Oracle® Internet Directory
Application Developer's Guide

109 (9.0.4)
Part No. B10461-01

September 2003

ORACLE

Oracle Internet Directory Application Developer’s Guide, 10g (9.0.4)
Part No. B10461-01

Copyright © 1999, 2003 Oracle Corporation. All rights reserved.
Primary Author: Richard Smith

Contributing Author: Jennifer Polk

Contributors: Ramakrishna Bollu, Saheli Dey, Bruce Ernst, Rajinder Gupta, Ashish Kolli, Stephen Lee,
David Lin, Radhika Moolky, David Saslav

Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, PL/SQL, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or references
to the Internet Society or other Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined in the Internet Standards process

must be followed, or as required to translate it into languages other than English."

b=g . RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle
19N RSA Secure Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

Oracle Directory Manager requires the Java™ Runtime Environment. The Java™ Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue,
Mountain View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

This product contains SSLPlus Integration Suite™ version 1.2, from Consensus Development
Corporation.

iPlanet is a registered trademark of Sun Microsystems, Inc.

Contents

Send Us YOUr COMMENLES ..ottt xxiii
PREIACE........... ot XXV
What’s New in Oracle Internet Directory Software Developer’s Kit?................ XXXV

Part| Oracle Internet Directory Programming Concepts

1 Introduction

About Oracle Internet Directory Software Developer’s Kit 10g (9.0.4)cccccccvivinnnnnen. 1-2
Components of the Oracle Internet Directory Software Developer’s Kit 1-2
Application Development in the Oracle Internet Directory Environment 1-2
Architecture of a Directory-Enabled Application.........ccocviiiiiiiiiiiiiiicce, 1-3
Directory Interactions During Application Lifecycle..........ccocooviiiiiiiiiiiiiiiccne, 1-4
Services and APIs for Integrating Applications with Oracle Internet Directory 1-5
Integrating Existing Applications with Oracle Internet Directory...........ccccoooeviiivnnnnnnnne. 1-7
Integrating New Applications with Oracle Internet Directory.........c.oooereiiiiieiecncinnns 1-8
Other Components of Oracle Internet Directory...........ccccccooiiiiiiiiiiiie 1-11
Operating Systems Supportedcooviiiiiiiiii 1-11

2 Developing Applications with Standard LDAP APIs

History of LDAP ..o s 2-2
OVErVIEeW Of LDATP IMOAEISooooiiiiiiiiiie ettt et ettt et ea e s et ee e eaaeseanaessrane s 2-2

Vi

LDAP Naming Model ... 2-2

LDAP INformation MOELccuooiiiiiieiiecieeteie ettt vt s s st s ane s 2-4
LDAP FuNctioNal MOAEL.......c.oooiiiiiieieciiecie ettt ettt vt vt e st teseeesbes e anseaeas 2-6
LDAP Security Model ... 2-6
About Standard LD AP APIS ...ttt ettt sttee e etbe e teseteestaeseeesteasssessneessseansassseens 2-11
API Usage Model........ccoiiiiiiiiiiiiiiiii e 2-11
ADOUL the € AP ...ttt ettt e b et e te et e abe st te e sas e se e s e enaessaesees 2-12
ADOUL the Java APTocoiiiee ettt ettt et sttt ettt e a bbb et s 2-12
About the DBMS_LDAP Packageccccociiiiiiiiiiiiiiiiccice s 2-13
Initializing an LD AP SeSSiONccccccooiviiiiiiiiiiiiicccc e 2-13
Initializing the Session by Using the C API.........cccccoiiiiiiiiiiiiiiicccas 2-13
Initializing the Session by Using JINDI ..o 2-14
Initializing the Session by Using DBMS_LDAPccccccoviiiiiiiiiiiicciiccciiies 2-14
Authenticating an LDAP SeSSioncccccooviiiiiiiiiiiiiic e 2-15
Authenticating an LDAP Session by Using the C APL.........ccocoovviiiiiiiiiiiias 2-16
Authenticating an LDAP Session by Using JNDIccccooiiiiiiiiiiiinns 2-16
Authenticating an LDAP Session by Using DBMS_LDAP.........cccccoiiiniiiiiiinns 2-17
Searching the DIrectory ... 2-17
Flow of Search-Related Operations............cccoeiiiiiiiiiiiiiiiicccce e 2-18
S€ATCH SCOPE ..ottt s 2-20
FALEETS ettt ettt ettt ettt ee et et esae et e etaestb et beste et besseesseessesseeseesbaessesraesbeereesbennenseeraes 2-21
Searching the Directory by Using the C APIcccoooiiiiiiiniiiiiicccceces 2-22
Searching the Directory by Using JNDIccccccooiviiiniiiiniiiiii e 2-23
Searching the Directory by Using DBMS_LDAPcccccooiiiiiiiiiniiiiicccs 2-23
Terminating the SeSsion ... 2-25
Terminating the Session by Using the C APLcccccooiiiiiniiiiiiccas 2-25
Terminating the Session by Using JNDL...........ccccoovininiiiiniiiiii 2-26
Terminating the Session by Using DBMS_LDARPcccoiviiiiiiiniiiiiiiicen 2-26

Developing Applications with Oracle Extensions to the Standard LDAP APls

Overview of Oracle Extensions to the Standard API..............coccoiiiiiiiiiiiiee e 3-2
Using the API Extensions in PL/SQL........cccccciiiiiniiiiiccc s 3-4
Using the API Extensions in Javaccccciiiiiiiiiiicccc s 3-5
Installation and First Use of Oracle Extensions to the Standard APL...........ccccocovirininnnnene 3-7

User Management Functionality..............cccoooi 3-7

User Management APIS..........ccoooiiiiiniic 3-8

User AUhENtICAtIONcviiiiii ettt ettt er e sr b e saesbaetaeetbesbeeteeneesneannes 3-9
TSI CIEATION ..vviiiieeeiie et ittt eette et ee ettt e et e e e ette e e stesaeeestbassseesseeessesnseessbeasaesaseesseansseesseasssesnenane 3-10
User Object Retrieval..........ccoiiiiiiiiiiiccc s 3-11
Group Management Functionality ..., 3-12
Identity Management Realm Functionality ... 3-12
Realm Object Retrieval for the Java APIcccccoooviviiiiiiiiiiii e 3-13
Server Discovery Functionality.............ccccoooooiiiii 3-13
Benefits of Oracle Internet Directory Discovery Interfaces..........ccccceiviiiiiiiiiniiniinnns 3-14
Usage Model for Discovery INterfacescoocueueuiiiiiiiicicciciccciceee e 3-15
Determining Server Name and Port Number From DNS ..., 3-16
Environment Variables for DNS Server DiSCOVETYcccovuviiiiiiiiniiiiiiiiiiic e, 3-18
Programming Interfaces for DNS Server DiSCOVETY ..., 3-18
Java APISs for Server DIiSCOVETY ... 3-19
Examples: Java API for Directory Server DiSCOVETYccoviniiiiivininiiiiininiiiicees 3-19
Resource Information Management Functionality............cccccooiiiiii, 3-21
Resource Type INformation..........cocccevviiniiiiiiiiiiii s 3-21
Resource Access INfOrmMation.........c.coiiieiicieieciee ettt et e vaeeae st sevesbeeebe e eaeaans 3-21
Location of Resource Information in the DITcccooiiiiiiiiiiieeeeeee e 3-23
SASL Authentication Functionality.............cccoooiiiii 3-24
SASL Authentication by Using the DIGEST-MD5 Mechanism...........ccccovoviiiiiininnnne, 3-25
SASL Authentication by Using External Mechanismcccoviiiiiiiniincnn, 3-26
Dependencies and Limitations for the PL/SQ LDAP API..........c.cccooviiiniiniicc, 3-27

