
Oracle® Application Server Personalization
Programmer’s Guide

10g (9.0.4)

Part No.  B12101-01

September 2003



Oracle Application Server Personalization Programmer’s Guide, 10g (9.0.4) 

Part No.  B12101-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved. 

The Programs (which include both the software and documentation) contain proprietary information of 
Oracle Corporation; they are provided under a license agreement containing restrictions on use and 
disclosure and are also protected by copyright, patent and other intellectual and industrial property 
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required 
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems 
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this 
document is error-free. Except as may be expressly permitted in your license agreement for these 
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on 
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial 
computer software" and use, duplication, and disclosure of the Programs, including documentation, 
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement. 
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer 
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for 
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the 
Programs. 

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle 
Corporation. Other names may be trademarks of their respective owners.  



 iii

Contents

Send Us Your Comments ...................................................................................................................    ix

Preface............................................................................................................................................................    xi

Intended Audience ................................................................................................................................     xi
Documentation Accessibility ...............................................................................................................     xi
Structure.................................................................................................................................................     xii
Where to Find More Information .......................................................................................................     xii
Conventions...........................................................................................................................................    xiii

1 OracleAS Personalization Programming

1.1 OracleAS Personalization API Structure ...........................................................................    1-1
1.2 Executing OracleAS Personalization Programs................................................................    1-1
1.3 Javadoc for the OracleAS Personalization APIs ...............................................................    1-2

Part I  Recommendation Engine API

2  REAPI Overview

2.1 REAPI Prerequisites..............................................................................................................    2-1
2.2 REAPI Definitions and Concepts ........................................................................................    2-2
2.2.1 REAPI End Users (Customers and Visitors) ..............................................................    2-2
2.2.2 Web Applications and Sessions ...................................................................................    2-2
2.2.3 REAPI Sessionful Web Applications...........................................................................    2-3
2.2.4 REAPI Sessionless Web Applications .........................................................................    2-3



iv

2.2.5 REAPI Data Collection ..................................................................................................    2-3
2.2.6 REAPI Recommendations.............................................................................................    2-4
2.2.7 REAPI Hot Picks.............................................................................................................    2-4
2.3 Before Using REAPI ..............................................................................................................    2-4
2.3.1 REAPI Demo Program...................................................................................................    2-5
2.3.2 Creating REProxyRT Objects........................................................................................    2-6
2.3.3 Starting an REAPI Session ............................................................................................    2-6
2.3.4 Creating Instances of REAPI Supporting Classes......................................................    2-7
2.3.5 Collecting Data for REAPI Recommendations ..........................................................    2-7
2.3.6 Getting REAPI Recommendations...............................................................................    2-8
2.3.7 Making REAPI Recommendations ..............................................................................    2-9
2.3.8 Closing an REAPI Session.............................................................................................    2-9
2.3.9 Removing REProxyRT Objects ...................................................................................    2-10

3 REAPI Supporting Classes

3.1 Ratings in OracleAS Personalization ..................................................................................    3-1
3.2 Location of REAPI Classes ...................................................................................................    3-1
3.3 REAPI EnumType Interfaces ...............................................................................................    3-2
3.3.1 REAPI CategoryMembership Interface.......................................................................    3-3
3.3.2 REAPI DataSource Interface .........................................................................................    3-3
3.3.3 REAPI Filtering Interface ..............................................................................................    3-4
3.3.4 REAPI InterestDimension Interface.............................................................................    3-5
3.3.5 REAPI PersonalizationIndex Interface........................................................................    3-5
3.3.6 REAPI ProfileDataBalance Interface............................................................................    3-6
3.3.7 REAPI ProfileUsage Interface.......................................................................................    3-7
3.3.8 REAPI RecommendationAttribute Interface..............................................................    3-7
3.3.9 REAPI Sorting Interface ................................................................................................    3-8
3.3.10 REAPI User Interface .....................................................................................................    3-8
3.4 Other Supporting REAPI Classes........................................................................................    3-9
3.4.1 ContentItem Class ..........................................................................................................    3-9
3.4.2 DataItem Class ..............................................................................................................    3-10
3.4.3 FilteringSettings Class .................................................................................................    3-10
3.4.4 IdentificationData Class ..............................................................................................    3-11
3.4.5 Item Class ......................................................................................................................    3-12
3.4.6 ItemDetailData Class ...................................................................................................    3-12



v

3.4.7 Recommendation Class ...............................................................................................    3-12
3.4.8 RecommendationContent Class.................................................................................    3-13
3.4.9 RecommendationList Class ........................................................................................    3-13
3.4.10 TuningSettings Class ...................................................................................................    3-13

4 Using REAPI

4.1 Recommendation Proxy Classes .........................................................................................    4-1
4.2 Location of RE Proxy Classes ..............................................................................................    4-2
4.2.1 RE Proxy Creation and Management..........................................................................    4-2
4.2.1.1 RE Data Collection..................................................................................................    4-2
4.2.1.2 REProxyManager Class..........................................................................................    4-3
4.2.2 Proxy Methods................................................................................................................    4-3
4.2.3 RE Proxy Session Management....................................................................................    4-3
4.2.4 RE Proxy Data Collection and Management..............................................................    4-3
4.2.5 Re Proxy Customer Registration..................................................................................    4-4
4.2.6 RE Proxy Recommendations ........................................................................................    4-4
4.2.6.1 Ratings in OracleAS Personalization ...................................................................    4-5
4.2.6.2 Meaning of Returned Value for Recommendations ..........................................    4-5
4.3 Rules and Recommendations ..............................................................................................    4-6
4.4 RE Proxy Method Usage Notes ...........................................................................................    4-6
4.4.1 Session Creation .............................................................................................................    4-6
4.4.2 Data Collection ...............................................................................................................    4-6
4.4.2.1 Add Items.................................................................................................................    4-6
4.4.2.2 Remove Items ..........................................................................................................    4-7
4.4.3 Proxy Creation................................................................................................................    4-7
4.4.3.1 Cache Size ................................................................................................................    4-7
4.4.3.2 Interval......................................................................................................................    4-8
4.4.4 Cross Sell Methods.........................................................................................................    4-8
4.4.5 Proxy Destruction ..........................................................................................................    4-9

5 REAPI Examples and Usage

5.1 REAPI Demo ..........................................................................................................................    5-1
5.2 REAPI Basic Usage................................................................................................................    5-1
5.2.1 Create an REProxy Object .............................................................................................    5-2
5.2.2 Use the Proxy..................................................................................................................    5-2



vi

5.2.3 Destroy the Proxy...........................................................................................................    5-3
5.3  Sessionful Web Application Outline..................................................................................    5-3
5.4 Sessionless Web Application Outline .................................................................................    5-4
5.5 REProxyManager Interaction with JVM ............................................................................    5-5
5.5.1 Standalone Java Applications.......................................................................................    5-5
5.5.2 Java Server-Side Modules .............................................................................................    5-5
5.6  Using Multiple Instances of REProxy................................................................................    5-6
5.6.1 Initialization Fail Safe ....................................................................................................    5-6
5.6.2 Uninterrupted REAPI Service ......................................................................................    5-7
5.6.3 Load Balancing ...............................................................................................................    5-8
5.7 Extracting Individual Recommendations ..........................................................................    5-8
5.8 Handling Multiple Currencies.............................................................................................    5-8
5.9 Recommendation Engine Usage .........................................................................................    5-9
5.10 Using Demographic Data ...................................................................................................    5-10
5.11 Handling Time-Based Items ..............................................................................................    5-11

Part II  Recommendation Engine Batch API

6 RE Batch API Overview

6.1 RE Batch API Prerequisites ..................................................................................................    6-1
6.2 RE Batch API Definitions and Concepts ............................................................................    6-2
6.2.1 RE Batch API End Users (Customers) .........................................................................    6-2
6.2.2 RE Batch API Recommendations .................................................................................    6-2
6.3 Using RE Batch API...............................................................................................................    6-2
6.3.1 Setting Up the RE Batch API Environment ................................................................    6-2
6.3.1.1 Customer Profile Data ............................................................................................    6-3
6.3.1.2 Deploy a Package to an RE ....................................................................................    6-3
6.3.2 Sample RE Batch API Usage .........................................................................................    6-3
6.3.3 Creating an REBatchProxy Object ...............................................................................    6-4
6.3.4 Creating Instances of RE Batch API Objects...............................................................    6-4
6.3.5 Converting Data for RE Batch API ..............................................................................    6-4
6.3.6 Managing Customer Profiles for RE Batch API .........................................................    6-4
6.3.7 Getting RE API Batch Recommendations...................................................................    6-4
6.3.7.1 Ratings in OracleAS Personalization....................................................................    6-5
6.3.7.2 Creating Recommendations ..................................................................................    6-5



vii

6.3.8 Making RE Batch Recommendations ..........................................................................    6-5
6.3.9 Removing the REBatchProxy Object ...........................................................................    6-6

7 RE Batch API Supporting Classes

7.1 Ratings in OracleAS Personalization..................................................................................    7-1
7.2 Location of RE Batch API Classes .......................................................................................    7-2
7.3 EnumType Interfaces for RE Batch API .............................................................................    7-2
7.3.1 CategoryMembership Interface ...................................................................................    7-3
7.3.2 DataSource Interface......................................................................................................    7-4
7.3.3 InterestDimension Interface .........................................................................................    7-4
7.3.4 PersonalizationIndex Interface.....................................................................................    7-5
7.3.5 ProfileDataBalance Interface ........................................................................................    7-6
7.3.6 ProfileUsage Interface ...................................................................................................    7-6
7.3.7 Sorting Interface .............................................................................................................    7-7
7.4 Other RE Batch API Supporting Classes............................................................................    7-8
7.4.1 DataItem Class................................................................................................................    7-8
7.4.2 FilteringSettings Class ...................................................................................................    7-8
7.4.3 Item Class ........................................................................................................................    7-9
7.4.4 Location Class ...............................................................................................................    7-10
7.4.5 TuningSettings Class ...................................................................................................    7-10

8 Using the Recommendation Engine Batch Proxy

8.1 REProxy Batch Overview.....................................................................................................    8-1
8.2 Location of REProxyBatch Classes......................................................................................    8-1
8.2.1 REProxyBatch Creation and Management.................................................................    8-2
8.2.1.1 Customer Profile Management .............................................................................    8-2
8.2.2 REProxyBatch Recommendations ...............................................................................    8-2
8.2.2.1 Ratings in OracleAS Personalization ...................................................................    8-2
8.2.2.2 Meaning of Returned Value for Recommendations ..........................................    8-2
8.2.2.3 Cross Sell Method Usage Notes............................................................................    8-3
8.2.2.4 Recommendation Method Usage Notes..............................................................    8-3
8.3 REProxyBatch Rules and Recommendations....................................................................    8-4



viii

9 REProxyBatch API Examples and Usage

9.1 REProxyBatch API Basic Usage...........................................................................................    9-1
9.1.1 Code Sample: Recommend Top ...................................................................................    9-2
9.1.2 Code Sample: Recommend Cross Sell.........................................................................    9-2
9.2 Recommendation Engine Usage .........................................................................................    9-2
9.3 Handling Multiple Currencies.............................................................................................    9-3
9.4 Using Demographic Data .....................................................................................................    9-4
9.5 Handling Time-Based Items ................................................................................................    9-4

A REAPI Sample Program

B REProxyBatch Sample Program

B.1 RE Batch Sample Program Overview.................................................................................    B-1
B.1.1 RE Batch Sample Program Output ..............................................................................    B-1
B.2 Executing the RE Batch Sample Program ..........................................................................    B-2
B.3 RE Batch Sample Program Code .........................................................................................    B-3
B.3.1 batchtest.txt .....................................................................................................................    B-3
B.3.2 REBatchTest.java ............................................................................................................    B-5

Index



ix

Send Us Your Comments

Oracle Application Server Personalization Programmer’s Guide, 10g (9.0.4) 

Part No.  B12101-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this 
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information?  If so, where?
■ Are the examples correct?  Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document 
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ infodev_us@oracle.com 
■ FAX: 781-238-9893 Attn: OracleAS Personalization Documentation
■ Postal service:

Oracle Corporation 
OracleAS Personalization Documentation
10 Van de Graaff Drive
Burlington, Massachusetts 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.



x



                                                               xi

Preface

This manual describes how a Java programmer can use Oracle Application Server 
Personalization (OracleAS Personalization) Recommendation Engine API (REAPI) 
to collect data and obtain recommendations in real time.

Intended Audience
This manual is intended for Java programmers who create and maintain Web sites 
that use OracleAS Personalization. 

Documentation Accessibility 
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of 
assistive technology. This documentation is available in HTML format, and contains 
markup to facilitate access by the disabled community. Standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For additional information, visit the Oracle 
Accessibility Program Web site at http://www.oracle.com/accessibility/. 

Accessibility of Code Examples in Documentation JAWS, a Windows screen 
reader, may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, JAWS may not always read a line of text that 
consists solely of a bracket or brace. 



xii                                                                 

Accessibility of Links to External Web Sites in Documentation This 
documentation may contain links to Web sites of other companies or organizations 
that Oracle Corporation does not own or control. Oracle Corporation neither 
evaluates nor makes any representations regarding the accessibility of these Web 
sites.  

Structure
This manual contains the following chapters and appendixes:

■ Chapter 1: Describes the OracleAS Personalization APIs.

■ Chapter 2: Introduces REAPI.

■ Chapter 3: Describes the REAPI supporting classes.

■ Chapter 4: Describes the REAPI methods used to manage sessions, manage 
data, and request recommendations.

■ Chapter 5: Contains examples of how to perform common tasks with the 
REAPI.

■ Chapter 6: Introduces RE Batch API.

■ Chapter 7: Describes the RE Batch API supporting classes.

■ Chapter 8: Describes the RE Batch API methods used to request 
recommendations.

■ Chapter 9: Contains examples of how to perform common tasks with the RE 
Batch API.

■ Appendix A: Contains a complete example of REAPI use.

■ Appendix B: Contains a complete example of RE Batch API use.

Where to Find More Information
Documentation for OracleAS Personalization at the current release consists of the 
following documents:

■ Oracle Application Server 10g Release Notes, 10g (9.0.4), which contains a chapter 
for each component of Oracle Application Server. The chapter for the OracleAS 
Personalization component contains platform-specific information, a bug 
report, and informatioin about any late-breaking changes.

■ Oracle Application Server Personalization User’s Guide, release 10g (9.0.4).



xiii

■ Oracle Application Server Personalization Administrator’s Guide, release 10g (9.0.4).

■ Oracle Application Server Personalization Programmer’s Guide, release 10g (9.0.4) 
(this document). A programmer’s manual for programming the 
recommendation engines in real time and for obtaining bulk recommendations. 

■ The API classes and methods are also described in Javadoc (Oracle Application 
Server Personalization API Reference), updated for the current release.

Related Manuals
OracleAS Personalization documentation is a component of the Oracle Application 
Server 10g (9.0.4) Documentation Library. See especially:

■ Oracle Application Server 10g Concepts

■ Oracle Application Server 10g Administrator’s Guide

■ Oracle Application Server 10g Installation Guide (the appropriate version for your 
operating system).

Documentation Formats
Documentation for OracleAS Personalization is provided in PDF and HTML 
formats.

To view the PDF files, you will need 

■ Adobe Acrobat Reader 3.0 or later, which you can download from 
http://www.adobe.com.

To view the HTML files, you will need 

■ Netscape 4.x or later, or 

■ Internet Explorer 4.x or later 

Conventions
In this manual, Windows refers to the Windows95, Windows98, and the Windows 
NT operating systems.

The SQL interface to Oracle9i is referred to as SQL. This interface is the Oracle9i 
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly 
referred to as the ANSI/ISO SQL standard or SQL92.

In examples, an implied carriage return occurs at the end of each line, unless 
otherwise noted. You must press the Return key at the end of a line of input.



xiv                                                                 

The table below shows the conventions used in this manual and their meanings. 

Convention Meaning

    .
    .
    .

Vertical ellipsis points in an example mean that information not 
directly related to the example has been omitted.

 . . . Horizontal ellipsis points in statements or commands mean that 
parts of the statement or command not directly related to the 
example have been omitted.

boldface text Boldface type in text indicates a term defined in the text, the glossary, 
or in both locations.

italic text Text or syntax in italics specify user-supplied names or data.

< >  Angle brackets enclose user-supplied names.

[ ] Brackets enclose optional clauses from which you can choose one or 
none.



OracleAS Personalization Programming 1-1

1
OracleAS Personalization Programming

Oracle Application Server Personalization (OracleAS Personalization) provides two 
Java application program interfaces (APIs):

■ Recommendation Engine API (REAPI)

■ Recommendation Engine Batch API (RE Batch API)

REAPI enables a Web application written in Java to collect and preprocess data used 
to build OracleAS Personalization models and to request recommendations. The 
recommendations are returned in real time. REAPI is described in Part I of this 
manual.

RE Batch API enables a web application written in Java to request OracleAS 
Personalization-style recommendations in bulk mode. The recommendations are 
written to table. RE Batch API does not return results in real time. REAPI Batch is 
described in Part II of this manual.

1.1 OracleAS Personalization API Structure
The two OracleAS Personalization APIs have the same components:

■ Supporting classes, used to set constraints for the mining operations

■ The proxy classes, used to obtain recommendations

1.2 Executing OracleAS Personalization Programs
Before you can execute a program using either OracleAS Personalization API, you 
must deploy and build an OracleAS Personalization package, as described in the 
Oracle Application Server Personalization User’s Guide. 



Javadoc for the OracleAS Personalization APIs

1-2 OracleAS Personalization Programmer’s Guide

1.3 Javadoc for the OracleAS Personalization APIs
Detailed descriptions of the OracleAS Personalization APIs are not included in this 
manual. The API calls are documented by Javadoc; see the Oracle Application Server 
Personalization API Reference.



Part I
 Recommendation Engine API

Part I describes the OracleAS Personalization REAPI (Recommendation Engine 
Application Programming Interface). The REAPI permits a Web application to 
collect targeted data and to return recommendations during a session. 

