbdul e and retrieves authentication information to
identify the username and role.

8-2 Oracle9iAS Containers for J2EE Services Guide

Authentication in the J2EE Environment

Retrieving Authentication Information

The following j avax. servl et . Ht t pSer vl et Request APIs retrieve
authentication information within the servlet:

« get Renot eUser for the authenticated username

« get Aut hType for the authentication scheme

« getUserPrincipal forthe authenticated principal object

« getAttribute("java.security.cert.X509certificate") forthe SSL
client certificate.

(Optional if the Filter Element Has Been Set)

If the filter element has been set, JAZNUser Manager performs the following when
doFi | ter (Servl et Request request, Servl et Responseresponse,

Fi | t er Chai n chai n) isinvoked:

« For SSO or Basic authentication, the filter relies on JAZNUser Manager to
retrieve the authenticated user and the corresponding principal object.

« Foran SSL client certificate, the filter performs the following:

1.
2.

Retrieves SSL client certificate from the request object, if it is available

Instantiates java. security. cert. X509Certi fi cat e object x509cert
based on the client certificate

Creates an array of type j ava. security. cert. X509Certificateand
adds objects to the array

Sets the attribute on the request object ("] ava. security. cert
. X509Certificate", x509cert)

Gets the SSL principal name by invoking or acl e. security.jazn.
util. CertHash. get Hash(x509cert)

Gets the SSL principal object ssl Pri nci pal , a Real nPri nci pal object,
from the default realm using the JAAS Provider API

The filter element constructs an or acl e. security.jazn. oc4j.
JAZNSer vl et Request request for the HTTP request.

(End of Optional Section)
Authorization begins with a call to Subj ect . doAs() .

Developing Secure J2EE Applications 8-3

Authorization in the J2EE Environment

Authorization in the J2EE Environment

Authorization is the process of granting the permissions and privileges entitled to
the user.

Once the user is authenticated, the JAZNUser Manager invokes the target servlet
within a Subj ect . doAs() block to enable JAAS-based authorization in the target
servlets.

Authorization is achieved through the following:
« JAZNUser Manager
« Methods based on the Java2 Security Model:
« Servlet.service() intheservlet
« Subj ect. doAs() inthe client

« SecurityManager. checkPer m ssi on() in the server

Testing and Executing the J2EE Application

Setting Up

After completing all configuration tasks, follow these steps to test or execute the
JAAS Provider within OC4J. These steps assume the following:

= The current directory is $ORACLE_HOVE/ j 2ee/ hone
« nod_oc4j is configured

To build and configure your application, a sample application, cal | er | nf o, has
been provided. Chapter 4, "Quick Start JAAS Provider Demo" describes how to
quickly run this sample application. This chapter elaborates on the information in
Chapter 4 and discusses available configuration options.

See Also: Chapter 7 of the Oracle9i Application Server Security Guide
for detailed configuration information

You must perform the following tasks to test and run a J2EE application:
« Task 1: Installing Ant (Optional)

« Task 2: Modifying OC4l Files

« Task 3: Changing Default Configurations

8-4 Oracle9iAS Containers for J2EE Services Guide

Testing and Executing the J2EE Application

« Task 4: Building the Directory

Task 1: Installing Ant (Optional)

You can install Ant, an XML-based build tool (similar to make), from Apache's
Jakarta Project or plan to use jar directly. If you do not have Ant installed, you can
download it from:

http://jakarta. apache. org/ ant/index. htm

Once you have installed Ant, and before running it, you must configure files as
described in the next section, "Task 2: Modifying OC4J Files".

Task 2: Modifying OC4J Files

In order to run a servlet, you need to modify several OC4]J Files.

Modifying OC4J Files Where OC4J is Not Running

« Modify the OC4)server. xn file in $ORACLE_HOVE/ j 2ee/ hone/ confi g/
by adding the following line:

<application name="nyAppl" path="../jazn/ demo/ nyAppl/
myAppl. ear" />

For the cal | er | nf o demo, the line is as follows:

<application name="cal |l erI nfo" path="../jazn/deno/callerlnfo/
callerinfo.ear" />

« Modify the OC4) def aul t - web-si te. xnl filein
$ORACLE_HOVE/ j 2ee/ honme/ confi g/ by adding the following line:

<web- app applicati on="nyAppl" nane="nyAppl-web" root="/jazn" />

For the cal | er | nf o demo, the line is as follows:

<web- app application="cal | erInfo" name="cal | erl nfo-web" root="/jazn" />

Deploying an Application When the OC4J Server Is Running

If the OC4J server is already up and running, you can use Enterprise Manager to
deploy your application; see the Oracle9iAS Containers for J2EE User’s Guide for
details.

Developing Secure J2EE Applications 8-5

Testing and Executing the J2EE Application

For the cal | er | nf o demo, specify the following information in the deployment
wizard:

« EAR file: $J2EE_HOME/jazn/demo/callerinfo/callerinfo.ear
« Application name: callerinfo

« Servlet root context: /Zjazn

See Also:

. Oracle9iAS Containers for J2EE User’s Guide for further
information on OC4J configuration

« Chapter 7 of the Oracle9i Application Server Security Guide for
further information on JAAS Provider configuration

Task 3: Changing Default Configurations

The default realm is set to sanpl e_subr eal m To change to another realm, you
must modify the j azn element of the OC4J ori on- appl i cati on. xm (in the
directory j azn/ deno/ cal | eri nf o/ et ¢/) as follows:

Using XML-Based Realms (Default)

« Change the realm, def aul t - r eal m from the default value,
sanpl e_subr eal m to any realm that you have created.

« Changel ocat i on from the default value, j azn- dat a. xm , to any properly
configured data file that you have created. Conversely, you can also use
j azn-dat a. xm as a template for your own file.

See Also: "Managing XML-Based Provider Data with the XML
Schema" on page 6-33 for further information on the
j azn-data. xm file

Using LDAP-Based Realms

Since the installation defaults to the XML-based provider type, you need to modify
certain files if you are using the LDAP provider type environment.

Note: You must use the Oracle9iAS Infrastructure installation type
if you use the LDAP provider type environment.

8-6 Oracle9iAS Containers for J2EE Services Guide

Testing and Executing the J2EE Application

Intheori on-application.xm fil e indirectory
j azn/ deno/ cal | eri nf o/ et ¢/, make the following changes:

« Change the JAAS Provider type to LDAP.

« Enter your LDAP | ocati on URL (for example,
| dap: // nyoi d. us. oracl e. com

Using SSL and SSO Integration

If you are using SSO or SSL integration, make the following addition to the
nod_oc4j . conf file to add redirection information.

Qc4j Mount /jazn/* aj pl3_worker
Qc4j Mount /jazn aj p13_wor ker

Assuming that aj p13_wor ker is a defined worker in the oc4j . conf file, this
directs any request matching / j azn/ * to be handled by aj p13_wor ker. Any
request matching/ j azn/ is to be handled by aj p13_wor ker .

Using SSO

If you are using SSO integration, make the following change in the
orion-web. xm :

Set the aut h- net hod in the j azn- web- app element file to "SSO'as in the
following example:

<j azn-web- app
aut h-net hod="SSO' (optional - default to null)
runas-node="fal se" (optional - default to fal se)
doasprivil eged-node="true" (optional - default to true)
/>

Task 4: Building the Directory

To build the directory, either use jar or Ant to create a new directory (bui | d)
containing the . ear and . war files for your application.

Developing Secure J2EE Applications 8-7

Testing and Executing the J2EE Application

To build the directory using Ant:

1.
2.

Open a command line shell.
Go to the j azn/ myAppl/ nyAppl directory
For thecal | erl nf o demo, gotoj azn/ deno/ cal | er | nf o directory,

Type: ant

Starting an Application
This is the first real JAAS provider test.

To start your application:

1.

Start the Oracle HTTP Server listener as follows:
« fornpd_osso (SSO environments), enter apachect | start

« fornod_ossl (SSL environments) apachect| startssl

Note: Skip this step if you are using Basic Authentication.

Start OC4J with the JAAS provider by entering the following:

java -jar ocdj.jar

Or start OC4J with the JAAS provider in secure mode (assuming that you have
configured your j avaZ2. pol i cy) with the Securi t yManager :

java - D ava. security. manager.
-Djava. security.policy=/jazn/config/java2.policy -jar oc4j.jar

Run the servlet from a Web browser using:
http:// host nane: 1234/ nyApp1/ nyAppl

Or to run the sample application, use:

http://host name: 1234/ jazn/callerlnfo
where 1234 is the port configured for your HTTP listener.

See Also: Oracle9iAS Containers for J2EE User’s Guide

8-8 Oracle9iAS Containers for J2EE Services Guide

Sample J2EE Application

Sample J2EE Application

This sections shows the sample J2EE application, cal | er | nf o, which you can run
using the commands described in "Testing and Executing the J2EE Application” on
page 8-4 or in Chapter 4, "Quick Start JAAS Provider Demo".

Sample J2EE Application callerinfo
package oracle.security.jazn.sanples.http;

inport java.io.|OException;
inport java.util.Date;
inport java.util.Properties;
inport javax.nam ng.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**

* A sinple denp that exercises the Servlet security APIs.
*

* @uthor rkng

*/

public class Callerlnfo extends HttpServlet {

public Callerlnfo()
{
super ();
}
public void init(ServletConfig config)
throws Servl et Exception
{
super.init(config);
}
public void doGet (HtpServl et Request request, HttpServletResponse response)
throws ServletException, |CException
{
Servl et Qut put Stream out = response. get Qut put Strean();

response. set Cont ent Type("text/htm");
out. println("<HTM.><BODY bgcol or =\"#FFFFFF\ " >");

out.printIn("Time stanp: " + new Date().toString());

out.println("request.get RenoteUser = " + request.get RemoteUser () + "
");

out.println("request.isUserinRole(' FOO) =" + request.isUserlnRol e("FOO")
+ "
");

out.println("request.isUserlnRole('ar_nanager') =" +

Developing Secure J2EE Applications 8-9

Sample J2EE Application

request.isUserlnRol e("ar_manager") + "
");

out.println("request.isUserlnRol e('ar_devel oper') =" +
request. i sUserlnRol e("ar_devel oper") + "
");
out.println("request.getUserPrincipal =" + request.getUserPrincipal() +
"<pr>");

out. println("</BODY>");
out.println("</HTM.>");
}

Discussion of the J2EE Sample Application Code

When the call to cal | er | nf o is successful, the browser displays a message similar
to the following:

Time stanp: Fri Aug 24 19:11:37 PDT 2001 request.get RenoteUser =
sanpl e_subreal n user

request.isUserlnRole(' FOO) = fal se

request.isUserlnRol e('ar_manager') = fal se

request.isUserlnRol e('ar_devel oper') = true

request . get User Princi pal = ([JAZNUser Adapt or: user =[XM_Real mJser :
sanpl e_subreal m user])

8-10 Oracle9iAS Containers for J2EE Services Guide

9

Overview

Java Message Service

This chapter describes the Java Message Service (JMS) furnished as part of
Oracle9iAS Containers for J2EE (OCA4J). This chapter discusses the following topics:

« Overview
« Resource Providers
« Using Oracle JMS as a Resource Provider

« Using Third-Party Resource Providers

Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. JMS offers a common way for Java programs to access these
systems. JMS is the standard messaging API for passing data asynchronously
between application components, allowing business integration in heterogeneous
and legacy environments. JMS provides two programming models:

« Point-to-Point (Queue) —Messages are sent to one consumer only.

« Publish and Subscribe (Topics) —Messages are broadcast to all registered
listeners.

JMS queues and topics are bound to the JNDI environment and made available to
J2EE applications.

OC4J provides a Resour cePr ovi der interface to transparently plug in third-party
JMS implementations. The JMS resources are available under
j ava: conp/ r esour ce through the resource provider interface delegation.

Java Message Service 9-1

Resource Providers

Resource Providers

The Resour cePr ovi der interface enables you to plug in third-party message
providers for JMS connections. For Oracle JMS, this allows EJBs, servlets, and OC4J
clients to access many different queue implementations. With third-party message
providers, only EJBS can access queue implementations. The resources are available
under j ava: conp/ resour ce/ as the default JMS resources.

Configuring a Custom Resource Provider

To add a custom <r esour ce- pr ovi der >, add the following to your or i on-
application.xm file:

<resource-provi der class="providerC assName" name="JNDI nange">
<description>
description
</ descri ption>
<property name="nane" val ue="val ue" />
</ resour ce- provi der >

In place of the user-replaceable constructs (those in italics) in the preceding code, do
the following:

« Replace the value pr ovi der Cl assNane of the cl ass attribute with the name
of the resource-provider class.

« Replace the value JNDI nane of the name attribute with a name by which to
identify the resource provider. This name will be used in finding the resource
provider in the application’s INDI as " j ava: conp/ r esour ce/ nanme/ " .

« Replace the value descri pti on of thedescri pti on tag with a description of
the specific resource provider.

« Replace the values name and val ue of the corresponding attributes with the
same name in any pr opert y tags that the specific resource provider needs to
be given as parameters.

Using a Custom Resource Provider

Use the following lookup syntax to retrieve a resource provider’s resources:

j ava: conp/ resour ce/ provi der Nane/ r esour ceNane

Where pr ovi der Name is the name of the resource provider (as given in the
attribute name described in the previous section) and r esour ceNane is the name
of a resource this resource provider furnishes.

9-2 Oracle9iAS Containers for J2EE Services Guide

Using Oracle JMS as a Resource Provider

Using Oracle JMS as a Resource Provider

The Resour cePr ovi der interface allows you to plug in Oracle JMS, which
enables J2EE code (EJBs, MDBs, JSPs, servlets, application clients, and so on) to
access Oracle AQ.

To access Oracle JMS queues through JMS, you must do the following:

1.

3.

Create an RDBMS user through which the JMS application will connect to the
back-end database. The user must have the necessary privileges to perform
Oracle JMS operations. Oracle JMS allows any database user to access queues in
any schema, provided the user has the appropriate access privileges.

Configure an OC4J resource provider with information about the back-end
database. Create data sources or LDAP directory entries, if needed.

Access the resource using Oracle JMS resource names, which include the
Resour ceName name component.

Note: For the OC4J 9.0.3 implementation, MDB is integrated with
Oracle JMS only through the resource provider interface.

Note: Oracle JMS implements the JMS 1.0.2 specifications and
complies with J2EE 1.3.

Configuring the Resource Provider

Identify the INDI name of the data source to use as the resource provider within the
<r esour ce- provi der > element.

If this is the resource provider for all applications (global), configure the global
application.xm file.

If this is the resource provider for a single application (local), configure the
orion-application.xm file of the application.

The following is an example of how to configure the resource provider using XML
syntax for Oracle JMS.

cl ass attribute—The or acl e. j ns. § nmsCont ext class, which is configured
in the cl ass attribute, implements the Oracle JMS resource provider.

Java Message Service 9-3

Using Oracle JMS as a Resource Provider

« property attribute—Identify the data source that is to be used as this resource
provider in the pr oper t y element. The topic or queue connects to this data
source to access the tables and queues that facilitate the messaging.

<resource-provi der class="oracle.jns. g nsContext" name="cartoj nsl">

<descri pti on> QIMY AQ </ descri pti on>

<property nane="dat asource" val ue="j dbc/ Cart Enul at edDS"></ property>
</ resour ce- provi der >+

For details on configuring data sources, see "Defining Data Sources” on page 11-2.

Using Message-Driven Beans

The OC4J message-driven beans (MDB: EJBs that process JMS messages
asynchronously) are integrated only with Oracle JMS, through the resource
provider interface. MDBs are not integrated with third-party message providers.

An MDB is a JMS message listener that can reliably consume messages from a
gueue or a subscription of a topic. The advantage of using an MDB instead of a IMS
message listener is that you can use the asynchronous nature of a JMS listener with
the following EJB container advantages:

« The consumer is created for the listener. That is, the container creates the
appropriate QueueRecei ver or Topi cSubscri ber.

« The MDB is registered with the consumer. The container registers the MDB with
the QueueRecei ver or Topi cSubscri ber and its factory at deployment
time.

« The message acknowledgment mode is specified.

Refer to the MDB chapter for details on deploying an MDB accessing Oracle JMS
through the resource provider interface.

Download the MDB example from the OC4J sample code page :

http://otn.oracl e.com sanpl e_code/ t ech/ j ava/ oc4j/ ht docs/ oc4j sanpl ecode/ oc4j - deno-ej b. ht m

Note: Message-driven beans are supported only for Oracle JMS.

9-4 Oracle9iAS Containers for J2EE Services Guide

Using Third-Party Resource Providers

Using Third-Party Resource Providers

Note: For 9.0.3, OC4J provides only a very limited set of
operations, as described in this section, for calling out to third-party
message providers through the resource provider interface for JIMS
applications.

This section discusses the following third-party resource providers:

« MQSeries
« SonicMQ
« SwiftMQ

Here are the operations that the resource provider interface supports:
« Look up queue and topic with j ava: conp/ r esour ce/ .
« Send amessage in EJB.

« Receive a message synchronously in EJB.

Note: Oracle supports only single-phase commit semantics for
resource providers other than Oracle JMS.

The context scanning resource provider class is a generic resource provider class
that is shipped with OCJ for use with third-party message providers.

Using MQSeries as a Resource Provider

The Resource Provider interface provides support for plugging in third-party JIMS
implementations. This example demonstrates how to make MQSeries the default
Resource Provider for JMS connections. The MQSeries resources are available in
OC4J under j ava: conmp/ resour ce/ MXSeri es/ .

Configuring

1. Install and configure MQSeries on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
supplied with your software for instructions.)

Java Message Service 9-5

Using Third-Party Resource Providers

2. Usethe <resource-provider>taginorion-application.xm toadd
MQSeries as a custom Resource Provider. Here is an example of using this tag
for SonicMQ integration:

<resour ce- provi der
cl ass="com ever m nd. server. depl oyment . Cont ext Scanni ngResour cePr ovi der"
name="MXeri es">
<description> MXeries resource provider </description>
<property
name="j ava. nam ng.factory.initial"
val ue="com sun. j ndi . f scont ext . Ref FSCont ext Fact or y" >
</ property>
<property
name="j ava. nam ng. provi der. url"
val ue="file:/var/ngm JNDI -Di rectory">
</ property>
</ resour ce- provi der>

3. Add the following MQSeries JMS client jar files to $J2EE_HOVE/ | i b:

comibmny.jar
com i bm nghind. j ar
comibmngjns.jar
myji.properties

4. Add the file system JNDI JAR files f scont ext . j ar and provi derutil.jar
to $J2EE_HOVE/ | i b.

Using SonicMQ as a Resource Provider

SonicMQ is a messaging broker with a complete implementation of the JMS 1.0.2
specification. The resource provider interface furnishes support for plugging in
third-party JMS implementations. This example describes how to make SonicMQ
the default resource provider for JMS connections. The SonicMQ resources are
available in OC4J under j ava: conp/ r esour ce/ Soni cMQ

Note: SonicMQ broker does not embed a JNDI service. Instead, it
relies on an external directory server to register the administered
objects. Administered objects, such as queues, are either created by
an administrator—using SonicMQ Explorer or programmatically—
using the Sonic Management API. Oracle registers the administered
objects from SonicMQ Explorer using the file system JNDI.

9-6 Oracle9iAS Containers for J2EE Services Guide

Using Third-Party Resource Providers

1. Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
with your software for instructions.)

2. Usethe<resource-provider>taginorion-application.xm toadd
SonicMQ as a custom resource provider. The following example demonstrates
using SonicMQ as the message provider and the file system as the JNDI store:

<resour ce- provi der
cl ass="com everm nd. server. del oyment . Cont ext Scanni ngResour cePr ovi der"
name="Soni cJM5" >
<descri ption>
Soni cJMS resource provider.
</ description>
<property name="java.nam ng.factory.initial"
val ue="com sun. j ndi . f scont ext . Ref FSCont ext Fact or y" >
<property name="java.nam ng. provider.url"
value="file:/private/jndi-directory/">
</ resour ce- provi der >
3. Add the SonicMQ JMS client JAR files, Soni c_cl i ent.jar and Soni c_

XA. jar,to $J2EE_HOWE | i b.

Java Message Service 9-7

Using Third-Party Resource Providers

Using SwiftMQ as a Resource Provider

SwiftMQ is a messaging broker with a complete implementation of the JMS 1.0.1
specification. The Resource Provider interface furnishes support for plugging in
third-party JMS implementations. This example describes how to make SwiftMQ
the default ResourceProvider for JMS connections. The SwiftMQ resources are
available in OC4J under j ava: conp/ r esour ce/ Swi ft MQ

1. Install and configure SwiftMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
provided with your software for instructions.)

2. Usethe <resource-provider>taginorion-application.xm toadd
SwiftMQ as a custom resource provider, as shown in the following:

<resour ce- provi der
cl ass="com everm nd. server. del oyment . Cont ext Scanni ngResour cePr ovi der"
name="Swi f t MQ' >
<descri ption>
Swi ft MQ resource provider.
</ description>
<property name="java.nam ng.factory.initial"
val ue="com sw ftnmg.jndi.Initial ContextFactorylnpl">
<property name="java.nam ng. provider.url"
val ue="smmp: / /I ocal host: 4001">
</ resour ce- provi der >
3. Add the SwiftMQ JMS JAR file swi f t ng. j ar to $J2EE_HOVE/ | i b.

9-8 Oracle9iAS Containers for J2EE Services Guide

10

Interoperability and RMI Tunneling

This chapter describes OC4J support for cross-platform distributed EJB
interoperation and for using RMI over HTTP (RMI tunneling).

This chapter covers the following topics:
« Introduction to EJB Interoperability

« Switching to Interoperable Transport
« Configuring OC4J for Interoperability
« Configuring RMI Tunneling

Introduction to EJB Interoperability

Version 2.0 of the Enterprise Java Beans specification adds features that make it easy
for EJB-based applications to invoke one another across different containers. You
can make your existing EJB interoperable without changing a line of code: simply
edit the bean’s properties and redeploy. Redeployment details are discussed in
"Simple Interoperability" on page 10-3.

EJB interoperability consists of the following:
« Transport interoperability through CORBA IIOP
« Naming interoperability through the CORBA CosNaming Service

« Security interoperability through Common Secure Interoperability Version 2
(CSIv2)

« Transaction interoperability through the CORBA Transaction Service (OTS)

OC4)J provides all these features.

Interoperability and RMI Tunneling 10-1

Switching to Interoperable Transport

Naming
OC4)J supports the CORBA CosNaming service. OC4J can publish EJBHone object
references in a CosNaming service. OC4J provides a JNDI CosNaming
implementation that allows applications to look up JNDI names using CORBA. You
can write your applications using either the JINDI or CosNaming APIs.

Security
OC4J supports CSIv2. CSlv2 specifies different conformance levels; OC4J complies
with the EJB specification, which requires conformance level 0.

Transactions

The EJB2.0 specification specifies an optional transactional interoperability feature.
Conformant implementations must choose one of the following:

« Transactionally interoperable—transactions are supported between beans
hosted in different J2EE containers

« Transactionally non-interoperable—transactions are supported only among
beans in the same container

This release of OC4J is transactionally non-interoperable. This means that when a
transaction spans EJB containers, OC4lJ raises a specified exception.

Switching to Interoperable Transport

10-2

In OC4J, EJBs use RMI/ORMI, a proprietary protocol, to communicate. It is easy to
convert an EJB to using RMI/110P; this makes it possible for EJBs to invoke one
another across EJB containers.

Note: RMI/IIOP support is based on CORBA 2.3.1. Applications
compiled using earlier releases of CORBA may not work correctly.

Oracle9iAS Containers for J2EE Services Guide

Switching to Interoperable Transport

Simple Interoperability
Follow these steps:

1.
2.

Restart OC4J with the - DGener at el | OP=t r ue flag.

Edit the client’s JNDI property j ava. nam ng. provi der. url touse a
cor banane URL instead of an or m URL. For details on the cor bananme URL,
see "The corbaname URL" on page 10-4.

(Client only) Change the client’s cl asspat h to include the stub JAR file
generated by OCA4J. This will normally be

appl i cation_depl oynent _directory/ appnane/ ej b- modul e/ nodul e_i i opClient.jar
If you do not have access to the deployment directory, you can obtain the

generated stub JAR file during deployment by running adm n. j ar with the
-iiopdientJar switch

Note: IIOP stub and tie class code generation happens at
deployment time, unlike ORMI stub generation which happens at
runtime. This is why you must add the JAR file to the cl asspat h
yourself. If you run in the server, a list of generated classes required
by the server and I1OP stubs is made available automatically.

(Optional) To make the bean accessible to CORBA applications, runrmi c. j ar
to generate IDL describing its interfaces. See "Configuring OC4J for
Interoperability” on page 10-7 for a discussion of command-line options.

Redeploy your application.

Advanced Interoperability

1.
2.

Restart OC4J with the - DGener at el | OP=t r ue flag.

Specify CSIv2 security policies for the bean in orion_ejb_jar.xm andin

i nternal _settings.xm .See"CSlv2 Security Properties (orion-ejb-jar.xml)"
on page 10-13 and "EJB Server Security Properties (internal-settings.xml)" on
page 10-9 for details.

Edit the client’s INDI property j ava. nam ng. provi der. url touse a
cor banane URL instead of an or m URL. For details on the cor bananme URL,
see "The corbaname URL" on page 10-4.

Interoperability and RMI Tunneling 10-3

Switching to Interoperable Transport

4. (Client only) Change the client’s cl asspat h to include the stub JAR file
generated by OC4J. This will normally be

appl i cation_depl oynent _direct ory/ appname/ nodul e/ nodul e_i i opdient.jar

Note: IIOP stub and tie class code generation happens at
deployment time, unlike ORMI stub generation which happens at
runtime. This is why you must add the JAR file to the cl asspat h
yourself. If you run in the server, a list of generated classes required
by the server and I1OP stubs is made available automatically.

5. (Optional) To make the bean accessible to CORBA applications, runrni c. j ar
to generate IDL describing its interfaces. See "Configuring OC4J for
Interoperability” on page 10-7 for a discussion of command-line options.

6. Redeploy your application.

The corbaname URL

In order to interoperate, an EJB must look up other beans using CosNaming. This
means that the URL for looking up the root Nani ngCont ext must use the

cor banane URL scheme instead of the or mi URL scheme. This section discusses
the cor banarme subset most used by EJB developers. For a full discussion of the
cor banane scheme, see section 2.5.3 of the CORBA Naming Service Specification.
The cor banamne scheme is based on the cor bal oc scheme, which is discussed in
section 13.6.10.1 of the CORBA specification.

The most common form of the cor bananme URL scheme is:

corbanarme: : host[: port]

This specifies a conventional DNS hostname or IP address and a port number. For
example,

cor banare: : exanpl e. com 8000

A cor banane URL can also specify a naming context by following the host and

port by # and a stringified Nam ngCont ext . The CosNaming service on the
specified host is responsible for interpreting the naming context.

cor bananme: : host [: port] #nani ngcont ext

10-4 Oracle9iAS Containers for J2EE Services Guide

Switching to Interoperable Transport

For example,

cor banarme: : exanpl e. com 8000#Myapp

The rmic.jar Compiler

In order to invoke or be invoked by CORBA objects, RMI objects must have
corresponding stubs, skeletons, and IDL. Ther mi c. j ar compiler can used to
generate stubs and skeletons from Java classes or to generate IDL. The generated
IDL can be used to generate non-Java stubs and skeletons using any CORBA IDL
compiler.

java -jar rmc.jar options classname ...
Therm c. j ar compiler takes the following options:

- al ways (same as - al waysgener at e)—Forces the compiler to generate new
outputs even when the existing stubs, ties, or IDL are newer than the input
class. Requiresthe -ii opor-idl flags.

-cl asspat h cl asspat h—Specifies the directories to search for the classes.
- d pat hnane— Specifies output directory for generated class files.
- g—Generates debugging information.

- i dl —Generates IDL for all classes in the input, as well as any classes they
reference. IDL, the Interface Description Language, is Corba’s mechanism for
describing methods and data in a language-independent way.

Note: Therm c.jar compiler generates IDL that uses the
CORBA 2.3 extensions to IDL; compilers that do not support these
extensions cannot compile rmic-generated IDL.

-idl Mbdul e <fromlavaPackage<. cl ass>> <t ol DLMbdul e>—Specifies
IDLEnNtity package mapping. An example:

-idl Modul e foo.bar ny::real::idl nmod
-idlFile <fromlavaPackage<. cl ass>> <t ol DLFi | e>—Specifies
IDLEntity file mapping. An example:

-idlFile test.pkg. X TEST16.idl

- i i op—Generates IIOP stubs and ties. Stub classes are called by clients to
transmit RMI messages over 1IOP; tie classes are called by the server to process
incoming calls and dispatch them to the implementation class. Each remote
interface has a stub; each server implementation class has a tie. Stub classes are

Interoperability and RMI Tunneling 10-5

Switching to Interoperable Transport

also generated for abstract interfaces. An abstract interface does not extend
j ava. rm . Renot e; in addition, it either has no methods or all of its methods
throw j ava. r m . Renot eExcept i on or one of its superclasses.

« -keep (same as - keepgener at ed)—Preserves intermediate generated source
files; by default, these are deleted.

« -nol ocal st ubs —Does not create stubs optimized to run in the same process
as the server. Requires - i i op.

« - nowar n—Turns off all compiler warnings.

« - noVal ueMet hods—Stops generation of IDL for methods and constructors
within IDL valuetypes. Requires - i dl .

« -Vv1. 1—Creates stubs and skeletons for 1.1 stub protocol version only. By
default. rmic generates stubs and skeletons compatible with both 1.1 and 1.2.

« -Vv1.2—Creates stubs and skeletons for 1.2 stub protocol version only. By
default. rmic generates stubs and skeletons compatible with both 1.1 and 1.2.

« -vcomnpat (default)—Creates stubs/skeletons compatible with both 1.1 and 1.2
stub protocol versions.

« -ver bose—Sends messages about compiler status to st dout .

10-6 Oracle9iAS Containers for J2EE Services Guide

Configuring OC4J for Interoperability

Exception Mapping

When EJBs are invoked over [1OP, OC4J) must map system exceptions to CORBA
exceptions. Table 10-1, "Java-CORBA Exception Mappings" lists the exception
mappings.

Table 10-1 Java-CORBA Exception Mappings

0OC4J System Exception CORBA system exception

j avax. transacti on. TRANSACTI ON_ROLLEDBACK
Transacti onRol | edbackExcepti on

j avax. transacti on. TRANSACTI ON_REQUI RED

Transacti onRequi r edExcepti on

j avax. transacti on. | NVALI D_TRANSACTI ON

I nval i dTr ansact i onExcepti on

java.rm . NoSuchObj ect Excepti on OBJECT_NOT_EXI ST

java.rm . AccessException NO_PERM SSI ON

java.rm . Marshal Exception MARSHAL

java.rm . Renot eExcepti on UNKNOWN

Invoking OC4J-Hosted Beans from a Non-OC4J Container

EJBs that are not hosted in OC4J must add the file oc4j _i nt er op. j ar to the
classpath in order to invoke OC4J-hosted EJBs. OC4J expects the other container to
make Handl eDel egat e object available in the JNDI namespace at

j ava: conp/ Handl eDel egat e. The oc4j _i nt erop. j ar file contains the
standard portable implementations of home and remote handles and metadata
objects.

Configuring OC4J for Interoperability

To add interoperability support to your EJB, you must specify interoperability
properties. Some of these properties are specified when starting OC4J and others in
bean properties specified in deployment files.

Interoperability and RMI Tunneling 10-7

Configuring OC4J for Interoperability

Interoperability OC4J Flags
The following OC4J startup flags support RMI interoperability:

« - DCGener at el | OP=t r ue—Generates new stubs and skeletons whenever you
redeploy an application.

« -Diiop. debug=t r ue—Generates deployment-time debugging messages,
most of which have to do with code generation.

« -Diiop.runtinme. debug=t r ue—Generates runtime debugging messages.

Interoperability Configuration Files
The following files contain entries that specify interoperability information.

Server-wide Files
« server.xm

The <sep- conf i g> element in this file specifies the pathname, normally
i nternal -settings. xm , for the server extension provider properties.

<sep-config path="internal -settings.xm">

« internal-settings.xnl

Specifies server extension provider properties specific to RMI/1IOP. See "EJB
Server Security Properties (internal-settings.xml)" on page 10-9 for details.

Application-specific Files
« orion-ejb-jar.xmn

(Server) The <i or - securi ty- confi g> sub-entity of the

<sessi on- depl oynent > and <ent i t y- depl oynent > entities specifies
Common Secure Interoperability Version 2 (CSIv2) security properties. See
"CSlv2 Security Properties” on page 10-10 for details.

« €ejb_sec.properties

(Client) Specifies client-side security properties for an EJB. See "EJB Client
Security Properties (ejb_sec.properties)” on page 10-15 for details.

« jndi.properties

(Client) Specifies the URL of the initial naming context. See "JNDI Properties for
Interoperability (jndi.properties)” on page 10-17 for details.

10-8 Oracle9iAS Containers for J2EE Services Guide

Configuring OC4J for Interoperability

EJB Server Security Properties (internal-settings.xml)
You specify server security propertiesini nt er nal - setti ngs. xn .

Note: You cannot editi nt er nal - setti ngs. xm with the

Enterprise Manager.

This file specifies the following properties as values within <sep- pr operty>
entities. Table 10-2, "EJB Server Security Properties" contains a list of properties.

Table 10-2 EJB Server Security Properties

Property Meaning

port I1OP port number (defaults to 4444)

ssl t rue if HIOP/SSL is supported, f al se otherwise

ssl -port IHOP/SSL port number (defaults to 4445) This port is used for
server-side authentication only. If your application uses client
and server authentication, OC4J will listenonssl - port +1
for client-side authentication.

keystore Name of keystore (used only if ss| ist rue)

keyst or e- password

trusted-clients

truststore

t rust st or e- passwor d

the keystore password (used only if ssl ist rue)

Comma-separated list of hosts whose identity assertions can be
trusted. Each entry in the list can be an IP address, a hostname,
a hostname pattern (for instance, *. exanpl e. com,or*;*
alone means that all clients are trusted. The default is to trust
no clients.

Name of truststore. If you do not specify a truststore for a
server, OC4J uses the keystore as the truststore. (used only if
ssl istrue)

Truststore password (can only be set if ssl ist rue)

The keystore and truststore files use JDK-specified formats to store keys and
certificates. A keystore stores a map of private keys and certificates. A truststore
stores trusted certificates for the certificate authorities (CAs).

Atypical i nt ernal -settings. xm looks like:

<server - ext ensi on- provi der nane="I|1COP"
class="comoracle.iiop.server.!||OPServerExtensi onProvider">

Interoperability and RMI Tunneling 10-9

Configuring OC4J for Interoperability

<sep-property nane="port" val ue="4444" />
<sep-property nanme="host" val ue="l ocal host" />
<sep-property nane="trusted-clients" val ue="*.exanple.cont />
<sep-property nane="ssl" val ue="true" />
<sep-property nane="ssl-port" val ue="4445" />
<sep-property nane="keystore" val ue="keystorel" />
<sep-property nane="keystore-password" val ue="changeit" />
</ server - ext ensi on- provi der >

Note: Although the default value of port is one less than the
default value for ssl - por t, this relationship is not required.

Here is the DTD fori nter nal -setti ngs. xm :

<I-- A server extension provider that is to be plugged in to the server.
-->

<I ELEMENT server - ext ensi on-provi der (sep-property*) (#PCDATA)>

<I ATTLI ST server-extension-provider nanme class CDATA #| MPLI ED>

<I ELEMENT sep-property (#PCDATA)>

<I ATTLI ST sep-property name val ue CDATA #l MPLI ED>

<l-- This file contains internal server configuration settings. -->

<l ELEMENT internal -settings (server-extension-provider*)>

CSIv2 Security Properties

Common Secure Interoperability version 2 (CSIv2) is an OMG standard for a secure
interoperable wire protocol that supports authorization and identity delegation.
You configure CSIv2 properties in three different locations:

« internal_settings.xn
« orion-ejb-jar.xmn
« €ejb_sec.properties

These configuration files are discussed in "CSIv2 Security Properties
(internal-settings.xml)" on page 10-11, "CSIv2 Security Properties (orion-gjb-jar.xml)"
on page 10-13, and "EJB Client Security Properties (ejb_sec.properties)” on

page 10-13.

10-10 Oracle9iAS Containers for J2EE Services Guide

Configuring OC4J for Interoperability

CSIv2 Security Properties (internal-settings.xml)

This section discusses the semantics of the values you set within the
<sep-property>elementini nternal _settings. xm . For details of syntax,
see "EJB Server Security Properties (internal-settings.xml)" on page 10-9.

In order to use the CSIv2 protocol with OC4J, you must both set ssl totr ue and
specify an IIOP/SSL port (ssl - port).

« Ifyoudonotsetssl totrue,then CSIV2 is not enabled. Setting ssl totrue
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

« If you do not specify an ssl - port , then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <i or - securi ty-confi g>
entityinori on-ej b-jar. xm .

When IIOP/SSL is enabled on the server, OC4J listens on two different sockets - one
for server authentication alone and one for server and client authentication. You
specify the server authentication port within the <sep- pr oper t y> element; the
server and client authentication listener uses the port number immediately
following.

For SSL clients using server authentication alone, you may specify:
« Truststore only

« Both keystore and truststore.

= Neither

If you specify neither keystore nor truststore, the handshake may fail, if there are no
default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

Interoperability and RMI Tunneling 10-11

Configuring OC4J for Interoperability

CSIv2 Security Properties (ejb_sec.properties)

If the client does not use client-side SSL authentication, you must set
client.sendpasswordintheejb_sec. properti es file in order for the client
runtime to insert a security context and send the username and password. You must
also set server.trustedhosts toinclude your server.

Note: Server-side authentication takes precedence over a
username and password.

If the client does use client-side SSL authentication, the server extracts the
Di sti ngui shedNane from the client's certificate and then looks it up in the
corresponding user manager; it does not perform password authentication.

