
Oracle9 i Application Server

Web Services Developer’s Guide

Release 2 (9.0.3)

August 2002

Part No. B10004-01

Oracle9i Application Server Web Services Developer’s Guide, Release 2 (9.0.3)

Part No. B10004-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Authors: Thomas Van Raalte and Rodney Ward

Contributors: Marco Carrer, Anirban Chatterjee, Daxin Cheng, David Clay, Tony D’Silva, Neil Evans,
Bert Feldman, Kathryn Gruenefeldt, Steven Harris, Anish Karmarkar, Prabha Krishna, Sunil Kunisetty,
Wai-Kwong (Sam) Lee, Gary Moyer, Steve Muench, Giuseppe Panciera, Wei Qian, Eric Rajkovic, Venkata
Ravipati, Susan Shepard, Alok Srivastava, Zhe (Alan) Wu, Joyce Yang, Chen Zhou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Contents

Send Us Your Comments ... xiii

Preface ... xv

1 Web Services Overview

What Are Web Services? .. 1-2
Understanding Web Services.. 1-2
Benefits of Web Services .. 1-3
About the Web Services e-Business Transformation... 1-3

About Business Transformation with Web Services .. 1-4
About Technology Transformation with Web Services... 1-4

Overview of Web Services Standards ... 1-5
Simple Object Access Protocol (SOAP) ... 1-6
Web Services Description Language (WSDL) .. 1-6
Universal Description, Discovery, and Integration (UDDI)... 1-7

Scenario: Web Services with a Currency Converter Application .. 1-7
Understanding the Publisher’s Role .. 1-8
Understanding the Caller’s Role .. 1-8

2 Oracle9 iAS Web Services

Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services .. 2-2
Oracle9iAS Web Services Features .. 2-2

Developing End-to-End Web Services .. 2-3
Deploying and Managing Web Services ... 2-4
iii

Using Oracle9i JDeveloper with Web Services... 2-4
Securing Web Services ... 2-5
Aggregating Web Services .. 2-5

Oracle9iAS Web Services Architecture... 2-6
About Servlet Entry Points for Web Services ... 2-8
What Are the Packaging and Deployment Options for Web Services 2-10
About Server Skeleton Code Generation for Web Services.. 2-10

Understanding WSDL and Client Proxy Stubs for Web Services ... 2-11
Overview of a WSDL Based Web Service Client.. 2-12
Overview of a Client-Side Proxy Stubs Based Web Service Client 2-12

Web Services Home Page .. 2-13
About Universal Description, Discovery, and Integration Registry 2-14

Oracle Enterprise Manager Features to Register Web Services ... 2-15

3 Developing and Deploying Java Class Web Services

Using Oracle9iAS Web Services With Java Classes ... 3-2
Writing Java Class Based Web Services .. 3-2

Writing Stateless and Stateful Java Web Services .. 3-3
Building a Sample Java Class Implementation .. 3-3

Defining a Java Class Containing Methods for the Web Service.................................... 3-3
Defining an Interface for Explicit Method Exposure ... 3-5
Writing a WSDL File (Optional) .. 3-6

Using Supported Data Types for Java Web Services... 3-7
Preparing and Deploying Java Class Based Web Services ... 3-9

Creating a Configuration File to Assemble Java Class Web Services 3-9
Adding Web Service Top Level Tags ... 3-9
Adding Java Stateless Service Tags... 3-10
Adding Java Stateful Service Tags .. 3-11
Adding WSDL and Client-Side Proxy Generation Tags.. 3-14

Running WebServicesAssembler To Prepare Java Class Web Services.............................. 3-14
Deploying Java Class Based Web Services.. 3-14

Serializing and Encoding Parameters and Results for Web Services 3-15
iv

4 Developing and Deploying EJB Web Services

Using Oracle9iAS Web Services With Stateless Session EJBs ... 4-2
Writing Stateless Session EJB Web Services ... 4-2

Defining a Stateless Session Remote Interface ... 4-3
Defining a Stateless Session Home Interface.. 4-3
Defining a Stateless Session EJB Bean ... 4-4
Returning Results From EJB Web Services ... 4-5
Error Handling for EJB Web Services.. 4-5
Serializing and Encoding Parameters and Results for EJB Web Services 4-5
Using Supported Data Types for Stateless Session EJB Web Services.................................. 4-6
Writing a WSDL File for EJB Web Services (Optional) ... 4-7

Preparing and Deploying Stateless Session EJB Based Web Services 4-8
Creating a Configuration File to Assemble Stateless Session EJB Web Services................. 4-8

Adding Web Service Top Level Tags ... 4-8
Adding Stateless Session EJB Service Tags.. 4-9
Adding WSDL and Client-Side Proxy Generation Tags ... 4-11

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services........... 4-11
Deploying Web Services Implemented as EJBs ... 4-11

5 Developing and Deploying Stored Procedure Web Services

Using Oracle9iAS Web Services with Stored Procedures... 5-2
Writing Stored Procedure Web Services... 5-2
Preparing Stored Procedure Web Services... 5-3

Creating a Configuration File to Assemble Stored Procedure Web Services 5-4
Adding Web Service Top Level Tags ... 5-4
Adding Stateless Stored Procedure Java Service Tags... 5-5
Adding WSDL and Client-Side Proxy Generation Tags ... 5-10

Running WebServicesAssembler With Stored Procedure Web Services 5-10
Setting Up Datasources in Oracle9iAS Web Services (OC4J)... 5-11

Deploying Stored Procedure Web Services ... 5-12
Limitations for Stored Procedures Running as Web Services ... 5-12

Supported Stored Procedure Features for Web Services .. 5-12
Unsupported Stored Procedure Features for Web Services... 5-13
Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services 5-14
v

6 Developing and Deploying Document Style Web Services

Using Document Style Web Services .. 6-2
Writing Document Style Web Services ... 6-3

Supported Method Signatures for Document Style Web Services .. 6-3
Passing Null Values for Document Style Web Services... 6-3
Arrays of Elements .. 6-4

Writing Stateless and Stateful Document Style Web Services ... 6-4
Writing Classes and Interfaces for Document Style Web Services.. 6-5

Defining Methods in a Document Style Web Service .. 6-5
Defining an Interface for Explicit Method Exposure ... 6-7
Handling Messages for Document Style Web Services ... 6-9

Preparing Document Style Web Services... 6-9
Creating a Configuration File to Assemble Document Style Web Services 6-10

Adding Web Service Top Level Tags ... 6-10
Adding Java Service Tags with Document Message Style Specified........................... 6-11
Adding WSDL and Client-Side Proxy Generation Tags.. 6-13

Running WebServicesAssembler With Document Style Web Services.............................. 6-16
Deploying Document Style Web Services ... 6-16

7 Developing and Deploying JMS Web Services

JMS Web Services Overview .. 7-2
Using JMS Web Services .. 7-2
JMS Web Services Backend Message Processing ... 7-3

Using an MDB for Message Processing.. 7-3
Using a JMS Client for Message Processing .. 7-4

Writing JMS Web Services and Handling Messages ... 7-6
Using an MDB for Backend Message Processing... 7-6

Developing the MDB that Processes Incoming Messages ... 7-7
Developing the MDB that Generates Outgoing Messages .. 7-8
Compiling and Preparing the MDB EJB.jar File.. 7-8
Assembling the JMS Web Service With the MDB... 7-8
Defining the Server-Side Resource References ... 7-9

Using a JMS Standalone Program for Backend Message Processing.................................... 7-9
Message Processing and Reply Messages ... 7-10
vi

Preparing and Configuring JMS Web Services ... 7-11
Creating a Configuration File to Assemble JMS Web Services.. 7-12

Adding Web Service Top Level Tags ... 7-12
Adding JMS Doc Service Tags... 7-13
Adding WSDL and Client-Side Proxy Generation Tags ... 7-16

Running WebServicesAssembler With JMS Web Services... 7-17
Deploying JMS Web Services .. 7-17
Limitations for JMS Web Services... 7-18

8 Building Clients that Use Web Services

Locating Web Services ... 8-2
Getting WSDL Files and Client-Side Proxy Jars for Web Services... 8-2

Using the Web Service Home Page to Save WSDL and Client Side Proxies 8-3
Limitations for Web Service Test Pages ... 8-4

Getting Web Service WSDL and Client-Side Proxies Directly... 8-5
Getting WSDL Service Descriptions ... 8-5
Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar.................................... 8-5
Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package..................... 8-6

Generating Client-Side Proxies With WebServicesAssembler .. 8-8
Working with Client-Side Proxy Jar to Use Web Services.. 8-9

Using Web Services Security Features... 8-11
Working with WSDL Files and JDeveloper to Use Web Services... 8-14

9 Web Services Assembly Tool

Running the Web Services Assembly Tool .. 9-2
Web Services Assembly Tool Configuration File Sample... 9-2

Web Services Assembly Tool Configuration File Sample Output .. 9-4
Generating WSDL Files and Client Side Proxies ... 9-5

Generating and Assembling WSDL Files.. 9-5
Manually Producing a WSDL File .. 9-7

Generating Client-Side Proxies with WSDL... 9-8
Web Services Assembly Tool Configuration File Specification ... 9-9
Web Services Assembly Tool Limitations.. 9-11
vii

10 Discovering and Publishing Web Services

UDDI Registration.. 10-2
UDDI Registry ... 10-2
Oracle UDDI Enterprise Web Services Registry... 10-4
Web Services Discovery... 10-5

Using Tools .. 10-5
Using the Inquiry API .. 10-5

Web Services Publishing ... 10-8
Using Oracle Enterprise Manager .. 10-8
Oracle UDDI Registry .. 10-9
Using the Oracle Enterprise Manager Deploy Applications Wizard.................................. 10-9
Using the Oracle Enterprise Manager Web Services Details Window 10-11
Updating Published Web Services in the UDDI Registry... 10-12
Using the Publishing API .. 10-14
UDDI Registry Administration... 10-19

User Management ... 10-19
Performance Monitoring and Tuning... 10-20
Data Backup and Restore Operations... 10-20
Using the Command-Line Tool uddiadmin.jar... 10-20
Server Configuration... 10-20
User Account Management.. 10-21
Administrative Entity Management ... 10-21
Import Operation... 10-22
Database Configuration.. 10-22
Built-in Validated Category Management... 10-23
Transport Security ... 10-25
Additional Information... 10-26
Server Configuration Parameters Reference Information ... 10-26

Database Character Set and Built-in ISO-3166 Classification .. 10-29
Recommended Configuration for a Production Environment ... 10-30
viii

11 Consuming Web Services in J2EE Applications

Consuming XML or HTML Streams in J2EE Applications .. 11-2
Web Service HTML/XML Stream Processing Wizard ... 11-2
Sample Use Scenarios... 11-3

Handling an XML or HTML Stream Accessed Through a Static URL........................ 11-3
Handling an XML or HTML Stream Accessed Through a Form 11-13

Advanced Section -- Editing Changes You Can Make to Generated Files....................... 11-31
Editing the Generated XSLT Stylesheet ... 11-32
Modifying Environment Options in the Generated ejb-jar.xml File.......................... 11-32

Consuming SOAP-Based Web Services Using WSDL .. 11-33
Advanced Configuration... 11-35
Known Limitations of the wsdl2ejb Utility ... 11-40
Running the Demonstration ... 11-41

RPC and Document Style with Simple Types Example .. 11-42
Round 2 Interop Services: Base Test Suite Example... 11-45

Dynamic Invocation of Web Services ... 11-52
Dynamic Invocation API .. 11-52
WebServiceProxy Client... 11-56
Known Limitations.. 11-60

A Using Oracle SOAP

Understanding Oracle9iAS SOAP... A-2
Apache SOAP Documentation... A-3
Configuring the SOAP Request Handler Servlet ... A-3
Using Oracle9iAS SOAP Management Utilities and Scripts... A-6

Managing Providers... A-6
Using the Service Manager to Deploy and Undeploy Java Services A-7
Generating Client Proxies from WSDL Documents .. A-8
Generating WSDL Documents from Java Service Implementations A-9

Deploying Oracle9iAS SOAP Services .. A-10
Creating Deployment Descriptors ... A-10
Installing a SOAP Web Service in OC4J .. A-12
Disabling an Installed SOAP Web Service.. A-12
Installing a SOAP Web Service in an OC4J Cluster... A-12
ix

Using Oracle9iAS SOAP Handlers... A-13
Request Handlers... A-13
Response Handlers .. A-13
Error Handlers ... A-13
Configuring Handlers ... A-13

Using Oracle9iAS SOAP Audit Logging... A-14
Audit Logging Information.. A-15

Audit Logging Output... A-15
Auditable Events.. A-15

Audit Logging Filters... A-16
Configuring the Audit Logger ... A-18

Using Oracle9iAS SOAP Pluggable Configuration Managers ... A-20
Working With Oracle9iAS SOAP Transport Security... A-21

Apache Listener and Servlet Engine Configuration for SSL ... A-25
Using JSSE with Oracle9iAS SOAP Client ... A-25

Using Oracle9iAS SOAP Sample Services.. A-28
The Xmethods Sample .. A-28
The AddressBook Sample... A-28
The StockQuote Sample .. A-28
The Company Sample ... A-29
The Provider Sample ... A-29
The AddressBook2 Sample... A-29
The Messaging Sample ... A-29
The Mime Sample .. A-29

Using the Oracle9iAS SOAP EJB Provider ... A-29
Stateless Session EJB Provider ... A-29
Stateful Session EJB Provider in Apache SOAP .. A-30
Stateful Session EJB Provider in Oracle9iAS SOAP.. A-30
Entity EJB Provider in Oracle9iAS SOAP... A-30
 Deployment and Use of the Oracle9iAS SOAP EJB Provider .. A-31
Current Known EJB Provider Limitations ... A-32

Using PL/SQL Stored Procedures With the SP Provider.. A-32
SP Provider Supported Functionality ... A-32
SP Provider Unsupported Functionality.. A-33
SP Provider Supported Simple PL/SQL Types... A-33
x

Using Object Types... A-34
Deploying a Stored Procedure Provider ... A-34
Translating PL/SQL Stored Procedures into Java... A-34
Deploying a Stored Procedure Service .. A-35
Invoking a SOAP Service that is a Stored Procedure .. A-36

SOAP Troubleshooting and Limitations.. A-36
Tunneling Using the TcpTunnelGui Command.. A-37
Setting Configuration Options for Debugging... A-37
Using DMS to Display Runtime Information... A-38
SOAP Limitations for Java Type Prcedence with Overloaded Methods A-38

Oracle9iAS SOAP Differences From Apache SOAP ... A-39
Service Installation Differences .. A-39
Optional Provider Enhancements .. A-39
Oracle Transport libraries.. A-40
Modifications to Apache EJB Provider.. A-40
Stored Procedure Provider.. A-40
Utility Enhancements... A-40
Modifications to Sample Code.. A-40
Handling the mustUnderstand Attribute in the SOAP Header .. A-40

Setting the mustUnderstand Check.. A-41
How the mustUnderstand Check Works... A-41
Differences Between Apache SOAP and Oracle SOAP for mustUnderstand A-41

Glossary

Index
xi

xii

Send Us Your Comments

Oracle9 i Application Server Web Services Developer’s Guide, Release 2 (9.0.3)

Part No. B10004-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com

■ FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager

■ Postal service:

Oracle Corporation

Oracle9i Application Server Web Services Developer’s Guide

500 Oracle Parkway M/S 2op3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This guide describes Oracle9iAS Web Services.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
xv

Intended Audience
Oracle9i Application Server Web Services Developer’s Guide is intended for application

programmers, system administrators, and other users who perform the following

tasks:

■ Configure software installed on the Oracle9i Application Server

■ Create programs that implement Web Services

■ Create Java programs that run as Web Services clients

To use this document, you need a working knowledge of Java programming

language fundamentals.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xvi

Organization
This document contains:

Chapter 1, "Web Services Overview"
This chapter provides an overview of Web Services.

Chapter 2, "Oracle9iAS Web Services"
This chapter describes the Oracle9iAS Web Services features, architecture, and

implementation.

Chapter 3, "Developing and Deploying Java Class Web Services"
This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that are implemented as Java classes.

Chapter 4, "Developing and Deploying EJB Web Services"
This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that are implemented as stateless session Enterprise Java Beans (EJBs).

Chapter 5, "Developing and Deploying Stored Procedure Web Services"
This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services implemented as stateless PL/SQL Stored Procedures or Functions.

Chapter 6, "Developing and Deploying Document Style Web Services"
This chapter describes the procedures you use to write and deploy Document Style

Oracle9iAS Web Services implemented as Java classes.

Chapter 7, "Developing and Deploying JMS Web Services"
This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that expose JMS destinations as Web Services.

Chapter 8, "Building Clients that Use Web Services"
This chapter describes the steps required to build a client application that uses

Oracle9iAS Web Services.

Chapter 9, "Web Services Assembly Tool"
This chapter describes the Oracle9iAS Web Services assembly tool,

WebServicesAssembler , that assists in assembling Oracle9iAS Web Services. The
xvii

Web Services assembly tool takes a configuration file which describes the location of

the Java classes or J2EE/EJB Jar files and produces a J2EE EAR file that can be

deployed under Oracle9iAS Web Services.

Chapter 10, "Discovering and Publishing Web Services"
This chapter provides a description of the Universal Discovery Description and

Integration (UDDI)-compliant Web services registry in which business Web Service

providers in an enterprise environment can publish and describe their Web

Services.

Chapter 11, "Consuming Web Services in J2EE Applications"
This chapter describes how to consume Web Services in J2EE applications.

Appendix A, "Using Oracle SOAP"
This appendix describes Oracle SOAP and covers the differences between Apache

SOAP and Oracle SOAP.

Glossary
The glossary contains the Web Services glossary terms and descriptions.

Related Documentation
For more information, see these Oracle resources:

■ Overview Guide in the Oracle9i Application Server Documentation Library.

■ Oracle9iAS Containers for J2EE User’s Guide in the Oracle9iAS Documentation

Library.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.
xviii

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm
For additional information, see:

■ http://www.w3.org/TR/SOAP/ for information on Simple Object Access

Protocol (SOAP) 1.1 specification

■ http://www.uddi.org for information on Universal Description, Discovery

and Integration specifications.

■ http://www.w3.org/TR/wsdl for information on the Web Services

Description Language (WSDL) format.

■ Java 2 Platform Enterprise Edition Specification, v1.3 at

http://java.sun.com/j2ee/docs.html

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems
xix

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.
xx

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name
xxi

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating

systems and provides examples of their use.

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

Convention Meaning Example
xxii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener

Convention Meaning Example
xxiii

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxiv

Web Services Ove
1

Web Services Overview

This chapter provides an overview of Web Services. Chapter 2, "Oracle9iAS Web

Services" describes the Oracle9iAS Web Services features, architecture, and

implementation.

This chapter covers the following topics:

■ What Are Web Services?

■ Overview of Web Services Standards

■ Scenario: Web Services with a Currency Converter Application
rview 1-1

What Are Web Services?
What Are Web Services?
Web Services consist of a set of messaging protocols, programming standards, and

network registration and discovery facilities that expose business functions to

authorized parties over the Internet from any web-connected device.

This section covers the following topics:

■ Understanding Web Services

■ Benefits of Web Services

■ About the Web Services e-Business Transformation

Understanding Web Services
A Web Service is a discrete business process that does the following:

■ Exposes and describes itself – A Web Service defines its functionality and

attributes so that other applications can understand it. A Web Service makes

this functionality available to other applications.

■ Allows other services to locate it on the web – A Web Service can be registered

in an electronic Yellow Pages, so that applications can easily locate it.

■ Can be invoked – Once a Web Service has been located and examined, the

remote application can invoke the service using an Internet standard protocol.

■ Returns a response – When a Web Service is invoked, the results are passed

back to the requesting application over the same Internet standard protocol that

is used to invoke the service.

Web Services provide a standards based infrastructure through which any business

can do the following:

■ Offer appropriate internal business processes as value-added services that can

be used by other organizations.

■ Integrate its internal business processes and dynamically link them with those

of its business partners.
1-2 Oracle9i Application Server Web Services Developer’s Guide

What Are Web Services?
Benefits of Web Services
The benefits for enterprises seeking to develop and use Web Services to streamline

their business processes include the following:

■ Support for open Internet standards. Oracle supports SOAP, WSDL, and UDDI

as the primary standards to develop Web Services. Web Services developed

with Oracle's products can inter-operate with those developed to Microsoft's

.NET architecture.

■ Simple and productive development facilities. Oracle provides developers with

an easy-to-use and productive environment for developing Web Services using

a programming model that is identical to that for J2EE applications.

■ Mission critical deployment facilities. Oracle provides a mission-critical

platform to deploy Web Services by unifying the Web Services and J2EE

runtime infrastructure. Oracle9iAS Web Services provide optimizations to

speed up Web Services responses, to scale Web Services on single CPUs or

multiple CPUs, and to provide high availability through fault tolerant design

and clustering.

About the Web Services e-Business Transformation
The move to transform businesses to e-Businesses has driven organizations around

the world to begin to use the Internet to manage corporate business processes.

Despite this transformation, business on the Internet still functions as a set of local

nodes, or Web sites, with point-to-point communications between them. As more

business moves online, the Internet should no longer be used in such a static

manner, but rather should be used as a universal business network through which

services can flow freely, and over which applications can interact and negotiate

among themselves.

To enable this transformation, the Internet needs to support a standards-based

infrastructure that enables companies and their enterprise applications to

communicate with other companies and their applications more efficiently. These

standards should allow discrete business processes to expose and describe

themselves on the Internet, allow other services to locate them, to invoke them once

they have been located, and to provide a predictable response.

See Also: "Overview of Web Services Standards" on page 1-5
Web Services Overview 1-3

What Are Web Services?
Web Services drive this transformation by promising a fundamental change in the

way businesses function and enterprise applications are developed and deployed.

 This e-Business transformation is occurring in the following two areas:

■ Business Transformation with Web Services

■ Technology Transformation with Web Services

About Business Transformation with Web Services
Web Services enables the next-generation of e-business, a customer-centric, agile

enterprise that does the following:

■ Expands Markets - Offers business processes to existing and new customers as

services over the Internet, opening new global channels and capturing new

revenue opportunities.

■ Improves Efficiencies - Streamlines business processes across the entire

enterprise and with business partners, taking action in real-time with

up-to-date information.

■ Reaches Suppliers and Partners - Creates and maintains pre-defined,

systematic, contractually negotiated relationships and dynamic, spot

partnerships with business partners who are tightly linked within supply

chains.

About Technology Transformation with Web Services
Web Services enables enterprise applications with the following technology

transformations:

■ Development and Deployment – Web Services can be developed and deployed

quickly and productively.

■ Locating Services – Web Services allow applications to be aggregated and

discovered within Internet portals, enterprise portals, or service registries which

serve as Internet Yellow Pages.

■ Integrating Services – Web Services allow applications to locate and

electronically communicate with other applications within an enterprise and

outside the enterprise boundaries.

■ Inter-Operating Services – Web Services allow applications to inter-operate with

applications that are developed using different programming languages and

following different component paradigms.
1-4 Oracle9i Application Server Web Services Developer’s Guide

Overview of Web Services Standards
Overview of Web Services Standards
This section describes the Internet standards that comprise Web Services, including:

■ Simple Object Access Protocol (SOAP)

■ Web Services Description Language (WSDL)

■ Universal Description, Discovery, and Integration (UDDI)

Figure 1–1 shows a conceptual architecture for Web Services using these standards.

Figure 1–1 Web Services Standards

Client Application
(Web Service)

Interface (WSDL)

Web Service

J2EE, Java Class,
PL / SQL Stored
Procedure or
Function

Application Program
(Service Implementation)

Web
Services
Directory

(UDDI)

3

Internet

Invoke
(SOAP)

2 Find

1 Publish

Interface
WSDL

Application
Program
(Service

Implementation)
Web Services Overview 1-5

Overview of Web Services Standards
Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol

for exchanging information in a decentralized, distributed environment. SOAP

supports different styles of information exchange, including: Remote Procedure Call

style (RPC) and Message-oriented exchange. RPC style information exchange

allows for request-response processing, where an endpoint receives a procedure

oriented message and replies with a correlated response message.

Message-oriented information exchange supports organizations and applications

that need to exchange business or other types of documents where a message is sent

but the sender may not expect or wait for an immediate response. Message-oriented

information exchange is also called Document style exchange.

SOAP has the following features:

■ Protocol independence

■ Language independence

■ Platform and operating system independence

■ Support for SOAP XML messages incorporating attachments (using the

multipart MIME structure)

Web Services Description Language (WSDL)
The Web Services Description Language (WSDL) is an XML format for describing

network services containing RPC-oriented and message-oriented information.

Programmers or automated development tools can create WSDL files to describe a

service and can make the description available over the Internet. Client-side

programmers and development tools can use published WSDL descriptions to

obtain information about available Web Services and to build and create proxies or

program templates that access available services.

See Also: http://www.w3.org/TR/SOAP/ for information on

Simple Object Access Protocol (SOAP) 1.1 specification

See Also: http://www.w3.org/TR/wsdl for information on

the Web Services Description Language (WSDL) format.
1-6 Oracle9i Application Server Web Services Developer’s Guide

Scenario: Web Services with a Currency Converter Application
Universal Description, Discovery, and Integration (UDDI)
The Universal Description, Discovery, and Integration (UDDI) specification is an

online electronic registry that serves as electronic Yellow Pages, providing an

information structure where various business entities register themselves and the

services they offer through their WSDL definitions.

There are two types of UDDI registries, public UDDI registries that serve as

aggregation points for a variety of businesses to publish their services, and private

UDDI registries that serve a similar role within organizations.

Scenario: Web Services with a Currency Converter Application
To understand how Web Services work, consider a currency translation service that

provides businesses with up-to-the-instant currency conversion information.

Figure 1–2 shows the characteristics of such a Web Service.

A business has a financial management application which needs to check the

conversion rate from one currency to another currency before completing a

transaction. The financial management application sends a request to the currency

conversion Web Service, it is processed, and a response is returned in real-time.

Using Web Services, there are two roles to consider, the role of the publisher that

develops the currency conversion Web Service, and the role of the caller, the

financial management application that uses the Web Service.

See Also: http://www.uddi.org for information on Universal

Description, Discovery and Integration specifications.
Web Services Overview 1-7

Scenario: Web Services with a Currency Converter Application
Figure 1–2 Currency Conversion Web Service

Understanding the Publisher’s Role
The publisher develops the currency conversion Web Service; the publisher’s role

includes the following:

■ Develop the application - The currency conversion company develops a

currency conversion application. The currency conversion application is

developed in Java/J2EE or any other programming language.

■ Publish the application interfaces - The currency conversion application has a

set of formalized interfaces. These interfaces are published in WSDL.

■ Register with a Web Service registry - The currency conversion company

registers itself as a business entity and publishes its WSDL interface in a UDDI

registry.

Understanding the Caller’s Role
The caller is the financial management application that uses the currency

conversion Web Service; the caller’s role includes the following:

■ Search UDDI Registry - The Web Service caller, the invoking business'

enterprise application, searches the UDDI registry and locates the currency

conversion service.

■ Invoke the Currency Conversion Service - The invoking business invokes the

currency conversion service using the information stored in the UDDI registry.

This includes the URL for the service to locate the currency conversion service,

Business
Needing
Currency

Conversion

Currency
Translation

Web Service
Characteristics
• Request, Response
• Point-to-Point
• RPC Style
• Web Security

Request / Response
1-8 Oracle9i Application Server Web Services Developer’s Guide

Scenario: Web Services with a Currency Converter Application
and the WSDL interface to define the available methods in the currency

conversion service.

■ Communicate the Response - The caller and the Web Service communicate

following a simple request/response pattern.
Web Services Overview 1-9

Scenario: Web Services with a Currency Converter Application
1-10 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS Web Se
2

Oracle9 iAS Web Services

This chapter describes the Oracle9iAS Web Services features, architecture, and

implementation.

This chapter covers the following topics:

■ Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services

■ Oracle9iAS Web Services Features

■ Oracle9iAS Web Services Architecture

■ Understanding WSDL and Client Proxy Stubs for Web Services

■ Web Services Home Page

■ About Universal Description, Discovery, and Integration Registry
rvices 2-1

Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services
Oracle9 iAS OC4J (J2EE) and Oracle SOAP Based Web Services
Oracle9i Application Server (Oracle9iAS) supports two different Web Services

options, a J2EE based Web Services environment built into Oracle9iAS OC4J, and an

Apache SOAP (Oracle SOAP) based Web Services environment.

The chapters in this manual describe the Oracle9iAS OC4J (J2EE) Web Services

environment. This environment makes it easy to develop and deploy services using

J2EE artifacts, and is moving the Oracle Web Services features toward the evolving

Web Services standards included in the next release of J2EE (J2EE 1.4). The J2EE

based Web Services environment includes many development and deployment

features that are integrated with the advanced Oracle9iAS features.

Appendix A, "Using Oracle SOAP" describes the Oracle9iAS support for Apache

SOAP (Oracle SOAP). Oracle9iAS includes support for Apache SOAP because this

implementation was one of the earliest SOAP implementations and it supports

existing Web Services applications.

Oracle9 iAS Web Services Features
Oracle9iAS provides advanced runtime features and comprehensive support for

developing and deploying Web Services. The Oracle9iAS infrastructure includes

support for the following:

■ Developing End-to-End Web Services

■ Deploying and Managing Web Services

■ Using Oracle9i JDeveloper with Web Services

■ Securing Web Services

■ Aggregating Web Services

Note: Oracle recommends using the Oracle9iAS OC4J (J2EE) Web

Services environment for developing Web Services. The Apache

SOAP (Oracle SOAP) implementation is currently in maintenance

mode.
2-2 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS Web Services Features
Developing End-to-End Web Services
Oracle9iAS Web Services provides comprehensive support for developing Web

Services, including:

■ Development Environment – Oracle9iAS Web Services allows application

developers to implement Web Services using J2EE components. In addition,

you can use Java Classes or PL/SQL Stored Procedures to implement Web

Services. Web Services inherit all the runtime and lifecycle management

elements of J2EE Applications.

■ Development Tools and Wizards – Oracle9iAS Web Services Developers can use

the same set of command line utilities to create, package, and deploy Web

Services as other Oracle9iAS Containers for J2EE (OC4J) applications. In

addition Oracle9iAS Web Services provides the Web Service HTML/XML

Streams Processing Wizard that assists developers in creating an EJB whose

methods access and process XML or HTML streams.

■ Automatically Generating WSDL – Oracle9iAS Web Services can generate

WSDL and client-side proxy stubs. This generation occurs when the Web

Service is assembled using the WebServices Assembly tool or alternatively, for a

deployed Web Service, the first time the WSDL or the client-side proxy stubs are

requested (after the first request, the previously generated WSDL or client-side

proxy stubs are sent when requested).

■ Registration, Publishing, and Discovery – Oracle9iAS Web Services provides a

standards-compliant UDDI registry where Web Services can be published and

discovered. The Oracle UDDI registry supports both a private and public UDDI

registry and can also synchronize information with other UDDI nodes.

■ Developer Simplicity – Using Oracle9iAS Web Services, developers do not need

to learn a completely new set of concepts – Web Services are developed,

deployed and managed using the same programming concepts and tools as

with J2EE Applications.

■ Business Logic Reuse – Application developers can transparently publish their

J2EE Applications to new Web Services clients with no change in the

application itself. Their existing business logic developed in J2EE can be

transparently accessed from existing J2EE/EJB clients.

■ Common Runtime Services – Oracle9iAS has a common runtime and brokering

environment for J2EE Applications and Web Services. As a result, Web Services

transparently inherit various services available with the J2EE Container

including Transaction Management, Messaging, Naming, Logging, and Security

Services.
Oracle9iAS Web Services 2-3

Oracle9iAS Web Services Features
Deploying and Managing Web Services
Oracle Enterprise Manager and the Web Services Assembly Tool assist with

deploying and managing Oracle9iAS Web Services. These tools provide the

following support for Web Services:

■ Packaging and Assembly - The Web Services Assembly Tool assists with

assembling Web Services and producing a J2EE .ear file.

■ Deployment – Oracle Enterprise Manager provides a comprehensive set of

facilities to deploy Web Services to Oracle9iAS. Oracle Enterprise Manager

provides a single, consistent Deploy Applications wizard for deploying Web

Services to Oracle9iAS. It accepts a J2EE .ear file, and walks you through a set of

steps to get information about the application to be deployed, and then deploys

the application.

■ Register Web Service - The Deploy Applications wizard is only available when

deploying Web Services. This step provides access to facilities for registering

Web Services in the UDDI Registry.

■ Browse the UDDI Registry - Oracle's UDDI Registry provides the UDDI

standards compliant pre-defined, hierarchical categorization schemes. Oracle

Enterprise Manager can drill-down through these categories and look up

specific Web Services registered in any category.

■ Monitoring and Administration – Once deployed, Oracle Enterprise Manager

provides facilities to de-install a Web Service and also to monitor Web Service

performance, as measured by response-time and throughput, and status, as

measured by up-time, CPU, and memory consumption. Oracle Enterprise

Manager also provides facilities to identify and list all the Web Services

deployed to a specific Oracle9iAS instance.

Using Oracle9 i JDeveloper with Web Services
The Oracle9i JDeveloper IDE supports Oracle9iAS Web Services. Oracle9i
JDeveloper is the industry’s most advanced Java and XML IDE and provides

unparalleled productivity and end-to-end J2EE and integrated Web Services

standards compliance.
2-4 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS Web Services Features
JDeveloper supports Oracle9iAS Web Services with the following features:

■ Allows developers to create Java stubs from Web Services WSDL descriptions to

programmatically use existing Web Services.

■ Allows developers to create a new Web Service from Java or EJB classes,

automatically producing the required deployment descriptor, web.xml, and

WSDL file for you.

■ Provides schema-driven WSDL file editing.

■ Offers significant J2EE deployment support for Web Services J2EE .ear files,

with automatic deployment to OC4J.

Securing Web Services
Oracle Enterprise Manager secures Oracle9iAS Web Services in the same way that it

secures J2EE Servlets running under OC4J. This provides a comprehensive set of

security facilities, including:

■ Complete, standards-based security architecture for encryption, authentication,

and authorization of Web Services.

■ Single Sign-on to enable users to access several Web Services with a single

password.

■ Single Point of administration to enable users to centrally manage the security

for Web Services.

Aggregating Web Services
Oracle9iAS Portal facility provides the ability to aggregate Oracle9iAS Web Services

within an organization into a Portal. Additionally, portlets in the Oracle9iAS Portal

framework can be published as Web Services.
Oracle9iAS Web Services 2-5

Oracle9iAS Web Services Architecture
Oracle9 iAS Web Services Architecture
Oracle9iAS Containers for J2EE (OC4J) provides the foundation for building

applications as components and supports Oracle9iAS Web Services. Oracle9iAS

Web Services supports both RPC and Document Style web services.

Oracle9iAS Web Services supports the following RPC Web Services:

■ Java Classes

■ Stateless Session Enterprise Java Beans (EJBs)

■ Stateless PL/SQL Stored Procedures or Functions

Oracle9iAS Web Services supports the following Document Style web services:

■ Java Class Document Style Web Services

■ JMS Document Style Web Services

For each implementation type, Oracle9iAS Web Services uses a different Servlet that

conforms to J2EE standards to provide an entry point to a Web Service

implementation. Figure 2–1 shows the Web Services runtime architecture, including

the Servlet entry points.

The Oracle9iAS Web Services runtime architecture discussion includes the

following:

■ About Servlet Entry Points for Web Services

■ What Are the Packaging and Deployment Options for Web Services

■ About Server Skeleton Code Generation for Web Services

See Also: "Simple Object Access Protocol (SOAP)" on page 1-6 for

information on RPC Style and Document Style Web Services.
2-6 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS Web Services Architecture
Figure 2–1 Web Services Runtime Architecture (RPC and Document Style with Servlet Entry Points)

9iAS

Client
Browser or
Fat Client

Encode / Decode

SOAP Binding

XML Document

OC4J

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
Java
Class

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateful
Java
Class

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
Session
EJB

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
PL / SQL

Servlet Entry Point Stateless
Java
Class
(Document
Style)

Servlet Entry Point

Encode / Decode

Stateful
Java
Class
(Document
Style)

Servlet Entry Point

Encode / Decode

JMS Java
(Document
Style)

Apache

Encode / Decode

SOAP Binding

SOAP Binding

SOAP Binding
Oracle9iAS Web Services 2-7

Oracle9iAS Web Services Architecture
About Servlet Entry Points for Web Services
To use Oracle9iAS Web Services, you need to deploy a J2EE .ear file to Oracle9iAS.

The J2EE .ear file contains a Web Services Servlet configuration and includes an

implementation of the Web Service. Oracle9iAS Web Services supplies the Servlet

classes, one for each supported implementation type. At runtime, Oracle9iAS uses

the Servlet classes to access the user supplied Web Service implementation.

The Oracle9iAS Web Services Servlet classes support the following Web Services

implementation types:

■ Java Class (Stateless) - The object implementing the Web Service is any arbitrary

Java class. The Web Service is stateless.

■ Java Class (Stateful) -The object implementing the Web Service is any arbitrary

Java class. The Web Service is considered stateful. A Servlet HttpSession
maintains the object state between requests from the same client.

■ Stateless Session EJBs - Stateless Session EJBs can be exposed as Web Services.

The Web Service is considered to be stateless.

■ PL/SQL Stored Procedure or Function - The object implementing the Web

Service is a Java class that accesses the PL/SQL stored procedure or function.

The Web Service is considered to be stateless. The Oracle JPublisher tool

generates the Java access class for the PL/SQL stored procedure or function.

■ Java Class Document Style Web Service (Stateless) - The object implementing

the Web Service is a Java class using a supported method signature. The Web

Service is stateless.

■ Java Class Document Style Web Service (Stateful) -The object implementing the

Web Service is a Java class using a supported method signature. The Web

Service is considered stateful. A Servlet HttpSession maintains the object

state between requests from the same client.

■ Java JMS Web Service - Supports sending and receiving messages to or from

JMS destinations. Using the JMS Web Service you can include an MDB to

handle or generate messages.

When a Web Service is deployed, a unique instance of the Servlet class manages the

Web Service. The Servlet class is implemented as part of Oracle9iAS Web Services

runtime support. To make Web Services accessible, you deploy the Web Service

implementation with the corresponding Web Services Servlet.
2-8 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS Web Services Architecture
RPC Style Web Service implementations under Oracle9iAS Web Services that take

values as parameters or that return values to a client need to restrict the types

passed. This restriction allows the types passed to be converted between XML and

Java objects (and between Java objects and XML). Table 2–1 lists the supported

types for passing to or from Oracle9iAS Web Services.

Document Style Web Service implementations under Oracle9iAS Web Services

restrict the signature of the Java methods that implement the Web Service. Only

org.w3c.dom.Element can be passed to or sent from these Web Services.

Note: Using Oracle9iAS SOAP, based on Apache SOAP 2.2, there

is only a single instance of a single Servlet entry point for all the

Web Services in the entire system. The Oracle9iAS Web Services

architecture differs; under Oracle9iAS Web Services, a unique

Servlet instance supports each Web Service.

Table 2–1 Web Services Supported Data Types (for RPC Parameters and Return
Values)

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table
Oracle9iAS Web Services 2-9

Oracle9iAS Web Services Architecture
What Are the Packaging and Deployment Options for Web Services
Oracle9iAS Web Services are accessed as Servlets, thus, Web Services need to be

assembled. The WebServicesAssembler tool prepares J2EE .ear files for Web

Services by configuring a web.xml file that is a component of a J2EE .war file, and

including the required resources and the implementation and support classes.

To build a Web Service with the assembly tool, you can supple a Jar file, .war file,

ebj.jar, or .ear file that includes your Web Service implementation. The assembly

tool then build the Web Service using configuration information specified in its

XML configuration file.

About Server Skeleton Code Generation for Web Services
The first time Oracle9iAS Web Services receives a request for a service, the Servlet

entry point automatically does the following (this discussion does not apply for JMS

Web Services, which are handled differently):

■ Validates the class loading. All the classes that are required for the Web Service

implementation must conform to standard J2EE class loading norms.

■ Validates the data types. All the Java classes or EJBs must conform to the

restrictions on supported parameter and return types as shown in Table 2–1.

■ Generates server skeleton code. The server skeleton code is only generated the

first time the Web Service is accessed or when the ear file is redeployed (when

an application is redeployed, the server skeleton code and other Web Services

support files are regenerated). The generated code is stored in the temporary

directory associated with the Servlet context. The server skeleton code controls

the lifecycle of the EJB (for Stateless Session EJB implementations), handles the

marshaling of the parameters and return types (for SOAP RPC based Web

Services), and dispatches to the actual Java class or EJB methods that implement

the service.

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

■ Chapter 6, "Developing and Deploying Document Style Web Services"

■ Chapter 7, "Developing and Deploying JMS Web Services"
2-10 Oracle9i Application Server Web Services Developer’s Guide

Understanding WSDL and Client Proxy Stubs for Web Services
After the server skeleton class is generated, when subsequent requests for a

service are received, the server skeleton directly handles marshalling and then

invokes the method that implements the service (for Web Services implemented

with PL/SQL stored procedures or functions, the server skeleton invokes the

Java class that accesses the Database containing the PL/SQL stored procedure

or function).

For document style Web Services, the server skeleton passes the DOM element

to the method that implements the service.

Understanding WSDL and Client Proxy Stubs for Web Services
Oracle9iAS Web Services provides a tool to generate a WSDL file that can be

packaged with a Web Service at assembly time, or the WSDL file can be generated

at runtime. This tool also supports generating client-side proxy stubs, given a

WSDL file.

There are several elements to Oracle9iAS Web Services WSDL support. First, RPC

style Web Services are based on interoperable XML data representations and

arbitrary Java objects do not in general map to XML. Oracle9iAS Web Services

supports a set of XML types corresponding to a set of Java types (see Table 2–1 for

the list of supported Java types).

Second, using Oracle9iAS Web Services, an application developer can either

statically generate the WSDL interfaces for a Web Service or the Oracle9iAS Web

Services runtime can generate WSDL and client-side proxy stubs if they are not

provided when a Web Service is deployed. These files can be generated by the

runtime on the server-side and delivered when they are requested by a Web

Services client.

Oracle9iAS also provides a client-side tool to statically generate WSDL given a Java

class or a J2EE application. Likewise, the Web Services Assembly tool can generate

the client-side proxy given a generated WSDL file or a known WSDL endpoint.

See Also:

■ "Generating Client-Side Proxies With WebServicesAssembler"

on page 8-8

■ "Generating WSDL Files and Client Side Proxies" on page 9-5
Oracle9iAS Web Services 2-11

Understanding WSDL and Client Proxy Stubs for Web Services
Overview of a WSDL Based Web Service Client
Using Web Services, a client application sends a SOAP request that invokes a Web

Service and handles the SOAP response from the service. To facilitate client

application development, the Oracle9iAS Web Services runtime can generate WSDL

to describe a Web Service. Using the WSDL, development tools can assist

developers in building applications that invoke Web Services.

Overview of a Client-Side Proxy Stubs Based Web Service Client
Using Web Services, a client application sends a SOAP request that invokes a Web

Service and handles the SOAP response from the service. To facilitate client-side

application development, Oracle9iAS Web Services can generate client-side proxy

stubs. The client-side proxy stubs hide the details of composing a SOAP request and

decomposing the SOAP response. The generated client-side proxy stubs support a

synchronous invocation model for requests and responses. The generated stubs

make it easier to write a Java client application to make a Web Service (SOAP)

request and handle the response.

See Also:

■ "Using Oracle9i JDeveloper with Web Services" on page 2-4

■ Chapter 8, "Building Clients that Use Web Services"

See Also: Chapter 8, "Building Clients that Use Web Services"
2-12 Oracle9i Application Server Web Services Developer’s Guide

Web Services Home Page
Web Services Home Page
Oracle9iAS Web Services provides a Web Service Home Page for each deployed

Web Service.

A Web Service Home Page provides the following:

■ A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the

Service Description link and save the file.

■ Links to Web Service Test Pages for each supported operation-To test the

available Web Service operations enter the parameter values for the operation, if

any, and select the Invoke button.

■ Links to the Web Service client-side proxy Jar and the client-side proxy source -

To obtain the client-side proxy Jar or the client-side proxy source, select the

appropriate link, Proxy Jar or Proxy Source, and save the file.

Figure 2–2 shows a sample Web Service Home Page.

Figure 2–2 Web Service Home Page
Oracle9iAS Web Services 2-13

About Universal Description, Discovery, and Integration Registry
About Universal Description, Discovery, and Integration Registry
The Universal Description, Discovery, and Integration (UDDI) specification consists

of a four-tier hierarchical XML schema that provides the base information model to

publish, validate, and invoke information about Web Services. The four types of

information that the UDDI XML schema defines are:

■ Business Entity - The top level XML element in a UDDI entry captures the

starting set of information required by partners seeking to locate information

about a business' services including its name, its industry or product category,

its geographic location, and optional categorization and contact information.

This includes support for Yellow Pages taxonomies to search for businesses by

industry, product, or geography.

■ Business Service - The businessService structure groups a series of related Web

Services together so that they can be related to either a business process or a

category of services. An example of a business process could be a

logistics/delivery process which could include several Web Services including

shipping, routing, warehousing, and last-mile delivery services. By organizing

Web Services into groups associated with categories or business processes,

UDDI allows more efficient search and discovery of Web Services.

