
Oracle9i Application Server

Performance Guide

Release 2 (9.0.2) for UNIX

April 2002

Part No. A97380-01

Oracle9i Application Server Performance Guide, Release 2 (9.0.2) for UNIX

Part No. A97380-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Contributors: Thomas Van Raalte, Eric Belden, Paul Benninghoff, Alice Chan, Greg Cook, Marcelo
Goncalves, Helen Grembowicz, Bruce Irvin, Pushkar Kapasi, Paul Lane, Sharon Malek, Valarie Moore,
Carol Orange, Julia Pond, Leela Rao, Joan Silverman, Sanjay Singh, Cheryl Smith, Zhunquin Wang, Brian
Wright

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Intended Audience .. xiv
Documentation Accessibility ... xiv
Organization.. xv
Related Documentation .. xvi
Conventions... xvii

1 Performance Overview

Introduction to Oracle9iAS Performance... 1-2
Performance Terms .. 1-2

What Is Performance Tuning? .. 1-3
Response Time .. 1-3
System Throughput.. 1-5
Wait Time... 1-5
Critical Resources ... 1-6
Effects of Excessive Demand... 1-7
Adjustments to Relieve Problems .. 1-7

Performance Targets ... 1-8
User Expectations ... 1-8
Performance Evaluation .. 1-8

Performance Methodology ... 1-9
Factors in Improving Performance .. 1-10
iii

2 Monitoring Oracle9iAS

Overview of Monitoring Oracle9iAS.. 2-2
Oracle Enterprise Manager.. 2-2
Oracle9iAS Built-in Performance Metrics ... 2-2
Native Operating System Performance Commands ... 2-3
Network Performance Monitoring Tools .. 2-3

Using Oracle9iAS Built-in Performance Metrics.. 2-4
Viewing Performance Metrics Using AggreSpy .. 2-4

AggreSpy URL and Access Control.. 2-5
Viewing Performance Metrics Using dmstool ... 2-7

Access Control for dmstool .. 2-7
Using dmstool to List the Names of All Metrics... 2-9
Using dmstool to Report Specific Performance Metrics .. 2-9
Using dmstool With the Interval and Count Options.. 2-10
Using dmstool to Report All Metrics with Metric Values ... 2-11
Using dmstool to View Metrics on a Remote Oracle9iAS System 2-11

3 Monitoring Oracle HTTP Server

Monitoring Oracle HTTP Server with Oracle Enterprise Manager .. 3-2
Assessing the Oracle HTTP Server Load with Oracle Enterprise Manager......................... 3-2

Status Metrics ... 3-3
Response and Load Metrics ... 3-5
Module Metrics .. 3-6

Investigating Oracle HTTP Server Errors with Oracle Enterprise Manager........................ 3-6
Categorizing Oracle HTTP Server Problems with Oracle Enterprise Manager 3-7

Categorizing Oracle HTTP Server Problems by Module... 3-7
Categorizing Oracle HTTP Server Problems by Virtual Host .. 3-8
Categorizing Oracle HTTP Server Problems by Child Server .. 3-9

Monitoring Oracle HTTP Server with Built-in Performance Metrics 3-11
Assessing the Oracle HTTP Server Load with Built-in Metrics ... 3-11
Investigating Oracle HTTP Server Errors with Built-in Metrics.. 3-15
Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics............. 3-17

Categorizing Oracle HTTP Server Performance Problems by Module 3-17
Categorizing Oracle HTTP Server Performance Problems by Virtual Host............... 3-19
Categorizing Oracle HTTP Server Performance Problems by Child Server............... 3-19
iv

4 Monitoring OC4J

Monitoring OC4J With Oracle Enterprise Manager .. 4-2
Monitoring OC4J Instances With Oracle Enterprise Manager... 4-2

General .. 4-3
Status ... 4-3
Response for Servlets and JSPs.. 4-4
Response for EJBs .. 4-4
JDBC Usage .. 4-4

Monitoring J2EE Applications with Oracle Enterprise Manager .. 4-4
General .. 4-6
Response for Servlets and JSPs.. 4-6
Response for EJBs .. 4-6
Web Module Table .. 4-6
EJB Modules Table .. 4-7

Monitoring OC4J With Built-in Performance Metrics .. 4-8

5 Optimizing Oracle HTTP Server

TCP Tuning Parameters ... 5-2
Tuning Linux... 5-4

Raising Network Limits on Linux Systems for 2.1.100 or greater.................................. 5-4
Tuning a Running System.. 5-4
Tuning the Default and Maximum Size... 5-4
Tuning at Compile Time .. 5-5

Setting TCP Parameters ... 5-6
Increasing TCP Connection Table Access Speed .. 5-6
Specifying Retention Time for Connection Table Entries ... 5-7
Increasing the Handshake Queue Length ... 5-8
Changing the Data Transmission Rate... 5-8
Changing the Data Transfer Window Size .. 5-9

Configuring Oracle HTTP Server Directives .. 5-9
Configuring the MaxClients Directive .. 5-11
How Persistent Connections Can Reduce httpd Process Availability................................ 5-12

Logging ... 5-12
Access Logging ... 5-12
Configuring the HostNameLookups Directive.. 5-12
v

Error logging ... 5-13
Secure Sockets Layer .. 5-13
Oracle HTTP Server Performance Tips .. 5-14

Analyze Static Versus Dynamic Requests... 5-14
Analyze Time Differences Between Oracle HTTP Server and OC4J Servers..................... 5-14
Beware of a Single Data Point Yielding Misleading Results .. 5-15

6 Optimizing J2EE Applications In OC4J

OC4J J2EE Application Performance Quickstart .. 6-2
Improving J2EE Application Performance by Configuring OC4J Instance 6-3

Setting Java Options for OC4J Processes... 6-3
Setting the JVM Heap Size for OC4J Processes ... 6-3
Setting the Server Option for OC4J Processes ... 6-5
Setting the Stack Size Option for OC4J Processes... 6-5
Setting the Concurrentio Option for OC4J Processes... 6-6
Using Oracle Enterprise Manager to Change OC4J JVM Command Line Options 6-6

Setting Up Data Sources – Performance Issues .. 6-8
Emulated and Non-Emulated Data Sources.. 6-9
Using the EJB Aware Location Specified in Emulated Data Sources 6-9
Setting the Maximum Open Connections in Data Sources ... 6-10
Setting the Minimum Open Connections in Data Sources.. 6-11
Setting the Cached Connection Inactivity Timeout in Data Sources 6-12
Setting the Wait for Free Connection Timeout in Data Sources 6-13
Setting the Connection Retry Interval in Data Sources.. 6-13
Setting the Maximum Number of Connection Attempts in Data Sources.................. 6-14
Using Oracle Enterprise Manager to Change Data Source Configuration Options .. 6-14

Improving Servlet Performance in Oracle9iAS .. 6-16
Improving Performance by Altering Servlet Configuration Parameters 6-16

Loading Servlet Classes at Startup.. 6-16
Servlet Performance Tips... 6-17

Analyze Servlet Duration ... 6-17
Understand Server Request Load ... 6-17
Find Large Servlets That Require a Long Load Time... 6-18
Watch for Unused Sessions.. 6-18
Watch for Abnormal Session Usage ... 6-19
vi

Load Servlet Session Security Routines at Startup... 6-19
Improving JSP Performance in Oracle9iAS... 6-20

Improving Performance by Altering JSP Configuration Parameters 6-21
Using the main_mode Parameter ... 6-21

Improving Performance by Tuning JSP Code.. 6-22
Impact of Session Management on Performance.. 6-22
Using Static Template Text Instead of out.print for Outputting Text 6-23
Performance Issues for Buffering JSPs ... 6-24
Using Static Versus Dynamic Includes .. 6-25
Performance Issues for Including Static Content ... 6-26

Improving EJB Performance in Oracle9iAS .. 6-27
Setting server.xml Configuration Parameters for EJBs ... 6-27

Setting the Transaction Configuration Timeout ... 6-27
Setting OC4J Specific Configuration Parameters for EJBs.. 6-28

Configuring Parameters that Apply for All EJBs ... 6-28
Configuring Parameters for CMP Entity Beans.. 6-29
Configuring Parameters for BMP Entity Beans .. 6-32
Configuring Parameters for Session Beans.. 6-33

Using Multiple OC4Js and Limiting Connections ... 6-34
Limiting HTTP Connections ... 6-34

Limiting HTTP Connections with Standalone OC4J.. 6-35
Configuring Multiple OC4J Processes... 6-36

Configuring Multiple OC4J Processes Using Oracle Enterprise Manager 6-36
Balancing Applications Across OC4J Instances ... 6-37

Database Monitoring and Tuning ... 6-37
Improving BC4J Performance in Oracle9iAS .. 6-38

Choose the Right Deployment Configuration.. 6-38
Use Application Module Pooling for Scalability ... 6-38
Perform Global Framework Component Customization Using Custom Subclasses 6-39
Use SQL-Only and Forward-Only View Objects when Possible... 6-39
Do Not Let Your Application Modules Get Too Large... 6-40
Use the Right Failover Mode .. 6-40
Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows 6-40
Choose the Right Style of Bind Parameters .. 6-41
Implement Query Conditions at Design Time if Possible .. 6-41
vii

Use the Right JDBC Fetch Size.. 6-41
Turn off Event Listening in View Objects used in Batch Processes 6-41

7 Optimizing Web Cache

Use Two CPUs for Oracle9iAS Web Cache .. 7-2
Configure Enough Memory for Oracle9iAS Web Cache... 7-3
Make Sure You Have Sufficient Network Bandwidth .. 7-7
Set a Reasonable Number of Network Connections ... 7-7

Connections on UNIX Platforms .. 7-8
Connections on Windows NT and Windows 2000.. 7-10

8 Optimizing PL/SQL Performance

PL/SQL Performance in Oracle9iAS - Overview .. 8-2
Performance Tuning Issues for mod_plsql .. 8-3

Connection Pooling with mod_plsql ... 8-4
Closing Pooled Database Sessions ... 8-6
What Happens to the mod_plsql Connection Pool when the Database Restarts?.............. 8-7

Performance Tuning Areas in mod_plsql... 8-7
PL/SQL Application .. 8-7
Connection Pooling and Oracle HTTP Server Configuration.. 8-8
Tuning the Number of Database Sessions .. 8-11
Two-Listener Strategy .. 8-11
Overhead Problems .. 8-14

The Describe Overhead .. 8-14
Avoiding the Describe Overhead.. 8-14

The Flexible Parameter Passing (four-parameter) Overhead... 8-15
Using Caching with PL/SQL Web Applications ... 8-16

Using the Validation Technique ... 8-16
Last-Modified... 8-17
Entity Tag Method... 8-17
Using the Validation Technique for mod_plsql .. 8-18
Second Request Using the Validation Technique... 8-19

Using the Expires Technique .. 8-20
Second Request Using the Expires Technique .. 8-22

System- and User-level Caching with PL/SQL Web Applications..................................... 8-23
viii

PL/SQL Web Toolkit functions (owa_cache package) .. 8-24
Other Oracle HTTP Server Directives .. 8-25

A Oracle9iAS Performance Metrics

Oracle HTTP Server Metrics... A-2
Aggregate Module Metrics ... A-2
HTTP Server Module Metrics ... A-3

JVM Metrics ... A-3
JDBC Metrics ... A-4

JDBC Driver Metrics... A-4
JDBC Data Source Metrics... A-4
JDBC Driver Specific Connection Metrics... A-5
JDBC Data Source Specific Connection Metrics... A-5
JDBC Driver Statement Metrics.. A-6
JDBC Data Source Statement Metrics .. A-7

J2EE Application Metrics - OC4J Metrics .. A-8
Web Module Metrics.. A-9
Web Context Metrics.. A-9
Servlet Metrics... A-10
JSP Metrics ... A-11

JSP Runtime Metrics ... A-11
JSP Metrics.. A-11

EJB Metrics... A-12
EJB Bean Metrics.. A-12
EJB Method Metrics .. A-13

Portal Metrics... A-15
Parallel Page Engine Metrics .. A-19

JServ Metrics.. A-28
Overall JServ Metrics ... A-28
JServ Zone Metrics.. A-29
JServ Servlet Metrics .. A-30
JServ JSP Metrics... A-31

Index
ix

x

Send Us Your Comments

Oracle9i Application Server Performance Guide, Release 2 (9.0.2) for UNIX

Part No. A97380-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com
■ FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
■ Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 2op3
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This guide describes how to monitor and optimize performance, use multiple
components for optimal performance, and write highly performant applications in
the Oracle9i Application Server environment.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
xiii

Intended Audience
Oracle9i Application Server Performance Guide is intended for Internet application
developers, Oracle9i Application Server administrators, database administrators,
and Web masters.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xiv

Organization
This document contains:

Chapter 1, "Performance Overview"
This chapter provides an overview of Oracle9iAS performance and tuning concepts.

Chapter 2, "Monitoring Oracle9iAS"
This chapter introduces the available performance monitoring tools, including
Oracle Enterprise Manager and the built-in Oracle9iAS performance monitoring
tools.

Chapter 3, "Monitoring Oracle HTTP Server"
This chapter discusses monitoring the Oracle HTTP Server using Oracle Enterprise
Manager and the built-in performance tools available with Oracle9iAS.

Chapter 4, "Monitoring OC4J"
This chapter discusses monitoring Oracle9iAS Containers for J2EE(OC4J) using
Oracle Enterprise Manager and the built-in performance tools available with
Oracle9iAS.

Chapter 5, "Optimizing Oracle HTTP Server"
This chapter discusses optimizing HTTP server.

Chapter 6, "Optimizing J2EE Applications In OC4J"
This chapter discusses optimizing J2EE applications running on Oracle9iAS
Containers for J2EE.

Chapter 7, "Optimizing Web Cache"
This chapter discusses optimizing Web Cache.

Chapter 8, "Optimizing PL/SQL Performance"
This chapter discusses optimizing code using mod_plsql.

Appendix A, "Oracle9iAS Performance Metrics"
This chapter discusses the statistics and metrics used to monitor and analyze the
performance of Oracle9iAS components.
xv

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Concepts Guide

■ Oracle9i Application Server Administrator’s Guide

■ Oracle HTTP Server Administration Guide

■ Oracle9iAS Containers for J2EE User’s Guide

■ Oracle9i Application Server Security Guide

■ Oracle9iAS Web Cache Administration and Deployment Guide

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle9i Database Performance Tuning Guide and Reference

■ Oracle9i Application Server PL/SQL Web Toolkit Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm
xvi

For more information, see these Oracle resources:

■ For this release, see information on Oracle9iAS Portal performance at:

http://otn.oracle.com/

From the Oracle Technology Network main page:

■ Choose the Product link

■ Choose Oracle9iAS Portal under Oracle9i Application Server

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xviii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xix

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener
xx

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxi

xxii

Performance Ove
1

Performance Overview

This chapter discusses Oracle9i Application Server performance and tuning
concepts.

This chapter contains the following sections:

■ Introduction to Oracle9iAS Performance

■ What Is Performance Tuning?

■ Performance Targets

■ Performance Methodology

See Also: Oracle9i Application Server Concepts Guide for a
discussion of Oracle9i Application Server concepts
rview 1-1

Introduction to Oracle9iAS Performance
Introduction to Oracle9iAS Performance
To maximize Oracle9i Application Server performance, all components need to be
monitored, analyzed, and tuned. In the chapters of this guide, the tools used to
monitor performance and the techniques for optimizing the performance of
Oracle9iAS components, such as Oracle HTTP Server and Oracle9iAS Containers
for J2EE (OC4J) are described.

Performance Terms
Following are performance terms used in this book:

concurrency The ability to handle multiple requests simultaneously. Threads and
processes are examples of concurrency mechanisms.

contention Competition for resources.

hash A number generated from a string of text with an algorithm. The hash value
is substantially smaller than the text itself. Hash numbers are used for security
and for faster access to data.

latency The time that one system component spends waiting for another
component in order to complete the entire task. Latency can be defined as
wasted time. In networking contexts, latency is defined as the travel time of a
packet from source to destination.

response time The time between the submission of a request and the receipt of the
response.

scalability The ability of a system to provide throughput in proportion to, and
limited only by, available hardware resources. A scalable system is one that can
handle increasing numbers of requests without adversely affecting response
time and throughput.

service time The time between the receipt of a request and the completion of the
response to the request.

think time The time the user is not engaged in actual use of the processor.

throughput The number of requests processed per unit of time.
1-2 Oracle9i Application Server Performance Guide

What Is Performance Tuning?
wait time The time between the submission of the request and initiation of the
request.

What Is Performance Tuning?
Performance must be built in. You must anticipate performance requirements
during application analysis and design, and balance the costs and benefits of
optimal performance. This section introduces some fundamental concepts:

■ Response Time

■ System Throughput

■ Wait Time

■ Critical Resources

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Response Time
Because response time equals service time plus wait time, you can increase
performance in this area by:

■ Reducing wait time

■ Reducing service time

Figure 1–1 illustrates ten independent sequential tasks competing for a single
resource as time elapses.

See Also: "Performance Targets" on page 1-8 for a discussion on
performance requirements and determining what parts of the
system to tune.
Performance Overview 1-3

What Is Performance Tuning?
Figure 1–1 Sequential Processing of Independent Tasks

In the example shown in Figure 1–1, only task 1 runs without waiting. Task 2 must
wait until task 1 has completed; task 3 must wait until tasks 1 and 2 have
completed, and so on. Although the figure shows the independent tasks as the same
size, the size of the tasks will vary.

In parallel processing with multiple resources, more resources are available to the
tasks. Each independent task executes immediately using its own resource and no
wait time is involved.

The Oracle HTTP Server processes requests in this fashion, allocating client requests
to available httpd processes. The MaxClients parameter specifies the maximum
number of httpd processes simultaneously available to handle client requests.
When the number of processes in use reaches the MaxClients value, the server
refuses connections until requests are completed and processes are freed.

See Also: Chapter 5, "Optimizing Oracle HTTP Server"

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10
1-4 Oracle9i Application Server Performance Guide

What Is Performance Tuning?
System Throughput
System throughput is the amount of work accomplished in a given amount of time.
You can increase throughput by:

■ Reducing service time

■ Reducing overall response time by increasing the amount of scarce resources
available. For example, if the system is CPU bound, then adding CPU resources
should improve performance.

Wait Time
While the service time for a task may stay the same, wait time will lengthen with
increased contention. If many users are waiting for a service that takes one second,
the tenth user must wait 9 seconds. Figure 1–2 shows the relationship between wait
time and resource contention. In the figure, the graph illustrates that wait time
increases exponentially as contention for a resource increases.

Figure 1–2 Wait Time Rising With Increased Contention for a Resource

Contention for a Resource

W
ai

t
T

im
e

Performance Overview 1-5

What Is Performance Tuning?
Critical Resources
Resources such as CPU, memory, I/O capacity, and network bandwidth are key to
reducing service time. Adding resources increases throughput and reduces
response time. Performance depends on these factors:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows the relationship between time to service completion and demand
rate. The graph in the figure illustrates that as the number of units requested rises,
the time to service completion increases.

Figure 1–3 Time to Service Completion Versus Demand Rate

To manage this situation, you have two options:

■ Limit demand rate to maintain acceptable response times

■ Add resources

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
o

m
p

le
ti

o
n

1-6 Oracle9i Application Server Performance Guide

What Is Performance Tuning?
Effects of Excessive Demand
Excessive demand increases response time and reduces throughput, as illustrated
by the graph in Figure 1–4.

Figure 1–4 Increased Demand/Reduced Throughput

If the demand rate exceeds the achievable throughput, then determine through
monitoring which resource is exhausted and increase the resource, if possible.

Adjustments to Relieve Problems
Performance problems can be relieved by making adjustments in the following:

■ unit consumption

Reducing the resource (CPU, memory) consumption of each request can
improve performance. This might be achieved by pooling and caching.

■ functional demand

Rescheduling or redistributing the work will relieve some problems.

■ capacity

Increasing or reallocating resources (such as CPUs) relieves some problems.

Demand Rate

T
h

ro
u

g
h

p
u

t

Performance Overview 1-7

Performance Targets
Performance Targets
Whether you are designing or maintaining a system, you should set specific
performance goals so that you know how and what to optimize. If you alter
parameters without a specific goal in mind, you can waste time tuning your system
without significant gain.

An example of a specific performance goal is an order entry response time under
three seconds. If the application does not meet that goal, identify the cause (for
example, I/O contention), and take corrective action. During development, test the
application to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. After you have determined the
bottlenecks, you may have to modify performance in some other areas to achieve
the desired results. For example, if I/O is a problem, you may need to purchase
more memory or more disks. If a purchase is not possible, you may have to limit the
concurrency of the system to achieve the desired performance. However, if you
have clearly defined goals for performance, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

User Expectations
Application developers, database administrators, and system administrators must
be careful to set appropriate performance expectations for users. When the system
carries out a particularly complicated operation, response time may be slower than
when it is performing a simple operation. Users should be made aware of which
operations might take longer.

Performance Evaluation
With clearly defined performance goals, you can readily determine when
performance tuning has been successful. Success depends on the functional
objectives you have established with the user community, your ability to measure
whether or not the criteria are being met, and your ability to take corrective action
to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of
loads, you can conduct objective scalability studies and from these predict the
resource requirements for anticipated load volumes.
1-8 Oracle9i Application Server Performance Guide

Performance Methodology
Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjustment. The first step in performance tuning is to determine the goals
you need to achieve and to design effective usage of available technology into your
applications. After implementing your system, it is necessary to periodically
monitor and adjust your system. For example, you might want to ensure that 90%
of the users experience response times no greater than 5 seconds and the maximum
response time for all users is 20 seconds. Usually, it’s not that simple. Your
application may include a variety of operations with differing characteristics and
acceptable response times. You need to set measurable goals for each of these.

You also need to determine variances in the load. For example, users might access
the system heavily between 9:00am and 10:00am and then again between 1:00pm
and 2:00pm, as illustrated by the graph in Figure 1–5. If your peak load occurs on a
regular basis, for example, daily or weekly, the conventional wisdom is to configure
and tune systems to meet your peak load requirements. The lucky users who access
the application in off-time will experience better response times than your
peak-time users. If your peak load is infrequent, you may be willing to tolerate
higher response times at peak loads for the cost savings of smaller hardware
configurations.

Figure 1–5 Adjusting Capacity and Functional Demand

Time

F
u

n
ct

io
n

al
 D

em
an

d

9:00 10:30 1:00 2:30
Performance Overview 1-9

Performance Methodology
Factors in Improving Performance
Performance spans several areas:

■ Sizing and configuration: Determining the type of hardware needed to support
your performance goals.

■ Parameter tuning: Setting configurable parameters to achieve the best
performance for your application.

■ Performance monitoring: Determining what hardware resources are being used
by your application and what response time your users are experiencing.

■ Troubleshooting: Diagnosing why an application is using excessive hardware
resources, or why the response time exceeds the desired limit.
1-10 Oracle9i Application Server Performance Guide

Monitoring Oracle
2

Monitoring Oracle9iAS

This chapter discusses how to monitor the performance of Oracle9iAS and its
components. Obtaining performance data can assist you in tuning Oracle9iAS or in
tuning and debugging applications with performance problems.

This chapter contains the following topics:

■ Overview of Monitoring Oracle9iAS

■ Using Oracle9iAS Built-in Performance Metrics
9iAS 2-1

Overview of Monitoring Oracle9iAS
Overview of Monitoring Oracle9iAS
This section describes how to use the available tools for performance monitoring.
You can monitor Oracle9iAS and its components using one or more of the
following:

■ Oracle Enterprise Manager

■ Oracle9iAS Built-in Performance Metrics

■ Native Operating System Performance Commands

■ Network Performance Monitoring Tools

Oracle Enterprise Manager
Oracle Enterprise Manager allows you to monitor Oracle9iAS and its components.
Oracle Enterprise Manager shows performance metrics for Oracle9iAS components,
including:

■ Oracle HTTP Server (OHS)

■ Oracle9iAS Containers for J2EE (OC4J) and Applications running under OC4J

■ Oracle9iAS Web Cache

■ Oracle9iAS Portal

Oracle9iAS Built-in Performance Metrics
Oracle9iAS automatically measures runtime performance and collects metrics for
the Oracle HTTP Server including child servers and Oracle9iAS Containers for J2EE
(OC4J) servers. The Oracle9iAS performance metrics are measured automatically
and continuously using performance instrumentation inserted into the
implementations of Oracle9iAS components. The performance metrics are
automatically enabled; you do not need to set options or perform any extra
configuration to collect the performance metrics.

See Also:

■ Chapter 3, "Monitoring Oracle HTTP Server"

■ Chapter 4, "Monitoring OC4J"

■ Oracle9i Application Server Administrator’s Guide
2-2 Oracle9i Application Server Performance Guide

Overview of Monitoring Oracle9iAS
The Oracle HTTP Server performance metrics enable you to do the following:

■ Monitor the duration of important phases of Oracle HTTP Server request
processing.

■ Collect status information on Oracle HTTP Server requests. For example, you
can monitor the number of requests being handled at any given moment.

The OC4J performance metrics allow you to monitor the performance of J2EE
containers and enable you to do the following:

■ Monitor the number of active servlets, JSPs, EJBs, and EJB methods.

■ Monitor the time spent processing an individual servlet, JSP, EJB, or EJB
method.

■ Monitor the sessions and JDBC connections associated with servlets, JSPs, EJBs,
or EJB methods.

You can use the performance metrics while troubleshooting Oracle9iAS components
to help locate bottlenecks, identify resource availability issues, or help tune your
components to improve throughput and response times.

Native Operating System Performance Commands
In order to solve performance problems or to monitor your system’s activity, you
can use the available native operating system commands. Native operating system
commands allow you to gather and monitor CPU utilization, paging activity,
swapping, and other system activity information.

Network Performance Monitoring Tools
You can use network monitoring tools to verify the status of requests that access
your Oracle9iAS components. Tools are available that allow you to examine and
save network traffic information. These tools can be helpful in analyzing and
solving performance problems.

Note: You can use the commands that access the built-in metrics
in scripts or in combination with other monitoring tools to gather
performance data or to check application performance.

See Also: Refer to the system level documentation for
information on native operating system monitoring commands.
Monitoring Oracle9iAS 2-3

Using Oracle9iAS Built-in Performance Metrics
Using Oracle9iAS Built-in Performance Metrics
You can monitor Oracle9iAS performance using Oracle Enterprise Manager or by
viewing the Oracle9iAS built-in performance metrics.

This section describes how to view the Oracle9iAS built-in performance metrics
using the AggreSpy servlet or using the dmstool command. Table 2–1 briefly
describes these methods for viewing the built-in performance metrics.

Viewing Performance Metrics Using AggreSpy
The AggreSpy servlet displays Oracle HTTP Server and OC4J performance metrics.
AggreSpy provides output using easy to read HTML tables and includes OC4J
metrics from multiple OC4J instances when multiple OC4Js are running.

The tables containing built-in metrics in Oracle9iAS are identified by a name, such
as ohs_server for the Oracle HTTP Server metrics. In the text in this guide we
refer to the built-in performance metric table names as metric tables.

You can access performance metrics using AggreSpy from the following URL:

http://myhost:myport/dmsoc4j/AggreSpy

Table 2–1 Oracle9iAS Built-in Monitoring Commands

Command Description

AggreSpy AggreSpy is a pre-packaged servlet that reports performance metrics. AggreSpy reports
performance data for an Oracle9iAS instance. You can only run AggreSpy when an OC4J
instance is configured to support it. By default, the OC4J home instance supports AggreSpy.

dmstool Allows you to monitor a specific performance metric, a set of performance metrics, or all
performance metrics. Options allow you to specify a reporting interval to report the requested
metrics every t seconds. This command also allows you to report all the built-in performance
metrics on your site.

dmstool is located in the $ORACLE_HOME/bin directory.

See Also:

■ Appendix A, "Oracle9iAS Performance Metrics"

Note: You can only run AggreSpy when an OC4J instance is
configured to support it, and the instance is running. By default, the
OC4J home instance supports AggreSpy.
2-4 Oracle9i Application Server Performance Guide

Using Oracle9iAS Built-in Performance Metrics
Figure 2–1 shows a sample AggreSpy response. The AggreSpy response shows
two frames, one containing a list of metric tables on the left, and one showing the
selected performance metric with current values on the right.

AggreSpy provides navigation and display options, including:

■ Access additional metric tables using the links in the left frame.

■ Sort rows in the metric tables by clicking on the column headings.

■ Format the display in Raw or XML format by clicking on the Raw or XML links.

AggreSpy caches performance data so the AggreSpy metric values reported may
not always contain the most current data. AggreSpy refreshes metrics based on
how often data values are accessed (values are refreshed at most every 15 seconds).

AggreSpy URL and Access Control
By default, the dmsoc4j/AggreSpy URL is protected, and access to metrics is only
allowed from the localhost. If you want to view metrics from a system other than
the localhost, then you need to change the access control for dmsoc4j by editing
the ORACLE_HOME/Apache/Apache/conf/mod_oc4j.conf file on your Oracle
HTTP Server.

The default path for the AggreSpy servlet is dmsoc4j/AggreSpy. If the URL for
the dmsoc4j application is changed or the default application is disabled, then you
need to update the ORACLE_HOME/Apache/Apache/conf/mod_oc4j.conf file
to determine the valid path for accessing the AggreSpy servlet.

Note: Refresh your browser to display built-in metric data after
you start AggreSpy. When you first use AggreSpy many of the
fields, and the complete list of metric tables may not contain data or
may be shown as blanks. If you wait a short time, and then refresh
the display, the data is available and data values are shown.

See Also:

■ Oracle HTTP Server Administration Guide for information on
configuring mod_oc4j

■ Oracle9i Application Server Security Guide for information on
Oracle HTTP Server access control
Monitoring Oracle9iAS 2-5

Using Oracle9iAS Built-in Performance Metrics
Figure 2–1 AggreSpy Performance Metric Display
2-6 Oracle9i Application Server Performance Guide

Using Oracle9iAS Built-in Performance Metrics
Viewing Performance Metrics Using dmstool
The dmstool command allows you to view a specific performance metric, a set of
performance metrics, or all performance metrics. The dmstool command also
supports an option that allows you to set a reporting interval, specified in seconds,
to report updated metrics every t seconds.

For example, you can monitor the performance of a specific servlet, JSP, EJB, EJB
method, or database connection and you can request periodic snapshots of metrics
specific to these components.

The format for using dmstool to display built-in performance metrics is:

% dmstool [options] metric metric ...

or

% dmstool [options] –list

or

% dmstool [options] –dump

Table 2–2 lists the dmstool command-line options. Following Table 2–2 this
section presents examples that show sample usage with specific performance
metrics. The dmstool is located in the $ORACLE_HOME/bin directory.

Access Control for dmstool
By default, the dmstool only can obtain metrics when it is run from the localhost.
If you want to view metrics from an Oracle HTTP Server running on a remote host,
then you need to use dmstool with the -a option and change the access control for
/dms0 by editing the $ORACLE_HOME/Apache/Apache/conf/httpd.conf file
on your Oracle HTTP Server.

Note: You can use dmstool in scripts or in combination with
other monitoring tools to gather performance data, to check
application performance, or to build tools that modify your system
based on the values of performance metrics.
Monitoring Oracle9iAS 2-7

Using Oracle9iAS Built-in Performance Metrics
Table 2–2 dmstool Command-line Options

Option Description

–a[ddress] host[:port] By default, without the -a option, dmstool gets metrics from the localhost.
When the Oracle HTTP Server is running on the same system as dmstool, the
–a option is not required.

You can specify –a multiple times on the command line to monitor a cluster.

host is the domain name or IP address of the host on which the Oracle HTTP
Server is running.

port specifies the OPMN request port that supplies the metrics. The request
port is specified in $ORACLE_HOME/opmn/conf/opmn.xml, for example:

 <notification-server>
 <port local="6100" remote="6200" request="6003"/>
 <log-file path="/private/oracle/opmn/logs/ons.log"
level="3"/>
</notification-server>

–c[ount] num Specifies the number of times to retrieve values when monitoring metrics. If not
specified, dmstool continues retrieving metric values until the process is
stopped.

The –count option is not used with the –list option.

–dump Using dmstool with the -dump option reports all the metrics from an
Oracle9iAS instance on the standard output. Oracle recommends that you run
with the -dump option periodically, such as every 10 to 15 minutes, to capture
and save a record of performance data for your Oracle9iAS server.

–i[nterval] secs Specifies the number of seconds to wait between metric retrievals. The default
is 1 second. The interval argument is not used with the –list option. The
interval specified is approximate.

Note: if the system load is high, the actual interval may vary from the interval
specified using the –interval option.

–l[ist] Generates a list of all metrics available. Including metric names on the
command-line is not valid when using the –list option with dmstool.

–table metric_table Includes all the performance metrics for the specified metric table with the
name, metric_table.

See Appendix A, "Oracle9iAS Performance Metrics" or run AggreSpy for a list
of metric table names.
2-8 Oracle9i Application Server Performance Guide

Using Oracle9iAS Built-in Performance Metrics
Using dmstool to List the Names of All Metrics
Every Oracle9iAS performance metric has a unique name. Using dmstool with the
–list option produces a list of all metric names. The –list output contains the
metric names that you can use with dmstool to request monitoring information for
a specific metric or set of metrics.

Using the following command, dmstool displays a list of all metrics available on
the Oracle HTTP Server:

% dmstool –list

This command displays a list of the available metrics.

Using dmstool to Report Specific Performance Metrics
To monitor a specific metric or set of metrics, use dmstool and include the metric
name on the command-line. For example, to monitor the time the JVM has been
running, perform the following steps:

1. Use dmstool with the -list option to find the full name of the metric that
shows the JVM uptime:

% dmstool -list | grep JVM/upTime.value
/myhost/OC4J:3000:6003/JVM/upTime.value

2. Use dmstool and supply the full metric name as an argument to show the
metric’s current value:

% dmstool /myhost/OC4J:3000:6003/JVM/upTime.value
Tue Apr 02 16:27:32 PST 2002
/myhost/OC4J:3000:6003/JVM/upTime.value 23991009 msecs

Suppose you are trying to balance the load on your host across two OC4J processes
and you want to monitor the number of requests handled by each OC4J over time.
If you generate a list of the available metrics using the dmstool –list command,
and search the list for information on OC4J, you should find metric names such as:

/myhost/OC4J:3000:6003/oc4j/default/WEBs/default/processRequest.completed
/myhost/OC4J:3000:6003/oc4j/default/WEBs/processRequest.completed
/myhost/OC4J:3001:6003/oc4j/default/WEBs/default/processRequest.completed
/myhost/OC4J:3001:6003/oc4j/default/WEBs/processRequest.completed
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojsp/JSPs/processRequest.completed
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojsp/processRequest.completed
/myhost/OC4J:3001:6003/oc4j/ojsp/WEBs/processRequest.completed

See Also: Appendix A, "Oracle9iAS Performance Metrics"
Monitoring Oracle9iAS 2-9

Using Oracle9iAS Built-in Performance Metrics
This dmstool –list output shows that the site contains two OC4J processes. The
OC4J listening on AJP port 3000 is running an application called default, while
the OC4J listening on port AJP 3001 is running an application called ojsp. JSPs
have been accessed in the ojsp application but not in the default application.