This part contains the following chapter:

■ Chapter 2, "REAPI Overview"

■ Chapter 3, "REAPI Supporting Classes"

■ Chapter 4, "Using REAPI"

■ Chapter 5, "REAPI Examples and Usage"

For a complete example of REAPI usage, see Appendix A.

For detailed descriptions of the REAPI classes, see the Javadoc in the OracleAS 
Personalization section of the Oracle Application Server 10g (9.0.4) Documentation 
Library.





REAPI Overview 2-1

2
REAPI Overview

The OracleAS Personalization REAPI (Recommendation Engine Application 
Programming Interface) enables a Web application written in Java to collect and 
preprocess data used to build OracleAS Personalization models and to request 
recommendations. The recommendations are returned in real time.

OracleAS Personalization also includes the Recommendation Engine Batch API, 
which returns bulk recommendations.

REAPI was designed to be extensible, to minimize the number of API functions, to 
be uniform, and to keep the number of arguments to a minimum.

Appendix A contains a complete example of REAPI use.

OracleAS Personalization includes a demo program that helps you learn how the 
API methods work.

REAPI classes and methods are described in detail in the Javadoc in the OracleAS 
Personalization section of the Oracle Application Server 10g Documentation 
Library.

2.1 REAPI Prerequisites
Before you can use REAPI methods, OracleAS Personalization must be installed 
and the appropriate tables must be created and populated. If you plan to use 
existing data, the data must be converted to use the appropriate schema. If you plan 
to use Hot Picks, you must specify Hot Pick groups, as well as Hot Picks. If you are 
using one or more taxonomies, they must be properly specified.

Note: REAPI and REAPI Demo are installed on the system where 
Oracle Application Server is installed.



REAPI Definitions and Concepts

2-2 OracleAS Personalization Programmer’s Guide

If you plan to request recommendations, you must build and deploy an OracleAS 
Personalization package before you request any recommendations. Use the 
OracleAS Personalization Administrative UI to do this.

For detailed information about how to install OracleAS Personalization, see the 
Oracle Application Server 10g Installation Guide and the Oracle Application Server 
Personalization Administrator’s Guide. For information about how to create and 
deploy packages, see Oracle Application Server Personalization User’s Guide and the 
online help for the OracleAS Personalization Administrative UI.

2.2 REAPI Definitions and Concepts
This section describes the collections of methods that make up the REAPI and 
concepts and terms used in the description of the API.

2.2.1 REAPI End Users (Customers and Visitors)
End users (users of a Web site that uses OracleAS Personalization for personalization 
services) are divided into two groups: customers and visitors. A customer is a 
registered user, who can be identified by a unique customer ID assigned by the Web 
application. A visitor is an unregistered user; a visitor is usually assigned a visitor 
ID by the Web application. A visitor can become a customer by completing 
registration. End users are specified using the IdentificationData class.

2.2.2 Web Applications and Sessions
Some Web applications are stateful, that is, they maintains the state of the client 
activities during a certain time period; other Web applications are stateless. Most 
Web applications that support eCommerce are stateful or sessionful. A client session 
often starts with a login and ends with either an explicit logout or when the session 
times out. OracleAS Personalization maintains its own session for data mining 
purpose regardless of whether the application is stateful or stateless. If the 
application is stateful, the session that OracleAS Personalization maintains can be 
perfectly mapped as the application’s session. (For an eCommerce application, the 
recommendation made to the user is based on the user activities.) If the application 
does not maintain user session, OracleAS Personalization then tracks the user 
session on itself. In this case, the OracleAS Personalization session starts when a 
particular user ID appears in any REAPI method call the first time, and the session 
ends when the session times out, that is, when the user ID remains inactive for a 
preset time period. 



REAPI Definitions and Concepts

REAPI Overview 2-3

In summary, the Web application that calls REAPI can be either of the following:

■ sessionful (stateful), that is, it creates a session for each user visit to the Web site 

■ sessionless (stateless), that is, it does not create such a session

OracleAS Personalization is always sessionful; it creates a session even if the Web 
application does not.

During the OracleAS Personalization session, the Web application can collect data 
and/or request recommendations.

2.2.3 REAPI Sessionful Web Applications
If the Web application is sessionful, OracleAS Personalization will map its session to 
the application session. To create a sessionful application, use one of the following 
methods:

■ createCustomerSession to create a session for a customer (registered user)

■ createVisitorSession to create a session for a visitors (a user who isn’t 
registered)

The Web application then uses the createSessionful() method of the class 
IdentificationData to create identification data used during the session.

2.2.4 REAPI Sessionless Web Applications
If the Web application is sessionless, the recommendation engine (RE) will maintain 
OracleAS Personalization sessions by itself. An OracleAS Personalization session 
will be created when the first REAPI method (either data collection or 
recommendation request) issued for a given customerId. The RE will track user 
activity until the session is timed out, that is, until the given customerId is 
inactive for a specified period.

The Web application uses the createSessionless() method of the class 
IdentificationData to create user identification for the session.

2.2.5 REAPI Data Collection
OracleAS Personalization supports collecting several kinds of data: demographic 
data, purchasing, rating, and navigation data. The Web application decides what 
kind of data to collect.



Before Using REAPI

2-4 OracleAS Personalization Programmer’s Guide

Data for both visitors and customers can be either persisted (stored in the database) 
or not. Data is collected in an RE and is persisted in the mining table repository 
(MTR) database. A configuration parameter specifies whether or not to persist data. 
For more information about what data is persisted and when, see the discussion of 
data synchronization in the Oracle Application Server Personalization Administrator’s 
Guide.

Data collection makes it possible to generate recommendations based on user 
activity during the current session as well as historical data.

2.2.6 REAPI Recommendations
For both visitors and customers, recommendations are based on two kinds of data:

■ Historical data, which is stored in the database and retrieved at the beginning of 
the current session

■ Data collected during the current session 

2.2.7 REAPI Hot Picks
On some e-commerce sites, vendors promote certain products called “hot picks”; 
the hot picks might, for example, be this week’s specials. The hot pick items are 
grouped into Hot Pick Groups. The hot pick items and groups are specified by the 
OracleAS Personalization administrator in the Mining Table Repository (MTR); each 
hot picks group is identified by a (long) integer.

2.3 Before Using REAPI
Before you can use REAPI, the following must be true:

■ A recommendation engine farm containing at least one recommendation engine 
must exist.

■ A package must have been successfully deployed in the recommendation 
engine farm.

Note: Ratings in OracleAS Personalization are in "ascending order 
of goodness", that is, the higher the rating, the more the user prefers 
the item. Low rated items are items that the user does not prefer. 
OracleAS Personalization algorithms use these assumptions, so it is 
important that ratings are in ascending order of goodness.



Before Using REAPI

REAPI Overview 2-5

Oracle Application Server Personalization User’s Guide and the online help for the 
OracleAS Personalization Administrative UI explain how to perform these steps.

Some REAPI methods collect data in the recommendation engine (RE), which 
resides in Oracle9i database; others retrieve recommendations.

You can then either collect data or get recommendations. You cannot get 
recommendations until there is an existing deployed package, which is created 
using the OracleAS Personalization Administrative UI. You cannot create a package 
until there is some data available; this data can either be collected using the REAPI 
or converted from existing data collected by your Web application and stored in an 
Oracle database.

When you design an OracleAS Personalization application, you must decide if there 
should be more than one RE and, if there are several REs, how to use them. For a 
discussion of the design considerations, see "Recommendation Engine Usage" in 
Chapter 5.

Recommendations may want to take income level (salary) into consideration; for 
example, you may want to recommend items that the user can afford to buy. If the 
users of the Web site live in several countries (for example, the Web site sells items 
in Japan and India), see "Handling Multiple Currencies" in Chapter 5.

2.3.1 REAPI Demo Program
OracleAS Personalization includes REAPI Demo that illustrates the use of many of 
the REAPI methods. This sample program can be used to learn about REAPI calls 
and can also be used to verify that OracleAS Personalization is correctly installed. 

After you have installed OracleAS Personalization, start REAPI Demo by opening 
the following URL in Netscape or Internet Explorer:

http://server/redemo/

where server is the name of the system where Oracle Application Server is 
installed. The REAPI test site is displayed.

To view the source code for the OracleAS Personalization REAPI Demo, click "View 
Source Code."

For information about how run the demo, see the Oracle Application Server 
Personalization User’s Guide. There are also some examples of how to perform typical 
tasks using REAPI in Chapter 5 of this manual and a complete example using all 
REAPI functionality in Appendix A.



Before Using REAPI

2-6 OracleAS Personalization Programmer’s Guide

2.3.2 Creating REProxyRT Objects
Before any recommendation or data collection requests can be processed using 
REAPI methods, at least one REProxyRT object that connects to designated RE 
must be created. 

In a Web application environment, it is better to create all required proxies during 
the initialization stage. This is a safe approach, because the application does not 
have to process any recommendation requests after the application is initialized 
successfully.

If it is not possible to create all required proxies during initialization, the proxies 
may be created when the very first recommendation request is being processed. In 
this case, the application code must handle race conditions properly when 
numerous requests come up simultaneously. If numerous recommendation requests 
came up before the proxy exists, only one of the requests will create the proxy object 
because creating a proxy is a synchronous process. Since it may take a few hundred 
milliseconds to create a proxy object, many requests may be held up during the 
time. Thus, a racing situation may occur. Although REAPI is multi-thread safe, such 
a racing situation will not cause any problem for REProxyRT. However, it may 
cause exceptions for the application.

See Chapter 5 for more information about proxies.

2.3.3 Starting an REAPI Session
If the Web application is sessionful, it must start a session. The Web application 
must take care to specify a unique session ID for each application session. For an 
example of how to do this, see Chapter 5.

If the Web application is sessionless, it does not have to start a session. (In this case 
OracleAS Personalization will start an internal session for a given user when the 
Web application makes the first REAPI call.)

OracleAS Personalization starts a session for each user, as defined by the user ID 
provided by the Web application. If two people are using a site at the same time and 
they both use the same user ID (and the application does not distinguish between 
different sessions), then OracleAS Personalization assigns the same session ID to 
both users. OracleAS Personalization treats them as a single user. After the 
OracleAS Personalization session times out, OracleAS Personalization assigns a 
new session ID when the user logs in again. 

Sessionful and sessionless applications get recommendations on behalf of a user. 
User IDs must be unique.



Before Using REAPI

REAPI Overview 2-7

2.3.4 Creating Instances of REAPI Supporting Classes
To use the REAPI, you must create instances of the objects used by the API method 
signatures. Use the REAPI supporting classes, described in Chapter 3, to create 
these instances. It is always necessary, for example, to create an 
IdentificationData object. The following classes are frequently used in REAPI 
signatures:

■ IdentificationData

■ FilteringSettings

■ TuningSettings

■ Item

■ DataItem

■ Recommendation

■ Recommendation Content

For examples, see Chapter 5 and the complete example in Appendix A.

2.3.5 Collecting Data for REAPI Recommendations
OracleAS Personalization generates recommendations based on data describing 
past and/or current user behavior. 

If the Web application has user data stored in an Oracle table, the data must be 
transformed and stored in the Mining Table Repository (MTR) before it can be used 
to generate recommendations.

A Web application can also collect data during the current session. This data can be 
used to make recommendations during the current session and it can be stored to 
make recommendations in future sessions.

Use the following methods to collect and manage data during the current session:

addItem();

addItems();

removeItem();

removeItems(); 

These methods add information to or remove information from the OracleAS 
Personalization Recommendation Engine (RE) and its cache for a specified 



Before Using REAPI

2-8 OracleAS Personalization Programmer’s Guide

OracleAS Personalization internal session ID. The session ID is stored in the 
IdentificationData passed in the REAPI method.

OracleAS Personalization Data Caching
When one of the OracleAS Personalization data collection methods (addItem() or 
addItems()) is called, the user profile data is first saved in a buffer (the Data 
Collection Cache) on the Application Server. The data collection cache is created as 
part of the initialization of an REProxy object. The size of the data buffer is 
custom-configurable and is specified by the input parameter cacheSize of the 
method REProxyManager.createProxy(). The data saved in the buffer is 
periodically saved (archived) in the database. The interval of archive is set by 
another the input parameter interval of the same method. The data collection cache 
consists of two identical buffers; when one buffer is being archived, the other is 
used for saving the incoming data. Thus the data collection operation runs without 
interruption.

2.3.6 Getting REAPI Recommendations
To get a recommendation, the Web application calls one of the following 
recommendation methods:

■ crossSellForItemFromHotPicks()

■ crossSellForItemsFromHotPicks()

■ rateItem()

■ rateItems()

■ recommendBottomItems()

■ recommendCrossSellForItem()

■ recommendCrossSellForItems()

■ recommendFromHotPicks()

■ recommendTopItems()

■ selectFromHotPicks()

These methods are used to get recommendations for either visitors or customers. 

How REAPI Creates Recommendations
OracleAS Personalization uses rule tables stored in the RE cache to calculate the 
recommendations requested by the methods listed above. The specific rule table 



Before Using REAPI

REAPI Overview 2-9

used depends upon the REAPI method made. In general, the antecedents of the 
rules are matched against the data in cache (both historical and current session data) 
and the probabilities of the various consequents are computed. These items are then 
ordered by probability, and numberOfItems (an API argument) items are 
returned.

If there is enough memory in the RE database, the RE caches all rules associated 
with a particular package deployed from the MTR to the RE, not just the most 
recently used rules.

Scoring for Visitors:
For visitors, only current session data is used. Usually only navigational data (click 
stream) is persisted for visitors, but if the Web application persists other kinds of 
data for visitors, that data will also be used for model building. (OracleAS 
Personalization builds a model when it creates a package.) The scoring of these 
different methods uses only the data stored in the RE cache by addItem() 
methods.

Scoring for Customers:
For customers, the scoring is the same as for visitors. For customers, historical data 
can also be used for scoring. 

The OracleAS Personalization Mining Table Repository (MTR) contains historical 
rating, transactional data, and navigational data stored in both detailed and 
aggregated formats. The MTR also contains demographic data. When scoring for 
customers, the RE retrieves the demographic data and the aggregated version of the 
other data source types.

2.3.7 Making REAPI Recommendations
REAPI methods that make recommendations return the recommendations to the 
Web application. The Web application then decides which recommendations to pass 
to the user.

2.3.8 Closing an REAPI Session
A sessionful Web application should use closeSession() to close the OracleAS 
Personalization session. If there is no explicit closeSession() method, OracleAS 
Personalization automatically closes the session when it times out.

In a sessionless Web application, the OracleAS Personalization session closes when 
it times out.



Before Using REAPI

2-10 OracleAS Personalization Programmer’s Guide

For either sessionless or sessionful Web applications, the time-out period is 
specified as a configuration parameter.

See the Oracle Application Server Personalization Administrator’s Guide for information 
about configuration parameters.

2.3.9 Removing REProxyRT Objects
If you wish to destroy proxies programmatically you can use one of the following 
methods:

■ destroyProxy(), which destroys one name proxy

■ destroyAllProxies(), which destroys all existing proxies. 

 Both methods forcefully remove proxies regardless of their active status. See 
detailed discussion in Chapter 5 for different usage models.



REAPI Supporting Classes 3-1

3
REAPI Supporting Classes

This chapter describes the supporting classes for the REProxy class. These classes 
are used to create instances of the objects used by the methods described in 
Chapter 4. You may be able to create one instance of many of these classes and use 
that one instance as an argument for several calls.

All methods described in this chapter are public.

The supporting classes are divided into two categories:

■ EnumType interfaces

■ Other supporting classes

This chapter does not contained detailed descriptions of any of the classes. For 
detailed information, see the Javadoc in the OracleAS Personalization section of the 
Oracle Application Server 10g Documentation Library.

3.1 Ratings in OracleAS Personalization
Ratings in OracleAS Personalization are in "ascending order of goodness", that is, 
the higher the rating, the more the user prefers the item. Low rated items are items 
that the user does not prefer. OracleAS Personalization algorithms use these 
assumptions, so it is important that ratings are in ascending order of goodness.

3.2 Location of REAPI Classes
The following classes are in the oracle.dmt.op.re.base package:

■ DataItem

■ Enum



REAPI EnumType Interfaces

3-2 OracleAS Personalization Programmer’s Guide

■ FilteringSettings

■ Item

■ ItemList

■ TuningSettings

■ RecommendationContent  (one class in oracle.dmt.op.re.reapi.rt)

To use the Enum interfaces, you must include the following statement in your Java 
program:

import oracle.dmt.op.re.base.Enum;

3.3 REAPI EnumType Interfaces
Many of the REAPI methods reference attributes that can take on a finite number of 
values. The interface Enum is used to implement the base class for these enumerated 
constants.

The Enum interface has a nested EnumType class with the following general 
methods:

int getId()

String toString() 

String getName() 

boolean isEqual(EnumType) 

 The following interfaces extend EnumType:

■ CategoryMembership

■ DataSource

■ Filtering

■ InterestDimension

■ PersonalizationIndex

■ ProfileDataBalance

■ ProfileUsage

■ RecommendationAttribute

■ Sorting

■ User



REAPI EnumType Interfaces

REAPI Supporting Classes 3-3

3.3.1 REAPI CategoryMembership Interface
CategoryMembershipType is implemented as: 

■ CategoryMembershipType (a class that extends EnumType) 

■ CategoryMembership (an interface) 

The class CategoryMembership has the following methods: 

CategoryMemberShipType getType(String name)

CategoryMemberShipType getType(int) 

CategoryMembership specifies how categories in a list of categories should be 
applied for filtering. For example, Enum.CategoryMembership.EXCLUDE_
ITEMS specifies that items from the categories in the category list should be 
excluded from the recommendations list. For details, see FilteringSettings Class 
later in this chapter.