Developing Provisioning-Integrated Applications

Introduction to the Oracle Directory Provisioning Integration Servicec.ccccocoeen. 4-2
Developing Provisioning-Integrated Applicationsccooveiiiiiiiiinii 4-2
Example of a Provisioning-Integrated Application............cccoeeiiiiiiiininiiinnniiicen, 4-3
Provisioning Integration Prerequisitescccocooiiiinii 4-15
Development Usage Model for Provisioning Integration..............cccoooniiiiiinnn, 4-16
Initiating Provisioning Integration ... 4-16
Returning Provisioning Information to the Directoryccccoovvviiiiiinniiinncinn, 4-17
Development Tasks for Provisioning Integration..............ccccooioiiiiinii, 4-20
Application Installationccccoviiiiiiiiiiiiii s 4-20
User Creation and ENrollment...........ccccioiiiiiiiiin e s 4-21

vii

5

viii

TS O B 7Y 1 o) o NPT 4-21

Extensible Event Definitionscccciiviiiieveiiiieiciieseistie ettt et e s e s saesveesaes 4-23

Application Deinstallation ... 4-24
LDAP_NTFY FUNction Definitionscc.eeiicuuiiiiiii ettt ettt seaae e 4-24
FUNCTION eVent_Ntfy........cooviiiiiiiiiiiiiiiiiii it 4-25

Developing Oracle Internet Directory Server Plug-ins

Introduction to Oracle Internet Directory Server Plug-ins............ccccccooveeniirniiicininicnnn, 5-2
Prerequisite Knowledge for Developing Oracle Internet Directory Server Plug-ins 5-2
Oracle Internet Directory Server Plug-ins Concepts............ccccooviunvriiininicniiiiciinccccnes 5-2
About Directory Server PIUG-INScccovoviiiiiiiiiiiic s 5-2
About Server Plug-in Framework ... 5-3
Operation-Based Plug-ins Supported in Oracle Internet Directory ..o, 5-4
Requirements for Oracle Internet Directory Plug-ins.............cccocccoiiininiiiinniiii, 5-6
Designing PIUG-INScccocoviiiiiiiiiiiiiiiici 5-6
Creating PIUG-INSccccoviiiiiiiiiiiiic 5-7
Compiling PIUG-INS......cociiiiiiiiiiiiiiiiii s 5-10
Registering PIUG-INSccccouviiiiiniiiiiiniiiiii i 5-10
Managing PIUZ-INSccocoviiiiiiiiiiiiiic i 5-14
Enabling and Disabling PIUg-INS.........ccccccivviiiiiiiiiiiiicccc s 5-15
Exception Handling........ccccooviiiiiiiiiiiiiii s 5-15
Plug-in LDAP APLccooiiiiiiiiiiiiiiic s 5-17
Plug-ins and Replication ... 5-18
Plug-in and Database TOOIS...........ccccouviiiiiiiiiiiii e 5-18
SECUTILY vttt e 5-18
Plug-in DebuGgingccccoiiiiiiniiiiiiiicii e 5-18
Plug-in LDAP API Specificationsccccouviiiiiiiiiniiiiiiin e 5-19
Usage Model and EXamples ..o 5-20
Example 1: Search Query LOgGINgccccviiiiiiiiiiiiiiiicc e 5-20
Example 2: Synchronizing TWo DITSccccooiiiininiiiiiicc e 5-22
Database Type Definition and Plug-in Module Interface Specificationsc.ccc.c..... 5-25
Database Object Type Definitionscccccouviiiiiiiiiiiiiiiii e 5-25
Plug-in Module Interface Specifications..............cccoouviiiiiiiiiiiiiiiices 5-26
Directory Server Error Code Reference ..o 5-30

6 Developing Applications Integrated with Oracle Delegated Administration
Services

Introduction to the Delegated Administration Services............ccocociiinniiiniiciiiincicnen 6-2
Benefits of Oracle Delegated Administration Services-Based Applications........................ 6-2
Developing Applications Integrated with Oracle Delegated Administration Services....... 6-3
Prerequisites for Integration with Oracle Delegated Administration Services................... 6-3
Oracle Delegated Administration Services Integration Methodology and
CONSIAETATIONS ...t e e s s e 6-4
Java APIs Used to Access URLS ... 6-6

Part Il Oracle Internet Directory Programming Reference

7 The C API for Oracle Internet Directory

About the Oracle Internet Directory C API ... 7-2
Oracle Internet Directory SDK C API SSL EXteNSionsccccoeeueeeeiccicieiieiieeeccceeeeeecaes 7-2
C APT REEEIOIICEeecvieee ettt ettt st et ste et abeeteeateeae s e e s e b ae s e esaesaesbaesseetbessesaeanseneannes 7-4
Summary of LDAP C APL ... s 7-4
FUNCHIOMNS ...ttt ee ettt et e e et e s st bt e s bbe s sabe e e saeeeenbe e sabaeaessaneean 7-8
Initializing an LDAP SESSIONc.ccccviiiiiiiiiiiiiiii s 7-9
LDAP Session Handle Options............ccouviiiiiiniiiiiiiii s 7-10
Working With CONtIolscccovuiiiiiiiiiiiiiii s 7-16
Authenticating to the DIirectory.........cccooiiiiiiiiiiic e 7-18
SASL Authentication Using Oracle EXtensions ..., 7-21
SASL AUNeNtiCAtION....ceiiiiiieietiet ettt et ettt eb et e sv e e saesvaetaesbeetbeebeesbeneeeneanns 7-23
CloSINg the SESSION.......ccviiiiiiiiiiiiic e e 7-24
Performing LDAP Operationscccocouviiiiiiiniiiiiiiii st 7-26
Abandoning an Operation ... s 7-46
Obtaining Results and Peeking Inside LDAP MeSsagescccovviiiiiiiiiiicncnnnns 7-47
Handling Errors and Parsing Results ... 7-50
Stepping Through a List of Results...........cccccouviiiiiiiiiiiiiiiiii e 7-53
Parsing Search ReSUILS ..o s 7-54
Sample C APTUSAZEc.cooooiiiiiiiiiitcictcc et e st 7-65
C API Usage With SSL......cccciiiiiiiiiii i 7-65
C API Usage Without SSL.......ccccoiiiiiiiiiiiiiii s 7-66
C API Usage for SASL-Based DIGEST-MD5 Authenticationccccovviiiiiiiincnnnnn 7-67

10

11

Building Applications with the C APL.............ccocoooiiiiias 7-70

Required Header Files and Libraries ..o 7-71
Building a Sample Search TOOLccoooiiiiiiiiiiiic e 7-71
Dependencies and Limitations of the C API............cccooniiiiiiiias 7-84

