Oracle9 j Application Server

Web Services Developer’'s Guide

Release 2 (9.0.3)

August 2002
Part No. B10004-01

ORACLE

Oracle9i Application Server Web Services Developer’s Guide, Release 2 (9.0.3)
Part No. B10004-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Authors: Thomas Van Raalte and Rodney Ward

Contributors: Marco Carrer, Anirban Chatterjee, Daxin Cheng, David Clay, Tony D’Silva, Neil Evans,
Bert Feldman, Kathryn Gruenefeldt, Steven Harris, Anish Karmarkar, Prabha Krishna, Sunil Kunisetty,
Wai-Kwong (Sam) Lee, Gary Moyer, Steve Muench, Giuseppe Panciera, Wei Qian, Eric Rajkovic, Venkata
Ravipati, Susan Shepard, Alok Srivastava, Zhe (Alan) Wu, Joyce Yang, Chen Zhou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation
(http:/ /www.apache.org/).

Contents

SENA US YOUI COMIMENES oottt et et et e et e e et et et e e et e e e e et e e ee et e e e s eeeeeeeeee et eeeeesesesaen Xiii
o =) =01 < OOV XV

1 Web Services Overview

What Are Web ServiCes?.........ccoiiiiiiiiiiiiiic et 1-2
Understanding Web SeIVICES........ccoccuiuiuiiiiiiiiiiiiiiiciicicecciee e 1-2
Benefits Of WED SEIrvICEScccoeuiiiiiiiiiiiiiiiiicicceceeeee e 1-3
About the Web Services e-Business Transformation............c.cccceeiiiiiiiiiiciiiiiicnnas 1-3

About Business Transformation with Web Services ..., 1-4
About Technology Transformation with Web Services..........ccoooevviiiininiiinnnn, 1-4

Overview of Web Services Standards.............ccccooviiiniic 1-5
Simple Object Access Protocol (SOAP) ... 1-6
Web Services Description Language (WSDL)cccocovviiiiniiiiniiiccccccccces 1-6
Universal Description, Discovery, and Integration (UDDI)............cccccoooiiiiiniiiiiniciene 1-7

Scenario: Web Services with a Currency Converter Application...........coccceccevverciinnccccnnnes 1-7
Understanding the Publisher’s Role ..., 1-8
Understanding the Caller’s ROlec.couiiiiiiii e 1-8

2 Oracle9/jAS Web Services

Oracle9iAS OC4]J (J2EE) and Oracle SOAP Based Web Servicescccccevevieienenenencneneenne. 2-2
Oracle9iAS Web Services FEatures.............ccoooiiiiiiiiiiiniiiiicc s 2-2
Developing End-to-End Web Services ..., 2-3
Deploying and Managing Web Services ..o 2-4

Using Oracle9i JDeveloper with Web Services.........ccooouoiiiiiiiiii 2-4

Securing Web ServiCescccoviiiiiiiiiiiiiiiiiiiiii s 2-5
Aggregating Web SEIVICEScccccuiuiiiiiiiiiiiiiciciccieeeceee e 2-5
Oracle9iAS Web Services Architecture..............c.ccooooiiii e 2-6
About Servlet Entry Points for Web Servicescccoooiiiiiiiiiiiiiniicecccce e 2-8
What Are the Packaging and Deployment Options for Web Servicesccccccevurrenenne 2-10
About Server Skeleton Code Generation for Web Services..........cccccoviiiniiiiniinnnn 2-10
Understanding WSDL and Client Proxy Stubs for Web Services.............cccccccevvivvninnnnn. 2-11
Overview of a WSDL Based Web Service Client...........coocvvvviiiinieiniiiiiicncceenns 2-12
Overview of a Client-Side Proxy Stubs Based Web Service Clientcccccocoeveveieinnnnes 2-12
Web Services HOme Pagecccccociiiiiiiiiiiiiiiiii s 2-13
About Universal Description, Discovery, and Integration Registry..............ccccoeiinnnni. 2-14
Oracle Enterprise Manager Features to Register Web Services..........cccoooeeveiiiciiiinnnna 2-15

3 Developing and Deploying Java Class Web Services

Using Oracle9iAS Web Services With Java Classescccccovvviiiiiiniciiiccci, 3-2
Writing Java Class Based Web Services............ccccooeiviviniiiiiiiiiniiniiicccces 3-2
Writing Stateless and Stateful Java Web Services.........ocovviivininicininininceeeeee 3-3
Building a Sample Java Class Implementation ..o 3-3
Defining a Java Class Containing Methods for the Web Service...........ccccccevvviviininnnnn. 3-3
Defining an Interface for Explicit Method EXposureccccocoeueueiiviinncniniccne 3-5
Writing a WSDL File (Optional)........ccooieieiiiiiiiiic e 3-6

Using Supported Data Types for Java Web Services..........ccccoevviviiniivnniniiniiiine, 3-7
Preparing and Deploying Java Class Based Web Servicesccccccooevviniiiininniinnincnne, 3-9
Creating a Configuration File to Assemble Java Class Web Services...........c.ccccoveiriuninen. 3-9
Adding Web Service Top Level Tagsccccccovuviiiiiiiiviiiiiiiiiinicicccccces 3-9
Adding Java Stateless Service Tags........cccccvcueueuerriiiiueieieieiiicicieieieeeeeeeeee e 3-10
Adding Java Stateful Service Tagscccoovevireiiieiiieiieie e 3-11
Adding WSDL and Client-Side Proxy Generation Tags..........ccccccevuviriiiininniniiinnnnnnn. 3-14
Running WebServicesAssembler To Prepare Java Class Web Services.........c.cccccccueucnnnene. 3-14
Deploying Java Class Based Web Services............coooeueiiiiiiiiiiiicic 3-14
Serializing and Encoding Parameters and Results for Web Services.............c.cccccccevnnenncne. 3-15

4 Developing and Deploying EJB Web Services

Using Oracle9iAS Web Services With Stateless Session EJBs..........c.cccccooviiicinniicnnccne.
Writing Stateless Session EJB Web Services ...,
Defining a Stateless Session Remote Interfacec.cccoooveiiieiiiiiniiiniincccc
Defining a Stateless Session Home Interface..........cccooooeiiiiiiiiiiice
Defining a Stateless Session EJB Beanc.cccccccciiiiiiiiiiiiiccccccccccceeeeeeeenenas
Returning Results From EJB Web Servicescooioiiiiiiiiicc
Error Handling for EJB Web Services..........cccccciiiiiiiiiiiiiiiiiccccccccccccceeennas
Serializing and Encoding Parameters and Results for EJB Web Services..........c.ccccccccueee.
Using Supported Data Types for Stateless Session EJB Web Services...........cccocovviviininnnn.
Writing a WSDL File for E]JB Web Services (Optional)cccccovuvvivnininninnniniine,
Preparing and Deploying Stateless Session EJB Based Web Services............ccccccccvviinnnnns
Creating a Configuration File to Assemble Stateless Session EJB Web Services.................
Adding Web Service Top Level Tagscccccceeuiiiiiiiiiiniiiiiicicicccccccceeeeennes
Adding Stateless Session EJB Service Tags........cccccocueueueueueuimemimeuiiiiecceeeiecrereneeenenenenes
Adding WSDL and Client-Side Proxy Generation Tagsccccccouomreuiiiiciciiininnnen,
Running WebServicesAssembler To Prepare Stateless Session EJB Web Services...........
Deploying Web Services Implemented as EJBSc.cccccoceiiiiiiiiiiiiiiiiccccccenenas

5 Developing and Deploying Stored Procedure Web Services

Using Oracle9iAS Web Services with Stored Procedures...............cccooviviiininninn
Writing Stored Procedure Web Services.............ccooiiiiiiiiiiiiiiniiiiiiiiines
Preparing Stored Procedure Web Services..............cccooviiiiiiiiiininniiccccns
Creating a Configuration File to Assemble Stored Procedure Web Services.......................
Adding Web Service Top Level Tagscccococeueiiirieieiiicc
Adding Stateless Stored Procedure Java Service Tags........c.cococoruernivireininicccininiccnen,
Adding WSDL and Client-Side Proxy Generation Tagscccccccoeveeueiicccccccncnns
Running WebServicesAssembler With Stored Procedure Web Services...........ccccuueee.
Setting Up Datasources in Oracle9iAS Web Services (OC4J)......ccccceiiiiiiiiiiiniicnnes
Deploying Stored Procedure Web Services............ccccooiiiiiniiiiiiiiiiniiiccces
Limitations for Stored Procedures Running as Web Services ..o,
Supported Stored Procedure Features for Web Services...........cccccceiiiiiiiiiiiiinnnnns
Unsupported Stored Procedure Features for Web Services.........c.cccccecciiiiccciiccncnns
Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services

6 Developing and Deploying Document Style Web Services

Using Document Style Web Services............ccccooiiiiiiiiiniiiiiiiiiiiiccs 6-2
Writing Document Style Web Services............cccocooiviiiiiiiiiiiis 6-3
Supported Method Signatures for Document Style Web Services..........c.ccoooveirieirininnen. 6-3
Passing Null Values for Document Style Web Services...........ccocoeueieiviiiiiiiicceine. 6-3

ATrrays Of EIEMENTSc.ovoviiiiiiiiiiiiccc s 6-4
Writing Stateless and Stateful Document Style Web Servicescccooeiiiiniiniicniinnnn 6-4
Writing Classes and Interfaces for Document Style Web Services..........cccooeviiiiniicnnnns 6-5
Defining Methods in a Document Style Web Serviceccccoeeeueiveiicicnvnicene 6-5
Defining an Interface for Explicit Method Exposurec.ccccoviiniiiiininininiccce 6-7
Handling Messages for Document Style Web Servicesccccooeveiviiieiiiccicieincne, 6-9
Preparing Document Style Web Services............cccccoiiiniiiininiiiiic 6-9
Creating a Configuration File to Assemble Document Style Web Services....................... 6-10
Adding Web Service Top Level Tagscccccevuiiiiiiiiciiiiiiiiiiiiiiiccccccceens 6-10
Adding Java Service Tags with Document Message Style Specified...............c.c........ 6-11
Adding WSDL and Client-Side Proxy Generation Tags..........cccccoeevviirieieiiicicicienn. 6-13
Running WebServicesAssembler With Document Style Web Services..........c.ccceeruenan 6-16
Deploying Document Style Web Services ..o, 6-16

7 Developing and Deploying JMS Web Services

JIMS WeD Services OVEIVIEWccoociiiiirieiieieiieiesteetesteeiesseetesstessesseesseseessessessesnsessesnsessesssesseens 7-2
UsiNg JMS WEb SeIVICEScuiviiiiciiiicecie b s 7-2
JMS Web Services Backend Message Processingccocoeevveceieiniccieisicccceecce s 7-3

Using an MDB for Message Processing...........ccceueueueueururiiieiciceninieieieiceeceeeeeeeeeeeeeeneneeeens 7-3
Using a JMS Client for Message Processingcccvveuriuriiinieinieinieiciece e, 7-4

Writing JMS Web Services and Handling Messagesccccocevviviniinininninininnins 7-6

Using an MDB for Backend Message Processing..........c.ccceeueucueueururerinieieenneneeeeierieeeeeeneeenes 7-6
Developing the MDB that Processes Incoming Messages...........cccceuovreieiriinieieinnncnen. 7-7
Developing the MDB that Generates Outgoing Messages...........ccccococoeeieieiicicreinencnen. 7-8
Compiling and Preparing the MDB EJB.jar File.........ccccccccoceiiiiiiiiiiiincicceee 7-8
Assembling the J]MS Web Service With the MDB...........cccoooi 7-8
Defining the Server-Side Resource Referencescccevvviviniiiciiinininininnniin 7-9

Using a JMS Standalone Program for Backend Message Processing............ccccccevueueueuennne. 7-9

Message Processing and Reply Messages...........cccoceueueiiiinieieiiiicicieeciee i 7-10

vi

Preparing and Configuring JMS Web Services............ccccovvviviniiinnninnnne, 7-11

Creating a Configuration File to Assemble JMS Web Services..........cccccceiiiiiiiinnnnns 7-12
Adding Web Service Top Level Tagsccccccceuiuiuiiiiiiiiiicecccceieeceeeeeenenenes 7-12
Adding JMS Doc Service Tags........ccourueueiiiirieiiiiciciecc e 7-13
Adding WSDL and Client-Side Proxy Generation Tagscccccceviiiiiiiiiiiiiicnnnns 7-16

Running WebServicesAssembler With JMS Web Services.........ccccccceiiciiiccccciccncnes 7-17

Deploying JMS Web Services ... 7-17
Limitations for JMS Web ServVicCes.........coccooviririirininiinieiiieinietrietrtetreteie ettt 7-18

Building Clients that Use Web Services

Locating Web Services ..o 8-2
Getting WSDL Files and Client-Side Proxy Jars for Web Services............cccccoooniiinininnnce. 8-2
Using the Web Service Home Page to Save WSDL and Client Side Proxies........................ 8-3
Limitations for Web Service Test Pages...........cccccciuiiiiiiiiiiiiiiiiccciccccccnes 8-4
Getting Web Service WSDL and Client-Side Proxies Directly.........cccccccoeeciiiiccccccncnas 8-5
Getting WSDL Service Descriptions.........coccueieiiiicieieiicieiccnie s 8-5

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar.........c.cccoocovueueiinnnnnn. 8-5

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package..................... 8-6
Generating Client-Side Proxies With WebServicesAssembler ..o 8-8
Working with Client-Side Proxy Jar to Use Web Services.............cccccoiiiiiiiiiiiiiiiiicnn, 8-9
Using Web Services Security Features.........c.ccccccciiiiiiiiiiiiiicccccceeeeeieeennes 8-11
Working with WSDL Files and JDeveloper to Use Web Services............c.cccocoviiiiiinnnnns 8-14

Web Services Assembly Tool

Running the Web Services Assembly Tool..............ccccooviiiniiii, 9-2
Web Services Assembly Tool Configuration File Sample.............ccccoccoiiiiiiiiiiiii, 9-2
Web Services Assembly Tool Configuration File Sample OQutputcccccoevvevevivvriiinnnene. 9-4
Generating WSDL Files and Client Side Proxies............cccccooovvinnninnnnne, 9-5
Generating and Assembling WSDL Files...........ccccccooiiiiiiiiiiccccccceiceenas 9-5
Manually Producing a WSDL Filec.cccccciiiiiiiiiiiiiccccccceecceeeeeeenenenes 9-7
Generating Client-Side Proxies with WSDL.........ccocooiiiiie 9-8
Web Services Assembly Tool Configuration File Specification................cccccooeiiiiiiiin, 9-9
Web Services Assembly Tool Limitations.............ccccccoeiiininiiiis 9-11

Vii

10 Discovering and Publishing Web Services

viii

UDDI Registration............ccccooviiiiiiiiiiiiccc s 10-2
UDDI REGISEIYcoviiiiiiiiiiiiicic s 10-2
Oracle UDDI Enterprise Web Services Registry............ccccocooiiiiiiiiiiiiccns 10-4
Web Services DISCOVETY ..o s 10-5
USING TOOLS ...ttt 10-5
Using the Inquiry APL.........c.oooiiii e 10-5
Web Services Publishing.............cccccccooiiiiiiiiiiii s 10-8
Using Oracle Enterprise Managercccccccciuieiriiiiieiinieeieeeeeeeeneseeenee e nenenens 10-8
Oracle UDDI ReZISIIYcoouruiiiiiicieiicie ettt 10-9
Using the Oracle Enterprise Manager Deploy Applications Wizard...........cccooeveirriiain 10-9
Using the Oracle Enterprise Manager Web Services Details Windowcccccccccueeeee. 10-11
Updating Published Web Services in the UDDI Registry.........cccccooeuiivirieieiiiciiiinne 10-12
Using the Publishing AP ..o 10-14
UDDI Registry AdminiStration........c.cccocceuiciiiiiiiiiceeeceeeeeeeeeeeeenee e 10-19
User Managementcccooueiiiiiiiiiii 10-19
Performance Monitoring and TUNING..........ccccceiiiiiiiiiiiiiccces 10-20

Data Backup and Restore Operations..........c.ccccceccueiiiiicicciceeeceecnceenenenenenens 10-20

Using the Command-Line Tool uddiadminjar..........ccccoooieieiiiiiiiiiiic 10-20

Server Configuration..........cccceiiiiiiiiiiiiic s 10-20

User Account Management............cocociiiiiiiininiiincecse s 10-21
Administrative Entity Managementccoooiiiiiiiiic 10-21

IMpPOort OPeration.........cooviviiiiiiiiiiic s 10-22
Database CONfiguration...........coccceieuiuiiiiieiceeeeecceeeeeee e 10-22

Built-in Validated Category Management.............cococeueiiiniciniiiccicccce e 10-23
TranSPOTt SECUTILYcuouiiiiiiiiiiicccc e 10-25
Additional Information............cocoeeeiiiiiiiiiii s 10-26

Server Configuration Parameters Reference Informationc.cccoeoeveveieiiiiinininns 10-26
Database Character Set and Built-in ISO-3166 Classification.............c...coooeiiiiiiinnn, 10-29
Recommended Configuration for a Production Environment.............ccccoovnnnnnnne. 10-30

11 Consuming Web Services in J2EE Applications

Consuming XML or HTML Streams in J2EE Applicationscccccoovvinnnnnnnnnnnc. 11-2
Web Service HTML /XML Stream Processing Wizard ..o 11-2
Sample USe SCENATIOS.......ceuevieiurieieiiicicie ettt 11-3

Handling an XML or HTML Stream Accessed Through a Static URL........................ 11-3
Handling an XML or HTML Stream Accessed Through a Formcccccccccceuvenine 11-13
Advanced Section -- Editing Changes You Can Make to Generated Files...................... 11-31
Editing the Generated XSLT Stylesheetcccccccoviviiiiiiinininiiiiiiiiiiiis 11-32
Modifying Environment Options in the Generated ejb-jar.xml File.......................... 11-32

Consuming SOAP-Based Web Services Using WSDLccccccovviiiiiiiiniiin, 11-33
Advanced Configuration..........ccccceuiuiiiiiininiiiiiiiiiii e 11-35
Known Limitations of the wsdI2ej Utilityccccovviiiiiiiiniiiicccccceccecne 11-40
Running the Demonstration ... 11-41

RPC and Document Style with Simple Types Exampleccocoovoieiiiiiiiiininne, 11-42
Round 2 Interop Services: Base Test Suite Example.........cccccccoevvviiiinniiiinnnne 11-45
Dynamic Invocation of Web Services............ccccoeviiiiiiiiiiiiiiiiic 11-52
Dynamic Invocation AP ... 11-52
WebServiceProXy CHENE ..o 11-56
Known Limitations.......c.coeeiiieiiiiiccccc s 11-60

A Using Oracle SOAP

Understanding Oracle9iAS SOAP..........ccoooiiiiiiic e A-2
Apache SOAP Documentation.............ccocoiiiiiiiiiiiiiiiiii e A-3
Configuring the SOAP Request Handler Servlet.............ccoooiiiiniinnniicccceee, A-3
Using Oracle9iAS SOAP Management Utilities and Scripts............cccocooiiiiiiniinn, A-6
Managing Providers.........cccoiiiiiiiiiiiiiiiiii e A-6
Using the Service Manager to Deploy and Undeploy Java Servicescccccccocucucucucucncnnns A-7
Generating Client Proxies from WSDL Documents............c.cooueveinininininiiieiciecececans A-8
Generating WSDL Documents from Java Service Implementationsccccocoooveveiniennen. A-9
Deploying Oracle9iAS SOAP Services ... A-10
Creating Deployment Descriptorscccicueieiiiiicieiiicicie e A-10
Installing a SOAP Web Service in OC4]cccciiiiiiiiiiiiiiiccccccccceinnes A-12
Disabling an Installed SOAP Web Service........cccoceiiiiiiiiiiiiiiccicccccecceeeeenenenes A-12
Installing a SOAP Web Service in an OC4] Cluster..........ccccovoirieieiiicieiiiceecee A-12

Using Oracle9iAS SOAP Handlers.............ccccooviiiiiiiiiiiiiiiiiiiie e A-13

Request Handlers...........cccouiuiiiiiiiiiiiiiiiiiiii e A-13
Response Handlersccciiiiiiiiiiiiceeeececeeee e A-13
Error Handlers ...t A-13
Configuring Handlerscccccciiiiiiiiiiiiiiiccci e A-13
Using Oracle9iAS SOAP Audit Logging...........ccccccoviviiiiniiiiiiiiics A-14
Audit Logging INformation...........c.coeuoieiiiiniciicccc s A-15
Audit Logging OUtPUL.......ccccoeuiiiiiiiiiiiiiiii e A-15
Auditable EVENtS........cccoviiiiiiiiic e A-15
Audit Logging FIlters.........ccoouoiiiiiiiiiicec s A-16
Configuring the Audit LOZGETccccceuiiiiiiiiiiiiiiiiiiiccicc e A-18
Using Oracle9iAS SOAP Pluggable Configuration Managersccccccccccueueucucuccrccncnenes A-20
Working With Oracle9iAS SOAP Transport Security.........ccccovviiiiiiiiiiiiiiiiicis A-21
Apache Listener and Servlet Engine Configuration for SSLc.ccccooiiiniiiiiinnnn. A-25
Using JSSE with Oracle9iAS SOAP CLentcccccoeueuiimiiiiiiiiiiiccecceeeeeeeeeeeeeenennas A-25
Using Oracle9iAS SOAP Sample Services.............cocoviiiiiiiiiiiiiiiiiiiiiceees A-28
The Xmethods Sample ... A-28
The AddressBook Sample.........cccccciiiiiiiiiiiiiicceceee e A-28
The StockQuote Sample...........c.ooiiieiiiiic s A-28
The Company SAMPIe..........cccciiiiiiiiiii e A-29
The Provider SAmple.........ccoiiiiiiiiiiceee e A-29
The AddressBook2 Sample..........ccoouiiiiiiiiiii A-29
The Messaging SAmPlecccccciiiiiiiiiiiiiiii e A-29
The MiIme SAmPLec.ciuimiiiiiiiieccee et A-29
Using the Oracle9iAS SOAP EJB Provider ... A-29
Stateless SesSioN EJB PrOVIAETcceoiviieiieieieieeeteeee ettt A-29
Stateful Session EJB Provider in Apache SOAP ..o A-30
Stateful Session EJB Provider in Oracle9iAS SOAP........oceivieivieiinieireeeeeeeeee e A-30
Entity EJB Provider in Oracle9iAS SOAP.........cccccoiiiiiiiiiccces A-30
Deployment and Use of the Oracle9iAS SOAP EJB Providerccccocoeiiiiiiininnnnce. A-31
Current Known EJB Provider Limitationscccceceeereriinienenenienienieteteteceeeeceie e A-32
Using PL/SQL Stored Procedures With the SP Provider...............cccccccooeiiiiiinniiiiis A-32
SP Provider Supported Functionalityc.cccccoeiiiiiiiiiiiiicccccccccceeeeeennes A-32

SP Provider Unsupported Functionality ..o, A-33

SP Provider Supported Simple PL/SQL TYPe€S......ccccoeiiiiiiiiiiiiiiiiiiciciciciccceiceieccneinnas A-33

USING ObjJeCt TYPES.....oiuiiiiiiiciect it A-34

Deploying a Stored Procedure Provider ... A-34
Translating PL./SQL Stored Procedures into Java..........cccocoeciciciiciciiiiccccccennes A-34
Deploying a Stored Procedure Service.........oocourieieiiiicieiiiicicecece s A-35
Invoking a SOAP Service that is a Stored Procedure............ccccooeeiiiiiiiiiiiiiiiiicnns A-36
SOAP Troubleshooting and Limitations..............cccocoooiniie, A-36
Tunneling Using the TcpTunnelGui Command ..o A-37
Setting Configuration Options for Debugging.............ccoceueiiiiiiiiniiiieiicccec e A-37
Using DMS to Display Runtime Information.........c.cccccecciiiiiiiiiicciiiiceccccenenes A-38
SOAP Limitations for Java Type Prcedence with Overloaded Methodscccc.c....... A-38
Oracle9iAS SOAP Differences From Apache SOAPccccovvininiininnnnnni, A-39
Service Installation Differences ... A-39
Optional Provider Enhancements..............oooeuoiiiiiiiiciccc e A-39
Oracle Transport Libraries...........ccccocciiiiiiiiiiii e A-40
Modifications to Apache EJB Provider..........c.cccccoiiiiiiiiiiiiiicicccccccceeeeeenenes A-40
Stored Procedure Provider ... A-40
Utility ENhancements...........ccciiiiiiiiiiiicces e A-40
Modifications to Sample COde........cccooiuimimiiiiiiiiiicceeceeeccee e A-40
Handling the mustUnderstand Attribute in the SOAP Headercccoooeeiiiinnnnn. A-40
Setting the mustUnderstand Check.............ccooiiiiiiiiii e, A-41

How the mustUnderstand Check WOrKs...........ccooveiiniiiiiiiicccccce, A-41
Differences Between Apache SOAP and Oracle SOAP for mustUnderstand............. A-41

Glossary

Index

Xi

Xii

Send Us Your Comments

Oracle9 j Application Server Web Services Developer’'s Guide, Release 2 (9.0.3)
Part No. B10004-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« FElectronic mail: iasdocs_us@oracle.com
= FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
= Postal service:

Oracle Corporation

Oracle9i Application Server Web Services Developer’s Guide

500 Oracle Parkway M/S 20p3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

This guide describes Oracle9iAS Web Services.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Preface

XV

Intended Audience

Oracle9i Application Server Web Services Developer’s Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

= Configure software installed on the Oracle9i Application Server
= Create programs that implement Web Services
= Create Java programs that run as Web Services clients

To use this document, you need a working knowledge of Java programming
language fundamentals.

Documentation Accessibility

XVi

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amww.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "Web Services Overview"
This chapter provides an overview of Web Services.

Chapter 2, "Oracle9iAS Web Services"

This chapter describes the Oracle9iAS Web Services features, architecture, and
implementation.

Chapter 3, "Developing and Deploying Java Class Web Services"

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services that are implemented as Java classes.

Chapter 4, "Developing and Deploying EJB Web Services"

This chapter describes the procedures you use to write and deploy Oracle9/AS Web
Services that are implemented as stateless session Enterprise Java Beans (E]Bs).

Chapter 5, "Developing and Deploying Stored Procedure Web Services"

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services implemented as stateless PL/SQL Stored Procedures or Functions.

Chapter 6, "Developing and Deploying Document Style Web Services"

This chapter describes the procedures you use to write and deploy Document Style
Oracle9iAS Web Services implemented as Java classes.

Chapter 7, "Developing and Deploying JMS Web Services"

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services that expose JMS destinations as Web Services.

Chapter 8, "Building Clients that Use Web Services"

This chapter describes the steps required to build a client application that uses
Oracle9iAS Web Services.

Chapter 9, "Web Services Assembly Tool"

This chapter describes the Oracle9iAS Web Services assembly tool,
WebServicesAssembler |, that assists in assembling Oracle9iAS Web Services. The

Xvii

Web Services assembly tool takes a configuration file which describes the location of
the Java classes or J2EE/E]B Jar files and produces a J2EE EAR file that can be
deployed under Oracle9iAS Web Services.

Chapter 10, "Discovering and Publishing Web Services"

This chapter provides a description of the Universal Discovery Description and
Integration (UDDI)-compliant Web services registry in which business Web Service
providers in an enterprise environment can publish and describe their Web
Services.

Chapter 11, "Consuming Web Services in J2EE Applications"

This chapter describes how to consume Web Services in J2EE applications.

Appendix A, "Using Oracle SOAP"

This appendix describes Oracle SOAP and covers the differences between Apache
SOAP and Oracle SOAP.

Glossary
The glossary contains the Web Services glossary terms and descriptions.

Related Documentation

xViii

For more information, see these Oracle resources:
= Overview Guide in the Oracle9i Application Server Documentation Library.

= Oracle9iAS Containers for [2EE User’s Guide in the Oracle9iAS Documentation
Library.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/otn.oracle.comv/docs/index.htm
For additional information, see:

= http://lwww.w3.0rg/TR/SOAP/ for information on Simple Object Access
Protocol (SOAP) 1.1 specification

= http://www.uddi.org for information on Universal Description, Discovery
and Integration specifications.

« http://lwww.w3.0org/TR/wsdl for information on the Web Services
Description Language (WSDL) format.

= Java 2 Platform Enterprise Edition Specification, v1.3 at
http:/ /java.sun.com/j2ee/docs.html

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
=« Conventions in Code Examples

= Conventions for Microsoft Windows Operating Systems

Xix

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER _
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name ,

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

XX

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

{}

Other notation

Italics

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

DECIMAL (digits [, precision)

{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery ;

SELECT coll
employees;

col2 , ..., coln FROM

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEMystem_password
DB_NAME = database_name

XXi

Convention

Meaning

Example

UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish SELECT * FROM USER_TABLES;
them from terms you define. Unless terms
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names
of tables, columns, or files. salplus hr/hr
. CREATE USER mijones IDENTIFIED BY ty3MU9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.
Convention Meaning Example
Choose Start > How to start a program. To start the Oracle Database Configuration

File and directory File and directory names are not case

names

sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"system32 is the same as

C:\WINNT\SYSTEM32

XXii

Convention

Meaning

Example

C:\>

HOME_NAME

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (*). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark () do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\oracle\oradata>

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job="SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

C:\> net start Oracle
NAMENSListener

HOME _

XXili

Convention Meaning

Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3,

and ORACLE_ when you installed Oracle components,

BASE all subdirectories were located under a
top level ORACLE_HOMd#rectory that by
default used one of the following names:

. C:\orant for Windows NT
. C:\orawin95 for Windows 95
. C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOMfirectory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle .If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASEORACLE
HOMgEdbms\admin directory.

XXiV

1

Web Services Overview

This chapter provides an overview of Web Services. Chapter 2, "Oracle9iAS Web
Services" describes the Oracle9iAS Web Services features, architecture, and
implementation.

This chapter covers the following topics:
« What Are Web Services?
« Overview of Web Services Standards

= Scenario: Web Services with a Currency Converter Application

Web Services Overview 1-1

What Are Web Services?

What Are Web Services?

Web Services consist of a set of messaging protocols, programming standards, and
network registration and discovery facilities that expose business functions to
authorized parties over the Internet from any web-connected device.

This section covers the following topics:

Understanding Web Services
Benefits of Web Services

About the Web Services e-Business Transformation

Understanding Web Services

A Web Service is a discrete business process that does the following:

Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. A Web Service makes
this functionality available to other applications.

Allows other services to locate it on the web — A Web Service can be registered
in an electronic Yellow Pages, so that applications can easily locate it.

Can be invoked — Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

Returns a response — When a Web Service is invoked, the results are passed
back to the requesting application over the same Internet standard protocol that
is used to invoke the service.

Web Services provide a standards based infrastructure through which any business
can do the following:

Offer appropriate internal business processes as value-added services that can
be used by other organizations.

Integrate its internal business processes and dynamically link them with those
of its business partners.

1-2 Oracle9i Application Server Web Services Developer’s Guide

What Are Web Services?

Benefits of Web Services

The benefits for enterprises seeking to develop and use Web Services to streamline
their business processes include the following:

= Support for open Internet standards. Oracle supports SOAP, WSDL, and UDDI
as the primary standards to develop Web Services. Web Services developed
with Oracle's products can inter-operate with those developed to Microsoft's
NET architecture.

= Simple and productive development facilities. Oracle provides developers with
an easy-to-use and productive environment for developing Web Services using
a programming model that is identical to that for J2EE applications.

= Mission critical deployment facilities. Oracle provides a mission-critical
platform to deploy Web Services by unifying the Web Services and J2EE
runtime infrastructure. Oracle9iAS Web Services provide optimizations to
speed up Web Services responses, to scale Web Services on single CPUs or
multiple CPUs, and to provide high availability through fault tolerant design
and clustering.

See Also: "Overview of Web Services Standards" on page 1-5

About the Web Services e-Business Transformation

The move to transform businesses to e-Businesses has driven organizations around
the world to begin to use the Internet to manage corporate business processes.
Despite this transformation, business on the Internet still functions as a set of local
nodes, or Web sites, with point-to-point communications between them. As more
business moves online, the Internet should no longer be used in such a static
manner, but rather should be used as a universal business network through which
services can flow freely, and over which applications can interact and negotiate
among themselves.

To enable this transformation, the Internet needs to support a standards-based
infrastructure that enables companies and their enterprise applications to
communicate with other companies and their applications more efficiently. These
standards should allow discrete business processes to expose and describe
themselves on the Internet, allow other services to locate them, to invoke them once
they have been located, and to provide a predictable response.

Web Services Overview 1-3

What Are Web Services?

Web Services drive this transformation by promising a fundamental change in the
way businesses function and enterprise applications are developed and deployed.

This e-Business transformation is occurring in the following two areas:
= Business Transformation with Web Services

= Technology Transformation with Web Services

About Business Transformation with Web Services

Web Services enables the next-generation of e-business, a customer-centric, agile
enterprise that does the following:

= Expands Markets - Offers business processes to existing and new customers as
services over the Internet, opening new global channels and capturing new
revenue opportunities.

= Improves Efficiencies - Streamlines business processes across the entire
enterprise and with business partners, taking action in real-time with
up-to-date information.

= Reaches Suppliers and Partners - Creates and maintains pre-defined,
systematic, contractually negotiated relationships and dynamic, spot
partnerships with business partners who are tightly linked within supply
chains.

About Technology Transformation with Web Services

Web Services enables enterprise applications with the following technology
transformations:

= Development and Deployment — Web Services can be developed and deployed
quickly and productively.

= Locating Services — Web Services allow applications to be aggregated and
discovered within Internet portals, enterprise portals, or service registries which
serve as Internet Yellow Pages.

= Integrating Services — Web Services allow applications to locate and
electronically communicate with other applications within an enterprise and
outside the enterprise boundaries.

= Inter-Operating Services — Web Services allow applications to inter-operate with
applications that are developed using different programming languages and
following different component paradigms.

1-4 Oracle9i Application Server Web Services Developer’s Guide

Overview of Web Services Standards

Overview of Web Services Standards

This section describes the Internet standards that comprise Web Services, including:

= Simple Object Access Protocol (SOAP)

= Web Services Description Language (WSDL)

= Universal Description, Discovery, and Integration (UDDI)

Figure 1-1 shows a conceptual architecture for Web Services using these standards.

Figure 1-1 Web Services Standards

Client Application
(Web Service)

Web
Services
Directory

(UDDI)

@ pubiish

Interface (WSDL)

Application Program
(Service Implementation)

— J2EE, Java Class,
PL / SQL Stored
Procedure or

Web Service
Interface Application
WSDL Program
(Service
Implementation)

Function

Web Services Overview 1-5

Overview of Web Services Standards

Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol
for exchanging information in a decentralized, distributed environment. SOAP
supports different styles of information exchange, including: Remote Procedure Call
style (RPC) and Message-oriented exchange. RPC style information exchange
allows for request-response processing, where an endpoint receives a procedure
oriented message and replies with a correlated response message.
Message-oriented information exchange supports organizations and applications
that need to exchange business or other types of documents where a message is sent
but the sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style exchange.

SOAP has the following features:

= Protocol independence

= Language independence

= Platform and operating system independence

= Support for SOAP XML messages incorporating attachments (using the
multipart MIME structure)

See Also: http://www.w3.0rg/TR/SOAP/ for information on
Simple Object Access Protocol (SOAP) 1.1 specification

Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet. Client-side
programmers and development tools can use published WSDL descriptions to
obtain information about available Web Services and to build and create proxies or
program templates that access available services.

See Also: http://www.w3.0org/TR/wsdl for information on
the Web Services Description Language (WSDL) format.

1-6 Oracle9i Application Server Web Services Developer’s Guide

Scenario: Web Services with a Currency Converter Application

Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) specification is an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

There are two types of UDDI registries, public UDDI registries that serve as
aggregation points for a variety of businesses to publish their services, and private
UDDI registries that serve a similar role within organizations.

See Also: http://www.uddi.org for information on Universal
Description, Discovery and Integration specifications.

Scenario: Web Services with a Currency Converter Application

To understand how Web Services work, consider a currency translation service that
provides businesses with up-to-the-instant currency conversion information.
Figure 1-2 shows the characteristics of such a Web Service.

A business has a financial management application which needs to check the
conversion rate from one currency to another currency before completing a
transaction. The financial management application sends a request to the currency
conversion Web Service, it is processed, and a response is returned in real-time.

Using Web Services, there are two roles to consider, the role of the publisher that
develops the currency conversion Web Service, and the role of the caller, the
financial management application that uses the Web Service.

Web Services Overview 1-7

Scenario: Web Services with a Currency Converter Application

Figure 1-2 Currency Conversion Web Service

Business A

Needing Request / Response
Currency
Conversion A
Currency
Translation
Web Service
Characteristics

* Request, Response
* Point-to-Point

* RPC Style

» Web Security

Understanding the Publisher's Role

The publisher develops the currency conversion Web Service; the publisher’s role
includes the following:

Develop the application - The currency conversion company develops a
currency conversion application. The currency conversion application is
developed in Java/J2EE or any other programming language.

Publish the application interfaces - The currency conversion application has a
set of formalized interfaces. These interfaces are published in WSDL.

Register with a Web Service registry - The currency conversion company

registers itself as a business entity and publishes its WSDL interface in a UDDI
registry.

Understanding the Caller's Role

The caller is the financial management application that uses the currency
conversion Web Service; the caller’s role includes the following:

Search UDDI Registry - The Web Service caller, the invoking business'
enterprise application, searches the UDDI registry and locates the currency
conversion service.

Invoke the Currency Conversion Service - The invoking business invokes the
currency conversion service using the information stored in the UDDI registry.
This includes the URL for the service to locate the currency conversion service,

1-8 Oracle9i Application Server Web Services Developer’s Guide

Scenario: Web Services with a Currency Converter Application

and the WSDL interface to define the available methods in the currency
conversion service.

Communicate the Response - The caller and the Web Service communicate
following a simple request/response pattern.

Web Services Overview 1-9

Scenario: Web Services with a Currency Converter Application

1-10 Oracle9i Application Server Web Services Developer’'s Guide

2

Oracle9 /AS Web Services

This chapter describes the Oracle9iAS Web Services features, architecture, and
implementation.

This chapter covers the following topics:

Oracle9iAS OC4]J (J2EE) and Oracle SOAP Based Web Services
Oracle9iAS Web Services Features

Oracle9iAS Web Services Architecture

Understanding WSDL and Client Proxy Stubs for Web Services
Web Services Home Page

About Universal Description, Discovery, and Integration Registry

Oracle9iAS Web Services 2-1

Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services

Oracle9 /AS OC4J (J2EE) and Oracle SOAP Based Web Services

Oracle9i Application Server (Oracle9iAS) supports two different Web Services
options, a J2EE based Web Services environment built into Oracle9iAS OC4]J, and an
Apache SOAP (Oracle SOAP) based Web Services environment.

The chapters in this manual describe the Oracle9iAS OC4]J (J2EE) Web Services
environment. This environment makes it easy to develop and deploy services using
J2EE artifacts, and is moving the Oracle Web Services features toward the evolving
Web Services standards included in the next release of J2EE (J2EE 1.4). The J2EE
based Web Services environment includes many development and deployment
features that are integrated with the advanced Oracle9iAS features.

Appendix A, "Using Oracle SOAP" describes the Oracle9iAS support for Apache
SOAP (Oracle SOAP). Oracle9iAS includes support for Apache SOAP because this
implementation was one of the earliest SOAP implementations and it supports
existing Web Services applications.

Note: Oracle recommends using the Oracle9iAS OC4J (J2EE) Web
Services environment for developing Web Services. The Apache
SOAP (Oracle SOAP) implementation is currently in maintenance
mode.

Oracle9 /AS Web Services Features

Oracle9iAS provides advanced runtime features and comprehensive support for
developing and deploying Web Services. The Oracle9iAS infrastructure includes
support for the following:

= Developing End-to-End Web Services

= Deploying and Managing Web Services

= Using Oracle%i JDeveloper with Web Services
= Securing Web Services

= Aggregating Web Services

2-2 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS Web Services Features

Developing End-to-End Web Services

Oracle9iAS Web Services provides comprehensive support for developing Web
Services, including:

Development Environment — Oracle9iAS Web Services allows application
developers to implement Web Services using J2EE components. In addition,
you can use Java Classes or PL/SQL Stored Procedures to implement Web
Services. Web Services inherit all the runtime and lifecycle management
elements of J2EE Applications.

Development Tools and Wizards — Oracle9iAS Web Services Developers can use
the same set of command line utilities to create, package, and deploy Web
Services as other Oracle9iAS Containers for J2EE (OC4J) applications. In
addition Oracle9iAS Web Services provides the Web Service HTML /XML
Streams Processing Wizard that assists developers in creating an EJB whose
methods access and process XML or HTML streams.

Automatically Generating WSDL — Oracle9iAS Web Services can generate
WSDL and client-side proxy stubs. This generation occurs when the Web
Service is assembled using the WebServices Assembly tool or alternatively, for a
deployed Web Service, the first time the WSDL or the client-side proxy stubs are
requested (after the first request, the previously generated WSDL or client-side
proxy stubs are sent when requested).

Registration, Publishing, and Discovery — Oracle9iAS Web Services provides a
standards-compliant UDDI registry where Web Services can be published and
discovered. The Oracle UDDI registry supports both a private and public UDDI
registry and can also synchronize information with other UDDI nodes.

Developer Simplicity — Using Oracle9iAS Web Services, developers do not need
to learn a completely new set of concepts — Web Services are developed,
deployed and managed using the same programming concepts and tools as
with J2EE Applications.

Business Logic Reuse — Application developers can transparently publish their
J2EE Applications to new Web Services clients with no change in the
application itself. Their existing business logic developed in J2EE can be
transparently accessed from existing J2EE/E]B clients.

Common Runtime Services — Oracle9iAS has a common runtime and brokering
environment for J2EE Applications and Web Services. As a result, Web Services
transparently inherit various services available with the J2EE Container
including Transaction Management, Messaging, Naming, Logging, and Security
Services.

Oracle9iAS Web Services 2-3

Oracle9iAS Web Services Features

Deploying and Managing Web Services

Oracle Enterprise Manager and the Web Services Assembly Tool assist with
deploying and managing Oracle9iAS Web Services. These tools provide the
following support for Web Services:

« Packaging and Assembly - The Web Services Assembly Tool assists with
assembling Web Services and producing a J2EE .ear file.

= Deployment — Oracle Enterprise Manager provides a comprehensive set of
facilities to deploy Web Services to Oracle9iAS. Oracle Enterprise Manager
provides a single, consistent Deploy Applications wizard for deploying Web
Services to Oracle9iAS. It accepts a J2EE .ear file, and walks you through a set of
steps to get information about the application to be deployed, and then deploys
the application.

= Register Web Service - The Deploy Applications wizard is only available when
deploying Web Services. This step provides access to facilities for registering
Web Services in the UDDI Registry.

= Browse the UDDI Registry - Oracle's UDDI Registry provides the UDDI
standards compliant pre-defined, hierarchical categorization schemes. Oracle
Enterprise Manager can drill-down through these categories and look up
specific Web Services registered in any category.

= Monitoring and Administration — Once deployed, Oracle Enterprise Manager
provides facilities to de-install a Web Service and also to monitor Web Service
performance, as measured by response-time and throughput, and status, as
measured by up-time, CPU, and memory consumption. Oracle Enterprise
Manager also provides facilities to identify and list all the Web Services
deployed to a specific Oracle9iAS instance.

Using Oracle9 / JDeveloper with Web Services

The Oracle9i JDeveloper IDE supports Oracle9iAS Web Services. Oracle9i
JDeveloper is the industry’s most advanced Java and XML IDE and provides
unparalleled productivity and end-to-end J2EE and integrated Web Services
standards compliance.

2-4 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS Web Services Features

JDeveloper supports Oracle9iAS Web Services with the following features:

= Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

= Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

= Provides schema-driven WSDL file editing.

« Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Securing Web Services

Oracle Enterprise Manager secures Oracle9iAS Web Services in the same way that it
secures J2EE Servlets running under OC4]. This provides a comprehensive set of
security facilities, including;:

« Complete, standards-based security architecture for encryption, authentication,
and authorization of Web Services.

= Single Sign-on to enable users to access several Web Services with a single
password.

= Single Point of administration to enable users to centrally manage the security
for Web Services.

Aggregating Web Services

Oracle9iAS Portal facility provides the ability to aggregate Oracle9iAS Web Services
within an organization into a Portal. Additionally, portlets in the Oracle9iAS Portal
framework can be published as Web Services.

Oracle9iAS Web Services 2-5

Oracle9iAS Web Services Architecture

Oracle9 JAS Web Services Architecture

Oracle9iAS Containers for J2EE (OC4J) provides the foundation for building
applications as components and supports Oracle9iAS Web Services. Oracle9iAS
Web Services supports both RPC and Document Style web services.

Oracle9iAS Web Services supports the following RPC Web Services:

« Java Classes

= Stateless Session Enterprise Java Beans (EJBs)

« Stateless PL/SQL Stored Procedures or Functions

Oracle9iAS Web Services supports the following Document Style web services:
= Java Class Document Style Web Services

= JMS Document Style Web Services

For each implementation type, Oracle9iAS Web Services uses a different Servlet that
conforms to J2EE standards to provide an entry point to a Web Service
implementation. Figure 2-1 shows the Web Services runtime architecture, including
the Servlet entry points.

The Oracle9iAS Web Services runtime architecture discussion includes the
following:

= About Servlet Entry Points for Web Services
= What Are the Packaging and Deployment Options for Web Services

« About Server Skeleton Code Generation for Web Services

See Also: "Simple Object Access Protocol (SOAP)" on page 1-6 for
information on RPC Style and Document Style Web Services.

2-6 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS Web Services Architecture

Figure 2-1 Web Services Runtime Architecture (RPC and Document Style with Serviet Entry Points)

SOAP Binding

—
Encode / Decode 0C4J
. — Servlet Entry Point Stateless
SOAP Binding Java
— Encode / Decode Class
— > SOAP Binding
<O
Browser or XML Document
F lien :
at Client Servlet Entry Point Stateful
Encode / Decode é?;lgs
SOAP Binding
Servlet Entry Point Stateless
Encode / Decode Eggsmn
SOAP Binding
Servlet Entry Point Stateless
Encode / Decode PL/SQL
Apache 9iAS

Servlet Entry Point Stateless

Encode / Decode f;?;’?s
(Document
SOAP Binding Style)

Servlet Entry Point Stateful

Java
Encode / Decode Class

(Document
SOAP Binding Style)

Servlet Entry Point JMS Java

(Document
Encode / Decode Style)

SOAP Binding

Oracle9iAS Web Services 2-7

Oracle9iAS Web Services Architecture

About Servlet Entry Points for Web Services

To use Oracle9iAS Web Services, you need to deploy a J2EE .ear file to Oracle9iAS.
The J2EE .ear file contains a Web Services Servlet configuration and includes an
implementation of the Web Service. Oracle9iAS Web Services supplies the Servlet
classes, one for each supported implementation type. At runtime, Oracle9iAS uses
the Servlet classes to access the user supplied Web Service implementation.

The Oracle9iAS Web Services Servlet classes support the following Web Services
implementation types:

= Java Class (Stateless) - The object implementing the Web Service is any arbitrary
Java class. The Web Service is stateless.

= Java Class (Stateful) -The object implementing the Web Service is any arbitrary
Java class. The Web Service is considered stateful. A Servlet HitpSession
maintains the object state between requests from the same client.

= Stateless Session E]Bs - Stateless Session EJBs can be exposed as Web Services.
The Web Service is considered to be stateless.

= PL/SQL Stored Procedure or Function - The object implementing the Web
Service is a Java class that accesses the PL/SQL stored procedure or function.
The Web Service is considered to be stateless. The Oracle JPublisher tool
generates the Java access class for the PL/SQL stored procedure or function.

= Java Class Document Style Web Service (Stateless) - The object implementing
the Web Service is a Java class using a supported method signature. The Web
Service is stateless.

= Java Class Document Style Web Service (Stateful) -The object implementing the
Web Service is a Java class using a supported method signature. The Web
Service is considered stateful. A Servlet HttpSession maintains the object
state between requests from the same client.