CategoryMembership takes on the following values:

■ Enum.CategoryMembership.EXCLUDE_ITEMS

■ Enum.CategoryMembership.INCLUDE_ITEMS

■ Enum.CategoryMembership.EXCLUDE_CATEGORIES

■ Enum.CategoryMembership.INCLUDE_CATEGORIES

■ Enum.CategoryMembership.LEVEL

■ Enum.CategoryMembership.SUBTREE_ITEMS

■ Enum.CategoryMembership.SUBTREE_CATEGORIES

■ Enum.CategoryMembership.ALL_ITEMS

■ Enum.CategoryMembership.ALL_CATEGORIES

The following statement assigns Enum.CategoryMembership.LEVEL to the 
variable myEnum:

CategoryMembershipType myEnum = Enum.CategoryMembership.LEVEL 

3.3.2 REAPI DataSource Interface
DataSource is implemented as: 

■ DataSourceType (a class that extends EnumType) 

■ DataSource (an interface) 



REAPI EnumType Interfaces

3-4 OracleAS Personalization Programmer’s Guide

The class DataSourceType has the following methods: 

DataSourceType getType(String name)

DataSourceType getType(int) 

DataSource specifies the type of data that is used when OracleAS Personalization 
performs certain operations. For example, Enum.DataSource.DEMOGRAPHIC 
specifies that demographic data should be used. The class DataItem Class, 
described later in this chapter, uses DataSource. Note that a given method may 
not support all values of DataSource. For details, see the description of the 
methods in Chapter 4. 

DataSource takes on the following values:

■ Enum.DataSource.DEMOGRAPHIC

■ Enum.DataSource.PURCHASING

■ Enum.DataSource.RATING

■ Enum.DataSource.NAVIGATION

■ Enum.DataSource.ALL

The following statement assigns Enum.DataSource.ALL to the variable myEnum:

DataSourceType myEnum = Enum.DataSource.ALL;

3.3.3 REAPI Filtering Interface
Filtering is implemented as: 

■ FilteringType (a class that extends EnumType) 

■ Filtering (an interface) 

The class FilteringType has the following methods: 

FilteringType getType(String name) 

FilteringType getType(int) 

Filtering is used to turn filtering on or off. See the description of the 
FilteringSettings Class, later in this chapter for more information. 

Filtering takes on the following values:

■ Enum.Filtering.ON

■ Enum.Filtering.OFF



REAPI EnumType Interfaces

REAPI Supporting Classes 3-5

The following statement assigns Enum.Filtering.OFF to the variable myEnum:

FilteringType myEnum = Enum.Filtering.OFF; 

3.3.4 REAPI InterestDimension Interface
InterestDimension is implemented as: 

■ InterestDimensionType (a class that extends EnumType) 

■ InterestDimension (an interface) 

The class InterestDimensionType has the following methods: 

InterestDimensionType getType(String name) 

InterestDimensionType getType(int) 

InterestDimension indicates the type of interest that the user of the Web site has 
in a given item. NAVIGATION indicates that the user is interested in the items. 
PURCHASING indicates that the user purchased an item. RATING indicates that the 
user likes the items. For more information, see the description of the 
RecommendationList Class and TuningSettings Class later in this chapter.

InterestDimension takes on the following values:

■ Enum.InterestDimension.NAVIGATION

■ Enum.InterestDimension.PURCHASING

■ Enum.InterestDimension.RATING

The following statement assigns Enum.InterestDimension.PURCHASING to the 
variable myEnum:

InterestDimension myEnum = Enum.InterestDimension.PURCHASING; 

3.3.5 REAPI PersonalizationIndex Interface
PersonalizationIndex is implemented as: 

■ PersonalizationIndexType (a class that extends EnumType) 

■ PersonalizationIndex (an interface) 

The class PersonalizationIndexType has the following methods: 

PersonalizationIndexType getType(String name)

PersonalizationIndexType getType(int) 



REAPI EnumType Interfaces

3-6 OracleAS Personalization Programmer’s Guide

PersonalizationIndex specifies how "unusual" the recommendations returned 
will be. For example, LOW specifies not unusual. For more information, see the 
description of the TuningSettings Class later in this chapter.

PersonalizationIndex takes on the following values:

■ Enum.PersonalizationIndex.LOW

■ Enum.PersonalizationIndex.MEDIUM

■ Enum.PersonalizationIndex.HIGH

The following statement assigns Enum.PersonalizationIndex.LOW to the 
variable myEnum:

PersonalizationIndexType myEnum = Enum.PersonalizationIndex.LOW; 

3.3.6 REAPI ProfileDataBalance Interface
ProfileDataBalance is implemented as: 

■ ProfileDataBalanceType (a class that extends EnumType) 

■ ProfileDataBalance (an interface) 

The class ProfileDataBalanceType has the following methods: 

ProfileDataBalanceType getType(String name)

ProfileDataBalanceType getType(int)

ProfileDataBalance specifies whether to take data from the current session or 
from history or to balance data between data from the current session and history 
when making recommendations. For more information, see the description of the 
TuningSettings Class later in this chapter.

ProfileDataBalance takes on the following values:

■ Enum.ProfileDataBalance.HISTORY

■ Enum.ProfileDataBalance.BALANCED

■ Enum.ProfileDataBalance.CURRENT

The following statement assigns Enum.ProfileDataBalance.BALANCED to the 
variable myEnum:

ProfileDataBalanceType myEnum = Enum.ProfileDataBalance.BALANCED;



REAPI EnumType Interfaces

REAPI Supporting Classes 3-7

3.3.7 REAPI ProfileUsage Interface
ProfileUsage is implemented as: 

■ ProfileUsageType (a class that extends EnumType) 

■ ProfileUsage (an interface) 

The class ProfileUsageType has the following methods: 

ProfileUsageType getType(String name) 

ProfileUsageType getType(int) 

ProfileUsage specifies whether the recommendation list can include or exclude 
items in a customer’s profile. For more information, see the description of 
TuningSettings Class later in this chapter.

ProfileUsage takes on the following values:

■ Enum.ProfileUsage.INCLUDE

■ Enum.ProfileUsage.EXCLUDE

The following statement assigns Enum.ProfileUsage.INCLUDE to the variable 
myEnum:

ProfileUsageType myEnum = Enum.ProfileUsage.INCLUDE; 

3.3.8 REAPI RecommendationAttribute Interface
RecommendationAttribute is implemented as: 

■ RecommendationAttributeType (a class that extends EnumType) 

■ RecommendationAttribute (an interface) 

The class RecommendationAttributeType has the following methods: 

RecommendationAttributeType getType(String name) 

RecommendationAttributeType getType(int) 

RecommendationAttribute indicates the attribute to be included in the returned 
content; possible choices are type, ID, and prediction. For more information, see the 
descriptions of the ContentItem Class and RecommendationContent Class later in 
this chapter.

RecommendationAttribute takes on the following values:

■ Enum.RecommendationAttribute.TYPE



REAPI EnumType Interfaces

3-8 OracleAS Personalization Programmer’s Guide

■ Enum.RecommendationAttribute.ID

■ Enum.RecommendationAttribute.PREDICTION

The following statement assigns Enum.RecommendationAttribute.URL to the 
variable myEnum:

RecommendationAttributeType myEnum = Enum.RecommendationAttribute.TYPE;

3.3.9 REAPI Sorting Interface
Sorting is implemented as: 
■ SortingType (a class that extends EnumType) 
■ Sorting (an interface) 

The class SortingType has the following methods: 
SortingType getType(String name)

SortingType getType(int) 

Sorting indicates whether sorting is done (none implies no sorting), and, if sorting 
is done, how it is done (ascending or descending). For more information, see the 
discussions of the ContentItem Class and RecommendationContent Class later in 
this chapter.

Sorting takes on the following values:

■ Enum.Sorting.NONE

■ Enum.Sorting.DESCENDING

■ Enum.Sorting.ASCENDING

The following statement assigns Enum.Sorting.NONE to the variable myEnum:

SortingType myEnum = Enum.Sorting.NONE; 

3.3.10 REAPI User Interface
User is implemented as: 

■ UserType (a class that extends EnumType) 

■ User (an interface) 

The class UserType has the following methods: 

UserType getType(String name)

UserType getType(int) 



Other Supporting REAPI Classes

REAPI Supporting Classes 3-9

UserType is either customer, a registered user of the calling Web site, or  visitor, an 
unregistered user. For more information see the description of the 
IdentificationData Class later in this chapter.

UserType takes on the following values:

■ Enum.User.CUSTOMER

■ Enum.User.VISITOR

The following statement assigns Enum.User.CUSTOMER to the variable myEnum:

UserTypeType myEnum = Enum.User.CUSTOMER; 

3.4 Other Supporting REAPI Classes
The other supporting classes are

■ ContentItem

■ DataItem

■ FilteringSettings

■ IdentificationData

■ Item

■ ItemDetailData

■ Recommendation

■ RecommendationContent

■ RecommendationList

■ TuningSettings

These classes are described briefly in this document. For detailed descriptions, see 
the Javadoc for OracleAS Personalization.

3.4.1 ContentItem Class
This class encapsulates the information that should be included in the object 
returned by a recommendation request. It describes the attributes to be included in 
the recommendation list returned by a call as well as specifying whether the list 
should be sorted according to one of the attributes. RecommendationContent Class, 
described later in this chapter, is any array of items of type ContentItem; the 



Other Supporting REAPI Classes

3-10 OracleAS Personalization Programmer’s Guide

description of RecommendationContent Class explains how sorting order works 
when multiple orders are specified.

This class contains the following methods:

■ getContentAttribute()

■ getSorting()

3.4.2 DataItem Class
This class is a subclass of class Item. It encapsulates data about an item. This object 
is used as an argument in the data collection methods addItem() and 
addItems(). 

There are two kinds of methods provided with this class: 

■ A constructor for DataItem

■ Methods that return attribute values:

■ getDataSource()

■ getValue()

3.4.3 FilteringSettings Class
This classe is used to specify the items to include or exclude when generating 
recommendations.

Release 2 of OracleAS Personalization supports category filtering only.

There are three kinds of methods provided with this class: 

■ A constructor for FilteringSettings

■ Methods that set the attributes values:

■ setItemFiltering(int taxonomyID)

■ setItemFiltering(int taxonomyID, long[] categoryList)

■ setItemExclusion(int taxonomyID, long[] categoryList])

■ setItemSubTreeFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryExclusion(int taxonomyID, long[] 
categoryList])



Other Supporting REAPI Classes

REAPI Supporting Classes 3-11

■ setCategorySubTreeFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryLevelFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryFiltering(int taxonomyID)

■ setCategoryFiltering(int taxonomyID, long[] 
categoryList)

■ Methods that return attribute values:

■ getTaxonomyID()

■ getCategoryFiltering ()

■ getCategoryList()

■ getCategoryMembership()

Not all filtering settings can be used will all methods. In particular, the following 
filtering setting cannot be used with the cross-sell methods:

■ setCategoryLevelFiltering

■ setCategorySubtreeFiltering

■ setCategoryExclusion

■ setCategoryFiltering(int)

■ setCategoryFiltering(int, long[])

3.4.4 IdentificationData Class
Identifies the user and/or the session.

There are two kinds of methods provided with this class:

■ Methods that create IdentificationData instances

■ createSessionful(String appSessionID, UserType userType)

■ createSessionless(String appSessionID, UserType userType)

■ Methods that return attribute values:

■ getUserID()

■ getAppSessionID() 

■ getUserType()



Other Supporting REAPI Classes

3-12 OracleAS Personalization Programmer’s Guide

The calling Web application should assign a userID to all users, both customers 
(registered users) and visitors. IDs for customers must be unique. If IDs for visitors 
are not unique, OracleAS Personalization will not be able to make 
recommendations that are specific to a given visitor; instead the same 
recommendations would be made for all visitors who had the given ID.

3.4.5 Item Class
This class is used to represent items that can be recommended and for which data 
can be collected. An item is uniquely represented by the combination of type and 
ID. Item IDs must be unique within a given type, but different types can have the 
same IDs. 

There are three kinds of methods provided with this class: 

■ A constructor that creates an Item instance

■ Methods that return attribute values

■ getType()

■ getID()

■ A method that is a debugging aid

3.4.6 ItemDetailData Class
This class is created internally by OracleAS Personalization as part of the result of 
recommendation request. The calling Web application will have to examine the 
attributes to determine what attributes and values they contain. See the description 
of Recommendation Class later in this chapter for more details.

There are three methods:

■ getAttribute()

■ getValue()

■ toString()

3.4.7 Recommendation Class
This class encapsulates information about a single recommended item. The 
information about the item is stored in the attributes array.



Other Supporting REAPI Classes

REAPI Supporting Classes 3-13

There are two methods:

■ getAttributes()

■ toString()

3.4.8 RecommendationContent Class
This class specifies the type of information that a recommendation request should 
return. 

There are two kinds of methods provided with this class: 

■ Two constructors that create RecommendationContent instances depending 
on how sorting is to be done

■ A method that returns the content items

If multiple instances of the array are to be sorted, the sorting order follows the array 
index order. That is, the result is sorted according to the attribute in the first array 
entry marked to be sorted, followed by the attribute in the second entry marked to 
be sorted, etc.

3.4.9 RecommendationList Class
A recommendation list is the collection of recommendations for a specific 
InterestDimension. RecommendationList is the class returned by all REAPI 
methods that return recommendations.

The methods in this class permit the calling Web application to determine the 
interest dimension type, to determine the actual number of recommendations 
returned, and to get the individual recommendations.

3.4.10 TuningSettings Class
This class specifies settings to be applied when computing a recommendation. An 
instance of this class is passed to all recommendation requests.

There are three kinds of methods provided with this class:

■ A constructor that creates a TuningSettings instance

■ Methods that set attribute values

■ Methods that return attribute values



Other Supporting REAPI Classes

3-14 OracleAS Personalization Programmer’s Guide

The following methods set attribute values:

■ setDataSourceType() 

■ setInterestDimension() 

■ setPersonalizationIndex()

■ setProfileDataBalance()

■ setProfileUsage()

The following methods return attribute values:

■ getDataSourceType() 

■ getInterestDimension() 

■ getPersonalizationIndex()

■ getProfileDataBalance()

■ getProfileUsage()



                                                           Using REAPI 4-1

4
Using REAPI

This chapter provides an overview of the methods that are used to manage the 
recommendation engine proxy, to collect data, and to obtain recommendations, 
followed by usage notes for some of the methods. The supporting classes for these 
methods are described in Chapter 3.

For detailed descriptions of these methods, see the Javadoc in the OracleAS 
Personalization section of the Oracle Application Server 10g Documentation 
Library.

For examples of how to uses these classes and methods, see Chapter 5 and the 
complete example in Appendix A.

All these methods return results in real time. Usually they return recommendations 
for a single user.

All methods described in this chapter are public.

4.1 Recommendation Proxy Classes
The real time recommendation proxy (REProxyRT) methods can be divided 
according to function, as follows:

■ Proxy creation and management (the proxy manager and related methods)

■ Session management (create and close) 

■ Data collection (collect, preprocess, and store data in recommendation engine 
(RE) tables)

■ Recommendations (obtain various types of recommendations)



Location of RE Proxy Classes

4-2 OracleAS Personalization Programmer’s Guide                              

4.2 Location of RE Proxy Classes
To use the REProxyRT (and its exceptions), you must include the following 
statements in your Java program:

import oracle.dmt.op.re.reapi.rt.*;

import oracle.dmt.op.re.reexception.*;

All these classes reside on the system where Oracle Application Server is installed.

4.2.1 RE Proxy Creation and Management
REProxyManager handles a pool of REProxyRT instances. Using multiple 
REProxyRT instances within a Web server, such as Oracle Application Server, 
provides the following benefits:

■ Fault tolerance (if one instance fails, there is another to use)

■ Load distribution (the load can be spread among all proxy instances)

■ Domain-dependent recommendations (each proxy instance is associated with a 
specific RE)

Multiple proxy instances can result in the following issues:

■ Collected data may be lost when an instance of the proxy fails and the 
application shifts to another instance.

■ A given customer must be connected to the same RE for all transactions during 
a session.

The REProxyManager class also includes a caching mechanism that supports data 
collection in the recommendation engine.

4.2.1.1 RE Data Collection
The REProxyRT class includes the DataCollection cache, which supports data 
collection in the RE. Every time you create an REProxyRT object, the cache is built 
as a subcomponent of the proxy object. When data is collected using the REAPI calls 
addItem() and addItems(), the data is stored in the cache (in the memory) and 
is periodically flushed to RE schema. This "batch save" improves RE performance. 
The cache is created when a new REProxyRT object is created. The refresh rate is 
defined by an input parameter to REProxyManager.createProxy(). 

Currently, only item and user ID data in the classes DataItem and 
IdentificationData are cached, and they are cached as current session data.



Location of RE Proxy Classes

                                                                Using REAPI 4-3

4.2.1.2 REProxyManager Class
REProxyManager is a singleton implementation, that is, only one instance of the 
REProxyManager class is created in a particular JVM instance, and the class is 
loaded automatically. 

The REProxyManager class is used to create and manage the instances of 
REProxyRT. REProxyManager has only static public methods. REProxyManager 
does not have a public constructor and hence cannot be created by the user. 
REProxyManager maintains an REProxyRT pool and uses proxy names to 
reference individual REProxyRT objects.

The following methods manage REProxyRT objects:

■ createProxy

■ getProxy

■ destroyAllProxies

■ destroyProxy

For examples of how to use the proxy manager, see Chapter 5 and the complete 
example in Appendix A.

4.2.2 Proxy Methods
All the recommendation requests are processed through class REProxyRT. Obtain a 
REProxyRT object using createProxy or getProxy before you perform any 
recommendation tasks, such as handling sessions for a sessionful application, 
collecting customer profile data, and getting recommendations.