DBMS_ LDAP PL/SQL Reference

Summary of SUDPIOGIAINSccoiiiiiiiiiiiiiii s 8-2
EXCePHiON SUMMATIYooviiiiiiiicc e 8-5
Data-Type SUMMATIYcooiiiiiiiiii ettt s s ea st eaee e 8-6
SUDPIOZIAMS ...t et e 8-7

DBMS_LDAP_UTL PL/SQL Reference

Summary of SUDPIOGIaISccccviviiiiiiiiiiiii i 9-2
Function Return Code SUMMATLYccccoiiiiiiiiiiii e 9-4
Data TYPpe SUMMATYcoooiiiiiiiiiii e e 9-6

User-Related SUDPIrOGIams ... 9-7

Group-Related SUDPIrograms ..o 9-23

Subscriber-Related SUDPIOZIAMScccoovviviiiiiiiiiii e 9-30

Property-Related SUDPIrograms ..o 9-36

Miscellaneous SUbPrOgrams ..o 9-38
Function Return Code SUMmAry ..o 9-47
Data-Type SUMMALYcccooiiiiiiiiiiii e e e 9-50

DAS_ URL Interface Reference

Oracle Delegated Administration Services Units and Corresponding Directory Entries.. 10-2

DAS Units and Corresponding URL Parametersccccoccciiiiiniinininiic 10-3
DAS URL API Parameter Descriptions ..o 10-5
User or Group List of Values AcCCeSs ...t 10-6

Provisioning Integration APl Reference

Versioning of Provisioning Files and Interfaces.............cccccooooiniiiiiiis 11-2
Extensible Event Definition Configuration...............ccccocooiiiiiias 11-2
INBOUND And OUTBOUND EVeNts..........cccocooiiuiiiiiiiiiiiiiicein e 11-5
PL/SQL Bidirectional Interface (Version 2.0).........ccccouerriiiiininiiie st 11-7

Provisioning Event Interface (Version 1.1) ..o
Predefined Event TYPes.......ccccocouviiiiiiiiiiiiiiii i
ATIDULE TYPE.coviiiiiiiiiii
Attribute Modification TYPe.......cccviiiiiiiiiiiiiiccc e
Event Dispostions CONSEANtScccuvievieiiiiiiiiiicc e
CAIIDACKSvvecve ettt ettt ettt esae et et e et be s e s te et be e esteessssseestesseesaesaeesaesteesbesteesbenteenraes

Part Il Appendixes

A

Syntax for LDIF and Command-Line Tools

LDAP Data Interchange Format (LDIF) SyntaXx..........ccccocooiiniiiiiiiiiiccec e,
Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers
The OID Monitor (0idmon) SYNtax.........ccoeviiiiiiiiiiii s
The OID Control Utility (0idctl) Syntax ...
Entry and Attribute Management Command-Line Tools Syntax.............cccccocoeiininnnn.
The Catalog Management Tool (catalog.sh) Syntax.........ccccceeieiiiieiiiciccecc
ldapadd SYNEAX ...cocciviviiiiiii s
ldapaddmt SYNEAXccoviiiiiiii s
1dapbind SYNtaX ..o s
1dapcompare SYNtaX...... ..o s
ldapdelete SYNtax ..o s
ldapmoddn SYNEAXcccviiiiiiiiii s
1dapmOodify SYNEAX ...coocovviiiiiiiiiiii s
ldapmodifymt SYNEAXcocoiiiiiiiiiiii s
ldapsearch SYNEaX ... s
Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax ...
The Directory Integration and Provisioning Assistant ..o
The IdapUpload AgentFile.sh TOOl Syntax.........ccocoouviviiiiiiiiiiniiiiiicce s
The IdapCreateConn.sh TOOl SYNtaXcccccouviviiiiiiiiniiiiiii e
The IdapDeleteConn.sh TOOLl SYNtax ..o
The StopOdiServer.sh TOOL SYNtaX ..o s
The schemasync ToOl SYNtaxcccccoiiiiiiiiiiiiiii s

The Oracle Directory Integration and Provisioning Server Registration Tool
(OAISTVIEE) ..veiiiiiieiiitt s

The Provisioning Subscription Tool (0idprovtool) SyntaX..........ccccccevviiiiniiiinininnn,

xi

B Sample Usage

DBMS_LDAP Sample Code ... B-2
Using DBMS_LDAP from a Database Triggerccoooeiuiiiiiiiiicciiccccccccs B-2
Using DBMS_LDAP for a Searchcccccocvviiiiiiiininiiiiniccccccc s B-10

DBMS_LDAP_UTL Sample Codeccocoiiiiniiiiiiiiiiii s B-14
Example: User-Related FUNCLONSc..cccociiiiiiiiiiiiiiccc e B-14
Example: Property-Related SUbprograms ... B-19
Example: Subscriber-Related FUNCHONS...........ccccoiiiiiiiiiiiicas B-24
Example: Group-Related FUNCHONSccccoviiiiiiiiiiiiiiiiic s B-27

Java Sample Code ... B-33
User Class Sample Code........coooiiiiininiiiiiiiiici s B-33
Subscriber Class Sample COde..........ooiiiiiiiiiiii e B-36
Group Class Sample Code........ccooiiiiiiiiiiiii e B-38
Print Sample Code ... B-40
JNDI Sample Code........cooviiiiiiiiiiiic e B-42
SASL-Based Authentication Sample Code...........ccoiviiiiiiiiiiiiiiies B-45

C DSML Syntax

Capabilities 0f DSMLccocoiiiii e e s s C-2
Benefits of Using DSML..........ccccociiiiiiiiiiiiiiiiii s C-2
DSIML SYNEAX.....ooiiiiiiiiiictiic et et C-2
TOP-LeVel StIUCHUTE.....c.cucviviiiiiiiiiic s C-3
Directory ENtries ... e C-3
(S Te1 a1y o a 1= T 2 0 L o L= <SOSR C-4
Tools ENabled £Or DSIMLooo ottt ettt e e et ee e st e e sttt e snaeessrneeessaeeeens C-5
Glossary
Index

Xii

xiii

List of Figures

1-1 A Directory-Enabled Applicationccccoiviiniiiiiiiiiiiiii i 1-3
1-2 An Application Leveraging APIs and Services...........cooovviviniiiiiiiininiiiiiniiiiines 1-7
2—1 A Directory Information Tree..........cccocoviviiiiiiiiiiiiiii s 2-3
2-2 Attributes of the Entry for Anne Smith ..o 2-5
2-3 Steps in Typical DBMS_LDAP USage.........ccccviiiiiiiiiiniiiiiiiieeiiecice e 2-12
2-4 Flow of Search-Related Operations ..o 2-19
2-5 The Three Scope OPHiONS..........ccoovviiiiiiiiiiiiiiii s 2-20
3-1 Oracle APT EXTENSIONS «..ocuviievieiiieitieeeeeie et ceee et ettt eeeeetteeetaeas e eteseaesaeeetaeeneeeaeeenns 3-3
3-2 Programmatic Flow of API EXteNSioNnsccccccecviiiiiniiiiiiiiiiiii s 3-4
3-3 Programming Abstractions for the PL/SQL Language.......c.ccococoeueieiireieiecccneieceeine 3-5
3-4 Placement of Resource Access and Resource Type Information in the DIT 3-23
4-1 How an Application Obtains Provisioning Information by Using the Oracle