= Java JMS Web Service - Supports sending and receiving messages to or from
JMS destinations. Using the JMS Web Service you can include an MDB to
handle or generate messages.

When a Web Service is deployed, a unique instance of the Servlet class manages the
Web Service. The Servlet class is implemented as part of Oracle9iAS Web Services
runtime support. To make Web Services accessible, you deploy the Web Service
implementation with the corresponding Web Services Servlet.

2-8 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS Web Services Architecture

Note: Using Oracle9iAS SOAP, based on Apache SOAP 2.2, there
is only a single instance of a single Servlet entry point for all the
Web Services in the entire system. The Oracle9iAS Web Services
architecture differs; under Oracle9iAS Web Services, a unique
Servlet instance supports each Web Service.

RPC Style Web Service implementations under Oracle9iAS Web Services that take
values as parameters or that return values to a client need to restrict the types
passed. This restriction allows the types passed to be converted between XML and
Java objects (and between Java objects and XML). Table 2-1 lists the supported
types for passing to or from Oracle9iAS Web Services.

Document Style Web Service implementations under Oracle9iAS Web Services
restrict the signature of the Java methods that implement the Web Service. Only
org.w3c.dom.Element can be passed to or sent from these Web Services.

Table 2-1 Web Services Supported Data Types (for RPC Parameters and Return
Values)

Primitive Type Object Type
Boolean java.lang.Boolean
byte java.lang.Byte
double java.lang.Double
float java.lang.Float

int java.lang.Integer
long java.lang.Long
short java.lang.Short
string java.lang.String

java.util.Date
org.w3c.dom.Element
org.w3c.dom.Document
org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table

Oracle9iAS Web Services 2-9

Oracle9iAS Web Services Architecture

What Are the Packaging and Deployment Options for Web Services

Oracle9iAS Web Services are accessed as Servlets, thus, Web Services need to be
assembled. The WebServicesAssembler tool prepares J2EE .ear files for Web
Services by configuring a web.xml file that is a component of a J2EE .war file, and
including the required resources and the implementation and support classes.

To build a Web Service with the assembly tool, you can supple a Jar file, .war file,
ebjjar, or .ear file that includes your Web Service implementation. The assembly
tool then build the Web Service using configuration information specified in its
XML configuration file.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web Services"
= Chapter 4, "Developing and Deploying EJB Web Services"

= Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

= Chapter 6, "Developing and Deploying Document Style Web Services"
« Chapter 7, "Developing and Deploying JMS Web Services"

About Server Skeleton Code Generation for Web Services

The first time Oracle9iAS Web Services receives a request for a service, the Servlet
entry point automatically does the following (this discussion does not apply for JMS
Web Services, which are handled differently):

Validates the class loading. All the classes that are required for the Web Service
implementation must conform to standard J2EE class loading norms.

Validates the data types. All the Java classes or EJBs must conform to the
restrictions on supported parameter and return types as shown in Table 2-1.

Generates server skeleton code. The server skeleton code is only generated the
first time the Web Service is accessed or when the ear file is redeployed (when
an application is redeployed, the server skeleton code and other Web Services
support files are regenerated). The generated code is stored in the temporary
directory associated with the Servlet context. The server skeleton code controls
the lifecycle of the EJB (for Stateless Session EJB implementations), handles the
marshaling of the parameters and return types (for SOAP RPC based Web
Services), and dispatches to the actual Java class or EJB methods that implement
the service.

2-10 Oracle9i Application Server Web Services Developer’s Guide

Understanding WSDL and Client Proxy Stubs for Web Services

After the server skeleton class is generated, when subsequent requests for a
service are received, the server skeleton directly handles marshalling and then
invokes the method that implements the service (for Web Services implemented
with PL/SQL stored procedures or functions, the server skeleton invokes the
Java class that accesses the Database containing the PL/SQL stored procedure
or function).

For document style Web Services, the server skeleton passes the DOM element
to the method that implements the service.

Understanding WSDL and Client Proxy Stubs for Web Services

Oracle9iAS Web Services provides a tool to generate a WSDL file that can be
packaged with a Web Service at assembly time, or the WSDL file can be generated
at runtime. This tool also supports generating client-side proxy stubs, given a
WSDL file.

There are several elements to Oracle9iAS Web Services WSDL support. First, RPC
style Web Services are based on interoperable XML data representations and
arbitrary Java objects do not in general map to XML. Oracle9iAS Web Services
supports a set of XML types corresponding to a set of Java types (see Table 2-1 for
the list of supported Java types).

Second, using Oracle9iAS Web Services, an application developer can either
statically generate the WSDL interfaces for a Web Service or the Oracle9iAS Web
Services runtime can generate WSDL and client-side proxy stubs if they are not
provided when a Web Service is deployed. These files can be generated by the
runtime on the server-side and delivered when they are requested by a Web
Services client.

Oracle9iAS also provides a client-side tool to statically generate WSDL given a Java
class or a J2EE application. Likewise, the Web Services Assembly tool can generate
the client-side proxy given a generated WSDL file or a known WSDL endpoint.

See Also:

= "Generating Client-Side Proxies With WebServicesAssembler"
on page 8-8

= "Generating WSDL Files and Client Side Proxies" on page 9-5

Oracle9iAS Web Services 2-11

Understanding WSDL and Client Proxy Stubs for Web Services

Overview of a WSDL Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client
application development, the Oracle9iAS Web Services runtime can generate WSDL
to describe a Web Service. Using the WSDL, development tools can assist
developers in building applications that invoke Web Services.

See Also:

= "Using Oracle9i JDeveloper with Web Services" on page 2-4
= Chapter 8, "Building Clients that Use Web Services"

Overview of a Client-Side Proxy Stubs Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client-side
application development, Oracle9iAS Web Services can generate client-side proxy
stubs. The client-side proxy stubs hide the details of composing a SOAP request and
decomposing the SOAP response. The generated client-side proxy stubs support a
synchronous invocation model for requests and responses. The generated stubs
make it easier to write a Java client application to make a Web Service (SOAP)
request and handle the response.

See Also: Chapter 8, "Building Clients that Use Web Services"

2-12 Oracle9i Application Server Web Services Developer’s Guide

Web Services Home Page

Web Services Home Page

Oracle9iAS Web Services provides a Web Service Home Page for each deployed
Web Service.

A Web Service Home Page provides the following:

« A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

= Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

= Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Figure 2-2 shows a sample Web Service Home Page.

Figure 2-2 Web Service Home Page

StatefulExample endpoint

WWSDL for Service: StatefulExample, generated by Oracle WSDL toolkit (version: 1.1}

For a formal definition, please review the Service Description (rpe siyie).

StatefulExample service

The following operations are supported.

« count
« hellovorld

ocdj client

The java proxy is packaged in a jar either as classes or sources files.

« Prowxy Jar
+ Prody SoUrce

Oracle9iAS Web Services 2-13

About Universal Description, Discovery, and Integration Registry

About Universal Description, Discovery, and Integration Registry

The Universal Description, Discovery, and Integration (UDDI) specification consists
of a four-tier hierarchical XML schema that provides the base information model to
publish, validate, and invoke information about Web Services. The four types of
information that the UDDI XML schema defines are:

Business Entity - The top level XML element in a UDDI entry captures the
starting set of information required by partners seeking to locate information
about a business' services including its name, its industry or product category,
its geographic location, and optional categorization and contact information.
This includes support for Yellow Pages taxonomies to search for businesses by
industry, product, or geography.

Business Service - The businessService structure groups a series of related Web
Services together so that they can be related to either a business process or a
category of services. An example of a business process could be a
logistics/delivery process which could include several Web Services including
shipping, routing, warehousing, and last-mile delivery services. By organizing
Web Services into groups associated with categories or business processes,
UDDI allows more efficient search and discovery of Web Services.

Binding Information - Each businessService has one or more technical Web
Service Descriptions captured in an XML element called a binding template.
The binding template contains the information that is relevant for application
programs that need to invoke or to bind to a specific Web Service. This
information includes the Web Service URL address, and other information
describing hosted services, routing and load balancing facilities.

Compliance Information - While the bindingTemplate contains the information
required to invoke a service, it is not always enough to simply know where to
contact a particular Web Service. For instance, to send a business partner's Web
Service a purchase order, the invoking service must not only know the
location/URL for the service, but what format the purchase order should be
sent in, what protocols are appropriate, what security required, and what form
of a response will result after sending the purchase order. Before invoking a
Web Service, it is useful to determine whether the specific service being invoked
complies with a particular behavior or programming interface. Each
bindingTemplate element, therefore, contains an element called a tModel that
contains information which enables a client to determine whether a specific
Web Service is a compliant implementation.

2-14 Oracle9i Application Server Web Services Developer’s Guide

About Universal Description, Discovery, and Integration Registry

Oracle Enterprise Manager Features to Register Web Services

When a Web Service is deployed on Oracle9iAS, you can use Oracle Enterprise
Manager to register the specific Web Service and publish its WSDL to the UDDI
registry and to discover published Web Services.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Oracle9iAS Web Services 2-15

About Universal Description, Discovery, and Integration Registry

2-16 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying Java Class Web
Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services that are implemented as Java classes.

This chapter covers the following topics:

= Using Oracle9iAS Web Services With Java Classes

= Writing Java Class Based Web Services

» Preparing and Deploying Java Class Based Web Services

= Serializing and Encoding Parameters and Results for Web Services

Developing and Deploying Java Class Web Services 3-1

Using Oracle9iAS Web Services With Java Classes

Using Oracle9 /AS Web Services With Java Classes

This chapter shows sample code for writing Web Services implemented with Java
classes and describes the difference between writing stateful and stateless Java Web
Services.

Oracle9iAS supplies Servlets to access the Java classes which implement a Web
Service. The Servlets handle requests generated by a Web Service client, run the
Java method that implements the Web Service and returns results back to Web
Services clients.

See Also:
= Chapter 2, "Oracle9iAS Web Services"
= Chapter 4, "Developing and Deploying EJB Web Services"

= Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

= Chapter 8, "Building Clients that Use Web Services"

Writing Java Class Based Web Services

Writing Java class based Web Services involves building a Java class that includes
one or more methods. When a Web Services client makes a service request,
Oracle9iAS Web Services invokes a Web Services Servlet that runs the method that
implements the service request. There are very few restrictions on what actions Web
Services can perform. At a minimum, Web Services generate some data that is sent
to a client or perform an action as specified by a Web Service request.

This section shows how to write a stateful and a stateless Java Web Service that
returns a string, "Hello World". The stateful service also returns an integer running
count of the number of method calls to the service. This Java Web Service receives a
client request and generates a response that is returned to the Web Service client.

The sample code is supplied with Oracle9iAS Web Services in the directory
$ORACLE_HOME/webservices/demo/basic/java_services on UNIX or in
%ORACLE_HOME%\webservices\demo\basic\java_services on Windows.

3-2 Oracle9i Application Server Web Services Developer's Guide

Writing Java Class Based Web Services

Writing Stateless and Stateful Java Web Services

Oracle9iAS Web Services supports stateful and stateless implementations for Java
classes running as Web Services, as follows:

» For a stateful Java implementation, Oracle9iAS Web Services uses a single Java
instance to serve the Web Service requests from an individual client.

= For a stateless Java implementation, Oracle9iAS Web Services creates multiple
instances of the Java class in a pool, any one of which may be used to service a
request. After servicing the request, the object is returned to the pool for use by
a subsequent request.

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing and Deploying Java Class
Based Web Services" on page 3-9.

Building a Sample Java Class Implementation

Developing a Java Web Service consists of the following steps:

= Defining a Java Class Containing Methods for the Web Service
= Defining an Interface for Explicit Method Exposure

= Writing a WSDL File (Optional)

Defining a Java Class Containing Methods for the Web Service

Create a Java Web Service by writing or supplying a Java class with methods that
are deployed as a Web Service. In the sample supplied in the java_services
sample directory, the .ear file, ws_example.ear contains the Web Service source,
class, and configuration files. In the expanded .ear file, the class
StatefulExamplelmpl provides the stateful Java service and
StatelessExamplelmpl provides the stateless Java service.

Developing and Deploying Java Class Web Services 3-3

Writing Java Class Based Web Services

When writing a Java Web Service, if you want to place the Java service in a package,
use the Java package specification to name the package. The first line of
StatefulExamplelmpl.java specifies the package name, as follows:

package oracle j2eews_example;

The stateless sample Web Service is implemented with StatelessExamplelmpl ,
a public class. The class defines a public method, helloWorld() . In general, a Java
class for a Web Service defines one or more public methods.

Example 3-1 shows StatelessExamplelmpl

The stateful sample Web Service is implemented with StatefulExamplelmpl ,a
public class. The class initializes the count and defines two public methods,
count() and hellowWorld()

Example 3-2 shows StatefulExamplelmpl

Example 3-1 Defining A Public Class with Java Methods for a Stateless Web Service
package oracle j2eews_example;

public class StatelessExamplelmpl {
public StatelessExamplelmpl() {
}
public String helloWord(String param) {
retum "Hello World, " + param;
}
}

Example 3-2 Defining a Public Class with Java Methods for a Stateful Web Service
package oracle j2eews_example;

public class StatefulExamplelmpl {
intcount=0;
public StatefulExamplelmpl() {
}
public int count() {
retum count++;
}
public String helloWord(String param) {
retum "Hello World, " + param;
}
}

3-4 Oracle9i Application Server Web Services Developer's Guide

Writing Java Class Based Web Services

A Java class implementation for a Web Service must include a public constructor
that takes no arguments. Example 3-1 shows the public constructor
StatelessExamplelmpl() and Example 3-2 shows StatefulExamplelmpl()

When an error occurs while running a Web Service implemented as a Java class, the
Java class should throw an exception. When an exception is thrown, the Web
Services Servlet returns a Web Services (SOAP) fault. Use the standard J2EE and
OC4J administration facilities to view the logs of Servlet errors for a Web Service
that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web Service, the
method’s parameters and return values must use supported types, or you need to
use an interface class to limit the methods exposed to those methods using only
supported types. Table 3-1 lists the supported types for parameters and return
values for Java methods that implement Web Services.

Note: See Table 3-1 for the list of supported types for parameters
and return values.

Defining an Interface for Explicit Method Exposure

Oracle9iAS Web Services allows you to limit the methods you expose as Web
Services by supplying a public interface. To limit the methods exposed in a Web
Service, include a public interface that lists the method signatures for the methods
that you want to expose. Example 3-3 shows an interface to the method in the class
StatelessExamplelmpl . Example 3—4 shows an interface to the methods in the
class StatefulExamplelmpl

Example 3-3 Using a Public Interface to Expose Stateless Web Services Methods
package oracle j2eews_example;

public interface StatelessExample {
String helloWorld(String param);
}

Developing and Deploying Java Class Web Services 3-5

Writing Java Class Based Web Services

Example 3—4 Using a Public Interface to Expose Stateful Web Services Methods
package oracle j2eews_example;

public interface StatefulExample {
int count();
String helloWord(String param);
}

When an interface class is not included with a Web Service, the Web Services
deployment exposes all public methods defined in the Java class. Using an interface,
for example StatelessExample shown in Example 3-3 or StatefulExample
shown in Example 3—4, exposes only the methods listed in the interface.

Note: Using an interface, only the methods with the specified
method signatures are exposed when the Java class is prepared and
deployed as a Web Service.

Use a Web Services interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed as Web Services to include
methods within the superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported types for
parameters or return values. Table 3-1 lists the supported types for parameters
and return values for Java methods that implement Web Services.

See Also: "Using Supported Data Types for Java Web Services" on
page 3-7

Writing @ WSDL File (Optional)

The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

3-6 Oracle9i Application Server Web Services Developer's Guide

Writing Java Class Based Web Services

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-5

Using Supported Data Types for Java Web Services

Table 3-1 lists the supported data types for parameters and return values for
Oracle9iAS Web Services.

Table 3-1 Web Services Supported Data Types

Primitive Type Object Type
Boolean java.lang.Boolean
byte java.lang.Byte
double java.lang.Double
float java.lang.Float

int java.lang.Integer
long java.lang.Long
short java.lang.Short
string java.lang.String

java.util.Date
org.w3c.dom.Element
org.w3c.dom.Document
org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: Oracle9iAS Web Services does not support Element]]
(arrays of org.w3c.dom.Element).

Developing and Deploying Java Class Web Services 3-7

Writing Java Class Based Web Services

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

= It must have a constructor taking no arguments.
= It must expose all interesting state through properties.

« It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle9iAS Web Services allows Beans to be returned or passed in as arguments to
J2EE Web Service methods, as long as the Bean only consists of property types that
are listed in Table 3-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side
code should use the generated Bean included with the downloaded client-side
proxy. This is because the generated client-side proxy code translates Simple Object
Access Protocol (SOAP) structures to and from Java Beans by translating SOAP
structure namespaces to and from fully qualified Bean class names. If a Bean with
the specified name does not exist in the specified package, the generated client code
will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle9/AS Web Services, rather than the
client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as JDeveloper, which
work directly from WSDL documents can correctly call Oracle9iAS Web Services
with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type int , the equivalent
parameter in the proxy is of type java.lang.Integer . This
mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"

3-8 Oracle9i Application Server Web Services Developer's Guide

Preparing and Deploying Java Class Based Web Services

Preparing and Deploying Java Class Based Web Services

To deploy a Java class as a Web Service you need to assemble a J2EE .ear file that
includes the deployment descriptors for the Oracle9iAS Web Services Servlet and
includes the Java class that supplies the Java implementation. This section describes
how to use the Oracle9iAS Web Services tool, WebServicesAssembler
WebServicesAssembler takes an XML configuration file that describes the Java
Class Web Service and produces a J2EE .ear file that can be deployed under
Oracle9iAS Web Services.

This section contains the following topics.
= Creating a Configuration File to Assemble Java Class Web Services

= Running WebServicesAssembler To Prepare Java Class Web Services

Creating a Configuration File to Assemble Java Class Web Services

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. This section describes how to create a
configuration file to use with Java Class Web Services.

Create a WebServicesAssembler configuration file by adding the following:
« Adding Web Service Top Level Tags

= Adding Java Stateless Service Tags

= Adding Java Stateful Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 3-2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a
<web-service> tag in the configuration file.

Example 3-5 shows a complete config.xml file, including the top level tags.

Developing and Deploying Java Class Web Services 3-9

Preparing and Deploying Java Class Based Web Services

Table 3-2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context> Specifies the context root of the Web Service.
context . . .

</context> This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

<description>
description
</description>

<destination-path>
dest_path
</destination-path>

<display-name>
disp_name
</display-name>

<option
name="source-path">
path

<option>

<stateless-java-service>
sub-tags
</stateless-java-service>

<stateful-java-service>
sub-tags
</stateful-java-service>

<temporary-directory>
temp_dir
</temporary-directory>

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to include

java resources. This resource is added to the lib directory in the
generated WAR component of the J2EE .ear file.

The path specifies the path to the file to include.

Use this tag to add a Java Web Services that defines a stateless service. See
Table 3-3 for a description of valid sub-tags.

Use this tag to add a Java Web Services that defines a stateful service. See
Table 3-3 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Adding Java Stateless Service Tags
Prepare Java Stateless Web Services using the WebServicesAssembler

<stateless-java-service>

tag. This tag is included within a <web-service>

tag in the configuration file. Add this tag to provide information required for
generating a Stateless Java Web Service.

3-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Table 3-3 shows the <stateless-java-service> sub-tags and the
<stateful-java-service> sub-tags. As noted in Table 3-3, some of the
sub-tags listed only apply when using a <stateful-java-service>

Example 3-5 shows a complete config.xml file, including
<stateless-java-service>

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently.

Adding Java Stateful Service Tags

Prepare Java Stateful Web Services using the WebServicesAssembler
<stateful-java-service> tag. This tag is included within a <web-service>
tag in the configuration file. Add this tag to provide information required for
generating a Stateful Java Web Service.

To support a clustered environment, for stateful Java Web Services with serializable
java classes, the WebServicesAssembler adds a <distributable> tag in the
web.xml of the Web Service’s generated J2EE.ear file.

Table 3-3 shows the <stateful-java-service> sub-tags.

Example 3-5 shows a complete config.xml file, including
<stateful-java-service>

Table 3-3 Stateless and Stateful Java Service Sub-Tags

Tag

Description

<class-name>
class
</class-name>

<interface-name>
interface
</interface-name>

<ejb-resource>
ejb-resource
</ejb-resource>

Specifies the fully qualified class name for the class that supplies the Web
Service implementation.

This tag is required

Specifies the fully qualified name of the interface that tells the Web Service
Servlet generation code which methods should be exposed as Web Services.

This tag is optional
This is a backwards compatibility tag.
See Also: the top level <option name="source-path"> tag in Table 3-2.

This tag is optional

Developing and Deploying Java Class Web Services 3-11

Preparing and Deploying Java Class Based Web Services

Table 3-3 (Cont.) Stateless and Stateful Java Service Sub-Tags

Tag

Description

<java-resource>
resource
</java-resource>

<message-style>
rpc
</message-style>

<scope>
scope
</scope>

<session-timeout>
value
</session-timeout>

<uri>
URI
</uri>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3-2.

This tag is optional

Sets the message style. When defining a Java Web Service, if you include the
<message-style> tag you must specify the value rpc .

Valid Values: doc, rpc

This tag is optional

Default value: rpc (when the <message-style> tag is not supplied)
Sets the scope of the session for stateful services.

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful-java-service> tag.

This tag is optional
Valid Values: application , session
Default Value: session

Sets the session timeout for a stateful session.

The <session-timeout> tag only applies for stateful services. Use this tag
only within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session in seconds.
The default value for the session timeout for stateful Java sessions where no
session timeout is specified is 60 seconds.

This tag is optional

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <context> to specify
the Web Service location.

This tag is required

3-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Example 3-5 Sample WebServicesAssembler Configuration File

<web-service>

<display-name>Web Services Example</display-name>

<description>Java Web Service Example</description>

<I- Specifies the resulting web service archive will be stored in
Mvs_example.ear —>

<destination-path>.Avs_example.ear</destination-path>

<I- Specifies the temporary directory that web service assembly
tool can create temporary files. —

<temporary-directory>.fmp<ftemporary-directory>

<I- Specifies the web service will be accessed in the serviet context
named "Awvebservices'. —

<context>Aebservices</context>

<I- Specifies the web service will be stateless —
<stateless-java-sernvice>
<interface-name>oracle j2eews_example.StatelessExample</interface-name>
<class-name>oraclej2ee.ws_example.StatelessExamplelmpl</class-name>
<I- Specifies the web service will be accessed in the uri named
"statelessTest" within the serviet context. —>
<uri>/statelessTest</uri>
<l- Specifies the location of Java class files are under
Jsrc—>
<java-resource> Jsrc</java-resource>
</statelessjava-service>

<statefuljava-service>
<interface-name>oracle j2ee ws_example.StatefulExample</interface-name>
<class-name>oracle j2ee.ws_example.StatefulExamplelmpl</class-name>
<I- Specifies the web service will be accessed in the uri named
"statefullTest" within the serviet context. —>
<uri>/statefulTest</uri>
<l- Specifies the location of Java class files are under
Jsrc—>
<Sjava-resource>./src</fjava-resource>
</statefuHava-service>
<Mveb-service>

Developing and Deploying Java Class Web Services

3-13

Preparing and Deploying Java Class Based Web Services

Adding WSDL and Client-Side Proxy Generation Tags

The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you supply is packaged with the Web Service J2EE .ear.

A client-side developer can use the WSDL file that is obtained from a deployed Web
Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-5

Running WebServicesAssembler To Prepare Java Class Web Services

After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the Java Web Service
servlet configuration information, including the file web.xml , and the Java classes
and interfaces that you supply.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as
follows:

java -jar WebServicesAssembler jar -config config_file

Where: config_file is the configuration file that contains the
<stateless-java-service> or the <stateful-java-service> tags.

See Also:

= "Creating a Configuration File to Assemble Java Class Web
Services" on page 3-9

= "Running the Web Services Assembly Tool" on page 9-2

Deploying Java Class Based Web Services

After creating the J2EE .ear file containing the Java classes and the Web Services
Servlet deployment descriptors you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

See Also: Oracle9iAS Containers for J2EE User’s Guide in the
Oracle9iAS Documentation Library

3-14 Oracle9i Application Server Web Services Developer’s Guide

Serializing and Encoding Parameters and Results for Web Services

Serializing and Encoding Parameters and Results for Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation go through the following steps:

1.

Parameters are serialized and encoded in XML when sent from the Web Service
client.

Parameters are deserialized and decoded from XML when the Web Service
receives a request on the server side.

Parameters or results are serialized and encoded in XML when a request is
returned from a Web Service to a Web Service client.

Parameters or results must be deserialized and decoded from XML when the
Web Service client receives a reply.

Oracle9iAS Web Services supports a prepackaged implementation for handling
these four steps for serialization and encoding, and deserialization and decoding.
The prepackaged mechanism makes the four serialization and encoding steps
transparent both for the Web Services client-side application, and for the Java
service writer that is implementing a Web Service. Using the prepackaged
mechanism, Oracle9iAS Web Services supports the following encoding
mechanisms:

Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the server
side Web Services Servlet that calls the Java class implementation handles
serialization and encoding internally for the types supported by Oracle9iAS
Web Services. Table 3-1 lists the supported Web Services parameter and return
value types when using standard SOAP v.1.1 encoding.

Literal XML encoding. Using Literal XML encoding, a Web Service client can
pass as a parameter, or a Java service can return as a result, a value that is
encoded as a conforming W3C Document Object Model (DOM)

org.w3c.dom.Element . When an Element passes as a parameter to a Web
Service, the server side Java implementation processes the
org.w3c.dom.Element . For return values sent from a Web Service, the Web

Services client parses or processes the org.w3c.dom.Element

Note: For parameters to a Web Service or results that the Web
Service generates and returns to Web Services clients, the
Oracle9iAS Web Services implementation supports either the
Standard SOAP encoding or Literal XML encoding but not both, for
any given Web Service (Java method).

Developing and Deploying Java Class Web Services 3-15

Serializing and Encoding Parameters and Results for Web Services

See Also: Chapter 8, "Building Clients that Use Web Services"

3-16 Oracle9i Application Server Web Services Developer’s Guide

A

Developing and Deploying EJB Web
Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services that are implemented as stateless session Enterprise Java Beans (E]Bs).

This chapter covers the following topics:

= Using Oracle9iAS Web Services With Stateless Session E]Bs

= Writing Stateless Session EJB Web Services

» Preparing and Deploying Stateless Session EJB Based Web Services

Developing and Deploying EJB Web Services 4-1

Using Oracle9iAS Web Services With Stateless Session EJBs

Using Oracle9 /AS Web Services With Stateless Session EJBs

This chapter shows sample code for writing Web Services implemented with
stateless session EJBs.

Oracle9iAS supplies Servlets to access the EJBs which implement a Web Service. A
Servlets handle requests generated by a Web Service client, locates the EJB home
and remote interfaces, runs the EJB that implements the Web Service, and returns
results back to the Web Service client.

See Also:
= Chapter 2, "Oracle9iAS Web Services"

= Chapter 3, "Developing and Deploying Java Class Web
Services"

= Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

= Chapter 8, "Building Clients that Use Web Services"

Writing Stateless Session EJB Web Services

Writing EJB based Web Services involves obtaining or building an EJB that
implements a service. The EJB should contain one or more methods that a Web
Services Servlet running under Oracle9iAS invokes when a client makes a Web
Services request. There are very few restrictions on what actions Web Services can
perform. At a minimum, Web Services usually generate data that is sent to a Web
Services client or perform an action as specified by a Web Services method request.

This section shows how to write a simple stateless session EJB Web Service,
HelloService that returns a string, "Hello World", to a client. This EJB Web
Service receives a client request with a single String parameter and generates a
response that it returns to the Web Service client.

The sample code for the complete Web Service is supplied with Oracle9iAS Web
Services installation in the following directory:
$ORACLE_HOME/webservices/demo/basic/stateless_ejb on UNIX
%ORACLE_HOME%\webservices\demo\basic\stateless_ejb on Windows.

Create a stateless session EJB Web Service by writing a standard J2EE stateless
session EJB containing a remote interface, a home interface, and an enterprise bean
class. Oracle9iAS Web Services runs EJBs that are deployed as Oracle9iAS Web
Services in response to a request issued by a Web Service client.

4-2 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services

Developing a stateless session EJB consists of the following steps:

= Defining a Stateless Session Remote Interface

= Defining a Stateless Session Home Interface

= Defining a Stateless Session EJB Bean

= Returning Results From E]JB Web Services

= Error Handling for EJB Web Services

= Serializing and Encoding Parameters and Results for EJB Web Services
« Using Supported Data Types for Stateless Session EJB Web Services

= Writing a WSDL File for EJB Web Services (Optional)

See Also: "Preparing and Deploying Stateless Session EJB Based
Web Services" on page 4-8

Defining a Stateless Session Remote Interface

When looking at the HelloService EJB Web Service, note that the .ear file,
HelloService.ear defines the Web Service and its configuration files. In the
sample directory, the file HelloService.java provides the remote interface for
the HelloService EJB.

Example 4-1 shows the Remote interface for the sample stateless session E]B.

Example 4-1 Stateless Session EJB Remote Interface for Web Service

package demo;

public interface HelloService extends javax.ejb.EJIBObject {
javalang.String hello(java.lang.String phrase) throws java.rmi.RemoteException;
}

Defining a Stateless Session Home Interface

The sample file HelloServiceHome.java provides the home interface for the
HelloService EJB.

Example 4-2 shows the EJBHomeinterface for the sample stateless session EJB.

Developing and Deploying EJB Web Services 4-3

Writing Stateless Session EJB Web Services

Example 4-2 Stateless Session EJB Home Interface for Web Service

package demo;
/kk

*This is a Home interface for the Session Bean
*
public interface HelloServiceHome extends javax.ejb.EJBHome {

HelloService create() throws javax.ejb.CreateException, java.rmi.RemoteException

1

}

Defining a Stateless Session EJB Bean

The sample file HelloServiceBean.java provides the Bean logic for the
HelloService EJB. When you create a Bean to implement a Web Service, the
parameters and return values must be of supported types. Table 4-1 lists the
supported types for parameters and return values for stateless session E]Bs that
implement Web Services.

Example 4-3 shows the source code for the HelloService ~ Bean.

Example 4-3 Stateless Session EJB Bean Class for Web Services

package demo;

import java.mi.RemoteException;
import java.util Properties;
import javax.ejb.*;

e

*Thisis a Session Bean Class.

¥

public class HelloServiceBean implements SessionBean {
private javax.ejb.SessionContext mySessionCtx = null;

public void ejbActivate() throws java.rmi.RemoteException {
public void ejbCreate() throws javax.ejb.CreateException,
java.mi.RemoteException {

public void ejpPassivate() throws java.rmi.RemoteException {
public void ejpRemove() throws java.mi.RemoteException {}
public javax.ejb.SessionContext getSessionContext() {

retum mySessionCtx;

4-4 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services

}
public String hello(String phrase)
{
retum "HELLO! You just said :" + phrase;
}
public void setSessionContext(javax.ejb.SessionContext ctx) throws
java.rmi.RemoteException {
mySessionCix = ctx;
}
}

Returning Results From EJB Web Services

The hello() method shown in Example 4-3 returns a String . An Oracle9iAS
Web Services server-side Servlet runs the Bean that calls the hello() = method when
the Servlet receives a Web Services request from a client. After executing the

hello() method, the Servlet returns a result to the Web Service client.

Example 4-3 shows that the EJB Bean writer only needs to return values of
supported types to create Web Services implemented as stateless session E]Bs.

See Also: "Using Supported Data Types for Stateless Session EJB
Web Services" on page 4-6

Error Handling for EJB Web Services

When an error occurs while running a Web Service implemented as an EJB, the EJB
should throw an exception. When an exception is thrown, the Web Services Servlet
returns a Web Services (SOAP) fault. Use the standard J2EE and OC4]J
administration facilities for logging Servlet errors for a Web Service that uses
stateless session EJBs for its implementation.

Serializing and Encoding Parameters and Results for EJB Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation need to be encoded and serialized. This allows the call and return
values to be passed as XML documents using SOAP.

See Also: "Serializing and Encoding Parameters and Results for
Web Services" on page 3-15

Developing and Deploying EJB Web Services 4-5

Writing Stateless Session EJB Web Services

Using Supported Data Types for Stateless Session EJB Web Services

Table 4-1 lists the supported data types for parameters and return values for
Oracle9iAS Web Services.

Table 4-1 Web Services Supported Data Types

Primitive Type Object Type
Boolean java.lang.Boolean
byte java.lang.Byte
double java.lang.Double
float java.lang.Float

int java.lang.Integer
long java.lang.Long
short java.lang.Short
string java.lang.String

java.util.Date
org.w3c.dom.Element
org.w3c.dom.Document
org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: Oracle9iAS Web Services does not support Element[] ,
(arrays of org.w3c.dom.Element).

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

= It must have a constructor taking no arguments.
= It must expose all interesting state through properties.

= It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

4-6 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services

Oracle9iAS Web Services allows Beans to be returned or passed in as arguments to
J2EE Web Service methods, as long as the Bean only consists of property types that
are listed in Table 4-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side
code should use the generated Bean included with the downloaded client-side
proxy. This is because the generated client-side proxy code translates Simple Object
Access Protocol (SOAP) structures to and from Java Beans by translating SOAP
structure namespaces to and from fully qualified Bean class names. If a Bean with
the specified name does not exist in the specified package, the generated client code
will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle9/AS Web Services, rather than the
client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as JDeveloper, which
work directly from WSDL documents can correctly call Oracle9iAS Web Services
with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type int , the equivalent
parameter in the proxy is of type java.lang.Integer . This
mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"

Writing a WSDL File for EJB Web Services (Optional)

The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

Developing and Deploying EJB Web Services 4-7

Preparing and Deploying Stateless Session EJB Based Web Services

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies” on
page 9-5

Preparing and Deploying Stateless Session EJB Based Web Services

To deploy a stateless session EJB as a Web Service you need to assemble a J2EE .ear
file that includes the deployment descriptors for the Oracle9iAS Web Services
Servlet and includes the ejb jar that supplies the Java implementation. This section
describes how to use the Oracle9iAS Web Services tool, WebServicesAssembler
WebServicesAssembler takes an XML configuration file that describes the
stateless session EJB Web Service and produces a J2EE .ear file that can be deployed
under Oracle9iAS Web Services.

This section contains the following topics.
= Creating a Configuration File to Assemble Stateless Session EJB Web Services

= Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

Creating a Configuration File to Assemble Stateless Session EJB Web Services

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. This section describes how to create a
configuration file to use with stateless session EJB Web Services.

Create WebServicesAssembler configuration file by adding the following:
= Adding Web Service Top Level Tags

= Adding Stateless Session E]B Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 4-2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a
<web-service> tag in the configuration file.

Example 44 shows a complete config.xml file, including the top level tags.

4-8 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context> Specifies the context root of the Web Service.

i(;’g(t)erictiaxp This tag is required.

<datasource-JNDI-name> Specifies the datasource associated with the Web Service.

</datasource-JNDI-name>

<description>
description
</description>

<destination-path>
dest_path
</destination-path>

<display-name>
disp_name
</display-name>

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The
dest_path specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

<option name="source-path"> Includes a specified file in the output .ear file. Use this option to

path
<option>

<stateless-session-
sub-tags
</stateless-session

include Java resources.
The path specifies the path to the file to include.
This tag is optional.

ejb-service> Use this tag to add a stateless session EJB Web Service. See
Table 4-3 for a description of the valid sub-tags.

-ejb-service>

<temporary-directory> Specifies a directory where the assembler can store temporary

temp_dir

</temporary-directory>

files.

This tag is optional.

Adding Stateless Session EJB Service Tags

Prepare Stateless Session E]B Web Services using the WebServicesAssembler
<stateless-session-gjb-service> tag. This tag is included within a
<web-service> tag in the configuration file. Add this tag to provide information
required for generating a stateless session EJB Web Service.

Table 4-3 shows the <stateless-session-ejb-service> sub-tags.

Example 4-4 shows a complete config.xml file, including
<stateless-session-ejb-service>

Developing and Deploying EJB Web Services 4-9

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-3 Stateless Session EJB Web Service Sub-Tags

Tag Description
<ejb-name> Specifies the name of the stateless session EJB.
name

<lejb-name> This tag is required
<ejb-resource> This is a backwards compatibility tag.
resource) ; _n nath" . _
<Jejb-resource> See Also: the top level <option name="source-path"> tag in Table 4-2.

This tag is optional

<path> This is a backwards compatibility tag.

path . . _n : " : B

<Ipath> See Also: the top level <option name="source-path"> tag in Table 4-2.
This tag is optional

<uri> Specifies servlet mapping pattern for the Servlet that implements the Web

URI Service. The path specified as the URI is appended to the <context> to specify

</uri> the Web Service location.

This tag is required.

Example 4-4 Sample Stateless Session EJB WebServicesAssembler Configuration
File
<web-service>
<display-name>EJB Web Services Demo</display-name>
<destination-path>tmp/HelloService.ear</destination-path>
<temporary-directory>tmp<ftemporary-directory>
<context>/sejb_webservices</context>

<stateless-session-ejb-service>
<path>tmp/Hello jar</path>
<uri>HelloService</uri>
<gjb-name>HelloSenvice</ejb-name>
</stateless-session-ejb-service>
<Meb-service>

4-10 Oracle9i Application Server Web Services Developer's Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Adding WSDL and Client-Side Proxy Generation Tags

The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-5

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the stateless session
EJB Web Service servlet configuration information.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:
java -jar WebServicesAssembler jar -config config_file
Where: config_file is the configuration file that contains the
<stateless-session-gjb-service> tag.

See Also:

= "Creating a Configuration File to Assemble Stateless Session
EJB Web Services" on page 4-8

= "Running the Web Services Assembly Tool" on page 9-2

Deploying Web Services Implemented as EJBs

After creating the .ear file containing a stateless session EJB, you can deploy the
Web Service as you would any standard J2EE application stored in an .ear file (to
run under OC4J).

See Also: Oracle9iAS Containers for [2EE User’s Guide in the
Oracle9iAS Documentation Library

Developing and Deploying EJB Web Services 4-11

Preparing and Deploying Stateless Session EJB Based Web Services

4-12 Oracle9i Application Server Web Services Developer's Guide

Developing and Deploying Stored
Procedure Web Services

This chapter describes how to write and deploy Oracle9iAS Web Services
implemented as stateless PL/SQL Stored Procedures or Functions (Stored
Procedure Web Services). Stored Procedure Web Services enable you to export, as
services running under Oracle9iAS Web Services, PL/SQL procedures and
functions that run on an Oracle database server.

This chapter covers the following topics:

Using Oracle9iAS Web Services with Stored Procedures
Writing Stored Procedure Web Services

Preparing Stored Procedure Web Services

Deploying Stored Procedure Web Services

Limitations for Stored Procedures Running as Web Services

Developing and Deploying Stored Procedure Web Services 5-1

Using Oracle9iAS Web Services with Stored Procedures

Using Oracle9 /AS Web Services with Stored Procedures

This chapter shows sample code for writing Web Services implemented with
stateless PL/SQL stored procedures or functions. The sample is based on a PL/SQL
package representing a company that manages employees.

Oracle9iAS Web Services supplies a Servlet to access Java classes that support
PL/SQL Stored Procedure Web Services. The Servlet handles requests generated by
a Web Service client, runs the Java method that accesses the stored procedure that
implements the Web Service, and returns results back to the Web Service client.

The Oracle database server supports procedures implemented in languages other
than PL/SQL, including Java and C/C++. These stored procedures can be exposed
as Web Services using PL/SQL interfaces.

See Also:

= Chapter 2, "Oracle9iAS Web Services"

= Chapter 3, "Developing and Deploying Java Class Web
Services"

= Chapter 6, "Developing and Deploying Document Style Web
Services"

Writing Stored Procedure Web Services

Writing Stored Procedure Web Services involves creating and installing a PL/SQL
package on an Oracle database server that is available as a datasource to Oracle9iAS
and generating a Java class that includes one or more methods to access the Stored
Procedure.

The code for the sample Stored Procedure Web Service is supplied in the directory

$ORACLE_HOME/webservices/demo/basic/stored_procedure on UNIX or
in %ORACLE_HOME%\webservices\demo\basic\stored_procedure on
Windows.

Create a Stored Procedure Web Service by writing and installing a PL/SQL Stored
Procedure. To write and install a PL/SQL Stored Procedure, you need to use
facilities independent of Oracle9iAS Web Services.

For example, to use the sample COMPANackage, first create and load the supplied
package on the database server using the create.sql script. This script, along
with several other required .sql scripts are in the stored_procedure directory.
These scripts create several database tables and the sample COMPANYackage.

5-2 Oracle9i Application Server Web Services Developer's Guide

Preparing Stored Procedure Web Services

When the Oracle database server is running on the local system, use the following
command to create the sample PL/SQL package:

sqplus scotttiger @create
When the Oracle database server is not the local system, use the following
command and include a connect identifier to create the sample PL/SQL package:

sqlplus scottfiger@ ab_service name @create
where db_service_name is the net service name for the Oracle database server.

See Also:

. "Limitations for Stored Procedures Running as Web Services" on
page 5-12

= PL/SQL User’s Guide and Reference in the Oracle Database
Documentation Library

. Oracle Net Services Administrator’s Guide in the Oracle Documentation
Library

Preparing Stored Procedure Web Services

This section describes how to use the Oracle9iAS Web Services tool
WebServicesAssembler to prepare a J2EE .ear file that supports using a PL/SQL
procedure or function as a Stored Procedure Web Service.

This section contains the following topics:

« Creating a Configuration File to Assemble Stored Procedure Web Services
= Running WebServicesAssembler With Stored Procedure Web Services

= Setting Up Datasources in Oracle9iAS Web Services (OC4]J)

Developing and Deploying Stored Procedure Web Services 5-3

Preparing Stored Procedure Web Services

Creating a Configuration File to Assemble Stored Procedure Web Services

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. This section describes how to create a
configuration file to use to assemble a Stored Procedure Web Service. The Web
Services assembly tool uses an XML configuration file that describes the Stored
Procedure Web Service and produces a J2EE .ear file that can be deployed under
Oracle9iAS Web Services.

Create WebServicesAssembler configuration file by adding the following;:
= Adding Web Service Top Level Tags
= Adding Stateless Stored Procedure Java Service Tags

= Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 5-1 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the PL/SQL Stored
Procedure Web Service.

Example 5-1 shows a complete config.xml file, including the top level tags.

Table 5-1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context> Specifies the context root of the Web Service.

i‘;::lé)erﬁaxb This tag is required.

<datasource-JNDI-name> Specifies the datasource associated with the Web Service.

</datasource-JNDI-name>

<description>
description
</description>

<destination-path>
dest_path
</destination-path>

<display-name>
disp_name
</display-name>

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

5-4 Oracle9i Application Server Web Services Developer's Guide

Preparing Stored Procedure Web Services

Table 5-1 (Cont.) Top Level

WebServicesAssembler Configuration Tags

Tag Description

<option Includes a specified file in the output .ear file. Use this option to include Java
name="source-path"> resources.

path i . .

<option> The path specifies the path to the file to include.

<stateless-stored-proce
dure-java-service>
sub-tags
</stateless-stored-proc
edure-java-service>

<temporary-directory>
temp_dir
</temporary-directory>

Use this tag to add stateless stored procedure Web Services. See Table 5-2 and
Table 54 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Adding Stateless Stored Procedure Java Service Tags

There are two ways to develop Stored Procedure Web Services using the
WebServicesAssembler

= Adding Stateless Stored Procedure Java Service Using Jar Generation

= Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Note: Most Stored Procedure Web Service developers use the Jar
generation technique for assembling the Web Service J2EE .ear file.
Only use the pre-generated Jar technique for creating a J2EE .ear
when you have a pre-generated Jar file containing JPublisher
generated classes.

Adding Stateless Stored Procedure Java Service Using Jar Generation

Using a configuration file that includes the <jar-generation> tag specifies
Oracle Database Server connection information that allows the
WebServicesAssembler to run JPublisher to generate the classes to support the
Stored Procedure Web Service. The JPublisher generated classes support accessing

Developing and Deploying Stored Procedure Web Services 5-5

Preparing Stored Procedure Web Services

the PL/SQL procedure or function and also includes classes for mapping Java types
to PL/SQL types. The WebServicesAssembler packages the generated classes
into a Jar file that is assembled with the Stored Procedure Web Service.

Table 5-2 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a
configuration file that uses Jar generation to create a Stored Procedure Web Service.
The <stateless-stored-procedure-java-service> tag is included within a
<web-service> tag in the configuration file. Add this tag to provide information
required for generating the Stored Procedure Web Service J2EE .ear file.

Table 5-3 describes the sub-tags for <jar-generation> within the
<stateless-stored-procedure-java-service> tag. The
<jar-generation> tags provide information to the WebServicesAssembler so

that it can run JPublisher to generate the Java classes for the Stored Procedure Web
Service. The WebServicesAssembler then uses these classes to generate the Jar
file that provides Java mappings for the stored procedure or function.

Example 5-1 shows a complete config.xml file, including the Stored Procedure
Web Service tags shown in Table 5-2 and Table 5-3.

Table 5-2 Stateless Stored Procedure Sub-Tags (Using Jar Generation)

Tag

Description

<database-JNDI-name> This tag specifies the JNDI name of the backend database.

source_JNDI_name

</database-JNDI-name>

<jar-generation>
sub-tags
</jar-generation>

<uri>
URI
</uri>

The data-sources.xm 1 OC4] configuration file describes the database server
source associated with the specified source_JNDI_name .

Table 5-3 describes the supported sub-tags for <jar-generation>
Example:

<jar-generation>
<schema>scottfiger</schema>
<db-ur>jdbc:oracle:thin:@system1:1521:orcl</db-urt>
<prefix>sp.company</prefix>
<db-pkg-name>Company</db-pkg-name>
</jar-generation>
This tag specifies servlet mapping pattern for the Servlet that implements the

Web Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.

5-6 Oracle9i Application Server Web Services Developer's Guide

Preparing Stored Procedure Web Services

Table 5-3 Stateless Stored Procedure <jar-generation> Sub-Tags

Tag

Description

<db-pkg-name>
pkg_name
</db-pkg-name>

<db-url>
url_path
</db-url>

<method-name>
method
</method-name>

<prefix>

prefix
</prefix>

<schema>

user_name/ password

</schema>

Where pkg_name is the name of the PL/SQL package to export.

This is required when <jar-generation> is included.

Where url_path is the database connect string for the Oracle database server with
the specified package to export. The <schema> and <db-url> are combined to
connect to the database which contains the stored procedures to be exported.

This is required when <jar-generation> is included.
Example:
<db-uri>jdbc:oracle:thin:@systeml.us.oracle.com:1521 tv1</db-ur>

Where method is the name of the PL/SQL method to export.

This tag is optional. Including multiple <method> tags is valid. In this case the
specified methods are exported.

Without this tag, all methods within the package are exported. If the specified
method is overloaded, then all variations of the method are exported.

Where prefix is the Java package prefix for generated classes.

By default, the PL/SQL package is generated into a Java class in the default Java
package.