■ Binding Information - Each businessService has one or more technical Web

Service Descriptions captured in an XML element called a binding template.

The binding template contains the information that is relevant for application

programs that need to invoke or to bind to a specific Web Service. This

information includes the Web Service URL address, and other information

describing hosted services, routing and load balancing facilities.

■ Compliance Information - While the bindingTemplate contains the information

required to invoke a service, it is not always enough to simply know where to

contact a particular Web Service. For instance, to send a business partner's Web

Service a purchase order, the invoking service must not only know the

location/URL for the service, but what format the purchase order should be

sent in, what protocols are appropriate, what security required, and what form

of a response will result after sending the purchase order. Before invoking a

Web Service, it is useful to determine whether the specific service being invoked

complies with a particular behavior or programming interface. Each

bindingTemplate element, therefore, contains an element called a tModel that

contains information which enables a client to determine whether a specific

Web Service is a compliant implementation.
2-14 Oracle9i Application Server Web Services Developer’s Guide

About Universal Description, Discovery, and Integration Registry
Oracle Enterprise Manager Features to Register Web Services
When a Web Service is deployed on Oracle9iAS, you can use Oracle Enterprise

Manager to register the specific Web Service and publish its WSDL to the UDDI

registry and to discover published Web Services.

See Also: Chapter 10, "Discovering and Publishing Web Services"
Oracle9iAS Web Services 2-15

About Universal Description, Discovery, and Integration Registry
2-16 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying Java Class Web Se
3

Developing and Deploying Java Class Web

Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that are implemented as Java classes.

This chapter covers the following topics:

■ Using Oracle9iAS Web Services With Java Classes

■ Writing Java Class Based Web Services

■ Preparing and Deploying Java Class Based Web Services

■ Serializing and Encoding Parameters and Results for Web Services
rvices 3-1

Using Oracle9iAS Web Services With Java Classes
Using Oracle9 iAS Web Services With Java Classes
This chapter shows sample code for writing Web Services implemented with Java

classes and describes the difference between writing stateful and stateless Java Web

Services.

Oracle9iAS supplies Servlets to access the Java classes which implement a Web

Service. The Servlets handle requests generated by a Web Service client, run the

Java method that implements the Web Service and returns results back to Web

Services clients.

Writing Java Class Based Web Services
Writing Java class based Web Services involves building a Java class that includes

one or more methods. When a Web Services client makes a service request,

Oracle9iAS Web Services invokes a Web Services Servlet that runs the method that

implements the service request. There are very few restrictions on what actions Web

Services can perform. At a minimum, Web Services generate some data that is sent

to a client or perform an action as specified by a Web Service request.

This section shows how to write a stateful and a stateless Java Web Service that

returns a string, "Hello World". The stateful service also returns an integer running

count of the number of method calls to the service. This Java Web Service receives a

client request and generates a response that is returned to the Web Service client.

The sample code is supplied with Oracle9iAS Web Services in the directory

$ORACLE_HOME/webservices/demo/basic/java_services on UNIX or in

%ORACLE_HOME%\webservices\demo\basic\java_services on Windows.

See Also:

■ Chapter 2, "Oracle9iAS Web Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web

Services"

■ Chapter 8, "Building Clients that Use Web Services"
3-2 Oracle9i Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
Writing Stateless and Stateful Java Web Services
Oracle9iAS Web Services supports stateful and stateless implementations for Java

classes running as Web Services, as follows:

■ For a stateful Java implementation, Oracle9iAS Web Services uses a single Java

instance to serve the Web Service requests from an individual client.

■ For a stateless Java implementation, Oracle9iAS Web Services creates multiple

instances of the Java class in a pool, any one of which may be used to service a

request. After servicing the request, the object is returned to the pool for use by

a subsequent request.

Building a Sample Java Class Implementation
Developing a Java Web Service consists of the following steps:

■ Defining a Java Class Containing Methods for the Web Service

■ Defining an Interface for Explicit Method Exposure

■ Writing a WSDL File (Optional)

Defining a Java Class Containing Methods for the Web Service
Create a Java Web Service by writing or supplying a Java class with methods that

are deployed as a Web Service. In the sample supplied in the java_services
sample directory, the .ear file, ws_example.ear contains the Web Service source,

class, and configuration files. In the expanded .ear file, the class

StatefulExampleImpl provides the stateful Java service and

StatelessExampleImpl provides the stateless Java service.

Note: It is the job of the Web Services developer to make the

design decision to implement a stateful or stateless Web Service.

When packaging Web Services, stateless and stateful Web Services

are handled slightly differently. This chapter describes these

differences in the section, "Preparing and Deploying Java Class

Based Web Services" on page 3-9.
Developing and Deploying Java Class Web Services 3-3

Writing Java Class Based Web Services
When writing a Java Web Service, if you want to place the Java service in a package,

use the Java package specification to name the package. The first line of

StatefulExampleImpl.java specifies the package name, as follows:

package oracle.j2ee.ws_example;

The stateless sample Web Service is implemented with StatelessExampleImpl ,

a public class. The class defines a public method, helloWorld() . In general, a Java

class for a Web Service defines one or more public methods.

Example 3–1 shows StatelessExampleImpl .

The stateful sample Web Service is implemented with StatefulExampleImpl , a

public class. The class initializes the count and defines two public methods,

count() and helloWorld() .

Example 3–2 shows StatefulExampleImpl .

Example 3–1 Defining A Public Class with Java Methods for a Stateless Web Service

package oracle.j2ee.ws_example;

public class StatelessExampleImpl {
 public StatelessExampleImpl() {
 }
 public String helloWorld(String param) {
 return "Hello World, " + param;
 }
}

Example 3–2 Defining a Public Class with Java Methods for a Stateful Web Service

package oracle.j2ee.ws_example;

public class StatefulExampleImpl {
 int count = 0;
 public StatefulExampleImpl() {
 }
 public int count() {
 return count++;
 }
 public String helloWorld(String param) {
 return "Hello World, " + param;
 }
}

3-4 Oracle9i Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
A Java class implementation for a Web Service must include a public constructor

that takes no arguments. Example 3–1 shows the public constructor

StatelessExampleImpl() and Example 3–2 shows StatefulExampleImpl() .

When an error occurs while running a Web Service implemented as a Java class, the

Java class should throw an exception. When an exception is thrown, the Web

Services Servlet returns a Web Services (SOAP) fault. Use the standard J2EE and

OC4J administration facilities to view the logs of Servlet errors for a Web Service

that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web Service, the

method’s parameters and return values must use supported types, or you need to

use an interface class to limit the methods exposed to those methods using only

supported types. Table 3–1 lists the supported types for parameters and return

values for Java methods that implement Web Services.

Defining an Interface for Explicit Method Exposure
Oracle9iAS Web Services allows you to limit the methods you expose as Web

Services by supplying a public interface. To limit the methods exposed in a Web

Service, include a public interface that lists the method signatures for the methods

that you want to expose. Example 3–3 shows an interface to the method in the class

StatelessExampleImpl . Example 3–4 shows an interface to the methods in the

class StatefulExampleImpl .

Example 3–3 Using a Public Interface to Expose Stateless Web Services Methods

package oracle.j2ee.ws_example;

public interface StatelessExample {
 String helloWorld(String param);
}

Note: See Table 3–1 for the list of supported types for parameters

and return values.
Developing and Deploying Java Class Web Services 3-5

Writing Java Class Based Web Services
Example 3–4 Using a Public Interface to Expose Stateful Web Services Methods

package oracle.j2ee.ws_example;

public interface StatefulExample {
 int count();
 String helloWorld(String param);
}

When an interface class is not included with a Web Service, the Web Services

deployment exposes all public methods defined in the Java class. Using an interface,

for example StatelessExample shown in Example 3–3 or StatefulExample
shown in Example 3–4, exposes only the methods listed in the interface.

Use a Web Services interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a

class.

2. To expand the set of methods that are exposed as Web Services to include

methods within the superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a

class, where the subset contains only the methods that use supported types for

parameters or return values. Table 3–1 lists the supported types for parameters

and return values for Java methods that implement Web Services.

Writing a WSDL File (Optional)
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags

to allow a Web Service developer to generate WSDL files and client-side proxy files.

You can use these tags to control whether the WSDL file and the client-side proxy

are generated. Using these tags you can also specify that the generated WSDL file or

a WSDL file that you write is packaged with the Web Service J2EE .ear.

Note: Using an interface, only the methods with the specified

method signatures are exposed when the Java class is prepared and

deployed as a Web Service.

See Also: "Using Supported Data Types for Java Web Services" on

page 3-7
3-6 Oracle9i Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
A client-side developer either uses the WSDL file that is obtained from a deployed

Web Service, or the client-side proxy that is generated from the WSDL to build an

application that uses the Web Service.

Using Supported Data Types for Java Web Services
Table 3–1 lists the supported data types for parameters and return values for

Oracle9iAS Web Services.

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5

Table 3–1 Web Services Supported Data Types

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: Oracle9iAS Web Services does not support Element[] ,

(arrays of org.w3c.dom.Element).
Developing and Deploying Java Class Web Services 3-7

Writing Java Class Based Web Services
A Bean, for purposes of Web Services, is any Java class which conforms to the

following restrictions:

■ It must have a constructor taking no arguments.

■ It must expose all interesting state through properties.

■ It must not matter what order the accessors for the properties, for example, the

setX or getX methods, are in.

Oracle9iAS Web Services allows Beans to be returned or passed in as arguments to

J2EE Web Service methods, as long as the Bean only consists of property types that

are listed in Table 3–1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side

code should use the generated Bean included with the downloaded client-side

proxy. This is because the generated client-side proxy code translates Simple Object

Access Protocol (SOAP) structures to and from Java Beans by translating SOAP

structure namespaces to and from fully qualified Bean class names. If a Bean with

the specified name does not exist in the specified package, the generated client code

will fail.

However, there is no special requirement for clients using Web Services Description

Language (WSDL) to form calls to Oracle9iAS Web Services, rather than the

client-side proxy. The generated WSDL document describes SOAP structures in a

standard way. Application development environments, such as JDeveloper, which

work directly from WSDL documents can correctly call Oracle9iAS Web Services

with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,

all Java primitive types in the service implementation on the

server-side are mapped to Object types in the proxy code or in the

WSDL. For example, when the Web Service implementation

includes parameters of primitive Java type int , the equivalent

parameter in the proxy is of type java.lang.Integer . This

mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"
3-8 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Preparing and Deploying Java Class Based Web Services
To deploy a Java class as a Web Service you need to assemble a J2EE .ear file that

includes the deployment descriptors for the Oracle9iAS Web Services Servlet and

includes the Java class that supplies the Java implementation. This section describes

how to use the Oracle9iAS Web Services tool, WebServicesAssembler .

WebServicesAssembler takes an XML configuration file that describes the Java

Class Web Service and produces a J2EE .ear file that can be deployed under

Oracle9iAS Web Services.

This section contains the following topics.

■ Creating a Configuration File to Assemble Java Class Web Services

■ Running WebServicesAssembler To Prepare Java Class Web Services

Creating a Configuration File to Assemble Java Class Web Services
The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. This section describes how to create a

configuration file to use with Java Class Web Services.

Create a WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Java Stateless Service Tags

■ Adding Java Stateful Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 3–2 describes the top level WebServicesAssembler configuration file tags.

Add these tags to provide top level information describing the Java Stateless Web

Service or a Java Stateful Web Service. These tags are included within a

<web-service> tag in the configuration file.

Example 3–5 shows a complete config.xml file, including the top level tags.
Developing and Deploying Java Class Web Services 3-9

Preparing and Deploying Java Class Based Web Services
Adding Java Stateless Service Tags
Prepare Java Stateless Web Services using the WebServicesAssembler
<stateless-java-service> tag. This tag is included within a <web-service>
tag in the configuration file. Add this tag to provide information required for

generating a Stateless Java Web Service.

Table 3–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option
name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to include
java resources. This resource is added to the lib directory in the
generated WAR component of the J2EE .ear file.

The path specifies the path to the file to include.

<stateless-java-service>
sub-tags
</stateless-java-service>

Use this tag to add a Java Web Services that defines a stateless service. See
Table 3–3 for a description of valid sub-tags.

<stateful-java-service>
sub-tags
</stateful-java-service>

Use this tag to add a Java Web Services that defines a stateful service. See
Table 3–3 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.
3-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Table 3–3 shows the <stateless-java-service> sub-tags and the

<stateful-java-service> sub-tags. As noted in Table 3–3, some of the

sub-tags listed only apply when using a <stateful-java-service> .

Example 3–5 shows a complete config.xml file, including

<stateless-java-service> .

Adding Java Stateful Service Tags
Prepare Java Stateful Web Services using the WebServicesAssembler
<stateful-java-service> tag. This tag is included within a <web-service>
tag in the configuration file. Add this tag to provide information required for

generating a Stateful Java Web Service.

To support a clustered environment, for stateful Java Web Services with serializable

java classes, the WebServicesAssembler adds a <distributable> tag in the

web.xml of the Web Service’s generated J2EE.ear file.

Table 3–3 shows the <stateful-java-service> sub-tags.

Example 3–5 shows a complete config.xml file, including

<stateful-java-service> .

Note: It is the job of the Web Services developer to make the

design decision to implement a stateful or stateless Web Service.

When packaging Web Services, stateless and stateful Web Services

are handled slightly differently.

Table 3–3 Stateless and Stateful Java Service Sub-Tags

Tag Description

<class-name>
class
</class-name>

Specifies the fully qualified class name for the class that supplies the Web
Service implementation.

This tag is required

<interface-name>
interface
</interface-name>

Specifies the fully qualified name of the interface that tells the Web Service
Servlet generation code which methods should be exposed as Web Services.

This tag is optional

<ejb-resource>
ejb-resource
</ejb-resource>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3–2.

This tag is optional
Developing and Deploying Java Class Web Services 3-11

Preparing and Deploying Java Class Based Web Services
<java-resource>
resource
</java-resource>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3–2.

This tag is optional

<message-style>
rpc
</message-style>

Sets the message style. When defining a Java Web Service, if you include the
<message-style> tag you must specify the value rpc .

Valid Values: doc , rpc

This tag is optional

Default value: rpc (when the <message-style> tag is not supplied)

<scope>
scope
</scope>

Sets the scope of the session for stateful services.

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful-java-service> tag.

This tag is optional

Valid Values: application , session

Default Value: session

<session-timeout>
value
</session-timeout>

Sets the session timeout for a stateful session.

The <session-timeout> tag only applies for stateful services. Use this tag
only within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session in seconds.
The default value for the session timeout for stateful Java sessions where no
session timeout is specified is 60 seconds.

This tag is optional

<uri>
URI
</uri>

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <context> to specify
the Web Service location.

This tag is required

Table 3–3 (Cont.) Stateless and Stateful Java Service Sub-Tags

Tag Description
3-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Example 3–5 Sample WebServicesAssembler Configuration File

<web-service>
 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in
 ./ws_example.ear -->
 <destination-path>./ws_example.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly
 tool can create temporary files. -->
 <temporary-directory>./tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context
 named "/webservices". -->
 <context>/webservices</context>

 <!-- Specifies the web service will be stateless -->
 <stateless-java-service>
 <interface-name>oracle.j2ee.ws_example.StatelessExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatelessExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessTest" within the servlet context. -->
 <uri>/statelessTest</uri>
 <!-- Specifies the location of Java class files are under
 ./src -->
 <java-resource>./src</java-resource>
 </stateless-java-service>

 <stateful-java-service>
 <interface-name>oracle.j2ee.ws_example.StatefulExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatefulExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statefullTest" within the servlet context. -->
 <uri>/statefulTest</uri>
 <!-- Specifies the location of Java class files are under
 ./src -->
 <java-resource>./src</java-resource>
 </stateful-java-service>
</web-service>
Developing and Deploying Java Class Web Services 3-13

Preparing and Deploying Java Class Based Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags

to allow a Web Service developer to generate WSDL files and client-side proxy files.

You can use these tags to control whether the WSDL file and the client-side proxy

are generated. Using these tags you can also specify that the generated WSDL file or

a WSDL file that you supply is packaged with the Web Service J2EE .ear.

A client-side developer can use the WSDL file that is obtained from a deployed Web

Service, or the client-side proxy that is generated from the WSDL to build an

application that uses the Web Service.

Running WebServicesAssembler To Prepare Java Class Web Services
After you create the WebServicesAssembler configuration file, you can generate

a J2EE .ear file for the Web Service. The J2EE .ear file includes the Java Web Service

servlet configuration information, including the file web.xml , and the Java classes

and interfaces that you supply.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:

java -jar WebServicesAssembler.jar -config config_file

Where: config_file is the configuration file that contains the

<stateless-java-service> or the <stateful-java-service> tags.

Deploying Java Class Based Web Services
After creating the J2EE .ear file containing the Java classes and the Web Services

Servlet deployment descriptors you can deploy the Web Service as you would any

standard J2EE application stored in an .ear file (to run under OC4J).

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5

See Also:

■ "Creating a Configuration File to Assemble Java Class Web

Services" on page 3-9

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
3-14 Oracle9i Application Server Web Services Developer’s Guide

Serializing and Encoding Parameters and Results for Web Services
Serializing and Encoding Parameters and Results for Web Services
Parameters and results sent between Web Service clients and a Web Service

implementation go through the following steps:

1. Parameters are serialized and encoded in XML when sent from the Web Service

client.

2. Parameters are deserialized and decoded from XML when the Web Service

receives a request on the server side.

3. Parameters or results are serialized and encoded in XML when a request is

returned from a Web Service to a Web Service client.

4. Parameters or results must be deserialized and decoded from XML when the

Web Service client receives a reply.

Oracle9iAS Web Services supports a prepackaged implementation for handling

these four steps for serialization and encoding, and deserialization and decoding.

The prepackaged mechanism makes the four serialization and encoding steps

transparent both for the Web Services client-side application, and for the Java

service writer that is implementing a Web Service. Using the prepackaged

mechanism, Oracle9iAS Web Services supports the following encoding

mechanisms:

■ Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the server

side Web Services Servlet that calls the Java class implementation handles

serialization and encoding internally for the types supported by Oracle9iAS

Web Services. Table 3–1 lists the supported Web Services parameter and return

value types when using standard SOAP v.1.1 encoding.

■ Literal XML encoding. Using Literal XML encoding, a Web Service client can

pass as a parameter, or a Java service can return as a result, a value that is

encoded as a conforming W3C Document Object Model (DOM)

org.w3c.dom.Element . When an Element passes as a parameter to a Web

Service, the server side Java implementation processes the

org.w3c.dom.Element . For return values sent from a Web Service, the Web

Services client parses or processes the org.w3c.dom.Element .

Note: For parameters to a Web Service or results that the Web

Service generates and returns to Web Services clients, the

Oracle9iAS Web Services implementation supports either the

Standard SOAP encoding or Literal XML encoding but not both, for

any given Web Service (Java method).
Developing and Deploying Java Class Web Services 3-15

Serializing and Encoding Parameters and Results for Web Services
See Also: Chapter 8, "Building Clients that Use Web Services"
3-16 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying EJB Web Se
4

Developing and Deploying EJB Web

Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that are implemented as stateless session Enterprise Java Beans (EJBs).

This chapter covers the following topics:

■ Using Oracle9iAS Web Services With Stateless Session EJBs

■ Writing Stateless Session EJB Web Services

■ Preparing and Deploying Stateless Session EJB Based Web Services
rvices 4-1

Using Oracle9iAS Web Services With Stateless Session EJBs
Using Oracle9 iAS Web Services With Stateless Session EJBs
This chapter shows sample code for writing Web Services implemented with

stateless session EJBs.

Oracle9iAS supplies Servlets to access the EJBs which implement a Web Service. A

Servlets handle requests generated by a Web Service client, locates the EJB home

and remote interfaces, runs the EJB that implements the Web Service, and returns

results back to the Web Service client.

Writing Stateless Session EJB Web Services
Writing EJB based Web Services involves obtaining or building an EJB that

implements a service. The EJB should contain one or more methods that a Web

Services Servlet running under Oracle9iAS invokes when a client makes a Web

Services request. There are very few restrictions on what actions Web Services can

perform. At a minimum, Web Services usually generate data that is sent to a Web

Services client or perform an action as specified by a Web Services method request.

This section shows how to write a simple stateless session EJB Web Service,

HelloService that returns a string, "Hello World", to a client. This EJB Web

Service receives a client request with a single String parameter and generates a

response that it returns to the Web Service client.

The sample code for the complete Web Service is supplied with Oracle9iAS Web

Services installation in the following directory:

$ORACLE_HOME/webservices/demo/basic/stateless_ejb on UNIX

%ORACLE_HOME%\webservices\demo\basic\stateless_ejb on Windows.

Create a stateless session EJB Web Service by writing a standard J2EE stateless

session EJB containing a remote interface, a home interface, and an enterprise bean

class. Oracle9iAS Web Services runs EJBs that are deployed as Oracle9iAS Web

Services in response to a request issued by a Web Service client.

See Also:

■ Chapter 2, "Oracle9iAS Web Services"

■ Chapter 3, "Developing and Deploying Java Class Web

Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web

Services"

■ Chapter 8, "Building Clients that Use Web Services"
4-2 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
Developing a stateless session EJB consists of the following steps:

■ Defining a Stateless Session Remote Interface

■ Defining a Stateless Session Home Interface

■ Defining a Stateless Session EJB Bean

■ Returning Results From EJB Web Services

■ Error Handling for EJB Web Services

■ Serializing and Encoding Parameters and Results for EJB Web Services

■ Using Supported Data Types for Stateless Session EJB Web Services

■ Writing a WSDL File for EJB Web Services (Optional)

Defining a Stateless Session Remote Interface
When looking at the HelloService EJB Web Service, note that the .ear file,

HelloService.ear defines the Web Service and its configuration files. In the

sample directory, the file HelloService.java provides the remote interface for

the HelloService EJB.

Example 4–1 shows the Remote interface for the sample stateless session EJB.

Example 4–1 Stateless Session EJB Remote Interface for Web Service

package demo;

public interface HelloService extends javax.ejb.EJBObject {
java.lang.String hello(java.lang.String phrase) throws java.rmi.RemoteException;
}

Defining a Stateless Session Home Interface
The sample file HelloServiceHome.java provides the home interface for the

HelloService EJB.

Example 4–2 shows the EJBHome interface for the sample stateless session EJB.

See Also: "Preparing and Deploying Stateless Session EJB Based

Web Services" on page 4-8
Developing and Deploying EJB Web Services 4-3

Writing Stateless Session EJB Web Services
Example 4–2 Stateless Session EJB Home Interface for Web Service

package demo;
/**
 * This is a Home interface for the Session Bean
 */
public interface HelloServiceHome extends javax.ejb.EJBHome {

HelloService create() throws javax.ejb.CreateException, java.rmi.RemoteException
;
}

Defining a Stateless Session EJB Bean
The sample file HelloServiceBean.java provides the Bean logic for the

HelloService EJB. When you create a Bean to implement a Web Service, the

parameters and return values must be of supported types. Table 4–1 lists the

supported types for parameters and return values for stateless session EJBs that

implement Web Services.

Example 4–3 shows the source code for the HelloService Bean.

Example 4–3 Stateless Session EJB Bean Class for Web Services

package demo;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;

/**
 * This is a Session Bean Class.
 */
public class HelloServiceBean implements SessionBean {
 private javax.ejb.SessionContext mySessionCtx = null;

public void ejbActivate() throws java.rmi.RemoteException {}
public void ejbCreate() throws javax.ejb.CreateException,
java.rmi.RemoteException {}

public void ejbPassivate() throws java.rmi.RemoteException {}
public void ejbRemove() throws java.rmi.RemoteException {}
public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
4-4 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
}
public String hello(String phrase)
{
 return "HELLO!! You just said :" + phrase;
}
public void setSessionContext(javax.ejb.SessionContext ctx) throws
java.rmi.RemoteException {
 mySessionCtx = ctx;
}
}

Returning Results From EJB Web Services
The hello() method shown in Example 4–3 returns a String . An Oracle9iAS

Web Services server-side Servlet runs the Bean that calls the hello() method when

the Servlet receives a Web Services request from a client. After executing the

hello() method, the Servlet returns a result to the Web Service client.

Example 4–3 shows that the EJB Bean writer only needs to return values of

supported types to create Web Services implemented as stateless session EJBs.

Error Handling for EJB Web Services
When an error occurs while running a Web Service implemented as an EJB, the EJB

should throw an exception. When an exception is thrown, the Web Services Servlet

returns a Web Services (SOAP) fault. Use the standard J2EE and OC4J

administration facilities for logging Servlet errors for a Web Service that uses

stateless session EJBs for its implementation.

Serializing and Encoding Parameters and Results for EJB Web Services
Parameters and results sent between Web Service clients and a Web Service

implementation need to be encoded and serialized. This allows the call and return

values to be passed as XML documents using SOAP.

See Also: "Using Supported Data Types for Stateless Session EJB

Web Services" on page 4-6

See Also: "Serializing and Encoding Parameters and Results for

Web Services" on page 3-15
Developing and Deploying EJB Web Services 4-5

Writing Stateless Session EJB Web Services
Using Supported Data Types for Stateless Session EJB Web Services
Table 4–1 lists the supported data types for parameters and return values for

Oracle9iAS Web Services.

A Bean, for purposes of Web Services, is any Java class which conforms to the

following restrictions:

■ It must have a constructor taking no arguments.

■ It must expose all interesting state through properties.

■ It must not matter what order the accessors for the properties, for example, the

setX or getX methods, are in.

Table 4–1 Web Services Supported Data Types

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: Oracle9iAS Web Services does not support Element[] ,

(arrays of org.w3c.dom.Element).
4-6 Oracle9i Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
Oracle9iAS Web Services allows Beans to be returned or passed in as arguments to

J2EE Web Service methods, as long as the Bean only consists of property types that

are listed in Table 4–1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side

code should use the generated Bean included with the downloaded client-side

proxy. This is because the generated client-side proxy code translates Simple Object

Access Protocol (SOAP) structures to and from Java Beans by translating SOAP

structure namespaces to and from fully qualified Bean class names. If a Bean with

the specified name does not exist in the specified package, the generated client code

will fail.

However, there is no special requirement for clients using Web Services Description

Language (WSDL) to form calls to Oracle9iAS Web Services, rather than the

client-side proxy. The generated WSDL document describes SOAP structures in a

standard way. Application development environments, such as JDeveloper, which

work directly from WSDL documents can correctly call Oracle9iAS Web Services

with Java Beans as parameters.

Writing a WSDL File for EJB Web Services (Optional)
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags

to allow a Web Service developer to generate WSDL files and client-side proxy files.

You can use these tags to control whether the WSDL file and the client-side proxy

are generated. Using these tags you can also specify that the generated WSDL file or

a WSDL file that you write is packaged with the Web Service J2EE .ear.

Note: When Web Service proxy classes and WSDL are generated,

all Java primitive types in the service implementation on the

server-side are mapped to Object types in the proxy code or in the

WSDL. For example, when the Web Service implementation

includes parameters of primitive Java type int , the equivalent

parameter in the proxy is of type java.lang.Integer . This

mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"
Developing and Deploying EJB Web Services 4-7

Preparing and Deploying Stateless Session EJB Based Web Services
A client-side developer either uses the WSDL file that is obtained from a deployed

Web Service, or the client-side proxy that is generated from the WSDL to build an

application that uses the Web Service.

Preparing and Deploying Stateless Session EJB Based Web Services
To deploy a stateless session EJB as a Web Service you need to assemble a J2EE .ear

file that includes the deployment descriptors for the Oracle9iAS Web Services

Servlet and includes the ejb.jar that supplies the Java implementation. This section

describes how to use the Oracle9iAS Web Services tool, WebServicesAssembler .

WebServicesAssembler takes an XML configuration file that describes the

stateless session EJB Web Service and produces a J2EE .ear file that can be deployed

under Oracle9iAS Web Services.

This section contains the following topics.

■ Creating a Configuration File to Assemble Stateless Session EJB Web Services

■ Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

Creating a Configuration File to Assemble Stateless Session EJB Web Services
The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. This section describes how to create a

configuration file to use with stateless session EJB Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Stateless Session EJB Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 4–2 describes the top level WebServicesAssembler configuration file tags.

Add these tags to provide top level information describing the Java Stateless Web

Service or a Java Stateful Web Service. These tags are included within a

<web-service> tag in the configuration file.

Example 4–4 shows a complete config.xml file, including the top level tags.

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5
4-8 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services
Adding Stateless Session EJB Service Tags
Prepare Stateless Session EJB Web Services using the WebServicesAssembler
<stateless-session-ejb-service> tag. This tag is included within a

<web-service> tag in the configuration file. Add this tag to provide information

required for generating a stateless session EJB Web Service.

Table 4–3 shows the <stateless-session-ejb-service> sub-tags.

Example 4–4 shows a complete config.xml file, including

<stateless-session-ejb-service> .

Table 4–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The
dest_path specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to
include Java resources.

The path specifies the path to the file to include.

This tag is optional.

<stateless-session-ejb-service>
sub-tags
</stateless-session-ejb-service>

Use this tag to add a stateless session EJB Web Service. See
Table 4–3 for a description of the valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary
files.

This tag is optional.
Developing and Deploying EJB Web Services 4-9

Preparing and Deploying Stateless Session EJB Based Web Services
Example 4–4 Sample Stateless Session EJB WebServicesAssembler Configuration
File

<web-service>
 <display-name>EJB Web Services Demo</display-name>
 <destination-path>tmp/HelloService.ear</destination-path>
 <temporary-directory>tmp</temporary-directory>
 <context>/sejb_webservices</context>

 <stateless-session-ejb-service>
 <path>tmp/Hello.jar</path>
 <uri>/HelloService</uri>
 <ejb-name>HelloService</ejb-name>
 </stateless-session-ejb-service>
</web-service>

Table 4–3 Stateless Session EJB Web Service Sub-Tags

Tag Description

<ejb-name>
name
</ejb-name>

Specifies the name of the stateless session EJB.

This tag is required

<ejb-resource>
resource
</ejb-resource>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 4–2.

This tag is optional

<path>
path
</path>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 4–2.

This tag is optional

<uri>
URI
</uri>

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <context> to specify
the Web Service location.

This tag is required.
4-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags

to allow a Web Service developer to generate WSDL files and client-side proxy files.

You can use these tags to control whether the WSDL file and the client-side proxy

are generated. Using these tags you can also specify that the generated WSDL file or

a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed

Web Service, or the client-side proxy that is generated from the WSDL to build an

application that uses the Web Service.

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
After you create the WebServicesAssembler configuration file, you can generate

a J2EE .ear file for the Web Service. The J2EE .ear file includes the stateless session

EJB Web Service servlet configuration information.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:

java -jar WebServicesAssembler.jar -config config_file

Where: config_file is the configuration file that contains the

<stateless-session-ejb-service> tag.

Deploying Web Services Implemented as EJBs
After creating the .ear file containing a stateless session EJB, you can deploy the

Web Service as you would any standard J2EE application stored in an .ear file (to

run under OC4J).

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5

See Also:

■ "Creating a Configuration File to Assemble Stateless Session

EJB Web Services" on page 4-8

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
Developing and Deploying EJB Web Services 4-11

Preparing and Deploying Stateless Session EJB Based Web Services
4-12 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying Stored Procedure Web Se
5

Developing and Deploying Stored

Procedure Web Services

This chapter describes how to write and deploy Oracle9iAS Web Services

implemented as stateless PL/SQL Stored Procedures or Functions (Stored
Procedure Web Services). Stored Procedure Web Services enable you to export, as

services running under Oracle9iAS Web Services, PL/SQL procedures and

functions that run on an Oracle database server.

This chapter covers the following topics:

■ Using Oracle9iAS Web Services with Stored Procedures

■ Writing Stored Procedure Web Services

■ Preparing Stored Procedure Web Services

■ Deploying Stored Procedure Web Services

■ Limitations for Stored Procedures Running as Web Services
rvices 5-1

Using Oracle9iAS Web Services with Stored Procedures
Using Oracle9 iAS Web Services with Stored Procedures
This chapter shows sample code for writing Web Services implemented with

stateless PL/SQL stored procedures or functions. The sample is based on a PL/SQL

package representing a company that manages employees.

Oracle9iAS Web Services supplies a Servlet to access Java classes that support

PL/SQL Stored Procedure Web Services. The Servlet handles requests generated by

a Web Service client, runs the Java method that accesses the stored procedure that

implements the Web Service, and returns results back to the Web Service client.

The Oracle database server supports procedures implemented in languages other

than PL/SQL, including Java and C/C++. These stored procedures can be exposed

as Web Services using PL/SQL interfaces.

Writing Stored Procedure Web Services
Writing Stored Procedure Web Services involves creating and installing a PL/SQL

package on an Oracle database server that is available as a datasource to Oracle9iAS

and generating a Java class that includes one or more methods to access the Stored

Procedure.

The code for the sample Stored Procedure Web Service is supplied in the directory

$ORACLE_HOME/webservices/demo/basic/stored_procedure on UNIX or

in %ORACLE_HOME%\webservices\demo\basic\stored_procedure on

Windows.

Create a Stored Procedure Web Service by writing and installing a PL/SQL Stored

Procedure. To write and install a PL/SQL Stored Procedure, you need to use

facilities independent of Oracle9iAS Web Services.

For example, to use the sample COMPANYpackage, first create and load the supplied

package on the database server using the create.sql script. This script, along

with several other required .sql scripts are in the stored_procedure directory.

These scripts create several database tables and the sample COMPANY package.

See Also:

■ Chapter 2, "Oracle9iAS Web Services"

■ Chapter 3, "Developing and Deploying Java Class Web

Services"

■ Chapter 6, "Developing and Deploying Document Style Web

Services"
5-2 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
When the Oracle database server is running on the local system, use the following

command to create the sample PL/SQL package:

sqlplus scott/tiger @create

When the Oracle database server is not the local system, use the following

command and include a connect identifier to create the sample PL/SQL package:

sqlplus scott/tiger@ db_service_name @create

where db_service_name is the net service name for the Oracle database server.

Preparing Stored Procedure Web Services
This section describes how to use the Oracle9iAS Web Services tool

WebServicesAssembler to prepare a J2EE .ear file that supports using a PL/SQL

procedure or function as a Stored Procedure Web Service.

This section contains the following topics:

■ Creating a Configuration File to Assemble Stored Procedure Web Services

■ Running WebServicesAssembler With Stored Procedure Web Services

■ Setting Up Datasources in Oracle9iAS Web Services (OC4J)

See Also:

■ "Limitations for Stored Procedures Running as Web Services" on
page 5-12

■ PL/SQL User’s Guide and Reference in the Oracle Database
Documentation Library

■ Oracle Net Services Administrator’s Guide in the Oracle Documentation
Library
Developing and Deploying Stored Procedure Web Services 5-3

Preparing Stored Procedure Web Services
Creating a Configuration File to Assemble Stored Procedure Web Services
The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. This section describes how to create a

configuration file to use to assemble a Stored Procedure Web Service. The Web

Services assembly tool uses an XML configuration file that describes the Stored

Procedure Web Service and produces a J2EE .ear file that can be deployed under

Oracle9iAS Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Stateless Stored Procedure Java Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 5–1 describes the top level WebServicesAssembler configuration file tags.

Add these tags to provide top level information describing the PL/SQL Stored

Procedure Web Service.

Example 5–1 shows a complete config.xml file, including the top level tags.

Table 5–1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.
5-4 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
Adding Stateless Stored Procedure Java Service Tags
There are two ways to develop Stored Procedure Web Services using the

WebServicesAssembler :

■ Adding Stateless Stored Procedure Java Service Using Jar Generation

■ Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Adding Stateless Stored Procedure Java Service Using Jar Generation

Using a configuration file that includes the <jar-generation> tag specifies

Oracle Database Server connection information that allows the

WebServicesAssembler to run JPublisher to generate the classes to support the

Stored Procedure Web Service. The JPublisher generated classes support accessing

<option
name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to include Java
resources.

The path specifies the path to the file to include.

<stateless-stored-proce
dure-java-service>
sub-tags
</stateless-stored-proc
edure-java-service>

Use this tag to add stateless stored procedure Web Services. See Table 5–2 and
Table 5–4 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Note: Most Stored Procedure Web Service developers use the Jar

generation technique for assembling the Web Service J2EE .ear file.

Only use the pre-generated Jar technique for creating a J2EE .ear

when you have a pre-generated Jar file containing JPublisher

generated classes.

Table 5–1 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying Stored Procedure Web Services 5-5

Preparing Stored Procedure Web Services
the PL/SQL procedure or function and also includes classes for mapping Java types

to PL/SQL types. The WebServicesAssembler packages the generated classes

into a Jar file that is assembled with the Stored Procedure Web Service.

Table 5–2 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a

configuration file that uses Jar generation to create a Stored Procedure Web Service.

The <stateless-stored-procedure-java-service> tag is included within a

<web-service> tag in the configuration file. Add this tag to provide information

required for generating the Stored Procedure Web Service J2EE .ear file.

Table 5–3 describes the sub-tags for <jar-generation> within the

<stateless-stored-procedure-java-service> tag. The

<jar-generation> tags provide information to the WebServicesAssembler so

that it can run JPublisher to generate the Java classes for the Stored Procedure Web

Service. The WebServicesAssembler then uses these classes to generate the Jar

file that provides Java mappings for the stored procedure or function.

Example 5–1 shows a complete config.xml file, including the Stored Procedure

Web Service tags shown in Table 5–2 and Table 5–3.

Table 5–2 Stateless Stored Procedure Sub-Tags (Using Jar Generation)

Tag Description

<database-JNDI-name>
source_JNDI_name
</database-JNDI-name>

This tag specifies the JNDI name of the backend database.

The data-sources.xm l OC4J configuration file describes the database server
source associated with the specified source_JNDI_name .

<jar-generation>
sub-tags
</jar-generation>

Table 5–3 describes the supported sub-tags for <jar-generation> .

Example:

<jar-generation>
 <schema>scott/tiger</schema>
 <db-url>jdbc:oracle:thin:@system1:1521:orcl</db-url>
 <prefix>sp.company</prefix>
 <db-pkg-name>Company</db-pkg-name>
</jar-generation>

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Web Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.
5-6 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
Table 5–3 Stateless Stored Procedure <jar-generation> Sub-Tags

Tag Description

<db-pkg-name>
pkg_name
</db-pkg-name>

Where pkg_name is the name of the PL/SQL package to export.

This is required when <jar-generation> is included.

<db-url>
url_path
</db-url>

Where url_path is the database connect string for the Oracle database server with
the specified package to export. The <schema> and <db-url> are combined to
connect to the database which contains the stored procedures to be exported.

This is required when <jar-generation> is included.

Example:

<db-url>jdbc:oracle:thin:@system1.us.oracle.com:1521:tv1</db-url>

<method-name>
method
</method-name>

Where method is the name of the PL/SQL method to export.

This tag is optional. Including multiple <method> tags is valid. In this case the
specified methods are exported.

Without this tag, all methods within the package are exported. If the specified
method is overloaded, then all variations of the method are exported.

<prefix>
prefix
</prefix>

Where prefix is the Java package prefix for generated classes.

By default, the PL/SQL package is generated into a Java class in the default Java
package.

This tag is optional.

Example:

<prefix>sp.company</prefix>

<schema>
user_name/password
</schema>

This tag includes the Database Server user_name/password:

where:

user_name is the database user name.

password is the database password for the specified user name.

This tag is required when <jar-generation> is included.

Example:

<schema>scott/tiger</schema>
Developing and Deploying Stored Procedure Web Services 5-7

Preparing Stored Procedure Web Services
Example 5–1 Sample WebServicesAssembler Configuration File For Stored
Procedure Using <jar-generation> Tag

<web-service>
 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./spexample.ear -->
 <destination-path>./spexample.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>/tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/webservices". -->
 <context>/webservices</context>
 <!-- Specifies the web service will be stateless -->

 <stateless-stored-procedure-java-service>
 <jar-generation>
 <schema>scott/tiger</schema>
 <db-url>jdbc:oracle:thin:@system1:1521:orcl</db-url>
 <prefix>sp.company</prefix>
 <db-pkg-name>Company</db-pkg-name>
 </jar-generation>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessSP" within the servlet context. -->
 <uri>/statelessSP</uri>
 <database-JNDI-name>/jdbc/OracleDataSource</database-JNDI-name>
 </stateless-stored-procedure-java-service>
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!--force 'true' will write over existing wsdl -->
 <option name="force">true</option>
 <!-- change this to point to your soap servers http listener -->
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>
 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <!-- include-source 'true' will create an additional jar with only the proxy source-->
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>

Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Using a configuration file that specifies the stored procedure <class-name> and

<interface-name> assembly options when a pre-generated Jar file that includes

the required classes to support the Web Service is available. The <class-name>
5-8 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
and <interface-name> tags specified in a configuration file support using a

previously generated Jar file that contains the Java classes that provide a mapping

between the PL/SQL procedure or function and the Web Service.

Table 5–4 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a

configuration file that uses a pre-generated Jar file to create a Stored Procedure Web

Service. The <stateless-stored-procedure-java-service> tag is included

within a <web-service> tag in the configuration file. Add this tag to provide

information required for generating the Stored Procedure Web Service J2EE .ear file.

The <class> and <interface> tags that are added to the

<stateless-stored-procedure-java-service> only when using a

pre-generated Jar file.

Table 5–4 Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description

<class-name>
class
</class-name>

The Stored Procedure Web Services Servlet definition requires a
<param-name> with the value class-name and a corresponding
<param-value> set to the fully qualified name of the Java class that accesses
the PL/SQL Web Service implementation.

You need to use the configuration file <class-name> tag to supply the class
name for this parameter; you can find the class name in the Jar file you provide
that is specified in the top level <option name="source-path"> tag.

<database-JNDI-name>
source_JNDI_name
</database-JNDI-name>

This tag specifies the JNDI name of the backend database.

The data-sources.xm l OC4J configuration file describes the database server
source associated with the specified source_JNDI_name .

<interface-name>
interface
</interface-name>

A Stored Procedure Web Services Servlet definition requires a <param-name>
with the value interface-name , and a corresponding <param-value> set
to the fully qualified name of the Java interface that specifies the methods to
include in the stored procedure Web Service.

The <interface-name> tag provides the name of the interface that tells the
Web Service Servlet generation code which methods should be exposed as Web
Services. You can find the interface name in the Jar file you provide that is
specified in the top level <option name="source-path"> tag.
Developing and Deploying Stored Procedure Web Services 5-9

Preparing Stored Procedure Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler configuration file supports the <wsdl-gen> and

<proxy-gen> tags to allow a Web Service developer to generate Web Service

description WSDL files and client-side proxy files. You can add these tags to control

whether the WSDL file and the client-side proxy are generated. You can also specify

that the WSDL file be assembled with the Stored Procedure Style Web Service J2EE

.ear. A client-side developer can then use the WSDL file that is obtained from the

deployed Web Service to build an application that uses the Web Service.

Running WebServicesAssembler With Stored Procedure Web Services
After you create the WebServicesAssembler configuration file, you can generate

a J2EE .ear file for the Stored Procedure Web Service. The J2EE .ear file includes

Stored Procedure Web Service servlet configuration information, including the file

web.xml , and JPublisher generated classes (the WebServicesAssembler collects

<java-resource>
resource
</java-resource>

This is a backwards compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 5–1.

This tag is optional.

The Stored Procedure pre-generated Jar file should be specified using the
<java-resource> tag. The class specified with the <class-name> tag and
the interface specified with the <interface-name> tag must exist in the
resource specified in the <java-resource> tag(s).

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Web Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.

See Also:

■ "Adding Stateless Stored Procedure Java Service Using Jar

Generation" on page 5-5

■ Oracle9i JPublisher User’s Guide in the Oracle Database

Documentation Library

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5

Table 5–4 (Cont.) Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description
5-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
the JPublisher generated classes into a single Jar file that it includes in the generated

J2EE .ear).

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:

java -jar WebServicesAssembler.jar -config my_pl_service_config

Where: my_pl_service_config is the configuration file that contains the

<stateless-stored-procedure-java-service> tag.

Setting Up Datasources in Oracle9 iAS Web Services (OC4J)
To add Web Services based on PL/SQL Stored Procedures you need to set up data

sources in OC4J by configuring data-sources.xml . Configuring the

data-sources.xml file points OC4J to a database. The database should contain

PL/SQL Stored Procedure packages that implement a Stored Procedure Web

Service.

A single database connection is created when OC4J initializes a Web Services

Servlet instance. The resulting database connection is destroyed when OC4J

removes the Web Services Servlet instance. Each Stored Procedure Web Services

Servlet implements a single threaded model. As a result, any Web Services Servlet

instance can only service a single client’s database connection requests at any given

time. OC4J pools the Web Services Servlet instances and assigns instances to

Oracle9iAS Web Services clients.

Every invocation of a PL/SQL Web Service is implicitly a separate database

transaction. It is not possible to have multiple service method invocations run

within a single database transaction. When such semantics are required, the user

must write a PL/SQL procedure that internally invokes other procedures and

functions, and then expose the new procedure as another method in a Stored

Procedure Web Service (but Oracle9iAS Web Services does not provide explicit

support or tools to do this).