Trust Relationships
There are two types of trust relationships:

« Clients trusting servers to transmit usernames and passwords using non-SSL
connections.

= Servers trusting clients to send identity assertions, which delegate an originating
client’s identity.

Clients list trusted servers in the EJB property oc4j . i i op. trust edServers. See
Table 10-3, "EJB Client Security Properties” on page 10-16 for details. Servers list
trusted clients in the t r ust ed- cl i ent property of the <sep- pr opert y> element
ininternal -settings.xm . See"EJB Server Security Properties
(internal-settings.xml)" on page 10-9 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

« presumed trust, in which the server presumes that the logical client is
trustworthy, even if the logical client has not authenticated itself to the server,
and even if the connection is not secure.

« authenticated trust, in which the target trusts the intermediate server based on
authentication either at the transport level or inthe trust ed-cli ent listor
both.

10-12 Oracle9iAS Containers for J2EE Services Guide

Configuring OC4J for Interoperability

Note: You can also configure the server to both require SSL
client-side authentication and to also specify a list of trusted client
(or intermediate) hosts who are allowed to insert identity
assertions.

OC4)J provides both kinds of trust; you configure trust using the bean’s
<i or-security-config>elementinorion-ejb-jar.xm .See"CSIv2 Security
Properties (orion-ejb-jar.xml)" on page 10-13 for details.

CSIv2 Security Properties (orion-gjb-jar.xml)

This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies initsori on- ej b-j ar. xm . The CSIv2
security properties are specified within <i or - securi t y- conf i g> elements. Each
element contains a <t r anspor t - conf i g> element, an <as- cont ext > element,
and an <sas- cont ext > element.

The <transport-config> element

This element specifies the transport security level. Each element within
<transport - confi g> must be set to support ed, r equi r ed, or none. None
means that the bean neither supports nor uses that feature; suppor t s means that
the bean permits the client to use the feature; r equi r es means that the bean insists
that the client use the feature. The elements are:

« <integrity>—Isthere a guarantee that all transmissions are received exactly
as they were transmitted?

« <confidentiality>—Isthere aguarantee that no third party was able to
read transmissions?

« <establish-trust-in-target>—Does the server authenticate itself to the
client?

« <establish-trust-in-client>—Does the client authenticate itself to the
server?

Interoperability and RMI Tunneling 10-13

Configuring OC4J for Interoperability

Notes: Ifyouset<establish-trust-in-client>to
requi r ed, this overrides specifying user nane_passwor d in
<as-cont ext >.

Setting any of the t ransport - conf i g properties tor equi r ed
means that the bean will use RMI/IIOP/SSL to communicate.

The <as-context> element
This element specifies the message-level authentication properties.

« <aut h- net hod>—Must be set to either user nanme_passwor d or none. If set
to user nane_passwor d, beans will use user names and passwords to
authenticate the caller.

« <real nP—Must be set to def aul t at this release.

« <required>—Ifsettotrue, the bean requires the caller to specify a username
and password.

The <sas-context> element

This element specifies the identity delegation properties. It has one element,

<cal | er - propagat i on> which can be set to support ed, r equi r ed, or none. If
the <cal | er - pr opagat i on> element is set to suppor t ed, then this bean accepts
delegated identities from intermediate servers. If it is set to r equi r ed, then this
bean requires all other beans to transmit delegated identities. If set to none, this
bean does not support identity delegation.

An example:

<i or-security-config>

<transport-config>
<integrity>supported</integrity>
<confidentiality>supported</confidentiality>
<establish-trust-in-target>supported</establish-trust-in-target>
<establish-trust-in-client>supported</establish-trust-in-client>

</transport-config>

<as-cont ext >
<aut h- net hod>user nane_passwor d</ aut h- net hod>
<real nedef aul t </ real n»
<requi red>true</required>

</ as- cont ext >

<sas- cont ext >
<cal | er- propagat i on>support ed</ cal | er - pr opagat i on>

10-14 Oracle9iAS Containers for J2EE Services Guide

Configuring OC4J for Interoperability

</ sas- cont ext >
<lior-security-config>

DTD The DTD for the <i or - securi ty-confi g>elementis:

<l ELEMENT ior-security-config (transport-config?, as-context?
sas-context?) >

<l ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >

<I ELEMENT as-context (auth-method, realm required) >

<! ELEMENT sas-context (caller-propagation) >
< ELEMENT integrity (#PCDATA) >

<! ELEMENT confidentiality (#PCDATA)>

<! ELEMENT establish-trust-in-target (#PCDATA)
<I ELEMENT establish-trust-in-client (#PCDATA)
<I ELEMENT aut h- met hod (#PCDATA) >

<I ELEMENT real m (#PCDATA) >

<! ELEMENT required (#PCDATA)> <!-- Mist be true or false -->
<I ELEMENT cal | er- propagation (#PCDATA) >

>
>

EJB Client Security Properties (ejb_sec.properties)

Any client, whether running inside a server or not, has EJB security properties. The
following are the EJB client security properties controlled by the

ej b_sec. properti es file. By default, OC4J searches for this file in the current
directory when running as a client or in J2EE_HOVE/ conf i g when running in the
server. You can specify this file’s location explicitly with

-Dej b_sec_properties_| ocati on=pat hnane. Table 10-3 lists the properties
controlled by the ej b_sec. properti es file.

Interoperability and RMI Tunneling 10-15

Configuring OC4J for Interoperability

Table 10-3 EJB Client Security Properties

Property

Meaning

oc4j .iiop.keyStorelLoc

oc4j .iiop. keyStorePass

ocdj .iiop.trustStorelLoc

oc4j.iiop.trustStorePass

oc4j.iiop.enable.clientauth

oc4j.iiop.ciphersuites

nameser vi ce. useSSL

client.sendpassword

oc4dj.iiop.trustedServers

The pathname for the keystore.
The password for the keystore.
The pathname for the truststore.
The password for the truststore.

Whether the client supports client-side authentication.
If this property is setto t r ue, you must specify a
keystore location and password.

Which cipher suites are to be enabled. The valid cipher
suites are; TLS _RSA W TH RC4_128 MD5

SSL_RSA W TH_RC4_128_MD5
TLS_DHE_DSS_W TH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_W TH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_W TH_RC4_40_ND5
SSL_RSA EXPORT_W TH_RC4_40_ND5

TLS_DHE_DSS_EXPORT_W TH_DES40_CBC_SH
A

SSL_DHE_DSS_EXPORT_W TH_DES40_CBC_SH
A

Whether to use SSL when making the initial
connection to the server.

Whether to send username and password in clear
(unencrypted) in the service context when not using
SSL. If this property is settot r ue, the username and
password are sent only to servers listed in the

t rust edSer ver list.

A list of servers that can be trusted to receive
passwords sent in clear. Has no effect if

cl i ent. sendpasswor d is set to false. The list is
comma-separated. Each entry in the list can be an IP
address, a hostname, a hostname pattern (for instance,
*_exanpl e. comn), or *; * alone means that all
servers are trusted.

10-16 Oracle9iAS Containers for J2EE Services Guide

Configuring RMI Tunneling

Note: The properties marked with a # can be set either in
ej b_sec. properti es or as system properties. The settings in

ej b_sec. properti es always override settings specified as
system properties.

JNDI Properties for Interoperability (jndi.properties)

The following RMI/110P properties are controlled by the client’s
j ndi . properties file:

« java. nam ng. provider. url mustbeacorbananme URL in order for the
bean to be interoperable. For details on cor banane URLSs, see "The corbaname
URL" on page 10-4.

« cont ext Fact ory can now be either

Applicationdientlnitial ContextFactory orthe new class
1 OPI nitial Cont ext Fact ory.

If your application has an appl i cati on-client.xml , leave

cont ext Fact ory setto ApplicationClientlnitial ContextFactory.
If your application does not have an appl i cation-client. xm ,change
context Factory tol I OPInitial ContextFactory.

Configuring RMI Tunneling

When EJBs must communicate across firewalls they can use tunneling to transmit

RMI across HTTP. This tunneling is supported only with RMI/ORMI; you cannot
do HTTP tunneling with RMI/1IOP.

Interoperability and RMI Tunneling 10-17

Configuring RMI Tunneling

To configure OC4J to support RMI tunneling, do the following:

1. Modify the INDI provider URL. The JNDI provider URL for accessing the OC4J
EJB server takes the form:

orm://host name:orm _port/the_app
You should change the URL to:

http:orni://host name: HTTP_PORT/t he_app

Note: If omitted, HTTP_PORT defaults to 80. The argument port
number is your HTTP port, not your ORMI port.

2. If your HTTP traffic goes through a proxy server, you must specify the
pr oxyHost and (optionally) pr oxyPor t in the command line when starting
the EJB client. If you do not supply a value for pr oxyPor t , it defaults to 80.

-Dhtt p. proxyHost =pr oxy_host -Dhttp. proxyPort=pr oxy_port

Configuring RMI in server.xml and rmi.xml
In order to use RMI from OC4J, you must edit the server. xm and rm . xmi files.

Editing server.xml

Your server. xm file must specify the pathname of the RMI configuration file in
the <rnmi - confi g>element. The syntax is:

<rmi-config path="RM _PATH' />
The usual RM _PATHis ./ rm . xm ; you can name the file whatever you like.

Editing rmi.xml

The filerm . xm must specify which host, port, and username/password will be
used to connect to (and accept connections from) remote RMI servers. Your file
must contain an <r m - ser ver > element describing possible connections. An
<rm - server > element looks like:

<rni-server host="host name" port="port">

<server host="host name" usernane="user nane" port="port"
passwor d="passwor d" htt p- pat h="pat hnane"/ >

<l og>
<file path="1 ogfi | epat hname" /> Ckay

</l og>

</rm -server>

10-18 Oracle9iAS Containers for J2EE Services Guide

Configuring RMI Tunneling

<rm - server > has the following attributes:

hostname is the host or IP name from which your server will accept RMI requests.
host nane can be a particular hostname or "[ALL] ". If you specify a host nane, the
OC4J server will only accept RMI requests from that particular host. If host nane is
"[ALL] " or you omit the host attribute, the OC4J server will accept RMI requests
from any host.

port is the port number on which your server listens for RMI requests. If you omit
this attribute, it defaults to 23791.

An <rm - server > element can contain zero or multiple <ser ver > elements and
zero or one <l og> elements.

Each <ser ver > element specifies a server that your application can contact over
RMI. A <ser ver > element takes the form:

<server host="host name" usernane="user nane" port="port"
passwor d="passwor d"/ >

The host attribute is required; the remaining attributes are optional.

hostname the name or IP address of the server you will contact over RMI.

username the username of a valid principal on the remote server

port the port number on which the remote server listens for RMI requests

password the password used by the principal user name

The <l og> element contains the pathname of a log file to which the server will
write all RMI requests.

Interoperability and RMI Tunneling 10-19

Configuring RMI Tunneling

10-20 Oracle9iAS Containers for J2EE Services Guide

11

Data Sources

This chapter describes how to configure and use data sources in your Oracle9iAS
Containers for J2EE (OC4J) application. A data source is a vendor-independent
encapsulation of a connection to a database server. A data source instantiates an
object that implements the j avax. sql . Dat aSour ce interface.

This chapter covers the following topics:

« Introduction

« Defining Data Sources

« Retrieving a Connection from a Data Source
« Types of Data Sources

« Two-Phase Commits and Data Sources

« Using Data Sources

« Using Oracle JDBC Extensions

« Behavior of a Non-Emulated Data Source Object
« Using Database Caching Schemes

« Connection Retrieval Error Conditions

« Using the OCI JDBC Drivers

« Using DataDirect Drivers

Data Sources 11-1

Introduction

Introduction

A data source is a Java object that implements the j avax. sql . Dat aSour ce
interface. Data sources offer a portable, vendor-independent method for creating
JDBC connections. Data sources are factories that return JDBC connections to a
database. J2EE applications use JNDI to look up Dat aSour ce objects. Each JDBC
2.0 driver provides its own implementation of a Dat aSour ce object, which can be
bound into the INDI namespace. Once bound, you can retrieve this data source
object through a JNDI lookup.

Because data sources are vendor-independent, we recommend that J2EE
applications retrieve connections to data servers using data sources.

Defining Data Sources

You define OC4J data sources in an XML file known as dat a- sour ces. xni .

Defining Location of the Data Source XML Configuration File

Your application can know about the data sources defined in this file only if the
application.xm file knows about it. The pat h attribute in the

<dat a- sour ces> tag in the appl i cati on. xml file must contain the name and
path to your dat a- sour ces. xmi file, as follows:

<dat a- sour ces
path = "dat a- sources. xm "
/>

The pat h attribute of the <dat a- sour ces> tag contains a full pathname for the
dat a- sour ces. xm file. The path can be fixed, or it can be relative to where the
application.xm islocated. Both the appl i cati on. xm and

dat a- sour ces. xmi files are located in

$J2EE_HOVE/ confi g/ appl i cati on. xm . Thus, the path contains only the name
of the dat a- sour ces. xmi file.

Defining Data Sources

The $J2EE_HOME/ confi g/ dat a- sour ces. xm file is pre-installed with a default
data source. For most uses, this default is all you will need. However, you can also
add your own customized data source definitions.

The default data source is an emulated data source. You can use this data source for
applications that access and update only a single data server. If you need to update

11-2 Oracle9iAS Containers for J2EE Services Guide

Defining Data Sources

more than one database, you must use a non-emulated data source. For a full
discussion of emulated versus non-emulated data sources, see "Types of Data
Sources" on page 11-5.

The following is a simple data source definition that you can modify for most
applications:

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
nane="Cr acl eDS"
| ocati on="j dbc/ Oracl eCor eDS'
xa- | ocation="0Or acl eDS"
ej b-1ocation="j dbc/ Or acl eDS"
connection-driver="oracl e.jdbc.driver.OacleDriver"
username="scott"
password="ti ger"
url ="j dbc: oracl e: thin: @ocal host: 5521: oracl e"
i nactivity-timeout="30"
/>

« Thecl ass attribute defines the type of data source you want to use.

« Thelocation,xa-1ocation,andejb-Iocation attributes are INDI names
that this data source is bound to within the JNDI namespace. We recommend
that you use only the ej b- 1 ocat i on JNDI name in the JNDI lookup for
retrieving this data source.

« Theejb-1ocati on attribute is the INDI name that this data source is bound to
within the JNDI namespace.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identify the database, its username, and
password.

"Using Data Sources" on page 11-12 describes all data source attributes.

Data Sources 11-3

Retrieving a Connection from a Data Source

Retrieving a Connection from a Data Source

One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you instead use data source objects
in your JDBC operations.

Note: Data sources always return logical connections.

Do the following to modify data within your database:

1. Retrieve the Dat aSour ce object through a JNDI lookup on the data source
definition in the dat a- sour ces. xn file.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ej b- 1 ocat i on tag in the
dat a- sour ces. xnl file.

You must always cast or narrow the object that JNDI returns to the
Dat aSour ce, because the INDI | ookup() method returns a Java obj ect .

2. Create a connection to the database represented by the Dat aSour ce object.

Once you have the connection, you can construct and execute JDBC statements
against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/CraclebDS");
Connection conn = ds. get Connection();

Use the following methods of the Dat aSour ce object in your application code to
retrieve a connection to your database:

« getConnection();
The username and password are those defined in the data source definition.
« getConnection(String usernane, String password);

This username and password overrides the username and password defined in
the data source definition.

If the data source refers to an Oracle database, you can cast the connection object
returned on the get Connect i on method to or acl e. j dbc. Or acl eConnecti on
and use all the Oracle extensions. This is shown in the following example:

11-4 Oracle9iAS Containers for J2EE Services Guide

Types of Data Sources

oracl e.jdbc. Oracl eConnection conn =

(oracle.jdbc. Oracl eConnection) ds. getConnection();

After you retrieve a connection, you can execute SQL statements against the
database through either SQLJ or JDBC.

Note: We strongly recommend that you restart OC4J whenever a
database crashes. Because connections obtained through data
sources are cached, a connection may become invalid if the
database referenced by the data source crashes. This is especially
true if you have sett he ni n-connect i ons attribute or specified
ahighinactivity-timeout. (See Table 11-1, "Data Source
Attributes”, for a discussion of these attributes.)

Types of Data Sources

There are several types of data sources. Three types are especially important to
understand: emulated data sources, non-emulated data sources, and non-JTA data
sources.

Emulated Data Sources— Emulated data sources support local and global
transactions. However, instead of relying on underlying database support for
JTA, emulated data sources support JTA by emulating the XA API without
relying on the relational database manager’s XA implementation. This means
that emulated data sources do not support two-phase commit operations. The
pre-installed default data source is an emulated data source.

Non-Emulated Data Sources—Non-emulated data sources support local and
global transactions. Non-emulated data sources rely on the underlying database
implementation of JTA and XA, and so have full support for two-phase commit.

Non-JTA Data Sources—Non-JTA data sources support only local transactions;
they do not support global transactions. These data sources can be provided by
Oracle or by any other JDBC-compliant implementation.

Emulated Data Sources

Connections obtained from emulated data sources are extremely fast, because the
connections emulate the XA API without providing full XA global transactional
support. In particular, emulated data sources do not support two-phase commit. We
recommend that you use emulated data sources for local transactions or when your
application uses global transactions without requiring two-phase commit. For

Data Sources 11-5

Types of Data Sources

efficiency, any JNDI-retrieved connection to the an emulated data source shares the
same connection with the first identified username within the same transaction.

You can use the same emulated data source to obtain connections to different
databases by changing the values of ur| and connecti on-dri ver. The following
is a definition of an emulated data source:

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
nane="Cr acl eDS"
| ocation="j dbc/ dsLocati on"
xa- | ocation="j dbc/ xa/ Or acl eXADS"
ej b-1ocation="j dbc/ Or acl eDS"
connection-driver="oracl e.jdbc.driver.OacleDriver"
username="scott"
password="ti ger"
url ="j dbc: oracl e: thin: @ocal host: 5521: oracl e"
i nactivity-timeout="30"
/>

When looking up a Dat aSour ce object in the JNDI namespace, use the
ej b-1 ocat i on logical name, as follows:

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/OraclebDS");

/1 This lookup could al so be done as

/] DataSource ds = (DataSource) ic.|ookup("java:conp/env/jdbc/OracleDS");
Connection con = ds. get Connection();

This connection opens a database session for SCOTT/ Tl GER.

Note: Previous releases supported the | ocati on and

xa- | ocat i on attributes for retrieving data source objects. These

are now strongly deprecated; applications, EJBs, servlets, and JSPs
should use only the JNDI name ej b- | ocat i on in emulated data
source definitions for retrieving the data source.

When using an emulated data source, you cannot use global transactions. The
XAResour ce that you enlist with the transaction manager is an emulated
XAResour ce, so the underlying database is unaware of global transactions. It
provides only local transactional support. If you want to use two-phase commit in
global transactions, you must use a non-emulated data source.

11-6 Oracle9iAS Containers for J2EE Services Guide

Types of Data Sources

Retrieving multiple connections from a data source using the same username and
password within a single global transaction causes the logical connections to share a
single physical connection. The following code shows two connections—conn1 and
conn2—that share a single physical connection. They are both retrieved off the
same data source object. They also authenticate with the same username and
password.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.|ookup("jdbc/COracl eCMIDSL");
Connection connl = ds. get Connection("scott", "tiger");
Connection conn2 = ds. get Connection("scott", "tiger");

If you provide different a different username and password for the second
connection from this data source, an error condition occurs. You can avoid this
problem by using the "dedi cat ed. connect i on" JNDI property. This is described
in "Using Different Usernames for Two Connections to a Single Data Source" on
page 11-20.

Non-Emulated Data Sources

Non-emulated data sources provide full XA and JTA global transactional support.
These are the only data sources that support global two-phase commit transactions.

We recommend that you use these data sources for distributed database
communications, recovery, and reliability. Non-emulated data sources share
physical connections for several logical connections to the same database for the
same user.

The following is an example of a non-emulated data source definition.

<dat a- sour ce
cl ass="com everm nd. sql . O i onCMIDat aSour ce"
nane="Cr acl eDS"
| ocati on="j dbc/ Oracl eCMIDS"
connection-driver="oracle.jdbc.driver.OacleDriver"
username="scott"
password="tiger"
url ="j dbc: oracl e: t hi n: @ost nane: TTC port nunber: DB SI D"
i nactivity-timeout="30"

/>

Data Sources 11-7

Types of Data Sources

The following are the expected attribute definitions:

« Thel ocati on attribute is the JNDI name that this data source is bound to
within the JNDI namespace. You use the | ocat i on JNDI name in the JNDI
lookup for retrieving this data source.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identifies the database, its username, and
password.

« Thecl ass attribute defines what type of data source class to bind in the
namespace. For example, you can define a non-emulated data source with the
com everm nd. sql . Ori onCMIDat aSour ce class, as shown above.

Non-JTA Data Sources

Non-JTA data sources provide no support for global transactions. If you use
O acl eDat aSour ce, no connection pooling is available; if you use
O acl eConnect i onCachel npl , connection pooling is supported.

You can use any of the Oracle Dat aSour ce objects listed in the Oracle9i JDBC
Developer’s Guide. For example, to define a non-emulated data source with the
O acl eXADat aSour ce class, you would configure the following in the

dat a- sour ces. xnl file:

<dat a- sour ce
class="oracl e. xa. cl i ent. Oracl eXADat aSour ce"
nane="Cr acl eXADS"
| ocati on="j dbc/ Oracl eXADS"
connection-driver="oracl e.jdbc.driver.OacleDriver"
username="scott"
password="tiger"
url ="j dbc: oracl e: t hi n: @ost nane: TTC port nunber: DB SI D"
i nactivity-timeout="30"
/>

Non-Emulated Data Sources Cannot Mix Transaction Types

When you are using a non-emulated data source, you cannot mix local and global
transactions. You must use either one or the other. The following code shows an
invalid mixture of local and global transactions:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/COracl eCMIDSL");

11-8 Oracle9iAS Containers for J2EE Services Guide

Types of Data Sources

Connection connl = ds. get Connection("scott", "tiger");
javax.transaction. User Transaction txn = (javax.transaction. User Transaction)
i ¢. 1 ookup("java: conp/ env/ User Transacti on");
connl. work(); /1 performwork on connl in a |local transaction
/] start global transaction
txn.start();
connl. morework(); // performwork on connl within a global transaction ERRCR!

This example mixes transaction types in a different (but also incorrect) way:

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.lookup("jdbc/Oracl eOMIDSL");

Connection connl = ds. get Connection("scott", "tiger");

javax.transaction. User Transaction txn = (javax.transaction. User Transaction)
i c. 1 ookup("]java: conp/ env/ User Transacti on");

//start global transaction

txn.start();

connl. work(); /1 performwork on connl in a global transaction

txn.comit();

connl. morework(); // performwork on connl within a [ocal transaction ERROR

Even though you have committed the global transaction, you are still mixing global
and local transactional work within the same bean.

Mixing Data Sources

A single application may use several different types of data source. If your
application mixes data sources, you should be aware of the following issues:

« Only emulated and non-emulated data sources support JTA transactions. You
cannot enlist connections obtained from non-JTA data sources in a JTA
transaction.

« Only non-emulated data sources support two-phase commit. To enlist multiple
connections in a two-phase commit transaction, all the connections must use
non-emulated data sources.

« You cannot use both emulated data sources and non-emulated data sources in
the same transaction.

« If your application does not use JTA transactions, you can obtain connections
from any data source.

« If your application has opened aj avax. transacti on. User Tr ansact i on,
all future transaction work must be performed through that object. If you try to
invoke the connection’s r ol | back() or conmi t () methods, you will receive

Data Sources 11-9

Two-Phase Commits and Data Sources

the SQLException "calling comit() [or rollback()]is not
al owed on a contai ner-nanaged transactions Connection".

Two-Phase Commits and Data Sources

Oracle's two-phase-commit coordinator is a DTC Engine that performs two phase
commit with appropriate recovery. The two-phase commit engine is responsible for
ensuring that when the transaction ends, all changes to all databases are either
totally committed or fully rolled back. The two-phase commit engine can be one of
the databases that participates in the global transaction or it can be a separate
database. If multiple databases or multiple sessions in the same database participate
in a transaction, then you must specify a two-phase commit coordinator. Otherwise
you cannot commit the transaction.

You can specify a commit coordinator in the following ways:

= You can specify one commit coordinator for all applications using the global
appl i cation. xnmlinthe J2EE_HOVE/ confi g directory.

= You can override this commit coordinator for an individual application in the
application's ori on-appl i cation. xm .

For example:

<commi t - coor di nat or >
<comit-class class="com everm nd. server. Oracl eTwoPhaseCommi t Driver" />
<property name="dat asour ce"
val ue="j dbc/ Or acl eCommi t DS" />
<property nane="usernane"
val ue="systent />
<property name="password"
val ue="nmanager" />
</ commi t - coor di nat or >

If you specify a username and password in the global appl i cati on. xnl , these
values override the values in dat asour ce. xm . If these values are null, then the
username and password in dat asour ce. xm are used to connect to the commit
coordinator.

The username and password used to connect to the commit coordinator (for
example, System) must have "force any transaction” privilege. By default, during
installation, the commit-coordinator is specified in he global appl i cati on. xml
with username and password as null.

11-10 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commits and Data Sources

Each data source participating in a two-phase commit should specify dbl i nk
information in the Or i onCMI'Dat asour ce data source. This dbl i nk should be the
name of the dbl i nk created in the commit coordinator database to connect to this
database.

For example, if dbl is the database for the commit coordinator and db2 and db3 are
participating in the global transactions, you would create | i nk2 and | i nk3 in the
db1 database as shown in the following example.

connect conmit_user/comit _user
create database link link2 using "instl db2"; // link fromdbl to db2
create database link link3 using "instl db3"; // link fromdbl to db3;

Next, you would define a data source called j dbc/ Or acl eCommi t DS in
application.xmn:

<dat a- sour ce
cl ass="com everni nd. sql . Oi onCMIDat aSour ce"
name="Cr acl eCommi t DS"
| ocati on="j dbc/ Oracl eCommi t DS"
connection-driver="oracle.jdbc.driver.COacleDriver"
user nane="syst en
passwor d="manager"
url ="jdbc: oracl e: thin: @ocal host: 5521: db1"

inactivity-timeout="30"/>

Here is the data source description of db2 which participates in the global
transaction. Note that | i nk2, which was created in dbl, is specified as a property
here:

<dat a- sour ce
cl ass="com ever m nd. sql . Ori onCMIDat aSour ce"
nane="Cr acl eDB2"
| ocation="jdbc/ Oracl eDB2"
connection-driver="oracl e.jdbc.driver.Oacl eDriver"
user nane="syst enf
passwor d="rmanager"
url="jdbc: oracl e: thi n: @ocal host : 5521: db2"
inactivity-timeout="30">
<property name="dbl i nk"
val ue="LI NK2. REGRESS. RDBMSB. EXAMPLE. COM'/ >
</ dat a- sour ce>

Data Sources 11-11

Using Data Sources

Here is the data source description of db3 which participates in the global
transaction. Note that | i nk3, which is created in db1l, is specified as a property
here:

<dat a- sour ce
cl ass="com ever m nd. sql . Ori onCMIDat aSour ce"
nane="Cr acl eDB3"
| ocation="jdbc/ Oracl eDB3"
connection-driver="oracle.jdbc.driver.OacleDriver"
user nane="syst enf
passwor d="manager"
url="jdbc: oracl e: thi n: @ocal host: 5521: db3"
i nactivity-timeout="30">
<property name="dbl i nk"
val ue="LI NK3. REGRESS. RDBMS. EXAMPLE. COM'/ >
</ dat a- sour ce>

Using Data Sources

The following sections describe the data sources that your application can use and
how to access them:

« Configuring Data Source Objects
« Configuration Files

« Data Source Attributes

« Data Source Methods

« Portable Data Source Lookup

Configuring Data Source Objects

For most purposes, you can use the data sources that are already defined in the
server dat a- sour ces. xm configuration file.

To define a new data source object, use the Oracle Enterprise Manager.To find out
how to use the Administrative tools, see the Oracle9iAS Containers for J2EE User’s
Guide. For Oracle Enterprise Manager information, see Oracle Enterprise Manager
Administrator’s Guide. This chapter explains how to set up and manage data sources
by editing the configuration files directly.

11-12 Oracle9iAS Containers for J2EE Services Guide

Using Data Sources

Configuration Files

One main configuration file establishes data sources at the OC4J server level:
$J2EE_HOVE/ conf i g/ dat a- sour ces. xnl . To edit the information in this file,
use the Enterprise Manager and drill down to the Data Source page. OC4J parses
the dat a- sour ces. xm file when it starts, instantiates data source objects, and
binds them into the server JINDI namespace. When you add a new data source
specification, you must restart the OC4J server to make the new data source
available for lookup.

Each application also has a separate JNDI namespace. The files web. xm ,

ej b-jar.xm ,orion-ejb-jar.xm, andtheori on-web. xm contain entries
that you can use to map application JNDI names to data sources, as the next section
describes.

Data Source Attributes

A data source can take many attributes. Some are required, but most are optional,
the required attributes are marked below. The attributes are specified in a
<dat a- sour ce> tag. Table 11-1 lists the attributes and their meaning.

Data Sources 11-13

Using Data Sources

Table 11-1 Data Source Attributes

Attribute Name

Meaning of Value

Default Value

cl ass

| ocati on

nane

connection-driver

user nanme
passwor d
URL

xa-| ocation

Required. Names the class that implements the data
source. For non-emulated, the class attribute can be
"com evermi nd. sql . Ori onCMIDat aSour ce". For
emulated, the class attribute should be

"com evermi nd. sql . Dri ver Manager Dat aSour ce".

(The JNDI logical name for the data source object. OC4J
binds the class instance into the application JNDI
namespace with this name. This JNDI lookup name is
used for non-emulated data sources. In future releases,
ej b- 1 ocat i on will be the only supported attribute for
JNDI lookup of emulated data sources.

The name of the data source. Must be unique within the
application.

The JDBC-driver class name for this data source, which
is needed by some data sources that deal with

j ava. sgl . Connect i on. For most data sources, the
driver should be

"oracle.jdbc.driver.Oracl eDriver".

The optional name of the schema to connect to.
The optional password for the schema.

The URL for database connections. Must be supplied for
Oracle database connections.

(Deprecated) The logical name of an XA data source. This
attribute is supported only for emulated data sources. In
future releases, ej b- 1 ocat i on will be the only
supported attribute for INDI lookup.

11-14 Oracle9iAS Containers for J2EE Services Guide

N/A

N/A

If this name is
not supplied,

ej b-1 ocati on
is used as the
name.

None.

None.
None.

None.

None.

Using Data Sources

Table 11-1 Data Source Attributes (Cont.)

Attribute Name Meaning of Value Default Value

ej b-l ocation The logical name of an EJB data source. Use this attribute None.
if you are using JTA for single-phase commit
transactions or if you are looking up emulated data
sources. If you use it to retrieve the data source, you can
map the returned connection to
oracl e. jdbc. Oracl eConnecti on.

i nactivity-tinmeout Time (inseconds)to cache unused connections before 60 seconds
closing them.

connection-retry- The interval to wait (in seconds) before retrying a failed 1 second
i nterval connection attempt.

nmax- connecti ons The maximum number of open connections for a pooled Depends on the
data source. data source type.
nm n- connecti ons The minimum number of open connections for a pooled 0

data source. OC4J does not open these connections until
Dat aSour ce. get Connect i on method is invoked.

wai t -ti meout The number of seconds to wait for a free connection if 60
the pool is used up (that is, has reached max-connections
used).

max- connect - att enp The number of times to retry making a connection. This 3

ts is useful when the network is not stable or the
environment is unstable for any other reason that will
sometimes make connection attempts fail.

property This element is used to specify either a database link for None
two-phase commit transactions (dbl i nk) or a database
caching scheme (cache_schene).

Data Source Methods
You can call the following methods on a Dat aSour ce object:

getConnection();
Attempt to establish a database connection.

getConnection(String uid, String password);
Attempt to retrieve a database connection, specifying the username and password.

Data Sources 11-15

Using Data Sources

getLoginTimeout();

Retrieve the maximum time in seconds that this data source can wait while
attempting to connect to a database

setLoginTimeout(int seconds);
Set the maximum time in seconds that this data source will wait while attempting to
connect to a database.

getLogWriter();
Retrieve the log writer for this data source. Returns a java.io.Printwriter object.

setLogWriter(PrintWriter out);
Set the log writer for this data source.

Portable Data Source Lookup

When the OC4J server starts, the data sources in the dat a- sour ces. xm file in the
j 2eel/ hone/ conf i g directory are added to the OC4J JNDI tree. When you look up
a data source using JNDI, you specify the INDI lookup as follows:

Dat aSource ds = ic.|ookup("jdbc/COracl eCMIDSL");

The OC4J server looks in its own internal JNDI tree for this data source.

However, it is recommended—and much more portable—for an application to look
up a data source in the application JNDI tree, using the portable j ava: conp/ env
mechanism. Place an entry pointing to the data source in the application web. xm
orej b-jar.xmn files, using the <r esour ce- r ef > tag. For example:

<resource-ref>
<res-ref-nane>j dbc/ Oracl eDS</ r es- r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </ res- aut h>
</resource-ref>

where <r es- r ef - nane> can be one of the following:

1. The actual JINDI name—such as "j dbc/ Or acl eDS"—that is defined in the
dat a- sour ces. xml . In this situation, no mapping is necessary. This is
demonstrated by the above code example. The <r es- r ef - nanme> is the same
as the JNDI name bound in the dat a- sour ces. xni file.

11-16 Oracle9iAS Containers for J2EE Services Guide

Using Oracle JDBC Extensions

You would retrieve this data source without using "j ava: conp/ env" as shown
by the following JNDI lookup:

Initial Context ic = new Initial Context();
Dat aSource ds = ic. | ookup("jdbc/COaclebS");

2. Alogical name that is mapped to the actual INDI name in the OCA4J-specific
files, ori on-web. xm ororion-ej b-jar. xm . The OC4J-specific XML files
then define a mapping from the logical name in the web. xm orej b-j ar. xm
file to the actual JINDI name defined in the dat a- sour ces. xm file.

Example 11-1 Mapping Logical JNDI Name to Actual JNDI Name

The following demonstrates option #2 above. If you want to choose a logical name
of "j dbc/ Or acl eMappedDS" to be used within your code for the JNDI retrieval.
Then you would have the following in your web. xml orej b-j ar. xmnl files:

<resource-ref>
<res-ref-nane>j dbc/ Or acl eMappedDS</r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res- aut h>Cont ai ner </ res- aut h>

</resource-ref>

In order for the actual JINDI name to be found, you must have a

<r esour ce-r ef - mappi ng> element that maps the "j dbc/ Or acl eMappedDS" to
the actual INDI name in the dat a- sour ces. xni file. If we are using the default
emulated data source, then the ej b-1 ocat i on would be defined with

"j dbc/ Or acl eDS" as the actual INDI name. Thus, the following line would be
contained in the OC4J-specific XML file;

<resour ce-ref-nmappi ng nane="j dbc/ O acl eMappedDS" | ocati on="j dbc/ O acl eDS" />

You can then look up the data source in the application JNDI namespace using the
Java statements:

Initial Context ic = new Initial Context();
Dat aSource ds = ic.|ookup("java: conp/env/jdbc/ Oracl eMappedDS");

Using Oracle JDBC Extensions

To use Oracle JDBC extensions, cast the returned connection to
oracl e. jdbc. Oracl eConnecti on, as follows:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/Oracl eOMIDSL");

Data Sources 11-17

Behavior of a Non-Emulated Data Source Object

oracl e.jdbc. Oracl eConnection conn =
(oracle.jdbc. Oracl eConnection) ds. get Connection();

You can use any of the Oracle extensions on the returned connection, "conn”.

/] you can create oracle.jdbc.* objects using this connection
oracle.jdbc. Statement orcl Stnt =
(oracle.jdbc. O acl eSt at ement) conn. creat eSt at ement () ;
/] assune table is varray_table
oracle.jdbc. Oracl eResul tSet rs =
orcl St . execut eQuery("SELECT * FROM" + tabl eNane);
while (rs.next())

{
oracl e.sqgl . ARRAY array = rs. get ARRAY(1);

Behavior of a Non-Emulated Data Source Object

The physical behavior of a non-emulated data source object changes depending on
whether you retrieve a connection off the data source within a global transaction or
not. The following discusses these differences:

« Retrieving a Connection Outside a Global Transaction

« Retrieving a Connection Within a Global Transaction

Retrieving a Connection Outside a Global Transaction

If you retrieve a connection from a non-emulated data source and you are not
involved in a global transaction, every get Connect i on method returns a logical
handle. When the connection is used for work, a physical connection is created for
each connection created. Thus, if you create two connections outside of a global
transaction, both connections use a separate physical connection. When you close
each connection, it is returned to a pool to be used by the next connection retrieval.

Retrieving a Connection Within a Global Transaction

If you retrieve a connection from a non-emulated data source and you are involved
in a global JTA transaction, all physical connections retrieved from the same

Dat aSour ce object by the same user within the transaction share the same physical
connection.

11-18 Oracle9iAS Containers for J2EE Services Guide

Using Database Caching Schemes

For example, if you start a transaction and retrieve two connections from the

"j dbc/ Oracl eCMIDS1" Dat aSour ce with the "scot t " user, both connections
share the physical connection. In the following example, both connl and conn2
share the same physical connection.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.lookup("jdbc/Oracl eOMIDSL");
[/start txn
txn.start();
Connection connl
Connection conn2

ds. get Connection("scott", "tiger");
ds. get Connection("scott", "tiger");

However, separate physical connections are retrieved for connections retrieved from
separate Dat aSour ce objects. The following example shows both connl and
conn? retrieved from different Dat aSour ce objects—"j dbc/ Or acl eCMIDS1" and
"j dbc/ Oracl eCMIDS2". Both connl and conn2 will exist upon a separate
physical connection.