4.2.3 RE Proxy Session Management
The following methods manage sessions:

■ createCustomerSession

■ createVisitorSession

■ closeSession

4.2.4 RE Proxy Data Collection and Management
The following methods collect, preprocess, and store data in RE tables. The collected 
data can be persisted by setting appropriate configuration parameters:

■ addItem



Location of RE Proxy Classes

4-4 OracleAS Personalization Programmer’s Guide                              

■ addItems

■ removeItem

■ removeItems

4.2.5 Re Proxy Customer Registration
The following method permits you to change a visitor to a customer (registered 
user):

■ setVisitorToCustomer

This method can be used in both sessionful or sessionless applications. 

4.2.6 RE Proxy Recommendations
The following methods obtain and manage recommendations:

■ rateItem

■ rateItems 

■ recommendTopItems

■ recommendBottomItems

■ recommendFromHotPicks

■ recommendCrossSellForItem

■ recommendCrossSellForItems

■ crossSellForItemFromHotPicks

■ crossSellForItemsFromHotPicks

■ selectFromHotPicks

Communicating the returned recommendations to the end user is the responsibility 
of the calling Web application. The calling Web application must also decide which 
recommendations to pass to the user. For example, the Web application may want to 
check that an item is in stock before recommending the item.

The methods that return recommendations do not necessarily return a list of items. 
If you set FilteringSettings.CategoryMembership to one of the values 

■ Enum.CategoryMembership.EXCLUDE_CATEGORIES

■ Enum.CategoryMembership.INCLUDE_CATEGORIES



Location of RE Proxy Classes

                                                                Using REAPI 4-5

■ Enum.CategoryMembership.SUBTREE_CATEGORIES

■ Enum.CategoryMembership.ALL_CATEGORIES

then the recommendation methods (such as recommendTopItems, etc.) return 
categories.

Categories are components of a taxonomy. Taxonomies are defined in the following 
tables in the mining table repository (MTR):

■ MTR_ TAXONOMY

■ MTR_ TAXONOMY_CATEGORY

■ MTR_ TAXONOMY_CATEGORY_ITEM

■ MTR_CATERGORY

An appropriate taxonomy is crucial to the design of an OracleAS Personalization 
application. For information about how to create taxonomies, see Oracle Application 
Server Personalization Administrator’s Guide.

4.2.6.1 Ratings in OracleAS Personalization
Ratings in OracleAS Personalization are in "ascending order of goodness", that is, 
the higher the rating, the more the user prefers the item. Low rated items are items 
that the user does not prefer. OracleAS Personalization algorithms use these 
assumptions, so it is important that ratings are in ascending order of goodness.

4.2.6.2 Meaning of Returned Value for Recommendations
The meaning of the value returned for recommendation instances where 
ItemDetailData.attribute is equal to 
Enum.RecommendationAttribute.PREDICTION depends on the value of 
interestDimension as follows:

■ For InterestDimension.RATING, the expected rating for the item is 
returned.

■ For InterestDimension.PURCHASING or 
InterestDimension.NAVIGATION, the ranking is returned. The most 
probable item is assigned a value of 1 and other items are assigned integer 
values representing their rank according to how probable the item is.



Rules and Recommendations

4-6 OracleAS Personalization Programmer’s Guide                              

4.3 Rules and Recommendations
OracleAS Personalization uses rule tables stored in the RE to generate the 
recommendations requested by the recommendation methods. The rule tables are 
created when a package is built and stored in the RE, that is, when the package is 
deployed. The specific rule table used depends upon the REAPI call made. In 
general, the antecedents of the rules are matched against the data in cache (both 
historical and current session data) and the probabilities of the various consequents 
are computed. These items are then ordered by probability, and numberOfItems 
(an API argument) items are returned.

4.4 RE Proxy Method Usage Notes
For detailed descriptions of these methods, see the OracleAS Personalization 
Javadoc included in the OracleAS Personalization section of the Oracle Application 
Server 10g Documentation Library. This section provides an overview of the 
methods and how to use them.

4.4.1 Session Creation
For both createCustomerSession and createVisitorSession, the calling 
Web application must provide session IDs that are unique among currently active 
sessions. If either method is invoked with a session ID that is currently active at the 
RE, an exception is thrown. However, a session ID can be reused as long as that 
session ID is not already active at the RE. appSessionID is synchronized to the 
MTR by OracleAS Personalization. (For more information about data 
synchronization, see the administrator’s guide.) OracleAS Personalization has no 
way to tell whether customerID and appSessionID are valid values; it is the 
responsibility of the calling Web application to verify that these values are valid.

4.4.2 Data Collection
To collect data, use addItem or addItems. Use removeItem or removeItems to 
remove data from the local cache.

4.4.2.1 Add Items
For both addItem and addItems, items are cached locally first and synchronously 
written to the RE; the frequency of the writes is specified as a configuration 
parameter when OracleAS Personalization is installed. It is important that the data 
synchronization interval is frequent enough to support the Web applications’ 



RE Proxy Method Usage Notes

                                                                Using REAPI 4-7

requirements. For more information about data synchronization, see the 
administrator’s guide.

When an application needs to add several items at a time, it can either use several 
addItem calls or one addItems call. When using addItems, the application must 
maintain the details of the items to be added until the call is made; in other words, 
the application needs to keep the state. It may be simpler to issue several addItem 
calls.

addItem and addItems are asynchronous, so the calling application does not need 
to wait until either call saves the data to the database.

Data collected in the RE is automatically written to the MTR.

4.4.2.2 Remove Items
removeitem and removeItems remove items that have not been written to the 
MTR (permanent storage). Once data is written to the MTR, you cannot use these 
methods to remove the data.

4.4.3 Proxy Creation
In createProxy, you must specify a cache size and an interval. This section 
describes how to determine these values.

It takes experimentation to determine an optimum interval coupled with an 
appropriate cache size.

A good way to configure cache size and interval is the following:

1. Set cache size to approximately 3027 kilobytes.

2. Set interval according to the estimated data collection rate.

3. Test.

4. Adjust the archive interval.

4.4.3.1 Cache Size
The cache size is the size of the cache used by the recommendation engine, in 
kilobytes.

There are several factors to consider when determining the cache size:

1. System resources: Since cache takes memory space, you must make sure that 
you have enough memory to do what you want.



RE Proxy Method Usage Notes

4-8 OracleAS Personalization Programmer’s Guide                              

2. Archive interval: The longer the interval, the larger the cache size.

3. Maximum VArray size: The PL/SQL procedure that performs the archive uses 
VArrays, and the maximum size is currently set at 5000. The archive can handle 
more than 5000 items, but the performance is much worse. Therefore, it is not 
recommended to have the cache buffer larger than 5000. Each data item stored 
in the cache takes up about 340 bytes; so the maximum VArray size translates to 
3.3 MBytes (the actual cache buffer size is half of that since the cache has two 
buffers).

4. Data collection rate, the most important factor: If the data collection rate is no 
more than 100 items per second and the archive interval is 20 seconds, then a 
reasonable cache size is 100 * 340 * 1.5 * 20, which is approximately 2000 
kilobytes. (This calculation assumes a safety factor of 1.5 to ensure that no data 
is dropped.)

4.4.3.2 Interval
The interval determines how often the collected data is archived (flushed from the 
memory to RE schema). There are several factors to consider when determining the 
setting:

1. Data collection volume and speed: The more frequent the data collection and 
the larger the volume of data collected, the shorter interval should be

2. Cache size: The smaller the cache, the shorter the interval.

3. Use of current session data: If you want to use the current session data to 
improve the recommendation accuracy, the data should not be held in the cache 
for too long. If the volume and speed of the data collection is not a problem, an 
interval of 10-30 seconds may be fine. 

4.4.4 Cross Sell Methods
The comments in this section apply to crossSellForItemFromHotPicks, 
crossSellForItemsFromHotPicks, recommendCrossSellForItem, and 
recommendCrossSellForItems.

Interest dimension must be the same as that of the data source type of the input 
item.

Data source type must be either navigational or purchasing. No other types are 
supported.

The following filtering setting cannot be used with these methods:



RE Proxy Method Usage Notes

                                                                Using REAPI 4-9

■ setCategoryLevelFiltering

■ setCategorySubtreeFiltering

■ setCategoryExclusion

■ setCategoryFiltering(int)

■ setCategoryFiltering(int, long[])

4.4.5 Proxy Destruction
Destroy proxy objects with extreme caution. REProxyRT objects are shared by 
many clients; therefore, destruction of a proxy may interrupt recommendation 
services. The proxy destruction methods must be used very carefully. For Web 
applications, REProxyRT objects should be treated as part of the server services; 
they should not be unless it is absolutely necessary. Like other server components, 
these objects only need to be destroyed when the server is shut down or taken 
offline for maintenance purposes. 

You can either destroy a specific proxy in the pool, using destroyProxy, or all 
proxies in the pool, using destroyAllProxies.



RE Proxy Method Usage Notes

4-10 OracleAS Personalization Programmer’s Guide                              



REAPI Examples and Usage 5-1

5
REAPI Examples and Usage

This chapter provides examples of REAPI use. In some instances, we provide code 
snippets; in others, we describe an approach for performing certain kinds of tasks 
using OracleAS Personalization.

5.1 REAPI Demo
OracleAS Personalization includes REAPI Demo, a sample program that illustrates 
the use of many of the REAPI methods. This sample program can be used to learn 
about REAPI calls and can also used to verify that OracleAS Personalization is 
correctly installed. 

After you have installed OracleAS Personalization, start REAPI Demo by opening 
the following URL in Netscape or Internet Explorer:

http://server/redemo/

where server is the name of the system where Oracle Application Server is 
installed. The REAPI test site is displayed.

To view the source code for the OracleAS Personalization REAPI Demo, click "View 
Source Code."

For information about how to install and run the demo, see the Oracle Application 
Server Personalization User’s Guide. 

5.2 REAPI Basic Usage
The REProxy methods described in Chapter 4 permit you to instrument your Web 
site. To use REAPI calls, you must perform the following steps:

1. Get an REProxy object.



REAPI Basic Usage

5-2 OracleAS Personalization Programmer’s Guide

2. Use the proxy instance as required in REAPI calls. The outline that your 
program should follow depends on whether your Web application is sessionful 
or sessionless.

3. Destroy the proxy object when it is no longer needed by any program that is 
using it.  

5.2.1 Create an REProxy Object
This section illustrates basic REProxy usage; for more information about REProxy 
and other ways to use it, see "REProxyManager Interaction with JVM" and "Using 
Multiple Instances of REProxy", later in this chapter. 

The following code fragment creates an object named proxy: You use this object to 
perform REAPI calls. Note that you must specify the username and password for 
the RE schema.

    final String proxyName = "RE1";
    final String dbURL = "jdbc.oracle.thin:@DBServer.myshop.com:1521:DB1";
    final String user = "myself";
    final String passWd = "secret";
    final int cacheSize = 2048;        // 2 mbytes
    final int interval = 10000;    // 10 seconds
    REProxy proxy;
    ...

    try {
      proxy = REProxyManager.createProxy(proxyName,
                                         dbURL,
                                         user,
                                         passWd,
                                         cacheSixe,
                                         interval);
      ...
    } catch (Exception e) {
        // exception handling here 
    }

5.2.2 Use the Proxy
After you’ve created a REProxy object and gotten an instance of it, you use the 
proxy to specify REAPI calls, as, for example, 

proxy.closeSession();



Sessionful Web Application Outline

REAPI Examples and Usage 5-3

The sequence of calls depends on whether the application is sessionful or 
sessionless; see "Sessionful Web Application Outline" or "Sessionless Web 
Application Outline" later in this chapter for details.

5.2.3 Destroy the Proxy
Destroy proxy objects with extreme caution. REProxyRT objects are shared by 
many clients; therefore, destruction of a proxy may interrupt recommendation 
services. The proxy destruction methods must be used very carefully. For Web 
applications, REProxyRT objects should be treated as part of the server services; 
they should not be unless it is absolutely necessary. Like other server components, 
these objects only need to be destroyed when the server is shut down or taken 
offline for maintenance purposes.

5.3  Sessionful Web Application Outline
The following outlines the required steps in the required order for a sessionful Web 
application (an application that starts a session for each customer).

1. Create an REProxy object as described in "Create an REProxy Object", earlier in 
this chapter. You need to know the user name and password for the RE schema.  
If the proxy already exists, call getProxy.

2. Create a customer session or a visitor session.

proxy.createCustomerSession(userID, appSessionID); //customer session

proxy.createVisitorSession(userID, appSessionID); //visitor session

3. Get identification data. 

idData = IdentificationData.createSessionful(appSessionID);

4. Call REAPI methods: for example,

/*Set input parameters. */
int nRec=10;
TuningSettings tune = new TuningSettings(Enum.DataSourec.NAVIGATION,

                          Enum.InterestDimension.NAVIGATION,
                          Enum.PersonalizationIndex.HIGH,
                          Enum.ProfileDataBalance.BALANCED,
                        Enum.ProfileUsage.EXCLUDE);
   long [] catList = {1, 2, 3, 4};
   FilteringSettings filters = new FilteringSettings();
   filters.setItemFiltering(1, catList);
   RecommendationContent rContent = new RecommendationContent (



Sessionless Web Application Outline

5-4 OracleAS Personalization Programmer’s Guide

                                        Enum.Sorting.ASCENDING);
   /*Get a recommendation. */
   try {
        RecommendationList rList = proxy.recommendTopItems(idData,
                                    nRec, tune, filters, rContent);
   /* Parse the results and pass recommendations to the user*/

5. Make other REAPI calls as required. 

6. Close the session.
proxy.closeSession();

5.4 Sessionless Web Application Outline
The following outlines the required steps in the required order for a sessionless Web 
application (an application that does not start a session for each customer). Note 
that sessionless applications close when they time out.

1. Create an REProxy object as described in "Create an REProxy Object", earlier in 
this chapter. You need to know the user name and password for the RE schema. 
If the proxy already exists, call getProxy.

2.  Get identification data.
idData = IdentificationData.createSessionless(customerID);

3. Call REAPI methods: for example,
   /*Set input parameters.*/
   int nRec=10;
   TuningSettings tune = new TuningSettings(Enum.DataSourec.NAVIGATION,
                          Enum.InterestDimension.NAVIGATION,
                          Enum.PersonalizationIndex.HIGH,
                          Enum.ProfileDataBalance.BALANCED,
                          Enum.ProfileUsage.EXCLUDE);
   long [] catList = {1, 2, 3, 4};
   FilteringSettings filters = new FilteringSettings();
   filters.setItemFiltering(1, catList);
   RecommendationContent rContent = new RecommendationContent (
                                        Enum.Sortinh.ASCENDING);
   /*Get a recommendation. */
   try {
        RecommendationList rList = proxy.recommendTopItems(idData,
                                    nRec, tune, filters, rContent);
   /* Parse the results and pass recommendations to the user*/

4. Make other REAPI calls as required. 



REProxyManager Interaction with JVM

REAPI Examples and Usage 5-5

5.5 REProxyManager Interaction with JVM
REProxyManager is a singleton implementation, that is, only one instance of the 
REProxyManager class is created in a given JVM instance and the class is 
automatically loaded in the JVM instance. This behavior has implications about the 
way your program behaves. The behavior is different depending on whether your 
application is a standalone Java program or a Java server-side module. The same 
principle may apply but different usage models for proxy management should be 
considered

5.5.1 Standalone Java Applications
Suppose that you create a standalone Java application using REAPI calls that you 
execute from the command line with a command such as

java myapplication.class

Such an application has the following characteristics:

■ It runs in a separate JVM instance.

■ The REProxyManager instance is automatically loaded into the JVM instance.

■ After the application finishes executing, the JVM instance goes away.

If you do not destroy the proxy before the program exits, the REProxy objects 
remain in memory; they cannot be accessed because the JVM instance that created 
them no longer exists.

To avoid memory leaks, you must destroy the proxy before the program ends.

5.5.2 Java Server-Side Modules
If REAPI is called from Java server-side modules, such as servlets or Java Server 
Pages (JSPs), the REProxyManager class is loaded on the Oracle Application 
Server where the modules reside.

The Web application that owns and uses the Java modules often starts when the 
server boots up, and does not close until the server shuts down. In this 
circumstance, you may create the proxies during the initiation of the Web 
application or as soon as the first RE request is being processed, but never have to 
worry about destroying the proxy. As long as the Web application is up and 
running, the proxy will be used to serve ongoing recommendation requests.

Creation of a proxy is time consuming (a few hundred milliseconds on a Sun E450 
server). It is therefore more efficient to never destroy a proxy until the server shuts 



Using Multiple Instances of REProxy

5-6 OracleAS Personalization Programmer’s Guide

down, for example, when the system administrator needs to bring the Web 
application down for maintenance purposes.

If you choose to micro-manage proxies, that is, remove unused proxy objects, you 
may do so by calling the destroy methods. However, be careful with destroying 
methods, because both destroy methods will remove proxies forcefully, that is, they 
do not check to see whether any other process is using the proxy. 

5.6  Using Multiple Instances of REProxy 
REProxyManager manages a pool of one or more proxies. This section illustrates 
several ways to use multiple proxies:

■ Initialization fail safe

■ Ensuring that REAPI server is not interrupted

■ Load balancing

5.6.1 Initialization Fail Safe
The following code fragment illustrates the way you might use two REs to prevent 
utilization failure. This code assumes that the schema for normal recommendation 
service is named "RE"; if "RE" fails, you will use a backup RE schema, named "RE_
BACKUP".