This tag is optional.
Example:

<prefix>sp.company</prefix>
This tag includes the Database Server user_name / password:
where:
user_name is the database user name.
password is the database password for the specified user name.
This tag is required when <jar-generation> is included.
Example:

<schema>scottfiger</schema>

Developing and Deploying Stored Procedure Web Services 5-7

Preparing Stored Procedure Web Services

Example 5-1 Sample WebServicesAssembler Configuration File For Stored
Procedure Using <jar-generation> Tag

<web-service>
<display-name>\Web Services Example</display-name>
<description>Java Web Service Example</description>
<I- Specifies the resutting web service archive will be stored in /spexample.ear —
<destination-path>./spexample.ear</destination-path>
<I- Specifies the temporary directory that web service assembly tool can create temporary files. —>
<temporary-directory>tmp</temporary-directory>
<I- Specifies the web service will be accessed in the senviet context named "Avebservices'. —
<context>webservices</context>
<I- Specifies the web service will be stateless —

<stateless-stored-procedure-java-service>
<jar-generation>
<schema>scottfiger</schema>
<db-ur>jdbc:oraclethin:@system1:1521:orci</db-ur>
<prefix>sp.company</prefix>
<db-pkg-name>Company</db-pkg-name>
<fjar-generation>
<I- Specifies the web service will be accessed in the uri named
"statelessSP" within the serviet context. —
<ur>/statelessSP</uri>
<database-JNDI-name>/jdbc/OracleDataSource</database-JNDI-name>
<[stateless-stored-procedure-java-service>
<wsdl-gen>
<wsdkdir>wsdi<ivsdl-dir>
<l-force true' will wiite over existing wsdl —>
<option name="force">true</option>
<l change this to point to your soap servers http listener —
<option name="httpServerURL">http:/localhost:8888</option>
<Msdl-gen>
<proxy-gen>
<proxy-dir>proxy</proxy-dir>
<l-include-source true' will create an additional jar with only the proxy source—>
<option name="include-source">true</option>
</proxy-gen>
<Meb-service>

Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Using a configuration file that specifies the stored procedure <class-name>
<interface-name> assembly options when a pre-generated Jar file that includes
the required classes to support the Web Service is available. The <class-name>

5-8 Oracle9i Application Server Web Services Developer's Guide

Preparing Stored Procedure Web Services

and <interface-name> tags specified in a configuration file support using a
previously generated Jar file that contains the Java classes that provide a mapping
between the PL/SQL procedure or function and the Web Service.

Table 5-4 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a
configuration file that uses a pre-generated Jar file to create a Stored Procedure Web
Service. The <stateless-stored-procedure-java-service> tag is included
within a <web-service> tag in the configuration file. Add this tag to provide
information required for generating the Stored Procedure Web Service J2EE .ear file.

The <class> and <interface> tags that are added to the
<stateless-stored-procedure-java-service> only when using a
pre-generated Jar file.

Table 5-4 Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description

<class-name> The Stored Procedure Web Services Servlet definition requires a

class <param-name> with the value class-name and a corresponding
</class-name> <param-value> set to the fully qualified name of the Java class that accesses

the PL/SQL Web Service implementation.

You need to use the configuration file <class-name> tag to supply the class
name for this parameter; you can find the class name in the Jar file you provide
that is specified in the top level <option name="source-path"> tag.

<database-JNDI-name> This tag specifies the JNDI name of the backend database.
source_JNDI_name

</database-INDI-name> The data-sources.xm 1 0OC4]J configuration file describes the database server

source associated with the specified source_JNDI_name .

<interface-name> A Stored Procedure Web Services Servlet definition requires a <param-name>
interface with the value interface-name , and a corresponding <param-value> set
</interface-name> to the fully qualified name of the Java interface that specifies the methods to

include in the stored procedure Web Service.

The <interface-name> tag provides the name of the interface that tells the
Web Service Servlet generation code which methods should be exposed as Web
Services. You can find the interface name in the Jar file you provide that is
specified in the top level <option name="source-path"> tag.

Developing and Deploying Stored Procedure Web Services 5-9

Preparing Stored Procedure Web Services

Table 5-4 (Cont.) Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description
<java-resource> This is a backwards compatibility tag.
resource

<Jjava-resource> See Also: the top level <option name="source-path"> tag in Table 5-1.

This tag is optional.

The Stored Procedure pre-generated Jar file should be specified using the
<java-resource> tag. The class specified with the <class-name> tag and
the interface specified with the <interface-name> tag must exist in the
resource specified in the <java-resource> tag(s).

<uri> This tag specifies servlet mapping pattern for the Servlet that implements the
URI Web Service. The path specified as the URI is appended to the <context> to
</uri> specify the Web Service location.

See Also:

= "Adding Stateless Stored Procedure Java Service Using Jar
Generation" on page 5-5

« Oracle9i [Publisher User’s Guide in the Oracle Database
Documentation Library

Adding WSDL and Client-Side Proxy Generation Tags

The WebServicesAssembler configuration file supports the <wsdl-gen> and
<proxy-gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Stored Procedure Style Web Service J2EE
.ear. A client-side developer can then use the WSDL file that is obtained from the
deployed Web Service to build an application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-5

Running WebServicesAssembler With Stored Procedure Web Services

After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Stored Procedure Web Service. The J2EE .ear file includes
Stored Procedure Web Service servlet configuration information, including the file
web.xml , and JPublisher generated classes (the WebServicesAssembler collects

5-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services

the JPublisher generated classes into a single Jar file that it includes in the generated

J2EE .ear).

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as
follows:

java -jar WebServicesAssembler jar -config my pl service config

Where: my_pl_service_config is the configuration file that contains the
<stateless-stored-procedure-java-service> tag.

See Also:

= "Creating a Configuration File to Assemble Stored Procedure
Web Services" on page 5-4

= "Running the Web Services Assembly Tool" on page 9-2

Setting Up Datasources in Oracle9 iAS Web Services (OC4J)

To add Web Services based on PL/SQL Stored Procedures you need to set up data
sources in OC4] by configuring data-sources.xml . Configuring the
data-sources.xml file points OC4]J to a database. The database should contain
PL/SQL Stored Procedure packages that implement a Stored Procedure Web
Service.

A single database connection is created when OC4] initializes a Web Services
Servlet instance. The resulting database connection is destroyed when OC4]J
removes the Web Services Servlet instance. Each Stored Procedure Web Services
Servlet implements a single threaded model. As a result, any Web Services Servlet
instance can only service a single client’s database connection requests at any given
time. OC4J pools the Web Services Servlet instances and assigns instances to
Oracle9iAS Web Services clients.

Every invocation of a PL/SQL Web Service is implicitly a separate database
transaction. It is not possible to have multiple service method invocations run
within a single database transaction. When such semantics are required, the user
must write a PL/SQL procedure that internally invokes other procedures and
functions, and then expose the new procedure as another method in a Stored
Procedure Web Service (but Oracle9/AS Web Services does not provide explicit
support or tools to do this).

See Also: Oracle9iAS Containers for [2EE User’s Guide in the
Oracle9iAS Documentation Library

Developing and Deploying Stored Procedure Web Services 5-11

Deploying Stored Procedure Web Services

Deploying Stored Procedure Web Services

After creating the J2EE .ear file containing the Stored Procedure Web Service
configuration, class, Jar, and support files you can deploy the Web Service as you
would any standard J2EE application stored in a J2EE .ear file (to run under OC4]J).

See Also: Oracle9iAS Containers for [2EE User’s Guide in the
Oracle9iAS Documentation Library

Limitations for Stored Procedures Running as Web Services

This section covers the following topics:

Supported Stored Procedure Features for Web Services
Unsupported Stored Procedure Features for Web Services

Database Server Release Limitation for Boolean Use in Oracle PLSQL Web
Services

Supported Stored Procedure Features for Web Services
Stored Procedure Web Services support the following PL/SQL features:

1.
2.
3.

PL/SQL stored procedures, including both procedures and functions
IN parameter modes

Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported as a Web Service)

Overloaded procedures. However, if two different PL/SQL types map to the
same Java type during the Java class generation step, there may be errors
reported when the PL/SQL package is exported; these errors may be fixed by
avoiding the overloading in the PL/SQL parameters, or by writing a new
dummy package which does not contain the offending overloaded procedures.

JPublisher may map multiple PL/SQL types into the same Java type. For
example, different PL/SQL number types may all map to Java int. This means
that methods that were considered overloaded in PL/SQL are no longer
overloaded in Java. If this is an issue, the user should wrap their PL/SQL code
in a new PL/SQL package that does not contain these ambiguity problems.

5-12 Oracle9i Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services

5.

6.

Simple PL/SQL types

The following simple types are supported. NULL values are supported for all of
the simple types listed below, except NATURALN and POSITIVEN.

The JPublisher documentation provides full details on the mappings for these
simple types.

VARCHAR? (STRING, VARCHAR), LONG, CHAR (CHARACTER), NUMBER
(DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT, NUMERIC,
REAL, SMALLINT), PLS_INTEGER, BINARY_INTEGER (NATURAL,
NATURALN, POSITIVE, POSITIVEN), BOOLEAN

User-defined Object Types.

See Also:

Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Unsupported Stored Procedure Features for Web Services

Stored Procedure Web Services impose the following limitations on PL/SQL
functions and procedures:

1.

Only procedures and functions within a PL/SQL package are exported as Web
Services. Top-level stored procedures must be wrapped inside a package; ADT
methods must be wrapped into package-level methods with a default "this"
reference.

OUT and IN OUT parameter modes are not supported.
NCHAR and related types are not supported.

JPublisher and Oracle9iAS Web Services does not provide comprehensive
support for LOB types.

If your PL/SQL procedures use LOB types as input/output types, then the
generated Java translation may not work in all cases. If you see an error, the
offending procedures will have to be rewritten before the PL/SQL package can
be exported as Stored Procedure Web Services.

Due to a bug in JPublisher, many integer numeric types are translated into
java.math.BigDecimal instead of the Java scalar types-—the workaround
for this bug is to temporarily use java.math.BigDecimal as the argument
and return types.

Developing and Deploying Stored Procedure Web Services 5-13

Limitations for Stored Procedures Running as Web Services

6. JPublisher translates almost all PL/SQL types to Java types. The deployment
tools for Stored Procedure Web Services generate "jdbc" style for builtin,
number, and lob types, and the "oracle" style for user types (in the
"customdatum" compatibility mode). Check the JPublisher documentation for
full details of these styles, and for the caveats associated with them.

See Also:

Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services

Using a Oracle Database Server of Release 9.2.0.1 or earlier, or with a Database
Server that is not Java-enabled, then you must install the SYS.SQLJUTIL package
into the SYS schema to support PL/SQL BOOLEAN arguments.

The PLSQL script that defines this package is located at the following location on
Unix:

${ORACLE.HOMEYsgifio/sgiuti.so
On Windows systems, this script is located at the following location:

%ORACLE_HOME%\sqlib\sgjuti.sq

5-14 Oracle9i Application Server Web Services Developer’s Guide

6

Developing and Deploying Document Style
Web Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web
Services that handle document style messages and are implemented as Java classes.

This chapter covers the following topics:

« Using Document Style Web Services

« Writing Document Style Web Services

» Preparing Document Style Web Services

« Deploying Document Style Web Services

Developing and Deploying Document Style Web Services 6-1

Using Document Style Web Services

Using Document Style Web Services

This chapter describes Document Style Web Services that are implemented with
Java classes and describes the difference between writing stateful and stateless
Document Style Java Web Services. The sample code for Document Style Web
Services is supplied with Oracle9iAS Web Services in the stateless ~ and
stateful directories in the directory SORACLE_

HOME/webservices/demo/basic/java_doc_services on UNIX or in
%ORACLE_HOME%\webservices\demo\basic\java_doc_services on
Windows.

Oracle9iAS supplies Servlets to access the Java classes which you write to
implement a Web Service. The Servlets handle messages generated by Web Services
clients and dispatch them to run the Java methods that implement Document Style
Web Services. After a Web Service is deployed, when a client makes a service
request (uses a service) the Oracle9iAS Web Services runtime, using an
automatically generated Web Services Servlet invokes the methods that you
implement to support the Document Style Web Service.

See Also:

= Chapter 3, "Developing and Deploying Java Class Web
Services"

= Chapter 4, "Developing and Deploying EJB Web Services"
= Chapter 7, "Developing and Deploying J]MS Web Services"
= Chapter 8, "Building Clients that Use Web Services"

6-2 Oracle9/ Application Server Web Services Developer's Guide

Writing Document Style Web Services

Writing Document Style Web Services

Writing Document Style Java Web Services involves building a Java class that
includes one or more methods using supported method signatures; the java class
includes methods that either handle an incoming message or return an outgoing
message.

This section covers the following topics:
= Supported Method Signatures for Document Style Web Services
= Writing Stateless and Stateful Document Style Web Services

= Writing Classes and Interfaces for Document Style Web Services

Supported Method Signatures for Document Style Web Services

Table 6-1 shows the supported method signatures for Document Style Web
Services. The Oracle9iAS Web Services runtime verifier rejects Document Style Web
Services that do not conform to the method signatures listed in Table 6-1.

The Element input parameter and Element return value shown in the method
signatures in Table 6-1 must conform to the Document Object Model (DOM) as
specified by the W3C (org.w3c.dom.Element)

Table 6-1 Supported Method Signatures for Document Style Java Web Services

Method Signature

Description

public Element

public Element

public void

op_NameElement e _name) The method op_Name is a Document Style Web Service
operation implemented as a Java method that takes an
Element e_name as an input parameter and returns an
Element .

get_Name () The method get_Name is a Document Style Web Service
operation implemented as a Java method that takes no
input parameters and returns an Element .

set_Name (Element e_name) The method set_Name is a Document Style Web Service

operation implemented as a Java method that takes an
Element e_name as an input parameter and returns
nothing.

Passing Null Values for Document Style Web Services

Anull could be passed as an input Element or as the Element that the
Document Style Web Service returns.

Developing and Deploying Document Style Web Services 6-3

Writing Document Style Web Services

Arrays of Elements

Oracle9iAS Web Services does not support Element[] (arrays of
org.w3c.dom.Element).

See Also:

» "Handling Messages for Document Style Web Services" on
page 6-9

« http://lwww.w3.0rg/DOM/ for information on the W3C
Document Object Model (DOM)

Writing Stateless and Stateful Document Style Web Services

Oracle9iAS Web Services supports stateful and stateless implementations for
Document Style Java classes running as Web Services. For a stateful Java
implementation, Oracle9iAS Web Services allows a single Java instance to serve the
Web Service requests from an individual client.

For a stateless Java implementation, Oracle9iAS Web Services creates multiple
instances of the Java class in a pool, any one of which may be used to service a
request. After servicing the request, the object is returned to the pool for use by a
subsequent request.

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing Document Style Web Services"
on page 6-9.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

6-4 Oracle9i Application Server Web Services Developer's Guide

Writing Document Style Web Services

Writing Classes and Interfaces for Document Style Web Services

Developing a Document Style Java Web Service consists of the following steps:
= Defining Methods in a Document Style Web Service
= Defining an Interface for Explicit Method Exposure

= Handling Messages for Document Style Web Services

Defining Methods in a Document Style Web Service

Create a Document Style Web Service by writing or supplying a Java class with
methods that are deployed as a Document Style Web Service. The stateful ~ and
stateless ~ sample directories contain sample stateless and stateful Document
Style Web Services. In the src directories, the file StatefulDoclmpl.java

provides the implementation of the sample stateful Java service and
StatelessDoclmpl.java provides the implementation of the stateless
Document Style Web Service. These examples use interface classes; the use of
interface classes is optional when implementing Document Style Web Services.

A Java class that implements a Document Style Web Service has the following
limitations:

= The Java class should define public methods that conform to the method
signatures shown in Table 6-1. If you use an interface, then only the public
methods specified in the interface need to conform to the method signature
restrictions. If you do not include an interface, then all the public methods in
the class must conform to the method signature restrictions shown in Table 6-1.

= The Java class implementation must include a public constructor that takes no
arguments.

There are very few restrictions on what actions a Document Style Java class based
web service can perform. At a minimum, the service performs some action to
handle an incoming message (Element) or to generate an outgoing message
(Element).

The StatelessDoc ~ Web Service sample is implemented with

StatelessDoclmpl , a public class and the interface StatelessDoc . The
StatelessDoclmpl class defines two public methods: displayElementy() , that
displays the incoming message on the server where the web service runs, and

Developing and Deploying Document Style Web Services 6-5

Writing Document Style Web Services

processElement() , that takes an incoming message and returns a transformed
message to the client. The private method applyXSLtoXML() is a helper method
that transforms the incoming message, as specified in the converter.xsl file.

Example 6-1 shows the method signatures for the StatelessDoclmpl class (see
the src directory to view the complete source code for StatelessDoclmpl)-

Example 6-1 Defining Java Methods for a Stateless Document Style Web Service
import orgw3c.dom.*;

import oracle xml.parser.v2.%;

import javalio*;

public class StatelessDoclmpl implements StatelessDoc

{
public StatelessDoclmpl()

{}

I/ Display the Element that was sent
public void displayElement(Element €)

{}

J/Imethod to process the input xml doc
public Element processElement(Element €)

{}

P

*This Method Transforms an XML Document into another using the provided
* Style Sheet converter.xsl. Note : This Method makes use of XSL

* Transformation capabiliies of Oracle XML Parser Version 2.0

=

private Element applyXSLtoXML(Element €)

throws Exception

{

The StatfulDoc ~ Web Service sample is implemented with StatefulDoclmpl , a
public class and the interface StatefulDoc . The StatefulDoclmpl class defines
two public methods: startShopping() that initializes the state of the customer

information and makePurchase() , that modifies the state of the customer

6-6 Oracle9/ Application Server Web Services Developer's Guide

Writing Document Style Web Services

information and returns the updated information to the client. The private method
processElement() is a helper method that processes the customer’s XML
element representing a purchase and returns the updated XML element.

Example 6-2 shows the method signatures for the StatefulDoc class (see the src
directory to view the complete source code for StatefulDoclmpl).

Example 6-2 Defining Java Methods for a Stateful Document Style Web Service

import orgw3c.dom.*;
import oracle xml.parser.v2.%;

public class StatefulDoclmpl implements StatefulDoc
private Elemente;
public void startShopping(Element €)
{

}
public Element makePurchase()

{

}
private void processElement(Element e) {

}

Defining an Interface for Explicit Method Exposure

Oracle9iAS Web Services allows you to limit the methods you expose as Document
Style Web Services by supplying a public interface. To limit the methods exposed in
a Web Service, include a public interface that lists the method signatures for the
methods that you want to expose. Example 6-3 shows an interface for the methods
in the class StatelessDoclmpl . Example 6—4 shows an interface for the methods
in the class StatelefulDoclmpl

When an interface is included with a Document Style Web Service, then only the
public methods specified in the interface need to conform to the method signature
restrictions shown in Table 6-1. If you do not include an interface, then all the
public methods in the class must conform to the method signature restrictions.
Using an interface, for example StatelessDoc shown in Example 6-3, only the
methods with the specified method signatures are exposed when the Java class is
prepared and deployed as a Document Style Web Service.

Developing and Deploying Document Style Web Services 6-7

Writing Document Style Web Services

Use a Document Style Web Service interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed to include methods within the
superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported method
signatures. Table 6-1 lists the supported signatures for Java methods that
implement Document Style Web Services.

Example 6-3 Using a Public Interface to Expose Stateless Java Services
import orgw3c.dom*;

public interface StatelessDoc

{
lImethod to display the element

public void displayElement(Elemente) ;

Iimethod to process the input xml doc
public Element processElement(Element e) ;

Example 6-4 Using a Public Interface to Expose Stateful Java Services
import orgw3c.dom.Element;

I Interface that implements getElement and setElement
public interface StatefulDoc {

I Setthe Element
public void startShopping(Element e);

I/ Retrieve the element that was set
public Element makePurchase();

6-8 Oracle9/ Application Server Web Services Developer's Guide

Preparing Document Style Web Services

Handling Messages for Document Style Web Services

It is entirely up to the Web Service developer to determine the processing that
occurs for messages associated with a Document Style Web Service.

The message associated with a Document Style Web Service is specified in the
Element parameter or the Element return value associated with the Document
Style Web Service. It is the Document Style Web Service developer’s job to process
or generate messages. The only limitation on Document Style Web Service messages
is that the Element must conform to must conform to the Document Object Model
(DOM)) as specified by the W3C (org.w3c.dom.Element)

A Document Style Web Service implementation or the client that uses a service may
need to supports null values, since a null could be passed as an input Element
or as the Element that is returned.

For example, the following is valid for a Document Style Web Service
implementation:

Elementget op () {
retum nul;

}

Preparing Document Style Web Services

This section describes how to use the Oracle9iAS Web Services tool
WebServicesAssembler to prepare a J2EE .ear file for a stateless and stateful
Document Style Web Service implemented as Java classes.

To deploy a Java class that implements a Document Style Web Service, you need to
assemble a J2EE .ear file that includes the deployment descriptors for the
Oracle9iAS Web Services Servlet and the Java classes that supply the Java
implementation. A Web Service implemented with Java classes includes a .war file
that provides configuration information for the Web Services Servlet running under
Oracle9iAS Containers for J2EE (OC4J). This section describes the procedures you
use to create a configuration file to use with the WebServicesAssembler

This section contains the following topics:
= Creating a Configuration File to Assemble Document Style Web Services

= Running WebServicesAssembler With Document Style Web Services

Developing and Deploying Document Style Web Services 6-9

Preparing Document

Style Web Services

Creating a Configuration File to Assemble Document Style Web Services

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. This section describes how to create a
configuration file to use to assemble a Document Style Web Service. The Web
Services assembly tool uses an XML configuration file that describes the Document
Style Web Service. The WebServicesAssembler uses the configuration file to
produce a J2EE .ear file that can be deployed under Oracle9iAS Web Services.

Create WebServicesAssembler configuration file by adding the following;:
= Adding Web Service Top Level Tags

= Adding Java Service Tags with Document Message Style Specified

= Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 6-2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Document Style Web
Service.

Example 6-5 shows a complete stateless sample configuration file. Example 6-6
shows a complete stateful sample configuration file. The stateless and
stateful directories in the java_doc_services demo directory contain the
sample config.xml files.

Table 6-2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context> Specifies the context root of the Web Service.

i‘;::lé)erﬁaxb This tag is required.

<datasource-JNDI-name> Specifies the datasource associated with the Web Service.

</datasource-JNDI-

<description>
description
</description>

<destination-path>
dest_path
</destination-path>

name>

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

6-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Table 6-2 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag

Description

<display-name>
disp_name
</display-name>

<option
name=source-path">
path

<option>

<stateless-java-service>
sub-tags
</stateless-java-service>

<stateful-java-service>
sub-tags
</stateful-java-service>

<temporary-directory>
temp_dir
</temporary-directory>

Specifies the Web Service display name.
This tag is optional.

Includes a specified file in the output .ear file.

The path specifies the path to the file to include.

Use this tag to add a Document Style Web Services that defines a stateless
service. See Table 6-3 for a description of valid sub-tags.

Use this tag to add a Document Style Web Services that defines a stateful
service. See Table 6-3 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Adding Java Service Tags with Document Message Style Specified

The Document Style Web Service developer determines if the service is stateful or
stateless. The configuration file includes different tags depending on the type of the
service. This section covers the tags for both cases, including:

= Adding Stateful Document Style Java Service Tags

= Adding Stateless Document Style Java Service Tags

Developing and Deploying Document Style Web Services 6-11

Preparing Document Style Web Services

Table 6-3 Java Service WebServicesAssembler Configuration Tags - Document Style

Tag

Description

<class-name>
class
</class-name>

<interface-name>
interface
</interface-name>

<java-resource>
resource
</java-resource>

<message-style>
doc
</message-style>

<scope>

</scope>

<session-timeout>
value
</session-timeout>

<uri>
URI
</uri>

The Document Style Web Service definition requires at least one
<class-name> tag. The value specifies the name of the Java class that provides
the Document Style Web Service implementation.

This tag is required.

A Document Style Web Service configuration file supports the optional
<interface-name> tag. The corresponding interface value supplied specifies
the name of the Java interface that lists the methods to include in the Document
Style Web Service.

This tag is optional.

This tag supports adding a Java resource. This specifies the location of the java
resources to include in the Document Style Web Service.

Include multiple <java-resource> tags to include multiple Java resources.
This tag is optional

When defining a Document Style Web Service, you must include the
<message-style> tag and specify the value doc.

Valid Values: doc, rpc

This tag is required for Document Style Web Services.

Default value: rpc (when the <message-style> tag is not supplied)

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful-java-service> tag.

This tag is optional.
Valid Values: application , session
Default Value: session

This optional parameter only applies for stateful services. Use this tag only
within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session timeout.
session. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional.

This tag specifies servlet mapping pattern for the Servlet that implements the
Document Style Web Service. The path specified as the URI is appended to the
<context> to specify the Document Style Web Service location.

This tag is optional.

6-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Adding Stateful Document Style Java Service Tags

Table 6-3 describes the <stateful-java-service> WebServicesAssembler
configuration file tags. Use these tags when creating a configuration file for a
stateful Document Style Web Service.

Example 6-5 shows a complete config.xml file, including the stateful Document
Style Web Service tags.

Adding Stateless Document Style Java Service Tags

Table 6-3 describes the <stateless-java-service> WebServicesAssembler
configuration file tags to use when creating a stateful Document Style Web Service.
The <stateless-java-service> tag is included within a <web-service> tag
in the configuration file. Add this tag to provide information required for
generating a stateless Document Style Web Service J2EE .ear file.

Example 6-6 shows a complete config.xml file, including the stateless Document
Style Web Service tags.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

Adding WSDL and Client-Side Proxy Generation Tags

The WebServicesAssembler configuration file supports the <wsdl-gen> and
<proxy-gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Document Style Web Service .ear. A
client-side developer can then obtain the WSDL file from the deployed Web Service
and use it to build an application.

See Also: "Generating WSDL Files and Client Side Proxies” on
page 9-5

Developing and Deploying Document Style Web Services 6-13

Preparing Document Style Web Services

Example 6-5 Sample Stateful Java WebServicesAssembler Configuration File for a
Document Style Web Service

<web-service>
<display-name>Stateful Java Document Web Service</display-name>
<description>Stateful Java Document Web Service Example</description>
<!- Specifies the resulting web service archive will be stored in /docws.ear —
<destination-path>./docws.ear</destination-path>
<I- Specifies the temporary directory that web service assembly tool can create temporary files. —>
<temporary-directory>./temp<ftemporary-directory>
<I- Specifies the web service will be accessed in the senvet context named "/docws'. —>
<context>/statefuldocws</context>

<I- Specifies the web service will be stateful —

<statefuljava-service>
<interface-name>StatefulDoc</interface-name>
<class-name>StatefulDocimpl</class-name>
<l Specifies the web service will be accessed in the uri named "/docService" within the serviet
context. —>
<uri>/docservice</ur>
<I- Specifies the location of Java class files /classes —>
<java-resource>./classes</java-resource>
<I- Specifies that it uses document style SOAP messaging —
<message-style>doc</message-style>
<statefuljava-service>

<l- generate the wsdl —>

<wsdHgen>

<wsdl-dir>wsdl<ivsdl-dir>

<l- over-write a pregenerated wsdl , tum it false' to use the pregenerated wsdl>
<option name="force">true</option>

<option name="httpServerURL">http:/localhost8888</option>

<Msdl-gen>

<l- generate the proxy —>

<proxy-gen>
<proxy-dir>proxy</proxy-dir>
<option name="include-source">true</option>
</proxy-gen>
<Meb-service>

6-14 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Example 6-6 Sample Stateless Java WebServicesAssembler Configuration File for a
Document Style Web Service

<web-service>
<display-name>Stateless Java Document Web Service</display-name>
<description>Stateless Java Document Web Service Example</description>
<I- Specifies the resutting web service archive will be stored in Jstatelessdocws.ear —>
<destination-path> /statelessdocws.ear</destination-path>
<I- Specifies the temporary directory that web service assembly tool can create temporary files. —>
<temporary-directory>.ftemp<ftemporary-directory>
<I- Specifies the web service will be accessed in the senvet context named "/statelessdoows'. —>
<context>/statelessdocws</context>
<l-to package the stylesheet to format input xml —
<option name="source-path>converter.xsl</option>

<I- Specifies the web service will be stateless —>

<statelessjava-service>
<interface-name>StatelessDoc</interface-name>
<class-name>StatelessDoclmpl</class-name>
<I- Specifies the web service will be accessed in the uri named "/docService" within the senet
context. —>
<uri>/docservice</ur>
<I- Specifies the location of Java class files ./classes —
<java-resource>./classes</java-resource>
<l Specifies that it uses document style SOAP messaging —>
<message-style>doc</message-style>
</statelessjava-service>

<l- generate the wsdl —>

<wsd-gen>

<wsdHdir>wsdi<ivsdl-dir>

<l- over-write a pregenerated wsdl , tum it false' to use the pregenerated wsdl—>
<option name="force">true</option>

<option name="httpServerURL">http:/localhost8888</option>

<Mwsdigen>

<l-generate the proxy —

<proxy-gen>

<proxy-dir>proxy</proxy-dir>

<option name="include-source">true</option>
</proxy-gen>

<Meb-service>

Developing and Deploying Document Style Web Services 6-15

Deploying Document Style Web Services

Running WebServicesAssembler With Document Style Web Services

After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Document Style Web Service. The J2EE EAR file includes
Document Style Web Service servlet configuration information, including the
generated file web.xml , and the implementation classes.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as
follows:

java jar WebServicesAssembler jar -config my _service_config

Where: my_service_config is the configuration file that contains the
<stateless-java-service> or the <stateful-java-service> tag.

See Also:

« "Creating a Configuration File to Assemble Document Style
Web Services" on page 6-10

= "Running the Web Services Assembly Tool" on page 9-2

Deploying Document Style Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4]J).

See Also: Oracle9iAS Containers for J2EE User’s Guide in the
Oracle9iAS Documentation Library.

6-16 Oracle9i Application Server Web Services Developer’s Guide

v

Developing and Deploying JMS Web
Services

This chapter describes the procedures you use to configure, deploy, and build
Oracle9iAS Web Services that expose JMS destinations, including JMS Queues and
JMS Topics as Web Services. This chapter also covers writing a backend JMS
message processor to consume incoming JMS messages and to generate outgoing
JMS messages.

Oracle9iAS Web Services supports asynchronous message facilities with JMS Web
Services.

This chapter covers the following topics:

« JMS Web Services Overview

= Writing J]MS Web Services and Handling Messages
« Preparing and Configuring JMS Web Services

= Deploying JMS Web Services

» Limitations for J]MS Web Services

Developing and Deploying JMS Web Services 7-1

JMS Web Services Overview

JMS Web Services Overview

This section covers the following topics:
= Using JMS Web Services
= JMS Web Services Backend Message Processing

Using JMS Web Services
The sample code for J]MS Web Services is supplied in the demol and demo2
directories in $ORACLE_HOME/webservices/demo/basic/jms_service on
UNIX or in %ORACLE_HOME%\webservices\demo\basic\jms_service on
Windows.

JMS Web Services examples show both Orion JMS and Oracle JMS. In the samples,
demol uses Orion JMS and demo2 uses Oracle JMS. Oracle JMS is recommended
for use with J]MS Web Services. Orion JMS examples are provided for demonstration
purposes only.

Using JMS Web Services, Oracle9iAS supplies a Servlet that supports two
operations on messages: a send operation and a receive operation. Using these
two operations, if the destination is a JMS Queue, send means enqueue, and
receive means dequeue. If the destination is a topic, send means publish and
receive means subscribe. An individual JMS Web Service can support just the
send operation, just the receive operation, or both operations, as determined by the
service developer.

The JMS Web Service determines how to handle incoming and outgoing messages
for JMS destinations based on the configuration of the JMS Web Service and on the
operation specified by the client-side program that uses the J]MS Web Service. The
Oracle9iAS Web Services runtime verifier throws an exception if the operation
supplied by a JMS Web Service client is invalid. For example, if the deployment
operation is send , and the request is receive , an exception is thrown.

The client-side message associated with a JMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C
(org.w3c.dom.Element) . For a send operation, it is the client-side developer’s
job to deliver a message of the correct form to a JMS Web Service. And likewise, for
a receive operation, the client must handle the message it receives from a JMS Web
Service.

See Also: http://java.sun.com/products/jms/ for information
on JMS

7-2 Oracle9i Application Server Web Services Developer's Guide

JMS Web Services Overview

JMS Web Services Backend Message Processing

A JMS Web Service consists of configuration information that defines the Web
Service, and, in addition the server-side developer provides code that consumes the
messages that a JMS Web Service client sends, or generates the messages that the
client receives.

This section describes the architecture for processing JMS messages associated with
a JMS Web Service and covers the following topics:

= Using an MDB for Message Processing
= Using a JMS Client for Message Processing

Using an MDB for Message Processing

A JMS Web Service either sends messages to a JMS destination or receives messages
from a JMS destination and can use an MDB on the backend for generating and
consuming messages. For example, Figure 7-1 shows an MDB based JMS Web
Service that, from the JMS Web Service client’s view, handles both the message
send and the message receive operations.

Figure 7-1 MDB Based JMS Web Service

0C4J

EJB Container

JMS JMS
Destination 2 Destination 1

&
)|

Client

JMS Servlet

\

Developing and Deploying JMS Web Services 7-3

JMS Web Services Overview

Figure 7-1 includes an MDB that is configured to listen to a JMS destination. The
MDB based JMS Web Service works with the following steps:

1.

A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

The JMS Web Service processes the incoming message and directs it to a JMS
destination, JMS Destination 1.

The EJB container invokes the MDB listening on JMS Destination 1.

After processing the message an MDB produces a new message on J]MS
Destination 2. Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and the
same MDB could also send the message to JMS Destination 2.

(Arrows 5 and 6) A JMS Web Service client performs a receive operation on
the JMS Web Service to receive a message. The J]MS Web Service consumes a
message from the JMS destination, processes it, and passes the outgoing
message to the client.

Using a JMS Client for Message Processing

Using a JMS client for message processing, the JMS Web Service does not assemble,
deploy, or run the JMS code on the backend. A separate JMS program that runs
outside of the J]MS Web Service, as a standalone JMS client, is responsible for
generating and consuming the JMS messages that are associated with the JMS Web
Service.

For example, Figure 7-2 shows a JMS Web Service that use a server-side JMS client
for message processing.

7-4 Oracle9i Application Server Web Services Developer's Guide

JMS Web Services Overview

Figure 7-2 JMS Client Based JMS Web Service

JMS
> Client

(ol

| Send |L7
v 0 HTTP

| Receive: 7 @ HTTP |:.

JMS Servlet %
Client

The JMS Web service includes only configuration information that supports
handling messages and using JMS destinations. The JMS client based JMS Web
Service works with the following steps:

1.

A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

The JMS Web Service then processes the incoming message and directs it to JMS
DEST 1.

The JMS client processes the incoming message on JMS DEST 1. The incoming
message could be identified using a message listener, or by other means.

After processing the incoming message the JMS client may produce a new
message on JMS DEST 2. The message on JMS DEST 2 could be produced by
another JMS client or by the same JMS client.

(Arrows 5 and 6) A JMS Web Service client performs a receive operation on
the JMS Web Service to receive a message. The J]MS Web Service consumes an
outgoing message from the JMS destination and passes the message to the
client.

Developing and Deploying JMS Web Services 7-5

Writing JMS Web Services and Handling Messages

Writing JMS Web Services and Handling Messages
Writing a JMS Web Service presents a server-side developer with two tasks:
1. Building the backend message processing program for a JMS Web Service.
2. Preparing and configuring a JMS Web Service.
This section covers the following;:
= Using an MDB for Backend Message Processing
= Using a JMS Standalone Program for Backend Message Processing
= Message Processing and Reply Messages

See Also:
= "Preparing and Configuring JMS Web Services" on page 7-11
= Chapter 4, "Developing and Deploying EJB Web Services"

Using an MDB for Backend Message Processing

When a JMS Web Service uses an MDB for generating or consuming messages, the
MDB must be assembled with the JMS Web Service. In this case, the MDB is
packaged as part of the J2EE .ear file that is deployed as a JMS Web Service.

Using an MDB with a JMS Web Service, the server-side developer is responsible for
performing the following steps:

= Developing the MDB that Processes Incoming Messages
= Developing the MDB that Generates Outgoing Messages
» Compiling and Preparing the MDB EJB jar File

= Assembling the JMS Web Service With the MDB

= Defining the Server-Side Resource References

Note: A given JMS Web Service may process incoming messages,
generate outgoing messages, or do both.

7-6 Oracle9i Application Server Web Services Developer's Guide

Writing JMS Web Services and Handling Messages

Developing the MDB that Processes Incoming Messages

The MDB that processes incoming messages, generated from a JMS Web Service
send operation, must include an onMessage() method with the following
characteristics:

« TheonMessage() method should be declared as public , butnotfinal or
static

= TheonMessage() method should have a return type of void

= TheonMessage() method should have one argument of type
javax.jms.Message . The JMS Web Service only supports messages of type
ObjectMessage , so the MDB developer should cast the incoming JMS Web
Service message to an ObjectMessage

= The message payload is available from the message using the getObject()
method on the incoming JMS message and casting to the Element type.

Example 7-1 shows an MDB method that handles an incoming JMS Message. Also
see MessageBean.java in the demol directory for the complete code.

Example 7-1 Sample Incoming onMessage() Method for IMS Web Service

public void onMessage(Message inMessage) {
ObjectMessage msg = null;
Element e
try{
Il Message should be of type objectMessage
if (nMessage instanceof ObjectMessage) {
I retrieve the object
msg = (ObjectMessage) inMessage;
e = (Elementimsg.getObject();
processElement(e);
this.send2Queue(e);
}else{
System.out printin('MessageBean::onMessage() => Message of wrong type: "
+inMessage.getClass().getName());
}
}catch (IMSException ex) {
exprintStackTrace();
mdc.setRollbackOnly();
}catch (Throwable te) {
te.printStackTrace();
}
}

Developing and Deploying JMS Web Services 7-7

Writing JMS Web Services and Handling Messages

Developing the MDB that Generates Outgoing Messages

An MDB that generates an outgoing message, consumed by a JMS Web Service
receive operation, must include code that produces a message on a JMS
destination with the following characteristics:

= The message placed on the JMS destination should be of type:
javax.jms.Message .ObjectMessage

= Set the payload of the message using the setObject() method on the
outgoing JMS message and casting to the java.io.Serializeable type.

Example 7-2 shows a code fragment that creates an outgoing message of the correct
type. For the complete code for this example, see MessageBean2.java in the
demoz2 directory.

Example 7-2 Sample Outgoing Message for IMS Web Service
/I Create an Object Message

message = queueSession.createObjectMessage();

11 Stuff the result into the ObjectMessage
((ObjectMessage)message).setObject ((java.io.Serializable)ee);

I/ Send the Message

gueueSender.send(message);

Compiling and Preparing the MDB EJB.jar File

After compiling the MDB classes, create an EJB jar file that includes the MDB and
its required deployment information.

Assembling the JMS Web Service With the MDB

Assemble the MDB’s EJB jar file with the JMS Web Service .ear file using the
WebServicesAssembler tool and a configuration file containing the top-level tag

<option name=source-path"> that specifies the EJB .jar, and the
<jms-doc-service> that defines the JMS Web Service configuration.
See Also:

= "Preparing and Configuring JMS Web Services" on page 7-11
= "Deploying JMS Web Services" on page 7-17

7-8 Oracle9i Application Server Web Services Developer's Guide

Writing JMS Web Services and Handling Messages

Defining the Server-Side Resource References

Define the resource references associated with the JMS destinations that the JMS
Web Service uses:

If the MDB uses Orion JMS, define the resource references in the OC4J jms.xml
configuration file.

If the MDB uses Oracle JMS, then run the sql files that support access to the
Oracle JMS destinations.
See Also:

Chapter 3, "AQ Programmatic Environments" in the Oracle9i
Application Developer’s Guide - Advanced Queuing in the Oracle9i
Documentation library

Using a JMS Standalone Program for Backend Message Processing

Using a JMS standalone program on the backend for the JMS Web Service, the
server-side developer is responsible for performing the following steps:

1.

Developing the JMS client that defines the JMS destinations, handles incoming
messages, processes them, and produces the outgoing messages. The JMS client
can also perform processing that uses a JMS destination that triggers an MDB.

Assembling the JMS Web Service .ear file using the WebServicesAssembler
tool and a configuration file containing the top-level tag <jms-doc-service>

Defining the resource references associated with JMS destinations in the OC4J
jms.xml configuration file. If the JMS destinations are defined in Oracle JMS,
then the developer must run the sql files that initialize the access to the Oracle
JMS destinations.

See Also:

« "Using an MDB for Backend Message Processing" on page 7-6

= "Deploying JMS Web Services" on page 7-17

Note: When a JMS Web Service uses standalone a JMS client to
consume or generate messages, the standalone client cannot be
assembled with the J]MS Web Service.

Developing and Deploying JMS Web Services 7-9

Writing JMS Web Services and Handling Messages

Message Processing and Reply Messages

The JMS Web Service processes an incoming message, a JMS Web Service send
operation message, and places the message on a JMS destination. This section
covers details that a developer needs to know to consume and process the J]MS
messages that originate from a JMS Web Service.

The client-side message associated with a JMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C
(org.w3c.dom.Element) . When a JMS Web Service is sent an Element from a
Web Service client, it creates a JMS ObjectMessage that contains the Element .
The JMS Web Service may set certain header values before it places the message on
a JMS destination. Depending on the values of optional configuration tags specified
when the JMS Web Service is assembled, the J]MS Web Service sets the following

JMS Message Headers:

JMSType

JMSReplyTo

JMSExpiration

JMSPriority

JMSDelveryMode

When the JMS Web Service sets the IMSReplyTo header, it uses either the value
specified with the <reply-to-topic-resource-ref> or the
<reply-to-queue-resource-ref> (only one of these should be configured for
any given J]MS Web Service). The value specified with the
<reply-to-connection-factory-resource-ref> tag is set on the message
as a standard string property. The property name is OC4J_REPLY_TO_FACTORY_
NAME

Example 7-3 provides a code segment that shows where the onMessage() method
gets the ReplyTo information for message generated from a JMS Web Service send
operation:

Example 7-3
public void onMessage(Message inMessage) {
// Do some processing

ObjectMessage msg = null;
Sting factoryName;

Destination dest;
Element €l
ty{

Il Message should be of type objectMessage
if (nMessage instanceof ObjectMessage) {

7-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

I retrieve the object

msg = (ObjectMessage) inMessage;

€l = (Element)msg.getObject();

System.out printin(*MessageBean2::onMessage() => Message received: ");
(XMLElement)el).print(System.out);

processElement(el);

factoryName = inMessage.getStringProperty('OC4J_REPLY_TO_FACTORY_NAME');
dest = inMessage.getIMSReply To();

See Also:

= "Developing the MDB that Processes Incoming Messages" on
page 7-7

= "Adding JMS Doc Service Tags" on page 7-13

Preparing and Configuring JMS Web Services

This section describes how to use the Oracle9iAS Web Services tool
WebServicesAssembler to prepare a J2EE .ear file for a JMS Web Service.

To deploy a JMS Web Service, you need to assemble a J2EE .ear file. The J2EE .ear
file can include the following:

The deployment descriptors for the Oracle9iAS Web Services Servlet.

If the JMS Web Service also includes an MDB, then the J2EE .ear also includes a
Jar file that supplies the MDB implementation. This component is optional. To
expose JMS Queues or Topics as JMS Web Services, you are not required to
include an MDB Jar file with the JMS Web Service.

This section describes the procedures you use to create a configuration file to use
with the WebServicesAssembler

This section contains the following topics:

Creating a Configuration File to Assemble JMS Web Services
Running WebServicesAssembler With JMS Web Services

Developing and Deploying JMS Web Services 7-11

Preparing and Configuring JMS Web Services

Creating a Configuration File to Assemble JMS Web Services

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. This section describes how to create an XML
configuration file that describes the JMS Web Service to be assembled.

Create WebServicesAssembler configuration file by adding the following;:
= Adding Web Service Top Level Tags

= Adding JMS Doc Service Tags

= Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 7-1 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the JMS Web Service.

Example 7-4 shows a complete J]MS Web Service sample configuration file. The
demol and demo2 directories in the jms_service directory contain complete
config.xml files for JMS Web Services.

Table 7-1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context> Specifies the context root of the Web Service.

i‘;::lé)erﬁaxp This tag is required.

<datasource-JNDI-name> Specifies the datasource associated with the Web Service.

</datasource-JNDI-name>

<despripti0n> Provides a simple description of the Web Service.

i%cgéﬁl.%? on> This tag is optional.

<destination-path> Specifies the name of the generated J2EE .ear file output. The dest_path
dest_path specifies the complete path for the output file.

</destination-path> This tag is required.

<display-name> Specifies the Web Service display name.

disp_name

<Idisplay-name> This tag is optional.

7-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

Table 7-1 (Cont.)

Top Level WebServicesAssembler Configuration Tags

Tag

Description

<option name="source-path">

path
<option>

<jms-doc-service>
sub-tags
</jms-doc-service>

<temporary-directory>

temp_dir

</temporary-directory>

Includes a specified file in the output .ear file. For a JMS Web Service,
use this tag to specify the MDB source .jar file if the Web Service
uses an MDB to handle the JMS messages.

The path specifies the path to the file to include.

Use this tag to add a JMS Web Service. See Table 7-2 for a description
of the valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Table 7-2 JMS Service WebServicesAssembler

Adding JMS Doc Service Tags

The <jms-doc-service> defines the configuration information for a JMS Web
Service. The JMS Web Service developer determines if the service supports send
operations, receive operations, or both send and receive, based on the value of the
<operation> sub-tag. Some of the configuration file tags are only valid,
depending on the operation selected for the Web Service. Table 7-2 lists all the
supported <jms-doc-service> sub-tags, and includes information on whether
each is valid, based on the operation specified.

Configuration Tags

Tag

Description

<connection-factory-
resource-ref>
resource-ref
</connection-factory-
resource-ref>

<jms-delivery-mode>
delivery-mode
</jms-delivery-mode>

<jms-expiration>
expiration
</jms-expiration>

Specifies the Topic Connection Factory or Queue Connection Factory resource
reference resource-ref for the JMS destination associated with the JMS Web Service.

This tag is required.

Sets the IMSDeliveryMode message header to the specified delivery-mode value
for the JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both
This tag is optional.

Sets the JMSExpiration ~ message header to the specified expiration value for the

JMS message that is created with a send operation.
This tag is valid when the <operation> value is: send or both

This tag is optional.

Developing and Deploying JMS Web Services 7-13

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag

Description

<jms-message-type>
message-type
</jms-message-type>

<jms-priority>
priority
</jms-priority>

<operation>

op
</operation>

<queue-resource-ref>
queue-ref
</queue-resource-ref>

Sets the IMSType for the message to the specified message-type for the JMS
message that is created with a send operation

This tag is valid when the <operation> value is: send or both
This tag is optional.

Sets the JIMSPriority ~ message header to the specified priority value for the JMS
message that is created with a send operation.

This tag is valid when the <operation> value is: send or both
This tag is optional.

Specifies the operation op that the JMS Web Service supports.
Using the send and receive operation:

« If the destination is a JMS Queue, send means enqueue, and receive means

dequeue.
= If the destination is a topic, send means publish and receive means
subscribe.
The send operation uses the <connection-factory-resource-ref> and the
corresponding JMS destination <queue-resource-ref> or
<topic-resource-ref> to determine the JMS destination for a send operation

on the service.

With the receive operation, when the

<reply-to-connection-factory-resource-ref> tag is not set, then the
receive operation uses the <connection-factory-resource-ref> and the
corresponding JMS destination <queue-resource-ref> or
<topic-resource-ref> . When the

<reply-to-connection-factory-resource-ref> tag is set, then the

<reply-to-*> tags specify the JMS destination for receive operations.
Valid values: send, receive , both

Default value: both

This tag is optional.

Specifies the resource reference queue-ref of the destination JMS queue.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <queue-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding Queue
connection factory.

7-14 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag

Description

<reply-to-connection-
factory-resource-ref>

reply-to-conn-factory-res-ref

</reply-to-connection-
factory-resource-ref>

<reply-to-queue-
resource-ref>
reply-to-queue-res-ref
</reply-to-queue-
resource-ref>

<reply-to-topic-
resource-ref>
reply-to-topic-res-ref
</reply-to-topic-
resource-ref>

<topic-resource-ref>
topic-ref
</topic-resource-ref>

<uri>
URI
</uri>

If the <operation> specified is both , then receive operations use the
<reply-to-connection-factory-resource-ref>. The specified
reply-to-conn-factory-res-ref value specifies the JMS destination connection factory for
receive operations. Also, if the MDB, or any JMS consumer, expects to send
results back, then the name of the destination connection factory to which the
reply message will be sent has to be specified in this parameter.

See Also: "Message Processing and Reply Messages" on page 7-10.
This tag is optional.
Specifies the resource reference reply-to-queue-res-ref of the destination JMS queue.