Context ic = new Initial Context();

Dat aSource dsl = (DataSource) ic.lookup("jdbc/ Oracl eCMIDSL");
Dat aSource ds2 = (DataSource) ic.lookup("jdbc/ Oracl eCMIDS2");
[/start txn
txn.start();
Connection connl
Connection conn2

dsl. get Connection();
ds2. get Connection();

Using Database Caching Schemes

You can define the database caching scheme to use within the data source
definition. There are three types of caching schemes: DYNAM C_SCHEME,

FI XED_WAI T_SCHEME, and FI XED_RETURN_NULL_SCHEME. To specify a caching
scheme, you specify an integer value for a <pr oper t y> element named
cacheSchene. The supported values are shown in Table 11-2.

Table 11-2 Database Caching Schemes

Value Cache Scheme

1 DYNAM C_SCHENME

2 FI XED_WAI T_SCHEME

3 FI XED_RETURN_NULL_SCHEME

The following example is a data source using the DYNAMIC_SCHEME.

Data Sources 11-19

Connection Retrieval Error Conditions

<dat a- sour ce
cl ass="com everm nd. sql . O i onCMIDat aSour ce"
nane="Cr acl eDS"
| ocati on="j dbc/ Oracl eCOMIDS1"
connection-driver="oracl e.jdbc.driver.OacleDriver"
usernane="scott"
password="tiger"
url ="j dbc: oracl e: t hi n: @host name>: <TTC port nunber>: <DB S| D>"
inactivity-timeout="30">
<property name="cacheScheme" val ue="1" />

</ dat a- sour ce>

Connection Retrieval Error Conditions
The following mistakes can create an error condition:
« Using Different Usernames for Two Connections to a Single Data Source
« Using the OCI JDBC Drivers

Using Different Usernames for Two Connections to a Single Data Source

When you retrieve a connection from the a Dat aSour ce object with a username
and password, this username and password is used on all subsequent connection
retrievals within the same transaction. This is true for all data source types. For
example, suppose an application retrieves a connection from the

"j dbc/ Or acl eCMIDS1" data source with the "scot t " user. When the application
retrieves a second connection from the same data source with a different username,
such as "adans", the username provided is ignored. Instead, the "scot t " user is
used.

Context ic = new Initial Context();

Dat aSource ds = (DataSource) ic.lookup("jdbc/Oracl eOMIDSL");
[/start txn
txn.start();
Connection connl
Connection conn2

ds. get Connection("scott", "tiger"); //uses scott/tiger
ds. get Connecti on("adans", "wood"); //uses scott/tiger also

Thus, you cannot authenticate using two different users to the same data source. If
you try to access the tables as "adans/ wood", you enter into an error condition.

11-20 Oracle9iAS Containers for J2EE Services Guide

Using DataDirect Drivers

Using the OCI JDBC Drivers

The examples of Oracle data source definitions in this chapter use the Oracle JDBC
thin driver. However, you can use the Oracle JDBC OCI (thick) driver as well. Set
the following before you start the OC4J server:

= install the Oracle Client on the same machine on which OC4J is installed
« setthe ORACLE HOME variable

« setLD LI BRARY_PATH (or the equivalent environment variable for your OS) to
$ORACLE HOWE/ li b

« set TNS_ADM Nto a valid Oracle administration directory with a valid
t nsnanes. or a file

The URL to use in the ur | attribute of the <dat a- sour ce> element definition can
have any of these forms:

« jdbc:oracl e: oci 8: @this TNS entry is for a database on the same system as
the client, and the client connects to the database in IPC mode

« jdbc:oracl e:oci8: @TNS servi ce name>: where the TNS service name
is an entry in the instance t nsnanes. or a file

« jdbc:oracle:oci8:@full _TNS |istener_description>:the
complete TNS service specification, as described in the Oracle Net
Administrator’s Guide

Using DataDirect Drivers

When your application must connect to heterogeneous databases, use DataDirect
JDBC drivers. DataDirect JDBC drivers are not meant to be used with an Oracle
database but for connecting to non-Oracle databases, such as Microsoft, SQLServer,
Sybase and DB2. If you want to use DataDirect drivers with OC4J, add
corresponding entries for each database in the dat a- sour ces. xnl file.

Please see the DataDirect documentation for information on installing the
DataDirect JDBC drivers.

The following is an example of a data source entry for SQLServer. For more detailed
information, see the DataDirect Connect JDBC User's Guide and Reference.

<dat a- sour ce
cl ass="com ever ni nd. sql . Dri ver Manager Dat aSour ce"
name="Mer ant DS"
| ocati on="j dbc/ Mer ant Cor eSSDS"

Data Sources 11-21

Using DataDirect Drivers

xa- 1 ocation="j dbc/ xa/ Mer ant SSXADS"
ej b-1 ocati on="j dbc/ Mer ant SSDS"
connection-driver="com nerant. datadirect.jdbc.sql server. SQLServerDri ver"
user name="t est"
passwor d="secret"
url ="jdbc: sql server//host nane: port; User =t est; Passwor d=secr et "
inactivity-timeout="30"
/>

For a DB2 database, here is a data source configuration sample;

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="Mer ant DS"
| ocati on="j dbc/ Mer ant DB2DS"
xa- | ocation="j dbc/ xa/ Mer ant DB2XADS"
ej b-1ocati on="j dbc/ Mer ant DB2DS"
connection-driver="com nerant. dat adi rect.jdbc. db2. DB2Dri ver"
username="t est"
passwor d="secret"
url ="j dbc: sql server//host nane: port; Locati onNane=j dbc; Col | ecti onl d=def aul t;
i nactivity-timeout="30"
/>

For a Sybase database, here is a data source configuration sample:

<dat a- sour ce
cl ass="com everni nd. sql . Dri ver Manager Dat aSour ce"
name="Mer ant DS"
| ocati on="j dbc/ Mer ant Cor eSybaseDS"
xa- | ocation="j dbc/ xa/ Mer ant SybaseXADS"
ej b-1ocati on="j dbc/ Mer ant SybaseDS"
connection-driver="com nerant. dat adi rect.j dbc. sybase. SybaseDri ver"
username="test"
passwor d="secret"
url ="j dbc: sql server//host nane: port; User =t est ; Passwor d=secret "
i nactivity-timeout="30"
/>

You can also use vendor-specific data sources in the class attribute directly. That is,
you do not need to use an OC4J-specific data source in the class attribute.

11-22 Oracle9iAS Containers for J2EE Services Guide

12

Java Transaction API

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) Transaction API.
This chapter covers the following topics:

« Introduction

« Single-Phase Commit

« Two-Phase Commit

Introduction

Enterprise Java Beans use Java Transaction APl (JTA) 1.0.1 for managing
transactions. This chapter discusses the method for using JTA in OC4J. It does not
cover JTA concepts—you must understand how to use and program global
transactions before reading this chapter. See the Sun Microsystems Web site for
more information. Code examples are available for download from the OTN OC4J
sample code site;

http://otn.oracle.conf sanpl e_code/tech/javal ocdj/ htdocs/ ocdjsanpl ecode/ oc4j - deno-ej b. ht m

Java Transaction APl 12-1

Single-Phase Commit

JTA involves enlisting resources and demarcating the transaction.

Enlisting Resources The complexity of your transaction is determined by how
many resources your application enlists.

Single-Phase Commit (1pc): If only a single resource (database) is enlisted in the
transaction, you can use single-phase commit.

Two-Phase Commit (2pc): If more than one resource is enlisted, you must use
two-phase commit, which is more difficult to configure.

Demarcating Transactions Your application demarcates the transaction through
either bean-managed or container-managed transactions.

Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

Container-managed transactions are controlled by the container. That is, the
container either joins an existing transaction or starts a new transaction for the
application—as defined within the deployment descriptor—and ends the newly
created transaction when the bean method completes. It is not necessary for
your implementation to provide code for managing the transaction.

Note: Not all data sources support JTA transactions. (See "Types
of Data Sources" on page 11-5 for details.)

Single-Phase Commit

Single-phase commit (1pc) is a transaction that involves only a single resource. JTA
transactions consist of enlisting resources and demarcating transactions.

Enlisting a Single Resource
To enlist the single resource in the single-phase commit, you must do the following:

1.

Configure the Dat aSour ce in dat a- sour ces. xm . For single-phase commit,
use an emulated data source.

Retrieve a connection to this Dat aSour ce in your bean implementation after
the transaction has begun.

a. After the transaction has begun (demarcated), lookup the Dat aSour ce
from the JNDI name space.

12-2 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

b. Retrieve a connection off this Dat aSour ce object using the
get Connect i on method.

Configuring the Data Source

Use an emulated data source for a single phase commit. Refer to Chapter 11, "Data
Sources" for information on emulated and non-emulated data source types.

Use the default Dat aSour ce object if you can for the single-phase commit JTA
transaction. After modifying this data source ur | attribute with your database URL
information, retrieve the data source in your code using a JNDI lookup with the
JNDI name configured in the ej b- | ocat i on attribute. Configure a Dat aSour ce
for each database involved in the transaction.

<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
nane="Cr acl eDS"
| ocati on="j dbc/ Oracl eCor eDS'
xa- | ocation="j dbc/ xa/ Or acl eXADS"
ej b-1ocation="j dbc/ Or acl eDS"
connection-driver="oracl e.jdbc.driver.OacleDriver"
username="scott"
password="ti ger"
url ="j dbc: oracl e: t hi n: @nyhost : myport: nySI D'
i nactivity-timeout="30"
/>

The following are the expected attribute definitions:

« Theejb-1ocati on attribute is the INDI name that this data source is bound to
within the JNDI namespace. You use the ej b-1 ocat i on JNDI name in the
JNDI lookup for retrieving this data source.

« Theconnection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

« The URL, username, and password identify the database, its username, and
password. Modify this example with the URL, username, and password of your
intended database. These are used to retrieve the data source session and
database schema that will be used to access and modify the database.

« Thecl ass attribute defines what type of data source class to bind in the
namespace. The emulated data sources are defined using the
com everm nd. sql . Dri ver Manager Dat aSour ce class, as shown above.

Java Transaction APl 12-3

Single-Phase Commit

Retrieving the Data Source Connection

Before executing any SQL statements against tables in the database, you must
retrieve a connection to that database. For these updates to be included in the JTA
transaction, you must do one of the following:

1. After the transaction has begun (demarcated), lookup the Dat aSour ce from
the JINDI name space. You can use one of two methods for the retrieval.

2. Retrieve a connection off this Dat aSour ce object using the get Connect i on
method.

There are two methods for retrieving the Dat aSour ce out of the INDI namespace,
as follows:

« Performing JNDI Lookup on Data Source Definition

« Performing JNDI Lookup Using Environment

Performing JNDI Lookup on Data Source Definition You can perform a lookup on the
JNDI name bound to the Dat aSour ce definition in the dat a- sour ces. xmi file
and retrieve a connection, as follows:

Context ic = new Initial Context();
Dat aSource ds = (DataSource) ic.|ookup("jdbc/OraclebDS");
Connection conn = ds. get Connection();

Performing JNDI Lookup Using Environment You can perform a lookup on a logical
name defined in the environment of the bean container. For more information, see
Chapter 11, "Data Sources". Basically, define the logical name in the J2EE
deployment descriptor as follows:

<resource-ref>
<res-ref-name>j dbc/ Or acl eMappedDS</ r es-r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Cont ai ner </ r es- aut h>

</resource-ref>

Map the <r es- r ef - nane> in the OC4J-specific deployment descriptor to the JNDI
name bound in the dat a- sour ces. xm file as follows:

<resour ce-ref-mappi ng nane="j dbc/ O acl eMappedDS" | ocati on="j dbc/ O acl eDS" />

where "j dbc/ Or acl eDS" is the JINDI name defined in the dat a- sour ces. xm
file.

12-4 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

Then retrieve the data source using the environment JNDI lookup and create a
connection, as shown below:

Initial Context ic = new Initial Context();

Dat aSource ds = ic.|ookup("java:conp/env/jdbc/ Oracl eMappedDS");

Connection conn = ds. get Connection();

If you are using JDBC, you can start preparing and executing statements against the
database. If you are using SQLJ, create a default context to specify in the #sql
statement.

Example 12-1 shows a small portion of an employee session bean that uses
container-managed transactions and uses SQLJ for updating the database.

Example 12-1 Retrieving a Connection Using Portable JNDI Lookup

int empno = 0;

doubl e salary = 0.0;
Dat aSour ce renot eDsS;
Context ic;

//Retrieve the initial context. No JNDI properties are necessary here
ic =newlnitialContext ();

/I Lookup the DataSource using the <resource-ref> definition
renmot eDS = (DataSource)ic.|ookup ("java: conp/ env/jdbc/ O acl eMappedDS");

//Retrieve a connection to the database represented by this DataSource
Connection renoteConn = renoteDS. get Connection ("SCOTT", "TICGER');

[1Since this inmplenmentation uses SQJ, create a default context for this
/] connecti on.
Def aul t Context dc = new Defaul t Cont ext (renoteConn);

/I Performthe SQ statenent against the database, specifying the default

/lcontext for the database in brackets after the #sql statenent.
#sql [dc] { select enpno, sal fromenp where enane = :name };

Java Transaction APl 12-5

Single-Phase Commit

Demarcating the Transaction

With JTA, you can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional.
Container-managed transaction is available only to entity beans and stateful beans.

Note: Currently, the client cannot demarcate the transaction.
Propagation of the transaction context cannot cross OC4J instances.
Thus, neither a remote client nor a remote EJB can initiate or join
the transaction.

You specify the type of demarcation in the bean deployment descriptor. The
following shows a session bean that is declared as container-managed transactional
by defining the <t r ansact i on-t ype> element as "Cont ai ner ". To configure the
bean to use bean-managed transactional demarcation, define this element to be
"Bean".

<sessi on>
<description>no description</description>
<ej b- name>nyEnpl oyee</ ej b- nane>
<home>cnt xn. ej b. Enpl oyeeHome</ hone>
<renot e>cnt xn. ej b. Enpl oyee</ r enot e>
<ej b-cl ass>cnt xn. ej b. Enpl oyeeBean</ ej b- ¢l ass>
<sessi on-type>St at ef ul </ sessi on-t ype>
<transaction-type>Cont ai ner</transaction-type>
<resource-ref>
<res-ref-name>j dbc/ Or acl eMappedDS</r es-r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Appl i cati on</res-aut h>
</resource-ref>
</ sessi on>

Container-Managed Transactional Demarcation

If you define your bean to use container-managed transactions (CMT), then you
must specify how the container manages the JTA transaction for this bean in the
<trans-attribut e>elementin the deployment descriptor. Table 12-1 briefly
describes the transaction attribute types that you should specify in the deployment
descriptor.

12-6 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

Table 12-1 Transaction Attributes

Transaction Attribute

Description

Not Support ed

Requi r ed

Supports

Requi r esNew

Mandat ory

Never

The bean is not involved in a transaction. If the bean invoker
calls the bean while involved in a transaction, the invoker’s
transaction is suspended, the bean executes, and when the bean
returns, the invoker’s transaction is resumed.

The bean must be involved in a transaction. If the invoker is
involved in a transaction, the bean uses the invoker’s
transaction. If the invoker is not involved in a transaction, the
container starts a new transaction for the bean.

Whatever transactional state that the invoker is involved in is
used for the bean. If the invoker has begun a transaction, the
invoker’s transaction context is used by the bean. If the invoker
is not involved in a transaction, neither is the bean.

Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself. If the
invoker calls while involved in a transaction, the invoker’s
transaction is suspended until the bean completes.

The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker’s transaction context.

The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean. If the invoker is involved in a transaction, a

Renot eExcept i on is thrown.

The following <cont ai ner -t ransact i on> portion of the deployment descriptor
demonstrates how this bean specifies the Requi r esNewtransaction attribute for all
(*) methods of the my Enpl oyee EJB.

<assenhl y-descriptor>

<cont ai ner-transaction>
<description>no description</description>

<net hod>

<ej b- name>nyEnpl oyee</ ej b- nane>
<net hod- name>* </ net hod- nanme>

</ met hod>

<trans-attribute>Requi resNew</trans-attribute>
</ cont ai ner-transaction>
</ assenbl y-descri pt or>

Java Transaction APl 12-7

Single-Phase Commit

No bean implementation is necessary to start, commit, or rollback the transaction.
The container handles all of these functions based on the transaction attribute
specified in the deployment descriptor.

Bean-Managed Transactions

If you declare the bean as bean-managed transactional (BMT) within the
<transacti on-type>, then the bean implementation must demarcate the start,
commit, or rollback for the global transaction. In addition, you must be careful to
retrieve the Dat aSour ce connection after you start the transaction and not before.

Programmatic Transaction Demarcation For programmatic transaction demarcation,
the bean writer can use either the JTA user transaction interface or the JDBC
connection interface methods. The bean writer must explicitly start and commit or
roll back transactions within the timeout interval.

Programmatic transaction demarcation must be used by Web components (JSP,
Servlets) and Stateless Session beans; Stateful Session beans may use it; entity beans
must use declarative transaction demarcation.

Client-side Transaction Demarcation This form of transaction demarcation is not
required by the J2EE specification, and is not recommended for performance and
latency reasons. OC4J does not support client-side transaction demarcation.

JTA Transactions

The Web component or bean writer must explicitly issue begin, commit and
rollback methods of the User Tr ansact i on interface as follows:

Context initCtx = new Initial Context();
ut = (UserTransaction) initCx.lookup("java:conp/env/UserTransaction");

ut. begin();
/] Commit the transaction started in ejbCreate.

Try {
ut.comit();

} catch (Exception ex) { ...}

JDBC Transactions

The j avax. sql . Connect i on class provides commit and rollback methods. JDBC
transactions implicitly begin with the first SQL statement that follows the most
recent commit, rollback, or connect statement.

12-8 Oracle9iAS Containers for J2EE Services Guide

Single-Phase Commit

The following code example assumes there are no errors. Youcan download this
example from the OC4J sample code OTN site:

http://otn.oracle.conl sanpl e_code/tech/javal ocdj/ htdocs/ ocdj sanpl ecode/ oc4j - deno-ej b. ht m

This example demonstrates the combination of demarcating a transaction and
enlisting the database resources in the following manner;

1. Retrieves the User Tr ansact i on object from the bean context.
2. Starts the transaction with the begi n method.
3. Enlists the database.

This example is the same as in "Retrieving the Data Source Connection"” on
page 12-4, but it is surrounded by User Tr ansact i on begi n() and comm t ()
methods.

Dat aSour ce renot eDS;

Context ic;

int empno = 0;

doubl e salary = 0.0;

/I Retrieve the UserTransaction object. Its nmethods are used for txn demarcation
User Transaction ut = ctx.getUserTransaction ();

/lStart the transaction
ut. begin();

//Retrieve the initial context. No JNDI properties are necessary here
ic =newlnitialContext ();

/I Lookup the OrionCMIDataSource that was specified in the data-sources. xn
renmot eDS = (DataSource)ic. | ookup ("java: conp/ env/jdbc/ O acl eCMIDS');

/I Retrieve a connection to the database represented by this DataSource
Connection renoteConn = renoteDS. get Connection ("SCOTT", "TICGER");

[1Since this inmplenmentation uses SQJ, create a default context for this
[/ connecti on.
Def aul t Context dc = new Defaul t Cont ext (renoteConn);

/I Performthe SQL statenment against the database, specifying the default
/lcontext for the database in brackets after the #sql statenent.
#sql [dc] { select enpno, sal fromenp where enane = :name };

/[Assumi ng everything went well, conmt the transaction.
ut.comit();

Java Transaction APl 12-9

Two-Phase Commit

Two-Phase Commit

The main focus of JTA is to declaratively or programmatically start and end simple
and global transactions. When a global transaction is completed, all changes are
either committed or rolled back. The difficulty in implementing a two-phase
commit transaction is in the configuration details. To understand this section, you
must understand non-emulated data sources. See "Non-Emulated Data Sources" on
page 11-7.

Figure 12-1 shows an example of a two-phase commit

engine—j dbc/ Or acl eCommi t DS—coordinating two databases in the global
transaction—j dbc/ Or acl eDS1 and j dbc/ Or acl eDS2. Refer to this example
when going through the steps for configuring your JTA two-phase commit
environment.

Figure 12-1 Two-Phase Commit Diagram

JTA database 1
OracleDS1

user: SCOTT

two-phase commit
engine:
OracleCommitDS
user: SCOTT
JTA database 2
OracleDS2

user:SCOTT

Configuring Two-Phase Commit Engine

When a global transaction involves multiple databases, the changes to these
resources must all be committed or rolled back at the same time. That is, when the
transaction ends, the transaction manager contacts a coordinator—also known as a
two-phase commit engine—to either commit or roll back all changes to all included
databases. The two-phase commit engine is an Oracle9i database that is configured
with the following:

12-10 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit

Fully-qualified database links from itself to each of the databases involved in
the transaction. When the transaction ends, the two-phase commit engine
communicates with the included databases over their fully-qualified database
links.

A user that is designated to create sessions to each database involved and is
given the responsibility of performing the commit or rollback. The user that
performs the communication must be created on all involved databases and be
given the appropriate privileges.

To facilitate this coordination, you must configure the following:

1.

Designate and configure an Oracle9i database as the two-phase commit engine.
When you have defined the database that is to act as the two-phase commit
engine, configure it as follows:

a. Define a non-emulated data source, using Or i onCMI'Dat aSour ce, for the
two-phase commit engine database in the dat a- sour ces. xm file. The
following code defines the two-phase commit engine
Ori onCMTDat aSour ce in the dat a- sour ces. xm file.

<dat a- sour ce
cl ass="com everm nd. sql . O i onCMIDat aSour ce"
nane="Cr acl eCommi t DS
| ocati on="j dbc/ Oracl eCommi t DS"
connection-driver="oracle.jdbc.driver.OacleDriver"
user nane="coor dusr"
passwor d="coor dpwd"
url ="j dbc: oracl e: t hin: @rysun: 5521:jis"
i nactivity-timeout="30"
/>

b. Refer to the two-phase commit engine Dat aSour ce in either the global or
local ori on-appli cati on. xm file. The global XML file exists in the
confi g/ directory. The local XML file exists in the application EAR file.

Configure the two-phase commit engine in the or i on- appl i cati on. xm
as follows:

<commi t - coor di nat or >
<comit-class class="com evernind. server. Oracl eTwoPhaseCommi tDriver" />
<property name="dat asour ce" val ue="j dbc/ Oracl eCommi t DS" />
<property name="usernanme" val ue="coordusr" />
<property name="password" val ue="coordpwd" />
</ commi t - coor di nat or >

Java Transaction APl 12-11

Two-Phase Commit

The parameters are as follows:

* Specify the INDI name of "j dbc/ Or acl eConmi t DS" for the
Ori onCMTDat aSour ce defined in the dat a- sour ces. xni . This
identifies the Dat aSour ce to use as the two-phase commit engine.

* Specify the two-phase commit engine username and password. This
step is optional, because you could also specify it in the Dat aSour ce
configuration. This is the username and password to use as the login
authorization to the two-phase commit engine. This user must have the
privileges previously mentioned in step 4.

Note: The container prioritizes the username and password
defined in the ori on- appl i cati on. xm file over the username
and password defined in the dat a- sour ces. xm file.

* Specify the <commi t - cl ass>. This class is always
O acl eTwoPhaseConmi t Dri ver for two-phase commit engines.

The following example defines the two-phase commit engine in the
<commi t - coor di nat or > element in the appl i cati on. xm file.

* The O acl eTwoPhaseCommit Dxi ver class is defined in the
<conmi t - cl ass> element.

* The JNDI name for the Or i onCMIDat aSour ce is identified in the
<pr opert y>element whose nane is "dat asour ce".

* The username is identified in the <pr oper t y> element "user nane".
* The password is identified in the <pr oper t y> element "passwor d".

2. Create the user on the two-phase commit engine that facilitates the transaction.
First, the user opens a session from the two-phase commit engine to each of the
involved databases. Second, it must be granted the CONNECT, RESOURCE,
CREATE SESSI ON privileges to be able to connect to each of these databases.
The FORCE ANY TRANSACTI ON privilege allows the user to commit or roll back
the transaction.

Additionally, create this user and grant these permissions on all databases
involved in the transaction.

For example, if the user that is needed for completing the transaction is
COORDUSR, you would do the following on the two-phase commit engine and
EACH database involved in the transaction:

12-12 Oracle9iAS Containers for J2EE Services Guide

Two-Phase Commit

CONNECT SYSTEM MANAGER;

CREATE USER COORDUSR | DENTI FI ED BY COORDUSR;

GRANT CONNECT, RESQURCE, CREATE SESSI ON TO COORDUSR;
GRANT FORCE ANY TRANSACTI ON TO COORDUSR;

Configure fully-qualified public database links (using the CREATE PUBLI C
DATABASE LI NK command) from the two-phase commit engine to each
database that may be involved in the global transaction. This is necessary for
the two-phase commit engine to communicate with each database at the end of
the transaction. The COORDUSR must be able to connect to all participating
databases using these links.

This example has two databases involved in the transaction. The database link
from the two-phase commit engine to each database is provided on each

Ori onCMTDat aSour ce definition in a <pr opert y> element in the

dat a- sour ces. xm file. See the next step for the "dbl i nk" <pr operty>
element.

Configure non-emulated data source objects of type Ori onCMI'Dat aSour ce
for each database involved in the transaction with the following information:

a. The JNDI bound name for the object.
b. The URL for creating a connection to the database.

c. The fully-qualified database link from the two-phase commit engine to this
database. This is provided in a <pr oper t y> element within the
Dat aSour ce definition in the dat a- sour ces. xni file.

The following Ori onCMI'Dat aSour ce objects specify the two databases
involved in the global transaction. Notice that each of them has a <pr operty>
element named "dbl i nk" that denotes the database link from the two-phase
commit engine to itself.

<dat a- sour ce
cl ass="com everm nd. sql . O i onCMIDat aSour ce"
name="Cr acl eCMIDS1"
| ocati on="j dbc/ Oracl eDS1"
connection-driver="oracl e.jdbc.driver.OacleDriver"
usernane="scott"
passwor d="dri ver"
url ="j dbc: oracl e: t hin: @ysun: 5521:jis"
i nactivity-timeout="30"
<property name="dbl i nk"
val ue="LI NK. REGRESS. RDBMS. DEV. US. ORACLE. COM'/ >
</ dat a- sour ce>

Java Transaction APl 12-13

Two-Phase Commit

<dat a- sour ce
cl ass="com everm nd. sql . O i onCMIDat aSour ce"
nane="Cr acl eCMIDS2"
| ocati on="j dbc/ Oracl eDS2"
connection-driver="oracl e.jdbc.driver.OacleDriver"
usernanme="scott"
passwor d="dri ver"
url ="j dbc: oracl e: t hi n: @rysun: 6521:is"
i nactivity-timeout="30"
<property name="dbl i nk"
val ue="LI NK. REGRESS. RDBMS. DEV. US. ORACLE. COM'/ >
</ dat a- sour ce>

Note: If you change the two-phase commit engine, you must
update all database links—both within the new two-phase commit
engine as well as within the Or i onCMTI'Dat aSour ce <pr operty>
definitions.

Once the two-phase commit engine and all the databases involved in the
transaction are configured, you can start and stop a transaction in the same manner
as the single-phase commit. See "Single-Phase Commit" on page 12-2 for more
information.

Two-Phase Commit Elements in the orion-application.xml DTD

The following code example contains the elements in the
orion-application.xmn filethat are relevant to the two-phase commit engine:

<! ELEMENT orion-application

(ej b- modul e*, web- modul e*, cl i ent - nodul e*, security-rol e- mappi ng*,
persi stence?, library*, principals?, nail-session*, user-nmanager?,
| og?, data-sources?, commit-coordinator?, namespace-access?)>

<l-- Transaction co-ordinator for the server. -->

<! ELEMENT commi t - coordi nator (conmt-class, property*)>

<I ELEMENT commi t-cl ass (#PCDATA)>
<I ATTLI ST cl ass nane CDATA #| MPLI ED>

<I-- A property to set when using a custon 3rd-party DataSource. -->
<I ELEMENT property (#PCDATA) >

<l ATTLI ST property name CDATA #l MPLI ED

val ue CDATA #| MPLI ED >

12-14 Oracle9iAS Containers for J2EE Services Guide

13

J2EE Connector Architecture

This chapter describes how to use the J2EE Connector Architecture (J2EE
Connector) in an Oracle9iAS Containers for J2EE (OCA4J) application. This chapter
covers the following topics:

« Introduction

« Resource Adapters

« Deploying Resource Adapters

« Specifying Container-Managed or Component-Managed Sign-On

« Authentication in Container-Managed Sign-On

Introduction

The J2EE Connector Architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous Enterprise Information Systems (EIS). Typical EIS
include ERP, database systems, mainframe transaction processing, and legacy
applications not written in the Java programming language.

J2EE Connector Architecture 13-1

Resource Adapters

Figure 13—-1 Java Connector Architecture

J2EE Application Application Contract
Component (Client APl CCI spscific)

System Contracts

{Quality of Service)
oc4d Enterprise
Information
System
Resource Adapters

A resource adapter is a driver that an application server or an application client uses
to connect to a specific EIS. Examples of resource adapters are JDBC or SQLJ drivers
to connect to a relational database, an ERP resource adapter to connect to an ERP
system, and a TP resource adapter to connect to a TP monitor. J2EE 1.3 requires
application servers to support both standalone and embedded resource adapters.

« Standalone resource adapters are available to all applications deployed in the
application server instance. These adapters are stored in standalone Resource
Adapter Archive (RAR) files. Here is an example:

[META- I NF/ ra. xm

| META- | NF/ oc4j -ra. xm
/howt 0. ht m
/inmages/icon.jpg
/ra.jar

[cci.jar

/win.dll

/solaris.so

Note: The JAR files referred to in the RAR file can be located in
any directory within the archive.

13-2 Oracle9iAS Containers for J2EE Services Guide

Resource Adapters

« Embedded resource adapters are available only to the J2EE application(s) with
which they are bundled in an enterprise application archive (EAR) file.

Classes that are defined within a resource adapter are available to all application
components, including EJBs, that reference the resource adapter. Classes defined by
standalone resource adapters are available to all applications deployed within
OC4J; classes defined by embedded resource adapters are available only to
applications within their own EAR file.

Application Contracts

The client API furnished by a resource adapter can be either the standard Common
Client Interface (CCI), or a client API specific to the type of a resource adapter and
its underlying EIS. For example, the JDBC API is the client API specific to relational
database accesses. The EIS side of the contract is implemented by the resource
adapter, transparently to the application components.

Quiality of Service Contracts

Java Connector Architecture also defines three Quality of Service (QoS) contracts
between an application server and an EIS.

« Connection Pooling enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS.

Note: The J2EE Connector connection-pooling interface differs
from the JDBC interface; J2EE Connector connection pools are not
shared with JDBC connection pools, nor do properties set for one
connection pool affect the other.

« Transaction Management enables an application server to use a transaction
manager (JTA XAResour ce) to manage transactions across multiple resource
managers.

« Security management provides authentication, authorization, and secure
communication between the J2EE server and the EIS.

All resource adapters must support their side of the QoS contracts to be pluggable
into application servers.

J2EE Connector Architecture 13-3

Deploying Resource Adapters

Support for Optional Features

OC4J does not support the optional connection sharing (section 6.9 in the J2EE
Connector Architecture 1.0 specification) and local transaction optimization (section
6.12) features.

Deploying Resource Adapters

This section discusses deployment descriptors, deploying standalone resource
adapters, and deploying embedded resource adapters.

OC4J supports three deployment descriptors: r a. xm , oc4j -ra. xm , and

oc4j - connect ors. xm . The r a. xm descriptor is normally supplied with the
resource adapter. Whenever you deploy a resource adapter within an EAR file,
OC4J generates oc4j - connect ors. xnml and oc4j - r a. xm ; you should manually
edit the second file.

The ra.xml Descriptor

Thera. xm descriptor is the standard J2EE deployment descriptor for resource
adapters. For details, see the J2EE Connector Architecture 1.0 specification.

The oc4j-ra.xml Descriptor

The oc4j - ra. xm descriptor provides OC4J-specific deployment information
(JNDI pathname and connector properties) for resource adapters. For each
resource adapter, oc4j - r a. ximl contains one or more <connect or - f act ory>
elements specifying a INDI name corresponding to a set of configuration parameter
values. OC4J binds each connection into the proper INDI hamespace location as a
Connect i onFact ory instance.

A <connect or - f act or y> element can contain any combination of the following
elements (all are optional):

« <descri pti on>—Text description of the connector. This element is not
interpreted by OC4J.

« <config-property>—Value for a property defined inra. xm . All ra. xm
files define the properties Ser ver Nane, Port Nunber , User Nane, Passwor d,
and Connect i onURL, although an adapter does not need to support them.
Values defined in oc4j - r a. xm override any values defined inra. xm .

13-4 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters

<connect i on- pool i ng>— Parameters describing how J2EE Connector
pooled connections are to be handled. This element is discussed in "The
<connection-pooling> Element" on page 13-5.

<security-confi g>—Parameters describing how to supply usernames and
passwords to the EIS. This element is discussed in "The <security-config>
Element" on page 13-6.

<l og>— Pathname of a log file for a connection property set. The syntax is:

<l og>
<file path="pat hnane" />
</l og>

The <connection-pooling> Element

Connection pooling is a J2EE 1.3 feature that allows a set of connections to be reused
within an application. Because the J2EE Connector specification is intended to be
general rather than database-specific, the J2EE Connector connection-pooling
interface differs significantly from the JDBC interface.

To set a connection pooling property, specify a <pr oper t y> element within the
<connect i on- pool i ng>element. The syntax is:

<property name="propnane" val ue="propval ue" />.

The pr opnane must be one of;

maxConnect i ons—Maximum number of connections permitted within pool.
Defaults to infinity.

m nConnect i ons—Minimum number of connections. Defaultsto 0. If

m nConnect i ons is greater than 0, the specified number of connections will be
opened when OC4] is initialized. OC4J may not be able to open the connections
if necessary information is unavailable at initialization time. For instance, if the
connection requires a JNDI lookup, it cannot be created, because JNDI
information is not available until initialization is complete.

scheme—Specifies how OC4J handles connection requests after maximum
permitted number of connections is reached. You must specify one of the
following values:

« dynam c—OC4] always creates a new connection and returns it to the
application, even if this violates the maximum limit. When these
limit-violating connections are closed, they are destroyed instead of being
returned to the connection pool.

J2EE Connector Architecture 13-5

Deploying Resource Adapters

« fixed—OC4J raises an exception when the application requests a
connection and the maximum limit has been reached.

« fixed_wai t —OC4J blocks the application's connection request until an
in-use connection is returned to the pool. If wai t Ti neout is specified,
OC4J throws an exception if no connection becomes available within the
specified time limit.

« wait Ti meout —Maximum number of seconds OC4J will wait for an available
connection if maxConnect i ons has been exceeded and the fi xed_wai t
scheme is in effect. Defaults to infinity.

The <security-config> Element

The <securi ty- confi g> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <securi ty-confi g>
element of the oc4j -ra. xn file:

« Specifying mapping subelements explicitly
(<pri nci pal - mappi ng-entri es> subelement)

« Specifying the name of a user-created mapping class that either implements
oracl e. j 2ee. connect or. Pri nci pal Mappi ng or inherits from
oracl e.j 2ee. Abstract Pri nci pal Mappi ng
(<pri nci pal - mappi ng-i nt er f ace> subelement)

Authentication issues are discussed in detail in "Authentication in
Container-Managed Sign-On" on page 13-15. This section discusses only the syntax
for the <securi ty-confi g>element.

A <security-confi g>element contains either a

<pri nci pal - mappi ng- ent ri es> element, specifying user names and
passwords explicitly; a <pri nci pal - mappi ng- i nt er f ace> element, specifying
the name of the mapping class; or a <j aas- nodul e> element, specifying the JAAS
module to be used for authentication.

<security-config>
<princi pal - mappi ng-entri es>

<def aul t - mappi ng>
<res- user>user nanme</res-user>
<res- passwor d>passwor d</r es- passwor d> Il 4

</ def aul t - mappi ng>

<princi pal - mappi ng-entry> 15
<initiating-user>i uname</initiating-user>// 6

13-6 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters

<res-user>user name</res-user>
<res- passwor d>passwor d</r es- passwor d>
</ princi pal - mappi ng-entry>
</ princi pal - mappi ng-entries>

<princi pal - mappi ng-i nterface> 7
<inpl - cl ass>cl assnamne</inpl - cl ass> I8
<property nanme="propnane"

val ue="pr opval ue" /> /19

</ princi pal - mappi ng-interface>

<j aas- nodul e> /1 10
<j aas-appl i cati on- nane> /111
appnane

</ jaas- appl i cati on- nane>
</ j aas- modul e>
</ security-config>

1. <princi pal - mappi ng- ent ri es>— Provides a declarative specification for
resource mapping. This element begins with an optional
<def aul t - mappi ng> element; it continues with one or more
<pri nci pal - mappi ng- ent r y> elements.

2. <def aul t - mappi ng>— Specifies the user name and password for the default
resource principal.

3. <res-user>— Specifies user name.
4. <res-passwor d>— Specifies password.

5. <princi pal - mappi ng- ent r y>— Specifies a mapping from a single
initiating principal to a resource principal and password.

6. <initiating-user>— Specifies the initiating principal.

7. <princi pal - mappi ng-i nt er f ace>— Specifies information necessary to
employ user-created classes to provide mappings.

8. <i npl - cl ass>— Specifies the name of the user-provided
Pri nci pal Mappi ng implementation.

9. <property nane="nane" val ue="val ue"> (optional; can be repeated)—
Specifies information specific to your Pri nci pal Mappi ng implementation:
for instance, the path of the principal mapping file, or LDAP server connection
information.

J2EE Connector Architecture 13-7

Deploying Resource Adapters

10. <j aas- nodul e>— Specifies the JAAS module used for authentication. Has
only one element, <j aas- appl i cati on- name>.

11. <j aas- appl i cat i on- nane>— Specifies the name of the JAAS module used
for authentication.