Directory Provisioning Integration Service 4-17
4-2 How an Application Returns Provisioning Information to Oracle Internet Directory

Provisioning SEIVICE........ccovoiuiiiiiiiitiiictce et 4-18
4-3 Provisioning Services and Their Subscribed Applications in a Typical

DEPIOYIMENtc.ciiiiiiiiii e 4-19
4-4 PL/SQL Callback INTEITACE ...ccveeiviierieieictie ettt et ettt et ereeeae s 4-22
5-1 Oracle Internet Directory Server Plug-in Framework?............cccoooiiiiiinniinnnnn, 5-4
6-1 Overview of Delegated Administration SErvicesc.cocovviniiiiiiniiiiiiniiiics 6-2

Xiv

List of Tables

1-1 Interactions During Application Lifecycle ... 1-4
1-2 Services and APIs for Integrating with Oracle Internet Directory...........cccovvvinnnee. 1-6
1-3 Services for Modifying Existing Applicationsccccocevviiiinniiiiiiiiiccn 1-8
1-4 Application Integration POINtScccocecvvviiiiiiniiiiiiic 1-9
2—1 LIDADP FUNCHONS ..ottt ettt ettt et eeetteeeeaae e etaaeaeeteaeeeteseeanaeaeseesenns 2-6
2-2 SSL Authentication IMOAES.oouiieeeiiiectie ettt ettt er e eane 2-8
2-3 Parameters for Idap_init()ccceviiiiiiniiiii 2-14
2-4 Arguments for ldap_simple_bind_5()ccceovuriiiiiiniiiiii 2-16
2-5 Options for search_s() or search_st() Functions...........ccccocovvnviiiinnniiiin 2-20
2-6 SEATCI FIIEOIS ..ttt ettt et etae e e ete et e eae s etaeeraeeateeetaennseenteens 2-21
2-7 Boolean OpPerators.........ccceccvviiiiiiiiiiiiii i s 2-22
2-8 Arguments for ldap_search_s()........c.ccecevviiiiniiiiiiiii 2-23
2-9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st() 2-24
3-1 Information about Installation and First Usecccoovuiieviiiiiiiieceiceeee e 3-7
3-2 Environment Variables for DSD Behavior.........ccocoouiioieiiieiiieeecceceie e 3-18
3-3 Methods for Directory Server DiSCOVETYccccoviiiiininiiiiiininiiiiicccii i 3-19
41 Extensible EvVent DefiNitioNnScoccoieiiuieeee ettt eeee et eeeveeeie e etae v eaveeevaeeneenneeas 4-23
4-2 Function user_exists ParameterS. eeieiiii ittt et e e ee e 4-24
4-3 Function group_exists Parameters...........cccooeciiniiiieiniiiniiicccccec 4-25
4-4 Parameters for FUNCTION event_ntfy ..., 4-26
5-1 Plug-in Module Interfacecccocoviiiiniiiiiiiiiiiiii 5-7
5-2 Operation-Based and Attribute-Based Plug-in Procedure Signatures 5-8
5-3 Plug-in Attribute Names and Valuescccccccooiiiniiinniiiicc 5-11
54 Program Control Handling when a Plug-in Exception Occurs...........ccccocvviiiinnnee. 5-16
5-5 Program Control Handling when an LDAP Operation Failsccccccoccoiiiiiinne. 5-16
6-1 Condiserations for Integrating an Application with Oracle Delegated

AdMINISTTATION SEIVICES ...ovviivieeeiieerteeeeeteeeeteeee et et et eeete e eeetteeeraeeaeeeeteseseestesesaeeereeesees 6-4
6-2 Oracle Delegated Administration Services URL Parametersc.ccccovininiininnnns 6-5
7-1 Arguments for SSL Interace Calls ... 7-3
7-2 DBMS_LDAP API SUDPIOGIamS.........cccoviiviiiiiiiiiiiiiiciiiis e 7-4
7-3 Parameters for Initializing an LDAP SeSSi0n.........ccocoiviiiiniiiiiiiiiiciiiicccies 7-9
7-4 Parameters for LDAP Session Handle Options ... 7-11
7-5 CONSEANES ..eiiitii ettt ettt e ettt e ettt e et e e ette e e aae s et aeeetteeeensbeesnbesestsaeseteseeasaesesenean 7-12
7-6 Fields in Idapcontrol Structure...........ccocciviiiiiiiiiiii 7-16
7-7 Parameters for Authenticating to the Directory ... 7-19
7-8 Parameters for Managing SASL Credentials............cccccocovininiiininnii 7-23
7-9 Parameters for Managing SASL Credentials.............ccccooiiiiiiiinininiiieeee e 7-24
7-10 Parameters for Closing the SesSion...........cccooviiiiiiiiiiiiiic s 7-25
7-11 Parameters for Search Operationscccceviviiiiiiinniini s 7-28

XV

XVi

L G QLT QL G L QL QLT G G O (o I @ o)

ONOOOTA~WN-—=O

Parameters for Compare Operations...........cccueueuieieiiiicceiei e 7-32

Parameters for Modify Operations ..o 7-35
Fields in LDAPMOA SHUCEUIE ...cvveiieectrieeeeeeeete ettt ete e et eeeeetteeevaeeeneestaeeeneennes 7-35
Parameters for Rename Operations...........ccccoviiiniiiiiniiii e 7-38
Parameters for Add Operationsccccvviviiiniiiiiiiiiiii s 7-41
Parameters for Delete Operations............cccccviiiiiiiiiiiiiiice e 7-43
Parameters for Extended Operationsc.occriiiiniiiiciiicce e, 7-44
Parameters for Abandoning an Operationcccocvviiiiiniininniiccns 7-46
Parameters for Obtaining Results and Peeking Inside LDAP Messages 7-48
Parameters for Handling Errors and Parsing Results..........c.cccoooiiiiiinniinnn, 7-51
Parameters for Stepping Through a List of Results...........ccoooviniiniiinininiinn, 7-53
Parameters for Retrieving Entries and Continuation References from a Search