See Also:

■ "Creating a Configuration File to Assemble Stored Procedure

Web Services" on page 5-4

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
Developing and Deploying Stored Procedure Web Services 5-11

Deploying Stored Procedure Web Services
Deploying Stored Procedure Web Services
After creating the J2EE .ear file containing the Stored Procedure Web Service

configuration, class, Jar, and support files you can deploy the Web Service as you

would any standard J2EE application stored in a J2EE .ear file (to run under OC4J).

Limitations for Stored Procedures Running as Web Services
This section covers the following topics:

■ Supported Stored Procedure Features for Web Services

■ Unsupported Stored Procedure Features for Web Services

■ Database Server Release Limitation for Boolean Use in Oracle PLSQL Web

Services

Supported Stored Procedure Features for Web Services
Stored Procedure Web Services support the following PL/SQL features:

1. PL/SQL stored procedures, including both procedures and functions

2. IN parameter modes

3. Packaged procedures only (top-level procedures must be wrapped in a package

before they can be exported as a Web Service)

4. Overloaded procedures. However, if two different PL/SQL types map to the

same Java type during the Java class generation step, there may be errors

reported when the PL/SQL package is exported; these errors may be fixed by

avoiding the overloading in the PL/SQL parameters, or by writing a new

dummy package which does not contain the offending overloaded procedures.

JPublisher may map multiple PL/SQL types into the same Java type. For

example, different PL/SQL number types may all map to Java int. This means

that methods that were considered overloaded in PL/SQL are no longer

overloaded in Java. If this is an issue, the user should wrap their PL/SQL code

in a new PL/SQL package that does not contain these ambiguity problems.

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
5-12 Oracle9i Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services
5. Simple PL/SQL types

The following simple types are supported. NULL values are supported for all of

the simple types listed below, except NATURALN and POSITIVEN.

The JPublisher documentation provides full details on the mappings for these

simple types.

VARCHAR2 (STRING, VARCHAR), LONG, CHAR (CHARACTER), NUMBER

(DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT, NUMERIC,

REAL, SMALLINT), PLS_INTEGER, BINARY_INTEGER (NATURAL,

NATURALN, POSITIVE, POSITIVEN), BOOLEAN

6. User-defined Object Types.

Unsupported Stored Procedure Features for Web Services
Stored Procedure Web Services impose the following limitations on PL/SQL

functions and procedures:

1. Only procedures and functions within a PL/SQL package are exported as Web

Services. Top-level stored procedures must be wrapped inside a package; ADT

methods must be wrapped into package-level methods with a default "this"

reference.

2. OUT and IN OUT parameter modes are not supported.

3. NCHAR and related types are not supported.

4. JPublisher and Oracle9iAS Web Services does not provide comprehensive

support for LOB types.

If your PL/SQL procedures use LOB types as input/output types, then the

generated Java translation may not work in all cases. If you see an error, the

offending procedures will have to be rewritten before the PL/SQL package can

be exported as Stored Procedure Web Services.

5. Due to a bug in JPublisher, many integer numeric types are translated into

java.math.BigDecimal instead of the Java scalar types---the workaround

for this bug is to temporarily use java.math.BigDecimal as the argument

and return types.

See Also:

Oracle9i JPublisher User’s Guide in the Oracle Database

Documentation Library
Developing and Deploying Stored Procedure Web Services 5-13

Limitations for Stored Procedures Running as Web Services
6. JPublisher translates almost all PL/SQL types to Java types. The deployment

tools for Stored Procedure Web Services generate "jdbc" style for builtin,

number, and lob types, and the "oracle" style for user types (in the

"customdatum" compatibility mode). Check the JPublisher documentation for

full details of these styles, and for the caveats associated with them.

Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services
Using a Oracle Database Server of Release 9.2.0.1 or earlier, or with a Database

Server that is not Java-enabled, then you must install the SYS.SQLJUTIL package

into the SYS schema to support PL/SQL BOOLEAN arguments.

The PLSQL script that defines this package is located at the following location on

Unix:

${ORACLE_HOME}/sqlj/lib/sqljutil.sql

On Windows systems, this script is located at the following location:

%ORACLE_HOME%\sqlj\lib\sqljutil.sql

See Also:

Oracle9i JPublisher User’s Guide in the Oracle Database

Documentation Library
5-14 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying Document Style Web Se
6

Developing and Deploying Document Style

Web Services

This chapter describes the procedures you use to write and deploy Oracle9iAS Web

Services that handle document style messages and are implemented as Java classes.

This chapter covers the following topics:

■ Using Document Style Web Services

■ Writing Document Style Web Services

■ Preparing Document Style Web Services

■ Deploying Document Style Web Services
rvices 6-1

Using Document Style Web Services
Using Document Style Web Services
This chapter describes Document Style Web Services that are implemented with

Java classes and describes the difference between writing stateful and stateless

Document Style Java Web Services. The sample code for Document Style Web

Services is supplied with Oracle9iAS Web Services in the stateless and

stateful directories in the directory $ORACLE_
HOME/webservices/demo/basic/java_doc_services on UNIX or in

%ORACLE_HOME%\webservices\demo\basic\java_doc_services on

Windows.

Oracle9iAS supplies Servlets to access the Java classes which you write to

implement a Web Service. The Servlets handle messages generated by Web Services

clients and dispatch them to run the Java methods that implement Document Style

Web Services. After a Web Service is deployed, when a client makes a service

request (uses a service) the Oracle9iAS Web Services runtime, using an

automatically generated Web Services Servlet invokes the methods that you

implement to support the Document Style Web Service.

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web

Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 7, "Developing and Deploying JMS Web Services"

■ Chapter 8, "Building Clients that Use Web Services"
6-2 Oracle9i Application Server Web Services Developer’s Guide

Writing Document Style Web Services
Writing Document Style Web Services
Writing Document Style Java Web Services involves building a Java class that

includes one or more methods using supported method signatures; the java class

includes methods that either handle an incoming message or return an outgoing

message.

This section covers the following topics:

■ Supported Method Signatures for Document Style Web Services

■ Writing Stateless and Stateful Document Style Web Services

■ Writing Classes and Interfaces for Document Style Web Services

Supported Method Signatures for Document Style Web Services
Table 6–1 shows the supported method signatures for Document Style Web

Services. The Oracle9iAS Web Services runtime verifier rejects Document Style Web

Services that do not conform to the method signatures listed in Table 6–1.

The Element input parameter and Element return value shown in the method

signatures in Table 6–1 must conform to the Document Object Model (DOM) as

specified by the W3C (org.w3c.dom.Element) .

Passing Null Values for Document Style Web Services
A null could be passed as an input Element or as the Element that the

Document Style Web Service returns.

Table 6–1 Supported Method Signatures for Document Style Java Web Services

Method Signature Description

public Element op_Name(Element e_name) The method op_Name is a Document Style Web Service
operation implemented as a Java method that takes an
Element e_name as an input parameter and returns an
Element .

public Element get_Name () The method get_Name is a Document Style Web Service
operation implemented as a Java method that takes no
input parameters and returns an Element .

public void set_Name (Element e_name) The method set_Name is a Document Style Web Service
operation implemented as a Java method that takes an
Element e_name as an input parameter and returns
nothing.
Developing and Deploying Document Style Web Services 6-3

Writing Document Style Web Services
Arrays of Elements
Oracle9iAS Web Services does not support Element[] (arrays of

org.w3c.dom.Element).

Writing Stateless and Stateful Document Style Web Services
Oracle9iAS Web Services supports stateful and stateless implementations for

Document Style Java classes running as Web Services. For a stateful Java

implementation, Oracle9iAS Web Services allows a single Java instance to serve the

Web Service requests from an individual client.

For a stateless Java implementation, Oracle9iAS Web Services creates multiple

instances of the Java class in a pool, any one of which may be used to service a

request. After servicing the request, the object is returned to the pool for use by a

subsequent request.

See Also:

■ "Handling Messages for Document Style Web Services" on

page 6-9

■ http://www.w3.org/DOM/ for information on the W3C

Document Object Model (DOM)

Note: It is the job of the Web Services developer to make the

design decision to implement a stateful or stateless Web Service.

When packaging Web Services, stateless and stateful Web Services

are handled slightly differently. This chapter describes these

differences in the section, "Preparing Document Style Web Services"

on page 6-9.

Note: Deploying a stateful Java implementation class as a stateless

Document Style Web Service could yield unpredictable results.
6-4 Oracle9i Application Server Web Services Developer’s Guide

Writing Document Style Web Services
Writing Classes and Interfaces for Document Style Web Services
Developing a Document Style Java Web Service consists of the following steps:

■ Defining Methods in a Document Style Web Service

■ Defining an Interface for Explicit Method Exposure

■ Handling Messages for Document Style Web Services

Defining Methods in a Document Style Web Service
Create a Document Style Web Service by writing or supplying a Java class with

methods that are deployed as a Document Style Web Service. The stateful and

stateless sample directories contain sample stateless and stateful Document

Style Web Services. In the src directories, the file StatefulDocImpl.java
provides the implementation of the sample stateful Java service and

StatelessDocImpl.java provides the implementation of the stateless

Document Style Web Service. These examples use interface classes; the use of

interface classes is optional when implementing Document Style Web Services.

A Java class that implements a Document Style Web Service has the following

limitations:

■ The Java class should define public methods that conform to the method

signatures shown in Table 6–1. If you use an interface, then only the public

methods specified in the interface need to conform to the method signature

restrictions. If you do not include an interface, then all the public methods in

the class must conform to the method signature restrictions shown in Table 6–1.

■ The Java class implementation must include a public constructor that takes no

arguments.

There are very few restrictions on what actions a Document Style Java class based

web service can perform. At a minimum, the service performs some action to

handle an incoming message (Element) or to generate an outgoing message

(Element).

The StatelessDoc Web Service sample is implemented with

StatelessDocImpl , a public class and the interface StatelessDoc . The

StatelessDocImpl class defines two public methods: displayElement() , that

displays the incoming message on the server where the web service runs, and
Developing and Deploying Document Style Web Services 6-5

Writing Document Style Web Services
processElement() , that takes an incoming message and returns a transformed

message to the client. The private method applyXSLtoXML() is a helper method

that transforms the incoming message, as specified in the converter.xsl file.

Example 6–1 shows the method signatures for the StatelessDocImpl class (see

the src directory to view the complete source code for StatelessDocImpl).

Example 6–1 Defining Java Methods for a Stateless Document Style Web Service

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.io.*;

public class StatelessDocImpl implements StatelessDoc

{
 public StatelessDocImpl()
 { }

 // Display the Element that was sent
 public void displayElement(Element e)
 { }

 //method to process the input xml doc
 public Element processElement(Element e)
 { }

 /**
 * This Method Transforms an XML Document into another using the provided
 * Style Sheet: converter.xsl. Note : This Method makes use of XSL
 * Transformation capabilities of Oracle XML Parser Version 2.0
 **/
 private Element applyXSLtoXML(Element e)
 throws Exception
 {}

The StatfulDoc Web Service sample is implemented with StatefulDocImpl , a

public class and the interface StatefulDoc . The StatefulDocImpl class defines

two public methods: startShopping() that initializes the state of the customer

information and makePurchase() , that modifies the state of the customer
6-6 Oracle9i Application Server Web Services Developer’s Guide

Writing Document Style Web Services
information and returns the updated information to the client. The private method

processElement() is a helper method that processes the customer’s XML

element representing a purchase and returns the updated XML element.

Example 6–2 shows the method signatures for the StatefulDoc class (see the src
directory to view the complete source code for StatefulDocImpl).

Example 6–2 Defining Java Methods for a Stateful Document Style Web Service

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

public class StatefulDocImpl implements StatefulDoc
 private Element e ;
 public void startShopping(Element e)
 {
 }
 public Element makePurchase()
 {
 }
 private void processElement(Element e) {
 }

Defining an Interface for Explicit Method Exposure
Oracle9iAS Web Services allows you to limit the methods you expose as Document

Style Web Services by supplying a public interface. To limit the methods exposed in

a Web Service, include a public interface that lists the method signatures for the

methods that you want to expose. Example 6–3 shows an interface for the methods

in the class StatelessDocImpl . Example 6–4 shows an interface for the methods

in the class StatelefulDocImpl .

When an interface is included with a Document Style Web Service, then only the

public methods specified in the interface need to conform to the method signature

restrictions shown in Table 6–1. If you do not include an interface, then all the

public methods in the class must conform to the method signature restrictions.

Using an interface, for example StatelessDoc shown in Example 6–3, only the

methods with the specified method signatures are exposed when the Java class is

prepared and deployed as a Document Style Web Service.
Developing and Deploying Document Style Web Services 6-7

Writing Document Style Web Services
Use a Document Style Web Service interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a

class.

2. To expand the set of methods that are exposed to include methods within the

superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a

class, where the subset contains only the methods that use supported method

signatures. Table 6–1 lists the supported signatures for Java methods that

implement Document Style Web Services.

Example 6–3 Using a Public Interface to Expose Stateless Java Services

import org.w3c.dom.*;

public interface StatelessDoc
{
 //method to display the element
 public void displayElement(Element e) ;

 //method to process the input xml doc
 public Element processElement(Element e) ;
}

Example 6–4 Using a Public Interface to Expose Stateful Java Services

import org.w3c.dom.Element;

// Interface that implements getElement and setElement
public interface StatefulDoc {

 // Set the Element
 public void startShopping(Element e);

 // Retrieve the element that was set
 public Element makePurchase();
}

6-8 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Handling Messages for Document Style Web Services
It is entirely up to the Web Service developer to determine the processing that

occurs for messages associated with a Document Style Web Service.

The message associated with a Document Style Web Service is specified in the

Element parameter or the Element return value associated with the Document

Style Web Service. It is the Document Style Web Service developer’s job to process

or generate messages. The only limitation on Document Style Web Service messages

is that the Element must conform to must conform to the Document Object Model

(DOM) as specified by the W3C (org.w3c.dom.Element) .

A Document Style Web Service implementation or the client that uses a service may

need to supports null values, since a null could be passed as an input Element
or as the Element that is returned.

For example, the following is valid for a Document Style Web Service

implementation:

Element get_op () {
 return null;
}

Preparing Document Style Web Services
This section describes how to use the Oracle9iAS Web Services tool

WebServicesAssembler to prepare a J2EE .ear file for a stateless and stateful

Document Style Web Service implemented as Java classes.

To deploy a Java class that implements a Document Style Web Service, you need to

assemble a J2EE .ear file that includes the deployment descriptors for the

Oracle9iAS Web Services Servlet and the Java classes that supply the Java

implementation. A Web Service implemented with Java classes includes a .war file

that provides configuration information for the Web Services Servlet running under

Oracle9iAS Containers for J2EE (OC4J). This section describes the procedures you

use to create a configuration file to use with the WebServicesAssembler .

This section contains the following topics:

■ Creating a Configuration File to Assemble Document Style Web Services

■ Running WebServicesAssembler With Document Style Web Services
Developing and Deploying Document Style Web Services 6-9

Preparing Document Style Web Services
Creating a Configuration File to Assemble Document Style Web Services
The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. This section describes how to create a

configuration file to use to assemble a Document Style Web Service. The Web

Services assembly tool uses an XML configuration file that describes the Document

Style Web Service. The WebServicesAssembler uses the configuration file to

produce a J2EE .ear file that can be deployed under Oracle9iAS Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Java Service Tags with Document Message Style Specified

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 6–2 describes the top level WebServicesAssembler configuration file tags.

Add these tags to provide top level information describing the Document Style Web

Service.

Example 6–5 shows a complete stateless sample configuration file. Example 6–6

shows a complete stateful sample configuration file. The stateless and

stateful directories in the java_doc_services demo directory contain the

sample config.xml files.

Table 6–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.
6-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Adding Java Service Tags with Document Message Style Specified
The Document Style Web Service developer determines if the service is stateful or

stateless. The configuration file includes different tags depending on the type of the

service. This section covers the tags for both cases, including:

■ Adding Stateful Document Style Java Service Tags

■ Adding Stateless Document Style Java Service Tags

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option
name=source-path">
path
<option>

Includes a specified file in the output .ear file.

The path specifies the path to the file to include.

<stateless-java-service>
sub-tags
</stateless-java-service>

Use this tag to add a Document Style Web Services that defines a stateless
service. See Table 6–3 for a description of valid sub-tags.

<stateful-java-service>
sub-tags
</stateful-java-service>

Use this tag to add a Document Style Web Services that defines a stateful
service. See Table 6–3 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Table 6–2 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying Document Style Web Services 6-11

Preparing Document Style Web Services
Table 6–3 Java Service WebServicesAssembler Configuration Tags - Document Style

Tag Description

<class-name>
class
</class-name>

The Document Style Web Service definition requires at least one
<class-name> tag. The value specifies the name of the Java class that provides
the Document Style Web Service implementation.

This tag is required.

<interface-name>
interface
</interface-name>

A Document Style Web Service configuration file supports the optional
<interface-name> tag. The corresponding interface value supplied specifies
the name of the Java interface that lists the methods to include in the Document
Style Web Service.

This tag is optional.

<java-resource>
resource
</java-resource>

This tag supports adding a Java resource. This specifies the location of the java
resources to include in the Document Style Web Service.

Include multiple <java-resource> tags to include multiple Java resources.

This tag is optional

<message-style>
doc
</message-style>

When defining a Document Style Web Service, you must include the
<message-style> tag and specify the value doc .

Valid Values: doc , rpc

This tag is required for Document Style Web Services.

Default value: rpc (when the <message-style> tag is not supplied)

<scope>

</scope>

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful-java-service> tag.

This tag is optional.

Valid Values: application , session

Default Value: session

<session-timeout>
value
</session-timeout>

This optional parameter only applies for stateful services. Use this tag only
within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session timeout.
session. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional.

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Document Style Web Service. The path specified as the URI is appended to the
<context> to specify the Document Style Web Service location.

This tag is optional.
6-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Adding Stateful Document Style Java Service Tags

Table 6–3 describes the <stateful-java-service> WebServicesAssembler
configuration file tags. Use these tags when creating a configuration file for a

stateful Document Style Web Service.

Example 6–5 shows a complete config.xml file, including the stateful Document

Style Web Service tags.

Adding Stateless Document Style Java Service Tags

Table 6–3 describes the <stateless-java-service> WebServicesAssembler
configuration file tags to use when creating a stateful Document Style Web Service.

The <stateless-java-service> tag is included within a <web-service> tag

in the configuration file. Add this tag to provide information required for

generating a stateless Document Style Web Service J2EE .ear file.

Example 6–6 shows a complete config.xml file, including the stateless Document

Style Web Service tags.

Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler configuration file supports the <wsdl-gen> and

<proxy-gen> tags to allow a Web Service developer to generate Web Service

description WSDL files and client-side proxy files. You can add these tags to control

whether the WSDL file and the client-side proxy are generated. You can also specify

that the WSDL file be assembled with the Document Style Web Service .ear. A

client-side developer can then obtain the WSDL file from the deployed Web Service

and use it to build an application.

Note: Deploying a stateful Java implementation class as a stateless

Document Style Web Service could yield unpredictable results.

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5
Developing and Deploying Document Style Web Services 6-13

Preparing Document Style Web Services
Example 6–5 Sample Stateful Java WebServicesAssembler Configuration File for a
Document Style Web Service

<web-service>
 <display-name>Stateful Java Document Web Service</display-name>
 <description>Stateful Java Document Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./docws.ear -->
 <destination-path>./docws.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>./temp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/docws". -->
 <context>/statefuldocws</context>

 <!-- Specifies the web service will be stateful -->

 <stateful-java-service>
 <interface-name>StatefulDoc</interface-name>
 <class-name>StatefulDocImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->
 <uri>/docservice</uri>
 <!-- Specifies the location of Java class files ./classes -->
 <java-resource>./classes</java-resource>
 <!-- Specifies that it uses document style SOAP messaging -->
 <message-style>doc</message-style>
 </stateful-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

 <!-- generate the proxy -->

 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>
6-14 Oracle9i Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Example 6–6 Sample Stateless Java WebServicesAssembler Configuration File for a
Document Style Web Service

<web-service>
 <display-name>Stateless Java Document Web Service</display-name>
 <description>Stateless Java Document Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./statelessdocws.ear -->
 <destination-path>./statelessdocws.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>./temp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/statelessdocws". -->
 <context>/statelessdocws</context>
 <!-- to package the stylesheet to format input xml -->
 <option name="source-path">converter.xsl</option>

 <!-- Specifies the web service will be stateless -->

 <stateless-java-service>
 <interface-name>StatelessDoc</interface-name>
 <class-name>StatelessDocImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->
 <uri>/docservice</uri>
 <!-- Specifies the location of Java class files ./classes -->
 <java-resource>./classes</java-resource>
 <!-- Specifies that it uses document style SOAP messaging -->
 <message-style>doc</message-style>
 </stateless-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

 <!-- generate the proxy -->
 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>

</web-service>
Developing and Deploying Document Style Web Services 6-15

Deploying Document Style Web Services
Running WebServicesAssembler With Document Style Web Services
After you create the WebServicesAssembler configuration file, you can generate

a J2EE .ear file for the Document Style Web Service. The J2EE EAR file includes

Document Style Web Service servlet configuration information, including the

generated file web.xml , and the implementation classes.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:

java -jar WebServicesAssembler.jar -config my_service_config

Where: my_service_config is the configuration file that contains the

<stateless-java-service> or the <stateful-java-service> tag.

Deploying Document Style Web Services
After creating the .ear file containing Java classes and the Web Services Servlet

deployment descriptors, you can deploy the Web Service as you would any

standard J2EE application stored in an .ear file (to run under OC4J).

See Also:

■ "Creating a Configuration File to Assemble Document Style

Web Services" on page 6-10

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library.
6-16 Oracle9i Application Server Web Services Developer’s Guide

Developing and Deploying JMS Web Se
7

Developing and Deploying JMS Web

Services

This chapter describes the procedures you use to configure, deploy, and build

Oracle9iAS Web Services that expose JMS destinations, including JMS Queues and

JMS Topics as Web Services. This chapter also covers writing a backend JMS

message processor to consume incoming JMS messages and to generate outgoing

JMS messages.

Oracle9iAS Web Services supports asynchronous message facilities with JMS Web

Services.

This chapter covers the following topics:

■ JMS Web Services Overview

■ Writing JMS Web Services and Handling Messages

■ Preparing and Configuring JMS Web Services

■ Deploying JMS Web Services

■ Limitations for JMS Web Services
rvices 7-1

JMS Web Services Overview
JMS Web Services Overview
This section covers the following topics:

■ Using JMS Web Services

■ JMS Web Services Backend Message Processing

Using JMS Web Services
The sample code for JMS Web Services is supplied in the demo1 and demo2
directories in $ORACLE_HOME/webservices/demo/basic/jms_service on

UNIX or in %ORACLE_HOME%\webservices\demo\basic\jms_service on

Windows.

JMS Web Services examples show both Orion JMS and Oracle JMS. In the samples,

demo1 uses Orion JMS and demo2 uses Oracle JMS. Oracle JMS is recommended

for use with JMS Web Services. Orion JMS examples are provided for demonstration

purposes only.

Using JMS Web Services, Oracle9iAS supplies a Servlet that supports two

operations on messages: a send operation and a receive operation. Using these

two operations, if the destination is a JMS Queue, send means enqueue, and

receive means dequeue. If the destination is a topic, send means publish and

receive means subscribe. An individual JMS Web Service can support just the

send operation, just the receive operation, or both operations, as determined by the

service developer.

The JMS Web Service determines how to handle incoming and outgoing messages

for JMS destinations based on the configuration of the JMS Web Service and on the

operation specified by the client-side program that uses the JMS Web Service. The

Oracle9iAS Web Services runtime verifier throws an exception if the operation

supplied by a JMS Web Service client is invalid. For example, if the deployment

operation is send , and the request is receive , an exception is thrown.

The client-side message associated with a JMS Web Service is an XML document

that conforms to the Document Object Model (DOM) as specified by the W3C

(org.w3c.dom.Element) . For a send operation, it is the client-side developer’s

job to deliver a message of the correct form to a JMS Web Service. And likewise, for

a receive operation, the client must handle the message it receives from a JMS Web

Service.

See Also: http://java.sun.com/products/jms/ for information

on JMS
7-2 Oracle9i Application Server Web Services Developer’s Guide

JMS Web Services Overview
JMS Web Services Backend Message Processing
A JMS Web Service consists of configuration information that defines the Web

Service, and, in addition the server-side developer provides code that consumes the

messages that a JMS Web Service client sends, or generates the messages that the

client receives.

This section describes the architecture for processing JMS messages associated with

a JMS Web Service and covers the following topics:

■ Using an MDB for Message Processing

■ Using a JMS Client for Message Processing

Using an MDB for Message Processing
A JMS Web Service either sends messages to a JMS destination or receives messages

from a JMS destination and can use an MDB on the backend for generating and

consuming messages. For example, Figure 7–1 shows an MDB based JMS Web

Service that, from the JMS Web Service client’s view, handles both the message

send and the message receive operations.

Figure 7–1 MDB Based JMS Web Service

OC4J

EJB Container

MDB

JMS Servlet

Send

JMS
Destination 1

JMS
Destination 2

25

34

1

6

Client

Receive HTTP

HTTP
Developing and Deploying JMS Web Services 7-3

JMS Web Services Overview
Figure 7–1 includes an MDB that is configured to listen to a JMS destination. The

MDB based JMS Web Service works with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to

send a message.

2. The JMS Web Service processes the incoming message and directs it to a JMS

destination, JMS Destination 1.

3. The EJB container invokes the MDB listening on JMS Destination 1.

4. After processing the message an MDB produces a new message on JMS

Destination 2. Producing and consuming messages could involve one or more

MDBs. For example, a single MDB could be listing on JMS Destination 1 and the

same MDB could also send the message to JMS Destination 2.

5. (Arrows 5 and 6) A JMS Web Service client performs a receive operation on

the JMS Web Service to receive a message. The JMS Web Service consumes a

message from the JMS destination, processes it, and passes the outgoing

message to the client.

Using a JMS Client for Message Processing
Using a JMS client for message processing, the JMS Web Service does not assemble,

deploy, or run the JMS code on the backend. A separate JMS program that runs

outside of the JMS Web Service, as a standalone JMS client, is responsible for

generating and consuming the JMS messages that are associated with the JMS Web

Service.

For example, Figure 7–2 shows a JMS Web Service that use a server-side JMS client

for message processing.
7-4 Oracle9i Application Server Web Services Developer’s Guide

JMS Web Services Overview
Figure 7–2 JMS Client Based JMS Web Service

The JMS Web service includes only configuration information that supports

handling messages and using JMS destinations. The JMS client based JMS Web

Service works with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to

send a message.

2. The JMS Web Service then processes the incoming message and directs it to JMS

DEST 1.

3. The JMS client processes the incoming message on JMS DEST 1. The incoming

message could be identified using a message listener, or by other means.

4. After processing the incoming message the JMS client may produce a new

message on JMS DEST 2. The message on JMS DEST 2 could be produced by

another JMS client or by the same JMS client.

5. (Arrows 5 and 6) A JMS Web Service client performs a receive operation on

the JMS Web Service to receive a message. The JMS Web Service consumes an

outgoing message from the JMS destination and passes the message to the

client.

OC4J

JMS Servlet

Send

25

3

4

1

6

Client

Receive HTTP

HTTP

AQ

JMS DEST 1

JMS DEST 2

Oracle

JMS
Client
Developing and Deploying JMS Web Services 7-5

Writing JMS Web Services and Handling Messages
Writing JMS Web Services and Handling Messages
Writing a JMS Web Service presents a server-side developer with two tasks:

1. Building the backend message processing program for a JMS Web Service.

2. Preparing and configuring a JMS Web Service.

This section covers the following:

■ Using an MDB for Backend Message Processing

■ Using a JMS Standalone Program for Backend Message Processing

■ Message Processing and Reply Messages

Using an MDB for Backend Message Processing
When a JMS Web Service uses an MDB for generating or consuming messages, the

MDB must be assembled with the JMS Web Service. In this case, the MDB is

packaged as part of the J2EE .ear file that is deployed as a JMS Web Service.

Using an MDB with a JMS Web Service, the server-side developer is responsible for

performing the following steps:

■ Developing the MDB that Processes Incoming Messages

■ Developing the MDB that Generates Outgoing Messages

■ Compiling and Preparing the MDB EJB.jar File

■ Assembling the JMS Web Service With the MDB

■ Defining the Server-Side Resource References

See Also:

■ "Preparing and Configuring JMS Web Services" on page 7-11

■ Chapter 4, "Developing and Deploying EJB Web Services"

Note: A given JMS Web Service may process incoming messages,

generate outgoing messages, or do both.
7-6 Oracle9i Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages
Developing the MDB that Processes Incoming Messages
The MDB that processes incoming messages, generated from a JMS Web Service

send operation, must include an onMessage() method with the following

characteristics:

■ The onMessage() method should be declared as public , but not final or

static

■ The onMessage() method should have a return type of void

■ The onMessage() method should have one argument of type

javax.jms.Message . The JMS Web Service only supports messages of type

ObjectMessage , so the MDB developer should cast the incoming JMS Web

Service message to an ObjectMessage .

■ The message payload is available from the message using the getObject()
method on the incoming JMS message and casting to the Element type.

Example 7–1 shows an MDB method that handles an incoming JMS Message. Also

see MessageBean.java in the demo1 directory for the complete code.

Example 7–1 Sample Incoming onMessage() Method for JMS Web Service

 public void onMessage(Message inMessage) {
 ObjectMessage msg = null;
 Element e;
 try {
 // Message should be of type objectMessage
 if (inMessage instanceof ObjectMessage) {
 // retrieve the object
 msg = (ObjectMessage) inMessage;
 e = (Element)msg.getObject();
 processElement(e);
 this.send2Queue(e);
 } else {
 System.out.println("MessageBean::onMessage() => Message of wrong type: "
 + inMessage.getClass().getName());
 }
 } catch (JMSException ex) {
 ex.printStackTrace();
 mdc.setRollbackOnly();
 } catch (Throwable te) {
 te.printStackTrace();
 }
 }
Developing and Deploying JMS Web Services 7-7

Writing JMS Web Services and Handling Messages
Developing the MDB that Generates Outgoing Messages
An MDB that generates an outgoing message, consumed by a JMS Web Service

receive operation, must include code that produces a message on a JMS

destination with the following characteristics:

■ The message placed on the JMS destination should be of type:

javax.jms.Message .ObjectMessage .

■ Set the payload of the message using the setObject() method on the

outgoing JMS message and casting to the java.io.Serializeable type.

Example 7–2 shows a code fragment that creates an outgoing message of the correct

type. For the complete code for this example, see MessageBean2.java in the

demo2 directory.

Example 7–2 Sample Outgoing Message for JMS Web Service

// Create an Object Message
message = queueSession.createObjectMessage();
// Stuff the result into the ObjectMessage
((ObjectMessage)message).setObject ((java.io.Serializable)ee);
// Send the Message
queueSender.send(message);

Compiling and Preparing the MDB EJB.jar File
After compiling the MDB classes, create an EJB .jar file that includes the MDB and

its required deployment information.

Assembling the JMS Web Service With the MDB
Assemble the MDB’s EJB.jar file with the JMS Web Service .ear file using the

WebServicesAssembler tool and a configuration file containing the top-level tag

<option name=source-path"> that specifies the EJB .jar, and the

<jms-doc-service> that defines the JMS Web Service configuration.

See Also:

■ "Preparing and Configuring JMS Web Services" on page 7-11

■ "Deploying JMS Web Services" on page 7-17
7-8 Oracle9i Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages
Defining the Server-Side Resource References
Define the resource references associated with the JMS destinations that the JMS

Web Service uses:

■ If the MDB uses Orion JMS, define the resource references in the OC4J jms.xml
configuration file.

■ If the MDB uses Oracle JMS, then run the sql files that support access to the

Oracle JMS destinations.

Using a JMS Standalone Program for Backend Message Processing
Using a JMS standalone program on the backend for the JMS Web Service, the

server-side developer is responsible for performing the following steps:

1. Developing the JMS client that defines the JMS destinations, handles incoming

messages, processes them, and produces the outgoing messages. The JMS client

can also perform processing that uses a JMS destination that triggers an MDB.

2. Assembling the JMS Web Service .ear file using the WebServicesAssembler
tool and a configuration file containing the top-level tag <jms-doc-service> .

3. Defining the resource references associated with JMS destinations in the OC4J

jms.xml configuration file. If the JMS destinations are defined in Oracle JMS,

then the developer must run the sql files that initialize the access to the Oracle

JMS destinations.

See Also:

Chapter 3, "AQ Programmatic Environments" in the Oracle9i
Application Developer’s Guide - Advanced Queuing in the Oracle9i

Documentation library

See Also:

■ "Using an MDB for Backend Message Processing" on page 7-6

■ "Deploying JMS Web Services" on page 7-17

Note: When a JMS Web Service uses standalone a JMS client to

consume or generate messages, the standalone client cannot be

assembled with the JMS Web Service.
Developing and Deploying JMS Web Services 7-9

Writing JMS Web Services and Handling Messages
Message Processing and Reply Messages
The JMS Web Service processes an incoming message, a JMS Web Service send
operation message, and places the message on a JMS destination. This section

covers details that a developer needs to know to consume and process the JMS

messages that originate from a JMS Web Service.

The client-side message associated with a JMS Web Service is an XML document

that conforms to the Document Object Model (DOM) as specified by the W3C

(org.w3c.dom.Element) . When a JMS Web Service is sent an Element from a

Web Service client, it creates a JMS ObjectMessage that contains the Element .

The JMS Web Service may set certain header values before it places the message on

a JMS destination. Depending on the values of optional configuration tags specified

when the JMS Web Service is assembled, the JMS Web Service sets the following

JMS Message Headers:

JMSType
JMSReplyTo
JMSExpiration
JMSPriority
JMSDeliveryMode

When the JMS Web Service sets the JMSReplyTo header, it uses either the value

specified with the <reply-to-topic-resource-ref> or the

<reply-to-queue-resource-ref> (only one of these should be configured for

any given JMS Web Service). The value specified with the

<reply-to-connection-factory-resource-ref> tag is set on the message

as a standard string property. The property name is OC4J_REPLY_TO_FACTORY_
NAME.

Example 7–3 provides a code segment that shows where the onMessage() method

gets the ReplyTo information for message generated from a JMS Web Service send
operation:

Example 7–3

 public void onMessage(Message inMessage) {
 // Do some processing
 ObjectMessage msg = null;
 String factoryName;
 Destination dest;
 Element el;
 try {
 // Message should be of type objectMessage
 if (inMessage instanceof ObjectMessage) {
7-10 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
 // retrieve the object
 msg = (ObjectMessage) inMessage;
 el = (Element)msg.getObject();
 System.out.println("MessageBean2::onMessage() => Message received: ");
 ((XMLElement)el).print(System.out);
 processElement(el);
 factoryName = inMessage.getStringProperty("OC4J_REPLY_TO_FACTORY_NAME");
 dest = inMessage.getJMSReplyTo();
.
.
.

Preparing and Configuring JMS Web Services
This section describes how to use the Oracle9iAS Web Services tool

WebServicesAssembler to prepare a J2EE .ear file for a JMS Web Service.

To deploy a JMS Web Service, you need to assemble a J2EE .ear file. The J2EE .ear

file can include the following:

■ The deployment descriptors for the Oracle9iAS Web Services Servlet.

■ If the JMS Web Service also includes an MDB, then the J2EE .ear also includes a

Jar file that supplies the MDB implementation. This component is optional. To

expose JMS Queues or Topics as JMS Web Services, you are not required to

include an MDB Jar file with the JMS Web Service.

This section describes the procedures you use to create a configuration file to use

with the WebServicesAssembler .

This section contains the following topics:

■ Creating a Configuration File to Assemble JMS Web Services

■ Running WebServicesAssembler With JMS Web Services

See Also:

■ "Developing the MDB that Processes Incoming Messages" on

page 7-7

■ "Adding JMS Doc Service Tags" on page 7-13
Developing and Deploying JMS Web Services 7-11

Preparing and Configuring JMS Web Services
Creating a Configuration File to Assemble JMS Web Services
The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. This section describes how to create an XML

configuration file that describes the JMS Web Service to be assembled.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding JMS Doc Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 7–1 describes the top level WebServicesAssembler configuration file tags.

Add these tags to provide top level information describing the JMS Web Service.

Example 7–4 shows a complete JMS Web Service sample configuration file. The

demo1 and demo2 directories in the jms_service directory contain complete

config.xml files for JMS Web Services.

Table 7–1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.
7-12 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
Adding JMS Doc Service Tags
The <jms-doc-service> defines the configuration information for a JMS Web

Service. The JMS Web Service developer determines if the service supports send

operations, receive operations, or both send and receive, based on the value of the

<operation> sub-tag. Some of the configuration file tags are only valid,

depending on the operation selected for the Web Service. Table 7–2 lists all the

supported <jms-doc-service> sub-tags, and includes information on whether

each is valid, based on the operation specified.

<option name="source-path">
path
<option>

Includes a specified file in the output .ear file. For a JMS Web Service,
use this tag to specify the MDB source .jar file if the Web Service
uses an MDB to handle the JMS messages.

The path specifies the path to the file to include.

<jms-doc-service>
sub-tags
</jms-doc-service>

Use this tag to add a JMS Web Service. See Table 7–2 for a description
of the valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Table 7–2 JMS Service WebServicesAssembler Configuration Tags

Tag Description

<connection-factory-
resource-ref>
resource-ref
</connection-factory-
resource-ref>

Specifies the Topic Connection Factory or Queue Connection Factory resource
reference resource-ref for the JMS destination associated with the JMS Web Service.

This tag is required.

<jms-delivery-mode>
delivery-mode
</jms-delivery-mode>

Sets the JMSDeliveryMode message header to the specified delivery-mode value
for the JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

<jms-expiration>
expiration
</jms-expiration>

Sets the JMSExpiration message header to the specified expiration value for the
JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

Table 7–1 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying JMS Web Services 7-13

Preparing and Configuring JMS Web Services
<jms-message-type>
message-type
</jms-message-type>

Sets the JMSType for the message to the specified message-type for the JMS
message that is created with a send operation

This tag is valid when the <operation> value is: send or both

This tag is optional.

<jms-priority>
priority
</jms-priority>

Sets the JMSPriority message header to the specified priority value for the JMS
message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

<operation>
op
</operation>

Specifies the operation op that the JMS Web Service supports.

Using the send and receive operation:

■ If the destination is a JMS Queue, send means enqueue, and receive means
dequeue.

■ If the destination is a topic, send means publish and receive means
subscribe.

The send operation uses the <connection-factory-resource-ref> and the
corresponding JMS destination <queue-resource-ref> or
<topic-resource-ref> to determine the JMS destination for a send operation
on the service.

With the receive operation, when the
<reply-to-connection-factory-resource-ref> tag is not set, then the
receive operation uses the <connection-factory-resource-ref> and the
corresponding JMS destination <queue-resource-ref> or
<topic-resource-ref> . When the
<reply-to-connection-factory-resource-ref> tag is set, then the
<reply-to-*> tags specify the JMS destination for receive operations.

Valid values: send , receive , both

Default value: both

This tag is optional.

<queue-resource-ref>
queue-ref
</queue-resource-ref>

Specifies the resource reference queue-ref of the destination JMS queue.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <queue-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding Queue
connection factory.

Table 7–2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag Description
7-14 Oracle9i Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
<reply-to-connection-
factory-resource-ref>
reply-to-conn-factory-res-ref
</reply-to-connection-
factory-resource-ref>

If the <operation> specified is both , then receive operations use the
<reply-to-connection-factory-resource-ref>. The specified
reply-to-conn-factory-res-ref value specifies the JMS destination connection factory for
receive operations. Also, if the MDB, or any JMS consumer, expects to send
results back, then the name of the destination connection factory to which the
reply message will be sent has to be specified in this parameter.

See Also: "Message Processing and Reply Messages" on page 7-10.

This tag is optional.

<reply-to-queue-
resource-ref>
reply-to-queue-res-ref
</reply-to-queue-
resource-ref>

Specifies the resource reference reply-to-queue-res-ref of the destination JMS queue.

When a <reply-to-queue-resource-ref> is specified, the
<reply-to-connection-factory-resource-ref> must refer to a
corresponding Queue connection factory.

If the <reply-to-connection-factory-resource-ref> tag is set, then
either a <reply-to-topic-resource-ref> or a
<reply-to-queue-resource-ref> must be specified, but not both.

This tag is optional.

<reply-to-topic-
resource-ref>
reply-to-topic-res-ref
</reply-to-topic-
resource-ref>

Specifies the resource reference reply-to-topic-res-ref of the destination JMS Topic.

When a <reply-to-topic-resource-ref> is specified, the
<reply-to-connection-factory-resource-ref> must refer to a
corresponding Topic connection factory.

If the <reply-to-connection-factory-resource-ref> tag is set, then
either a <reply-to-topic-resource-ref> or a
<reply-to-queue-resource-ref> must be specified, but not both.

This tag is optional.

<topic-resource-ref>
topic-ref
</topic-resource-ref>

Specifies the resource reference topic-ref of the destination JMS Topic.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <topic-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding Topic
connection factory.

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the JMS
Web Service. The path specified as the URI is appended to the <context> to
specify the JMS Web Service location.

This tag is optional.

Table 7–2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying JMS Web Services 7-15

Preparing and Configuring JMS Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags

to allow a Web Service developer to generate WSDL files and client-side proxy files.

You can use these tags to control whether the WSDL file and the client-side proxy

are generated. Using these tags you can also specify that the generated WSDL file or

a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed

Web Service, or the client-side proxy that is generated from the WSDL to build an

application that uses the Web Service.

Example 7–4 Sample WebServicesAssembler Configuration File for JMS Web Service

<web-service>
 <display-name>JMS Web Service Example</display-name>
 <description>JMS Web Service Example</description>
 <!-- Name of the destination -->
 <destination-path>./jmsws1.ear</destination-path>
 <temporary-directory>./tmp</temporary-directory>
 <!-- Context root of the application -->
 <context>/jmsws1</context>
 <!-- Path of the jar file with MDBs definied/implemented in it -->
 <option name="source-path">MDB/mdb_service1.jar</option>

 <!-- tags for jms doc service -->
 <jms-doc-service>
 <uri>JmsSend</uri>
 <connection-factory-resource-ref>jms/theQueueConnectionFactory</connection-factory-resource-ref>
 <queue-resource-ref>jms/theQueue</queue-resource-ref>
 <operation>send</operation>x
 </jms-doc-service>

 <jms-doc-service>
 <uri>JmsReceive</uri>
 <connection-factory-resource-ref>jms/logQueueConnectionFactory</connection-factory-resource-ref>
 <queue-resource-ref>jms/logQueue</queue-resource-ref>
 <operation>receive</operation>
 </jms-doc-service>
 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>

See Also: "Generating WSDL Files and Client Side Proxies" on

page 9-5
7-16 Oracle9i Application Server Web Services Developer’s Guide

Deploying JMS Web Services
 <!-- do not package the wsdl -generate it again on teh server-->
 <option name="packageIt">false</option>
 </wsdl-gen>
 <!-- generate the proxy -->
 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>

Running WebServicesAssembler With JMS Web Services
After you create the WebServicesAssembler configuration file, you can generate

a J2EE .ear file for the JMS Web Service. The J2EE EAR file includes Web Service

servlet configuration information, including the generated file web.xml , and if the

service includes MDBs, the ejb.jar file containing the implementation classes.

Run the Oracle9iAS Web Services assembly tool, WebServicesAssembler as

follows:

java -jar WebServicesAssembler.jar -config my_jms_service_config

Where: my_jms_service_config is the configuration file that contains the

<jms-doc-service> tag.

Deploying JMS Web Services
After creating the .ear file containing Java classes and the Web Services Servlet

deployment descriptors, you can deploy the Web Service as you would any

standard J2EE application stored in an .ear file (to run under OC4J).

See Also:

■ "Creating a Configuration File to Assemble JMS Web Services"

on page 7-12

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library.
Developing and Deploying JMS Web Services 7-17

Limitations for JMS Web Services
Limitations for JMS Web Services
The JMS Web Service only supports messages of type ObjectMessage

(javax.jms.Message .ObjectMessage) .
7-18 Oracle9i Application Server Web Services Developer’s Guide

Building Clients that Use Web Se
8

Building Clients that Use Web Services

This chapter describes the Oracle9iAS Web Services features that allow you to easily

create and run a client application that uses Oracle9iAS Web Services.

This chapter contains the following topics:

■ Locating Web Services

■ Getting WSDL Files and Client-Side Proxy Jars for Web Services

■ Working with Client-Side Proxy Jar to Use Web Services

■ Working with WSDL Files and JDeveloper to Use Web Services
rvices 8-1

Locating Web Services
Locating Web Services
When you want to use Web Services you need to develop a client application. There

are two types of Web Services clients: static web service clients and dynamic web

service clients. A static web service client knows where a Web Service is located

without looking up the service in a UDDI registry. A dynamic web service client
performs a lookup to find the Web Service’s location in a UDDI registry before

accessing the service. Chapter 10, "Discovering and Publishing Web Services"

provides detailed information on looking up Web Services in a UDDI registry.

Using a static client Oracle9iAS Web Services provides several options for locating

Oracle9iAS Web Services, including:

■ Using a known Web Service located at a known URL.

■ Using Oracle9iAS Web Services and a known service URL to obtain a client-side

proxy Jar, or by other means obtaining a client-side proxy Jar for a Web Service.