Using dmstool With the Interval and Count Options
To monitor the load balance between the two identified OC4J processes for two
hours, use the following command, supplying multiple metric names on the
command-line:

% dmstool -i 60 -c 120 \
/myhost/OC4J:3000:6003/oc4j/default/WEBs/default/processRequest.completed \
/myhost/OC4J:3000:6003/oc4j/default/WEBs/processRequest.completed \
/myhost/OC4J:3001:6003/oc4j/default/WEBs/default/processRequest.completed \
/myhost/OC4J:3001:6003/oc4j/default/WEBs/processRequest.completed \
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojsp/JSPs/processRequest.completed \
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojsp/processRequest.completed \
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/processRequest.completed

This command reports 120 sets of output for the metrics listed on the command
line, as specified with the –c option, while collecting data at intervals of 60 seconds:

Mon Nov 19 17:13:01 PDT 2001
/myhost/OC4J:3000:6003/oc4j/default/WEBs/default/processRequest.completed 437 ops
/myhost/OC4J:3000:6003/oc4j/default/WEBs/processRequest.completed 441 ops
/myhost/OC4J:3001:6003/oc4j/default/WEBs/default/processRequest.completed 432 ops
/myhost/OC4J:3001:6003/oc4j/default/WEBs/processRequest.completed 436 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojspdemos/JSPs/processRequest.completed 452 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojspdemos/processRequest.completed 425 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/processRequest.completed 455 ops

Mon Nov 19 17:14:01 PDT 2001
/myhost/OC4J:3000:6003/oc4j/default/WEBs/default/processRequest.completed 452 ops
/myhost/OC4J:3000:6003/oc4j/default/WEBs/processRequest.completed 470 ops
/myhost/OC4J:3001:6003/oc4j/default/WEBs/default/processRequest.completed 462 ops
/myhost/OC4J:3001:6003/oc4j/default/WEBs/processRequest.completed 451 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojspdemos/JSPs/processRequest.completed 469 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/ojspdemos/processRequest.completed 452 ops
/myhost/OC4J:3001:6003/oc4j/ojspdemos/WEBs/processRequest.completed 472 ops

.

.

.

2-10 Oracle9i Application Server Performance Guide

Using Oracle9iAS Built-in Performance Metrics
Using dmstool to Report All Metrics with Metric Values
Using dmstool with the -dump option reports all the metrics from an Oracle9iAS
instance to the standard output.

The following command displays all available metrics and metric values on the
Oracle HTTP Server:

% dmstool –dump

Oracle recommends that you run dmstool with the -dump option periodically,
such as every 10 to 15 minutes, to capture and save a record of performance data for
your Oracle9iAS server. If you save performance data over time, this data can assist
you if you need to analyze system behavior to improve performance, or when
problems occur.

Using dmstool to View Metrics on a Remote Oracle9iAS System
Using dmstool with the -a option reports all the metrics from a remote Oracle9iAS
instance.

The following command displays all available metrics and metric values on the
Oracle HTTP Server for the given address, as specified with the –a option:

% dmstool –a system1:6003 -list
Monitoring Oracle9iAS 2-11

Using Oracle9iAS Built-in Performance Metrics
2-12 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP S
3

Monitoring Oracle HTTP Server

This chapter discusses how to monitor Oracle HTTP Server performance. Obtaining
performance data can assist you in tuning Oracle9iAS or in tuning and debugging
applications with performance problems.

This chapter contains the following topics:

■ Monitoring Oracle HTTP Server with Oracle Enterprise Manager

■ Monitoring Oracle HTTP Server with Built-in Performance Metrics
erver 3-1

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Monitoring Oracle HTTP Server with Oracle Enterprise Manager
The Oracle HTTP Server is a central and important part of most Oracle9iAS sites.
Oracle HTTP Server handles nearly every request for dynamic data and many static
data requests as well. By monitoring Oracle HTTP Server performance, you can
identify and fix Oracle9iAS performance issues.

This section covers the following topics:

■ Assessing the Oracle HTTP Server Load with Oracle Enterprise Manager

■ Investigating Oracle HTTP Server Errors with Oracle Enterprise Manager

■ Categorizing Oracle HTTP Server Problems with Oracle Enterprise Manager

Assessing the Oracle HTTP Server Load with Oracle Enterprise Manager
To monitor Oracle HTTP Server performance, the first step is to assess the workload
(load).

When assessing the Oracle HTTP Server load, note the following:

■ If you are developing or testing a new application, you need to determine how
much load your quality assurance and performance tests generate on Oracle
HTTP Server.

■ If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and
performance baseline should take into account the effect of time of day and day
of week variances. Whether you are developing or administering an Oracle9iAS
site, you should always design for expected load ranges and monitor the site to
ensure that usage and performance remains within the expected range.

■ The Oracle HTTP Server performance information provides a picture of overall
site performance; however if Oracle9iAS Web Cache or other caching
mechanisms handle requests before they reach Oracle HTTP Server, then you
need to monitor the caches as well.

See Also: "Performance Methodology" on page 1-9
3-2 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Oracle Enterprise Manager provides Oracle HTTP Server performance data in the
following categories:

■ Status Metrics

■ Response and Load Metrics

■ Module Metrics

Status Metrics
The Oracle Enterprise Manager status metrics provide information on CPU usage,
memory usage, Oracle HTTP Server errors, and the number of active connections.

Figure 3–1 shows the Enterprise Manager HTTP Server status metrics page.

See Also:

■ Chapter 7, "Optimizing Web Cache" for information on
optimizing Oracle9iAS Web Cache in Oracle9iAS

■ Oracle9iAS Web Cache Administration and Deployment Guide for
further details on Oracle9iAS Web Cache

■ Oracle9i Application Server Administrator’s Guide for information
on using Enterprise Manager with Oracle9iAS
Monitoring Oracle HTTP Server 3-3

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Figure 3–1 Oracle Enterprise Manager Status Metrics Page
3-4 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Response and Load Metrics
Figure 3–2 shows the Oracle Enterprise Manager Response and Load Metrics page.
This page shows values for Oracle HTTP Server Active Requests and Request
Throughput, and reports the average, minimum, and maximum processing time for
requests. The values on the Response and Load Metrics page can help you assess
the system load.

Figure 3–2 Oracle Enterprise Manager Response and Load Metrics

Monitoring Oracle HTTP Server 3-5

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Module Metrics
Figure 3–3 shows the Oracle Enterprise Manager Module Metrics page. The Module
Metrics page shows the active and total requests processed by Oracle HTTP Server
modules. The page only lists modules active since startup, meaning that the module
has received 1 or more requests.

Figure 3–3 Oracle Enterprise Manager Module Metrics Page

Investigating Oracle HTTP Server Errors with Oracle Enterprise Manager
You should thoroughly investigate Oracle HTTP Server errors occurring on your
site. Oracle HTTP Server errors may indicate acceptable activity, but they may also
indicate security problems, configuration errors, or application bugs. Errors almost
always affect Oracle9iAS performance. Error handling can slow down the normal
processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.
3-6 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Using Oracle Enterprise Manager you can view the Error Metrics on the HTTP
status page, as shown in Figure 3–1. Error Metrics include the current error rate,
which is the number of errors occurring in the last five minutes as a percentage of
the total requests, the error rate since startup, and the count of the total number of
errors since startup. The Status Metrics page includes the Errors by Error Type table
shown in Figure 3–1 which lists more details for HTTP errors, including the error
types and error counts. This table breaks down each error into a category based on
its HTTP error response type.

The data values shown for Errors by Error Type in Figure 3–1 indicate that most of
the errors were due to requests for unknown URIs (404 - Not Found errors). On
many Oracle HTTP Server sites, Not Found errors are relatively common. However,
you should investigate reports showing a large numbers of Not Found errors, such
as a number that is greater than 1% of the total requests.

To investigate errors in more detail, such as any reported internal errors, examine
the error log by selecting the Error Log link under the Related Links heading. Using
the error log, you should be able to determine more information about the URIs that
are causing specific errors.

Categorizing Oracle HTTP Server Problems with Oracle Enterprise Manager
If you notice a performance problem on the Oracle HTTP Server, then where
possible you should drill down and categorize the problem. By refining the
performance analysis you can learn more about the issue and direct your efforts to a
component to help identify and resolve the problem.

Oracle Enterprise Manager can help you to categorize performance problems. You
can identify where requests are being processed, or where a large percentage of
request processing time is concentrated. Using Oracle Enterprise Manager allows
you to categorize performance problems as follows:

■ Categorizing Oracle HTTP Server Problems by Module

■ Categorizing Oracle HTTP Server Problems by Virtual Host

■ Categorizing Oracle HTTP Server Problems by Child Server

Categorizing Oracle HTTP Server Problems by Module
Figure 3–3 shows the Module Metrics for Oracle HTTP Server modules (the report
includes information for modules that have received 1 or more requests since
startup). Using the Module Metrics, you should be able to identify the name of the
module that processed a large number of requests, or identify a module where the
processing time for an individual request is very large. By looking at the values for
Monitoring Oracle HTTP Server 3-7

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
metrics listed in the Module Metrics table, you should be able to categorize
Oracle9iAS performance by module.

When viewing the Module Metrics, note the following:

1. The http_core.c module handles every request for static pages. If
Oracle9iAS Web Cache is enabled, then use of http_core.c should be
reduced. When you are using Oracle9iAS Web Cache, you should monitor
requests processed by the http_core.c module to make sure that Oracle9iAS
Web Cache effectively reduces static page activity for the Oracle HTTP Server.

2. Viewing the Module Metrics page may show you that many requests were
forwarded to OC4J through the mod_oc4j.c module. You should then drill
down to review the information available for the OC4J of interest. Oracle
Enterprise Manager provides extensive performance measurements for OC4J
instances and J2EE applications.

Categorizing Oracle HTTP Server Problems by Virtual Host
Figure 3–4 shows a display of the Virtual Host page. By viewing the Virtual Host
page you should be able to obtain information about request processing by virtual
host. The Request Throughput, Load, and Request Processing Time values provide
information that enables you to identify a virtual host on your system that is
processing a large number of requests, or that is using significant processing
resources and may be stressing the system. This information should help you to
categorize Oracle9iAS performance issues by virtual host.

See Also: Chapter 4, "Monitoring OC4J"
3-8 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Figure 3–4 Oracle Enterprise Manager Virtual Host Page

Categorizing Oracle HTTP Server Problems by Child Server
Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle
any incoming request (each request is handled by a free child server). However, if
your Oracle9iAS system experiences delays or deadlocks, you may need to analyze
the Oracle HTTP Server child server processes. The Process Details page available
from Related Links section on the Response and Load Metrics page shows the
Process ID for each active Oracle HTTP Server child process. Viewing this
information allows you to monitor child servers to identify runtime problems,
configuration errors, or application bugs that cause either request processing
deadlocks or very long delays. In these situations analyzing the Process Details
page can help determine where the deadlock or delay is occurring.
Monitoring Oracle HTTP Server 3-9

Monitoring Oracle HTTP Server with Oracle Enterprise Manager
Figure 3–5 shows a Process Details page with Oracle HTTP Server child server
information.

When viewing the Oracle HTTP Server Process Details page, note the following:

1. If necessary you can use the Process ID value to identify and terminate a
deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout set with
the TimeOut directive.

Figure 3–5 Oracle Enterprise Manager HTTP Server Process Details for Child Servers Page

See Also: Oracle HTTP Server Administration Guide for information
on the TimeOut directive in Chapter 4, "Managing the Network
Connection"
3-10 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
Monitoring Oracle HTTP Server with Built-in Performance Metrics
The Oracle HTTP Server is a central and important part of most Oracle9iAS sites.
Oracle HTTP Server handles nearly every request for dynamic data and many static
data requests as well. By monitoring Oracle HTTP Server performance, you can
identify and fix Oracle9iAS performance issues.

This section covers the following topics:

■ Assessing the Oracle HTTP Server Load with Built-in Metrics

■ Investigating Oracle HTTP Server Errors with Built-in Metrics

■ Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics

Assessing the Oracle HTTP Server Load with Built-in Metrics
To monitor Oracle HTTP Server performance, the first step is to assess workload.

When assessing the Oracle HTTP Server workload (load), note the following:

■ If you are developing or testing a new application, you need to determine how
much load your quality assurance and performance tests generate on Oracle
HTTP Server.

■ If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and
performance baseline should take into account the effect of time of day and day
of week variances. Whether you are developing or administering an Oracle9iAS
site, you should always design for expected load ranges and monitor the site to
ensure that usage and performance remains within the expected range.

■ The Oracle HTTP Server performance metrics give a good picture of overall site
performance; however if Oracle9iAS Web Cache or other caching mechanisms
handle requests before they reach Oracle HTTP Server, then you need to
monitor the caches as well.

Oracle HTTP Server provides performance metrics which you can view using
AggreSpy or dmstool. You can use these built-in performance tools to help you
assess Oracle HTTP Server load by viewing the ohs_server metrics. Using
AggreSpy, you can view the ohs_server metrics by choosing the ohs_server
metric table in the left pane of the AggreSpy window.

See Also: "Performance Methodology" on page 1-9
Monitoring Oracle HTTP Server 3-11

Monitoring Oracle HTTP Server with Built-in Performance Metrics
Example 3–1 shows AggreSpy output for the ohs_server metric table using the
Raw format.

Example 3–1 Overall HTTP Server Metrics Report

 <DMSDUMP version='2.0' timestamp='1017345371143 (Thu Mar 28 11:56:11 PST 2002)'
id='3000' name='pdsun-perf9.us.oracle.com:7778'>
<statistics>
/pdsun-perf9.us.oracle.com [type=Host]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200 [type=Process]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache [type=ohs_server]
 internalRedirect.count:7418 ops
 numMods.value:45
 handle.maxTime:22205524 usecs
 handle.minTime:2 usecs
 handle.avg:14274 usecs
 handle.active:2 threads
 handle.time:997159521 usecs
 handle.completed:69858
 request.maxTime:22206941 usecs
 request.minTime:602 usecs
 request.avg:31537 usecs
 request.active:1 threads
 request.time:1033442848 usecs
 request.completed:32769
 connection.maxTime:1002008298 usecs
 connection.minTime:7254 usecs
 connection.avg:258721053 usecs
 connection.active:3 threads
 connection.time:152386700540 usecs
 connection.completed:589
 childFinish.count:0 ops
 childStart.count:11 ops
 lastConfigChange.value:1017260765
 busyChildren.value:1
 readyChildren.value:10
 numChildren.value:11
 responseSize.value:903136783
 error.count:1 ops
 post.count:0 ops
 get.count:32769 ops
</statistics>
</DMSDUMP>
3-12 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
The metric table shown in Example 3–1 groups metrics into categories, including
handle, request, and connection. The individual metric names in each
category have the form name.metric, for example, connection.time. The metrics
in these three categories describe the following:

■ handle

The phase in which a request is handled by an HTTP server module. Note that
a single request may be handled by more than one HTTP server module. The
handle metrics shown at the top level, in the ohs_server metric table, are
summarized for all of the HTTP server modules.

■ request

The phase during which an HTTP server daemon reads a request and sends a
response for it (first byte in, last byte out). There may be more than one request
serviced during a single connection phase. This would be the case if the HTTP
parameter KeepAlive were set and utilized by clients.

■ connection

The connection phase, starting from the time an HTTP connection is established
to the time it is closed.

To determine current Oracle HTTP Server load, examine the following ohs_
server metrics:

■ request.active

■ busyChildren.value

■ readyChildren.value

■ numChildren.value.

These performance metrics indicate how many Oracle HTTP Server child servers
are in use, and how many of them are actively processing requests. The data in
Example 3–1 shows that 11 child servers are alive (numChildren.value), one of
which is currently busy handling requests (busyChildren.value).

Oracle HTTP Server needs to keep enough child servers running to handle the
usual load while allowing for normal load fluctuations. Oracle HTTP Server child
servers handle exactly one request at a time, thus Oracle HTTP Server needs to run
many child servers at once. If Oracle HTTP Server notices that the current load may
exceed its default configuration, then it starts new child servers automatically. If the
load is subsequently reduced, then Oracle HTTP Server terminates some of its child
servers to save system resources.
Monitoring Oracle HTTP Server 3-13

Monitoring Oracle HTTP Server with Built-in Performance Metrics
If the configuration settings require that the Oracle HTTP Server start and stop child
servers frequently, this can reduce system performance and may indicate that the
system configuration needs to be adjusted. To determine whether Oracle HTTP
Server child servers have been started and how many have finished, examine the
following ohs_server metrics:

■ childStart.count

■ childFinish.count

These performance metrics show the count of how many Oracle HTTP Server child
servers have started and finished and can also provide an indication of the Oracle
HTTP Server load. For the Oracle HTTP Server shown in Example 3–1, more than 11
child servers have been started and 0 finished.

The childStart.count and childFinish.count metric values could indicate
that the instantaneous load for the Oracle HTTP Server exceeded the current load
and also exceeded the range assumed by the default Oracle HTTP Server
configuration parameters. When the count of child servers started and the count of
child servers finished are both large, this could indicate that the Oracle HTTP Server
could benefit by tuning the values of configuration parameters, including:

■ MinSpareServers

■ MaxSpareServers

■ StartServers

In the ohs_server metrics, the handle.avg, request.avg, and
connection.avg metrics, and the handle.time, request.time, and
connection.time values increase for each phase. The handle time will be the
shortest and the connection time the longest. Figure 3–6 shows the relationship
among these three phases for managing a user request.

If KeepAlive is on and clients use it, the duration of a connection may be much
longer than the time required to perform a request and return a response, as
illustrated in Figure 3–6. This is because the connection may remain open while a
single client submits multiple requests.
3-14 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
Figure 3–6 Execution Phases in the Oracle HTTP Server

Investigating Oracle HTTP Server Errors with Built-in Metrics
You should thoroughly investigate Oracle HTTP Server errors occurring on your
site. Oracle HTTP Server errors may indicate acceptable activity, but they may also
indicate security problems, configuration errors, or application bugs. Errors almost
always affect Oracle9iAS performance. Error handling can slow down the normal
processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.

Using dmstool or AggreSpy, you can investigate Oracle HTTP Server errors by
viewing the ohs_server metrics. Example 3–1 includes the ohs_server metrics
that provide an overview of error activity. The error.count metric is incremented
whenever any request to Oracle HTTP Server results in an HTTP error response.

See Also:

■ Chapter 5, "Optimizing Oracle HTTP Server"

■ Chapter 7, "Optimizing Web Cache" for information on
optimizing Oracle9iAS Web Cache in Oracle9iAS

■ Appendix A, "Oracle9iAS Performance Metrics"

■ Oracle9iAS Web Cache Administration and Deployment Guide for
further details on Oracle9iAS Web Cache

■ Oracle HTTP Server Administration Guide for information on
Oracle HTTP Server configuration parameters related to
starting and stopping of child servers

Time t

User
receives
response

User
submits
request User

submits
request

Connection phase

Request phase Request phase

Handle phase Handle phaseHandle phase
Monitoring Oracle HTTP Server 3-15

Monitoring Oracle HTTP Server with Built-in Performance Metrics
Use the ohs_responses metric table to investigate the details for error types and
error counts. This table breaks down the total error.count value into HTTP
response types. It also shows aggregate counts for successful HTTP requests and
HTTP redirects.

Example 3–2 shows the AggreSpy report for the ohs_responses metric table in
Raw format.

Example 3–2 HTTP Server Responses Metrics (ohs_responses Metric Table)

<DMSDUMP version='2.0' timestamp='1017345294216 (Thu Mar 28 11:54:54 PST 2002)'
id='3000' name='pdsun-perf9.us.oracle.com:7778'>
<statistics>
 /pdsun-perf9.us.oracle.com [type=Host]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200 [type=Process]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache [type=ohs_server]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache/Responses [type=ohs_
responses]
 SvrErr_Not_Extended_510.count: 0 ops
 .
 .
 .
 CltErr_Method_Not_Allowed_405.count: 0 ops
 CltErr_Not_Found_404.count: 29 ops
 Redirect_NotModified_304.count: 23 ops
 Success_Created_201.count: 0 ops
 Success_OK_200.count: 10103 ops
 Info_Processing_102.count: 0 ops
 </statistics>
</DMSDUMP>

Example 3–2 shows that most of the errors were due to requests for unknown URIs
(404 - Not Found errors). On many Oracle HTTP Server sites, Not Found errors
are relatively common. However, you should investigate reports showing many
Not Found errors, such as a number greater than 1% of the total requests.

You can examine the error_log and access_log files to determine the URIs that
are causing errors, such as any reported internal errors (SvrErr_
InternalError_500.count).

See Also: Oracle HTTP Server Administration Guide for information
on the Oracle HTTP Server access_log and error_log files
3-16 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics
If you notice a performance problem on the Oracle HTTP Server, then where
possible you should drill down and categorize the problem. By limiting your search
for a performance problem to a subset of Oracle HTTP Server, you can learn more
about the issue and direct your efforts to identifying and solving the problem.
Using the built-in performance tools you can categorize performance problems into
one of several areas. You can identify where requests are being processed, or where
a large percentage of request processing time is concentrated.

This section describes how you can categorize performance problems into different
areas, including:

■ Categorizing Oracle HTTP Server Performance Problems by Module

■ Categorizing Oracle HTTP Server Performance Problems by Virtual Host

■ Categorizing Oracle HTTP Server Performance Problems by Child Server

Categorizing Oracle HTTP Server Performance Problems by Module
Use the ohs_module metrics to refine your analysis of performance problems to
one or more modules. Showing the module metrics allows you to use the metric
data to limit the search for performance problems to a particular module.

Example 3–3 shows AggreSpy raw format output for the ohs_module metric
table.

Example 3–3 Drill Down to Investigate Oracle HTTP Server Activity per Module

<DMSDUMP version='2.0' timestamp='1017345223482 (Thu Mar 28 11:53:43 PST 2002)'
id='3000' name='pdsun-perf9.us.oracle.com:7778'>
<statistics>
/pdsun-perf9.us.oracle.com [type=Host]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200 [type=Process]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache [type=ohs_server]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache/Modules [type=n/a]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache/Modules/mod_mmap_
static.c [type=ohs_module]
 handle.maxTime:182 usecs
 handle.minTime:3 usecs
 handle.avg:5 usecs
 handle.active:0 threads
 handle.time:38942 usecs
 handle.completed:7562
 decline.count:7562 ops
Monitoring Oracle HTTP Server 3-17

Monitoring Oracle HTTP Server with Built-in Performance Metrics
 ...
 /Apache/Modules/mod_cgi.c [type=ohs_module]
 ...
 handle.avg: 199730 usecs
 ...
 /Apache/Modules/mod_perl.c [type=ohs_module]
 handle.maxTime: 768041 usecs
 ...
 /Apache/Modules/mod_fastcgi.c [type=ohs_module]
 ...
 handle.avg: 5866 usecs
 ...
 /Apache/Modules/mod_oc4j.c [type=ohs_module]
 handle.maxTime: 33676386 usecs
 handle.minTime: 165 usecs
 handle.avg: 5488 usecs
 handle.active: 0 threads
 handle.time: 317776833 usecs
 handle.completed: 57902
 decline.count: 0 ops
 ...
 /Apache/Modules/http_core.c [type=ohs_module]
 ...
 handle.completed: 93535
 ...

When viewing the Module Metrics, note the following:

1. The http_core.c module handles every request for static pages. If
Oracle9iAS Web Cache is enabled, then use of http_core.c should be
reduced. If Oracle9iAS Web Cache is enabled the you should monitor the
http_core.c metrics to make sure that Oracle9iAS Web Cache effectively
prevents static page activity from reaching your Oracle HTTP Server.

2. Typically, certain responses require process initialization, class loading or other
one-time processing that can skew the reporting of the average request
processing time. For performance reporting and analysis, you can reduce the
effect of the such one-time operations by subtracting the minimum and
maximum values from the total and recalculating the average. For example, for
the mod_oc4j.c metrics shown in Example 3–3, if you recompute the request
handling average using the following formula, you find that the recalculated
average provides a more representative indication of typical response
processing time:

new average = (time - min - max) / (completed - 2)
3-18 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
 = (317776833 - 165 - 33676386)/ (57902 - 2)
 = 4907 milliseconds

3. Viewing the ohs_module metric table may show you that many requests were
forwarded to OC4J through the mod_oc4j.c module. Oracle9iAS also provides
extensive performance measurements for OC4J J2EE applications.

Categorizing Oracle HTTP Server Performance Problems by Virtual Host
Use the ohs_virtualHost metrics to refine your analysis of performance
problems by Oracle HTTP Server virtual host. Showing the virtual host metrics
allows you to use the metric data to limit the search for performance problems to a
subset of the Oracle HTTP Server.

Example 3–4 shows the AggreSpy raw format output for the ohs_virtualHost
metric table.

Example 3–4 Drill Down to Investigate Oracle HTTP Server Activity per Virtual Host

<DMSDUMP version='2.0' timestamp='1017345119223 (Thu Mar 28 11:51:59 PST 2002)'
id='3000' name='pdsun-perf9.us.oracle.com:7778'>
<statistics>
 /pdsun-perf9.us.oracle.com [type=Host]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200 [type=Process]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache [type=ohs_server]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache/Virtual_Hosts [type=n/a]
 /pdsun-perf9.us.oracle.com/Apache:2229:6200/Apache/Virtual_
Hosts/pdsun-perf9.us.oracle.com [type=ohs_virtualHost]
 responseSize.value: 0
 request.maxTime: 0 usecs
 request.minTime: 0 usecs
 request.avg: 0 usecs
 request.active: 0 threads
 request.time: 0 usecs
 request.completed: 0
</statistics>
</DMSDUMP>

Categorizing Oracle HTTP Server Performance Problems by Child Server
Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle

See Also: Chapter 4, "Monitoring OC4J"
Monitoring Oracle HTTP Server 3-19

Monitoring Oracle HTTP Server with Built-in Performance Metrics
any incoming request (each request is handled by a free child server). However, if
your Oracle9iAS system experiences delays or deadlocks, you may need to analyze
the Oracle HTTP Server child server metrics. These metrics allow you to monitor
child servers to identify runtime problems, configuration errors, or application bugs
that cause either request processing deadlocks or very long delays. In these
situations analyzing the Oracle HTTP Server child server metrics can help
determine where the deadlock or delay is occurring.

Use the ohs_child metric table to refine your analysis of performance problems to
one or more Oracle HTTP Server child servers.

Example 3–5 shows the AggreSpy raw format output for the ohs_child metric
table.

The ohs_child metric table shows the top ten Oracle HTTP Server child servers
sorted by time spent on current requests. For the metrics shown in Example 3–5, the
top entry has been executing for 117 million microseconds, which is nearly two
minutes. The ohs_child metrics include the URL associated with the request and
the process identifier for each Oracle HTTP Server child server listed.

Example 3–5 Drill Down to Investigate Activity per Child Server

/Apache [type=ohs_server]
 /Apache/Children [type=n/a]
 /Apache/Children/Child00 [type=ohs_child]
 time.value: 117045690 usecs
 pid.value: 2466
 status.value: writing
 url.value: GET /cgi-bin/deadlock HTTP/1.1
 slot.value: 2
 /Apache/Children/Child01 [type=ohs_child]
 time.value: 5 usecs
 pid.value: 2469
 status.value: writing
 url.value: GET /dms0/Spy?name=/Apache/Children HTTP/1.1
 slot.value: 5
 /Apache/Children/Child02 [type=ohs_child]
 time.value: 4 usecs
 pid.value: 2465
 status.value: keepalive
 url.value: HEAD / HTTP/1.1
 slot.value: 1
 /Apache/Children/Child03 [type=ohs_child]
 time.value: 2 usecs
 pid.value: 7591
3-20 Oracle9i Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics
 status.value: writing
 url.value: GET /fcgi-bin/echo HTTP/1.0
 slot.value: 8

When viewing the Oracle HTTP Server child server metrics, note the following:

1. If necessary you can use the ohs_child metric value pid.value to identify
and terminate a deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout set with
the TimeOut directive.

See Also: Oracle HTTP Server Administration Guide for information
on the TimeOut directive in Chapter 4, "Managing the Network
Connection"
Monitoring Oracle HTTP Server 3-21

Monitoring Oracle HTTP Server with Built-in Performance Metrics
3-22 Oracle9i Application Server Performance Guide

Monitoring
4

Monitoring OC4J

This chapter discusses how to monitor the performance of Oracle9iAS Containers
for J2EE (OC4J). Obtaining performance data can assist you in tuning Oracle9iAS or
in tuning and debugging applications with performance problems.

This chapter contains the following topics:

■ Monitoring OC4J With Oracle Enterprise Manager

■ Monitoring OC4J With Built-in Performance Metrics
OC4J 4-1

Monitoring OC4J With Oracle Enterprise Manager
Monitoring OC4J With Oracle Enterprise Manager
Using Oracle Enterprise Manager, you can view information on the performance
characteristics of OC4J instances and of J2EE applications running under OC4J. This
section covers the following:

■ Monitoring OC4J Instances With Oracle Enterprise Manager

■ Monitoring J2EE Applications with Oracle Enterprise Manager

Monitoring OC4J Instances With Oracle Enterprise Manager
Before analyzing OC4J performance, make sure that your OC4J instance is running.
Figure 4–1 shows an Oracle Enterprise Manager display that shows the status for a
selected OC4J instance (the Up under the heading General indicates the OC4J
instance is running).

Figure 4–1 shows an Oracle Enterprise Manager OC4J instance page. Oracle
Enterprise Manager provides overall OC4J performance data for active OC4J
instances. The overall performance data includes OC4J performance data collected
in the following categories:

■ General

■ Status

■ Monitoring OC4J

■ Response for EJBs

■ JDBC Usage
4-2 Oracle9i Application Server Performance Guide

Monitoring OC4J With Oracle Enterprise Manager
Figure 4–1 Oracle Enterprise Manager OC4J Instance Display

General
The Oracle Enterprise Manager OC4J General information provides information on
up and down status for the OC4J instance, its start time, the virtual machine where
the OC4J instance is running. This area also presents buttons that allow you to stop
or restart the OC4J instance.

Status
The Oracle Enterprise Manager OC4J Status information shows the CPU usage,
memory usage, and heap usage for the OC4J instance.
Monitoring OC4J 4-3

Monitoring OC4J With Oracle Enterprise Manager
Response for Servlets and JSPs
The Oracle Enterprise Manager OC4J Response information for Servlets and JSPs
shows the number of active sessions, the active requests, the average request
processing time, and the requests processed per second for active requests.

Response for EJBs
The Oracle Enterprise Manager OC4J Response information for EJBs shows the
number of active EJB methods and the EJB method execution rate.

JDBC Usage
The Oracle Enterprise Manager OC4J JDBC Usage information shows the number of
open JDBC connections, the total number of JDBC connections, the number of active
transactions, and the total number of transaction commits and transaction rollbacks
for the OC4J instance.

Monitoring J2EE Applications with Oracle Enterprise Manager
After you know that the OC4J instances that contain your J2EE applications are
running, check the status for your applications. If your J2EE applications are not
loaded, then deploy them and then try accessing the applications to make sure that
they work properly.

For each J2EE application deployed on Oracle9iAS, you can view performance
information in several categories.

Figure 4–2 shows the Oracle Enterprise Manager display for the sample petstore
application.
4-4 Oracle9i Application Server Performance Guide

Monitoring OC4J With Oracle Enterprise Manager
Figure 4–2 Oracle Enterprise Manager J2EE Application Metrics
Monitoring OC4J 4-5

Monitoring OC4J With Oracle Enterprise Manager
Figure 4–2 shows the available Oracle Enterprise Manager J2EE application level
performance data collected in the following categories:

■ General

■ Response for Servlets and JSPs

■ Response for EJBs

■ Web Module Table

■ EJB Modules Table

General
The Oracle Enterprise Manager J2EE application General information provides an
indication of whether the application is loaded or not in the status field, an shows if
the Auto Start status is true or false. The Parent Application field provides a link to
the application parent.

 This area also presents buttons that allow you to Redeploy or Undeploy the
application.

Response for Servlets and JSPs
The Oracle Enterprise Manager J2EE application Response information for Servlets
and JSPs shows the number of active sessions, the active requests, the average
request processing time, and the requests processed per second for active requests
for the application.

For more detail on this information or to drill down to specific Servlets and JSPs,
use the links in the Web Modules table.

Response for EJBs
The Oracle Enterprise Manager J2EE application Response information for EJBs
shows the number of active EJB methods and the EJB method execution rate.

For more detail on this information or to drill down to specific Servlets and JSPs,
use the links in the EJB Modules table.

Web Module Table
The Web Modules table allows you to obtain more detailed information for Servlets
and JSPs within a J2EE application.
4-6 Oracle9i Application Server Performance Guide

Monitoring OC4J With Oracle Enterprise Manager
Figure 4–3 shows the details for the petstore application’s Web Module, including
General information, Response and Load information, and a table showing data
values for each of the Servlets and JSPs that are part of the application.

Figure 4–3 Oracle Enterprise Manager J2EE Application Web Module Metrics

EJB Modules Table
The EJB Modules tables allow you to obtain more detailed information on EJB
modules and EJBs within the J2EE application.

Figure 4–4 shows a sample EJB Module page.
Monitoring OC4J 4-7

Monitoring OC4J With Built-in Performance Metrics
Figure 4–4 Oracle Enterprise Manager EJB Module Page

Monitoring OC4J With Built-in Performance Metrics
You can use the Oracle9iAS built-in performance metrics to analyze OC4J and J2EE
application performance. Before you attempt to monitor OC4J performance, verify
that the OC4J home instance, that is installed by default with Oracle9iAS, is running
by accessing the following URL:

http://myhost:port/j2ee/

The value for myhost should be the host where OC4J is installed. The port must be
the port number on which Oracle HTTP Server listens, as configured in the Oracle
HTTP Server httpd.conf file.

Be sure to include the trailing slash (/) in the URL, otherwise the page cannot be
found on the system. If your default Web site has been mapped to something other
4-8 Oracle9i Application Server Performance Guide

Monitoring OC4J With Built-in Performance Metrics
than the default location /j2ee/, then you should access the location configured on
your system.

If the default OC4J instance is running, then accessing this URL displays the
Welcome page for Oracle9iAS Containers for J2EE.

From the OC4J Welcome page you can access the samples for JSPs and servlets. If
you do not have active J2EE applications that generate requests on your OC4J
instance, then you can use your browser to request the sample servlet-generated or
JSP-generated Web pages.