Result Chain, and for Counting Entries Returned...........ccccccoooeiiiiiiiiiiinns 7-55
Parameters for Stepping Through Attribute Types Returned with an Entry............ 7-57
Parameters for Retrieving and Counting Attribute Values...........ccccccoviiinnnnns 7-60
Parameters for Retrieving, Exploding, and Converting Entry Names....................... 7-61
Parameters for Extracting LDAP Controls from an Entry..........ccocooviiinininnns 7-62
Parameters for Extracting Referrals and Controls from a SearchResultReference
IMESSAZE ..ottt e 7-64
DBMS_LDAP API SUDPIOGIrams..........cccoouvuviriiiiiiiiiiiniiiiiiicinici s 8-2
DBMS_LDAP EXception SUMIMATIYcccoieieiiriiiiiientciiectce s 8-5
DBMS_LDAP Data-Type SUMMATYcccccovieiiiiiiniiiiiiiiirce s 8-6
INIT FUNCHON ParamieterS.....c..oeiiiiiieceeie ettt ettt et eeae e et eeeetae e evaeaeaanaan 8-8
INIT Function RetUrn VALUES..........oooviiuiieieeeie ettt ettt eevae e e ne e 8-8
INIT Function EXCEPLIONS.......ccooviviiiiiiiiiicticcictccc sttt 8-8
SIMPLE_BIND_S FUunction Parameters........ccccouuiiiiiiieiieiiieiiiieee et eee e 8-9
SIMPLE_BIND_S Function Return Valuescccuveooviiiiiiicie et 8-9
SIMPLE_BIND_S Function EXCEPtIONSccccvreiiiiiiiriiiiiitieccc e 8-10
BIND_S FUNCHON Paramietersooviiieiieiieieeciiee ettt ae e e 8-10
BIND_S Function Return VAlUeScc.ooioeeiiieiieeeeeiieeee ettt svae e 8-11
BIND_S Function EXCeptions........ccoceviiieiiiiiiiiiitecciitcn v 8-11
UNBIND_S FUNCHON ParameterS........cooovveeiiiiiiiiieiee ettt 8-12
UNBIND_S Function Return VAIUESccuovoiiueiiiiiiiicie ettt 8-12
UNBIND_S Function EXCeptionscccouvuiviiniiiniiiniiiiecccc e 8-12
COMPARE_S FUNction ParametersS..........eoooeueveeiiieiiee et 8-13
COMPARE_S Function Return VAlUES.......coouveeieeeiiieeiie et ee s 8-14
COMPARE_S Function EXCeptions........c.coueeeveviiniiiiiiiniiniicicccieece e 8-15
SEARCH_S FUNCHON ParameterS.......cooouviiiiieiiieeie e ettt seveae e ens 8-16
SEARCH_S Function Return VAUccoeiiiuiiiieiiieeeeeeeeeeee e et 8-17
SEARCH_S Function EXCePtiONSccooevrviviiiiiiiiiiiiicicicc s 8-17
SEARCH_ST FUNction Parameterscc..oeeiieiiieeiiiiiiee ettt sveae e ens 8-18

8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39
8-40
8-41
8-42
8-43
8-44
8-45
8-46
8-47
8-48
8-49
8-50
8-51
8-52
8-53
8-54
8-55
8-56
8-57
8-58
8-59
8-60
8-61
8-62
8-63

SEARCH_ST Function Return VAlUESccueiviiiiieiiiie et e 8-19

SEARCH_ST Function EXCePtioNS.........ccoceviviieiiviiiiiiiiciciecrcc e 8-19
FIRST_ENTRY Function ParameterS........oouueeiiiiiiiiiiiieieee e et et 8-20
FIRST_ENTRY RetUIT VAIUES ...oeeiiveii ettt ettt ettt s saaeeseeae e ens 8-21
FIRST_ENTRY EXCEPLIONScvoveiiviiiitiiiiicicieccciiet ettt 8-21
NEXT_ENTRY FUNction ParametersS........cocouueeiiiiiiiieeieiiiieee et eeaaee e eenanes 8-22
NEXT_ENTRY Function Return VaAlUesoooooovuiiiiieiiieieeeeeeeeee e 8-22
NEXT_ENTRY Function EXCeptionsccccovuieviiiininiiiciiiie e 8-22
COUNT_ENTRY Function ParametersS.......cooouvueiieiiieieieeeeiiieee e eee e e eeeaine e 8-23
COUNT_ENTRY Function Return VaAlUescooceiiviiiiieiiiieeee e 8-23
COUNT_ENTRY Function EXCEPLIONScccvoveviviiiiiiiiiiiiiectcicc e 8-23
FIRST_ATTRIBUTE Function Parameter.........cccoeiiiiiieiiiiiieieeee e 8-24
FIRST _ATTRIBUTE Function Return Values.......cccooocveeiemiiieieiieeeeeecee e 8-25
FIRST_ATTRIBUTE Function EXCeptions.........cccoceviviviniiiiiiiiiiiciiccecceeecnce 8-25
NEXT_ATTRIBUTE Function Parameters.........ccccoooeevvveiieiiiiieee e e 8-26
NEXT_ATTRIBUTE Function Return Valuescoooeeiieiiiiieeiiieeeeeeee e 8-26
NEXT_ATTRIBUTE Function EXCeptionscccoeevreiiiiieiiiiiciccceccce 8-26
GET_DN FUNction ParameterS.....ccoueeeiieeiiieiiiciie ettt et e sae e 8-27
GET_DN Function Return VAIUEScccoov ittt et 8-27
GET_DN Function EXCEPtioNS........cccoeiiiiiiiiniiiiiiicccect s 8-27
GET_VALUES FUNction Parameterscooueeiiieiiiieiieeiieee ettt 8-28
GET_VALUES Function Return ValUes.........oooueeiiimiiiiiie ettt 8-29
GET_VALUES Function EXCeptions...........cccoeviiniiiiiiniiieciiec e 8-29
GET_VALUES_LEN Function ParametersS.......cccccooivieveeieiiieieeeeee e 8-30
GET_VALUES_LEN Function Return Values..........ccooevivuiiieciiiieeeecee e 8-30
GET_VALUES_LEN Function EXCEPtions..........cccovevieiiiiiiniiiiiciicceceecceeevce s 8-30
DELETE_S FUNCHON ParameterS.........cooocuvviiiiieiiieie ettt e esaane e 8-31
DELETE_S Function Return VAUESoooviiviiiiiiiie e 8-31
DELETE_S Function EXCepPtionsccoveviiiiniiiiiinieiieccicccc e 8-31
MODRDN2_S FUNCtION ParameterSccouvveiiiieiiieieieciieeee et e svane e 8-32
MODRDN?2_S Function Return ValUesS........cooueiieeiii ettt 8-33
MODRDN2_S Function EXCeptions..........cocceviiviiiiiniiiniiinicciccccciecs e 8-33
ERR2STRING Function Parameterscccoooouiiieiieieiiie ettt e 8-34
ERR2STRING Function Return Valuesoooeeveeiiieiieceieceeeeeeceeee e 8-34
ERR2STRING Function EXCeptionsc.ccocouieirieiiiiiicniiiiciiecccec s 8-34
CREATE_MOD_ARRAY Function Parameters.......ccccuvevvivvvveeiieeiiieeeeeeceeeeeeeeeeieeeeean 8-35
CREATE_MOD_ARRAY Function Return Values........ccccuvveovviiiiieiciee e 8-35
CREATE_MOD_ARRAY Function EXCeptions..........ccccoeeeviiieiiiiiniiniiiicneceecns 8-35
POPULATE_MOD_ARRAY (String Version) Procedure Parameters...................... 8-36
POPULATE_MOD_ARRAY (String Version) Procedure Return Values 8-36
POPULATE_MOD_ARRAY (String Version) Procedure Exceptionsc.cccec..... 8-37

xvii

xviii

POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters....................... 8-37