The oc4j-ra.xml DTD
The XML DTD for the resource adapter descriptor is:

<IENTI TY % JNDI PATH " CDATA" >
<I-- Define a property set for a Connector Architecture
conpliant resource adapter. -->
<! ELEMENT confi g-property (#PCDATA) >
<I ATTLI ST confi g-property name CDATA
#REQUI REDval ue CDATA #REQUI RED>
<I-- Define a property set for a Connector Architecture c
onpliant resource adapter. -->
<! ELEMENT connector-factory (description?, config-property*,
connecti on-pool i ng?, security-config?, 10g?)>
<I ATTLI ST connect or-factory connect or-nane CDATA #REQUI RED
| ocation %NDI PATH, #REQU RED>
<! ELEMENT connection-pooling (property*)>
<! ELEMENT def aul t - mappi ng (res-user, res-password)>
<l-- A short description. -->
<! ELEMENT description (#PCDATA) >
<I-- Arelative/absolute path to |og events to. -->
<l ELEMENT file (#PCDATA)>
<I ATTLI ST file path CDATA #l MPLI ED>
<I-- pame of the class which inplenments the
oracl e.j 2ee. connect or. Pri nci pal Mappi ng interface -->
<! ELEMENT i npl - cl ass (#PCDATA) >
<I-- logged in user name of J2EE application -->
<l ELEMENT initiating-user (#PCDATA)>
<! ELEMENT | aas- appl i cation-nane (#PCDATA)>
<! ELEMENT j aas- modul e (j aas-application-nane)>
<!-- Logging settings. -->
<l ELEMENT log (file)>
<I-- This file contains the definition of property sets
configuration for an installed Connector Architecture
conmpl i ant resource adapters. -->
<! ELEMENT oc4j - connector-factories (connector-factory*)>
<! ELEMENT pri nci pal - mappi ng-entries (description?,
def aul t - mappi ng?, principal - mappi ng-entry*)>
<! ELEMENT pri nci pal - mappi ng-entry
(initiating-user, res-user, res-password)>

13-8 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters

<! ELEMENT pri nci pal - mappi ng-interface (inpl-class, property*)>

<l-- Contains a nanme/value pair initialization param -->

<! ELEMENT property (#PCDATA)><! ATTLI ST property nane
CDATA #| MPLI EDval ue CDATA #| MPLI ED>

<!-- password of the EIS resource -->

<I ELEMENT res-password (#PCDATA) >

<!-- user name of the EIS resource -->

<! ELEMENT res-user (#PCDATA)>

<l-- principal mapping configurations -->

<! ELEMENT security-config (
princi pal - mappi ng-entries | principal -mapping-interface
| jaas-nmodule)>

The oc4j-connectors.xml Descriptor

The oc4j - connect or s. xm descriptor configures the resource adapters deployed
by oc4j -ra. xm . The oc4j - connect ors. xm descriptor lists the standalone
resource adapters deployed in this OC4J instance, as well as the resource adapters
embedded within an application.

Note: The name and pathname of the connectors descriptor are
defined by the <connect or s> element under the
<orion-application>elementin the file
orion-application.xmn.Ifno<connect ors>elementis
specified in ori on- appl i cati on. xmi , then the default path is
$0OC4J_HOVE/ connect or s/ rar nanme./ oc4j - connect ors. xnl .

The root element is <oc4j - connect or s>. Each individual connector is
represented by a <connect or > element that specifies the name and pathname for
the connector. Each <connect or > element contains the following elements:

« <descri pti on> Optional—Text description of the connector. Not interpreted
by OCA4J.

« <native-library path="pat hnanme"> Optional—Directory containing
native libraries. If you do not specify this element, OC4J expects the libraries to
be located in the directory containing the decompressed RAR. OCA4] interprets
the pat hname attribute relative to the decompressed RAR directory.

« <security-perm ssion enabl ed="bool eanval ue" >—Permissions to be
granted to each resource adapter. Each <securi t y- per m ssi on> contains a

J2EE Connector Architecture 13-9

Deploying Resource Adapters

<security-perm ssi on- spec> that conforms to the Java 2 Security policy
file syntax.

OC4J automatically generates a <securi t y- per m ssi on>elementin
oc4j -connect ors. xm foreach <security-perm ssi on>elementin
ra. xm . Each generated element has the enabl ed attribute setto f al se.
Setting the enabl ed attribute to t r ue grants the named permission.

Example:

<oc4j - connect or s>
<connect or name="nyEl S' path="eis.rar">
<native-library> path="nylibrary"</native-library>
<security-perm ssion>
<security-pernission-spec enabl ed="fal se">
grant {perm ssion java.lang.RuntimePerm ssion "LoadLi brary", *'};
</ security-perm ssi on-spec>
</ security-pernission>
</ connect or >
</ oc4j - connect or s>

The oc4j-connectors.xml DTD
The XML DTD for the connectors descriptor is:

<I-- An installed Connector Architecture conpliant resource adapter. -->
<! ELEMENT connect or
(description?, native-library?, security-permn ssion*)>
<I ATTLI ST connect or nanme CDATA #REQUI RED path CDATA #REQU RED>
<I-- Ashort description. -->
<! ELEMENT description (#PCDATA) >
<I-- Relative path of native libraries in the resource adatper. -->
<! ELEMENT native-library (#PCDATA)>
<I ATTLI ST native-library path CDATA #l MPLI ED>
<I-- This file contains the configuration for the installed
Connector Architecture conpliant resource adapters
of an application-server. -->
<! ELEMENT oc4j - connectors (connector*)>
<l-- Java security permssions for
resource adapter jar files. -->
<! ELEMENT security-permnission (security-perm ssion-spec)>
<I ATTLI ST security-permnission enabled (true|false) "false">
<!I--The el enent pernission-spec specifies a security perm ssion
basedon the Security policy file syntax
[reference: Java 2, Security architecture specification]

13-10 Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters

http://java. sun. conl products/jdk/ 1. 3/ docs/ gui de/ security/PolicyFil es. ht m #Fi | eSy
nt ax-->
<! ELEMENT security-perm ssion-spec (#PCDATA) >

Deploying Standalone Resource Adapter Archives

You can deploy standalone resource adapter archives in OC4J. During deployment,
give each standalone resource adapter a unique name for future operations, such as
undeployment of the resource adapter. You deploy standalone resource adapters in
one of the following ways:

« Deploying Using admin.jar
« Deploying Manually

Deploying Using admin.jar
To deploy standalone resource adapters you use the - depl oyconnect or switch of
the command-line tool admi n. j ar. The syntax is:

-depl oyconnector -file nypath.rar -name myname -nativeLi bPath

| i bpat hname -grant Al | Perni ssi ons

The - depl oyconnect or switch is supported by additional command-line
switches:

« -file nypath (required) — pathname of the resource adapter’s RAR file
« -nane nyname (required)— resource adapter’s hame

« -nativelibpath |ibpathnane — pathname for native libraries within the
RAR file (see also the <nat i ve-1i brary>elementin "The
ocdj-connectors.xml Descriptor" on page 13-9.)

« -grantall perm ssi ons—grants all runtime permissions requested within
the RAR (see also the <security- perm ssi on>element in "The
ocdj-connectors.xml Descriptor" on page 13-9)

The admi n. j ar tool decompresses the RAR file into
$0OC4J_HOVE/ connect or di rect or y/ nynane, creating the directory if it does
not exist.

The default connect or di rect ory is $0C4J_HOMWE/ connect or s. To specify a
different connector directory, edit the ser ver. xmi file, setting the

connect or - di r ect or y attribute of the <appl i cat i on- ser ver > element to the
correct pathname.

<appl i cation-server connector-directory="mnmy_connectors">

J2EE Connector Architecture 13-11

Deploying Resource Adapters

The admi n. j ar tool then creates (or updates) oc4j - connect ors. xm and
oc4j -ra.xm inny_connect ors. See "The ocdj-ra.xml Descriptor" on page 13-4
and "The oc4j-connectors.xml Descriptor" on page 13-9 for a discussion of these
files. If the deployment descriptor specifies transaction level and authentication
mechanisms that are not supported by OC4J, the admi n. j ar tool prints an error
message.

Example;

java -jar admin.jar ... -deployconnector -name accounts -file ./accounts.rar

Deploying Manually
If you prefer to deploy your connector manually, you must:

1. Create aconnect or nane directory under
$0C4J_HOVE/ connect ordi rectory,.

2. Copy the connector’s RAR file into
$0C4J_HOVE/ connect or di r ect or y,/connect or nane.

3. Createan oc4j - connectors. xm fileinconnect or di r ect ory for the new
resource adapter, or add a <connect or > element to the file if it already exists.

4. Restart OC4J. OC4J generates anew oc4j -ra. xm in
$OC4J_HOVE/ appl i cati on-depl oynent s/ def aul t/ connect or nane
for the adapter. You must modify the generated file to contain a
<connect or _f act or y> element appropriate for your connector.

Note: See "The oc4j-ra.xml Descriptor" on page 13-4 and "The
ocdj-connectors.xml Descriptor" on page 13-9 for details on
oc4j -connectors. xm andoc4j-ra. xm .

Removing Resource Adapters

13-12

To remove a deployed resource adapter, use the - undepl oyconnect or switch of
adni n. j ar. The syntax is:

- depl oyconnector -nane mynane

The required - nane argument specifies which adapter is being removed. This
command removes all <connect or > entries that use the specified resource adapter

Oracle9iAS Containers for J2EE Services Guide

Deploying Resource Adapters

from oc4j - connect or s. xm and deletes the
$0OC4J_HOVE/ connect or _di r ect or y/ mynane directory.

If you prefer, you can remove an adapter manually by deleting all <connect or >
entries that refer to the adapter from oc4j - connect or s. xm and deleting the
$0OC4J_HOVE/ connect or _di r ect or y/ mynane directory.

Deploying Embedded Resource Adapters

Each application deployed in an OC4J instance that contains resource adapter(s) has
a corresponding oc4j - connect ors. xnl file under
$0C4J_HOWVE/ appl i cat i on- depl oynent s/ app- nane/ .

The oc4j - connect ors. xm file contains the list of resource adapters for the Web
application packaged within an EAR file (one entry for each resource adapter). For
details on this file, see "The oc4j-ra.xml Descriptor" on page 13-4 and "The
ocdj-connectors.xml Descriptor" on page 13-9. Applications with embedded RARs
are deployed in the same fashion (either using the adni n. j ar tool or manually) as
applications without RARs.

A resource adapter archive, myPackaged. r ar, is packaged in the EAR file
ny App. ear. The application is then deployed with OC4J under
$OC4J_HOVE/ appl i cati ons/ nyapp/ nyPackaged.

If the EAR file includes an oc4j - connect or s. xm file specifying the deployment
name nmy RA, the generated oc4j - ra. xm fileis located in

$OC4J_HOVE/ appl i cati on-depl oynent / nyapp/ nyRA/ . An

oc4j - connect ors. xm fileis created under

$0OC4J_HOVE/ appl i cati on-depl oynent / nyapp/ .

Example:

Assume that a standalone resource adapter connection is configured in

oc4j -ra. xm to be bound to the location ei s/ nyEl S. An application component
looks up its connection factory using the JNDI name

"java: conp/ env/ ei s/ nyEl S". The application component must have the

<r esour ce- r ef > element defined in its deployment descriptor in web. xm or

ej b-j ar. xm , which may look like the following example:

<resource-ref>
<res-ref-nane>ei s/ nyEl S</res-ref - name>
<res-type>j avax. resource. cci . Connecti onFact ory</res-type>
<res-aut h>Appl i cati on</res-aut h>
<res-shari ng- scope>Shar eabl e</r es- shari ng- scope>
</resource-ref>

J2EE Connector Architecture 13-13

Specifying Container-Managed or Component-Managed Sign-On

try
{

Context ic = new Initial Context();
c¢f = (ConnectionFactory)
i c.lookup("java: conp/env/eis/nyElS");
} catch (Nam ngException ex) {
ex. printStackTrace();

}

Specifying Container-Managed or Component-Managed Sign-On

Applications can use either application components or the OC4J application server
to manage resource-adapter sign-on to the EIS system. You specify the manager
using the <r es- aut h> deployment descriptor element for EJB or Web components.
If <res-auth>issettoApplicati on, the application component signs on to the
EIS programmatically. The application component is responsible for providing
explicit security information for the sign-on. If <r es- aut h> is set to Cont ai ner,
OC4)J provides the resource principal and credentials required for signing on to the
EIS.

Example:

Context initctx = new Initial Context();
/] performJIND |ookup to obtain a connection factory
javax. resource. cci . ConnectionFactory cxf =

(j avax. resource. cci. Connecti onFactory)initctx. | ookup("java: conenv/ei s/ MEIS");

/'l For container-managed sign-on, no security information is passed in the
get Connection call

j avax. resource. cci . Connection cx = cxf.getConnection();

/1 If conponent-nmanaged sign-on is specified, the code should instead provide
explicit security

/1 information in the getConnection call

/1 W need to get a new ConnectionSpec inplenentation instance for setting
I ogin

/] attributes

com nyei s. Connect i onSpecl npl connSpec = ...

connSpec. set User Nane(" El Suser");

connSpec. set Passwor d(" El Spassword");

j avax. resource. cci . Connection cx = cxf.getConnection(connSpec);

13-14 Oracle9iAS Containers for J2EE Services Guide

Authentication in Container-Managed Sign-On

In either case, the cr eat eManagedConnect i on method in the resource adapter's
implementation of j avax. r esour ce. spi . ManagedConnect i onFact ory
interface is called to create a physical connection to the EIS.

If you specify component-managed sign-on, OC4J invokes the

cr eat eManagedConnect i on method with a null Subj ect and the

Connect i onRequest | nf o object passed in from the application component code.
If you specify container-managed sign-on, OC4J provides a

j avax. security. aut h. Subj ect object to the cr eat eManagedConnecti on
method. The content of the Subj ect object depends on the value in the

<aut henti cati on-nmechani smtype>and <credential -interface>
elements in the resource adapter deployment descriptor.

If <aut henti cati on- mechani smtype>isBasi cPasswor d and
<credential -i nterface>is

j avax. resource. spi . security. PasswordCredenti al , then the Subj ect
object must contain j avax. resour ce. spi . security. Passwor dCr edenti al
objects in the private credential set.

On the other hand, if <aut henti cati on- nechani smt ype>is Ker bv5 or any
other non-password-based authentication mechanism, and

<credential -interface>isjavax.resource. spi.security.

Generi cCredenti al , then the Subj ect object must contain credentials
represented by instances of implementers of the

j avax. resource. spi.security. GenericCredenti al interface. The
Generi cCredenti al interface is used for resource adapters that support
non-password-based authentication mechanisms, such as Kerberos.

Authentication in Container-Managed Sign-On

When using container-managed sign-on, OC4J must provide a resource principal
and its credentials to the EIS. The principal and credentials can be obtained in one
of the following ways:

« Configured Identity - The resource principal is independent of the
initiating/caller principal and can be configured at deployment time in a
deployment descriptor.

« Principal Mapping - The resource principal is determined by a mapping from
the identity and/or security attributes of the initiating/caller principal.

« Caller Impersonation - The resource principal acts on behalf of an
initiating/caller principal by delegating the caller's identity and credentials to
the EIS.

J2EE Connector Architecture 13-15

Authentication in Container-Managed Sign-On

« Credentials Mapping - The resource principal is the same as the initiating/caller
principal, but with its credential mapped from the authentication type used by
OC4J to the authentication type used by the EIS. An example would be to map a
public key certificate-based credential associated with a principal to a Kerberos
credential.

OC4J supports all these methods with three authentication mechanisms:
« JAAS Pluggable Authentication

« User-Created Authentication Classes

« Modifying oc4j-ra.xml

The following sections discuss these mechanisms in detail.

JAAS Pluggable Authentication

OC4J furnishes a JAAS pluggable authentication framework that conforms to
Appendix C in the Connector Architecture 1.0 specification. With this framework,
an application server and its underlying authentication services remain
independent from each other, and new authentication services can be plugged in
without requiring modifications to the application server.

Authentication services can obtain resource principals and credentials using any of
the following modules:

« Principal Mapping JAAS module
« Credential Mapping JAAS module
« Kerberos JAAS module (used for Caller Impersonation)

The JAAS login modules can be provided by resource adapter vendors, the EIS
vendors, or by the customer. Login modules must implement the

j avax. security. aut h. spi . Logi nModul e interface, as documented in the Sun
JAAS specification.

OC4)J provides initiating user subjects to login modules by passing an instance of

j avax. security. aut h. Subj ect containing any public certificates and an
instance of or acl e. j 2ee. connector. I nitiati ngPrinci pal representing
the OC4J user. OC4J may pass a null Subj ect if there is no authenticated user (that
is, an anonymous user). The JAAS login module’s login method must, based on the
initiating user, find the corresponding resource principal and create new

Passwor dCr edenti al or Generi cCredenti al instances for the resource
principal. The resource principal and credential objects are then added to the
initiating Subj ect in the comi t method. The resource credential is passed to the

13-16 Oracle9iAS Containers for J2EE Services Guide

Authentication in Container-Managed Sign-On

cr eat eManagedConnect i on method in the

j avax. resource. spi . ManagedConnect i onFact or y implementation
provided by the resource adapter. If a null Subj ect is passed, the JAAS login
module is responsible for creating a new j avax. securi ty. aut h. Subj ect
containing the resource principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes

The classes or acl e. j 2ee. connector. I nitiatingPrinci pal and

oracl e.j 2ee. connector. I nitiati ng&G oup are used to represent OC4J users
to the JAAS login modules. OC4] creates instances of

oracl e.j2ee. connector. I nitiatingPrincipal and incorporates them into
the Subject that is passed to the i ni ti al i ze method of the login modules. The
oracl e.j2ee.connector.InitiatingPrincipal classimplementsthe
java. security. Principal interface, and adds the method get Gr oups() .

/**

* Returns a Set of groups (or roles in JAZN terminology) that this
* principal is a menber of.

*

* @eturn A set of InitiatingGoup objects representing the groups
* that this pricipal belongs to.

*/

public Set get G oups()

The get Gr oups method returnsaj ava. util . Set of

oracl e.j 2ee. connector. | nitiati ngG oup objects, representing the OC4J
groups or JAZN roles for this OC4J user. The group membership is defined in
OC4J-specific descriptor files such as pri nci pal s. xm orj azn-data. xm ,
depending on the user manager. The

oracl e.j 2ee. connector. I nitiatingG oup class implements but does not
extend thej ava. security. Princi pal interface.

Login modules can use get Gr oups() to provide mappings between OC4J groups
and EIS users. The j ava. security. Princi pal interface methods support
mappings between OC4J users and EIS users. Login modules do not need to refer to
the oracl e. j 2ee. connector. I nitiatingPrincipal and

oracl e.j 2ee. connector. I nitiatingG oup classes if they do not provide
mappings between OC4J groups and EIS users.

JAAS and the <connector-factory> Element

Each <connect or - f act or y> elementin oc4j - r a. xm can specify a different
JAAS login module. You specify a name for the connector factory configuration in

J2EE Connector Architecture 13-17

Authentication in Container-Managed Sign-On

the <j aas- nodul e> element. Here is an example of a<connect or - f act ory>
elementinoc4j - ra. xm that uses JAAS login modules for container-managed
sign-on:

<connect or-factory connect or - nane="nyBl ackbox" | ocation="ei s/ myEl S1">
<descri ption>Connection to ny El S</description>
<confi g-property nane="connecti onURL"
val ue="j dbc: oracl e: t hi n: @ocal host: 5521: orcl" />
<security-config>
<j aas- nodul e>
<j aas- appl i cati on- nane>JCADenp</ j aas- appl i cat i on- name>
</ j aas- modul e>
</security-config>
</connector-factory>

In JAAS you must specify which Logi nMbdul e to use for a particular application,
and in what order to invoke the Logi nModul es. JAAS uses the value specified in
the <j aas- appl i cat i on- name> element to look up Logi nMbdul es.

User-Created Authentication Classes

OC4) provides the or acl e. j 2ee. connect or. Pri nci pal Mappi ng interface for
principal mapping.

package oracle. | 2ee. connector;

public interface Principal Mappi ng
{
/**
* |nitializes the various settings for the Principal Mapping i mpl enentation
cl ass.
* Inplementation class may use the properties for setting default user nanme and
* password, LDAP connect info, or default mapping.
*
* OC4AJ will pass the properties specified in the <principal-nmapping-interface>
* elenment in ocdj-ra.xm to this method.
*
* @aramprop A Properties object containing the set up information required
* by the inplenmentation class.
*|
public void init(Properties prop);

/**

* The ManagedConnectionFactory instance that can be used in creating a
* Passwor dCredenti al .

13-18 Oracle9iAS Containers for J2EE Services Guide

Authentication in Container-Managed Sign-On

*

* @aram ncf The ManagedConnectionFactory instance that is needed when
*creating a PasswordCredential instance

*/

public void set ManagedConnect i onFact ory(ManagedConnect i onFact ory ncf);

/**

* Passes the authentication nechani sn(s) supported by the resource
* adapter to the Principal Mapping inplenentation class.
* The key of the map passed is a String containing the supported nechani sm
* type, such as "BasicPassword", or "Kerbv5". The value is a String
* containig the corresponding credentials interface as declared in ra.xm,
* such as "javax.resource.spi.security.PasswordCredential ".
*

* The map may contain multiple elenents if the resource adatper supports

* nmul tiple authentication mechanisns.
*

* @aram aut hMechani sns The aut hentication mechani sms and their corresponding
* credentials intereface supported by the resource adapter

*/

public void setAuthenticationMechani sns(Map aut hMechani sns);

/**
* This is the method that performs the principal mapping. An application user
* subject is passed, and the inplenetation of this method should return
* a subject for use by the resource adapter to log in to the El S resource
* per the JCA specifications.

*

* OCAJ will only called this method for container-managed sign on.

*

* @araminitiatingSubject A Subject containing the application server |ogged

* in principals and public credentials.
*

* @eturn A Subject for use by resource adapter to log in to the renote El S

* It may return null if the proper resource principal cannot be
det er m ned.
*/
public Subject mapping(Subject initiatingSubject);
}

The mappi hg method must return a Subj ect containing the resource principal
and credential. The Subj ect returned must adhere to either option A or option B
in section 8.2.6 of the Connector Architecture 1.0 specification. OC4J invokes the
mappi ng method with the initiating user as the i ni ti ati ngPri nci pal .

J2EE Connector Architecture 13-19

Authentication in Container-Managed Sign-On

OC4J also provides the abstract class

oracl e. j 2ee. connect or. Abstract Pri nci pal Mappi ng. This class provides
a default implementation of the set ManagedConnect i onFactory() and

set Aut hent i cati onMechani sn{) methods, as well as utility methods to
determine whether the resource adapter supports the Basi cPasswor d or Kerbv5
authentication methods, and a method for extracting the Pri nci pal from the
application server user Subj ect . By extending the

oracl e. j 2ee. connect or. Abstract Pri nci pal Mappi ng class, developers
need only implement the i ni t and mappi ng methods.

Here are the utility methods provided by the
oracl e. j 2ee. connect or. Abstract Pri nci pal Mappi ng class:

/**

* Wility method provided by this abstract class to return
* the ManagedConnectionFactory instance for use to create a
* PasswordCredential s object
*
* @eturn The ManagedConnectionFactory instance that is needed when
* creating a PasswordCredential instance
*/
publ i c ManagedConnecti onFactory get ManagedConnecti onFact ory()

/**

* Wility method provided by this abstract class to return the Map

* of all authentication mechanisns supported by this resource adapter.
* The key of the map passed is a String containing the supported nechani sm
* type, such as "BasicPassword", or "Kerbv5". The value is a String
* containig the corresponding credentials interface as declared in ra.xm,
* such as "javax.resource.spi.security.PasswordCredential ".
*

* @eturn The authentication mechani snms and their corresponding

* credentials intereface supported by the resource adpater
*/
public Map get Aut henti cati onMechani sms()

/**

* Wility method provided by this abstract class to return whether
* Basi cPassword authention mechanismis supported by this resource
* adapter.
*
* @eturn true if BasicPassword authentication mechani smis supported
* by the resource adapter, false otherw se.
*/

13-20 Oracle9iAS Containers for J2EE Services Guide

Authentication in Container-Managed Sign-On

public bool ean i sBasi cPasswor dSupported()

/**
* Wility nmethod provided by this abstract class to return whether

* Kerbv5 aut hention mechanismis supported by this resource

* adapter.
*

* @eturn true if Kerbvb authentication mechanismis supported
* by the resource adapter, false otherw se.
*/

public bool ean i sKerbv5Supported()

/**
* Wility method provided by this abstract class to extract the

* Principal object fromthe given application server user subject
* passed from OCAJ.

*

* @aram subj ect The application server user subject passed from
* Oc4J.

* @eturn The principal extracted fromthe given subject
*

/
public Principal getPrincipal (Subject subject)

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. This directory is typically
$OC4J_HOVE/ appl i cati ons/ appl i cati on_nane/rar - name. After copying
the file, editoc4j -ra. xnml to containa <pri nci pal - nappi ng-i nterface>
element for the new class; see "The <security-config> Element" on page 13-6 for
details.

Extending AbstractPrincipalMapping

This simple example demonstrates how to extend the

oracl e. j 2ee. connect or. Abstract Pri nci pal Mappi ng abstract class to
provide a principal mapping that always maps the user to the default user and
password. You specify the default user and password by using properties under
the <pri nci pal - mappi ng-i nt erf ace>elementinoc4j -ra. xm .

The Pri nci pal Mappi ng class is called MyMappi ng. It is defined as follows:

package com acne. app;

inport java.util.*;
i nport javax.resource.spi.*;

J2EE Connector Architecture 13-21

Authentication in Container-Managed Sign-On

inport javax.resource.spi.security.*;

inport oracle.j2ee.connector.AbstractPrinci pal Mappi ng;
inport javax.security.auth.*;

inport java.security.*;

public class MyMappi ng extends AbstractPrinci pal Mappi ng
{
String mdefaul t User;

String mdefaul t Passwor d;

public void init(Properties prop)

{
if (prop !'= null)
Il Retrieves the default user and password fromthe properties
m def aul t User = prop. get Property("user");
m def aul t Password = prop. get Property("password");
}
}

public Subject mapping(Subject initiatingSubject)
{
/1 This inplenmentation only supporst BasicPassword authentication
/1 mechanism Return if the resource adapter does not support it.
if (!isBasicPasswordSupported())
return null;

Il Use the utility method to retrieve the Principal fromthe
/] OCAJ user. This code is included here only as an exanpl e.
/1 The principal obtained is not being used in this method.

Principal principal = getPrincipal (initiatingSubject);

char[] resPasswordArray = nul l;
if (mdefaul tPassword != null)
resPasswor dArray = m def aul t Password. toCharArray();

/] Create a PasswordCredential using the default user nane and
/'l password, and add it to the Subject per option Ain section
/1 8.2.6 inthe JCA 1.0 spec.
Passwor dCredential cred = new PasswordCredenti al (m def aul t User,
resPasswor dArray) ;
cred. set ManagedConnect i onFact or y(get ManagedConnect i onFactory());
initiatingSubject.getPrivateCredentials().add(cred);
return initiatingSubject;

13-22 Oracle9iAS Containers for J2EE Services Guide

Authentication in Container-Managed Sign-On

}

You add a <pri nci pal - mappi ng-i nt er f ace>entry to oc4j -ra. xm that
specifiescom acre. app. MyMappi ng for the principal mapping mechanism:

<connector-factory nane="..." location="...">

<security-config>
<pri nci pal - mappi ng-interface>
<i npl - cl ass>com acme. app. MyMappi ng</i npl - ¢l ass>
<property name="user" val ue="scott" />
<property name="password" val ue="tiger" />
</ princi pal - mappi ng-interface>
</security-config>

</ connector-fact ory>

Modifying oc4j-ra.xml

If you prefer, you can create default principal mappings in the oc4j - ra. xm file.
To use the default principal mappings mechanism, use the

<pri nci pal - mappi ng- ent ri es> subelement under the <security-confi g>
element. For syntax details, see "The <security-config> Element" on page 13-6.

You use the <def aul t - mappi ng> element to specify the user name and password
for the default resource principal. This principal is used to log on to the EIS if there
isno <pri nci pal - mappi ng- ent r y> element whose initiating user corresponds
to the current initiating principal. If no default mapping is specified, OC4J uses the
values of the configuration properties User Nane and Passwor d from the
deployment descriptor (eitherinra. xm or oc4j -ra. xm), assuming these
defaults are acceptable to the resource adapter. If neither configuration properties
nor a default mapping is specified, OC4J may not be able to log in to the EIS.

Each <pri nci pal - mappi ng- ent r y> element contains a mapping from initiating
principal to resource principal and password.

J2EE Connector Architecture 13-23

Authentication in Container-Managed Sign-On

For example, if the OC4J principal scot t should be logged in to a certain EIS,

nyEl S1, as user name scott and passwordti ger, while all other OC4J users
should be logged in to the EIS using user name guest with password guest pw the
<connect or-factory>elementinoc4j-ra. xm should look like this:

<connector-factory name="..." location="...">

<security-config>
<pri nci pal - rappi ng-entri es>
<def aul t - mappi ng>
<res- user>guest </ res- user >
<r es- passwor d>guest pw</ r es- passwor d>
</ def aul t - mappi ng>
<pri nci pal - mappi ng-entry>
<initiating-user>scott</initiating-user>
<res-user>scott</res-user>
<r es- passwor d>t i ger </ r es- passwor d>
</ princi pal - mappi ng-entry>
</ princi pal - mappi ng-entries>
</security-config>

</ connector-factory>

13-24 Oracle9iAS Containers for J2EE Services Guide

14

Working with Java Object Cache

This chapter describes the Oracle9iAS Containers for J2EE (OC4)J) Java Object
Cache, including its architecture and programming features.

This chapter covers the following topics:

« Java Object Cache Concepts

« Java Object Cache Object Types

« Java Object Cache Environment

« Developing Applications Using Java Object Cache
« Working with Disk Objects

« Working with StreamAccess Objects

« Working with Pool Objects

« Running in Local Mode

« Running in Distributed Mode

Working with Java Object Cache 14-1

Java Object Cache Concepts

Java Object Cache Concepts

Oracle9iAS offers the Java Object Cache to help e-businesses manage Web-site
performance issues for dynamically generated content. The Java Object Cache
improves the performance, scalability, and availability of Web sites running on
Oracle9iAS.

By storing frequently accessed or expensive-to-create objects in memory or on disk,
the Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle9iAS cache architecture includes the following cache components:

Oracle 9iAS Web Cache. The Web Cache sits in front of the application servers
(Web servers), caching their content and providing that content to Web
browsers that request it. When browsers access the Web site, they send HTTP
requests to the Web Cache. The Web Cache, in turn, acts as a virtual server to
the application servers. If the requested content has changed, the Web cache
retrieves the new content from the application servers.

The Web Cache is an HTTP-level cache, maintained outside the application,
providing very fast cache operations. It is a pure, content-based cache, capable
of caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such
as servlet or JSP results). Given that it exists as a flat content-based cache
outside the application, it cannot cache objects (such as Java objects or XML
DOM—Document Object Model—obijects) in a structured format. In addition, it
offers relatively limited post-processing abilities on cached data.

Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects may contain generated pages or may
provide support objects within the program to assist in creating new content.
The Java Object Cache automatically loads and updates objects as specified by
the Java application.

Web Object Cache. The Web Object Cache is a web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically using API calls (for servlets) or custom tag libraries (for JSPs).
The Web Object Cache is generally used as a complement to the Web cache. By
default, the Web Object Cache uses the Java Object Cache as its repository.

14-2 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

A custom tag library or API allows you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or
XML text fragments, XML DOM objects, or Java serializable objects. These
objects can be cached conveniently in association with HTTP semantics.
Alternatively, they can be reused outside HTTP, such as in outputting cached
XML objects through Simple Mail Transfer Protocol (SMTP), Java Messaging
Service (JMS), Advanced Queueing (AQ), or Simple Object Access Protocol
(SOAP).

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Java Object Cache Basic Architecture

For a programmer using the Java Object Cache, information has one of three
characteristics:

1.

Static information that never changes. The programmer handles the data
efficiently using a Java Hasht abl e.

Dynamic information that is unique. The programmer must generate data each
time the information is requested.

Variable information that is sometimes static and sometimes is generated. The
programmer uses the Java Object Cache.

Figure 14-1 shows the basic architecture for the Java Object Cache. The cache
delivers information to a user process. The process could be a servlet
application that generates HTML pages or any other Java application.

Working with Java Object Cache 14-3

Java Object Cache Concepts

Figure 14-1 Java Object Cache Basic Architecture

Usar Usar Uzar
t /1t 1
| Ceche |
| |
Dete Sourco Dete Source

Distributed Object Management

For simplicity, availability, and performance, the Java object cache is specific to each
process (object creation is not centrally controlled). However, using distributed
object management, the Java Object Cache provides coordination of updates and
invalidations between processes. If an object is updated or invalidated in one
process, it is also updated or invalidated in all other associated processes. This
distributed management allows a system of processes to stay synchronized, without
the overhead of centralized control.

Figure 14-2 shows the architecture for the Java Object Cache, using distributed
object management. The cache delivers information to a user process. The user
process could be a servlet application that generates HTML pages or any other Java
application. Using the distributed object management message layer, the
application uses the Java Object Cache to share the information across processes
and between caches.

14-4 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

Figure 14-2 Java Object Cache Distributed Architecture

Usar Uzar Usar
T f /l' \I f T
| Ceche | | Ceche |
| | | |
T | Mezeeno Leyer f | T
Dete Source I Dete Source

How the Java Object Cache Works

The Java Object Cache manages Java objects within a process, across processes, or
on a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of
Java objects. There are very few restrictions on the types of Java objects that can be
cached or on the original source of the objects. Programmers use the Java Object
Cache to manage objects that, without cache access, are expensive to retrieve or to
create.

The Java Object Cache is easy to integrate into new and existing applications.
Objects can be loaded into the object cache, using a user-defined object, the
CacheLoader, and can be accessed through a CacheAccess object. The CacheAccess
object supports local and distributed object management. Most of the functionality
of the Java Object Cache does not require administration or configuration.
Advanced features support configuration using administration application
programming interfaces (APIs) in the Cache class. Administration includes setting
configuration options, such as naming local disk space or defining network ports.
The administration features allow applications to fully integrate the Java Object
Cache.

Each cached Java object has a set of associated attributes that control how the object
is loaded into the cache, where the object is stored, and how the object is
invalidated. Cached objects are invalidated based on time or an explicit request
(notification can be provided when the object is invalidated). Objects can be
invalidated by group or individually.

Working with Java Object Cache 14-5

Java Object Cache Concepts

Figure 14-3 shows the basic Java Object Cache APIs. Figure 14-3 does not show
distributed cache management.

Figure 14-3 Java Object Cache Basic APIs

Usar Admin
CachoAccozg.clazs | | Crcho.cless
T T
|

|
Cechelordor.cless |

T | CecheAttributes.cless

Dete Source

Cache Organization
The Java Object Cache is organized as follows:

« Cache Environment. The cache environment includes cache regions,
subregions, groups, and attributes. Cache regions, subregions, and groups
associate objects and collections of objects. Attributes are associated with cache
regions, subregions, groups, and individual objects. Attributes affect how the
Java Object Cache manages objects.

« Cache Object Types. The cache object types include memory objects, disk
objects, pooled objects, and St r eamAccess objects.

Table 14-1 provides a summary of the constructs in the cache environment and the
cache object types.

See Also:
« Java Object Cache Object Types on page 14-8

« Java Object Cache Environment on page 14-10

14-6 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Concepts

Table 14-1 Cache Organizational Construct

Cache Construct

Description

Attributes

Cache region

Cache subregion

Cache group

Memory object

Disk object

Pooled object

StreamAccess object

Functionality associated with cache regions, groups, and individual objects.
Attributes affect how the Java Object Cache manages objects.

An organizational name space for holding collections of cache objects within Java
Obiject Cache.

An organizational name space for holding collections of cache objects within a parent
region, subregion, or group.

An organizational construct used to define an association between objects. The objects
within a region can be invalidated as a group. Common attributes can be associated
with objects within a group.

An object that is stored and accessed from memory.
An object that is stored and accessed from disk.

A set of identical objects that the Java Object Cache manages. The objects are checked
out of the pool, used, and then returned.

An object that is loaded using a Java Qut put St r eamand accessed using a Java
I nput St r eam The object can be accessed from memory or disk, depending on the
size of the object and the cache capacity.

Java Object Cache Features
The Java Object Cache provides the following features:

Objects can be updated or invalidated.

Objects can be invalidated either explicitly, or with an attribute specifying the
expiration time or the idle time.

Objects can be coordinated between processes.

Object loading and creation can be automatic.

Object loading can be coordinated between processes.

Objects can be associated in cache regions or groups with similar characteristics.
Cache event notification provides for event handling and special processing.

Cache management attributes can be specified for each object or applied to
cache regions or groups.

Working with Java Object Cache 14-7

Java Object Cache Object Types

Java Object Cache Object Types

This section describes the object types that the Java Object Cache manages,
including:

« Memory Objects
« Disk Objects
« StreamAccess Objects

« Pool Objects

Restriction on Identifying Objects:

Objects are identified by a name that can be any Java object.
Usually, the name is represented with a St ri ng. The Java object
used for the identifying name must override the default Java object
equal s method, and the default Java object hashcode method. The
St ri ng class provides implementations for both of these methods.

If you provide an object to use as the Java Object Cache name, you
need to provide implementations for the equal s and hashcode
methods for the object. If the object is distributed, then the

Seri al i zabl e interface must also be implemented.

Memory Objects

Memory objects are Java objects that the Java Object Cache manages. Memory
objects are stored in the Java VM'’s heap space as Java objects. Memory objects can
hold HTML pages, the results of a database query, or any information that can be
stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object may be controlled
externally (for example, using data in a table on the Oracle9i Database Server). The
application supplied loader accesses the source and either creates or updates the
memory object. Without the Java Object Cache, the application would be
responsible for accessing the source directly, rather than using the loader.

You can update memory objects by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using CacheAccess. repl ace()).