For example, use the following URLs:

http://myhost:myport/j2ee/servlet/SnoopServlet
http://myhost:myport/j2ee/servlet/HelloWorldServlet

Then, use AggreSpy or dmstool to see the built-in performance metrics.

For example, to use AggreSpy, enter the following URL in your Web browser:

http://myhost:myport/dmsoc4j/AggreSpy

The resulting display from the AggreSpy provides a list of metric tables in the
left-hand pane that can be selected to display performance metrics for OC4J and
Oracle9iAS components. Alternatively, you can use dmstool on the command line
or in scripts that you write to display performance metrics.

Note the following when you are monitoring OC4J built-in metrics:

■ Oracle recommends that you monitor usage counts and service times for each
of your application’s Servlets, JSPs, EJBs and other components, checking
collected metrics against your design and deployment assumptions. You should
check these assumptions with single browser client scenarios, with simulated
multi-user workloads, and in production.

■ When troubleshooting performance degradations, you can use either the
AggreSpy metric tables or the dmstool collected metrics to find the Servlets,
JSPs, EJBs, and EJB methods that are used most often. In many cases,
heavily-used application components are responsible for system resource
utilization, so focus your troubleshooting effort on the most heavily-used
components first.

■ Select the JVM metric table to analyze overall JVM performance for the
processes in the OC4J instance. The JVM metric table provides useful
information about threads and heap memory allocation. You should check these
values to make sure that JVM resources are utilized within expected ranges.
Monitoring OC4J 4-9

Monitoring OC4J With Built-in Performance Metrics
See Also:

■ "Viewing Performance Metrics Using AggreSpy" on page 2-4

■ "Viewing Performance Metrics Using dmstool" on page 2-7

■ Chapter 6, "Optimizing J2EE Applications In OC4J"

■ Appendix A, "Oracle9iAS Performance Metrics" for
descriptions of the built-in performance metrics
4-10 Oracle9i Application Server Performance Guide

Optimizing Oracle HTTP S
5

Optimizing Oracle HTTP Server

This chapter discusses the techniques for optimizing Oracle HTTP Server
performance in Oracle9i Application Server.

This chapter contains:

■ TCP Tuning Parameters

■ Configuring Oracle HTTP Server Directives

■ Logging

■ Secure Sockets Layer

■ Oracle HTTP Server Performance Tips
erver 5-1

TCP Tuning Parameters
TCP Tuning Parameters
Correctly tuned TCP parameters can improve performance dramatically. This
section contains recommendations for TCP tuning and a brief explanation of each
parameter.

Table 5–1 contains recommended TCP parameter settings and includes references to
discussions of each parameter.

Table 5–1 Recommended TCP Parameter Settings for Solaris

Parameter Setting Comments

tcp_conn_hash_size 32768 See "Increasing TCP Connection Table Access Speed" on
page 5-6.

tcp_conn_req_max_q 1024 See "Increasing the Handshake Queue Length" on page 5-8.

tcp_conn_req_max_q0 1024 See "Increasing the Handshake Queue Length" on page 5-8.

tcp_recv_hiwat 32768 See "Changing the Data Transfer Window Size" on page 5-9.

tcp_slow_start_initial 2 See "Changing the Data Transmission Rate" on page 5-8.

tcp_close_wait_interval

tcp_time_wait_interval

60000

60000

Parameter name in Solaris release 2.6.

Parameter name in Solaris release 2.7 or later.

See "Specifying Retention Time for Connection Table Entries"
on page 5-7.

tcp_xmit_hiwat 32768 See "Changing the Data Transfer Window Size" on page 5-9.

Table 5–2 TCP Parameter Settings for HP-UX

Parameter Scope
Default
Value

Tuned
Value Comments

tcp_time_wait_interval ndd/dev/tcp 60,000 60,000 See "Specifying Retention Time
for Connection Table Entries" on
page 5-7.

tcp_conn_req_max ndd/dev/tcp 20 1,024 See "Increasing the Handshake
Queue Length" on page 5-8.

tcp_ip_abort_interval ndd/dev/tcp 600,000 60,000

tcp_keepalive_interval ndd/dev/tcp 7,20,00,000 900,000

tcp_rexmit_interval_
initial

ndd/dev/tcp 1,500 1,500
5-2 Oracle9i Application Server Performance Guide

TCP Tuning Parameters
tcp_rexmit_interval_max ndd/dev/tcp 60,000 60,000

tcp_rexmit_interval_min ndd/dev/tcp 500 500

tcp_xmit_hiwater_def ndd/dev/tcp 32,768 32,768 See "Changing the Data Transfer
Window Size" on page 5-9.

tcp_recv_hiwater_def ndd/dev/tcp 32,768 32,768 See "Changing the Data Transfer
Window Size" on page 5-9.

Table 5–3 TCP Parameter Settings for Tru64

Parameter Module
Default
value

Tuned
Value Comments

tcbhashsize sysconfig -r inet 512 16,384 See "Increasing TCP Connection
Table Access Speed" on page 5-6.

tcbhashnum sysconfig -r inet 1 16 (as of
5.0)

tcp_keepalive_
default

sysconfig -r inet 0 1

tcp_sendspace sysconfig -r inet 16,384 65,535

tcp_recvspace sysconfig -r inet 16,384 65,535

somaxconn sysconfig -r socket 1,024 65,535

sominconn sysconfig -r socket 0 65,535

sbcompress_
threshold

sysconfig -r socket 0 600

Table 5–2 TCP Parameter Settings for HP-UX

Parameter Scope
Default
Value

Tuned
Value Comments
Optimizing Oracle HTTP Server 5-3

TCP Tuning Parameters
Tuning Linux

Raising Network Limits on Linux Systems for 2.1.100 or greater
Linux only allows you to use 15 bits of the TCP window field. This means that you
have to multiply everything by 2, or recompile the kernel without this limitation.

Tuning a Running System
There is no sysctl application for changing kernel values. You can change the
kernel values with an editor like VI.

Tuning the Default and Maximum Size
Edit the files listed below to change kernel values.

Table 5–4 TCP Parameter Settings for AIX

Parameter Model
Default
Value

Recommended
Value Comments

rfc1323 /etc/rc.net 0 1

sb_max /etc/rc.net 65,536 1,31,072

tcp_mssdflt /etc/rc.net 512 1,024

ipqmaxlen /etc/rc.net 50 100

tcp_sendspace /etc/rc.net 16,384 65,536

tcp_recvspace /etc/rc.net 16,384 65,536

xmt_que_size /etc/rc.net 30 150

See Also: Tuning at Compile Time

Table 5–5 Linux TCP Parameters

Filename Details

/proc/sys/net/core/rmem_default Default Receive Window

/proc/sys/net/core/rmem_max Maximum Receive Window

/proc/sys/net/core/wmem_default Default Send Window

/proc/sys/net/core/wmem_max Maximum Send Window
5-4 Oracle9i Application Server Performance Guide

TCP Tuning Parameters
You will find some other possibilities to tune TCP in /proc/sys/net/ipv4/:

■ tcp_timestamps

■ tcp_windowscaling

■ tcp_sack

There is a brief description of TCP parameters in
/Documentation/networking/ip-sysctl.txt.

Tuning at Compile Time
All the above TCP parameter values are set default by a header file in the Linux
kernel source directory /LINUX-SOURCE-DIR/include/linux/skbuff.h

These values are default. This is run time configurable.

ifdef CONFIG_SKB_LARGE
#define SK_WMEM_MAX 65535
#define SK_RMEM_MAX 65535
else
#define SK_WMEM_MAX 32767
#define SK_RMEM_MAX 32767
#endif

You can change the MAX-WINDOW value in the Linux kernel source directory
/LINUX-SOURCE-DIR/include/net/tcp.h.

#define MAX_WINDOW 32767
#define MIN_WINDOW 2048

The MIN_WINDOW definition limits you to using only 15bits of the window field in
the TCP packet header.

For example, if you use a 40kB window, set the rmem_default to 40kB. The stack
will recognize that the value is less than 64 kB, and will not negotiate a winshift. But
due to the second check, you will get only 32 kB. So, you need to set the rmem_
default value at greater than 64 kB to force a winshift=1. This lets you express
the required 40 kB in only 15 bits.

Note: Never assign values greater than 32767 to windows,
without using window scaling.
Optimizing Oracle HTTP Server 5-5

TCP Tuning Parameters
With the tuned TCP stacks, it was possible to get a maximum throughput between
1.5 and 1.8 Mbits via a 2Mbit satellite link, measured with netperf.

Setting TCP Parameters
To set the connection table hash parameter on Solaris, you must add the following
line to your /etc/system file, and then restart the system:

set tcp:tcp_conn_hash_size=32768

On Tru64, set tcbhashsize in the /etc/sysconfigtab file.

A sample script, tcpset.sh, that changes TCP parameters to the settings
recommended here, is included in the $ORACLE_HOME/Apache/Apache/bin/
directory.

Increasing TCP Connection Table Access Speed
If you have a large user population, you should increase the hash size for the TCP
connection table. The hash size is the number of hash buckets used to store the
connection data. If the buckets are very full, it takes more time to find a connection.
Increasing the hash size reduces the connection lookup time, but increases memory
consumption.

Suppose your system performs 100 connections per second. If you set tcp_close_
wait_interval to 60000, then there will be about 6000 entries in your TCP
connection table at any time. Increasing your hash size to 2048 or 4096 will
improve performance significantly.

On a system servicing 300 connections per second, changing the hash size from the
default of 256 to a number close to the number of connection table entries decreases
the average round trip time by up to three to four seconds. The maximum hash size
is 262144. Ensure that you increase memory as needed.

To set the tcp_conn_hash_size on Solaris, add the line shown below to your
/etc/system file. The parameter will take effect when the system is restarted.

set tcp:tcp_conn_hash_size=32768

Note: If your system is restarted after you run the script, the
default settings will be restored and you will have to run the script
again. To make the settings permanent, enter them in your system
startup file.
5-6 Oracle9i Application Server Performance Guide

TCP Tuning Parameters
On Tru64, set tcbhashsize in the /etc/sysconfigtab file.

Specifying Retention Time for Connection Table Entries
As described in the previous section, when a connection is established, the data
associated with it is maintained in the TCP connection table. On a busy system,
much of TCP performance (and by extension web server performance) is governed
by the speed with which the entry for a specific TCP connection can be accessed in
the connection table. The access speed depends on the number of entries in the
table, and on how the table is structured (for example, its hash size). The number of
entries in the table depends both on the rate of incoming requests, and on the
lifetime of each connection.

For each connection, the server maintains the TCP connection table entry for some
period after the connection is closed so it can identify and properly dispose of any
leftover incoming packets from the client. The length of time that a TCP connection
table entry will be maintained after the connection is closed can be controlled with
the tcp_close_wait_interval parameter (renamed tcp_time_wait_
interval on Solaris 2.7). The default in Solaris 2.x for this parameter is 240,000 ms
in accordance with the TCP standard. The four minute setting on this parameter is
intended to prevent congestion on the Internet due to error packets being sent in
response to packets which should be ignored. In practice, 60,000 ms is sufficient,
and is considered acceptable. This setting will greatly reduce the number of entries
in the TCP connection table while keeping the connection long enough to discard
most, if not all, leftover packets associated with it. We therefore suggest you set:

On Solaris 2.6:

/usr/sbin/ndd -set /dev/tcp tcp_close_wait_interval 60000

On HP-UX and Solaris 2.7 and higher:

/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

Note: If your user population is widely dispersed with respect to
Internet topology, you may want to set this parameter to a higher
value. You can improve access time to the TCP connection table
with the tcp_conn_hash_size parameter.
Optimizing Oracle HTTP Server 5-7

TCP Tuning Parameters
Increasing the Handshake Queue Length
During the TCP connection handshake, the server, after receiving a request from a
client, sends a reply, and waits to hear back from the client. The client responds to
the server’s message and the handshake is complete. Upon receiving the first
request from the client, the server makes an entry in the listen queue. After the
client responds to the server’s message, it is moved to the queue for messages with
completed handshakes. This is where it will wait until the server has resources to
service it.

The maximum length of the queue for incomplete handshakes is governed by tcp_
conn_req_max_q0, which by default is 1024. The maximum length of the queue
for requests with completed handshakes is defined by tcp_conn_req_max_q,
which by default is 128.

On most web servers, the defaults will be sufficient, but if you have several
hundred concurrent users, these settings may be too low. In that case, connections
will be dropped in the handshake state because the queues are full. You can
determine whether this is a problem on your system by inspecting the values for
tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop with
netstat -s. If either of the first two values are nonzero, you should increase the
maximums.

The defaults are probably sufficient, but Oracle recommends that you increase the
value of tcp_conn_req_max_q to 1024. You can set these parameters with:

On Solaris:

% /usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 1024
% /usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 1024

On HP-UX:

prompt>/usr/sbin/ndd-set /dev/tcp tcp_conn_req_max 1024

Changing the Data Transmission Rate
TCP implements a slow start data transfer to prevent overloading a busy segment
of the Internet. With slow start, one packet is sent, an acknowledgment is received,
then two packets are sent. The number sent to the server continues to be doubled
after each acknowledgment, until the TCP transfer window limits are reached.

Unfortunately, some operating systems do not immediately acknowledge the
receipt of a single packet during connection initiation. By default, Solaris sends only
one packet during connection initiation, per the TCP standard. Thus can increase
5-8 Oracle9i Application Server Performance Guide

Configuring Oracle HTTP Server Directives
the connection startup time significantly. We therefore recommend increasing the
number of initial packets to two when initiating a data transfer. This can be
accomplished using the following command:

% /usr/sbin/ndd -set /dev/tcp tcp_slow_start_initial 2

Changing the Data Transfer Window Size
The size of the TCP transfer windows for sending and receiving data determine
how much data can be sent without waiting for an acknowledgment. The default
window size is 8192 bytes. Unless your system is memory constrained, these
windows should be increased to the maximum size of 32768. This can speed up
large data transfers significantly. Use these commands to enlarge the window:

On Solaris:

% /usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 32768
% /usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 32768

On HP-UX:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwater_def 32768
prompt>/usr/sbin/ndd -set /dev/tcp tcp_recv_hiwater_def 32768

Because the client typically receives the bulk of the data, it would help to enlarge
the TCP receive windows on end users’ systems, as well.

Configuring Oracle HTTP Server Directives
Oracle HTTP Server uses directives in httpd.conf to configure the application
server. This configuration file specifies the maximum number of HTTP requests that
can be processed simultaneously, logging details, and certain timeouts.

Table 5–6 lists directives that may be significant for performance.
Optimizing Oracle HTTP Server 5-9

Configuring Oracle HTTP Server Directives
Table 5–6 Oracle HTTP Server Configuration Properties

Directive Description

MaxClients Limit on total number of servers running, that is, limit on the number of clients
who can simultaneously connect. If this limit is ever reached, clients are locked
out, so it should not be set too low. It is intended mainly as a brake to keep a
runaway server from taking the system with it as it spirals down.

MaxRequestsPerChild The number of requests each child process is allowed to process before the child
dies. The child will exit so as to avoid problems after prolonged use when Apache
(and maybe the libraries it uses) leak memory or other resources. On most
systems, this isn't really needed, but a few (such as Solaris) do have notable leaks
in the libraries. For these platforms, set to something like 10000 or so; a setting of 0
means unlimited.

 This value does not include KeepAlive requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keptalive" requests, it would only count as 1 request towards this
limit.

MaxSpareServers

MinSpareServers

Server-pool size regulation. Rather than making you guess how many server
processes you need, Oracle HTTP Server dynamically adapts to the load it sees,
that is, it tries to maintain enough server processes to handle the current load, plus
a few spare servers to handle transient load spikes (for example, multiple
simultaneous requests from a single Netscape browser).

It does this by periodically checking how many servers are waiting for a request. If
there are fewer than MinSpareServers, it creates a new spare. If there are more
than MaxSpareServers, some of the spares die off.

The default values are probably ok for most sites.

Default Values:

MaxSpareServers: 10

MinSpareServers: 5

StartServers Number of servers to start initially should be a reasonable ballpark figure. If you
expect a sudden load after restart, set this value based on the number child servers
required.

Default Value: 5

Timeout The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

KeepAlive Whether or not to allow persistent connections (more than one request per
connection). Set to Off to deactivate.

Default Value: On
5-10 Oracle9i Application Server Performance Guide

Configuring Oracle HTTP Server Directives
Configuring the MaxClients Directive
The MaxClients directive limits the number of clients that can simultaneously
connect to your web server, and thus the number of httpd processes. You can
configure this parameter in the httpd.conf file up to a maximum of 8K. If the
MaxClients setting is too low, and the limit is reached, clients will be unable to
connect.

Tests on a previous release, with static page requests (average size 20K) on a 2
processor, 168 MHz Sun UltraSPARC on a 100 Mbps network showed that:

■ The default MaxClients setting of 150 was sufficient to saturate the network.

■ Approximately 60 httpd processes were required to support 300 concurrent
users (no think time).

On the system described above, and on 4 and 6-processor, 336 MHz systems, there
was no significant performance improvement in increasing the MaxClients setting
from 150 to 256, based on static page and servlet tests with up to 1000 users.

Increasing MaxClients when system resources are saturated does not improve
performance. When there are no httpd processes available, connection requests are
queued in the TCP/IP system until a process becomes available, and eventually
clients terminate connections.

If you are using persistent connections, you may require more concurrent httpd
server processes.

For dynamic requests, if the system is heavily loaded, it might be better to allow the
requests to queue in the network (thereby keeping the load on the system
manageable). The question for the system administrator is whether a timeout error
and retry is better than a long response time. In this case, the MaxClients setting

MaxKeepAliveRequests The maximum number of requests to allow during a persistent connection. Set to 0
to allow an unlimited amount.

If you have long client sessions, you might want to increase this value.

Default Value: 100

KeepAliveTimeout Number of seconds to wait for the next request from the same client on the same
connection.

Default Value: 15 seconds

Table 5–6 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description
Optimizing Oracle HTTP Server 5-11

Logging
could be reduced, to act as a throttle on the number of concurrent requests on the
server.

How Persistent Connections Can Reduce httpd Process Availability
There are some serious drawbacks to using persistent connections with Oracle
HTTP Server. In particular, because httpd processes are single threaded, one client
can keep a process tied up for a significant period of time (the amount of time
depends on your KeepAlive settings). If you have a large user population, and
you set your KeepAlive limits too high, clients could be turned away because of
insufficient httpd deamons.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 15

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks.
You should consider the size and behavior of your own user population in setting
these values on your system. For example, if you have a large user population and
the users make small infrequent requests, you may want to reduce the above
settings, or even set KeepAlive to off. If you have a small population of users that
return to your site frequently, you may want to increase the settings.

Logging
This section discusses types of logging, log levels, and the performance implications
for using logging.

Access Logging
For static page requests, access logging of the default fields results in a 2-3%
performance cost.

Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to
on, the server queries the DNS system on the Internet to find the host name
associated with the IP address of each request, then writes the host names to the log.
5-12 Oracle9i Application Server Performance Guide

Secure Sockets Layer
Performance degraded by about 3% (best case) in Oracle in-house tests with
HostNameLookups set to on. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
high. Unless you really need to have host names in your logs in real time, it is best
to log IP addresses.You can resolve IP addresses to host names off-line, with the
logresolve utility found in the $ORACLE_HOME/Apache/Apache/bin/
directory.

Error logging
The server notes unusual activity in an error log. The ErrorLog and LogLevel
directives identify the log file and the level of detail of the messages recorded. The
default level is warn. There was no difference in static page performance on a
loaded system between the warn, info, and debug levels.

Secure Sockets Layer
The Oracle HTTP Server caches a client’s Secure Sockets Layer (SSL) session
information by default. With session caching, only the first connection to the server
incurs high latency. For example, in a simple test to connect and disconnect to an
SSL-enabled server, the elapsed time for 5 connections was 11.4 seconds without
SSL session caching. With SSL session caching enabled, the elapsed time for 5 round
trips was 1.9 seconds.

The SSLSessionCacheTimeout directive in httpd.conf determines how long
the server keeps a session alive (the default is 300 seconds). The session
information is kept in a file. You can specify where to keep the session information
using the SSLSessionCache directive; the default location is the $ORACLE_
HOME/Apache/Apache/logs/ directory. The file can be used by multiple Oracle
HTTP Server processes.

The duration of an SSL session is unrelated to the use of HTTP persistent
connections.
Optimizing Oracle HTTP Server 5-13

Oracle HTTP Server Performance Tips
Oracle HTTP Server Performance Tips
The following tips can enable you to avoid or debug potential Oracle HTTP Server
(OHS) performance problems:

■ Analyze Static Versus Dynamic Requests

■ Analyze Time Differences Between Oracle HTTP Server and OC4J Servers

■ Beware of a Single Data Point Yielding Misleading Results

Analyze Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of your requests
are static and what percentage are dynamic. This is because static pages can be
cached by Web Cache. Generally speaking, you want to concentrate your tuning
effort on dynamic pages because they are normally more costly to generate. Also, by
monitoring and tuning your application, you may find that much of the
dynamically generated content, such as catalog data, can be cached, sparing
significant resource usage.

Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
In some cases, you may notice a high discrepancy between the average time to
process a request in Oracle9iAS Containers for J2EE (OC4J) and the average
response time experienced by the user. If the time is not being spent actually doing
the work, then it is probably being spent in transport. If you notice a large
discrepancy, please consider the performance guidelines specified in the section,
"Configuring Oracle HTTP Server Directives" on page 5-9.

See Also:

■ Chapter 7, "Optimizing Web Cache" for further details regarding Web
Cache

■ Chapter 3, "Monitoring Oracle HTTP Server"
5-14 Oracle9i Application Server Performance Guide

Oracle HTTP Server Performance Tips
Beware of a Single Data Point Yielding Misleading Results
You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL
“Hello, World” application for about 30 seconds. Examining the results, you can see
that the work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module.
This is probably because it is upon the first request that a database connection must
be opened. Later requests can make use of the established connection. To get a
better estimate of the average service time for a PL/SQL module, recalculate the
average as in the following:

(time - maxTime)/(completed -1)

The values would be:

(24023499 - 859330)/(1230 -1) = 18847.98
Optimizing Oracle HTTP Server 5-15

Oracle HTTP Server Performance Tips
5-16 Oracle9i Application Server Performance Guide

Optimizing J2EE Applications In
6

Optimizing J2EE Applications In OC4J

This chapter provides guidelines for improving the performance of Oracle9iAS
Containers for J2EE (OC4J) applications in Oracle9i Application Server.

This chapter contains:

■ OC4J J2EE Application Performance Quickstart

■ Improving J2EE Application Performance by Configuring OC4J Instance

■ Improving Servlet Performance in Oracle9iAS

■ Improving JSP Performance in Oracle9iAS

■ Improving EJB Performance in Oracle9iAS

■ Using Multiple OC4Js and Limiting Connections

■ Database Monitoring and Tuning

■ Improving BC4J Performance in Oracle9iAS

Note: This chapter describes using Oracle Enterprise Manager for
setting OC4J and application configuration options. You can also
use the Distributed Configuration Management (DCM) utility,
dcmctl, to set configuration options. This utility provides a
command-line alternative to using Oracle Enterprise Manager for
some Oracle9iAS configuration and management tasks.
OC4J 6-1

OC4J J2EE Application Performance Quickstart
OC4J J2EE Application Performance Quickstart
This section provides a quickstart for tuning J2EE applications that run on OC4J,
providing links for information on important performance issues.

Table 6–1 lists a quick guide for performance issues for J2EE applications.

Table 6–1 Critical Performance Areas for J2EE Applications

Performance Area Description and Reference

Providing Adequate
Memory Resources

To improve the performance of your J2EE applications, provide adequate
memory resources. If the OC4J running your J2EE applications does not have
enough memory, performance can suffer due to the overhead required to manage
limited memory

See "Setting the JVM Heap Size for OC4J Processes" on page 6-3

Caching and Reusing
Database Connections

Setting up database connection pooling properly is often a critical performance
consideration for J2EE applications that access a database. Data sources provide
configuration options that allow you to use and configure pooled database
connections.

See "Setting Up Data Sources – Performance Issues" on page 6-8

Managing Concurrency and
Limiting Connections

See "Limiting HTTP Connections" on page 6-34

Load Balancing See "Configuring Multiple OC4J Processes" on page 6-36

Balancing Applications See "Balancing Applications Across OC4J Instances" on page 6-37

Database Monitoring and
Tuning

See "Database Monitoring and Tuning" on page 6-37
6-2 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
Improving J2EE Application Performance by Configuring OC4J Instance
Tuning OC4J configuration options allows you to improve the performance of J2EE
applications running on an OC4J Instance. Modifying the configuration may require
balancing the available resources on your system with the performance
requirements for your applications.

This section covers configuration changes that can affect J2EE application
performance and includes the following topics:

■ Setting Java Options for OC4J Processes

■ Setting Up Data Sources – Performance Issues

Setting Java Options for OC4J Processes
When running Oracle9iAS, the module mod_oc4j is the connector from Oracle
HTTP Server to one or more OC4J Instances. Each OC4J process within an OC4J
Instance runs in its own Java Virtual Machine (JVM) and is responsible for parsing
J2EE requests and generating a response. When a request comes into Oracle HTTP
Server, mod_oc4j picks an OC4J process and routes the request to the selected
OC4J process. Within each OC4J Instance all of the OC4J JVM processes use the
same configuration and start with the same Java options. Likewise, unless a process
dies or there is some other problem, each OC4J process that is part of an OC4J
Instance has the same J2EE applications deployed to it.

Depending on your J2EE application, you may be able to improve the application’s
performance by setting Java Options for the JVM running OC4J where your
application is deployed.

Setting the JVM Heap Size for OC4J Processes
If you have sufficient memory available on your system and your application is
memory intensive, you can improve your application performance by increasing
the JVM heap size from the default values. While the amount of heap size required
varies based on the application and on the amount of memory available, for most

See Also:

Chapter 3, "Monitoring Oracle HTTP Server"

Chapter 4, "Monitoring OC4J"
Optimizing J2EE Applications In OC4J 6-3

Improving J2EE Application Performance by Configuring OC4J Instance
OC4J server applications, a heap size of at least 128 Megabytes is advised. If you
have sufficient memory, using a heap size of 256 Megabytes or larger is preferable.

To change the size of the heap allocated to the OC4J processes in an OC4J Instance,
use the procedures outlined in "Using Oracle Enterprise Manager to Change OC4J
JVM Command Line Options" on page 6-6, and specify the following Java options:

-Xmssizem -Xmxsizem

Where size is the desired Java heap size in megabytes.

If you know that your application will consistently require a larger amount of heap,
you can improve performance by setting the minimum heap size equal to the
maximum heap size, by setting the JVM -Xms size to be the same as the -Xmx size.

For example, to specify a heap size of 128 megabytes, specify the following:

-Xms128m -Xmx128m

You should set your maximum Java heap size so that the total memory consumed
by all of the JVMs running on the system does not exceed the memory capacity of
your system. If you select a value for the Java heap size that is too large for your
hardware configuration, one or more of the OC4J processes within the OC4J
Instance may not start, and Oracle Enterprise Manager reports an error. Review the
log files for the OC4J Instance in the directory $ORACLE_HOME/opmn/logs, to find
the error report:

Could not reserve enough space for object heap
Error occurred during initialization of VM

If you select a value for the JVM heap size that is too small, none of the OC4J
processes will be able to start, and Oracle Enterprise Manager reports an error. If
you review the log files for the OC4J Instance in the directory $ORACLE_
HOME/opmn/logs, you may find errors similar to the following:

java.lang.OutOfMemoryError

If the system runs out of memory, the OC4J process will shut down. This will
happen if references to the objects are not released. For example, if objects are stored
in a hash table or vector and never again removed.

Note: There are other reasons why java.lang.OutOfMemoryError
error may occur. For example, if the application has a memory leak.
6-4 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
It is of course possible that your process actually needs to use a lot of memory. In
this case, the maximum heap size for the process should be increased to avoid
frequent garbage collection.

To maximize performance, set the maximum heap size to accommodate application
requirements. To determine how much Java heap you need, include calls in your
program to the Runtime.getRuntime().totalMemory() and
Runtime.getRuntime().freeMemory methods in the java.lang package.
Subtract free memory from total memory; the difference is the amount of heap that
the application consumed.

Setting the Server Option for OC4J Processes
Depending on the particular J2EE application, setting the command line option
-server for the JVM running OC4J may improve performance (the JVM runs in
one of two modes set with the two related options, -client and -server, the
default value is -client). To set this option, use the procedures outlined in "Using
Oracle Enterprise Manager to Change OC4J JVM Command Line Options" on
page 6-6, and specify the -server Java option.

The -server option selects the server VM instead of using the default client VM.
The client and the server VMs are similar, except that the server VM is specially
tuned to maximize peak operating speed. It is intended for executing long-running
server applications, for which having the fastest possible operating speed is
generally more important than having a fast startup time or a smaller runtime
memory footprint. The client VM, the default without using the -server option
starts up faster and requires a smaller memory footprint than the server VM.

Setting the Stack Size Option for OC4J Processes
Depending on the particular J2EE application, changing the setting of the command
line option -Xss for the JVM running OC4J may improve performance. To set this
option, use the procedures outlined in "Using Oracle Enterprise Manager to Change
OC4J JVM Command Line Options" on page 6-6, and specify the -Xss Java option.

This option sets the maximum stack size for C code in a thread to n. Every thread
that is spawned during the execution of the program passed to java has n as its C

See Also: You can find detailed information about JVM options
and their impact on performance on the JVM vendor’s web sites.

Note: The -server option must be specified first, before all other
Java options.
Optimizing J2EE Applications In OC4J 6-5

Improving J2EE Application Performance by Configuring OC4J Instance
code stack size. The default C code stack size is 512 kilobytes (-Xss512k). A value
of 64 kilobytes is the smallest amount of C code stack space allowed per thread.

Oracle recommends that you try the following value to improve the performance of
your J2EE applications:

-Xss128k

Setting the Concurrentio Option for OC4J Processes
Depending on the particular J2EE application and JDK version, changing the setting
of the command line option -Xconcurrentio for the JVM running OC4J may
improve performance. To set this option, use the procedures outlined in "Using
Oracle Enterprise Manager to Change OC4J JVM Command Line Options" on
page 6-6, and specify the -Xconcurrentio Java option.

This option generally helps programs with many threads. The main feature turned
on with -Xconcurrentio is to use LWP based synchronization instead of thread
based synchronization. For certain applications, with JDK 1.3.1, this option
increases speed up by over 40%. See the following site for more information,

http://java.sun.com/docs/hotspot/threads/threads.html

Using the -Xconcurrentio option, it is important to compare results for your
application without the option. In some tests, results have been mixed, using the
option results in a speedup for some applications, but for other applications or JDK
versions, the performance degraded with this option. See the following site,

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Using Oracle Enterprise Manager to Change OC4J JVM Command Line Options
To change the Java command line options for an OC4J Instance, go to the home
page for the OC4J Instance and perform the following steps:

1. Stop the OC4J Instance.

2. Drill down to the Server Properties page.

3. In the Command Line Options area of the Server Properties page, under the
heading Multiple VM Configuration, set the Java Options.

Note: In JDK 1.4, LWP based synchronization is the default, but
setting -Xconcurrentio can still improve performance in JDK 1.4
since it turns on additional internal options.
6-6 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
For example, enter the following to set the JVM heap sizes to 128 Megabytes:

-Xmx128m

4. Use the Apply button to apply the changes.

5. Start the OC4J Instance.

Figure 6–1 shows the Server Properties page with Java Options.

Figure 6–1 Setting Java Heap Size for an OC4J Instance Using Oracle Enterprise Manager
Optimizing J2EE Applications In OC4J 6-7

Improving J2EE Application Performance by Configuring OC4J Instance
Setting Up Data Sources – Performance Issues
A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a
database server. This section describes data source configuration options for global
data sources. A global data source is available to all the deployed applications in an
OC4J Instance.

This section covers the following topics:

■ Emulated and Non-Emulated Data Sources

■ Using the EJB Aware Location Specified in Emulated Data Sources

■ Setting the Maximum Open Connections in Data Sources

■ Setting the Minimum Open Connections in Data Sources

■ Setting the Cached Connection Inactivity Timeout in Data Sources

■ Setting the Wait for Free Connection Timeout in Data Sources

■ Setting the Connection Retry Interval in Data Sources

■ Setting the Maximum Number of Connection Attempts in Data Sources

■ Using Oracle Enterprise Manager to Change Data Source Configuration
Options

Note: If your data source is provided by a third party, you may
need to set certain properties. These properties should be defined in
the third-party documentation.

See Also:

■ "Improving EJB Performance in Oracle9iAS" on page 6-27

■ Chapter 4, "Data Sources Primer" in Oracle9iAS Containers for J2EE
User’s Guide

■ Chapter 15, "Data Sources" in Oracle9iAS Containers for J2EE Services
Guide

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference
6-8 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
Emulated and Non-Emulated Data Sources
Some of the performance related configuration options have different affects,
depending on the type of the data source. OC4J supports two types of data sources,
emulated and non-emulated:

The pre-installed default data source is an emulated data source. Emulated data
sources are wrappers around Oracle data sources. If you use these data sources,
your connections are extremely fast, because they do not provide full XA or JTA
global transactional support. We recommend that you use these data sources for
local transactions or when your application requires access or update to a single
database. You can use emulated data sources for Oracle or non-Oracle databases.

You can use the emulated data source to obtain connections to different databases
by changing the values of the url and connection-driver parameters.

The following is a definition of an emulated data source:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

Non-emulated data sources are pure Oracle data sources. These are used by
applications that want to coordinate access to multiple sessions within the same
database or to multiple databases within a global transaction.

Using the EJB Aware Location Specified in Emulated Data Sources
Each data source is configured with one or more logical names that allow you to
identify the data source within J2EE applications. The ejb-location is the logical
name of an EJB data source. In addition, use the ejb-location name to identify
data sources for most J2EE applications, where possible, even when not using EJBs.
The ejb-location only applies to emulated data sources. You can use this option
for single phase commit transactions or emulated data sources.
Optimizing J2EE Applications In OC4J 6-9

Improving J2EE Application Performance by Configuring OC4J Instance
Using the ejb-location, the data source manages opening a pool of connections,
and manages the pool. Opening a connection to a database is a time-consuming
process that can sometimes take longer than the operation of getting the data itself.
Connection pooling allows client requests to have faster response times, because the
applications do not need to wait for database connections to be created. Instead, the
applications can reuse connections that are available in the connection pool.

Setting the Maximum Open Connections in Data Sources
The max-connections option specifies the maximum number of open
connections for a pooled data source. To improve system performance, the value
you specify for the number max-connections depends on a combination of
factors including the size and configuration of your database server, and the type of
SQL operations that your application performs.

The default value for max-connections and the handling of the maximum
depends on the data source type, emulated or non-emulated.