POPULATE_MOD_ARRAY (Binary Version) Procedure Return Values.................. 8-38
POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions........................ 8-38
MODIFY_S Function ParametersS..........cocuiieuiieioiieiciieeeieeeeeiee et ettt e 8-39
MODIFY_S Function Return ValUes........ccueeviiiiieeeeiieecie et e 8-39
MODIFY_S Function EXCepioNS........ccoeviuiriiiiiiiniiiiiiciice e 8-39
ADD_S FUNCHON Parametersoooviiiiiiiie ittt et e eesae e e ean 8-40
ADD_S Function Returnt ValUES.......c..oooviiiiiiiiiceceeeeee et e 8-41
ADD_S Function EXCeptions.........ccoccoviieiiiiiiiiiiiciiiciccrcc e 8-41
FREE_MOD_ARRAY Procedure Parameters.........cccuevvueeeeeeeeieeeeeeieeeeeeeeeseee s seee s 8-42
FREE_MOD_ARRAY Procedure Return Valuecoouveeeeeeiiioiiieeie e 8-42
FREE_MOD_ARRAY Procedure EXceptions...........cccocovvviiiiiinininiiiiiiiccins 8-42
COUNT_VALUES FUNction Parameterscoouvviieveeieeeiee et ee e seaaee e 8-43
COUNT_VALUES Function Return Valuescooueiooiieiiiieeeceeeeeeeeeeeee et 8-43
COUNT_VALUES Function EXCeptionsccceveeiiiiiiiiiiiiniiiecccccevceees 8-43
COUNT_VALUES_LEN Function Parameterscccccooveeuevieieicieneeee e e ons 8-44
COUNT_VALUES_LEN Function Return Values........ccccooeeeeeveeeieeiieceeeeeeee e 8-44
COUNT_VALUES_LEN Function EXCeptions..........cccevvvueieviiniiiiiiniiiiciceevcecas 8-44
RENAME_S FUNCHON ParameterS.........oooueviiiiiiiiiiiiceceieeeee ettt eeaane s 8-45
RENAME_S Function Return Valuescoouiiiiiiiiiiiiieceeeeeeee et 8-45
RENAME_S Function EXCEPIONSccccooviiiviiiiiiiiccciec e 8-45
EXPLODE_DN FUunction Parametersoooouveiiiiiiieiieie e eveae e ens 8-46
EXPLODE_DN Function Return ValuesSc..ooooovviiiiiiiieeieeee et 8-46
EXPLODE_DN Function EXCePioNScoceveviiiiiiiiieiiiictccc e 8-47
OPEN_SSL FUuNCtion Parametersccouuieeiieiiireeie ettt e ee e e sve e e ean 8-48
OPEN_SSL Function Return ValUescc.uoooeiiiieiiiieeiie ettt e s 8-49
OPENL_SSL Function EXCePioNScoeviviiiiiiiiiniiiicicecc e 8-49
MSGFREE FUNCtion Parameters...........oooouviiiiiieieiii ettt ettt e etae e eve e eanas 8-50
MSGFREE RetUIN VALUESuveevviievie ettt ettt ettt evaeeae e evae e ennes 8-50
BER_FREE FUNCION ParameterSuuvveeeieieiiieieieeieeeeeeeeeeeee et ee e e s e s eeeeeeeen e eanen 8-51
Parameters for nls_convert_tO_ U8ccoiiiuiiiiiiiiieeeeee e e 8-52
Return Values for nls_convert_to_Utf8........oueei it 8-52
Parameters for nls_convert_tO_ U8ccooivuiiiiiiiiiieeeee e e 8-53
Return Values for nls_convert_to_Utf8........oouvei oot 8-53
Parameter for nls_convert_from_ Utf8.........ooouiiiiiiiiiiiiiiieeceee et 8-54
Return Value for nls_convert_from_Utf8ooovuuiiioiiiiiiceeecee et 8-54
Parameter for nls_convert_from_ Utf8.........cooviiiiiiiiiiiiieeeeeee e 8-55
Return Value for nls_convert_from_Utf8ooovuiiioiiiiiiiceee e 8-55
Return Value for nls_get_dbcharset_name..........c.ccccoouviniiniiiniiinii, 8-56
DBMS_LDAP_UTL User-Related Subprograms.............ccccovviviiiniiicninnnciinicnes 9-2
DBMS_LDAP_UTL Group-Related Subprogramscccccoovvvvininiiiininiiinnicnn, 9-2

L G QT QL G L G QLT G G O (o I ¢ o)

O~NOOOTA~WN-—=O

DBMS_LDAP_UTL Subscriber-Related Subprograms...........ccccccevviiiiniiinininnnne, 9-3

DBMS_LDAP_UTL Miscellaneous SUDPIrogramsccccoeviiiiiiiincnsinecienesincecnnns 9-3
FUunction RETUIN COAES ...uooviiiuiiicrieeeeie ettt ettt et eae e eteeear e etaeseraeeanaeere s 9-4
DBMS_LDAP_UTL Data TYPESc.ccvveiurirrriiiiiiiiiciiieictcie ettt 9-6
AUTHENTICATE_USER Function Parametersccccooovvuveeeiiiciieeie e 9-8
AUTHENTICATE_USER Function Return Valuesccccovoeeivieeeceiiieeee e 9-9
CREATE_USER_HANDLE Function Parametersccccoevvveeeeieiinieeeieeciieeee e 9-10
CREATE_USER_HANDLE Function Return Values.........ccoccooevvieeicieiveieeeieeee e 9-10
SET_USER_HANDLE_PROPERTIES Function Parameters...........ccccccoeveeeurreernenne. 9-11
SET_USER_HANDLE_PROPERTIES Function Return Values.........cccecveevuvreennennne. 9-11
GET_USER_PROPERTIES Function Parameters........ccccceeveevvveeiieeieieeeieeceeeeeeeeeeveeeeen 9-12
GET_USER_PROPERTIES Function Return Valuesccocvvevvieiioiiieeeieceeeeeee e 9-13
SET_USER_PROPERTIES Function Parameters........ccccueeeveeevvieeieiiiieeeieeceieeee e 9-14
SET_USER_PROPERTIES Function Return Valuescccccovveviiiiieieieiiieeeeeeeeeee e 9-15
GET_USER_EXTENDED_PROPERTIES Function Parameters...........ccccoevuveeeivecnnnennn. 9-16
GET_USER_EXTENDED_PROPERTIES Function Return Values........cccccoevveveneeenns 9-16
GET_USER_DN Function ParametersS..........ccoooueviiiiiieieiieeieceieee et eeeiiee e eeenine e 9-18
GET_USER_DN Function Return VAIUESc.uoiiveeiiiiieeeeeee ettt eeee e 9-18
CHECK_GROUP_MEMBERSHIP Function Parameters.........ccccccoevveveeevieiieeeeeeecnnennn. 9-19
CHECK_GROUP_MEMBERSHIP Function Return Valuesccccouvveeevevivivieecieeens 9-19
LOCATE_SUBSCRIBER_FOR_USER Function Parametersccccoeeeeeeieiuiieeeneeenns 9-20
LOCATE SUBSCRIBER FOR USER Function Return Values........ccccccccoevereviicveeenenn. 9-20
GET_GROUP_MEMBERSHIP Function Parameterscoooueeveeiviveeeieeieiieeee e 9-22
GET_GROUP_MEMBERSHIP Function Return Values.......cccccooveevievvvivceeeeeeieeiee e 9-22
CREATE_GROUP_HANDLE Function Parametersccooouevvieivieeeieeiiiieeee e 9-24
CREATE_GROUP_HANDLE Function Return Values.......cccccovvveveeviiiceneceieeeee e 9-25
SET_GROUP_HANDLE_PROPERTIES Function Parameters.........cccccccevvuveeeeeevnnennnn. 9-25
SET_GROUP_HANDLE_PROPERTIES Function Return Values........ccccccecuvveeunennee. 9-26
GET_GROUP_PROPERTIES Function Parameters.........ccccooveeiieviviieeieiieireeeeeeeveeenn 9-27
GET_GROUP_PROPERTIES Function Return Valuesccccocovveveeiieiieiieceeeee e 9-27
GET_GROUP_DN Function Parameterscccuieiiieeiiieeiieiiieeeiee e eee v 9-29
GET_GROUP_DN Function Return Valuesccccoooviiieciiiieieeeeeee e 9-29
CREATE_SUBSCRIBER_HANDLE Function Parametersccceevevivevevvnveeeeiecnnennn. 9-31
CREATE_SUBSCRIBER_HANDLE Function Return Values.......cccccovvvvvevuveecnnennne. 9-31
GET_SUBSCRIBER_PROPERTIES Function Parameters...........ccccoevvvvveivieineeeeeeecnnennnn. 9-32
GET_SUBSCRIBER_PROPERTIES Function Return Values.........ccoouvevevveivvvieeeeecns 9-32
GET_SUBSCRIBER_DN Function ParametersS........cccocvvveeeiieeieeeieiieeeeeeeeeeeee e 9-34
GET_SUBSCRIBER_DN Function Return Valuesccoccooveeiiiiieeieieeceeeeceeeeeeeee s 9-34
GET_SUBSCRIBER_EXT_PROPERTIES Function Parametersccccoevvveeevevnnnnn.n. 9-35
GET_USER_EXTENDED_PROPERTIES Function Return Values........cccccoeeuveevennennn. 9-36
NORMALIZE_DN_WITH_CASE Function Parametersccccoevveevieevcvneeee e 9-38