When a <reply-to-queue-resource-ref>
<reply-to-connection-factory-resource-ref>
corresponding Queue connection factory.

is specified, the
must refer to a

If the <reply-to-connection-factory-resource-ref>
either a <reply-to-topic-resource-ref> ora
<reply-to-queue-resource-ref> must be specified, but not both.

tag is set, then

This tag is optional.
Specifies the resource reference reply-to-topic-res-ref of the destination JMS Topic.

When a <reply-to-topic-resource-ref>
<reply-to-connection-factory-resource-ref>
corresponding Topic connection factory.

is specified, the
must refer to a

If the <reply-to-connection-factory-resource-ref>
either a <reply-to-topic-resource-ref> ora
<reply-to-queue-resource-ref> must be specified, but not both.

tag is set, then

This tag is optional.
Specifies the resource reference topic-ref of the destination JMS Topic.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <topic-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding Topic
connection factory.

This tag specifies servlet mapping pattern for the Servlet that implements the JMS
Web Service. The path specified as the URI is appended to the <context> to
specify the JMS Web Service location.

This tag is optional.

Developing and Deploying JMS Web Services 7-15

Preparing and Configuring JMS Web Services

Adding WSDL and Client-Side Proxy Generation Tags

The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-5

Example 7-4 Sample WebServicesAssembler Configuration File for IMS Web Service

<web-service>
<display-name>JMS Web Service Example</display-name>
<description>JMS Web Service Example</description>
<l- Name of the destination —
<destination-path>.jmsws1.ear</destination-path>
<temporary-directory>.Amp<ftemporary-directory>
<I- Context root of the application —>
<context>jmsws1</context>
<I- Path of the jar file with MDBs definied/implemented in it —
<option name="source-path">MDB/mdb_servicel jar</option>

<l- tags for jms doc service —>

<jms-doc-service>
<uri>JmsSend</uri>
<connection-factory-resource-ref>ms/theQueueConnectionFactory</connection-factory-resource-ref>
<queue-resource-ref>msitheQueue</queue-resource-ref>
<operation>send</operation>x

</jms-doc-service>

<jms-doc-service>
<ur>JmsReceive</ur>
<connection-factory-resource-ref>msflogQueueConnectionFactory</connection-factory-resource-ref>
<queue-resource-ref>msflogQueue</queue-resource-ref>
<operation>receive</operation>
</jms-doc-service>
<l- generate the wsdl —>
<wsd-gen>
<wsdHdir>wsdi<Avsdl-dir>
<l- over-wiite a pregenerated wsdl , tum it false' to use the pregenerated wsdl—>
<option name="force">true</option>
<option name="httpServerURL">http:/localhost:8888</option>

7-16 Oracle9i Application Server Web Services Developer’s Guide

Deploying JMS Web Services

<l do not package the wsdl -generate it again on teh server—>
<option name="packagelt>false</option>

<fwsdigen>

<l-generate the proxy —

<proxy-gen>
<proxy-dir>proxy</proxy-dir>
<option name="include-source">true</option>

</proxy-gen>

<Mveb-service>

Running WebServicesAssembler With JIMS Web Services

After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the JMS Web Service. The J2EE EAR file includes Web Service
servlet configuration information, including the generated file web.xml , and if the
service includes MDBs, the ejb jar file containing the implementation classes.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as
follows:

java -jar WebServicesAssembler jar -config my jms_service_config
Where: my_jms_service_config is the configuration file that contains the
<jms-doc-service> tag.

See Also:

= "Creating a Configuration File to Assemble J]MS Web Services"
on page 7-12

= "Running the Web Services Assembly Tool" on page 9-2

Deploying JMS Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

See Also: Oracle9iAS Containers for J2EE User’s Guide in the
Oracle9iAS Documentation Library.

Developing and Deploying JMS Web Services 7-17

Limitations for JIMS Web Services

Limitations for JIMS Web Services

The JMS Web Service only supports messages of type ObjectMessage
(javax.jms.Message .ObjectMessage)

7-18 Oracle9i Application Server Web Services Developer’s Guide

8

Building Clients that Use Web Services

This chapter describes the Oracle9iAS Web Services features that allow you to easily
create and run a client application that uses Oracle9iAS Web Services.

This chapter contains the following topics:

= Locating Web Services

« Getting WSDL Files and Client-Side Proxy Jars for Web Services
= Working with Client-Side Proxy Jar to Use Web Services

= Working with WSDL Files and JDeveloper to Use Web Services

Building Clients that Use Web Services 8-1

Locating Web Services

Locating Web Services

When you want to use Web Services you need to develop a client application. There
are two types of Web Services clients: static web service clients and dynamic web
service clients. A static web service client knows where a Web Service is located
without looking up the service in a UDDI registry. A dynamic web service client
performs a lookup to find the Web Service’s location in a UDDI registry before
accessing the service. Chapter 10, "Discovering and Publishing Web Services"
provides detailed information on looking up Web Services in a UDDI registry.

Using a static client Oracle9iAS Web Services provides several options for locating
Oracle9iAS Web Services, including:

= Using a known Web Service located at a known URL.

= Using Oracle9iAS Web Services and a known service URL to obtain a client-side
proxy Jar, or by other means obtaining a client-side proxy Jar for a Web Service.
The client-side proxy Jar that Oracle9iAS Web Services generates includes the
URL to locate the associated Web Service.

= Using Oracle9iAS Web Services and a known service URL to obtain a WSDL
file, or by other means obtaining a WSDL file that describes a Web Service. The
WSDL files that Oracle9iAS Web Services generates includes the URL to locate
the associated Web Service.

After you locate a Web Service or after you obtain either the WSDL or client-side
proxy Jar, you can build a client-side application that uses the Web Service.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Getting WSDL Files and Client-Side Proxy Jars for Web Services

This section covers the following;:

= Using the Web Service Home Page to Save WSDL and Client Side Proxies
= Getting Web Service WSDL and Client-Side Proxies Directly

= Generating Client-Side Proxies With WebServicesAssembler

8-2 Oracle9i Application Server Web Services Developer's Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Using the Web Service Home Page to Save WSDL and Client Side Proxies

To use Oracle9iAS Web Services you need to create a client-side application that
accesses a Web Service. Oracle9iAS Web Services supplies the following files for
deployed Web Services:

WSDL service descriptions
Client-side proxy Jar (class files)

Client-side proxy source

Oracle9iAS Web Services provides a Web Service Home Page for each deployed
Web Service. To access a Home Page, enter a service endpoint of the form,

hitp:/

host : port | contextroot | senvice

Figure 8-1 shows the Web Service Home Page for StatefulExample, at the following
endpoint,

http://system1.us.oracle.comivebservices/statefulTest

A Web Service Home Page provides the following:

A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Building Clients that Use Web Services 8-3

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Figure 8-1 Web Service Home Page

StatefulExample endpoint

WWSDL for Service: StatefulExample, generated by Oracle WSDL toolkit (version: 1.1}

For a formal definition, please review the Service Description (rpe siyie).

StatefulExample service

The following operations are supported.

« count
« hellovorld

ocdj client

The java proxy is packaged in a jar either as classes or sources files.

« Prowxy Jar
+ Prody SoUrce

Limitations for Web Service Test Pages
Web Service Test Pages have the following limitations:

= There is no support for complex input parameters for RPC style Web Services.

Such pages do not support the Invoke button.

= There is no support for Document Style Web Services. Such pages do not

support the Invoke button.

8-4 Oracle9i Application Server Web Services Developer's Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Getting Web Service WSDL and Client-Side Proxies Directly

If you do not use the Web Service Home Page to get the WSDL file or client-side
proxy for a Web Service, you can obtain these files directly.

This section covers the following:

= Getting WSDL Service Descriptions

= Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

= Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

Getting WSDL Service Descriptions

To obtain the WSDL service description for a Web Service, use the Web Service URL
and append a query string. The format for the URL to obtain the WSDL service
description is as follows (see Table 8-1 for a description of the URL components):

https/ host : port | contextroot | senvice AWSDL
or

https/ host : port | contextroot | service wsdl

This command returns a WSDL description in the form service .wsdl . The
service .wsdl description contains the WSDL for the Web Service named
service ,located at the specified URL. Using the WSDL that you obtain, you can
build a client application to access the Web Service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

To obtain the client-side proxy Jar for a Web Service, use the Web Service URL and
append a query string. The client-side proxy Jar file contains the proxy stubs class
that supports building an application that communicates using SOAP to access the
Web Service. The proxy class does the following:

« Provides a static location for the Web Service (the service does not need to be
looked up in a UDDI registry).

= Provides proxy methods for each method exposed as part of the Web Service.

= Performs all of the work to construct the SOAP request, including marshalling
and unmarshalling parameters, and handling the response.

Building Clients that Use Web Services 8-5

Getting WSDL Files and Client-Side Proxy Jars for Web Services

The format for the URL to obtain the client-side proxy Jar is as follows (see
Table 8-1 for a description of the URL components):

https/ host : port | contextroot | senvice ?PROXY_JAR
or

https/ host : port | contextroot | service ?proxy_jar

This command returns the file service _proxy.jar . The service _proxy.jar
is a Jar file that contains the client-side proxy classes that you can use to build a
client-side application to access the Web Service.

To obtain the client-side proxy source Jar for a Web Service, use the Web Service
URL and append a query string. The format for the URL to obtain the client-side
proxy source Jar is as follows (see Table 8-1 for a description of the URL
components):

htps/ host : port | contextroot | senvice ?PROXY_SOURCE
or

https/ host : port | contextroot | service ?proxy_source

This command returns the file service _proxysrc.jar . The file

service _proxysrc.jar is a Jar file that contains the client-side proxy source
files. This file represents the source code for the file service _proxy.jar
associated with the service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

When you obtain the client-side proxy Jar file or the client-side proxy source Jar,
you have the option of including a request parameter that specifies a package name
for the generated client-side proxy classes or source files. If the Web Service’s
client-side Java class is part of a particular package, then you should specify the
package name to match the client-side application’s package name.

The format for the URL to obtain the client-side proxy Jar and specify the package
name is as follows (see Table 8-1 for a description of the URL components):

htp:/ host : port | contextroot | senvice ?PROXY_JAR&packageNamemypackage
or

https/ host : port | contextroot | sernvice ?proxy_jar&packageName =mypackage

This command returns the file service _proxy.jar . The service _proxy.jar
is a Jar file that contains the client-side proxy classes, using the specified package,
mypackage for the Java package statement.

8-6 Oracle9i Application Server Web Services Developer's Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

The format for the URL to obtain the client-side proxy source Jar and specify the
package name is as follows (see Table 8-1 for a description of the URL components):

https/ host : port | context-root
or

https/ host : port | context-root

This command returns the

| senvice ?PROXY_SOURCE&packageNameypackage

| senvice ?proxy_source&packageName =mypackage

file service _proxysrc.jar . As for the proxy_jar ,

you have the option of specifying a request parameter with a supplied package
name by include a packageName=name option. The service_ proxysrc.jar isa
Jar file that contains the client-side source files for the client-side proxy that accesses

the Web Service.

Table 8-1 URL for Accessing Client Side Proxy Stubs

URL Component

Description

context-root
host
mypackage

port

service

The context-root is the value specified in the <context-root> tag for the web
module associated with the Web Service. See the META-INF/application.xml

in the Web Service’s .

ear file to determine this value.

This is the host of the Web Service’s server running Oracle9iAS Web Services.

This specifies the value that you want to use for the package name in the
generated proxy Jar or proxy source.

This is the port of the Web Service’s server running Oracle9iAS Web Services.

The service is the value specified in the <url-pattern> tag for the servlet
associated with the Web Service. This is the service name. See the

WEB-INF/web.xml

in the Web Service’s .war file to determine this value.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web Services"

= Chapter 4, "Developing and Deploying EJB Web Services"

= Chapter 5, "Developing and Deploying Stored Procedure Web

Services"

Building Clients that Use Web Services 8-7

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Generating Client-Side Proxies With WebServicesAssembler

The Oracle9iAS Web Services WebServicesAssembler tool allows you to
generate client-side proxies. A client-side proxy can access a Web Service that is
deployed either on an Oracle9iAS Web Services endpoint or on a third party Web
Service endpoint.

To generate a client-side proxy with WebServicesAssembler , specify a
<proxy-gen> tag in the configuration file. Table 8-2 describes the <proxy-gen>
WebServicesAssembler configuration file sub-tags.

Note: When you are generating client-side proxies and you are
accessing an external WSDL file from behind a firewall, make sure
to set the appropriate security properties shown in Table 8-3, such
as http.proxyHost and http.proxyPort

Example 8-1 shows a sample WebServicesAssembler that includes a
<proxy-gen> tag.

Example 8-1 WebServicesAssembler Proxy Gen Configuration File

<?xml version="1.0"?>
<web-service>
<proxy-gen>
<proxy-dir>/TestArea/Hotel/proxy/outside</proxy-dir>
<option hame="include-source">true</option>
<option name="wsdHocation" package-name="myPackage.proxy >
http/fterraservice.net/TerraService.asmx?WSDL</option>
<option name="wsdHocation">
http:/Avs.serviceohjects.net/sg/FastQuote.asmx?WSDL</option>
</proxy-gen>
<Meb-service>

8-8 Oracle9i Application Server Web Services Developer's Guide

Working with Client-Side Proxy Jar to Use Web Services

Table 8-2 Proxy Generation <proxy-gen> Sub-Tags

Tag Description
<proxy-dir> Specifies the directory for the generated client-side proxy stubs Jar
directory file that is included in the generated Web Service .ear file.

</proxy-dir>

<option hame="include-source">
value
</option>

<option hame="wsdl-location">
URL
</option>

or
<option hame="wsdI-location"
package-name=" package ">
URL

</option>

This tag is required.

Setting value to true tells WebServicesAssembler to include the
classes and the source in the generated client-side proxy. When the
value is false, the source is not included in the generated Jar.

This tag is optional.

Valid values: true , false

Default value: false

This tag sets the URL to use for the source WSDL to use to generate
the client-side proxy.

This option also supports the optional attribute package-name . The
package-name can specify the name package for the generated
client-side proxy.

This tag is optional.

Examples:

<option name="wsdl-location">

http://system1:8888/webservice3/TestService?WSDL
</option>

<option name="wsdI-location"
package-name="myPackage.proxy">
http://system1:8888/webservice3/TestService?WSDL
</option>

See Also:

Chapter 9, "Web Services Assembly Tool"

Working with Client-Side Proxy Jar to Use Web Services

This section describes how to use the client-side proxy Jar when you are building
the client-side application to access a Web Service. The client-side proxy Jar class
allows you to easily build an application that uses a Web Service.

The client side proxy Jar file contains a Java class to serve as a proxy to the Web
Service implementation. The client-side proxy code constructs a SOAP request and
marshalls and unmarshalls parameters for you. Using the proxy classes saves you

Building Clients that Use Web Services 8-9

Working with Client-Side Proxy Jar to Use Web Services

the work of creating SOAP requests for accessing a Web Service or processing Web
Service responses.

Example 8-2 shows a source code sample client-side proxy extracted from a Web
Service. For each operation available on the Web Service, there is a corresponding
method in the proxy class. The example shows the method hellowWorld(String)

that serves as a proxy to the helloworld(String) method in the associated Web
Service implementation.

Example 8-3 shows client-side application code that uses the helloWorld()
method from the supplied client-side proxy shown in Example 8-2.

Note: When you are accessing an external Web Service from
behind a firewall, make sure to set the appropriate security
properties shown in Table 8-3, such as http.proxyHost and
http.proxyPort

Example 8-2 Sample Client-side Proxy Method for Web Services
public class StatefulExampleProxy {

public java.lang.String helloWorld(java.lang.String param0) throws Exception
{

8-10 Oracle9i Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services

Example 8-3 Sample Client-side Application Using a Proxy Class for Web Services
import oracle j2eews_example.proxy.*;

public class Client
{
public static void main(String[] argv) throws Exception
{
StatefulExampleProxy proxy = new StatefulExampleProxy();
System.out printin(proxy.helloWord('Scott));
System.out printin(proxy.count());
System.out printin(proxy.count());
System.out printn(proxy.count();
}
}

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side
code should use the generated Bean included with the downloaded client-side
proxy. This is because the generated client-side proxy code translates Simple Object
Access Protocol (SOAP) structures to and from Java Beans by translating SOAP
structure namespaces to and from fully qualified Bean class names. If a Bean with
the specified name does not exist in the specified package, the generated client code
will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle9iAS Web Services, rather than the
client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as JDeveloper, which
work directly from WSDL documents can correctly call Oracle9iAS Web Services
with Java Beans as parameters.

Using Web Services Security Features

When you run a client-side application that uses Oracle9iAS Web Services, you can
access secure Web Services by setting properties in the client application. Table 8-3
shows the available properties that provide credentials and other security
information for Web Services clients.

In a Web Services client application, you can set the security properties shown in
Table 8-3 as system properties by using the -D flag at the Java command line, or
you can also set security properties in the Java program by adding these properties
to the system properties (use System.setProperties() to add properties). In
addition, the client side stubs include the _setTranportProperties method that

Building Clients that Use Web Services 8-11

Working with Client-Side Proxy Jar to Use Web Services

is a public method in the client proxy stubs. This method enables you to set the

appropriate values for security properties by supplying a Properties

argument.

Table 8-3 Web Services HTTP Transport Security Properties

Property

Description

http.authType

http.password
http.proxyAuthType

http.proxyHost
http.proxyPassword
http.proxyPort

http.proxyRealm

http.proxyUsername

http.realm

http.username

Specifies the HTTP authentication type. The case of the value specified is ignored.
Valid values: basic , digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not setting the
property.

Specifies the HTTP authentication password.

Specifies the proxy authentication type. The case of the value specified is ignored.
Valid values: basic , digest

Specifying any value other than basic or digest is the same as not setting the
property.

Specifies the hostname or IP address of the proxy host.

Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHos tis defined; otherwise this value is ignored.

Default value: 80

Specifies the realm for which the proxy authentication username/password is
specified.

Specifies the HTTP proxy authentication username.

Specifies the realm for which the HTTP authentication username/password is
specified.

Specifies the HTTP authentication username.

8-12 Oracle9i Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services

Table 8-3 (Cont.) Web Services HTTP Transport Security Properties

Property Description
java.protocol. Specifies a list of package prefixes for java.net. URLStreamHandlerFactory
handler.pkgs The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPClient

This value is required by the Java protocol handler framework; it is not defined by
Oracle9i Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, a java.net.MalformedURLEXxception is
thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following;:
« java.protocol.handler.pkgs=HTTPClient

« java.protocol.handler.pkgs=sun.net.www.protocol|

HTTPClient
oracle.soap. Specifies the allows user interaction parameter. The case of the value specified is
transport. ignored. When this property is set to true and either of the following are true, the
allowUserlInteraction user is prompted for a username and password:
1. Ifany of properties http.authType, http.username , or http.password

is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType , http.proxyUsername , or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true , false
Specifying any value other than true is considered as false
oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported with Oracle SSL.

oracle. Specifies the location of an exported Oracle wallet or exported trustpoints.
wallet.location . . .
Note: The value used is not a URL but a file location, for example:
/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)
d:\oracle\systeml\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet. Specifies the password of an exported wallet. Setting this property is required
password when HTTPS is used with client, mutual authentication as the transport.

Building Clients that Use Web Services 8-13

Working with WSDL Files and JDeveloper to Use Web Services

Working with WSDL Files and JDeveloper to Use Web Services

The Web Services WSDL allows you to manually, or using Oracle9i JDeveloper or
another IDE, build client applications that use Web Services.

The Oracle9i JDeveloper IDE supports Oracle9iAS Web Services with WSDL
features and provides unparalleled productivity for building end-to-end J2EE and
integrated Web Services applications.

JDeveloper supports Oracle9iAS Web Services with the following features:

= Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

= Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

= Provides schema-driven WSDL file editing.

« Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Non-Oracle Web Services IDEs or client development tools can use the supplied
WSDL file to generate Web Services requests for services running under Oracle9iAS
Web Services. Currently, many IDEs have the capability to create SOAP requests,
given a WSDL description for the service.

8-14 Oracle9i Application Server Web Services Developer’s Guide

9

Web Services Assembly Tool

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in
assembling Oracle9iAS Web Services. The Web Services assembly tool takes a
configuration file which describes a Web Service, including the location of the Java
classes, PL/SQL stored procedures or functions, or J2EE EAR, WAR, or JAR files
and produces a J2EE EAR file that can be deployed under Oracle9iAS Web Services.

This chapter contains the following topics:

Running the Web Services Assembly Tool

Web Services Assembly Tool Configuration File Sample
Generating WSDL Files and Client Side Proxies

Web Services Assembly Tool Configuration File Specification

Web Services Assembly Tool Limitations

Web Services Assembly Tool 9-1

Running the Web Services Assembly Tool

Running the Web Services Assembly Tool

Run the Web Services assembly tool as follows:

java -jar WebServicesAssembler jar [-debug] -config [fle]
or
java -jar WebServicesAssembler jar [-debug]

Where file is a Web Services assembly tool configuration file. Without the -config
option, a file named config.xml must be present in the same directory where
WebServicesAssembler.jar is invoked.

With the -debug option, WebServicesAssembler displays verbose debugging
comments.

Web Services Assembly Tool Configuration File Sample

The sample configuration file shown in Example 9-1 defines two services to be
wrapped in an Enterprise ARchive file (EAR). The sample includes configuration

information for services defined with <stateless-java-service> and
<stateful-java-service> tags.
See Also:

= '"Preparing and Deploying Java Class Based Web Services" on
page 3-9

= '"Preparing and Deploying Stateless Session E]JB Based Web
Services" on page 4-8

= '"Preparing Stored Procedure Web Services" on page 5-3
= '"Preparing Document Style Web Services" on page 6-9
= "Preparing and Configuring JMS Web Services" on page 7-11

9-2 Oracle9i Application Server Web Services Developer's Guide

Web Services Assembly Tool Configuration File Sample

Example 9-1 Sample Web Services Assembly Tool Configuration File

<web-service>

<display-name>Web Services Example</display-name>
<description>Java Web Service Example</description>
<I- Specifies the resutting web service archive will be stored in Avs_example.ear —>
<destination-path>.Avs_example.ear</destination-path>
<! Specifies the temporary directory that web service assembly
tool can create temporary files. —
<temporary-directory>./fmp<ftemporary-directory>
<I- Specifies the web service will be accessed in the serviet context
named "fvebservices". —
<context>webservices</context>

<I- Specifies the web service will be stateless —
<stateless-java-service>
<interface-name>oracle j2eews_example.StatelessExample</interface-name>
<class-name>oracle j2eews_example.StatelessExamplelmpl</class-name>
<I- Specifies the web service will be accessed in the uri named
"statelessTest" within the serviet context. —
<ur>/statelessTest</uri>
<I- Specifies the location of Java class files are under /src —>
<java-resource> /src<fjava-resource>
<[stateless-java-service>

<statefuava-service>
<interface-name>oracle. j2eews_example.StatefulExample</interface-name>
<class-name>oracle j2eews_example.StatefulExamplelmpl</class-name>
<l Specifies the web service will be accessed in the uri named

"statefullTest" within the serviet context. —

<uri>/statefulTest</uri>
<l Specifies the location of Java class files are under /src —>
<java-resource>./src</java-resource>

<[statefuHava-service>

<Meb-service>

Web Services Assembly Tool 9-3

Web Services Assembly Tool Configuration File Sample

Web Services Assembly Tool Configuration File Sample Output

After running the Web Services Assembly tool with the sample input file shown in
Example 9-1, the generated output is an EAR file (/tmp/ws_example.ear) The
generated J2EE .ear file, ws_example.ear , has the structure shown in

Example 9-2.

Example 9-2 Structure of Web Services Assembly Tool Sample Ear File

ws_example.ear
[-META-INF
| ‘—application.xml
‘—ws_example_web.war
[—index.html
‘—WEB-INF
[—webxml
‘—classes
‘—oracle
‘—j2ee
‘—ws_example
|—StatefulExample java
|[—StatefulExample.class
|—StatefulExamplelmpl java
‘—StatefulExamplelmpl.class
|[—StatelessExample java
|—StatelessExample.class
|—StatelessExamplelmpl java
‘—StatelessExamplelmpl.class

9-4 Oracle9i Application Server Web Services Developer's Guide

Generating WSDL Files and Client Side Proxies

Generating WSDL Files and Client Side Proxies

This section describes using the <wsdl-gen> and <proxy-gen> tagsina
WebServicesAssembler configuration file. These tags controls the options for
generating WSDL files and client-side proxies for Web Services. A client-side
developer can obtain and use the WSDL file or the client-side proxies to build an
application that uses a Web Service. A server-side developer that is assembling Web
Services can use these file for testing Web Services.

This section covers the following topics:
= Generating and Assembling WSDL Files
= Generating Client-Side Proxies with WSDL

Generating and Assembling WSDL Files

Using Oracle9iAS Web Services, a Web Service developer has several choices for
deciding how the WSDL file that is associated with a Web Service is generated:

1. Using the <wsdl-gen> tag, you can specify that WebServicesAssembler
create the WSDL file. At assembly time when the Web Service is prepared, the
WebServicesAssembler generates and packages the WSDL file with the Web
Service.

Example 9-3 shows a configuration file that includes the <wsdl-gen> tag.

2. Allowing the Oracle9iAS Web Services runtime to generate the WSDL file when
the WSDL is requested by a Web Service client (after the WEB Service is
deployed). In this case, you do not specify the <wsdl-gen> tag in the
configuration file.

3. Creating a WSDL file manually. In this case, use the <wsdl-gen> tag during
assembly of the J2EE .ear file to specify the path to the WSDL file. At assembly
time when the Web Service is prepared, the WebServicesAssembler
packages the WSDL file with the Web Service.

Table 9-1 describes the <wsdl-gen> WebServicesAssembler configuration file
sub-tags.

Note: Using the <wsdl-gen> tag, the default behavior is to
package the WSDL into the J2EE .ear file. To exclude the generated
WSDL from the J2EE .ear file, use <option name="packagelt">

tag and set the value to false

Web Services Assembly Tool 9-5

Generating WSDL Files and Client Side Proxies

Table 9-1 WSDL Generation <wsdl-gen> Sub-Tags

Tag

Description

<option name="force">
value
</option>

<option name="httpServerURL">
URL
</option>

<option nhame="packagelt">
value
</option>

<wsdI-dir>
directory
</wsdl-dir>

Setting value to true forces WebServicesAssembler to
overwrite any existing WSDL file in the WSDL directory specified
with the <wsdl-dir > tag.

Valid values: true , false
Default value: true

This tag sets the value for the HTTP server listener endpoint in the
generated WSDL. Set the URL to point to the Web Service HTTP
listener.

Example:

<option name="httpServerURL">http:/localhost8888</option>

Setting value to true tells WebServicesAssembler to include the
generated WSDL in the assembled .ear file. When the value is

false , the generated WSDL file is not included in the assembled
.ear file.

Valid values: true , false

Default value: true

Specifies the directory for the WSDL file source that is included in
the generated Web Service .ear file.

When you are manually supplying the WSDL file, place a copy of
the WSDL file in the specified directory and use the <option
name="force"> tag with the value false

Example 9-3
<web-service>

WebServicesAssembler Configuration File Including <wsdl-gen>

<display-name>Stateless Java Document Web Service</display-name>
<description>Stateless Java Document \Web Service Example</description>
<destination-path>./statelessdocws.ear</destination-path>
<temporary-directory>.femp<ftemporary-directory>
<context>/statelessdocws</context>

<option name="source-path">converter.xsl</option>

9-6 Oracle9i Application Server Web Services Developer's Guide

Generating WSDL Files and Client Side Proxies

<statelessjava-service>
<interface-name>StatelessDoc</interface-name>
<class-name>StatelessDoclmpl</class-name>
<uri>/docservice</uri>
<java-resource>./classes</java-resource>
<message-style>doc</message-style>
<stateless-java-service>

<I- generate the wsdl —
<wsdlgen>

<wsdkdir>wsdl<Avsdl-dir>

<l- over-write a pregenerated wsdl , tum it false'

to use the pregenerated wsdl->

<option name="force">true</option>

<option name="httpServerURL">http:/localhost:8888</option>
<Msdi-gen>

<Mveb-service>

Manually Producing a WSDL File

When you do not want to use either the WebServicesAssembler tool generated
WSDL or the Oracle9iAS Web Services runtime generated WSDL file, and you want
to supply your own version of the Web Service WSDL file, perform the following
steps:

1. Manually create the WSDL file for your service.

2. Name the WSDL file with a name using the .wsdl extension placed after the
service name. For example, servicel.wsdl for a service named servicel

3. Create a configuration file that includes the <wsdl-gen> tag, including
<option name="force"> set to false and <option
name="packagelt"> set to true .

4. Place the WSDL file that you create in the directory specified with the
<wsdl-dir> tag.

5. Run the WebServicesAssembler with the specified configuration file.

Web Services Assembly Tool 9-7

Generating WSDL Files and Client Side Proxies

Generating Client-Side Proxies with WSDL

When the <proxy-gen> tag is included in a configuration file with the
<wsdl-gen> , the generated WSDL is used to generate the proxy that is placed in
the specified directory (this occurs when WebServicesAssembler runs during
the Web Service assembly process).

Table 8-2 lists the <proxy-gen> sub-tags.

Note: Using <proxy-gen> , the generated proxy is not assembled
in the J2EE .ear file.

Example 9-4 shows a sample configuration file that includes both the <wsdl-gen>
and the <proxy-gen> tags.

Example 9—-4 WebServicesAssembler Configuration File Including <wsdl-gen>

<web-service>
<display-name>Test</display-name>
<description>Test program</description>
<destination-path>test.ear</destination-path>
<temporary-directory>temp/<ftemporary-directory><context>/HotelService</context>
<option name="source-path">Workspacel/common/classes</option>

<statelessjava-service>
<interface-name>com.mypackagel.ltest</interface-name>
<uri>main<furi>
<class-name>com.mypackagel test</class-name>
<[statelessjava-service>

<wsdl-gen>
<wsdkdir>wsdi<Avsd-dir>
<option hame="force">true</option>
<option name="httpServerURL">http:/localhost:8888</option>
<option name="packagelt >false</option>
<fwsdl-gen>

<proxy-gen>

<proxy-dir>proxy</proxy-dir>

<option hame="include-source">true</option>
</proxy-gen>

<Mveb-service>

9-8 Oracle9i Application Server Web Services Developer's Guide

Web Services Assembly Tool Configuration File Specification

Web Services Assembly Tool Configuration File Specification

The input file for WebServicesAssembler is an XML file conforming to the Web

Services Assembly Tool configuration file DTD.

Example 9-5 shows the Web Services Assembly Tool Configuration file DTD.

Example 9-5 Assembly Tool Input File DTD

<?xml version="1.0" encoding="UCS-2"?>

<I- Specify the properties of the web services to be assembled. —

<IELEMENT web-service

((display-name)?,(description) ?,destination-path,temporary-directory,context,(datasource-JNDI-name)? (statefu
Hava-service)* (stateless-java-service),(stateless-stored-procedure-java-service)* (stateless-session-gjb-
service)* (jms-doc-service)*,(option)*,(wsdl-gen)?,(proxy-gen)?)>

<IELEMENT display-name (#PCDATA)*>

<IELEMENT description (#PCDATA)*>

<I- Specify the full path of the resulting EAR file. For example,

“/home/demoivebsenvices.ear" —>

<IELEMENT destination-path #PCDATA)*>

<l Specify a directory where the assembly tool can create temporary

directories and files. —>

<IELEMENT temporary-directory (#PCDATA)*>

<I- Specify the context root of the web services. For example, "Avebsenvices". —

<IELEMENT context #PCDATA)*>

<!l for specifying database resource refs —>

<IELEMENT datasource-JNDI-name (#PCDATA)*>

<I- Specify the properties of a stateful Java service —>

<IELEMENT statefuljava-service

((interface-name)? class-name,ur,(java-resource)*,(ejb-resource)*,(scope)*,(session-imeout)*,(message-style
2>

<I- Specify the properties of a stateless Java service —>

<IELEMENT stateless-java-service
((interface-name)?,class-name,uri,(java-resource)*(ejb-resource)* (message-style)?)>

<I- Specify the properties of a stateless stored procedure Java service —>

<IELEMENT stateless-stored-procedure-java-service
((interface-name)?,(class-name)?,uridatabase-JNDI-name, (java-resource)?, (jar-generation) ?)>
<I- Specify the properties of a stateless session ejb service —>

<IELEMENT stateless-session-ejb-service (path,uri,ejpo-name,(ejb-resource)*)>

<I- Specify the java interface which defines the public methods to be exposed

in the web service. For example, “‘com.foo.myprojecthelloworld". —>

<IELEMENT interface-name (#PCDATA)*>

<I- Specify the java class to be exposed as aweb service. If interface-name is

not specified, all the public methods in this class will be exposed. For example,
"com.foo.myproject hellowWorldimpl*, —>

<IELEMENT class-name (#PCDATA)*>

<I- Specify the uri of this service. This uri is used in the URL to access the

Web Services Assembly Tool

Web Services Assembly Tool Configuration File Specification

WSDL and client jar, and invoke the web service. For example, "/myService". —
<IELEMENT uri (#PCDATA)*>

<

Specify the java resources used in this service.

The value can be a directory or a file that implements the web services. If it

is a directory, all the files and subdirectories under the directory are copied

and packaged in the Enterprise ARchive. If the java resource should belongto a
java package, you should either package it as a jar file and specify itas a

java resource, or create the necessary directory and specify the directory which
contains this directory structure as java resource. For example, you want to
include "com.mycompany.mypackage.foo" class as a java resource of the web
services, you can either package this class file in foo jar and specify
<java-resource>c:/mydirffoo jar</java-resource>, or place the class under
d:/mydir/com/mycompany/mypackageffoo.class and specify the java resource as
<java-resource>c/mydir/</java-resource>.

-

<IELEMENT java-resource (#PCDATA)*>

<I- Specify the ejb resources used in this service. ejp-resource should be a

jar file that implements a enterprise java bean. —

<IELEMENT ejb-resource (#PCDATA)*>

<I- Specify the database JNDI name for stateless PL/SQL web service. —>
<IELEMENT databasejndi-name #PCDATA)*>

<l- Specifies the path of the EJB jar file to exposed as web services. —
<IELEMENT path (#PCDATA)*>

<I- Specify the ejb-name of the session bean to be exposed as web services.
ejb-name should match the <ejb-name> value in the META-INF/ejb-jar.xml of the bean. —>
<IELEMENT ejp-name (#PCDATA)*>

<I- Specify scope of Statefull Java service —>

<IELEMENT scope (#PCDATA)*>

<I- Specify session timeout of Statefull Java service —>

<IELEMENT session-timeout (#PCDATA)*>

<I- Specify the directory location of the generated wsdl->

<IELEMENT wsdl-dir (#PCDATA)*>

<I- Specify that wsdl generation is to happen force" httpServerURL ‘packagelt—
<IELEMENT wsdl-gen (wsdl-dir,(option)*)>

<I- Specifyg the directory location of the generated proxy—>

<IELEMENT proxy-dir #PCDATA)*>

<IELEMENT option (#PCDATA)*>

<IATTLIST option name CDATA #REQUIRED>

<I- Specifying that proxy generation is asked for , it can have optional tags as
'include-source' wsdHocation' —

<IELEMENT proxy-gen (proxy-dir,(option)*)>

<IELEMENT jar-generation (db-package-name,db-schema,db-url,prefix,(method-name)*)>
<IELEMENT database-JNDI-name (#PCDATA)*>

<IELEMENT db-package-name (#PCDATA)*>

<IELEMENT db-url (4PCDATA)*>

<IELEMENT db-schema (#PCDATA)*>

<IELEMENT prefix (4PCDATA)*>

9-10 Oracle9i Application Server Web Services Developer’s Guide

Web Services Assembly Tool Limitations

<IELEMENT method-name #PCDATA)*>

<I- specify the message style ,if this tag is not present it is considered to have 'mc'..it can have
values of 'rpc’ or 'doc’ or ‘document —>

<IELEMENT message-style (#PCDATA)*>

<IELEMENT connection-factory-resource-ref (#PCDATA)>

<IELEMENT topic-resource-ref (#PCDATA)*>

<IELEMENT queue-resource-ref (#PCDATA)>

<I-Resource ref of the retum destination factory—>

<IELEMENT reply-to-connection-factory-resource-ref (#PCDATA)*>

<I-Resource ref of the retum destination Topic. —>

<IELEMENT reply-to-topic-resource-ref (#PCDATA)*>

<I-Resource ref of the retum destination Queue. —>

<IELEMENT reply-to-queue-resource-ref (#PCDATA)>

<lms-priority ,jms-message-type jms-delvery-mode ,jms-expiration The JMS properties are only set for
engueuing operations, i..e, for send operations only. —>

<IELEMENT jms-priority (4PCDATA)*>

<IELEMENT jms-message-type (#PCDATA)*>

<IELEMENT jms-delivery-mode (#PCDATA)*>

<IELEMENT jms-expiration (#PCDATA)*>

<l operation property is optional. Possible values for this parameter are: send, receive, and both. If not
provided, the value defaults to both. —>

<IELEMENT operation (#PCDATA)*>

<IELEMENT jms-doc-service
(uri,connection-factory-resource-ref, (topic-resource-ref)? (queue-resource-ref)?,(reply-to-connection-factory
-resource-ref)? (reply-to-topic-resource-ref)?,(reply-to-queue-resource-ref) ?,(jms-priority) ?, jms-message-ty
pe)?,(ms-delivery-mode)?,(ms-expiration)?,(operation)?)>

Web Services Assembly Tool Limitations
The WebServicesAssembler tool has the following limitations:

= No Upload/download capabilities: the Web Services Assembly tool does not
upload Java classes from a client system to a server or download a generated
EAR file back to a client system.

= Does not support advanced configuration tasks: for example, the Web Services
Assembly tool is not able to control the security options for a Web Services
Servlet, cannot secure an EJB, secure welcome files, or perform other
administrative tasks.

Web Services Assembly Tool 9-11

Web Services Assembly Tool Limitations

9-12 Oracle9i Application Server Web Services Developer’s Guide

10

Discovering and Publishing Web Services

Oracle9iAS Containers for Java2 Enterprise Edition (J2EE), or OC4J, provides a
Universal Discovery Description and Integration (UDDI) Web Services registry in
which Web Services provider administrators in an enterprise environment can
publish their Web Services for use by Web Services consumers (programmers). Web
Services consumers can use the UDDI inquiry interface to discover these published
Web Services by browsing, searching, and drilling down in the UDDI registry to
select one or more Web Services from among those registered to be used in their
applications for a particular enterprise process.

For example, a Web Services provider administrator working with programmers
who have completed a Web Services implementation using the J2EE stack (either
EJBs, JavaBeans, JSP, or servlets) and exposing the implementation as a Simple
Open Access Protocol (SOAP)-based Web Services, can publish the Web Services by
providing all the metadata and pointers to the interface specification in the UDDI
registry. In this way, the Web Services provider administrator publishes the
availability of these Web Services for the Web Services consumer to discover and
select for use in their own applications.

Discovering and Publishing Web Services 10-1

UDDI Registration

UDDI Registration

The information provided in a UDDI registration can be used to perform three types
of searches:

= White pages search -- containing address, contact, and known identifiers. For
example, search for a business that you already know something about, such as
its name or some unique ID.

= Yellow pages topical search -- containing industrial categorizations based on
standard classifications, such as NAICS, ISO-3166, and UNSPSC.

= Green pages service search -- containing technical information about Web
Services that are exposed by a business, including references to specifications of
interfaces for Web Services, as well as support for pointers to various file and
URL-based discovery mechanisms.

UDDI uses standards-based technologies, such as common Internet protocols
(TCP/IP and HTTP), XML, and SOAP, which is a specification for using XML in
simple message-based exchanges. UDDI is a standard Web Services description
format and Web Services discovery protocol; a UDDI registry can contain metadata
for any type of service, with best practices already defined for those described by
Web Services Description Language (WSDL).

UDDI Registry

The UDDI registry consists of the following four data structure types that group
information to facilitate rapid location and understanding of registration
information:

= businessEntity -- the top-level, logical parent data structure; contains
descriptive information about the business that publishes information about
Web Services, such as business services, categories, contacts, discovery URLs,
and identifier and category information that is useful for performing searches.

= businessService -- the logical child of a single businessEntity data structure as
well as the logical parent of a bindingTemplate structure; contains descriptive
business service information about a particular family of technical services
including its name, brief description, technical service description, and category
information that is useful for performing searches.

= bindingTemplate -- the logical child of a single businessService data structure;
contains technical information about a Web Services entry point and references
to interface specifications.

10-2 Oracle9i Application Server Web Services Developer’'s Guide

UDDI Registry

tModel -- descriptions of specifications for Web Services or classifications that form
the basis for technical fingerprints; represents the technical specification of the Web
Services, in order to facilitate Web Services consumer searching for registered Web
Services that are compatible with a particular technical specification. That is, based
on the descriptions of the specifications for Web Services in the tModel structure,
Web Services consumers can easily identify other compatible Web Services.

Figure 10-1 shows the UDDI information model and the relationships among its
four data structure types.

Figure 10-1 UDDI Information Model Showing the Relationship Among the Four Main
Data Structure Types

husinessEntity

tModel

|
businessService

]
— bindingTemplate

Because UDDI makes use of XML and SOAP, each of these data structure types
contains a number of elements and attributes that further serve to describe a
business or have a technical purpose. See UDDI Data Structure Reference V1.0 Open
Draft Specification 30 September 2000 and UDDI Programmer’s API 1.0 Open Draft
Specification 30 September 2000 for a complete description of the UDDI service
description framework, including its XML schema, and the approximately 20
request messages and 10 response messages that comprise the request/response
XML SOAP message interface that is used to perform publishing and inquiry
functions against the UDDI business registry.

Discovering and Publishing Web Services 10-3

Oracle UDDI Enterprise Web Services Registry

Oracle UDDI Enterprise Web Services Registry

This section describes a subset of features that provide UDDI support for Web
Services deployed in OC4J as the Oracle 9iAS release 2 UDDI enterprise
implementation of OC4] Web Services and the UDDI enterprise-wide Web Services
registry.

The Oracle UDDI registry support for Web Services deployed in OC4]J is composed
of two parts:

= Web Services discovery -- consumers can use the Inquiry API available for Java
programmers to implement their own Web Services discovery tool to search,
locate, and drill down to discover OC4] Web Services in the Oracle UDDI
registry, as well as in any other accessible UDDI Version 1.0 Web Services
registry. See Using the Inquiry API on page 10-5 for more information about
using the Inquiry API and locating the Javadoc documentation that describes
the Inquiry APL

= Web Services publishing -- Web Services provider administrators can publish
OC4] Web Services into the enterprise-wide Oracle UDDI Web Services registry
using the Application Server: iAS: OC4J home: Deployed Applications:
Deploy Application Wizard provided through Oracle Enterprise Manager. This
wizard takes you through the steps necessary to deploy a J2EE application on
the OC4] container, and in this process, there is a step where you can publish
Web Services (Web Services servlets contained in the EAR file) to the Oracle
UDDI registry.

Web Services provider administrators can also update published Web Services
by searching, locating, and drilling down to OC4] Web Services using the
Application Server: iAS: OC4] home: Administration: Related Links: UDDI
Registry link provided through Oracle Enterprise Manager.

10-4 Oracle9i Application Server Web Services Developer’'s Guide

Web Services Discovery

Web Services Discovery

Using Tools

Web Services are discovered in the Oracle UDDI Registry by browsing the registry
using tools or using the Inquiry APL

Consumers can create their own inquiry browse tool or use third-party tools to
browse and drill down for information about Web Services from the Oracle UDDI
registry as well as from any other accessible UDDI Version 1.0 Web Services registry.
Consumers can use the Inquiry API available for Java programmers to implement
their own Web Services discovery interface.

Using the Inquiry API

The Inquiry API lets consumers search for the available registered Web Services by
providing find (browse and drill-down) calls and get calls for locating and getting
information in each of the four data structures shown in Figure 10-1.

The Inquiry API allows consumers to discover and use Web Services using the Java
language. Programs can be written in any language and can use the SOAP protocol
to discover Web Services. The Java APl is provided as a convenience for Java
programmers. The URL for the UDDI registry is

http:// <ias-http-server-host-name><ias-port-number> /uddi/inqui

ry , where <ias-http-server-host-name> is where the Oracle HTTP Server
powered by Apache is installed and <ias-port-number> is the port number for
the Oracle HTTP Server.

The Inquiry APl is located in the Oracle9iAS installation directory, <ORACLE _
HOME#s/uddi/ for UNIX and <ORACLE _HOM#Kis\uddi\ for Windows. The
API documentation that describes how to use this Inquiry API can be found on the
Oracle9iAS Documentation Library as UDDI Client API Reference (Javadoc) under
Oracle9iAS Web Services, which is located under the J2EE and Internet applications
tab.

A set of sample demo files are located in the following directory:

<ORACLE_HOMi8s/uddildemoldemo.zip for UNIX
<ORACLE_HOMs\udd\demo\demo.zip for Windows

Within the demo.zip file is a Java program file, UddilnquiryExample.java ,

that provides Java programmers with a starting point that demonstrates the key
constructs and the sequence in using the Oracle UDDI client library.

Discovering and Publishing Web Services 10-5

Web Services Discovery

The program example does the following:

Gets an instance of a SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server using
the SOAP protocol and some underlying transport protocol (in this case HTTP).

SoapTransportLiaison transport = new OracleSoapHttpTransportLiaison();

Calls a helper method to set up proxy information, if necessary. You can specify
HTTP proxy information for accessing the UDDI registry on the command line,
using parameters, such as -Dhttp.proxyHost= <hostname>
-Dhttp.proxyPort= <portnum> .

setHttpProxy((SoapHttpTransportLiaison)ransport);

Uses the SoapTransportLiaison and the URL of a UDDI inquiry registry to
initialize an instance of the UddiClient, which connects to the specified UDDI
registry. The UddiClient instance is the primary interface by which clients send
requests to the UDDI registry.

UddiClient uddiClient = new UddiClient(szinquiryUn, null, transport);

Uses the UddiClient to perform a find business request. Specifically, it finds all
business entities that start with the letter T and prints out the response. Note
that input parameters and return values are objects that precisely mimic the
XML elements defined in the UDDI specification.

/I Find a business with a name that starts with "T"
String szBizToFind ="T*
System.out printin(\nListing businesses starting with " + szBizToFind);
Il Actual find business operation:
I/ First null means no specialized FindQualifier.
Il Second null means no max number of entries in response.
Il (For example, maxRows attribute is absent.)
BusinessList bl = uddiClientfindBusiness(szBizToFind, null, null);
I Print the response.
System.out printin(‘The responseis. ");
List listBusinessinfo = bl.getBusinessinfos().getUddiElementList();
for (inti=0; i <listBusinessinfo.size(); i++) {
Businessinfo businessinfo = (Businessinfo)listBusinessinfo.get(i);
System.out printin(businessinfo.getName());
System.out printin(businessinfo.getFirstDescription());

10-6 Oracle9i Application Server Web Services Developer’'s Guide

Web Services Discovery

Uses the UddiClient to get a UddiElementFactory instance. This factory should
always be used to create any UDDI objects needed for inquiries.

UddiElementFactory uddiEltFactory = uddiClient.getUddiElementFactory();

Uses the UddiElementFactory instance to create a CategoryBag and its
KeyedReference, which will be used for searching.

CategoryBag cb = (CategoryBag)uddiEltFactory.createCategoryBag();
KeyedReference kr =
(KeyedReference)uddiEltFactory.createKeyedReference();
kr.setTModelKey(szCategoryTModelKey);
kr.setkeyValue(szCategoryKeyValue);

kr.setkeyName(™);

ch.addUddiElement(kr);

Uses the UddiClient to perform a find service request. Specifically, it finds a
maximum of 30 services, which are classified as application service providers
(code 81.11.21.06.00) under the UNSPSC classification in any business entities
(no businessKey is specified).
ServiceList servicelist =

uddiClientfindService(", cb, null, new Integer(30));

Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmiWiter writerXmMriter = uddiEltFactory.createWriterXmiWiiter(
new PrintWhiter(System.out));

serviceList marshall(writerXmiVWiriter);

writerXmiWriter flushy);

writerXmriter.close();

Closes the UddiClient instance when finished to release resources.

uddiClient.close);

Provides URLs (in comments) to the Oracle UDDI registry and four public
UDDI registries.