For emulated data sources, there is no default value for max-connections, but
the database configuration limits that affect the number of connections apply. When
the maximum number of connections, as specified with max-connections, are all
active, new requests must wait for a connection to be become available. The
maximum time to wait is specified with wait-timeout.

For non-emulated data sources, there is a property, cacheScheme, that determines
how max-connections is interpreted. Table 6–2 lists the values for the cacheScheme
property (DYNAMIC_SCHEME is the default value for cacheScheme).

Note: Oracle recommends that you only use the ejb-location
JNDI name in emulated data source definitions for retrieving the
data source. For non-emulated data sources, you must use the
location JNDI name.

See Also:

■ "Setting the Wait for Free Connection Timeout in Data Sources" on
page 6-13

■ Chapter 15, "Data Sources" in Oracle9iAS Containers for J2EE Services
Guide
6-10 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
The tradeoffs for changing the value of max-connections are:

■ For some applications you can improve performance by limiting the number of
connections to the database (this causes the system to queue requests in the
mid-tier). For example, for one application that performed a combination of
updates and complex parallel queries into the same database table,
performance was improved by over 35% by reducing the maximum number of
open connections to the database by limiting the value of max-connections.

Setting the Minimum Open Connections in Data Sources
The min-connections option specifies the minimum number of open connections
for a pooled data source.

For applications that use a database, performance can improve when the data
source manages opening a pool of connections, and manages the pool. This can
improve performance because incoming requests don't need to wait for a database
connection to be established; they can be given a connection from one of the
available connections, and this avoids the cost of closing and then reopening
connections.

Table 6–2 Non-emulated Data Source cacheScheme Values

Value Description

FIXED_WAIT_SCHEME In this scheme, when the maximum limit is reached, a request
for a new connection waits until another client releases a
connection.

FIXED_RETURN_NULL_
SCHEME

In this scheme, the maximum limit cannot be exceeded.
Requests for connections when the maximum has already been
reached return null.

DYNAMIC_SCHEME In this scheme, you can create new pooled connections above
and beyond the maximum limit, but each one is automatically
closed and freed as soon as the logical connection instance is
finished being used, where it is returned to the available cache.

DYNAMIC_SCHEME is the default value for cacheScheme.

Note: You should check to make sure that your database is
configured to allow at least the total number of open connections,
as specified by the data sources max-connections option for all
your J2EE applications.
Optimizing J2EE Applications In OC4J 6-11

Improving J2EE Application Performance by Configuring OC4J Instance
By default, the value of min-connections is set to 0. When using connection
pooling to maintain connections in the pool, specify a value for min-connections
other than 0.

For emulated and non-emulated data sources, the min-connections option is
treated differently.

For emulated data sources, when starting up the initial min-connections
connections, connections are opened as they are needed and once the
min-connections number of connections is established, this number is
maintained.

For non-emulated data sources, after the first access to the data source, OC4J then
starts the min-connections number of connections and maintains this number of
connections.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure
that your database is configured to allow at least as large a number of open
connections as the total of the values specified for all the data sources
min-connections options, as specified in all the applications that access the
database.

Setting the Cached Connection Inactivity Timeout in Data Sources
The inactivity-timeout specifies the time, in seconds, to cache unused
connections before closing them.

To improve performance, you can set the inactivity-timeout to a value that
allows the data source to avoid dropping and then re-acquiring connections while
your J2EE application is running.

The default value for the inactivity-timeout is 60 seconds, which is typically
too low for applications that are frequently accessed, where there may be some
inactivity between requests. For most applications, to improve performance, we
recommend that you increase the inactivity-timeout to 120 seconds.

Note: If the min-connections is set to a value other than zero,
the specified number of connections will be maintained; OC4J
maintains the connections when they are not in use, and they do
not time out when the specified inactivity-timeout is reached.

Once the specified connections are opened, OC4J does not provide
a way to close the connections, except by stopping OC4J.
6-12 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
To determine if the default inactivity-timeout is too low, monitor your
system. If you see that the number of database connections grows and then shrinks
during an idle period, and grows again soon after that, you have two options: you
can increase the inactivity-timeout, or you can increase the
min-connections.

Setting the Wait for Free Connection Timeout in Data Sources
The wait-timeout specifies the number of seconds to wait for a free connection if
the connection pool does not contain any available connections (that is, the number
of connections has reached the limit specified with max-connections and they
are all currently in use).

If you see connection timeout errors in your application, increasing the
wait-timeout can prevent the errors. The default wait-timeout is 60 seconds.

If database resources, including memory and CPU are available and the number of
open database connections is approaching max-connections, you may have
limited max-connections too stringently. Try increasing max-connections and
monitor the impact on performance. If there are not additional machine resources
available, increasing max-connections is not likely to improve performance.

You have several options in the case of a saturated system:

■ Increase the allowable wait-timeout.

■ Evaluate the application design for potential performance improvements.

■ Increase the system resources available and then adjust these parameters.

Setting the Connection Retry Interval in Data Sources
The connection-retry-interval specifies the number of seconds to wait
before retrying a connection when a connection attempt fails.

If the connection-retry-interval is set to a small value, or a large number of
connection attempts is specified with max-connect-attempts this may degrade
performance if there are many retries performed without obtaining a connection.

The default value for the connection-retry-interval is 1 second.

See Also:

■ "Setting the Minimum Open Connections in Data Sources" on
page 6-11
Optimizing J2EE Applications In OC4J 6-13

Improving J2EE Application Performance by Configuring OC4J Instance
Setting the Maximum Number of Connection Attempts in Data Sources
The max-connect-attempts option specifies the maximum number of times to
retry making a connection. This option is useful to control when the network is not
stable, or the environment is unstable for any reason that sometimes makes
connection attempts fail.

If the connection-retry-interval option is set to a small value, or a large
number of connection attempts is specified with max-connect-attempts this
may degrade performance if there are many retries performed without obtaining a
connection.

The default value for max-connect-attempts is 3.

Using Oracle Enterprise Manager to Change Data Source Configuration Options
Figure 6–2 shows the Oracle Enterprise Manager configuration page that lets you
view or modify a data source. This page is available in Oracle Enterprise Manager
by selecting the Edit button for a selected data source from the Data Sources page
from the application default page for an OC4J Instance, or by selecting data sources
from the administration section of a deployed application’s description page (this is
only available when the application has its own local data source).

Oracle Enterprise Manager stores the data sources elements that you add or modify
in an XML file. This file defaults to the name data-sources.xml and is located in
/j2ee/home/config. If you want to change the name or the location of this file,
you can do this in the General Properties page off of the default application screen
or off of your specific application’s page, when the application specifies a local data
source.

Note: You can also use the Oracle Enterprise Manager Advanced
Properties links to create or edit data sources. This allows you to
add data sources using the XML definitions which is useful if you
have been provided the XML.
6-14 Oracle9i Application Server Performance Guide

Improving J2EE Application Performance by Configuring OC4J Instance
Figure 6–2 Oracle Enterprise Manager Data Sources Configuration Page
Optimizing J2EE Applications In OC4J 6-15

Improving Servlet Performance in Oracle9iAS
Improving Servlet Performance in Oracle9iAS
This section discusses configuration options and performance tips specific to
servlets for optimizing OC4J performance.

This section covers the following topics:

■ Improving Performance by Altering Servlet Configuration Parameters

■ Servlet Performance Tips

Improving Performance by Altering Servlet Configuration Parameters
This section cover the following:

■ Loading Servlet Classes at Startup

Loading Servlet Classes at Startup
By default, OC4J loads a servlet when the first request is made. OC4J also allows
you to load servlet classes when the JVM that runs the servlet is started. To do this,
add the <load-on-startup> sub-element to the <servlet> element in the
application’s web.xml configuration file.

For example, add the <load-on-startup> as follows:

<servlet>
 <servlet-name>viewsrc</servlet-name>
 <servlet-class>ViewSrc</servlet-class>
 <load-on-startup>
</servlet>

Using the load-on-startup facility increases the start-up time for your OC4J process,
but decreases first-request latency for servlets.

Using Oracle Enterprise Manager you can also specify that OC4J load for an entire
Web Module on startup. To specify that a web module is to be loaded on startup,
select the Website Properties page for an OC4J Instance and then use the Load on
Startup checkbox.
6-16 Oracle9i Application Server Performance Guide

Improving Servlet Performance in Oracle9iAS
Servlet Performance Tips
The following tips can enable you to avoid or debug potential performance
problems:

■ Analyze Servlet Duration

■ Understand Server Request Load

■ Find Large Servlets That Require a Long Load Time

■ Watch for Unused Sessions

■ Watch for Abnormal Session Usage

■ Load Servlet Session Security Routines at Startup

Analyze Servlet Duration
It is useful to know the average duration of the servlet (and JSP) requests in your
J2EE enterprise application. By understanding how long a servlet takes when the
system is not under load, you can more easily determine the cause of a performance
problem when the system is loaded. The average duration of a given servlet is
reported in the metric service.avg for that servlet. You should only examine this
value after making many calls to the servlet so that any startup overhead such as
class loading and database connection establishment will be amortized.

As an example, suppose you have a servlet for which you notice the service.avg
is 32 milliseconds. And suppose you notice a response time increase when your
system is loaded, but not CPU bound. When you examine the value of
service.avg, you might find that the value is close to 32 ms, in which case you
can assume the degradation is probably due to your system or application server
configuration rather than in your application. If on the other hand, you notice that
service.avg has increased significantly, you may look for the problem in your
application. For example, multiple users of the application may be contending for
the same resources, including but not limited to database connections.

Understand Server Request Load
In debugging servlet and JSP problems, it is often useful to know how many
requests your OC4J processes are servicing. If the problems are performance related,
it is always helpful to know if they are aggravated by a high request load. You can

See Also: Table A–11 in Appendix A, "Oracle9iAS Performance
Metrics"
Optimizing J2EE Applications In OC4J 6-17

Improving Servlet Performance in Oracle9iAS
track the requests for a particular OC4J Instance using Oracle Enterprise Manager,
or by viewing the application’s web module metrics.

Find Large Servlets That Require a Long Load Time
You may find that a servlet application is especially slow the first time it is used
after the server is started, or that it is intermittently slow. It is possible that when
this happens the server is heavily loaded, and the response time is suffering as a
result. If there is no indication of a high load, however, which you can detect by
monitoring your access logs, periodically monitoring CPU utilization, or by
tracking the number of users that have active requests on the HTTP server and
OC4J, then you may just have a large servlet that takes a long time to load.

You can see if you have a slow loading servlet by looking at service.maxTime,
service.minTime, and service.avg. If the time to load the servlet is much
higher than the time to service, the first user that accesses the servlet after your
system is started will feel the impact, and service.maxTime will be large. You
can avoid this by configuring the system to initialize your servlet when it is started.

Watch for Unused Sessions
You should regularly monitor your applications looking for unused sessions. It is
easy to inadvertently write servlets that do not invalidate their sessions. Without
source code for the application software, you may not know this could be a problem
on your host, but sooner or later you would notice a higher consumption of
memory than expected. You can see if there are sessions which are not utilized or
sessions which are not being properly invalidated after being used with the session
metrics, including: sessionActivation.time and
sessionActivation.completed and sessionActivation.active.

See Also: Table A–11 in Appendix A, "Oracle9iAS Performance
Metrics"

See Also: "Loading Servlet Classes at Startup" on page 6-16

See Also: Table A–12 in Appendix A, "Oracle9iAS Performance
Metrics"
6-18 Oracle9i Application Server Performance Guide

Improving Servlet Performance in Oracle9iAS
Watch for Abnormal Session Usage
This example shows an application that creates sessions, but never uses them:

 To provide an example, we show metrics from a JSP under
/oc4j/application/WEBs/context:

session.Activation.active: 500 ops
session.Activation.completed: 0 ops

This application created 500 sessions and all are still active. Possibly, this indicates
that the application makes unnecessary use of the sessions and it is just a matter of
time before it causes memory or CPU consumption problems.

A well-tuned application shows sessionActivation.active with a value that
is less than sessionActivation.completed before the session time out. This
indicates that the sessions are probably being used and cleaned up.

Suppose we have a servlet that uses sessions effectively and invalidates them
appropriately. Then we might see a set of metrics such as the following, under
/oc4j/<application>/WEBs/<context>:

session.Activation.active: 2 ops
session.Activation.completed: 500 ops

The fact that two sessions are active when more than 500 have been created and
completed indicates that sessions are being invalidated after use.

Load Servlet Session Security Routines at Startup
OC4J uses the class java.security.SecureRandom for secure seed generation.
The very first call to this method is time consuming. Depending on how your
system is configured for security, this method may not be called until the very first
request for a session-based servlet is received by the Application Server. One
alternative is to configure the application to load-on-startup in the application’s
web.xml configuration file and to create an instance of SecureRandom during the
class initialization of the application. The result will be a longer startup time in lieu
of a delay in servicing the first request.

See Also: "Loading Servlet Classes at Startup" on page 6-16
Optimizing J2EE Applications In OC4J 6-19

Improving JSP Performance in Oracle9iAS
Improving JSP Performance in Oracle9iAS
OracleJSP is Oracle’s implementation of the Sun Microsystems JavaServer Pages
specification. Some of the additional features it includes are custom JavaBeans for
accessing Oracle databases, SQL support, and extended datatypes.

This section explains how you can improve OracleJSP performance. It contains the
following topics:

■ Improving Performance by Altering JSP Configuration Parameters

■ Improving Performance by Tuning JSP Code

Oracle9iAS provides JSP tag libraries that include some features that may improve
the performance of J2EE applications. For example, you may be able to use the JSP
caching features available in the tag libraries to increase the speed and scalability
for your applications:

■ The JESI tag library supports the use of Oracle9iAS Web Cache. This supports
the use of the HTTP-level cache, maintained outside the application, that
provides very fast cache operations. Oracle9iAS Web Cache is capable of
caching static data, such HTML, GIF, or JPEG files, or dynamic data, such as
servlet or JSP results.

■ The Web Object Cache tag library allows you to capture intermediate results of
JSP and servlet execution, and subsequently reuse these cached results in other
parts of the Java application logic.

Note: A JSP is translated into a Java servlet before it runs,
therefore servlet performance issues also apply for JSPs.

See Also:

■ "Improving JSP Performance in Oracle9iAS" on page 6-20

■ Chapter 5, "Key Considerations" in Oracle9iAS Containers for J2EE
Servlet Developer’s Guide

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference
6-20 Oracle9i Application Server Performance Guide

Improving JSP Performance in Oracle9iAS
Improving Performance by Altering JSP Configuration Parameters
This section describes JSP configuration parameters that you can alter to improve
and control JSP operation. These parameters are set for each OC4J Instance, by
altering the file global-web-application.xml.

Using the main_mode Parameter
The main_mode parameter determines whether classes are automatically reloaded
or JSPs are automatically recompiled, in case of changes.

Table 6–3 shows the supported settings for main_mode.

See Also:

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference in the Oracle9i Application Server documentation
library for information on JSP configuration parameters.

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide in the Oracle9i
Application Server documentation library for information on
global-web-application.xml

Table 6–3 JSP main_mode Parameter Values

Option Description

justrun The runtime dispatcher does not perform any timestamp checking, so there is no
recompilation of JSPs or reloading of Java classes. This mode is the most efficient mode for a
deployment environment, where code will not change.

If comparing timestamps is unnecessary, as is the case in a typical production deployment
environment where source code will not change, you can avoid all timestamp comparisons
and any possible retranslations and reloads by setting the main_mode parameter to the value
justrun.

Using this value can improve the performance of JSP applications.

Note: before you set main_mode to the value justrun, make sure that the JSP is compiled at
least once. You can compile the JSP by invoking it through a browser, or by running your
application (using the default value for main_mode, recompile). This assures that the JSP is
compiled before you set the justrun flag.

reload The dispatcher will check if any classes have been modified since loading, including
translated JSPs. JavaBeans invoked from pages, and any other dependency classes.

recompile This is the default value for main_mode.

The dispatcher will check the timestamp of the JSP, retranslate it if it has been modified since
loading, and execute all reload functionality as well.
Optimizing J2EE Applications In OC4J 6-21

Improving JSP Performance in Oracle9iAS
Note the following when working with the main_mode parameter:

■ Because of the usage of in-memory values for class file last-modified times,
removing a page implementation class file from the file system will not by itself
cause retranslation of the associated JSP source.

■ The page implementation class file will be regenerated when the memory cache
is lost. This happens whenever a request is directed to this page after the server
is restarted or after another page in this application has been retranslated.

■ A page is not reloaded just because a statically included file has changed.
Statically included files, included through <%@ include ... %> syntax as
opposed to <jsp:include ... /> syntax, are included during
translation-time.

Improving Performance by Tuning JSP Code
This section describes changes you can make to your JSP code to improve
performance.

This section covers the following topics:

■ Impact of Session Management on Performance

■ Using Static Template Text Instead of out.print for Outputting Text

■ Performance Issues for Buffering JSPs

■ Using Static Versus Dynamic Includes

Impact of Session Management on Performance
In general, sessions add performance overhead for your Web applications. Each
session is an instance of the javax.servlet.http.HttpSession class. The
amount of memory per session depends on the size of the session objects created.
You can turn off sessions for your JSPs if you do not want a new session created for
each request. By default, in OracleJSP sessions are enabled. If you do not need to
use sessions in your JSPs, turn them off by including the following line at the top of
the JSP:

<%@ page session="false" %>

Note: Before you set main_mode to the value justrun, make
sure that the JSP is compiled at least once. You can compile the JSP
by invoking it through a browser, or by running your application.
6-22 Oracle9i Application Server Performance Guide

Improving JSP Performance in Oracle9iAS
If you use sessions, ensure that you explicitly cancel the session. If you do not
cancel a session, it remains active until it times out. Invoke the invalidate()
method to cancel a session.

The default session timeout for OC4J is 30 minutes. You can change this for a
specific application by setting the <session-timeout> parameter in the
<session-config> element of web.xml.

For example, the following code shows how you would cancel a session after you
have finished using it:

HtttpSession session;
session = httpRequest.getSession(true);
.
.
.
session.invalidate();

OC4J uses the class java.security.SecureRandom for secure seed generation.
The very first call to this method is time consuming. Depending on how your
system is configured for security, this method may not be called until the very first
request for a session-based JSP is received by the Application Server. One
alternative is to force this call to be made on startup by including a call in the class
initialization for some application that is loaded on startup. The result will be a
longer startup time in lieu of a delay in servicing the first request.

Using Static Template Text Instead of out.print for Outputting Text
Using the JSP code out.print("<html>") requires more resources than
including static template text. For performance reasons, it is best to reserve the use
of the out.print() command for dynamic text.

Note: JSP pages by default use sessions while servlets by default
do not use sessions.

See Also:

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for information on sessions

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide for
information on sessions
Optimizing J2EE Applications In OC4J 6-23

Improving JSP Performance in Oracle9iAS
Example 6–1 and Example 6–2 are two HTML coding examples. For these JSP
samples, Example 6–2 should be more efficient and give better performance.

Example 6–1 Using out.print

<%
 out.print("<HTML> <HEAD> <TITLE>Bookstore Home Page</TITLE></HEAD>\n");
 out.print("<BODY BGCOLOR=\"#ffffff\">\n");
 out.print("<H1 ALIGN=\"center\">Book Store Web Commerce Test</H1>\n");
 out.print("<P ALIGN=\"CENTER\">\n");
 out.print("<IMG SRC=\"../bookstore/Images/booklogo.gif\" ALIGN=\"BOTTOM\""+
 "BORDER=\"0\" WIDTH=\"288\" HEIGHT=\"67\"></P>\n");
 out.print("<H2 ALIGN=\"center\">Home Page</H2>\n");
%>
<jsp:useBean id="randomid" class="bookstore.BOOKS_Util" scope="request" >
<%
 random_id = randomid.getRandomI_ID();
%>

Example 6–2 Using Static Text

<HTML> <HEAD> <TITLE>Bookstore Home Page</TITLE></HEAD>
<BODY BGCOLOR=\"#ffffff\">
<H1 ALIGN=\"center\">Bookstore Web Commerce Test </H1>
<P ALIGN=\"CENTER\">
<IMG SRC=\"../bookstore/Images/booklogo.gif\" ALIGN=\"BOTTOM\""+
 "BORDER=\"0\" WIDTH=\"288\" HEIGHT=\"67\"></P>
<H2 ALIGN=\"center\">Home Page</H2>
<jsp:useBean id="randomid" class="bookstore.BOOKS_Util" scope="request" >
<%
 random_id = randomid.getRandomI_ID();
%>

Performance Issues for Buffering JSPs
By default, a JSP uses an area of memory known as a page buffer. The page buffer,
set to 8KB by default, is required if the JSP uses dynamic globalization,
contextType settings, error pages, or forwards. If the page does not use these
features, then you can disable buffering with the following command:

<%@ page buffer="none" %>

Disabling buffering by setting the buffer value to none improves the performance
of the page by reducing memory usage and saving the processing step of copying
the buffer.
6-24 Oracle9i Application Server Performance Guide

Improving JSP Performance in Oracle9iAS
When you need buffering, it is important to select an adequate size for your buffer.
If you are writing a page that is larger than the default 8KB buffer, and you have not
reset the buffer size, then the JSP autoflush will be activated which could have
performance implications. Therefore, if buffering is necessary for your JSP, make
sure to set the page buffer to an appropriate size. For example, to set the buffer size
to 24KB, use the following command:

<%@ page buffer="24KB" %>

Using Static Versus Dynamic Includes
The include directive makes a copy of the included page and copies it into a JSP
(including page) during translation. This is known as a static include (or
translate-time include) and uses the following syntax:

<%@ include file="/jsp/userinfopage.jsp" %>

Alternatively, the jsp:include tag dynamically includes output from the
included page within the output of the including page, during runtime. This is
known as a dynamic include (or runtime include) and uses the following syntax:

<jsp:include page="/jsp/userinfopage.jsp" flush="true" />

If you have static text, that is not too large, for performance reasons, it is better to
use a static include rather than a dynamic include.

In general, when working with includes, note the following:

■ Static includes affect page size. Static includes avoid the overhead of the request
dispatcher that a dynamic include necessitates, but may be problematic where
large files are involved. Static includes are typically used to include small files
whose content is used repeatedly in multiple JSPs. For example:

– Statically include a logo or copyright message at the top or bottom of each
page in your application.

– Statically include a page with declarations or directives, such as imports of
Java classes, that are required in multiple pages.

– Statically include a central status checker page from each page of your
application.

■ Dynamic includes affect processing overhead and performance. Dynamic
includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the
Optimizing J2EE Applications In OC4J 6-25

Improving JSP Performance in Oracle9iAS
output of other pages. Dynamically included pages can be reused in multiple
including pages without increasing the size of the including pages.

Performance Issues for Including Static Content
JSPs containing a large amount of static content, including large amounts of HTML
code that does not change at runtime, may result in slow translation and execution.

There are two workarounds for this issue that may improve performance:

■ Put the static HTML into a separate file and use a dynamic include command
(jsp:include) to include its output in the JSP output at runtime.

■ Put the static HTML into a Java resource file.

The JSP translator will do this for you if you enable the external_resource
configuration parameter.

For pre-translation, the -extres option of the ojspc tool also offers this
functionality.

Note: Both static includes and dynamic includes can be used only
between pages in the same servlet context.

See Also: Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference in the Oracle9i Application Server documentation
library

Note: A static <%@ include... %> command would not work.
It would result in the included file being included at translation
time, with its code being effectively copied back into the including
page. This would not solve the problem.

Note: Putting static HTML into a resource file may result in a
larger memory footprint than the jsp:include workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.
6-26 Oracle9i Application Server Performance Guide

Improving EJB Performance in Oracle9iAS
Improving EJB Performance in Oracle9iAS
This section covers configuration parameters that you set to control how OC4J
handles EJBs. Tuning these options can improve the performance of EJBs running
on OC4J.

This section includes the following topics:

■ Setting server.xml Configuration Parameters for EJBs

■ Setting OC4J Specific Configuration Parameters for EJBs

Setting server.xml Configuration Parameters for EJBs
This section covers parameters that you can tune for EJB performance in the
server.xml file for an OC4J Instance.

Setting the Transaction Configuration Timeout
You can change the default value for the transaction configuration timeout in the
transaction-config element in the server.xml file for the OC4J Instance. The
transaction-config timeout is not an EJB specific timeout, but affects all
transactions which use EJBs. This configuration parameter specifies the maximum
time taken for a transaction to finish before it can get rolled back due to a timeout.
This parameter applies to all transactions on the OC4J Instance. The default value
for this parameter is 60000 milliseconds (60 seconds).

For example, the following server.xml sets the transaction-config timeout
parameter to 30 seconds:

<transaction-config timeout="30000"/>

Increase this value if your applications that use transactions are getting transaction
timeout errors, or if your transactions may be longer than 60 seconds (including
waiting for connections set by wait-timeout in datasources.xml).

The transaction-config timeout applies for all transactions running in OC4J,
and therefore must be big enough for your longest transaction. If you specify a
small timeout value for transaction-config timeout, then you cannot set the
timeout to a larger value for an individual EJB, since the transaction-config
timeout applies for all transactions at the EJB level. Thus, the timeout should be
set to a value greater than or equal to the timeouts used within a transaction (for
example the data sources wait-timeout, and the EJB call-timeout).
Optimizing J2EE Applications In OC4J 6-27

Improving EJB Performance in Oracle9iAS
Setting OC4J Specific Configuration Parameters for EJBs
This section covers parameters that you can tune for EJB performance that are
specific to OC4J. These parameters are set in the orion-ejb-jar.xml file.

This section covers the following topics:

■ Configuring Parameters that Apply for All EJBs

■ Configuring Parameters for CMP Entity Beans

■ Configuring Parameters for BMP Entity Beans

■ Configuring Parameters for Session Beans

Configuring Parameters that Apply for All EJBs
Table 6–4 lists parameters that you can tune for EJB performance that are specific to
OC4J. These parameters apply for all types of EJBs, including session and entity
beans. The parameters in Table 6–4 are specified in orion-ejb-jar.xml.

See Also:

■ "Setting the Wait for Free Connection Timeout in Data Sources" on
page 6-13

■ "Configuring Parameters that Apply for All EJBs" on page 6-28

Table 6–4 EJB Parameters That Apply for All EJB Types

Parameter Description

call-timeout Applies for session and entity beans. This parameter specifies the maximum time to wait
for any resource that the EJB container needs, excluding database connections, before the
container calls the EJB method.

Default Values: 90000 milliseconds for entity beans and 0 (forever) for session beans.

See Also: "Setting the Transaction Configuration Timeout" on page 6-27
6-28 Oracle9i Application Server Performance Guide

Improving EJB Performance in Oracle9iAS
Configuring Parameters for CMP Entity Beans
This section covers parameters for entity beans using CMP. These parameters are
specified in the orion-ejb-jar.xml configuration file that affect performance.

Table 6–5 lists the entity bean CMP specific parameters.

Table 6–6 describes the supported locking-mode parameter values.

max-tx-retries Applies for session and entity beans. This parameter specifies the number of times to retry
a transaction that was rolled back due to system-level failures.

Generally, we recommend that you start by setting max-tx-retries to 0 and adding
retries only where errors are seen that could be resolved through retries. For example, if
you are using serializable isolation and you want to retry the transaction automatically if
there is a conflict, you might want to use retries. However, if the bean wants to be notified
when there is a conflict, then in this case, you should set max-tx-retries=0.

Default Value: 3 (for session beans and entity beans)

See Also: "Setting the Transaction Configuration Timeout" on page 6-27

See Also: "Setting the Connection Retry Interval in Data Sources" on page 6-13

Table 6–5 CMP Entity Bean Performance Parameters and Descriptions

Parameter Description

call-timeout For a description, see Table 6–4

do-select-before-
insert

Recommend setting to false to avoid the extra select before insert which checks if
the entity already exists before doing the insert. This will then detect a duplicate, if
there is one, during the insert.

Default Value: true

exclusive-write-
access

Default is false for beans with locking-mode=optimistic or pessimistic and
true for locking-mode=read-only.

This parameter corresponds to which commit option is used (A, B or C, as defined in
the EJB specification). When exclusive-write-access = true, this is commit
option A.

The exclusive-write-access is forced to false if locking is pessimistic or
optimistic, and is not used with EJB clustering. The exclusive-write-access can
be false with read-only locking, but read-only won't have any performance impact if
exclusive-write-access=false, since ejbStores are already skipped when no
fields have been changed. To see a performance advantage and avoid doing ejbLoads
for read-only beans, you must also set exclusive-write-access=true.

Table 6–4 (Cont.) EJB Parameters That Apply for All EJB Types

Parameter Description
Optimizing J2EE Applications In OC4J 6-29

Improving EJB Performance in Oracle9iAS
isolation If your database is already configured with the isolation mode you want for your
transactions, you'll get better performance if you don't explicitly set the isolation
mode attribute in the orion-ejb-jar.xml file. Omitting the isolation setting
means to use the database default setting, and extra processing will not be done to
explicitly set isolation levels in your transactions.

See Table 6–7 for a description of isolation options and how they relate to locking
modes.

Default value:

locking-mode The locking modes, specified with the locking-mode parameter, manage
concurrency and configure when to block to manage resource contention or when to
execute in parallel.

See Table 6–6 for a description of locking-mode.

See Table 6–7 for a description of isolation options and how they relate to locking
modes.

max-tx-retries For a description, see Table 6–4

update-changed-
fields-only

Specifies whether the container updates only modified fields or all fields to
persistence storage for CMP entity beans when ejbStore is invoked.

Default Value: true

validity-timeout The validity-timeout is only used when exclusive-write-access=true
and locking-mode=read-only.

The validity timeout is the maximum time in milliseconds that an entity is valid in the
cache (before being reloaded). We recommend that if the data is never being modified
externally (and therefore you've set exclusive-write-access=true), that you
can set this to 0 or -1, to disable this option, since the data in the cache will always be
valid for read-only EJBs that are never modified externally.

If the EJB is generally not modified externally, so you're using
exclusive-write-access=true, yet occasionally the table is updated so you
need to update the cache occasionally, then set this to a value corresponding to the
interval you think the data may be changing externally.

Note: The following CMP entity bean parameters are not
supported in this release:

max-instances, min-instances, pool-cache-timeout

Table 6–5 (Cont.) CMP Entity Bean Performance Parameters and Descriptions

Parameter Description
6-30 Oracle9i Application Server Performance Guide

Improving EJB Performance in Oracle9iAS
The locking-mode, along with isolation, assures database consistency for EJB
entity beans using CMP. Table 6–7 shows the common locking-mode and
isolation combinations. The different combinations have both functional and
performance implications, but often the functional requirements for data
consistency will lead to selecting a mode, even when it may be at the expense of
performance.

In Table 6–7 the isolation setting refers to either the transaction isolation
attribute setting, if explicitly set, or to the database isolation level (if the transaction
isolation attribute is not set). Also, although locking-mode and transaction

Table 6–6 CMP Entity Bean Locking-Mode Values

Locking Mode
Value Description

optimistic Multiple users can execute the entity bean in parallel. The optimistic locking mode does
not monitor resource contention; thus, the burden of the data consistency is placed on
the database isolation modes.

This is the default value for locking-mode.

pessimistic Manages resource contention and does not allow parallel execution. Only one user at a
time is allowed to execute the entity bean. Pessimistic locking uses "SELECT....FOR
UPDATE" to serialize access in the database.

read-only Multiple users can execute the entity bean in parallel. The container does not allow any
updates to the bean's state.

Table 6–7 CMP Entity Bean Locking-Mode and Isolation Relationships

Locking-mode Isolation When to Use

pessimistic committed If data consistency must be guaranteed, and frequent concurrent
updates to the same rows are expected.

pessimistic serializable We recommend that this combination not be used.

optimistic committed If concurrent reads and updates to the same rows with
read-committed semantics is sufficient.

optimistic serializable If data consistency must be guaranteed, but infrequent concurrent
updates to the same rows are expected.

read-only committed If repeatable read is not required.

read-only serializable If repeatable read is required.
Optimizing J2EE Applications In OC4J 6-31

Improving EJB Performance in Oracle9iAS
isolation levels are set as attributes of a CMP bean, the isolation level that will be in
effect for the transaction is the isolation level of the first entity bean used in the
transaction. Therefore it is best to set all beans in the same transaction to the same
isolation level.

In general, optimistic locking with committed isolation will be faster since it allows
for more concurrency, but it may not meet your needs for data consistency.
Pessimistic locking with committed isolation, and optimistic locking with
serializable isolation will be slower, but will guarantee data consistency on updates.

Defining a bean as read-only will assure that no updates are allowed to the bean.
The performance will be similar to a bean which may not be defined as read-only,
and yet is never used to do inserts, updates, or deletes (i.e. only the methods which
read are called). This is because if no fields are modified in a bean that is not defined
with read-only locking, it is already optimized to not do an ejbStore. To see a
performance advantage and avoid doing ejbLoads for read-only beans, you must
also set exclusive-write-access=true.

Configuring Parameters for BMP Entity Beans
This section covers parameters that apply to entity beans using BMP. These
parameters are specified in the orion-ejb-jar.xml configuration file.

Table 6–8 lists the entity bean BMP specific parameters.

Table 6–8 BMP Entity Bean Performance Parameters and Descriptions

Parameter Description

call-timeout For a description, see Table 6–4

locking-mode The locking modes, specified with the locking-mode parameter, manage concurrency
and configure when to block to manage resource contention or when to execute in
parallel.

BMP beans must use optimistic locking, which allows concurrent access to a bean, and
the BMP bean is responsible for managing the database access and data consistency. It is
up to the BMP bean to manage isolation as well, and therefore the isolation settings do
not apply for BMP

Default Value: optimistic

max-tx-retries For a description, see Table 6–4
6-32 Oracle9i Application Server Performance Guide

Improving EJB Performance in Oracle9iAS
Configuring Parameters for Session Beans
This section covers the parameters that are specified in the orion-ejb-jar.xml
configuration file and apply for session beans.

Table 6–9 lists the stateless session bean specific parameters.

Table 6–10 lists the stateful session bean specific parameters.

Note: The following BMP entity bean parameters are not
supported in this release.

max-instances, min-instances, pool-cache-timeout

Table 6–9 Stateless Session Bean Parameters

Parameter Description

call-timeout For a description, see Table 6–4

cache-timeout The cache-timeout applies for Stateless Session EJBs. This parameter specifies how
long to keep stateless sessions cached in the pool.

For stateless session beans, if you specify a cache-timeout, then at every
cache-timeout interval, all beans in the pool, of the corresponding bean type, are
removed. If the value specified is zero or negative, then the cache-timeout is disabled
and beans are not removed from the pool.