Xix

XX

9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51
9-52
9-53
9-54
9-55
9-56
9-57
9-58
9-59
9-60
9-61
10-1
10-2
10-3
11-1
11-2

A-10
A-11
A-12
A-13
A-14
A-15
A-16

NORMALIZE_DN_WITH_CASE Function Return Values........ccccccooovvevveececneeinnnen, 9-38

GET_PROPERTY_NAMES Function ParametersS........cccoeoveeviieineieeieiiiieeeeceiieeee e 9-39
GET_PROPERTY_NAMES Function Return Valuesccccooceevveeeveeeceeeeeceee e, 9-39
GET_PROPERTY_VALUES Function Parameterscccoceeeeeieeeieiecciee e 9-40
GET_PROPERTY_VALUES Function Return Valuesccccovveevveeevieeeecccee e 9-40
GET_PROPERTY_VALUES_LEN Function Parameterscccooceeeevevivveeiiiiiiveeeeeeinnes 9-41
GET_PROPERTY_VALUES_LEN Function Return Values........cccovveeevevioiecevneecneen, 9-42
FREE_PROPERTYSET _COLLECTION Procedure Parameters........cccoeeeevveeieneeeennen. 9-42
CREATE_MOD_PROPERTYSET Function Parameters.........cceoveeeevevvvveeieiviereeeeeesnnes 9-43
CREATE_MOD_PROPERTYSETFunction Return Valuescccoeevevveeeieveeeceeeeee. 9-43
POPULATE_MOD_PROPERTYSET Function Parameters........ccooueeeeeeveneeeiieicineeerennn. 9-44
POPULATE_MOD_PROPERTYSET Function Return Values......ccoceeeevevveveieeennennen. 9-45
FREE_MOD_PROPERTYSET Procedure Parametersccccooueveeeeveieeeeeeiee e, 9-45
FREE_HANDLE Procedure Parametersccooevveeeeeveeeeeeeeeeieeeeeeeeeeere e eveseraeeenees 9-46
CHECK_INTERFACE_VERSION Function Parametersccoccveeeveviiveeieiviineneeeeenns 9-47
CHECK_VERSION_INTERFACE Function Return Valuescccccceoveeeeecveecnecereeenen. 9-47
FUunction RETUIN COAESuoiiuviieiecieieeeceeete ettt et er e e e et eeneeaaeeeraeearees 9-47
DBMS_LDAP_UTL Data TYPESc.covrirvrieiiiiiieitiiictccee e 9-50
Service Units and Corresponding ENtries..........cccococviiiiiiiiinniiiiccies 10-2
DAS Units and Corresponding URL Parameterscccccccovvniiiininicnciniicicinns 10-3
DAS URL Parameter Descriptions.........cc.coocvveiieiiiiiiiciiiiicicccnec e 10-5
Predefined Event Definitions........ccioeeicuiiiieeeiie ettt eveeeraeeevaennes 11-3
Attributes of the Provisioning Subscription Profilecccocooviniiiiinniiinnn 11-6
Arguments for Starting OID MONItOr.........cccccvviiiiiiiiniiiii e A-5
Arguments for Stopping OID MORNItOT.........cccevuiininiiiiniiiniiciii e A-5
Arguments for Starting a Directory Server by Using OIDCTLcccccccoviinininnnnnee. A-7
Arguments for Starting a Directory Replication Server by Using OIDCTL A-10
Description of Arguments for Starting the Oracle Directory Integration and
Provisioning SEIVET ..ot A-13
Arguments for the Catalog Management Tool (catalog.sh).........ccccooeeiiinnnniin, A-21
Arguments for ldapadd ... A-22
Arguments for ldapaddmt ... A-25
Arguments for Idapbind...........ccccooviviiiiiin A-26
Arguments for Idapcompare ..o A-28
Arguments for ldapdelete ... A-30
Arguments for ldapmoddn ... A-31
Arguments for ldapmodify ... A-33
Arguments for ldapmodifymtcccccooiiiiiiiiiniii A-38
Arguments for ldapsearch............cccooovvviiiiinii A-41
Summary of Functionality of the Directory Integration and Provisioning

ASSISTANL ...ttt ettt e et e et et e et be e ete e e eteaeeete e earaas A-46

A-17

A-18
A-19
A-20
A-21
A-22

A-23
A-24
A-25

A-26
A-27

Parameters for Creating, Modifying, and Deleting Synchronization Profiles by Using

the Directory Integration and Provisioning Assistant..........c.ccccceoviiviiiiiiicininne, A-47
Properties Expected by createprofile and modifyprofile Commands........................ A-48
Parameters of a deleteprofile Command.cccocevviviiiiinniniini A-50
Bootstrapping Properties ... A-51
Scenarios for Reassociating Directory Integration Profiles..............c.cocoooiienin A-56
Limitations of Bootstrapping in the Directory Integration and Provisioning

ASSISTANL . ..ottt et e e te e et ae e e et e e et ae s et aeaetar s e taaeeanes A-57
Arguments for ldapUploadAgentFile.Sh..........cccccoiiiiiiiiiiiii A-58
Arguments for Registering a Partner Agent by Using ldapcreateConn.sh A-60
Arguments for Stopping the Oracle Directory Integration and Provisioning