  REProxy initProxy(...)
  {
    REProxy proxy;

    // initialization
    try {
      if ((proxy = REProxyManager.getProxy("RE")) == null)
        proxy = REProxyManager.createProxy("RE",
                                           dbURL,
                                           username,
                                           passWd,
                                           cacheSize,
                                           interval);
    } catch (REProxyInitException rie) {
      proxy = REProxyManager.createProxy("RE_BACKUP",
                                           dbURL1,
                                           username1,
                                           passWd1,
                                           cacheSize,



Using Multiple Instances of REProxy

REAPI Examples and Usage 5-7

                                           interval);
    }
    return proxy;
  }

5.6.2 Uninterrupted REAPI Service
The following code fragment illustrates the way to guarantee that the 
recommendation service does not fail when the regular RE server fails. The code 
implements the class NeverFail for this purpose.

 class NeverFail() {
    REProxy re1;
    REProxy re2;

    void initProxies() {
      try {
        if ((re1 = REProxyManager.getProxy("RE1")) == null)
         String dbURL1="jdbc:oracle:thin:@db1.mycorp.com:1521:orc1";
         re1 = REProxyManager.createProxy("RE1",
                                           dbURL1,
                                          "user1",
                                          "pw1",
                                          2048,
                                          10000);
        if ((re2 = REProxyManager.getProxy("RE2")) == null)
          String dbURL2="jdbc:oracle:thin:@db2.mycorp.com:1521:orc2"; 
            re2 = REProxyManager.createProxy("RE2",
                                          dbURL2,
                                          "user2",
                                          "pw2",
                                          2048,
                                          10000);
      } catch (REProxyInitException rie) {
        // exception handling
      }
    }

    RecommendationList getRecommendation() {
      RecommendationList rList;

      // initialize input
      ....
      try {
        rList = re1.recommendTopItems(...);



Extracting Individual Recommendations

5-8 OracleAS Personalization Programmer’s Guide

      } catch (Exception e) {
        rList = re2.recommendTopItems(...);
        return rList;
      }
      return rList;
    }
  }

5.6.3 Load Balancing
The following code fragment illustrates a simple way to do load balancing so that 
not all customers are handled by the same RE. This example assumes that 
customers with odd IDs are processed using RE1 and those with even IDs are 
processed using a different RE, RE2. To accomplish this, first create two different 
proxies, RE1 and RE2, and then call getRecommendation() as follows:

 RecommendationList getRecommendation() {
      RecommendationList rList;

      // initialize input
      ....
      try {
        if ((idData.getUserID() % 2) == 1)
          rList = re1.recommendTopItems(...);
        else
          rList = re2.recommendTopItems(...);
      } catch (Exception e) {
        // exception handling
        ......
      }
      return rList;
    }

5.7 Extracting Individual Recommendations
Use the getAttributes method of the Recommendation class rather than 
attempting to extract the individual recommendations from the array.

5.8 Handling Multiple Currencies
OracleAS Personalization stores currency data in the demographic table (for 
example, someone’s income) as numbers; that is, OracleAS Personalization does not 



Recommendation Engine Usage

REAPI Examples and Usage 5-9

store any kind of label. Both ten dollars (US) and ten pounds sterling (UK) are 
stored as "10".

There are several ways to ensure that currency data is interpreted correctly; the 
solution that you pick for your application depends on how your application uses 
currency data.

■ Include a country code in customer demographics.

This solution allows the country to be taken into account, but it does not closely 
associate the value with the country.

■ Convert all currencies to a common currency such as Euros or United States 
dollars.

This solution permits you to compare individual currency values in a 
meaningful way (10 pounds sterling is more than $10 US) but does not permit 
you preserve the difference between data such as a salary of $30,000 US in the 
US, versus the same $30,000 US salary in Brazil. You need such information if, 
for example, you want to recommend items to highly remunerated individuals 
in both the US and Brazil; the salary in US dollars of highly remunerated 
individuals will vary considerably from country to country.

This approach requires that you preprocess the data outside of OracleAS 
Personalization before OracleAS Personalization creates recommendations.

■ Bin currency values according to the mean to get relative values that can be 
compared across countries.

This solution would permit you, for example, to determine the highly 
remunerated individuals for a given country, but it requires that you determine 
and maintain the bin boundaries appropriately. 

This approach requires that you preprocess the data outside of OracleAS 
Personalization before OracleAS Personalization creates recommendations.

5.9 Recommendation Engine Usage
OracleAS Personalization requires at least one recommendation engine (RE) in at 
least one recommendation engine farm. In general, you will want to use more than 
one RE to get satisfactory recommendation performance. Most applications will use 
multiple REs on different machines and subsequently different database instances. 
See "Load Balancing" earlier in this chapter for an example of how you might code 
one of these solutions.



Using Demographic Data

5-10 OracleAS Personalization Programmer’s Guide

Typically, for a given application, these REs will belong to the same RE farm. If a 
physical system has multiple processors, and the processors can be leveraged 
effectively by the database, the number of REs required for a given number of users 
can be reduced, perhaps even to one. See the administrator’s guide for more 
information.

If your application has more than one RE available for use, it must determine which 
one to use. Here are three possible solutions:

1. A given user of the Web site (either a visitor or a customer) is always handled 
by the same Oracle Application Server Containers for J2EE (OC4J) instance and 
that OC4J instance is configured to use one RE at all times. The application 
must route users to "their" OC4J instance and configure OC4J instances to 
contact specific REs. The REProxy class takes configuration arguments to 
specify which RE to connect to. The application must determine how to get 
these configuration arguments, either from an OC4J.properties file, or by 
being explicitly coded in the Web applications, or by some other means.

2. Allow any OC4J instance to handle any customer. This requires that a customer 
be "hashed" to a specific RE. It is important that the same customer be routed to 
the same RE, at least within the session, since data is cached for the user's 
session in the RE.

3. Provide a fail-over mechanism in the application to allow a different RE to be 
contacted in the event the primary RE for a given customer cannot be contacted. 
This can be applied in addition to either solutions 1 or 2 above. In this case, the 
application specifies the primary RE and the backup RE (or the multiple backup 
REs) and controls the logic to switch between REs. The same user session may 
not always be routed to the same RE; however, the ability to get some kind of 
recommendation will be maintained. Note that it may not be necessary to 
implement such a solution, especially in a reasonably robust environment. 

5.10 Using Demographic Data
The schema of the MTR_CUSTOMER table consists of 50 generic attributes that can 
be mapped to any column in the site database. In order to support all different data 
types, all attributes are of type VARCHAR. Therefore, the mapped columns should 
be converted to strings. In this release of OracleAS Personalization, these mapped 
columns are treated as categorical or numerical only. If any of the mapped columns 
is a DATE attribute, it should be converted to a number using the TO_NUMBER 
function. The converted values can then be binned just like any other attribute by 
specifying the bin boundaries.



Handling Time-Based Items

REAPI Examples and Usage 5-11

There is binning for demographic data. The attributes that are binned can be of type 
boolean. In OracleAS Personalization, the bin numbers are represented internally 
as integers, but the actual values are passed back to the calling applications. That is, 
the Web application passes in the actual values and gets back actual values.

5.11 Handling Time-Based Items
For certain items, such as airline tickets, the price depends on when the item is 
purchased. For example, an airline ticket for a Boston to London flight has one price 
if it purchased 6 months before the date of the flight and a different price if it is 
purchased two days before the date of the flight.

If the Web application assigns the same item ID to all tickets for the same trip, 
regardless of when they are purchased, then the items should have different item 
types, such as "6-month advance", "2-day advance", etc. Alternatively, the 
application could define taxonomies on the items and get recommendations on the 
categories.

If the application assigns different item IDs to the same flight purchased at different 
times (so that a ticket purchased 6 months before the flight has an ID different from 
a ticket for the same flight purchased 2 days before the flight), all tickets can have 
the same item type. In this case recommending item IDs may not be appropriate; 
therefore, the application should define a taxonomy and request recommendations 
on the categories. 



Handling Time-Based Items

5-12 OracleAS Personalization Programmer’s Guide



Part II
 Recommendation Engine Batch API

Part II describes the OracleAS Personalization RE Batch API (Recommendation 
Engine Batch Application Programming Interface) enables a web application 
written in Java to request OracleAS Personalization-style recommendations in bulk 
mode. 

This part contains the following chapter:

■ Chapter 6, "RE Batch API Overview"

■ Chapter 7, "RE Batch API Supporting Classes"

■ Chapter 8, "Using the Recommendation Engine Batch Proxy"

■ Chapter 9, "REProxyBatch API Examples and Usage"

For a complete example of RE Batch API usage, see Appendix B

For detailed descriptions of the RE Batch API classes and methods, see the Javadoc 
in the OracleAS Personalization section of the Oracle Application Server 10g 
Documentation Library. Note that many of the batch methods and classes are 
REAPI methods and classes.

.





RE Batch API Overview 6-1

6
RE Batch API Overview

The OracleAS Personalization RE Batch API (Recommendation Engine Batch 
Application Programming Interface) enables an application written in Java to 
request OracleAS Personalization-style recommendations in bulk mode. 

RE Batch API was designed to be extensible, to minimize the number of API 
functions, to be uniform, and to keep the number of arguments to a minimum.

Chapter 9 contains examples of how to perform common tasks using RE Batch API.

Appendix B contains a complete example of RE Batch API usage.

RE Batch API classes and methods are described in detail in the Javadoc in the 
OracleAS Personalization section of the Oracle Application Server 10g 
Documentation Library

6.1 RE Batch API Prerequisites
Before you can use RE Batch API methods, OracleAS Personalization must be 
installed and the appropriate tables must be created and populated. Your database 
tables must be converted to the OracleAS Personalization schemas. It is important 
that the OracleAS Personalization MTR is populated with customer profiles. You 
should also create tables or views containing the customer IDs for which you want 
recommendations.

 If you are using one or more taxonomies, they must be properly specified.

At least one OracleAS Personalization package must have been built and deployed. 
Use the OracleAS Personalization administrative interface to do this. For an 

Note: RE Batch API is installed on the system where Oracle 
Application Server is installed.



RE Batch API Definitions and Concepts

6-2 OracleAS Personalization Programmer’s Guide

example of how to create and deploy a package, see Oracle Application Server 
Personalization User’s Guide.

6.2 RE Batch API Definitions and Concepts
This section describes the collections of methods that make up the RE Batch API 
and concepts and terms used in the description of the API.

6.2.1 RE Batch API End Users (Customers)
End users (users of a Web site that uses OracleAS Personalization for 
recommendations) are divided into two groups: customers and visitors. A customer 
is a registered user, who can be identified by a unique customer ID assigned by the 
Web application. The RE Batch API makes recommendations for customers only.

6.2.2 RE Batch API Recommendations
Recommendations are based on historical data, which is stored in the database and 
retrieved when the customer profiles are loaded.

6.3 Using RE Batch API
Before you execute an RE Batch program, you must

■ Set up the OracleAS Personalization environment (create an RE, and create and 
deploy an OracleAS Personalization package)

■ Create the tables used by the RE Batch methods

6.3.1 Setting Up the RE Batch API Environment
Before you can execute RE Batch API methods, the following must be true:

■ Properly formatted customer profile data must be available in the Mining Table 
Repository (MTR)

■ A recommendation engine (RE) farm containing at least one recommendation 
engine must exist.

Note: Do not deploy a package while an RE Batch call is in 
progress; do not start an RE Batch call while a deployment is in 
progress. Either of these activities causes an exception.



Using RE Batch API

RE Batch API Overview 6-3

■ A package must have been successfully built and then deployed in the 
recommendation engine farm.

The Oracle Application Server Personalization Administrator’s Guide and the online help 
for the OracleAS Personalization Administrative GUI explain how to perform these 
steps.

6.3.1.1 Customer Profile Data
Customer profile data resides in the MTR. 

6.3.1.2 Deploy a Package to an RE
You cannot get recommendations until there is an existing deployed package, which 
is created using the OracleAS Personalization administrative interface. You must 
build a package before you deploy it. You cannot build a package until there is 
some data available; data is converted from existing data collected by your Web 
application and stored in an Oracle database.

When you design an OracleAS Personalization application, you must decide if there 
should be more than one RE and, if there are several REs, how to use them. We 
recommend that the REs used for bulk recommendations not be used for any other 
purpose. For a discussion of the design considerations, see "Recommendation 
Engine Usage" in Chapter 9.

Recommendations may want to take income level (salary) into consideration; for 
example, you may want to recommend items that the user can afford to buy. If the 
items that are recommended have prices in several currencies (for example, items 
are sold in Japan and India), see "Handling Multiple Currencies" in Chapter 9.

6.3.2 Sample RE Batch API Usage
OracleAS Personalization includes a sample Java program that illustrates the use of 
many of the RE Batch API methods; the program is in Appendix B. There are also 
some examples of how to perform typical tasks in Chapter 9.

Note: If you try to deploy a package to an RE while a batch 
program is running, the deployment will fail.



Using RE Batch API

6-4 OracleAS Personalization Programmer’s Guide

6.3.3 Creating an REBatchProxy Object
Before you can use any of the RE Batch API methods, you must create at least one 
REBatchProxy object; see Chapter 9 for details. The object establishes a JDBC 
connection to a specified database and schema. The connection exists until it is 
explicitly destroyed.

6.3.4 Creating Instances of RE Batch API Objects
To use the API, you must create instances of the objects used by the API method 
signatures. Use the RE Batch API supporting classes, described in Chapter 8, to 
create these instances. It is always necessary, for example to create filtering settings 
and tuning sessions. For examples, see Chapter 9.

6.3.5 Converting Data for RE Batch API 
OracleAS Personalization generates recommendations based on data describing 
past user behavior. 

User data stored in an Oracle table must be transformed and stored in the Mining 
Table Repository (MTR) before it can be used to generate recommendations.

6.3.6 Managing Customer Profiles for RE Batch API
OracleAS Personalization stores customer profiles in the Mining Table Repository 
(MTR). The profiles to be used must be loaded into an RE before any 
recommendation requests are made. The following methods manage load and 
unload customer profiles from an RE:

■ loadCustomerProfiles()

■ purgeCustomerProfiles()

Before you load a set of customer profiles, you must create a table or a view 
containing a list of the customer IDs that identify the profiles that you wish to load, 
that is, a list of the customer IDs for which you want a recommendation.

6.3.7 Getting RE API Batch Recommendations
To get a recommendation, the application calls one of the following 
recommendation methods:

■ crossSellForItem()

■ rateItem()



Using RE Batch API

RE Batch API Overview 6-5

■ recommendTopItems()

These methods are used for getting recommendations for customers (registered 
users). 

6.3.7.1 Ratings in OracleAS Personalization
Ratings in OracleAS Personalization are in "ascending order of goodness", that is, 
the higher the rating, the more the user prefers the item. Low-rated items are items 
that the user does not prefer. OracleAS Personalization algorithms use these 
assumptions, so it is important that ratings are in ascending order of goodness.

6.3.7.2 Creating Recommendations
OracleAS Personalization uses rule tables stored in the RE to calculate the 
recommendations requested by the methods listed above. The specific rule table 
used depends upon the RE Batch API method used. In general, the antecedents of 
the rules are matched against the historical data and the probabilities of the various 
consequents are computed. These items are then ordered by probability, and 
numberOfItems (an API argument) items are returned. The recommendations are 
written to a database table.

If there is enough memory in the RE database, the RE caches all rules associated 
with a particular package deployed from the MTR to the RE, not just the most 
recent rules.

Scoring:
For scoring, all available historical data is used.

The OracleAS Personalization Mining Table Repository (MTR) contains historical 
rating, transactional data, and navigational data stored in both detailed and 
aggregated formats. The MTR also contains demographic data. When scoring for 
customers, the RE retrieves the demographic data and the aggregated version of the 
other data source types.

6.3.8 Making RE Batch Recommendations
RE Batch API methods that make recommendations write the recommendations to a 
database table. The schema used for the output depends on the method used. You 
can extract the recommendations in many ways, for example, with an appropriate 
SQL query, and then decide which recommendations to pass to the user.



Using RE Batch API

6-6 OracleAS Personalization Programmer’s Guide

6.3.9 Removing the REBatchProxy Object
Before you exit the application, you should destroy any proxy objects that you no 
longer need.



RE Batch API Supporting Classes 7-1

7
RE Batch API Supporting Classes

This chapter describes the supporting classes for the REProxyBatch class. These 
classes are used to create instances of the objects used by the methods described in 
Chapter 8. You may be able to create one instance of many of these classes and use 
that one instance as an argument for several calls.

Before you issue any of the recommendation methods described in Chapter 8, you 
must generate appropriate FilteringSettings Class, TuningSettings Class, and 
Location Class instances.

All methods described in this chapter are public.

This chapter does not contained detailed descriptions of any of the classes. For 
detailed information, see the Javadoc in the OracleAS Personalization section of the 
Oracle Application Server 10g Documentation Library.

The supporting classes are divided into two categories:

■ EnumType interfaces

■ Other supporting classes

7.1 Ratings in OracleAS Personalization
Ratings in OracleAS Personalization are in "ascending order of goodness", that is, 
the higher the rating, the more the user prefers the item. Low-rated items are items 

Note: Except for Location, these supporting classes are the same 
as the ones that are used by REAPI. (Not all REAPI classes are used 
by the RE Batch API.)



Location of RE Batch API Classes

7-2 OracleAS Personalization Programmer’s Guide

that the user does not prefer. OracleAS Personalization algorithms use these 
assumptions, so it is important that ratings are in ascending order of goodness.

7.2 Location of RE Batch API Classes
The following frequently used classes are in the oracle.dmt.re.base 
subdirectory:

■ DataItem

■ Enum

■ FilteringSettings

■ TuningSettings

For example, to use the Enum interfaces, you must include the following statement 
in your Java program:

import oracle.dmt.op.re.base.Enum;

7.3 EnumType Interfaces for RE Batch API
Many of the RE Batch API methods reference attributes that can take on a finite 
number of values. The interface Enum is used to implement the base class for these 
"enumerations."

The Enum interface has a nested EnumType class with the following general 
methods:

   int getId() 

   String toString() 

   String getName() 

   boolean isEqual(EnumType) 

 The following interfaces extend EnumType:

■ CategoryMembership

■ DataSource

■ InterestDimension

■ PersonalizationIndex

■ ProfileDataBalance



EnumType Interfaces for RE Batch API

RE Batch API Supporting Classes 7-3

■ ProfileUsage

■ Sorting

7.3.1 CategoryMembership Interface
CategoryMembershipType is implemented as: 

■ CategoryMembershipType (a class that extends EnumType) 

■ CategoryMembership (an interface) 

The class CategoryMembership has the following methods: 

CategoryMemberShipType getType(String name) 

CategoryMemberShipType getType(int) 

CategoryMembership specifies how categories in a list of categories should be 
applied for filtering. For example, Enum.CategoryMembership.EXCLUDE_
ITEMS specifies that items from the category should be excluded from the category 
list. For details, see Section 7.4.2, "FilteringSettings Class" later in this chapter.