14-8 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Object Types

The CacheAccess. defi ne(bj ect () method associates attributes with an object. If
attributes are not defined, the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using
the SPOQL attribute). Setting this attribute allows the Java Object Cache to handle
memory objects that are large, or costly to re-create and seldom updated. When the
disk cache is set up to be significantly larger than the memory cache, objects on disk
usually stay in the disk cache longer than objects in memory.

Combining memory objects that are spooled to a local disk with the distributed
feature from the DI STRI BUTE attribute provides object persistence (when the Java
Object Cache is running in distributed mode). Object persistence allows you to
re-create objects when the system or the Java VM is restarted after the process fails
or shuts down.

There are very few restrictions on Java Object Cache memory objects. Memory
objects can contain any Java object.

See Also: "Developing Applications Using Java Object Cache"
on page 14-17

Disk Objects

Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DI STRI BUTE attribute (and whether the Java Object Cache is
running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the Ti meToLi ve or I dl eTi ne
attributes. Disk objects can be updated by obtaining a private copy of the disk object
(file). When the Java Object Cache requires additional space, disk objects that are
not being referenced may be removed from the cache.

There are very few restrictions on disk objects in the Java Object Cache.

See Also: "Developing Applications Using Java Object Cache"
on page 14-17

StreamAccess Objects

StreamAccess objects are objects that are accessed as a stream, and are automatically
loaded to the disk cache. The object is loaded as an Qut put St r eamand read as an

Working with Java Object Cache 14-9

Java Object Cache Environment

I nput St r eam The Java Object Cache determines how to access the StreamAccess
object based on the size of the object and the capacity of the cache. Smaller objects
are accessed from memory, while larger objects are streamed directly from disk.

The cache user’s access to the StreamAccess object is through an | nput St ream All
the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not provide a mechanism to
manage a stream; for example, StreamAccess objects cannot manage socket
endpoints. | nput St r eamand Qut put St r eamobjects are available to access fixed
sized, potentially very large objects.

The Java Object Cache places some restrictions on StreamAccess objects.

Pool Objects

A pool object is a special class of object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, while the objects within the pool are private objects. Individual objects
within the pool can be checked out to be used and then returned to the pool when
they are no longer needed.

Attributes, including Ti meToLi ve or | dl eTi me may be associated with a pool
object. These attributes apply to the pool object as a whole, or they can be applied to
the objects within the pool individually.

The Java Object Cache instantiates objects within a pool using an
application-defined factory object. The size of a pool decreases or increases based on
demand and on the values of the Ti meToLi ve or I dl eTi ne attributes. A minimum
size for the pool is specified when the pool is created. The minimum-size value is
interpreted as a request rather than a guaranteed minimum value. Objects within a
pool object are subject to removal from the cache due to lack of space, so the pool
may decrease below the requested minimum value. A maximum pool size value
can be set that puts a hard limit on the number of objects available in the pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:
« Cache Regions
« Cache Subregions
« Cache Groups
« Cache Object Attributes

14-10 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

This section describes these Java Object Cache environment constructs.

Cache Regions

Objects that use the Java Object Cache service are managed within a cache region. A
cache region defines a name space within the cache. Each object within a cache region
must be uniquely named, and the combination of the cache region name and the
object name must uniquely identify an object. Thus, cache region names must be
unique from other region names, and all objects within a region must be uniquely
named relative to the region (multiple objects can have the same name if they are
within different regions or subregions).

You can define as many regions as you need to support your application. However,
most applications only require one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Attributes may be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

See Also: "Cache Object Attributes" on page 14-12 and
"Developing Applications Using Java Object Cache" on page 14-17

Cache Subregions

Objects that use the Java Object Cache are managed within a cache region.
Specifying a subregion within a cache region defines a child hierarchy. A cache
subregion defines a name space within a cache region, or cache subregion. Each
object within a cache subregion must be uniquely named, and the combination of
the cache region name, the cache subregion name, and the object name must
uniquely identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion’s attributes are
inherited by the objects within the subregion. If a subregion’s parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

See Also: "Cache Object Attributes" on page 14-12 and
"Developing Applications Using Java Object Cache" on page 14-17

Working with Java Object Cache 14-11

Java Object Cache Environment

Cache Groups

A cache group creates an association between objects within the Java Object Cache.
Cache groups allow related objects to be manipulated together. Objects are typically
associated in a cache group because they need to be invalidated together or they use
common attributes. Any set of cache objects within the same region or subregion
can be associated using a cache group, which may in turn, include other cache
groups.

An Java Object Cache object can only belong to one group at any given time. Before
an object can be associated with a group, the group must be explicitly created. A
group is defined with a name. A group may have its own attributes, or it may
inherit its attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects. A group defines a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming
purposes; therefore, a region cannot include a group and a memory object with the
same name. Use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Cache Object Attributes

Cache object attributes affect how the Java Object Cache manages objects. Each
object type, region, subregion, and group has a set of associated attributes. An
object’s applicable attributes contain either the default attribute values; the attribute
values inherited from the object’s parent region, subregion, or group; or the
attribute values that you select for the object.

Attributes fall into two categories:

1. Attributes that must be defined before an object is loaded into the cache.
Table 14-2 summarizes these attributes. Each of the attributes shown in
Table 14-2 does not have corresponding set or get methods, except the LOADER
attribute. Use the At t ri but es. set Fl ags() method to set these attributes.

2. Attributes that can be modified after an object is stored in the cache. Table 14-3
summarizes these attributes.

Note: Some attributes do not apply to certain types of objects. See
Object Types sections in the descriptions in Table 14-2 and
Table 14-3.

14-12 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

Using Attributes Defined Before Object Loading

The attributes shown in Table 14-2 must be defined on an object before the object is
loaded. These attributes determine an object’s basic management characteristics.

The following list shows the methods you can use to set the attributes shown in
Table 14-2 (by setting the values of an At t ri but es object argument).

CacheAccess.
CacheAccess.
CacheAccess.
CacheAccess.
CacheAccess.
CacheAccess.
Cacheloader .
Cacheloader .
Cacheloader .

defi neRegi on()
def i neSubRegi on()
defi neG oup()

defi neMj ect ()

put ()

creat ePool ()

creat eDi skObj ect ()
createStream()

Set Attributes()

Note: You cannot reset the attributes shown in Table 14-2 by
using the CacheAccess. reset At t ri but es() method.

Working with Java Object Cache 14-13

Java Object Cache Environment

Table 14-2 Java Object Cache Attributes—Set at Object Creation

Attribute Name

Description

DI STRI BUTE

GROUP_TTL_
DESTROY

LOADER

ORI G NAL

REPLY

This attribute specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates and
invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the DI STRI BUTE attribute for the objects within the region, subregion, or group,
unless the objects explicitly set their own DI STRI BUTE attribute. Pool objects are always
local, so this attribute does not apply to pool objects.

Default Value: All objects are local.

This attribute indicates that the associated object, group, or region should be destroyed
when the Ti neToLi ve expires.

Obiject Types: When set on a region or a group, all the objects within the region or group,
and the region, subregion, or group itself are destroyed when the Ti neToLi ve expires.

Default Value: By default only group member objects are invalidated when the
Ti meToLi ve expires.

This attribute specifies the CacheLoader associated with the object.

Object Types: When set on a region or a group, the specified CacheLoader becomes the
default loader for the region, subregion, or group, the LOADER attribute is individually
specified on objects within the region or the group.

Default Value: By default, no LOADER is set.

This attribute indicates that the object was created by the application in the cache, rather
than loaded from an external source. ORI G NAL objects are not removed from the cache
when the reference count goes to zero. ORI A NAL objects must be explicitly destroyed when
they are no longer useful.

Object Types: When set on a region or a group, this attribute sets the default value for the
ORI G NAL attribute for the objects within the region, subregion, or group, unless the objects
set their own ORI G NAL attribute.

Default Value: By default, this attribute is not set.

This attribute specifies whether objects can expect to receive a reply from remote caches
after a request for an object update or invalidation has completed. This attribute should be
set when a high level of consistency is required between cached objects. If the DI STRI BUTE
attribute is not set, or the cache is started in non-distributed mode, REPLY is ignored.

Object Types: When set on a region or a group, this attribute sets the default value for the
REPLY attribute for the objects within the region, subregion, or group, unless the objects
explicitly set their own REPLY attribute. For memory, StreamAccess, and disk objects, this
attribute only applies when the DI STRI BUTE attribute is set to the value DI STRI BUTE.
Pool objects are always local, so this attribute does not apply for pool objects.

Default Value: By default no reply is sent. When DI STRI BUTE is set to local the REPLY
attribute is ignored.

14-14 Oracle9iAS Containers for J2EE Services Guide

Java Object Cache Environment

Table 14-2 Java Object Cache Attributes—Set at Object Creation (Cont.)

Attribute Name

Description

SPOOL

SYNCHRONI ZE

SYNCHRONI ZE_
DEFAULT

This attribute specifies that a memory object should be stored on disk rather than being lost
when the cache system removes it from memory to regain space. This attribute only applies
to memory objects. If the object is also distributed, the object can survive the death of the
process that spooled it. Local objects are only accessible by the process that spools them, so
if the Java Object Cache is not running in distributed mode, the spooled object is lost when
the process dies.

Note: An object must be serializable to be spooled. If this attribute is set on a region,
subregion, or group, all associated objects must implement thej ava. i o. Seri al i zabl e
interface.

Object Types: When set on a region, subregion, or a group, this attribute sets the default
value for the SPOOL attribute for the objects within the region, subregion, or group, unless
the objects set their own SPOQL attribute.

Default Value: By default, memory objects are not stored to disk.

This attribute is used to synchronize updates within multiple threads or at multiple
locations within a site. Updates are synchronized by obtaining ownership for objects. Use
the CacheAccess. get Omner shi p() method to obtain ownership of an object.

Setting the SYNCHRONI ZE attribute does not prevent a user from reading or invalidating the
object.

Object Types: When set on a region, subregion, or a group, ownership is applied to the
region, subregion, or group as a whole. Pool objects do not use this attribute.

Default Value: By default updates are not synchronized.

This attribute indicates that all objects in a region, subregion, or group should be
synchronized. Each user object in the region, subregion, or group is marked with the
SYNCHRONI ZE attribute. Ownership of the object must be obtained before the object can be
loaded or updated.

Setting the SYNCHRONI ZE_DEFAULT attribute does not prevent a user from reading or
invalidating objects. Thus, ownership is not required for reads or invalidation of objects that
have the SYNCHRONI ZE attribute set.

Object Types: When set on a region, subregion, or a group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use this
attribute.

Default Value: By default updates are not synchronized.

Using Attributes Defined Before or After Object Loading

A set of Java Object Cache attributes can be modified either before or after object
loading. Table 14-3 lists these attributes. These attributes can be set using the
methods listed in the list shown before Table 14-2, and can be reset using the
CacheAccess. reset Attri but es() method.

Working with Java Object Cache 14-15

Java Object Cache Environment

Table 14-3 Java Object Cache Attributes

Attribute Name

Description

Def aul t Ti meToLi ve

I dl eTi e

CacheEvent Li st ener

Ti meToLi ve

Ver si on

The Def aul t Ti meToLi ve applies only to regions, subregions, and groups. This
attribute establishes a default value for the Ti meToLi ve that is applied to all objects
individually within the region, subregion, or group. This value can be overridden be
setting the Ti neToLi ve on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own Ti neTolLi ve.

Default VValue: no automatic invalidation.

The I dl eTi ne attribute specifies the amount of time an object may remain idle,
with a reference count of 0, in the cache before being invalidated. If the

Ti meToLi ve or Def aul t Ti neToLi ve attribute is set, the | dl eTi e attribute is
ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
individually to each object within the region, subregion, group, or pool, unless the
objects explicitly set | dl eTi ne.

Default VValue: no automatic | dl eTi nme invalidation.

This attribute specifies the CacheEvent Li st ener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEvent Li st ener becomes the default CacheEvent Li st ener for the
region, subregion, or group, unless a CacheEvent Li st ener is specified
individually on objects within the region, subregion, or the group.

Default Value: By default, no CacheEvent Li st ener is set.

The Ti meToLi ve attribute establishes the maximum amount of time an object
remains in the cache before being invalidated. If associated with a region, subregion,
or group, all objects in the region, subregion, or group are invalidated when the time
expires. If the region, subregion, or group is not destroyed (that is if, GROUP_TTL _
DESTROY is not set) the Ti neToLi ve value is reset.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to the region, subregion, group, or pool, as a whole, unless the objects explicitly set
their own Ti neToli ve.

Default VValue: no automatic invalidation.

An application may set a Ver si on for each instance of an object in the cache. The
Ver si on is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute applies
to all the objects within the region, subregion, group, or pool, unless the objects
explicitly set their own Ver si on.

Default Value: The default Ver si on is 0.

14-16 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Developing Applications Using Java Object Cache

This section describes how to develop applications that use Java Object Cache. This
section covers the following topics:

« Importing the Java Object Cache

« Defining a Cache Region

« Defining a Cache Group

« Defining a Cache Subregion

« Defining and Using Cache Objects

« Implementing a CachelLoader

« Invalidating Cache Obijects

« Destroying Cache Objects

« Setting Cache Configuration Properties

« Implementing a Cache Event Listener

Importing the Java Object Cache

The Oracle installer installs the Java Object Cache jar file cache. j ar in the directory
$ORACLE_HOME/ j avacache/ | i b on UNIX or in %ORACLE_HOVE% j avacache\li b on
Windows NT.

To use the Java Object Cache, you need to import or acl e. i as. cache.

i mport oracle.ias.cache.*;

Defining a Cache Region

All access to the Java Object Cache is through a CacheAccess object. A
CacheAccess object provides access to the cache through a cache region. You define
a cache region, usually associated with the name of an application, using the
CacheAccess. def i neRegi on() static method. If the cache has not been initialized,
def i neRegi on() initializes the Java Object Cache.

When you define the region, you can also set attributes and create a CacheLoader
object. Attributes specify how the Java Object Cache manages objects. The
Attribut es. set Loader () method sets the name of CacheLoader.

Attributes attr = new Attributes();
M/Loader m oader = new MyLoader;

Working with Java Object Cache 14-17

Developing Applications Using Java Object Cache

attr. set Loader (nl oader);
attr. set Defaul t Ti meToLi ve(10);

final static String APP_NAME_ = "Test Application”;
CacheAccess. def i neRegi on(APP_NAME , attr);

The first argument for def i neRegi on uses a St ri ng to set the region name. This
static method creates a private region name within the Java Object Cache. The
second argument defines the attributes for the new region.

See Also: "Java Object Cache Environment" on page 14-10 and
"Implementing a CacheLoader" on page 14-20

Defining a Cache Group

When you want to create an association between two or more objects within the
cache, create a cache group. Obijects are typically associated in a cache group
because they need to be invalidated together or because they have a common set of
attributes.

Any set of cache objects within the same region or subregion can be associated
using a cache group, including other cache groups. Before an object can be
associated with a cache group, the cache group must be defined. A cache group is
defined with a name and can use its own attributes, or it can inherit attributes from
its parent cache group, subregion, or region. The following code defines a cache
group within the region named "Test Application™

final static String APP_NAME_ = "Test Application”;

final static String GROUP_NAME = "Test G oup";

/] obtain an instance of CacheAccess object to a nanmed region
CacheAccess caccess = CacheAccess. get Access(APP_NAME);

/I Create a group

caccess. defi neG oup(GROUP_NAME) ;

/1 O ose the CacheAccess object

caccess. cl ose();

Defining a Cache Subregion

Define a subregion when you want to create a private name space within a region
or within a previously defined subregion. A subregion’s name space is independent
of the parent name space. A region can contain two objects with the same name, as
long as the objects are within different subregions.

14-18 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a
subregion, the subregion must be defined. A cache subregion is defined with a
name and can use its own attributes, or it can inherit attributes from its parent cache
region or subregion. Use the get Par ent () method to obtain a subregion’s parent.

In the following example, cache subregion is defined within the region named
"Test Application".

final static String APP_NAVE_ = "Test Application”;

final static String SUBREG ON_NAME_ = "Test SubRegion";

/] obtain an instance of CacheAccess object to a naned region
CacheAccess caccess = CacheAccess. get Access(APP_NAME);

/] Create a SubRegion

caccess. def i neSubRegi on(SUBREG ON_NAME) ;

/] O ose the CacheAccess object

caccess. cl ose();

Defining and Using Cache Objects

You may sometimes want to describe to the Java Object Cache how an individual
object should be managed within the cache before the object is loaded. Management
options can be specified when the object is loaded, by setting attributes within the
CacheLoader . | oad() method. However, you can also associate attributes with an
object by using the CacheAccess. def i ne(bj ect () method. If attributes are not
defined for an object, the Java Object Cache uses the default attributes set for the
region, subregion, or group with which the object is associated.

Working with Java Object Cache 14-19

Developing Applications Using Java Object Cache

Example 14-1 shows how to set attributes for a cache object.

Example 14-1 Setting Cache Attributes

inport oracle.ias.cache.*;
final static String APP_NAME_ = "Test Application”;
CacheAccess cacc = nul | ;
try
{
cacc = CacheAccess. get Access(APP_NAME) ;
/] set the default IdleTinme for an object using attributes
Attributes attr = new Attributes();
/] set ldleTine to 2 mnutes
attr.setldl eTime(120);

/1 define an object and set its attributes
cacc. defineCbj ect ("Test Cbject", attr);

/] object is l|oaded using the |oader previously defined on the region
/] if not already in the cache.
result = (String)cacc.get("Test Chject");
} catch (CacheException ex){
/1 handl e exception

} finally {
if (cacc!= null)
cacc. close();

Implementing a CacheLoader

Generally, you should use the Java Object Cache to load objects automatically, as
needed rather than using the application to directly manage objects in the cache.
When an application directly manages objects, it uses the CacheAccess.put ()
method to insert objects into the cache. To take advantage of automatic loading, you
use a CacheLoader object and implement al oad() method to insert objects into the
cache.

A CachelLoader can be associated with a region, subregion, a group, or an object.
Using a CachelLoader allows the Java Object Cache to schedule and manage object
loading, and handle the logic for, "if the object is not in cache then load."

When an object is not in the cache, when an application calls CacheAccess. get () or
CacheAccess. prelLoad(), the CacheLoader executes the | oad method. When the

| oad method returns, the Java Object Cache inserts the returned object into the
cache. Using CacheAccess. get (), if the cache is full the object is returned from the

14-20 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

loader and the object is immediately invalidated in the cache (therefore, using
CacheAccess. get () with a full cache does not generate a CacheFul | Excepti on).

When a CachelLoader is defined for a region, subregion, or group, it is taken to be
the default loader for all objects associated with the region, subregion, or group. A
CacheLoader that is defined for an individual object is used only to load the object.

Note: A CachelLoader that is defined for a region, subregion, or
group or for more than one cache object needs to be written with
concurrent access in mind. The implementation should be
thread-safe, since the CacheLoader object is shared.

Using CacheLoader Methods Within the Load Method

The Java Object Cache supports several CacheLoader methods that you can use
within al oad() method implementation. Table 14-4 summarizes the available

CacheLoader methods.

Table 14-4 CachelLoader Methods Used in load()

Method

Description

set Attributes()

net Sear ch()

get Narre()

get Regi on()

createStream)
creat eDi skObj ect ()

excepti onHandl er ()

log()

Sets the attributes for the object being loaded.

Searches other available caches for the object to load. Objects are
uniquely identified by the region name, subregion name, and
the object name.

Returns the name of the object being loaded.

Returns the name of the region associated with the object being
loaded

Creates a StreamAccess object
Creates a disk object

Converts noncache exceptions into CacheExcept i ons, with
the base set to the original exception

Records a messages in the cache service log

Example 14-2 shows a CachelLoader using the cachelLoader . net Sear ch() method
to check if the object being loaded is available in distributed Java Object Cache
caches. If the object is not found using net Sear ch(), the load method uses a more
expensive call to retrieve the object (an expensive call might involve an HTTP

Working with Java Object Cache 14-21

Developing Applications Using Java Object Cache

connection to a remote Web site or a connection to the Oracle9i Database Server).
For this example, the Java Object Cache stores the result asa St ri ng.

Example 14-2 Implementing a CachelLoader

inport oracle.ias.cache.*;
cl ass Your Obj ect Loader extends CachelLoader{
public Your Qbj ect Loader () {

}
public Chject |oad(hject handle, hject args) throws CacheException

{

String contents;
Il check if this object is |oaded in another cache

try {
contents = (String)netSearch(handl e, 5000);// wait for up to 5 scnds

return new String(contents);
} cat ch(Obj ect Not FoundException ex){}

try {
contents = expensiveCall (args);

return new String(contents);
} catch (Exception ex) {throw exceptionHandl er("Loadfailed", ex);}

private String expensiveCall(oject args) {
String str = null;
/1 your inplenmentation to retrieve the information.
Il str = ...
return str;

Invalidating Cache Objects

An object can be removed from the cache either by setting the Ti meToLi ve attribute
for the object, group, subregion, or region; or by explicitly invalidating or
destroying the object.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or a group invalidates all the individual objects from the region,
subregion, or group, leaving the environment, including all groups, loaders, and
attributes available in the cache. Invalidating an object does not undefine the object.
The object loader remains associated with the name. To completely remove an

14-22 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

object from the cache, destroy the object using the CacheAccess. destroy()
method.

An object may be invalidated automatically based on the Ti neToLi ve or | dl eTi me
attributes. When the Ti neToLi ve or | dl eTi me expires, objects are by default,
invalidated and not destroyed.

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region use
CacheAccess.invalidate().

CacheAccess cacc = CacheAccess. get Access("Test Application");
cacc.invalidate("Test Object"); [/ invalidate an individual object
cacc.invalidate("Test Goup"); // invalidate all objects associated with a group
cacc.invalidate(); /] invalidate all objects associated with the region cacc
cacc. cl ose(); Il close the CacheAccess access

Destroying Cache Objects

An object can be removed from the cache either by setting the Ti meToLi ve attribute
for the object, group, subregion, or region; or by explicitly invalidating or
destroying the object.

Destroying an object marks the object and the associated environment, including
any associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the
region, subregion, or group for removal, including the associated environment.

An object may be destroyed automatically based on the Ti meToLi ve or I dl eTi ne
attributes. By default, objects are invalidated and are not destroyed. If the objects
need to be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region also
closes the CacheAccess object used to access the region.

To destroy an object, group, subregion, or region use the CacheAccess. dest r oy()
method.

Working with Java Object Cache 14-23

Developing Applications Using Java Object Cache

CacheAccess cacc = CacheAccess. get Access("Test Application");

cacc. destroy("Test Chject"); // destroy an individual object

cacc. destroy("Test Goup"); // destroy all objects associated with
Il the group "Test G oup”

cacc. destroy(); Il destroy all objects associated with the region
/1 including groups and | oaders

Setting Cache Configuration Properties

During initialization, the Java Object Cache sets values for configuration properties.
Table 14-5 lists the configuration properties for Java Object Cache. By default, the
first time a region is created, or the default region is accessed, the Java Object Cache
initializes the configuration properties. When the Java Object Cache is installed, the
installer updates values for certain administrative properties and places the
updated values in the j avacache. properti es configuration file, in the directory
$ORACLE_HOME/ j avacache/ admi n on UNIX or in “0RACLE_HOVE\ j avacache\ admi n
on Windows NT.

You can modify the j avacache. properti es file to use values other than the default
configuration property values. For configuration property values that are not
specified in j avacache. properti es, the Java Object Cache uses the default values
included in Table 14-5.

When the Java Object Cache is initialized, it uses either the default administration
property values, or values specified in j avacache. properti es. No explicit method
calls are required to configure the administrative properties using this initialization
technique. The Java Object Cache also supports other initialization techniques (see
the Cache object methods in the Javadoc for details).

The format for the values in the properties j avacache. properti es file is:

property=val ue

A # character in a configuration file starts a comment. When the # is in the first
column, the entire line is a comment. When the # is occurs after a property value
specification, it applies to the remainder of the line.

Table 14-5 lists the valid property names and lists the valid types for each property.

14-24 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

Table 14-5 Java Object Cache Configuration Properties

Configuration Property Description

Type

cl eanl nterval

di scover yAddr ess

di skPat h

distribute

| ogFi | eNare

| ogger

Specifies the time, in seconds, between each cache cleaning. At the
cache-cleaning interval, the Java Object Cache checks for objects that
have been invalidated by the Ti meToLi ve or | dl eTi ne attributes
associated with the object.

Default value: 60

Specifies the address that the Java Object Cache initially contacts to join
the caching system, when using distributed caching. The value is in the
form, host nane: port . If the host nane is omitted, | ocal host is
used. If the Java Object Cache spans systems, a comma-separated list of
host names and ports should be included, with one host nane:por t
pair specified for each node.

Default Value: : 12345 (this is equivalentto | ocal host: 12345).

Specifies the absolute path to the root for the disk cache (a directory). If
this attribute is not set, disk caching is not available.

Default value: nul |

Indicates whether the cache is distributed. Updates and invalidation for
objects that have the di st ri but e property set are propagated to other
caches known to the Java Object Cache. If the di st ri but e property is
setto f al se, all objects are treated as local, even when the attributes set
on objects are set to distribute.

Default value: f al se

Specifies the log file name for the default logger implementation.

Default value: $ORACLE_

HOVE/ j avacache/ adm n/ | ogs/j avacache. | og on UNIX or
Y%ORACLE_HOVE% j avacache\ admi n\ | ogs\ j avacache. | og on
Windows NT

Specifies the class name for the object that implements the
Cachelogger interface. The object is instantiated when the Java Object
Cache is initialized.

Default value: or acl e. i as. cache. Def aul t CachelLogger

int

String

String

bool ean

String

String

Working with Java Object Cache 14-25

Developing Applications Using Java Object Cache

Table 14-5 Java Object Cache Configuration Properties (Cont.)

Configuration Property Description

Type

| ogSeverity Specifies the logging severity level used for initializing the logger. The int
valid values are:

-1
0

~N o b~ W

CachelLogger.
CachelLogger.
Cachelogger.
CachelLogger.
CachelLogger.
Cachelogger.

10 Cachelogger.
. 15 Cachelogger.
Default value: CachelLogger . DEFAULT

CFF
FATAL
ERROR
DEFAULT
WARNI NG
TRACE

I NFO
DEBUG

maxObj ect s Specifies the maximum number of in-memory objects that are allowed in i nt
the cache. The count does not include group objects, or objects that have
been spooled to disk and are not currently in memory.

Default value: 5000

maxSi ze Specifies the maximum size of the memory, in megabytes, available to i nt
the Java Object Cache.

Default value: 10

Note:

Configuration properties are distinct from the Java Object
Cache attributes that you specify using the At t ri but es class.

Implementing a Cache Event Listener

There are a number of events that can occur in the life cycle of a cached object,
including object creation and object invalidation. This sections shows how an
application can be notified when cache events occur.

To receive notification of an object’s creation, implement event notification as part of
the cacheLoader. For notification of invalidation or updates, implement a
CacheEvent Li st ener and associate the CacheEvent Li st ener with an object,
group, region, or subregion using At t ri but es. set CacheEvent Li stener ().

CacheEvent Li st ener is an interface that extends j ava. uti | . Event Li st ener. The
cache event listener provides a mechanism to establish a callback method that is

14-26 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

registered, and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If
an event listener is associated with a group, region, or subregion, the listener only
runs when the group, region, or subregion itself is invalidated. Invalidating a
member does not trigger the event. At t ri but es. set CacheEvent Li st ener () takes
a boolean argument, that if t r ue, applies the event listener to each member of the
region, subregion, or group, rather than to the region, subregion, or group itself. In
this case, the invalidation of an object within the region, subregion, or group
triggers the event.

The CacheEvent Li st ener interface has one method, handl eEvent () . This method
takes a single argument, a CacheEvent object that extends

java. util.Event bj ect. This object has two methods get | D() ,which returns the
type of event (OBJECT | NVALI DATI ON or OBJECT_UPDATED) , and get Sour ce(),
which returns the object being invalidated. For group objects, the get Sour ce()
method returns the name of the group.

The handl eEvent () method is executed in the context of a background thread that
the Java Object Cache manages. Avoid using JNI code in this method, as the
expected thread context may not be available.

Example 14-3 shows how a CacheEvent Li st ener is implemented and associated
with an object or a group.

Example 14-3 Implementing a CacheEventListener

inport oracle.ias.cache.*;
/1 A CacheEventListener for a cache object
cl ass MyEvent Li st ener inpl ements
CacheEvent Li stener {

public void handl eEvent (CacheEvent ev)

{
MyCbj ect obj = (M/Qbj ect)ev. get Source();
obj . cl eanup();

}

/1 A CacheEventListener for a group object
class MG oupEvent Li stener inpl ements CacheEventListener {
public voi d handl eEvent (CacheEvent ev)
{
String groupNane = (String)ev. getSource();
app. notify("group " + groupNane + " has been invalidated");

Working with Java Object Cache 14-27

Developing Applications Using Java Object Cache

}

Use the Attri but es. | i st ener attribute to specify the CacheEvent Li st ener for a
region, subregion, group, or object.

Example 14-4 shows how to set a cache event listener on an object. Example 14-5
shows how to set a cache event listener on a group.

Example 14-4 Setting a Cache Event Listener on an Object
inport oracle.ias.cache. *;

cl ass Your bj ect Loader extends CachelLoader

{
public Your Qbj ect Loader () {
}

public Chject |oad(Object handle, bject args) {
Qbj ect obj = null;
Attributes attr = new Attributes();
M/Event Li stener el = new MyEvent Li stener();
attr.set CacheEvent Li st ener (CacheEvent . OBJECT | NVALI DATED, el);

/'l your inplementation to retrieve or create your object

setAttributes(handl e, attr);
return obj;

Example 14-5 Setting a Cache Event Listener on a Group

inport oracle.ias.cache. *;
try

{
CacheAccess cacc = CacheAccess. get Access(nmyRegion);

Attributes attr = new Attributes ();

M/G oupEvent Li stener |istener = new MyG oupEvent Li stener();
attr. set CacheEvent Li st ener (CacheEvent . OBJECT | NVALI DATED, |i stener);

cacc. defineGoup("nyG oup", attr);
.. ..

14-28 Oracle9iAS Containers for J2EE Services Guide

Developing Applications Using Java Object Cache

cacc. cl ose();

}cat ch(CacheException ex)

{
}

/1 handl e exception

Restrictions and Programming Pointers

This section covers restrictions and programming pointers to keep in mind when
using the Java Object Cache.

1.

The CacheAccess object should not be shared between threads. This object
represents a user to the caching system. The CacheAccess object contains the
current state of the user's access to the cache: what object is currently being
accessed, what objects are currently owned, and so on. Trying to share the
CacheAccess object is unnecessary and can result in nondeterministic behavior.

A CacheAccess object only holds a reference to one cached object at a time. If
multiple cached objects are being accessed concurrently, multiple CacheAccess
objects should be used. For objects stored in memory, the consequences of not
doing this are minor since Java prevents the cached object from being garbage
collected even if the cache believes it is not being referenced. For disk objects, if
the cache reference is not maintained, the underlying file could be removed by
another user or by time-based invalidation, causing unexpected exceptions. To
optimize resource management, you should keep the cache reference open as
long as the cached object is being used.

A CacheAccess object should always be closed when it is no longer being used.
The CacheAccess objects are pooled. They acquire other cache resources on
behalf of the user. If the access object is not closed when it is not being used,
these resources are not returned to the pool and are not cleaned up until they
are garbage collected by the Java VM. If CacheAccess objects are continually
allocated and not closed, available resources and a consequent degradation in
performance may occur.

When local objects (objects that do not set the At t ri but es. DI STRI BUTE
attribute) are saved to disk using the CacheAccess. save() method they do not
survive the termination of the process. By definition, local objects are only
visible to the cache instance where they were loaded. If that cache instance goes
away for any reason, the objects it manages, including on disk, are lost. If an
object needs to survive process termination, both the object and the cache need
to be defined DI STRI BUTE.

Working with Java Object Cache 14-29

Working with Disk Objects

5. The cache configuration, also called the cache environment, is local to a cache,
this includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. The cache
configuration should be defined during the initialization of the application.

6. IfaCacheAccess. wait For Response() or CacheAccess. rel easeOamer shi p()
method call times out, it must be called again until it returns successfully. Call
these methods with a- 1 ti meout value to free up resources, and eliminate
waits.

7. When a group is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, all objects
in the group will be invalidated or destroyed across the entire cache system
even if the individual objects or associated groups are defined as local. If the
group is defined as local, local objects within the group are invalidated locally,
while distributed objects are invalidated throughout the entire cache system.

8. When an object or group is defined with the SYNCHRONI ZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

9. Ingeneral, objects stored in the cache should be loaded by the system class
loader defined in the CLASSPATH when the Java VM is initialized, rather than by
a user defined class loader. Specifically, any objects that are shared between
applications or may be saved or spooled to disk need to be defined in the
system CLASSPATH. Failure to do so may result in O assNot FoundExcept i ons
or Cl assCast Excepti ons.

10. On some systems, the open file descriptors may be limited by default. On these
systems, you may need to change system parameters to improve performance.
On UNIX systems, for example, a value of 1024 or greater may be an
appropriate value for the number of open file descriptors.

11. When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a Java VM process (that is, in the program
running in the Java VM that uses the Java Object Cache API).

Working with Disk Objects
The Java Object Cache can manage objects on disk as well as in memory.
This section covers the following topics:

« Configuring Properties for Using the Disk Cache

14-30 Oracle9iAS Containers for J2EE Services Guide

Working with Disk Objects

« Local and Distributed Disk Cache Objects
« Adding Objects to the Disk Cache

Configuring Properties for Using the Disk Cache

To configure the Java Object Cache to use a disk cache, set the value of the di skPat h
configuration property in the j avacache. properti es file.

Setting the diskPath Configuration Property

To configure the Java Object Cache to use a disk cache, the di skPat h property in the
configuration properties file should be set to the path of the root directory for the
disk cache. The default value for di skPat h is null, which specifies that the Java
Object Cache should not enable the disk cache.

Note: when operating in distributed mode. To share disk cache
files, all caches cooperating in the same cache system must specify
values for the di skPat h property that represent the same physical
disk. However, the values specified for the di skPat h do not need to
be the same.

If you configure the di skPat h properties to represent different
locations on the same or different physical disks, the disk cache
objects are not shared.

See Also: "Setting Cache Configuration Properties" on page 14-24

Local and Distributed Disk Cache Objects

This section covers the following topics:
« Local Objects
« Distributed Objects

Local Objects

When operating in local mode, all objects are treated as local objects (even when the
DI STRI BUTE attribute is set for an object). In local mode, all objects in the disk cache
are only visible to the Java Object Cache cache that loaded them, and they do not
survive after process termination. In local mode, objects stored in the disk cache are
lost when the process using the cache dies.

Working with Java Object Cache 14-31

Working with Disk Objects

Distributed Objects

When operating in distributed mode, disk cache objects are shared by all caches that
have access to the file system hosting the disk cache. This configuration allows for
better utilization of disk resources and allows disk objects to persist beyond the life
of the Java Object Cache process. Distributed memory objects are not shared by all
caches since individual copies of each memory object reside in the individual caches
across the system.

Obijects stored in the disk cache are identified using the concatenation of the path
specified in the di skPat h configuration property and an internally generated

St ri ng representing the remaining path to the file. Thus, caches that share a disk
cache can have a different directory structure, as long as the di skPat h represents
the same directory on the physical disk and is accessible to the Java Object Cache
processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

See Also: "Automatically Adding Objects" on page 14-32 for
information on using the SPOOL attribute

Adding Objects to the Disk Cache

There are several ways to use the disk cache with the Java Object Cache, including:
« Automatically Adding Objects

« Explicitly Adding Objects

« Using Objects that Reside Only in Disk Cache

Automatically Adding Objects

The Java Object Cache automatically adds certain objects to the disk cache. Such
objects may reside either in the memory cache or in the disk cache. If an object in
the disk cache is needed, it is copied back to the memory cache. The action of
spooling to disk occurs when the Java Object Cache determines that it requires free
space in the memory cache. The Java Object Cache automatically moves objects
from the memory cache to the disk cache in two cases.

« When space is running out in the memory cache, the Java Object Cache searches
through the cache, looking for memory objects that are not currently accessed.
These memory objects may be removed from the cache. If the memory object is
defined with the SPOOL attribute set, the memory object is written to disk before
it is removed. Spooling saves the memory object to the disk cache, and avoids

14-32 Oracle9iAS Containers for J2EE Services Guide

Working with Disk Objects

re-creating the object when or if it is needed again. You should set the SPOOL
attribute for objects that are expensive to create, especially if the time required
to create the object is greater than the cost of loading the object from disk.

« StreamAccess objects are automatically loaded to disk cache. StreamAccess
objects give the Java Object Cache latitude as to how the object is accessed.
Smaller StreamAccess objects can be accessed from memory or the disk cache,
while larger StreamAccess objects are streamed directly from disk. The Java
Object Cache determines how to store the StreamAccess object based on the size
of the object and the capacity of the cache.

See Also: "Cache Object Attributes” on page 14-12 and "Working
with StreamAccess Objects" on page 14-35

Explicitly Adding Objects

In some situations, you may want to force one or more objects to be written to the
Java Object Cache disk cache. Using the CacheAccess. save() method, a region,
subregion, group, or object is synchronously written to the disk cache (if the object
or objects are already in the disk cache, they are not written again).

Note: Using CacheAccess. save() saves an object to disk even
when the SPOOL attribute is not set for the object.

Calling CacheAccess. save() on a region, subregion, or group saves all the objects
within the region, subregion, or group to the disk cache. During a

CacheAccess. save() method call, if an object is encountered that cannot be written
to disk, either because it is not serializable, or for other reasons, the event is
recorded in the Java Object Cache log and the save operation continues with the
next object.