The client-side proxy Jar that Oracle9iAS Web Services generates includes the

URL to locate the associated Web Service.

■ Using Oracle9iAS Web Services and a known service URL to obtain a WSDL

file, or by other means obtaining a WSDL file that describes a Web Service. The

WSDL files that Oracle9iAS Web Services generates includes the URL to locate

the associated Web Service.

After you locate a Web Service or after you obtain either the WSDL or client-side

proxy Jar, you can build a client-side application that uses the Web Service.

Getting WSDL Files and Client-Side Proxy Jars for Web Services
This section covers the following:

■ Using the Web Service Home Page to Save WSDL and Client Side Proxies

■ Getting Web Service WSDL and Client-Side Proxies Directly

■ Generating Client-Side Proxies With WebServicesAssembler

See Also: Chapter 10, "Discovering and Publishing Web Services"
8-2 Oracle9i Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Using the Web Service Home Page to Save WSDL and Client Side Proxies
To use Oracle9iAS Web Services you need to create a client-side application that

accesses a Web Service. Oracle9iAS Web Services supplies the following files for

deployed Web Services:

■ WSDL service descriptions

■ Client-side proxy Jar (class files)

■ Client-side proxy source

Oracle9iAS Web Services provides a Web Service Home Page for each deployed

Web Service. To access a Home Page, enter a service endpoint of the form,

http:// host : port / context-root / service

Figure 8–1 shows the Web Service Home Page for StatefulExample, at the following

endpoint,

http://system1.us.oracle.com/webservices/statefulTest

A Web Service Home Page provides the following:

■ A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the

Service Description link and save the file.

■ Links to Web Service Test Pages for each supported operation-To test the

available Web Service operations enter the parameter values for the operation, if

any, and select the Invoke button.

■ Links to the Web Service client-side proxy Jar and the client-side proxy source -

To obtain the client-side proxy Jar or the client-side proxy source, select the

appropriate link, Proxy Jar or Proxy Source, and save the file.
Building Clients that Use Web Services 8-3

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Figure 8–1 Web Service Home Page

Limitations for Web Service Test Pages
Web Service Test Pages have the following limitations:

■ There is no support for complex input parameters for RPC style Web Services.

Such pages do not support the Invoke button.

■ There is no support for Document Style Web Services. Such pages do not

support the Invoke button.
8-4 Oracle9i Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Getting Web Service WSDL and Client-Side Proxies Directly
If you do not use the Web Service Home Page to get the WSDL file or client-side

proxy for a Web Service, you can obtain these files directly.

This section covers the following:

■ Getting WSDL Service Descriptions

■ Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

■ Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

Getting WSDL Service Descriptions
To obtain the WSDL service description for a Web Service, use the Web Service URL

and append a query string. The format for the URL to obtain the WSDL service

description is as follows (see Table 8–1 for a description of the URL components):

http:// host : port / context-root / service ?WSDL
or

http:// host : port / context-root / service ?wsdl

This command returns a WSDL description in the form service .wsdl . The

service .wsdl description contains the WSDL for the Web Service named

service , located at the specified URL. Using the WSDL that you obtain, you can

build a client application to access the Web Service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar
To obtain the client-side proxy Jar for a Web Service, use the Web Service URL and

append a query string. The client-side proxy Jar file contains the proxy stubs class

that supports building an application that communicates using SOAP to access the

Web Service. The proxy class does the following:

■ Provides a static location for the Web Service (the service does not need to be

looked up in a UDDI registry).

■ Provides proxy methods for each method exposed as part of the Web Service.

■ Performs all of the work to construct the SOAP request, including marshalling

and unmarshalling parameters, and handling the response.
Building Clients that Use Web Services 8-5

Getting WSDL Files and Client-Side Proxy Jars for Web Services
The format for the URL to obtain the client-side proxy Jar is as follows (see

Table 8–1 for a description of the URL components):

http:// host : port / context-root / service ?PROXY_JAR
or

http:// host : port / context-root / service ?proxy_jar

This command returns the file service _proxy.jar . The service _proxy.jar
is a Jar file that contains the client-side proxy classes that you can use to build a

client-side application to access the Web Service.

To obtain the client-side proxy source Jar for a Web Service, use the Web Service

URL and append a query string. The format for the URL to obtain the client-side

proxy source Jar is as follows (see Table 8–1 for a description of the URL

components):

http:// host : port / context-root / service ?PROXY_SOURCE
or

http:// host : port / context-root / service ?proxy_source

This command returns the file service _proxysrc.jar . The file

service _proxysrc.jar is a Jar file that contains the client-side proxy source

files. This file represents the source code for the file service _proxy.jar
associated with the service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package
When you obtain the client-side proxy Jar file or the client-side proxy source Jar,

you have the option of including a request parameter that specifies a package name

for the generated client-side proxy classes or source files. If the Web Service’s

client-side Java class is part of a particular package, then you should specify the

package name to match the client-side application’s package name.

The format for the URL to obtain the client-side proxy Jar and specify the package

name is as follows (see Table 8–1 for a description of the URL components):

http:// host : port / context-root / service ?PROXY_JAR&packageName=mypackage
or

http:// host : port / context-root / service ?proxy_jar&packageName =mypackage

This command returns the file service _proxy.jar . The service _proxy.jar
is a Jar file that contains the client-side proxy classes, using the specified package,

mypackage for the Java package statement.
8-6 Oracle9i Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
The format for the URL to obtain the client-side proxy source Jar and specify the

package name is as follows (see Table 8–1 for a description of the URL components):

http:// host : port / context-root / service ?PROXY_SOURCE&packageName=mypackage
or

http:// host : port / context-root / service ?proxy_source&packageName =mypackage

This command returns the file service _proxysrc.jar . As for the proxy_jar ,

you have the option of specifying a request parameter with a supplied package

name by include a packageName= name option. The service_ proxysrc.jar is a

Jar file that contains the client-side source files for the client-side proxy that accesses

the Web Service.

Table 8–1 URL for Accessing Client Side Proxy Stubs

URL Component Description

context-root The context-root is the value specified in the <context-root> tag for the web
module associated with the Web Service. See the META-INF/application.xml
in the Web Service’s .ear file to determine this value.

host This is the host of the Web Service’s server running Oracle9iAS Web Services.

mypackage This specifies the value that you want to use for the package name in the
generated proxy Jar or proxy source.

port This is the port of the Web Service’s server running Oracle9iAS Web Services.

service The service is the value specified in the <url-pattern> tag for the servlet
associated with the Web Service. This is the service name. See the
WEB-INF/web.xml in the Web Service’s .war file to determine this value.

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"
Building Clients that Use Web Services 8-7

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Generating Client-Side Proxies With WebServicesAssembler
The Oracle9iAS Web Services WebServicesAssembler tool allows you to

generate client-side proxies. A client-side proxy can access a Web Service that is

deployed either on an Oracle9iAS Web Services endpoint or on a third party Web

Service endpoint.

To generate a client-side proxy with WebServicesAssembler , specify a

<proxy-gen> tag in the configuration file. Table 8–2 describes the <proxy-gen>
WebServicesAssembler configuration file sub-tags.

Example 8–1 shows a sample WebServicesAssembler that includes a

<proxy-gen> tag.

Example 8–1 WebServicesAssembler Proxy Gen Configuration File

<?xml version="1.0"?>
<web-service>
 <proxy-gen>
 <proxy-dir>/TestArea/Hotel/proxy/outside</proxy-dir>
 <option name="include-source">true</option>
 <option name="wsdl-location" package-name="myPackage.proxy">
 http://terraservice.net/TerraService.asmx?WSDL</option>
 <option name="wsdl-location">
 http://ws.serviceobjects.net/sq/FastQuote.asmx?WSDL</option>
 </proxy-gen>
</web-service>

Note: When you are generating client-side proxies and you are

accessing an external WSDL file from behind a firewall, make sure

to set the appropriate security properties shown in Table 8–3, such

as http.proxyHost and http.proxyPort .
8-8 Oracle9i Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
Working with Client-Side Proxy Jar to Use Web Services
This section describes how to use the client-side proxy Jar when you are building

the client-side application to access a Web Service. The client-side proxy Jar class

allows you to easily build an application that uses a Web Service.

The client side proxy Jar file contains a Java class to serve as a proxy to the Web

Service implementation. The client-side proxy code constructs a SOAP request and

marshalls and unmarshalls parameters for you. Using the proxy classes saves you

Table 8–2 Proxy Generation <proxy-gen> Sub-Tags

Tag Description

<proxy-dir>
directory
</proxy-dir>

Specifies the directory for the generated client-side proxy stubs Jar
file that is included in the generated Web Service .ear file.

This tag is required.

<option name="include-source">
value
</option>

Setting value to true tells WebServicesAssembler to include the
classes and the source in the generated client-side proxy. When the
value is false, the source is not included in the generated Jar.

This tag is optional.

Valid values: true , false

Default value: false

<option name="wsdl-location">
URL
</option>

or

<option name="wsdl-location"
package-name=" package ">
URL
</option>

This tag sets the URL to use for the source WSDL to use to generate
the client-side proxy.

This option also supports the optional attribute package-name . The
package-name can specify the name package for the generated
client-side proxy.

This tag is optional.

Examples:

<option name="wsdl-location">
http://system1:8888/webservice3/TestService?WSDL
</option>

<option name="wsdl-location"
package-name="myPackage.proxy">
http://system1:8888/webservice3/TestService?WSDL
</option>

See Also: Chapter 9, "Web Services Assembly Tool"
Building Clients that Use Web Services 8-9

Working with Client-Side Proxy Jar to Use Web Services
the work of creating SOAP requests for accessing a Web Service or processing Web

Service responses.

Example 8–2 shows a source code sample client-side proxy extracted from a Web

Service. For each operation available on the Web Service, there is a corresponding

method in the proxy class. The example shows the method helloWorld(String)
that serves as a proxy to the helloWorld(String) method in the associated Web

Service implementation.

Example 8–3 shows client-side application code that uses the helloWorld()
method from the supplied client-side proxy shown in Example 8–2.

Example 8–2 Sample Client-side Proxy Method for Web Services

public class StatefulExampleProxy {

 public java.lang.String helloWorld(java.lang.String param0) throws Exception
 {
 .
 .
 .
 }
.
.
.
}

Note: When you are accessing an external Web Service from

behind a firewall, make sure to set the appropriate security

properties shown in Table 8–3, such as http.proxyHost and

http.proxyPort .
8-10 Oracle9i Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
Example 8–3 Sample Client-side Application Using a Proxy Class for Web Services

import oracle.j2ee.ws_example.proxy.*;

public class Client
{
 public static void main(String[] argv) throws Exception
 {
 StatefulExampleProxy proxy = new StatefulExampleProxy();
 System.out.println(proxy.helloWorld("Scott"));
 System.out.println(proxy.count());
 System.out.println(proxy.count());
 System.out.println(proxy.count());
 }
}

When Java Beans are used as parameters to Oracle9iAS Web Services, the client-side

code should use the generated Bean included with the downloaded client-side

proxy. This is because the generated client-side proxy code translates Simple Object

Access Protocol (SOAP) structures to and from Java Beans by translating SOAP

structure namespaces to and from fully qualified Bean class names. If a Bean with

the specified name does not exist in the specified package, the generated client code

will fail.

However, there is no special requirement for clients using Web Services Description

Language (WSDL) to form calls to Oracle9iAS Web Services, rather than the

client-side proxy. The generated WSDL document describes SOAP structures in a

standard way. Application development environments, such as JDeveloper, which

work directly from WSDL documents can correctly call Oracle9iAS Web Services

with Java Beans as parameters.

Using Web Services Security Features
When you run a client-side application that uses Oracle9iAS Web Services, you can

access secure Web Services by setting properties in the client application. Table 8–3

shows the available properties that provide credentials and other security

information for Web Services clients.

In a Web Services client application, you can set the security properties shown in

Table 8–3 as system properties by using the -D flag at the Java command line, or

you can also set security properties in the Java program by adding these properties

to the system properties (use System.setProperties() to add properties). In

addition, the client side stubs include the _setTranportProperties method that
Building Clients that Use Web Services 8-11

Working with Client-Side Proxy Jar to Use Web Services
is a public method in the client proxy stubs. This method enables you to set the

appropriate values for security properties by supplying a Properties argument.

Table 8–3 Web Services HTTP Transport Security Properties

Property Description

http.authType Specifies the HTTP authentication type. The case of the value specified is ignored.

Valid values: basic , digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not setting the
property.

http.password Specifies the HTTP authentication password.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is ignored.

Valid values: basic , digest

Specifying any value other than basic or digest is the same as not setting the
property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHos t is defined; otherwise this value is ignored.

Default value: 80

http.proxyRealm Specifies the realm for which the proxy authentication username/password is
specified.

http.proxyUsername Specifies the HTTP proxy authentication username.

http.realm Specifies the realm for which the HTTP authentication username/password is
specified.

http.username Specifies the HTTP authentication username.
8-12 Oracle9i Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
java.protocol.
handler.pkgs

Specifies a list of package prefixes for java.net.URLStreamHandlerFactory
The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPClient
This value is required by the Java protocol handler framework; it is not defined by
Oracle9i Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, a java.net.MalformedURLException is
thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=HTTPClient

■ java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient

oracle.soap.
transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value specified is
ignored. When this property is set to true and either of the following are true, the
user is prompted for a username and password:

1. If any of properties http.authType, http.username , or http.password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType , http.proxyUsername , or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true , false

Specifying any value other than true is considered as false .

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported with Oracle SSL.

oracle.
wallet.location

Specifies the location of an exported Oracle wallet or exported trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet.
password

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Table 8–3 (Cont.) Web Services HTTP Transport Security Properties

Property Description
Building Clients that Use Web Services 8-13

Working with WSDL Files and JDeveloper to Use Web Services
Working with WSDL Files and JDeveloper to Use Web Services
The Web Services WSDL allows you to manually, or using Oracle9i JDeveloper or

another IDE, build client applications that use Web Services.

The Oracle9i JDeveloper IDE supports Oracle9iAS Web Services with WSDL

features and provides unparalleled productivity for building end-to-end J2EE and

integrated Web Services applications.

JDeveloper supports Oracle9iAS Web Services with the following features:

■ Allows developers to create Java stubs from Web Services WSDL descriptions to

programmatically use existing Web Services.

■ Allows developers to create a new Web Service from Java or EJB classes,

automatically producing the required deployment descriptor, web.xml, and

WSDL file for you.

■ Provides schema-driven WSDL file editing.

■ Offers significant J2EE deployment support for Web Services J2EE .ear files,

with automatic deployment to OC4J.

Non-Oracle Web Services IDEs or client development tools can use the supplied

WSDL file to generate Web Services requests for services running under Oracle9iAS

Web Services. Currently, many IDEs have the capability to create SOAP requests,

given a WSDL description for the service.
8-14 Oracle9i Application Server Web Services Developer’s Guide

Web Services Assembl
9

Web Services Assembly Tool

The Oracle9iAS Web Services assembly tool, WebServicesAssembler , assists in

assembling Oracle9iAS Web Services. The Web Services assembly tool takes a

configuration file which describes a Web Service, including the location of the Java

classes, PL/SQL stored procedures or functions, or J2EE EAR, WAR, or JAR files

and produces a J2EE EAR file that can be deployed under Oracle9iAS Web Services.

This chapter contains the following topics:

■ Running the Web Services Assembly Tool

■ Web Services Assembly Tool Configuration File Sample

■ Generating WSDL Files and Client Side Proxies

■ Web Services Assembly Tool Configuration File Specification

■ Web Services Assembly Tool Limitations
y Tool 9-1

Running the Web Services Assembly Tool
Running the Web Services Assembly Tool
Run the Web Services assembly tool as follows:

java -jar WebServicesAssembler.jar [-debug] -config [file]
or
java -jar WebServicesAssembler.jar [-debug]

Where file is a Web Services assembly tool configuration file. Without the -config
option, a file named config.xml must be present in the same directory where

WebServicesAssembler.jar is invoked.

With the -debug option, WebServicesAssembler displays verbose debugging

comments.

Web Services Assembly Tool Configuration File Sample
The sample configuration file shown in Example 9–1 defines two services to be

wrapped in an Enterprise ARchive file (EAR). The sample includes configuration

information for services defined with <stateless-java-service> and

<stateful-java-service> tags.

See Also:

■ "Preparing and Deploying Java Class Based Web Services" on

page 3-9

■ "Preparing and Deploying Stateless Session EJB Based Web

Services" on page 4-8

■ "Preparing Stored Procedure Web Services" on page 5-3

■ "Preparing Document Style Web Services" on page 6-9

■ "Preparing and Configuring JMS Web Services" on page 7-11
9-2 Oracle9i Application Server Web Services Developer’s Guide

Web Services Assembly Tool Configuration File Sample
Example 9–1 Sample Web Services Assembly Tool Configuration File

<web-service>

 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./ws_example.ear -->
 <destination-path>./ws_example.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly
 tool can create temporary files. -->
 <temporary-directory>./tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context
 named "/webservices". -->
 <context>/webservices</context>

 <!-- Specifies the web service will be stateless -->
 <stateless-java-service>
 <interface-name>oracle.j2ee.ws_example.StatelessExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatelessExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessTest" within the servlet context. -->
 <uri>/statelessTest</uri>
 <!-- Specifies the location of Java class files are under ./src -->
 <java-resource>./src</java-resource>
 </stateless-java-service>

 <stateful-java-service>
 <interface-name>oracle.j2ee.ws_example.StatefulExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatefulExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statefullTest" within the servlet context. -->
 <uri>/statefulTest</uri>
 <!-- Specifies the location of Java class files are under ./src -->
 <java-resource>./src</java-resource>
 </stateful-java-service>

 </web-service>
Web Services Assembly Tool 9-3

Web Services Assembly Tool Configuration File Sample
Web Services Assembly Tool Configuration File Sample Output
After running the Web Services Assembly tool with the sample input file shown in

Example 9–1, the generated output is an EAR file (/tmp/ws_example.ear) The

generated J2EE .ear file, ws_example.ear , has the structure shown in

Example 9–2.

Example 9–2 Structure of Web Services Assembly Tool Sample Ear File

ws_example.ear
|---META-INF
| ‘---application.xml
‘---ws_example_web.war
 |---index.html
 ‘---WEB-INF
 |------web.xml
 ‘------classes
 ‘------oracle
 ‘-----j2ee
 ‘---ws_example
 |---StatefulExample.java
 |---StatefulExample.class
 |---StatefulExampleImpl.java
 ‘---StatefulExampleImpl.class
 |---StatelessExample.java
 |---StatelessExample.class
 |---StatelessExampleImpl.java
 ‘---StatelessExampleImpl.class
9-4 Oracle9i Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies
Generating WSDL Files and Client Side Proxies
This section describes using the <wsdl-gen> and <proxy-gen> tags in a

WebServicesAssembler configuration file. These tags controls the options for

generating WSDL files and client-side proxies for Web Services. A client-side

developer can obtain and use the WSDL file or the client-side proxies to build an

application that uses a Web Service. A server-side developer that is assembling Web

Services can use these file for testing Web Services.

This section covers the following topics:

■ Generating and Assembling WSDL Files

■ Generating Client-Side Proxies with WSDL

Generating and Assembling WSDL Files
Using Oracle9iAS Web Services, a Web Service developer has several choices for

deciding how the WSDL file that is associated with a Web Service is generated:

1. Using the <wsdl-gen> tag, you can specify that WebServicesAssembler
create the WSDL file. At assembly time when the Web Service is prepared, the

WebServicesAssembler generates and packages the WSDL file with the Web

Service.

Example 9–3 shows a configuration file that includes the <wsdl-gen> tag.

2. Allowing the Oracle9iAS Web Services runtime to generate the WSDL file when

the WSDL is requested by a Web Service client (after the WEB Service is

deployed). In this case, you do not specify the <wsdl-gen> tag in the

configuration file.

3. Creating a WSDL file manually. In this case, use the <wsdl-gen> tag during

assembly of the J2EE .ear file to specify the path to the WSDL file. At assembly

time when the Web Service is prepared, the WebServicesAssembler
packages the WSDL file with the Web Service.

Table 9–1 describes the <wsdl-gen> WebServicesAssembler configuration file

sub-tags.

Note: Using the <wsdl-gen> tag, the default behavior is to

package the WSDL into the J2EE .ear file. To exclude the generated

WSDL from the J2EE .ear file, use <option name="packageIt">
tag and set the value to false .
Web Services Assembly Tool 9-5

Generating WSDL Files and Client Side Proxies
Example 9–3 WebServicesAssembler Configuration File Including <wsdl-gen>

<web-service>

 <display-name>Stateless Java Document Web Service</display-name>
 <description>Stateless Java Document Web Service Example</description>
 <destination-path>./statelessdocws.ear</destination-path>
 <temporary-directory>./temp</temporary-directory>
 <context>/statelessdocws</context>
 <option name="source-path">converter.xsl</option>

Table 9–1 WSDL Generation <wsdl-gen> Sub-Tags

Tag Description

<option name="force">
value
</option>

Setting value to true forces WebServicesAssembler to
overwrite any existing WSDL file in the WSDL directory specified
with the <wsdl-dir > tag.

Valid values: true , false

Default value: true

<option name="httpServerURL">
URL
</option>

This tag sets the value for the HTTP server listener endpoint in the
generated WSDL. Set the URL to point to the Web Service HTTP
listener.

Example:

<option name="httpServerURL">http://localhost:8888</option>

<option name="packageIt">
value
</option>

Setting value to true tells WebServicesAssembler to include the
generated WSDL in the assembled .ear file. When the value is
false , the generated WSDL file is not included in the assembled
.ear file.

Valid values: true , false

Default value: true

<wsdl-dir>
directory
</wsdl-dir>

Specifies the directory for the WSDL file source that is included in
the generated Web Service .ear file.

When you are manually supplying the WSDL file, place a copy of
the WSDL file in the specified directory and use the <option
name="force"> tag with the value false .
9-6 Oracle9i Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies
 <stateless-java-service>
 <interface-name>StatelessDoc</interface-name>
 <class-name>StatelessDocImpl</class-name>
 <uri>/docservice</uri>
 <java-resource>./classes</java-resource>
 <message-style>doc</message-style>
 </stateless-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false'
 to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

</web-service>

Manually Producing a WSDL File
When you do not want to use either the WebServicesAssembler tool generated

WSDL or the Oracle9iAS Web Services runtime generated WSDL file, and you want

to supply your own version of the Web Service WSDL file, perform the following

steps:

1. Manually create the WSDL file for your service.

2. Name the WSDL file with a name using the .wsdl extension placed after the

service name. For example, service1.wsdl for a service named service1 .

3. Create a configuration file that includes the <wsdl-gen> tag, including

<option name="force"> set to false and <option
name="packageIt"> set to true .

4. Place the WSDL file that you create in the directory specified with the

<wsdl-dir> tag.

5. Run the WebServicesAssembler with the specified configuration file.
Web Services Assembly Tool 9-7

Generating WSDL Files and Client Side Proxies
Generating Client-Side Proxies with WSDL
When the <proxy-gen> tag is included in a configuration file with the

<wsdl-gen> , the generated WSDL is used to generate the proxy that is placed in

the specified directory (this occurs when WebServicesAssembler runs during

the Web Service assembly process).

Table 8–2 lists the <proxy-gen> sub-tags.

Example 9–4 shows a sample configuration file that includes both the <wsdl-gen>
and the <proxy-gen> tags.

Example 9–4 WebServicesAssembler Configuration File Including <wsdl-gen>

<web-service>
 <display-name>Test</display-name>
 <description>Test program</description>
 <destination-path>test.ear</destination-path>
<temporary-directory>temp/</temporary-directory><context>/HotelService</context>
 <option name="source-path">Workspace1/common/classes</option>

 <stateless-java-service>
 <interface-name>com.mypackage1.Itest</interface-name>
 <uri>/main</uri>
 <class-name>com.mypackage1.test</class-name>
 </stateless-java-service>

 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 <option name="packageIt">false</option>
 </wsdl-gen>

 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>

 </web-service>

Note: Using <proxy-gen> , the generated proxy is not assembled

in the J2EE .ear file.
9-8 Oracle9i Application Server Web Services Developer’s Guide

Web Services Assembly Tool Configuration File Specification
Web Services Assembly Tool Configuration File Specification
The input file for WebServicesAssembler is an XML file conforming to the Web

Services Assembly Tool configuration file DTD.

Example 9–5 shows the Web Services Assembly Tool Configuration file DTD.

Example 9–5 Assembly Tool Input File DTD

<?xml version="1.0" encoding="UCS-2"?>
<!-- Specify the properties of the web services to be assembled. -->
<!ELEMENT web-service
((display-name)?,(description)?,destination-path,temporary-directory,context,(datasource-JNDI-name)?,(statefu
l-java-service)*,(stateless-java-service)*,(stateless-stored-procedure-java-service)*,(stateless-session-ejb-
service)*,(jms-doc-service)*,(option)*,(wsdl-gen)?,(proxy-gen)?)>
<!ELEMENT display-name (#PCDATA)*>
<!ELEMENT description (#PCDATA)*>
<!-- Specify the full path of the resulting EAR file. For example,
"/home/demo/webservices.ear" -->
<!ELEMENT destination-path (#PCDATA)*>
<!-- Specify a directory where the assembly tool can create temporary
directories and files. -->
<!ELEMENT temporary-directory (#PCDATA)*>
<!-- Specify the context root of the web services. For example, "/webservices". -->
<!ELEMENT context (#PCDATA)*>
<!-- for specifying database resource refs -->
<!ELEMENT datasource-JNDI-name (#PCDATA)*>

<!-- Specify the properties of a stateful Java service -->
<!ELEMENT stateful-java-service
((interface-name)?,class-name,uri,(java-resource)*,(ejb-resource)*,(scope)*,(session-timeout)*,(message-style
)?)>
<!-- Specify the properties of a stateless Java service -->
<!ELEMENT stateless-java-service
((interface-name)?,class-name,uri,(java-resource)*,(ejb-resource)*,(message-style)?)>
<!-- Specify the properties of a stateless stored procedure Java service -->
<!ELEMENT stateless-stored-procedure-java-service
((interface-name)?,(class-name)?,uri,database-JNDI-name,(java-resource)?,(jar-generation)?)>
<!-- Specify the properties of a stateless session ejb service -->
<!ELEMENT stateless-session-ejb-service (path,uri,ejb-name,(ejb-resource)*)>

<!-- Specify the java interface which defines the public methods to be exposed
in the web service. For example, "com.foo.myproject.helloWorld". -->
<!ELEMENT interface-name (#PCDATA)*>
<!-- Specify the java class to be exposed as a web service. If interface-name is
not specified, all the public methods in this class will be exposed. For example,
 "com.foo.myproject.helloWorldImpl". -->
<!ELEMENT class-name (#PCDATA)*>
<!-- Specify the uri of this service. This uri is used in the URL to access the
Web Services Assembly Tool 9-9

Web Services Assembly Tool Configuration File Specification
WSDL and client jar, and invoke the web service. For example, "/myService". -->
<!ELEMENT uri (#PCDATA)*>
<!--
Specify the java resources used in this service.
The value can be a directory or a file that implements the web services. If it
is a directory, all the files and subdirectories under the directory are copied
and packaged in the Enterprise ARchive. If the java resource should belong to a
java package, you should either package it as a jar file and specify it as a
java resource, or create the necessary directory and specify the directory which
contains this directory structure as java resource. For example, you want to
include "com.mycompany.mypackage.foo" class as a java resource of the web
services, you can either package this class file in foo.jar and specify
<java-resource>c:/mydir/foo.jar</java-resource>, or place the class under
d:/mydir/com/mycompany/mypackage/foo.class and specify the java resource as
<java-resource>c:/mydir/</java-resource>.
-->
<!ELEMENT java-resource (#PCDATA)*>
<!-- Specify the ejb resources used in this service. ejb-resource should be a
jar file that implements a enterprise java bean. -->
<!ELEMENT ejb-resource (#PCDATA)*>
<!-- Specify the database JNDI name for stateless PL/SQL web service. -->
<!ELEMENT database-jndi-name (#PCDATA)*>
<!-- Specifies the path of the EJB jar file to exposed as web services. -->
<!ELEMENT path (#PCDATA)*>
<!-- Specify the ejb-name of the session bean to be exposed as web services.
ejb-name should match the <ejb-name> value in the META-INF/ejb-jar.xml of the bean. -->
<!ELEMENT ejb-name (#PCDATA)*>
<!-- Specify scope of Statefull Java service -->
<!ELEMENT scope (#PCDATA)*>
<!-- Specify session timeout of Statefull Java service -->
<!ELEMENT session-timeout (#PCDATA)*>
<!-- Specify the directory location of the generated wsdl-->
<!ELEMENT wsdl-dir (#PCDATA)*>
<!-- Specify that wsdl generation is to happen 'force' 'httpServerURL' 'packageIt'-->
<!ELEMENT wsdl-gen (wsdl-dir,(option)*)>
<!-- Specifyg the directory location of the generated proxy-->
<!ELEMENT proxy-dir (#PCDATA)*>
<!ELEMENT option (#PCDATA)*>
<!ATTLIST option name CDATA #REQUIRED>

<!-- Specifying that proxy generation is asked for , it can have optional tags as
'include-source' 'wsdl-location' -->
<!ELEMENT proxy-gen (proxy-dir,(option)*)>
<!ELEMENT jar-generation (db-package-name,db-schema,db-url,prefix,(method-name)*)>
<!ELEMENT database-JNDI-name (#PCDATA)*>
<!ELEMENT db-package-name (#PCDATA)*>
<!ELEMENT db-url (#PCDATA)*>
<!ELEMENT db-schema (#PCDATA)*>
<!ELEMENT prefix (#PCDATA)*>
9-10 Oracle9i Application Server Web Services Developer’s Guide

Web Services Assembly Tool Limitations
<!ELEMENT method-name (#PCDATA)*>
 <!-- specify the message style ,if this tag is not present it is considered to have 'rpc' ..it can have
values of 'rpc' or 'doc' or 'document' -->
<!ELEMENT message-style (#PCDATA)*>

<!ELEMENT connection-factory-resource-ref (#PCDATA)*>
<!ELEMENT topic-resource-ref (#PCDATA)*>
<!ELEMENT queue-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination factory-->
<!ELEMENT reply-to-connection-factory-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination Topic. -->
<!ELEMENT reply-to-topic-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination Queue. -->
<!ELEMENT reply-to-queue-resource-ref (#PCDATA)*>
<!--jms-priority ,jms-message-type,jms-delvery-mode ,jms-expiration The JMS properties are only set for
enqueuing operations, i..e, for send operations only. -->
<!ELEMENT jms-priority (#PCDATA)*>
<!ELEMENT jms-message-type (#PCDATA)*>
<!ELEMENT jms-delivery-mode (#PCDATA)*>
<!ELEMENT jms-expiration (#PCDATA)*>
<!-- operation property is optional. Possible values for this parameter are: send, receive, and both. If not
provided, the value defaults to both. -->
<!ELEMENT operation (#PCDATA)*>
<!ELEMENT jms-doc-service
(uri,connection-factory-resource-ref,(topic-resource-ref)?,(queue-resource-ref)?,(reply-to-connection-factory
-resource-ref)?,(reply-to-topic-resource-ref)?,(reply-to-queue-resource-ref)?,(jms-priority)?,(jms-message-ty
pe)?,(jms-delivery-mode)?,(jms-expiration)?,(operation)?)>

Web Services Assembly Tool Limitations
The WebServicesAssembler tool has the following limitations:

■ No Upload/download capabilities: the Web Services Assembly tool does not

upload Java classes from a client system to a server or download a generated

EAR file back to a client system.

■ Does not support advanced configuration tasks: for example, the Web Services

Assembly tool is not able to control the security options for a Web Services

Servlet, cannot secure an EJB, secure welcome files, or perform other

administrative tasks.
Web Services Assembly Tool 9-11

Web Services Assembly Tool Limitations
9-12 Oracle9i Application Server Web Services Developer’s Guide

Discovering and Publishing Web Serv
10

 Discovering and Publishing Web Services

Oracle9iAS Containers for Java2 Enterprise Edition (J2EE), or OC4J, provides a

Universal Discovery Description and Integration (UDDI) Web Services registry in

which Web Services provider administrators in an enterprise environment can

publish their Web Services for use by Web Services consumers (programmers). Web

Services consumers can use the UDDI inquiry interface to discover these published

Web Services by browsing, searching, and drilling down in the UDDI registry to

select one or more Web Services from among those registered to be used in their

applications for a particular enterprise process.

For example, a Web Services provider administrator working with programmers

who have completed a Web Services implementation using the J2EE stack (either

EJBs, JavaBeans, JSP, or servlets) and exposing the implementation as a Simple

Open Access Protocol (SOAP)-based Web Services, can publish the Web Services by

providing all the metadata and pointers to the interface specification in the UDDI

registry. In this way, the Web Services provider administrator publishes the

availability of these Web Services for the Web Services consumer to discover and

select for use in their own applications.
ices 10-1

UDDI Registration
UDDI Registration
The information provided in a UDDI registration can be used to perform three types

of searches:

■ White pages search -- containing address, contact, and known identifiers. For

example, search for a business that you already know something about, such as

its name or some unique ID.

■ Yellow pages topical search -- containing industrial categorizations based on

standard classifications, such as NAICS, ISO-3166, and UNSPSC.

■ Green pages service search -- containing technical information about Web

Services that are exposed by a business, including references to specifications of

interfaces for Web Services, as well as support for pointers to various file and

URL-based discovery mechanisms.

UDDI uses standards-based technologies, such as common Internet protocols

(TCP/IP and HTTP), XML, and SOAP, which is a specification for using XML in

simple message-based exchanges. UDDI is a standard Web Services description

format and Web Services discovery protocol; a UDDI registry can contain metadata

for any type of service, with best practices already defined for those described by

Web Services Description Language (WSDL).

UDDI Registry
The UDDI registry consists of the following four data structure types that group

information to facilitate rapid location and understanding of registration

information:

■ businessEntity -- the top-level, logical parent data structure; contains

descriptive information about the business that publishes information about

Web Services, such as business services, categories, contacts, discovery URLs,

and identifier and category information that is useful for performing searches.

■ businessService -- the logical child of a single businessEntity data structure as

well as the logical parent of a bindingTemplate structure; contains descriptive

business service information about a particular family of technical services

including its name, brief description, technical service description, and category

information that is useful for performing searches.

■ bindingTemplate -- the logical child of a single businessService data structure;

contains technical information about a Web Services entry point and references

to interface specifications.
10-2 Oracle9i Application Server Web Services Developer’s Guide

UDDI Registry
tModel -- descriptions of specifications for Web Services or classifications that form

the basis for technical fingerprints; represents the technical specification of the Web

Services, in order to facilitate Web Services consumer searching for registered Web

Services that are compatible with a particular technical specification. That is, based

on the descriptions of the specifications for Web Services in the tModel structure,

Web Services consumers can easily identify other compatible Web Services.

Figure 10–1 shows the UDDI information model and the relationships among its

four data structure types.

Figure 10–1 UDDI Information Model Showing the Relationship Among the Four Main
Data Structure Types

Because UDDI makes use of XML and SOAP, each of these data structure types

contains a number of elements and attributes that further serve to describe a

business or have a technical purpose. See UDDI Data Structure Reference V1.0 Open
Draft Specification 30 September 2000 and UDDI Programmer’s API 1.0 Open Draft
Specification 30 September 2000 for a complete description of the UDDI service

description framework, including its XML schema, and the approximately 20

request messages and 10 response messages that comprise the request/response

XML SOAP message interface that is used to perform publishing and inquiry

functions against the UDDI business registry.
Discovering and Publishing Web Services 10-3

Oracle UDDI Enterprise Web Services Registry
Oracle UDDI Enterprise Web Services Registry
This section describes a subset of features that provide UDDI support for Web

Services deployed in OC4J as the Oracle 9iAS release 2 UDDI enterprise

implementation of OC4J Web Services and the UDDI enterprise-wide Web Services

registry.

The Oracle UDDI registry support for Web Services deployed in OC4J is composed

of two parts:

■ Web Services discovery -- consumers can use the Inquiry API available for Java

programmers to implement their own Web Services discovery tool to search,

locate, and drill down to discover OC4J Web Services in the Oracle UDDI

registry, as well as in any other accessible UDDI Version 1.0 Web Services

registry. See Using the Inquiry API on page 10-5 for more information about

using the Inquiry API and locating the Javadoc documentation that describes

the Inquiry API.

■ Web Services publishing -- Web Services provider administrators can publish

OC4J Web Services into the enterprise-wide Oracle UDDI Web Services registry

using the Application Server: iAS: OC4J home: Deployed Applications:
Deploy Application Wizard provided through Oracle Enterprise Manager. This

wizard takes you through the steps necessary to deploy a J2EE application on

the OC4J container, and in this process, there is a step where you can publish

Web Services (Web Services servlets contained in the EAR file) to the Oracle

UDDI registry.

Web Services provider administrators can also update published Web Services

by searching, locating, and drilling down to OC4J Web Services using the

Application Server: iAS: OC4J home: Administration: Related Links: UDDI
Registry link provided through Oracle Enterprise Manager.
10-4 Oracle9i Application Server Web Services Developer’s Guide

Web Services Discovery
Web Services Discovery
Web Services are discovered in the Oracle UDDI Registry by browsing the registry

using tools or using the Inquiry API.

Using Tools
Consumers can create their own inquiry browse tool or use third-party tools to

browse and drill down for information about Web Services from the Oracle UDDI

registry as well as from any other accessible UDDI Version 1.0 Web Services registry.

Consumers can use the Inquiry API available for Java programmers to implement

their own Web Services discovery interface.

Using the Inquiry API
The Inquiry API lets consumers search for the available registered Web Services by

providing find (browse and drill-down) calls and get calls for locating and getting

information in each of the four data structures shown in Figure 10–1.

The Inquiry API allows consumers to discover and use Web Services using the Java

language. Programs can be written in any language and can use the SOAP protocol

to discover Web Services. The Java API is provided as a convenience for Java

programmers. The URL for the UDDI registry is

http:// <ias-http-server-host-name><ias-port-number> /uddi/inqui
ry , where <ias-http-server-host-name> is where the Oracle HTTP Server

powered by Apache is installed and <ias-port-number> is the port number for

the Oracle HTTP Server.

The Inquiry API is located in the Oracle9iAS installation directory, <ORACLE_
HOME>/ds/uddi/ for UNIX and <ORACLE_HOME>\ds\uddi\ for Windows. The

API documentation that describes how to use this Inquiry API can be found on the

Oracle9iAS Documentation Library as UDDI Client API Reference (Javadoc) under

Oracle9iAS Web Services, which is located under the J2EE and Internet applications

tab.

A set of sample demo files are located in the following directory:

<ORACLE_HOME>/ds/uddi/demo/demo.zip for UNIX
<ORACLE_HOME>\ds\uddi\demo\demo.zip for Windows

Within the demo.zip file is a Java program file, UddiInquiryExample.java ,

that provides Java programmers with a starting point that demonstrates the key

constructs and the sequence in using the Oracle UDDI client library.
Discovering and Publishing Web Services 10-5

Web Services Discovery
The program example does the following:

■ Gets an instance of a SoapTransportLiaison. This is an implementation that

handles the details of communication between the UDDI client and server using

the SOAP protocol and some underlying transport protocol (in this case HTTP).

SoapTransportLiaison transport = new OracleSoapHttpTransportLiaison();

■ Calls a helper method to set up proxy information, if necessary. You can specify

HTTP proxy information for accessing the UDDI registry on the command line,

using parameters, such as -Dhttp.proxyHost= <hostname>
-Dhttp.proxyPort= <portnum> .

setHttpProxy((SoapHttpTransportLiaison)transport);

■ Uses the SoapTransportLiaison and the URL of a UDDI inquiry registry to

initialize an instance of the UddiClient, which connects to the specified UDDI

registry. The UddiClient instance is the primary interface by which clients send

requests to the UDDI registry.

UddiClient uddiClient = new UddiClient(szInquiryUrl, null, transport);

■ Uses the UddiClient to perform a find business request. Specifically, it finds all

business entities that start with the letter T and prints out the response. Note

that input parameters and return values are objects that precisely mimic the

XML elements defined in the UDDI specification.

// Find a business with a name that starts with "T"
String szBizToFind = "T";
System.out.println("\nListing businesses starting with " + szBizToFind);
// Actual find business operation:
// First null means no specialized FindQualifier.
// Second null means no max number of entries in response.
// (For example, maxRows attribute is absent.)
BusinessList bl = uddiClient.findBusiness(szBizToFind, null, null);
// Print the response.
System.out.println("The response is: ");
List listBusinessInfo = bl.getBusinessInfos().getUddiElementList();
for (int i = 0; i < listBusinessInfo.size(); i++) {
 BusinessInfo businessInfo = (BusinessInfo)listBusinessInfo.get(i);
 System.out.println(businessInfo.getName());
 System.out.println(businessInfo.getFirstDescription());
10-6 Oracle9i Application Server Web Services Developer’s Guide

Web Services Discovery
■ Uses the UddiClient to get a UddiElementFactory instance. This factory should

always be used to create any UDDI objects needed for inquiries.

UddiElementFactory uddiEltFactory = uddiClient.getUddiElementFactory();

■ Uses the UddiElementFactory instance to create a CategoryBag and its

KeyedReference, which will be used for searching.

CategoryBag cb = (CategoryBag)uddiEltFactory.createCategoryBag();
KeyedReference kr =
(KeyedReference)uddiEltFactory.createKeyedReference();
kr.setTModelKey(szCategoryTModelKey);
kr.setKeyValue(szCategoryKeyValue);
kr.setKeyName("");
cb.addUddiElement(kr);

■ Uses the UddiClient to perform a find service request. Specifically, it finds a

maximum of 30 services, which are classified as application service providers

(code 81.11.21.06.00) under the UNSPSC classification in any business entities

(no businessKey is specified).

ServiceList serviceList =
 uddiClient.findService("", cb, null, new Integer(30));

■ Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view

the raw XML data represented by an object, which extends UddiElement,

marshall the element content to the writer and then flush and close the writer.

XmlWriter writerXmlWriter = uddiEltFactory.createWriterXmlWriter(
 new PrintWriter(System.out));
serviceList.marshall(writerXmlWriter);
writerXmlWriter.flush();
writerXmlWriter.close();

■ Closes the UddiClient instance when finished to release resources.

uddiClient.close();

■ Provides URLs (in comments) to the Oracle UDDI registry and four public

UDDI registries.
Discovering and Publishing Web Services 10-7

Web Services Publishing
Web Services Publishing
Web Services are published in the Oracle UDDI Registry by using Oracle Enterprise

Manager or using the Publishing API.

Using Oracle Enterprise Manager
Using Oracle Enterprise Manager, Web Services provider administrators can

publish Web Services in the Oracle UDDI Registry in two ways:

■ Navigate to the Application Server: iAS: OC4J home: Deployed Applications:
Deploy Application Wizard. The Deploy Application Wizard takes you

through the process of deploying a J2EE application on the OC4J container by

assembling the needed application and module deployment descriptors as an

Enterprise Archive (EAR) file. See Oracle9iAS Containers for J2EE User’s Guide for

information about EAR file-based deployment of J2EE Web applications.

The second-to-last step, the Publish Web Services step, of the Deploy
Applications Wizard lets Web Services provider administrators publish Web

Services (servlets) that are found in the EAR file. Any Web Services servlet in an

application that you want to access must be published to the Oracle UDDI

Registry to one or more desired categories within one or more of the

classifications provided. Any unpublished Web Services in an application

appears with the status of Not Published and when the Web Services is

published, the status changes to Published .

■ Navigate to the Application Server: iAS: OC4J home: UDDI Registry: Web
Services Details window. The Web Services Details window lets Web Services

provider administrators publish J2EE applications to the UDDI Registry after

entering all required Service Details and tModel Details information.

Web Services provider administrators can update the discovered published Web

Services. They find these published Web Services through the Oracle Enterprise

Manager Discovery tool using the UDDI Registry link in the Related Links column

within the Administration section of the OC4J: home window from the

Application Server: iAS: window.
10-8 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
Oracle UDDI Registry
The Oracle UDDI Registry uses the following three standard classifications:

■ North American Industry Classification System (NAICS)

This is a classification system for each industry and corresponding code. For

more information about NAICS, see the Web site at

 http://www.census.gov/epcd/www/naics.html

■ Universal Standard Products and Services Codes (UNSPSC)

This is the first coding system to classify both products and services for use

throughout the global marketplace. For more information about UNSPSC, see

the Web site at

 http://eccma.org/unspsc/

■ ISO-3166 Geographic classification (ISO-3166)

This a list of all country names and each corresponding two-character code

element. For more information about ISO-3166, see the Web site at

 http://www.din.de/gremien/nas/nabd/iso3166ma/

When Web Services provider administrators publishes Web Services, they can select

the classification and the category to which they want to register the Web Services.

They have the option of publishing their Web Services to any or all three of these

classifications and to as many categories and subcategories as they wish within each

classification.

Using the Oracle Enterprise Manager Deploy Applications Wizard
Web Services provider administrators can publish Web Services using the Oracle

Enterprise Manager Deploy Applications Wizard. They do this as follows:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the Deployed
Applications section within the OC4J: home window and click Deploy
Application to invoke the Deploy Application wizard.

2. Step through each window of the Deploy Application wizard and provide the

essential information for each step.