Default Value: 60 (seconds)

max-tx-retries For a description, see Table 6–4
Optimizing J2EE Applications In OC4J 6-33

Using Multiple OC4Js and Limiting Connections
Using Multiple OC4Js and Limiting Connections
This section describes techniques that allow you to improve performance by setting
the number of active processes within an OC4J Instance, sending applications to
different OC4J Instances, and limiting the number of requests sent to an OC4J
Instance.

This section covers the following topics:

■ Limiting HTTP Connections

■ Configuring Multiple OC4J Processes

■ Balancing Applications Across OC4J Instances

Limiting HTTP Connections
You can improve J2EE application performance by limiting the number of active
HTTP concurrent connections a given site accepts. Using Oracle HTTP Server with
mod_oc4j, you can limit the number of incoming requests by setting the
MaxClients parameter in httpd.conf.

Table 6–10 Stateful Session Bean Parameters

Parameter Description

call-timeout For a description, see Table 6–4

timeout The timeout applies for Stateful Session EJBs. If the value is zero or negative, then all
timeouts are disabled.

The timeout parameter is an inactivity timeout for stateful session beans. Every 30 seconds
the pool clean up logic is invoked. Within the pool clean up logic, only the sessions that
timed out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful session beans. For
example, if stateful session beans are not removed explicitly by your application, and the
application creates many stateful session beans, then you may want to lower the timeout
value.

If your application requires that a stateful session bean be available for longer than 30
minutes, then adjust the timeout value accordingly.

Default Value: 30 (minutes)

max-tx-retries For a description, see Table 6–4

See Also: "Configuring Oracle HTTP Server Directives" on
page 5-9
6-34 Oracle9i Application Server Performance Guide

Using Multiple OC4Js and Limiting Connections
Limiting HTTP Connections with Standalone OC4J
If you are using standalone OC4J you can limit the number of active web users an
OC4J site accepts concurrently by constraining the maximum allowable HTTP
connections. Tuning parameters on a standalone OC4J can improve performance if
there are a large number of concurrent users that the system cannot efficiently
handle, or when there are limited resources which you cannot easily constrain.

To limit the HTTP connections, use the max-http-connections configuration
element in server.xml and specify the attributes: value,
max-connections-queue-timeout, and socket-backlog attributes.

For example, the following shows a line of server.xml that configures the maximum
number of connections:

<max-http-connections max-connections-queue-timeout="120" socket-backlog="50"
value="100"/>

Table 6–11 describes the max-http-connections attributes.

When you want messages to be redirected to a different URL when the maximum
connections limit is reached, include the HTTP redirect URL.

For example, to redirect to http://optional.redirect.url/page.jsp, add the
following line to server.xml:

<max-http-connections max-connections-queue-timeout="120" socket-backlog="50"
value="100">http://optional.redirect.url/page.jsp</max-http-connections>

Table 6–11 Setting max-http-connections Attributes

Attribute Description

max-connections-queue-timeout Specifies the number of seconds to wait for an available connection if
the maximum connections have been reached before returning either
server busy or redirect message.

Default Value: 10 (seconds)

socket-backlog Specifies the number of connections that can be queued up before
denying connections at the socket level.

Default Value: 30

value Specifies the maximum number of connections.

Default Value: 100000
Optimizing J2EE Applications In OC4J 6-35

Using Multiple OC4Js and Limiting Connections
Configuring Multiple OC4J Processes
Oracle9iAS lets you configure multiple OC4J processes in an OC4J Instance. If there
are sufficient resources on your system, you may be able to improve performance
by configuring multiple OC4J processes for the OC4J Instance that services your
J2EE application. Using multiple OC4J processes is the simplest form of load
balancing without using Oracle9iAS clustering. Configuring an OC4J Instance to
allow requests to be served by multiple OC4J processes can reduce or avoid
contention and improve scalability. Oracle9iAS also supports multi node clustering
for load balancing.

The optimal ratio of OC4J processes to CPUs is dependent on characteristics of the
application, hardware configuration and JDK being used. But in general, for
multi-cpu configurations with greater than two processors, you should consider
configuring multiple OC4J processes. For example, on a recent test of a J2EE
application, a single OC4J process was sufficient to use 70% of the resources on a
four processor system. That statistic indicated that either adding a second OC4J
process would be advantageous or that the incoming load was insufficient to utilize
more of the machine resources. By monitoring the incoming load, we were able to
determine that it was the former, and adding a second process improved
performance.

Adding processes beyond the available resources of the system will not improve
performance. For example, if one OC4J process is sufficient to saturate the CPU
resources of a system, adding four more processes is not likely to improve
performance and may, in fact, degrade it. A good starting point is to configure one
OC4J process for every 2-3 CPUs and measure the improvement derived from
adding additional processes.

Configuring Multiple OC4J Processes Using Oracle Enterprise Manager
Using Oracle Enterprise Manager you can specify the number of processes in an
OC4J Instance using the OC4J Instance level configuration available on the OC4J
Instance’s home page.

If you configure your OC4J to use load-balancing with multiple OC4J processes
running within the same island, and you do not want sessions to be replicated,
make sure that the <distributable/> property is not set in the application’s
web.xml file.

See Also: Appendix B, "Additional Information" in the Oracle9iAS
Containers for J2EE User’s Guide for information on the elements in
OC4J server.xml file.
6-36 Oracle9i Application Server Performance Guide

Database Monitoring and Tuning
Balancing Applications Across OC4J Instances
It is often beneficial to spread J2EE application load among multiple OC4J
Instances, especially when applications are run on a multiprocessor system.
Running multiple OC4J Instances generally results in higher throughput and
shorter response time, even on a single-processor host.

If your web site has many different applications deployed which have different
requirements and needs, you may want to configure different OC4J Instances, each
with the appropriate number of OC4J processes to service the different applications.

To deploy applications to different OC4J Instances, perform the following steps:

1. Create the multiple OC4J Instances.

2. Using the Application Deployment Wizard, for each Instance, deploy the
appropriate application to each instance, and specify a unique URL mapping
for each of the applications.

After deploying the applications to different OC4J Instances, you can monitor the
performance to see if throughput increases, or the response time decreases.

Database Monitoring and Tuning
To achieve optimal performance in Oracle9iAS OC4J J2EE applications that use the
database, the database tables you access need to be designed with performance in
mind, and you need to monitor and tune the database server to assure that the
system is performant.

Note: Setting the <distributable/> property in web.xml can
have significant performance overhead for applications that use
sessions, since this configures the application to use session
replication with failover when multiple OC4J processes are running
within the same island.

See Also: Chapter 3, "Advanced Configuration, Development,
and Deployment", in Oracle9iAS Containers for J2EE User’s Guide

See Also: Oracle9i Database Performance Tuning Guide and Reference
Optimizing J2EE Applications In OC4J 6-37

Improving BC4J Performance in Oracle9iAS
Improving BC4J Performance in Oracle9iAS
This section contains tips for improving the maintainability, scalability, and
performance of your Oracle Business Components for Java (BC4J) applications.

Choose the Right Deployment Configuration
Your application will have the best performance and scalability if you deploy your
business components to the web module with your client. Unless you have strong
reasons (such as wanting to use distributed transactions or EJB security features),
we recommend web module deployment of business components over EJB
deployment.

Note that both web module deployment and EJB deployment are fully
J2EE-compliant, and the BC4J framework makes it easy to switch between them.
You can test your application in both modes to see which gives you the best
performance.

Use Application Module Pooling for Scalability
A client can use application module instances from a pool, called application
module pooling. This offers these advantages:

■ It reduces the amount of time to obtain server-side resources

■ It allows a small number of instances to serve a much larger number of requests

■ It addresses the requirements of web applications that must handle thousands
of incoming requests

■ It lets you preserve session state and provides failover support

For example, in the case of a web application, you may have 1,000 users but you
know that only 100 will be using a certain application module at one time. So you
use an application module pool. When a client needs an application module
instance, it takes a free one from the pool and releases it to the pool after either
committing or rolling back the transaction. Because the instance is precreated, end
users are saved the time it takes to instantiate the application module when they
want to perform a task. Typically, web-based JSP clients use pools. If you want to
make sure that the application module pool has a maximum of 100 application
module instances, you can customize the default application module pool.

See Also: Developing Business Components under the heading
Oracle9iAS Business Components for Java in the Oracle9iAS
documentation library
6-38 Oracle9i Application Server Performance Guide

Improving BC4J Performance in Oracle9iAS
If your client needs to keep track of application module state, we recommend using
stateful mode. In a stateful JSP application, the client does not reserve the
application module instance, making it available to other clients if the number of
application modules exceeds the recycle threshold. State is, instead, preserved in
one of two ways: The application module pool returns a client’s original application
module if the application module has not been recycled, and the pool persists the
state of recycled application modules in the database to be available to clients that
request them later.

When you release an application module at the end of a user’s session, be sure to
use stateless (rather than stateful or reserved) release mode. This frees up database
space and allows the pool to recycle the application module immediately.

Perform Global Framework Component Customization Using Custom Subclasses
Particularly in large organizations, you may want specific functionality shared by
all components of a particular type--for example, by all view objects. An architect
can create a thin layer of classes such as MyOrgViewObjectImpl that implement
the desired behavior. Individual developers can extend MyOrgViewObjectImpl
instead of ViewObjectImpl, and you can use the "substitutes" feature to extend
MyOrgViewObjectImpl in legacy code.

Use SQL-Only and Forward-Only View Objects when Possible
Basing a view object on an entity object allows you to use the view object to insert,
update, and delete data, and helps keep view objects based on the same data
synchronized. However, if your view object is only going to be used for read-only
queries, and there is no chance that the data being queried in this view object will
have pending changes made through another view object in the same application
module, you should use a SQL-only view object that has no underlying entities.
This will give you improved performance, since rows do not need to be added to an
entity cache.

If you are scrolling through data in one direction, such as formatting data for a web
page, or for batch operations that proceed linearly, you can use a forward-only view
object. Forward-only mode prevents data from entering the view cache. Using
forward only mode can save memory resources and time, because only one view
row is in memory at a time. Note that if the view object is based on one or more
entity objects, the data does pass to the entity cache in the normal manner, but no
rows are added to the view cache.
Optimizing J2EE Applications In OC4J 6-39

Improving BC4J Performance in Oracle9iAS
Do Not Let Your Application Modules Get Too Large
A root application module should correspond to one task--anything that you would
include in a single database transaction. Do not put more view objects or view links
than you will need for a particular task in a single application module.

In addition, consider deferring the creation of view links by creating them
dynamically with createViewLink(). If you include all view links at design
time, the business logic tier will automatically execute queries for all detail view
objects when your client navigates through a master view object. Deferring view
link creation will prevent the business logic tier from executing queries for detail
view objects that you do not yet need.

For example, for a form in which detail rows are displayed only on request (rather
than automatically), including a view link at design time would force the business
logic tier to automatically execute a query that might well be unnecessary. To
prevent this, you should create a view link dynamically when the detail rows are
requested. By contrast, for a form in which detail rows are displayed as soon as a
master is selected, you should use a view link created at design time to avoid the
runtime overhead of calling createViewLink().

Use the Right Failover Mode
By default, the application module pool supports failover, which saves an
application module’s state to the database as soon as the application module is
checked into the pool. If the business logic tier or the database becomes inoperable
in mid-transaction (due to a power failure or system crash, for example), the client
will be able to instantiate a new application module with the same state as the lost
one, and no work will be lost.

However, some applications do not require this high level of reliability. If you’re not
worried about loss of work due to server problems, you may want to disable
failover. When failover is disabled, the application module’s state exists only in
memory until it is committed to the database (at which point the application
module’s state is discarded) or recycled (at which point the state is saved so that the
client can retrieve it). By not saving the application module state every time the
application module is checked in, failover-disabled mode can improve
performance.

Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows
While the business logic tier is running, it stores view rows in a cache in memory
(the Java heap). When the business logic tier needs to store many rows at once, you
6-40 Oracle9i Application Server Performance Guide

Improving BC4J Performance in Oracle9iAS
need to make sure it doesn’t run out of memory. To do so, you can specify that
when the number of rows reaches a certain size, the rows "overflow" to your
database to be stored on disk. This feature is called view row spillover. If your
application needs to work with a large query result, view row spillover can help the
cache operate more efficiently.

Choose the Right Style of Bind Parameters
Oracle-style bind parameters (:1, :2, and so on) are more performant than
JDBC-style bind parameters.

There are only two reasons to use JDBC-style bind parameters:

■ Use JDBC-style bind parameters if you may use a non-Oracle JDBC driver.

■ Use JDBC-style bind parameters if you have more than one occurrence of the
same parameter in the WHERE clause.

Implement Query Conditions at Design Time if Possible
You should include any portion of your query condition that you know in advance
in the WHERE clause field in the View Object wizard. Only use setWhereClause()
for genuinely dynamic query conditions.

Even if your query conditions are genuinely dynamic, you may be able to use
parametrized queries instead of setWhereClause(). For example, if your view
object needs to execute a query with the WHERE clause EMPLOYEE_ID=<x> for
various values of x, use a parametrized WHERE clause such as EMPLOYEE_ID=:1.
This is more efficient than repeatedly calling setWhereClause().

Use the Right JDBC Fetch Size
The default JDBC fetch size is optimized to provide the best tradeoff between
memory usage and network usage for many applications. However, if network
performance is a more serious concern than memory, consider raising the JDBC
fetch size.

Turn off Event Listening in View Objects used in Batch Processes
In non-interactive, batch processes, there is no reason for view objects to listen for
entity object events. Use ViewObject.setListenToEntityEvents(false) on
such view objects to eliminate the performance overhead of event listening.
Optimizing J2EE Applications In OC4J 6-41

Improving BC4J Performance in Oracle9iAS
6-42 Oracle9i Application Server Performance Guide

Optimizing Web C
7

Optimizing Web Cache

This chapter provides guidelines for improving the performance of Oracle9iAS Web
Cache. It focuses on suggestions about how to size the cache, including the number
of CPUs, the amount of memory, the network bandwidth, and the number of
network connections.

This chapter contains the following topics:

■ Use Two CPUs for Oracle9iAS Web Cache

■ Configure Enough Memory for Oracle9iAS Web Cache

■ Make Sure You Have Sufficient Network Bandwidth

■ Set a Reasonable Number of Network Connections

Note: See the Oracle9iAS Web Cache Administration and Deployment
Guide for further details.
ache 7-1

Use Two CPUs for Oracle9iAS Web Cache
Use Two CPUs for Oracle9iAS Web Cache
Oracle9iAS Web Cache is designed to use one or two CPUs. Because Oracle9iAS
Web Cache is an in-memory cache, it is rarely limited by CPU cycles. Additional
CPUs do not increase performance significantly. However, the speed of the
processors is critical—use the fastest CPUs you can afford.

Note that Oracle9iAS Web Cache is limited by the available addressable memory.
Additional memory can increase performance and scalability. See "Configure
Enough Memory for Oracle9iAS Web Cache" on page 7-3 for information about the
amount of memory you need.

Oracle9iAS Web Cache has three processes: one for the admin server, one for the
auto-restart monitor, and one for the cache server.

■ The admin server process is used for configuring and monitoring Oracle9iAS
Web Cache. When the process is idle, it consumes a few CPU cycles, depending
on the settings you chose for the Health Monitor. For example, if you choose
Every 15 Seconds for a refresh rate on the Health Monitor page, the admin
server process uses more CPUs than if you choose Every Minute.

■ The auto-restart monitor process checks whether the cache is running. If not, it
restarts the cache. The auto-restart monitor uses a minimal amount of CPU.

■ The cache server uses two threads: one to manage incoming connections and
one to process requests. Because of this, two CPUs dedicated to Oracle9iAS Web
Cache are optimal.

For a cost-effective way to run Oracle9iAS Web Cache, run it on a fast two-CPU
computer with lots of memory. See Oracle9iAS Web Cache Deployment and
Administration Guide for information about various deployment scenarios.

For a Web site with more than one Oracle9iAS Web Cache instance, consider
installing each instance on a separate two-CPU node, either as part of a cache
cluster or as standalone instances. When Oracle9iAS Web Cache instances are on
separate nodes, you are less likely to encounter operating system limitations,
particularly in network throughput. For example, two caches on two separate
two-CPU nodes are less likely to encounter operating system limitation than two
caches on one four-CPU node.

Of course, if other resources are competing with Oracle9iAS Web Cache for CPU
usage, you should take the requirements of those resources into account when
determining the number of CPUs needed. Although a separate node for Web Cache
is optimal, you can also derive a significant performance benefit from Web Cache
running on the same node as the rest of the application server.
7-2 Oracle9i Application Server Performance Guide

Configure Enough Memory for Oracle9iAS Web Cache
Configure Enough Memory for Oracle9iAS Web Cache
To avoid swapping documents in and out of the cache, it is crucial to configure
enough memory for the cache. Generally, the amount of memory (maximum cache
size) for Oracle9iAS Web Cache should be set to at least 256 MB. By default, the
maximum cache size is set to 50 MB, which is sufficient only for initial
post-installation testing.

To be more precise in determining the maximum amount of memory required, you
can take the following steps:

1. Determine what documents you want to cache, how many are smaller than 4
KB and how many are larger than 4 KB. Determine the average size of the
documents that are larger than 4 KB. Determine the expected peak load—the
maximum number of documents to be processed concurrently.

One way to do this is to look at existing Web server logs for one day to see what
documents are popular. From the list of URLs in the log, decide which ones you
want to cache. Retrieve the documents and get the size of each document.

2. Calculate the amount of memory needed. The way you calculate it may differ
depending on the version of Oracle9iAS Web Cache.

The amount of memory that Oracle9iAS Web Cache uses to store a document
depends on the document size:

■ If a document is smaller than 4 kilobytes (KB), Oracle9iAS Web Cache uses
a buffer of 4 KB to store the HTTP body.

■ If a document is 4 KB or larger, Oracle9iAS Web Cache uses buffers of 32 KB
to store the HTTP body. For example, if a document is 40 KB, Oracle9iAS
Web Cache uses two 32 KB buffers to store the HTTP body.

■ Regardless of the size of the body, Oracle9iAS Web Cache uses 4 KB to store
the HTTP response header.

Use the following formula to determine an estimate of the maximum memory
needed:

(X * (4KB + 4KB)) + (Y * (([m/32] * 32KB) + 4KB)) + basemem

In the formula:

■ X is the number of documents smaller than 4 KB.

■ 4KB is the buffer size for the HTTP body for documents smaller than 4 KB.

■ 4KB is the buffer size for the HTTP response header.
Optimizing Web Cache 7-3

Configure Enough Memory for Oracle9iAS Web Cache
■ Y is number of documents that are 4 KB or larger.

■ [m/32] is the ceiling of m (the average size, in kilobytes, of documents 4 KB
or larger) divided by 32. A ceiling is the closest integer that is greater than
or equal to the number.

■ 32KB is the buffer size for the HTTP body for documents that are 4 KB or
larger.

■ basemem is the base amount of memory needed by Oracle9iAS Web Cache
to process requests. This amount includes memory for internal functions
such as lookup keys and timestamps. The amount needed depends on the
number of concurrent requests and on whether or not the requests include
Edge Side Includes (ESI). ESI is a markup language to enable partial-page
caching of HTML fragments.

For non-ESI requests, each concurrent request needs roughly 6 KB to 25 KB
of memory. For example, to support 1000 concurrent requests, you need
between 6 MB and 25 MB of memory.

For ESI requests, each concurrent request needs roughly the following
amount of memory:

60KB + (number of ESI fragments * [6KB to 25KB])

For example, for a document with 10 ESI fragments, use the following
calculation:

60KB + (10 * [6KB to 25KB]) = 120KB to 330KB

That is, you need between 120 KB and 330 KB of memory for one
10-fragment document. To support 1000 concurrent requests, you need
roughly between 120 MB to 330 MB of memory.

For example, assume that you want to cache 5000 documents that are smaller
than 4 KB and 2000 documents that are 4 KB or larger and that the larger
documents have an average size of 54 KB. The documents do not use ESI. You
expect to process 500 documents concurrently. Use the formula to compute the
maximum memory:

(5000 * (4KB + 4KB)) + (2000 * (([54/32] * 32KB) + 4KB)) + (500 *[6KB
to 25KB])
7-4 Oracle9i Application Server Performance Guide

Configure Enough Memory for Oracle9iAS Web Cache
Using the formula, you need:

■ 40,000 KB for the smaller documents.

■ 136,000 KB for the larger documents. For the HTTP body, you need 64 KB
(two 32 KB buffers) for each document, given the average size of 54 KB. For
the HTTP response header, you need 4 KB for each document.

■ 3,000 KB to 12,500 KB for the base amount of memory needed to process
500 concurrent requests.

This results in an estimate of 179,000 KB to 188,500 KB of memory needed.

3. Configure Oracle9iAS Web Cache, specifying the result of the formula as the
maximum cache size. Remember that the result is only an estimate.

To specify the maximum cache size, take the following steps:

a. In the navigator pane, select Cache-Specific Configuration > Resource
Limits.

b. On the Resource Limits page, select the cache and click Edit.

The Edit Resource Limits dialog box appears.

c. In the Maximum Cache Size field, enter the result of the formula.

d. Click Submit.

e. In the Oracle9iAS Web Cache Manager main window, click Apply
Changes.

4. Restart Oracle9iAS Web Cache.

5. Using a simulated load or an actual load, monitor the cache to see how much
memory it really uses in practice.

Remember that the cache is empty when Oracle9iAS Web Cache starts. For
monitoring to be valid, make sure that the cache is fully populated. That is,

Note: Even though you specify that certain documents should be
cached, not all of the documents are cached at the same time. Only
those documents that have been requested and are valid are stored
in the cache. As a result, only a certain percentage of your
documents are stored in the cache at any given time. That means
that you may not need the maximum memory derived from the
preceding formula.
Optimizing Web Cache 7-5

Configure Enough Memory for Oracle9iAS Web Cache
make sure that the cache has received enough requests so that a representative
number of documents are cached.

The Web Cache Statistics page provides information about the current memory
use and the maximum memory use.

To access the Web Cache Statistics page, from the navigator pane, select
Administration > Monitoring > Web Cache Statistics. Note the following
metrics in the Cache Overview table:

■ Size of Documents in Cache shows the current logical size of the cache. The
logical size of the cache is the size of the valid documents in the cache. For
example, if the cache contains two documents, one 3 KB and one 50 KB, the
Size of Documents in Cache is 53 KB, the total of the two sizes.

■ Configured Maximum Cache Size indicates the maximum cache size as
specified in the Resource Limits page.

■ Current Allocated Memory displays the physical size of the cache. The
physical size of the cache is the amount of data memory allocated by
Oracle9iAS Web Cache for cache storage and operation. This number is
always smaller than the process size shown by operating system statistics
because the Oracle9iAS Web Cache process, like any user process,
consumes memory in other ways, such as instruction storage, stack data,
thread, and library data.

■ Current Action Limit is 90% of the Configured Maximum Cache Size. This
number is usually larger than the Current Allocated Memory.

If the Current Allocated Memory is greater than the Current Action Limit,
Oracle9iAS Web Cache begins garbage collection. That is, Oracle9iAS Web
Cache removes the less popular and less valid documents from the cache in
favor of the more popular and more valid documents to obtain space for new
HTTP responses without exceeding the maximum cache size.

If the Current Allocated Memory is close to or greater than the Current Action
Limit, increase the maximum cache size to avoid swapping documents in and
out of the cache. Use the Cache-Specific Configuration > Resource Limits page
to increase the maximum cache size.
7-6 Oracle9i Application Server Performance Guide

Set a Reasonable Number of Network Connections
Make Sure You Have Sufficient Network Bandwidth
When you use Oracle9iAS Web Cache, make sure that each node has sufficient
network bandwidth to accommodate the throughput load. Otherwise, the network
may be saturated but Oracle9iAS Web Cache has additional capacity. For example,
if your application generates more than 100 megabits of data per second, 10/100
Megabit Ethernet will likely be saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario
to avoid network collisions, retransmissions, and bandwidth starvations.
Additionally, consider using two separate network cards: one for incoming client
requests and one for requests from the cache to the application Web server.

If system monitoring shows that the network is under utilized and throughput is
less than expected, check whether or not the CPUs are saturated.

Set a Reasonable Number of Network Connections
It is important to specify a reasonable number for the maximum connection limit
for the Oracle9iAS Web Cache server. If you set a number that is too high,
performance can be affected, resulting in slower response time. If you set a number
that is too low, fewer requests will be satisfied. You must strike a balance between
response time and the number of requests processed concurrently.

To help determine a reasonable number, consider the following factors:

■ The maximum number of clients you intend to serve concurrently at any given
time.

■ The average size of a page and the average number of requests per page.

■ Network bandwidth. The amount of data that can be transferred at any one
time is limited by the network bandwidth. See "Make Sure You Have Sufficient
Network Bandwidth" on page 7-7 for further information.

■ The percentage of cache misses. If a large percentage of requests are cache
misses, the requests are forwarded to the application Web server. Those
requests consume additional network bandwidth, resulting in longer response
times.

■ How quickly a page is processed. Use a network monitoring utility, such as
ttcp, to determine how quickly your system processes a page.
Optimizing Web Cache 7-7

Set a Reasonable Number of Network Connections
■ The cache cluster member capacity, if you have a cache cluster environment.
The capacity reflects the number of incoming connections from other cache
cluster members. You set the cluster member capacity using the Administration
> Cluster Configuration page of Oracle9iAS Web Cache Manager.

Use various tools, such as those available with the operating system and with
Oracle9iAS Web Cache, to help you determine the maximum number of
connections. For example, the netstat -a command enables you to determine the
number of established connections; the ttcp utility enables you to determine how
fast a page is processed. The Oracle9iAS Web Cache Manager provides statistics on
hits and misses.

To set the maximum number of incoming connections, take the following steps:

1. In the navigator pane of Oracle9iAS Web Cache Manager, select Cache-Specific
Configuration > Resource Limits.

2. On the Resource Limits page, select the cache and click Edit.

The Edit Resource Limits dialog box appears.

3. In the Maximum Incoming Connections field, enter the new value.

4. Click Submit.

5. In the Oracle9iAS Web Cache Manager main window, click Apply Changes.

Do not set the value to an arbitrary high value. Oracle9iAS Web Cache sets aside
some resources for each connection, which could adversely affect performance. For
many UNIX systems, 5000 connections is usually a reasonable number.

Connections on UNIX Platforms
On most UNIX platforms, each client connection requires a separate file descriptor.
The Oracle9iAS Web Cache server attempts to reserve the maximum number of file
descriptors when it starts. If the webcachectl utility can be run as root, you can
increase this number. For example, on Sun Solaris, you can increase the maximum
number of file descriptors by setting the rlim_fd_max parameter. If
webcachectl is not able to run as root, the Oracle9iAS Web Cache server logs an
error message and fails to start.

To run the webcachectl utility as the root user, ensure that root.sh was run
during installation. If root.sh was not run during installation, then run it at this
time from the $ORACLE_HOME directory. See the Oracle9iAS Web Cache
Administration and Deployment Guide for further details regarding Solaris commands
and information about the webcachectl utility.
7-8 Oracle9i Application Server Performance Guide

Set a Reasonable Number of Network Connections
Oracle9iAS Web Cache uses the following formula to calculate the maximum
number of file descriptors to be used:

Max_File_Desc = Curr_Max_Conn + Total_WS_Capacity + Outgoing_Cluster_Conn + 100

In the formula:

■ Max_File_Desc is the maximum number of file descriptors to be used.

■ Curr_Max_Conn is the current maximum incoming connections limit for
Oracle9iAS Web Cache. You set the maximum number of incoming connections
using the Cache-Specific Configuration > Resource Limits page of the
Oracle9iAS Web Cache Manager.

In a cache cluster environment, Curr_Max_Conn also includes the cluster
member capacity, which is the incoming connections from peer caches. You set
the capacity using the Administration > Cluster Configuration page of the
Oracle9iAS Web Cache Manager.

■ Total_WS_Capacity is the sum of the capacity for all configured application
Web Servers. You set the capacity using the General Configuration >
Application Web Servers page of Oracle9iAS Web Cache Manager.

In a cache cluster environment, the capacity is divided among the cache cluster
members, using the following formula:

Total_WS_Capacity = Sum_Web_Server_Capacity / n

In the formula, Sum_Web_Server_Capacity is the sum of the capacity of all
configured application Web servers; n is the number of cache cluster members.
For example, assume you have two configured application Web Servers. Web_
Server_A has a capacity of 200 and Web_Server_B has a capacity of 250.
Also, assume you have a cluster with three caches. The Total_WS_Capacity
is 150, as the following example calculates:

Total_WS_Capacity = (200 + 250) / 3

■ Outgoing_Cluster_Conn is the total of outgoing connections to peer caches
in a cache cluster. This value is zero if you do not have a cache cluster. To
compute this value, use the following formula:

Outgoing_Cluster_Conn = Sum_Cluster_Capacity / (n-1)

In the formula, Sum_Cluster_Capacity is the sum of the capacity of all other
Web caches in a cluster; n is the number of cache cluster members. For example,
assume you have a cluster with three caches. Cache_A has a capacity of 100,
Optimizing Web Cache 7-9

Set a Reasonable Number of Network Connections
Cache_B has a capacity of 150, and Cache_C has a capacity of 200. The
Outgoing_Cluster_Conn for Cache_A is 175, computed as follows:

Outgoing_Cluster_Conn = (150 + 200) / (3-1)

To set the capacity of caches in a cluster, select Administration > Cluster
Configuration from the navigator pane of Oracle9iAS Web Cache Manager.

■ 100 is the number of connections reserved for internal use by Oracle9iAS Web
Cache.

Connections on Windows NT and Windows 2000
On Windows NT and Windows 2000, the number of file handles as well as socket
handles is limited only by available kernel resources, more precisely, by the size of
paged and non-paged pools. However, the number of active TCP/IP connections is
restricted by the number of TCP ports the system can open.

The default maximum number of TCP ports is set to 5000 by the operating system.
Of those, 1024 are reserved by the kernel. You can modify the maximum number of
ports by editing the Windows registry. Windows NT and Windows 2000 allow up to
65534 ports.

To change the default, you must add a new value to the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Add a new value, specifying the following:

■ Value Name: MaxUserPort

■ Data Type: REG_DWORD

■ Data: An integer less than 65534 - 1024

The total of the maximum number of incoming connections and cluster member
capacity should not be set to a number greater than the number of TCP ports minus
1024. (You set the maximum number of incoming connections using the
Cache-Specific Configuration > Resource Limits page of the Oracle9iAS Web
Cache Manager. You set the cluster member capacity using the Administration >
Cluster Configuration page.)

On Windows NT and Windows 2000, Oracle9iAS Web Cache does not attempt to
reserve file handles or to check that the number of current maximum incoming
connections is less than the number of TCP ports.
7-10 Oracle9i Application Server Performance Guide

Optimizing PL/SQL Perform
8

Optimizing PL/SQL Performance

This chapter discusses the techniques for optimizing PL/SQL performance in
Oracle9i Application Server.

This chapter contains:

■ PL/SQL Performance in Oracle9iAS - Overview

■ Performance Tuning Issues for mod_plsql

■ Performance Tuning Areas in mod_plsql

■ Using Caching with PL/SQL Web Applications

■ Other Oracle HTTP Server Directives
ance 8-1

PL/SQL Performance in Oracle9iAS - Overview
PL/SQL Performance in Oracle9iAS - Overview
This chapter describes several techniques to improve the performance of your
PL/SQL application in Oracle9i Application Server (Oracle9iAS).

Table 8–1 lists recommendations for Database Access Descriptor (DAD) parameters
and settings. By default, these DAD parameters are specified in the file
plsql.conf in the directory $ORACLE_HOME/Apache/modplsql/conf.

Table 8–2 lists caching options.

Table 8–1 Database Access Descriptor (DAD) Parameters

Parameter Setting

PlsqlAlwaysDescribeProcedure Set this to "Off" for best performance.

PlsqlDatabaseConnectString Use the host:port:sid format instead of a TNS entry

PlsqlFetchBufferSize Default=128

For multi-byte character sets like Japanese, Chinese, setting this to
256 will give better performance

PlsqlIdleSessionCleanupInterval Default=15 (minutes)

Increasing this parameter allows a pooled database connection to
stay around for longer times

PlsqlLogEnable Default=off

This parameter should be set to "Off" unless recommended by
Oracle support for debugging purposes

PlsqlMaxRequestsPerSession Default=1000

If the PL/SQL application does not leak resources/memory, this
parameter can be tuned higher (for example, 5000)

PlsqlNLSLanguage Setting this parameter to match the database NLS language will
disable overheads in character set conversions occurring in Oracle
Net Services.

PlsqlSessionStateManagement Set this parameter to "StatelessWithFastResetPackageState" if the
database is 8.1.7.2 or above.

Oracle9iAS Portal is not yet certified with the mode
StatelessWithFastResetPackageState. For Oracle9iAS
Portal, set this parameter to the value
StatelessWithResetPackageState.
8-2 Oracle9i Application Server Performance Guide

Performance Tuning Issues for mod_plsql
Performance Tuning Issues for mod_plsql
When tuning mod_plsql to improve the performance of PL/SQL in Web
applications, it is important to be familiar with some mod_plsql internals. This
section presents a basic overview of some mod_plsql functionality.

This section covers the following topics:

■ Connection Pooling with mod_plsql

■ Closing Pooled Database Sessions

■ What Happens to the mod_plsql Connection Pool when the Database Restarts?

Table 8–2 Caching Options

Expires Technique Best performance - for content that changes predictably

See Also: "Using the Expires Technique" on page 8-20

Validation technique Good performance - for content that changes unpredictably

See Also: "Using the Validation Technique" on page 8-16

System-level caching Improves performance by caching one copy for everyone on system

See Also: "System- and User-level Caching with PL/SQL Web Applications" on
page 8-23

See Also:

■ Appendix A, "Oracle9iAS Performance Metrics" for information
on mod_plsql metrics

■ Chapter 6" Oracle HTTP Server Modules" in the Oracle HTTP
Server Administration Guide for information on DAD Parameters

■ Oracle9i Application Server mod_plsql User's Guide

■ Oracle9i Application Server PL/SQL Web Toolkit Reference
Optimizing PL/SQL Performance 8-3

Performance Tuning Issues for mod_plsql
Connection Pooling with mod_plsql
The connection pooling logic in mod_plsql can be best explained with an example.
Consider the following typical scenario:

1. The Oracle9i Application Server listener is started. There are no database
connections in the connection pool maintained by mod_plsql.

2. A browser makes a mod_plsql request (R1) for Database Access Descriptor
(DAD) D1.

3. One of the Oracle HTTP Server processes (httpd process P1) starts servicing
the request R1.

4. mod_plsql in process P1 checks its connection pool and finds that there are no
database connections in its pool for that user request.

5. Based on the information in DAD D1, mod_plsql in process P1 opens a new
database connection, services the PL/SQL request, and adds the database
connection to its pool.

6. From this point on, all subsequent requests to process P1 for DAD D1 can now
make use of the database connection pooled by mod_plsql.