CategoryMembership takes on the following values:

■ Enum.CategoryMembership.EXCLUDE_ITEMS

■ Enum.CategoryMembership.INCLUDE_ITEMS

■ Enum.CategoryMembership.EXCLUDE_CATEGORIES

■ Enum.CategoryMembership.INCLUDE_CATEGORIES

■ Enum.CategoryMembership.LEVEL

■ Enum.CategoryMembership.SUBTREE_ITEMS

■ Enum.CategoryMembership.SUBTREE_CATEGORIES

■ Enum.CategoryMembership.ALL_ITEMS

■ Enum.CategoryMembership.ALL_CATEGORIES

The following statement assigns Enum.CategoryMembership.LEVEL to the 
variable myEnum:

CategoryMembershipType myEnum = Enum.CategoryMembership.LEVEL; 



EnumType Interfaces for RE Batch API

7-4 OracleAS Personalization Programmer’s Guide

7.3.2 DataSource Interface
DataSource is implemented as: 

■ DataSourceType (a class that extends EnumType) 

■ DataSource (an interface) 

The class DataSourceType has the following methods: 

DataSourceType getType(String name) 

DataSourceType getType(int) 

DataSource specifies the type of data that is used when OracleAS Personalization 
performs certain operations. For example, Enum.DataSource.DEMOGRAPHIC 
specifies that demographic data. The method DataItem Class, described later in this 
chapter, uses DataSource. Note that a given method may not support all values of 
DataSource. For details, see the description of the method in the Javadoc included 
with OracleAS Personalization. 

DataSource takes on the following values:

■ Enum.DataSource.DEMOGRAPHIC

■ Enum.DataSource.PURCHASING

■ Enum.DataSource.RATING

■ Enum.DataSource.NAVIGATION

■ Enum.DataSource.ALL

The following statement assigns Enum.DataSource.ALL to the variable myEnum:

DataSourceType myEnum = Enum.DataSource.ALL; 

7.3.3 InterestDimension Interface
InterestDimension is implemented as: 

■ InterestDimensionType (a class that extends EnumType) 

■ InterestDimension (an interface) 

The class InterestDimensionType has the following methods: 

InterestDimensionType getType(String name) 

InterestDimensionType getType(int) 



EnumType Interfaces for RE Batch API

RE Batch API Supporting Classes 7-5

InterestDimension indicates the type of interest that the user of the Web site has 
in a given item. NAVIGATION indicates that the user is interested in the items. 
PURCHASING indicates that the user would like to purchase the items. RATING 
indicates that the user likes the items. For more information, see the description of 
TuningSettings Class later in this chapter.

InterestDimension takes on the following values:

■ Enum.InterestDimension.NAVIGATION

■ Enum.InterestDimension.PURCHASING

■ Enum.InterestDimension.RATING

The following statement assigns Enum.InterestDimension.PURCHASING to the 
variable myEnum:

InterestDimensionType myEnum = Enum.InterestDimension.PURCHASING; 

7.3.4 PersonalizationIndex Interface
PersonalizationIndex is implemented as: 

■ PersonalizationIndexType (a class that extends EnumType) 

■ PersonalizationIndex (an interface) 

The class PersonalizationIndexType has the following methods: 

PersonalizationIndexType getType(String name) 

PersonalizationIndexType getType(int) 

PersonalizationIndex specifies how "unusual" the recommendations returned 
will be. For example, LOW specifies not unusual. For more information, see the 
description of TuningSettings Class later in this chapter.

PersonalizationIndex takes on the following values:

■ Enum.PersonalizationIndex.LOW

■ Enum.PersonalizationIndex.MEDIUM

■ Enum.PersonalizationIndex.HIGH

The following statement assigns Enum.PersonalizationIndex.LOW to the 
variable myEnum:

PersonalizationIndexType myEnum = Enum.PersonalizationIndex.LOW; 



EnumType Interfaces for RE Batch API

7-6 OracleAS Personalization Programmer’s Guide

7.3.5 ProfileDataBalance Interface
ProfileDataBalance is implemented as: 

■ ProfileDataBalanceType (a class that extends EnumType) 

■ ProfileDataBalance (an interface) 

The class ProfileDataBalanceType has the following methods: 

ProfileDataBalanceType getType(String name) 

ProfileDataBalanceType getType(int) 

ProfileDataBalance specifies whether to take data from the current session or 
from history or to balance data between data from the current session and history 
when making recommendations. For more information, see the description of 
TuningSettings Class later in this chapter.

ProfileDataBalance takes on the following values:

■ Enum.ProfileDataBalance.HISTORY

The following statement assigns Enum.ProfileDataBalance.HISTORY to the 
variable myEnum:

ProfileDataBalanceType myEnum = Enum.ProfileDataBalance.HISTORY; 

7.3.6 ProfileUsage Interface
ProfileUsage is implemented as: 

■ ProfileUsageType (a class that extends EnumType) 

■ ProfileUsage (an interface) 

The class ProfileUsageType has the following methods: 

ProfileUsageType getType(String name) 

ProfileUsageType getType(int) 

Note: The only value of profile data balance that makes sense for 
bulk recommendations is Enum.ProfileDataBalance.HISTORY. 
You must specify this value. (There is no current session data 
available.)



EnumType Interfaces for RE Batch API

RE Batch API Supporting Classes 7-7

ProfileUsage specifies whether the recommendation list can include or exclude items 
in a customer’s profile. For more information, see the description of TuningSettings Class 
later in this chapter.

ProfileUsage takes on the following values:

■ Enum.ProfileUsage.INCLUDE

■ Enum.ProfileUsage.EXCLUDE

The following statement assigns Enum.ProfileUsage.INCLUDE to the variable 
myEnum:

ProfileUsageType myEnum = Enum.ProfileUsage.INCLUDE; 

7.3.7 Sorting Interface
Sorting is implemented as: 

■ SortingType (a class that extends EnumType) 

■ Sorting (an interface) 

The class SortingType has the following methods: 

SortingType getType(String name) 

SortingType getType(int) 

Sorting indicates whether sorting is done (none implies no sorting), and, if 
sorting is done, how it is done (ascending or descending). For more information, see 
the discussion of the DataItem Class later in this chapter.

Sorting takes on the following values:

■ Enum.Sorting.NONE

■ Enum.Sorting.DESCENDING

■ Enum.Sorting.ASCENDING

The following statement assigns Enum.Sorting.NONE to the variable myEnum:

SortingType myEnum = Enum.Sorting.NONE; 



Other RE Batch API Supporting Classes

7-8 OracleAS Personalization Programmer’s Guide

7.4 Other RE Batch API Supporting Classes
The other supporting classes are
■ DataItem

■ FilteringSettings

■ Location

■ TuningSettings

7.4.1 DataItem Class
This class is a subclass of class Item. It encapsulates data about an item. 

There are two kinds of methods provided with this class: 

■ A constructor that creates a DataItem instance

■ Methods that return attribute values

The following methods return attribute values:

■ getDataSource() 

■ getValue()

7.4.2 FilteringSettings Class
This class is used to specify the items to include or exclude when generating 
recommendations.

Release 2 of OracleAS Personalization supports category filtering only.

There are three kinds of methods provided with this class: 

■ A constructor for FilteringSettings

■ Methods that set the attributes values:

■ setItemFiltering(int taxonomyID)

■ setItemFiltering(int taxonomyID, long[] categoryList)

■ setItemExclusion(int taxonomyID, long[] categoryList])

■ setItemSubTreeFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryExclusion(int taxonomyID, long[] 
categoryList])



Other RE Batch API Supporting Classes

RE Batch API Supporting Classes 7-9

■ setCategorySubTreeFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryLevelFiltering(int taxonomyID, long[] 
categoryList])

■ setCategoryFiltering(int taxonomyID)

■ setCategoryFiltering(int taxonomyID, long[] 
categoryList)

■ Methods that return attribute values:

■ getTaxonomyID()

■ getCategoryFiltering ()

■ getCategoryList()

■ getCategoryMembership()

Not all filtering settings can be used will all methods. In particular, the following 
filtering setting cannot be used with the cross-sell methods :

■ setCategoryLevelFiltering

■ setCategorySubtreeFiltering

■ setCategoryExclusion

■ setCategoryFiltering(int)

■ setCategoryFiltering(int, long[])

7.4.3 Item Class
This class is used to represent items that can be recommended and for which data 
can be collected. An item is uniquely represented by the combination of type and 
ID. Item IDs must be unique within a given type, but different types can have the 
same IDs. 

There are two kinds of methods provided with this class: 

■ A constructor that creates an Item instance

■ Methods that return attribute values

■ getType()

■ getID()



Other RE Batch API Supporting Classes

7-10 OracleAS Personalization Programmer’s Guide

7.4.4 Location Class
This class specifies the location of the input table or the location of the table 
containing the results of an REProxyBatch method. The schema for the table 
depends on the call made. See the descriptions of the individual methods in the 
Javadoc for details.

There are three kinds of methods provided with this class: 

■ A constructor that creates a Location instance

■ Methods that return attribute values

■ get DatabaseURL()

■ getDatabaseAlias()

■ getSchemaName()

■ getTableName()

■ getUserName()

■ getPassword()

7.4.5 TuningSettings Class
This class specifies settings to be applied when computing a recommendation. An 
instance of this class is passed to all recommendation requests.

There are three kinds of methods provided with this class:

■ A constructor that creates an TuningSettings instance

■ Methods that set attribute values

■ Methods that return attribute values

The following methods set attribute values:

■ setDataSourceType() 

■ setInterestDimension() 

■ setPersonalizationIndex()

■ setProfileDataBalance()

■ setProfileUsage()



Other RE Batch API Supporting Classes

RE Batch API Supporting Classes 7-11

The following methods return attribute values:

■ getDataSourceType() 

■ getInterestDimension() 

■ getPersonalizationIndex()

■ getProfileDataBalance()

■ getProfileUsage()



Other RE Batch API Supporting Classes

7-12 OracleAS Personalization Programmer’s Guide



Using the Recommendation Engine Batch Proxy 8-1

8
Using the Recommendation Engine Batch

Proxy

This chapter consists of an overview of the class and methods that are used to 
manage the customer profiles and to obtain recommendations. The supporting 
classes for these methods are described in Chapter 7.

For detailed descriptions of these methods, see the Javadoc in the OracleAS 
Personalization section of the Oracle Application Server 10g Documentation 
Library.

All methods described in this chapter are public.

8.1 REProxy Batch Overview
The recommendation proxy (REProxyBatch) methods can be divided according to 
function, as follows:
■ Proxy creation and management, including customer profile management (load 

and purge customer profiles)
■ Recommendation methods (obtain recommendations)

For examples of how to use these classes and methods, see Chapter 9.

8.2 Location of REProxyBatch Classes
To use the REProxyBATCH (and its exceptions), you must include the following 
statements in your Java program:

import oracle.dmt.op.re.reapi.batch.*;

import oracle.dmt.op.re.reexception.*;



Location of REProxyBatch Classes

8-2 OracleAS Personalization Programmer’s Guide

These classes are installed on the system where Oracle Application Server is 
installed. 

8.2.1 REProxyBatch Creation and Management
The REProxyBatch.java class establishes the JDBC connection to the RE schema 
where the methods execute. The connection continues to exist until the connection 
is explicitly destroyed with the destroy() method. The class also includes 
customer profile management methods.

8.2.1.1 Customer Profile Management
You must load customer profiles from the MTR to the RE before you can request 
recommendations; after you are done, you should purge the loaded profiles from 
the RE. The methods are

■ LoadCustomerProfiles();

■ PurgeCustomerProfiles();

8.2.2 REProxyBatch Recommendations
The following methods obtain recommendations:

■ crossSellForItems

■ rateItem

■ recommendTopItems

Communicating the returned recommendations to the end user is the responsibility 
of the application. The recommendations are written to an output table; the schema 
of the output table depends on the method called. For details, see the description of 
each method.

8.2.2.1 Ratings in OracleAS Personalization
Ratings in OracleAS Personalization are in "ascending order of goodness", that is, 
the higher the rating, the more the user prefers the item. Low-rated items are items 
that the user does not prefer. OracleAS Personalization algorithms use these 
assumptions, so it is important that ratings are in ascending order of goodness.

8.2.2.2 Meaning of Returned Value for Recommendations
The meaning of the value returned for recommendation instances where 
ItemDetailData.attribute is equal to 



Location of REProxyBatch Classes

Using the Recommendation Engine Batch Proxy 8-3

Enum.RecommendationAttribute.PREDICTION depends on the value of 
interestDimension as follows:

■ For InterestDimension.RATING, the expected rating for the item is 
returned.

■ For InterestDimension.PURCHASING or 
InterestDimension.NAVIGATION, a scaled probability is returned. The 
most probable item is assigned a value of 1 and other items are assigned values 
less than 1 that are proportional to how probable the items are compared to the 
most probable item.

8.2.2.3 Cross Sell Method Usage Notes
The comments in this section apply to recommendCrossSellForItems.

Interest dimension must be the same as that of the data source type of the input 
item.

Data source type must be either navigational or purchasing. No other types are 
supported.

The following filtering setting cannot be used with this method:

■ setCategoryLevelFiltering

■ setCategorySubtreeFiltering

■ setCategoryExclusion

■ setCategoryFiltering(int)

■ setCategoryFiltering(int, long[])

8.2.2.4 Recommendation Method Usage Notes
recommendTopItems does not necessarily return a list of items. If you set 
FilteringSettings.CategoryMembership to one of the values 

■ Enum.CategoryMembership.EXCLUDE_CATEGORIES

■ Enum.CategoryMembership.INCLUDE_CATEGORIES

■ Enum.CategoryMembership.SUBTREE_CATEGORIES

■ Enum.CategoryMembership.ALL_CATEGORIES

then recommendTopItems returns a list of categories.



REProxyBatch Rules and Recommendations

8-4 OracleAS Personalization Programmer’s Guide

Categories are components of a taxonomy. Taxonomies are defined in the following 
tables in the mining table repository (MTR):

■ MTR_TAXONOMY

■ MTR_TAXONOMY_CATEGORY

■ MTR_TAXONOMY_CATEGORY_ITEM

■ MTR_CATEGORY

An appropriate taxonomy is crucial to the design of an OracleAS Personalization 
application. For information about how to create taxonomies, see Oracle Application 
Server Personalization Administrator’s Guide.

8.3 REProxyBatch Rules and Recommendations
OracleAS Personalization uses rule tables stored in the RE to generate the 
recommendations requested by the recommendation methods. The rule tables are 
created when a package is built and stored in the RE when the package is deployed. 
The specific rule table used depends upon the RE Batch API call made. In general, 
the antecedents of the rules are matched against the data in cache (historical data 
only for RE Batch) and the probabilities of the various consequents are computed. 
These items are then ordered by probability, and numberOfItems (an API 
argument) items are returned.



REProxyBatch API Examples and Usage 9-1

9
REProxyBatch API Examples and Usage

This chapter provides examples of REProxyBatch API use. In some instances, we 
provide coding skeletons; in others, we describe an approach for solving certain 
kinds of problems using OracleAS Personalization.

9.1 REProxyBatch API Basic Usage
The REBatchProxy methods described in Chapter 8 permit you to write Java 
programs that generate recommendations.
 

To use REProxyBatch API calls, you must perform the following steps:

1. Create and deploy a package to the RE that you will use for recommendations.

2. Create an instance of REBatchProxy.

3. Create any required tables. (Alternatively, you can create the tables using SQL 
before you execute the program.)

4. Load customer profiles.

5. Execute the desired recommendation methods.

6. Purge the customer profiles that you loaded in step 4.

7. Destroy the database connection that you created in step 2.

Note: The RE Batch API classes are installed on the system where 
Oracle Application Server is installed. The tables that they use are 
installed on a different system (the system where Oracle9i is 
installed.) The following steps must be performed on the correct 
system.



Recommendation Engine Usage

9-2 OracleAS Personalization Programmer’s Guide

You will now have a table containing the recommendations that you requested. You 
can use SQL to examine the table.

9.1.1 Code Sample: Recommend Top
The following code sample illustrates obtaining a recommendation:

// Create an instance of REProxyBatch

// Create customer table

// Load customer profiles

// Execute recommend_top

// Purge customer profiles loaded above

// Destroy the database connection held by REProxyBatch

9.1.2 Code Sample: Recommend Cross Sell
The following code sample illustrates obtaining cross-sell recommendations:

// Create an instance of REProxyBatch

// Create Items table 

// Execute cross sell for items

// Destroy the database connection held by REProxyBatch

9.2 Recommendation Engine Usage
REBatchProxy requires at least one recommendation engine (RE) in at least one 
recommendation engine farm.

We recommend that the REs used for bulk recommendations not be used for any 
other purpose. 

In general, you may want to use more than one RE to get satisfactory 
recommendation performance. Most applications will use multiple REs on different 
machines and subsequently different database instances.

Note: If you try to deploy a package an RE while a batch program 
is running, the deployment will fail.



Handling Multiple Currencies

REProxyBatch API Examples and Usage 9-3

Typically, for a given application, these REs will belong to the same RE farm. If a 
physical system has multiple processors, and the processors can be leveraged 
effectively by the database, the number of REs required for a given number of users 
can be reduced, perhaps even to one. See the administrator’s guide for more 
information.

If your application has more than one RE available for use, it must determine which 
one to use. You can load different sets of customer profiles into different REs, 
generate appropriate recommendations, and them merge the recommendation 
tables, if desired.

9.3 Handling Multiple Currencies
OracleAS Personalization stores currency data in the demographic table (for 
example, someone’s income) as numbers; that is, OracleAS Personalization does not 
store any kind of label. Both ten dollars (US) and ten pounds sterling (UK) are 
stored as "10".