See Also: "Database Character Set and Built-in ISO-3166

Classification" on page 10-29
Discovering and Publishing Web Services 10-9

Web Services Publishing
3. At the Publish Web Services window, select the desired Web Services to

register from the list of Web Services known to the application whose status is

Not Published by clicking its corresponding radio button in the Select

column, and click Publish to continue to the Web Services Details window.

4. At the Web Services Details window, review, edit, or enter the information as

needed in each of the fields in the Service Details section and in the tModel

Details section.

a. To add categories for either the Web Services or the tModel sections, click

Browse UDDI Registry and browse to the desired classification and drill

down as needed through each desired category noting all desired category

names and values.

b. Click Add Category to add an empty row of category information.

c. Select the desired classification, then enter the value code and its

corresponding category name for the desired category.

d. Click Add Category again to create another empty category row.

e. Select the desired classification, enter the value code and its corresponding

category name for the desired category.

f. Repeat this process (Steps d and e) as many times as it takes to add all the

categories to which to register this Web Services.

g. After entering all the necessary information on the Web Services Details
window they are ready to publish the Web Services to the Oracle UDDI

Registry, click OK. You return to the Publish Web Services window.

5. Back at the Publish Web Services window, select another Web Services to

publish and repeat this entire process again as described in Steps 3 and 4.

6. After publishing all Web Services for this application, click Next to continue to

the Summary window where all the application deployment information can be

reviewed.

7. If there are no further changes, click Deploy to deploy the J2EE application on

the OC4J container. Doing this returns you to the Oracle Enterprise Manager

OC4J Home page. Then, to repeat the process of deploying another J2EE

application on the OC4J container, click Deploy Application.

After deployment, metadata describing the Web Services that you chose to publish

has been added to the UDDI registry.
10-10 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
Using the Oracle Enterprise Manager Web Services Details Window
Web Services provider administrators can publish Web Services using the Oracle

Enterprise Manager Web Services Details window. They do this as follows:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the UDDI Registry link

in the Related Links column within the Administration section of the OC4J:
home window.

Click the UDDI Registry link.

2. The UDDI Registry window lets the administrator select one of the three

standard classifications: NAICS, UNSPSC, or ISO-3166 by clicking its link or lets

you publish Web Services by selecting the Administration link.

Click the Administration link.

3. At the Web Services Details window, enter the required information in each of

the fields in the Service Details section and in the tModel Details section.

a. Enter the service name, service description, and service URL to the Servlet

in the Service Details section.

b. Enter the tModel name, tModel description, and the URL to the WSDL

document in the tModel Details section.

c. To add categories for either the Web Services or the tModel sections, click

Browse UDDI Registry and browse to the desired classification and drill

down as needed through each desired category, noting all desired category

names and values.

d. Click Add Category to add an empty row of category information.

e. Select the desired classification, then enter the value code and its

corresponding category name for the desired category.

f. Click Add Category again to create another empty category row.

g. Select the desired classification, enter the value code and its corresponding

category name for the desired category.

h. Repeat this process (Steps d and e) as many times as needed to add all the

categories to which to register this Web Services.

i. After entering all required information on the Web Services Details
window, publish the Web Services to the Oracle UDDI Registry by clicking

Apply. This returns you to the UDDI Registry window where you can
Discovering and Publishing Web Services 10-11

Web Services Publishing
choose to publish another J2EE application to the UDDI registry by

following the same steps again, beginning at Step 2.

Updating Published Web Services in the UDDI Registry
Oracle Enterprise Manager provides a user interface for Web Services provider

administrators to browse, drill down, and get information about Web Services

published for categories in the Oracle UDDI Registry. Web Services provider

administrators can update the discovered published Web Services. They find these

published Web Services through the Oracle Enterprise Manager Discovery tool

using the UDDI Registry link within the Administration section of the OC4J: home
window from the Application Server: iAS window.

To update published Web Services using Oracle Enterprise Manager to discover that

Web Services, do the following:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server: iAS
window and then to the OC4J: home window. Locate the UDDI Registry link

in the Related Links column within the Administration section of the OC4J:
home window.

Click the UDDI Registry link.

2. The UDDI Registry window lets the administrator select one of the three

standard classification: NAICS, UNSPSC, or ISO-3166 by clicking its link. The

UDDI Registry window lets the administrator browse any of the three

classifications and discover published Web Services associated with any

category or subcategory.

Click the desired classification link.

3. The UDDI Registry: <Classification Name> window lets the administrator

drill down from category to subcategory to discover published Web Services

associated with any category or subcategory. Each classification is organized in

a hierarchical tree. Navigate down a particular branch by clicking the category

name to determine all its subcategory names, and so forth. As you navigate

down a branch, also note the change in the category code value.

Navigate to the desired category or subcategory by successively clicking the

desired category links.

4. The Web Services: <Category Name> window lets the administrator continue

to drill down through the categories or you can view all Web Services published

in a particular category by selecting the corresponding radio button in the Select

column for that category and clicking View Services.
10-12 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
Select the corresponding radio button in the Select column for the desired

category and click View Services.

5. The Web Services window lists all Web Services published for that category

name. For each Web Services listed for the selected category, its corresponding

service name, service key, and business key are also listed. If no Web Services is

published for a selected category or subcategory, none is listed.

To view the complete details of a particular published Web Services listed for a

category, either click its service name link or select its corresponding radio

button in the Select column and click View Details.

Click the desired service name link.

6. The Web Services Details window displays detailed information for the

selected Web Services published in the Oracle UDDI Registry. This information

includes:

■ Service Details

Service details include information such as the Web Services name, Web

Services description, and the URL of the Web Services access point.

Category

Category information includes the classification and the corresponding

code value and its category name.

■ tModel Details

tModel details include information that describes the interface that the Web

Services implements, such as the tModel name, tModel description, and

URL to the interface specification, typically a WSDL document.

Category

Category information includes the classification and the corresponding

code value and its category name.

Category information can be added or deleted for both the Service Details
and tModel Details sections. You can browse the Oracle UDDI Registry

(click Browse UDDI Registry) looking for categories in which to register

this Web Services. You can add categories (click Add Category) to which

both this Web Services and tModel are to be registered. You can remove

categories (click Delete) to which this Web Services and tModel are

registered.
Discovering and Publishing Web Services 10-13

Web Services Publishing
Service and tModel detail information can be modified by moving the

cursor to the appropriate field and making the necessary changes.

After making all selections or completing all changes for this Web Services,

click Apply to save your changes.

If you have made changes to any field and you decide you want to return to

the original set of values for all selections, click Revert. The window

refreshes with the original set of values for all selections as if you had just

begun your current session.

Make your modifications and click Apply to save your changes.

7. To discover and update other published Web Services for the same category, at

the top of the Web Services Details window, select the desired Web
Services:<Classification Name> link to return to the desired Web
Services:<Classification Name> window. At this window, select another Web

Services to view in more detail, make any necessary changes, and finally click

Apply to save your changes.

Alternatively, you can select the UDDI Registry link at the top of the Web
Services Details window to return to the UDDI Registry window where you

can navigate to another classification to discover Web Services for other

categories. At each desired category, select the desired Web Services to view its

details, make any necessary changes, and finally click Apply to save your

changes.

Using the Publishing API

The UDDI publishing API lets programmers, following authentication, publish Web

Services by providing save and delete calls for each of the four key UDDI data

structures (businessEntity, businessService, bindingTemplate, and tModel).

The publishing API allows programmers to publish Web Services using the Java

language. Programs can be written in any language and use the SOAP protocol to

publish Web Services. The Java API is provided as a convenience for Java

programmers.

Note: The publishing API was released as the UDDI v1.0

Compliance Patch Kit available on Metalink as Patch number

2367149. This Patch Kit must be installed for Oracle9iAS release 2

(9.0.2) and Oracle9iAS release 3 (9.0.3) for server-side support of the

publishing API.
10-14 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
The Publishing API is located in the Oracle9iAS installation directory, <ORACLE_
HOME>/ds/uddi/ for UNIX and <ORACLE_HOME>\ds\uddi\ for Windows. The

API documentation that describes how to use this publishing API can be found on

the Oracle9iAS Documentation Library CD-ROM as UDDI Client API Reference

(Javadoc) under Oracle9iAS Web Services, which is located under the J2EE and

Internet Applications tab.

A set of sample demo files are located in the <ORACLE_
HOME>/ds/uddi/demo.zip file for UNIX and the ORACLE_
HOME>\ds\uddi\demo.zip file for Windows.

Within the demo.zip file is a Java program file,

UddiPublishingExample.java , that provides Java programmers with a starting

point that demonstrates the key constructs and the sequence in using the Oracle

UDDI client library.

The program example does the following:

■ Gets an instance of a SoapTransportLiaison. This is an implementation that

handles the details of communication between the UDDI client and server using

the SOAP protocol and some underlying transport protocol (in this case HTTP).

SoapTransportLiaison transport =
 new OracleSoapHttpTransportLiaison();

■ Uses the SoapTransportLiaison and the URL of a UDDI publishing registry to

initialize an instance of the UddiClient, which connects to the specified UDDI

registry. The UddiClient instance is the primary interface by which clients send

requests to the UDDI registry. Authentication is done by the transport layer

(HTTP BASIC in this example).

TransportAuthenticationLiason auth =
 new TransportAuthenticationLiason();
UddiClient uddiClient =
 new UddiClient(null, szPublishingUrl, transport, auth);

■ Performs authentication. You should make this call before doing any

publishing.

UddiClient.authenticate();

■ Uses the UddiClient to get a UddiElementFactory instance. This factory should

always be used to create any UDDI objects needed.

UddiElementFactory uddiEltFactory =
 uddiClient.getUddiElementFactory();
Discovering and Publishing Web Services 10-15

Web Services Publishing
■ Performs various publishing operations that include creating and saving a

tModel, a businessEntity, a businessService, and a bindingTemplate data

structure for the purpose of creating a business that provides a

Google-interface-compatible service.

■ Creates a tModel data structure that represents a Google-compatible service by

using the UddiElementFactory instance.

TModel tModel = (TModel)uddiEltFactory.createTModel();
tModel.setName("urn:google.com:search-interface");

– Creates and includes the OverviewDoc data structure in the tModel data

structure by using the UddiElementFactory instance.

OverviewDoc overviewDocTm =
 (OverviewDoc)uddiEltFactory.createOverviewDoc();
 tModel.setOverviewDoc(overviewDocTm);
overviewDocTm.setOverviewURL("http://api.google.com/GoogleSearch.wsdl");

– In the tModel data structure, uses the UddiElementFactory instance to

create a CategoryBag data structure and its KeyedReference, which will be

used for searching. Classify the tModel data structure as a

SOAP/WSDL-based interface and put it under the "applicable service

providers" category.

CategoryBag catBagTm =
 (CategoryBag)uddiEltFactory.createCategoryBag();
tModel.setCategoryBag(catBagTm);

KeyedReference krTm1 =
(KeyedReference)uddiEltFactory.createKeyedReference();

catBagTm.addUddiElement(krTm1);
krTm1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTm1.setKeyName("wsdlSpec");
krTm1.setKeyValue("wsdlSpec");

KeyedReference krTm2 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagTm.addUddiElement(krTm2);
krTm2.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTm2.setKeyName("wsdlSpec");
krTm2.setKeyValue("wsdlSpec");

KeyedReference krTm3 =
10-16 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagTm.addUddiElement(krTm3);
krTm3.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UNSPSC_7_3);
krTm3.setKeyName("application service providers");
krTm3.setKeyValue("81.11.21.06.00");

■ Publishes the Google search interface tModel business operation.

System.out.println("\nPublish the google search interface tModel.");
TModel tMSaved = uddiClient.saveTModel(tModel);
String szGoogleTModelKey = tMSaved.getTModelKey();
System.out.println("The tModel is saved with tModelKey assigned to be " +
 szGoogleTModelKey);

■ Creates a businessEntity data structure that represents a Google-compatible

service by using the UddiElementFactory instance.

BusinessEntity businessEntity =
 (BusinessEntity)uddiEltFactory.createBusinessEntity();
businessEntity.setName("ACME search Inc.");

In the businessEntity data structure, uses the UddiElementFactory instance to

create a CategoryBag data structure and its KeyedReference data structure,

which will be used for searching. Classify the businessEntity data structure

under the "information services and data processing services" category.

KeyedReference krBe1 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagBe.addUddiElement(krBe1);
krBe1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_NAICS_1997);
krBe1.setKeyName("Information Services and Data Processing Services");
krBe1.setKeyValue("514");

■ Creates a businessService data structure that represents a Google-compatible

service by using the UddiElementFactory instance.

BusinessServices businessServices =
(BusinessServices)uddiEltFactory.createBusinessServices();
businessEntity.setBusinessServices(businessServices);
BusinessService businessService =
(BusinessService)uddiEltFactory.createBusinessService();
businessServices.addUddiElement(businessService);
businessService.setName("ACME Web Search service");

In the businessService data structure, uses the UddiElementFactory instance to

create a CategoryBag data structure and its KeyedReference data structure,
Discovering and Publishing Web Services 10-17

Web Services Publishing
which will be used for searching. Classify the businessService data structure

under the "application service providers" category.

CategoryBag catBagBs =
 (CategoryBag)uddiEltFactory.createCategoryBag();
businessService.setCategoryBag(catBagBs);
KeyedReference krBs1 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagBs.addUddiElement(krBs1);
krBs1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UNSPSC_7_3);
krBs1.setKeyName("application service
providers");krBs1.setKeyValue("81.11.21.06.00");

■ Creates the bindingTemplates data structure that represent a Google-compatible

service by using the UddiElementFactory instance.

BindingTemplates bindingTemplates =
 (BindingTemplates)uddiEltFactory.createBindingTemplates();
businessService.setBindingTemplates(bindingTemplates);
BindingTemplate bindingTemplate =
 (BindingTemplate)uddiEltFactory.createBindingTemplate();
bindingTemplates.addUddiElement(bindingTemplate);

– Creates and includes the access point in the bindingTemplates data

structure by using the UddiElementFactory instance.

AccessPoint accessPoint =
(AccessPoint)uddiEltFactory.createAccessPoint();
bindingTemplate.setAccessPoint(accessPoint);
accessPoint.setUrlType("http");
accessPoint.setContent("http://foobar.net/search-g");

– Creates and includes the tModel instance details in the bindingTemplates

data structure by using the UddiElementFactory instance.

TModelInstanceDetails tModelInstanceDetails =
(TModelInstanceDetails)uddiEltFactory.createTModelInstanceDetails();
bindingTemplate.setTModelInstanceDetails(tModelInstanceDetails);

– Declares that the bindingTemplate data structure implements the Google

search interface.

TModelInstanceInfo tModelInstanceInfo =
 (TModelInstanceInfo)uddiEltFactory.createTModelInstanceInfo();
tModelInstanceDetails.addUddiElement(tModelInstanceInfo);
tModelInstanceInfo.setTModelKey(szGoogleTModelKey);
10-18 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
■ Publishes the businessEntity data structure and its containing businessService

and bindingTemplate data structures.

System.out.println("Publish the ACME Search Inc. businessEntity...");
BusinessEntity bESaved = uddiClient.saveBusiness(businessEntity);
System.out.println("The saved businessEntity (in XML) is:");

■ Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view

the raw XML data represented by an object, which extends UddiElement,

marshall the element content to the writer and then flush and close the writer.

XmlWriter writerXmlWriter =
 uddiEltFactory.createWriterXmlWriter(new PrintWriter(System.out));
bESaved.marshall(writerXmlWriter);
writerXmlWriter.flush();
writerXmlWriter.close();

■ Closes the UddiClient instance when finished to release resources and to log out

from the registry.

uddiClient.close();

UDDI Registry Administration
The following sections describe new UDDI registry administration features.

User Management
Oracle9iAS Release 2 UDDI Registry has two types of users, as defined by two

different J2EE security roles.

■ uddipublisher: Users with the uddipublisher security role can access the

publishing end point and save UDDI entities in the registry.

■ uddiadmin: Users with the uddiadmin security role can access the publishing

end point and perform administrative activities.

User management, including operations such as creation, deletion, suspension, role

management, and so forth, is handled by OC4J Java Authentication and

Authorization (JAAS) service. Refer to Oracle9iAS Containers for J2EE Services Guide
for more information.

There is a set of additional UDDI-specific user operations. See User Account

Management on page 10-21 for more information about UDDI registry

administration.
Discovering and Publishing Web Services 10-19

Web Services Publishing
Performance Monitoring and Tuning
On the back end of an Oracle database, UDDI servlets, and the associated JDBC

connection pools can all be monitored using Oracle Enterprise Manager and other

standard database monitoring and tuning utilities.

In an OC4J standalone environment, performance information is typically available

at

http://<oc4j-host-name>:<port-number>/dmsoc4j/Spy

Data Backup and Restore Operations
Registry data backup and restore operations can be done by using the standard

Oracle database backup and restore operations.

Using the Command-Line Tool uddiadmin.jar
The command-line tool uddiadmin.jar is located in the

ds/uddi/lib/uddiadmin.jar file for UNIX and in the

ds\uddi\lib\uddiadmin.jar file for Windows. Administrators can use this

tool for various administrative activities. In general, the command-line tool takes

the command-line parameters of the following form:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] <action to perform and additional parameters>

The user name is ias_admin and the password is ias_admin .

Note that the -verbose option will cause stack trace information to be printed out

when an exception is encountered.

Server Configuration on page 10-20 through Import Operation on page 10-22 and

Built-in Validated Category Management on page 10-23 describe the administrative

uses of this command-line tool.

Server Configuration
The following parameters are used for server configuration operations. See Server

Configuration Parameters Reference Information on page 10-26 for more

information about these configuration parameters.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getProperties

Description: Lists the current registry configuration parameters.

For example:
10-20 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
java -jar uddiadmin.jar <registry publishing URL> <username> <password>

 [-verbose] -getProperties

Parameter: <registry publishing URL> <username> <password>
[-verbose] -setProperty <name>=<value>

Description: Changes the value of the named configuration parameter. The UDDI

registry J2EE application needs to be restarted for the parameters to take effect.

User Account Management
In general, user management is handled by the OC4J JAAS service. This section

describes UDDI-registry-specific operations that are not handled by the OC4J JAAS

service. The following parameters are used for user account management:

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getUsers

Description: Lists all existing users who have entities in the registry.

For example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>

 [-verbose] -getUsers

Parameter: <registry publishing URL> <username> <password>
[-verbose] -getUserDetail <username_to_retrieve>

Description: Retrieves the details of the named user, currently the authorizedName

of each user.

Administrative Entity Management
The following parameters are used for administrative entity management.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -deleteEntity [-businessKey <businessKey> |
-serviceKey <serviceKey> | -bindingKey <bindingKey> |
-tModelKey <tModelKey>]

Description: Deletes the named entity irrespective of the owner of the entity. Note

that this operation performs a nonpermanent delete (hide) operation in the case of a

tModel entity.

Parameter: <registry publishing URL> <username> <password>
[-verbose] -destroyTModel <tModelKey>
Discovering and Publishing Web Services 10-21

Web Services Publishing
Description: Permanently deletes the named tModel from the registry (as opposed

to the UDDI-defined delete_tModel call, which is just hiding the tModel).

Parameter: <registry publishing URL> <username> <password>
[-verbose] -changeOwner <new username> [-businessKey
<businessKey> | -tModelKey <tModelKey>]

Description: Changes the ownership of the named entity to the new specified user.

Import Operation
The following parameter is used for importing entities:

Parameter: <registry publishing URL> <username> <password>
[-verbose] -import [-businesses <filename> | -tmodels
<filename>]

Description: Imports all businessEntity or tModel data structures in the named file.

For importing the businessEntity data structure, the named file (<filename>) for

importing should contain a UDDI businessDetail XML document. For importing

tModels, the named file should contain a UDDI tModelDetail XML document. By

importing them, the entityKeys (such as, businessKey, serviceKey, bindingKey,

tModelKey) are preserved. The operatorName and authorizedName fields,

however, are not preserved. The operatorName field will be replaced by the

operatorName configuration parameter of the registry. The owner of the imported

entities is the administrator; hence, the authorizedName field will be the

authorizedName of the administrator.

The import parameter is particularly useful in importing the well-known service

interface specification tModel and classification tModel data structures from some

authoritative sources.

Because the entity keys are preserved, administrators should be careful in

evaluating the source of the entities to ensure that there will not be a collision in

entity keys.

Database Configuration
The following sections describe some database-specific configuration information.

Database Character Set Should Be UTF-8 The database character set should be UTF-8 to

accommodate all possible characters. However, if a customer knows for sure that

the data to be stored in the registry contains characters of a specific country or

region (such as western Europe), the customer may use the appropriate database

character set.
10-22 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
Functional Index Should Be Enabled The functional index must be enabled to support

index-based case-insensitive search. The following init.ora parameters are

involved: query_rewrite_enabled=true

In addition, the cost-based optimizer must be turned on for analyzing all tables or

indexes in the UDDISYS schema. For example:

execute dbms_stats.gather_schema_stats(ownname=>'UDDISYS',cascade=>true);

Accuracy of Modified Timestamps of UDDI Entities The accuracy of modified timestamps

of UDDI entities is dependent on the version and compatibility of the database. If

the database compatibility is release 9.0.1 or higher, the modified timestamps are of

SQL type TIMESTAMP with an accuracy up to microseconds. If the database

compatibility is below release 9.0.1, the modified timestamps are of SQL type DATE

with an accuracy up to seconds.

Built-in Validated Category Management
Oracle9iAS Release 2 UDDI Registry can perform a spell-check form of category

value validation, increasing the data accuracy in the registry. An administrator can

add or remove the set of categories that will be validated by the registry.

Adding a New Category for Registry-based Validation To add a new category, you must

load the category values into the database and register the category with the

registry. Perform the following steps:

1. Load the category values into the database. To do this, the category values of

the entire category should be in a file using the following format:

■ Each line of the file describes one category value in the category. It should

be in the following format:

<category value> | <description of category value>
 | <category value of the parent>

■ If a category value is a root value, for example, it has no parent, the

category value of the parent should be set to itself.

■ The line of a category value should occur before all of its descendants.

Examples can be found in the ds/uddi/taxonomy directory for UNIX and

in the ds\uddi\taxonomy directory for Windows. Excerpts from the

NAICS file are as follows:

22|Utilities|22
221|Utilities|22
Discovering and Publishing Web Services 10-23

Web Services Publishing
2211|Electric Power Generation, Transmission|221

It is recommended that you save the file with UTF-8 encoding.

2. Create a SQL*Loader control file to load the category file. An example is

ds/uddi/admin/naics-97.ctl for UNIX and

ds\uddi\admin\naics-97.ctl for Windows. Copy the file and replace the

name of the category file in the control file with the one you create.

3. Load the category file to the database using SQL*Loader. Refer to the

SQL*Loader sections of Oracle9i Database Utilities for more information about

using SQL*Loader.

4. Register the category with the registry as follows:

a. Register the category by saving a new tModel for it in the registry. For

example, look at the tModel named ntis-gov:naics:1997 . You can use

the included sample Web applications link

http://<ias-web-server-host>:<ias-web-server-port>/uddi/
or a third-party UDDI v1.0-compliant tool. If the tModel data structure has

been defined in some other registry, you can also import it (instead of

creating a new one, which results in different tModelKeys entities) using

the uddiadmin.jar utility. See Import Operation on page 10-22 for more

information.

b. Configure the registry so that it recognizes the category that must be

validated using the command-line administrative tool, uddiadmin.jar .

For example, to add a new tModel entity with key

UUID:FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFF0 , issue the

setProperty command for the property

oracle.uddi.server.categoryValidationTModelKeys as follows:

java -jar uddiadmin.jar <registry publishing URL> <username>
 <password> -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4',
'UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88',
'UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2',
'UUID:CD153257-086A-4237-B336-6BDCBDCC6634',
'UUID:FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFF0' "

Notice that because the setProperty command defines all categories that

need to be validated, to add a new category, you should set the property

with all the existing tModelKeys values plus the new tModelKey value that

needs to be added.
10-24 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
Removing a Category from Registry-based Validation To remove a category from

registry-based validation, you should deregister the category with the registry and

remove the category values in the database. Perform the following steps:

1. To deregister the category with the registry, you should remove it from the list

of validated categories using the uddiadmin.jar setProperty command

for the property

oracle.uddi.server.categoryValidationTModelKeys .

You do not have to (and in general should not) delete the tModel entity from

the registry.

2. To remove the category values from the database, use the SQL*Plus script

udivcrm.sql in the ds/uddi/admin directory for UNIX and in the

ds\uddi\admin directory for Windows. For example:

sqlplus uddisys/uddisys @udivcrm.sql

When running this script, you will be prompted for the tModelKey value of the

category to be removed. You should see that a set of rows is deleted. If the result

shows that 0 rows are deleted, you have entered an invalid tModelKey value.

Transport Security
The Inquiry API in general does not require authentication. However, if the inquiry

end point needs to be protected, transport level authentication, such as HTTP

BASIC authentication and HTTPS SSL client authentication, can be enabled by

configuring the web.xml file. A security role, uddiguest , is reserved for accessing

the protected inquiry end point. Refer to Oracle9iAS Containers for J2EE Services
Guide and Oracle9iAS Containers for J2EE User’s Guide for more information about

security roles and related security configuration.

For the Publishing API, you may want to allow HTTPS access only. To disable

HTTP access, edit the web.xml file of the orauddi application to enforce data

confidentiality and make adjustments to HTTP servers accordingly. Refer to

Chapter 8 Security in Oracle9iAS Containers for J2EE User’s Guide and Oracle9iAS
Containers for J2EE Services Guide for more information. For example, to disable

HTTP access in the web.xml file, use the following code:

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
Discovering and Publishing Web Services 10-25

Web Services Publishing
Additional Information
The UUID generation algorithm used generates version 4 UUID, which creates

UUIDs from random numbers.

All built-in tModel data structures as specified in the UDDI v1 specification are

included. An additional tModel data structure uddi-org:operators , defined in

the UDDI v2 specification, is also included to classify the bootstrap node

businessEntity that represents the UDDI registry itself.

Server Configuration Parameters Reference Information
This section describes reference information for some UDDI server configuration

parameters. It is divided into two sections:

■ Advanced configuration parameters

■ Installation or first-use configuration parameters

These server configuration parameters are referenced in Server Configuration on

page 10-20. As each example shows, these configuration parameters can be changed

only by using the command-line administration tool, uddiadmin.jar , which is

described in Using the Command-Line Tool uddiadmin.jar on page 10-20.

Advanced Configuration Parameters The following UDDI server parameters can be

configured for advanced use.

Parameter name: identifierValidation (Advanced use parameter)

Description: Determine if the registry internally validates identifierBag upon save_

xxx calls. In a typical case, there is no reason to change it.

Parameter Type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.identifierValidation=true

Parameter name: operatorCategory (Advanced use parameter)

Description: If categoryValidation is true, this property determines whether or not

the uddi-org:operators category scheme is validated. If uddi-org:operators is
10-26 Oracle9i Application Server Web Services Developer’s Guide

Web Services Publishing
validated, in a single-node scenario, it implies no additional businessEntity data

structures can be classified in uddi-org:operators

Parameter type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
[-verbose] -setProperty
 oracle.uddi.server.categoryValidation.operatorCategory=true

Parameter name: categoryValidation (Advanced use parameter)

Description: Determine if the registry internally validates categoryBag upon save_

xxx calls. In a typical case, there is no reason to change it.

Parameter type/allowable values: boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.categoryValidation=true

Parameter name: categoryValidationTModelKeys (Advanced use parameter)

Description: If categoryValidation is true, this property defines the list of categories

to be validated internally by the registry. The validation is essentially a spell-check:

compare the value with the set of valid values to make sure it is one.

Parameter type/allowable values: A list in the form of '<tModelKey1>',

'<tModelKey2>', '<tModelKey3>'.

Initial value: 'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4', which represents

(uddi-org:types classification). The pre-installed value, however, is UDDI types

classification plus the three classifications defined in UDDI v1 specification:

(uddi-org:types, uddi-org:iso-ch:3166-1999, ntis-gov:naics:1997, unspsc-org:unspsc).

Note: The uddi-org:types classification should not be removed from the list.
Discovering and Publishing Web Services 10-27

Web Services Publishing
Typical value: The pre-installed value.

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4',
'UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88',
'UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2',
'UUID:CD153257-086A-4237-B336-6BDCBDCC6634' "

Installation or First-Use Parameters The following two parameters operatorName and

businessEntityURLPrefix should be changed immediately after an installation, but

should not be changed afterward.

Parameter Name: operatorName

Description: The name of the operator, appearing in the operator attribute of UDDI

responses.

Parameter type/allowable values: A non-null string.

Initial value: OracleUddiServer

Typical value: <domain of the UDDI registry>/uddi

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.operatorName=OracleUddiServer

Parameter Name: businessEntityURLPrefix

Description: This parameter customizes the URL prefix for the generated

businessEntity URL for discoveryURL[@useType='businessEntity'] . The

actual URL is in the form of

<businessEntityURLPrefix>?businessKey=<businessKey> .

Parameter type/allowable values: A valid URL.

Initial value: The UDDI registry will prompt an administrator for an initial value

upon server initalization.

Typical value: The host name and port should be the host name and port of the

Web server (which may or may not be the same as the servlet container).

Guideline: N/A
10-28 Oracle9i Application Server Web Services Developer’s Guide

Database Character Set and Built-in ISO-3166 Classification
Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.businessEntityURLPrefix=

Parameter name: defaultLang

Description: The default language of the registry, used when a description element

given in a save_xxx call is not qualified by the xml:lang attribute.

Parameter type/allowable values: Values of xml:lang

Initial value: en

Typical value: The locale of the primary region the registry serves.

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry publishing URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.defaultLang=en

Database Character Set and Built-in ISO-3166 Classification
The UDDI specification mandates that the registry support the full UTF-8 character

set. Oracle recommends, though does not require, using UTF-8 as the character set

for the Oracle9iAS infrastructure database if the UDDI registry is used.

If the database is not configured with the UTF-8 character set or its equivalent or

superset, there could be data corruption and error due to loss in character set

conversion to or from UTF-8. Refer to Oracle9i Globalization Support Guide for details.

In particular, the descriptions in UDDI built-in ISO-3166 classification contains

descriptions with non-ASCII characters, such as some Western European characters

and some Eastern European characters for the names of cities or regions. In order to

support the non-UTF-8 database, all non-ASCII characters in the descriptions are

replaced with ASCII characters as an approximation.

If you do have a UTF-8 database, you can upgrade the built-in ISO-3166

classification to the one with accurate descriptions using the following instructions:

■ Delete the existing ISO-3166 classification by running the SQL script,

clrISO.sql , for example:

cd < ORACLE_HOME>/ds/uddi/admin
sqlplus system/manager @clrISO.sql
Discovering and Publishing Web Services 10-29

Recommended Configuration for a Production Environment
■ Load the ISO-3166 classification with accurate descriptions by using SQL*

Loader control file iso3166-99.ctl , for example:

cd < ORACLE_HOME>/ds/uddi/admin
sqlldr userid=system/manager control=iso3166-99.ctl

Recommended Configuration for a Production Environment
The following information describes some post-installation configuration steps that

you should do immediately after the installation. These steps are not mandatory,

but are highly recommended in a production environment.

■ User repository setup: By default, a file-based JAAS repository

(jazn-data.xml) is deployed with two users: ias_admin and publisher .

You should customize the repository. For example, LDAP directory or a

centralized jazn-data.xml should be your user repository. Refer to Chapter 7

Managing the JAAS Provider in Oracle9iAS Containers for J2EE Services Guide for

more information. Examples of using command-line utilities are as follow:

java -jar jazn.jar -listusers jazn.com
java -jar jazn.jar -listroles jazn.com
java -jar jazn.jar -adduser jazn.com myname mypassword
java -jar jazn.jar -grantrole webserviceuserrole jazn.com myname
java -jar jazn.jar -revokerole webserviceuserrole jazn.com myname
java -jar jazn.jar -remuser jazn.com myname

■ Security for publishing the end point: By default, HTTP access is enabled.

However, HTTPS access is recommended for security concerns. See Transport

Security on page 10-25 for more information about disabling HTTP access.
10-30 Oracle9i Application Server Web Services Developer’s Guide

Consuming Web Services in J2EE Applica
11

 Consuming Web Services in J2EE

Applications

This chapter describes how to consume Web Services in J2EE applications. Two

types of Web-based information or services are supported:

■ HTML/XML streams accessed through HTTP, see Consuming XML or HTML

Streams in J2EE Applications.

■ SOAP-based Web Services described using WSDL, see Consuming SOAP-Based

Web Services Using WSDL.

In addition, when a Java2 Enterprise Edition (J2EE) application acquires a WSDL

document at runtime, the dynamic invocation API is used to invoke any SOAP

operation described in the WSDL document. See Dynamic Invocation of Web

Services for information about how to use the dynamic invocation API.
tions 11-1

Consuming XML or HTML Streams in J2EE Applications
Consuming XML or HTML Streams in J2EE Applications
Oracle9iAS Containers for Java2 Enterprise Edition (J2EE), also referred to as OC4J,

provides support for processing XML or HTML streams accessible through the

HTTP/S protocols for consuming into J2EE applications. The Web Service

HTML/XML Stream Processing Wizard assists developers in creating an Enterprise

JavaBean (EJB) whose methods will access and process the desired XML or HTML

streams.

In the simplest case, suppose a developer wants programmatic access to an XML

news feed accessible through a static URL. In another case, a developer wants

programmatic access to a dynamic stream accessed through the submission of an

HTML form. Now, suppose HTTP/S basic authentication is required to access either

of these two types of resources. In either case, developers must be able to quickly

and easily process XML or HTML streams, thus consuming these Web Services in

their own specific J2EE applications.

Web Service HTML/XML Stream Processing Wizard
Developers using the Web Service HTML/XML Stream Processing Wizard first

specify how the XML/HTML stream should be accessed and then define the

desired processing actions on the stream.

Developers can choose among the following options when specifying their

XML/HTML stream access:

1. Supply a static URL that has no parameters.

2. Define an HTML form to be submitted, its action URL, and its parameters.

3. Supply the URL of an HTML page where the form to be submitted is defined.

Additional HTTP-related settings can also be specified. They include HTTP proxy

settings, authentication, and HTTPS Oracle Wallet information.

To assist developers in defining the processing to be applied to the stream, the

wizard accesses the XML/HTML stream (prompting the developer for sample form

values if necessary). The resulting sample XML/HTML stream is shown in a

searchable XML tree. Through the wizard, the developer can perform the following

actions:

1. Leave the XML stream unprocessed and have the service response be the

original stream.

2. Select a node in the XML tree and have the service response be an XML Element

corresponding to that node.
11-2 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
3. Select a node in the XML tree and define through the wizard a simple

transformation for it. The service response will be the result of that

transformation. Optionally, the same transformation can be applied to all the

siblings of the selected node.

The wizard allows developers to create multi-operation services by repeating the

steps described previously for each operation.

Upon completion of the steps described previously, the Web Service HTML/XML

Stream Processing Wizard generates a JavaBean and an EJB whose methods

perform the appropriate HTTP request and processing of the XML or HTML

response. If it is necessary to support multi-operation services, then the generated

stub keeps the HTTP session information in its state, and the generated stub is

modeled as a stateful session EJB user option. The resulting Java code is then

compiled and archived, creating the required .ear file that the developer can

immediately deploy in Oracle9iAS.

Sample Use Scenarios
This section describes two sample use cases for a better understanding of how to

use the Web Service HTML/XML Stream Processing Wizard.

Handling an XML or HTML Stream Accessed Through a Static URL
The following steps generate the Java stubs that consume a static XML or HTML

stream.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the

following command:

java -jar WebServicesHtmlXmlWizard.jar

Note: JavaScript code contained in HTML streams will be ignored

and not processed.

Note: The WebServicesHtmlXmlWizard.jar file is located in your

$ORACLE_HOME/webservices/lib Oracle9iAS installation

directory for UNIX or %ORACLE_HOME%\webservices\lib
Oracle9iAS installation directory for Windows.
Consuming Web Services in J2EE Applications 11-3

Consuming XML or HTML Streams in J2EE Applications
2. In Step 1 of 5: HTML/XML Stream Type, select the first option Through a
static HTTP/S URL, then click Next to continue to the next step.

3. In Step 2 of 5: HTML/XML Stream URL, enter the URL of the HTML page in

which you want to access the resource. Accept the default stream content type,

HTML Format. If the stream content type is XML, then select the XML Format

content type.
11-4 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
If you must access the URL from outside a firewall, click Advanced Settings.

For this example, assume you must go through a firewall to access the desired

URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a

checkmark in the box, then enter the host address and port number for your

proxy server. Click OK to return to the HTML/XML Stream URL window.

Click Next to continue to the next step.
Consuming Web Services in J2EE Applications 11-5

Consuming XML or HTML Streams in J2EE Applications
5. In Step 3 of 5: Result Node, the HTML/XML Stream tree is shown in the

HTML/XML Stream section. Ignore this HTML/XML stream tree for now.

Note: If the URL you are accessing requires basic HTTP

authentication, select Use credential information in request, then

enter the user name and password in the Credential section of the

Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,

use the Oracle Wallet section of the Advanced Settings pop-up

window to enter the Wallet location.
11-6 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Note: You may need to move your mouse to the bottom of the

wizard window, grab the edge (note the double-headed, vertically

oriented arrow), and pull the window down to expand it so you

can see the Service Response Tree pane.

Note: If the original HTML/XML stream was in HTML, the

wizard first converts it into XHTML (making it a valid XML

document), and then shows its structure in the tree.
Consuming Web Services in J2EE Applications 11-7

Consuming XML or HTML Streams in J2EE Applications
Then, for the Web Service Response section, select how you want to build the

Web Service response; you can select one of two options:

■ Return the entire HTML/XML stream as the Web service response

■ Define the Web service response from the selected node

For this sample use, you want to take the entire page content as the Web page

content, therefore, select the first option, Return the entire HTML/XML stream
as the Web service response.

Click Next to continue to the next step.

6. In Step 4 of 4: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then

you will see only the EJB method name. You need to enter only the EJB method

name and click Finish to complete the operation of creating your EJB method.

If this is the second or subsequent HTML or XML stream you are processing in

this session, then the suggested EJB method information is displayed for your

EJB method, describing the name for the J2EE application, the EJB name, the

name of the service package, and the name of the service class. By default, the

names are preselected based on the information that is already known.

If you want to retain this suggested EJB method information and display it in

the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (checkmarked). If not, deselect

this option and the EJB method information that appeared previously will be

displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;

however, in the final step (Console window), you can change these names.

Note: If you select the Define the Web service response from the
selected node option, a Service Response Fields window displays.

This option lets you finalize the output extracting process by letting

you select elements of interest to be outputs and assign names to

the output fields. See list item number 8 on page 11-24 for more

information about the Service Response Fields window.
11-8 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Enter an EJB method name, then click Finish to continue to the next step.

7. In the final step, the Console window, you see the main window of the Web

Service HTML/XML Stream Processing Wizard that always remains in view

once you reach this step of creating an EJB method.

Note: Once you click Finish on the Summary window, you

cannot return to a previous step. You really are finished with the

process of creating an EJB method that will access and process the

specified XML or HTML stream.
Consuming Web Services in J2EE Applications 11-9

Consuming XML or HTML Streams in J2EE Applications
The Console window is divided into three sections: EJB Definition, EJB

Methods, and Save Location.
11-10 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
EJB Definition Section
The EJB Definition section contains the default EJB definition for your current EJB

consisting of the J2EE application name, the EJB name, the service package name,

and the service class name. You can change any of these definition names by placing

the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by

selecting the Use current proxy and wallet settings for the generated EJB option.

By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 5: HTML/XML
Stream Type window where you can begin again the process of adding another EJB

method definition that accesses an HTML or XML stream through the HTTP/S

protocol.

If you select an EJB method and click Remove, the highlighted EJB method is

removed. Note that there is a confirmation window that pops up as part of this

operation.

If you select an EJB method name and click Rename, a Rename pop-up window

lets you rename the EJB method. You can click OK to complete the rename

operation and return to the Console window, or you can click Cancel to cancel this

rename operation and return to the Console window.

Save Location Section
The Save Location section lets you specify where you want the generated EJB

method to be saved. You can either enter a drive and directory name or browse to

the desired location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter

the directory name where you want to save your generated EJB. You can optionally

browse to this directory location and select it, or browse to the desired directory and

create a new directory name.

Select the Make the generated EJB stateful option if you are creating a

multi-operational service. When you create a multi-operational service, which

needs to maintain a conversational state with the remote HTTP server across
Consuming Web Services in J2EE Applications 11-11

Consuming XML or HTML Streams in J2EE Applications
method calls, you must access other site content and perform the defined

processing. In addition, keep the HTTP/S session information in its state so other

method calls can share the same session information. The generated Java stub will

then be modeled as a stateful session EJB.

An example of a multioperational service would be one operation that includes the

login methods for HTTP or HTTPS authentication. A second operation would

include the methods that scrape the Web site to which you were granted access

through login authentication. In this case, method calls for both operations share the

same session information.

For this sample use, leave the Make the generated EJB stateful box without a

checkmark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add the EJB Methods section, which

starts you again at Step 1 of the wizard, the HTML/XML Stream Type window.

The Web Service HTML/XML Stream Processing Wizard generates the following

sets of files located within the destination directory name you specified in the

Console window. The wizard will save the generated files using the following

directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

■ An .ear file (which is a JAR containing the J2EE application that can be

deployed in Oracle9iAS) is located within the parent directory you specified in

Step 7. The .ear file contains the generated EJB, JAR, and XML files for your

application, where the application.xml file located in the

/deploy/META-INF directory for UNIX or the \deploy\META-INF directory

for Windows serves as the EAR manifest file.
11-12 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
■ A JAR file, containing your EJB application class files is located within the

/deploy directory for UNIX or the \deploy directory for Windows. The JAR

file includes all EJB application class files and the deployment descriptor file.

■ A standard J2EE EJB deployment descriptor (ejb-jar.xml), for all the beans

in the module, is located within the /classes/META-INF directory for UNIX

or the \classes\META-INF directory for Windows. The XML deployment

descriptor describes the application components and provides additional

information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java

applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is

contained in subdirectories according to their Java package names.

■ The /classes directory for UNIX or the \classes directory for Windows

contains the compiled generated classes and additional XML resources used by

the generated code.

The following code is generated in the src/com/oracle/www/Class1.java file

on UNIX or the src\com\oracle\www\Class1.java file on Windows showing

the remote interface (Class1) of the generated EJB. In this case, a method (news)

with no parameters that return an org.wc3.dom.Element is generated because the

HTML stream was selected as a static HTML page.

public interface Class1 extends EJBObject
{
 public org.w3c.dom.Element news()
 throws RemoteException;
}

Handling an XML or HTML Stream Accessed Through a Form
The following steps generate the Java stubs that consume a dynamic XML or HTML

stream requiring a form to be submitted.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the

following command:

java -jar WebServicesHtmlXmlWizard.jar
Consuming Web Services in J2EE Applications 11-13

Consuming XML or HTML Streams in J2EE Applications
2. In Step 1 of 5: HTML/XML Stream Type, select the second option, Submitting
a form defined in an HTML page, then click Next to continue to the next step.

Note that you can optionally select the Submitting a custom form option if you

must customize the form to allow for variables such as where the Web server

offers a certain action, but the corresponding form is not provided in the HTML

page.

3. In Step 2 of 7: HTML/XML Stream URL, enter the URL of the HTML page

from which you want to access the resource.

Note: The WebServicesHtmlXmlWizard.jar file is located in your

$ORACLE_HOME/webservices/lib Oracle9iAS installation

directory for UNIX or %ORACLE_HOME\webservices\lib
Oracle9iAS installation directory for Windows.
11-14 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
If you must access the URL from outside a firewall, click Advanced Settings.

For this example, assume you must go through a firewall to access the desired

URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a

checkmark in the box, then enter the host address and port number for you

proxy server. Click OK to return to the HTML/XML Stream URL window.

Click Next to continue to the next step.
Consuming Web Services in J2EE Applications 11-15

Consuming XML or HTML Streams in J2EE Applications
5. In Step 3 of 7: HTML Form, the Web Service HTML/XML Stream Processing

Wizard identifies all HTML forms on the Web page. For this sample use, the

Note: If the URL you are accessing requires basic HTTP

authentication, select Use credential information in request, then

enter the user name and password in the Credential section of the

Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,

use the Oracle Wallet section of the Advanced Settings pop-up

window to enter the Wallet location.
11-16 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Form field shows just one form, the default form name, Form1 and the Action
field shows the HTML form action. In the Content Type field, the default is

HTML Format. This specifies the content type of the page returned by the

remote server upon the submission of the form. If the content type is XML, then

select XML Format. Accept the default content type as HTML format.

Note: If you are submitting a custom form, there is no need to

specify an action.
Consuming Web Services in J2EE Applications 11-17

Consuming XML or HTML Streams in J2EE Applications
In the form query parameters section, checkmark the names of the query

parameters and add descriptive names as needed in the Descriptive Names
column for each query parameter. Descriptive names are used as the name of

the parameter in the signature of the method being defined. For query

parameters that should remain hidden, click the appropriate row and column to

change the default value from unchecked to checked. Note that for each hidden

query parameter, you must also enter a default value. Hidden parameters are

not exposed as Java parameters in the signature of the method being defined.