Discovering and Publishing Web Services 10-7

Web Services Publishing

Web Services Publishing

Web Services are published in the Oracle UDDI Registry by using Oracle Enterprise
Manager or using the Publishing APIL

Using Oracle Enterprise Manager

Using Oracle Enterprise Manager, Web Services provider administrators can
publish Web Services in the Oracle UDDI Registry in two ways:

= Navigate to the Application Server: iAS: OC4J home: Deployed Applications:
Deploy Application Wizard. The Deploy Application Wizard takes you
through the process of deploying a J2EE application on the OC4]J container by
assembling the needed application and module deployment descriptors as an
Enterprise Archive (EAR) file. See Oracle9iAS Containers for J2EE User’s Guide for
information about EAR file-based deployment of J2EE Web applications.

The second-to-last step, the Publish Web Services step, of the Deploy
Applications Wizard lets Web Services provider administrators publish Web
Services (servlets) that are found in the EAR file. Any Web Services servlet in an
application that you want to access must be published to the Oracle UDDI
Registry to one or more desired categories within one or more of the
classifications provided. Any unpublished Web Services in an application
appears with the status of Not Published = and when the Web Services is
published, the status changes to Published

= Navigate to the Application Server: iAS: OC4J home: UDDI Registry: Web
Services Details window. The Web Services Details window lets Web Services
provider administrators publish J2EE applications to the UDDI Registry after
entering all required Service Details and tModel Details information.

Web Services provider administrators can update the discovered published Web
Services. They find these published Web Services through the Oracle Enterprise
Manager Discovery tool using the UDDI Registry link in the Related Links column
within the Administration section of the OC4]J: home window from the
Application Server: iAS: window.

10-8 Oracle9i Application Server Web Services Developer’'s Guide

Web Services Publishing

Oracle UDDI Registry
The Oracle UDDI Registry uses the following three standard classifications:

North American Industry Classification System (NAICS)

This is a classification system for each industry and corresponding code. For
more information about NAICS, see the Web site at

http/Amww.census.goviepcdimmwinaics.html

Universal Standard Products and Services Codes (UNSPSC)

This is the first coding system to classify both products and services for use
throughout the global marketplace. For more information about UNSPSC, see
the Web site at

http:/leccma.org/unspsc/
ISO-3166 Geographic classification (ISO-3166)

This a list of all country names and each corresponding two-character code
element. For more information about ISO-3166, see the Web site at

http:/Avwv.din.defgremien/nas/inabd/fiso3166ma/

When Web Services provider administrators publishes Web Services, they can select
the classification and the category to which they want to register the Web Services.
They have the option of publishing their Web Services to any or all three of these
classifications and to as many categories and subcategories as they wish within each
classification.

See Also: "Database Character Set and Built-in ISO-3166
Classification" on page 10-29

Using the Oracle Enterprise Manager Deploy Applications Wizard

Web Services provider administrators can publish Web Services using the Oracle
Enterprise Manager Deploy Applications Wizard. They do this as follows:

1.

Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the Deployed
Applications section within the OC4J: home window and click Deploy
Application to invoke the Deploy Application wizard.

Step through each window of the Deploy Application wizard and provide the
essential information for each step.

Discovering and Publishing Web Services 10-9

Web Services Publishing

At the Publish Web Services window, select the desired Web Services to
register from the list of Web Services known to the application whose status is
Not Published by clicking its corresponding radio button in the Select
column, and click Publish to continue to the Web Services Details window.

At the Web Services Details window, review, edit, or enter the information as
needed in each of the fields in the Service Details section and in the tModel
Details section.

a. To add categories for either the Web Services or the tModel sections, click
Browse UDDI Registry and browse to the desired classification and drill
down as needed through each desired category noting all desired category
names and values.

b. Click Add Category to add an empty row of category information.

c. Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

d. Click Add Category again to create another empty category row.

e. Select the desired classification, enter the value code and its corresponding
category name for the desired category.

f. Repeat this process (Steps d and e) as many times as it takes to add all the
categories to which to register this Web Services.

g. After entering all the necessary information on the Web Services Details
window they are ready to publish the Web Services to the Oracle UDDI
Registry, click OK. You return to the Publish Web Services window.

Back at the Publish Web Services window, select another Web Services to
publish and repeat this entire process again as described in Steps 3 and 4.

After publishing all Web Services for this application, click Next to continue to
the Summary window where all the application deployment information can be
reviewed.

If there are no further changes, click Deploy to deploy the J2EE application on
the OC4] container. Doing this returns you to the Oracle Enterprise Manager
OC4] Home page. Then, to repeat the process of deploying another J2EE
application on the OC4] container, click Deploy Application.

After deployment, metadata describing the Web Services that you chose to publish
has been added to the UDDI registry.

10-10 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

Using the Oracle Enterprise Manager Web Services Details Window

Web Services provider administrators can publish Web Services using the Oracle
Enterprise Manager Web Services Details window. They do this as follows:

1.

Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the UDDI Registry link
in the Related Links column within the Administration section of the OC4J:
home window.

Click the UDDI Registry link.

The UDDI Registry window lets the administrator select one of the three
standard classifications: NAICS, UNSPSC, or ISO-3166 by clicking its link or lets
you publish Web Services by selecting the Administration link.

Click the Administration link.

At the Web Services Details window, enter the required information in each of
the fields in the Service Details section and in the tModel Details section.

a. Enter the service name, service description, and service URL to the Servlet
in the Service Details section.

b. Enter the tModel name, tModel description, and the URL to the WSDL
document in the tModel Details section.

c. Toadd categories for either the Web Services or the tModel sections, click
Browse UDDI Registry and browse to the desired classification and drill
down as needed through each desired category, noting all desired category
names and values.

d. Click Add Category to add an empty row of category information.

e. Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

f. Click Add Category again to create another empty category row.

g. Select the desired classification, enter the value code and its corresponding
category name for the desired category.

h. Repeat this process (Steps d and e) as many times as needed to add all the
categories to which to register this Web Services.

i. After entering all required information on the Web Services Details
window, publish the Web Services to the Oracle UDDI Registry by clicking
Apply. This returns you to the UDDI Registry window where you can

Discovering and Publishing Web Services 10-11

Web Services Publishing

choose to publish another J2EE application to the UDDI registry by
following the same steps again, beginning at Step 2.

Updating Published Web Services in the UDDI Registry

Oracle Enterprise Manager provides a user interface for Web Services provider
administrators to browse, drill down, and get information about Web Services
published for categories in the Oracle UDDI Registry. Web Services provider
administrators can update the discovered published Web Services. They find these
published Web Services through the Oracle Enterprise Manager Discovery tool
using the UDDI Registry link within the Administration section of the OC4]J: home
window from the Application Server: iAS window.

To update published Web Services using Oracle Enterprise Manager to discover that
Web Services, do the following:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the UDDI Registry link
in the Related Links column within the Administration section of the OC4J:
home window.

Click the UDDI Registry link.

2. The UDDI Registry window lets the administrator select one of the three
standard classification: NAICS, UNSPSC, or ISO-3166 by clicking its link. The
UDDI Registry window lets the administrator browse any of the three
classifications and discover published Web Services associated with any
category or subcategory.

Click the desired classification link.

3. The UDDI Registry: <Classification Name> window lets the administrator
drill down from category to subcategory to discover published Web Services
associated with any category or subcategory. Each classification is organized in
a hierarchical tree. Navigate down a particular branch by clicking the category
name to determine all its subcategory names, and so forth. As you navigate
down a branch, also note the change in the category code value.

Navigate to the desired category or subcategory by successively clicking the
desired category links.

4. The Web Services: <Category Name> window lets the administrator continue
to drill down through the categories or you can view all Web Services published
in a particular category by selecting the corresponding radio button in the Select
column for that category and clicking View Services.

10-12 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

Select the corresponding radio button in the Select column for the desired
category and click View Services.

The Web Services window lists all Web Services published for that category
name. For each Web Services listed for the selected category, its corresponding
service name, service key, and business key are also listed. If no Web Services is
published for a selected category or subcategory, none is listed.

To view the complete details of a particular published Web Services listed for a
category, either click its service name link or select its corresponding radio
button in the Select column and click View Details.

Click the desired service name link.

The Web Services Details window displays detailed information for the
selected Web Services published in the Oracle UDDI Registry. This information
includes:

« Service Details

Service details include information such as the Web Services name, Web
Services description, and the URL of the Web Services access point.

Category

Category information includes the classification and the corresponding
code value and its category name.

« tModel Details

tModel details include information that describes the interface that the Web
Services implements, such as the tModel name, tModel description, and
URL to the interface specification, typically a WSDL document.

Category

Category information includes the classification and the corresponding
code value and its category name.

Category information can be added or deleted for both the Service Details
and tModel Details sections. You can browse the Oracle UDDI Registry
(click Browse UDDI Registry) looking for categories in which to register
this Web Services. You can add categories (click Add Category) to which
both this Web Services and tModel are to be registered. You can remove
categories (click Delete) to which this Web Services and tModel are
registered.

Discovering and Publishing Web Services 10-13

Web Services Publishing

Service and tModel detail information can be modified by moving the
cursor to the appropriate field and making the necessary changes.

After making all selections or completing all changes for this Web Services,
click Apply to save your changes.

If you have made changes to any field and you decide you want to return to
the original set of values for all selections, click Revert. The window
refreshes with the original set of values for all selections as if you had just
begun your current session.

Make your modifications and click Apply to save your changes.

To discover and update other published Web Services for the same category, at
the top of the Web Services Details window, select the desired Web
Services:<Classification Name> link to return to the desired Web
Services:<Classification Name> window. At this window, select another Web
Services to view in more detail, make any necessary changes, and finally click
Apply to save your changes.

Alternatively, you can select the UDDI Registry link at the top of the Web
Services Details window to return to the UDDI Registry window where you
can navigate to another classification to discover Web Services for other
categories. At each desired category, select the desired Web Services to view its
details, make any necessary changes, and finally click Apply to save your
changes.

Using the Publishing API

Note: The publishing API was released as the UDDI v1.0
Compliance Patch Kit available on Metalink as Patch number
2367149. This Patch Kit must be installed for Oracle9iAS release 2
(9.0.2) and Oracle9iAS release 3 (9.0.3) for server-side support of the
publishing APIL.

The UDDI publishing API lets programmers, following authentication, publish Web
Services by providing save and delete calls for each of the four key UDDI data
structures (businessEntity, businessService, bindingTemplate, and tModel).

The publishing API allows programmers to publish Web Services using the Java
language. Programs can be written in any language and use the SOAP protocol to
publish Web Services. The Java APl is provided as a convenience for Java
programmers.

10-14 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

The Publishing API is located in the Oracle9iAS installation directory, <ORACLE_
HOME>/ds/uddi/ for UNIX and <ORACLE_HOME>\ds\uddi\ for Windows. The
API documentation that describes how to use this publishing API can be found on
the Oracle9iAS Documentation Library CD-ROM as UDDI Client API Reference
(Javadoc) under Oracle9iAS Web Services, which is located under the J2EE and
Internet Applications tab.

A set of sample demo files are located in the <ORACLE_
HOME>/ds/uddi/demo.zip file for UNIX and the ORACLE_
HOME>\ds\uddi\demo.zip file for Windows.

Within the demo.zip file is a Java program file,

UddiPublishingExample.java , that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the Oracle
UDDI client library.

The program example does the following:

« Gets an instance of a SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server using
the SOAP protocol and some underlying transport protocol (in this case HTTP).

SoapTransportLiaison transport =
new OracleSoapHitp TransportLiaison();

= Uses the SoapTransportLiaison and the URL of a UDDI publishing registry to
initialize an instance of the UddiClient, which connects to the specified UDDI
registry. The UddiClient instance is the primary interface by which clients send
requests to the UDDI registry. Authentication is done by the transport layer
(HTTP BASIC in this example).

TransportAuthenticationLiason auth =
new TransportAuthenticationLiason();
UddiClient uddiClient =
new UddiClient(null, szPublishingUH, transport, auth);

= Performs authentication. You should make this call before doing any
publishing.
UddiClientauthenticate();

= Uses the UddiClient to get a UddiElementFactory instance. This factory should
always be used to create any UDDI objects needed.

UddiElementFactory uddiEltFactory =
uddiClientgetUddiElementFactory();

Discovering and Publishing Web Services 10-15

Web Services Publishing

Performs various publishing operations that include creating and saving a
tModel, a businessEntity, a businessService, and a bindingTemplate data
structure for the purpose of creating a business that provides a
Google-interface-compatible service.

Creates a tModel data structure that represents a Google-compatible service by
using the UddiElementFactory instance.

TModel tModel = (TModel)uddiEtFactory.create TModel();
tModel.setName("um:google.com:search-interface’);

Creates and includes the OverviewDoc data structure in the tModel data
structure by using the UddiElementFactory instance.

OverviewDoc overviewDocTm =

(OverviewDoc)uddiElFactory.createOvernviewDoc();
tModel.setOverviewDoc(overviewDocTm);

overviewDocTm.setOverviewURL (" hitp:/api.google.com/GoogleSearch.wsdl);

In the tModel data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference, which will be
used for searching. Classify the tModel data structure as a
SOAP/WSDL-based interface and put it under the "applicable service
providers" category.

CategoryBag catBagTm =
(CategoryBag)uddiEtltFactory.createCategoryBag();
tModel.setCategoryBag(catBagTm);

KeyedReference kiTml=
(KeyedReference)uddiEltFactory.createKeyedReference();

catBagTm.addUddiElement(krTmZ);
krTm1.setfTModelKey(CoreTModelConstants. TAXONOMY_KEY_UDDI_TYPE);
krTmZ.setkeyName(wsdiSpec”);

krTm2.setKeyValue(wsdiSpec”);

KeyedReference kiTm2 =
(KeyedReference)uddiEtFactory.createKeyedReference();
catBagTm.addUddiElement(krTm2);
krTm?2.setTModelKey(CoreTModelConstants. TAXONOMY_KEY_UDDI_TYPE);
krTm2.setkeyName(wsdISpec”);

krTm2.setkeyValue('wsdiSpec”);

KeyedReference kiTm3 =

10-16 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

(KeyedReference)uddiEltFactory.createKeyedReference();
catBagTm.addUddiElement(krTm3);

krTm3 setTModelKey(CoreTModelConstants. TAXONOMY_KEY_UNSPSC _7_3);
krTm3.setkeyName('application service providers”);
krTm3.setkeyValue('81.11.21.06.00);

Publishes the Google search interface tModel business operation.

System.out printin(\nPublish the google search interface tModel.”);

TModel tMSaved = uddiClient.save TModel(tModel);

String szGoogleTModelKey = tMSaved.getTModelKey();

System.out printin(The tModel is saved with tModelKey assigned to be " +
szGoogleTModelKey);

Creates a businessEntity data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

BusinessEntity businessEntity =
(BusinessEntity)uddiEltFactory.createBusinessEntity();
businessEntity.setName("ACME search Inc.”);

In the businessEntity data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,
which will be used for searching. Classify the businessEntity data structure
under the "information services and data processing services" category.

KeyedReference kiBel =
(KeyedReference)uddiEltFactory.createKeyedReference();
catBagBe.addUddiElement(krBel);
krBel.setTModelKey(CoreTModelConstants. TAXONOMY_KEY_NAICS_1997);
krBel.setkeyName("Information Services and Data Processing Services');
krBel.setKeyValue('514");

Creates a businessService data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

BusinessServices businessServices =
(BusinessServices)uddiEltFactory.createBusinessServices();
businessEntity.setBusinessServices(businessServices);
BusinessService businessService =
(BusinessService)uddiEltFactory.createBusinessService();
businessServices.addUddiElement(businessService);
businessService.setName("ACME Web Search service");

In the businessService data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,

Discovering and Publishing Web Services 10-17

Web Services Publishing

which will be used for searching. Classify the businessService data structure
under the "application service providers" category.

CategoryBag catBagBs =

(CategoryBag)uddiEltFactory.createCategoryBag();
businessService.setCategoryBag(catBagBs);

KeyedReference kiBsl =
(KeyedReference)uddiEtFactory.createKeyedReference();
catBagBs.addUddiElement(krBs1);

kBs1.setTModelKey(CoreTModelConstants. TAXONOMY_KEY_UNSPSC_7_3);
krBs1.setkeyName(‘application service
providers");krBs1.setkeyValue("81.11.21.06.00);

= Creates the bindingTemplates data structure that represent a Google-compatible
service by using the UddiElementFactory instance.

BindingTemplates bindingTemplates =
(BindingTemplates)uddiEltFactory.createBinding Templates();
businessService.setBindingTemplates(bindingTemplates);
BindingTemplate bindingTemplate =
(BindingTemplate)uddiEltFactory.createBinding Template();
bindingTemplates.addUddiElement(bindingTemplate);

— Creates and includes the access point in the bindingTemplates data
structure by using the UddiElementFactory instance.

AccessPoint accessPoint =
(AccessPoint)uddiEttFactory.createAccessPoint();
bindingTemplate.setAccessPoint(accessPoint);
accessPointsetUnType("http");
accessPaint.setContent("http:/foobar.net/search-g'");

— Creates and includes the tModel instance details in the bindingTemplates
data structure by using the UddiElementFactory instance.

TModelinstanceDetails tModelinstanceDetails =
(TModellinstanceDetails)uddiEttFactory.create TModelinstanceDetails();
bindingTemplate.setTModelinstanceDetails({ModellnstanceDetalils);

- Declares that the bindingTemplate data structure implements the Google
search interface.

TModellinstancelnfo tModelinstancelnfo =
(TModelinstancelnfo)uddiEltFactory.create TModelinstancelnfo();
tModellnstanceDetails.addUddiElement(tModelinstancelnfo);
tModellnstancelnfo.setTModelKey(szGoogle TModelKey);

10-18 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

= Publishes the businessEntity data structure and its containing businessService
and bindingTemplate data structures.

System.out printin("Publish the ACME Search Inc. businessEntity...");
BusinessEntity bESaved = uddiClient.saveBusiness(businessEntity);
System.out printin(The saved businessEntity (in XML) is.");

= Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmiWriter writerXmWriter =
uddiEltFactory.createWriterXmiWriter(new PrintWriter(System.out));
bESaved.marshall(writerXmriter);

writerXmiWriter.flushy();

writerXmMWriter.close();

« Closes the UddiClient instance when finished to release resources and to log out
from the registry.

uddiClient.close();

UDDI Registry Administration

The following sections describe new UDDI registry administration features.

User Management

Oracle9iAS Release 2 UDDI Registry has two types of users, as defined by two
different J2EE security roles.

= uddipublisher: Users with the uddipublisher security role can access the
publishing end point and save UDDI entities in the registry.

= uddiadmin: Users with the uddiadmin security role can access the publishing
end point and perform administrative activities.

User management, including operations such as creation, deletion, suspension, role
management, and so forth, is handled by OC4] Java Authentication and
Authorization (JAAS) service. Refer to Oracle9iAS Containers for [2EE Services Guide
for more information.

There is a set of additional UDDI-specific user operations. See User Account
Management on page 10-21 for more information about UDDI registry
administration.

Discovering and Publishing Web Services 10-19

Web Services Publishing

Performance Monitoring and Tuning

On the back end of an Oracle database, UDDI servlets, and the associated JDBC
connection pools can all be monitored using Oracle Enterprise Manager and other
standard database monitoring and tuning utilities.

In an OC4J standalone environment, performance information is typically available
at

http://<ocdj-host-name>:<port-number>/dmsoc4i/Spy

Data Backup and Restore Operations

Registry data backup and restore operations can be done by using the standard
Oracle database backup and restore operations.

Using the Command-Line Tool uddiadmin.jar

The command-line tool uddiadmin.jar is located in the
ds/uddi/lib/uddiadmin.jar file for UNIX and in the
ds\uddillib\uddiadmin.jar file for Windows. Administrators can use this
tool for various administrative activities. In general, the command-line tool takes
the command-line parameters of the following form:

java -jar uddiadmin.jar <regjistry publishing URL> <usemame> <password>
[~verbose] <action to perform and additional parameters>
The user name is ias_admin and the password is ias_admin

Note that the -verbose option will cause stack trace information to be printed out
when an exception is encountered.

Server Configuration on page 10-20 through Import Operation on page 10-22 and
Built-in Validated Category Management on page 10-23 describe the administrative
uses of this command-line tool.

Server Configuration

The following parameters are used for server configuration operations. See Server
Configuration Parameters Reference Information on page 10-26 for more
information about these configuration parameters.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getProperties

Description: Lists the current registry configuration parameters.

For example:

10-20 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

java -jar uddiadmin jar <registry publishing URL> <username> <password>
[-verbose] -getProperties

Parameter: <registry publishing URL> <username> <password>
[-verbose] -setProperty <name>=<value>

Description: Changes the value of the named configuration parameter. The UDDI
registry J2EE application needs to be restarted for the parameters to take effect.

User Account Management

In general, user management is handled by the OC4] JAAS service. This section
describes UDDI-registry-specific operations that are not handled by the OC4] JAAS
service. The following parameters are used for user account management:

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getUsers

Description: Lists all existing users who have entities in the registry.

For example:

java -jar uddiadmin jar <registry publishing URL> <username> <password>
[-verbose] -getUsers

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getUserDetail <username_to_retrieve>

Description: Retrieves the details of the named user, currently the authorizedName
of each user.

Administrative Entity Management
The following parameters are used for administrative entity management.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -deleteEntity [-businessKey <businessKey> |
-serviceKey <serviceKey> | -bindingKey <bindingKey> |
-tModelKey <tModelKey>]

Description: Deletes the named entity irrespective of the owner of the entity. Note
that this operation performs a nonpermanent delete (hide) operation in the case of a
tModel entity.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -destroyTModel <tModelKey>

Discovering and Publishing Web Services 10-21

Web Services Publishing

Description: Permanently deletes the named tModel from the registry (as opposed
to the UDDI-defined delete_tModel call, which is just hiding the tModel).

Parameter: <registry publishing URL> <username> <password>
[-verbose] -changeOwner <new username> [-businessKey
<businessKey> | -tModelKey <tModelKey>]

Description: Changes the ownership of the named entity to the new specified user.

Import Operation
The following parameter is used for importing entities:

Parameter: <registry publishing URL> <username> <password>
[-verbose] -import [-businesses <filename> | -tmodels
<filename>]

Description: Imports all businessEntity or tModel data structures in the named file.
For importing the businessEntity data structure, the named file (<filename>) for
importing should contain a UDDI businessDetail XML document. For importing
tModels, the named file should contain a UDDI tModelDetail XML document. By
importing them, the entityKeys (such as, businessKey, serviceKey, bindingKey,
tModelKey) are preserved. The operatorName and authorizedName fields,
however, are not preserved. The operatorName field will be replaced by the
operatorName configuration parameter of the registry. The owner of the imported
entities is the administrator; hence, the authorizedName field will be the
authorizedName of the administrator.

The import parameter is particularly useful in importing the well-known service
interface specification tModel and classification tModel data structures from some
authoritative sources.

Because the entity keys are preserved, administrators should be careful in
evaluating the source of the entities to ensure that there will not be a collision in
entity keys.

Database Configuration
The following sections describe some database-specific configuration information.

Database Character Set Should Be UTF-8 The database character set should be UTF-8 to
accommodate all possible characters. However, if a customer knows for sure that
the data to be stored in the registry contains characters of a specific country or
region (such as western Europe), the customer may use the appropriate database
character set.

10-22 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

Functional Index Should Be Enabled The functional index must be enabled to support
index-based case-insensitive search. The following init.ora parameters are
involved: query_rewrite_enabled=true

In addition, the cost-based optimizer must be turned on for analyzing all tables or
indexes in the UDDISYS schema. For example:

execute doms_stats.gather_schema,_stats(ownname=>UDDISYS'cascade=>true);

Accuracy of Modified Timestamps of UDDI Entities ~ The accuracy of modified timestamps
of UDDI entities is dependent on the version and compatibility of the database. If
the database compatibility is release 9.0.1 or higher, the modified timestamps are of
SQL type TIMESTAMP with an accuracy up to microseconds. If the database
compatibility is below release 9.0.1, the modified timestamps are of SQL type DATE
with an accuracy up to seconds.

Built-in Validated Category Management

Oracle9iAS Release 2 UDDI Registry can perform a spell-check form of category
value validation, increasing the data accuracy in the registry. An administrator can
add or remove the set of categories that will be validated by the registry.

Adding a New Category for Registry-based Validation To add a new category, you must
load the category values into the database and register the category with the
registry. Perform the following steps:

1. Load the category values into the database. To do this, the category values of
the entire category should be in a file using the following format:

= Each line of the file describes one category value in the category. It should
be in the following format:

<category value> | <description of category value>
| <category value of the parent>

« If a category value is a root value, for example, it has no parent, the
category value of the parent should be set to itself.

= The line of a category value should occur before all of its descendants.

Examples can be found in the ds/uddi/taxonomy directory for UNIX and
in the ds\udditaxonomy directory for Windows. Excerpts from the
NAICS file are as follows:

22|Utiities|22

221|Utiities|22

Discovering and Publishing Web Services 10-23

Web Services Publishing

2211|Electric Power Generation, Transmission|221

It is recommended that you save the file with UTF-8 encoding.

Create a SQL*Loader control file to load the category file. An example is
ds/uddi/admin/naics-97.ctl for UNIX and

ds\uddi\admin\naics-97.ctl for Windows. Copy the file and replace the
name of the category file in the control file with the one you create.

Load the category file to the database using SQL*Loader. Refer to the
SQL*Loader sections of Oracle9i Database Ultilities for more information about
using SQL*Loader.

Register the category with the registry as follows:

a.

Register the category by saving a new tModel for it in the registry. For
example, look at the tModel named ntis-gov:naics:1997 . You can use
the included sample Web applications link
http://<ias-web-server-host>:<ias-web-server-port>/uddi/

or a third-party UDDI v1.0-compliant tool. If the tModel data structure has
been defined in some other registry, you can also import it (instead of
creating a new one, which results in different tModelKeys entities) using
the uddiadmin.jar utility. See Import Operation on page 10-22 for more
information.

Configure the registry so that it recognizes the category that must be
validated using the command-line administrative tool, uddiadmin.jar

For example, to add a new tModel entity with key
UUID:FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFO | issue the
setProperty command for the property
oracle.uddi.server.categoryValidationTModelKeys as follows:

java ar uddiadmin jar <registry publishing URL> <usemame>
<password> -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4,
'UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88,
'UUID:COB9FE13-179F-413D-8A5B-5004DBBESBB2,
‘UUID:CD153257-086A-4237-B336-6BDCBDCC6634,
‘UUID:FFFFFFFF-FRF-FRFF-FRFF-FRFFFFFFFRRO ™

Notice that because the setProperty command defines all categories that
need to be validated, to add a new category, you should set the property
with all the existing tModelKeys values plus the new tModelKey value that
needs to be added.

10-24 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

Removing a Category from Registry-based Validation To remove a category from
registry-based validation, you should deregister the category with the registry and
remove the category values in the database. Perform the following steps:

1. To deregister the category with the registry, you should remove it from the list
of validated categories using the uddiadmin.jar setProperty command
for the property
oracle.uddi.server.categoryValidationTModelKeys

You do not have to (and in general should not) delete the tModel entity from
the registry.

2. To remove the category values from the database, use the SQL*Plus script
udiverm.sql in the ds/uddi/admin directory for UNIX and in the
ds\uddi\admin directory for Windows. For example:

salplus uddisys/uddisys @udiverm.sgl

When running this script, you will be prompted for the tModelKey value of the
category to be removed. You should see that a set of rows is deleted. If the result
shows that 0 rows are deleted, you have entered an invalid tModelKey value.

Transport Security

The Inquiry API in general does not require authentication. However, if the inquiry
end point needs to be protected, transport level authentication, such as HTTP
BASIC authentication and HTTPS SSL client authentication, can be enabled by
configuring the web.xml file. A security role, uddiguest , is reserved for accessing
the protected inquiry end point. Refer to Oracle9iAS Containers for J2EE Services
Guide and Oracle9iAS Containers for J2EE User’s Guide for more information about
security roles and related security configuration.

For the Publishing API, you may want to allow HTTPS access only. To disable
HTTP access, edit the web.xml file of the orauddi application to enforce data
confidentiality and make adjustments to HTTP servers accordingly. Refer to
Chapter 8 Security in Oracle9iAS Containers for J2EE User’s Guide and Oracle9iAS
Containers for J2EE Services Guide for more information. For example, to disable
HTTP access in the web.xml file, use the following code:

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</ransport-guarantee>
<Juser-data-constraint>

Discovering and Publishing Web Services 10-25

Web Services Publishing

Additional Information

The UUID generation algorithm used generates version 4 UUID, which creates
UUIDs from random numbers.

All built-in tModel data structures as specified in the UDDI v1 specification are
included. An additional tModel data structure uddi-org:operators , defined in
the UDDI v2 specification, is also included to classify the bootstrap node
businessEntity that represents the UDDI registry itself.

Server Configuration Parameters Reference Information

This section describes reference information for some UDDI server configuration
parameters. It is divided into two sections:

= Advanced configuration parameters
= Installation or first-use configuration parameters

These server configuration parameters are referenced in Server Configuration on
page 10-20. As each example shows, these configuration parameters can be changed
only by using the command-line administration tool, uddiadmin.jar ~ , which is
described in Using the Command-Line Tool uddiadmin.jar on page 10-20.

Advanced Configuration Parameters ~ The following UDDI server parameters can be
configured for advanced use.
Parameter name: identifierValidation (Advanced use parameter)

Description: Determine if the registry internally validates identifierBag upon save_
xxx calls. In a typical case, there is no reason to change it.

Parameter Type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java ar uddiadmin jar <registry publishing URL> <usemame> <password>
[~verbose] -setProperty oracle.uddi.server.identifierValidation=true

Parameter name: operatorCategory (Advanced use parameter)

Description: If categoryValidation is true, this property determines whether or not
the uddi-org:operators category scheme is validated. If uddi-org:operators is

10-26 Oracle9/ Application Server Web Services Developer's Guide

Web Services Publishing

validated, in a single-node scenario, it implies no additional businessEntity data
structures can be classified in uddi-org:operators

Parameter type/allowable values: Boolean (true, false)
Initial value: true
Typical value: true
Guideline: N/A
Example:
java jar uddiadmin jar <registry publishing URL> <usemame> <password>
[verbose] -setProperty
oracle.uddi.server.categoryValidation.operatorCategory=true
Parameter name: categoryValidation (Advanced use parameter)

Description: Determine if the registry internally validates categoryBag upon save_
xxx calls. In a typical case, there is no reason to change it.

Parameter type/allowable values: boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java ar uddiadmin jar <registry publishing URL> <usemame> <password>

[~verbose] -setProperty oracle.uddi.server.categoryValidation=true

Parameter name: categoryValidationTModelKeys (Advanced use parameter)

Description: If categoryValidation is true, this property defines the list of categories
to be validated internally by the registry. The validation is essentially a spell-check:
compare the value with the set of valid values to make sure it is one.

Parameter type/allowable values: A list in the form of '<tModelKey1>',
'<tModelKey2>', '<tModelKey3>".

Initial value: 'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4', which represents
(uddi-org:types classification). The pre-installed value, however, is UDDI types
classification plus the three classifications defined in UDDI v1 specification:
(uddi-org:types, uddi-org:iso-ch:3166-1999, ntis-gov:naics:1997, unspsc-org:unspsc).

Note: The uddi-org:types classification should not be removed from the list.

Discovering and Publishing Web Services 10-27

Web Services Publishing

Typical value: The pre-installed value.
Example:

java jar uddiadmin jar <registry publishing URL> <usemame> <password>
[~verbose] -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
‘UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4,
'UUID:AE49A8D6-D5A2-4FC2-93A0-0411D8D19ESS,
'UUID:COB9FE13-179F413D-8A5B-5004DB3ESBB2,
'UUID:CD153257-086A-4237-B336-6BDCBDCC6634' "

Installation or First-Use Parameters ~ The following two parameters operatorName and
businessEntityURLPrefix should be changed immediately after an installation, but
should not be changed afterward.

Parameter Name: operatorName

Description: The name of the operator, appearing in the operator attribute of UDDI
responses.

Parameter type/allowable values: A non-null string.
Initial value: OracleUddiServer

Typical value: <domain of the UDDI registry>/uddi
Guideline: N/A

Example:

java jar uddiadmin jar <registry publishing URL> <usemame> <password>
[~verbose] -setProperty oracle.uddi.server.operatorName=OracleUddiServer
Parameter Name: businessEntity URLPrefix

Description: This parameter customizes the URL prefix for the generated
businessEntity URL for discoveryURL[@useType='businessEntity'] . The
actual URL is in the form of
<businessEntityURLPrefix>?businessKey=<businessKey>

Parameter type/allowable values: A valid URL.

Initial value: The UDDI registry will prompt an administrator for an initial value
upon server initalization.

Typical value: The host name and port should be the host name and port of the
Web server (which may or may not be the same as the servlet container).

Guideline: N/A

10-28 Oracle9/ Application Server Web Services Developer's Guide

Database Character Set and Built-in 1ISO-3166 Classification

Example:

java ar uddiadmin jar <registry publishing URL> <usemame> <password>
[-verbose] -setProperty oracle.uddi.server.businessEntityURL Prefix=
Parameter name: defaultLang

Description: The default language of the registry, used when a description element
given in a save_xxx call is not qualified by the xml:lang attribute.

Parameter type/allowable values: Values of xml:lang

Initial value: en

Typical value: The locale of the primary region the registry serves.
Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <usemame> <password>
[~verbose] -setProperty oracle.uddi.server.default_ang=en

Database Character Set and Built-in ISO-3166 Classification

The UDDI specification mandates that the registry support the full UTF-8 character
set. Oracle recommends, though does not require, using UTF-8 as the character set
for the Oracle9iAS infrastructure database if the UDDI registry is used.

If the database is not configured with the UTF-8 character set or its equivalent or
superset, there could be data corruption and error due to loss in character set
conversion to or from UTF-8. Refer to Oracle9i Globalization Support Guide for details.

In particular, the descriptions in UDDI built-in ISO-3166 classification contains
descriptions with non-ASCII characters, such as some Western European characters
and some Eastern European characters for the names of cities or regions. In order to
support the non-UTF-8 database, all non-ASCII characters in the descriptions are
replaced with ASCII characters as an approximation.

If you do have a UTF-8 database, you can upgrade the built-in ISO-3166
classification to the one with accurate descriptions using the following instructions:

= Delete the existing ISO-3166 classification by running the SQL script,
clrlSO.sql , for example:

cd< ORACLE HOMiEs/uddifadmin
sqlplus system/manager @clrlSO.sql

Discovering and Publishing Web Services 10-29

Recommended Configuration for a Production Environment

Load the ISO-3166 classification with accurate descriptions by using SQL*
Loader control file is03166-99.ctl , for example:

cd< ORACLE HOMIgs/uddifadmin
sqlldr userid=system/manager control=iso3166-99.ct

Recommended Configuration for a Production Environment

The following information describes some post-installation configuration steps that
you should do immediately after the installation. These steps are not mandatory,
but are highly recommended in a production environment.

User repository setup: By default, a file-based JAAS repository

(jazn-data.xml) is deployed with two users: ias_admin and publisher

You should customize the repository. For example, LDAP directory or a
centralized jazn-data.xml should be your user repository. Refer to Chapter 7
Managing the JAAS Provider in Oracle9iAS Containers for J2EE Services Guide for
more information. Examples of using command-line utilities are as follow:

java-jar jazn jar -istusers jazn.com

java-jar jaznjar Histroles jazn.com

java Har jazn jar -adduser jazn.com myname mypassword

java -jar jazn.jar -grantrole webserviceuserrole jazn.com myname
java-jar jazn.jar -revokerole webserviceuserrole jazn.com myname
java-jar jaznjar remuser jazn.com myname

Security for publishing the end point: By default, HTTP access is enabled.
However, HTTPS access is recommended for security concerns. See Transport
Security on page 10-25 for more information about disabling HTTP access.

10-30 Oracle9/ Application Server Web Services Developer's Guide

11

Consuming Web Services in J2EE
Applications

This chapter describes how to consume Web Services in J2EE applications. Two
types of Web-based information or services are supported:

« HTML/XML streams accessed through HTTP, see Consuming XML or HTML
Streams in J2EE Applications.

= SOAP-based Web Services described using WSDL, see Consuming SOAP-Based
Web Services Using WSDL.

In addition, when a Java2 Enterprise Edition (J2EE) application acquires a WSDL
document at runtime, the dynamic invocation APl is used to invoke any SOAP
operation described in the WSDL document. See Dynamic Invocation of Web
Services for information about how to use the dynamic invocation API.

Consuming Web Services in J2EE Applications 11-1

Consuming XML or HTML Streams in J2EE Applications

Consuming XML or HTML Streams in J2EE Applications

Oracle9iAS Containers for Java2 Enterprise Edition (J2EE), also referred to as OC4],
provides support for processing XML or HTML streams accessible through the
HTTP/S protocols for consuming into J2EE applications. The Web Service
HTML/XML Stream Processing Wizard assists developers in creating an Enterprise
JavaBean (EJB) whose methods will access and process the desired XML or HTML
streams.

In the simplest case, suppose a developer wants programmatic access to an XML
news feed accessible through a static URL. In another case, a developer wants
programmatic access to a dynamic stream accessed through the submission of an
HTML form. Now, suppose HTTP /S basic authentication is required to access either
of these two types of resources. In either case, developers must be able to quickly
and easily process XML or HTML streams, thus consuming these Web Services in
their own specific J2EE applications.

Web Service HTML/XML Stream Processing Wizard

Developers using the Web Service HTML /XML Stream Processing Wizard first
specify how the XML/HTML stream should be accessed and then define the
desired processing actions on the stream.

Developers can choose among the following options when specifying their
XML/HTML stream access:

1. Supply a static URL that has no parameters.
2. Define an HTML form to be submitted, its action URL, and its parameters.
3. Supply the URL of an HTML page where the form to be submitted is defined.

Additional HTTP-related settings can also be specified. They include HTTP proxy
settings, authentication, and HTTPS Oracle Wallet information.

To assist developers in defining the processing to be applied to the stream, the
wizard accesses the XML /HTML stream (prompting the developer for sample form
values if necessary). The resulting sample XML/HTML stream is shown in a
searchable XML tree. Through the wizard, the developer can perform the following
actions:

1. Leave the XML stream unprocessed and have the service response be the
original stream.

2. Select anode in the XML tree and have the service response be an XML Element
corresponding to that node.

11-2 Oracle9i Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

3. Select a node in the XML tree and define through the wizard a simple
transformation for it. The service response will be the result of that
transformation. Optionally, the same transformation can be applied to all the
siblings of the selected node.

The wizard allows developers to create multi-operation services by repeating the
steps described previously for each operation.

Note: JavaScript code contained in HTML streams will be ignored
and not processed.

Upon completion of the steps described previously, the Web Service HTML /XML
Stream Processing Wizard generates a JavaBean and an EJB whose methods
perform the appropriate HTTP request and processing of the XML or HTML
response. If it is necessary to support multi-operation services, then the generated
stub keeps the HTTP session information in its state, and the generated stub is
modeled as a stateful session E]JB user option. The resulting Java code is then
compiled and archived, creating the required .ear file that the developer can
immediately deploy in Oracle9iAS.

Sample Use Scenarios

This section describes two sample use cases for a better understanding of how to
use the Web Service HTML /XML Stream Processing Wizard.

Handling an XML or HTML Stream Accessed Through a Static URL

The following steps generate the Java stubs that consume a static XML or HTML
stream.

1. Invoke the Web Service HTML /XML Stream Processing Wizard using the
following command:

java -jar WebServicesHtmIXmIWizard.jar

Note: The WebServicesHtmIXmlWizard jar file is located in your
$ORACLE HOM&Eebservices/lib Oracle9iAS installation
directory for UNIX or %ORACLE_HOM&&bservices\lib
Oracle9iAS installation directory for Windows.

Consuming Web Services in J2EE Applications 11-3

Consuming XML or HTML Streams in J2EE Applications

2. InStep 1 of 5: HTML/XML Stream Type, select the first option Through a
static HTTP/S URL, then click Next to continue to the next step.

E‘g%‘ﬁ'eh Service HTMLAXML Stream Processing Wizard : Add Method - Step 1 of 5: HTML/XML 5t [E4

HThLML streams can be static or dvnamically generated based on a
submitted form. Select the access type ofthe HTMLEML stream.

® Through a static HTTRIS LIRL
I Subimitting a form defined in a HTML page

" Subrmitting & custom fartm

3. In Step 2 of 5: HTML/XML Stream URL, enter the URL of the HTML page in
which you want to access the resource. Accept the default stream content type,
HTML Format. If the stream content type is XML, then select the XML Format
content type.

11-4 Oracle9i Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTML/XML Stream Processing Wizard - Add Method - Step 2 of 5: HTML/XML St... [E3

Enterthe LURL of the HTMLGML stream.

URL: Ihttpeiteswser.oracle.comi

Advanced Seﬁings...l

Selectthe stream content type.

TYPe: | HTML Format

If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for your
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.

Consuming Web Services in J2EE Applications 11-5

Consuming XML or HTML Streams in J2EE Applications

Advanced Settings. ..

~iteb Promxy

W Lize proxy serer

Host: |mmw—prnw.us.nracle.cnm

|20

~Cradential

W Lize credential information in request

Lsernarne: |my—ntn-username

Passward: |1HHHHHHHr

~Cracle Wallet

Laocation: Browse. ..

Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.

5. In Step 3 of 5: Result Node, the HTML /XML Stream tree is shown in the
HTML/XML Stream section. Ignore this HTML /XML stream tree for now.

11-6 Oracle9i Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

Note: You may need to move your mouse to the bottom of the
wizard window, grab the edge (note the double-headed, vertically
oriented arrow), and pull the window down to expand it so you
can see the Service Response Tree pane.

Note: If the original HTML /XML stream was in HTML, the
wizard first converts it into XHTML (making it a valid XML
document), and then shows its structure in the tree.

Eg_;g’w’eh Service HTMLAXML Stream Proceszing Wizard : Add Method - S5tep 3 of 5: Result Mode

The following tree showes the structure of the HTMLEML stream. Select
the node that containz a complete set of service results.

~ HTMLEML Stream

Find: EJ Previous

[[jl QCUME ['-.]'|'_|

E—xhtml:html

Mode ¥Path: [

~Web Service Response

® Feturn the entire HTMLSML stream as the Web service response

" Define the Web service response from the selected node

I eludeallthe siblings aftte selested node .. Advanced.,.

Consuming Web Services in J2EE Applications 11-7

Consuming XML or HTML Streams in J2EE Applications

Then, for the Web Service Response section, select how you want to build the
Web Service response; you can select one of two options:

« Return the entire HTML/XML stream as the Web service response
» Define the Web service response from the selected node

For this sample use, you want to take the entire page content as the Web page
content, therefore, select the first option, Return the entire HTML/XML stream
as the Web service response.

Note: If you select the Define the Web service response from the
selected node option, a Service Response Fields window displays.
This option lets you finalize the output extracting process by letting
you select elements of interest to be outputs and assign names to
the output fields. See list item number 8 on page 11-24 for more
information about the Service Response Fields window.

Click Next to continue to the next step.
6. In Step 4 of 4: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name. You need to enter only the EJB method
name and click Finish to complete the operation of creating your EJB method.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE application, the EJB name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the information that is already known.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (checkmarked). If not, deselect
this option and the EJB method information that appeared previously will be
displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these names.

11-8 Oracle9i Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - Step 4 of 4: Summary

Specify the name ofthe EJB method used to access this Web service.

hethod name: |news

Enter an EJB method name, then click Finish to continue to the next step.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method that will access and process the
specified XML or HTML stream.

7. In the final step, the Console window, you see the main window of the Web
Service HTML /XML Stream Processing Wizard that always remains in view
once you reach this step of creating an EJB method.

Consuming Web Services in J2EE Applications 11-9

Consuming XML or HTML Streams in J2EE Applications

Wweb Service HTMLS XML Stream Processing Wizard Console

~ EJB Definitian

Define the application, EJB name, package, and class for the
generated EJB.

JZEE Applicatian: |C|ass']l.l_\pp

EJB Marrie: |m-'uw.nrac|e.cnmr

Semrice Package: ||:Dm.|:|ra|:|elw-ww

Service Class: |C|ass']

[Make the generated EJB stateful

W Lise current proxy and wallet seftings for the generated EJB

- EJB Methods

Add, remaove, or rename EJB methods.

Add...

Remove

Fename...

~ Save Location

Select the directory where you want the generated EJB to he saved.

gwmlstrearmite sty Onaform Browse. ..

Generate Cancel

The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.

11-10 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

EJB Definition Section

The EJB Definition section contains the default EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated E]JB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 5: HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP /S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the E]JB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section

The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the desired location by clicking Browse.

If you want, edit the E]B definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this directory location and select it, or browse to the desired directory and
create a new directory name.

Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the remote HTTP server across

Consuming Web Services in J2EE Applications 11-11

Consuming XML or HTML Streams in J2EE Applications

method calls, you must access other site content and perform the defined
processing. In addition, keep the HTTP/S session information in its state so other
method calls can share the same session information. The generated Java stub will
then be modeled as a stateful session EJB.

An example of a multioperational service would be one operation that includes the
login methods for HTTP or HTTPS authentication. A second operation would
include the methods that scrape the Web site to which you were granted access
through login authentication. In this case, method calls for both operations share the
same session information.

For this sample use, leave the Make the generated EJB stateful box without a
checkmark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add the EJB Methods section, which
starts you again at Step 1 of the wizard, the HTML/XML Stream Type window.

The Web Service HTML /XML Stream Processing Wizard generates the following
sets of files located within the destination directory name you specified in the
Console window. The wizard will save the generated files using the following
directory layout:

Root /

+ app.ear
+src/

+ ... generated java sources ...
+ classes/

+ META-INF/

+ ejb-jar.xml

+ ... compiled classes and xml resources ...
+ deploy/

+ejb.jar

+ META-INF/

+ application.xml

= An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle97AS) is located within the parent directory you specified in
Step 7. The .ear file contains the generated EJB, JAR, and XML files for your
application, where the application.xml file located in the
/deploy/META-INF directory for UNIX or the \deploy\META-INF directory
for Windows serves as the EAR manifest file.

11-12 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

« AJAR file, containing your EJB application class files is located within the
/deploy directory for UNIX or the \deploy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

« A standard J2EE E]B deployment descriptor (ejb-jar.xml), for all the beans
in the module, is located within the /classes/META-INF directory for UNIX
or the \classes\META-INF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

= The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

» The/classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the src/com/oracle/www/Class1.java file
on UNIX or the src\com\oracle\www\Class1.java file on Windows showing
the remote interface (Classl) of the generated EJB. In this case, a method (news)
with no parameters that return an org.wc3.dom.Element is generated because the
HTML stream was selected as a static HTML page.

public interface Class1 extends EJBObject
{

public org.w3c.dom.Element news()
throws RemoteException;

}

Handling an XML or HTML Stream Accessed Through a Form

The following steps generate the Java stubs that consume a dynamic XML or HTML
stream requiring a form to be submitted.

1. Invoke the Web Service HTML /XML Stream Processing Wizard using the
following command:

java -jar WebServicesHtmIXmIWizard.jar

Consuming Web Services in J2EE Applications 11-13

Consuming XML or HTML Streams in J2EE Applications

Note: The WebServicesHtmIXmlWizard jar file is located in your
$ORACLE_HOMEebservices/lib Oracle9iAS installation
directory for UNIX or %ORACLE_HOMEbservices\lib
Oracle9iAS installation directory for Windows.

2. In Step 1 of 5: HTML/XML Stream Type, select the second option, Submitting
a form defined in an HTML page, then click Next to continue to the next step.

E%Weh Service HTML/XML Stream Processing ‘Wizard : Add Method - Step 1 of 5: HTML/XML 5t... B4

HTMLAML streams can he static or dynamically generated based on a
submitted form. Selectthe access twpe of the HTMLAML stream.

" Through a static HTTRIS LIRL

® Subrnitting a form defined in & HTML page

T Subrnitting a custorm form

Note that you can optionally select the Submitting a custom form option if you
must customize the form to allow for variables such as where the Web server
offers a certain action, but the corresponding form is not provided in the HTML

page.
3. In Step 2 of 7: HTML/XML Stream URL, enter the URL of the HTML page
from which you want to access the resource.