There are several ways to ensure that currency data is interpreted correctly; the 
solution that you pick for your application depends on the way your application 
uses currency data.

■ Include a country code in customer demographics.

This solution allows the country to be taken into account, but it does not closely 
associate the value with the country.

■ Convert all currencies to a common currency such as Euros or United States 
dollars.

This solution permits you to compare individual currency values in a 
meaningful way (10 pounds sterling is more than $10 US) but does not permit 
you preserve the difference between data such as a salary of $30,000 US in the 
US, versus the same $30,000 US salary in Brazil. You need such information if, 
for example, you want to recommend items to highly remunerated individuals 
in both the US and Brazil; the salary in US dollars of highly remunerated 
individuals will vary considerably from country to country.

This approach requires that you preprocess the data outside of OracleAS 
Personalization before OracleAS Personalization creates recommendations.

■ Bin currency values according to the mean to get relative values that can be 
compared across countries.



Using Demographic Data

9-4 OracleAS Personalization Programmer’s Guide

This solution would permit you, for example, to determine the highly 
remunerated individuals for a given country, but it requires that you determine 
and maintain the bin boundaries appropriately. 

This approach requires that you preprocess the data outside of OracleAS 
Personalization before OracleAS Personalization creates recommendations.

9.4 Using Demographic Data
The schema of the MTR_CUSTOMER table consists of 50 generic attributes that can 
be mapped to any column in the site database. In order to support all different data 
types, all attributes are of type VARCHAR. Therefore, the mapped columns should 
be converted to strings. In this release of OracleAS Personalization, these mapped 
columns are treated as categorical or numeric only. If any of the mapped columns is 
a DATE attribute, it should be converted to a number using the TO_NUMBER 
function. The converted values can then be binned just like any other attribute by 
specifying the bin boundaries.

There is binning for demographic data. The attributes that are binned can be of type 
boolean. In OracleAS Personalization, the bin numbers are represented internally 
as integers, but the actual values are passed back to the calling applications. That is, 
the Web application passes in the actual values and gets back actual values.

9.5 Handling Time-Based Items
For certain items, such as airline tickets, the price depends on when the item is 
purchased. For example, an airline ticket for a Boston to London flight has one price 
if it purchased 6 months before the date of the flight and a different price if it is 
purchased two days before the date of the flight.

If the Web application assigns the same item ID to all tickets for the same trip, 
regardless of when they are purchased, then the items should have different item 
types, such as "6 month advance", "2 day advance", etc. Alternatively, the 
application could define taxonomies on the items and get recommendations on the 
categories.

If the application assigns different item IDs to the same flight purchased at different 
times (so that a ticket purchased 6 months before the flight has a different ID from a 
ticket for the same flight purchased 2 days before the flight), all tickets can have the 
same item type. In this case recommending item IDs may not be appropriate; 
therefore, the application should define a taxonomy and request recommendations 
on the categories. 



REAPI Sample Program A-1

A
REAPI Sample Program

This appendix contains ProxyTest.java , a sample Java program that illustrates 
using REAPI.

Before you can execute this program, an appropriate model must be built and 
deployed to an RE. If no data is returned, it may indicate that the model is not 
sufficient for the data. The code is installed in ${ORACLE_HOME}/dmt/reapi/rt/ 
on the system where Oracle Application Server is installed.

// Copyright (c) 2001, 2002 Oracle Corp

///////////////////////////////////////////////////////////////////////
//
// Test program exercises the functionality of
// REAPI.
//
// Step 1 creates a unique session ID
// Step 2 creates a proxy instance
// Step 3 creates a session
// Step 4 creates settings data (IdentificationData, TuningSettings,
//        FilteringSettings, hotPick list, item list)
// Step 5 gets recomendations and ratings
// Step 6 closes session
// Step 7 destroys the proxy and flushes data cache
////////////////////////////////////////////////////////////////////////

import java.math.BigDecimal;

Note: REAPI is installed on the system where Oracle Application 
Server is installed. It is simplest to run this program on that system.



A-2 OracleAS Personalization Programmer’s Guide

import java.lang.Long;
import java.sql.*;
import java.io.IOException;
import java.io.StringWriter;
import java.io.PrintWriter;
import oracle.jdeveloper.cm.CMException;
import oracle.dmt.op.re.reapi.rt.*;
import oracle.dmt.op.re.reapi.batch.*;
import oracle.dmt.op.re.reexception.*;
import oracle.dmt.op.re.base.*;
import oracle.dmt.oputil.exceptions.MessageLogException;
import oracle.dmt.oputil.exceptions.StringTooLongException;

/**
 * Class ProxyTest
 * <P>
 * @author Oracle Corporation
 */
public class ProxyTest
{
  static boolean bVerbose;
  static final String SESSIONEXISTS = "";
  /**
   * Constructor
   */
  public ProxyTest()
  {
  }

  /**
   * main
   * @param args
   */
public static void main(String[] args) throws ClassNotFoundException
  {
    long lStart;
    long lTotal = 0;
    String sProxyName = "REP1";
    String sdbURL = "jdbc:oracle:thin:@server-name:1521:darw900"; // sdbURL must 
be correct for your installation
    String sUser = "RE01";
    String sPass = "REPW";

    int cSize = 3000;   // Kbytes
    int interval = 10000;   // in millisec



REAPI Sample Program A-3

    new ProxyTest();
    REProxyRT proxy;
    // Step 1: Create a unique Session ID.
    String custID = "1";
    java.util.Date tmp = new java.util.Date();
    Long tmpInt = new Long(tmp.getTime());
    String sessionID = tmpInt.toString();

    String trace = null;

    lStart = System.currentTimeMillis();
    try
    {
      // Step 2:  Get a proxy instance.
      if ((proxy = REProxyManager.getProxy(sProxyName)) == null)
        proxy = REProxyManager.createProxy(sProxyName, sdbURL, sUser, sPass, 
cSize, interval);

      // Step 3: create OP session
      proxy.createCustomerSession(custID, sessionID);

      // Step 4:  create settings data
      IdentificationData idData =
            IdentificationData.createSessionful(
                sessionID,
                Enum.User.CUSTOMER);

      TuningSettings tunings = new TuningSettings(
        Enum.DataSource.NAVIGATION,
        Enum.InterestDimension.NAVIGATION,
        Enum.PersonalizationIndex.HIGH,
        Enum.ProfileDataBalance.BALANCED,
        Enum.ProfileUsage.EXCLUDE);

      long[] hotPickGroups = {1,2,3,4,5,6,7,10,11}; 

      long[] m_catList = {1,2,3,4,5};

      FilteringSettings filters =
        new FilteringSettings(1);
        int taxonomy=1;
      filters.setItemFiltering( taxonomy, m_catList);
      RecommendationContent recContent = new 
RecommendationContent(Enum.Sorting.ASCENDING);



A-4 OracleAS Personalization Programmer’s Guide

      try{

     //Create list of items for testing
      DataItem[] items = new DataItem[4];
      items[0] = new DataItem(
            "MOVIE",
            72,
            Enum.DataSource.RATING,
            "1.5");
     items[1] = new DataItem(
            "MOVIE",
            287,
            Enum.DataSource.RATING,
            "1.5");
     items[2] = new DataItem(
            "MOVIE",
            122,
            Enum.DataSource.RATING,
            "1.5");
     items[3] = new DataItem(
            "MOVIE",
            1300,
            Enum.DataSource.RATING,
            "1.5");
    int count =  1;

    // Step 5: Get recomendations and ratings and print them out. 
    // Note use of toString.
    try{
    System.out.println("\n################ " + count++ + " ################");
     //Call recommendBottonItems
     RecommendationList es1 = proxy.recommendBottomItems(
        idData,
        10,
        tunings,
        filters,
        recContent);
    System.out.println("");
    es1.toString();
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{



REAPI Sample Program A-5

    System.out.println("\n################ " + count++ + " ################");
    //Call rateItems
    RecommendationList es2 = proxy.rateItems(
        idData,
        items,
        1,
        tunings,
        recContent);
    System.out.println("");
    System.out.println(es2.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    //call selectFromHotPicks
    RecommendationList es3 = proxy.selectFromHotPicks(
        idData,
        10,
        hotPickGroups,
        tunings,
        filters,
        recContent);
        System.out.println("");
    System.out.println("");
    System.out.println(es3.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    //Call crossSellForItemFromHotPicks
    RecommendationList es4 = proxy.crossSellForItemFromHotPicks(
        idData,
        items[0],
        10,
        hotPickGroups,
        tunings,
        filters,
        recContent);
    System.out.println("");
    System.out.println(es4.toString());



A-6 OracleAS Personalization Programmer’s Guide

    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
   //Call recommendCrossSellForItem
    RecommendationList es5 = proxy.recommendCrossSellForItem(
        idData,
        items[0],
        10,
        tunings,
        filters,
        recContent);
    System.out.println("");
    System.out.println(es5.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
     RecommendationList  es6 = proxy.recommendCrossSellForItems(
        idData,
        items,
        10,
        tunings,
        filters,
        recContent);
    System.out.println("");
    System.out.println(es6.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    RecommendationList es7 = proxy.crossSellForItemsFromHotPicks(
        idData,
        items,
        10,
        hotPickGroups,
        tunings,
        filters,
        recContent);



REAPI Sample Program A-7

    System.out.println("");
    System.out.println(es7.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    float es9 = proxy.rateItem(
    idData,
    items[2],
    1,
    tunings,
    recContent
    );
    System.out.println("");
    System.out.println("Result for recomend item:  " + es9);
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    RecommendationList es10 = proxy.recommendFromHotPicks(
    idData,
    10,
    hotPickGroups,
    tunings,
    filters,
    recContent);
    System.out.println("");
    System.out.println(es10.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    try{
    System.out.println("\n################ " + count++ + " ################");
    RecommendationList es11 = proxy.recommendTopItems(
    idData,
    10,
    tunings,
    filters,
    recContent);



A-8 OracleAS Personalization Programmer’s Guide

    System.out.println("");
    System.out.println(es11.toString());
    } catch(ErrorExecutingRE e) {
        e.printStackTrace();
    }

    } catch(BadDBConnectionException bdbe) {
        bdbe.printStackTrace();
    }catch (ClassNotFoundException exc) {
        exc.printStackTrace();
    }

    // Step 6: Close session
    proxy.closeSession(idData);

    // Step 7: Call destroy proxy (will flush data cache)
    REProxyManager.destroyProxy(sProxyName);

    } catch (ErrorExecutingRE se) {
      System.err.println(se);
    } catch (InvalidIDException iie) {
        System.err.println(iie);
    } catch(BadDBConnectionException bdbe) {
        bdbe.printStackTrace();
    } catch (Exception e) {
      System.err.println(e);
      e.printStackTrace();
    }
  }

}



REProxyBatch Sample Program B-1

B
REProxyBatch Sample Program

The sample program for RE Proxy Batch consists of a Java program and a property 
file. The sample program, property file, and the tables required to run it are 
installed when you install OracleAS Personalization.

B.1 RE Batch Sample Program Overview
The Java program REBatchTest.java and the property file batchtest.txt are 
in the TBS directory on the system where you have installed OracleAS 
Personalization.

REBatchTest.java REProxyBatch allows you to execute a subset of 
recommendation functions in bulk. (REProxyRT scores one user/item at a time.) 
REProxyBatch reads a list of items/customers to be scored from an input table 
and writes the result to a new output table. This program reads its input from the 
property file batchtest.ini. 

B.1.1 RE Batch Sample Program Output
The input item details (for rateItem and crossSellForItem) are derived from 
the OracleAS Personalization demo data. But in OracleAS Personalization, the 
model built on the same data is not guaranteed to produce the same rules each time 
that it is run. Therefore, it is possible that the item being rated cannot be rated with 
the current set of rules. The output tables will either be empty (zero rows) or will 
contain fewer than expected records (if only some of the items are valid cross-sell 
candidates etc.).



Executing the RE Batch Sample Program

B-2 OracleAS Personalization Programmer’s Guide

B.2 Executing the RE Batch Sample Program
Follow these steps to execute the sample program:

1. Install OracleAS Personalization.

2. The code and data for the sample program is installed into the following 
directories when you install OracleAS Personalization:

■ The following code is installed in ${ORACLE_HOME}/dmt/reapi/batch/ 

– batchtest.txt 

– README.txt 

– REBatchTest.java 

■ The following items associated with the data used by the sample program 
are installed in ${ORACLE_HOME}/dmt/reapi/batch/sampleData 

– create_batch_demo_input_tables.sql 

– customer_list_in.ctl 

– customer_list_in.txt 

– item_list_in.ctl 

– item_list_in.txt 

– load_batch_demo_data.sh 

3. Run the shell script load_batch_demo_data.sh to load the following tables: 

■ customer_list_in — Used for loadCustomerProfile. (The output of 
loadCustomerProfile is used by recommendTopItems and 
rateItem.)

■ item_list_in — Used by crossSellForItem.

4. Compile the sample code. Your CLASSPATH variable should include the 
following zip/jar files:

– ${ORACLE_HOME}/dmt/opreapi-batch.jar

– ${ORACLE_HOME}/dmt/oputil.jar

It also needs to include JDBC related jar/zip files:

– ${ORACLE_HOME}/jdbc/lib/classes12.zip



RE Batch Sample Program Code

REProxyBatch Sample Program B-3

5. Change the property file to point to the appropriate entities. The comments in 
the property file and the file README.txt describes the exact changes that 
must be made.

6. Run REBatchTest, with the property file name as an input parameter.

B.3 RE Batch Sample Program Code
This section contains the code for the sample program and its property file.

B.3.1 batchtest.txt
The properties file for the sample program follows. Note that you must replace RE 
details and input/output table details to reflect your installation.

###
### Input file for REProxyBatch sample program
### Before Running, you will need to replace the following dummy strings with actual information:
### 1. RE* details ( Url,Username,Password) to point to the RE.
### 2. Input and Output (Result) table details for each of the calls.

#A unique name for proxy
ProxyName=REB_1

#Recommendation Engine details
REUrl=jdbc:oracle:thin:@myDBUrl
REUsername=REUser
REPassword=REPassword

#Input customer table location
Input.Url=jdbc:oracle:thin:@myDBUrl
Input.Alias=myDBAlias
Input.Schema=User1
Input.Table=customer_list_in
Input.Username=User1
Input.Password=Password1

#Customer profile table
# This table is created in RE by loadCustomerProfile. Once created
# it is used for recommendTopItems and rateItem
CustProfile=MY_CUSTOMER_PROFILE

#
# Details for recommendTopItems



RE Batch Sample Program Code

B-4 OracleAS Personalization Programmer’s Guide

#
# Number of items to be recommended per customer
TopN.NumberOfItems=10
#TuningSettings details
#valid DataSourceTypes are ALL, DEMOGRAPHIC, PURCHASING, RATING, NAVIGATION
TopN.DataSourceType=ALL
#valid InterestDimension: PURCHASING, RATING, NAVIGATION
TopN.InterestDimension=PURCHASING
#valid PersonalizationIndex: LOW, MEDIUM, HIGH
TopN.PersonalizationIndex=MEDIUM
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
#valid ProfileDataBalance: HISTORY, CURRENT, BALANCED
TopN.ProfileDataBalance=HISTORY
#valid ProfileUsage:INCLUDE, EXCLUDE
TopN.ProfileUsage=INCLUDE
# FilteringSettings details
TopN.Taxonomy=1
#Category list is a series of numbers separated by "-"
TopN.CategoryList=1-2-3-4-5
#Valid CategoryMembership: ExcludeItems, ExcludeCategories, IncludeItems, IncludeCategories,
#       level, SubTreeItems, SubTreeCategories, AllItems, AllCategories
TopN.CategoryMember=AllItems
# Result table details
TopNResult.Url=jdbc:oracle:thin:@myDBUrl
TopNResult.Alias=myDBAlias
TopNResult.Schema=User2
TopNResult.Table=TopN_RESULTS
TopNResult.Username=User2
TopNResult.Password=Password2

#
# Details for rateItem
#
#TuningSettings details
RateI.ItemID=417
RateI.ItemType=MOVIE
RateI.DataSourceType=RATING
RateI.InterestDimension=RATING
RateI.PersonalizationIndex=LOW
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
RateI.ProfileDataBalance=HISTORY
RateI.ProfileUsage=INCLUDE
RateI.Taxonomy=1



RE Batch Sample Program Code

REProxyBatch Sample Program B-5

# Result table details
RateIResult.Url=jdbc:oracle:thin:@myDBUrl
RateIResult.Alias=myDBAlias
RateIResult.Schema=User3
RateIResult.Table=RATEITEM_RESULTS
RateIResult.Username=User3
RateIResult.Password=Password3

#
# Details for crossSellForItem
#
#Input items table details
ItemTable.Url=jdbc:oracle:thin:@myDBUrl
ItemTable.Alias=myDBAlias
ItemTable.Schema=User4
ItemTable.Table=item_list_in
ItemTable.Username=User4
ItemTable.Password=User4
# Number of items to be recommended per input item
XSell.NumberOfItems=10
#TuningSettings details
XSell.DataSourceType=NAVIGATION
XSell.InterestDimension=NAVIGATION
XSell.PersonalizationIndex=HIGH
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
XSell.ProfileDataBalance=HISTORY
XSell.ProfileUsage=EXCLUDE
#FilteringSettings details
XSell.Taxonomy=1
XSell.CategoryList=1-3-5-7-9
XSell.CategoryMember=AllItems
# Result table details
XSellResult.Url=jdbc:oracle:thin:@myDBUrl
XSellResult.Alias=myDBAlas
XSellResult.Schema=User4
XSellResult.Table=XSELL_RESULTS
XSellResult.Username=User5
XSellResult.Password=Password5

B.3.2 REBatchTest.java
The sample program follows. Note that you must replace RE details and 
input/output table details to reflect your installation.