Using Objects that Reside Only in Disk Cache

Objects that you only access directly from disk cache are loaded into the disk cache
by calling CachelLoader . cr eat eDi skObj ect () from the CacheLoader . | oad()
method. The cr eat eDi skObj ect () method returns a Fi | e object that the
application can use to load the disk object. If the disk object’s attributes are not
defined for the disk object, set them using the cr eat eDi skbj ect () method. The
system manages local and distributed disk objects differently; the determination of
local or distributed is made when the system creates the object, based on the
specified attributes.

Working with Java Object Cache 14-33

Working with Disk Objects

Note: If you want to share a disk cache object between distributed
caches in the same cache system, you must define the DI STRI BUTE
attribute when the disk cache object is created. This attribute cannot
be changed for the disk cache object after the object is created.

When CacheAccess. get () is called on a disk object, the full path name to the file is
returned, and the application can open the file, appropriate to its needs.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects may be shared by all Java
Object Cache processes, or they may be local to a particular process, depending on
the setting for the DI STRI BUTE attribute (and the mode the Java Object Cache is
running in, either distributed, or local).

Example 14-6 shows a loader object that loads a disk object into the cache.

See Also: "Implementing a CachelLoader" on page 14-20 and "Java
Object Cache Environment" on page 14-10

Example 14-6 Creating a Disk Object in a CacheLoader
inport oracle.ias.cache. *;

cl ass Your hj ect Loader extends CachelLoader
{
public Cbject |oad(bject handle, bject args) {
File file;
Fi | eQut put Stream = out;
Attributes attr = new Attributes();

attr.setFlags(Attributes. Dl STRIBUTE);
try

{
file = createDi skChject(handl e, attr);

out = new FileQutputStrean(file);

out.wite((byte[])getlnfofromsonewhere());
out. cl ose();
}
catch (Exception ex) {
/'l translate exception to CacheException, and | og exception
t hrow excepti onHandl er ("exception in file handling", ex)

14-34 Oracle9iAS Containers for J2EE Services Guide

Working with StreamAccess Objects

return file;

}

Example 14-7 shows application code that uses an Java Object Cache disk object.
This example assumes the region named " St ock- Mar ket " is already defined with
the "Your Obj ect Loader " loader set up in Example 14-6 as the default loader for the
region.

Example 14-7 Application Code that Uses a Disk Object
inport oracle.ias.cache. *;

try
{

Fi l el nput Streamin;

File file;

String filePath;

CacheAccess cacc = CacheAccess. get Access(" Stock- Market");

filePath = (String)cacc.get("file object");
file = new File(filePath);

in = new FilelnputStrean(filePath);
in.read(buf);

/] do something interesting with the data
in.close();
cacc. cl ose();

}

catch (Exception ex)

{

/1 handl e exception

}

Working with StreamAccess Objects

StreamAccess objects are objects that are accessed as a stream and are automatically
loaded to the disk cache. The object is loaded as an Qut put St r eamand read as an

I nput St r eam Smaller StreamAccess objects can be accessed from memory or from
the disk cache, while larger StreamAccess objects are streamed directly from disk.
The Java Object Cache automatically determines where to access the StreamAccess
object based on the size of the object and the capacity of the cache.

Working with Java Object Cache 14-35

Working with StreamAccess Objects

The user is always presented with a stream object, an | nput St r eamfor reading and
an Qut put St r eamfor writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.

Creating a StreamAccess Object

To create a StreamAccess object, call the CacheLoader . cr eat eSt r ean() method
from the CacheLoader . | oad() method when the object is loaded into the cache.
The creat eSt ream() method returns an Qut put St r eamobject. The Qut put St r eam
object can be used to load the object into the cache.

If the attributes have not already been defined for the object, they should be set
using the cr eat eSt r ean() method. The system manages local and distributed disk
objects differently; the determination of local or distributed is made when the
system creates the object, based on the attributes.

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, you must define the

DI STRI BUTE attribute when the StreamAccess object is created. This
attribute cannot be changed after the object is created.

Example 14-8 shows a loader object that loads a StreamAccess object into the cache.

Example 14-8 Creating a StreamAccess Object in a Cache Loader
inport oracle.ias.cache. *;

cl ass Your Qbj ect Loader extends CachelLoader
{
public Cbject |oad(bject handle, bject args) {
Qut put Stream = out;
Attributes attr = new Attributes();
attr.setFlags(Attributes. Dl STRI BUTE);

try
{

out = createStrean(handle, attr);
out.wite((byte[])getlnfofronmsonewhere());

}
catch (Exception ex) {

14-36 Oracle9iAS Containers for J2EE Services Guide

Working with Pool Objects

/1 translate exception to CacheException, and |og exception
throw excepti onHandl er ("exception in wite", ex)

}

return out;

}

Working with Pool Objects

A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object, stored as a static across the entire cache instance, while the objects within the
pool object are private objects that the Java Object Cache manages. Users access
individual objects within the pool with a check out, using a pool access object, and
then return the objects to the pool when they are no longer needed.

This section covers the following topics:
« Creating Pool Objects
« Using Objects from a Pool

« Implementing a Pool Object Instance Factory

Creating Pool Objects

To create a pool object, use CacheAccess. cr eat ePool (). The Cr eat ePool ()
method takes as arguments a Pool | nst anceFact ory, and an At t ri but es object,
plus two integer arguments. The integer arguments specify the maximum pool size
and the minimum pool size. By supplying a group name as an argument to

Cr eat ePool (), a pool object is associated with a group.

Attributes, including Ti meToLi ve or | dl eTi me may be associated with a pool
object. These attributes can be applied to the pool object itself, when specified in the
attributes set with CacheAccess. cr eat ePool (), or they can be applied to the
objects within the pool individually.

Using CacheAccess. cr eat ePool (), specify minimum and maximum sizes with the
integer arguments. The minimum is specified first. It sets the minimum number of
objects to create within the pool. The minimum size is interpreted as a request
rather than a guaranteed minimum. Objects within a pool object are subject to
removal from the cache due to lack of resources, so the pool may decrease the
number of objects below the requested minimum value. The maximum pool size
puts a hard limit on the number of objects available in the pool.

Working with Java Object Cache 14-37

Working with Pool Objects

Note: Pool objects, and the objects within a pool object are always
treated as local objects.

See Also:
« "Implementing a Pool Object Instance Factory" on page 14-39

« "Java Object Cache Environment" on page 14-10

Example 14-9 shows how to create a pool object.

Example 14-9 Creating a Pool Object
inport oracle.ias.cache.*;

try
{

CacheAccess cacc = CacheAccess. get Access(" St ock- Market");
Attributes attr = new Attributes();
Quot eFact ory pool Fac = new Quot eFactory();

/] set ldleTime for an object in the pool to three ninutes
attr.setldl eTi me(180);

Il create a pool in the "Stock-Mrket" region with a mni num of
/1 5 and a maxi num of 10 object instances in the pool

cacc. createPool ("get Quote", pool Fac, attr, 5, 10);

cacc. cl ose();

}
cat ch(CacheException ex)

/1 handl e exception

Using Objects from a Pool

To access objects in a pool, use a Pool Access object. The Pool Access. get Pool ()
static method returns a handle to a specified pool. The Pool Access. get () method
returns an instance of an object from within the pool (this checks out an object from
the pool). When an object is no longer needed, return it to the pool, using the

Pool Access. r et ur nToPool () method, which checks the object back into the pool.

14-38 Oracle9iAS Containers for J2EE Services Guide

Working with Pool Objects

Finally, call the Pool Access. cl ose() method when the pool handle is no longer
needed.

Example 14-10 shows the calls required to create a Pool Access object, check an
object out of the pool, and then check the object back in and close the Pool Access
object.

Example 14-10 Using a PoolAccess Object

Pool Access pacc = Pool Access. get Pool (" St ock- Market", "get Quote");
//get an object fromthe pool

Cet Quote gq = (CGet Quote)pacc.get();

/1 do sonething useful with the gq object

/] return the object to the pool

pacc. returnToPool (gq);

pacc. cl ose();

Implementing a Pool Object Instance Factory

The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object, a Pool | nst anceFact ory. The

Pool | nst anceFact ory is an abstract class with two methods that you must
implement, cr eat el nst ance() and dest r oyl nst ance().

The Java Object Cache calls cr eat el nst ance() to create instances of objects being
accumulated within the pool. The Java Object Cache calls dest r oyl nst ance()
when an instance of an object is being removed from the pool (object instances from
within the pool are passed into dest r oyl nst ance()).

The size of a pool object, that is the number of objects within the pool, is managed
using these Pool | nst anceFact ory() methods. The system decreases or increases
the size and number of objects in the pool, based on demand, and based on the
values of the Ti meToLi ve or1dl eTi ne attributes. Example 14-11 shows the calls
required when implementing a Pool | nst anceFact ory.

Example 14-11 Implementing Pool Instance Factory Methods

inport oracle.ias.cache.*;
public class M/Pool Factory inplenents Pool | nstanceFactory

{
public Object createlnstance()
{
M/Qbj ect obj = new MyQbj ect ();
obj.init();
return obj;

Working with Java Object Cache 14-39

Running in Local Mode

}

public voi d destroylnstance(Obj ect obj)

{
}

((M/Chj ect)obj).cleanup();

Running in Local Mode

When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same machine or
remotely across the network. Local mode provides a decentralized architecture that
supports a very efficient cache system, with very limited overhead. Object
persistence across system shutdowns or program failures is not supported when
running in local mode.

By default, the Java Object Cache runs in local mode and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DI STRI BUTE attribute for all objects.

Running in Distributed Mode

In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same machine or remotely across the
network. Object updates and invalidations are propagated between communicating
caches. Distributed mode supports object persistence across system shutdowns and
program failures. Running in distributed mode has possible disadvantages.
Specifically, significant system resources may be required when a large number of
distributed objects need to be invalidated, when very large objects are updated, or
when updates must be performed rapidly.

This section covers the following topics:

« Configuring Properties for Distributed Mode

« Using Distributed Objects, Regions, Subregions, and Groups
« Cached Object Consistency Levels

Configuring Properties for Distributed Mode

To configure the Java Object Cache to run in distributed mode, set the value of the
di stri but e and di scover yAddr ess configuration properties in the
j avacache. properti es file.

14-40 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

Setting the Distribute Configuration Property

To start the Java Object Cache in distributed mode, the di st ri but e property should
be set to t r ue in the configuration file.

See Also: "Setting Cache Configuration Properties" on page 14-24

Setting the DiscoveryAddress Configuration Property

In distributed mode, invalidations, destroys, and replaces are propagated through
the cache's messaging system. The messaging system requires a known hostname
and port address to allow a cache to join the cache system when it is first initialized.
Use the di scover yAddr ess property in the j avacache. properti es file to specify a
list of hostname and port addresses.

By default, Java Object Cache sets the di scover yAddr ess to the value : 12345 (this
is equivalent to | ocal host : 12345). To eliminate conflicts with other software on
the site, you should have your system administrator set the di scover yAddr ess.

If the Java Object Cache spans systems, a comma separated list of host name and
port pairs should be included as the value for di scover yAddr ess, with one

host nane: port pair specified for each node. This avoids any dependency on a
particular machine being available or on the order the processes are started.

See Also: "Setting Cache Configuration Properties" on page 14-24

Note: All caches cooperating in the same cache system must
specify the same set of hostname and port addresses. The address
list, set with the di scover yAddr ess property defines the caches
that make up a particular cache system. If the address lists vary, the
cache system could be partitioned into distinct groups resulting in
inconsistencies between caches.

Using Distributed Objects, Regions, Subregions, and Groups

When the Java Object Cache runs in distributed mode, individual regions,
subregions, groups, and objects can be either local, or distributed. By default,
objects, regions, subregions, and groups are defined as local. To change the default
local value, set the DI STRI BUTE attribute when the object, region, or group is
defined.

A distributed cache may contain both local and distributed objects.

Working with Java Object Cache 14-41

Running in Distributed Mode

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the
caches.

See Also: "Cached Object Consistency Levels" on page 14-46

Using the REPLY Attribute with Distributed Objects

When updating, invalidating, or destroying objects across multiple caches, it is
useful to know when the action has completed at all the participating sites. Setting
the REPLY attribute causes all participating caches to send a reply to the sender
when a requested action has completed for the object with the REPLY attribute set.
This also enables the wait for response feature for object updates, invalidates, or
destroys, and requires the use of the blocking method

CacheAccess. wai t For Response() .

To wait for a distributed action to complete across multiple caches, use
CacheAccess. wai t For Response() . To ignore responses, use the

CacheAccess. cancel Response() method, which frees the cache resources used to
collect the responses.

Both CacheAccess. wai t For Response() and CacheAccess. cancel Response()
apply to all objects accessed by the CacheAccess object. This allows the application
to update a number of objects, then wait for all the replies.

Example 14-12 illustrates how to set an object as distributed and handle replies
when the REPLY attribute is set. In this example, the attributes may also be set for
the entire region. Attributes could also be set for a group or individual object, as
appropriate for your application.

Example 14-12 Distributed Caching Using Reply
inport oracle.ias.cache.*;

CacheAccess cacc;

String obj ;

Attributes attr = new Attributes ();
M/Loader | oader = new MyLoader();

/] mark the object for distribution and have a reply generated
/1 by the renpte caches when the change is conpleted

attr.setFlags(Attributes. Dl STRIBUTE| Attri butes. REPLY);
attr. set Loader (| oader);

14-42 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

CacheAccess. def i neRegi on("t est Region", attr);
cacc = CacheAccess. get Access("testRegion"); // create region with
I/distributed attributes

obj = (String)cacc.get("testoject");
cacc.replace("test Chject", obj + "new version"); // change will be
/'l propagated to other caches

cacc.invalidate("invalidChject"); // invalidation is propagated to other caches

try
{

/] wait for up to a second, 1000 nilliseconds, for both the update
/] and the invalidate to conplete
cacc. wai t For Response(1000) ;

catch (Ti meout Exception ex)

{

Il tired of waiting so cancel the response
cacc. cancel Response();

}

cacc. cl ose();

}

Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

When updating objects across multiple caches, or when multiple threads access a
single object, you may coordinate the update action. Setting the SYNCHRONI ZE
attribute enables synchronized updates and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONI ZE attribute also applies to regions, subregions, and groups. When
the SYNCHRONI ZE attribute is applied to a region, subregion, or group, ownership of
the region, subregion, or group must be obtained before an object can be loaded or
replaced in the region, subregion, or group.

Setting the SYNCHRONI ZE_DEFAULT attribute on a region, subregion, or group applies
the SYNCHRONI ZE attribute to all of the objects within the region, subregion, or
group. Ownership must be obtained for the individual objects within the region,
subregion, or group before they can be loaded or replaced.

Working with Java Object Cache 14-43

Running in Distributed Mode

Note: You can also use the SYNCHRONI ZE and SYNCHRONI ZE_
DEFAULT attributes with objects that are not distributed to control
updates for the objects from multiple threads, where each thread
uses the Java Object Cache.

To obtain ownership of an object, use CacheAccess. get Omer shi p().Once
ownership is obtained, no other CacheAccess instance is allowed to load or replace
the object. Reads and invalidation of objects are not affected by synchronization.

Once ownership has been obtained and the modification to the object is completed,
call CacheAccess. r el easeOaner shi p() to release the object.

CacheAccess. r el easeOaner shi p() waits up to the specified time for the updates
to complete at the remote caches. If the updates complete within the specified time,
ownership is released, otherwise a Ti meout Except i on is thrown. If the method
times out, call CacheAccess. r el easeOaner shi p() again.

CacheAccess. r el easeOaner shi p() must return successfully for ownership to be
released. If the time out value is - 1, ownership is released immediately without
waiting for the responses from the other caches.

Example 14-13 Distributed Caching Using SYNCRHONIZE and SYNCHRONIZE_DEFAULT
inport oracle.ias.cache. *;

CacheAccess cacc;

String obj ;

Attributes attr = new Attributes ();
M/Loader | oader = new MyLoader();

/] mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes. Dl STRI BUTE| Attri but es. SYNCHRONI ZE) ;
attr. set Loader (| oader);

//create region

CacheAccess. def i neRegi on("t est Regi on");

cacc = CacheAccess. get Access("t est Region");

cacc. defineG oup("syncGoup", attr); //define a distributed synchronized group
cacc. defineCbject ("syncoject", attr); // define a distributed synchronized object
attr.setFlagsToDefaults() // reset attribute flags

/1 define a group where SYNCHRONI ZE is the default for all objects in the group

attr.setFlags(Attributes. Dl STRI BUTE| Attri but es. SYNCHRONI ZE_DEFAULT) ;
cacc. defineG oup("syncG oup2", attr);

14-44 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

try

{

/] try to get the ownership for the group don't wait nore than 5 seconds
cacc. get Omer shi p("syncG oup", 5000);
obj = (String)cacc.get("testCoject", "syncGoup"); // get latest object
/'l replace the object with a new version
cacc. repl ace("test ject", "syncGoup", obj + "new version");
obj = (String)cacc.get("testCbject2", "syncGoup"); // get a second object
/'l replace the object with a new version
cacc. repl ace("test (hj ect2", "syncGoup", obj + "new version");

}
cat ch (Timeout Exception ex)
{
Systemout. println("unable to acquire ownership for group");
cacc. cl ose();
return;
try
cacc. rel easeOaner shi p("syncG oup", 5000) ;
}

catch (Ti meout Exception ex)

[l tired of waiting so just release ownership
cacc. rel easeOaner shi p("syncG oup", -1));

try

cacc. get Omner shi p("syncQoject”, 5000); // try to get the ownership for the object

/] don't wait more than 5 seconds

obj = (String)cacc.get("syncCoject"); [/ get |atest object

cacc. repl ace("syncbject”, obj + "new version"); // replace the object with a new version

}
catch (Ti meout Exception ex)
{
Systemout. println("unable to acquire ownership for object");
cacc. cl ose();
return;
try
cacc. rel easeOaner shi p("syncObj ect", 5000);
}

catch (Ti meout Exception ex)

Working with Java Object Cache 14-45

Running in Distributed Mode

{
cacc. rel easeOmner shi p("syncQoject”, -1)); // tired of waiting so just rel ease ownership
try
cacc. get Omner shi p(" Cbj ect2", "syncGoup2", 5000); // try to get the ownership for the object
/] where the ownership is defined as the default for the group don't wait nore than 5 seconds
obj = (String)cacc.get("Cbject2", "syncGoup2"); // get |atest object
/'l replace the object with new version
cacc. repl ace("Qbj ect2", "syncGoup2", obj + "new version");
}
cat ch (Timeout Exception ex)
{
Systemout. println("unable to acquire ownership for object");
cacc. cl ose();
return;
}
try
{
cacc. rel easeOaner shi p(" Chj ect 2", 5000);
}
catch (Ti meout Exception ex)
{
cacc. rel easeOnner shi p("Qoject2", -1)); // tired of waiting so just release ownership
}
cacc. cl ose();
}

Cached Object Consistency Levels

Within the Java Object Cache, each cache manages its own objects locally within its
Java VM process. In distributed mode, when using multiple processes or when the
system is running on multiple sites, a copy of an object may exist in more than one
cache.

The Java Object Cache allows you to specify the consistency level required between
copies of objects that are available in multiple caches. The consistency level you
specify depends on the application and the objects being cached. The supported
levels of consistency vary, from none, to all copies of objects being consistent across
all communicating caches.

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

14-46 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

« Using Local Objects (No consistency requirements)
« Propagating Changes Without Waiting for a Reply
« Propagating Changes and waiting for a Reply

« Serializing Changes Across Multiple Caches

Using Local Objects

If there are no consistency requirements between objects in distributed caches, an
object should be defined as a local object (when At t ri but es. DI STRI BUTE is unset,
this specifies a local object). Local is the default setting for objects. For local objects,
all updates and invalidation are only visible to the local cache.

Propagating Changes Without Waiting for a Reply

To distribute object updates across distributed caches, an object should be defined
as distributed by setting the DI STRI BUTE attribute. All modifications to distributed
objects are broadcast to other caches in the system. Using this level of consistency
does not control or specify when an object is loaded into the cache or updated, and
does not provide notification as to when the modification has completed in all
caches.

Propagating Changes and waiting for a Reply

To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object’s DI STRI BUTE and REPLY attributes. Using
these attributes, notification occurs when a modification has completed in all
caches. When At t ri but es. REPLY is set for an object, replies are sent back to the
modifying cache when the modification has been completed at the remote site.
These replies are returned asynchronously; that is, the CacheAccess. repl ace()
and CacheAccess. i nval i dat e() methods do not block. Use the

CacheAccess. wai t For Response() method to wait for replies and block.

Serializing Changes Across Multiple Caches

To use Java Object Cache’s highest level of consistency set the appropriate attributes
on the region, subregion, group, or object to make objects act as synchronized
objects.

On a region, subregion, or group, setting At t ri but es. SYNCHRONI ZE_DEFAULT sets
the SYNCHRONI ZE attribute for all of the objects within the region, subregion, or

group.

Working with Java Object Cache 14-47

Running in Distributed Mode

On an object, setting At t ri but es. SYNCHRONI ZE forces applications to obtain
ownership of the object before the object can be loaded or modified. Setting this
attribute effectively serializes write access to objects. To obtain ownership of an
object, use the CacheAccess. get Omer shi p() method. Using the

Attribut es. SYNCHRONI ZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess. r el easeOaner shi p() to block until any
outstanding updates have completed, and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

Note: Setting Attri but es. SYNCHRONI ZE for an object does not
effectively synchronize. With At t ri but es. SYNCHRONI ZE set, the
Java Object Cache forces the cache to synchronize its updates of the
object, but does not prevent the Java programmer from obtaining a
reference to the object and then modifying the object.

When using this level of consistency, with At t ri but es. SYNCHRONI ZE, the
CachelLoader . | oad() method should call CacheLoader . net Search() before
loading the object from an external source. Calling CacheLoader . net Sear ch() in
the load method tells the Java Object Cache to search all other caches for a copy of
the object. This prevents different versions of the object from being loaded into the
cache from an external source.

Sharing Cached Objects in an OC4J Servlet

To take advantage of the Java cache's distributed functionality or to share a cached
object among servlets, some minor modification to an applications deployment may
be necessary. Any user-defined objects that will be shared among servlets or
distributed among JVMs must be loaded by the system class loader. By default,
objects loaded by a servlet are loaded by the context class loader. These objects are
only visible to the servlets within the context that loaded them. The object definition
is not available to other servlets or to the cache in another JVM. If the object is
loaded by the system class loader, the object definition will be available to other
servlets and to the cache on other JVMs.

With Jsery, this was accomplished by including the cached object in the classpath
definition available when the Jserv process was started.

With OC4J, the system classpath is derived from the manifest of the oc4j .| ar file
and any associated JAR files, including cache. j ar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, the
class file should be copied to $SORACLE_HOVE/ j avacache/ shar edobj ect s/ cl asses

14-48 Oracle9iAS Containers for J2EE Services Guide

Running in Distributed Mode

or added to the JAR file $ORACLE_HOME/ j avacache/ cachedobj ect s/ share. j ar.
Both the cl asses directory and the share. j ar file have been included in the
manifest for cache. j ar.

Working with Java Object Cache 14-49

Running in Distributed Mode

14-50 Oracle9iAS Containers for J2EE Services Guide

15

Oracle HTTPS for Client Connections

This chapter describes the Oracle9iAS Containers for J2EE (OC4J) implementation
of HTTPS that provides SSL functionality to client HTTP connections. The following
topics are included:

« Prerequisites

« About Oracle HTTPS

« Overview of Oracle HTTPS Features
« Specifying Default System Properties
« Oracle HTTPS APIs

« Oracle HTTPS Example

Oracle HTTPS for Client Connections 15-1

Prerequisites

Prerequisites
Please perform the following tasks before you attempt to use Oracle HTTPS:
« Install IDK version 1.2 or later.
« Ensure that the CLASSPATH environment variable includes the following jar files:
— javax-ssl-1_1.jar
— jssl-11.jar
« Add the Java SSL shared library to the shared library path:

— For UNIX: 1i bnj ss18. so must be included in the library path specified by
the LD _LI BRARY_PATH environment variable.

— For Windows NT: nj ss18. dl | must be included in the path specified by
the PATH environment variable.

See Also: Platform-specific documentation.

« Set the following Java security property so Oracle HTTPS can use Oracle Java
SSL sockets:

ssl . Socket Fact ory. provi der =oracl e. security. ssl.Oracl eSSLSocket Fact or yl npl

See Also: Sun Microsystems, Inc., JSSE (Java Secure Socket
Extension) documentation for more information about setting
system properties at:

http://ww.java. sun. com

Audience

To effectively use Oracle HTTPS, application developers should understand the
basics of Java sockets programming and JSSE (Java Secure Socket Extension). They
should also be familiar with the Sun Microsystems, Inc., j ava. net package, which
supports network programming and the open source HTTPCl i ent package that
Oracle HTTPS is based on.

In addition, it is important for developers who use Oracle HTTPS to understand the
fundamental concepts of public key infrastructure digital certificates and keys.

15-2 Oracle9iAS Containers for J2EE Services Guide

About Oracle HTTPS

See Also:

« Oracle9iAS Security Guide for information about Oracle Wallet
Manager, PKI, and security fundamentals.

« Documentation for the open source HTTPC i ent package which
is available at ht t p: // www. i nnovati on. ch/j ava/ HTTPO i ent

« Documentation for JSSE and the j ava. net packages which is
available at ht t p: / / www. j ava. sun. com

About Oracle HTTPS

HTTPS is vital to securing client-server interactions. For many server applications
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the
server. Java application developers who are familiar with either the HTTP package,
HTTPQ i ent, or who are familiar with the Sun Microsystems, Inc., j ava. net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnect i on class of the open source HTTPd i ent
package, which provides a complete HTTP client library. To support client HTTPS
connections, several methods have been added to the HTTPConnect i on class that
use the Oracle Java SSL class, Or acl eSSLCr edent i al .

The following sections describe these components in further detail:
« HTTPConnection Class
« OracleSSLCredential Class

See Also: "Oracle HTTPS APIs" on page 15-11 for a description of
the methods that have been added to the HTTPConnect i on class.

Oracle HTTPS for Client Connections 15-3

About Oracle HTTPS

HTTPConnection Class

The HTTPConnect i on class is used to create new connections that use HTTP and
related protocols such as HTTPS. To provide support for PKI (Public Key
Infrastructure) digital certificates and wallets, the methods described in "Oracle
HTTPS APIs" on page 15-11 have been added to this class.

See Also: Documentation for the open source HTTPC i ent
package which is available at:

http:// www. i nnovation. ch/java/ HTTPO i ent

OracleSSLCredential Class

Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, Or acl eSSLCr edent i al , to load
user certificates, trusted certificates (trust points), and private keys from base64 or
DER-encoded certificates. (DER, part of the X.690 ASN.1 standard, stands for
Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the
HTTP connection before the connection is established. The OracleSSLCredential
class is used to store these security credentials. Typically, a wallet generated by
Oracle Wallet Manager is used to populate the OracleSSLCredential object.
Alternatively, individual certificates can be added by using an OracleSSLCredential
class API. After the credentials are complete, they are passed to the connection with
the set Credent i al s method.

See Also: "Oracle HTTPS APIs" on page 15-11 for a description of
the Or acl eSSLCredent i al class.

15-4 Oracle9iAS Containers for J2EE Services Guide

Overview of Oracle HTTPS Features

Overview of Oracle HTTPS Features

Oracle HTTPS, based on the open source HTTP package, HTTPClient 3.2, supports
HTTP 1.0 and HTTP 1.1 connections between a client and a server. To provide SSL
functionality, new methods have been added to the HTTPConnect i on class of this
package. These methods are used in conjunction with Oracle Java SSL to support
cipher suite selection, security credential management with Oracle Wallet Manager,
security-aware applications, and other features that are described in the following
sections.

In addition to the functionality included in the HTTPC i ent package, Oracle HTTPS
supports the following:

« Multiple cryptographic algorithms

« Certificate and key management with Oracle Wallet Manager
« Limited support for the j ava. net . URL framework

In addition, Oracle HTTPS uses the HTTPCl i ent package to support
« HTTP tunneling through proxies

« HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

« SSL Cipher Suites Supported by Oracle HTTPS

« Certificate and Key Management with Oracle Wallet Manager
« Access Information About Established SSL Connections

« Security-Aware Applications Support

« java.net.URL Framework Support

Oracle HTTPS for Client Connections 15-5

Overview of Oracle HTTPS Features

SSL Cipher Suites Supported by Oracle HTTPS

Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection
establish the appropriate level for their communications.

Oracle HTTPS supports cipher suites with the following options:

« Key exchange of 512, 768, or 1024 bit asymmetric keys using the following
algorithms:

- RSA
— Diffie-Hellman

« NULL encryption, or symmetric key encryption with 40 and 128 bit symmetric
keys using the following algorithms:

— RC4 stream cipher
— DES, DES40, and 3DES-EDE, in Cipher Block Chaining (CBC) mode

Note: With NULL encryption, SSL is only used for authentication
and data integrity purposes.

« Message Authentication Code using MD5 or SHAL data integrity.
Table 15-1 lists all of the cipher suites that are supported by Oracle HTTPS.

15-6 Oracle9iAS Containers for J2EE Services Guide

Overview of Oracle HTTPS Features

Table 15-1 Cipher Suites Supported By Oracle HTTPS

Cipher Suite Authentication Encryption Data Integrity
SSL_RSA W TH _3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHAL
SSL_RSA W TH RC4_128_SHA RSA RC4 128 SHAL
SSL_RSA W TH RC4_128 M5 RSA RC4 128 MD5
SSL_RSA W TH_DES_CBC_SHA RSA DES CBC SHAL
SSL_DH anon_W TH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1
SSL_DH anon_W TH _RC4_128 M5 DH anon RC4 128 MD5
SSL_DH anon_W TH_DES_CBC_SHA DH anon DES CBC SHA1
SSL_RSA EXPORT_W TH_RC4_40_MD5 RSA RC4 40 MD5
SSL_RSA EXPORT_W TH_DES40_CBC_SHA RSA DES40 CBC SHAL
SSL_DH_anon_EXPORT W TH_RC4_40_MD5 DH anon RC4 40 MD5
SSL_DH_anon_EXPORT_W TH_DES40_CBC_SHA DH anon DES40 CBC SHA1
SSL_RSA W TH_NULL_SHA RSA NULL SHAL1
SSL_RSA W TH_NULL_MD5 RSA NULL MD5

Certificate and Key Management with Oracle Wallet Manager

You can use Oracle Wallet Manager to generate public/private key pairs and
certificate requests. A signed certificate request and the appropriate trusted

certificates must be added to produce a complete Oracle wallet.

You can export a complete wallet with a certificate in Ready status, in a
BASEG64-formatted file, using the menu option Operation ->ExportWallet. This file

can be used to add SSL credentials in a Java SSL-based program.

See Also:

about Oracle Wallet Manager.

Oracle9i Application Server Security Guide for information

Oracle HTTPS for Client Connections 15-7

Overview of Oracle HTTPS Features

Access Information About Established SSL Connections

Users can access information about established SSL connections using the

get SSLSessi on method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

See Also: "Oracle HTTPS APIs" on page 15-11 for a description of
the get SSLSessi on method.

Security-Aware Applications Support

Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows
them to perform their own validation letting the handshake complete successfully
only if a complete certificate chain is sent by the peer. With Oracle HTTPS, the
connection completes successfully when no trust points are set if the server sends
the client a complete certificate chain that starts from the root CA (Certifying
Authority) and ends with the server certificate. This feature is useful when there is a
large number of trust points stored in a database, and the application is constrained
from passing all of them to the SSL layer.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the application.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

java.net.URL Framework Support

The HTTPO i ent package provides basic support for the j ava. net . URL framework
with the HTTPO i ent . Ht t pUr | Connect i on class. However, many of the Oracle
HTTPS features are supported through system properties only.

15-8 Oracle9iAS Containers for J2EE Services Guide

Specifying Default System Properties

Features that are only supported through system properties are
« cipher suites selection option

« confidentiality only option

« server authentication option

« mutual authentication option

« security credential management with Oracle Wallet Manager
Note: Ifthej ava. net. URL framework is used, then set the
j ava. prot ocol . handl er. pkgs system property to select the

HTTPSConnect i on package as a replacement for the JDK client as
follows:

java. protocol . handl er =HTTPd i ent

See Also:

« "Specifying Default System Properties" on page 15-9 for
information about setting Java system properties.

« Documentation for the j ava. net . URL framework at

http://java. sun.com

Specifying Default System Properties

For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the j ava. | ang. Syst emclass. These
properties are the only way for users of the j ava. net . URL framework to set
security credential information. Oracle HTTPS recognizes the following properties:

« javax.net.ssl.KeyStore
« javax.net.ssl.KeyStorePassword
« Oracle.ssl.defaultCipherSuites

The following sections describe how to set these properties.

See Also: Documentation that describes setting Java system
properties at

http://wwv. j ava. sun. com

Oracle HTTPS for Client Connections 15-9

Specifying Default System Properties

javax.net.ssl.KeyStore

This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection.
For example:

javax. net. ssl . KeyStore=/etc/ ORACLE/ WALLETS/ Def aul t/ def aul t . t xt

where def aul t . t xt is the name of the text wallet file that contains the credentials.

If no other credentials have been set for the HTTPS connection, then the file set by
this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an | CExcept i on is thrown.

javax.net.ssl.KeyStorePassword

This property can be set to the password that is necessary to open the wallet file. For
example:

j avax. net. ssl . KeySt or ePasswor d=wel conel

where wel comel is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties

Storing the wallet file password as a Java system property can result in a security
risk in some environments. To avoid this risk, use one of the following alternatives:

« If mutual authentication is not required for the application, then a text wallet
that contains no private key should be used instead. To open these wallets, no
password is necessary.

« If apassword is necessary, then do not store it in a clear text file. Instead, load
the property dynamically before the HTTPConnect i on is started by using
Syst em set Property() . Unset the property after the handshake is completed.

Oracle.ssl.defaultCipherSuites
This property can be set to a comma-delimited list of cipher suites. For example:

O acl e. ssl . defaul t G pher Sui t es=
SSL_RSA W TH_DES_CBC SHA, \
SSL_RSA_EXPORT_W TH_RCA_40_MD5, \
SSL_RSA W TH RC4_128_MD5

15-10 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS APIs

The cipher suites that you set this property to are used as the default cipher suites
for new HTTPS connections.

See Also: Table 15-1 on page 15-7 for a complete list of the cipher
suites that are supported by Oracle HTTPS.

Oracle HTTPS APIs

This section describes the public classes and interfaces used by Oracle HTTPS.
Oracle HTTPS uses the Oracle Java SSL class, Or acl eSSLCr edent i al , and it extends
the HTTPConnect i on class of the open source HTTPC i ent package. The following
sections describe these packages:

« Public Class: HTTPConnection
« Public Class: OracleSSLCredential

Public Class: HTTPConnection

Because Oracle HTTPS extends the HTTPConnect i on class, only the methods that
are added to that package for SSL support are described in the following. The fully
gualified name of this class is HTTPO i ent . HTTPConnect i on.

public void connect()
Initiates a connection with the host, but does not perform any data transfer.

public String[] get SSLEnabl edCi pher Suites()
Returns a list of cipher suites enabled for this connection.

public javax.net.ssl.SSLSession get SSLSessi on()
Returns an SSLSessi on containing the information about the current
connection.

public javax.net.ssl.SSLSocket Factory get SSLSocket Factory()
Returns the SSLSocket Fact ory used by the HTTPConnect i on to create
SSLSocket s.

public oracle.security.ssl.COracl eSSLCredential get SSLCredential ()
Returns the SSL credentials used by this connection.

public void setSSLCredential (oracle.security.ssl.OracleSSLCredential)
Sets the authentication context for the connection.

Parameters: cr edent i al - Authentication context contains the private key,
certificate chains, and trusted certificates that are to be used in the SSL
connection.

Oracle HTTPS for Client Connections 15-11

Oracle HTTPS APIs

public voi d set SSLEnabl edCi pher Suites(String[] suites) throws

I'1'l egal Argument Exception
Controls which particular cipher suites are enabled for use on this connection.
The cipher suites must have been listed by
SSLSocket Fact ory. get Support edCi pher Sui t es() as being supported. The
method throws an I | | egal Ar gument Except i on when one of the ciphers named
by the parameter is not supported.

Parameters: sui t es - List of cipher suites.

Public Class: OracleSSLCredential

This public class extends j ava. | ang. Qbj ect . The fully qualified name of this class
isoracl e.security.ssl.Oacl eSSLCredenti al .

Credentials are used to authenticate the server and the client to each other.
Oracl eSSLCr edent i al is used to load user certificates, trusted certificates (trust
points), and private keys from base64 or DER-encoded certificates.

Constructor

public Oracl eSSLCredential ()
Creates an empty OracleSSLCredential. An empty credential lets the socket
connect to any peer that sends a complete certificate chain during the
handshake.

Methods

public void addTrustedCert (java.lang. String b64TrustedCert)
Adds a trusted certificate to the credential.

Parameters: b64Tr ust edCert - A Base64 encoded X509 certificate.

public void addTrustedCert (byte[] trustedCert)
Adds a trusted certificate to the credential.

Parameters: t r ust edCert - A DER-encoded X509 trusted certificate.

public void setPrivateKey(java.lang.String b64PvtKey, java.lang. String password)
Adds a private key to the credential.

Parameters: b64Pvt Key - A Base64 encoded X509 Private Key

passwor d - The password needed to decipher the private key.

15-12 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS APIs

public void setPrivateKey(byte[] pvtKey, java.lang.String password)
Adds a private key to the credential.

Parameters: b64Pvt Key - A DER-encoded X509 Private Key

passwor d - The password needed to decipher the private key.

public void addCert Chai n(java. |l ang. String b64cert Chai nCert)
Adds a certificate to the certificate chain. The certificate chain is sent along with
the user certificate during the SSL handshake. It is used by the peer to verify the
user certificate. The first certificate added to the certificate chain must be the
Root CA certificate. Each subsequent certificate added must be signed by its
immediate predecessor.

Parameters: b64cert Chai nCert - A Base64 encoded X509 certificate.

public void addCert Chai n(byte[] certChainCert)
Adds a certificate to the certificate chain.