7. If a request for DAD D1 gets picked up by another process (process P2), then
mod_plsql in process P2 opens its own database connection, services the
request, and adds the database connection to its pool.

8. From this point on, all subsequent requests to process P2 for DAD D1 can now
make use of the database connection pooled by mod_plsql.

9. Now, assume that a request R2 is made for DAD D2 and this request gets
routed to process P1.

10. mod_plsql in process P1 does not have any database connections pooled for
DAD D2, and a new database session is created for DAD D2 and pooled after
servicing the request. Process P1 now has two database connections pooled, one
for DAD D1 and another for DAD D2.

The important details in the previous example are:

■ Each Oracle HTTP Server process serves all types of requests, such as static files
requests, servlet requests, and mod_plsql requests. There is no control on
which Oracle HTTP Server process services the next request.

■ One Oracle HTTP Server process cannot use or share the connection pool
created by another process.
8-4 Oracle9i Application Server Performance Guide

Performance Tuning Issues for mod_plsql
■ Each Oracle HTTP Server process pools at most one database connection for
each DAD.

■ User sessions are switched within a pooled database connection for a DAD. For
DADs based on Oracle9iAS Single Sign-On (SSO), proxy authentication is used
to switch the user session. For non-SSO users, using HTTP basic authentication
with the username and password not in the DAD, users are re-authenticated on
the same connection.

■ Multiple DADs may point to the same database instance, but database
connections are not shared across DADs even within the same process.

■ Unused DADs do not result in any database connections.

In the worst case scenario, the total number of database connections that can be
pooled by mod_plsql is a factor of the total number of active DADs multiplied by
the number of Oracle HTTP Server (httpd) processes running at any given time for
a single Oracle9i Application Server instance. If you have configured the Oracle
HTTP Server processes to a high number, you need to configure the backend
database to handle a corresponding amount of database sessions.

For example, if there are three Oracle9iAS instances configured to spawn a
maximum of 50 httpd processes each, plus two active DADs, you need to set up
the database to allow 300 (3*50*2) sessions. This number does not include any
sessions that are needed to allow other applications to connect.

Because database connections cannot be shared across httpd processes,
process-based platforms have more of a Connection Reuse feature than Connection
Pooling. Note that this is an artifact of the process-model in Oracle HTTP Server.
Whenever Oracle HTTP Server becomes threaded in the future, mod_plsql will
allow for true connection pooling. If the number of database sessions is a concern,
then refer to the "Two-Listener Strategy" on page 8-11 for details on how to address
this problem.
Optimizing PL/SQL Performance 8-5

Performance Tuning Issues for mod_plsql
Closing Pooled Database Sessions
Pooled database sessions are closed under the following circumstances:

■ When a pooled connection has been used to serve a configured number of
requests

By default each connection pooled by mod_plsql is used to service a
maximum of 1000 requests and then the database connection is shut down and
re-established. This is done to make sure that any resource leaks in the PL/SQL
application, or in the Oracle client/server side, do not adversely affect the
system. This default of 1000 can be changed by tuning the DAD configuration
parameter PlsqlMaxRequestsPerSession.

■ When a pooled connection has been idle for an extended period of time

By default, each pooled connection gets automatically cleaned up after 15
minutes of idle time. This operation is performed by the cleanup thread in mod_
plsql. For heavily loaded sites, each connection could get used at least once
every 15 minutes and the connection cleanup might not happen for a long
period of time. In such a case, the connection would get cleaned up based on
the configuration of PlsqlMaxRequestsPerSession. This default of 15
minutes can be changed by tuning the mod_plsql configuration parameter
PlsqlIdleSessionCleanupInterval. Consider increasing the default for
better performance in cases where the site is not heavily loaded.

■ When the Oracle HTTP Server process goes down

The Oracle HTTP Server configuration parameter MaxRequestsPerChild
governs when an Oracle HTTP Server process will be shut down. For example,
if this parameter is set to 5000, each Oracle HTTP Server process would serve
exactly 5000 requests before it is shut down. Oracle HTTP Server processes
could also start up and shut down as part of Oracle HTTP Server maintenance
based on the configuration parameters MinSpareServers,
MaxSpareServers, and MaxClients. For mod_plsql connection pooling to
be effective, it is extremely important that Oracle HTTP Server in Oracle9iAS be
configured such that each Oracle HTTP Server process remains active for some
period of time. An incorrect configuration of Oracle HTTP Server could result in
a setup where Oracle HTTP Server processes are heavily started up and shut
down. Such a configuration would require that each new Oracle HTTP Server
process replenish the connection pool before subsequent requests gain any
benefit of pooling.

See Also: Chapter 6 "Oracle HTTP Server Modules" in the Oracle
HTTP Server Administration Guide
8-6 Oracle9i Application Server Performance Guide

Performance Tuning Areas in mod_plsql
What Happens to the mod_plsql Connection Pool when the Database Restarts?
This depends primarily on the amount of time the database is shut down. If the
database is restarted after more than 15 minutes from being shut down, the users do
not experience any problems when trying to use the Oracle9iAS listener. This is
because the cleanup thread in mod_plsql cleans up database sessions that are
unused for more than 15 minutes. The time specified for cleaning up idle sessions is
tunable using the, PlsqlIdleSessionCleanupInterval, configuration
parameter (the default value is 15 minutes).

If the database is restarted in less than 15 minutes, then a few initial requests return
with errors, but the system quickly becomes usable again. The number of requests
that experience failure is equal to the number of connections that were pooled by
mod_plsql.

Performance Tuning Areas in mod_plsql
While using mod_plsql, there are three areas that affect performance and
scalability:

■ PL/SQL Application

■ Connection Pooling and Oracle HTTP Server Configuration

■ Tuning the Number of Database Sessions

PL/SQL Application
PL/SQL Gateway users should consider the following topics when developing
PL/SQL applications:

■ Database Access Descriptors (DADs)

You should restrict the number of DADs that are used on each Oracle9iAS node.
Note that performance is not affected if you have additional DADs that are not
being used. See Oracle9i Application Server PL/SQL Web Toolkit Reference for
details.

■ Nested Tables

PL/SQL provides the ability to create tables. To build PL/SQL tables, you build
a table that gives the datatype of the table, as well as the index of the table. The
index of the table is the binary integer ranging from -2147483647 to

See Also: Table 8–1, " Database Access Descriptor (DAD)
Parameters"
Optimizing PL/SQL Performance 8-7

Performance Tuning Areas in mod_plsql
+2147483647. This table index option is known as sparsity, and allows
meaningful index numbers such as customer numbers, employee number, or
other useful index keys. Use PL/SQL tables to process large amounts of data.

PL/SQL provides TABLE and VARRAY (variable size array) collection types. The
TABLE collection type is called a nested table. Nested tables are unlimited in
size and can be sparse, which means that elements within the nested table can
be deleted using the DELETE procedure. Variable size arrays have a maximum
size and maintain their order and subscript when stored in the database. Nested
table data is stored in a system table that is associated with the nested table.
Variable size arrays are suited for batch operations in which the application
processes the data in batch array style. Nested tables make for efficient queries
by storing the nested table in a storage table, where each element maps to a row
in the storage table.

■ PL/SQL Applications should use the procedure name overloading feature with
caution. It is best if procedure name overloading is avoided by having multiple
procedures with different names.

■ PL/SQL applications should be aware of the overhead in trying to execute
procedures where the URL does not provide enough details to know about the
type of the parameter, such as scalar or array. In such cases, the first attempt to
execute a procedure fails and the procedure signature needs to be described
before it can be executed by mod_plsql.

■ Procedures should make use of the more performant 2-parameter style flexible
parameter passing rather than the 4-parameter style parameter passing.

Connection Pooling and Oracle HTTP Server Configuration
■ Creating a new database connection is an expensive operation and it is best if

every request does not have to open and close a database connection. The
optimal technique is to make sure that database connections opened in one
request are reused in subsequent requests. In some rare situations, where a
database is accessed very infrequently and performance is not a major concern,
connection pooling can be disabled. For example, if the administrator accesses a
site infrequently to perform some administration tasks, then the DAD used to
access the administrator applications can choose to disable connection pooling.
This reduces the number of database sessions at the expense of performance.

■ Oracle HTTP Server configuration should be properly tuned so that once
processes are started up, the processes remain up for a while. Otherwise, the
connection pooling in mod_plsql is rendered useless. The Oracle9iAS listener
should not have to continually start up and shut down processes. A proper load
8-8 Oracle9i Application Server Performance Guide

Performance Tuning Areas in mod_plsql
analysis should be performed of the site to determine what the average load on
the Web site. The Oracle HTTP Server configuration should be tuned such that
the number of httpd processes can handle the average load on the system. In
addition, the configuration parameter MaxClients in the httpd.conf file
should be able to handle random load spikes as well.

■ Oracle HTTP Server processes should be configured so that processes are
eventually killed and restarted. This is required to manage any possible
memory leaks in various components accessed through the Oracle HTTP
Server. This is specifically required in mod_plsql to ensure that any database
session resource leaks do not cause a problem. Make sure that
MaxRequestsPerChild configuration parameter is set to a high number. For
mod_plsql applications, this should not be set to 0.

■ For heavily loaded sites, the Oracle HTTP Server configuration parameter
KeepAlive should be disabled. This ensures that each process is available to
service requests from other clients as soon as a process is done with servicing
the current request. For sites which are not heavily loaded, and where it is
guaranteed that the number of Oracle HTTP Server processes are always
greater than the number of simultaneous requests to the Oracle9iAS listener,
enabling the KeepAlive parameter results in performance improvements. In
such cases, make sure to tune the KeepAliveTimeout parameter
appropriately.

■ You may want to lower down the value of Timeout in the Oracle HTTP Server
configuration. This ensures that Oracle HTTP Server processes are freed up
earlier if a client is not responding in a timely manner. Do not set this value too
low, otherwise slower responding clients may start getting timed out.

■ Most Web sites have many static image files which are displayed in each screen
for a consistent user interface. Such files rarely change and you can reduce a
considerable load on the system by tagging each image served by the
Oracle9iAS listener with mod_expires. Refer to Oracle9i Application Server
mod_plsql User's Guide for details on how to use mod_expires. You should also
consider front-ending your Web site with Oracle9iAS Web Cache.

■ How do I know if the Web site can benefit from the use of mod_expires?

– Use Netscape to visit a few heavily-accessed Web pages on the site. On
each page, right click the mouse and select View Info from the pop
up menu. If the top panel in the page information window lists many
different images and static content, then the site could benefit from the
use of mod_expires.
Optimizing PL/SQL Performance 8-9

Performance Tuning Areas in mod_plsql
– You can also check the Oracle HTTP Server access logs to see what
percentage of requests result in HTTP 304 (Not Modified) status. Use
the grep utility to search for 304 in the access_log and divide this
resulting number of lines by the total number of lines in the access_
log. If this percentage is high, then the site could benefit from the use
of mod_expires.

■ How do I tag static files with the expires header?

– Locate the Location directive used to serve your static image files.
Add the ExpiresActive and ExpiresDefault directives to it.

Alias /images/ "/u01/app/oracle/myimages/"
<Directory "/u01/app/oracle/myimages/">
 AllowOverride None
 Order allow, deny
 Allow from all
 ExpiresActive On
 ExpiresDefault A2592000
</Directory>

The browser caches all static files served off the /images path for 30
days from now. Refer to Oracle HTTP Server Administration Guide for
more details.

– If you are using Oracle9iAS Web Cache, these files can be cached in
memory with the use of the Surrogate-Control header. For
example:

Alias /images/ "/u01/app/oracle/myimages/"
<Directory "/u01/app/oracle/myimages/">
 AllowOverride None
 Order allow, deny
 Allow from all
 ExpiresActive On
 ExpiresDefault A2592000
 <Files *>
 Header set Surrogate-Control 'max-age=259200'
 </Files>
</Directory>

Refer to the Oracle9iAS Web Cache Administration and Deployment Guide
for more details on the Surrogate-Control header.
8-10 Oracle9i Application Server Performance Guide

Performance Tuning Areas in mod_plsql
■ How do I know if the static files are being tagged with the Expires
header?

– Using Netscape, clean up all the cached files in the browser.

– Visit a Web page that should have images tagged with the Expires
header. Right click the mouse on the page and select View Info from
the pop up menu.

– In the top panel of the page information, select an image that should be
tagged with the Expires header.

– Review the information displayed in the bottom panel. The Expires
header should be set to a valid date. If this entry is No date given,
then the file is not being tagged with the Expires header.

Tuning the Number of Database Sessions
■ The processes parameter in the Oracle init$SID.ora configuration file

should be set so that Oracle is able to handle the maximum number of database
sessions. This number should be proportional to the number of DADs,
maximum number of Oracle HTTP Server processes, and the number of
Oracle9iAS instances.

■ Using a two-listener strategy or using Multi Threaded Server (MTS) reduces the
number of database sessions. See "Two-Listener Strategy" on page 8-11.

■ On Unix platforms, the connection pool is not shared across Oracle HTTP
Server processes. For this reason, it is recommended that the application use as
few DADs as possible.

■ Front ending your Oracle HTTP Server with Oracle9iAS Web Cache reduces the
requirement to have a high number of processes for your HTTP configuration,
resulting in lesser number of database sessions.

Two-Listener Strategy
On platforms where the Oracle HTTP Server is process-based, such as all
Unix-based platforms, each process serves all types of HTTP requests, including
servlets, PLSQL, static files, and CGI. In a single Oracle9i Application Server
listener setup, each httpd process maintains its own connection pool to the
database. The maximum number of database sessions is governed by the setting in
httpd.conf configuration file for StartServers, MinSpareServers, and
MaxSpareServers, plus the load on the system. This architecture does not allow
for tuning the number of database sessions based on the number of mod_plsql
Optimizing PL/SQL Performance 8-11

Performance Tuning Areas in mod_plsql
requests. To tune the number of database sessions based on the number of mod_
plsql requests, install a separate HTTP listener for mod_plsql requests only. This
approach greatly reduces the number of database sessions that are needed to serve
mod_plsql requests.

For example, assume a main Oracle9iAS listener is running on port 7777 of
mylsnr1.mycompany.com. First, you can install another Oracle9iAS listener on port
8888 on mylsnr2.mycompany.com. Next, redirect all mod_plsql requests made to
mylsnr1.mycompany.com:7777 to the second listener on
mylsnr2.mycompany.com:8888. Review the following steps:

1. To redirect all PL/SQL requests for mylsnr1.mycompany.com:7777 to
mylsnr2.mycompany.com:8888, make the following configuration changes:

a. For the Oracle9iAS listener running on Port 7777, edit ORACLE9IAS_
HOME/Apache/modplsql/conf/plsql.conf file. Comment out the
following line by putting a # in front of the line:

#LoadModule plsql_module...

b. Copy the DAD location used to service PL/SQL requests in
mylsnr1.mycompany.com to the configuration file $ORACLE_
HOME/Apache/modplsql/conf/dads.conf in
mylsnr2.mycompany.com.

Comment out the DAD location configuration parameters on
mylsnr1.mycompany.com by prepending the line with a "#" character.

#<Location /pls/portal>
#...
#</Location>

c. Configure this listener to forward all mod_plsql requests for this DAD
location to the second listener by adding the following line in dads.conf:

ProxyPass /pls/portal http://mylsnr2.mycompany.com:8888/pls/portal

Repeat the configuration procedures for all DAD Locations.
8-12 Oracle9i Application Server Performance Guide

Performance Tuning Areas in mod_plsql
2. Because the PL/SQL procedures generate URLs that are displayed in the
browser, it is important that all URLs are constructed without any references to
the internal mod_plsql listener on mylsnr2.mycompany.com:8888. Depending
on how the URLs are being generated in the PL/SQL application, there are
three options:

■ If the URLs are hard-coded into the application, make sure that they are
always generated using the hard-coded values as
HOST=mylsnr1.mycompany.com and PORT=7777. No change would be
required for this scenario.

■ If the PL/SQL applications always use the CGI environment variables
SERVER_NAME and SERVER_PORT, then it is easy to change the
configuration of the listener on mylsnr2.mycompany.com. Edit the file and
change the lines ServerName and Port in the ORACLE9IAS_
HOME/Apache/Apache/conf/httpd.conf file for the second listener as
follows:

ServerName mylsnr1.mycompany.com (was mylsnr2.mycompany.com)
Port 7777 (was 8888)

■ If the URLs are being generated using the CGI environment variable HTTP_
HOST, you need to override the CGI environment variables for the
Oracle9iAS listener running on Port 8888. Add the following lines to the
ORACLE9IAS_HOME/Apache/modplsql/conf/dads.conf file for each
DAD to override the default CGI environment variables HOST, SERVER_
NAME, and SERVER_PORT:

PlsqlCGIEnvironmentList SERVER_NAME mylsnr1.mycompany.com
PlsqlCGIEnvironmentList SERVER_PORT 7777
PlsqlCGIEnvironmentList HOST mylsnr1.us.oracle.com:7777

In all cases, the intent is to fool the application to generate URLs as if there
never was a second listener.

3. Test the setup and make sure that you can access all the DADs without any
problems.

4. In this setup, the main listener mylsnr1.mycompany.com can be configured
based on the total load on the Oracle9iAS listener. The second listener on
mylsnr2.mycompany.com can be fine-tuned based on just the mod_plsql
requests being made.
Optimizing PL/SQL Performance 8-13

Performance Tuning Areas in mod_plsql
Overhead Problems
While executing some of the Portal stored procedures, mod_plsql may incur a
Describe overhead which would result in two extra round trips to the database
for a successful execution. This has performance implications.

The Describe Overhead
In order to execute PL/ SQL procedures, mod_plsql needs to know about the
datatype of the parameters being passed in. Based on this information, mod_plsql
binds each parameter either as an array or as a scalar. One way to know the
procedure signature is to describe the procedure before executing it. However, this
approach is not efficient because every procedure has to be described before
execution. To avoid the describe overhead, mod_plsql looks at the number of
parameters passed for each parameter name. It uses this information to assume the
datatype of each variable. The logic is simply that if there is a single value being
passed, then the parameter is a scalar, otherwise it is an array. This works for most
cases but fails if there is an attempt to pass a single value for an array parameter or
pass multiple values for a scalar. In such cases, the first attempt to execute the
PL/SQL procedure fails. mod_plsql issues a Describe call to get the signature of
the PL/SQL procedure and binds each parameter based on the information
retrieved from the Describe operation. The procedure is re-executed and results
are sent back.

This Describe call occurs transparently to the procedure, but internally mod_
plsql has encountered two extra round trips, one for the failed execute call and the
other for the describe call.

Avoiding the Describe Overhead
You can avoid performance problems with the following:

■ Use flexible parameter passing.

■ Always ensure that you pass multiple values for arrays. For single values, you
can pass dummy values which are ignored by the procedure.

■ Use the following workaround which defines a two-parameter style procedure
which defaults the unused variables.

1. Define a scalar equivalent of your procedure which internally calls the
original procedure. For example, the original package could be similar to
the following example:

CREATE OR REPLACE PACKAGE testpkg AS
 TYPE myArrayType is TABLE of VARCHAR2(32767) INDEX BY binary_ integer;
8-14 Oracle9i Application Server Performance Guide

Performance Tuning Areas in mod_plsql
 PROCEDURE arrayproc (arr myArrayType);
END testpkg;
/

2. If you are making URL calls like /pls/.../testpkg.arrayproc?
arr= 1, change the specification to be similar to the following:

CREATE OR REPLACE PACKAGE testpkg AS
 TYPE myArrayType is TABLE of VARCHAR2(32767) INDEX BY binary_integer;
 PROCEDURE arrayproc (arr varchar2);
 PROCEDURE arrayproc (arr myArrayType);
END testpkg;
/

3. The procedure arrayproc should be similar to:

CREATE OR REPLACE PACKAGE BODY testpkg AS
PROCEDURE arrayproc (arr varchar2) IS
 localArr myArrayType;
BEGIN
 localArr(1) := arr;
 arrayproc (localArr);
END arrayproc;

The Flexible Parameter Passing (four-parameter) Overhead
Round-trip overhead exists if a PL/ SQL procedure is using the older style
four-parameter interface. The PL/ SQL Gateway first tries to execute the procedure
by using the two-parameter interface. If this fails, the PL/ SQL Gateway tries the
four-parameter interface. This implies that all four-parameter interface procedures
experience one extra round-trip for execution.

■ Avoiding the flexible parameter passing overhead

To avoid this overhead, it is recommended that you write corresponding
wrappers that use the two-parameter interface and internally call the
four-parameter interface procedures. Another option is to change the
specification of the original procedure to default to the parameters that are not
passed in the two-parameter interface. The four-parameter interface has been
provided only for backward compatibility and will be deprecated in the future.

■ Using flexible parameters and the exclamation mark

The flexible parameter passing mode in Oracle9i Application Server expects the
PL/ SQL procedure to have the exclamation mark before the procedure name.
Due to performance implications of the auto-detect method used in Oracle9iAS,
Optimizing PL/SQL Performance 8-15

Using Caching with PL/SQL Web Applications
the exclamation mark is now required for flexible parameter passing in Oracle9i
Application Server. In Oracle9iAS, each procedure is described completely
before being executed. The procedure Describe call determines the signature
of the procedure and requires around-trip to the database. The PL/ SQL
Gateway in Oracle9i Application Server avoids this round trip by having
end-users explicitly indicate the flexible parameter passing convention by
adding the exclamation mark before the procedure.

Using Caching with PL/SQL Web Applications
Caching can improve the performance of PL/SQL Web applications. You can cache
Web content generated by PL/SQL procedures in the middle-tier and decrease the
database workload.

This section covers the techniques used in caching, including the following:

■ Using the Validation Technique - An application asks the server if the page has
been modified since it was last presented.

■ Using the Expires Technique - Based upon a specific time period, the PL/SQL
application determines the page will be cached, or should be generated again.

■ System- and User-level Caching with PL/SQL Web Applications - This is valid
whether you are using the Validation Technique or the Expires Technique. The
level of caching is determined by whether a page is cached for a particular user
or for every user in the system.

These techniques and levels are implemented using ows_cache packages located
inside the PL/SQL Web Toolkit.

Using the Validation Technique
In general, the validation technique basically asks the server if the page has been
modified since it was last presented. If it has not been modified, the cached page
will be presented to the user. If the page has been modified, a new copy will be
retrieved, presented to the user and then cached.

There are two methods which use the Validation Technique, Last-Modified method
and the Entity Tag method. The next two sections show how these techniques are
used in the HTTP protocol. Although the PL/SQL Gateway does not use the HTTP
protocol, many of the same are principles are used.

See Also: Oracle9i Application Server PL/SQL Web Toolkit Reference
8-16 Oracle9i Application Server Performance Guide

Using Caching with PL/SQL Web Applications
Last-Modified
When a Web page is generated using the HTTP protocol, it contains a
Last-Modified Response Header. This header indicates the date, relative to the
server, of the content that was requested. Browsers save this date information along
with the content. When subsequent requests are made for the URL of the Web page,
the browser then:

1. Determines if it has a cached version.

2. Extracts the date information.

3. Generates the Request Header If-Modified-Since.

4. Sends the request the server.

Cache-enabled servers look for the If-Modified-Since header and compare it to the
date of their content. If the two match, an HTTP Response status header such as
"HTTP/1.1 304 Not Modified" is generated, and no content is streamed. After
receiving this status code, the browser can reuse its cache entry because it has been
validated.

If the two do not match, an HTTP Response header such as "HTTP/1.1 200 OK" is
generated and the new content is streamed, along with a new Last-Modified
Response header. Upon receipt of this status code, the browser must replace its
cache entry with the new content and new date information.

Entity Tag Method
Another validation method provided by the HTTP protocol is the ETag (Entity Tag)
Response and Request header. The value of this header is a string that is opaque to
the browser. Servers generate this string based on their type of application. This is a
more generic validation method than the If-Modified-Since header, which can only
contain a date value.

The ETag method works very similar to the Last Modified method. Servers generate
the ETag as part of the Response Header. The browser stores this opaque header
value along with the content that is steamed back. When the next request for this
content arrives, the browser passes the If-Match header with the opaque value that
it stored to the server. Because the server generated this opaque value, it is able to
determine what to send back to the browser. The rest is exactly like the
Last-Modified validation method as described above.
Optimizing PL/SQL Performance 8-17

Using Caching with PL/SQL Web Applications
Using the Validation Technique for mod_plsql
Using HTTP validation caching as a framework, the following is the Validation
Model for mod_plsql.

PL/SQL applications that want to control the content being served should use this
type of caching. This technique offers some moderate performance gains. One
example of this would be an application that serves dynamic content that can
change at any given time. In this case, the application needs full control over what
is being served. Validation caching always asks the application whether the cached
content is stale or not before serving it back to the browser.

Figure 8–1 shows the use of the validation technique for mod_plsql.

1. The Oracle HTTP Server receives a PL/SQL procedure request from a client
server. The Oracle HTTP Server routes the request to mod_plsql.

2. mod_plsql prepares the request.

3. mod_plsql invokes the PL/SQL procedure in the application. mod_plsql
passes the usual Common Gateway Interface (CGI) environment variables to
the application.

4. The PL/SQL procedure generates content to pass back. If the PL/SQL
procedure decides that the generated content is cacheable, it calls the owa_
cache procedure from the PL/SQL Web Toolkit to set the tag and cache level:

owa_cache.set_cache(p_etag, p_level);

5. The HTML is returned to mod_plsql.

6. mod_plsql stores the cacheable content in its file system for the next request.

7. The Oracle HTTP Server sends the response to the client browser.

Table 8–3 Validation Model Parameters

Parameter Description

set_cache procedure Sets up the headers to notify mod_plsql that the content being
streamed back can be cached. Then, the mod_plsql caches the
content on the local file system along with the tag and caching
level information as it is streamed back to the browser.

p_etag The string that the procedure generates to tag the content.

p_level The caching level: SYSTEM for system level or USER for user level.
8-18 Oracle9i Application Server Performance Guide

Using Caching with PL/SQL Web Applications
Figure 8–1 Validation Technique

Second Request Using the Validation Technique
Using the Validation Technique for mod_plsql, a second request is made by the
client browser for the same PL/SQL procedure.

Figure 8–2 shows the second request using the Validation Technique.

1. mod_plsql detects that it has a cached content for the request.

2. mod_plsql forwards the same tag and caching level information (from the first
request) to the PL/SQL procedure as part of the CGI environment variables.

3. The PL/SQL procedure uses these caching CGI environment variables to check
if the content has changed. It does so by calling the following owa_cache
functions from the PL/SQL Web Toolkit:

owa_cache.get_etag;
owa_cache.get_level;

These owa functions get the tag and caching level.

4. The application sends the caching information to mod_plsql.

Oracle
Database

PL/SQL
Web Toolkit

Oracle9iAS Application
Server

Oracle
HTTP
Server

File
System

Browser

Browser

Browser

User-level
Caching in
Browser

7

1

6

5 Application

mod_plsql 2

3 4
Optimizing PL/SQL Performance 8-19

Using Caching with PL/SQL Web Applications
5. Based on that information determines whether the content needs to be
regenerated or can be served from the cache.

a. If the content is still the same, the procedure calls the owa_cache.set_
not_modified procedure and generates no content. This causes mod_
plsql to use its cached content. The cached content is directly streamed
back to the browser.

b. If the content has changed, it generates the new content along with a new
tag and caching level. mod_plsql replaces its stale cached copy with a new
one and updates the tag and caching level information. The newly
generated content is streamed back to the browser.

Figure 8–2 Validation Technique-Second Request

Using the Expires Technique
In the validation model, mod_plsql always asks the PL/SQL procedure if it can
serve the content from the cache. In the expires model, the procedure preestablishes
the content validity period. Therefore, mod_plsql can serve the content from its
cache without asking the procedure. This further improves performance because no
interaction with the database is required.

Oracle9iAS Application
Server

Oracle
HTTP
Server

File
System

Browser

Browser

Oracle
Database

mod_plsql

Browser

User-level
Caching in
Browser

2
4

2 5a

1 3

PL/SQL
Web Toolkit

Application

5b
8-20 Oracle9i Application Server Performance Guide

Using Caching with PL/SQL Web Applications
This caching technique offers the best performance. Use if your PL/SQL application
is not sensitive to serving stale content. One example of this is an application that
generates news daily. The news can be set to be valid for 24 hours. Within the 24
hours, the cached content is served back without contacting the application. This is
essentially the same as serving a file. After 24 hours, mod_plsql will again fetch
new content from the application.

Assume the same scenario described for the Validation model, except the procedure
uses the Expires model for caching.

Figure 8–3 shows the use of the expires technique for mod_plsql.

1. The Oracle HTTP Server receives a PL/SQL Server Page request from a client
server. The Oracle HTTP Server routes the request to mod_plsql.

2. The request is forwarded by mod_plsql to the Oracle Database.

3. mod_plsql invokes the PL/SQL procedure in the application and passes the
usual Common Gateway Interface (CGI) environment variables to the
application.

4. The PL/SQL procedure generates content to pass back. If the PL/SQL
procedure decides that the generated content is cacheable, it calls the owa_
cache procedure from the PL/SQL Web Toolkit to set the validity period and
cache level:

owa_cache.set_expires(p_expires, p_level);

5. The HTML is returned to mod_plsql.

6. mod_plsql stores the cacheable content in its file system for the next request.

7. The Oracle HTTP Server sends the response to the client browser.

Table 8–4 Expires Model Parameters

Parameter Description

set_expires procedure Sets up the headers to notify mod_plsql that Expires caching
is being used. mod_plsql then caches the content to the file
system along with the validity period and caching level
information.

p_expires Number of minutes that the content is valid.

p_level Caching level.
Optimizing PL/SQL Performance 8-21

Using Caching with PL/SQL Web Applications
Figure 8–3 The Expires Technique

Second Request Using the Expires Technique
Using the same expires model explained above, a second request is made by the
client browser for the same PL/SQL procedure.

Figure 8–4 shows the second request using the Expires Technique.

1. mod_plsql detects that it has a cached copy of the content that is
expires-based.

2. mod_plsql checks the content’s validity by taking the difference between the
current time and the time this cache file was created.

a. If this difference is within the validity period, the cached copy is still fresh
and will be used without any database interaction. The cached content is
directly streamed back to the browser.

b. If the difference is not within the validity period, the cached copy is stale.
mod_plsql invokes the PL/SQL procedure and generates new content.
The procedure then decides whether to use expires-based caching again. If
so, it also determines the validating period for this new content. The newly
generated content is streamed back to the browser.

Oracle9iAS Application
Server

Oracle
HTTP
Server

File
System

Browser

Browser

Oracle
Database

mod_plsql

Browser

User-level
Caching in
Browser

2
5

4

PL/SQL
Web Toolkit

Application

7

1

3

6

8-22 Oracle9i Application Server Performance Guide

Using Caching with PL/SQL Web Applications
Figure 8–4 The Expires Technique-Second Request

System- and User-level Caching with PL/SQL Web Applications
A PL/SQL procedure determines whether generated content is system-level content
or user-level. This helps the PL/SQL Gateway cache to store less redundant files if
more than one user is looking at the same content. It decides this by:

■ For system-level content, the procedure passes the string SYSTEM as the
caching level parameter to the owa_cache functions (set_cache for
validation model or set_expires for expires model). This is for every user
that shares the cache.

By using system-level caching, you can save both space in your file system and
time for all users in the system. One example of this would be an application
that generates content that is intended for everybody using the application. By
caching the content with the system-level setting, only one copy of the content
is cached in the file system. Furthermore, every user on that system benefits
since the content is served directory from the cache.

■ For user-level content, it passes the string USER as the parameter for the
caching level. This is for a specific user that is logged in. The stored cache is
unique for that user. Only that user can use the cache.The type of user is

Oracle9iAS Application
Server

Oracle
HTTP
Server

File
System

Browser

Browser

Oracle
Database

Browser

User-level
Caching in
Browser

PL/SQL
Web Toolkit

Application

2b
2a

mod_plsql

2b
Optimizing PL/SQL Performance 8-23

Using Caching with PL/SQL Web Applications
determined by the authentication mode. Refer to the table below for the
different types of users.

.

For example, if no user customizes a PL/SQL Web application, then the output can
be stored in a system-level cache. There will be only one cache copy for every user
on the system. User information is not used since the cache can be used by multiple
users.

However, if a user customizes the application, a user-level cache is stored for that
user only. All other users still use the system level cache. For a user-level cache hit,
the user information is a criteria. A user-level cache always overrides a system-level
cache.

PL/SQL Web Toolkit functions (owa_cache package)
Your decision whether to use the Validation technique or the Expires technique
determines which owa_cache functions to call.

The owa_cache package contains procedures to set and get special caching headers
and environment variables. These allow developers to use the PL/SQL Gateway
cache more easily. This package should already be installed in your database.

These are the primary functions to call:

Table 8–5 Type of User Determined by Authentication Mode

Authentication Mode Type of User

Single Sign On (SSO) Lightweight user

Basic Database user

Custom Remote user

Table 8–6 Primary owa_cache Functions

owa Functions Purpose

owa_cache.set_cache
(p_etag IN varchar2,
p_level IN varchar2)

Validation Model - Sets up the headers.

■ p_etag parameter tags the generated content.

■ p_level parameter is the caching level to use.

owa_cache.set_not_modified Validation Model - Sets up the headers to notify
mod_plsql to use the cached content. Only used
when a validation -based cache hit occurs.
8-24 Oracle9i Application Server Performance Guide

Other Oracle HTTP Server Directives
Other Oracle HTTP Server Directives
Table 8–7 lists some of the Oracle HTTP Server directives that need to be tuned
appropriately for your configuration. Adjust these settings for the directives listed
in Table 8–7 to values appropriate for your system.

owa_cache.get_level Validation Model - Gets the caching level, USER or
SYSTEM. Returns null if the cache is not hit.

owa_cache.get_etag Validation Model - Gets the tag associated with the
cached content. Returns null if the cache is not
hit.

owa_cache.set_expires(
p_expires IN number,
p_level IN varchar2)

Expires Model - Sets up the headers.

■ p_expires parameter is the number of
minutes the content is valid.

■ p_level parameter is the caching level to use.

Table 8–7 Default Settings

Directive Default Value

KeepAlive On

KeepAliveTimeout 15 seconds

MaxClients 150

MaxKeepAliveRequests 100

MaxRequestsPerChild 10

MaxSpareServers 10

MinSpareServers 5

StartServers 5

See Also:

■ Chapter 5, "Optimizing Oracle HTTP Server"

■ Chapter 3, "Managing Server Processes" and Chapter 4, "Managing the
Network Connection" in the Oracle HTTP Server Administration Guide.