11-14 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTML/XML Stream Processing Wizard - Add Method - Step 2 of 7: HTML/XML St... [E3

Enterthe LURL ofthe HTHML page containing the farm definition.

URL: Inttpeiirystockguote.com

Advanced Seﬁings...l

If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for you
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.

Consuming Web Services in J2EE Applications 11-15

Consuming XML or HTML Streams in J2EE Applications

Advanced Settings...

~ieb Promy

W Lise proxy sener

Host: |mw—pro}w.us.oracle.cnm

|20

~Cradential

[Use credential information in request

IsErmamme: [

Fasswar: [

~Oracle YWallet

Laocation:

Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.

5. In Step 3 of 7 HTML Form, the Web Service HTML /XML Stream Processing
Wizard identifies all HTML forms on the Web page. For this sample use, the

11-16 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

Form field shows just one form, the default form name, Form1 and the Action
field shows the HTML form action. In the Content Type field, the default is
HTML Format. This specifies the content type of the page returned by the
remote server upon the submission of the form. If the content type is XML, then
select XML Format. Accept the default content type as HTML format.

E%%Weh Service HTM L Stream Proceszsing Wizard - Add Method - Step 3 of 7- HTML Form [x|

The wizard identifies all the HTML forms an the Web page. Select the
farm and enter the form information below

Form: [Fnrm1

Action: [Get

Content trpe: [HTMLFDrmat

Enterthe form guery parameters. If a query parameter is hidden, its
default value cannot be empty.

MHarme Descriptive Mame Hidden Default Walue

C Stockguote O

h Walug O

Note: If you are submitting a custom form, there is no need to
specify an action.

Consuming Web Services in J2EE Applications 11-17

Consuming XML or HTML Streams in J2EE Applications

In the form query parameters section, checkmark the names of the query
parameters and add descriptive names as needed in the Descriptive Names
column for each query parameter. Descriptive names are used as the name of
the parameter in the signature of the method being defined. For query
parameters that should remain hidden, click the appropriate row and column to
change the default value from unchecked to checked. Note that for each hidden
query parameter, you must also enter a default value. Hidden parameters are
not exposed as Java parameters in the signature of the method being defined.
When you have made all the necessary changes, click Next to continue to the
next step.

6. In Step 4 of 7: Sample Input, you must enter sample input to your service in
order to generate the response message syntax. The default values for all the
hidden query form parameters specified in the previous step, Step 3 of 7 HTML
Form, are used as sample input. Add or edit the sample input values for all
required query form parameters in the Value fields for each parameter.

11-18 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTMLA{ML Stream Proceszing Wizard : Add Method - Step 4 of 7- Sample Input [x|

The wizard needs a set of sample input to your senvice to generate the
response message syntax For all the hidden input fields, the default

Sample Input

MHarme Walue
Stockguote |ORCLAAPL,IBM

Walue W

3

Advanced Seﬁings...l

If you want to check your Web proxy information, enter basic HTTP
authentication information, or enter basic HTTPS authentication information,
click Advanced Settings and enter or edit the desired information.

Click Next to continue to the next step.

7. In Step 5 of 7: Result Node, the HTML /XML stream tree is shown in the
HTML/XML Stream section.

Note: You may need to resize the window vertically so you can
see the HTML/XML Stream Tree pane.

Consuming Web Services in J2EE Applications 11-19

Consuming XML or HTML Streams in J2EE Applications

E‘E,%Weh Service HTMLAXML Stream Processing Wizard : Add Method - S5tep 5 of 7: Result Mode

The following tree shows the structure of the HTMLAML stream. Select
the node that containg a complete set of service results.

~ HTMLEML Stream

Find: |ORCL Mext| Previous

et

minsxhtml="hitphene w3, orgf1 99900t

rinsxhtm ="ttt e 3. 0rgS 1 999

o align="center" -
__
4] I

Mode ®Patht Fmilihitrml bodyfhtml:centershimltable[d)html 1]

~Web Service Response
T Return the entire HTMLML strearm as the Web service response
® Define the Wieb service response from the selected node

W Include all the siblings ofthe selected node i, Advanced...

The Result Node window shows the structure of the HTML or XML stream as
an HTML/XML stream tree and lets you define your Web Service response

based on the contents of the HTML /XML stream.

You have two options in defining your Web Service response:

11-20 Oracle9i Application Server Web Services Developer’s Guide

To select the entire HTML /XML stream to be part of your Web Service
response.

To select just the node that contains the complete set of service results in the
HTML/XML stream and define this to be the Web Service response.
Optionally, you can also include in the Web Service response all siblings of
the selected node.

Consuming XML or HTML Streams in J2EE Applications

The Web Service Response section lets you define the Web Service response as
either the entire HTML /XML stream or as the parent node you selected in the
HTML/XML Stream section. If the parent node contains siblings, you can
optionally select them all to be included in the Web Service response. If you
choose to include all the siblings, you can click Advanced Settings to display
the Advanced Settings pop-up window where you can enter a predicate that
filters the set of sibling nodes, view the resulting Xpath, and view or edit the
Response element name.

If you want to select the entire HTML /XML stream to be part of your Web
Service response, select the first option Return the entire HTML/XML Stream
as the Web service response, then click Next at the bottom of the window to
continue to the next step.

If you want to select just the node that contains the complete set of information
you are interested in, select the second option Define the Web service response
from the selected node. Then, navigate to the node you want by moving down
the HTML /XML stream tree.

You can quickly locate the desired element in the HTML /XML stream tree by
entering its name in the Find field and clicking Next at the end of this field. The
name of the element is highlighted in the HTML/XML stream tree. You can go
to the next or previous occurrence of this element by clicking Next or Previous
the end of the Find field.

From the highlighted element, navigate toward the root of the tree to the node
that contains the complete set of information in which you are interested. The
node of interest is usually the next lowest table row node (xhtml:itr) thatis
within a different table; it is usually located one level lower toward the root of
the tree.

Figure 11-1 and Figure 11-2 together show an excerpt of what the xhtml tree
would appear like when expanded. The selected node xhtml:itr is located in
the next lower table node, which is one level lower than the xhtml:tr nodes
for ORCL and its two siblings AAPL and IBM.

Consuming Web Services in J2EE Applications 11-21

Consuming XML or HTML Streams in J2EE Applications

Figure 11-1 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part1)

S—shtraltable

E}thlml.ld

align="center"
rnlspan="""
Suhtmlitakic
wi clthh="1 00%"
—rrlsparing="1"
—hordor="1r
G —xhilrnil e
A oshtmlitr
J;ellgn:"rlghr'
SHshilrnil. 1d
alignn="1eft"
A p="nni
Zaktmlia
"hrur—".l’q‘?u—ORCL&h—l"
"R

> sl
Er—whittnl
E—hitrnlta
& shilrnl. g
> bl

Ex—whitrrl -t
E—xzhlrnl. 14
st

J)—_:::Ilgn:"rlghr'
Zhitrmlitd

Aliar="lall"
rowr s p="rull"

Zaktmilia
"hrur—".l'q‘?L;—MF"L&h—l"
boranpLY

Ex—whtrml

Ehitrnl it

= zhilrnl. g

11-22 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

Figure 11-2 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part 2)

biterl -t
=t

xhilrnil.1d
12wl
S—whitl -ty

allgn="rlght"
L) shtimalitcd

align="1~t"
nawsrap="null"
zhilrril.=

| Fref="fo) P c— B 81"
RIRLL
» xhilrnl.ld
3 whtinlitcl
2 whtral ol
: achtrmlitd
t—=hilrril. 14
2 bl

e Ff—P———T0

Note that the Node Location field contains the complete name of the node you
selected.

When you select the option Define the Web service response from the selected
node, another option is now available and that is whether or not to include all
the siblings of the selected node in the response.

If the node you selected has siblings that you want to include in the Web Service
response, select the option Include all the siblings of the selected node in the
response. When you make this selection, an Advanced Settings button enables.
Click Advanced Settings to display the Advanced Settings pop-up window
where you can enter a predicate that filters the set of sibling nodes, view the
resulting Xpath, and view or edit the Response element name.

The following predicate filters out the first position: position() != 1. Enter this
predicate expression in the Predicate that filters the set of sibling nodes field
of the Advanced Settings pop-up window to filter the first sibling from the
Web Service response.

Consuming Web Services in J2EE Applications 11-23

Consuming XML or HTML Streams in J2EE Applications

For more information about predicates, filters, syntax, and composing a
predicate expression, see the Xpath section of the following Web site:

http://lwww.w3c.org/TR/xpath
Then, click OK to return to the Result Node window.

Click Next to continue to the next step.

8. In Step 6 of 7: Service Response Fields, you are finalizing the output extracting
process. Based on the selected element from Step 5 of 7 Result Node, you can
select elements of interest to be outputs and assign names to the output fields.

aweb Service HTML/XML Stream Proceszing Wizard : Add Method - 5tep b of 7: Service Response Fields

From the HTMLXML Stream Tree, select the node that contains the value of a serice
response field. Then add the field to the Service Response Fields list and specifiy a name
for it. Repeatthe process far each node that you weant ta include in the Service Response.

HTMLML Stream Tree Semwice Responsze Fields

TITGTT= TC1T o5 Marme
T

copy-af

nosrap="null Stockoguote

htiml:a
Frice

mins xhtrml="http:x
Stockoguote

hre="lq?c=1BME&h=t" -
Frice

"BM

ﬂ Stockoguote
EE—shitrnltal
&

Frice
Sahtmltd A |

mins:xhtrml="hitpoia. Sample Respanse Field Walue

109.90

nowrap="null"
hitrml:h

bmlns:}{htmlﬂhﬁpj
'109.90"

11-24 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications

Service Response Field Names are mapped to XML Element names of the
service response. By default, the value of each node selected in the HTML /XML
stream is contained in an XML Element name as specified in the Service
Response Fields table. For example, if the <a>test node from the
HTML/XML stream tree is added to the Service Response Fields pane, the
service response then contains an XML Element such as <respA>test</respA>,
where respA is the corresponding service response field name. The value of the
node is extracted using the XSLT value-of operation.

If the copy-of column is selected for a result field, the corresponding
XML/HTML stream node is copied in the service response. For example, if the
<a>test node from the HTML /XML stream tree is added to the Service
Response Fields pane and the copy-of option is selected, the service response
then contains an XML Element, such as <respA><a>test</respA>, where
respA is the corresponding service response field name. The copy of a node is
built using the XSLT copy-of operation as shown in the following code example
taken from a generated XSL stylesheet. In this example, <resp:Stockquote>
and <resp:Price> are the corresponding service response field names
showing the copy of a node that was built using the XSLT copy-of operation
where the Copy-of column option was selected.

- <resp:Stockquote>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{2)xhimltd[1)xhtml:a/text()" />
</resp:Stockquote>

- <resp:Price>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{2)xhimltd[3)xhtmibiext()" >
<lresp:Price>

- <resp:Stockquote>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{3}xhimltd[1)xhtml:a/text()" />
</resp:Stockquote>

- <resp:Price>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{3}xhimltd[3)xhtmibiext()" >
<lresp:Price>

- <resp:Stockquote>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{4}xhimltd[1)xhtml:a/text()" />
</resp:Stockquote>

- <resp:Price>
<xsl:copy-of select="/xhtml:td/xhiml:table/xhtml:r{4}xhiml:td[3)xhtmlbiext()" >
<lresp:Price>

In the HTML/XML Response Tree pane, navigate to the node that contains the
value of the service response field of interest and select the value to highlight it.
Then, click the double, right-arrow to the right of this HTML/XML Response
Tree pane to move the value of the response field to the lower right Sample
Response Field Value pane. This action also adds a row to the Service

Consuming Web Services in J2EE Applications 11-25

Consuming XML or HTML Streams in J2EE Applications

Response Fields list in the upper right Service Response Fields pane. Select
the empty field in the Name column of the Service Response Fields pane and
enter a descriptive name for this field. Repeat this process for each element that
you want to include in the service response. As you follow this process, you
will be building a list of response fields of interest in the Service Response
Fields list.

If you want to remove a service response field from the Service Response
Fields list, select the value of the name in the Service Response Fields pane
and click the double, left-arrow to the left side of this pane. This action removes
this service response field from the Service Response Fields list.

When you have made all your selections, click Next to continue to the next step.
9. In Step 7 of 7: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE Application, the EJB Name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the known information.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (with a check mark). If not,
deselect this option and the EJB method information that appeared previously
will be displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these values.

11-26 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - Step 7 of 7- Summary [x|

Specify the name ofthe EJB method used to access this Web service.

Method name: Stockguotel

¥ Use the method information to define EJB as follows:

J2EE Application StockQuotespp

EJB Mame mystockguote comistockguote
Service Package com.myvstockguote

Senice Class stockguote

Enter an EJB method name, then click Finish to continue to the next step.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method whose methods will access and
process the specified XML or HTML stream.

10. In the final step, the Console window, you see the main window of the Web
Service HTML /XML Stream Processing Wizard that remains in view once you
reach this step of creating an EJB.

Consuming Web Services in J2EE Applications 11-27

Consuming XML or HTML Streams in J2EE Applications

WwWeb Service HTMLSZML Stream Processing Wizard Console

~ EJB Definitian

Define the application, EJB name, package, and class far the
generated EJB.

JZEE Application: |8t0ck@unte|}_\pp

EJB Mame: |mvstnckqunte.cnmrstnckqume

Serice Package: |cnm.mystnckqunte

Senice Class: |5t.3|;|<qume

[make the generated EJB stateful

W Ulse current proxy and wallet settings for the generated EJB

~ EJB Methods

Add, remave, or rename EJB methods.
Stockoguotel

Add..

Remove

Rename...

~ Save Location

Select the directory where you want the generated EJB to bhe saved.

e mlstrearmitest90form Browse. ..

Generate Cancel

The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.

11-28 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

EJB Definition Section

The EJB Definition section contains the EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated E]JB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 7: HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP /S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the E]JB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section

The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the location by clicking Browse.

If you want, edit the E]B definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this desired directory location and select it, or browse to the desired
directory and create a new directory name.

Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the client across method calls, you

Consuming Web Services in J2EE Applications 11-29

Consuming XML or HTML Streams in J2EE Applications

must access other site content and perform the defined processing. In addition, keep
the HTTP/S session information in its state so other method calls can share the
same session information. The generated Java stub will then be modeled as a
stateful session EJB.

For this sample use, leave the Make the generated E]B stateful box without a check
mark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add in the EJB Methods section,
which starts you again at Step 1 of the wizard, Step 1 of 7. HTML/XML Stream
Type.

The Web Service HTML /XML Stream Processing Wizard generates the following
sets of files located within the parent directory name you specified in the last step,
the Console window. The wizard will save the generated files using the following
directory layout:

Root /

+ app.ear
+src/

+ ... generated java sources ...
+ classes/

+ META-INF/

+ ejb-jar.xml

+ ... compiled classes and xml resources ...
+ deploy/

+ejb.jar

+ META-INF/

+ application.xml

= An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle97AS) is located within the parent directory you specified in
the last step, the Console window. The .ear file contains the generated EJB, JAR,
and XML files for your application, where the application.xml file located
in the /deploy/META-INF directory for UNIX or the \deploy\META-INF
directory for Windows serves as the EAR manifest file.

= AJARfile, containing your EJB application class files, is located within the
/deploy directory for UNIX or the \deploy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

11-30 Oracle9/ Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

« A standard J2EE E]B deployment descriptor (ejb-jar.xml), for all the beans
in the module, is located within the /classes/META-INF directory for UNIX
or the \classes\META-INF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

= The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

» The/classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the <class-name> .java file showing the
remote interface (stockquote) of the generated EJB. In this case, a method
(stockquotel) with parameters (Stockquote and h) for each non-hidden form
parameter that returns an org.wc3.dom.Element is generated. This stockquotel
method is generated because the HTML stream was selected as being dynamically
generated based on a submitted form defined in the HTML page.

public interface stockquote extends EJBObject

{
public org.w3c.dom.Element stockquotel(java.lang.String Stockquote,

javalang.String Value)
throws RemoteException;

}

Advanced Section -- Editing Changes You Can Make to Generated Files

The following sections describe some changes you can make by editing the content
of specific generated files. These changes can adapt your XSLT stylesheet to an
enhanced response definition or satisfy changing requirements for using your
generated EJB with another Web proxy server.

Consuming Web Services in J2EE Applications 11-31

Consuming XML or HTML Streams in J2EE Applications

Editing the Generated XSLT Stylesheet

The generated <class-name> .jar file, located in the last child <class-name>
directory within the /classes directory on UNIX or \classes on Windows,
contains three files:

= Sample output response XML file returned by the remote server
= Output response XSLT stylesheet file used for the scraping process

= XML response schema XSD file used for the returned response during the
wizard session

During runtime operations, the XML response returned by the remote server upon
access of the XML URL or the submission of a form, is filtered through the XSLT
transformation defined in this stylesheet.

You can edit the filtering stylesheet XSLT file to add logic or to change the behavior
of your application. You can make comparable edits to the output response XML
XSD file to custom adapt your response file for your J2EE application. You must
know how to modify stylesheets and response definition files to complete these
changes successfully.

When you have completed your changes to the response stylesheet and response
XML files and saved your changes, you must do the following:

= Rejar your <class-name> .jar file in the deploy directory.
= Rejar your EJB JAR file by jarring the content of the classes directory.

= Rejar the defined EAR file saved in the tool destination directory, by jarring the
content of the deploy directory.

Modifying Environment Options in the Generated ejb-jar.xml File

The generated ejb-jar.xml file is located in the /classes/META-INF directory
on UNIX or \classes\META-INF directory on Windows directly below the root
directory where you saved your generated EJB. This file contains an environment
section denoted by <env-entry> and </env-entry> tags where the Web proxy
information is stored. Once you generate your EJB, you can later edit this
ejb-jar.xml file to modify your Web proxy settings (host address name and port
number) to satisfy any requirements you might have for using your generated EJB
with other Web proxy servers. You must jar your ejb jar and ear file again and
redeploy them in your J2EE application server.

11-32 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Consuming SOAP-Based Web Services Using WSDL

The wsdl2ejb utility can be used by J2EE developers to consume a Web Service
described in Web Services Description Language (WSDL) document into their
applications. This utility takes a WSDL document and some additional optional
parameters and produces an EJB EAR file that can be deployed into Oracle9iAS
OC4J. The E]JB Remote Interface is generated based on the WSDL portType. Each
WSDL operation is mapped to an EJB method. The EJB method parameters are
derived from the WSDL operation input message parts, while the EJB method
return value is mapped from the parts of the WSDL operation output message. The
Oracle Simple Open Access Protocol (SOAP) Mapping Registry is used to map XML
types to the corresponding Java types.

Additional references regarding WSDL and SOAP can be found in the following
locations:

= The WSDL 1.1 specification is available at
hitp A3 org TRAvs

= The SOAP 1.1 specification is available at
http/Amvwvw3.0rg/ TRISOAP/

The command-line options for running the wsdl2ejb utility are described in
Table 11-1.

Table 11-1 wsdl2ejb Utility Command-Line Options

Option Description
-conf <config file> Allows the wsdl2ejb utility to load a configuration file.
-d <destDir> Allows a destination directory to be specified where the

generated EJB EAR file is to be written.

-Dhttp.proxyHost Allows the proxy host name to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-Dhttp.proxyPort Allows the proxy port number to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-jar Allows you to specify the wsdl2ejb utility as a JAR file.

Consuming Web Services in J2EE Applications 11-33

Consuming SOAP-Based Web Services Using WSDL

To run the wsdl2ejb utility, enter the following command where <destDir> is
the destination directory to where the generated EJB EAR file is to be written and
the file mydoc.wsdl is the location of the WSDL document:

java -jar wsdi2ejb jar -d <destDir> mydoc.wsdl

Note: The wsdl2ejb.jar file is located in your $ORACLE_
HOM£HEuvebservices/lib Oracle9iAS installation directory for
UNIX or %ORACLE_HOMEDbservices\lib Oracle9iAS
installation directory for Windows.

If an HTTP URL is used to supply the location of the WSDL document and an
HTTP proxy is required to access it, the following command and syntax must be
used to run the utility:

java -Dhittp.ProxyHost=myProxyHost -Dhttp.proxyPort=80 -jar wsdl2ejb jar -d
<destDir> http:/myhostimydoc.wsdl

In this example, the utility uses the supplied WSDL to generate the EJB EAR file in
the destination directory (<destDir>). The E]B class name, Java Naming and
Directory Interface (JNDI) binding key, and Java package name are derived from the
location of the SOAP service described in the WSDL.

In this command syntax, the wsdl2ejb utility maps the XML types, which are
supported by default by the Oracle SOAP Mapping Registry.

The wsdl2ejb utility generates the following sets of files located within the
destination directory name (<destDir>) that you specify in the command line. The
utility saves the generated files using the following directory layout:

Root /

+app.ear
+srcl

+ ... generated java sources ...
+ classes/

+ META-INF/

+ ejb-jar.xml

+ ... compiled classes and xml resources ...
+ deploy/

+ejb.jar

+ META-INF/

+ application.xml

11-34 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

= An .ear file (which is a JAR archive containing the J2EE application that can be
deployed in Oracle9iAS) is located within the destination directory
(<destDir>) you specified in the command line. The .ear file contains the
generated EJB, JAR, and XML files for your application, where the

application.xml file located in the /deploy/META-INF directory for UNIX
or the \deploy\META-INF directory for Windows serves as the EAR manifest
file.

= Anarchive JAR file containing your EJB application class files is located within
the /deploy directory for UNIX or the \deploy directory for Windows. The
JAR file includes all E]JB application class files and the deployment descriptor
file.

« A standard J2EE E]B deployment descriptor (ejb-jar.xml) for the generated
bean in the module is located within the /classes/META-INF directory for
UNIX or the \classes\META-INF directory for Windows. The XML
deployment descriptor describes the application components and provides
additional information to enable the container to manage the application.

= The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package name. An EJB client
stub is also generated.

« The/classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

Advanced Configuration

To have more controls on the EJB generated from a WSDL document, an XML
configuration file can be supplied to the wsdl2ejb utility. Through the
configuration file, developers can control several options on the WSDL source, as
well as options on the generated EJB.

Developers can also use the configuration file to supply additional xml to Java type
maps, so that WSDL documents using complex types can be supported.

The syntax of the wsdl2ejb configuration file is shown in its Document Type
Definition (DTD) as follows:

<?xml version="1.0" encoding="UTF-8"?>
<l- Specify the properties of the source WSDL document and of the target EJB. —
<IELEMENT wsdI2ejb (useProxy?, useWallet?, wsdl, ejb?, mapTypes?)>

Consuming Web Services in J2EE Applications 11-35

Consuming SOAP-Based Web Services Using WSDL

<I- Specify if the generated EJB should use the supplied HTTP proxy when accessing HTTP URLS —>
<IELEMENT useProxy #PCDATA)>
<IATTLIST useProxy

proxyHost CDATA #REQUIRED

proxyPort CDATA #REQUIRED>

<I- Specify the location of the wallet credential file used by the generated EJB for opening HTTPS
connection —>
<IELEMENT useWallet #PCDATA)>
<IATTLIST useWallet
location CDATA #REQUIRED>

<
Specify how the wsdl2ejb tools should process the source WSDL document.
In additional to the mandatory location of the WSDL document, the name of the WSDL service and
its port can be specified. In this case, an EJB will be generated only for the supplied service and
port.
An altemative: the name of a WSDL service binding and the SOAP location to be used can be supplied.
Inthe latter case, an EJB using the specified binding and the supplied SOAP location will be used.
This is particularly useful when generating an EJB from a WSDL stored in a UDDI registry.
Infact, following a UDDI best practice, the WSDL SOAP location will be managed separately from the
WSDL document.
-
<IELEMENT wsd| (location, ((service-name, service-port) | (service-binding, soap-location))?)>

<I- Specify the location of the source WSDL document (for example, "/home/mywsdl.wsdl",
"hitp/imyhostimywsdl.wsdl") —
<IELEMENT location (#PCDATA)>

<l Specify the name of the WSDL service to be used for the generation.
Itis the name of one of the services defined in the source WSDL. —>
<IELEMENT service-name (#PCDATA)>

<I- Specify the service port of the WSDL service to be used for the generation.
Itis the name of one ports of the service name defined above in the source WSDL. —>
<IELEMENT service-port (#PCDATA)>

<I- Specify the name of the WSDL binding to be used for the generation.
Itis the name of one of the bindings defined in the source WSDL. —>
<IELEMENT service-binding #PCDATA)>

<I- Specify the SOAP location service port of the WSDL senvice to be used for the generation.
Itis the name of one ports of the service name defined above in the source WSDL. —>
<IELEMENT soap-location #PCDATA)>

<I- Specify the properties related to the generated EJB. —>

11-36 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<IELEMENT ejb (application-name?, ejpo-name?, package-name?, remote-name?, session-type?)>

<l Specify the name of the J2EE application for the generated EAR. —>
<IELEMENT application-name #PCDATA)>

<l Specify the INDI binding key name for the generated EJB. —>
<IELEMENT ejb-name (#PCDATA)>

<l Specify the name for Java package under which the generated EJB will belong. (for example, com.oracle)
-
<IELEMENT package-name (#PCDATA)>

<I- Specify the class name for the EJB Remote Interface (for example, MyWsdlEjb) —>
<IELEMENT remote-name (#PCDATA)>

<I- Specify the if the generated EJB should be stateless or stateful (for example, Stateless | Stateful)
-
<IELEMENT session-type (#PCDATA)>

<
Specify the custom Java types and map them to XML types.
The JAR attribute value will point to a JAR file containing the defintion of the custom
types or the serializer/deserializer to be used for the custom type.
-
<IELEMENT mapTypes (map*)>
<IATTLIST mapTypes
jar CDATA #MPLED>

I—
Specify a new XML to JAR type map.
EncodingStyle: name of the encodingStyle under which this map will belong
(for example, http://schemas.xmisoap.org/soap/encoding/)
namespace-uri : uri of the namespace for the XML type defined in this map
localkname :localname of the XML type defined in this map
javatype : Java class name to which this type is mapped to (for example, com.org.MyBean)
java2xmi-class-name: Java class name of the type serializer
(for example, org.apache.soap.encoding.soapenc.BeanSerializer)
xmi2java-class-name: Java class name of the type deserializer
(for example, org.apache.soap.encoding.soapenc.BeanSerializer)
-
<IELEMENT map (#PCDATA)>
<IATTLIST map
encodingStyle CDATA #REQUIRED
namespace-ui CDATA #REQUIRED
local-name CDATA #REQUIRED
javatype CDATA #REQUIRED
java2xml-class-name CDATA #REQUIRED
xmiZjava-class-name CDATA #REQUIRED>

Consuming Web Services in J2EE Applications 11-37

Consuming SOAP-Based Web Services Using WSDL

Table 11-2 describes the elements, subelements, and attributes of the wsdl2ejb
XML configuration file as defined in the DTD. Required elements and attributes are
shown as bold text.

Table 11-2 Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as Defined
in the DTD

Element Subelement Attribute Description

useProxy Optional element. Specifies the proxy server attributes.

proxyHost Required attribute. Specifies the host name of the proxy
server.

proxyPort Required attribute. Specifies the port number of the proxy
server.

useWallet Optional element. Specifies the Oracle Wallet attribute.

location Required attribute. Specifies the location of the Oracle
Wallet credential file used by the EJB for opening the
HTTPS connection.

wsdl Required element. Specifies how the wsdl2ejb utility
should process the source WSDL document. Requires the
location element be specified and optionally, either the
service-name and service-port pair of elements or the
service-binding and soap-location pair of elements be
specified.

location Required element. Specifies the location of the source
WSDL document. Can be a file path or an URL.

service-name Optional element. Specifies the name of the WSDL service
to be used for the generated EJB. If specified, must be
specified with the service-port element as a pair of
elements.

service-port Optional element. Specifies the service port of the WSDL
service to be used for the generated EJB. If specified, must
be specified with the service-name element as a pair of
elements.

service-binding Optional element. Specifies the name of the WSDL binding
to be used for the generated EJB. If specified, must be
specified with the soap-location element as a pair of
elements.

soap-location Optional element. Specifies the SOAP location service port
of the WSDL service to be used for the generated EJB. If
specified, must be specified with the service-binding
element as a pair of elements.

11-38 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Table 11-2 (Cont.) Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as
Defined in the DTD

Element

Subelement A

ttribute D

escription

ejb

Optional element. Specifies the properties related to the
generated EJB.

application-name

Optional element. Specifies the name of the J2EE
application for the generated EAR file.

ejb-name

Optional element. Specifies the JNDI binding key name for
the generated EJB.

package-name

Optional element. Specifies the name for the Java package
under which the generated EJB belongs.

remote-name

Optional element. Specifies the class name for the EJB
Remote Interface.

session-type

Optional element. Specifies whether the generated EJB
should be stateless or stateful.

mapTypes

Optional element. Specifies the custom Java types and
maps them to XML types.

map

Optional element. Specifies the XML to JAR type map.

encodingStyle

Required attribute. Specifies the name of the encoding
style under which this map belongs.

namespace-uri

Required attribute. Specifies the URI of the namespace for
the XML type defined in this map.

local-name Required attribute. Specified the local name of the XML
type defined in this map.
java-type Required attribute. Specifies the Java class name to which

this type is mapped.

java2xml-class-name

Required attribute. Specifies the Java class name of the
type serializer.

xml2java-class-name

Required attribute. Specifies the Java class name of the

type deserializer.

Developers can run the wsdl2ejb utility with a configuration file using the
following command:

java -jar wsdi2ejb jar -conf wsdlconf.xml

Consuming Web Services in J2EE Applications 11-39

Consuming SOAP-Based Web Services Using WSDL

Supported WSDL Documents

The wsdl2ejb utility supports most WSDL documents using SOAP binding. This
support includes both Remote Procedure Call (RPC) and document style documents
as well as types that are encoded or literal. Table 11-3 shows how the supported
XML Schema types are mapped to the corresponding Java type by default. Any
other required type will have to be supported though the custom type mapping

described previously.

Table 11-3 Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type

Corresponding Java Type

string
int
decimal
float
double
Boolean
long
short
byte
date

timelnstant

java.lang.String

int

BigDecimal

float

double

Boolean

long

short

byte
GregorianCalendar

java.util.Date

Note: Arrays of supported types, shown in Table 11-3 are also

supported.

Known Limitations of the wsdl2ejb Utility

The following information describes the known limitations of the wsdl2ejb utility:

= Supports only types defined by the W3C recommendation XML schema version
whose namespace is: http://www.w3.0rg/2001/XMLSchema

= Supports only the One-way and Request-Response transmission primitives
defined in the WSDL 1.1 specification.

11-40 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

= Does not support WSDL documents that use the <import> tag to include other
WSDL documents.

= Does not support HTTP, MIME, or any other custom bindings.

Running the Demonstration

The wsdl2ejb demo directory contains examples on how to use the wsdl2ejb
utility. All the commands are assumed to be executed from the SORACLE_
HOME /webservices/demo/basic/wsdl2ejb directory. The demonstration
(demo) will use some sample WSDL documents as sources and generate EJB that
can be used to invoke the Web Service operations.

The demos can be run using Jakarta ant. Review the build.xml file to make sure
that the initial properties (RMI_HOST, RMI_PORT, RMI_ADMIN, RMI_PWD) are
set correctly according to your configuration. The build.xml file will execute the
wsdl2ejb utility on the demo WSDL documents, deploy the generated EJB, and
execute the E]B clients.

Note: If you are executing the demos behind a firewall and need
to set proxy information to access external HTTP sites, make sure
this proxy information is specified in the wsdl2ejb configuration
files (rpc_doc_conf.xml, base_conf.xml).

Note: The demos are based on WSDL/SOAP interoperability test
suites. They access live SOAP services available on the Internet as
SOAP interoperability test cases. The successful execution of these
demos depends on the availability of these services.

The directory structure of the demos is as follows:

demolweb_serviceshvsdi2eb:

- README.txt :Readmefile
- buidxml : Jakarta ant build file to run all the demos
-rpc_doc : directory for simple RPC and document style operations

-pc_doc_confxml : wsdl2ejb configuration file for the ipc_doc demo
- TestRpcDocClientjava : client for the mpc_doc demo
-DocAndRpcwsdl : sample WSDL for the rpc_doc demo
- (generated) : directory where the EJB will be generated
-base
-base_confxml :wsdl2ejb configuration file for the base interoperability demo

Consuming Web Services in J2EE Applications 11-41

Consuming SOAP-Based Web Services Using WSDL

- TestinteropBaseClient java : client for the base interoperability demo
- InteropTestwsdl : WSDL document for the base interoperability demo
- MySoapStructBeanjava : bean utiized to map the custom type used
in the example defined in the WSDL document
- MySoapStructBeanjar : packaged-compiled custom type bean
- (generated) : directory where the EJB will be generated

RPC and Document Style with Simple Types Example

This example uses a simple WSDL document that shows a couple of operations:
Add and Multiply. Add is using the document-style operation using literal parts,
while Multiply is RPC-style and uses encoded parts.

To generate the E]B stub, use the following command:

On UNIX
cd $ORACLE_HOMEAvebservices/demo/basicivsdi2ejb
java-jar /.. liksdi2ejb.jar -conf rpc_doc/pe_doc_confxm

On Windows
cd %ORACLE_HOMEY\webservices\demo\basicwsdl2ejb
java-jar .\.\.\ibwsdi2ejb jar -conf rpc_doc\pe_doc_confxml

The utility generates the TestApp.ear file containing the definition of a stateless
EJB, which can be used as a proxy for the Web Service. The EAR file can be
deployed in Oracle9iAS OC4J as any standard EJB. Refer to Oracle9iAS Containers for
J2EE User’s Guide for information on how to deploy an EJB.

By looking at the generated E]B Remote Interface, you can see how the WSDL
portType DocAndRpc.wsdl file has been mapped to Java.

WSDL PortType:

<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://soapinterop.org">
<s:element name="Add">
<s:complexType>
<s:segquence>
<s:element minOccurs="1" maxOccurs="1" name="a" type="sint" />
<s:element minOccurs="1" maxOccurs="1" name="b" type="sint" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="AddResponse'>
<s:complexType>
<s'sequence>
<s:element minOccurs="1" maxOccurs="1" name="AddResult' type="siint" />

11-42 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

import java.io*;
import java.util.*;

</s:sequence>
</s:;complexType>
</s:element>
</sischema>
<types>
<message name="AddSoapin">
<part name="parameters" element="s0:Add" >
</message>
<message hame="AddSoapOut>
<part name="parameters" element="s0:AddResponse" />
</message>
<message name="MultiplySoapin">
<part name="a" type="xsdkint" />
<part name="b" type="xsdint" >
</message>
<message name="MultiplySoapOut">
<part name="MultiplyResult' type="sint" />
</message>
<portType name="TestSoap">
<operation name="Add">
<input message="s0:AddSoaplin" />
<output message="s0:AddSoapOut' />
</operation>
<operation name="Multiply">
<input message="s0:MultiplySoapin" />
<output message="s0:MultiplySoapOut* >
</operation>
</portType>

From the Test.java file, the EJB Remote Interface is:

public org.w3c.dom.Element add(orgw3c.dom.Element parameters)
throws RemoteException;

public int multiply(int &, int b)
throws RemoteException;

When the WSDL operation is using RPC style and its parts are encoded, the parts
XML schema type is mapped to a corresponding Java native type. In this example,
xsd:int is mapped to Java int .Ina document style using literal parts, each part
is simply mapped to an org.w3c.dom.Element

The following client code in the TestRpcDocClient.java file can be used to
invoke the Add and Multiply Web Service operations. The code has been produced
by modifying the client code stub generated by the wsdl2ejb utility.

Consuming Web Services in J2EE Applications 11-43

Consuming SOAP-Based Web Services Using WSDL

import javax.naming.*;

import orgw3c.dom.¥;
import oraclexml.parserv2.*;

import org.mssoapinterop.asmx. Test;
import org.mssoapinterop.asmx. TestHome;

P

*This is a simple client template. To compile it,
* please include the generated EJB jar file as well as
*EJB and JNDI libraries in classpath.

¥

public class TestRpcDocClient

{
Ireplace the values
private static String RMI_HOST ="localhost";
private static String RMI_PORT ="23791";
private static String RMI_ADMIN = "admin";
private static Sting RMI_ PWD ="welcome";

public TestRpcDocClient () {
public static void main(String args[]) {
TestRpcDocClient client = new TestRpcDocClient();

ty{

RMI_HOST =args[0];
RMI_PORT =args[1];
RMI_ADMIN = args[Z];
RMI_PWD =args[3];

Hashtable env = new Hashtable();

env.put(ContextINITIAL_CONTEXT_FACTORY, "com.evermind.server.mi.RMIInitalContextFactory’);
env.put(Context SECURITY_PRINCIPAL, RMI_ADMIN);

env.put(Context SECURITY_CREDENTIALS, RMI_PWD);

env.put{Context PROVIDER_URL, "omiz/"' + RMI_HOST + "'+ RMI_PORT +"MWsdi2EjbTestAppl'Y);
Context ctx = new InitialContext(env);

TestHome home = (TestHome) ctx.lookup(“mssoapinterop.org/asmx/DocAndRpc.asmx’);

Test service = home.create();
I/ callany of the Remote methods that folllow to access the EJB
I

I/ Add test
"

11-44 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Document doc = new XMLDocument();

Element elAdd = doc.createElementNS("hitp:/soapinterop.org’, "s:Add");
Element elA = doc.createElementNS(*http:/soapinterop.org”, "s:a");
Element elB = doc.createElementNS("http:/soapinterop.org”, "s:b');

elA.appendChid(doc.createTextNode('4"));
elB.appendChid(doc.createTextNode("3"));
elAdd.appendChild(elA);
elAdd.appendChild(elB);
doc.appendChild(eladd);

Element elAddResponse = service.add(elAdd);
Node tNode = elAddResponse.getFirstChild().getFirstChild();

System.out printin(‘AddResponse: "+tNode.getNodeValue();

I

/' Multiply Test

I

inta=4;

intb=3;

int iMuliplyResponse = service.multiply(a, b);
System.outprintin('MultiplyResponse: "+MultiplyResponse);

}
catch (Throwable ex) {
ex.printStackTrace();
}
}
}

The result of the execution of the client is the following:

AddResponse: 7
MulttiplyResponse: 12

Round 2 Interop Services: Base Test Suite Example

This example starts from a subset of the WSDL document defined by the base test
suite of the second round of SOAP interoperability tests. The purpose of this demo
example is to show the usage of built-in types in the SOAP Mapping Registry as
well as how to add custom types mapping.

Start by looking at the WSDL portType in the InteropTest.wsdl file.

<types>

<schema xmins="http:/Amwv.w3.0rg/2001/XMLSchema
targetNamespace="http://soapinterop.org/xsd">

Consuming Web Services in J2EE Applications 11-45

Consuming SOAP-Based Web Services Using WSDL

<complexType name="ArrayOfstring">
<complexContent>
<resfriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:array Type" wsdl:array Type="string[] />
</restriction>
</complexContent>
</complexType>
<complexType name="ArrayOfint">
<complexContent>
<restriction base="SOAP-ENC:Array>
<attribute ref="SOAP-ENC:array Type" wsdl:array Type="int]"/>
</restriction>
</complexContent>
</complexType>
<complexType name="ArrayOffloat>
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:array Type" wsdl:array Type="float]] />
<frestriction>
</complexContent>
</complexType>
<complexType name="ArrayOfSOAPStruct >
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:array Type"
wsdlamayType="s.SOAPStruct]]'/>
<lresfriction>
</complexContent>
</complexType>
<complexType name="SOAPStruct>
<al>
<element name="varString'" type="string"/>
<element name="varint' type="int’>
<element name="varHoat" type="float'/>
<fal>
</complexType>
</schema>

<fypes>

<message name="echoStringRequest">
<part name="inputString" type="xsd:string"/>

</message>

<message hame="echoStringResponse">
<part name="retum" type="xsd:string"/>

</message>

11-46 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<message hame="echoStringArrayRequest™>
<part name="inputStringArray" type="s:ArrayOfstring"/>
</message>
<message name="echoStringArayResponse">
<part name="retum" type="s:ArrayOfstring"/>
</message>
<message hame="echolntegerRequest">
<part name="inputinteger" type="xsd:int’/>
</message>
<message name="echolntegerResponse">
<part name="retum" type="xsd:int />
</message>
<message hame="echolntegerArrayRequest">
<part name="inputintegerArray" type="s:ArrayOfint />
</message>
<message hame="echolntegerArrayResponse">
<part name="retum" type="s:ArrayOfint'/>
</message>
<message hame="echoFloatRequest>
<part name="inputFloat" type="xsd:float >
</message>
<message name="echoFloatResponse">
<part name="retum" type="xsd-float'>
</message>
<message hame="echoFloatArrayRequest>
<part name="inputFloatArray" type="s:ArrayOffloat />
</message>
<message name="echoFloatArrayResponse'>
<part name="retum" type="s:ArrayOffioat />
</message>
<message name="echoStructRequest>
<part name="inputStruct" type="s:SOAPStruct />
</message>
<message name="echoStructResponse">
<part name="retum" type="s:.SOAPStruct />
</message>
<message hame="echoStructArrayRequest™>
<part name="inputStructArray" type="s:ArrayOfSOAPStruct'/>
</message>
<message name="echoStructArrayResponse">
<part name="retum" type="s:ArmrayOfSOAPStruct'/>
</message>
<message name="echoVoidRequest'/>
<message name="echoVoidResponse'/>
<message name="echoBase64Request™>

Consuming Web Services in J2EE Applications 11-47

Consuming SOAP-Based Web Services Using WSDL

<part name="inputBase64" type="xsd:base64Binary"/>
</message>
<message name="echoBase64Response">
<part name="retum" type="xsd:base64Binary' />
</message>
<message hame="echoDateRequest>
<part name="inputDate" type="xsd:date Time"/>
</message>
<message name="echoDateResponse">
<part name="retum" type="xsd.date Time'/>
</message>
<message nhame="echoDecimalRequest>
<part name="inputDecimal" type="xsd:decimal’/>
</message>
<message name="echoDecimalResponse">
<part name="retum" type="xsd:decimal’/>
</message>
<message hame="echoBooleanRequest>
<part name="inputBoolean" type="xsd:boolean/>
</message>
<message name="echoBooleanResponse">
<part name="retum" type="xsd:boolean">
</message>

<portType name="Interop TestPortType">

<operation name="echoString" parameterOrder="inputString">
<input message="tns.echoStringRequest’>
<output message="tns:echoStringResponse"/>

</operation>

<operation name="echoStringArray" parameterOrder="inputStringArray">
<input message="tns:echoStringArrayRequest />
<output message="tns:echoStringArrayResponse"/>

</operation>

<operation name="echolnteger" parameterOrder="inputinteger">
<input message="tns:echolntegerRequest’/>
<output message="ts:echolntegerResponse"/>

</operation>

<operation name="echolntegerArray" parameterOrder="inputintegerArray">
<input message="tns:echolntegerArayRequest’/>

<output message="tns:echolntegerArrayResponse'/>

</operation>

<operation name="echoFloat" parameterOrder="inputHoat">
<input message="tns:echoFloatRequest’/>

<output message="tns:echoFloatResponse"/>

</operation>

11-48 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<operation name="echoFloatArray" parameterOrder="inputFloatArray'>
<input message="tns:echoFloatArrayRequest />
<output message="tns:echoFloatArrayResponse"/>

</operation>

<operation name="echoStruct' parameterOrder="inputStruct">
<input message="ns:echoStructRequest />
<output message="tns:echoStructResponse"/>

</operation>

<operation name="echoStructArray" parameterOrder="inputStructArray">
<input message="tns.echoStructArrayRequest />
<output message="tns:echoStructArrayResponse'/>

</operation>

<operation name="echoVoid">
<input message="tns:echoVoidRequest />
<output message="tns:echoVoidResponse"/>

</operation>

<operation name="echoBase64" parameterOrder="inputBase64">
<input message="tns:echoBase64Request />
<output message="tns:echoBase64Response"/>

</operation>

<operation name="echoDate" parameterOrder="inputDate">
<input message="tns.echoDateRequest />
<output message="tns:echoDateResponse'/>

</operation>

<operation name="echoDecimal" parameterOrder="inputDecimal">
<input message="tns:echoDecimalRequest />
<output message="tns:echoDecimalResponse'/>

</operation>

<operation name="echoBoolean" parameterOrder="inputBoolean">
<input message="tns:echoBooleanRequest />
<output message="tns:echoBooleanResponse"/>

</operation>

</portType>

Notice that the WSDL document contains more complex types than the previous
demo. Array of primitives types are now used as well as the struct primitive types.
With the exception of the SOAPStruct complex type, every other type is supported
as built-in type in the SOAP Mapping Registry. You then need to add a new
complex type definition to the SOAP Mapping Registry to handle the SOAPStruct
complex type.

The SOAPStruct schema definition is the following:

<complexType name="SOAPStruct >
<al>

Consuming Web Services in J2EE Applications 11-49

Consuming SOAP-Based Web Services Using WSDL

<element name="varString'" type="string"/>
<element name="varint" type="int’>
<element name="varHoat" type="float'/>
<al>
</complexType>

In the MySoapStructBean.java file, this SOAPStruct complex type can be
mapped to a simple JavaBean class such as the following, and have the marshalling
and unmarshalling actions handled by the BeanSerializer.

public class MySoapStructBean implements java.io.Serializable
{

private String m_varString = null;

private intm_varint=0;

private float m_varFHoat =0;

public MySoapStructBean() {

public MySoapStructBean(String s, inti, float f) {
m_varSting=s;
m_varint =i;
m_varFloat =f;

}

public String getVarString () { retum m_varString; }
public int getVarint() { retum m_varint; }
public float getVarFloat() { retum m_varFloat; }

public void setVarString (String s) { m_varSting=s; }
public void setVarint(int i) { m_varint=i; }
public void setVarHoat(float f) { m_varHoat=f; }

}

With the mapping JavaBean class ready, and having identified what serializer and
deserializer to use, you can now configure the wsdl2ejb utility so that a new
schema to Java map is added. This can be achieved by adding the following to the
wsdl2ejb configuration file, base_conf.xml

<mapTypes jar="base/MySoapStructBean jar" >
<map encodingStyle="http:/schemas xmisoap.org/soap/encoding/
local-name="SOAPStruct’
namespace-uri="htp:/soapinterop.org/xsd”
java-type="MySoapStructBean"
javaxml-class-name="org.apache.soap.encoding.soapenc.BeanSerializer"
xmi2java-class-name="org.apache.soap.encoding.soapenc.BeanSerializer' />

</mapTypes>

11-50 Oracle9/ Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

The MySoapStructBean.jar file contains the definition of the MySoapStructBean
class. With this map, the SOAPStruct complex type, belonging to the
http://soapinterop.org/xsd namespace , will be mapped to the
MySoapStructBean JavaBean class and the converse is true as well. For more
information about SOAP serializers and deserializers, see the Oracle SOAP
documentation.

With this additional configuration, you can now run the wsdl2ejb utility with the
following command:

On UNIX

cd $ORACLE_HOMEMebservices/dema/basicivsdiZejb
java-ar /... livhsdi2ejb jar -conf base/base_confxml

On Windows

cd %0ORACLE HOMEYbiwvebservices/demoa/basicivsdiZejb
java-jar .\.\.\ibwsdi2ejb jar -conf base\base_confxml

The wsdl2ejb utility generates the InteropLabApp.ear file that contains the
definition of a stateless EJB, which can be used as a proxy for the Web Service. The
EAR file can be deployed in Oracle9iAS OC4J as any standard EJB. See Oracle9iAS
Containers for J2EE User’s Guide for information on how to deploy an EJB.