Parameters: cer t Chai nCert - A DER-encoded X509 certificate.

public void set\Wallet(java.lang.String wtPath, java.lang. String password)
throws java.io.|OException

If Oracle Wallet Manager is used to create a wallet, the wallet can be exported in
text format and used by JavaSSL. The text file must contain the user certificate,
followed by the private key, the certificate chain, and any other trusted
certificates. The method throws aj ava. i o. | CExcept i on if the wallet cannot be
opened.

Parameters: wl t Pat h - The path name of the wallet

passwor d - The password needed to decrypt the private key

Oracle HTTPS for Client Connections 15-13

Oracle HTTPS Example

Oracle HTTPS Example

The following is a simple program that uses Oracle HTTPS to connect to a Web
server, send a GET request, and fetch a Web page. The complete code for this
program is presented here followed by sections that explain how Oracle HTTPS is
used to set up secure connections.

inport HTTPd ient.HTTPConnecti on;

inport HTTPO i ent. HTTPResponse;

inport oracle.security.ssl.Oracl eSSLCredential ;
inport java.io.|OException;

public class HTTPSConnecti onExampl e

{
public static void main(String[] args)
{
if(args.length < 4)
{
Systemout. println(
"Usage: java HTTPSConnectionTest [host] [port] " +
"[wal | et] [password]");
Systemexit(-1);
}

String hostnane = args[0].toLower Case();

int port = Integer.decode(args[1]).intValue();
String wal letPath = args[2];

String password = args[3];

HTTPConnecti on httpsConnection = nul | ;
Oracl eSSLCredential credential = null;
try
{
htt psConnection = new HTTPConnection("https", hostnanme, port);
}
cat ch(| CException e)
{
Systemout. println("HTTPS Protocol not supported");
Systemexit(-1);
}

15-14 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS Example

try
{

credential = new Oracl eSSLCredential ();
credential . set\Wal | et (wal | et Path, password);

}
cat ch(| CException e)
{
Systemout. println("Coul d not open wallet");
Systemexit(-1);
}
htt psConnecti on. set SSLCredenti al (credential);
try
{
htt psConnecti on. connect ();
}
catch (1 CException e)
{
Systemout. println("Coul d not establish connection");
e.printStackTrace();
Systemexit(-1);
}
javax.security.cert.X509Certificate[] peerCerts = null;
try
{
peerCerts =
(httpsConnecti on. get SSLSession()). get PeerCertificateChain();
}
cat ch(j avax. net. ssl . SSLPeer Unveri fi edException e)
{

Systemerr.println("Unable to obtain peer credentials");
Systemexit(-1);
}

String peerCertDN =
peer Certs[peerCerts.length -1].get Subj ect DN(). get Name();

peer Cert DN = peer Cert DN. t oLower Case();
i f (peer CertDN. | ast | ndexCf (" cn="+host nane) == -1)
{

Systemout.printin("Certificate for " + hostnanme + " is issued to "

+ peer CertDN);
Systemout. println("Aborting connection");
Systemexit(-1);

Oracle HTTPS for Client Connections 15-15

Oracle HTTPS Example

try
{
HTTPResponse rsp = httpsConnection. Get("/");

Systemout. println("Server Response: ");
Systemout. println(rsp);

}

cat ch(Exception e)

{
Systemout. println("Exception occured during Get");
e.printStackTrace();
Systemexit(-1);

}

Initializing SSL Credentials

This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded
using

credential = new Oracl eSSLCredential ();
credential .set\al | et (wal | et Path, password);

After the credentials are created, they are passed to HTTPSConnect i on using

htt psConnecti on. set SSLCredenti al (credential);

The private key, user certificate, and trust points located in the wallet can now be
used for the connection.

Verifying Connection Information

Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name.
Then it is the responsibility of the client to perform this validation after the SSL
connection is established.

To perform this validation in this sample program, HTTPSConnect i onExanpl e
establishes a connection to the server without transferring any data using the
following:

15-16 Oracle9iAS Containers for J2EE Services Guide

Oracle HTTPS Example

ht t psConnecti on. connect () ;

After the connection is established, the connection information, in this case the
server certificate chain, is obtained with the following:

peerCerts = (httpsConnection. get SSLSessi on()). get Peer CertificateChain();

Finally the server certificate’s common name is obtained with the following:

String peerCert DN = peerCerts[peerCerts.length -1]. get Subject DN(). get Nane();
peer Cert DN = peer Cert DN. t oLover Case();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with the following:

i f (peerCertDN. | ast | ndexOf ("cn="+host name) == -1)
{

Systemout.printin("Certificate for " + hostnane + " is issued to " +
peer Cert DN) ;

System out. println("Aborting connection");
Systemexit(-1);

Transferring Data

It is important to verify the connection information before data is transferred from
the client or from the server. The data transfer is performed in the same way for
HTTPS as it is for HTTP. In this sample program a GET request is made to the server
using the following:

HTTPResponse rsp = httpsConnection. Get("/");

Oracle HTTPS for Client Connections 15-17

Oracle HTTPS Example

15-18 Oracle9iAS Containers for J2EE Services Guide

A

JAAS Provider APIs

This appendix describes the JAAS Provider public packages.
This appendix contains these topics:

« JAAS Provider API Overview

« Package oracle.security.jazn

« Package oracle.security.jazn.policy

« Package oracle.security.jazn.realm

JAAS Provider APl Overview

This appendix provide brief descriptions of the JAAS Provider APls. For detailed
information on these APIs, see the JAAS Provider Javadoc available in the OC4J
section of the Oracle9i Application Server Documentation Library.

JAAS Provider APIs A-1

Package oracle.security.jazn

Package oracle.security.jazn

Interfaces

Classes

Package or acl e. securi ty. jazn provides the classes and interfaces for Oracle's
authorization/policy provider for the Java Authentication and Authorization
Service (JAAS).

Besides providing a full implementation of j avax. securi ty. aut h. Pol i cy, the
JAAS provider enhances JAAS in the following ways:

« Defines a realm-based user and role management API

« Defines an administrative API for administering the following aspects of the
authorization policy:

« Permission-to-user assignment
« Permission-to-role assignment
« User-to-role assignment

« Provides role-based access control (RBAC) support through the realm
framework, with full support for role hierarchies.

Persistable
Per si st abl e defines the basic behavior for a persistable object.

JAZNConfig

JAZNConf i g provides a starting point for obtaining JAAS Provider-related objects
and a centralized place for managing JAAS Provider properties

JAZNConf i g enables you to run multiple JAAS provider instances. You can deploy
several different applications using JAAS provider in the same Java virtual machine
(JVM), each with different configurations. For example, you can have one
application using JAAS provider with LDAP-based Oracle Internet Directory as the
provider type and another application using JAAS provider with XML-Based
Provider Type as the provider type in the same JVM.

A-2 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn

JAZNContext

JAZNCont ext provides a starting point for obtaining JAAS Provider-related objects
and a centralized place for managing the JAAS provider properties. JAZNCont ext is
essentially a single-instance version of JAZNConf i g.

JAZNPermission

JAZNPer mi ssi on is for authorization permissions. A JAZNPer ni ssi on contains a
name (also referred to as a target name), but no actions list; you either have the
named permission or you do not.

The target name is the name of the JAAS provider permission.

Table A-1 lists the possible target names for a JAZNPer ni ssi on, describes what the
permission allows, and describes the risks of granting the permission.

Table A-1 JAZNPermission Target Names

Permission Name

The Permission
Allows

Risks of Allowing this Permission

get Pol i cy

The caller to retrieve

the JAZNPol i cy object

This enables someone to retrieve a
JAZNPol i cy object. Since the

JAZNPol i cy object can modify the JAAS
Provider type, grant this permission only
to the administrators.

get Real mvanager

The caller to retrieve
the Real mvanager
object

This enables someone to retrieve a

Real mvanager object. Since the

Real mvanager object can create, drop,
and modify realms, grant this permission
only to the administrators.

get Property.
{pr opertyNane}

The caller to retrieve
the value of the JAAS
provider property
named
{propertyNane}

Depending on the particular key for
which access has been granted, the code
may have access to the location of the
backend server as well as security
credentials used to access the backend
server. Carefully protect this permission
and grant it only to administrators.

set Property.
{propertyNane}

The caller to set the
value of the JAAS
provider property
named

{pr opertyNane}

This can include setting a new backend
server and new credentials to access the
backend server. Since this can bypass the
enterprise policy, carefully protect this
permission and grant it only to
administrators.

JAAS Provider APIs A-3

Package oracle.security.jazn.login

JAZNWebAppConfig
JAZNVebAppConf i g represents a <j azn- web- app> Configuration instance.

Exceptions

JAZNConfigException
JAZNConf i gExcept i on represents an authorization exception.

JAZNEXxception
JAZNExcept i on represents an authorization exception.

JAZNInitException
JAZNI ni t Except i on is thrown when an initialization error occurs.

JAZNNamingException
JAZNNami ngExcept i on is used to wrap a j avax. nani ng. Narmi ngExcept i on.

JAZNObjectExistsException

JAZNObj ect Exi st sExcept i on is thrown when an attempt is made to create an
object that already exists.

JAZNObjectNotFoundException

JAZNObj ect Not FoundExcept i on is thrown when an attempt is made to access an
object that does not already exist.

JAZNRuntimeException
JAZNRunt i meExcept i on represents an authorization exception.

Package oracle.security.jazn.login

Package or acl e. securi ty. jazn. | ogi n provides the classes and interfaces for
administering Login Modules.

A-4 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.policy

Classes

LoginModuleManager

Logi nModul eManager extends j avax. security. auth.|ogin. Configurationby
defining management methods (add/remove AppConfi gurati onEntry).

Package oracle.security.jazn.policy

Interfaces

Package or acl e. security. jazn. policy provides the classes and interfaces for
administering the authorization policy.

GlobalPolicy
d obal Pol i cy represents the Global JAAS Provider Policy.

JAZNPolicy

JAZNPol i cy represents the repository of authorization policies. More specifically,
JAZNPol i cy deals with the assignment of permissions or privileges to grantees
(these can be users or roles or any valid grantee).

In order for a grant or revocation to succeed, the grantor or revoker (represented by
the current subject) must have the relevant permissions granted to them.

In general, the methods that return a list or set represent a snapshot of a
JAZNPol i cy provider at the time of the query. If the JAAS provider is further
modified, the returned set of permissions and roles may no longer be valid.

In general, JAZNPol i cy implementation should cache the policy information, so
that repeated calls using the same parameters do not result in repeated network
round trips to the backing store.

JAZNPol i cy also defines methods that change the persistent state of the JAAS
Provider type (for example, grant or revoke xx methods). The implementation must
ensure that whenever a grant or revoke is attempted, the relevant cache entries are
invalidated.

PermissionClassManager
The Per ni ssi onCl assManager is an utility to help manage permission classes.

JAAS Provider APIs A-5

Package oracle.security.jazn.policy

Per mi ssi onCl assManager represents the repository of all registered Permission
classes. Registering a permission class allows access to stored metadata that
provides specific information about a given permission's target, action, and/or
description. Failure to register a given permission class will not affect JAAS
provider's ability to use the permission class. That is, JAAS does not limit
permission grants or revocations to those classes registered with the

Per m ssi onC assManager.

PolicyManager
Pol i cyManager defines basic methods for managing JAAS Provider policies.

PrincipalClassManager
The Pri nci pal O assManager is an utility to help manage principal classes.

Princi pal Cl assManager represents the repository of all registered Principal
classes. Registering a principal class allows access to stored metadata that provides
specific information about a given principal's name and description. Failure to
register a given principal class will not affect the JAAS provider's ability to use the
principal class. That is, the JAAS provider recognizes all principal classes whether
or not they have been registered with the Pri nci pal Cl assManager.

RealmPolicy
Real nPol i cy is a Realm-specific Policy.

Classes

AdminPermission

Admi nPer mi ssi on represents the right to administer a permission. Given a
Permission p, the grantee of Adni nPer ni ssi on(p) is granted the right to:

« Grant or revoke permissions implied by p (say p')
« Grant or revoke Adni nPer i ssi on(p')
For example:

p =java.io.FilePermssion("/hone/frank/-","read, wite");

If grantee f r ank is granted Admi nPer ni ssi on(p), then frank is granted the
following rights:

A-6 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.realm

« Theright to further grant or revoke p' (thatis, read and write privileges for any
file in the file system under / hone/ f r ank) to and from other grantees

« Theright to further grant or revoke Adni nPer ni ssi on(p')
Consider the following information:

« An Admi nPer mi ssi on embedding another Adni nPer mi ssi on is not supported.
There is no need to do so, since granting a grantee Adni nPer ni ssi on(p)
implies that the grantee can further grant/revoke Adni nPer ni ssi on(p')

« Granting a grantee Adni nPer mi ssi on(p) does not imply granting the grantee.
That must be granted separately.

Grantee
G ant ee represents a grantee in a policy entry.

PermissionClassDesc
Per i ssi onCl assDesc defines the descriptor (metadata) for a Permission class.

PrincipalClassDesc
Pri nci pal C assDesc defines the descriptor (metadata) of a Principal class.

RoleAdminPermission

The grantee of Rol eAdni nPer ni ssi on is granted the right to further grant or revoke
the target role.

Package oracle.security.jazn.realm

Interfaces

Package or acl e. securi ty. jazn. real mprovides the classes and interfaces for the
realm framework.

InitRealminfo.RealmType

I ni t Real m nf 0. Real nType defines the different realm types supported by JAAS
Provider.

JAAS Provider APIs A-7

Package oracle.security.jazn.realm

Realm

Real mprovides access to a store of roles and users. The JAAS provider separates
role management from user management by providing each realm instance with its
own User Manager for user management and Rol eManager for role management.

Real mdefines methods for managing realm's metadata (properties) and getting its
User Manager and Rol eManager .

Realm.LDAPProperty

Real m LDAPPr oper t y defines the LDAP properties applicable for creating a realm
(user manager and role manager) using an LDAP directory as a backing store.

RealmPrincipal

Real nPri nci pal extends fromj ava. security. Principal.Itisa principal
associated with a realm instance.

RealmRole

Real nRol e is a role associated with a realm. It can be associated with a group of
privileges or roles.

RealmUser

Real mUser is a user associated with a realm. This is an empty interface for tagging
objects as being Real mser objects. It differs from Real nRol e in that it cannot
contain other roles.

RoleManager
Rol eManager defines the APIs for managing roles in a realm.

UserManager
User Manager defines the APIs for managing users in a realm.

Classes

InitRealmInfo

I ni t Real m nf o is a placeholder for specifying realm properties when creating a
new realm.

A-8 Oracle9iAS Containers for J2EE Services Guide

Package oracle.security.jazn.realm

RealmLoginModule
Real mLogi nMbdul e is a realm-based login module.

RealmManager
Real mvanager manages realms.

RealmPermission

Real nPer ni ssi on is defined to represent permissions for a realm. It extends from
j ava. security. Perm ssion, and is used like any regular Java permission.

Real nPer ni ssi on consists of the name of the realm (also known as permission
target name) and a set of actions specifying privileges applicable to that realm. The
target name of a Real nPer ni ssi on instance is the name of the realm in question.
The individual action name is specific to the realm in question and is
system-defined.

Table A-2 lists all the system-defined Real nPer ni ssi on action names.

Table A—2 RealmPermission Action Names

Permission Action Enables User To

creat eReal m Create realms

dr opReal m Drop realms

creat eUser Create users in the target realm

dr opUser Drop users in the target realm
createRol e Create roles in the target realm

dr opRol e Drop roles in the target realm

nodi fyRol e Modify roles in the target realm
grant Rol e Grant roles in the target realm
revokeRol e Revoke roles from the target realm

JAAS Provider APIs A-9

Package oracle.security.jazn.realm

A-10 Oracle9iAS Containers for J2EE Services Guide

B

JAAS Provider Standards and Samples

This appendix provides supplemental samples and standards.
This appendix contains these topics:
Sample jazn-data.xml Code

Supplemental Code Samples

JAAS Provider Standards and Samples B-1

Sample jazn-data.xml Code

Sample jazn-data.xml Code

This section presents a sample j azn- dat a. xm file which illustrates the specific
DTD standards that XML files must conform to. This j azn- dat a. xri file contains
one realm, j azn. com four users (three with obfuscated passwords) and three roles.

See Also:
« "DTD for jazn-data.xml" on page 6-34

« "Realm Management in XML-Based Environments" on
page 3-25

« "Managing XML-Based Provider Data with the XML Schema"
on page 6-33 for further information on managing JAAS
Provider in XML-based provider environment

« "Other Utilities" on page 6-36 for further information on the
Per m ssi onCl assManager, Princi pal Cl assManager,
and Logi nMbdul eManager

Example B—-1 Sample jazn-data.xml File

<j azn- dat a>
<I--JAZN Real mData -->

<j azn-real mp
<real np
<nanme>j azn. conx/ name>
<user s>
<user >
<nanme>adm n</ name>
<di spl ayName>Real m Adni ni st rat or </ di spl ayName>
<description>Adm ni strator for this real m</description>
<credential s>Q +w7NJul LM=</ credent i al s>
</ user>
<user >
<name>user </ name>
<description>The default guest</description>
<credenti al s>WEE6aA==</ credent i al s>
</ user>

B-2 Oracle9iAS Containers for J2EE Services Guide

Sample jazn-data.xml Code

<user >
<nane>anonynous</ nane>
<descri ption>The default guest/anonymous
user</description>
</ user>
<user >
<name>SCOIT</ name>
<di spl ayName>SCOTT</ di spl ayNane>
<credenti al s>DppF6Lo4</ credenti al s>

</ user>
</ users>
<rol es>
<rol e>
<nane>guest s</ nane>
<nenber s>
<nenber >
<type>user</type>
<nane>adni n</ name>
</ menber >
<menber >
<type>user</type>
<nane>user </ nane>
</ menber >
<menber >
<t ype>user</type>
<name>anonynous</ name>
</ menber >
</ menber s>
</rol e>
<rol e>

<name>adni ni st rat or s</ nane>
<di spl ayNanme>Real m Adni n Rol e</ di spl ayNane>
<description>Adm nistrative role for this
real mx/ descri ption>
<nenber s>
<menber >
<t ype>user</type>
<name>adni n</ name>
</ menber >
</ menber s>
</role>

JAAS Provider Standards and Samples B-3

Sample jazn-data.xml Code

<rol e>
<nane>user s</ name>
<menber s>
<nmenber >
<type>user</type>
<nane>adni n</ name>
</ menber >
<menber >
<type>user</type>
<name>user </ nane>
</ nenber >
</ menber s>
</rol e>
</rol es>
</real m»
</jazn-real n»
<I--JAZN Policy Data -->
<j azn-pol i cy>
<grant >
<grant ee>
<princi pal s>
<princi pal >

<real n»j azn. com r eal n»
<type>rol e/ type>
<cl ass>oracl e. security.jazn. spi.xm . XM.Real nRol e
</cl ass>
<nane>j azn. conf admi ni strat or s/ nane>
</ princi pal >
</ princi pal s>
</ grant ee>
<per mi ssi ons>
<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPer m ssi on</ cl ass>
<nane>j azn. conx/ nane>
<actions>nodi f yr eal met adat a</ acti ons>
</ perm ssi on>
<perm ssi on>
<cl ass>com everm nd. server. Adm ni strati onPerm ssi on
</class>
<name>adni ni strati on</ nane>
<actions>adni ni stration</actions>
</ perm ssi on>

B-4 Oracle9iAS Containers for J2EE Services Guide

Sample jazn-data.xml Code

<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adm nPerni ssion</cl ass>
<nane>or acl e. security.jazn.real m
condnodi f yr eal mret adat a</ nanme>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPermi ssi on</cl ass>
<nane>or acl e. security.jazn.real m
Real nPer mi ssi on$j azn. consdr opr eal nx/ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn. policy. Rol eAdni nPer ni ssi on
</ cl ass>
<nane>j azn. con *</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adm nPermi ssion</cl ass>
<nane>or acl e. security.jazn. policy.
Rol eAdmi nPer mi ssi on$j azn. cont * $</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adm nPerni ssion</cl ass>
<nane>or acl e. security.jazn.real m
Real nPer m ssi on$j azn. consdr opr ol e</ nane>
</ perm ssi on>
<perm ssi on>
<cl ass>com everm nd. server.rm . RM Perm ssi on</ cl ass>
<nane>| ogi n</ name>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPer ni ssi on</ cl ass>
<nane>j azn. conx/ nane>
<act i ons>dr opr eal nx/ acti ons>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn. policy.Adm nPermi ssi on</cl ass>
<name>or acl e. security.jazn.real m Real nPer mi ssi on$j azn.
concr eat er ol e</ nane>
</ perm ssi on>
<perm ssi on>
<cl ass>oracl e. security.jazn.policy.Adm nPerni ssion</cl ass>
<name>or acl e. security.jazn.real m Real nPer i ssi on$j azn.
congcr eat er eal nx/ nane>
</ perm ssi on>

JAAS Provider Standards and Samples B-5

Sample jazn-data.xml Code

<perm ssi on>
<cl ass>oracl e. security.jazn.real m Real nPer ni ssi on</ cl ass>
<nane>j azn. conx/ nane>
<actions>creat er eal nx/ acti ons>

</ perm ssi on>

</ perm ssi ons>
</ grant>
</jazn-policy>

<l-- Permssion Cass Data -->
<j azn- perm ssi on-cl asses>
<permi ssi on- cl ass>
<name>JAZNPer ni ssi on</ nane>
<descri ption>To govern access to JAZN APl </descri ption>
<type>j dk</type>
<cl ass>oracl e. security.jazn. JAZNPer m ssi on</ cl ass>
<target-descriptors>
<target-descriptor>
<nanme>*</ nane>
<description>Access to ALL of JAZN APl </descri ption>
</target-descriptor>
</target-descriptors>
<action-descri ptors>
</ action-descriptors>
</ per ni ssi on- cl ass>
</j azn- perm ssi on-cl asses>

<I-- Principal dass Data -->
<j azn-principal - cl asses>
<princi pal - cl ass>
<name>Sol ari sPrinci pal </ name>
<description>Sol ari s Principal </description>
<type>j dk</type>
<cl ass>com sun. security. auth. Sol ari sPrinci pal </ cl ass>
<nane-descri pti on- map>
<nane- descri ption-pair>
<nane>*</ nane>
<description>All Principal s</description>
</ nane- descri ption-pair>
</ name- descri ption- nap>
</ principal -cl ass>
</jazn-principal - cl asses>

B-6 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

<l-- Login Mdule Data -->
<j azn-1ogi nconfi g>
<application>
<nane>Test Real nLogi n</ nane>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.real m Real mLogi nModul e</ cl ass>
<control -fl ag>requi red</control -fl ag>
<options>
<option>
<nane>addRol es</ nane>
<val ue>t rue</val ue>
</ opti on>
</ opti ons>
</l ogi n- nodul e>
</l ogi n- nodul es>
</ application>
</jazn-1 ogi nconfi g>

</jazn-dat a>

Supplemental Code Samples

The following code samples are intended as supplemental information. This section
presents the following:

« Supplementary Code Sample: Creating an Application Realm

« Supplementary Code Sample: Modifying User Permissions

See Also:

« "Realm Creation" on page 6-26 for further information on
creating realms

« "Creating an External Realm" on page 6-26 for further
information on creating application realms

JAAS Provider Standards and Samples B-7

Supplemental Code Samples

Supplementary Code Sample: Creating an Application Realm

The following code sample creates an Application Realm with the objects shown in
Table B-1. The objects to be modified are presented in bold.

Table B—1 Objects In Sample Application Realm Creation Code

Objects Names

sample organization dev.com
adm nUser (optional) John. Si ngh
adm nRol e admi ni strator

sample realm name devReal m

Example B—2 Application Realm Creation Code

inport oracle.security.jazn.spi.ldap.*;
inport oracle.security.jazn.*;
inport oracle.security.jazn.realm*;

inport java.util.*;

/**

* (reates an application realm
*|

public class CreateReal mextends Qbject

{
public CreateReal m() {};

public static void main (String[] args) {
CreateReal mtest = new CreateReal m();
test. creat eAppReal m();

}

voi d createAppReal m() {
Real mreal nenul | ;

try {
Hasht abl e prop = new Hashtabl e();

prop. put (Real m LDAPPr operty. USERS_SEARCHBASE, "cn=user s, o=dev. conl') ;

B-8 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

Il specifying the follow ng LDAP directory object class
[l is optional. When specified, it will

Il be used as a filter to search for users

prop. put (Real m LDAPPr operty. USERS_OBJ_CLASS, "orcl User");

/1 adminUser is optional
String adm nUser = "John. Si ngh";

String adm nRol e = "admi nistrator”;
Real mvanager real m\Wgr = JAZNCont ext . get Real mvanager () ;

InitReal M nfo realmnfo = new
I ni t Real m nf o(I nit Real m nf 0. Real niType. APPLI CATI ON_REALM admi nUser,
admi nRol e, prop);

real m = real m\Wyr. creat eReal n{"devReal nf, real minfo);

}

catch (Exception e) {
e.printStackTrace();

}
}
}

Supplementary Code Sample: Modifying User Permissions

Example B-3 demonstrates granting j ava. i 0. Fi | ePer i ssi on to a user named
Jane. Sm t h. The objects to be modified are presented in bold.

JAAS Provider Standards and Samples B-9

Supplemental Code Samples

Table B-2 lists the objects in Example B-3.

Table B—2 Objects In Sample Modifying User Permissions Code

Objects Names Comments...
Real mUser user Jane. Smith
codesource cs file:/hone/task.ja
r
File path report.data Path is the pathname of the file.
sample organization abc. com abc. comdoes not appear in this

code directly, but was acted upon
in the creation of this sample
External Realm in Example 6-1 on
page 6-27.

sample External Realm abcReal m abcReal mappears in this code
and in the creation of this sample
External Realm in External Realm
Creation Code on page 6-27.

Example B-3 Modifying User Permissions Code

Code Sample

inport oracle.security.jazn.*;
inport oracle.security.jazn.policy.*;
inport oracle.security.jazn.realm*;
inport java.lang.*;

inport java.security.*;

inport java.util.*;

inport java.net.*;

inport java.io.?*;

public class Init {

public static void main(String[] args) {

try {
Real mvanager real m\vgr = JAZNCont ext . get Real mvanager () ;

Real m real m = real m\yr. get Real n{"abcReal nf');

User Manager user Myr = real m get User Manager () ;

Rol eManager rol eMyr = real m get Rol eManager () ;
final JAZNPolicy policy = JAZNCont ext.get Policy();

B-10 Oracle9iAS Containers for J2EE Services Guide

Supplemental Code Samples

final Real mUser user = userMyr.getUser("Jane.Snith");

AccessControl | er.doPrivileged (new PrivilegedAction() {
public Ghject run() {

try {

CodeSource ¢s = new CodeSour ce(new URL("
file:/home/task.jar"), null);
HashSet prop = new HashSet();
prop. add((Principal) user);

/] assign permssion to principals
policy.grant(new G antee(prop, cs), new
Fil ePerm ssion("report.data", "read"));

return null;
} catch (JAZNException el) {
el. printStackTrace();
} catch (java.net. Ml f or medURLException e2) {
e2. printStackTrace();
}
return null;
}
}
);

} catch (JAZNException e) {
e.printStackTrace();

}

JAAS Provider Standards and Samples B-11

Supplemental Code Samples

Discussion Of Sample Code

The sample code shown in Example B-3 is preparation for using the sample
application, AccessTest 1, discussed in "Sample J2SE Application” on page 7-5.
This sample code grants a user, Jane. Sm t h, permission to use AccessTest 1 as
follows:

The name cs is assigned to thefi | e: / home/ t ask. j ar, which includes the
sample application AccessTest 1:

CodeSource ¢s = new CodeSour ce(new URL("
file:/home/task.jar"), null);

Jane. Sm t h is the user added to the hashset prop:
HashSet prop = new HashSet ();
prop. add((Principal) user);
Jane. Sm t h is granted permission, on the Codesour ce cs, to read the file
report. dat a.

policy.grant(new Grantee(prop, cs), new
Fil ePerm ssion("report.data", "read"));

B-12 Oracle9iAS Containers for J2EE Services Guide

Symbols

<application-server> element, 13-11
<as-context>element, 10-14
<commit-class> element, 12-12
<commit-coordinator> element, 12-12
<confidentiality> element, 10-13
<container-transaction> element, 12-7
<data-source>

attributes, 11-13
<entity-deployment> element, 10-8
<establish-trust-in-client> element, 10-13
<establish-trust-in-target> element, 10-13
<integrity> element, 10-13
<ior-security-config> element, 10-8

DTD, 10-15
<resource-provider> element, 9-6, 9-7, 9-8

and JNDI, 9-3
<resource-ref> element, 11-16
<res-ref-name> element, 11-16
<rmi-config> element, 10-18
<rmi-server> element, 10-18
<sas-context> element, 10-14
<sep-config>element, 10-8
<sep-property> element, 10-9, 10-11
<session-deployment> element, 10-8
<transaction-type> element, 12-6, 12-8
<trans-attribute> element, 12-6
<transport-config> element, 10-13

A

access control lists
definition, 3-14

Index

AccessController, 3-5
accessing JAAS provider, 6-4
AccessTestl, 7-7,B-12
actions
definition, 3-4
add button
Oracle Enterprise Manager, 6-3
add command, 6-22
adding and removing realms, 6-14
adding and removing roles, 6-15
adding and removing users, 6-15
addperm options, 6-17
addprncpl option, 6-17
addrealm option, 6-15
addrole option, 6-15
adduser option, 6-16
administrative role, 6-26
admin.jar tool
-iiopClientar switch, 10-3
AdminPermission class
administering permissions, 3-28
definition, 3-6, A-6
adminRole, 6-26
adminUser, 6-26
Ant build tool, 8-5
Apache Listener. See Oracle HTTP Server
apachectl start command, 8-8
apachectl startssl command, 8-8
APIs
oracle.security.jazn package, A-2
oracle.security.jazn.policy package, A-5
oracle.security.jazn.realm package, A-7
Application Realm
creation, 6-28

Index-1

creation code, B-8

definition, 3-19

role management, 3-19, 3-22

sample LDAP directory information tree, 3-22
user management, 3-19, 3-22

ApplicationClientlnitialContextFactory, 2-5to 2-7
ApplicationinitialContextFactory, 2-7 to 2-9
applications

executing, 7-4

in Java2 application environments, 5-1
sample J2SE, 7-5

with JAAS, 3-10

application.xml

designating data-sources.xml, 11-2

assigning permissions, 6-5
attributes

CacheEventListener, 14-16
DefaultTimeToLive, 14-16
DISTRIBUTE, 14-14
GROUP_TTL_DESTROY, 14-14
IdleTime, 14-16

LOADER, 14-14

ORIGINAL, 14-14

REPLY, 14-14

SPOOL, 14-15
SYNCHRONIZE, 14-15
SYNCHRONIZE_DEFAULT, 14-15
TimeToLive, 14-16

Version, 14-16

Attributes.setCacheEventListener() method, 14-26
authentication

basic, 5-7

callerinfo demo, 4-2

definition, 3-2

environments, 5-7

J2EE, 8-2

J2SE, 7-2

using login modules, 3-9

using Oracle9iAS Single Sign-On (SSO), 3-13
using RealmLoginModule class, 3-13
with Basic Authentication, 5-13

with SSL, 5-11

with SSO, 3-13,5-8

authorization

definition, 3-2

Index-2

J2EE, 8-4
J2SE, 7-3
C
cache

concepts, 14-2
environment, 14-6
CacheAccess
createPool() method, 14-37
CacheAccess.get() method, 14-20
CacheAccess.getOwnership() method, 14-43
CacheAccess.preLoad() method, 14-20
CacheAccess.releaseOwnership() method, 14-44
CacheAccess.save() method, 14-33
CacheEventListener attribute, 14-16
CacheEventListener interface, 14-26
CacheLoader()
implementing, 14-20
CacheLoader.createStream() method, 14-36
caching scheme, 11-19
callback handler, 7-2,7-5
callerinfo demo, 4-1, 8-4
code, 8-9
results, 4-5
capability model
definition, 3-14
cd command, 6-22
checking password, 6-16
checkpasswd option, 6-16
cipher suites
supported by Oracle HTTPS, 15-6
class names
definition, 3-4
classes
AdminPermission, A-6
Grantee, A-7
InitRealmInfo, A-8
JAZNConfig, A-2
JAZNConfigException, A-4
JAZNContext, A-3
JAZNPermission, A-3
RealmLoginModule, A-9
RealmManager, A-9
RealmPermission, A-9

RoleAdminPermission, A-7
cleaninterval property, 14-25
clear command, 6-23
client.sendpassword property, 10-16
codebase, 3-10
codesource, 6-7
in policy files, 3-10
Common Secure Interoperability version 2. See
CSIv2
constructing
JNDI contexts, 2-3
JNDI InitialContext, 2-3
contextFactory property, 10-17
corbaname URL, 10-4
createDiskObject() method, 14-21, 14-33
createlnstance() method, 14-39
CreatePool() method, 14-37
createRole, 6-29, 6-30
createStream() method, 14-21
creating a new grant entry, 6-7
creating roles, 6-30
creation code
Application Realm, B-8
External Realm, 6-27
credentials, 3-8, 3-27
cryptographic keys, 3-8
CSIv2
and EJBs, 10-11
internal-settings.xml, 10-11
introduction, 10-10
properties in orion-ejb-jar.xml, 10-13
security properties, 10-13to 10-15

D

data source

configuration, 11-12

configuration file, 11-13

connection sharing, 11-18

default, 11-2

definition, 11-2

emulated, 11-2,11-5to 11-7

error conditions, 11-20
mixing transactions, 11-8
username, 11-20

introduction, 11-1
location of XML file, 11-2
non-emulated, 11-7to 11-8
behavior, 11-18
JTA transaction, 11-18
Oracle JDBC extensions, 11-17
retrieving connection, 11-4,11-16
using DataDirect driver, 11-21
using OClI driver, 11-21
data storage
in LDAP-based environments, 3-22
database
caching scheme, 11-19
retrieving connection, 11-4
DataDirect driver, 11-21
DataSource object, 11-4,12-4
methods, 11-15
retrieving, 12-4
use inJTA, 12-11
data-sources.xml file, 11-13, 12-12
designating location, 11-2
pre-installed definitions, 11-2
use inJTA, 12-2
default configurations
callerinfo demo, 4-3
default realm, 4-4, 8-6
DefaultTimeToLive attribute, 14-16
default-web-site.xml file, 4-3,8-5
defineGroup() method, 14-18
defineObject() method, 14-19
defineRegion() method, 14-17
delegation, 3-2
deleting grant entries, 6-6
deployment
and interoperability, 10-8
deployment descriptors
J2EE Connector, 13-4
JTA, 12-7
DER, 15-4
destroy() method, 14-23
destroylnstance() method, 14-39
directory entries
Java Authorization Service, 3-20to 3-24
directory information tree (DIT)
Application Realm, 3-22

Index-3

External Realm, 3-20
Java Authorization Service, 3-23to 3-24
Subscriber Realm, 3-20
directory security
Java Authorization Service, 3-24
discoveryAddress property, 14-25, 14-41
diskPath property, 14-25, 14-31
Distinguished Encoding Rules, 15-4
also see DER
distinguished name (DN), 3-23
DISTRIBUTE attribute, 14-14, 14-40
distribute property, 14-25
doFilter(ServletRequest request, ServletResponse
response,FilterChain chain), 8-3
dropping arealm, 6-26,6-29
dropping roles, 6-32
dropRole, 6-29, 6-32
DTDs
<ior-security-config> element, 10-15
internal-settings.xml, 10-10
jazn-data.xml, 6-34
oc4j-connectors.xml, 13-10
ocdj-ra.xml, 13-8
orion-application.xml security elements, 12-14

E

EJB
CSlv2, 10-11
interoperability, 10-1to 10-19
making interoperable, 10-3
server security properties, 10-9 to 10-10
ejb_sec.properties, 10-15to 10-17
embedded resource adapter, 13-3
environments, 3-3, 3-18
examples
standalone resource adapters, 13-13
exceptionHandler() method, 14-21
exceptions
JAZNException, A-4
JAZNInitException, A-4
JAZNNamingException, A-4
JAZNODbjectExistsException, A-4
JAZNObjectNotFoundException, A-4
JAZNRuntimeException, A-4

Index-4

executing an application, 7-4
exit command, 6-23
External Realm
automatically installed, 3-23
creating, 6-27
creation code, 6-27
definition, 3-19
role management, 3-19, 3-20
sample LDAP directory information tree, 3-20
user management, 3-19, 3-20

E
features, 3-1
files

interoperability deployment, 10-8
flags

OC4J, starting interoperably, 10-8
foundations of the JAAS provider, 3-2

G

generated stub JAR file, 10-3
GenericCredential interface
and Kerberos, 13-15
getAttribute("java.security.cert.X509certificate"), 8-
3
getAuthType, 8-3
getconfig option, 6-19
getConnection method, 11-4,12-4
getIiD() method, 14-26
getName() method, 14-21
getOwnership() method, 14-43
getOwnsership() method, 14-47
getParent() method, 14-19
getPolicy, 6-33
getRegion() method, 14-21
getRemoteUser, 8-3
getRoles, 6-29
getSource() method, 14-26
getSubject, 7-2
getting
XML configuration information, 6-19
getUserPrincipal, 8-3
grant entry data, 6-6

Grantee class
definition, A-7
granting and revoking permissions, 6-18
granting and revoking roles, 6-16
granting roles, 6-30
grantperm option, 6-18
grantRole, 6-29, 6-30
grantrole option, 6-16
GROUP_TTL_DESTROQY attribute, 14-14, 14-22,
14-23

H

handleEvent() method, 14-26
help

on JAZN Admintool, 6-20
help command, 6-23
help option, 6-20
hosted application environments, 3-28
hosted environments, 3-30
HTTPClient.HttpUrlConnection, 15-8
HTTPConnection, 15-4