Table 8–6 (Cont.) Primary owa_cache Functions

owa Functions Purpose
Optimizing PL/SQL Performance 8-25

Other Oracle HTTP Server Directives
8-26 Oracle9i Application Server Performance Guide

Oracle9iAS Performance M
A

Oracle9iAS Performance Metrics

This appendix lists metrics that can help you analyze Oracle9iAS performance. The
metrics fall into several distinct areas, such as Oracle HTTP Server, Oracle9iAS
Containers for J2EE (OC4J), and Portal. Each table in this chapter lists the metrics
that are included in a corresponding DMS metric table.

This appendix contains:

■ Oracle HTTP Server Metrics

■ JVM Metrics

■ JDBC Metrics

■ J2EE Application Metrics - OC4J Metrics

■ JSP Metrics

■ EJB Metrics

■ Portal Metrics

■ JServ Metrics
etrics A-1

Oracle HTTP Server Metrics
Oracle HTTP Server Metrics
The tables, Table A–1,Table A–2, Table A–3 describe the Oracle HTTP Server
metrics.

The metric table name is ohs_server.

Aggregate Module Metrics

Table A–1 HTTP Server Metrics (ohs_server)

Metric Description Unit

handle.maxTime Maximum time spent in module handler usecs

handle.minTime Minimum time spent in module handler usecs

handle.avg Average time spent in module handler usecs

handle.active Chile servers currently in the handle processing phase threads

handle.time Total time spent in module handler usecs

handle.completed Number of times the handle processing phase has completed ops

request.maxTime Maximum time required to service an HTTP request usecs

request.minTime Minimum time required to service an HTTP request usecs

request.avg Average time required to service an HTTP request usecs

request.active Child servers currently in the request processing phase threads

request.time Total time required to service HTTP requests usecs

request.completed Number of HTTP request completed ops

connection.maxTime Maximum time spent servicing any HTTP connection usecs

connection.minTime Minimum time spent servicing any HTTP connection usecs

connection.avg Average time spent servicing HTTP connections usecs

connection.active Number of connections currently open threads

connection.time Total time spent servicing HTTP connections usecs

Table A–2 Apache/Modules Metrics

Metric Description Unit

numMods.value Number of loaded modules
A-2 Oracle9i Application Server Performance Guide

JVM Metrics
HTTP Server Module Metrics
There is one set of metrics for each module loaded into the server.

The metric table name is ohs_module.

JVM Metrics
There is one set of metrics for each Java process (OC4J or Jserv) currently running in
the site. The metric table name is JVM.

Table A–3 Apache/Modules/mod_*.c Metrics (ohs_module)

Metric Description Unit

decline.count Number of requests declined ops

handle.maxTime Maximum time required for this module usecs

handle.minTime Minimum time required for this module usecs

handle.avg Average time required for this module usecs

handle.active Number of requests currently being handled by this module requests

handle.time Total time required for this module usecs

handle.completed Number of requests handled by this module ops

Table A–4 JVM Metrics (JVM)

Metric Description Unit

activeThreadGroups.value The number of active thread groups in the JVM integer

activeThreadGroups.minValue The minimum number of active thread groups in the JVM integer

activeThreadGroups.maxValue The maximum number of active thread groups in the JVM integer

activeThreads.value The number of active threads in the JVM threads

activeThreads.minValue The minimum number of active threads in the JVM threads

activeThreads.maxValue The maximum number of active threads in the JVM threads

upTime.value Up time for the JVM msecs

freeMemory.value The amount of heap space free in the JVM KB

freeMemory.minValue The minimum amount of heap space free in the JVM KB

freeMemory.maxValue The maximum amount of heap space free in the JVM KB

totalMemory.value The total amount of heap space in the JVM KB

totalMemory.minValue The minimum amount of total heap space in the JVM KB

totalMemory.maxValue The maximum amount of total heap space in the JVM KB
Oracle9iAS Performance Metrics A-3

JDBC Metrics
JDBC Metrics
The following tables list the JDBC metrics collected in Oracle9iAS.

JDBC Driver Metrics
There is one set of JDBC Driver metrics per JVM. The metric table name is JDBC_
Driver.

JDBC Data Source Metrics
The metric table name is JDBC_DataSource.

There is one set of data source metrics per data source.

Table A–5 /JDBC/Driver - JDBC_Driver Metrics

Metric Description Unit

ConnectionCloseCount.count Total number of connections that have been closed. ops

ConnectionCreate.active Current number of threads creating connections. ops

ConnectionCreate.avg Average time spent creating connections. msecs

ConnectionCreate.completed Number of times this PhaseEvent has started and ended. ops

ConnectionCreate.maxTime Maximum time spent creating connections. msecs

ConnectionCreate.minTime Minimum time spent creating connections. msecs

ConnectionCreate.time Time spent creating connections. msecs

ConnectionOpenCount.count Total number of connections that have been opened. ops

Table A–6 /JDBC/data-source-name - JDBC_Data Source Metrics

Metric Description Unit

CacheFreeSize.value Number of free slots in the connection cache.

CacheGetConnection.avg Average time spent getting a connection from the cache. msecs

CacheGetConnection.completed Number of times this PhaseEvent has started and ended. ops

CacheGetConnection.maxTime Maximum time spent getting a connection from the cache. msecs

CacheGetConnection.minTime Minimum time spent getting a connection from the cache. msecs

CacheGetConnection.time Time spent getting a connection from the cache or not. msecs
A-4 Oracle9i Application Server Performance Guide

JDBC Metrics
JDBC Driver Specific Connection Metrics
The metric table name is JDBC_Connection. There is one set of JDBC Connection
metrics per connection.

JDBC Data Source Specific Connection Metrics
The metric table name is JDBC_Connection. There is one set of JDBC data source
specific connection metrics per data source per connection.

CacheHit.count Number of times a request for a connection has been satisfied from the
cache.

CacheMiss.count Number of times a request for a connection failed to be satisfied from the
cache.

CacheSize.value Total size of the connection cache.

Table A–7 /JDBC/Driver/CONNECTION - JDBC Driver Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

CreateNewStatement.time Time spent creating a new statement. msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if
any.

Table A–6 (Cont.) /JDBC/data-source-name - JDBC_Data Source Metrics

Metric Description Unit
Oracle9iAS Performance Metrics A-5

JDBC Metrics
JDBC Driver Statement Metrics
The metric table name is JDBC_Statement.

There is a set of statement metrics per connection per statement.

Table A–8 /JDBC/data-source-name/CONNECTION - JDBC Datasource Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

CreateNewStatement.time Time spent creating a new statement. msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if
any.

Note: The JDBC statement metrics are only available when JDBC
statement caching is enabled.

Table A–9 /JDBC/Driver/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch. msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.
A-6 Oracle9i Application Server Performance Guide

JDBC Metrics
JDBC Data Source Statement Metrics
The metric table name is JDBC_Statement.

There is a set of statement metrics per data source per connection per statement.

Note: The JDBC statement metrics are only available when JDBC
statement caching is enabled.

Table A–10 /JDBC/data-source-name/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch. msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.
Oracle9iAS Performance Metrics A-7

J2EE Application Metrics - OC4J Metrics
J2EE Application Metrics - OC4J Metrics
Figure A–1 illustrates the metrics in a J2EE application.

Figure A–1 Structure of Performance Metrics for a J2EE Application

Application
2

Application
x

OC4J

. . .Application
1

JDBC

Jar 1 Jar 2

EJBs

. . .

Bean 1 Bean 2 . . .

Jar x

Method 1 Method 2 Method x. . .

Bean x

Context 2 . . .

WEBs

Context xContext 1

Servlet 2 . . . Servlet xServlet 1 JSP 2 . . . JSP xJSP 1

JSPServlets
A-8 Oracle9i Application Server Performance Guide

J2EE Application Metrics - OC4J Metrics
Web Module Metrics
There is one set of metrics for each Web module within each J2EE application.

The metric table name is oc4j_web_module.

Web Context Metrics
There is one set of metrics for each Web context module within each J2EE
application.

The metric table name is oc4j_context.

Table A–11 OC4J/application/WEBs Metrics

Metric Description Unit

processRequest.time Total time spent servicing this application’s web requests msecs

processRequest.
completed

Number of web requests processed by this application ops

processRequest.minTime Minimum time spent servicing a web request msecs

processRequest.maxTime Maximum time spent servicing a web request msecs

processRequest.avg Average time spent servicing web requests msecs

processRequest.active Current number of threads servicing web requests

resolveContext.time Total time spent to create/find the servlet context. Each web module
(WAR) maps to a servlet context

msecs

resolveContext.
completed

Count of completed context resolves ops

resolveContext.minTime Minimum time spent to create/find the servlet context msecs

resolveContext.maxTime Maximum time spent to create/find the servlet context msecs

resolveContext.avg Average time spent to create/find the servlet context msecs

resolveContext.active Current number of threads trying to create/find the servlet context

parseRequest.time Total time spent to read/parse requests from the socket msecs

parseRequest.completed Number of web requests that have been parsed ops

parseRequest.minTime Minimum time spent to read/parse requests msecs

parseRequest.maxTime Maximum time spent to read/parse requests msecs

parseRequest.avg Average time spent to read/parse requests msecs

parseRequest.active Current number of threads trying to read/parse AJP or HTTP
requests
Oracle9iAS Performance Metrics A-9

J2EE Application Metrics - OC4J Metrics
Servlet Metrics
There is one set of metrics for each servlet in each Web module within each J2EE
application.

The metric table name is oc4j_servlet.

Table A–12 OC4J/application/WEBs/context Metrics

Metric Description Unit

resolveServlet.time Total time spent to create/locate servlet instances (within the servlet
context)

msecs

resolveServlet.completed Total Number of lookups for a servlet by OC4J ops

resolveServlet.minTime Minimum time spent to create/locate the servlet instance (within the
servlet context)

msecs

resolveServlet.maxTime Maximum time spent to create/locate the servlet instance (within the
servlet context)

msecs

resolveServlet.avg Average time spent to create/locate the servlet instance (within the
servlet context)

msecs

sessionActivation.active Number of active sessions ops

sessionActivation.time Total time in which sessions have been active msecs

sessionActivation.completed Number of session activations ops

sessionActivation.minTime Minimum time a session was active ops

sessionActivation.maxTime Maximum time a session was active msecs

sessionActivation.avg Average session lifetime msecs

service.time Total time spent servicing requests msecs

service.completed Total number of requests serviced ops

service.minTime Minimum time spent servicing requests msecs

service.maxTime Maximum time spent servicing requests ops

service.avg Average time spent in servicing the servlet msecs

service.active Current number of requests active msecs

Table A–13 OC4J/application/WEBs/context /SERVLETS/servlet Metrics

Metric Description Unit

service.time Total time spent on the servlet’s service() call msecs

service.completed Total number of calls to service()

service.minTime Minimum time spent on a servlet’s service() call msecs
A-10 Oracle9i Application Server Performance Guide

J2EE Application Metrics - OC4J Metrics
JSP Metrics

JSP Runtime Metrics
There is one set of metrics for each Web context for each J2EE application.

The metric table name is oc4j_jspExec.

JSP Metrics
There is one set of metrics for each JSP in each Web module. the data for
availableInstance.* appears only for non-threadsafe JSPs.

The metric table name is oc4j_jsp.

service.maxTime Maximum time spent on a servlet’s service() call ops

service.avg Average time spent in servicing the servlet msecs

service.active Current number of threads servicing this servlet msecs

Table A–14 OC4J/application/WEBs/context /JSP Metrics

Metric Description Unit

processRequest.time Time spent processing requests for JSPs

Only used for Context/Application name

msecs

processRequest.completed Number of requests for JSPs processed by this application ops

processRequest.minTime Minimum time spent processing requests for JSPs msecs

processRequest.maxTime Maximum time spent processing requests for JSPs msecs

processRequest.avg Average time spent processing requests for JSPs msecs

processRequest.active Current number of active requests for JSPs

Table A–15 OC4J/application/WEBs/context /JSPjsp_name Metrics

Metric Description Unit

service.time Time to serve a JSP (that is, actual execution time of the JSP) msecs

service.completed Number of requests for JSPs processed by this JSP ops

service.minTime Minimum time spent servicing the JSP msecs

service.maxTime Maximum time spent servicing the JSP msecs

service.avg Average time spent servicing the JSP msecs

Table A–13 (Cont.) OC4J/application/WEBs/context /SERVLETS/servlet Metrics

Metric Description Unit
Oracle9iAS Performance Metrics A-11

J2EE Application Metrics - OC4J Metrics
EJB Metrics

EJB Bean Metrics
Oracle9iAS provides a set of these metrics for each type of bean in each EJB jar file
in each J2EE application.

The metric table name is oc4j_ejb_entity_bean.

service.active Current number of active requests for the JSP

availableInstances.value Number of available (that is, created) instances.

Only used when threadsafe=false

instances

activeInstances.value Number of active instances. Only used when threadsafe=false instances

Table A–16 OC4J/application/EJBs/ejb-jar-module/ejb-name Metrics

Metric Description Unit

transaction-type.value Transaction type.

Possible values: container or bean

session-type.value Session type.

Possible values: stateful or stateless

bean-type.value Bean type

Possible values: session or entity bean

exclusive-write-access.value Exclusive write access value

Possible values: true or false

isolation.value Isolation value.

Possible values: serializable, uncommitted, committed,
repeatable_read, none

persistence-type.value Persistence type:

Possible values: bean or entity bean

Table A–15 (Cont.) OC4J/application/WEBs/context /JSPjsp_name Metrics

Metric Description Unit
A-12 Oracle9i Application Server Performance Guide

J2EE Application Metrics - OC4J Metrics
EJB Method Metrics
There is one set of metrics for each method within each type of EJB bean.

The metric table name is oc4j_ejb_method.

The client.* metrics show values for the actual implementation of the method.
The wrapper.* metrics show values for the wrapper that was automatically
generated for the method.

See Also: Chapter 6, "Advanced EJB Subjects" in Oracle9iAS
Containers for J2EE Enterprise JavaBeans Developer’s Guide and Reference for
information on automatically generated wrappers.

Table A–17 OC4J/application/EJBs/ejb-jar-module/ejb-name/method-name Metrics

Metric Description Unit

client.time Time spent inside the actual implementation of this method msecs

client.completed Number of requests for beans processed by this application ops

client.minTime Minimum time spent inside the actual implementation of this method msecs

client.maxTime Maximum time spent inside the actual implementation of this method msecs

client.avg Average time spent inside the actual implementation of this method msecs

client.active Current number of threads accessing the actual implementation of this
method

wrapper.time Time spent inside the automatically generated wrapper method. Note: Not
all the wrapper methods invoke the actual bean implementation at runtime
(for example, create method in a stateless bean). This means that the time
spent in the wrapper code could be less than the time spent in the bean
implementation

msecs

wrapper.completed Number of requests for beans processed by this application ops

wrapper.minTime Minimum time spent inside the automatically generated wrapper method msecs

wrapper.maxTime Maximum time spent inside the automatically generated wrapper method msecs

wrapper.avg Average time spent inside the automatically generated wrapper method msecs

wrapper.active Current number of threads accessing the automatically generated wrapper
method

trans-attribute.value Transaction attribute. Possible values: NotSupported, Supports,
RequiresNew, Mandatory, and Never
Oracle9iAS Performance Metrics A-13

J2EE Application Metrics - OC4J Metrics
ejbPostCreate.time Time spent in the ejbPostCreate method (entity beans) msecs

ejbPostCreate.completed Number of times this ejbPostCreate has been called ops

ejbPostCreate.minTime Minimum time spent in ejbPostCreate msecs

ejbPostCreate.maxTime Maximum time spent in ejbPostCreate msecs

ejbPostCreate.avg Average time spent in ejbPostCreate msecs

ejbPostCreate.active Current number of threads executing ejbPostCreate

Table A–17 (Cont.) OC4J/application/EJBs/ejb-jar-module/ejb-name/method-name Metrics

Metric Description Unit
A-14 Oracle9i Application Server Performance Guide

Portal Metrics
Portal Metrics
This section describes the Oracle9iAS Portal metrics.

Figure A–2, "mod_plsql Metric Tree" shows the structure of the mod_plsql metrics.
The tables in this section describe the relevant metrics.

Figure A–2 mod_plsql Metric Tree

modplsql

ContentCache

SQLError2

SQLError1

SQLError10

HTTPResponseCodes

SQLGroup2

SQLGroup1

SQLGroupX

LastNSQLErrors

SessionCache

SQLErrorGroups

SuperUserConnectionPool

RequestOwnerConnectionPool

NonSSOConnectionPool

...

...
Oracle9iAS Performance Metrics A-15

Portal Metrics
The /modplsql/HTTPResponseCodes Metrics lists the response codes returned
by mod_plsql.

The metric table name is modplsql_HTTPResponseCodes. This metric table
includes one metric containing the count, number of times the response was
generated, for each HTTP response type.

 [type=modplsql_HTTPResponseCodes]

For example, the http404.count metric holds a count of the "HTTP 404: Not
found" response codes.

Table A–18 lists the set of metrics for the mod_plsql session cache.

The metric table name is modplsql_Cache.

Table A–19 lists the set of metrics for the mod_plsql content cache.

The metric table name is modplsql_ContentCache.

The SQLErrorGroups metrics show the predefined groupings of SQL errors. For
each group, the metrics in Table A–20 are recorded.

The metric table name is modplsql_SQLErrorGroup:

Table A–18 mod_plsql/SessionCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache. This can be either enabled or disabled. status

newMisses.count Number of session cache misses (new) ops

staleMisses.count Number of session cache misses (stale) ops

hits.count Number of session cache hits ops

requests.count Number of requests to the session cache ops

Table A–19 mod_plsql/ContentCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache, either enabled or disabled.

newMisses.count Number of content cache misses (new) ops

staleMisses.count Number of content cache misses (stale) ops

hits.count Number of content cache hits ops

requests.count Number of requests to the content cache ops
A-16 Oracle9i Application Server Performance Guide

Portal Metrics
/modplsql/SQLErrorGroups/group [type=modplsql_SQLErrorGroup]

The group is based on the groupings in the Oracle SQL error documentation. For
example, the metric name Ora24280Ora29249 represents the grouping Ora-24280
to Ora-29249. Each SQL error that occurs as a result of executing a request is put
into the appropriate group based on its error code. If you are getting a high number
of the same errors, you should investigate what is causing the problem, using the
Oracle SQL error message documentation for further details on the error message.

The LastNSQLErrors statistics show the last 10 SQL errors that have occurred
while executing requests. These are updated in a round robin fashion. For each
error, the metrics in Table A–21 are recorded.

The metric table name is modplsql_LastNSQLError:

/modplsql/LastNSQLErrors/<SQL Error Slot> [type=modplsql_LastNSQLError]

If you are getting a large number of the same errors, you should investigate what is
causing the problem. Refer to the Oracle SQL error messages documentation for
further details of the error represented by the errorText.value metric.

Table A–22 lists the set of metrics for the Non-SSO connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/NonSSOConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–20 mod_plsql/SQLErrorGroups Metrics

Metric Description Unit

lastErrorDate.value Date of the last request to cause the SQL error date

lastErrorRequest.value Last request to cause the SQL error url

lastErrorText.value SQL error text of the last error error

error.count Number of errors that have occurred within the group ops

Table A–21 mod_plsql/LastNSQLErrors Metrics

Metric Description Unit

errorDate.value Date the request caused the SQL error date

errorRequest.value Request causing the SQL error url

errorText.value SQL error text error
Oracle9iAS Performance Metrics A-17

Portal Metrics
Table A–23 lists the set of metrics for the request owner connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/RequestOwnerConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–24 lists the set of metrics for the super user connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/SuperUserConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–22 mod_plsql/NonSSOConnectionPool Metrics

 Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Table A–23 mod_plsql/RequestOwnerConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops
A-18 Oracle9i Application Server Performance Guide

Portal Metrics
Parallel Page Engine Metrics
Figure A–3, "Parallel Page Engine Metric Tree" shows the structure of the Parallel
Page Engine metrics. The tables in this section describe the relevant metrics.

Table A–24 mod_plsql/SuperUserConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Threads currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops
Oracle9iAS Performance Metrics A-19

Portal Metrics
Figure A–3 Parallel Page Engine Metric Tree

The set of metrics can be broken down into static and dynamic types. Static metrics
are those that are always available and dynamic being those metrics that only
appear if a specific event occurs, such as when a specific portlet is requested. All of
the PageEngine and ResponseCodes metrics are static, the remaining metrics are
dynamic.

Table A–25 lists the set of metrics for the Parallel Page Engine. The metric table type
is modplsql_PageEngine. This set represents the general performance of the
Parallel Page Engine. If you intend to use the cache you should ensure that the
cacheEnabled.value metric is set 1. To turn the cache on, refer to the mod_
plsql cache and Parallel Page Engine configuration documentation.

web Provider* Portlet*

plsql Provider* Portlet*

PageEngine ResponseCodes

page URL*

login URL*

version URL*

XSL URL*

Witness
A-20 Oracle9i Application Server Performance Guide

Portal Metrics
Table A–25 Witness/PageEngine Metrics

Metric Description Unit

pageRequests.value Total number of requests for Portal pages. count

cacheEnabled.value The PPE makes use of the mid tier cache as controlled by mod_plsql, and
is accessed via a JNI layer. This flag indicates whether this JNI cache as
accessed from the PPE is enabled or not. This flag will be zero if the cache
is either configured to be off or there was a problem loading the JNI layer
DLL.

status

cachePageHits.value Number of requests for cacheable fully assembled pages that have
resulted in a cache hit.

count

cachePageRequests.value Number of requests for cacheable fully assembled pages. count

pageMetadataWaitTimeAvg.
value

Average time spent in the PPE internal request queue waiting for page
metadata, for all requests. To obtain the average you should divide the
value metric by the count metric. The value being the accumulative time
for all requests and the count being the number of requests made.

msecs

pageMetadataWaitTimeAvg.
count

Number of requests made for page metadata. This metric should be used
in conjunction with pageMetadataWaitTimeAvg.value to calculate the
average time spent in the PPE internal request queue.

ops

pageMetadataWaitTime.
value

Time the last page metadata request spent in the PPE internal request
queue.

msecs

pageMetadataWaitTime.
count

Number of requests for page metadata. ops

pageMetadataWaitTime.
minValue

Minimum time spent in the PPE internal request queue waiting for page
metadata to be requested.

msecs

pageMetadataWaitTime.
maxValue

Maximum time spent in the PPE internal request queue waiting for page
metadata to be requested.

msecs

pageElapsedTimeAvg.value Average time to generate pages, including fetching the page metadata. To
obtain the average you should divide the value metric by the count metric.
The value being the accumulative time for all requests and the count being
the number of requests made.

msecs

pageElapsedTimeAvg.count Number of pages that had to be generated (i.e. not cached). This metric
should be used in conjunction with pageElapsedTimeAvg.value to
calculate the average time to generate pages, including fetching the page
metadata.

ops

pageElapsedTime.value Time to generate the last page requested, including fetching the page
metadata.

msecs

pageElapsedTime.count Number of pages that had to be generated (i.e. not cached). ops

pageElapsedTime.minValue Minimum time to generate a page, including fetching the page metadata. msecs

pageElapsedTime.maxValue Maximum time to generate a page, including fetching the page metadata. msecs
Oracle9iAS Performance Metrics A-21

Portal Metrics
pageMetadataFetchTimeAvg.
value

Average time to fetch page metadata, for all requests. To obtain the
average you should divide the value metric by the count metric. The value
being the accumulative time for all requests and the count being the
number of requests made.

msecs

pageMetadataFetchTimeAvg.
count

Number of requests for page metadata. This metric should be used in
conjunction with pageMetadataFetchTimeAvg.value to calculate the
average time to fetch page metadata.

ops

pageMetadataFetchTime.
value

Time to fetch page metadata, for the last request. msecs

pageMetadataFetchTime.
count

Number of requests for page metadata. ops

pageMetadataFetchTime.
minValue

Minimum time to fetch page metadata. msecs

pageMetadataFetchTime.
maxValue

Maximum time to fetch page metadata. msecs

queueTimeout.value Number of requests for Portal data that have timed out in the PPE internal
request queue.

msecs

queueStayAvg.value Average time all internal PPE requests spent in the PPE internal request
queue. To obtain the average you should divide the value metric by the
count metric. The value being the accumulative time for all requests and
the count being the number of requests made.

msecs

queueStayAvg.count Number of requests added to the internal PPE request queue. This metric
should be used in conjunction with queueStayAvg.value to calculate the
average time requests spent in the internal PPE request queue.

ops

queueStay.value Time the last internal PPE request spent in the PPE internal request queue. msecs

queueStay.count Number of requests added to the internal PPE request queue. ops

queueStay.minValue Minimum time a request spent in the internal PPE request queue. msecs

queueStay.maxValue Maximum time a request spent in the internal PPE request queue. msecs

queueLengthAvg.value Average length of the PPE internal request queue. To obtain the average
you should divide the value metric by the count metric.

msecs

queueLengthAvg.count Number of requests added to the PPE internal request queue. This metric
should be used in conjunction with queueLengthAvg.value to calculate
the average length of the PPE internal request queue.

ops

queueLength.value Current length of the PPE internal request queue. msecs

queueLength.count Number of requests added to the PPE internal request queue. ops

queueLength.minValue Minimum number of requests in the PPE internal request queue. msecs

queueLength.maxValue Maximum number of requests in the PPE internal request queue. msecs

Table A–25 (Cont.) Witness/PageEngine Metrics

Metric Description Unit
A-22 Oracle9i Application Server Performance Guide

Portal Metrics
The set of metrics for the response codes returned by internal requests, such as
portlets, page, or metadata, made by the Parallel Page Engine are in the metric table
is modplsql_PageEngine_ResponseCodes.

This table contains a count for each HTTP response type.

For example, http100.count, contains a count of the HTTP:100 Continue
response codes.

In addition, the metric httpUnresolvedRedirect.value contains a count of
requests that were not resolved after returning a redirect HTTP response code and
httpTimeout.value contains a count of requests that timed out in the PPE
internal request queue.

Table A–26 lists the set of metrics for the internal Parallel Page Engine page
metadata requests. The metric table name is dynamic in that it includes the URL
used to request the page metadata. If you are encountering a large number of failed
requests, check the HTTPD error_log for details of why the requests are failing.
The mod_plsql metrics may also provide further details.

Table A–27 lists the set of metrics for the internal Parallel Page Engine login
metadata requests. The metric table name is dynamic in that it includes the URL
used to request the login metadata. If you are encountering a large number of failed
requests, check the HTTPD error_log for details of why the requests are failing.
The mod_plsql metrics may also provide further details.

Table A–26 Witness/page/url Metrics

Metric Description Unit

lastResponseDate.value Last time the response was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently being processed threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops
Oracle9iAS Performance Metrics A-23

Portal Metrics
Table A–28 lists the set of metrics for the internal Parallel Page Engine Portal
version requests. The metric table name is dynamic in that it includes the URL used
to request the version of the Portal repository. If you are encountering a large
number of failed requests, check the HTTPD error_log for details of why the
requests are failing. The mod_plsql metrics may also provide further details.

Table A–27 Witness/login/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–28 Witness/version/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops
A-24 Oracle9i Application Server Performance Guide

Portal Metrics
Table A–29 lists the set of metrics for the internal Parallel Page Engine Portal XSL
requests. The metric table name is dynamic in that it includes the URL used to
request the XSL document. If you are encountering a large number of failed
requests, check the HTTPD error_log for details of why the requests are failing.
The mod_plsql metrics may also provide further details.

Table A–30 lists the set of metrics for the internal Parallel Page Engine PL/SQL
provider requests, holding a metric summary of all the requested portlets owned by
a specific provider. The metric table name is dynamic in that it includes the provider
name. dad-provider indicates the name of the DAD that the named provider is
registered and accessed through. If you are encountering a large number of failed
requests, check the HTTPD error_log for details of why the requests are failing.
The mod_plsql metrics may also provide further details.

Table A–29 Witness/XSL/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP
response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–30 Witness/plsql/dad-provider Metrics

Metric Description Unit

cacheHits.value Number of cache hits for this request ops

offline.value Flag to indicate whether the provider is offline. A value of 1 indicates that
the provider is offline and a value of 0 indicates that the provider is online.

state

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs
Oracle9iAS Performance Metrics A-25

Portal Metrics
Table A–31 lists the set of metrics for the internal Parallel Page Engine Portal
PL/SQL portlet requests. The metric table name is dynamic in that it includes both
the provider and portlet names. Table A–30 contains metrics summarizing all of the
portlets requested that are owned by a specific PL/SQL provider.

 If you are encountering a large number of failed requests, check the HTTPD
error_log for details of why the requests are failing. The mod_plsql metrics
may also provide further details.

Table A–32 lists the set of metrics for the internal Parallel Page Engine Web provider
requests, holding a metric summary of all the requested portlets owned by a
specific provider. The metric table name is dynamic in that it includes the provider
name. If you are encountering a large number of failed requests, check the HTTPD
error_log for details of why the requests are failing. The mod_plsql metrics
may also provide further details.

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–31 Witness/plsql/dad-provider/portlet Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–30 (Cont.) Witness/plsql/dad-provider Metrics

Metric Description Unit
A-26 Oracle9i Application Server Performance Guide

Portal Metrics
Table A–33 lists the set of metrics for the internal Parallel Page Engine Portal Web
portlet requests. The metric name is dynamic in that it includes both the provider
and portlet names. Table A–32 contains metrics summarizing all of the portlets
requested that are owned by a specific Web provider.

 If you are encountering a large number of failed requests, check the HTTPD
error_log for details of why the requests are failing. The mod_plsql metrics
may also provide further details. If you are seeing a large number of HTTP redirects
(302), consider coding the portlet to avoid the redirect as this helps performance. If
you have coded you portlet to be cacheable and the number of cache hits is low,
check the mod_plsql cache settings to ensure they are set to the appropriate levels
for your system.

Table A–32 Witness/Web/dad-provider Metrics

Metric Description Unit

cacheHits.value Number of cache hits for this request ops

offline.value Flag to indicate whether the provider is offline. A value of 1 indicates that
the provider is offline and a value of 0 indicates that the provider is online.

state

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–33 Witness/Web/dad-provider/portlet Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs
Oracle9iAS Performance Metrics A-27

JServ Metrics
JServ Metrics
Figure A–4 shows the structure of the JServ metrics. The following tables describe
the relevant metrics.

Figure A–4 JServ Metric Tree

Overall JServ Metrics
There is one set of metrics for each JServ server process.

The metric table name is jserv_server.

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–33 (Cont.) Witness/Web/dad-provider/portlet Metrics

Metric Description Unit

Servlet 1 Servlet 2

Zone 2 Zone x

JServ

. . .

Servlet x. . .

JSP 1 JSP 2 JSP x

Zone 1

JSP Servlet

. . .
A-28 Oracle9i Application Server Performance Guide

JServ Metrics
JServ Zone Metrics
There is one set of metrics for each JServ zone.

The metric table name is jserv_zone.

Table A–34 jserv Metric Tree

Metric Description Unit

port.value The ID of the TCP port on which this JServ listens

readRequest.active Threads currently in the readRequest processing phase

readRequest.avg Average time to read and parse requests msecs

readRequest.maxTime Maximum time to read and parse requests msecs

readRequest.minTime Minimum time to read and parse requests msecs

readRequest.completed Number of times the readRequest processing phase has completed ops

readRequest.time Total time to read and parse the request msecs

maxConnections.value Number of requests that can be handled concurrently in the JServ process threads

activeConnections.
maxValue

Maximum number of requests being processed simultaneously threads

activeConnections.
value

Number of requests being processed simultaneously threads

idlePeriod.maxTime Maximum time process was not handling any requests msecs

idlePeriod.minTime Minimum time process was not handling any requests msecs

idlePeriod.completed Number of times no requests were being serviced ops

idlePeriod.time Total time process was not handling any requests msecs

host.value Hostname/IP address this JServ process binds to

maxBacklog.value Maximum number of backlog requests that may be queued in the OS
waiting for this JServ

integer

Table A–35 jserv/zone Metrics

Metric Description Unit

checkReload.active Threads currently in the checkReload processing phase integer

checkReload.avg Average time to check if the zone must be reloaded msecs

checkReload.maxTime Maximum time to check if the zone must be reloaded msecs

checkReload.minTime Minimum time to check if the zone must be reloaded msecs

checkReload.completed Number of times the checkReload processing phase has completed ops

checkReload.time Total time to check if the zone must be reloaded msecs
Oracle9iAS Performance Metrics A-29

JServ Metrics
JServ Servlet Metrics
There is one set of metrics per servlet. Note that the JSP servlet holds all of the
aggregated load metrics for all servlets and JSPs within a zone.

The metric table name is jserv_servlet.

activeSessions.value The number of sessions which exist in this zone sessions

readSession.count Number of times session data has been read with
HttpSession.getValue in this zone

ops

writeSession.count Number of times session data has been written with
HttpSession.putValue in this zone

ops

loadFailed.count Number of times we failed to load the requested application (does not
work for OJSPs)

ops

Table A–36 /jserv/zone/servlet Metrics

Metric Description Unit

processRequest.active Threads currently in the processRequest processing phase integer

processRequest.avg Average time to completely process servlet (including JServ engine
overhead)

msecs

processRequest.maxTime Maximum time to completely process servlet (including JServ
engine overhead)

msecs

processRequest.minTime Minimum time to completely process servlet (including JServ
engine overhead)

msecs

processRequest.completed Number of times the processRequest processing phase has
completed

ops

processRequest.time Total time to completely process servlet (including JServ engine
overhead)

msecs

serviceRequest.active Threads currently in the serviceRequest processing phase integer

serviceRequest.avg Average time for service method implementing this application
(excluding JServ engine overhead)

msecs

serviceRequest.maxTime Maximum time for service method implementing this application
(excluding JServ engine overhead)

msecs

serviceRequest.minTime Minimum time for service method implementing this application
(excluding JServ engine overhead)

msecs

serviceRequest.completed Number of times the serviceRequest processing phase has
completed

ops

Table A–35 (Cont.) jserv/zone Metrics

Metric Description Unit
A-30 Oracle9i Application Server Performance Guide

JServ Metrics
JServ JSP Metrics
There is one set of metrics per JSP. Note that the JSP servlet holds all of the
aggregated load metrics for all servlets and JSPs within a zone.

serviceRequest.time Total time for service method implementing this application
(excluding JServ engine overhead)

msecs

loadServlet.avg Average time to load servlet (from cache or file) msecs

loadServlet.maxTime Maximum time to load servlet (from cache or file) msecs

loadServlet.minTime Minimum time to load servlet (from cache or file) msecs

loadServlet.completed Number of times the loadServlet processing phase has
completed

ops

loadServlet.time Total time to load servlet (from cache or file) msecs

loadServletClasses.active Threads currently in the loadServletClasses processing phase integer

loadServletClasses.avg Average time to load servlet classes from file msecs

loadServletClasses.maxTime Maximum time to load servlet classes from file msecs

loadServletClasses.minTime Minimum time to load servlet classes from file msecs

loadServletClasses.completed Number of times the loadServletClasses processing phase has
completed. For most classes, this value is usually 1

ops

loadServletClasses.time Total time to load servlet classes from file msecs

loadServlet.avg Average time to load servlet (from cache or file) msecs

createSession.active Threads currently in the createSession processing phase

createSession.avg Average time to create a session msecs

createSession.maxTime Maximum time to create a session msecs

createSession.minTime Minimum time to create a session msecs

createSession.completed Number of times the createSession processing phase has
completed number of sessions that have been created for this
application

ops

createSession.time Total time to create a session msecs

maxSTMInstances.value Total number of instances available for this SingleThreadModel
servlet

integer

activeSTMInstances.maxValue Maximum number of instances concurrently servicing requests for
this SingleThreadModel

integer

activeSTMInstances.value Total number of instances available for this SingleThreadModel
servlet

instances

Table A–36 (Cont.) /jserv/zone/servlet Metrics

Metric Description Unit
Oracle9iAS Performance Metrics A-31

JServ Metrics
The metric table name is jserv_jsp.