The TestIinteropBaseClient.java class file, saved in the base directory, can be
used to test the generated EJB after it has been deployed. The result of the execution
of the client is the following:

echoString: Hello World!

echoStringArray[0]: Hello World!

echoStringArray[1]: Seems to work!

echoStringArray(2]: Fine!

echoStringArray[3]: WOW

echolnteger: 7

echolntegerArray{0]: 1

echolntegerArray(1]: 2

echolntegerArray(2]: 3

echolntegerArray[3]: 4

echoFloat: 1.7777

echoFloatArray[0]: 1.1

echoFloatArray[1]: 1.2

echoFloatAray[2]: 1.3

echoFloatArray(3]: 1.4

echoStruct: varString=Hello World , varint=1 , varFoat=1.777
echoStructArray: varString[0j=Hello Word , varlnf0]=0 , varFloat=[0}=1.7771
echoStructArray: varString[1]=Hello Word 1 , varin1]=1 , varFloat=[1]=1.7772

Consuming Web Services in J2EE Applications 11-51

Dynamic Invocation of Web Services

echoStructArray: varString[2]=Hello Word 2, varin2]=2 , varFloat=[2}=1.7773
echoStructArray: varString[3]=Hello World 3 , varln3]=3 , varFloat=[3]=1.7774
echoVoid.

echoDecimal: 1.77709999999999990194510246510617434978485107421875
echoBoolean: true

echoBase64[0]: 1

echoBase64[1]: 2

echoBase64[2]: 3

echoBase64[3]: 4

echoDate: Sat Nov 10 12:30:00 EST 2001

Dynamic Invocation of Web Services

When a Java2 Enterprise Edition (J2EE) application acquires a WSDL document at
runtime, the dynamic invocation API is used to invoke any SOAP operation
described in the WSDL document. The dynamic invocation API describes a
WebServiceProxyFactory factory class that can be used to build instances of a
WebServiceProxy. Each created WebServiceProxy instance is based on the location
of the WSDL document, (and optionally on additional qualifiers), that identify
which service and port should be used. The WebServiceProxy class exposes
methods to determine the WSDL portType, including the syntax and signatures of
all operations exposed by the WSDL service and to invoke the defined operations.

This section briefly describes the dynamic invocation API and how to use it.

For Java samples, refer to the code supplied with Oracle9iAS Web Services in
$ORACLE_HOME/webservices/demo/basic/java_services/dynamicproxy
on UNIX or in %ORACLE_HOME%\webservices\demo\basic\java_

services\dynamicproxy on Windows. For EJB samples, refer to the code
supplied in the directory
$ORACLE_HOME/webservices/demo/basic/stateless_ejb on UNIX or
%ORACLE_HOME%\webservices\demo\basic\stateless_ejb on Windows.

Dynamic Invocation API

The dynamic invocation API contains two packages, oracle.j2ee.ws.client and
oracle.j2ee,ws.client.wsdl, which contain additional classes grouped by interface,
class, and exception, as shown in Table 11-4 and Table 11-5.

11-52 Oracle9/ Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Table 11-4 The oracle.j2ee.ws.client Package

Classes

Description

Classes

WebServiceProxyFactory

Interfaces

WebServiceProxy

WebServiceMethod

Exceptions

WebServiceProxyException

This class creates a WebServiceProxy class given a WSDL
document.

This interface represents a service defined in a WSDL
document.

This interface invokes a Web Service method.

This class describes exceptions raised by the
WebServiceProxy APL

Table 11-5 The oracle.j2ee.ws.client.wsdl Package

Classes Description

Interfaces

PortType This interface represents a port type.

Operation This interface represents a WSDL operation.

Input This interface represents an input message, and contains the
name of the input and the message itself.

Output This interface represents an output message, and contains the
name of the output and the message itself.

Fault This interface represents a fault message, and contains the
name of the fault and the message itself.

Message This interface describes a message used for communication
with an operation.

Part This interface represents a message part and contains the
part's name, elementName, and typeName.

Classes

OperationType This class represents an operation type which can be one of

request-response, solicit response, one way, or notification.

Consuming Web Services in J2EE Applications 11-53

Dynamic Invocation of Web Services

The oracle.j2ee.ws.client package is described in more detail in this section. The API
documentation describes to use this proxy API can be found in the Oracle9iAS
Documentation Library as Proxy API Reference (Javadoc) under Oracle9iAS Web
Services, which is located under the J2EE and Internet Applications tab.

The WebServiceProxyFactory class contains methods that can instantiate a
WebServiceProxy class given either the URL or the Java input stream of the WSDL
document. Four methods let you use either the first service and its first port in the
supplied WSDL document or use the name of one of services and the name of one
of the ports of the service to create a WebServiceProxy instance. Two methods also
let you create a WebServiceProxy instance for a WSDL document, which has been
authored following the UDDI best practices for WSDL. A method lets you supply
additional optional initialization parameters to the WebServiceProxy instance.

Table 11-6 briefly describes the WebServiceProxyFactory factory class methods and
the required parameters for each method. See the JavaDoc for more detailed
information about this factory class and its methods.

Table 11-6 WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters

createWebServiceProxy() java.io.InputStream isWsdl
java.net.URL baseURL

createWebServiceProxy() java.net.URL wsdIURL

createWebServiceProxyFromBinding() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szServiceName
java.lang.String szServicePort

createWebServiceProxyFromBinding() java.net.URL wsdlUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.net.URL wsdlUrl
java.lang.String szServiceName
java.lang.String szServicePort

setProperties() java.util.Hashtable ht

11-54 Oracle9/ Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Table 11-7 describes the WebServiceProxy interface. The WebServiceProxyFactory
factory methods optionally take additional parameters that are provided in the

WebServiceProxy interface that can be used to dynamically invoke an operation in a

WSDL document.

Table 11-7 WebServiceProxy Interface Methods and Parameters

Methods Parameters

Description

getXMLMapping Registry() None

getPortType() None
getMethod()
szOperationName
szInputName
szOutputName
getMethod()
szOperationName

Returns the SOAP mapping registry used by the
WebServiceProxy and contains information that lets

clients use this registry to query for XML to or from Java

type mapping as well as extend the mapping registry
with new map definitions.

Returns a structure describing the WSDL portType used
by this proxy and contains information about operations

associated with this port type.

Returns a WebServiceMethod method, which can be
used to invoke Web Service methods.

Name of the WSDL operation to be executed.
Name of the wsdl:input tag for the operation to be
executed.

Name of the wsdl:output tag for the operation to be
executed.

Returns a WebServiceMethod method, which can be
used to invoke Web service methods and provides a
signature that can be used for non-overloaded WSDL
operations.

Name of the WSDL operation to be executed.

Table 11-8 describes the WebServiceMethod interface, which is used to invoke a

Web Service method.

Consuming Web Services in J2EE Applications 11-55

Dynamic Invocation of Web Services

Table 11-8 WebServiceMethod Interface Methods and Parameters

Methods Parameters Description

getinputEncodingStyle() None Returns the encoding style to be used by the input
message parts, null if none has been specified in the
source WSDL.

getOutputEncodingStyle() None Returns the encoding style to be used by the output
message parts, null if none has been specified in the
source WSDL.

invoke() Executes one of the service operations with the set of

supplied input parts and returns the object, if the
response message contains only one part, return the
response part, otherwise an array of the output
message parts. If the invoked WSDL operation has no
inMsgPartNames output parts, null will be returned.
inMsgPartValues
Name of the parts supplied in the input message.
Corresponding value of the parts whose name is
supplied in the inMsgPartNames parameter. If the
invoked WSDL operation has no input parts, null or
empty arrays parameters can be supplied

The oracle.j2ee.ws.client.wsdl package exposes methods to determine the WSDL
portType, including the syntax and signatures of all operations exposed by the
WSDL service.

WebServiceProxy Client

The following client code shows the use of the dynamic invocation API followed by
the output of the client execution. The client code shows the following:

= Initializes proxy parameters in the WebServiceProxyFactory.

= Creates an instance of the proxy given a URL of a WSDL document.
= Performs WSDL introspection.

= Shows the input message parts.

= Executes a Web Service operation with a set of supplied input parts and returns
the result.

11-56 Oracle9/ Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

The WSDL document is described as follows:

<?xml version="1.0" encoding="utf-8" 7>

- <definitions xmins:soap="http://schemas.xmisoap.orghvsdl/soap/ xmins:tns="http:/soapinterop.org”
xmins:s="http/Amvwv.w3.0rg/2001/XMLSchema’* xmins:http="http://schemas xmisoap.orghvsdl/hitp/
xmins:tm="httpz/microsoft comvsdimimetextMatching/* xmins:mime="http://schemas.xmisoap.orghvsd/mime/"
xmins:soapenc="http:/schemas xmisoap.org/soap/encoding/" targetNamespace="http:/soapinterop.org"

xmins="http:/schemas xmisoap.orghvsdl/>
<types />
- <message name="AddSoapIn">
<part name="a" type="sint"' >
<part name="b" type="siint" />
</message>
- <message hame="AddSoapOut>
<part name="AddResult' type="siint" />
</message>
- <portType name="TestSoap"™>
- <gperation name="Add">
<input message="tns:AddSoapin" />
<output message="tns:AddSoapOut' />
</operation>
</portType>
- <binding name="TestSoap" type="mns.TestSoap">
<soap:binding transport="http://schemas xmisoap.org/soap/http’ style="rpc" />
- <operation name="Add">
<soap:operation soapAction="http:/soapinterop.org/Add" style="rpc" >
- <input>
<soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas xmisoap.org/soap/encoding/ >
<finput>
- <output>
<soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas.xmisoap.org/soap/encoding/" />
<loutput>
</operation>
<hbinding>
- <service name="Test>
- <port name="TestSoap" binding="tns.TestSoap">
<soap:address location="http:/mssoapinterop.org/asmx/Rpc.asmx’ />
</port>
</service>
</definiions>
package oracle j2ee.ws.clientimpl;
import java.util.*;
import javalio*;
import java.net;
import oracle j2ee.ws.client*;

Consuming Web Services in J2EE Applications 11-57

Dynamic Invocation of Web Services

import oracle j2eews.clientwsdl*;
import org.apache.soap.utilxml.QName;
import org.apache.soap.util.xml.XMLJavaMappingRegistry;

public class Client {
public static void main(String[] args) throws Exception {
String szZWsdlUn = "http:/imssoapinterop.org/asmx/Rpc.asmx?WSDL",

URL urwWsdl = new URL(sz2WsdIUr);
System.err.printin("Wsdl ud =" + udwWsdl);

WebServiceProxyFactory wsfact= new WebServiceProxyFactory();

/]

Il Set some initial parameters

I

Hashtable ht = new Hashtable();
ht.put("hitp.proxyHost", “\www-proxy.us.oracle.com”);
ht.put(*hitp.proxyPort’, "80");

wsfact setProperties(ht);

I

/I Create an instance of the proxy

I

WebServiceProxy wsp = wsfact.create\WebServiceProxy(uniwsdl);

I

I/ Optional: Wsdl Introspection

I

PortType pt =wsp.getPortType();
List opList = pt.getOperations();
for (inti=0; i < opListsize(); i++) {

Operation op = (Operation) opList.get(i);
String szOpName = op.getName();

String szinput = op.getinput().getName();
String szOutput = op.getOutput().getName();

System.err.printin(‘operation[+i+'=["+ szOpName +
","+SZlanIt+","+SZOUu)LIt+"]“);

I
I/ show input message parts

11-58 Oracle9/ Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

/]

Message msgin = op.getinput().getMessage();
Map mapParts = msgin.getParts();
Collection colParts =mapParts.values();
lterator itParts = colParts.iterator();

WebServiceMethod wsm = wsp.getMethod(szOpName);
String szInEncStyle =wsm.getinputEncodingStyle();
XMLJavaMappingRegistry xmr =wsp.getXMLMappingRegistry();

while (itParts.hasNext()) {
Part part = (Part) itParts.next();
String szPartName = part.getName();
QNamegname = partgetTypeName();
String szJavaType = xmr.queryJavaType(gname,
szInEncStyle).getName();
System.err.printin(‘part name =" + szPartName +
", type ="+qgname +
" javatype =" +szJavaType);
}
}

I

Ilinvoke operation/method Add(2,10)

I

String[] inMsgPartNames = new String[2];
inMsgPartNames[0] ="a",
inMsgPartNames[1] ="b";

Object]] inMsgPartValues = new Object{2];
inMsgPartValues[0] = new Integer(2);
inMsgPartValues[1] = new Integer(10);

WebServiceMethod wsm = wsp.getMethod("Add");
Object objRet =wsm.invoke(inMsgPartNames,
inMsgPartValues);

System.err.printin(‘Calling method Add(" +inMsgPartValues[0] +","
+
inMsgPartValues[1] +)");
System.err.printin(‘retum =" + objRet);
}
}

Consuming Web Services in J2EE Applications 11-59

Dynamic Invocation of Web Services

The output of the client execution is as follows:

Wsdl url = http:/mssoapinterop.org/asmx/Rpc.asmx?WSDL

operation[0] =[Add,,]

part name = b, type = http/Avwwv.w3.0rg/2001/XMLSchemaint, java type =int
part name = a, type = http/Amwv.w3.0rg/2001/XMLSchemaint, java type = int
Calling method Add(2,10)

retum=12

Known Limitations

The following information describes the known limitations of the dynamic
invocation API:

= Supports invoking operations defined in the WSDL document defined by the
W3C recommendation XML schema version whose namespace is:
http://www.w3.0rg/2001/XMLSchema

= Does not support WSDL documents that use the <import> tag to include other
WSDL documents.

= Does not support HTTP, MIME, or any other custom bindings.

11-60 Oracle9/ Application Server Web Services Developer's Guide

A

Using Oracle SOAP

This appendix covers the following topics:

Understanding Oracle9iAS SOAP

Apache SOAP Documentation

Configuring the SOAP Request Handler Servlet

Using Oracle9iAS SOAP Management Ultilities and Scripts
Deploying Oracle9iAS SOAP Services

Using Oracle9iAS SOAP Handlers

Using Oracle9iAS SOAP Audit Logging

Using Oracle9iAS SOAP Pluggable Configuration Managers
Working With Oracle9iAS SOAP Transport Security

Using Oracle9iAS SOAP Sample Services

Using the Oracle9iAS SOAP EJB Provider

Using PL/SQL Stored Procedures With the SP Provider
SOAP Troubleshooting and Limitations

Oracle9iAS SOAP Differences From Apache SOAP

Using Oracle SOAP

A-1

Understanding Oracle9iAS SOAP

Understanding Oracle9 /AS SOAP

In addition to the Oracle9iAS Web Services previously described in this chapter,
that use a unique Servlet interface and J2EE deployment for Web Services,
Oracle9iAS also provides Oracle9iAS SOAP that is derived from Apache 2.2 SOAP
and includes a number of enhancements.

The SOAP Message Processor (Oracle9iAS SOAP), provides the following facilities:

= SOAP Protocol Handling - It provides an implementation of the interoperable
SOAP specification. This includes support for Cookies and Sessions which is
particularly useful to pass state information for stateful Web Services
request/response.

= Support for SOAP requests with Attachments (XML Payloads).

= Parsing - Oracle9iAS SOAP Processor integrates the Oracle XML Parser. For
RPC-style requests, the Oracle9iAS SOAP Processor can efficiently parse the
incoming XML document, ensure the request is well-formed, and possibly
validate the request. Similarly, it can also encode/serialize a Java response into
a SOAP message.

= Invoking Web Service Using Customized Web Services Servlet - The SOAP
Processor un-marshals the message contents and depending on the Servlet, calls

the Web Services implementation. Web Services can be implemented as Java
Classes, E]Bs, or PL/SQL Stored Procedures.

= Engaging a security manager to possibly authenticate the sender - Before
invoking the Web Services implementation, the Oracle9iAS SOAP Processor
(Servlet) authenticates the user using a standard JAAS-based User Manager
plug-in. Oracle9iAS SOAP Processor also supports Oracle's Single Sign-On
Server and third-party authentication services to provide single-sign on for Web
Services.

= Exception Handling - When exceptions occur during processing, the Java
Exception is transformed to a SOAP fault and delivered to the service client.

A-2 Oracle9/ Application Server Web Services Developer's Guide

Configuring the SOAP Request Handler Servlet

Apache SOAP Documentation

Oracle9iAS SOAP is a modified version of Apache SOAP 2.2. Most of the
documentation that applies to Apache SOAP 2.2 also applies to Oracle9iAS SOAP.
The Apache SOAP 2.2 documentation can be found at the following site:

http://xml.apache.org/soap/docs/index.html

Configuring the SOAP Request Handler Servlet

The Oracle9iAS SOAP Request Handler uses an XML configuration file to set
required servlet parameters. By default, this file is named soap.xml and is placed
in the directory $SOAP_HOME/webapps/soap/WEB-INF on UNIX or %SOAP_
HOME%\webapps\soap\WEB-INF on Windows. The XML namespace for this file
is:

http://xmins.oracle.com/soap/2001/04/config

To use a different configuration file for SOAP installation, modify the path name
specified for the SoapConfig parameter in the soap.properties file. For
example, to change the configuration file from the default, soap.xml , to
newConfig.xml , modify the value set for soapConfig in soap.properties

senlet soaprouter.initArgs=soapConfig= soap_home [soaphvebapps/soapMWEB-INF/newConfig.xml

Where soap_home is the full path to the SOAP installation on your system.

The pathAuth boolean attribute, if set to true , enforces that clients must specify
the unique service URL in order to post a message to the deployed service. The
service URL is the SOAP servlet URL with the service URI appended on at the end.
The default value of this attribute (if unspecified) is false

Table A-1 lists the SOAP Request Handler Servlet XML configuration file elements.

Table A-1 SOAP Request Handler Serviet Configuration File Parameters

Parameter Description
errorHandlers Specifies a list of handlers for the error handler chain.
faultListeners This is an optional element that defines a list of faultListener elements. The

faultListener element specifies a class that is invoked when a fault occurs. To cause a
stack trace to be added to the SOAP fault that is returned to the user, specify a
faultListener of org.apache.soap.server. DOMFaultListener.

Using Oracle SOAP A-3

Configuring the SOAP Request Handler Servlet

Table A-1 (Cont.) SOAP Request Handler Servilet Configuration File Parameters

Parameter Description

handler The handlers element is an optional element that defines a list of handler elements. The
handler element defines a global handler that can be configured to be invoked on every
SOAP request in one of three contexts: request, response, error. You can define any
number of handlers. The handler’s name attribute specifies the name of the handler;
each handler must have a unique name. The handler’s class attribute specifies the Java
class that implements the handler, and this class must implement the interface
oracle.soap.server.Handler. Each handler may have any number of options, which are
name-value pairs. The contexts are configured in the elements: requestHandlers,
responseHandlers, and errorHandlers. Each of these elements defines an ordered list of
handler names, or a chain of handlers.

Note that SOAP creates one instance of each uniquely identified handler. Every
appearance of a specific handler name in any chain refers to the same instance of the
handler. Handlers are destroyed when the SOAP servlet is destroyed.

logger Error and informational messages are logged using the class defined in the logger
element. The logger class must extend oracle.soap.server.Logger

Oracle9iAS SOAP includes the class oracle.soap.server.impl.ServletLogger

that collects the servlet log methods so that SOAP messages are logged to the servlet
log file. ServletLogger is the default logger. For the default logger, the severity
option can be to any of the following values: status , error , debug.

If you specify error , you will get both status and error messages. Similarly, if you
specify debug, you will get all three types of messages.

Oracle9iAS SOAP includes two logger implementations. To log to the servlet log, use
oracle.soap.server.impl.ServletLogger. To log to stdout, use
oracle.soap.server.impl.StdOutLogger.

You may implement your own logger by implementing the oracle.soap.server.Logger
interface.

A-4 Oracle9/ Application Server Web Services Developer's Guide

Configuring the SOAP Request Handler Servlet

Table A-1 (Cont.) SOAP Request Handler Servilet Configuration File Parameters

Parameter

Description

providerManager

requestHandlers
responseHandlers

serviceManager

The providerManager is an optional element that allows a configuration manager to be
defined. This defines how the server accesses provider deployment information.

The providerManager class attribute specifies a Java class that implements
oracle.soap.server.ProviderManager . The default configuration manager,
oracle.soap.server.impl. XMLProviderConfigManager, persists the deployed providers
to a file in XML format. It accepts a filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/providers.xml.

An alternative provider configuration manager,
oracle.soap.server.impl.BinaryProviderConfigManager, persists the deployed providers
in a file as a serialized object. The default file is WEB-INF/providers.dd.

To specify a different configuration manager add a class attribute to the configManager
element. For example:

<osc:configManager class="fully.qualified.classname">.
Specifies a list of handlers for the request handler chain
Specifies a list of handlers for the response handler chain

The serviceManager is an optional element that allows a configuration manager to be
defined and ServiceManager options to be set. This defines how the server accesses
service deployment information. The serviceManager class attribute specifies a Java
class that implements oracle.soap.server.ServiceManager

The default Oracle9iAS SOAP configuration manager class is
oracle.soap.server.impl.XMLServiceConfigManager which stores the
service deployment information in an XML file. Using XMLServiceConfigManager
the file name is specified with the filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/services.xml.

To specify a different configuration manager add a class attribute to the
configManager element.

For example:
<osc:configManager class="fully.qualified.classname">.

An alternative service configuration manager,
oracle.soap.server.impl.BinaryServiceConfigManager, persists the deployed services in
a file as a serialized object. The default file is WEB-INF/services.dd.

The service manager can automatically deploy the provider manager and the service
manager as SOAP services. To allow these managers to be exposed as services, set the
autoDeploy option to true. By default autoDeploy value is false.

Using Oracle SOAP A-5

Using Oracle9iAS SOAP Management Utilities and Scripts

Using Oracle9 /AS SOAP Management Utilities and Scripts

To use the Oracle9iAS SOAP management utilities, you need to set up the execution
environment for executing SOAP management utilities using one of the supplied
client side scripts. The clientenv scripts set the CLASSPATHind add the $SOAP_
HOME/bin directory to the path.

To set the client environment, on UNIX, use the following commands:

cd $SOAP_HOME/In
source clientenv.csh

On Windows, use the following commands:

cd %6SOAP_HOMEYa\bin
clientenv.bat

The clientenv scripts sets environment variables that are used by the other
scripts and the samples. You can override these by setting the environment
variables yourself. The variable SOAP_URlis the URL of the SOAP server and JAXP
is set to use the DocumentBuilderFactory for the Oracle XML parser.

Managing Providers

The providerMgr script runs the SOAP client that manages providers. Run the
script without any parameters for usage information.

On UNIX, use the following command:
providemMgr.sh options
On Windows, use the following command:

providerMgr.bat options

Where the options for providerMgr are:
deploy ProviderDescriptorFile

This deploys the provider described in the ProviderDescriptorFile and makes the
provider available.

undeploy ProviderID

This removes the provider with the supplied ProviderID. The ProviderID is the id
attribute specified in the provider descriptor file.

A-6 Oracle9/ Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Management Utilities and Scripts

The Java provider is deployed once at installation time with id=java-provider, but
any provider you create must be explicitly deployed. For example, on UNIX, to
deploy a provider using the provider deployment descriptor provider.xml , use
the following command:

providerMgr.sh deploy providerxml

Using the Service Manager to Deploy and Undeploy Java Services

The ServiceMgr is an administrative utility that deploys and undeploys SOAP
services. To deploy a service, first set the SOAP environment, then use the deploy
command. On UNIX, the command is:

source clientenv.csh

SenviceMgr.sh deploy SenviceDescriptorfile

For Windows, the command is:

clientenv.bat

ServiceManager.bat deploy Service DescriptorFile

The deploy option makes the service specified in ServiceDescriptorFile available.
When you are ready to undeploy a service, use the undeploy command with the
registered service name as an argument. On UNIX, the command is:

SenviceManager.sh undeploy SenvicelD
For Windows, the command is:
SenviceManager.bat undeploy SenicelD

This makes the service with the given id unavailable. The ServiceID is the service id
attribute specified in the service descriptor file.

The ServiceMgr supports listing and querying SOAP services. To list the available
services, first set the SOAP environment, then use the list command. On UNIX,
the command is:

source clientenv.csh
SenviceMgr.sh list

Using Oracle SOAP A-7

Using Oracle9iAS SOAP Management Utilities and Scripts

On Windows, the command is:

clientenv.bat
ServiceMgr.bat list

To query a service and obtain the descriptor parameters set in the service
deployment descriptor file, use the query command. On UNIX, the command is:
ServiceMgr.sh query SernvicelD

On Windows, the command is:

ServiceMgr.bat query SenicelD

Where ServicelD is the service id attribute set in the service descriptor file.

Generating Client Proxies from WSDL Documents

The wsdl2java script takes as input a WSDL document and returns a Java class
which can be used to call the service. The Java class contains methods with the same
names as those described in the WSDL document. The generated code make calls to
the Apache client side libraries.

On UNIX, use the following command:
wsdl2java.sh options

On Windows, use the following command:

wsdiZjava.bat options

Where the options for wsdl2java are:

wsdl2java.sh WsdIDocumentURL OutputDir [-k PackageName] [-S ServiceName]
[-p PortName]

Where:

WsdIDocumentURL is the URL of the WSDL document.

OutputDir is the output directory for generated proxy Java code.

-k PackageName is the package name for generated proxy Java code.

-s ServiceName is the service name for which proxy will be generated.

A-8 Oracle9/ Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Management Utilities and Scripts

-p PortName the port name of the service. The proxy is generated for the specified
port of the service.

The output directory structure is:

output root dir /service name /port name / package name / java proxy source code

By default, the PackageName will be the same as the WSDL service name.

If neither of -s and -p options is specified, proxies for all ports of all services are
generated. Without -p option specified, proxies for all ports of the specified service
are generated.

Generating WSDL Documents from Java Service Implementations

The java2wsd| script takes as input a Java class and creates as output a WSDL
document describing the class as an RPC service. When the Java class is used as a
Web Service, the associated WSDL document can be transmitted to developers who
might wish to call the service.

On UNIX, use the following command:
java2wsdl.sh options

On Windows, use the following command:

java2wsdl.bat options

Where the options for wsdl2java are:
java2wsdl.sh ClassName OutputFile SoapURL ClassURL1 ClassURL2

Where:

ClassName is the fully qualified path name of a Java .class file that is to be a Web
Service.

OutputFile is the output WSDL document name.
SoapURL is the SOAP endpoint.

ClassURL list serves as a class path for searching referenced classes

Using Oracle SOAP A-9

Deploying Oracle9iAS SOAP Services

Deploying Oracle9 /AS SOAP Services

This section covers the following topics related to deploying and undeploying
Oracle9iAS SOAP Services:

« Creating Deployment Descriptors

= Installing a SOAP Web Service in OC4]J

« Disabling an Installed SOAP Web Service

= Installing a SOAP Web Service in an OC4J Cluster

Creating Deployment Descriptors

Deployment descriptors include service deployment descriptors and provider
deployment descriptors. A provider deployment descriptor file is an XML file that
describes, to the SOAP servlet, the configuration information for a provider. A
service deployment descriptor file is an XML file that describes, to the SOAP
servlet, the configuration information for a service.

Services written in Java only require a service descriptor. All Java service
descriptors may point to the same Java provider descriptor supplied with the
Oracle9iAS SOAP installation.

Each service written as a PL/SQL stored procedure requires one service descriptor
and one provider descriptor for each database user. The advantage of this is that
when a password or user is changed, only one descriptor needs to be updated, not
every service descriptor.

See the Stored Procedure section for more information.

Services written as an EJB require one service descriptor and one provider
descriptor for each EJB container user.

See the EJB section of this document for more information.

Note: For developers who wish to write their own providers, the
Apache style provider interface and descriptors are also supported.
Apache descriptors contain both service and provider properties in
a single file, so common provider information must be duplicated
for every service.

A-10 Oracle9i Application Server Web Services Developer's Guide

Deploying Oracle9iAS SOAP Services

A service deployment descriptor file defines the following information:
= Theservice ID

« The service provider type (for example, Java)

= The available methods

The best way to write a descriptor is to start with a copy of an existing descriptor
from one of the sample directories.

Example A-1 shows the Java SimpleClock service descriptor file
SimpleClockDescriptor.xml . This descriptor file is included in the
samples/simpleclock directory. The service descriptor file must conform to the
service descriptor schema (the schema, service.xsd , is located in the directory
$SOAP_HOME/schemason UNIX or in %SOAP_HOME%\schemasm Windows).

The service descriptor file identifies methods associated with the service in the
isd:provider element that uses the methods attribute. The isd:java class
element identifies the Java class that implements the SOAP service, and provides an
indication of whether the class is static.

Example A—1 Java Service Descriptor File for Sample Simple Clock Service

<isd:service xmins:isd="http:/xmins.oracle.com/soap/2001/04/deploy/service™
id="umjurassic-clock"
type="rpc" >
<isd:provider
id="java-provider"
methods="getDate"
scope="Application" >
<isdjava class="samples.simpleclock.SimpleClockService'f>
<fisd:provider>
<l-includes stack trace in fault —
<isd-faultListener class="org.apache.soap.server. DOMFaultListener'/>
<fisd:senvice>

Note: The service descriptor file does not define the method
signature for service methods. SOAP uses reflection to determine
method signatures.

Using Oracle SOAP A-11

Deploying Oracle9iAS SOAP Services

Installing a SOAP Web Service in OC4J

Install an Oracle9iAS SOAP Web Service in Oracle9iAS Containers for J2EE (OC4J)
by performing the following steps:

1. Create service and provider deployment descriptors.
2. Copy Java classes and Jars implementing the service to the correct locations.

Copy Java .class files to $SOAP_HOME /WEB-INF/ classes. The new classes
will automatically be found by the OC4] servlet container.

Copy Java jar files to $SOAP_HOME /WEB-INF/libs.

In order for the new files to be found by the OC4]J servlet container, you must
either restart the OC4] servlet engine or update the SOAP application
configuration file.

3. Deploy the provider descriptor by executing the command:

providerMgr.sh deploy FileName

where FileName is the name of the provider descriptor xml file.
4. Deploy the service by executing the command:

serviceMgr.sh deploy FileName

Where FileName is the name of the service descriptor xml file.

Disabling an Installed SOAP Web Service

To disable an installed service, run the command:

serviceMgr.sh undeploy SernvicelD

where ServicelD is the id attribute of the service element in the service descriptor.

Installing a SOAP Web Service in an OC4J Cluster

An OC4] Cluster consists of two or more machines of similar configuration front
ended with a hardware or software dispatcher. OC4] has facilities for insuring that
files on the machines remain in synch. For instance, a servlet installed once will
automatically be installed on the local file systems of the other machines in the
system.

However, Oracle9iAS SOAP services are not handled by the OC4J clustering
software. It is necessary to install an Oracle9i/AS SOAP service on every machine in

A-12 Oracle9i Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Handlers

the cluster. If the service is not installed on all machines in the cluster, the cluster
dispatcher might dispatch a service request to a machine that does not have the
service, resulting in an error on the service invocation.

Using Oracle9 /AS SOAP Handlers

A handler is a class that implements the oracle.soap.server.Handler

interface. A handler can be configured as part of a chain in one of three contexts:
request, response, or error. Note that handlers in a chain are invoked in the order
they are specified in the configuration file.

Request Handlers

Handlers in the request chain are invoked on every request that arrives,
immediately after the SOAP Request Handler Servlet reads the SOAP Envelope. If
any handler in the request chain throws an exception, the processing of the chain is
immediately terminated and the service is not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers

Error Handlers

Handlers in the response chain are invoked on every request immediately after the
service completes. If any handler in the response chain throws an exception,
processing of the chain is immediately terminated. The error chain is invoked if any
exception occurs during response chain invocation.

When an exception occurs during either request-chain invocation, service
invocation, or response-chain invocation, the SOAP Request Handler Servlet
invokes the handlers in the error chain. In contrast to the request and response
chains, an exception from an error handler is logged and processing of the error
chain continues. All handlers in the error chain are invoked, regardless of whether
one of the error handlers throws an exception.

Configuring Handlers

Configure handlers and handler chains in the SOAP configuration file. Handlers
can be invoked for each service request or response, or when an error occurs.

Using Oracle SOAP A-13

Using Oracle9iAS SOAP Audit Logging

Handlers are global in the sense that they apply to every SOAP request and cannot
be configured on a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file,
soap.xml . Example A-2 shows a sample segment from a SOAP configuration file
showing the configuration for a handler.

Example A-2 Handler Configuration
<oschandlers>
<oschandler name="auditor"
class="oracle.soap.handlers.audit Audit_ogger">
<osc:option name="audjit_ogDirectory"
value="/privatel/oracle/app/productitv02/soapivebapps/soapWEB-INF />
<osc:option name="fitter" value="(!(host=localhost))"/>
</oschandler>
</osc:handlers>

<osc:requestHandlers names="auditor'/>
<oscresponseHandlers names="auditor'/>
<osc:errorHandlers names="auditor"/>

Using Oracle9 /AS SOAP Audit Logging

The Oracle SOAP audit logging feature monitors and records SOAP usage. Audit
logging maintains records for postmortem analysis and accountability. The SOAP
audit logging feature complements the audit logging capabilities available with the
OC4] server which hosts the SOAP Request Handler Servlet (SOAP server).

Oracle SOAP stores audit trails as XML documents. Using XML documents, Oracle
SOAP creates portable audit trails and enables the transformation of complete audit
trails or individual audit records to different formats.

By default, Oracle SOAP audit logging uses an audit logger class that implements
the Handler interface (part of the oracle.soap.server package). The audit
logger class is invoked conditionally to monitor events including service requests,
service responses, and errors.

This section covers the following topics:
= Audit Logging Information

= Auditable Events

= Configuring the Audit Logger

A-14 Oracle9i Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Audit Logging

Audit Logging Information

Table A-2 lists the audit logging elements available for each audit log record.
Individual audit log records may not contain all these elements. In the log file, each

audit log record is stored as a SoapAuditRecord

element.

Table A-2 Auditable Audit Record Elements

Audit Record Element

Description

HostName
IpAddress

Method

Request Envelope

Request Envelope
Method

Request Envelope URI

Response Envelope

Specifies the hostname of the client that sent the request.
Specifies the IP address of the client that sent the request.
Specifies the method name for the SOAP request.
Provides the complete SOAP request message.

Name of the Method in the SOAP request envelope

Specifies the URI of the service in the SOAP request envelope.

Provides the complete SOAP response message.

ServiceURI Specifies the service URI for the SOAP request.

SoapAuditRecord Contains an individual record. The chainType attribute indicates if the record
is generated as part of a request or a response.

TimeStamp Specifies the system time when the SOAP audit record was generated.

User Specifies the username associated with the request. Note, this element is only
provided when a user context is associated with the service request or service
response.

Audit Logging Output

The XML schema for the generated audit log is provided in the file
SoapAuditTrail.xsd in the directory $SOAP_HOME/schemaon UNIX or
%SOAP_HOME%\schenmmn Windows. Refer to the schema file for complete details
on the format of a generated audit log record.

Auditable Events

The audit logger class is invoked when an auditable event occurs and the SOAP
Request Handler Servlet is configured to enable auditing for the event. Auditable
events include a service request or a service response.

Using Oracle SOAP A-15

Using Oracle9iAS SOAP Audit Logging

Audit Logging Filters

An audit logging filter can be specified in the SOAP configuration file to limit the
set of auditable events that are recorded to the audit log. The SOAP server applies
event filters to request and response events. Table A—4 shows the filter attributes
available to select with an event filter specification. When applied, filters limit the
number of records generated in the audit log. For example, when a filter is specified
for a particular host, only the auditable events generated for the specified host are
saved to the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254.
Table A-3 shows the filter syntax, and Example A-3 provides several examples.

See Also:

= "Configuring the Audit Logger" on page A-18
« ftp://ftp.isi.edu/in-notes/rfc2254.txt on RFC 2254

Table A-3 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

Host Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within
the specified hostname are not supported the examples show valid and invalid uses of
wildcards. If a wildcard is used then the wildcard must be the first character in the filter.
Case is ignored for hostnames. Care should be used in setting this attribute. Depending on
the DNS setup, the hostname returned could be fully qualified or nonqualified; for example,
explosives.acme.com or explosives . For some IP addresses, the DNS may not be
able to resolve the hostname.

Legal values for a Host filter attribute include the following examples:
explosives.acme.com, *.acme.com, *.com
Illegal values for a Host filter attribute include the following examples:

* explosives.acme.*, explosives.*, ex*s.acme.com, *ives.acme.com

A-16 Oracle9i Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Audit Logging

Table A-3 (Cont.) Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

ip Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.

Legal values for an ip filter attribute include the following examples:
138.2.142.154,138.2.142.*,138.2.%, 138 *

Illegal values for an ip filter attribute include the following examples:
*,138.2*154,*2,138*.152, 138.2.142, 138.2, 138

urn Specifies the service URN. Wildcards are not supported for this attribute.

username Specifies the transport level username associated with the client.

Wildcards are not supported in a username filter attribute.

Table A-4 Audit Log Filter Syntax

Filter Value Description
attr 1*(any US-ASCII char except ™", "(", ")", "&", "I","I","™*", "=")
equal ="
filter "("filtercomp")"
Whitespaces between "("filtercomp and ")" are not allowed.

filtercomp and | or | not | item

and ="&" filterlist

or ="|"filterlist

not ="!"filter
filterlist 2*2 filter
filtertype equal
item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.

Using Oracle SOAP A-17

Using Oracle9iAS SOAP Audit Logging

Table A—4 (Cont.) Audit Log Filter Syntax

Filter Value Description

value 1*(any octet except ASCII representation of ")" - 0x29).

The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches
anything.

Example A-3 Sample Audit Log Filters

(ip=138.2.142.154)

({(host=localhost))

(I(host=*.acme.com))

(&(host=*.acme.com)(usemame=daffy))
(&(p=138.2.142.%)(|(um=um:vwwy-oracle-com:AddressBook)(usemame=daffy)))

Configuring the Audit Logger

Configure the default SOAP audit logger supplied with Oracle9i Application Server
by setting parameters in the SOAP configuration file, soap.xml . To enable the
default audit logger and turn on audit logging, do the following in the
configuration file.

Define the name and options for the audit log handler. The default SOAP audit
logger is defined in the class

oracle.soap.handlers.audit.AuditLogger . The default audit logger
supports several options that you specify in the configuration file. Table A-5
shows the available audit logger options.

Add the name for the audit logger handler to the requestHandler
responseHandler , or errorHandler chain (or to all of the handler chains).

Example A—4 shows a sample segment from a SOAP configuration file including the
audit logging configuration options. Example A—4 shows configuration options set
to use all options. However, this configuration would produce an extremely large
audit log, and is not recommended.

A-18 Oracle9i Application Server Web Services Developer's Guide

Using Oracle9iAS SOAP Audit Logging

Note: When you audit errors using the audit logger, depending
on when the error occurs in the request-chain or the
response-chain, it is possible that the request or response message
may not be included in the audit log record, even with

includeRequest

or includeResponse enabled.

Example A-4 Audit Logging Configuration

<oschandlers>

<osc:handler name="auditor"

class="oracle.soap.handlers.audit Audit_ogger">

<osc:option name="audit_ogDirectory"
value="/privatel/oracle/app/productiv02/soapivebapps/soapWEB-INF />

<osc:option name="fitter" value="(!(host=localhost))"/>

<osc:option name="includeRequest" value="true'/>

<osc:option name="includeResponse" value="true">

</osc:handler>
<Josc:handlers>

<oscrequestHandlers names="auditor"/>
<oscresponseHandlers names="auditor />
<osc:errorHandlers names="auditor'/>

Table A-5 Audit Logger Configuration Options

Option

Description

auditLogDirectory

filter

includeRequest

Specifies the directory where the audit log file is saved. The
auditLogDirectory option is required. The name of the
generated audit log file is

OracleSoapAudittog .timestamp , where timestamp 1is the
date and time the file is first generated.

Valid values: any string that is a valid directory

Specifies the audit event filter. This option is optional. If a
filter is not specified SOAP server logs every event.

Valid values: any valid filter.

Specifies that the audit record include the request message for
the event that generated the audit log record.

Valid values: true , false
Any value other than true or false is treated as an error.

Default Value: false

Using Oracle SOAP A-19

Using Oracle9iAS SOAP Pluggable Configuration Managers

Table A-5 (Cont.) Audit Logger Configuration Options

Option Description

includeResponse Specifies that the audit record include the response message
for the event that generated the audit log record.

Valid values: true , false
Any value other than true or false is treated as an error.

Default Value: false

See Also: "Using Oracle9iAS SOAP Handlers" on page A-13

Using Oracle9 /AS SOAP Pluggable Configuration Managers

Oracle9iAS SOAP supports pluggable configuration managers similar to those
supported in Apache SOAP 2.2. Since Oracle9iAS SOAP supports provider
deployment descriptors separate from service deployment descriptors, the interface
details using Oracle9iAS SOAP are slightly different from Apache SOAP 2.2. In
Oracle9iAS SOAP, configuration managers are configured separately for the
provider manager and the service manager. All configuration managers must
implement the oracle.soap.server.ConfigManager interface.

To simplify development, when you write a configuration manager
implementation, you may the abstract class that is provided with Oracle9iAS SOAP
(oracle.soap.server.impl.BaseConfigManager). This abstract class
provides a standard implementation for most of the ConfigManager interface
with two abstract methods that read and write the persistent store.

Example A-5 shows a sample implementation of a provider configuration manager.

A-20 Oracle9i Application Server Web Services Developer's Guide

Working With Oracle9iAS SOAP Transport Security

Example A-5 Sample Provider Configuration Manager Implementation.

public class MyProviderConfigManager extends BaseConfigManager

{
public void setOptions(Properties options)
throws SOAPException

{
I/ handle implementation specific options

}

public void readRegistry()
throws SOAPException

Il read the deployed providers from persistent store
}

public void writeRegistry()
throws SOAPException

/Iwrite the deployed providers to persistent store

}
}

The setOptions method is passed the options specified in any <option>
elements specified in the <configManager> element. Synchronization of
reading /writing the registry is the responsibility of the specific configuration
manager implementation.

Working With Oracle9 J/AS SOAP Transport Security

Oracle9i Application Server uses the security capabilities of the underlying
transport that sends SOAP messages. Oracle9i Application Server supports the
HTTP and HTTPS protocols for sending SOAP messages. HTTP and HTTPS
support the following security features:

= HTTP proxies
« HTTP authentication (basic RFC 2617)
= Proxy authentication (basic RFC 2617)

Oracle9iAS SOAP Client transport uses the modified, to support Oracle Wallet
Manager, HTTPClient package. Oracle9iAS SOAP transport defines several
properties to support these features. Table A-6 lists the client-side security
properties that Oracle9i Application Server supports.

Using Oracle SOAP A-21

Working With Oracle9iAS SOAP Transport Security

In an Oracle9iAS SOAP Client application, you can set the security properties
shown in Table A—6 as system properties by using the -D flag at the Java command
line. You can also set security properties in the Java program by adding these
properties to the system properties (use System.setProperties() to add
properties).

Example A-6 shows how Oracle9i Application Server supports overriding the
values specified for system properties using Oracle9i Application Server transport

specific APIs. The setProperties() method in the class
OracleSOAPHTTPConnection contains set properties specifically for the HTTP
connection (this class is in the package oracle.soap.transport.http).

Example A-6 Setting Security Properties for OracleSOAPHHTTPConnection
org.apache.soap.mpc.Call call = new org.apache.soap.mpc.Call();

oracle.soap.transport http.OracleSOAPHT TPConnection conn =

(oracle.soap.transport http.OracleSOAPHT TPConnection) call getSOAP Transport();

java.util. Properties prop = new java.util. Properties();

Il Use client code to set name-value pairs of properties in prop

conn.setProperties(prop);

Note: The property java.protocol.handler.pkgs must be
set as a system property.

A-22 Oracle9i Application Server Web Services Developer's Guide

Working With Oracle9iAS SOAP Transport Security

Table A-6 SOAP HTTP Transport Security Properties

Property

Description

http.authType

http.password
http.proxyAuthType

http.proxyHost
http.proxyPassword
http.proxyPort

http.proxyRealm

http.proxyUsername

http.realm

http.username

java.protocol.
handler.pkgs

Specifies the HTTP authentication type. The case of the value specified is ignored.
Valid values: basic , digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not setting the
property.

Specifies the HTTP authentication password.

Specifies the proxy authentication type. The case of the value specified is ignored.
Valid values: basic , digest

Specifying any value other than basic or digest is the same as not setting the
property.

Specifies the hostname or IP address of the proxy host.

Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHos tis defined; otherwise this value is ignored.

Default value: 80

Specifies the realm for which the proxy authentication username/password is
specified.

Specifies the HTTP proxy authentication username.

Specifies the realm for which the HTTP authentication username/password is
specified.

Specifies the HTTP authentication username.

Specifies a list of package prefixes for java.net. URLStreamHandlerFactory
The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPClient

This value is required by the Java protocol handler framework; it is not defined by
Oracle9i Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, a java.net.MalformedURLException is
thrown.

Note: This property must be set as a system property.
For example, set this property as shown in either of the following;:
« java.protocol.handler.pkgs=HTTPClient

« java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient

Using Oracle SOAP A-23

Working With Oracle9iAS SOAP Transport Security

Table A-6 (Cont.) SOAP HTTP Transport Security Properties

Property Description
oracle.soap. Specifies the allows user interaction parameter. The case of the value specified is
transport. ignored. When this property is set to true and either of the following are true, the

allowUserlnteraction

oracle.soap.
transport.
1022ContentType

oracle.ssl.ciphers

user is prompted for a username and password:

1. If any of properties http.authType, http.username , or http.password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType , http.proxyUsername , or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true , false

Specifying any value other than true is considered as false

Specifies the value for the Oracle9iAS Content-Type HTTP header. The value for
this property supports Oracle SOAP servers running either Oracle 9iAS Release
1.0.2.2 or Release 9.0.x. This property provides interoperablity between Oracle9iAS
Release 9.0.2 Oracle SOAP clients and older server versions (as distributed with
Oracle9iAS Release 1.0.2.2).

Valid values: true , false (case is ignored)

Setting the value to true specifies to use the Oracle9 iAS Release 1.0.2.2
content-type HTTP header values when the SOAP message is sent. In this case, the
value is set to:

content-type: text/xml

Setting the value to false specifies to use the iAS version 9.0.2 content-type
header value when the SOAP message is sent. In this case, the value is set to:
content-type: text/xml; charset=utf-8

The value false is the default value.

Note: for SOAP messages with attachments, the content-type HTTP header is
always set to the value: multipart/related

Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported by Oracle SSL are supported.

A-24 Oracle9i Application Server Web Services Developer's Guide

Working With Oracle9iAS SOAP Transport Security

Table A-6 (Cont.) SOAP HTTP Transport Security Properties

Property

Description

oracle.
wallet.location

oracle.wallet.
password

Specifies the location of an exported Oracle wallet or exported trustpoints.
Note: The value used is not a URL but a file location, for example:
/etc/ORACLE/Wallets/systeml/exported_wallet (on UNIX)
d:\oracle\systeml\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Apache Listener and Servlet Engine Configuration for SSL

When using Apache listener and mod_ssl (or mod_ossl), the following directives
must be set for the soap servletlocation/directory:

SSLOption +StdEnvVars +ExportCertData

This directive can be set conditionally, refer to mod_ssl/mod_ossl documentation
for details. By default this directive is disabled for performance reasons. If this
directive is not set then the servlet engine does not have a way to access the SSL
related data (such as the cipher suite, client cert etc).

Using JSSE with Oracle9 JAS SOAP Client

This section describes how to use SSL with the Oracle9iAS SOAP Client side when
the Oracle security infrastructure is not available. Availability of Oracle security
infrastructure means the availability of Oracle client side libraries (including
$ORACLE_HOME/lib/* , $ORACLE_HOME/jlib/javax-ssl-1_2.jar ,and
$ORACLE_HOME/jlib/jssl-1_2.jar)-

Oracle9iAS SOAP uses the following class as the default transport class:
oracle.soap.transporthttp.OracleSOAPHT TPConnection

Using Oracle SOAP A-25

Working With Oracle9iAS SOAP Transport Security

This class uses a modified version of HTTPClient package . For information on
HTTPClient , see the following site:

http:/Amww.innovation.chjjava/HT TPClient/

This version of HTTPClient package is integrated with Oracle Java SSL and
supports Oracle Wallet for HTTPS transport. If a SOAP client side does not have
Oracle client side available, it is still possible to use HTTPS as a transport with
Oracle9iAS SOAP Client side libraries.