When you have made all the necessary changes, click Next to continue to the

next step.

6. In Step 4 of 7: Sample Input, you must enter sample input to your service in

order to generate the response message syntax. The default values for all the

hidden query form parameters specified in the previous step, Step 3 of 7 HTML

Form, are used as sample input. Add or edit the sample input values for all

required query form parameters in the Value fields for each parameter.
11-18 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
If you want to check your Web proxy information, enter basic HTTP

authentication information, or enter basic HTTPS authentication information,

click Advanced Settings and enter or edit the desired information.

Click Next to continue to the next step.

7. In Step 5 of 7: Result Node, the HTML/XML stream tree is shown in the

HTML/XML Stream section.

Note: You may need to resize the window vertically so you can

see the HTML/XML Stream Tree pane.
Consuming Web Services in J2EE Applications 11-19

Consuming XML or HTML Streams in J2EE Applications
The Result Node window shows the structure of the HTML or XML stream as

an HTML/XML stream tree and lets you define your Web Service response

based on the contents of the HTML/XML stream.

You have two options in defining your Web Service response:

■ To select the entire HTML/XML stream to be part of your Web Service

response.

■ To select just the node that contains the complete set of service results in the

HTML/XML stream and define this to be the Web Service response.

Optionally, you can also include in the Web Service response all siblings of

the selected node.
11-20 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
The Web Service Response section lets you define the Web Service response as

either the entire HTML/XML stream or as the parent node you selected in the

HTML/XML Stream section. If the parent node contains siblings, you can

optionally select them all to be included in the Web Service response. If you

choose to include all the siblings, you can click Advanced Settings to display

the Advanced Settings pop-up window where you can enter a predicate that

filters the set of sibling nodes, view the resulting Xpath, and view or edit the

Response element name.

If you want to select the entire HTML/XML stream to be part of your Web

Service response, select the first option Return the entire HTML/XML Stream
as the Web service response, then click Next at the bottom of the window to

continue to the next step.

If you want to select just the node that contains the complete set of information

you are interested in, select the second option Define the Web service response
from the selected node. Then, navigate to the node you want by moving down

the HTML/XML stream tree.

You can quickly locate the desired element in the HTML/XML stream tree by

entering its name in the Find field and clicking Next at the end of this field. The

name of the element is highlighted in the HTML/XML stream tree. You can go

to the next or previous occurrence of this element by clicking Next or Previous
the end of the Find field.

From the highlighted element, navigate toward the root of the tree to the node

that contains the complete set of information in which you are interested. The

node of interest is usually the next lowest table row node (xhtml:tr) that is

within a different table; it is usually located one level lower toward the root of

the tree.

Figure 11–1 and Figure 11–2 together show an excerpt of what the xhtml tree

would appear like when expanded. The selected node xhtml:tr is located in

the next lower table node, which is one level lower than the xhtml:tr nodes

for ORCL and its two siblings AAPL and IBM.
Consuming Web Services in J2EE Applications 11-21

Consuming XML or HTML Streams in J2EE Applications
Figure 11–1 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part1)
11-22 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Figure 11–2 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part 2)

Note that the Node Location field contains the complete name of the node you

selected.

When you select the option Define the Web service response from the selected
node, another option is now available and that is whether or not to include all

the siblings of the selected node in the response.

If the node you selected has siblings that you want to include in the Web Service

response, select the option Include all the siblings of the selected node in the
response. When you make this selection, an Advanced Settings button enables.

Click Advanced Settings to display the Advanced Settings pop-up window

where you can enter a predicate that filters the set of sibling nodes, view the

resulting Xpath, and view or edit the Response element name.

The following predicate filters out the first position: position() != 1. Enter this

predicate expression in the Predicate that filters the set of sibling nodes field

of the Advanced Settings pop-up window to filter the first sibling from the

Web Service response.
Consuming Web Services in J2EE Applications 11-23

Consuming XML or HTML Streams in J2EE Applications
For more information about predicates, filters, syntax, and composing a

predicate expression, see the Xpath section of the following Web site:

http://www.w3c.org/TR/xpath .

Then, click OK to return to the Result Node window.

Click Next to continue to the next step.

8. In Step 6 of 7: Service Response Fields, you are finalizing the output extracting

process. Based on the selected element from Step 5 of 7 Result Node, you can

select elements of interest to be outputs and assign names to the output fields.
11-24 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Service Response Field Names are mapped to XML Element names of the

service response. By default, the value of each node selected in the HTML/XML

stream is contained in an XML Element name as specified in the Service
Response Fields table. For example, if the <a>test node from the

HTML/XML stream tree is added to the Service Response Fields pane, the

service response then contains an XML Element such as <respA>test</respA>,

where respA is the corresponding service response field name. The value of the

node is extracted using the XSLT value-of operation.

If the copy-of column is selected for a result field, the corresponding

XML/HTML stream node is copied in the service response. For example, if the

<a>test node from the HTML/XML stream tree is added to the Service
Response Fields pane and the copy-of option is selected, the service response

then contains an XML Element, such as <respA><a>test</respA>, where

respA is the corresponding service response field name. The copy of a node is

built using the XSLT copy-of operation as shown in the following code example

taken from a generated XSL stylesheet. In this example, <resp:Stockquote>
and <resp:Price> are the corresponding service response field names

showing the copy of a node that was built using the XSLT copy-of operation

where the Copy-of column option was selected.

- <resp:Stockquote>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[2]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[2]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>
- <resp:Stockquote>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[3]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[3]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>
- <resp:Stockquote>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[4]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of select="./xhtml:td/xhtml:table/xhtml:tr[4]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>

In the HTML/XML Response Tree pane, navigate to the node that contains the

value of the service response field of interest and select the value to highlight it.

Then, click the double, right-arrow to the right of this HTML/XML Response
Tree pane to move the value of the response field to the lower right Sample
Response Field Value pane. This action also adds a row to the Service
Consuming Web Services in J2EE Applications 11-25

Consuming XML or HTML Streams in J2EE Applications
Response Fields list in the upper right Service Response Fields pane. Select

the empty field in the Name column of the Service Response Fields pane and

enter a descriptive name for this field. Repeat this process for each element that

you want to include in the service response. As you follow this process, you

will be building a list of response fields of interest in the Service Response
Fields list.

If you want to remove a service response field from the Service Response
Fields list, select the value of the name in the Service Response Fields pane

and click the double, left-arrow to the left side of this pane. This action removes

this service response field from the Service Response Fields list.

When you have made all your selections, click Next to continue to the next step.

9. In Step 7 of 7: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then

you will see only the EJB method name.

If this is the second or subsequent HTML or XML stream you are processing in

this session, then the suggested EJB method information is displayed for your

EJB method, describing the name for the J2EE Application, the EJB Name, the

name of the service package, and the name of the service class. By default, the

names are preselected based on the known information.

If you want to retain this suggested EJB method information and display it in

the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (with a check mark). If not,

deselect this option and the EJB method information that appeared previously

will be displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;

however, in the final step (Console window), you can change these values.
11-26 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Enter an EJB method name, then click Finish to continue to the next step.

10. In the final step, the Console window, you see the main window of the Web

Service HTML/XML Stream Processing Wizard that remains in view once you

reach this step of creating an EJB.

Note: Once you click Finish on the Summary window, you

cannot return to a previous step. You really are finished with the

process of creating an EJB method whose methods will access and

process the specified XML or HTML stream.
Consuming Web Services in J2EE Applications 11-27

Consuming XML or HTML Streams in J2EE Applications
The Console window is divided into three sections: EJB Definition, EJB

Methods, and Save Location.
11-28 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
EJB Definition Section
The EJB Definition section contains the EJB definition for your current EJB

consisting of the J2EE application name, the EJB name, the service package name,

and the service class name. You can change any of these definition names by placing

the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by

selecting the Use current proxy and wallet settings for the generated EJB option.

By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 7: HTML/XML
Stream Type window where you can begin again the process of adding another EJB

method definition that accesses an HTML or XML stream through the HTTP/S

protocol.

If you select an EJB method and click Remove, the highlighted EJB method is

removed. Note that there is a confirmation window that pops up as part of this

operation.

If you select an EJB method name and click Rename, a Rename pop-up window

lets you rename the EJB method. You can click OK to complete the rename

operation and return to the Console window, or you can click Cancel to cancel this

rename operation and return to the Console window.

Save Location Section
The Save Location section lets you specify where you want the generated EJB

method to be saved. You can either enter a drive and directory name or browse to

the location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter

the directory name where you want to save your generated EJB. You can optionally

browse to this desired directory location and select it, or browse to the desired

directory and create a new directory name.

Select the Make the generated EJB stateful option if you are creating a

multi-operational service. When you create a multi-operational service, which

needs to maintain a conversational state with the client across method calls, you
Consuming Web Services in J2EE Applications 11-29

Consuming XML or HTML Streams in J2EE Applications
must access other site content and perform the defined processing. In addition, keep

the HTTP/S session information in its state so other method calls can share the

same session information. The generated Java stub will then be modeled as a

stateful session EJB.

For this sample use, leave the Make the generated EJB stateful box without a check

mark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add in the EJB Methods section,

which starts you again at Step 1 of the wizard, Step 1 of 7: HTML/XML Stream

Type.

The Web Service HTML/XML Stream Processing Wizard generates the following

sets of files located within the parent directory name you specified in the last step,

the Console window. The wizard will save the generated files using the following

directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

■ An .ear file (which is a JAR containing the J2EE application that can be

deployed in Oracle9iAS) is located within the parent directory you specified in

the last step, the Console window. The .ear file contains the generated EJB, JAR,

and XML files for your application, where the application.xml file located

in the /deploy/META-INF directory for UNIX or the \deploy\META-INF
directory for Windows serves as the EAR manifest file.

■ A JAR file, containing your EJB application class files, is located within the

/deploy directory for UNIX or the \deploy directory for Windows. The JAR

file includes all EJB application class files and the deployment descriptor file.
11-30 Oracle9i Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
■ A standard J2EE EJB deployment descriptor (ejb-jar.xml), for all the beans

in the module, is located within the /classes/META-INF directory for UNIX

or the \classes\META-INF directory for Windows. The XML deployment

descriptor describes the application components and provides additional

information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java

applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is

contained in subdirectories according to their Java package names.

■ The /classes directory for UNIX or the \classes directory for Windows

contains the compiled generated classes and additional XML resources used by

the generated code.

The following code is generated in the <class-name> .java file showing the

remote interface (stockquote) of the generated EJB. In this case, a method

(stockquote1) with parameters (Stockquote and h) for each non-hidden form

parameter that returns an org.wc3.dom.Element is generated. This stockquote1

method is generated because the HTML stream was selected as being dynamically

generated based on a submitted form defined in the HTML page.

public interface stockquote extends EJBObject
{
 public org.w3c.dom.Element stockquote1(java.lang.String Stockquote,
 java.lang.String Value)
 throws RemoteException;
}

Advanced Section -- Editing Changes You Can Make to Generated Files
The following sections describe some changes you can make by editing the content

of specific generated files. These changes can adapt your XSLT stylesheet to an

enhanced response definition or satisfy changing requirements for using your

generated EJB with another Web proxy server.
Consuming Web Services in J2EE Applications 11-31

Consuming XML or HTML Streams in J2EE Applications
Editing the Generated XSLT Stylesheet
The generated <class-name> .jar file, located in the last child <class-name>
directory within the /classes directory on UNIX or \classes on Windows,

contains three files:

■ Sample output response XML file returned by the remote server

■ Output response XSLT stylesheet file used for the scraping process

■ XML response schema XSD file used for the returned response during the

wizard session

During runtime operations, the XML response returned by the remote server upon

access of the XML URL or the submission of a form, is filtered through the XSLT

transformation defined in this stylesheet.

You can edit the filtering stylesheet XSLT file to add logic or to change the behavior

of your application. You can make comparable edits to the output response XML

XSD file to custom adapt your response file for your J2EE application. You must

know how to modify stylesheets and response definition files to complete these

changes successfully.

When you have completed your changes to the response stylesheet and response

XML files and saved your changes, you must do the following:

■ Rejar your <class-name> .jar file in the deploy directory.

■ Rejar your EJB JAR file by jarring the content of the classes directory.

■ Rejar the defined EAR file saved in the tool destination directory, by jarring the

content of the deploy directory.

Modifying Environment Options in the Generated ejb-jar.xml File
The generated ejb-jar.xml file is located in the /classes/META-INF directory

on UNIX or \classes\META-INF directory on Windows directly below the root

directory where you saved your generated EJB. This file contains an environment

section denoted by <env-entry> and </env-entry> tags where the Web proxy

information is stored. Once you generate your EJB, you can later edit this

ejb-jar.xml file to modify your Web proxy settings (host address name and port

number) to satisfy any requirements you might have for using your generated EJB

with other Web proxy servers. You must jar your ejb jar and ear file again and

redeploy them in your J2EE application server.
11-32 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
Consuming SOAP-Based Web Services Using WSDL
The wsdl2ejb utility can be used by J2EE developers to consume a Web Service

described in Web Services Description Language (WSDL) document into their

applications. This utility takes a WSDL document and some additional optional

parameters and produces an EJB EAR file that can be deployed into Oracle9iAS

OC4J. The EJB Remote Interface is generated based on the WSDL portType. Each

WSDL operation is mapped to an EJB method. The EJB method parameters are

derived from the WSDL operation input message parts, while the EJB method

return value is mapped from the parts of the WSDL operation output message. The

Oracle Simple Open Access Protocol (SOAP) Mapping Registry is used to map XML

types to the corresponding Java types.

Additional references regarding WSDL and SOAP can be found in the following

locations:

■ The WSDL 1.1 specification is available at

http://www.w3.org/TR/wsdl

■ The SOAP 1.1 specification is available at

http://www.w3.org/TR/SOAP/

The command-line options for running the wsdl2ejb utility are described in

Table 11–1.

Table 11–1 wsdl2ejb Utility Command-Line Options

Option Description

-conf <config file> Allows the wsdl2ejb utility to load a configuration file.

-d <destDir> Allows a destination directory to be specified where the
generated EJB EAR file is to be written.

-Dhttp.proxyHost Allows the proxy host name to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-Dhttp.proxyPort Allows the proxy port number to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-jar Allows you to specify the wsdl2ejb utility as a JAR file.
Consuming Web Services in J2EE Applications 11-33

Consuming SOAP-Based Web Services Using WSDL
To run the wsdl2ejb utility, enter the following command where <destDir> is

the destination directory to where the generated EJB EAR file is to be written and

the file mydoc.wsdl is the location of the WSDL document:

java -jar wsdl2ejb.jar -d <destDir> mydoc.wsdl

If an HTTP URL is used to supply the location of the WSDL document and an

HTTP proxy is required to access it, the following command and syntax must be

used to run the utility:

java -Dhttp.ProxyHost=myProxyHost -Dhttp.proxyPort=80 -jar wsdl2ejb.jar -d
<destDir> http://myhost/mydoc.wsdl

In this example, the utility uses the supplied WSDL to generate the EJB EAR file in

the destination directory (<destDir>). The EJB class name, Java Naming and

Directory Interface (JNDI) binding key, and Java package name are derived from the

location of the SOAP service described in the WSDL.

In this command syntax, the wsdl2ejb utility maps the XML types, which are

supported by default by the Oracle SOAP Mapping Registry.

The wsdl2ejb utility generates the following sets of files located within the

destination directory name (<destDir>) that you specify in the command line. The

utility saves the generated files using the following directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

Note: The wsdl2ejb.jar file is located in your $ORACLE_
HOME/webservices/lib Oracle9iAS installation directory for

UNIX or %ORACLE_HOME\webservices\lib Oracle9iAS

installation directory for Windows.
11-34 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
■ An .ear file (which is a JAR archive containing the J2EE application that can be

deployed in Oracle9iAS) is located within the destination directory

(<destDir>) you specified in the command line. The .ear file contains the

generated EJB, JAR, and XML files for your application, where the

application.xml file located in the /deploy/META-INF directory for UNIX

or the \deploy\META-INF directory for Windows serves as the EAR manifest

file.

■ An archive JAR file containing your EJB application class files is located within

the /deploy directory for UNIX or the \deploy directory for Windows. The

JAR file includes all EJB application class files and the deployment descriptor

file.

■ A standard J2EE EJB deployment descriptor (ejb-jar.xml) for the generated

bean in the module is located within the /classes/META-INF directory for

UNIX or the \classes\META-INF directory for Windows. The XML

deployment descriptor describes the application components and provides

additional information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java

applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is

contained in subdirectories according to their Java package name. An EJB client

stub is also generated.

■ The /classes directory for UNIX or the \classes directory for Windows

contains the compiled generated classes and additional XML resources used by

the generated code.

Advanced Configuration
To have more controls on the EJB generated from a WSDL document, an XML

configuration file can be supplied to the wsdl2ejb utility. Through the

configuration file, developers can control several options on the WSDL source, as

well as options on the generated EJB.

Developers can also use the configuration file to supply additional xml to Java type

maps, so that WSDL documents using complex types can be supported.

The syntax of the wsdl2ejb configuration file is shown in its Document Type

Definition (DTD) as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Specify the properties of the source WSDL document and of the target EJB. -->
<!ELEMENT wsdl2ejb (useProxy?, useWallet?, wsdl, ejb?, mapTypes?)>
Consuming Web Services in J2EE Applications 11-35

Consuming SOAP-Based Web Services Using WSDL
<!-- Specify if the generated EJB should use the supplied HTTP proxy when accessing HTTP URLs -->
<!ELEMENT useProxy (#PCDATA)>
<!ATTLIST useProxy
 proxyHost CDATA #REQUIRED
 proxyPort CDATA #REQUIRED>

<!-- Specify the location of the wallet credential file used by the generated EJB for opening HTTPS
connection -->
<!ELEMENT useWallet (#PCDATA)>
<!ATTLIST useWallet
 location CDATA #REQUIRED>

<!--
 Specify how the wsdl2ejb tools should process the source WSDL document.
 In additional to the mandatory location of the WSDL document, the name of the WSDL service and
 its port can be specified. In this case, an EJB will be generated only for the supplied service and
 port.
 An alternative: the name of a WSDL service binding and the SOAP location to be used can be supplied.
 In the latter case, an EJB using the specified binding and the supplied SOAP location will be used.
 This is particularly useful when generating an EJB from a WSDL stored in a UDDI registry.
 In fact, following a UDDI best practice, the WSDL SOAP location will be managed separately from the
 WSDL document.
 -->
<!ELEMENT wsdl (location, ((service-name, service-port) | (service-binding, soap-location))?)>

<!-- Specify the location of the source WSDL document (for example, "/home/mywsdl.wsdl",
"http://myhost/mywsdl.wsdl") -->
<!ELEMENT location (#PCDATA)>

<!-- Specify the name of the WSDL service to be used for the generation.
 It is the name of one of the services defined in the source WSDL. -->
<!ELEMENT service-name (#PCDATA)>

<!-- Specify the service port of the WSDL service to be used for the generation.
 It is the name of one ports of the service name defined above in the source WSDL. -->
<!ELEMENT service-port (#PCDATA)>

<!-- Specify the name of the WSDL binding to be used for the generation.
 It is the name of one of the bindings defined in the source WSDL. -->
<!ELEMENT service-binding (#PCDATA)>

<!-- Specify the SOAP location service port of the WSDL service to be used for the generation.
 It is the name of one ports of the service name defined above in the source WSDL. -->
<!ELEMENT soap-location (#PCDATA)>

<!-- Specify the properties related to the generated EJB. -->
11-36 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
<!ELEMENT ejb (application-name?, ejb-name?, package-name?, remote-name?, session-type?)>

<!-- Specify the name of the J2EE application for the generated EAR. -->
<!ELEMENT application-name (#PCDATA)>

<!-- Specify the JNDI binding key name for the generated EJB. -->
<!ELEMENT ejb-name (#PCDATA)>

<!-- Specify the name for Java package under which the generated EJB will belong. (for example, com.oracle)
-->
<!ELEMENT package-name (#PCDATA)>

<!-- Specify the class name for the EJB Remote Interface (for example, MyWsdlEjb) -->
<!ELEMENT remote-name (#PCDATA)>

<!-- Specify the if the generated EJB should be stateless or stateful (for example, Stateless | Stateful)
-->
<!ELEMENT session-type (#PCDATA)>

<!--
 Specify the custom Java types and map them to XML types.
 The JAR attribute value will point to a JAR file containing the defintion of the custom
 types or the serializer/deserializer to be used for the custom type.
-->
<!ELEMENT mapTypes (map*)>
<!ATTLIST mapTypes
 jar CDATA #IMPLED>

!--
 Specify a new XML to JAR type map.
 EncodingStyle: name of the encodingStyle under which this map will belong
 (for example, http://schemas.xmlsoap.org/soap/encoding/)
 namespace-uri : uri of the namespace for the XML type defined in this map
 local-name : localname of the XML type defined in this map
 java-type : Java class name to which this type is mapped to (for example, com.org.MyBean)
 java2xml-class-name: Java class name of the type serializer
 (for example, org.apache.soap.encoding.soapenc.BeanSerializer)
 xml2java-class-name: Java class name of the type deserializer
 (for example, org.apache.soap.encoding.soapenc.BeanSerializer)
-->
<!ELEMENT map (#PCDATA)>
<!ATTLIST map
 encodingStyle CDATA #REQUIRED
 namespace-uri CDATA #REQUIRED
 local-name CDATA #REQUIRED
 java-type CDATA #REQUIRED
 java2xml-class-name CDATA #REQUIRED
 xml2java-class-name CDATA #REQUIRED>
Consuming Web Services in J2EE Applications 11-37

Consuming SOAP-Based Web Services Using WSDL
Table 11–2 describes the elements, subelements, and attributes of the wsdl2ejb
XML configuration file as defined in the DTD. Required elements and attributes are

shown as bold text.

Table 11–2 Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as Defined
in the DTD

Element Subelement Attribute Description

useProxy Optional element. Specifies the proxy server attributes.

proxyHost Required attribute. Specifies the host name of the proxy
server.

proxyPort Required attribute. Specifies the port number of the proxy
server.

useWallet Optional element. Specifies the Oracle Wallet attribute.

location Required attribute. Specifies the location of the Oracle
Wallet credential file used by the EJB for opening the
HTTPS connection.

wsdl Required element. Specifies how the wsdl2ejb utility
should process the source WSDL document. Requires the
location element be specified and optionally, either the
service-name and service-port pair of elements or the
service-binding and soap-location pair of elements be
specified.

location Required element. Specifies the location of the source
WSDL document. Can be a file path or an URL.

service-name Optional element. Specifies the name of the WSDL service
to be used for the generated EJB. If specified, must be
specified with the service-port element as a pair of
elements.

service-port Optional element. Specifies the service port of the WSDL
service to be used for the generated EJB. If specified, must
be specified with the service-name element as a pair of
elements.

service-binding Optional element. Specifies the name of the WSDL binding
to be used for the generated EJB. If specified, must be
specified with the soap-location element as a pair of
elements.

soap-location Optional element. Specifies the SOAP location service port
of the WSDL service to be used for the generated EJB. If
specified, must be specified with the service-binding
element as a pair of elements.
11-38 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
Developers can run the wsdl2ejb utility with a configuration file using the

following command:

java -jar wsdl2ejb.jar -conf wsdlconf.xml

ejb Optional element. Specifies the properties related to the
generated EJB.

application-name Optional element. Specifies the name of the J2EE
application for the generated EAR file.

ejb-name Optional element. Specifies the JNDI binding key name for
the generated EJB.

package-name Optional element. Specifies the name for the Java package
under which the generated EJB belongs.

remote-name Optional element. Specifies the class name for the EJB
Remote Interface.

session-type Optional element. Specifies whether the generated EJB
should be stateless or stateful.

mapTypes Optional element. Specifies the custom Java types and
maps them to XML types.

map Optional element. Specifies the XML to JAR type map.

encodingStyle Required attribute. Specifies the name of the encoding
style under which this map belongs.

namespace-uri Required attribute. Specifies the URI of the namespace for
the XML type defined in this map.

local-name Required attribute. Specified the local name of the XML
type defined in this map.

java-type Required attribute. Specifies the Java class name to which
this type is mapped.

java2xml-class-name Required attribute. Specifies the Java class name of the
type serializer.

xml2java-class-name Required attribute. Specifies the Java class name of the
type deserializer.

Table 11–2 (Cont.) Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as
Defined in the DTD

Element Subelement Attribute Description
Consuming Web Services in J2EE Applications 11-39

Consuming SOAP-Based Web Services Using WSDL
Supported WSDL Documents
The wsdl2ejb utility supports most WSDL documents using SOAP binding. This

support includes both Remote Procedure Call (RPC) and document style documents

as well as types that are encoded or literal. Table 11–3 shows how the supported

XML Schema types are mapped to the corresponding Java type by default. Any

other required type will have to be supported though the custom type mapping

described previously.

Known Limitations of the wsdl2ejb Utility
The following information describes the known limitations of the wsdl2ejb utility:

■ Supports only types defined by the W3C recommendation XML schema version

whose namespace is: http://www.w3.org/2001/XMLSchema

■ Supports only the One-way and Request-Response transmission primitives

defined in the WSDL 1.1 specification.

Table 11–3 Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type Corresponding Java Type

string java.lang.String

int int

decimal BigDecimal

float float

double double

Boolean Boolean

long long

short short

byte byte

date GregorianCalendar

timeInstant java.util.Date

Note: Arrays of supported types, shown in Table 11–3 are also

supported.
11-40 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
■ Does not support WSDL documents that use the <import> tag to include other

WSDL documents.

■ Does not support HTTP, MIME, or any other custom bindings.

Running the Demonstration
The wsdl2ejb demo directory contains examples on how to use the wsdl2ejb
utility. All the commands are assumed to be executed from the $ORACLE_

HOME/webservices/demo/basic/wsdl2ejb directory. The demonstration

(demo) will use some sample WSDL documents as sources and generate EJB that

can be used to invoke the Web Service operations.

The demos can be run using Jakarta ant. Review the build.xml file to make sure

that the initial properties (RMI_HOST, RMI_PORT, RMI_ADMIN, RMI_PWD) are

set correctly according to your configuration. The build.xml file will execute the

wsdl2ejb utility on the demo WSDL documents, deploy the generated EJB, and

execute the EJB clients.

The directory structure of the demos is as follows:

demo/web_services/wsdl2ejb:
 - README.txt : Readme file
 - build.xml : Jakarta ant build file to run all the demos
 - rpc_doc : directory for simple RPC and document style operations
 - rpc_doc_conf.xml : wsdl2ejb configuration file for the rpc_doc demo
 - TestRpcDocClient.java : client for the rpc_doc demo
 - DocAndRpc.wsdl : sample WSDL for the rpc_doc demo
 - (generated) : directory where the EJB will be generated
 - base
 - base_conf.xml : wsdl2ejb configuration file for the base interoperability demo

Note: If you are executing the demos behind a firewall and need

to set proxy information to access external HTTP sites, make sure

this proxy information is specified in the wsdl2ejb configuration

files (rpc_doc_conf.xml, base_conf.xml).

Note: The demos are based on WSDL/SOAP interoperability test

suites. They access live SOAP services available on the Internet as

SOAP interoperability test cases. The successful execution of these

demos depends on the availability of these services.
Consuming Web Services in J2EE Applications 11-41

Consuming SOAP-Based Web Services Using WSDL
 - TestInteropBaseClient.java : client for the base interoperability demo
 - InteropTest.wsdl : WSDL document for the base interoperability demo
 - MySoapStructBean.java : bean utilized to map the custom type used
 in the example defined in the WSDL document
 - MySoapStructBean.jar : packaged-compiled custom type bean
 - (generated) : directory where the EJB will be generated

RPC and Document Style with Simple Types Example
This example uses a simple WSDL document that shows a couple of operations:

Add and Multiply. Add is using the document-style operation using literal parts,

while Multiply is RPC-style and uses encoded parts.

To generate the EJB stub, use the following command:

On UNIX
cd $ORACLE_HOME/webservices/demo/basic/wsdl2ejb
java -jar ../../../lib/wsdl2ejb.jar -conf rpc_doc/rpc_doc_conf.xml

On Windows
cd %ORACLE_HOME%\webservices\demo\basic\wsdl2ejb
java -jar ..\..\..\lib\wsdl2ejb.jar -conf rpc_doc\rpc_doc_conf.xml

The utility generates the TestApp.ear file containing the definition of a stateless

EJB, which can be used as a proxy for the Web Service. The EAR file can be

deployed in Oracle9iAS OC4J as any standard EJB. Refer to Oracle9iAS Containers for
J2EE User’s Guide for information on how to deploy an EJB.

By looking at the generated EJB Remote Interface, you can see how the WSDL

portType DocAndRpc.wsdl file has been mapped to Java.

WSDL PortType:

 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://soapinterop.org">
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="a" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="b" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="AddResult" type="s:int" />
11-42 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </types>
 <message name="AddSoapIn">
 <part name="parameters" element="s0:Add" />
 </message>
 <message name="AddSoapOut">
 <part name="parameters" element="s0:AddResponse" />
 </message>
 <message name="MultiplySoapIn">
 <part name="a" type="xsd:int" />
 <part name="b" type="xsd:int" />
 </message>
 <message name="MultiplySoapOut">
 <part name="MultiplyResult" type="s:int" />
 </message>
 <portType name="TestSoap">
 <operation name="Add">
 <input message="s0:AddSoapIn" />
 <output message="s0:AddSoapOut" />
 </operation>
 <operation name="Multiply">
 <input message="s0:MultiplySoapIn" />
 <output message="s0:MultiplySoapOut" />
 </operation>
 </portType>

From the Test.java file, the EJB Remote Interface is:

 public org.w3c.dom.Element add(org.w3c.dom.Element parameters)
 throws RemoteException;

 public int multiply(int a, int b)
 throws RemoteException;

When the WSDL operation is using RPC style and its parts are encoded, the parts

XML schema type is mapped to a corresponding Java native type. In this example,

xsd:int is mapped to Java int . In a document style using literal parts, each part

is simply mapped to an org.w3c.dom.Element .

The following client code in the TestRpcDocClient.java file can be used to

invoke the Add and Multiply Web Service operations. The code has been produced

by modifying the client code stub generated by the wsdl2ejb utility.

import java.io.*;
import java.util.*;
Consuming Web Services in J2EE Applications 11-43

Consuming SOAP-Based Web Services Using WSDL
import javax.naming.*;

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

import org.mssoapinterop.asmx.Test;
import org.mssoapinterop.asmx.TestHome;

/**
 * This is a simple client template. To compile it,
 * please include the generated EJB jar file as well as
 * EJB and JNDI libraries in classpath.
 */
public class TestRpcDocClient
{
 // replace the values
 private static String RMI_HOST = "localhost";
 private static String RMI_PORT = "23791";
 private static String RMI_ADMIN = "admin";
 private static String RMI_PWD = "welcome";

 public TestRpcDocClient () {}

 public static void main(String args[]) {

 TestRpcDocClient client = new TestRpcDocClient();

 try {

 RMI_HOST = args[0];
 RMI_PORT = args[1];
 RMI_ADMIN = args[2];
 RMI_PWD = args[3];

 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.evermind.server.rmi.RMIInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, RMI_ADMIN);
 env.put(Context.SECURITY_CREDENTIALS, RMI_PWD);
 env.put(Context.PROVIDER_URL, "ormi://" + RMI_HOST + ":" + RMI_PORT + "/Wsdl2EjbTestApp1");
 Context ctx = new InitialContext(env);
 TestHome home = (TestHome) ctx.lookup("mssoapinterop.org/asmx/DocAndRpc.asmx");

 Test service = home.create();

 // call any of the Remote methods that folllow to access the EJB

 //
 // Add test
 //
11-44 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 Document doc = new XMLDocument();
 Element elAdd = doc.createElementNS("http://soapinterop.org", "s:Add");
 Element elA = doc.createElementNS("http://soapinterop.org", "s:a");
 Element elB = doc.createElementNS("http://soapinterop.org", "s:b");
 elA.appendChild(doc.createTextNode("4"));
 elB.appendChild(doc.createTextNode("3"));
 elAdd.appendChild(elA);
 elAdd.appendChild(elB);
 doc.appendChild(elAdd);

 Element elAddResponse = service.add(elAdd);
 Node tNode = elAddResponse.getFirstChild().getFirstChild();
 System.out.println("AddResponse: "+tNode.getNodeValue());

 //
 // Multiply Test
 //
 int a = 4;
 int b = 3;
 int iMultiplyResponse = service.multiply(a, b);
 System.out.println("MultiplyResponse: "+iMultiplyResponse);

 }
 catch (Throwable ex) {
 ex.printStackTrace();
 }
 }
}

The result of the execution of the client is the following:

AddResponse: 7
MultiplyResponse: 12

Round 2 Interop Services: Base Test Suite Example
This example starts from a subset of the WSDL document defined by the base test

suite of the second round of SOAP interoperability tests. The purpose of this demo

example is to show the usage of built-in types in the SOAP Mapping Registry as

well as how to add custom types mapping.

Start by looking at the WSDL portType in the InteropTest.wsdl file.

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://soapinterop.org/xsd">
Consuming Web Services in J2EE Applications 11-45

Consuming SOAP-Based Web Services Using WSDL
 <complexType name="ArrayOfstring">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfint">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="int[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOffloat">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="float[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfSOAPStruct">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="s:SOAPStruct[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="SOAPStruct">
 <all>
 <element name="varString" type="string"/>
 <element name="varInt" type="int"/>
 <element name="varFloat" type="float"/>
 </all>
 </complexType>
 </schema>
</types>

<message name="echoStringRequest">
 <part name="inputString" type="xsd:string"/>
</message>
<message name="echoStringResponse">
 <part name="return" type="xsd:string"/>
</message>
11-46 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
<message name="echoStringArrayRequest">
 <part name="inputStringArray" type="s:ArrayOfstring"/>
</message>
<message name="echoStringArrayResponse">
 <part name="return" type="s:ArrayOfstring"/>
</message>
<message name="echoIntegerRequest">
 <part name="inputInteger" type="xsd:int"/>
</message>
<message name="echoIntegerResponse">
 <part name="return" type="xsd:int"/>
</message>
<message name="echoIntegerArrayRequest">
 <part name="inputIntegerArray" type="s:ArrayOfint"/>
</message>
<message name="echoIntegerArrayResponse">
 <part name="return" type="s:ArrayOfint"/>
</message>
<message name="echoFloatRequest">
 <part name="inputFloat" type="xsd:float"/>
</message>
<message name="echoFloatResponse">
 <part name="return" type="xsd:float"/>
</message>
<message name="echoFloatArrayRequest">
 <part name="inputFloatArray" type="s:ArrayOffloat"/>
</message>
<message name="echoFloatArrayResponse">
 <part name="return" type="s:ArrayOffloat"/>
</message>
<message name="echoStructRequest">
 <part name="inputStruct" type="s:SOAPStruct"/>
</message>
<message name="echoStructResponse">
 <part name="return" type="s:SOAPStruct"/>
</message>
<message name="echoStructArrayRequest">
 <part name="inputStructArray" type="s:ArrayOfSOAPStruct"/>
</message>
<message name="echoStructArrayResponse">
 <part name="return" type="s:ArrayOfSOAPStruct"/>
</message>
<message name="echoVoidRequest"/>
<message name="echoVoidResponse"/>
<message name="echoBase64Request">
Consuming Web Services in J2EE Applications 11-47

Consuming SOAP-Based Web Services Using WSDL
 <part name="inputBase64" type="xsd:base64Binary"/>
</message>
<message name="echoBase64Response">
 <part name="return" type="xsd:base64Binary"/>
</message>
<message name="echoDateRequest">
 <part name="inputDate" type="xsd:dateTime"/>
</message>
<message name="echoDateResponse">
 <part name="return" type="xsd:dateTime"/>
</message>
<message name="echoDecimalRequest">
 <part name="inputDecimal" type="xsd:decimal"/>
</message>
<message name="echoDecimalResponse">
 <part name="return" type="xsd:decimal"/>
</message>
<message name="echoBooleanRequest">
 <part name="inputBoolean" type="xsd:boolean"/>
</message>
<message name="echoBooleanResponse">
 <part name="return" type="xsd:boolean"/>
</message>

<portType name="InteropTestPortType">
 <operation name="echoString" parameterOrder="inputString">
 <input message="tns:echoStringRequest"/>
 <output message="tns:echoStringResponse"/>
 </operation>
 <operation name="echoStringArray" parameterOrder="inputStringArray">
 <input message="tns:echoStringArrayRequest"/>
 <output message="tns:echoStringArrayResponse"/>
 </operation>
 <operation name="echoInteger" parameterOrder="inputInteger">
 <input message="tns:echoIntegerRequest"/>
 <output message="tns:echoIntegerResponse"/>
 </operation>
 <operation name="echoIntegerArray" parameterOrder="inputIntegerArray">
 <input message="tns:echoIntegerArrayRequest"/>
 <output message="tns:echoIntegerArrayResponse"/>
 </operation>
 <operation name="echoFloat" parameterOrder="inputFloat">
 <input message="tns:echoFloatRequest"/>
 <output message="tns:echoFloatResponse"/>
 </operation>
11-48 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 <operation name="echoFloatArray" parameterOrder="inputFloatArray">
 <input message="tns:echoFloatArrayRequest"/>
 <output message="tns:echoFloatArrayResponse"/>
 </operation>
 <operation name="echoStruct" parameterOrder="inputStruct">
 <input message="tns:echoStructRequest"/>
 <output message="tns:echoStructResponse"/>
 </operation>
 <operation name="echoStructArray" parameterOrder="inputStructArray">
 <input message="tns:echoStructArrayRequest"/>
 <output message="tns:echoStructArrayResponse"/>
 </operation>
 <operation name="echoVoid">
 <input message="tns:echoVoidRequest"/>
 <output message="tns:echoVoidResponse"/>
 </operation>
 <operation name="echoBase64" parameterOrder="inputBase64">
 <input message="tns:echoBase64Request"/>
 <output message="tns:echoBase64Response"/>
 </operation>
 <operation name="echoDate" parameterOrder="inputDate">
 <input message="tns:echoDateRequest"/>
 <output message="tns:echoDateResponse"/>
 </operation>
 <operation name="echoDecimal" parameterOrder="inputDecimal">
 <input message="tns:echoDecimalRequest"/>
 <output message="tns:echoDecimalResponse"/>
 </operation>
 <operation name="echoBoolean" parameterOrder="inputBoolean">
 <input message="tns:echoBooleanRequest"/>
 <output message="tns:echoBooleanResponse"/>
 </operation>
</portType>

Notice that the WSDL document contains more complex types than the previous

demo. Array of primitives types are now used as well as the struct primitive types.

With the exception of the SOAPStruct complex type, every other type is supported

as built-in type in the SOAP Mapping Registry. You then need to add a new

complex type definition to the SOAP Mapping Registry to handle the SOAPStruct

complex type.

The SOAPStruct schema definition is the following:

<complexType name="SOAPStruct">
 <all>
Consuming Web Services in J2EE Applications 11-49

Consuming SOAP-Based Web Services Using WSDL
 <element name="varString" type="string"/>
 <element name="varInt" type="int"/>
 <element name="varFloat" type="float"/>
 </all>
</complexType>

In the MySoapStructBean.java file, this SOAPStruct complex type can be

mapped to a simple JavaBean class such as the following, and have the marshalling

and unmarshalling actions handled by the BeanSerializer.

public class MySoapStructBean implements java.io.Serializable
{
 private String m_varString = null;
 private int m_varInt = 0;
 private float m_varFloat = 0;

 public MySoapStructBean() {}
 public MySoapStructBean(String s, int i, float f) {
 m_varString = s;
 m_varInt = i;
 m_varFloat = f;
 }

 public String getVarString () { return m_varString; }
 public int getVarInt() { return m_varInt; }
 public float getVarFloat() { return m_varFloat; }

 public void setVarString (String s) { m_varString = s; }
 public void setVarInt(int i) { m_varInt = i; }
 public void setVarFloat(float f) { m_varFloat = f; }
}

With the mapping JavaBean class ready, and having identified what serializer and

deserializer to use, you can now configure the wsdl2ejb utility so that a new

schema to Java map is added. This can be achieved by adding the following to the

wsdl2ejb configuration file, base_conf.xml :

<mapTypes jar="base/MySoapStructBean.jar" >
 <map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 local-name="SOAPStruct"
 namespace-uri="http://soapinterop.org/xsd"
 java-type="MySoapStructBean"
 java2xml-class-name="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2java-class-name="org.apache.soap.encoding.soapenc.BeanSerializer" />
</mapTypes>
11-50 Oracle9i Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
The MySoapStructBean.jar file contains the definition of the MySoapStructBean

class. With this map, the SOAPStruct complex type, belonging to the

http://soapinterop.org/xsd namespace , will be mapped to the

MySoapStructBean JavaBean class and the converse is true as well. For more

information about SOAP serializers and deserializers, see the Oracle SOAP

documentation.

With this additional configuration, you can now run the wsdl2ejb utility with the

following command:

On UNIX
cd $ORACLE_HOME/webservices/demo/basic/wsdl2ejb
java -jar ../../../lib/wsdl2ejb.jar -conf base/base_conf.xml
On Windows
cd %ORACLE_HOME%/webservices/demo/basic/wsdl2ejb
java -jar ..\..\..\lib\wsdl2ejb.jar -conf base\base_conf.xml

The wsdl2ejb utility generates the InteropLabApp.ear file that contains the

definition of a stateless EJB, which can be used as a proxy for the Web Service. The

EAR file can be deployed in Oracle9iAS OC4J as any standard EJB. See Oracle9iAS
Containers for J2EE User’s Guide for information on how to deploy an EJB.

The TestInteropBaseClient.java class file, saved in the base directory, can be

used to test the generated EJB after it has been deployed. The result of the execution

of the client is the following:

echoString: Hello World!
echoStringArray[0]: Hello World!
echoStringArray[1]: Seems to work!
echoStringArray[2]: Fine!
echoStringArray[3]: WOW
echoInteger: 7
echoIntegerArray[0]: 1
echoIntegerArray[1]: 2
echoIntegerArray[2]: 3
echoIntegerArray[3]: 4
echoFloat: 1.7777
echoFloatArray[0]: 1.1
echoFloatArray[1]: 1.2
echoFloatArray[2]: 1.3
echoFloatArray[3]: 1.4
echoStruct: varString=Hello World , varInt=1 , varFloat=1.777
echoStructArray: varString[0]=Hello World , varInt[0]=0 , varFloat=[0]=1.7771
echoStructArray: varString[1]=Hello World 1 , varInt[1]=1 , varFloat=[1]=1.7772
Consuming Web Services in J2EE Applications 11-51

Dynamic Invocation of Web Services
echoStructArray: varString[2]=Hello World 2 , varInt[2]=2 , varFloat=[2]=1.7773
echoStructArray: varString[3]=Hello World 3 , varInt[3]=3 , varFloat=[3]=1.7774
echoVoid.
echoDecimal: 1.77709999999999990194510246510617434978485107421875
echoBoolean: true
echoBase64[0]: 1
echoBase64[1]: 2
echoBase64[2]: 3
echoBase64[3]: 4
echoDate: Sat Nov 10 12:30:00 EST 2001

Dynamic Invocation of Web Services
When a Java2 Enterprise Edition (J2EE) application acquires a WSDL document at

runtime, the dynamic invocation API is used to invoke any SOAP operation

described in the WSDL document. The dynamic invocation API describes a

WebServiceProxyFactory factory class that can be used to build instances of a

WebServiceProxy. Each created WebServiceProxy instance is based on the location

of the WSDL document, (and optionally on additional qualifiers), that identify

which service and port should be used. The WebServiceProxy class exposes

methods to determine the WSDL portType, including the syntax and signatures of

all operations exposed by the WSDL service and to invoke the defined operations.

This section briefly describes the dynamic invocation API and how to use it.

For Java samples, refer to the code supplied with Oracle9iAS Web Services in

$ORACLE_HOME/webservices/demo/basic/java_services/dynamicproxy
on UNIX or in %ORACLE_HOME%\webservices\demo\basic\java_
services\dynamicproxy on Windows. For EJB samples, refer to the code

supplied in the directory

$ORACLE_HOME/webservices/demo/basic/stateless_ejb on UNIX or

%ORACLE_HOME%\webservices\demo\basic\stateless_ejb on Windows.

Dynamic Invocation API
The dynamic invocation API contains two packages, oracle.j2ee.ws.client and

oracle.j2ee,ws.client.wsdl, which contain additional classes grouped by interface,

class, and exception, as shown in Table 11–4 and Table 11–5.
11-52 Oracle9i Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
Table 11–4 The oracle.j2ee.ws.client Package

Classes Description

Classes

WebServiceProxyFactory This class creates a WebServiceProxy class given a WSDL
document.

Interfaces

WebServiceProxy This interface represents a service defined in a WSDL
document.

WebServiceMethod This interface invokes a Web Service method.

Exceptions

WebServiceProxyException This class describes exceptions raised by the
WebServiceProxy API.

Table 11–5 The oracle.j2ee.ws.client.wsdl Package

Classes Description

Interfaces

PortType This interface represents a port type.

Operation This interface represents a WSDL operation.

Input This interface represents an input message, and contains the
name of the input and the message itself.

Output This interface represents an output message, and contains the
name of the output and the message itself.

Fault This interface represents a fault message, and contains the
name of the fault and the message itself.