Oracle extensions, 15-11

IdleTime attribute, 14-16
impersonation
delegation, 3-2
import
oracle.ias.cache, 14-17
initial context
JNDI, 2-2
initial context factories
JNDI, 2-4to2-10
InitialContext
constructing in JNDI, 2-3
InitRealmInfo class
definition, A-8
InitRealmInfo.RealmType interface, 6-28
definition, A-7
installation
Javadoc, A-1
interfaces
InitRealmInfo.RealmType, A-7

JAZNPolicy, A-5

Realm, A-8

Realm.LDAPProperty, A-8

RealmPrincipal, A-8

RealmRole, A-8

RealmUser, A-8

RoleManager, A-8

UserManager, A-8
internal_settings.xml file

<sep-property>element, 10-11
internal-settings.xml

CSlv2 entities, 10-11
internal-settings.xml file, 10-9 to 10-10

/ element, 10-9

DTD, 10-10
interoperability, 10-1to 10-19

adding to EJB, 10-3

files configuring, 10-8

overview, 1-2
invalidate() method, 14-22
invoking JAZN Admintool, 6-13

J

J2EE Connector, 13-1to 13-15
deployment descriptors, 13-4
QoS contracts, 13-3
resource adapters, 13-2
standalone resource adapter
archives, 13-11to 13-12
standalone resource adapter example, 13-13
J2EE. See also Java2 Platform, Enterprise Edition
(J2EE)
J2SE. See Java2 Platform, Standard Edition (J2SE)
JAAS provider
definition, 3-1
enhancements to realms, 3-16
features, 3-1
integration with Basic authentication, 5-12
integration with J2EE applications, 5-3
integration with J2SE applications, 5-2
integration with J2SE environments, 5-2
integration with SSL-enabled applications, 5-10
integration with SSO-enabled applications, 5-8
management of, 6-1

Index-5

management tools, 6-1
permission classes, 3-6
policy management, 6-33
running multiple instances, A-2
security role, 5-16
JAAS. See Java Authentication and Authorization
Service (JAAS)
jaas.config, 7-4
Java application environments, 3-3
Java Authentication and Authorization Service
(JAAS), 3-2
applications, 3-10
definition, 3-7
extending the Java2 Security Model, 3-7
login modules, 3-9
managing policy, 6-5
overview, 1-2
policy files
example, 3-10
principals, 3-7
realms, 3-10
roles, 3-9
subjects, 3-8
support for authorization and authentication
features, 3-7
Java Authorization Service
directory entries, 3-20to 3-24
directory information tree, 3-23to 3-24
security measures, 3-24
Java Connector Architecture
overview, 1-3
Java Message Service. SeeJMS.
Java Object Cache, 14-2
attributes, 14-12
basic architecture, 14-3
basic interfaces, 14-5
cache configuration properties, 14-24
cache consistency levels, 14-46
cache environment, 14-6, 14-10
classes, 14-5
configuration
cleaninterval property, 14-25
discoveryAddress property, 14-25
diskPath property, 14-25
distribute property, 14-25

Index-6

logFileName property, 14-25
logger property, 14-25
logSeverity property, 14-26
maxObjects property, 14-26
maxSize property, 14-26
consistency levels
distributed with reply, 14-47
distributed without reply, 14-47
local, 14-47
synchronized, 14-47
default region, 14-11
defining a group, 14-18
defining aregion, 14-17
defining an object, 14-19
destroy object, 14-23
disk cache
adding objects to, 14-32
configuring, 14-31
disk objects, 14-30
definition of, 14-9
distributed, 14-33
local, 14-33
using, 14-33
distribute property, 14-41
distributed cache architecture, 14-4
distributed disk objects, 14-31
distributed groups, 14-41
distributed mode, 14-40
distributed objects, 14-41
distributed regions, 14-41
features, 14-7
group, 14-12
invalidating object, 14-22
javacache.log log file, 14-25
local disk objects, 14-31
local mode, 14-40
memory objects
definition of, 14-8
local memory object, 14-8
spooled memory object, 14-8
updating, 14-8
naming objects, 14-8
object types, 14-6, 14-8
overview, 1-4
pool objects

accessing, 14-38
creating, 14-37
definition of, 14-10
using, 14-37
programming restrictions, 14-29
region, 14-11
StreamAccess object, 14-9
subregion, 14-11
Java permissions, 6-3
managing, 6-10
Java Platform, Enterprise Edition (J2EE)
security role, 5-15
Java programming
sample code, 6-24
Java Transaction API. See JTA.
Java virtual machine (JVM)
running multiple JAAS provider instances, A-2
Java? application environments, 5-1
Java? Platform, Enterprise Edition (J2EE)
application development in, 5-1
application development with the JAAS
provider, 3-1
application management, 8-1
application startup, 8-8
creating applications using the Java2 Security
Model, 3-4
definition, 5-1,5-3
integration with JAAS provider, 5-3
integration with JAZNUserManager, 5-4
integration with Oracle components, 5-3
integration with Oracle9iAS Containers for
J2EE, 5-3
Oracle component responsibilities in basic
authentication environments, 5-13
Oracle component responsibilities in SSL-enabled
environments, 5-11
Oracle component responsibilities in
SSO-enabled environments, 5-8
starting applications with SecurityManager, 8-8
starting in SSL environment, 8-8
starting in SSO environments, 8-8
Java2 Platform, Standard Edition (J2SE)
application development in, 5-1
application development with the JAAS
provider, 3-1

authentication, 7-2

authorization, 7-3

creating applications using the Java2 Security

Model, 3-4

definition, 5-1,5-2

integration with JAAS provider, 5-2

integration with Oracle components, 5-2

JAAS provider integration, 5-2

provider types available, 5-2
Java2 Security Model, 3-2,3-7, 8-4

definition, 3-4

using access control capability model, 3-14

using with J2EE applications, 3-4

using with J2SE applications, 3-4

using with JAAS, 3-7
javacache.properties file, 14-24
Javadoc

location of, A-1
java.io.FilePermission, B-9
java.lang.SecurityManager.checkPermission, 7-3
java.naming.provider.url property, 10-17
java.net.URL framework, 15-8
java.security.cert.X509Certificate, 8-3
java.security.cert.X509Certificate,x509cert, 8-3
java.security.Permission class, 6-32

RealmPermission extends from, A-9
java.security.principal, 3-13
java.security.Principal interface

RealmPrincipal extends from, A-8

using with principals, 3-7

using with roles and groups, 3-9
javax.net.ssl.KeyStore, 15-10
javax.net.ssl.KeyStorePassword, 15-10
javax.security.auth.Policy, A-2
javax.security.auth.Subject.doAs, 7-2,7-3
javax.servlet.HttpServietRequest, 8-3
JAZN Admintool, 6-1, 6-12

administering policy, 3-27

definition, 3-17

for managing JAAS provider types, 3-13

invoking, 6-13

Quick Start, 4-6

shell commands, 6-21

starting shell, 6-12
JAZN Admintool commands

Index-7

usage examples, 6-12

JAZN Admintool options
addperm, 6-17
addprncpl, 6-17
addrealm, 6-15
addrole, 6-15
adduser, 6-16
checkpasswd, 6-16
getconfig, 6-19
getting help, 6-20
grantperm, 6-18
grantrole, 6-16
help, 6-20
listperm, 6-18
listperms, 6-18
listprncpl, 6-18
listrealms, 6-16
listroles, 6-16
listusers, 6-17
remprncpl, 6-17
remrealm, 6-15
remrole, 6-15
remuser, 6-16
revokeperm, 6-18
revokerole, 6-16
setpasswd, 6-17
shell, 6-19

JAZN Admintool shell
starting, 6-19

JAZN Admintool shell commands
add, 6-22

cd, 6-22
clear, 6-23
exit, 6-23
help, 6-23
Is, 6-22
man, 6-23
mk, 6-22
mkdir, 6-22
pwd, 6-23
rm, 6-22

jazn element

location, 4-4, 8-6
JAZNAdminGroup, 3-28
JAZNClientGroup, 3-28

Index-8

JAZNConfig class, 6-25
definition, A-2
JAZNConfigException class
definition, A-4
JAZNContext class, 6-25
definition, A-3
jazn-data.xml file, 3-11, 3-25, 3-26, 4-3
DTD, 6-34
JAZNException exception
definition, A-4
JAZNInitException exception
definition, A-4
JAZNNamingException exception
definition, A-4
JAZNODbijectExistsException exception
definition, A-4
JAZNObjectNotFoundException exception
definition, A-4
JAZNPermission class
definition, 3-6, A-3
target names, A-3
JAZNPolicy interface
definition, A-5
JAZNRuntimeException exception
definition, A-4
JAZNUserManager, 8-1,8-4
definition, 3-13,5-4
filter element, 5-5, 8-3
integration in J2EE environments, 5-4
jazn.xml file, 7-4,7-5
JCA. See J2EE Connector.
JDBC
Oracle extensions, 11-17
retrieving connection, 11-4
JDK 1.3, 3-7
JMS, 9-1to09-8
overview, 1-2,9-1
resource providers, 9-2to 9-8
JNDI, 2-1to2-10
constructing contexts, 2-3
environment, 2-3
initial context, 2-2
initial context factories, 2-4 to 2-10
initial contexts, 2-2
lookup of data source, 11-4

jndijar file, 2-1
jndi.properties file, 10-17
JTA
bean-managed transaction, 12-2,12-8
code download site, 12-1
container-managed transaction, 12-2, 12-6
demarcation, 12-2,12-6
deployment descriptors, 12-7
overview, 1-3
resource enlistment, 12-2
retrieving data source, 12-4
single-phase commit
configuration, 12-2
definition, 12-2
specification web site, 12-1
two-phase commit, 12-10
configuration, 12-10
definition, 12-2

K

Kerberos, 3-8
and GenericCredential interface, 13-15

L

LDAP. See Lightweight Directory Access Protocol
(LDAP)
ldapadd tool
creating users, 3-19
Lightweight Directory Access Protocol
(LDAP)-based environments
in J2SE environments, 5-2
Oracle Internet Directory used as provider
type, 3-3
realm contents, 3-19
realm data storage, 3-22
realm management, 3-18
realm permissions, 3-25
realm types available, 3-18

sample Application Realm directory information

tree, 3-22
sample External Realm directory information
tree, 3-20

sample Subscriber Realm directory information

tree, 3-20
listing
permission information, 6-18
permissions, 6-18
principal class information, 6-18
principal classes, 6-18
listing realms, 6-16
listing roles, 6-16
listing users, 6-17
listperm option, 6-18
listperms option, 6-18
listprnepl option, 6-18
listrealms option, 6-16
listroles option, 6-16
listusers option, 6-17
LOADER attribute, 14-14
location
jazn element, 4-4,8-6
log file javacache.log, 14-25
log() method, 14-21
logFileName property, 14-25
logger property, 14-25
login method, 7-2
login modules
available with JAAS provider, 3-13
configuring with different applications, 3-9
definition, 3-9
with JAAS, 3-9
LoginContext class, 3-9, 7-2
authenticating subjects, 3-9
LoginContext.getSubject, 7-2
logSeverity property, 14-26
Iscommand, 6-22

M

man command, 6-23
management
of JAAS provider, 6-1
management tools, 6-1
managing
JAAS provider policy, 6-33
JAZN with Java, 6-24
permissions, 6-10, 6-32
realms, 6-25

Index-9

roles, 6-29

users, 6-29
Mandatory transaction attribute, 12-7
maxObjects property, 14-26
maxSize property, 14-26
message-driven beans

see MDB
migrating

principals, 6-19
mk command, 6-22
mkdir command, 6-22
mod_oc4j file, 8-4
mod_ocdj.conf file, 8-7
mod_ossl, 8-8
mod_osso, 8-8
multiple instances

of JAAS provider, 6-25, A-2

N

nameservice.useSSL property, 10-16
namespace partitioning, 3-10
netSearch() method, 14-21, 14-47

Never transaction attribute, 12-7
NotSupported transaction attribute, 12-7

O

obfuscation, 3-27
OBJECT_INVALIDATION event, 14-27
OBJECT_UPDATED event, 14-27
OC4J. See Oracle9iAS Containers for J2EE (OC4J)
oc4j-connectors.xml file

DTD, 13-10
oc4j.iiop.ciphersuites property, 10-16
ocdj.iiop.enable.clientauth property, 10-16
ocdj.iiop.keyStoreLoc property, 10-16
ocdj.iiop.keyStorePass property, 10-16
oc4j.iiop.trustedServers property, 10-16
oc4j.iiop.trustStoreLoc property, 10-16
oc4j.iiop.trustStorePass property, 10-16
ocdj-ra.xml file

DTD, 13-8
OCl driver, 11-21
OID. See Oracle Internet Directory (OID)

Index-10

Oracle Enterprise Manager, 6-1, 6-3
accessing JAAS provider, 6-4
creating a new grant entry, 6-7
creating new grant

permission, 6-9
creating new grants, 6-7,6-8
deleting grant entries, 6-6
JAAS provider overview, 3-17
principal classes, 6-8, 6-11
revoking permissions, 6-12

Oracle HTTPS, 15-1to 15-17
default system properties, 15-9
example, 15-14
feature overview, 15-5
prerequisites for use, 15-2
supported cipher suites, 15-6

Oracle Internet Directory (OID)
administering policy data, 3-28
creating users, 3-19
location, 6-26
provider type, 3-16

Oracle Wallet Manager
and HTTPS, 15-7

Oracle9iAS Containers for J2EE (OC4J)
interoperability, 10-1to 10-19
interoperability flags, 10-8

Oracle9iAS Containers for J2EE (OC4J), 8-1
integration in J2EE environments, 5-3
mapping security roles to JAAS provider users

and roles, 5-16

Oracle9iAS Single Sign-On (SSO)
for SSO authentication, 3-13

Oracle9iAS Web Cache, 14-2

oracle.ias.cache package, 14-17

oracle.security.jazn package
classes, A-2
definition, A-2
exceptions, A-4

oracle.security.jazn.oc4j. JAZNServletRequest, 8-3

oracle.security.jazn.policy package
classes, A-6
definition, A-5
interfaces, A-5

oracle.security.jazn.realm package
classes, A-8

definition, A-7

interfaces, A-7

support for realms, 3-16

use of, 3-13
oracle.security.jazn.util.

CertHash.getHash(x509cert), 8-3
OracleSSLCredential, 15-4, 15-12
Oracle.ssl.defaultCipherSuites, 15-10
ORIGINAL attribute, 14-14
orion-application.xml file, 4-3, 8-6, 8-7, 12-11

<resource-provider>, 9-6,9-8

<resource-provider> element, 9-7

and JNDI resource provider, 9-3

DTD, 12-14

mapping security roles to JAAS provider users

and roles, 5-16

orion-gjb-jar file

<establish-trust-in-client> element, 10-13

<establish-trust-in-target> element, 10-13
orion-gjb.jar file

/ element, 10-14

<as-context> element, 10-14

<transport-config> element, 10-13
orion-ejb-jar.xml

<integrity> element, 10-13

<session-deployment> element, 10-8

security properties, 10-13to 10-15
orion-gjb-jar.xml file, 10-13

<confidentiality> element, 10-13

<entity-deployment> element, 10-8

<ior-security-config> element, 10-8

P

packages
oracle.security.jazn, A-2
oracle.security.jazn.policy, A-5
oracle.security.jazn.realm, A-7
partitioning, 3-10, 3-28
passwords, 3-27
checking, 6-16

setting, 6-17
permissions, 3-15, 6-9
actions, 3-4

administering with AdminPermission

class, 3-28

class definitions, 3-6

class name, 3-4

definition, 3-10

granting and revoking with the JAZN
Admintool, 6-18

in Java2 Security Model, 3-4

JAAS provider, 3-6

Java permission instance contents, 3-4

listing with the JAZN Admintool, 6-18

management in LDAP-based
environments, 3-28

management in XML-based environments, 3-25,
3-28

managing, 6-10, 6-32

target, 3-4

persistence, 3-27
Pluggable Authentication Module (PAM), 3-7
policies

administering with JAZN Admintool, 3-27

administering with Oracle Internet Directory
(OID), 3-28

administration, 3-27

definition, 3-10

information storage in XML-based provider
type, 3-25

management in LDAP-based
environments, 3-28

management in XML-based environments, 3-25

partitioning among realms, 3-29

policy entries, 6-3
policy files

codesource, 3-10
example, 3-10
subject, 3-10

PoolAccess

close() method, 14-38

get() method, 14-38
getPool() method, 14-38
returnToPool() method, 14-38

PoolAccess object, 14-38
PoollnstanceFactory

implementing, 14-39

principal classes, 6-8, 6-11

listing

Index-11

information with the JAZN Admintool,
principal-based authorization
support for, 3-7
principals, 3-7,6-8, 6-33, 7-2
definition, 3-7
with JAAS, 3-7
principals.xml file, 5-4
converting from, 6-19
PrivilegedAction interface, 7-3
privileges, 3-15
protection domain
definition, 3-4
in Java2 Security Model, 3-5
provider types, 3-3,3-18
in J2SE environments, 5-2
managing, 3-13
Oracle Internet Directory (OID), 3-16, 3-27
retrieving permissions from, 3-14
storing policy information, 3-27
XML-based, 3-16, 3-27
public key certificates, 3-8
pwd command, 6-23

Q

6-18

QoS contracts, 13-3
quality of service contracts, 13-3
Quick Start, 4-1

R

RAR file
RBAC. See role-based access control (RBAC)
Realm interface
definition, A-8
realm permissions
management in LDAP-based
environments, 3-25
Realm.LDAPProperty interface
definition, A-8
RealmLoginModule class,
definition, A-9
for SSL and Basic authentication, 3-13
in J2SE environments, 5-2,7-2
RealmManager class, 6-30

3-13, 8-2

Index-12

definition, A-9
RealmPermission class, 3-25
action names, A-9
definition, 3-6, A-9
RealmPrincipal interface,

definition, A-8
RealmRole interface
definition, A-8
realms
adding and removing with the JAZN
Admintool, 6-14
creation of realm container in LDAP-based
environments, 3-22
data storage in LDAP-based environments, 3-22

3-13, 8-3

definition, 3-10, 3-13

dropping, 6-26, 6-29

information storage in XML-based provider
type, 3-25

JAAS provider enhancements, 3-16
JAAS provider framework, 3-18
JAAS provider support, 3-13
listing with the JAZN Admintool, 6-16
managing in LDAP-based environments, 3-18
managing in XML-based provider type, 3-25
name, 6-26
permission management in LDAP-based
environments, 3-25
policy partitioning, 3-29
realm contents in LDAP-based
environments, 3-19
types available in LDAP-based
environments, 3-18
types available in XML-based provider
type, 3-25
with JAAS, 3-10
RealmUser interface
definition, A-8
release_Ownsership() method, 14-47
releaseOwnership() method, 14-44
Remote Method Invocation. See RMI.
remprncpl option, 6-17
remrealm option, 6-15
remrole option, 6-15
remuser option, 6-16
REPLY attribute, 14-14, 14-42

Required transaction attribute, 12-7
RequiresNew transaction attribute, 12-7
resource adapter, 13-2
Resource Adapter Archive. See RAR.
resource providers
JMS, 9-2t09-8
ResourceProvider
JMS, 9-2,9-3
retrieving authentication information, 8-3
returnToPool() method, 14-38
revokeperm option, 6-18
revokeRole, 6-29
revokerole option, 6-16
revoking permissions
Oracle Enterprise Manager, 6-12
rm command, 6-22
RMI
overview, 1-2
RMI tunneling, 10-17 to 10-19
rmic.jar compiler, 10-5to 10-6
RMI/ZIIOP, 10-1to 10-19
RMlInitialContextFactory, 2-9to 2-10
rmi.xml file, 10-18
role activation
definition, 3-15
role hierarchy
definition, 3-15
role management, 3-19
role manager, 3-19
role object class, 6-26
role’s searchbase property, 6-26
RoleAdminPermission class, 3-29
definition, 3-6, A-7
role-based access control (RBAC), 3-9, 3-13
definition, 3-14
JAAS provider support for, 3-13
role activation, 3-15
role hierarchy, 3-15
support for, A-2
RoleManager interface, 3-23, 6-29, 6-30
createRole, 6-29
definition, A-8
dropRole, 6-29
getRoles, 6-29
grantRole, 6-29

revokeRole, 6-29
roles, 6-33

adding and removing with the JAZN
Admintool, 6-15

creating, 6-30

definition, 3-14

dropping, 6-32

granting, 6-30

granting and revoking with the JAZN
Admintool, 6-16

listing with the JAZN Admintool, 6-16

management in Application Realms, 3-19, 3-22

management in External Realms, 3-19, 3-20

management in LDAP-based
environments, 3-19

management in Subscriber Realms, 3-19, 3-21

management in XML-based environments, 3-25

managing, 6-29

using the J2EE security role, 5-15

with JAAS, 3-9

run-as element, 3-2, 3-15

S

sample application
AccessTestl, B-12
sample code, 6-24
createRole, 6-30
dropRole, 6-32
grantRole, 6-30
Sample J2SE Application, 7-5
sample_subrealm realm, 4-3
save() method, 14-33
searching for grant entry data, 6-6
searching for permissions, 6-10
secure mode, 4-4, 8-8
secure socket layer (SSL)
authentication method, 5-7
integration with Basic authentication, 5-12
integration with JAAS provider, 5-10
Secure Socket Layers (SSL), 5-7
security role
using in the web.xml file, 5-15
SecurityManager, 3-5, 7-3, 7-4
SecurityManager.checkPermission, 7-3, 8-4

Index-13

server.xml file, 4-3
<application-server> element, 13-11
<sep-config>element, 10-8
and callerinfo demo, 4-3
and RMI, 10-18
default application defined in, 2-3
running servlets, 8-5

service provider interfaces, 2-1

Servlet.service, 8-4

setAttributes() method, 14-21

setCacheEventListener() method, 14-26

setpasswd option, 6-17

setting a password, 6-17

shell commands, 6-21

shell option, 6-19

single sign-on (SSO), 5-7, 8-2, 8-7
integration with JAAS provider, 5-8

SPOOL attribute, 14-15, 14-32

sslPrincipal, 8-3

standalone resource adapter

archives, 13-11to 13-12

standalone resource adapters, 13-2
example, 13-13

starting
JAAS application, 8-8
JAZN Admintool, 6-13

StreamAccess object
InputStream, 14-35
OutputStream, 14-35
using, 14-35

Subject.doAS method, 3-15

Subject.doAs method, 7-3, 8-3,8-4
associating a subject with

AccessControlContext, 3-8

invoking, 3-9
subjects, 3-8, 7-2,7-3
definition, 3-8

with JAAS, 3-8
Subscriber Realm
definition, 3-19
role management, 3-19, 3-21
sample LDAP directory information tree, 3-20
user management, 3-19, 3-21
Supports transaction attribute, 12-7
SYNCHRONIZE attribute, 14-15, 14-44

Index-14

SYNCHRONIZE_DEFAULT attribute, 14-15, 14-43

T

target names
definition, 3-4
of JAZNPermission class, A-3
TimeToLive attribute, 14-16
transaction
bean managed, 12-2
container-managed, 12-2
demarcation, 12-2, 12-6
deployment descriptors, 12-7
resource enlistment, 12-2
two-phase commit, 12-10
UserTransaction object, 12-9
tunneling
RMI, 10-17 to 10-19

U

URLs
corbaname, 10-4

user communities, 3-10, 3-18

user manager, 3-19

user object class, 6-26

user’s searchbase property, 6-26

UserManager interface, 3-23, 6-29
definition, A-8

users, 6-33
adding and removing with the JAZN

Admintool, 6-15
creating with Oracle Internet Directory, 3-19
creating with the ldapadd tool, 3-19
listing with the JAZN Admintool, 6-17
management in Application Realms, 3-19, 3-22
management in External Realms, 3-19, 3-20
management in LDAP-based
environments, 3-19

management in Subscriber Realms, 3-19, 3-21
management in XML-based environments, 3-25
managing, 6-29

UserTransaction object
use inJTA, 12-9

\Y,

Version attribute, 14-16
viewing
existing permissions, 6-10
grant entry data, 6-6

W

Web Cache, 14-2
Web Object Cache, 14-2
Web Object cache, 14-2
web.xml file
using the J2EE security role, 5-15

X

X.500 distinguished name
Oracle Enterprise Manager, 6-8
creating new grant, 6-8
XML-based provider type, 3-4
jazn-data.xml, 3-25
provider type, 3-16
realm and policy information storage,
realm management, 3-25
realm type available, 3-25

3-25

Index-15

Index-16

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introduction
	Java Naming and Directory Interface (JNDI)
	Java Authentication and Authorization Service (JAAS)
	Java Message Service (JMS)
	J2EE Interoperability and Remote Method Invocation (RMI)
	Data Sources
	Java Transaction API (JTA)
	Java Connector Architecture
	Java Object Cache
	HTTPS

	2 Java Naming And Directory Interface
	Introduction
	Initial Context

	Constructing a JNDI Context
	The JNDI Environment
	Initial Context Factories
	ApplicationClientInitialContextFactory
	Environment Properties
	Remote Client Example
	Server-Side Clients

	ApplicationInitialContextFactory
	Example

	RMIInitialContextFactory
	Remote Client Example

	3 Overview of JAAS in Oracle9iAS
	JAAS Support
	What Are Authentication, Authorization, and Delegation?
	Foundations of the JAAS Provider
	JAAS
	Java2 Security Model

	Java Application Environments
	Provider Types
	LDAP-Based Provider Type
	XML-Based Provider Type

	What Is the Java2 Security Model?
	What Is JAAS?
	Principals
	Subjects
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions
	File-Based Policy Example
	XML-Based Example

	JAAS Provider Features
	JAAS Provider User Services
	Capability Model of Access Control
	Role-Based Access Control (RBAC)
	Role Hierarchy
	Role Activation

	JAAS Provider Realm and Policy Management
	Realm and Policy Management Tools
	JAAS Provider Realm Framework
	Realm Management in LDAP-Based Environments
	LDAP-Based Realm Types
	LDAP-Based Realm Data Storage
	Realm Hierarchy
	Security Measures For Java Authorization Service

	LDAP-Based Realm Permissions

	Realm Management in XML-Based Environments
	XML-Based Realm Types
	XML-Based Realm and Policy Information Storage

	JAAS Provider Policy Administration
	Oracle Internet Directory Administration
	AdminPermission Class
	Policy Partitioning

	4 Quick Start JAAS Provider Demo
	Quick Start JAAS Provider Demo Overview
	Setting Up the Demo
	Task 1: Modifying OC4J Configuration Files
	Task 2: Changing Default Configurations (Optional)

	Running the Demo
	Viewing the Results of the callerInfo Demo

	Testing the JAZN Admintool

	5 Integrating the JAAS Provider with Java2 Applications
	Java2 Application Environments Overview
	Oracle Components Available on the Java2 Platform

	JAAS Provider Integration in J2SE Application Environments
	A Typical Scenario in the J2SE Environment

	JAAS Provider Integration in J2EE Application Environments
	Oracle9iAS Containers for J2EE (OC4J)
	JAZNUserManager
	Replacing principals.xml
	JAZNUserManager Features

	Authentication Environments
	Integrating the JAAS Provider with SSO-Enabled Applications
	SSO-Enabled J2EE Environments: A Typical Scenario

	Integrating the JAAS Provider with SSL-Enabled Applications
	SSL-Enabled J2EE Environments: A Typical Scenario

	Integrating the JAAS Provider with Basic Authentication
	Basic Authentication J2EE Environments: Typical Scenario

	J2EE and JAAS Provider Role Mapping
	J2EE Security Roles
	JAAS Provider Roles and Users
	OC4J Group Mapping to J2EE Security Roles

	How Do I Get Started?

	6 Managing the JAAS Provider
	JAAS Provider Management Overview
	LDAP-Based and XML-Based JAAS Providers

	Using the Oracle Enterprise Manager Interface with the JAAS Provider
	Accessing the JAAS Provider
	Task 1: Managing JAAS Policy
	Searching for And Viewing Existing Grant Entries
	Deleting Grant Entries
	Creating a New Grant Entry

	Task 2: Managing Java Permissions
	Searching for And Viewing Existing Permissions
	Revoking Permissions Assigned to a Principal

	Using the JAZN Admintool
	Usage Examples
	Command Options
	Realm Operations
	Adding and Removing Realms
	Adding and Removing Roles
	Adding and Removing Users
	Checking Passwords
	Granting and Revoking Roles
	Listing Realms
	Listing Roles
	Listing Users
	Setting a Password

	Policy Operations
	Adding and Removing Permissions
	Adding and Removing Principals
	Granting and Revoking Permissions
	Listing Permissions
	Listing Permission Information
	Listing Principal Classes
	Listing Principal Class Information

	Interactive Shell
	Starting the JAZN Admintool Shell
	Getting XML Configuration Information

	Migration Operations
	Migrating Principals from the principals.xml File
	Getting Help

	JAZN Shell Interface
	JAZN Shell Commands
	Using the ls Command to List JAAS Provider Data
	Using the cd Command to Navigate JAAS Provider Data
	Using the mkdir, mk, or add Commands to Create JAAS Provider Data
	Using the pwd Command to Display the Current Shell Working Directory
	Using the help Command to List JAAS Provider Commands
	Using the man Command to Display Detailed JAAS Provider Commands
	Using the clear Command to Clear the Screen
	Using the exit Command to Exit the JAZN Shell

	Managing LDAP Provider Data with Java Programs
	About the Sample Java Code
	The JAZNContext and JAZNConfig Classes
	Managing Realms
	Realm Creation
	Creating an External Realm
	Creating an Application Realm
	Dropping a Realm

	Managing Users
	Managing Roles
	Creating Roles
	Granting Roles
	Dropping Roles

	Managing Permissions
	Managing JAAS Provider Policy
	Managing Policy with JAAS Provider Packages

	Managing XML-Based Provider Data with the XML Schema
	Managing Realms, Users, Roles, and Permissions
	DTD for jazn-data.xml

	Other Utilities
	PermissionClassManager Interface
	PrincipalClassManager Interface
	LoginModuleManager

	7 Developing Secure J2SE Applications
	Developing Secure J2SE Applications Overview
	Authentication in the J2SE Environment
	Authorization in the J2SE Environment
	Subject.doAs
	SecurityManager.checkPermission
	PrivilegedAction

	Testing and Executing an Application
	Starting with RealmLoginModule
	Starting without RealmLoginModule

	Sample J2SE Application
	Sample J2SE Application Code
	Discussion of the J2SE Sample Client Login and Application Code

	8 Developing Secure J2EE Applications
	Developing Secure J2EE Applications Overview
	Authentication in the J2EE Environment
	Running with an Authenticated Identity
	Intercepting Servlet Invocation
	Retrieving Authentication Information

	Authorization in the J2EE Environment
	Testing and Executing the J2EE Application
	Setting Up
	Task 1: Installing Ant (Optional)
	Task 2: Modifying OC4J Files
	Modifying OC4J Files Where OC4J is Not Running
	Deploying an Application When the OC4J Server Is Running

	Task 3: Changing Default Configurations
	Using XML-Based Realms (Default)
	Using LDAP-Based Realms
	Using SSL and SSO Integration
	Using SSO

	Task 4: Building the Directory
	Starting an Application

	Sample J2EE Application
	Discussion of the J2EE Sample Application Code

	9 Java Message Service
	Overview
	Resource Providers
	Configuring a Custom Resource Provider
	Using a Custom Resource Provider

	Using Oracle JMS as a Resource Provider
	Configuring the Resource Provider
	Using Message-Driven Beans

	Using Third-Party Resource Providers
	Using MQSeries as a Resource Provider
	Configuring

	Using SonicMQ as a Resource Provider
	Using SwiftMQ as a Resource Provider

	10 Interoperability and RMI Tunneling
	Introduction to EJB Interoperability
	Naming
	Security
	Transactions

	Switching to Interoperable Transport
	Simple Interoperability
	Advanced Interoperability
	The corbaname URL
	The rmic.jar Compiler
	Exception Mapping
	Invoking OC4J-Hosted Beans from a Non-OC4J Container

	Configuring OC4J for Interoperability
	Interoperability OC4J Flags
	Interoperability Configuration Files
	EJB Server Security Properties (internal-settings.xml)
	CSIv2 Security Properties
	CSIv2 Security Properties (internal-settings.xml)
	CSIv2 Security Properties (ejb_sec.properties)
	CSIv2 Security Properties (orion-ejb-jar.xml)
	EJB Client Security Properties (ejb_sec.properties)
	JNDI Properties for Interoperability (jndi.properties)

	Configuring RMI Tunneling
	Configuring RMI in server.xml and rmi.xml

	11 Data Sources
	Introduction
	Defining Data Sources
	Defining Location of the Data Source XML Configuration File
	Defining Data Sources

	Retrieving a Connection from a Data Source
	Types of Data Sources
	Emulated Data Sources
	Non-Emulated Data Sources
	Non-JTA Data Sources
	Non-Emulated Data Sources Cannot Mix Transaction Types
	Mixing Data Sources

	Two-Phase Commits and Data Sources
	Using Data Sources
	Configuring Data Source Objects
	Configuration Files
	Data Source Attributes
	Data Source Methods
	Portable Data Source Lookup

	Using Oracle JDBC Extensions
	Behavior of a Non-Emulated Data Source Object
	Retrieving a Connection Outside a Global Transaction
	Retrieving a Connection Within a Global Transaction

	Using Database Caching Schemes
	Connection Retrieval Error Conditions
	Using Different Usernames for Two Connections to a Single Data Source

	Using the OCI JDBC Drivers
	Using DataDirect Drivers

	12 Java Transaction API
	Introduction
	Single-Phase Commit
	Enlisting a Single Resource
	Configuring the Data Source
	Retrieving the Data Source Connection
	Performing JNDI Lookup on Data Source Definition
	Performing JNDI Lookup Using Environment

	Demarcating the Transaction
	Container-Managed Transactional Demarcation
	Bean-Managed Transactions
	Programmatic Transaction Demarcation
	Client-side Transaction Demarcation

	JTA Transactions

	JDBC Transactions

	Two-Phase Commit
	Configuring Two-Phase Commit Engine
	Two-Phase Commit Elements in the orion-application.xml DTD

	13 J2EE Connector Architecture
	Introduction
	Resource Adapters
	Application Contracts
	Quality of Service Contracts
	Support for Optional Features

	Deploying Resource Adapters
	The ra.xml Descriptor
	The oc4j-ra.xml Descriptor
	The <connection-pooling> Element
	The <security-config> Element
	The oc4j-ra.xml DTD

	The oc4j-connectors.xml Descriptor
	The oc4j-connectors.xml DTD

	Deploying Standalone Resource Adapter Archives
	Deploying Using admin.jar
	Deploying Manually

	Removing Resource Adapters
	Deploying Embedded Resource Adapters

	Specifying Container-Managed or Component-Managed Sign-On
	Authentication in Container-Managed Sign-On
	JAAS Pluggable Authentication
	The InitiatingPrincipal and InitiatingGroup Classes
	JAAS and the <connector-factory> Element

	User-Created Authentication Classes
	Extending AbstractPrincipalMapping

	Modifying oc4j-ra.xml

	14 Working with Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	Distributed Object Management

	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Cache Object Attributes
	Using Attributes Defined Before Object Loading
	Using Attributes Defined Before or After Object Loading

	Developing Applications Using Java Object Cache
	Importing the Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader
	Using CacheLoader Methods Within the Load Method

	Invalidating Cache Objects
	Destroying Cache Objects
	Setting Cache Configuration Properties
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Configuring Properties for Using the Disk Cache
	Setting the diskPath Configuration Property

	Local and Distributed Disk Cache Objects
	Local Objects
	Distributed Objects

	Adding Objects to the Disk Cache
	Automatically Adding Objects
	Explicitly Adding Objects
	Using Objects that Reside Only in Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Setting the Distribute Configuration Property
	Setting the DiscoveryAddress Configuration Property

	Using Distributed Objects, Regions, Subregions, and Groups
	Using the REPLY Attribute with Distributed Objects
	Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

	Cached Object Consistency Levels
	Using Local Objects
	Propagating Changes Without Waiting for a Reply
	Propagating Changes and waiting for a Reply
	Serializing Changes Across Multiple Caches

	Sharing Cached Objects in an OC4J Servlet

	15 Oracle HTTPS for Client Connections
	Prerequisites
	Audience

	About Oracle HTTPS
	HTTPConnection Class
	OracleSSLCredential Class

	Overview of Oracle HTTPS Features
	SSL Cipher Suites Supported by Oracle HTTPS
	Certificate and Key Management with Oracle Wallet Manager
	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Potential Security Risk with Storing Passwords in System Properties

	Oracle.ssl.defaultCipherSuites

	Oracle HTTPS APIs
	Public Class: HTTPConnection
	Public Class: OracleSSLCredential
	Constructor
	Methods

	Oracle HTTPS Example
	Initializing SSL Credentials
	Verifying Connection Information
	Transferring Data

	A JAAS Provider APIs
	JAAS Provider API Overview
	Package oracle.security.jazn
	Interfaces
	Persistable

	Classes
	JAZNConfig
	JAZNContext
	JAZNPermission
	JAZNWebAppConfig

	Exceptions
	JAZNConfigException
	JAZNException
	JAZNInitException
	JAZNNamingException
	JAZNObjectExistsException
	JAZNObjectNotFoundException
	JAZNRuntimeException

	Package oracle.security.jazn.login
	Classes
	LoginModuleManager

	Package oracle.security.jazn.policy
	Interfaces
	GlobalPolicy
	JAZNPolicy
	PermissionClassManager
	PolicyManager
	PrincipalClassManager
	RealmPolicy

	Classes
	AdminPermission
	Grantee
	PermissionClassDesc
	PrincipalClassDesc
	RoleAdminPermission

	Package oracle.security.jazn.realm
	Interfaces
	InitRealmInfo.RealmType
	Realm
	Realm.LDAPProperty
	RealmPrincipal
	RealmRole
	RealmUser
	RoleManager
	UserManager

	Classes
	InitRealmInfo
	RealmLoginModule
	RealmManager
	RealmPermission

	B JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Supplemental Code Samples
	Supplementary Code Sample: Creating an Application Realm
	Supplementary Code Sample: Modifying User Permissions

	Index