To do this, follow these steps:
1. Use the following transport class:

class org.apache.soap.transporthttp.SOAPHTTPConnection

If using RPC then call the following method by passing an instance of
org.apache.soap.transport.http. SOAPHTTPConnection as an
argument:

method org.apache.soap.mc.Callt#setSOAPTransport
(org.apache.soap.transpor. SOAPTransport)

For example:

org.apache.soap.mc.Call myCallObj = new
org.apache.soap.mpc.Call();
myCallObj.setSOAPTransport(new
org.apache.soap.transport http. SOAPHT TPConnection());

If using messaging, then call the following method by passing an instance of
org.apache.soap.transport.http. SOAPHTTPConnection as an
argument:

org.apache.soap.messaging.MessagetsetSOAPTransport
(org.apache.soap.ransport. SOAPTransport)

For example:

org.apache.soap.messaging.Message myMsgObj = hew

org.apache.soap.messaging.Message();

myMsgObj.setSOAPTransport(new
org.apache.soap.transport.hittp. SOAPHT TPConnection());

A-26 Oracle9i Application Server Web Services Developer's Guide

Working With Oracle9iAS SOAP Transport Security

Download Java Secure Socket Extension (JSSE) and configure JSSE according to
the supplied instructions. JSSE is available at the following site:

http://java.sun.com/productsijsse/

Make sure the files jnet.jar , jcert.jar and jsse.jar are in the
classpath or in the installed extensions directory ($JRE_HOME/lib/ext).

Make sure that SunJSSE provider is correctly configured. This can be done
either statically by editing the $JRE_HOME/lib/security /java.security file
and adding the line:

security.provider. numrcom.sun.netsslintemal.ssl.Provider

Where num is 1-based preference order or by dynamically by adding the
provider at run time by adding the following line of code:

Security.addProvider(new com.sun.net.ssl.intemal.ssl.Provider());
Dynamic addition of security providers requires that appropriate
permissions are set.

Make sure the system property java.protocol.handler.pkgs is set to
com.sun.net.ssl.internal.www.protocol

If using proxy server, make sure that the following system properties are set
is set to the correct proxy hostname and proxy port, respectively:

https.proxyHost
https.proxyPort

If using SSL with server side authentication and the default
TrustManager , ensure that the certificate signer of the server is one of the
following files:

$IRE_HOME/lib/security/ssecacerts

or if jssecacerts does not exist:

$IRE_HOME/ib/security/cacerts

To override the KeyManager/TrustManager keystore default locations, use
the system properties:

javax.net.ssl.keystore

Using Oracle SOAP A-27

Using Oracle9iAS SOAP Sample Services

javax.net.sslkeyStoreType
javax.net.ssl.keyStorePassword
javax.net.sslrustStore
javax.net.sslrustStoreType
javax.net.ssl rustStorePassword

Please consult JSSE documentation for details. If using a specific third party
JSSE implementation, please consult the appropriate documentation.
See Also: HTTPClient information at the site:

http://www.innovation.ch/java/HTTPClient/

Using Oracle9 /AS SOAP Sample Services

The section lists the samples included with Oracle9iAS SOAP. The class files for all
of the samples are in samples.jar

To run any sample, you need to ensure that samples jar is available on your servlet’s
CLASSPATH. Please refer to the README included with each sample for more
information.

The Xmethods Sample

The clients in the xmethods sample represent the easiest way to get started with
SOAP because they are clients that access existing services that are hosted on
systems on the internet. Information on these services can be found at the site:

http://www.xmethods.org
This sample is in $SOAP_HOME/samples/xmethods.

The AddressBook Sample

This sample has a service implemented in Java and several clients. This sample
illustrates literal XML encoding. See $SOAP_HOME/samples/addressbook for
the sample source code. This directory also contains a script that illustrates how to
run the sample addressbook clients using HTTPS as transport.

The StockQuote Sample

This sample has a service implemented in Java and one client. It is located in
$SOAP_HOME/samples/stockquote

A-28 Oracle9i Application Server Web Services Developer's Guide

Using the Oracle9iAS SOAP EJB Provider

The Company Sample

This sample has a service that is comprised of PL/SQL stored procedures and
several clients. It is located in $SOAP_HOME/samples/sp/company. Check the
README file in this directory for details on how to setup, compile, and test this
sample service.

The Provider Sample

This includes a template provider that can be used as a starting point for creating
your own provider.

The AddressBook2 Sample

This sample demonstrates use of the Addressbook service with session scope. It
shows how to maintain the same HTTP session across SOAP Calls. It contains an
example of a SOAP client proxy generated from a WSDL service description file. It
is located in $SOAP_HOME/samples/addressbook?2

The Messaging Sample

This sample is an example of a message-based SOAP service. It is located in
$SOAP_HOME/samples/messaging

The Mime Sample

This sample does SOAP with attachments using both RPC and message based
services. It is located in $SOAP_HOME/samples/mime.

Using the Oracle9 /AS SOAP EJB Provider

This section compares the Oracle9iAS SOAP EJB providers with the Apache-SOAP
2.2 E]JB providers.

Stateless Session EJB Provider

In Apache SOAP, the Stateless EJB provider, on receiving the SOAP request,
performs a JNDI lookup on the home interface of the E]JB. The Stateless EJB
provider then invokes a create on the EJB’s Home Interface in order to get a

Using Oracle SOAP A-29

Using the Oracle9iAS SOAP EJB Provider

reference to a stateless EJB. Then it uses this EJB reference to invoke the requested
method.

Oracle9iAS SOAP uses the same mechanism to support Stateless Session E]Bs as
Apache SOAP.

Stateful Session EJB Provider in Apache SOAP

On receiving a first time SOAP request, the Apache SOAP Stateful Session EJB
provider first locates the Home Interface through a JNDI lookup and using a
subsequent create obtains an object reference to a Stateful Session EJB. The provider
then invokes the requested method on the object reference.

In the next step the provider serializes the EJBHandle of the specified E]B reference
and appends it to the targetURI with an "@" delimiter. The Stateful Session EJB
provider then sends this modified target URI back to the requesting SOAP client. If
the client wants to reuse the same EJB instance, it must retrive this "modified" target
URI for the service from the Response and set it in the next SOAP Call.

Upon receiving this request, the Stateful EJB provider extracts the stringified EJB
reference and deserilaizes it into an EJBHandle from which it can obtain the EJB
reference. It can then invoke the method on the specified EJB.

The drawback of the Apache SOAP implementation is that the client must be EJB
aware and that it could not operate with other SOAP servers.

Oracle9iAS SOAP offers an alternative solution for Stateful Session E]Bs that allows
for client interoperablity.

Stateful Session EJB Provider in Oracle9 JAS SOAP

The Oracle9iAS SOAP Stateful Session EJB provider binds the E]JB reference to the
current session, if none is bound, otherwise, it merely retrives the E]JB reference
from the session. In order for the client to access the same Stateful Session EJB, the
client has to simply maintain it’s current session between successive Calls.

If at any point in a session, the SOAP client invokes a create on the EJB’s Home
Interface, the provider binds the EJB reference from the create to the session, to be
used for other call requests within the session.

Entity EJB Provider in Oracle9 /AS SOAP

In order for a SOAP client to exceute a business method on an entity EJB, it first
needs to either "create" a new EJB upon which to run the method or find an already

A-30 Oracle9i Application Server Web Services Developer's Guide

Using the Oracle9iAS SOAP EJB Provider

existing EJB which suit some criteria. Access to an entity EJB occurs within a
session. At the start of the session the SOAP client must invoke a "create" or "find"
(in order to specify the bean object interest). While maintaining the same session, all
other business methods are directed to that EJB. A subsequent "find" or "create”
within the same or different session directs business method exceution requests to
the newly "created" (or "found") EJB.

Another issue is that E]B specification provides that some "find" methods can return
either a Collection of E]B refs or single EJB ref.

The Oracle solution for Entity EJBs embraces the following solution for this
problem:

It disallows find methods that return "Collections". This allows for the provider
to uniquely specify an Entity EJB to target subsequent business method
requests.

Deployment and Use of the Oracle9 /AS SOAP EJB Provider

To install an EJB provider and deploy Web Services to the provider under OC4J,
where the application server hosts both the SOAP servlet and the deployed EJB’s,
follow these steps:

1. Deploy an EJB provider to SOAP using a provider descriptor.
The provider descriptor specifies the following:
= EJB access credentials by the middle tier
= JNDI context factory class
= JNDI context factory URL
= Provider class name
= Providerid
2. Create the EJB Web Service:

= Define the associated E]B classes and package the EJB into an EAR file as
defined by J2EE spec.

« Define the service descriptor which specifies following details of the EJB
Web Service:

* JNDI Location

* Home interface class name

Using Oracle SOAP A-31

Using PL/SQL Stored Procedures With the SP Provider

3.

* Application Deployment Name of this EJB Web Service in OC4]J

* The provider id to which this service is to be associated

Deploy ear file in OC4]J. Modify the OC4] specfic EJB descriptor to correct the
JNDI locationfor the EJB (as described in sample README).

Current Known EJB Provider Limitations

All service methods can only take primitive Java types as arguments to the
methods. User-defined Java types are currently not supported.

Using PL/SQL Stored Procedures With the SP Provider

The Oracle9iAS SOAP Stored Procedure (SP) Provider supports exposing PL/SQL
stored procedures or functions as SOAP services. The Oracle9i Database Server
allows procedures implemented in other languages, including Java and C/C++, to
be exposed using PL/SQL; these stored procedures are exposed as SOAP services
through PL/SQL interfaces.

The SP Provider framework works by translating PL/SQL procedures into Java
wrapper classes, and then exporting the generating Java classes as SOAP Java
services.

SP Provider Supported Functionality
The SP Provider supports the following:

PL/SQL stored procedures. both procedures and functions (this document uses
procedure to refer to both)

IN parameter modes

Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported)

Overloaded procedures (however, if two different PL/SQL types map to the
same Java type during translating, there may be errors during the export of the
PL/SQL package; these errors may be fixed by avoiding the overloading, or else
by writing a new dummy package which does not contain the offending
overloaded procedures)

Simple types
(user-defined) object types

A-32 Oracle9i Application Server Web Services Developer's Guide

Using PL/SQL Stored Procedures With the SP Provider

SP Provider Unsupported Functionality
The SP provider does not support the following:

The SP Provider framework uses JPublisher to translate from PL/SQL to Java;
hence, it inherits all of the restrictions of JPublisher.

BOOLEAN Due to a restriction in the OCI layer, the JDBC drivers do not
support the passing of BOOLEAN parameters to PL/SQL stored procedures.
Please refer to the JDBC Developer’s Guide and Reference for a workaround.

NCHAR and related types
JPublisher does not support internationalization.

LOB types. JPublisher does not provide comprehensive support for LOB types;
if your PL/SQL proceudres use LOB types as input/output types, the
translation may not work in all cases. If you see an error, the offending
procedures will have to be rewritten before the package can be exported as a
SOAP service.

SP Provider Supported Simple PL/SQL Types

The SOAP SP provider supports the following simple types. NULL values are
supported for all of the simple types listed, except NATURALN and POSITIVEN.

The JPublisher documentation provides full details on the mappings of these types.

VARCHAR? (STRING, VARCHAR)
LONG
CHAR (CHARACTER)

NUMBER (DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT,
NUMERIC, REAL,

SMALLINT)
PLS_INTEGER
BINARY_INTEGER (NATURAL, NATURALN, POSITIVE, POSITIVEN)

Due to a bug in JPublisher, many integer numeric types are translated into
java.math.BigDecimal instead of the Java scalar types---the workaround for this bug
is to temporarily use java.math.BigDecimal as the argument and return types.

The sample SP service has examples of the use of BigDecimal.

Using Oracle SOAP A-33

Using PL/SQL Stored Procedures With the SP Provider

Using Object Types
JPublisher supports the use of user-defined object types. The SP Provider
framework generates oracle.sql.CustomDatum style classes since these allow

automatic serialization using the default BeanSerializer in SOAP.

Refer to the company sample for an example of using object types.

Deploying a Stored Procedure Provider

Example A-7 shows a sample provider deployment descriptor for a stored
procedure. You may use any unique id for the provider name (the example uses
"company-provider").

The attributes user, password, and url are used to create the URL to connect to the
database, and they are all required. The number of connections for a service,
handled by this provider, is set using connections_per_service ; this is
optional and defaults to 10.

Deploy the sample provider descriptor shown in Example A-7, appropriately
edited for the local configuration, using the provider manager.

Example A-7 Sample SP Provider Deployment Descriptor
<isd:provider xmins:isd="http:/xmins.oracle.com/soap/2001/04/deploy/provider”
id="company-provider"
class="oracle.soap.providers.sp.SpProvider">
<l edit the following option "values" as appropriate —>
<isd:option key="user" value="YOUR-USER-NAME" />
<isd:option key="password" value="YOUR-PASSWORD" />
<isd:option key="url" value="jdbc:oracle:thin:@YOUR-HOST:YOUR-PORT:YOUR-SID"
>
<isd:option key="connections_per_service" value="3"/>
<fisd:provider>

Translating PL/SQL Stored Procedures into Java

The shell script $SOAP_HOME/bin/sp2jar.sh translates a PL/SQL package and
all its contained procedures/functions into a Java class with equivalent methods. If
the package uses any user-defined types,these types are also translated into
equivalent Java classes.

The READMHile in the samples directory has an example of the usage of the
spzjar.sh command to translate the company example into a jar file of compiled

A-34 Oracle9i Application Server Web Services Developer's Guide

Using PL/SQL Stored Procedures With the SP Provider

Java classes. The READMEIso describes how to load the PL/SQL packages into the
database.

Let us assume for the rest of the document that a PL/SQL package company has
been installed on a database, and it has been exported into a set of compiled Java
classes available in the jar file company.jar

The generated company.jar ~ should be made available in the CLASSPATH of the
SOAP servlet, just as for other Java services.

Deploying a Stored Procedure Service

Example A-8 shows a sample service deployment descriptor for a stored procedure.
Notice that the id attribute in the provider element identifies the provider under
which this service is deployed.

The service descriptor looks exactly like that for a Java service, since the SP Provider
framework translated PL/SQL procedures into Java class methods. All of the
information specific to PL/SQL are part of the provider descriptor---the service
itself looks like a Java service.

If the procedures use object types, it is necessary to define a type mapping for each
object type. The XML type name must be identical to the SQL type name and must
be in UPPER CASE (see EMPLOYEE and ADDRESS below). The javaType attribute
identifies the oracle.sql.CustomDatum type that was generated by JPublisher.

The default BeanSerializer can be used to serialize/deserialize the types.

The generated method names are in lower-case since this is the default setting of
JPublisher.

Deploy the sample service descriptor shown in Example A-8 using the service
manager.

Example A-8 Sample Stored Procedure Service Deployment Descriptor
<isd:service xmins:isd="http:/xmins.oracle.com/soap/2001/04/deploy/service™
id="um:mmw-oracle-com:company’"

type="Tpc’>

<isd:provider

id="company-provider"

methods="addemp getemp getaddress getempinfo changesalary removeemp”
scope="Application” >

<isd;java class="samples.sp.company.Company'/>

<fisd:provider>

Using Oracle SOAP A-35

SOAP Troubleshooting and Limitations

<isd:mappings>
<isd:map encodingStyle="http://schemas.xmisoap.org/soap/encoding/"
xmins:x="um:company-sample” gname="xEMPLOYEE"

javaType="samples.sp.company.Employee"
java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"

xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer />
<isd:map encodingStyle="http://schemas. xmisoap.org/soap/encoding/"
xmins:x="um:company-sample" gname="x:ADDRESS"
javaType="samples.sp.company.Address"
java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer />

<fisdmappings>
<isd-faultListener class="org.apache.soap.server. DOMFaultListener'/>

<fisd:service>

Invoking a SOAP Service that is a Stored Procedure

SOAP services that are PL/SQL stored procedures are invoked in exactly the same
manner as any other SOAP service. The company.jar file created during the
translating/deployment of a PL/SQL package is also needed on the client-side to
compile application programs that invoke the SOAP service (this jar file is needed
only if the stored procedures have input/output types that are user-defined types; if
the procedures use only builtin-types, the generated jar file is not needed on the
client).

The READMEHile in the company samples directory has instructions on how to
compile and test the sample client.

SOAP Troubleshooting and Limitations

This section lists several techniques for troubleshooting Oracle9iAS Web Services,
including:

= Tunneling Using the TcpTunnelGui Command

= Setting Configuration Options for Debugging

= Using DMS to Display Runtime Information

= SOAP Limitations for Java Type Prcedence with Overloaded Methods

A-36 Oracle9i Application Server Web Services Developer's Guide

SOAP Troubleshooting and Limitations

Tunneling Using the TcpTunnelGui Command

SOAP provides the TcpTunnelGui command to display messages sent between a
SOAP client and a SOAP server. TcpTunnelGui listens on a TCP port, which is
different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnelGui as follows:

java org.apache.soap.util.net TcpTunnelGui TUNNEL-PORT SOAP-HOST SOAP-PORT
Table A-7 lists the command line options for TcpTunnelGui

Table A-7 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnelGui listens to on the same host
as the client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server

For example, suppose the SOAP server is running as follows,
http://system1:8080/soap/senviet/soaprouter

You would then invoke TcpTunnelGui on port 8082 with this command:

java org.apache.soap.util.net TcpTunnelGui 8082 system1 8080

To test a client and view the SOAP traffic, you would use the following SOAP URL
in the client program:

http://system1:8082/soap/serviet/soaprouter

Setting Configuration Options for Debugging

To add debugging information to the SOAP Request Handler Servlet log files,
change the value of the severity option for the value debug in the file soap.xml.
This file is placed in the directory $SOAP_HOME/webapps/soap/WEB-INF on
UNIX or in %SOAP_HOME%\webapps\soap\WEB-INF on Windows.

Using Oracle SOAP A-37

SOAP Troubleshooting and Limitations

For example, the following soap.xml segment shows the value to set for
severity to enable debugging:

<l- severity can be: error, status, or debug —

<osclogger class="oracle.soap.server.impl.ServietLogger>
<osc:option name="severity" value="debug" />

</osclogger>

After stopping and restarting the SOAP Request Handler Servlet, you can view
debug information in the file x.log . The file is in the directory $ORACLE_
HOME/Apache/logs on UNIX or in

%ORACLE_HOME%\Apache\x\logs on Windows.

Using DMS to Display Runtime Information

Oracle9iAS Web Services is instrumented with DMS to gather information on the
execution of the SOAP Request Handler Servlet, the Java Provider, and on
individual services.

DMS information includes execution intervals from start to stop for the following:

« Total time spent in SOAP request and response (includes time in providers and
services)

= Total time spent in the Java Provider (includes time in services)
« Total time executing services (Soap/java-provider/ service-URI)
To view the DMS information, go to the following site:

https/ hostname : port /soap/seniet/Spy

SOAP Limitations for Java Type Prcedence with Overloaded Methods

Oracle9iAS SOAP supports Java inbuilt (primitive) types, wrapper types, one
dimensional arrays of inbuilt types, and one dimensional arrays of wrapper types
as parameters for SOAP RPC.

An inbuilt type parameter always takes precedence to a wrapper type parameter
when the Java provider searches for an overloaded method. When there isn't a clear
winner, for an overloaded method, a fault with appropriate message is returned.

A-38 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS SOAP Differences From Apache SOAP

For example:

A java class containing aMethod(int) hides aMethod(Integer) in the same
class.

A java class containing aMethod(int[]) hides aMethod(Integer(]) in the
same class.

A java class, when deployed as a SOAP RPC service returns a fault when a client
invokes aMethod() containing the signatures, aMethod(int, Float) and
aMethod(Integer, float) . In this case, there is no clear winner for resolving
the precedence of the overloaded aMethod()

Oracle9 /AS SOAP Differences From Apache SOAP

This section covers differences between Apache Soap and Oracle9iAS SOAP.

Service Installation Differences

Additional instructions are provided for installing services when Oracle9iAS SOAP
is used in conjunction with OC4J.

Optional Provider Enhancements

Oracle9iAS SOAP supports both the Apache Provider interface, defined in
org.apache.soap.util.Provider , and an enhanced provider interface,
defined in oracle.soap.server.Provider

The native Apache provider includes only two methods, locate() and

invoke() . The Oracle Provider interface combines the locate and invoke methods,
so that the provider does not have to store input parameters between the locate()
and invoke() calls. Additionally, the Oracle Provider interface has init() and
destroy() methods, which the SOAP servlet calls only once when the provider is
instantiated. This allows providers to perform one time initialization such as
opening a database or network connection, and to perform one time clean up
activities.

When using the Apache provider interface, a single deployment descriptor supplies
both service and provider properties. When using the Oracle Provider interface,
these properties are separated between a service descriptor file and a provider
descriptor file. This allows common provider properties to be shared among
services. When a provider property changes, only a single descriptor file must be
changed. Please see the Deployment section of this document for more information.

Using Oracle SOAP A-39

Oracle9iAS SOAP Differences From Apache SOAP

Oracle Transport libraries

Oracle transport libraries are included for use with SOAP clients. Use of these
libraries enables use of the Oracle Wallet Manager for keeping certificates securely,
and use of the HttpClient libraries for HTTP connection management. The
HttpClient libraries fix a security problem in the native Apache code which
incorrectly returns cookies to servers other than the originating server.

Modifications to Apache EJB Provider

The Apache EJB provider has been modified to work with the OC4]J EJB container.
In addition, the client interface to services provided by stateful and entity EJB’s has
been improved. The EJB handle is contained in the HttpSession association with the
connection rather than being concatenated to the returned URL. Since the
HTTPSession cookie is handled transparently by the SOAP client, no special coding
is required in the client.

Stored Procedure Provider

A special provider has been added which allows services to be written using
PL/SQL Stored Procedures or Functions.

Utility Enhancements

The wsdl2java and java2wsd| scripts simplify building client side code from
WSDL descriptions and for generating WSDL descriptions of Java services.

Modifications to Sample Code

The Apache samples have been modified to work with Oracle9iAS SOAP and OC4J.
The com, calculator , weblogic_ejb samples have been omitted. New samples
illustrating use of Oracle Stored Procedures and OC4J EJB’s as Web Services have
been added.

Handling the mustUnderstand Attribute in the SOAP Header

This section describes the check that is performed for the mustUnderstand
attribute within the header blocks of the SOAP envelope, and describes the
difference between the Apache SOAP and the Oracle SOAP processing of this
attribute.

A-40 Oracle9i Application Server Web Services Developer's Guide

Oracle9iAS SOAP Differences From Apache SOAP

Setting the mustUnderstand Check

The check for the mustUnderstand attribute is enabled in the deployment
descriptor of the service by setting the checkMustUnderstands ~ flag. If this flag
set to true , the check for the mustUnderstand attribute within each header block
is performed. If the checkMustUnderstands flag is set to false , the check for
the mustUnderstand attribute is not performed. The default value of
checkMustUnderstands flag is true .

How the mustUnderstand Check Works

If the checkMustUnderstands flag is set to true , then a check is made on all
header entries of the envelope after the global request handlers have finished
processing and before handing the envelope to the appropriate service. At this
point, if any header entries contain a mustUnderstand attribute that is set to true
or to "1", then an exception is thrown. Note, the global handler(s) can be used to
process one or more header blocks that have the mustUnderstand attribute set to
true .

If the checkMustUnderstands flag is set to false , then header entries of the
envelope are not checked to see if any entries contain a mustUnderstand attribute
that is set to true or to "1". It is then understood that it is up to the service
implementation to make sure that this check is done before processing the body of
the envelope.

Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

The differences between Apache SOAP and Oracle SOAP with respect to the
handling of the mustUnderstand attribute are the following:

1. Inthe Apache service deployment descriptor and the Oracle Service
deployment descriptor, you may include the checkMustUnderstands
attribute. In Apache, the default value of the checkMustUnderstands
attribute is false , in Oracle SOAP the default value of this attribute is true .

2. In Apache SOAP, if the service deployment descriptor contains
checkMustUnderstands="true' and a message with
mustUnderstand='1 ' or mustUnderstand="true" arrives at the server
then a fault is sent back with the fault code value of:

mustUnderstand
This fault code is not namespace qualified and is incorrect.

In Oracle SOAP the fault code that is sent back is namespace qualified and is
defined by SOAP 1.1:

Using Oracle SOAP A-41

Oracle9iAS SOAP Differences From Apache SOAP

SOAP-ENV:MustUnderstand

3. In Apache SOAP, the mustUnderstand attribute has to be handled by the
service implementation. In Oracle SOAP, the mustUnderstand attribute can
be either handled in the SOAP handlers or in the service implementation. This
is very useful for processing headers (with mustUnderstand set to '1') which
have a 'global’ use. Examples of such headers/functionality are encryption,
digsig, authentication, logging etc.

A-42 Oracle9i Application Server Web Services Developer's Guide

Glossary

Dynamic Web Service Client
When you want to use Web Services, you can develop a dynamic Web Service

client. With A dynamic client the client performs a lookup to find the Web Service’s
location in a UDDI registry before accessing the service.

SOAP

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for
exchanging information in a decentralized, distributed environment. SOAP
supports different styles of information exchange, including: Remote Procedure Call
style (RPC) and Message-oriented exchange.

See Also: http://www.w3.0rg/TR/SOAP/ for information on
Simple Object Access Protocol (SOAP) 1.1 specification

Static Web Service Client

When you want to use Web Services, you can develop a static client. A static client
knows where a Web Service is located without looking up the service in a UDDI
registry.

Stored Procedure Web Service

Oracle9iAS Web Services implemented as stateless PL/SQL Stored Procedures or
Functions are called Stored Procedure Web Services. Stored Procedure Web
Services enable you to export, as services running under Oracle9iAS Web Services,
PL/SQL procedures and functions that run on an Oracle database server.

Glossary-1

Glossary-2

uDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

See Also: http://www.uddi.org for information on Universal
Description, Discovery and Integration specifications.

Web Service

A Web Service is a discrete business process that does the following;:

= Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. A Web Service makes
this functionality available to other applications.

= Allows other services to locate it on the web — A Web Service can be registered
in an electronic Yellow Pages, so that applications can easily locate it.

« Can be invoked — Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

= Returns a response — When a Web Service is invoked, the results are passed
back to the requesting application over the same Internet standard protocol that
is used to invoke the service.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet.

See Also: http://www.w3.0org/TR/wsdl for information on
the Web Services Description Language (WSDL) format.

C

class-name configuration tag, 3-11, 6-12
client-side proxies
using, 8-9
client-side proxies for Web Services
generating, 8-8
Client-side proxy
getting directly, 8-5
connection-factory-resource-ref configuration
tag, 7-13
consuming Web Services
advanced section
editing generated XSLT stylesheet, 11-31
modifying environment options in generated
ejb-jar.xml file, 11-32
sample uses
handling an XML or HTML stream accessed
through a custom form, 11-14
handling an XML or HTML stream accessed
through a form, 11-13
handling an XML or HTML stream accessed
through static URL, 11-3
SOAP-based Web services using WSDL
document, 11-33
running the demonstration, 11-41
using configuration file, 11-35
using wsdl2ejb utility command-line
options, 11-33
using Web Service HTML /XML Stream
Processing Wizard, 11-2
XML or HTML streams, 11-2
context configuration tag, 3-10

Index

D

database-JNDI-name, 5-6

database-JNDI-name configuration tag, 5-6

data-sources.xml configuration file, 5-11

db-pkg-name configuration tag, 5-7

db-url configuration tag, 5-7

description configuration tag, 3-10

destination-path configuration tag, 3-10

discovering Web Services, 10-5

display-name configuration tag, 3-10

document style interface, 6-7

dynamic invocation of Web Services, 11-52
dynamic invocation API, 11-52
WebServiceProxy client, 11-56

E

ejb-name configuration tag, 4-10
ejb-resource configuration tag, 3-11,4-10
EJBs sample code, 4-2
Element

arrays of, 3-7,4-6,6-4

null values, 6-3

G

generating client proxies, A-8

generating WSDL documents, A-9

getting client-side proxies for Web Services, 8-3
getting WSDL descriptions for Web Services, 8-3

Index-1

H

http.authType property, 8-12
http.password property, 8-12
http.proxyAuthType property, 8-12
http.proxyHost property, 8-12
http.proxyPassword property, 8-12
http.proxyPort property, 8-12
http.proxyRealm property, 8-12
http.proxyUsername property, 8-12
http.realm property, 8-12
http.username property, 8-12

interface-name configuration tag, 3-11, 6-12

J

jar-generation configuration tag, 5-6

Java Beans, 3-7,4-6

java class interface, 3-5

java2wsdl script, A-9

java.protocol. handler.pkgs property, 8-13
java-resource configuration tag, 3-12, 6-12
jms-delivery-mode configuration tag, 7-13
jms-doc-service configuration tag, 7-13
jms-expiration configuration tag, 7-13
jms-message-type configuration tag, 7-14
jms-priority configuration tag, 7-14

L

locating Web Services, 8-2

M

message-style configuration tag, 3-12, 6-12
method-name configuration tag, 5-7

O

operation configuration tag, 7-14

option name="force" configuration tag, 9-6

option name="httpServerURL" configuration
tag, 9-6

Index-2

option name="include-source" configuration
tag, 8-9
option name="packagelt" configuration tag,
option name="source-path" configuration tag,
option name="wsdl-location" configuration
tag, 89
option package-name configuration tag, 8-9
Oracle SOAP, A-23
audit logger
configuring, A-18
filter, A-15
HostName, A-15
IpAddress, A-15
Method element, A-15
schema, A-15
ServiceURI element, A-15
TimeStamp element, A-15
User element, A-15
auditLogDirectory option, A-19
client API
security features, A-21
configuration
handlers, A-13
soap.xml, A-3
debugging
setting values in soap.xml, A-37
deploying services, A-7
deployment descriptor, A-10
error handlers, A-13

9-6
3-10

errorHandlers deployment parameter, A-3
faultListeners deployment parameter, A-3

filter option, A-19

handlers
deployment parameter, A-4
error, A-13
request, A-13
response, A-13

HostName element, A-15

HTTP transport properties
http.authType property, A-23
http.password property, A-23
http.proxyAuthType property, A-23
http.proxyHost property, A-23
http.proxyPassword property, A-23
http.proxyPort property, A-23

http.proxyRealm property, A-23
http.proxyUsername property, A-23
http.realm property, A-23
http.username property, A-23
java.protocol. handler.pkgs property, A-23
oracle. wallet.location property, A-25
oracle.soap. transport. allowUserInteraction
property, A-24
oracle.wallet. password property, A-25
http.authType property, A-23
http.password property, A-23
http.proxyAuthType property, A-23
http.proxyHost property, A-23
http.proxyPassword property, A-23
http.proxyPort property, A-23
http.proxyRealm property, A-23
http.proxyUsername property, A-23
http.realm property, A-23
http.username property, A-23
includeRequest option, A-19
includeResponse option, A-20
IpAddress element, A-15
java.protocol. handler.pkgs property, A-23
listing services, A-7
logger
setting values in soap.xml, A-37
logger deployment parameter, A-4
Method element, A-15
oracle. wallet.location property, A-25
oracle.soap. transport. allowUserInteraction
property, A-24
oracle.soap. transport.1022ContentType
property, A-24
oracle.ssl.ciphers property, A-24
oracle.wallet. password property, A-25
providerManager deployment parameter, A-5
querying services, A-7
request handlers, A-13
requestHandlers deployment parameter, A-5
response handlers, A-13
responseHandlers deployment parameter, A-5
security features, A-21
service manager
deploying services, A-7
listing services, A-7

querying services, A-7
undeploying services, A-7
verifying services, A-7
serviceManager deployment parameter, A-5
ServiceURI element, A-15
servlet.soaprouter.initArgs parameter, A-3
soap.properties
soapConfig, A-3
soap.xml, A-3
TcpTunnelGui command, A-37
TimeStamp element, A-15
troubleshooting, A-36
undeploying services, A-7
User element, A-15
oracle. wallet.location property, 8-13
oracle.soap. transport.allowUserInteraction
property, 8-13
oracle.ssl.ciphers property, 8-13
oracle.wallet. password property, 8-13

P

packageName request parameter, 8-6
packaging WSDL, 9-5
path configuration tag, 4-10
PL/SQL stored procedures
setting up datasources, 5-11
writing, 5-2
prefix configuration tag, 5-7
publishing API, 10-14
publishing Web services, 10-8

Q

queue-resource-ref configuration tag, 7-14

R

reply-to-connection-factory-resource-ref
configuration tag, 7-15

reply-to-queue-resource-ref configuration tag, 7-15

reply-to-topic-resource-ref configuration tag, 7-15

Index-3

S

schema configuration tag, 5-7
scope configuration tag, 3-12, 6-12
session-timeout configuration tag, 3-12, 6-12
simple object access protocol
what is SOAP, 1-6
SOAP
features, 1-6
web services, 1-6
what is SOAP, 1-6
SOAP client-side
HTTP transport properties
http.authType property, 8-12
http.password property, 8-12
http.proxyAuthType property, 8-12
http.proxyHost property, 8-12
http.proxyPassword property, 8-12
http.proxyPort property, 8-12
http.proxyRealm property, 8-12
http.proxyUsername property, 8-12
http.realm property, 8-12
http.username property, 8-12
java.protocol. handler.pkgs property, 8-13
oracle. wallet.location property, 8-13
oracle.soap. transport. allowUserInteraction
property, 8-13
oracle.ssl.ciphers property, 8-13
oracle.wallet. password property, 8-13
stateful document style, 6-4
stateful java class, 3-3
statefuljava-service configuration tag, 3-10, 6-11
stateless document style, 6-4
stateless java class, 3-3
stateless session E]Bs
helloStatelessSession sample code, 4-2
writing, 4-2
stateless-java-service configuration tag, 3-10, 6-11
stateless-session-ejb-service configuration tag, 4-9

T

temporary-directory configuration tag, 3-10
topic-resource-ref configuration tag, 7-15

Index-4

U

UDDI
Oracle UDDI registry, 10-9
production environment configuration, 10-30
publishing Web services
using OEM Deploy Applications
Wizard, 10-9
using OEM Web Services Details
window, 10-11
registration, 10-2
registry, 10-2
registry administration
administrative entity management, 10-21
built-in validated category
management, 10-23
command-line tool uddiadmin.jar, 10-20
database configuration, 10-22
import operation, 10-22
performance monitoring and tuning, 10-20
server configuration, 10-20
server configuration parameters reference
information, 10-26
transport security, 10-25
user account management, 10-21
standard taxonomies
1SO3166, 10-2
NAICS, 10-2
UNSPSC, 10-2
updating published Web services
using OEM Web Services Details
window, 10-12
Web service discovery, 10-4
using inquiry API, 10-5
using tools, 10-5
Web service publishing, 10-4
using publishing API, 10-14
using tools, 10-8
UDDI registry administration
user management, 10-19
uddiadmin jar
registry administration command-line
tool, 10-20
uri configuration tag, 3-12,4-10, 5-6, 6-12, 7-15

Web Services

Bean support, 3-7,4-6
client-side proxies, 8-3,8-9
packageName request parameter, 8-6
discovering, 10-5
document style
deploying, 6-16
interface, 6-7
null value for Element, 6-3
stateful, 6-4
stateless, 6-4
encoding parameters, 3-15
encoding results, 3-15
generating client proxies, A-8
generating client-side proxies, 8-8
generating WSDL documents, A-9
home page, 8-3
Java Bean support, 3-7,4-6
java class
deploying, 3-9,3-14
interface, 3-5
preparing, 3-9
stateful, 3-3
stateless, 3-3
supported parameter types, 3-7
supported return value types, 3-7
supported types, 3-5
JMS
deploying, 7-17
preparing an EAR file, 7-17
locating, 8-2
PL/SQL stored procedures, 5-2
deploying, 5-12
preparing an EAR file, 5-10
setting up datasources, 5-11
proxies, 8-9
publishing, 10-8
serializing parameters, 3-15
serializing results, 3-15
stateless session E]Bs, 4-2
bean code, 4-4
deploying, 4-8,4-11
developing web services, 4-3

error handling, 4-5
home interface, 4-3,4-4
preparing, 4-8
remote interface, 4-3
returning results, 4-5
sample code, 4-2
supported parameter types, 4-6
supported return value types, 4-6
test page, 8-3
WSDL descriptions, 8-3, 8-8

WebServicesAssembler, 9-5

DTD, 9-9

generating WSDL, 9-5

running, 9-2

sample input file, 9-2

sample output, 9-4

tag
class-name, 3-11, 6-12
connection-factory-resource-ref, 7-13
context, 3-10
db-pkg-name, 5-7
db-url, 5-7
description, 3-10
destination-path, 3-10
display-name, 3-10
ejb-name, 4-10
ejb-resource, 3-11, 4-10
interface-name, 3-11, 6-12
jar-generation, 5-6
java-resource, 3-12,6-12
jms-delivery-mode, 7-13
jms-doc-service, 7-13
jms-expiration, 7-13
jms-message-type, 7-14
jms-priority, 7-14
message-style, 3-12, 6-12
method-name, 5-7
operation, 7-14
option name="force", 9-6
option name="httpServerURL", 9-6
option name="include-source", 8-9
option name="packagelt", 9-6
option name="source-path", 3-10
option name="wsdl-location", 8-9
option package-name, 8-9

Index-5

path, 4-10
prefix, 5-7
proxy-dir, 8-9
queue-resource-ref, 7-14
reply-to-connection-factory-resource-ref, 7-1
5

reply-to-queue-resource-ref, 7-15
reply-to-topic-resource-ref, 7-15
schema, 5-7
scope, 3-12,6-12
session-timeout, 3-12, 6-12
statefuljava-service, 3-10, 6-11
stateless-java-service, 3-10, 6-11
stateless-session-ejb-service, 4-9
stateless-stored-procedure-java-service, 5-5
temporary-directory, 3-10
topic-resource-ref, 7-15
uri, 3-12,4-10, 5-6, 6-12, 7-15
wsdl-dir, 9-6

WSDL file, 9-7

WSDL file
getting directly, 8-5
wsdl2java script, A-8

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Web Services Overview
	What Are Web Services?
	Understanding Web Services
	Benefits of Web Services
	About the Web Services e-Business Transformation
	About Business Transformation with Web Services
	About Technology Transformation with Web Services

	Overview of Web Services Standards
	Simple Object Access Protocol (SOAP)
	Web Services Description Language (WSDL)
	Universal Description, Discovery, and Integration (UDDI)

	Scenario: Web Services with a Currency Converter Application
	Understanding the Publisher’s Role
	Understanding the Caller’s Role

	2 Oracle9iAS Web Services
	Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services
	Oracle9iAS Web Services Features
	Developing End-to-End Web Services
	Deploying and Managing Web Services
	Using Oracle9i JDeveloper with Web Services
	Securing Web Services
	Aggregating Web Services

	Oracle9iAS Web Services Architecture
	About Servlet Entry Points for Web Services
	What Are the Packaging and Deployment Options for Web Services
	About Server Skeleton Code Generation for Web Services

	Understanding WSDL and Client Proxy Stubs for Web Services
	Overview of a WSDL Based Web Service Client
	Overview of a Client-Side Proxy Stubs Based Web Service Client

	Web Services Home Page
	About Universal Description, Discovery, and Integration Registry
	Oracle Enterprise Manager Features to Register Web Services

	3 Developing and Deploying Java Class Web Services
	Using Oracle9iAS Web Services With Java Classes
	Writing Java Class Based Web Services
	Writing Stateless and Stateful Java Web Services
	Building a Sample Java Class Implementation
	Defining a Java Class Containing Methods for the Web Service
	Defining an Interface for Explicit Method Exposure
	Writing a WSDL File (Optional)

	Using Supported Data Types for Java Web Services

	Preparing and Deploying Java Class Based Web Services
	Creating a Configuration File to Assemble Java Class Web Services
	Adding Web Service Top Level Tags
	Adding Java Stateless Service Tags
	Adding Java Stateful Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Java Class Web Services
	Deploying Java Class Based Web Services

	Serializing and Encoding Parameters and Results for Web Services

	4 Developing and Deploying EJB Web Services
	Using Oracle9iAS Web Services With Stateless Session EJBs
	Writing Stateless Session EJB Web Services
	Defining a Stateless Session Remote Interface
	Defining a Stateless Session Home Interface
	Defining a Stateless Session EJB Bean
	Returning Results From EJB Web Services
	Error Handling for EJB Web Services
	Serializing and Encoding Parameters and Results for EJB Web Services
	Using Supported Data Types for Stateless Session EJB Web Services
	Writing a WSDL File for EJB Web Services (Optional)

	Preparing and Deploying Stateless Session EJB Based Web Services
	Creating a Configuration File to Assemble Stateless Session EJB Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Session EJB Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
	Deploying Web Services Implemented as EJBs

	5 Developing and Deploying Stored Procedure Web Services
	Using Oracle9iAS Web Services with Stored Procedures
	Writing Stored Procedure Web Services
	Preparing Stored Procedure Web Services
	Creating a Configuration File to Assemble Stored Procedure Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Stored Procedure Java Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Stored Procedure Web Services
	Setting Up Datasources in Oracle9iAS Web Services (OC4J)

	Deploying Stored Procedure Web Services
	Limitations for Stored Procedures Running as Web Services
	Supported Stored Procedure Features for Web Services
	Unsupported Stored Procedure Features for Web Services
	Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services

	6 Developing and Deploying Document Style Web Services
	Using Document Style Web Services
	Writing Document Style Web Services
	Supported Method Signatures for Document Style Web Services
	Passing Null Values for Document Style Web Services
	Arrays of Elements

	Writing Stateless and Stateful Document Style Web Services
	Writing Classes and Interfaces for Document Style Web Services
	Defining Methods in a Document Style Web Service
	Defining an Interface for Explicit Method Exposure
	Handling Messages for Document Style Web Services

	Preparing Document Style Web Services
	Creating a Configuration File to Assemble Document Style Web Services
	Adding Web Service Top Level Tags
	Adding Java Service Tags with Document Message Style Specified
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Document Style Web Services

	Deploying Document Style Web Services

	7 Developing and Deploying JMS Web Services
	JMS Web Services Overview
	Using JMS Web Services
	JMS Web Services Backend Message Processing
	Using an MDB for Message Processing
	Using a JMS Client for Message Processing

	Writing JMS Web Services and Handling Messages
	Using an MDB for Backend Message Processing
	Developing the MDB that Processes Incoming Messages
	Developing the MDB that Generates Outgoing Messages
	Compiling and Preparing the MDB EJB.jar File
	Assembling the JMS Web Service With the MDB
	Defining the Server-Side Resource References

	Using a JMS Standalone Program for Backend Message Processing
	Message Processing and Reply Messages

	Preparing and Configuring JMS Web Services
	Creating a Configuration File to Assemble JMS Web Services
	Adding Web Service Top Level Tags
	Adding JMS Doc Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With JMS Web Services

	Deploying JMS Web Services
	Limitations for JMS Web Services

	8 Building Clients that Use Web Services
	Locating Web Services
	Getting WSDL Files and Client-Side Proxy Jars for Web Services
	Using the Web Service Home Page to Save WSDL and Client Side Proxies
	Limitations for Web Service Test Pages

	Getting Web Service WSDL and Client-Side Proxies Directly
	Getting WSDL Service Descriptions
	Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar
	Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

	Generating Client-Side Proxies With WebServicesAssembler

	Working with Client-Side Proxy Jar to Use Web Services
	Using Web Services Security Features

	Working with WSDL Files and JDeveloper to Use Web Services

	9 Web Services Assembly Tool
	Running the Web Services Assembly Tool
	Web Services Assembly Tool Configuration File Sample
	Web Services Assembly Tool Configuration File Sample Output

	Generating WSDL Files and Client Side Proxies
	Generating and Assembling WSDL Files
	Manually Producing a WSDL File

	Generating Client-Side Proxies with WSDL

	Web Services Assembly Tool Configuration File Specification
	Web Services Assembly Tool Limitations

	10 Discovering and Publishing Web Services
	UDDI Registration
	UDDI Registry
	Oracle UDDI Enterprise Web Services Registry
	Web Services Discovery
	Using Tools
	Using the Inquiry API

	Web Services Publishing
	Using Oracle Enterprise Manager
	Oracle UDDI Registry
	Using the Oracle Enterprise Manager Deploy Applications Wizard
	Using the Oracle Enterprise Manager Web Services Details Window
	Updating Published Web Services in the UDDI Registry
	Using the Publishing API
	UDDI Registry Administration
	User Management
	Performance Monitoring and Tuning
	Data Backup and Restore Operations
	Using the Command-Line Tool uddiadmin.jar
	Server Configuration
	User Account Management
	Administrative Entity Management
	Import Operation
	Database Configuration
	Built-in Validated Category Management
	Transport Security
	Additional Information
	Server Configuration Parameters Reference Information

	Database Character Set and Built-in ISO-3166 Classification
	Recommended Configuration for a Production Environment

	11 Consuming Web Services in J2EE Applications
	Consuming XML or HTML Streams in J2EE Applications
	Web Service HTML/XML Stream Processing Wizard
	Sample Use Scenarios
	Handling an XML or HTML Stream Accessed Through a Static URL
	Handling an XML or HTML Stream Accessed Through a Form

	Advanced Section -- Editing Changes You Can Make to Generated Files
	Editing the Generated XSLT Stylesheet
	Modifying Environment Options in the Generated ejb-jar.xml File

	Consuming SOAP-Based Web Services Using WSDL
	Advanced Configuration
	Known Limitations of the wsdl2ejb Utility
	Running the Demonstration
	RPC and Document Style with Simple Types Example
	Round 2 Interop Services: Base Test Suite Example

	Dynamic Invocation of Web Services
	Dynamic Invocation API
	WebServiceProxy Client
	Known Limitations

	A Using Oracle SOAP
	Understanding Oracle9iAS SOAP
	Apache SOAP Documentation
	Configuring the SOAP Request Handler Servlet
	Using Oracle9iAS SOAP Management Utilities and Scripts
	Managing Providers
	Using the Service Manager to Deploy and Undeploy Java Services
	Generating Client Proxies from WSDL Documents
	Generating WSDL Documents from Java Service Implementations

	Deploying Oracle9iAS SOAP Services
	Creating Deployment Descriptors
	Installing a SOAP Web Service in OC4J
	Disabling an Installed SOAP Web Service
	Installing a SOAP Web Service in an OC4J Cluster

	Using Oracle9iAS SOAP Handlers
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	Using Oracle9iAS SOAP Audit Logging
	Audit Logging Information
	Audit Logging Output

	Auditable Events
	Audit Logging Filters

	Configuring the Audit Logger

	Using Oracle9iAS SOAP Pluggable Configuration Managers
	Working With Oracle9iAS SOAP Transport Security
	Apache Listener and Servlet Engine Configuration for SSL
	Using JSSE with Oracle9iAS SOAP Client

	Using Oracle9iAS SOAP Sample Services
	The Xmethods Sample
	The AddressBook Sample
	The StockQuote Sample
	The Company Sample
	The Provider Sample
	The AddressBook2 Sample
	The Messaging Sample
	The Mime Sample

	Using the Oracle9iAS SOAP EJB Provider
	Stateless Session EJB Provider
	Stateful Session EJB Provider in Apache SOAP
	Stateful Session EJB Provider in Oracle9iAS SOAP
	Entity EJB Provider in Oracle9iAS SOAP
	Deployment and Use of the Oracle9iAS SOAP EJB Provider
	Current Known EJB Provider Limitations

	Using PL/SQL Stored Procedures With the SP Provider
	SP Provider Supported Functionality
	SP Provider Unsupported Functionality
	SP Provider Supported Simple PL/SQL Types
	Using Object Types
	Deploying a Stored Procedure Provider
	Translating PL/SQL Stored Procedures into Java
	Deploying a Stored Procedure Service
	Invoking a SOAP Service that is a Stored Procedure

	SOAP Troubleshooting and Limitations
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information
	SOAP Limitations for Java Type Prcedence with Overloaded Methods

	Oracle9iAS SOAP Differences From Apache SOAP
	Service Installation Differences
	Optional Provider Enhancements
	Oracle Transport libraries
	Modifications to Apache EJB Provider
	Stored Procedure Provider
	Utility Enhancements
	Modifications to Sample Code
	Handling the mustUnderstand Attribute in the SOAP Header
	Setting the mustUnderstand Check
	How the mustUnderstand Check Works
	Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

	Glossary
	Index