Table A–37 /jserv/zone/servlet Metrics

Metric Description Unit

processRequest.active Threads currently in the processRequest processing phase integer

processRequest.avg Average time to completely process servlet (including JServ engine
overhead)

msecs

processRequest.maxTime Maximum time to completely process servlet (including JServ engine
overhead)

msecs

processRequest.minTime Minimum time to completely process servlet (including JServ engine
overhead)

msecs

processRequest.completed Number of times the processRequest processing phase has completed ops

processRequest.time Total time to completely process servlet (including JServ engine overhead) msecs

serviceRequest.active Threads currently in the serviceRequest processing phase integer

serviceRequest.avg Average time for service method implementing this application (excluding
JServ engine overhead)

msecs

serviceRequest.maxTime Maximum time for service method implementing this application
(excluding JServ engine overhead)

msecs

serviceRequest.minTime Minimum time for service method implementing this application
(excluding JServ engine overhead)

msecs

serviceRequest.completed Number of times the serviceRequest processing phase has completed ops

serviceRequest.time Total time for service method implementing this application (excluding
JServ engine overhead)

msecs

loadServlet.avg Average time to load servlet (from cache or file) msecs

loadServlet.maxTime Maximum time to load servlet (from cache or file) msecs

loadServlet.minTime Minimum time to load servlet (from cache or file) msecs

loadServlet.completed Number of times the loadServlet processing phase has completed ops

loadServlet.time Total time to load servlet (from cache or file) msecs

loadServletClasses.active Threads currently in the loadServletClasses processing phase

loadServletClasses.avg Average time to load servlet classes from file msecs

loadServletClasses.maxTime Maximum time to load servlet classes from file msecs

loadServletClasses.minTime Minimum time to load servlet classes from file msecs

loadServletClasses.
completed

Number of times the loadServletClasses processing phase has
completed. For most classes, this value is usually 1

ops

loadServletClasses.time Total time to load servlet classes from file msecs

loadServlet.avg Average time to load servlet (from cache or file) msecs

createSession.active Threads currently in the createSession processing phase
A-32 Oracle9i Application Server Performance Guide

JServ Metrics
createSession.avg Average time to create a session msecs

createSession.maxTime Maximum time to create a session msecs

createSession.minTime Minimum time to create a session msecs

createSession.completed Number of times the createSession processing phase has completed
number of sessions that have been created for this application

ops

createSession.time Total time to create a session msecs

maxSTMInstances.value Total number of instances available for this SingleThreadModel servlet

activeSTMInstances.
maxValue

Maximum number of instances concurrently servicing requests for this
SingleThreadModel

activeSTMInstances.value Total number of instances available for this SingleThreadModel servlet instances

Table A–37 (Cont.) /jserv/zone/servlet Metrics

Metric Description Unit
Oracle9iAS Performance Metrics A-33

JServ Metrics
A-34 Oracle9i Application Server Performance Guide

Index

A
access logging, 5-12
AggreSpy

access control, 2-5
performance monitoring, 2-4
URL, 2-5
using, 2-4

applications
default configuration, 2-5

B
BC4J

deployment configuration, 6-38
failover mode, 6-40
performance, 6-38

built-in performance metrics, 2-2

C
cache size

calculating with Web Cache, 7-3
maximum with Web Cache, 7-3

cacheScheme data sources option, 6-10
cache-timeout orion-ejb-jar.xml parameter, 6-33
caching

owa_cache packages, 8-24
system-level, 8-23
user-level, 8-23
validation technique, 8-16

call-timeout orion-ejb-jar.xml parameter, 6-28
capacity, 1-7
concurrency

defined, 1-2
limiting, 1-8

concurrent users, 5-8
connection limit

on UNIX with Web Cache, 7-8
on Windows, 7-10
Web Cache, 7-7

connection-retry-interval data sources option, 6-13
contention, 1-5

defined, 1-2
CPU

insufficient, 1-5
CPUs

performance and Web Cache, 7-2

D
data sources

cacheScheme option, 6-10
configuring, 6-8
connection-retry-interval option, 6-13
ejb aware, 6-9
inactivity-timeout option, 6-12
max-connect-attempts option, 6-14
max-connections option, 6-10
min-connections option, 6-11
wait-timeout option, 6-13

database monitoring, 6-37
database tuning, 6-37
default application

configuration, 2-5
demand rate, 1-6, 1-7
directives

See also httpd.conf directives
Index-1

dmsoc4j/AggreSpy
default configuration, 2-5
URI path, 2-5

dmstool
access control, 2-7
address option, 2-8, 2-11
count option, 2-8
dump option, 2-8, 2-11
interval option, 2-8
list option, 2-8, 2-9
options, 2-7
table option, 2-8
using, 2-7

DNS
domain name server, 5-12

do-select-before-insert orion-ejb-jar.xml
parameter, 6-29

dynamic include
vs. static include, 6-25

DYNAMIC_SCHEME cacheScheme value, 6-11

E
Edge Side Includes (ESI)

memory for, 7-4
ejb-location

data sources, 6-9
EJBs

metrics, A-12
monitoring, 4-4
orion-ejb-jar.xml parameters

cache-timeout, 6-33
call-timeout, 6-28
do-select-before-insert, 6-29
isolation, 6-30
locking-mode, 6-30, 6-32
max-instances, 6-30
max-tx-retries, 6-29, 6-30
min-instances, 6-30
pool-cache-timeout, 6-30
timeout, 6-34
update-changed-fields-only, 6-30

performance on OC4J, 6-27
server.xml parameters, 6-27

transaction-config element, 6-27

entity tag caching method, 8-17
error log, 5-13
ErrorLog

directive, 5-13
expires caching technique

caching
expires technique, 8-20

external resource file
for static text, 6-26

F
failover

BC4J, 6-40
FIXED_RETURN_NULL_SCHEME cacheScheme

value, 6-11
FIXED_WAIT_SCHEME cacheScheme value, 6-11
functional demand, 1-7

G
garbage collection

and Web Cache, 7-6
global-web.application.xml parameters, 6-21

H
hash

defined, 1-2
parameter, 5-6

heap size
setting, 6-3

HostNameLookups
directive, 5-12

HTTP connections
limiting for standalone OC4J, 6-35

HTTP server
directives, 8-25
httpd process, 8-4
monitoring, 3-2

httpd
HTTP server process, 8-4

httpd.conf
configuration file

directives, 5-9
Index-2

directives
ErrorLog, 5-13
HostNameLookups, 5-12
KeepAlive, 5-10, 5-12
KeepAliveTimeout, 5-11, 5-12
LogLevel, 5-13
MaxClients, 5-10, 5-11
MaxKeepAliveRequests, 5-11, 5-12
MaxRequestsPerChild, 5-10
MaxSpareServers, 5-10, 8-11
MinSpareServers, 5-10, 8-11
SSLSessionCacheTimeout, 5-13
StartServers, 5-10, 8-11
Timeout, 5-10

port numbers, 4-8

I
inactivity-timeout data sources option, 6-12
include directive use with JSPs, 6-25
incoming connections

Web Cache, 7-7
isolation orion-ejb-jar.xml parameter, 6-30

J
J2EE

guidelines for performance, 6-1
improving performance, 6-1
metrics, A-8

J2EE applications
monitoring, 4-4

Java options
-client, 6-5
concurrentio, 6-6
-server, 6-5
stack size, 6-5
-Xconcurrentio, 6-6
-Xms, 6-4
-Xmx, 6-4
-Xss, 6-5

JServ
metrics, A-28

JSP, 6-20
metrics, A-11

JSP configuration
main_mode, 6-21

JSPs
dynamic include, 6-25
include directives, 6-25
justrun main_mode parameter, 6-21
monitoring, 4-4
page buffer, 6-24
page sessions, 6-22
recompile main_mode parameter, 6-21
runtime include, 6-25
static include, 6-25
translate-time includes, 6-25

justrun main_mode parameter, 6-21
JVM

metrics, A-3
setting heap size, 6-3

K
KeepAlive httpd.conf directive, 5-10, 5-12, 8-25
KeepAliveTimeout httpd.conf directive, 5-11, 5-12

L
latency

defined, 1-2
first-request, 6-16

load balancing
OC4J server, 6-37

load variances, 1-9
load-on-startup web.xml parameter, 6-16
locking-mode orion-ejb-jar.xml parameter, 6-30,

6-32
locking-mode values

optimistic, 6-31
pessimistic, 6-31
read-only, 6-31

logging
access, 5-12
error, 5-13
performance and, 5-12
performance implications of, 5-12

LogLevel directive, 5-13
logresolve
Index-3

utility, 5-13

M
main_mode parameter, 6-21
MaxClients

parameter, 1-4
MaxClients directive, 5-11
MaxClients httpd.conf directive, 5-10
max-connect-attempts data sources option, 6-14
max-connections data sources option, 6-10
max-connections-queue-timeout

max-http-connections attribute, 6-35
maximum cache size

configuring with Web Cache, 7-3
maximum network connections

Web Cache, 7-7
max-instances orion-ejb-jar.xml parameter, 6-30
MaxKeepAliveRequests httpd.conf directive, 5-11,

5-12
MaxRequestsPerChild httpd.conf directive, 5-10
MaxSpareServers httpd.conf directive, 5-10
max-tx-retries orion-ejb-jar.xml parameter, 6-29,

6-30
memory

calculating with Web Cache, 7-3
configuring with Web Cache, 7-3
ESI and Web Cache, 7-4
JVM heap size, 6-3

metric table types
JDBC_Connection, A-5
JDBC_DataSource, A-4
JDBC_Driver, A-4
JDBC_Statement, A-6
jserv_jsp, A-32
jserv_server, A-28
jserv_servlet, A-30
jserv_zone, A-29
JVM, A-3
modplsql_Cache, A-16
modplsql_DatabaseConnectionPool, A-17, A-18
modplsql_HTTPResponseCodes, A-16
modplsql_LastNSQLError, A-17
modplsql_PageEngine, A-20
modplsql_PageEngine_ResponseCodes, A-23

modplsql_SQLErrorGroup, A-16
oc4j_context, A-9
oc4j_ejb_entity_bean, A-12
oc4j_ejb_method, A-13
oc4j_jsp, A-11
oc4j_jspExec, A-11
oc4j_servlet, A-10
oc4j_web_module, A-9
ohs_module, A-3
ohs_server, A-2

metric tables, 2-4
metrics

activeConnections.maxValue, A-29
activeConnections.value, A-29
activeInstances.value, A-12
activeSessions.value, A-30
activeSTMInstances.maxValue, A-31, A-33
activeSTMInstances.value, A-31, A-33
activeThreadGroups.maxValue, A-3
activeThreadGroups.minValue, A-3
activeThreadGroups.value, A-3
activeThreads.maxValue, A-3
activeThreads.minValue, A-3
activeThreads.value, A-3
availableInstances.value, A-12
bean-type.value, A-12
cacheEnabled.value, A-21
CacheFreeSize.value, A-4
CacheGetConnection.avg, A-4
CacheGetConnection.completed, A-4
CacheGetConnection.maxTime, A-4
CacheGetConnection.minTime, A-4
CacheGetConnection.time, A-4
CacheHit.count, A-5
cacheHits.value, A-23, A-24, A-25, A-26, A-27
CacheMiss.count, A-5
cachePageHits.value, A-21
cachePageRequests.value, A-21
CacheSize.value, A-5
cacheStatus.value, A-16
checkReload.active, A-29
checkReload.avg, A-29
checkReload.completed, A-29
checkReload.maxTime, A-29
checkReload.minTime, A-29
Index-4

checkReload.time, A-29
client.active, A-13
client.avg, A-13
client.completed, A-13
client.maxTime, A-13
client.minTime, A-13
client.time, A-13
connection.active, A-2
connection.avg, A-2
ConnectionCloseCount.count, A-4
ConnectionCreate.active, A-4
ConnectionCreate.avg, A-4
ConnectionCreate.completed, A-4
ConnectionCreate.maxTime, A-4
ConnectionCreate.minTime, A-4
ConnectionCreate.time, A-4
connection.maxTime, A-2
connection.minTime, A-2
ConnectionOpenCount.count, A-4
connection.time, A-2
connFetch.active, A-18, A-19
connFetch.avg, A-18, A-19
connFetch.completed, A-18, A-19, A-23, A-24,

A-25, A-26, A-27, A-28
connFetch.maxTime, A-18, A-19
connFetch.minTime, A-18, A-19
connFetch.time, A-18, A-19
CreateNewStatement.avg, A-5, A-6
CreateNewStatement.completed, A-5, A-6
CreateNewStatement.maxTime, A-5, A-6
CreateNewStatement.minTime, A-5, A-6
CreateNewStatement.time, A-5, A-6
createSession.active, A-31, A-32
createSession.avg, A-31, A-33
createSession.completed, A-31, A-33
createSession.maxTime, A-31, A-33
createSession.minTime, A-31, A-33
createSession.time, A-31, A-33
CreateStatement.avg, A-5, A-6
CreateStatement.completed, A-5, A-6
CreateStatement.maxTime, A-5, A-6
CreateStatement.minTime, A-5, A-6
CreateStatement.time, A-5, A-6
EJB, A-12
ejbPostCreate.active, A-14

ejbPostCreate.avg, A-14
ejbPostCreate.completed, A-14
ejbPostCreate.maxTime, A-14
ejbPostCreate.minTime, A-14
ejbPostCreate.time, A-14
error.count, A-17
errorDate.value, A-17
errorRequest.value, A-17
errorText.value, A-17
exclusive-write-access.value, A-12
Execute.time, A-6, A-7
executeTime.active, A-23, A-24, A-25, A-26,

A-27, A-28
executeTime.avg, A-23, A-24, A-25, A-26, A-27
executeTime.maxTime, A-23, A-24, A-25, A-26,

A-27
executeTime.minTime, A-23, A-24, A-25, A-26,

A-27
executeTime.time, A-23, A-24, A-25, A-26, A-27,

A-28
Fetch.time, A-6, A-7
freeMemory.maxValue, A-3
freeMemory.minValue, A-3
freeMemory.value, A-3
handle.active, A-2, A-3
handle.avg, A-2, A-3
handle.completed, A-2, A-3
handle.maxTime, A-2, A-3
handle.minTime, A-2, A-3
handle.time, A-2, A-3
hits.count, A-16, A-18, A-19
host.value, A-29
httpTimeout.value, A-23
httpUnresolvedRedirect.value, A-23
httpXXX.value, A-23, A-24, A-25, A-26, A-27
idlePeriod.completed, A-29
idlePeriod.maxTime, A-29
idlePeriod.minTime, A-29
idlePeriod.time, A-29
isolation.value, A-12
J2EE, A-8
JServ, A-28
JSP, A-11
JVM, A-3
lastErrorDate.value, A-17
Index-5

lastErrorRequest.value, A-17
lastErrorText.value, A-17
lastResponseCode.value, A-23, A-24, A-25,

A-26, A-27
lastResponseDate.value, A-23, A-24, A-25, A-26,

A-27
loadFailed.count, A-30
loadServlet.avg, A-31, A-32
loadServletClasses. active, A-32
loadServletClasses.active, A-31
loadServletClasses.avg, A-31, A-32
loadServletClasses.completed, A-31, A-32
loadServletClasses.maxTime, A-31, A-32
loadServletClasses.minTime, A-31, A-32
loadServletClasses.time, A-31, A-32
loadServlet.completed, A-31, A-32
loadServlet.maxTime, A-31, A-32
loadServlet.minTime, A-31, A-32
loadServlet.time, A-31, A-32
LogicalConnection.value, A-5, A-6
maxBacklog.value, A-29
maxConnections.value, A-29
maxSTMInstances.value, A-31, A-33
newMisses.count, A-16, A-18, A-19
numMods.value, A-2
offline.value, A-25, A-27
Oracle9iAS performance, A-1
pageElapsedTimeAvg.count, A-21
pageElapsedTimeAvg.value, A-21
pageElapsedTime.count, A-21
pageElapsedTime.maxValue, A-21
pageElapsedTime.minValue, A-21
pageElapsedTime.value, A-21
pageMetadataFetchTimeAvg.count, A-22
pageMetadataFetchTimeAvg.value, A-22
pageMetadataFetchTime.count, A-22
pageMetadataFetchTime.maxValue, A-22
pageMetadataFetchTime.minValue, A-22
pageMetadataFetchTime.value, A-22
pageMetadataWaitTimeAvg.count, A-21
pageMetadataWaitTimeAvg.value, A-21
pageMetadataWaitTime.count, A-21
pageMetadataWaitTime.maxValue, A-21
pageMetadataWaitTime.minValue, A-21
pageMetadataWaitTime.value, A-21

pageRequests.value, A-21
parseRequest.active, A-9
parseRequest.avg, A-9
parseRequest.completed, A-9
parseRequest.maxTime, A-9
parseRequest.minTime, A-9
parseRequest.time, A-9
persistence-type.value, A-12
portal, A-15
port.value, A-29
processRequest.active, A-9, A-11, A-30, A-32
processRequest.avg, A-9, A-11, A-30, A-32
processRequest.completed, A-9, A-11, A-30,

A-32
processRequest.maxTime, A-9, A-11, A-30, A-32
processRequest.minTime, A-9, A-11, A-30, A-32
processRequest.time, A-9, A-11, A-30, A-32
queueLengthAvg.count, A-22
queueLengthAvg.value, A-22
queueLength.count, A-22
queueLength.maxValue, A-22
queueLength.minValue, A-22
queueLength.value, A-22
queueStayAvg.count, A-22
queueStayAvg.value, A-22
queueStay.count, A-22
queueStay.maxValue, A-22
queueStay.minValue, A-22
queueStay.value, A-22
queueTimeout.value, A-22
readRequest.active, A-29
readRequest.avg, A-29
readRequest.completed, A-29
readRequest.maxTime, A-29
readRequest.minTime, A-29
readRequest.time, A-29
readSession.count, A-30
request.active, A-2
request.avg, A-2
request.completed, A-2
request.maxTime, A-2
request.minTime, A-2
requests.count, A-16
request.time, A-2
resolveContext.active, A-9
Index-6

resolveContext.avg, A-9
resolveContext.completed, A-9
resolveContext.maxTime, A-9
resolveContext.minTime, A-9
resolveContext.time, A-9
resolveServlet.avg, A-10
resolveServlet.completed, A-10
resolveServlet.maxTime, A-10
resolveServlet.minTime, A-10
resolveServlet.time, A-10
service.active, A-10, A-11, A-12
service.avg, A-10, A-11
service.completed, A-10, A-11
service.maxTime, A-10, A-11
service.minTime, A-10, A-11
serviceRequest.active, A-30, A-32
serviceRequest.avg, A-30, A-32
serviceRequest.completed, A-30, A-32
serviceRequest.maxTime, A-30, A-32
serviceRequest.minTime, A-30, A-32
serviceRequest.time, A-31, A-32
service.time, A-10, A-11
sessionActivation.avg, A-10
sessionActivation.completed, A-10
sessionActivation.maxTime, A-10
sessionActivation.minTime, A-10
sessionActivation.time, A-10
session-type.value, A-12
SQLText.value, A-6, A-7
staleMisses.count, A-16, A-18, A-19
totalMemory.maxValue, A-3
totalMemory.minValue, A-3
totalMemory.value, A-3
transaction-type.value, A-12
trans-attribute.value, A-13
upTime.value, A-3
wrapper.active, A-13
wrapper.avg, A-13
wrapper.completed, A-13
wrapper.maxTime, A-13
wrapper.minTime, A-13
wrapper.time, A-13
writeSession.count, A-30

min-connections data sources option, 6-11
min-instances orion-ejb-jar.xml parameter, 6-30

MinSpareServers httpd.conf directive, 5-10
mod_expires, 8-25
mod_oc4j, 6-3
modplsql_Cache

metric table type, A-16
modplsql_DatabaseConnectionPool

metric table type, A-17, A-18
modplsql_HTTPResponseCodes

metric table type, A-16
modplsql_LastNSQLError

metric table type, A-17
modplsql_PageEngine

metric table type, A-20
modplsql_PageEngine_ResponseCodes

metric table type, A-23
modplsql_SQLErrorGroup

metric table type, A-16
monitoring

EJBs, 4-4
HTTP server, 3-2
JSPs, 4-4
OC4J

J2EE applications monitoring, 4-4
Oracle HTTP Server, 3-11
performance statistics, 2-2
servlets, 4-4

N
network

bandwidth and Web Cache, 7-7
connections on UNIX with Web Cache, 7-8

network connections
on Windows, 7-10
Web Cache, 7-7

O
OC4J

applications monitoring, 4-4
EJB configuration, 6-28
Instance

monitoring, 4-2
monitoring performance statistics, 2-2
process
Index-7

monitoring, 4-2
server load balancing, 6-37

oc4j_context
metric table type, A-9

oc4j_ejb_entity_bean
metric table type, A-12

oc4j_ejb_method
metric table type, A-13

oc4j_jsp
metric table type, A-11

oc4j_jspExec
metric table type, A-11

oc4j_servlet
metric table type, A-10

oc4j_web_module
metric table type, A-9

optimistic locking-mode value, 6-31
optimization

unbuffering a JSP page, 6-24
Oracle Business Components for Java. See BC4J
Oracle Enterprise Manager

module metrics, 3-6
monitoring OHS performance, 3-2
monitoring Oracle9iAS with, 2-2
OC4J

monitoring, 4-2
response and load metrics, 3-5
status metrics, 3-3

Oracle HTTP Server
configuring with directives, 5-9
monitoring, 3-11

Oracle9iAS Web Cache. See Web Cache
owa_cache package, 8-24

P
page buffers with JSPs, 6-24
parameters

hash, 5-6
KeepAlive, 3-13
MaxClients, 1-4, 8-6
MaxRequestsPerChild, 8-6
MaxSpareServers, 8-6
MinSpareServers, 8-6
PlsqlIdleSessionCleanupInterval, 8-6

PlsqlMaxRequestsPerSession, 8-6
setting TCP, 5-6
TCP, 5-2
tcp_close_wait_interval, 5-2, 5-6
tcp_conn_hash_size, 5-2, 5-6, 5-7
tcp_conn_req_max_q, 5-2, 5-8
tcp_conn_req_max_q0, 5-2, 5-8
tcp_recv_hiwat, 5-2
tcp_slow_start_initial, 5-2
tcp_time_wait_interval, 5-2
tcp_xmit_hiwat, 5-2

performance
goals, 1-8
Web Cache and CPUs, 7-2

performance monitoring
native operating system, 2-3
network monitoring tools, 2-3

performance tuning
expires caching, 8-20, 8-21
mod_expires, 8-25
system-level caching, 8-23
validation caching, 8-18

persistent connections
KeepAlive directives, 5-12

pessimistic locking-mode value, 6-31
PL/SQL web toolkit functions, 8-24
pool-cache-timeout orion-ejb-jar.xml

parameter, 6-30
portal

metrics, A-15
performance information, xvii

processes used
Web Cache, 7-2

R
read-only locking-mode value, 6-31
recompile main_mode parameter, 6-21
reload main_mode parameter

JSPs
reload main_mode parameter, 6-21

response time, 1-5
defined, 1-2
goal, 1-8
improving, 1-3
Index-8

peak load, 1-9

S
scalability

defined, 1-2
Secure Sockets Layer (SSL)

session caching, 5-13
server.xml parameters

max-http-connections, 6-35
service time, 1-3, 1-5

defined, 1-2
servlets

loading on startup, 6-16
monitoring, 4-4
unused sessions, 6-18

sessions
Secure Sockets Layer (SSL) and, 5-13
use with JSPs, 6-22

socket-backlog max-http-connections
attribute, 6-35

SSLSessionCacheTimeout directive, 5-13
StartServers httpd.conf directive, 5-10
static include

vs. dynamic include, 6-25
static text

external resource file, 6-26
statistics

cache size for Web Cache, 7-6
memory for Web Cache, 7-6

system-level caching, 8-23

T
TCP

parameters, 5-2
setting parameters, 5-6

think time
defined, 1-2

throughput
defined, 1-2
demand limiter and, 1-7
increasing, 1-5

Timeout httpd.conf directive, 5-10
timeout orion-ejb-jar.xml parameter, 6-34

transaction-config server.xml parameter, 6-27
tuning

expires caching technique, 8-21
system-level caching, 8-23
validation caching, 8-18

U
unit consumption, 1-7
unused sessions

servlets, 6-18
update-changed-fields-only orion-ejb-jar.xml

parameter, 6-30
user-level caching, 8-23

V
validation caching

for mod_plsql, 8-18
technique, 8-16

value max-http-connections attribute, 6-35

W
wait time

contention and, 1-5
defined, 1-3
parallel processing and, 1-4

wait-timeout data sources option, 6-13
Web Cache

calculating memory and cache size, 7-3
configuring memory and cache size, 7-3
Edge Side Includes (ESI), 7-4
garbage collection, 7-6
guidelines for performance, 7-1
improving performance, 7-1
network bandwidth, 7-7
network connections, 7-7
network connections on UNIX, 7-8
performance and CPUs, 7-2
processes used, 7-2
statistics for memory and cache size, 7-6

web toolkit, 8-24
web.xml

load-on-startup parameter, 6-16
Index-9

Index-10

	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Performance Overview
	Introduction to Oracle9iAS Performance
	Performance Terms

	What Is Performance Tuning?
	Response Time
	System Throughput
	Wait Time
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Performance Targets
	User Expectations
	Performance Evaluation

	Performance Methodology
	Factors in Improving Performance

	2 Monitoring Oracle9iAS
	Overview of Monitoring Oracle9iAS
	Oracle Enterprise Manager
	Oracle9iAS Built-in Performance Metrics
	Native Operating System Performance Commands
	Network Performance Monitoring Tools

	Using Oracle9iAS Built-in Performance Metrics
	Viewing Performance Metrics Using AggreSpy
	AggreSpy URL and Access Control

	Viewing Performance Metrics Using dmstool
	Access Control for dmstool
	Using dmstool to List the Names of All Metrics
	Using dmstool to Report Specific Performance Metrics
	Using dmstool With the Interval and Count Options
	Using dmstool to Report All Metrics with Metric Values
	Using dmstool to View Metrics on a Remote Oracle9iAS System

	3 Monitoring Oracle HTTP Server
	Monitoring Oracle HTTP Server with Oracle Enterprise Manager
	Assessing the Oracle HTTP Server Load with Oracle Enterprise Manager
	Status Metrics
	Response and Load Metrics
	Module Metrics

	Investigating Oracle HTTP Server Errors with Oracle Enterprise Manager
	Categorizing Oracle HTTP Server Problems with Oracle Enterprise Manager
	Categorizing Oracle HTTP Server Problems by Module
	Categorizing Oracle HTTP Server Problems by Virtual Host
	Categorizing Oracle HTTP Server Problems by Child Server

	Monitoring Oracle HTTP Server with Built-in Performance Metrics
	Assessing the Oracle HTTP Server Load with Built-in Metrics
	Investigating Oracle HTTP Server Errors with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems by Module
	Categorizing Oracle HTTP Server Performance Problems by Virtual Host
	Categorizing Oracle HTTP Server Performance Problems by Child Server

	4 Monitoring OC4J
	Monitoring OC4J With Oracle Enterprise Manager
	Monitoring OC4J Instances With Oracle Enterprise Manager
	General
	Status
	Response for Servlets and JSPs
	Response for EJBs
	JDBC Usage

	Monitoring J2EE Applications with Oracle Enterprise Manager
	General
	Response for Servlets and JSPs
	Response for EJBs
	Web Module Table
	EJB Modules Table

	Monitoring OC4J With Built-in Performance Metrics

	5 Optimizing Oracle HTTP Server
	TCP Tuning Parameters
	Tuning Linux
	Raising Network Limits on Linux Systems for 2.1.100 or greater
	Tuning a Running System
	Tuning the Default and Maximum Size
	Tuning at Compile Time

	Setting TCP Parameters
	Increasing TCP Connection Table Access Speed
	Specifying Retention Time for Connection Table Entries
	Increasing the Handshake Queue Length
	Changing the Data Transmission Rate
	Changing the Data Transfer Window Size

	Configuring Oracle HTTP Server Directives
	Configuring the MaxClients Directive
	How Persistent Connections Can Reduce httpd Process Availability

	Logging
	Access Logging
	Configuring the HostNameLookups Directive
	Error logging

	Secure Sockets Layer
	Oracle HTTP Server Performance Tips
	Analyze Static Versus Dynamic Requests
	Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
	Beware of a Single Data Point Yielding Misleading Results

	6 Optimizing J2EE Applications In OC4J
	OC4J J2EE Application Performance Quickstart
	Improving J2EE Application Performance by Configuring OC4J Instance
	Setting Java Options for OC4J Processes
	Setting the JVM Heap Size for OC4J Processes
	Setting the Server Option for OC4J Processes
	Setting the Stack Size Option for OC4J Processes
	Setting the Concurrentio Option for OC4J Processes
	Using Oracle Enterprise Manager to Change OC4J JVM Command Line Options

	Setting Up Data Sources – Performance Issues
	Emulated and Non-Emulated Data Sources
	Using the EJB Aware Location Specified in Emulated Data Sources
	Setting the Maximum Open Connections in Data Sources
	Setting the Minimum Open Connections in Data Sources
	Setting the Cached Connection Inactivity Timeout in Data Sources
	Setting the Wait for Free Connection Timeout in Data Sources
	Setting the Connection Retry Interval in Data Sources
	Setting the Maximum Number of Connection Attempts in Data Sources
	Using Oracle Enterprise Manager to Change Data Source Configuration Options

	Improving Servlet Performance in Oracle9iAS
	Improving Performance by Altering Servlet Configuration Parameters
	Loading Servlet Classes at Startup

	Servlet Performance Tips
	Analyze Servlet Duration
	Understand Server Request Load
	Find Large Servlets That Require a Long Load Time
	Watch for Unused Sessions
	Watch for Abnormal Session Usage
	Load Servlet Session Security Routines at Startup

	Improving JSP Performance in Oracle9iAS
	Improving Performance by Altering JSP Configuration Parameters
	Using the main_mode Parameter

	Improving Performance by Tuning JSP Code
	Impact of Session Management on Performance
	Using Static Template Text Instead of out.print for Outputting Text
	Performance Issues for Buffering JSPs
	Using Static Versus Dynamic Includes
	Performance Issues for Including Static Content

	Improving EJB Performance in Oracle9iAS
	Setting server.xml Configuration Parameters for EJBs
	Setting the Transaction Configuration Timeout

	Setting OC4J Specific Configuration Parameters for EJBs
	Configuring Parameters that Apply for All EJBs
	Configuring Parameters for CMP Entity Beans
	Configuring Parameters for BMP Entity Beans
	Configuring Parameters for Session Beans

	Using Multiple OC4Js and Limiting Connections
	Limiting HTTP Connections
	Limiting HTTP Connections with Standalone OC4J

	Configuring Multiple OC4J Processes
	Configuring Multiple OC4J Processes Using Oracle Enterprise Manager

	Balancing Applications Across OC4J Instances

	Database Monitoring and Tuning
	Improving BC4J Performance in Oracle9iAS
	Choose the Right Deployment Configuration
	Use Application Module Pooling for Scalability
	Perform Global Framework Component Customization Using Custom Subclasses
	Use SQL-Only and Forward-Only View Objects when Possible
	Do Not Let Your Application Modules Get Too Large
	Use the Right Failover Mode
	Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows
	Choose the Right Style of Bind Parameters
	Implement Query Conditions at Design Time if Possible
	Use the Right JDBC Fetch Size
	Turn off Event Listening in View Objects used in Batch Processes

	7 Optimizing Web Cache
	Use Two CPUs for Oracle9iAS Web Cache
	Configure Enough Memory for Oracle9iAS Web Cache
	Make Sure You Have Sufficient Network Bandwidth
	Set a Reasonable Number of Network Connections
	Connections on UNIX Platforms
	Connections on Windows NT and Windows 2000

	8 Optimizing PL/SQL Performance
	PL/SQL Performance in Oracle9iAS - Overview
	Performance Tuning Issues for mod_plsql
	Connection Pooling with mod_plsql
	Closing Pooled Database Sessions
	What Happens to the mod_plsql Connection Pool when the Database Restarts?

	Performance Tuning Areas in mod_plsql
	PL/SQL Application
	Connection Pooling and Oracle HTTP Server Configuration
	Tuning the Number of Database Sessions
	Two-Listener Strategy
	Overhead Problems
	The Describe Overhead
	Avoiding the Describe Overhead

	The Flexible Parameter Passing (four-parameter) Overhead

	Using Caching with PL/SQL Web Applications
	Using the Validation Technique
	Last-Modified
	Entity Tag Method
	Using the Validation Technique for mod_plsql
	Second Request Using the Validation Technique

	Using the Expires Technique
	Second Request Using the Expires Technique

	System- and User-level Caching with PL/SQL Web Applications
	PL/SQL Web Toolkit functions (owa_cache package)

	Other Oracle HTTP Server Directives

	A Oracle9iAS Performance Metrics
	Oracle HTTP Server Metrics
	Aggregate Module Metrics
	HTTP Server Module Metrics

	JVM Metrics
	JDBC Metrics
	JDBC Driver Metrics
	JDBC Data Source Metrics
	JDBC Driver Specific Connection Metrics
	JDBC Data Source Specific Connection Metrics
	JDBC Driver Statement Metrics
	JDBC Data Source Statement Metrics

	J2EE Application Metrics - OC4J Metrics
	Web Module Metrics
	Web Context Metrics
	Servlet Metrics
	JSP Metrics
	JSP Runtime Metrics
	JSP Metrics

	EJB Metrics
	EJB Bean Metrics
	EJB Method Metrics

	Portal Metrics
	Parallel Page Engine Metrics

	JServ Metrics
	Overall JServ Metrics
	JServ Zone Metrics
	JServ Servlet Metrics
	JServ JSP Metrics

	Index