Message This interface describes a message used for communication
with an operation.

Part This interface represents a message part and contains the
part's name, elementName, and typeName.

Classes

OperationType This class represents an operation type which can be one of
request-response, solicit response, one way, or notification.
Consuming Web Services in J2EE Applications 11-53

Dynamic Invocation of Web Services
The oracle.j2ee.ws.client package is described in more detail in this section. The API

documentation describes to use this proxy API can be found in the Oracle9iAS

Documentation Library as Proxy API Reference (Javadoc) under Oracle9iAS Web

Services, which is located under the J2EE and Internet Applications tab.

The WebServiceProxyFactory class contains methods that can instantiate a

WebServiceProxy class given either the URL or the Java input stream of the WSDL

document. Four methods let you use either the first service and its first port in the

supplied WSDL document or use the name of one of services and the name of one

of the ports of the service to create a WebServiceProxy instance. Two methods also

let you create a WebServiceProxy instance for a WSDL document, which has been

authored following the UDDI best practices for WSDL. A method lets you supply

additional optional initialization parameters to the WebServiceProxy instance.

Table 11–6 briefly describes the WebServiceProxyFactory factory class methods and

the required parameters for each method. See the JavaDoc for more detailed

information about this factory class and its methods.

Table 11–6 WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters

createWebServiceProxy() java.io.InputStream isWsdl
java.net.URL baseURL

createWebServiceProxy() java.net.URL wsdlURL

createWebServiceProxyFromBinding() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szServiceName
java.lang.String szServicePort

createWebServiceProxyFromBinding() java.net.URL wsdlUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.net.URL wsdlUrl
java.lang.String szServiceName
java.lang.String szServicePort

setProperties() java.util.Hashtable ht
11-54 Oracle9i Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
Table 11–7 describes the WebServiceProxy interface. The WebServiceProxyFactory

factory methods optionally take additional parameters that are provided in the

WebServiceProxy interface that can be used to dynamically invoke an operation in a

WSDL document.

Table 11–8 describes the WebServiceMethod interface, which is used to invoke a

Web Service method.

Table 11–7 WebServiceProxy Interface Methods and Parameters

Methods Parameters Description

getXMLMapping Registry() None Returns the SOAP mapping registry used by the
WebServiceProxy and contains information that lets
clients use this registry to query for XML to or from Java
type mapping as well as extend the mapping registry
with new map definitions.

getPortType() None Returns a structure describing the WSDL portType used
by this proxy and contains information about operations
associated with this port type.

getMethod()

szOperationName
szInputName
szOutputName

Returns a WebServiceMethod method, which can be
used to invoke Web Service methods.

Name of the WSDL operation to be executed.
Name of the wsdl:input tag for the operation to be
executed.
Name of the wsdl:output tag for the operation to be
executed.

getMethod()

szOperationName

Returns a WebServiceMethod method, which can be
used to invoke Web service methods and provides a
signature that can be used for non-overloaded WSDL
operations.

Name of the WSDL operation to be executed.
Consuming Web Services in J2EE Applications 11-55

Dynamic Invocation of Web Services
The oracle.j2ee.ws.client.wsdl package exposes methods to determine the WSDL

portType, including the syntax and signatures of all operations exposed by the

WSDL service.

WebServiceProxy Client
The following client code shows the use of the dynamic invocation API followed by

the output of the client execution. The client code shows the following:

■ Initializes proxy parameters in the WebServiceProxyFactory.

■ Creates an instance of the proxy given a URL of a WSDL document.

■ Performs WSDL introspection.

■ Shows the input message parts.

■ Executes a Web Service operation with a set of supplied input parts and returns

the result.

Table 11–8 WebServiceMethod Interface Methods and Parameters

Methods Parameters Description

getInputEncodingStyle() None Returns the encoding style to be used by the input
message parts, null if none has been specified in the
source WSDL.

getOutputEncodingStyle() None Returns the encoding style to be used by the output
message parts, null if none has been specified in the
source WSDL.

invoke()

inMsgPartNames
inMsgPartValues

Executes one of the service operations with the set of
supplied input parts and returns the object, if the
response message contains only one part, return the
response part, otherwise an array of the output
message parts. If the invoked WSDL operation has no
output parts, null will be returned.

Name of the parts supplied in the input message.
Corresponding value of the parts whose name is
supplied in the inMsgPartNames parameter. If the
invoked WSDL operation has no input parts, null or
empty arrays parameters can be supplied
11-56 Oracle9i Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
The WSDL document is described as follows:

 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://soapinterop.org"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" targetNamespace="http://soapinterop.org"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types />
 - <message name="AddSoapIn">
 <part name="a" type="s:int" />
 <part name="b" type="s:int" />
 </message>
 - <message name="AddSoapOut">
 <part name="AddResult" type="s:int" />
 </message>
 - <portType name="TestSoap">
 - <operation name="Add">
 <input message="tns:AddSoapIn" />
 <output message="tns:AddSoapOut" />
 </operation>
 </portType>
 - <binding name="TestSoap" type="tns:TestSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />
 - <operation name="Add">
 <soap:operation soapAction="http://soapinterop.org/Add" style="rpc" />
 - <input>
 <soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 - <output>
 <soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>
 - <service name="Test">
 - <port name="TestSoap" binding="tns:TestSoap">
 <soap:address location="http://mssoapinterop.org/asmx/Rpc.asmx" />
 </port>
 </service>
 </definitions>

package oracle.j2ee.ws.client.impl;

import java.util.*;
import java.io.*;
import java.net.*;
import oracle.j2ee.ws.client.*;
Consuming Web Services in J2EE Applications 11-57

Dynamic Invocation of Web Services
import oracle.j2ee.ws.client.wsdl.*;
import org.apache.soap.util.xml.QName;
import org.apache.soap.util.xml.XMLJavaMappingRegistry;

public class Client {

 public static void main(String[] args) throws Exception {

 String szWsdlUrl = "http://mssoapinterop.org/asmx/Rpc.asmx?WSDL";

 URL urlWsdl = new URL(szWsdlUrl);
 System.err.println("Wsdl url = " + urlWsdl);

 WebServiceProxyFactory wsfact= new WebServiceProxyFactory();

 //
 // Set some initial parameters
 //
 Hashtable ht = new Hashtable();
 ht.put("http.proxyHost", "www-proxy.us.oracle.com");
 ht.put("http.proxyPort", "80");
 wsfact.setProperties(ht);

 //
 // Create an instance of the proxy
 //
 WebServiceProxy wsp = wsfact.createWebServiceProxy(urlWsdl);

 //
 // Optional: Wsdl Introspection
 //
 PortType pt = wsp.getPortType();
 List opList = pt.getOperations();
 for (int i = 0; i < opList.size(); i++) {

 Operation op = (Operation) opList.get(i);
 String szOpName = op.getName();
 String szInput = op.getInput().getName();
 String szOutput = op.getOutput().getName();

 System.err.println("operation["+i+"] = [" + szOpName +
 "," + szInput + "," + szOutput + "]");

 //
 // show input message parts
11-58 Oracle9i Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
 //
 Message msgIn = op.getInput().getMessage();
 Map mapParts = msgIn.getParts();
 Collection colParts = mapParts.values();
 Iterator itParts = colParts.iterator();

 WebServiceMethod wsm = wsp.getMethod(szOpName);
 String szInEncStyle = wsm.getInputEncodingStyle();
 XMLJavaMappingRegistry xmr = wsp.getXMLMappingRegistry();

 while (itParts.hasNext()) {
 Part part = (Part) itParts.next();
 String szPartName = part.getName();
 QName qname = part.getTypeName();
 String szJavaType = xmr.queryJavaType(qname,
szInEncStyle).getName();
 System.err.println("part name = " + szPartName +
 ", type = " + qname +
 ", java type = " + szJavaType);
 }
 }

 //
 // invoke operation/method Add(2,10)
 //
 String[] inMsgPartNames = new String[2];
 inMsgPartNames[0] = "a";
 inMsgPartNames[1] = "b";
 Object[] inMsgPartValues = new Object[2];
 inMsgPartValues[0] = new Integer(2);
 inMsgPartValues[1] = new Integer(10);

 WebServiceMethod wsm = wsp.getMethod("Add");
 Object objRet = wsm.invoke(inMsgPartNames,
 inMsgPartValues);

 System.err.println("Calling method Add(" +inMsgPartValues[0] + ","
+
 inMsgPartValues[1] +")");
 System.err.println("return = " + objRet);
 }
}

Consuming Web Services in J2EE Applications 11-59

Dynamic Invocation of Web Services
The output of the client execution is as follows:

Wsdl url = http://mssoapinterop.org/asmx/Rpc.asmx?WSDL
operation[0] = [Add,,]
part name = b, type = http://www.w3.org/2001/XMLSchema:int, java type = int
part name = a, type = http://www.w3.org/2001/XMLSchema:int, java type = int
Calling method Add(2,10)
return = 12

Known Limitations
The following information describes the known limitations of the dynamic

invocation API:

■ Supports invoking operations defined in the WSDL document defined by the

W3C recommendation XML schema version whose namespace is:

http://www.w3.org/2001/XMLSchema

■ Does not support WSDL documents that use the <import> tag to include other

WSDL documents.

■ Does not support HTTP, MIME, or any other custom bindings.
11-60 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle S
A

Using Oracle SOAP

This appendix covers the following topics:

■ Understanding Oracle9iAS SOAP

■ Apache SOAP Documentation

■ Configuring the SOAP Request Handler Servlet

■ Using Oracle9iAS SOAP Management Utilities and Scripts

■ Deploying Oracle9iAS SOAP Services

■ Using Oracle9iAS SOAP Handlers

■ Using Oracle9iAS SOAP Audit Logging

■ Using Oracle9iAS SOAP Pluggable Configuration Managers

■ Working With Oracle9iAS SOAP Transport Security

■ Using Oracle9iAS SOAP Sample Services

■ Using the Oracle9iAS SOAP EJB Provider

■ Using PL/SQL Stored Procedures With the SP Provider

■ SOAP Troubleshooting and Limitations

■ Oracle9iAS SOAP Differences From Apache SOAP
OAP A-1

Understanding Oracle9iAS SOAP
Understanding Oracle9 iAS SOAP
In addition to the Oracle9iAS Web Services previously described in this chapter,

that use a unique Servlet interface and J2EE deployment for Web Services,

Oracle9iAS also provides Oracle9iAS SOAP that is derived from Apache 2.2 SOAP

and includes a number of enhancements.

The SOAP Message Processor (Oracle9iAS SOAP), provides the following facilities:

■ SOAP Protocol Handling - It provides an implementation of the interoperable

SOAP specification. This includes support for Cookies and Sessions which is

particularly useful to pass state information for stateful Web Services

request/response.

■ Support for SOAP requests with Attachments (XML Payloads).

■ Parsing - Oracle9iAS SOAP Processor integrates the Oracle XML Parser. For

RPC-style requests, the Oracle9iAS SOAP Processor can efficiently parse the

incoming XML document, ensure the request is well-formed, and possibly

validate the request. Similarly, it can also encode/serialize a Java response into

a SOAP message.

■ Invoking Web Service Using Customized Web Services Servlet - The SOAP

Processor un-marshals the message contents and depending on the Servlet, calls

the Web Services implementation. Web Services can be implemented as Java

Classes, EJBs, or PL/SQL Stored Procedures.

■ Engaging a security manager to possibly authenticate the sender - Before

invoking the Web Services implementation, the Oracle9iAS SOAP Processor

(Servlet) authenticates the user using a standard JAAS-based User Manager

plug-in. Oracle9iAS SOAP Processor also supports Oracle's Single Sign-On

Server and third-party authentication services to provide single-sign on for Web

Services.

■ Exception Handling - When exceptions occur during processing, the Java

Exception is transformed to a SOAP fault and delivered to the service client.
A-2 Oracle9i Application Server Web Services Developer’s Guide

Configuring the SOAP Request Handler Servlet
Apache SOAP Documentation
Oracle9iAS SOAP is a modified version of Apache SOAP 2.2. Most of the

documentation that applies to Apache SOAP 2.2 also applies to Oracle9iAS SOAP.

The Apache SOAP 2.2 documentation can be found at the following site:

http://xml.apache.org/soap/docs/index.html

Configuring the SOAP Request Handler Servlet
The Oracle9iAS SOAP Request Handler uses an XML configuration file to set

required servlet parameters. By default, this file is named soap.xml and is placed

in the directory $SOAP_HOME/webapps/soap/WEB-INF on UNIX or %SOAP_
HOME%\webapps\soap\WEB-INF on Windows. The XML namespace for this file

is:

http://xmlns.oracle.com/soap/2001/04/config

To use a different configuration file for SOAP installation, modify the path name

specified for the SoapConfig parameter in the soap.properties file. For

example, to change the configuration file from the default, soap.xml , to

newConfig.xml , modify the value set for soapConfig in soap.properties .

servlet.soaprouter.initArgs=soapConfig= soap_home/soap/webapps/soap/WEB-INF/newConfig.xml

Where soap_home is the full path to the SOAP installation on your system.

The pathAuth boolean attribute, if set to true , enforces that clients must specify

the unique service URL in order to post a message to the deployed service. The

service URL is the SOAP servlet URL with the service URI appended on at the end.

The default value of this attribute (if unspecified) is false .

Table A–1 lists the SOAP Request Handler Servlet XML configuration file elements.

Table A–1 SOAP Request Handler Servlet Configuration File Parameters

Parameter Description

errorHandlers Specifies a list of handlers for the error handler chain.

faultListeners This is an optional element that defines a list of faultListener elements. The
faultListener element specifies a class that is invoked when a fault occurs. To cause a
stack trace to be added to the SOAP fault that is returned to the user, specify a
faultListener of org.apache.soap.server.DOMFaultListener.
Using Oracle SOAP A-3

Configuring the SOAP Request Handler Servlet
handler The handlers element is an optional element that defines a list of handler elements. The
handler element defines a global handler that can be configured to be invoked on every
SOAP request in one of three contexts: request, response, error. You can define any
number of handlers. The handler’s name attribute specifies the name of the handler;
each handler must have a unique name. The handler’s class attribute specifies the Java
class that implements the handler, and this class must implement the interface
oracle.soap.server.Handler. Each handler may have any number of options, which are
name-value pairs. The contexts are configured in the elements: requestHandlers,
responseHandlers, and errorHandlers. Each of these elements defines an ordered list of
handler names, or a chain of handlers.

Note that SOAP creates one instance of each uniquely identified handler. Every
appearance of a specific handler name in any chain refers to the same instance of the
handler. Handlers are destroyed when the SOAP servlet is destroyed.

logger Error and informational messages are logged using the class defined in the logger
element. The logger class must extend oracle.soap.server.Logger .

Oracle9iAS SOAP includes the class oracle.soap.server.impl.ServletLogger
that collects the servlet log methods so that SOAP messages are logged to the servlet
log file. ServletLogger is the default logger. For the default logger, the severity
option can be to any of the following values: status , error , debug .

If you specify error , you will get both status and error messages. Similarly, if you
specify debug , you will get all three types of messages.

Oracle9iAS SOAP includes two logger implementations. To log to the servlet log, use
oracle.soap.server.impl.ServletLogger. To log to stdout, use
oracle.soap.server.impl.StdOutLogger.

You may implement your own logger by implementing the oracle.soap.server.Logger
interface.

Table A–1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description
A-4 Oracle9i Application Server Web Services Developer’s Guide

Configuring the SOAP Request Handler Servlet
providerManager The providerManager is an optional element that allows a configuration manager to be
defined. This defines how the server accesses provider deployment information.

The providerManager class attribute specifies a Java class that implements
oracle.soap.server.ProviderManager . The default configuration manager,
oracle.soap.server.impl.XMLProviderConfigManager, persists the deployed providers
to a file in XML format. It accepts a filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/providers.xml.

An alternative provider configuration manager,
oracle.soap.server.impl.BinaryProviderConfigManager, persists the deployed providers
in a file as a serialized object. The default file is WEB-INF/providers.dd.

To specify a different configuration manager add a class attribute to the configManager
element. For example:

<osc:configManager class="fully.qualified.classname">.

requestHandlers Specifies a list of handlers for the request handler chain

responseHandlers Specifies a list of handlers for the response handler chain

serviceManager The serviceManager is an optional element that allows a configuration manager to be
defined and ServiceManager options to be set. This defines how the server accesses
service deployment information. The serviceManager class attribute specifies a Java
class that implements oracle.soap.server.ServiceManager .

The default Oracle9iAS SOAP configuration manager class is
oracle.soap.server.impl.XMLServiceConfigManager which stores the
service deployment information in an XML file. Using XMLServiceConfigManager ,
the file name is specified with the filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/services.xml.

To specify a different configuration manager add a class attribute to the
configManager element.

For example:

<osc:configManager class="fully.qualified.classname">.

An alternative service configuration manager,
oracle.soap.server.impl.BinaryServiceConfigManager, persists the deployed services in
a file as a serialized object. The default file is WEB-INF/services.dd.

The service manager can automatically deploy the provider manager and the service
manager as SOAP services. To allow these managers to be exposed as services, set the
autoDeploy option to true. By default autoDeploy value is false.

Table A–1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description
Using Oracle SOAP A-5

Using Oracle9iAS SOAP Management Utilities and Scripts
Using Oracle9 iAS SOAP Management Utilities and Scripts
To use the Oracle9iAS SOAP management utilities, you need to set up the execution

environment for executing SOAP management utilities using one of the supplied

client side scripts. The clientenv scripts set the CLASSPATH and add the $SOAP_
HOME/bin directory to the path.

To set the client environment, on UNIX, use the following commands:

cd $SOAP_HOME/bin
source clientenv.csh

On Windows, use the following commands:

cd %SOAP_HOME%\bin
clientenv.bat

The clientenv scripts sets environment variables that are used by the other

scripts and the samples. You can override these by setting the environment

variables yourself. The variable SOAP_URLis the URL of the SOAP server and JAXP
is set to use the DocumentBuilderFactory for the Oracle XML parser.

Managing Providers
The providerMgr script runs the SOAP client that manages providers. Run the

script without any parameters for usage information.

On UNIX, use the following command:

providerrMgr.sh options

On Windows, use the following command:

providerMgr.bat options

Where the options for providerMgr are:

deploy ProviderDescriptorFile

This deploys the provider described in the ProviderDescriptorFile and makes the

provider available.

undeploy ProviderID

This removes the provider with the supplied ProviderID. The ProviderID is the id

attribute specified in the provider descriptor file.
A-6 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Management Utilities and Scripts
The Java provider is deployed once at installation time with id=java-provider, but

any provider you create must be explicitly deployed. For example, on UNIX, to

deploy a provider using the provider deployment descriptor provider.xml , use

the following command:

providerMgr.sh deploy provider.xml

Using the Service Manager to Deploy and Undeploy Java Services
The ServiceMgr is an administrative utility that deploys and undeploys SOAP

services. To deploy a service, first set the SOAP environment, then use the deploy
command. On UNIX, the command is:

source clientenv.csh
ServiceMgr.sh deploy ServiceDescriptorFile

For Windows, the command is:

clientenv.bat
ServiceManager.bat deploy Service DescriptorFile

The deploy option makes the service specified in ServiceDescriptorFile available.

When you are ready to undeploy a service, use the undeploy command with the

registered service name as an argument. On UNIX, the command is:

ServiceManager.sh undeploy ServiceID

For Windows, the command is:

ServiceManager.bat undeploy ServiceID

This makes the service with the given id unavailable. The ServiceID is the service id

attribute specified in the service descriptor file.

The ServiceMgr supports listing and querying SOAP services. To list the available

services, first set the SOAP environment, then use the list command. On UNIX,

the command is:

source clientenv.csh
ServiceMgr.sh list
Using Oracle SOAP A-7

Using Oracle9iAS SOAP Management Utilities and Scripts
On Windows, the command is:

clientenv.bat
ServiceMgr.bat list

To query a service and obtain the descriptor parameters set in the service

deployment descriptor file, use the query command. On UNIX, the command is:

ServiceMgr.sh query ServiceID

On Windows, the command is:

ServiceMgr.bat query ServiceID

Where ServiceID is the service id attribute set in the service descriptor file.

Generating Client Proxies from WSDL Documents
The wsdl2java script takes as input a WSDL document and returns a Java class

which can be used to call the service. The Java class contains methods with the same

names as those described in the WSDL document. The generated code make calls to

the Apache client side libraries.

On UNIX, use the following command:

wsdl2java.sh options

On Windows, use the following command:

wsdl2java.bat options

Where the options for wsdl2java are:

wsdl2java.sh WsdlDocumentURL OutputDir [-k PackageName] [-s ServiceName]

[-p PortName]

Where:

WsdlDocumentURL is the URL of the WSDL document.

OutputDir is the output directory for generated proxy Java code.

-k PackageName is the package name for generated proxy Java code.

-s ServiceName is the service name for which proxy will be generated.
A-8 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Management Utilities and Scripts
-p PortName the port name of the service. The proxy is generated for the specified

port of the service.

The output directory structure is:

output root dir/service name/port name/package name/java proxy source code

By default, the PackageName will be the same as the WSDL service name.

If neither of -s and -p options is specified, proxies for all ports of all services are

generated. Without -p option specified, proxies for all ports of the specified service

are generated.

Generating WSDL Documents from Java Service Implementations
The java2wsdl script takes as input a Java class and creates as output a WSDL

document describing the class as an RPC service. When the Java class is used as a

Web Service, the associated WSDL document can be transmitted to developers who

might wish to call the service.

On UNIX, use the following command:

java2wsdl.sh options

On Windows, use the following command:

java2wsdl.bat options

Where the options for wsdl2java are:

java2wsdl.sh ClassName OutputFile SoapURL ClassURL1 ClassURL2 ...

Where:

ClassName is the fully qualified path name of a Java .class file that is to be a Web

Service.

OutputFile is the output WSDL document name.

SoapURL is the SOAP endpoint.

ClassURL list serves as a class path for searching referenced classes
Using Oracle SOAP A-9

Deploying Oracle9iAS SOAP Services
Deploying Oracle9 iAS SOAP Services
This section covers the following topics related to deploying and undeploying

Oracle9iAS SOAP Services:

■ Creating Deployment Descriptors

■ Installing a SOAP Web Service in OC4J

■ Disabling an Installed SOAP Web Service

■ Installing a SOAP Web Service in an OC4J Cluster

Creating Deployment Descriptors
Deployment descriptors include service deployment descriptors and provider

deployment descriptors. A provider deployment descriptor file is an XML file that

describes, to the SOAP servlet, the configuration information for a provider. A

service deployment descriptor file is an XML file that describes, to the SOAP

servlet, the configuration information for a service.

Services written in Java only require a service descriptor. All Java service

descriptors may point to the same Java provider descriptor supplied with the

Oracle9iAS SOAP installation.

Each service written as a PL/SQL stored procedure requires one service descriptor

and one provider descriptor for each database user. The advantage of this is that

when a password or user is changed, only one descriptor needs to be updated, not

every service descriptor.

See the Stored Procedure section for more information.

Services written as an EJB require one service descriptor and one provider

descriptor for each EJB container user.

See the EJB section of this document for more information.

Note: For developers who wish to write their own providers, the

Apache style provider interface and descriptors are also supported.

Apache descriptors contain both service and provider properties in

a single file, so common provider information must be duplicated

for every service.
A-10 Oracle9i Application Server Web Services Developer’s Guide

Deploying Oracle9iAS SOAP Services
A service deployment descriptor file defines the following information:

■ The service ID

■ The service provider type (for example, Java)

■ The available methods

The best way to write a descriptor is to start with a copy of an existing descriptor

from one of the sample directories.

Example A–1 shows the Java SimpleClock service descriptor file

SimpleClockDescriptor.xml . This descriptor file is included in the

samples/simpleclock directory. The service descriptor file must conform to the

service descriptor schema (the schema, service.xsd , is located in the directory

$SOAP_HOME/schemas on UNIX or in %SOAP_HOME%\schemas on Windows).

The service descriptor file identifies methods associated with the service in the

isd:provider element that uses the methods attribute. The isd:java class
element identifies the Java class that implements the SOAP service, and provides an

indication of whether the class is static.

Example A–1 Java Service Descriptor File for Sample Simple Clock Service

<isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:jurassic-clock"
 type="rpc" >
 <isd:provider
 id="java-provider"
 methods="getDate"
 scope="Application" >
 <isd:java class="samples.simpleclock.SimpleClockService"/>
 </isd:provider>
 <!-- includes stack trace in fault -->
 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>
</isd:service>

Note: The service descriptor file does not define the method

signature for service methods. SOAP uses reflection to determine

method signatures.
Using Oracle SOAP A-11

Deploying Oracle9iAS SOAP Services
Installing a SOAP Web Service in OC4J
Install an Oracle9iAS SOAP Web Service in Oracle9iAS Containers for J2EE (OC4J)

by performing the following steps:

1. Create service and provider deployment descriptors.

2. Copy Java classes and Jars implementing the service to the correct locations.

Copy Java .class files to $SOAP_HOME/WEB-INF/classes. The new classes

will automatically be found by the OC4J servlet container.

Copy Java .jar files to $SOAP_HOME/WEB-INF/libs.

In order for the new files to be found by the OC4J servlet container, you must

either restart the OC4J servlet engine or update the SOAP application

configuration file.

3. Deploy the provider descriptor by executing the command:

providerMgr.sh deploy FileName

where FileName is the name of the provider descriptor xml file.

4. Deploy the service by executing the command:

serviceMgr.sh deploy FileName

 Where FileName is the name of the service descriptor xml file.

Disabling an Installed SOAP Web Service
To disable an installed service, run the command:

serviceMgr.sh undeploy ServiceID

where ServiceID is the id attribute of the service element in the service descriptor.

Installing a SOAP Web Service in an OC4J Cluster
An OC4J Cluster consists of two or more machines of similar configuration front

ended with a hardware or software dispatcher. OC4J has facilities for insuring that

files on the machines remain in synch. For instance, a servlet installed once will

automatically be installed on the local file systems of the other machines in the

system.

However, Oracle9iAS SOAP services are not handled by the OC4J clustering

software. It is necessary to install an Oracle9iAS SOAP service on every machine in
A-12 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Handlers
the cluster. If the service is not installed on all machines in the cluster, the cluster

dispatcher might dispatch a service request to a machine that does not have the

service, resulting in an error on the service invocation.

Using Oracle9 iAS SOAP Handlers
A handler is a class that implements the oracle.soap.server.Handler
interface. A handler can be configured as part of a chain in one of three contexts:

request, response, or error. Note that handlers in a chain are invoked in the order

they are specified in the configuration file.

Request Handlers
Handlers in the request chain are invoked on every request that arrives,

immediately after the SOAP Request Handler Servlet reads the SOAP Envelope. If

any handler in the request chain throws an exception, the processing of the chain is

immediately terminated and the service is not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers
Handlers in the response chain are invoked on every request immediately after the

service completes. If any handler in the response chain throws an exception,

processing of the chain is immediately terminated. The error chain is invoked if any

exception occurs during response chain invocation.

Error Handlers
When an exception occurs during either request-chain invocation, service

invocation, or response-chain invocation, the SOAP Request Handler Servlet

invokes the handlers in the error chain. In contrast to the request and response

chains, an exception from an error handler is logged and processing of the error

chain continues. All handlers in the error chain are invoked, regardless of whether

one of the error handlers throws an exception.

Configuring Handlers
Configure handlers and handler chains in the SOAP configuration file. Handlers

can be invoked for each service request or response, or when an error occurs.
Using Oracle SOAP A-13

Using Oracle9iAS SOAP Audit Logging
Handlers are global in the sense that they apply to every SOAP request and cannot

be configured on a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file,

soap.xml . Example A–2 shows a sample segment from a SOAP configuration file

showing the configuration for a handler.

Example A–2 Handler Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 </osc:handler>
</osc:handlers>

<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>

Using Oracle9 iAS SOAP Audit Logging
The Oracle SOAP audit logging feature monitors and records SOAP usage. Audit

logging maintains records for postmortem analysis and accountability. The SOAP

audit logging feature complements the audit logging capabilities available with the

OC4J server which hosts the SOAP Request Handler Servlet (SOAP server).

Oracle SOAP stores audit trails as XML documents. Using XML documents, Oracle

SOAP creates portable audit trails and enables the transformation of complete audit

trails or individual audit records to different formats.

By default, Oracle SOAP audit logging uses an audit logger class that implements

the Handler interface (part of the oracle.soap.server package). The audit

logger class is invoked conditionally to monitor events including service requests,

service responses, and errors.

This section covers the following topics:

■ Audit Logging Information

■ Auditable Events

■ Configuring the Audit Logger
A-14 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Audit Logging
Audit Logging Information
Table A–2 lists the audit logging elements available for each audit log record.

Individual audit log records may not contain all these elements. In the log file, each

audit log record is stored as a SoapAuditRecord element.

Audit Logging Output
The XML schema for the generated audit log is provided in the file

SoapAuditTrail.xsd in the directory $SOAP_HOME/schema on UNIX or

%SOAP_HOME%\schema on Windows. Refer to the schema file for complete details

on the format of a generated audit log record.

Auditable Events
The audit logger class is invoked when an auditable event occurs and the SOAP

Request Handler Servlet is configured to enable auditing for the event. Auditable

events include a service request or a service response.

Table A–2 Auditable Audit Record Elements

Audit Record Element Description

HostName Specifies the hostname of the client that sent the request.

IpAddress Specifies the IP address of the client that sent the request.

Method Specifies the method name for the SOAP request.

Request Envelope Provides the complete SOAP request message.

Request Envelope
Method

Name of the Method in the SOAP request envelope

Request Envelope URI Specifies the URI of the service in the SOAP request envelope.

Response Envelope Provides the complete SOAP response message.

ServiceURI Specifies the service URI for the SOAP request.

SoapAuditRecord Contains an individual record. The chainType attribute indicates if the record
is generated as part of a request or a response.

TimeStamp Specifies the system time when the SOAP audit record was generated.

User Specifies the username associated with the request. Note, this element is only
provided when a user context is associated with the service request or service
response.
Using Oracle SOAP A-15

Using Oracle9iAS SOAP Audit Logging
Audit Logging Filters
An audit logging filter can be specified in the SOAP configuration file to limit the

set of auditable events that are recorded to the audit log. The SOAP server applies

event filters to request and response events. Table A–4 shows the filter attributes

available to select with an event filter specification. When applied, filters limit the

number of records generated in the audit log. For example, when a filter is specified

for a particular host, only the auditable events generated for the specified host are

saved to the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254.

Table A–3 shows the filter syntax, and Example A–3 provides several examples.

See Also:

■ "Configuring the Audit Logger" on page A-18

■ ftp://ftp.isi.edu/in-notes/rfc2254.txt on RFC 2254

Table A–3 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

Host Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within
the specified hostname are not supported the examples show valid and invalid uses of
wildcards. If a wildcard is used then the wildcard must be the first character in the filter.
Case is ignored for hostnames. Care should be used in setting this attribute. Depending on
the DNS setup, the hostname returned could be fully qualified or nonqualified; for example,
explosives.acme.com or explosives . For some IP addresses, the DNS may not be
able to resolve the hostname.

Legal values for a Host filter attribute include the following examples:

explosives.acme.com, *.acme.com, *.com

Illegal values for a Host filter attribute include the following examples:

, explosives.acme., explosives.*, ex*s.acme.com, *ives.acme.com
A-16 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Audit Logging
ip Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.

Legal values for an ip filter attribute include the following examples:

 138.2.142.154, 138.2.142.*, 138.2.*, 138.*

Illegal values for an ip filter attribute include the following examples:

, 138.2..154, *.2, 138.*.152, 138.2.142, 138.2, 138

urn Specifies the service URN. Wildcards are not supported for this attribute.

username Specifies the transport level username associated with the client.

Wildcards are not supported in a username filter attribute.

Table A–4 Audit Log Filter Syntax

Filter Value Description

attr 1*(any US-ASCII char except "*", "(", ")", "&", "|", "!", "*", "=")

equal "="

filter "("filtercomp")"

Whitespaces between "("filtercomp and ")" are not allowed.

filtercomp and | or | not | item

and = "&" filterlist

or = "|" filterlist

not = "!" filter

filterlist 2*2 filter

filtertype equal

item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.

Table A–3 (Cont.) Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description
Using Oracle SOAP A-17

Using Oracle9iAS SOAP Audit Logging
Example A–3 Sample Audit Log Filters

(ip=138.2.142.154)
(!(host=localhost))
(!(host=*.acme.com))
(&(host=*.acme.com)(username=daffy))
(&(ip=138.2.142.*)(|(urn=urn:www-oracle-com:AddressBook)(username=daffy)))

Configuring the Audit Logger
Configure the default SOAP audit logger supplied with Oracle9i Application Server

by setting parameters in the SOAP configuration file, soap.xml . To enable the

default audit logger and turn on audit logging, do the following in the

configuration file.

■ Define the name and options for the audit log handler. The default SOAP audit

logger is defined in the class

oracle.soap.handlers.audit.AuditLogger . The default audit logger

supports several options that you specify in the configuration file. Table A–5

shows the available audit logger options.

■ Add the name for the audit logger handler to the requestHandler ,

responseHandler , or errorHandler chain (or to all of the handler chains).

Example A–4 shows a sample segment from a SOAP configuration file including the

audit logging configuration options. Example A–4 shows configuration options set

to use all options. However, this configuration would produce an extremely large

audit log, and is not recommended.

value 1*(any octet except ASCII representation of ")" - 0x29).

The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches
anything.

Table A–4 (Cont.) Audit Log Filter Syntax

Filter Value Description
A-18 Oracle9i Application Server Web Services Developer’s Guide

Using Oracle9iAS SOAP Audit Logging
Example A–4 Audit Logging Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 <osc:option name="includeRequest" value="true"/>
 <osc:option name="includeResponse" value="true"/>
 </osc:handler>
</osc:handlers>
<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>

Note: When you audit errors using the audit logger, depending

on when the error occurs in the request-chain or the

response-chain, it is possible that the request or response message

may not be included in the audit log record, even with

includeRequest or includeResponse enabled.

Table A–5 Audit Logger Configuration Options

Option Description

auditLogDirectory Specifies the directory where the audit log file is saved. The
auditLogDirectory option is required. The name of the
generated audit log file is
OracleSoapAuditLog .timestamp , where timestamp is the
date and time the file is first generated.

Valid values: any string that is a valid directory

filter Specifies the audit event filter. This option is optional. If a
filter is not specified SOAP server logs every event.

Valid values: any valid filter.

includeRequest Specifies that the audit record include the request message for
the event that generated the audit log record.

Valid values: true , false

Any value other than true or false is treated as an error.

Default Value: false
Using Oracle SOAP A-19

Using Oracle9iAS SOAP Pluggable Configuration Managers
Using Oracle9 iAS SOAP Pluggable Configuration Managers
Oracle9iAS SOAP supports pluggable configuration managers similar to those

supported in Apache SOAP 2.2. Since Oracle9iAS SOAP supports provider

deployment descriptors separate from service deployment descriptors, the interface

details using Oracle9iAS SOAP are slightly different from Apache SOAP 2.2. In

Oracle9iAS SOAP, configuration managers are configured separately for the

provider manager and the service manager. All configuration managers must

implement the oracle.soap.server.ConfigManager interface.

To simplify development, when you write a configuration manager

implementation, you may the abstract class that is provided with Oracle9iAS SOAP

(oracle.soap.server.impl.BaseConfigManager). This abstract class

provides a standard implementation for most of the ConfigManager interface

with two abstract methods that read and write the persistent store.

Example A–5 shows a sample implementation of a provider configuration manager.

includeResponse Specifies that the audit record include the response message
for the event that generated the audit log record.

Valid values: true , false

Any value other than true or false is treated as an error.

Default Value: false

See Also: "Using Oracle9iAS SOAP Handlers" on page A-13

Table A–5 (Cont.) Audit Logger Configuration Options

Option Description
A-20 Oracle9i Application Server Web Services Developer’s Guide

Working With Oracle9iAS SOAP Transport Security
Example A–5 Sample Provider Configuration Manager Implementation.

public class MyProviderConfigManager extends BaseConfigManager
{
 public void setOptions(Properties options)
 throws SOAPException
 {
 // handle implementation specific options
 }

 public void readRegistry()
 throws SOAPException
 {
 // read the deployed providers from persistent store
 }

 public void writeRegistry()
 throws SOAPException
 {
 // write the deployed providers to persistent store
 }
}

The setOptions method is passed the options specified in any <option>
elements specified in the <configManager> element. Synchronization of

reading/writing the registry is the responsibility of the specific configuration

manager implementation.

Working With Oracle9 iAS SOAP Transport Security
Oracle9i Application Server uses the security capabilities of the underlying

transport that sends SOAP messages. Oracle9i Application Server supports the

HTTP and HTTPS protocols for sending SOAP messages. HTTP and HTTPS

support the following security features:

■ HTTP proxies

■ HTTP authentication (basic RFC 2617)

■ Proxy authentication (basic RFC 2617)

Oracle9iAS SOAP Client transport uses the modified, to support Oracle Wallet

Manager, HTTPClient package. Oracle9iAS SOAP transport defines several

properties to support these features. Table A–6 lists the client-side security

properties that Oracle9i Application Server supports.
Using Oracle SOAP A-21

Working With Oracle9iAS SOAP Transport Security
In an Oracle9iAS SOAP Client application, you can set the security properties

shown in Table A–6 as system properties by using the -D flag at the Java command

line. You can also set security properties in the Java program by adding these

properties to the system properties (use System.setProperties() to add

properties).

Example A–6 shows how Oracle9i Application Server supports overriding the

values specified for system properties using Oracle9i Application Server transport

specific APIs. The setProperties() method in the class

OracleSOAPHTTPConnection contains set properties specifically for the HTTP

connection (this class is in the package oracle.soap.transport.http).

Example A–6 Setting Security Properties for OracleSOAPHHTTPConnection

org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call();
oracle.soap.transport.http.OracleSOAPHTTPConnection conn =
(oracle.soap.transport.http.OracleSOAPHTTPConnection) call.getSOAPTransport();
java.util.Properties prop = new java.util.Properties();
// Use client code to set name-value pairs of properties in prop
.
.
.
conn.setProperties(prop);

Note: The property java.protocol.handler.pkgs must be

set as a system property.
A-22 Oracle9i Application Server Web Services Developer’s Guide

Working With Oracle9iAS SOAP Transport Security
Table A–6 SOAP HTTP Transport Security Properties

Property Description

http.authType Specifies the HTTP authentication type. The case of the value specified is ignored.

Valid values: basic , digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not setting the
property.

http.password Specifies the HTTP authentication password.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is ignored.

Valid values: basic , digest

Specifying any value other than basic or digest is the same as not setting the
property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHos t is defined; otherwise this value is ignored.

Default value: 80

http.proxyRealm Specifies the realm for which the proxy authentication username/password is
specified.

http.proxyUsername Specifies the HTTP proxy authentication username.

http.realm Specifies the realm for which the HTTP authentication username/password is
specified.

http.username Specifies the HTTP authentication username.

java.protocol.
handler.pkgs

Specifies a list of package prefixes for java.net.URLStreamHandlerFactory
The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPClient
This value is required by the Java protocol handler framework; it is not defined by
Oracle9i Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, a java.net.MalformedURLException is
thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=HTTPClient

■ java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient
Using Oracle SOAP A-23

Working With Oracle9iAS SOAP Transport Security
oracle.soap.
transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value specified is
ignored. When this property is set to true and either of the following are true, the
user is prompted for a username and password:

1. If any of properties http.authType, http.username , or http.password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType , http.proxyUsername , or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true , false

Specifying any value other than true is considered as false .

oracle.soap.
transport.
1022ContentType

Specifies the value for the Oracle9iAS Content-Type HTTP header. The value for
this property supports Oracle SOAP servers running either Oracle 9iAS Release
1.0.2.2 or Release 9.0.x. This property provides interoperablity between Oracle9iAS
Release 9.0.2 Oracle SOAP clients and older server versions (as distributed with
Oracle9iAS Release 1.0.2.2).

Valid values: true , false (case is ignored)

Setting the value to true specifies to use the Oracle9 iAS Release 1.0.2.2
content-type HTTP header values when the SOAP message is sent. In this case, the
value is set to:
content-type: text/xml

Setting the value to false specifies to use the iAS version 9.0.2 content-type
header value when the SOAP message is sent. In this case, the value is set to:
content-type: text/xml; charset=utf-8

The value false is the default value.

Note: for SOAP messages with attachments, the content-type HTTP header is
always set to the value: multipart/related .

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported by Oracle SSL are supported.

Table A–6 (Cont.) SOAP HTTP Transport Security Properties

Property Description
A-24 Oracle9i Application Server Web Services Developer’s Guide

Working With Oracle9iAS SOAP Transport Security
Apache Listener and Servlet Engine Configuration for SSL
When using Apache listener and mod_ssl (or mod_ossl), the following directives

must be set for the soap servletlocation/directory:

SSLOption +StdEnvVars +ExportCertData

This directive can be set conditionally, refer to mod_ssl/mod_ossl documentation

for details. By default this directive is disabled for performance reasons. If this

directive is not set then the servlet engine does not have a way to access the SSL

related data (such as the cipher suite, client cert etc).

Using JSSE with Oracle9 iAS SOAP Client
This section describes how to use SSL with the Oracle9iAS SOAP Client side when

the Oracle security infrastructure is not available. Availability of Oracle security

infrastructure means the availability of Oracle client side libraries (including

$ORACLE_HOME/lib/* , $ORACLE_HOME/jlib/javax-ssl-1_2.jar , and

$ORACLE_HOME/jlib/jssl-1_2.jar).

Oracle9iAS SOAP uses the following class as the default transport class:

oracle.soap.transport.http.OracleSOAPHTTPConnection

oracle.
wallet.location

Specifies the location of an exported Oracle wallet or exported trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet.
password

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Table A–6 (Cont.) SOAP HTTP Transport Security Properties

Property Description
Using Oracle SOAP A-25

Working With Oracle9iAS SOAP Transport Security
This class uses a modified version of HTTPClient package . For information on

HTTPClient , see the following site:

http://www.innovation.ch/java/HTTPClient/

This version of HTTPClient package is integrated with Oracle Java SSL and

supports Oracle Wallet for HTTPS transport. If a SOAP client side does not have

Oracle client side available, it is still possible to use HTTPS as a transport with

Oracle9iAS SOAP Client side libraries.

To do this, follow these steps:

1. Use the following transport class:

class org.apache.soap.transport.http.SOAPHTTPConnection

If using RPC then call the following method by passing an instance of

org.apache.soap.transport.http.SOAPHTTPConnection as an

argument:

method org.apache.soap.rpc.Call#setSOAPTransport
(org.apache.soap.transport.SOAPTransport)

For example:

org.apache.soap.rpc.Call myCallObj = new
org.apache.soap.rpc.Call();
myCallObj.setSOAPTransport(new
org.apache.soap.transport.http.SOAPHTTPConnection());

If using messaging, then call the following method by passing an instance of

org.apache.soap.transport.http.SOAPHTTPConnection as an

argument:

org.apache.soap.messaging.Message#setSOAPTransport
(org.apache.soap.transport.SOAPTransport)

For example:

org.apache.soap.messaging.Message myMsgObj = new
org.apache.soap.messaging.Message();
myMsgObj.setSOAPTransport(new
 org.apache.soap.transport.http.SOAPHTTPConnection());
A-26 Oracle9i Application Server Web Services Developer’s Guide

Working With Oracle9iAS SOAP Transport Security
2. Download Java Secure Socket Extension (JSSE) and configure JSSE according to

the supplied instructions. JSSE is available at the following site:

http://java.sun.com/products/jsse/

■ Make sure the files jnet.jar , jcert.jar and jsse.jar are in the

classpath or in the installed extensions directory ($JRE_HOME/lib/ext).

■ Make sure that SunJSSE provider is correctly configured. This can be done

either statically by editing the $JRE_HOME/lib/security/java.security file

and adding the line:

 security.provider. num=com.sun.net.ssl.internal.ssl.Provider

Where num is 1-based preference order or by dynamically by adding the

provider at run time by adding the following line of code:

Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

Dynamic addition of security providers requires that appropriate

permissions are set.

■ Make sure the system property java.protocol.handler.pkgs is set to

com.sun.net.ssl.internal.www.protocol

■ If using proxy server, make sure that the following system properties are set

is set to the correct proxy hostname and proxy port, respectively:

https.proxyHost
https.proxyPort

■ If using SSL with server side authentication and the default

TrustManager , ensure that the certificate signer of the server is one of the

following files:

$JRE_HOME/lib/security/jssecacerts

or if jssecacerts does not exist:

$JRE_HOME/lib/security/cacerts

■ To override the KeyManager/TrustManager keystore default locations, use

the system properties:

javax.net.ssl.keystore
Using Oracle SOAP A-27

Using Oracle9iAS SOAP Sample Services
javax.net.ssl.keyStoreType
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword

Please consult JSSE documentation for details. If using a specific third party

JSSE implementation, please consult the appropriate documentation.

Using Oracle9 iAS SOAP Sample Services
The section lists the samples included with Oracle9iAS SOAP. The class files for all

of the samples are in samples.jar .

To run any sample, you need to ensure that samples.jar is available on your servlet’s

CLASSPATH. Please refer to the README included with each sample for more

information.