RE Batch Sample Program Code

B-6 OracleAS Personalization Programmer’s Guide

###
### Input file for REProxyBatch sample program
### Before Running, you will need to replace the following dummy strings with actual information:
### 1. RE* details ( Url,Username,Password) to point to the RE.
### 2. Input and Output (Result) table details for each of the calls.

#A unique name for proxy
ProxyName=REB_1

#Recommendation Engine details
REUrl=jdbc:oracle:thin:@myDBUrl
REUsername=REUser
REPassword=REPassword

#Input customer table location
Input.Url=jdbc:oracle:thin:@myDBUrl
Input.Alias=myDBAlias
Input.Schema=User1
Input.Table=customer_list_in
Input.Username=User1
Input.Password=Password1

#Customer profile table
# This table is created in RE by loadCustomerProfile. Once created
# it is used for recommendTopItems and rateItem
CustProfile=MY_CUSTOMER_PROFILE

#
# Details for recommendTopItems
#
# Number of items to be recommended per customer
TopN.NumberOfItems=10
#TuningSettings details
#valid DataSourceTypes are ALL, DEMOGRAPHIC, PURCHASING, RATING, NAVIGATION
TopN.DataSourceType=ALL
#valid InterestDimension: PURCHASING, RATING, NAVIGATION
TopN.InterestDimension=PURCHASING
#valid PersonalizationIndex: LOW, MEDIUM, HIGH
TopN.PersonalizationIndex=MEDIUM
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
#valid ProfileDataBalance: HISTORY, CURRENT, BALANCED
TopN.ProfileDataBalance=HISTORY
#valid ProfileUsage:INCLUDE, EXCLUDE
TopN.ProfileUsage=INCLUDE



RE Batch Sample Program Code

REProxyBatch Sample Program B-7

# FilteringSettings details
TopN.Taxonomy=1
#Category list is a series of numbers separated by "-"
TopN.CategoryList=1-2-3-4-5
#Valid CategoryMembership: ExcludeItems, ExcludeCategories, IncludeItems, IncludeCategories,
#       level, SubTreeItems, SubTreeCategories, AllItems, AllCategories
TopN.CategoryMember=AllItems
# Result table details
TopNResult.Url=jdbc:oracle:thin:@myDBUrl
TopNResult.Alias=myDBAlias
TopNResult.Schema=User2
TopNResult.Table=TopN_RESULTS
TopNResult.Username=User2
TopNResult.Password=Password2

#
# Details for rateItem
#
#TuningSettings details
RateI.ItemID=417
RateI.ItemType=MOVIE
RateI.DataSourceType=RATING
RateI.InterestDimension=RATING
RateI.PersonalizationIndex=LOW
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
RateI.ProfileDataBalance=HISTORY
RateI.ProfileUsage=INCLUDE
RateI.Taxonomy=1
# Result table details
RateIResult.Url=jdbc:oracle:thin:@myDBUrl
RateIResult.Alias=myDBAlias
RateIResult.Schema=User3
RateIResult.Table=RATEITEM_RESULTS
RateIResult.Username=User3
RateIResult.Password=Password3

#
# Details for crossSellForItem
#
#Input items table details
ItemTable.Url=jdbc:oracle:thin:@myDBUrl
ItemTable.Alias=myDBAlias
ItemTable.Schema=User4
ItemTable.Table=item_list_in



RE Batch Sample Program Code

B-8 OracleAS Personalization Programmer’s Guide

ItemTable.Username=User4
ItemTable.Password=User4
# Number of items to be recommended per input item
XSell.NumberOfItems=10
#TuningSettings details
XSell.DataSourceType=NAVIGATION
XSell.InterestDimension=NAVIGATION
XSell.PersonalizationIndex=HIGH
## ProfileDataBalance needs to be specified as part of the TuningSettings object
## but its value is not used by REProxyBatch
XSell.ProfileDataBalance=HISTORY
XSell.ProfileUsage=EXCLUDE
#FilteringSettings details
XSell.Taxonomy=1
XSell.CategoryList=1-3-5-7-9
XSell.CategoryMember=AllItems
# Result table details
XSellResult.Url=jdbc:oracle:thin:@myDBUrl
XSellResult.Alias=myDBAlas
XSellResult.Schema=User4
XSellResult.Table=XSELL_RESULTS
XSellResult.Username=User5
XSellResult.Password=Password5



Index-1

Index
A
API structure, 1-1

B
batch

examples, 9-1
use, 9-1

batch proxy, 6-1
batch recommendations, 8-4

C
cache

data, 4-2
CategoryMembership, 7-3
CategoryMembership interface, 3-3
class

Contentitem, 3-9
DataItem, 3-10, 7-8
FilteringSettings, 3-10, 7-8
IdentificationData, 3-11
Item, 3-12, 7-9
ItemDetailData, 3-12
Location, 7-10
Recommendation, 3-12
RecommendationList, 3-13
REProxyManager, 4-3
TuningSettings, 3-13, 7-10

classes
REAPI, 4-1
REProxyBatch, 8-1

code sample
REProxyBatch, 9-2

ContentItem class, 3-9
cross sell, 4-8

usage notes, 8-3
currencies

handling, 5-8, 9-3
customer profile management

REProxyBatch, 8-2
customer registration, 4-4
customers, 2-2, 8-2

RE Batch API, 6-2, 6-4

D
data

RE Batch API, 6-4
data caching, 4-2
data collection, 2-3, 4-2, 4-3, 4-6
data management, 4-3
DataItem class, 3-10, 7-8
DataSource interface, 3-3, 7-4
demographic data

using, 9-4
destroy a proxy, 5-3

E
end user

REAPI, 2-2
Enum interface, 3-2, 7-2
EnumType interfaces

RE Batch, 7-2
REAPI, 3-2



Index-2

examples
REAPI, 5-1

executing OracleAS Personalization programs, 1-1
executing REAPI programs, 2-1, 2-4

F
filtering, 3-10, 7-8
Filtering interface, 3-4
FilteringSettings class, 3-10, 7-8

H
handling currencies, 5-8, 9-3
handling time-based items, 5-11, 9-4
hot picks

REAPI, 2-4

I
IdentificationData class, 3-11
individual recommendations, 5-8
initialization

RE Proxy, 5-6
InterestDimension interface, 3-5, 7-4
interface

CategoryMembership, 3-3, 7-3
DataSource, 3-3, 7-4
Filtering, 3-4
InterestDimension, 3-5, 7-4
PersonalizationIndex, 3-5, 7-5
ProfileDataBalance, 3-6, 7-6
ProfileUsage, 3-7, 7-6
RecommendationAttribute, 3-7
Sorting, 3-8, 7-7
User, 3-8

Item class, 3-12, 7-9
ItemDetailData class, 3-12

J
java applications

standalone, 5-5
Java server-side modules, 5-5
Javadoc, 1-2

JVM
proxy interaction, 5-5

L
load balancing

REAPI, 5-8
Location class, 7-10
location of REAPI classes, 3-1

M
multiple currencies, 5-8, 9-3
multiple instances

REProxy, 5-6

O
OracleAS Personalization programs

how to execute, 1-1
OracleAS Personalization ratings, 3-1

P
PersonalizationIndex interface, 3-5, 7-5
prerequisites

RE Batch API, 6-1
ProfileDataBalance

interface, 7-6
ProfileDataBalance interface, 3-6
ProfileUsage interface, 3-7, 7-6
proxy, 8-1

creation, 4-2, 8-2
destroying, 5-3
initialization, 5-6
management, 4-2, 8-2
using, 5-2

proxy creation, 4-7, 8-1
proxy destruction, 4-9
proxy management, 8-1
proxy objects

REAPI, 2-6
removing, 2-10

ProxyBatch, 9-1



Index-3

R
ratings, 8-2

OracleAS Personalization, 3-1
RE API Batch

getting recommendations, 6-4
RE Bacth API

data, 6-4
RE Batch API, 6-1

customer profiles, 6-4
customers, 6-2
environment, 6-2
example, 6-3
recommendations, 6-2, 6-4
using, 6-2

RE Batch API prerequisites, 6-1
RE Batch proxy, 8-1
RE Batch recommendations, 6-5
RE data collection, 4-2
RE Proxy, 4-2

usage notes, 4-6
RE usage, 5-9

REProxyBatch, 9-2
REAP recommendations, 2-8
REAPI

proxy objects, 2-6
using, 4-1

REAPI basic usage, 5-1
REAPI classes

location, 3-1
REAPI classes and methods, 4-1
REAPI data collection, 2-3
REAPI demo, 5-1
REAPI end users, 2-2
REAPI EnumType interfaces, 3-2
REAPI examples, 5-1
REAPI hot picks, 2-4
REAPI Overview, 2-1
REAPI prerequisites, 2-1, 2-4
REAPI recommendations, 2-4, 2-8

making, 2-9
obtaining, 2-8

REAPI sample program, A-1
REAPI session

closing, 2-9

starting, 2-6
REAPI sessions, 2-2
REAPI supporting classes, 2-7, 3-1
REAPI usage, 5-1
REBatchProxy

creating, 6-4
REBatchProxy object

removing, 6-6
recommedations

RE Batch API, 6-5
Recommendation class, 3-12
recommendation engine usage, 5-9

REProxyBatch, 9-2
RecommendationAttribute interface, 3-7
RecommendationList class, 3-13
recommendations, 3-12, 4-6

creating, 2-8, 6-5
RE Batch API, 6-2, 6-5
REAPI, 2-4, 4-4
REProxyBatch, 8-2, 8-4
returned value, 8-2
usage notes, 8-3

REProxy
multiple instances, 5-6

REProxy object
creating, 5-2
using, 5-2

REProxyBatch
code sample, 9-2
demographic data, 9-4
examples, 9-1
recommendations, 8-4
rules, 8-4
usage, 9-1

REProxyBatch classes
location, 8-1

REProxyBatch overview, 8-1
REProxyBatch sample program, B-1
REProxyManager

JVM interaction, 5-5
REProxyManager class, 4-3
REProxyRT

location of classes, 4-2
REProxyRT objects, 2-6

removing, 2-10



Index-4

rules, 4-6
REProxyBatch, 8-4

S
sample program

REAPI, A-1
REProxyBatch, B-1

scoring
customers, 2-9
RE Batch API, 6-5
visitors, 2-9

server-side modules, 5-5
session

closing, 2-9
session creation, 4-6
session management, 4-3
sessionful, 2-2, 2-3, 5-3
sessionful web application, 5-3
sessionless, 2-2, 2-3, 5-4
sessionless web application, 5-4
sessions, 2-2

management, 4-3
Sorting interface, 3-8, 7-7
standalone java applications, 5-5
stateful, 2-2
stateless, 2-2

supporting classes
RE Batch, 7-1
REAPI, 3-1

T
time-based items, 5-11, 9-4
tuning, 3-13
TuningSettings class, 3-13, 7-10

U
uninterrupted REAPI service, 5-7
usage

REAPI, 5-1
usage notes

RE Proxy, 4-6
User interface, 3-8
using a proxy, 5-2
using RE Batch API, 6-2

V
visitors, 2-2


	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Where to Find More Information
	Conventions
	1 OracleAS Personalization Programming
	1.1� OracleAS Personalization API Structure
	1.2� Executing OracleAS Personalization Programs
	1.3� Javadoc for the OracleAS Personalization APIs


	Part I� Recommendation Engine API
	2 REAPI Overview
	2.1� REAPI Prerequisites
	2.2� REAPI Definitions and Concepts
	2.2.1� REAPI End Users (Customers and Visitors)
	2.2.2� Web Applications and Sessions
	2.2.3� REAPI Sessionful Web Applications
	2.2.4� REAPI Sessionless Web Applications
	2.2.5� REAPI Data Collection
	2.2.6� REAPI Recommendations
	2.2.7� REAPI Hot Picks

	2.3� Before Using REAPI
	2.3.1� REAPI Demo Program
	2.3.2� Creating REProxyRT Objects
	2.3.3� Starting an REAPI Session
	2.3.4� Creating Instances of REAPI Supporting Classes
	2.3.5� Collecting Data for REAPI Recommendations
	2.3.6� Getting REAPI Recommendations
	2.3.7� Making REAPI Recommendations
	2.3.8� Closing an REAPI Session
	2.3.9� Removing REProxyRT Objects


	3 REAPI Supporting Classes
	3.1� Ratings in OracleAS Personalization
	3.2� Location of REAPI Classes
	3.3� REAPI EnumType Interfaces
	3.3.1� REAPI CategoryMembership Interface
	3.3.2� REAPI DataSource Interface
	3.3.3� REAPI Filtering Interface
	3.3.4� REAPI InterestDimension Interface
	3.3.5� REAPI PersonalizationIndex Interface
	3.3.6� REAPI ProfileDataBalance Interface
	3.3.7� REAPI ProfileUsage Interface
	3.3.8� REAPI RecommendationAttribute Interface
	3.3.9� REAPI Sorting Interface
	3.3.10� REAPI User Interface

	3.4� Other Supporting REAPI Classes
	3.4.1� ContentItem Class
	3.4.2� DataItem Class
	3.4.3� FilteringSettings Class
	3.4.4� IdentificationData Class
	3.4.5� Item Class
	3.4.6� ItemDetailData Class
	3.4.7� Recommendation Class
	3.4.8� RecommendationContent Class
	3.4.9� RecommendationList Class
	3.4.10� TuningSettings Class


	4 Using REAPI
	4.1� Recommendation Proxy Classes
	4.2� Location of RE Proxy Classes
	4.2.1� RE Proxy Creation and Management
	4.2.1.1� RE Data Collection
	4.2.1.2� REProxyManager Class

	4.2.2� Proxy Methods
	4.2.3� RE Proxy Session Management
	4.2.4� RE Proxy Data Collection and Management
	4.2.5� Re Proxy Customer Registration
	4.2.6� RE Proxy Recommendations
	4.2.6.1� Ratings in OracleAS Personalization
	4.2.6.2� Meaning of Returned Value for Recommendations


	4.3� Rules and Recommendations
	4.4� RE Proxy Method Usage Notes
	4.4.1� Session Creation
	4.4.2� Data Collection
	4.4.2.1� Add Items
	4.4.2.2� Remove Items

	4.4.3� Proxy Creation
	4.4.3.1� Cache Size
	4.4.3.2� Interval

	4.4.4� Cross Sell Methods
	4.4.5� Proxy Destruction


	5 REAPI Examples and Usage
	5.1� REAPI Demo
	5.2� REAPI Basic Usage
	5.2.1� Create an REProxy Object
	5.2.2� Use the Proxy
	5.2.3� Destroy the Proxy

	5.3� Sessionful Web Application Outline
	5.4� Sessionless Web Application Outline
	5.5� REProxyManager Interaction with JVM
	5.5.1� Standalone Java Applications
	5.5.2� Java Server-Side Modules

	5.6� Using Multiple Instances of REProxy
	5.6.1� Initialization Fail Safe
	5.6.2� Uninterrupted REAPI Service
	5.6.3� Load Balancing

	5.7� Extracting Individual Recommendations
	5.8� Handling Multiple Currencies
	5.9� Recommendation Engine Usage
	5.10� Using Demographic Data
	5.11� Handling Time-Based Items


	Part II� Recommendation Engine Batch API
	6 RE Batch API Overview
	6.1� RE Batch API Prerequisites
	6.2� RE Batch API Definitions and Concepts
	6.2.1� RE Batch API End Users (Customers)
	6.2.2� RE Batch API Recommendations

	6.3� Using RE Batch API
	6.3.1� Setting Up the RE Batch API Environment
	6.3.1.1� Customer Profile Data
	6.3.1.2� Deploy a Package to an RE

	6.3.2� Sample RE Batch API Usage
	6.3.3� Creating an REBatchProxy Object
	6.3.4� Creating Instances of RE Batch API Objects
	6.3.5� Converting Data for RE Batch API
	6.3.6� Managing Customer Profiles for RE Batch API
	6.3.7� Getting RE API Batch Recommendations
	6.3.7.1� Ratings in OracleAS Personalization
	6.3.7.2� Creating Recommendations

	6.3.8� Making RE Batch Recommendations
	6.3.9� Removing the REBatchProxy Object


	7 RE Batch API Supporting Classes
	7.1� Ratings in OracleAS Personalization
	7.2� Location of RE Batch API Classes
	7.3� EnumType Interfaces for RE Batch API
	7.3.1� CategoryMembership Interface
	7.3.2� DataSource Interface
	7.3.3� InterestDimension Interface
	7.3.4� PersonalizationIndex Interface
	7.3.5� ProfileDataBalance Interface
	7.3.6� ProfileUsage Interface
	7.3.7� Sorting Interface

	7.4� Other RE Batch API Supporting Classes
	7.4.1� DataItem Class
	7.4.2� FilteringSettings Class
	7.4.3� Item Class
	7.4.4� Location Class
	7.4.5� TuningSettings Class


	8 Using the Recommendation Engine Batch Proxy
	8.1� REProxy Batch Overview
	8.2� Location of REProxyBatch Classes
	8.2.1� REProxyBatch Creation and Management
	8.2.1.1� Customer Profile Management

	8.2.2� REProxyBatch Recommendations
	8.2.2.1� Ratings in OracleAS Personalization
	8.2.2.2� Meaning of Returned Value for Recommendations
	8.2.2.3� Cross Sell Method Usage Notes
	8.2.2.4� Recommendation Method Usage Notes


	8.3� REProxyBatch Rules and Recommendations

	9 REProxyBatch API Examples and Usage
	9.1� REProxyBatch API Basic Usage
	9.1.1� Code Sample: Recommend Top
	9.1.2� Code Sample: Recommend Cross Sell

	9.2� Recommendation Engine Usage
	9.3� Handling Multiple Currencies
	9.4� Using Demographic Data
	9.5� Handling Time-Based Items


	A REAPI Sample Program
	B REProxyBatch Sample Program
	B.1� RE Batch Sample Program Overview
	B.1.1� RE Batch Sample Program Output

	B.2� Executing the RE Batch Sample Program
	B.3� RE Batch Sample Program Code
	B.3.1� batchtest.txt
	B.3.2� REBatchTest.java


	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V