The Xmethods Sample
The clients in the xmethods sample represent the easiest way to get started with

SOAP because they are clients that access existing services that are hosted on

systems on the internet. Information on these services can be found at the site:

http://www.xmethods.org

This sample is in $SOAP_HOME/samples/xmethods.

The AddressBook Sample
This sample has a service implemented in Java and several clients. This sample

illustrates literal XML encoding. See $SOAP_HOME/samples/addressbook for

the sample source code. This directory also contains a script that illustrates how to

run the sample addressbook clients using HTTPS as transport.

The StockQuote Sample
This sample has a service implemented in Java and one client. It is located in

$SOAP_HOME/samples/stockquote

See Also: HTTPClient information at the site:

http://www.innovation.ch/java/HTTPClient/
A-28 Oracle9i Application Server Web Services Developer’s Guide

Using the Oracle9iAS SOAP EJB Provider
The Company Sample
This sample has a service that is comprised of PL/SQL stored procedures and

several clients. It is located in $SOAP_HOME/samples/sp/company. Check the

README file in this directory for details on how to setup, compile, and test this

sample service.

The Provider Sample
This includes a template provider that can be used as a starting point for creating

your own provider.

The AddressBook2 Sample
This sample demonstrates use of the Addressbook service with session scope. It

shows how to maintain the same HTTP session across SOAP Calls. It contains an

example of a SOAP client proxy generated from a WSDL service description file. It

is located in $SOAP_HOME/samples/addressbook2

The Messaging Sample
This sample is an example of a message-based SOAP service. It is located in

$SOAP_HOME/samples/messaging

The Mime Sample
This sample does SOAP with attachments using both RPC and message based

services. It is located in $SOAP_HOME/samples/mime.

Using the Oracle9 iAS SOAP EJB Provider
This section compares the Oracle9iAS SOAP EJB providers with the Apache-SOAP

2.2 EJB providers.

Stateless Session EJB Provider
In Apache SOAP, the Stateless EJB provider, on receiving the SOAP request,

performs a JNDI lookup on the home interface of the EJB. The Stateless EJB

provider then invokes a create on the EJB’s Home Interface in order to get a
Using Oracle SOAP A-29

Using the Oracle9iAS SOAP EJB Provider
reference to a stateless EJB. Then it uses this EJB reference to invoke the requested

method.

Oracle9iAS SOAP uses the same mechanism to support Stateless Session EJBs as

Apache SOAP.

Stateful Session EJB Provider in Apache SOAP
On receiving a first time SOAP request, the Apache SOAP Stateful Session EJB

provider first locates the Home Interface through a JNDI lookup and using a

subsequent create obtains an object reference to a Stateful Session EJB. The provider

then invokes the requested method on the object reference.

In the next step the provider serializes the EJBHandle of the specified EJB reference

and appends it to the targetURI with an "@" delimiter. The Stateful Session EJB

provider then sends this modified target URI back to the requesting SOAP client. If

the client wants to reuse the same EJB instance, it must retrive this "modified" target

URI for the service from the Response and set it in the next SOAP Call.

Upon receiving this request, the Stateful EJB provider extracts the stringified EJB

reference and deserilaizes it into an EJBHandle from which it can obtain the EJB

reference. It can then invoke the method on the specified EJB.

The drawback of the Apache SOAP implementation is that the client must be EJB

aware and that it could not operate with other SOAP servers.

Oracle9iAS SOAP offers an alternative solution for Stateful Session EJBs that allows

for client interoperablity.

Stateful Session EJB Provider in Oracle9 iAS SOAP
The Oracle9iAS SOAP Stateful Session EJB provider binds the EJB reference to the

current session, if none is bound, otherwise, it merely retrives the EJB reference

from the session. In order for the client to access the same Stateful Session EJB, the

client has to simply maintain it’s current session between successive Calls.

If at any point in a session, the SOAP client invokes a create on the EJB’s Home

Interface, the provider binds the EJB reference from the create to the session, to be

used for other call requests within the session.

Entity EJB Provider in Oracle9 iAS SOAP
In order for a SOAP client to exceute a business method on an entity EJB, it first

needs to either "create" a new EJB upon which to run the method or find an already
A-30 Oracle9i Application Server Web Services Developer’s Guide

Using the Oracle9iAS SOAP EJB Provider
existing EJB which suit some criteria. Access to an entity EJB occurs within a

session. At the start of the session the SOAP client must invoke a "create" or "find"

(in order to specify the bean object interest). While maintaining the same session, all

other business methods are directed to that EJB. A subsequent "find" or "create"

within the same or different session directs business method exceution requests to

the newly "created" (or "found") EJB.

Another issue is that EJB specification provides that some "find" methods can return

either a Collection of EJB refs or single EJB ref.

The Oracle solution for Entity EJBs embraces the following solution for this

problem:

It disallows find methods that return "Collections". This allows for the provider

to uniquely specify an Entity EJB to target subsequent business method

requests.

 Deployment and Use of the Oracle9 iAS SOAP EJB Provider
To install an EJB provider and deploy Web Services to the provider under OC4J,

where the application server hosts both the SOAP servlet and the deployed EJB’s,

follow these steps:

1. Deploy an EJB provider to SOAP using a provider descriptor.

The provider descriptor specifies the following:

■ EJB access credentials by the middle tier

■ JNDI context factory class

■ JNDI context factory URL

■ Provider class name

■ Provider id

2. Create the EJB Web Service:

■ Define the associated EJB classes and package the EJB into an EAR file as

defined by J2EE spec.

■ Define the service descriptor which specifies following details of the EJB

Web Service:

* JNDI Location

* Home interface class name
Using Oracle SOAP A-31

Using PL/SQL Stored Procedures With the SP Provider
* Application Deployment Name of this EJB Web Service in OC4J

* The provider id to which this service is to be associated

3. Deploy ear file in OC4J. Modify the OC4J specfic EJB descriptor to correct the

JNDI locationfor the EJB (as described in sample README).

Current Known EJB Provider Limitations
All service methods can only take primitive Java types as arguments to the

methods. User-defined Java types are currently not supported.

Using PL/SQL Stored Procedures With the SP Provider
The Oracle9iAS SOAP Stored Procedure (SP) Provider supports exposing PL/SQL

stored procedures or functions as SOAP services. The Oracle9i Database Server

allows procedures implemented in other languages, including Java and C/C++, to

be exposed using PL/SQL; these stored procedures are exposed as SOAP services

through PL/SQL interfaces.

The SP Provider framework works by translating PL/SQL procedures into Java

wrapper classes, and then exporting the generating Java classes as SOAP Java

services.

SP Provider Supported Functionality
The SP Provider supports the following:

■ PL/SQL stored procedures. both procedures and functions (this document uses

procedure to refer to both)

■ IN parameter modes

■ Packaged procedures only (top-level procedures must be wrapped in a package

before they can be exported)

■ Overloaded procedures (however, if two different PL/SQL types map to the

same Java type during translating, there may be errors during the export of the

PL/SQL package; these errors may be fixed by avoiding the overloading, or else

by writing a new dummy package which does not contain the offending

overloaded procedures)

■ Simple types

■ (user-defined) object types
A-32 Oracle9i Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider
SP Provider Unsupported Functionality
The SP provider does not support the following:

■ The SP Provider framework uses JPublisher to translate from PL/SQL to Java;

hence, it inherits all of the restrictions of JPublisher.

■ BOOLEAN Due to a restriction in the OCI layer, the JDBC drivers do not

support the passing of BOOLEAN parameters to PL/SQL stored procedures.

Please refer to the JDBC Developer’s Guide and Reference for a workaround.

■ NCHAR and related types

■ JPublisher does not support internationalization.

■ LOB types. JPublisher does not provide comprehensive support for LOB types;

if your PL/SQL proceudres use LOB types as input/output types, the

translation may not work in all cases. If you see an error, the offending

procedures will have to be rewritten before the package can be exported as a

SOAP service.

SP Provider Supported Simple PL/SQL Types
The SOAP SP provider supports the following simple types. NULL values are

supported for all of the simple types listed, except NATURALN and POSITIVEN.

The JPublisher documentation provides full details on the mappings of these types.

■ VARCHAR2 (STRING, VARCHAR)

■ LONG

■ CHAR (CHARACTER)

■ NUMBER (DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT,

NUMERIC, REAL,

■ SMALLINT)

■ PLS_INTEGER

■ BINARY_INTEGER (NATURAL, NATURALN, POSITIVE, POSITIVEN)

Due to a bug in JPublisher, many integer numeric types are translated into

java.math.BigDecimal instead of the Java scalar types---the workaround for this bug

is to temporarily use java.math.BigDecimal as the argument and return types.

The sample SP service has examples of the use of BigDecimal.
Using Oracle SOAP A-33

Using PL/SQL Stored Procedures With the SP Provider
Using Object Types
JPublisher supports the use of user-defined object types. The SP Provider

framework generates oracle.sql.CustomDatum style classes since these allow

automatic serialization using the default BeanSerializer in SOAP.

Refer to the company sample for an example of using object types.

Deploying a Stored Procedure Provider
Example A–7 shows a sample provider deployment descriptor for a stored

procedure. You may use any unique id for the provider name (the example uses

"company-provider").

The attributes user, password, and url are used to create the URL to connect to the

database, and they are all required. The number of connections for a service,

handled by this provider, is set using connections_per_service ; this is

optional and defaults to 10.

Deploy the sample provider descriptor shown in Example A–7, appropriately

edited for the local configuration, using the provider manager.

Example A–7 Sample SP Provider Deployment Descriptor

<isd:provider xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/provider"
 id="company-provider"
 class="oracle.soap.providers.sp.SpProvider">
 <!-- edit the following option "values" as appropriate -->
 <isd:option key="user" value="YOUR-USER-NAME" />
 <isd:option key="password" value="YOUR-PASSWORD" />
 <isd:option key="url" value="jdbc:oracle:thin:@YOUR-HOST:YOUR-PORT:YOUR-SID"
/>
 <isd:option key="connections_per_service" value="3" />
</isd:provider>

Translating PL/SQL Stored Procedures into Java
The shell script $SOAP_HOME/bin/sp2jar.sh translates a PL/SQL package and

all its contained procedures/functions into a Java class with equivalent methods. If

the package uses any user-defined types,these types are also translated into

equivalent Java classes.

The README file in the samples directory has an example of the usage of the

sp2jar.sh command to translate the company example into a jar file of compiled
A-34 Oracle9i Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider
Java classes. The README also describes how to load the PL/SQL packages into the

database.

Let us assume for the rest of the document that a PL/SQL package company has

been installed on a database, and it has been exported into a set of compiled Java

classes available in the jar file company.jar .

The generated company.jar should be made available in the CLASSPATH of the

SOAP servlet, just as for other Java services.

Deploying a Stored Procedure Service
Example A–8 shows a sample service deployment descriptor for a stored procedure.

Notice that the id attribute in the provider element identifies the provider under

which this service is deployed.

The service descriptor looks exactly like that for a Java service, since the SP Provider

framework translated PL/SQL procedures into Java class methods. All of the

information specific to PL/SQL are part of the provider descriptor---the service

itself looks like a Java service.

If the procedures use object types, it is necessary to define a type mapping for each

object type. The XML type name must be identical to the SQL type name and must

be in UPPER CASE (see EMPLOYEE and ADDRESS below). The javaType attribute

identifies the oracle.sql.CustomDatum type that was generated by JPublisher.

The default BeanSerializer can be used to serialize/deserialize the types.

The generated method names are in lower-case since this is the default setting of

JPublisher.

Deploy the sample service descriptor shown in Example A–8 using the service

manager.

Example A–8 Sample Stored Procedure Service Deployment Descriptor

<isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:www-oracle-com:company"
 type="rpc" >

 <isd:provider
 id="company-provider"
 methods="addemp getemp getaddress getempinfo changesalary removeemp"
 scope="Application" >
 <isd:java class="samples.sp.company.Company"/>
 </isd:provider>
Using Oracle SOAP A-35

SOAP Troubleshooting and Limitations
 <isd:mappings>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:EMPLOYEE"
 javaType="samples.sp.company.Employee"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"

xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:ADDRESS"
 javaType="samples.sp.company.Address"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 </isd:mappings>

 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>

</isd:service>

Invoking a SOAP Service that is a Stored Procedure
SOAP services that are PL/SQL stored procedures are invoked in exactly the same

manner as any other SOAP service. The company.jar file created during the

translating/deployment of a PL/SQL package is also needed on the client-side to

compile application programs that invoke the SOAP service (this jar file is needed

only if the stored procedures have input/output types that are user-defined types; if

the procedures use only builtin-types, the generated jar file is not needed on the

client).

The README file in the company samples directory has instructions on how to

compile and test the sample client.

SOAP Troubleshooting and Limitations
This section lists several techniques for troubleshooting Oracle9iAS Web Services,

including:

■ Tunneling Using the TcpTunnelGui Command

■ Setting Configuration Options for Debugging

■ Using DMS to Display Runtime Information

■ SOAP Limitations for Java Type Prcedence with Overloaded Methods
A-36 Oracle9i Application Server Web Services Developer’s Guide

SOAP Troubleshooting and Limitations
Tunneling Using the TcpTunnelGui Command
SOAP provides the TcpTunnelGui command to display messages sent between a

SOAP client and a SOAP server. TcpTunnelGui listens on a TCP port, which is

different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnelGui as follows:

java org.apache.soap.util.net.TcpTunnelGui TUNNEL-PORT SOAP-HOST SOAP-PORT

Table A–7 lists the command line options for TcpTunnelGui .

For example, suppose the SOAP server is running as follows,

http://system1:8080/soap/servlet/soaprouter

You would then invoke TcpTunnelGui on port 8082 with this command:

java org.apache.soap.util.net.TcpTunnelGui 8082 system1 8080

To test a client and view the SOAP traffic, you would use the following SOAP URL

in the client program:

http://system1:8082/soap/servlet/soaprouter

Setting Configuration Options for Debugging
To add debugging information to the SOAP Request Handler Servlet log files,

change the value of the severity option for the value debug in the file soap.xml.
This file is placed in the directory $SOAP_HOME/webapps/soap/WEB-INF on

UNIX or in %SOAP_HOME%\webapps\soap\WEB-INF on Windows.

Table A–7 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnelGui listens to on the same host
as the client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server
Using Oracle SOAP A-37

SOAP Troubleshooting and Limitations
For example, the following soap.xml segment shows the value to set for

severity to enable debugging:

<!-- severity can be: error, status, or debug -->
<osc:logger class="oracle.soap.server.impl.ServletLogger">
 <osc:option name="severity" value="debug" />
</osc:logger>

After stopping and restarting the SOAP Request Handler Servlet, you can view

debug information in the file x.log . The file is in the directory $ORACLE_
HOME/Apache/logs on UNIX or in

%ORACLE_HOME%\Apache\x\logs on Windows.

Using DMS to Display Runtime Information
Oracle9iAS Web Services is instrumented with DMS to gather information on the

execution of the SOAP Request Handler Servlet, the Java Provider, and on

individual services.

DMS information includes execution intervals from start to stop for the following:

■ Total time spent in SOAP request and response (includes time in providers and

services)

■ Total time spent in the Java Provider (includes time in services)

■ Total time executing services (soap/java-provider/ service-URI)

To view the DMS information, go to the following site:

http:// hostname : port /soap/servlet/Spy

SOAP Limitations for Java Type Prcedence with Overloaded Methods
Oracle9iAS SOAP supports Java inbuilt (primitive) types, wrapper types, one

dimensional arrays of inbuilt types, and one dimensional arrays of wrapper types

as parameters for SOAP RPC.

An inbuilt type parameter always takes precedence to a wrapper type parameter

when the Java provider searches for an overloaded method. When there isn't a clear

winner, for an overloaded method, a fault with appropriate message is returned.
A-38 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS SOAP Differences From Apache SOAP
For example:

A java class containing aMethod(int) hides aMethod(Integer) in the same

class.

A java class containing aMethod(int[]) hides aMethod(Integer[]) in the

same class.

A java class, when deployed as a SOAP RPC service returns a fault when a client

invokes aMethod() containing the signatures, aMethod(int, Float) and

aMethod(Integer, float) . In this case, there is no clear winner for resolving

the precedence of the overloaded aMethod() .

Oracle9 iAS SOAP Differences From Apache SOAP
This section covers differences between Apache Soap and Oracle9iAS SOAP.

Service Installation Differences
Additional instructions are provided for installing services when Oracle9iAS SOAP

is used in conjunction with OC4J.

Optional Provider Enhancements
Oracle9iAS SOAP supports both the Apache Provider interface, defined in

org.apache.soap.util.Provider , and an enhanced provider interface,

defined in oracle.soap.server.Provider .

The native Apache provider includes only two methods, locate() and

invoke() . The Oracle Provider interface combines the locate and invoke methods,

so that the provider does not have to store input parameters between the locate()
and invoke() calls. Additionally, the Oracle Provider interface has init() and

destroy() methods, which the SOAP servlet calls only once when the provider is

instantiated. This allows providers to perform one time initialization such as

opening a database or network connection, and to perform one time clean up

activities.

When using the Apache provider interface, a single deployment descriptor supplies

both service and provider properties. When using the Oracle Provider interface,

these properties are separated between a service descriptor file and a provider

descriptor file. This allows common provider properties to be shared among

services. When a provider property changes, only a single descriptor file must be

changed. Please see the Deployment section of this document for more information.
Using Oracle SOAP A-39

Oracle9iAS SOAP Differences From Apache SOAP
Oracle Transport libraries
Oracle transport libraries are included for use with SOAP clients. Use of these

libraries enables use of the Oracle Wallet Manager for keeping certificates securely,

and use of the HttpClient libraries for HTTP connection management. The

HttpClient libraries fix a security problem in the native Apache code which

incorrectly returns cookies to servers other than the originating server.

Modifications to Apache EJB Provider
The Apache EJB provider has been modified to work with the OC4J EJB container.

In addition, the client interface to services provided by stateful and entity EJB’s has

been improved. The EJB handle is contained in the HttpSession association with the

connection rather than being concatenated to the returned URL. Since the

HTTPSession cookie is handled transparently by the SOAP client, no special coding

is required in the client.

Stored Procedure Provider
A special provider has been added which allows services to be written using

PL/SQL Stored Procedures or Functions.

Utility Enhancements
The wsdl2java and java2wsdl scripts simplify building client side code from

WSDL descriptions and for generating WSDL descriptions of Java services.

Modifications to Sample Code
The Apache samples have been modified to work with Oracle9iAS SOAP and OC4J.

The com, calculator , weblogic_ejb samples have been omitted. New samples

illustrating use of Oracle Stored Procedures and OC4J EJB’s as Web Services have

been added.

Handling the mustUnderstand Attribute in the SOAP Header
This section describes the check that is performed for the mustUnderstand
attribute within the header blocks of the SOAP envelope, and describes the

difference between the Apache SOAP and the Oracle SOAP processing of this

attribute.
A-40 Oracle9i Application Server Web Services Developer’s Guide

Oracle9iAS SOAP Differences From Apache SOAP
Setting the mustUnderstand Check
The check for the mustUnderstand attribute is enabled in the deployment

descriptor of the service by setting the checkMustUnderstands flag. If this flag

set to true , the check for the mustUnderstand attribute within each header block

is performed. If the checkMustUnderstands flag is set to false , the check for

the mustUnderstand attribute is not performed. The default value of

checkMustUnderstands flag is true .

How the mustUnderstand Check Works
If the checkMustUnderstands flag is set to true , then a check is made on all

header entries of the envelope after the global request handlers have finished

processing and before handing the envelope to the appropriate service. At this

point, if any header entries contain a mustUnderstand attribute that is set to true
or to "1", then an exception is thrown. Note, the global handler(s) can be used to

process one or more header blocks that have the mustUnderstand attribute set to

true .

If the checkMustUnderstands flag is set to false , then header entries of the

envelope are not checked to see if any entries contain a mustUnderstand attribute

that is set to true or to "1". It is then understood that it is up to the service

implementation to make sure that this check is done before processing the body of

the envelope.

Differences Between Apache SOAP and Oracle SOAP for mustUnderstand
The differences between Apache SOAP and Oracle SOAP with respect to the

handling of the mustUnderstand attribute are the following:

1. In the Apache service deployment descriptor and the Oracle Service

deployment descriptor, you may include the checkMustUnderstands
attribute. In Apache, the default value of the checkMustUnderstands
attribute is false , in Oracle SOAP the default value of this attribute is true .

2. In Apache SOAP, if the service deployment descriptor contains

checkMustUnderstands='true' and a message with

mustUnderstand='1 ' or mustUnderstand="true" arrives at the server

then a fault is sent back with the fault code value of:

mustUnderstand

This fault code is not namespace qualified and is incorrect.

In Oracle SOAP the fault code that is sent back is namespace qualified and is

defined by SOAP 1.1:
Using Oracle SOAP A-41

Oracle9iAS SOAP Differences From Apache SOAP
SOAP-ENV:MustUnderstand

3. In Apache SOAP, the mustUnderstand attribute has to be handled by the

service implementation. In Oracle SOAP, the mustUnderstand attribute can

be either handled in the SOAP handlers or in the service implementation. This

is very useful for processing headers (with mustUnderstand set to '1') which

have a 'global' use. Examples of such headers/functionality are encryption,

digsig, authentication, logging etc.
A-42 Oracle9i Application Server Web Services Developer’s Guide

Glossary

Dynamic Web Service Client

When you want to use Web Services, you can develop a dynamic Web Service
client. With A dynamic client the client performs a lookup to find the Web Service’s

location in a UDDI registry before accessing the service.

SOAP

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for

exchanging information in a decentralized, distributed environment. SOAP

supports different styles of information exchange, including: Remote Procedure Call

style (RPC) and Message-oriented exchange.

Static Web Service Client

When you want to use Web Services, you can develop a static client. A static client

knows where a Web Service is located without looking up the service in a UDDI

registry.

Stored Procedure Web Service

Oracle9iAS Web Services implemented as stateless PL/SQL Stored Procedures or

Functions are called Stored Procedure Web Services. Stored Procedure Web

Services enable you to export, as services running under Oracle9iAS Web Services,

PL/SQL procedures and functions that run on an Oracle database server.

See Also: http://www.w3.org/TR/SOAP/ for information on

Simple Object Access Protocol (SOAP) 1.1 specification
Glossary-1

UDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for an

online electronic registry that serves as electronic Yellow Pages, providing an

information structure where various business entities register themselves and the

services they offer through their WSDL definitions.

Web Service

A Web Service is a discrete business process that does the following:

■ Exposes and describes itself – A Web Service defines its functionality and

attributes so that other applications can understand it. A Web Service makes

this functionality available to other applications.

■ Allows other services to locate it on the web – A Web Service can be registered

in an electronic Yellow Pages, so that applications can easily locate it.

■ Can be invoked – Once a Web Service has been located and examined, the

remote application can invoke the service using an Internet standard protocol.

■ Returns a response – When a Web Service is invoked, the results are passed

back to the requesting application over the same Internet standard protocol that

is used to invoke the service.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for describing

network services containing RPC-oriented and message-oriented information.

Programmers or automated development tools can create WSDL files to describe a

service and can make the description available over the Internet.

See Also: http://www.uddi.org for information on Universal

Description, Discovery and Integration specifications.

See Also: http://www.w3.org/TR/wsdl for information on

the Web Services Description Language (WSDL) format.
Glossary-2

Index

C
class-name configuration tag, 3-11, 6-12

client-side proxies

using, 8-9

client-side proxies for Web Services

generating, 8-8

Client-side proxy

getting directly, 8-5

connection-factory-resource-ref configuration

tag, 7-13

consuming Web Services

advanced section

editing generated XSLT stylesheet, 11-31

modifying environment options in generated

ejb-jar.xml file, 11-32

sample uses

handling an XML or HTML stream accessed

through a custom form, 11-14

handling an XML or HTML stream accessed

through a form, 11-13

handling an XML or HTML stream accessed

through static URL, 11-3

SOAP-based Web services using WSDL

document, 11-33

running the demonstration, 11-41

using configuration file, 11-35

using wsdl2ejb utility command-line

options, 11-33

using Web Service HTML/XML Stream

Processing Wizard, 11-2

XML or HTML streams, 11-2

context configuration tag, 3-10

D
database-JNDI-name, 5-6

database-JNDI-name configuration tag, 5-6

data-sources.xml configuration file, 5-11

db-pkg-name configuration tag, 5-7

db-url configuration tag, 5-7

description configuration tag, 3-10

destination-path configuration tag, 3-10

discovering Web Services, 10-5

display-name configuration tag, 3-10

document style interface, 6-7

dynamic invocation of Web Services, 11-52

dynamic invocation API, 11-52

WebServiceProxy client, 11-56

E
ejb-name configuration tag, 4-10

ejb-resource configuration tag, 3-11, 4-10

EJBs sample code, 4-2

Element

arrays of, 3-7, 4-6, 6-4

null values, 6-3

G
generating client proxies, A-8

generating WSDL documents, A-9

getting client-side proxies for Web Services, 8-3

getting WSDL descriptions for Web Services, 8-3
Index-1

H
http.authType property, 8-12

http.password property, 8-12

http.proxyAuthType property, 8-12

http.proxyHost property, 8-12

http.proxyPassword property, 8-12

http.proxyPort property, 8-12

http.proxyRealm property, 8-12

http.proxyUsername property, 8-12

http.realm property, 8-12

http.username property, 8-12

I
interface-name configuration tag, 3-11, 6-12

J
jar-generation configuration tag, 5-6

Java Beans, 3-7, 4-6

java class interface, 3-5

java2wsdl script, A-9

java.protocol. handler.pkgs property, 8-13

java-resource configuration tag, 3-12, 6-12

jms-delivery-mode configuration tag, 7-13

jms-doc-service configuration tag, 7-13

jms-expiration configuration tag, 7-13

jms-message-type configuration tag, 7-14

jms-priority configuration tag, 7-14

L
locating Web Services, 8-2

M
message-style configuration tag, 3-12, 6-12

method-name configuration tag, 5-7

O
operation configuration tag, 7-14

option name="force" configuration tag, 9-6

option name="httpServerURL" configuration

tag, 9-6

option name="include-source" configuration

tag, 8-9

option name="packageIt" configuration tag, 9-6

option name="source-path" configuration tag, 3-10

option name="wsdl-location" configuration

tag, 8-9

option package-name configuration tag, 8-9

Oracle SOAP, A-23

audit logger

configuring, A-18

filter, A-15

HostName, A-15

IpAddress, A-15

Method element, A-15

schema, A-15

ServiceURI element, A-15

TimeStamp element, A-15

User element, A-15

auditLogDirectory option, A-19

client API

security features, A-21

configuration

handlers, A-13

soap.xml, A-3

debugging

setting values in soap.xml, A-37

deploying services, A-7

deployment descriptor, A-10

error handlers, A-13

errorHandlers deployment parameter, A-3

faultListeners deployment parameter, A-3

filter option, A-19

handlers

deployment parameter, A-4

error, A-13

request, A-13

response, A-13

HostName element, A-15

HTTP transport properties

http.authType property, A-23

http.password property, A-23

http.proxyAuthType property, A-23

http.proxyHost property, A-23

http.proxyPassword property, A-23

http.proxyPort property, A-23
Index-2

http.proxyRealm property, A-23

http.proxyUsername property, A-23

http.realm property, A-23

http.username property, A-23

java.protocol. handler.pkgs property, A-23

oracle. wallet.location property, A-25

oracle.soap. transport. allowUserInteraction

property, A-24

oracle.wallet. password property, A-25

http.authType property, A-23

http.password property, A-23

http.proxyAuthType property, A-23

http.proxyHost property, A-23

http.proxyPassword property, A-23

http.proxyPort property, A-23

http.proxyRealm property, A-23

http.proxyUsername property, A-23

http.realm property, A-23

http.username property, A-23

includeRequest option, A-19

includeResponse option, A-20

IpAddress element, A-15

java.protocol. handler.pkgs property, A-23

listing services, A-7

logger

setting values in soap.xml, A-37

logger deployment parameter, A-4

Method element, A-15

oracle. wallet.location property, A-25

oracle.soap. transport. allowUserInteraction

property, A-24

oracle.soap. transport.1022ContentType

property, A-24

oracle.ssl.ciphers property, A-24

oracle.wallet. password property, A-25

providerManager deployment parameter, A-5

querying services, A-7

request handlers, A-13

requestHandlers deployment parameter, A-5

response handlers, A-13

responseHandlers deployment parameter, A-5

security features, A-21

service manager

deploying services, A-7

listing services, A-7

querying services, A-7

undeploying services, A-7

verifying services, A-7

serviceManager deployment parameter, A-5

ServiceURI element, A-15

servlet.soaprouter.initArgs parameter, A-3

soap.properties

soapConfig, A-3

soap.xml, A-3

TcpTunnelGui command, A-37

TimeStamp element, A-15

troubleshooting, A-36

undeploying services, A-7

User element, A-15

oracle. wallet.location property, 8-13

oracle.soap. transport.allowUserInteraction

property, 8-13

oracle.ssl.ciphers property, 8-13

oracle.wallet. password property, 8-13

P
packageName request parameter, 8-6

packaging WSDL, 9-5

path configuration tag, 4-10

PL/SQL stored procedures

setting up datasources, 5-11

writing, 5-2

prefix configuration tag, 5-7

publishing API, 10-14

publishing Web services, 10-8

Q
queue-resource-ref configuration tag, 7-14

R
reply-to-connection-factory-resource-ref

configuration tag, 7-15

reply-to-queue-resource-ref configuration tag, 7-15

reply-to-topic-resource-ref configuration tag, 7-15
Index-3

S
schema configuration tag, 5-7

scope configuration tag, 3-12, 6-12

session-timeout configuration tag, 3-12, 6-12

simple object access protocol

what is SOAP, 1-6

SOAP

features, 1-6

web services, 1-6

what is SOAP, 1-6

SOAP client-side

HTTP transport properties

http.authType property, 8-12

http.password property, 8-12

http.proxyAuthType property, 8-12

http.proxyHost property, 8-12

http.proxyPassword property, 8-12

http.proxyPort property, 8-12

http.proxyRealm property, 8-12

http.proxyUsername property, 8-12

http.realm property, 8-12

http.username property, 8-12

java.protocol. handler.pkgs property, 8-13

oracle. wallet.location property, 8-13

oracle.soap. transport. allowUserInteraction

property, 8-13

oracle.ssl.ciphers property, 8-13

oracle.wallet. password property, 8-13

stateful document style, 6-4

stateful java class, 3-3

stateful-java-service configuration tag, 3-10, 6-11

stateless document style, 6-4

stateless java class, 3-3

stateless session EJBs

helloStatelessSession sample code, 4-2

writing, 4-2

stateless-java-service configuration tag, 3-10, 6-11

stateless-session-ejb-service configuration tag, 4-9

T
temporary-directory configuration tag, 3-10

topic-resource-ref configuration tag, 7-15

U
UDDI

Oracle UDDI registry, 10-9

production environment configuration, 10-30

publishing Web services

using OEM Deploy Applications

Wizard, 10-9

using OEM Web Services Details

window, 10-11

registration, 10-2

registry, 10-2

registry administration

administrative entity management, 10-21

built-in validated category

management, 10-23

command-line tool uddiadmin.jar, 10-20

database configuration, 10-22

import operation, 10-22

performance monitoring and tuning, 10-20

server configuration, 10-20

server configuration parameters reference

information, 10-26

transport security, 10-25

user account management, 10-21

standard taxonomies

ISO3166, 10-2

NAICS, 10-2

UNSPSC, 10-2

updating published Web services

using OEM Web Services Details

window, 10-12

Web service discovery, 10-4

using inquiry API, 10-5

using tools, 10-5

Web service publishing, 10-4

using publishing API, 10-14

using tools, 10-8

UDDI registry administration

user management, 10-19

uddiadmin.jar

registry administration command-line

tool, 10-20

uri configuration tag, 3-12, 4-10, 5-6, 6-12, 7-15
Index-4

W
Web Services

Bean support, 3-7, 4-6

client-side proxies, 8-3, 8-9

packageName request parameter, 8-6

discovering, 10-5

document style

deploying, 6-16

interface, 6-7

null value for Element, 6-3

stateful, 6-4

stateless, 6-4

encoding parameters, 3-15

encoding results, 3-15

generating client proxies, A-8

generating client-side proxies, 8-8

generating WSDL documents, A-9

home page, 8-3

Java Bean support, 3-7, 4-6

java class

deploying, 3-9, 3-14

interface, 3-5

preparing, 3-9

stateful, 3-3

stateless, 3-3

supported parameter types, 3-7

supported return value types, 3-7

supported types, 3-5

JMS

deploying, 7-17

preparing an EAR file, 7-17

locating, 8-2

PL/SQL stored procedures, 5-2

deploying, 5-12

preparing an EAR file, 5-10

setting up datasources, 5-11

proxies, 8-9

publishing, 10-8

serializing parameters, 3-15

serializing results, 3-15

stateless session EJBs, 4-2

bean code, 4-4

deploying, 4-8, 4-11

developing web services, 4-3

error handling, 4-5

home interface, 4-3, 4-4

preparing, 4-8

remote interface, 4-3

returning results, 4-5

sample code, 4-2

supported parameter types, 4-6

supported return value types, 4-6

test page, 8-3

WSDL descriptions, 8-3, 8-8

WebServicesAssembler, 9-5

DTD, 9-9

generating WSDL, 9-5

running, 9-2

sample input file, 9-2

sample output, 9-4

tag

class-name, 3-11, 6-12

connection-factory-resource-ref, 7-13

context, 3-10

db-pkg-name, 5-7

db-url, 5-7

description, 3-10

destination-path, 3-10

display-name, 3-10

ejb-name, 4-10

ejb-resource, 3-11, 4-10

interface-name, 3-11, 6-12

jar-generation, 5-6

java-resource, 3-12, 6-12

jms-delivery-mode, 7-13

jms-doc-service, 7-13

jms-expiration, 7-13

jms-message-type, 7-14

jms-priority, 7-14

message-style, 3-12, 6-12

method-name, 5-7

operation, 7-14

option name="force", 9-6

option name="httpServerURL", 9-6

option name="include-source", 8-9

option name="packageIt", 9-6

option name="source-path", 3-10

option name="wsdl-location", 8-9

option package-name, 8-9
Index-5

path, 4-10

prefix, 5-7

proxy-dir, 8-9

queue-resource-ref, 7-14

reply-to-connection-factory-resource-ref, 7-1

5

reply-to-queue-resource-ref, 7-15

reply-to-topic-resource-ref, 7-15

schema, 5-7

scope, 3-12, 6-12

session-timeout, 3-12, 6-12

stateful-java-service, 3-10, 6-11

stateless-java-service, 3-10, 6-11

stateless-session-ejb-service, 4-9

stateless-stored-procedure-java-service, 5-5

temporary-directory, 3-10

topic-resource-ref, 7-15

uri, 3-12, 4-10, 5-6, 6-12, 7-15

wsdl-dir, 9-6

WSDL file, 9-7

WSDL file

getting directly, 8-5

wsdl2java script, A-8
Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Web Services Overview
	What Are Web Services?
	Understanding Web Services
	Benefits of Web Services
	About the Web Services e-Business Transformation
	About Business Transformation with Web Services
	About Technology Transformation with Web Services

	Overview of Web Services Standards
	Simple Object Access Protocol (SOAP)
	Web Services Description Language (WSDL)
	Universal Description, Discovery, and Integration (UDDI)

	Scenario: Web Services with a Currency Converter Application
	Understanding the Publisher’s Role
	Understanding the Caller’s Role

	2 Oracle9iAS Web Services
	Oracle9iAS OC4J (J2EE) and Oracle SOAP Based Web Services
	Oracle9iAS Web Services Features
	Developing End-to-End Web Services
	Deploying and Managing Web Services
	Using Oracle9i JDeveloper with Web Services
	Securing Web Services
	Aggregating Web Services

	Oracle9iAS Web Services Architecture
	About Servlet Entry Points for Web Services
	What Are the Packaging and Deployment Options for Web Services
	About Server Skeleton Code Generation for Web Services

	Understanding WSDL and Client Proxy Stubs for Web Services
	Overview of a WSDL Based Web Service Client
	Overview of a Client-Side Proxy Stubs Based Web Service Client

	Web Services Home Page
	About Universal Description, Discovery, and Integration Registry
	Oracle Enterprise Manager Features to Register Web Services

	3 Developing and Deploying Java Class Web Services
	Using Oracle9iAS Web Services With Java Classes
	Writing Java Class Based Web Services
	Writing Stateless and Stateful Java Web Services
	Building a Sample Java Class Implementation
	Defining a Java Class Containing Methods for the Web Service
	Defining an Interface for Explicit Method Exposure
	Writing a WSDL File (Optional)

	Using Supported Data Types for Java Web Services

	Preparing and Deploying Java Class Based Web Services
	Creating a Configuration File to Assemble Java Class Web Services
	Adding Web Service Top Level Tags
	Adding Java Stateless Service Tags
	Adding Java Stateful Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Java Class Web Services
	Deploying Java Class Based Web Services

	Serializing and Encoding Parameters and Results for Web Services

	4 Developing and Deploying EJB Web Services
	Using Oracle9iAS Web Services With Stateless Session EJBs
	Writing Stateless Session EJB Web Services
	Defining a Stateless Session Remote Interface
	Defining a Stateless Session Home Interface
	Defining a Stateless Session EJB Bean
	Returning Results From EJB Web Services
	Error Handling for EJB Web Services
	Serializing and Encoding Parameters and Results for EJB Web Services
	Using Supported Data Types for Stateless Session EJB Web Services
	Writing a WSDL File for EJB Web Services (Optional)

	Preparing and Deploying Stateless Session EJB Based Web Services
	Creating a Configuration File to Assemble Stateless Session EJB Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Session EJB Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
	Deploying Web Services Implemented as EJBs

	5 Developing and Deploying Stored Procedure Web Services
	Using Oracle9iAS Web Services with Stored Procedures
	Writing Stored Procedure Web Services
	Preparing Stored Procedure Web Services
	Creating a Configuration File to Assemble Stored Procedure Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Stored Procedure Java Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Stored Procedure Web Services
	Setting Up Datasources in Oracle9iAS Web Services (OC4J)

	Deploying Stored Procedure Web Services
	Limitations for Stored Procedures Running as Web Services
	Supported Stored Procedure Features for Web Services
	Unsupported Stored Procedure Features for Web Services
	Database Server Release Limitation for Boolean Use in Oracle PLSQL Web Services

	6 Developing and Deploying Document Style Web Services
	Using Document Style Web Services
	Writing Document Style Web Services
	Supported Method Signatures for Document Style Web Services
	Passing Null Values for Document Style Web Services
	Arrays of Elements

	Writing Stateless and Stateful Document Style Web Services
	Writing Classes and Interfaces for Document Style Web Services
	Defining Methods in a Document Style Web Service
	Defining an Interface for Explicit Method Exposure
	Handling Messages for Document Style Web Services

	Preparing Document Style Web Services
	Creating a Configuration File to Assemble Document Style Web Services
	Adding Web Service Top Level Tags
	Adding Java Service Tags with Document Message Style Specified
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Document Style Web Services

	Deploying Document Style Web Services

	7 Developing and Deploying JMS Web Services
	JMS Web Services Overview
	Using JMS Web Services
	JMS Web Services Backend Message Processing
	Using an MDB for Message Processing
	Using a JMS Client for Message Processing

	Writing JMS Web Services and Handling Messages
	Using an MDB for Backend Message Processing
	Developing the MDB that Processes Incoming Messages
	Developing the MDB that Generates Outgoing Messages
	Compiling and Preparing the MDB EJB.jar File
	Assembling the JMS Web Service With the MDB
	Defining the Server-Side Resource References

	Using a JMS Standalone Program for Backend Message Processing
	Message Processing and Reply Messages

	Preparing and Configuring JMS Web Services
	Creating a Configuration File to Assemble JMS Web Services
	Adding Web Service Top Level Tags
	Adding JMS Doc Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With JMS Web Services

	Deploying JMS Web Services
	Limitations for JMS Web Services

	8 Building Clients that Use Web Services
	Locating Web Services
	Getting WSDL Files and Client-Side Proxy Jars for Web Services
	Using the Web Service Home Page to Save WSDL and Client Side Proxies
	Limitations for Web Service Test Pages

	Getting Web Service WSDL and Client-Side Proxies Directly
	Getting WSDL Service Descriptions
	Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar
	Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

	Generating Client-Side Proxies With WebServicesAssembler

	Working with Client-Side Proxy Jar to Use Web Services
	Using Web Services Security Features

	Working with WSDL Files and JDeveloper to Use Web Services

	9 Web Services Assembly Tool
	Running the Web Services Assembly Tool
	Web Services Assembly Tool Configuration File Sample
	Web Services Assembly Tool Configuration File Sample Output

	Generating WSDL Files and Client Side Proxies
	Generating and Assembling WSDL Files
	Manually Producing a WSDL File

	Generating Client-Side Proxies with WSDL

	Web Services Assembly Tool Configuration File Specification
	Web Services Assembly Tool Limitations

	10 Discovering and Publishing Web Services
	UDDI Registration
	UDDI Registry
	Oracle UDDI Enterprise Web Services Registry
	Web Services Discovery
	Using Tools
	Using the Inquiry API

	Web Services Publishing
	Using Oracle Enterprise Manager
	Oracle UDDI Registry
	Using the Oracle Enterprise Manager Deploy Applications Wizard
	Using the Oracle Enterprise Manager Web Services Details Window
	Updating Published Web Services in the UDDI Registry
	Using the Publishing API
	UDDI Registry Administration
	User Management
	Performance Monitoring and Tuning
	Data Backup and Restore Operations
	Using the Command-Line Tool uddiadmin.jar
	Server Configuration
	User Account Management
	Administrative Entity Management
	Import Operation
	Database Configuration
	Built-in Validated Category Management
	Transport Security
	Additional Information
	Server Configuration Parameters Reference Information

	Database Character Set and Built-in ISO-3166 Classification
	Recommended Configuration for a Production Environment

	11 Consuming Web Services in J2EE Applications
	Consuming XML or HTML Streams in J2EE Applications
	Web Service HTML/XML Stream Processing Wizard
	Sample Use Scenarios
	Handling an XML or HTML Stream Accessed Through a Static URL
	Handling an XML or HTML Stream Accessed Through a Form

	Advanced Section -- Editing Changes You Can Make to Generated Files
	Editing the Generated XSLT Stylesheet
	Modifying Environment Options in the Generated ejb-jar.xml File

	Consuming SOAP-Based Web Services Using WSDL
	Advanced Configuration
	Known Limitations of the wsdl2ejb Utility
	Running the Demonstration
	RPC and Document Style with Simple Types Example
	Round 2 Interop Services: Base Test Suite Example

	Dynamic Invocation of Web Services
	Dynamic Invocation API
	WebServiceProxy Client
	Known Limitations

	A Using Oracle SOAP
	Understanding Oracle9iAS SOAP
	Apache SOAP Documentation
	Configuring the SOAP Request Handler Servlet
	Using Oracle9iAS SOAP Management Utilities and Scripts
	Managing Providers
	Using the Service Manager to Deploy and Undeploy Java Services
	Generating Client Proxies from WSDL Documents
	Generating WSDL Documents from Java Service Implementations

	Deploying Oracle9iAS SOAP Services
	Creating Deployment Descriptors
	Installing a SOAP Web Service in OC4J
	Disabling an Installed SOAP Web Service
	Installing a SOAP Web Service in an OC4J Cluster

	Using Oracle9iAS SOAP Handlers
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	Using Oracle9iAS SOAP Audit Logging
	Audit Logging Information
	Audit Logging Output

	Auditable Events
	Audit Logging Filters

	Configuring the Audit Logger

	Using Oracle9iAS SOAP Pluggable Configuration Managers
	Working With Oracle9iAS SOAP Transport Security
	Apache Listener and Servlet Engine Configuration for SSL
	Using JSSE with Oracle9iAS SOAP Client

	Using Oracle9iAS SOAP Sample Services
	The Xmethods Sample
	The AddressBook Sample
	The StockQuote Sample
	The Company Sample
	The Provider Sample
	The AddressBook2 Sample
	The Messaging Sample
	The Mime Sample

	Using the Oracle9iAS SOAP EJB Provider
	Stateless Session EJB Provider
	Stateful Session EJB Provider in Apache SOAP
	Stateful Session EJB Provider in Oracle9iAS SOAP
	Entity EJB Provider in Oracle9iAS SOAP
	Deployment and Use of the Oracle9iAS SOAP EJB Provider
	Current Known EJB Provider Limitations

	Using PL/SQL Stored Procedures With the SP Provider
	SP Provider Supported Functionality
	SP Provider Unsupported Functionality
	SP Provider Supported Simple PL/SQL Types
	Using Object Types
	Deploying a Stored Procedure Provider
	Translating PL/SQL Stored Procedures into Java
	Deploying a Stored Procedure Service
	Invoking a SOAP Service that is a Stored Procedure

	SOAP Troubleshooting and Limitations
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information
	SOAP Limitations for Java Type Prcedence with Overloaded Methods

	Oracle9iAS SOAP Differences From Apache SOAP
	Service Installation Differences
	Optional Provider Enhancements
	Oracle Transport libraries
	Modifications to Apache EJB Provider
	Stored Procedure Provider
	Utility Enhancements
	Modifications to Sample Code
	Handling the mustUnderstand Attribute in the SOAP Header
	Setting the mustUnderstand Check
	How the mustUnderstand Check Works
	Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

	Glossary
	Index