STV T ..ttt ettt ettt e et e e et e e ettt e et e e ettt e et teeeete e e etateeeteaeeetaeaeeteaeeataeseataeaettrseentte eanes A-62
Descriptions of ODISRVREG Arguments...........ccccovuviviiininiiciiiinniiii s A-64
Provisioning Subscription Tool Parameters.............cccovveiiiiiiiiiiiiccicenns A-66

XXi

xXii

Send Us Your Comments

Oracle Internet Directory Application Developer’s Guide, 10g (9.0.4)
Part No. B10461-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: appserverdocs@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 40p11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXiii

XXiv

Preface

Oracle Internet Directory Application Developer’s Guide provides information for
enabling applications to access Oracle Internet Directory by using the C API and the
PL/SQL APL

This preface contains these topics:
= Audience

s Organization

s Related Documentation

s Conventions

s Documentation Accessibility

XXV

Audience

Oracle Internet Directory Application Developer’s Guide is for application developers
who wish to enable applications to store and update directory information in an
Oracle Internet Directory server. It is also intended for anyone who wants to know
how the Oracle Internet Directory C API, PL/SQL API, Java API, and Oracle
extensions work.

Organization

XXVi

Part I, Oracle Internet Directory and LDAP Programming Concepts

Chapter 1, "Introduction”

Briefly describes the intended audience and components of Oracle Internet
Directory Software Developer’s Kit 10g (9.0.4). It also lists the other components of
Oracle Internet Directory and the platforms it supports.

Chapter 2, "Developing Applications with Standard LDAP APIs"

This chapter provides a brief overview of all of the major operations available in the
C API and the PL/SQL API. It provides developers a general understanding of
Lightweight Directory Access Protocol (LDAP) from a perspective independent of
the APL

Chapter 3, "Developing Applications with Oracle Extensions to the Standard
LDAP APIs"

This chapter explains the concepts behind Oracle extensions to LDAP APIs. It
describes the abstract entities that are modeled by the extensions as well as the
usage model of the Oracle extensions.

Chapter 4, "Developing Provisioning-Integrated Applications"

This chapter explains how to develop applications that can use the Oracle Directory
Provisioning Integration Service in the Oracle Directory Integration and
Provisioning platform. These applications can be either legacy or third-party
applications that are based on the Oracle platform.

Chapter 5, "Developing Oracle Internet Directory Server Plug-ins"

This chapter explains how to use the plug-in framework for the Oracle Internet
Directory server to facilitate custom development.

Chapter 6, "Developing Applications Integrated with Oracle Delegated
Administration Services"

This chapter explains how developers can use the DAS URL API to achieve
integration with DAS.

Part Il Oracle Internet Directory API Reference

Chapter 7, "The C API for Oracle Internet Directory"

Introduces the Oracle Internet Directory API and provides examples of how to use
it

Chapter 8, "DBMS_LDAP PL/SQL Reference"

This chapter introduces the DBMS_LDAP package, which enables PL/SQL
programmers to access data from LDAP servers. It provides examples of how to use
DBMS_LDAP.

Chapter 9, "DBMS_LDAP_UTL PL/SQL Reference"
This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions.

Chapter 10, "DAS_URL Interface Reference"
This chapter describes the Oracle extensions to the DAS_URL APL

Chapter 11, "Provisioning Integration APl Reference"

This chapter contains reference information for the Directory Integration and
Provisioning Platform APL

Part lll Appendixes
Appendix A, "Syntax for LDIF and Command-Line Tools"
Provides syntax, usage notes, and examples for using LDAP Data Interchange

Format (LDIF) and LDAP command line tools

Appendix B, "Sample Usage"
This appendix provides sample code.

Appendix C, "DSML Syntax"
This appendix provides syntax and usage notes for DSML (XML) integration.

XXVil

Glossary

Related Documentation

XXviii

For more information, see these Oracle resources:

s Oracle9i Database Server and Oracle Application Server documentation sets,
especially

— Oracle Internet Directory Administrator’s Guide.

— PL/SQL User’s Guide and Reference

- Oracle9i Application Developer’s Guide - Fundamentals

— Oracle Application Server 10g Security Guide
In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from
http://www.oraclebookshop.com/
Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

For additional information, see:

s Chadwick, David. Understanding X.500—The Directory. Thomson Computer
Press, 1996.

= Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

= Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

= Internet Assigned Numbers Authority home page, http://www.iana.org,
for information about object identifiers

= Internet Engineering Task Force (IETF) documentation available at:
http://www.ietf.org, especially:

s The LDAPEXT charter and LDAP drafts

= The LDUP charter and drafts

= RFC 2254, "The String Representation of LDAP Search Filters"
s RFC 1823, "The LDAP Application Program Interface"

s The OpenLDAP Community, http://www.openldap.org

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

s Conventions in Text
s Conventions in Code Examples

= Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning Example

Bold

Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

XXiX

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace

(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr .departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel_clause.

Run Uold release.SQL where o1d_
release refers to the release you installed
prior to upgrading.

XXX

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username =

'MIGRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

L1

Other notation

Italics

UPPERCASE

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

DECIMAL (digits [, precision 1)

{ENABLE ‘ DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT coll,
employees;

col2, , coln FROM

SQL> SELECT NAME FROM VS$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fsl/dbs/tbs_02.dbf

/fsl/dbs/tbs_09.dbf
9 rows selected.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER (4) := 3;

CONNECT SYSTEM/system_password
DB_NAME = database_name

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

XXXi

Convention Meaning Example

lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names gqlplus hr/hr
of tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MU9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,

File and directory
names

choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory names are not case c:\winnt"\"system32 is the same as
sensitive. The following special characters ¢:\WINNT\SYSTEM32
are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

quotation marks ("), slash (/), pipe (1),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

Represents the Windows command C:\oracle\oradata>
prompt of the current hard disk drive.

The escape character in a command

prompt is the caret (*). Your prompt

reflects the subdirectory in which you are

working. Referred to as the command

prompt in this manual.

XXXii

Convention

Meaning

Example

Special characters

HOME_NAME

ORACLE_HOME
and ORACLE_
BASE

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (") do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory. For
Windows NT, the default location was
C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by defaultis C: \oracle. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\orann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password FROMUSER=scott
TABLES= (emp, dept)

C:\> net start OracleHOME_NAMETNSListener

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\ admin directory.

XXXxiii

Documentation Accessibility

XXXiV

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

What’s New in Oracle Internet Directory
Software Developer’s Kit?

This section provides a brief description of new features introduced with the latest
releases of the Oracle Internet Directory Software Developer’s Kit, and points you
to more information about each one.

New Features in Oracle Internet Directory Release 9.0.4
s Oracle Delegated Administration Services URL API

This API enables you to build administrative and self-service consoles that can
be used by delegated administrators and users to perform specified directory
operations.

See Also: Chapter 6, "Developing Applications Integrated with
Oracle Delegated Administration Services"

s PL/SQL API Enhancements—These enhancements include:

- New functions introduced in LDAP v3 standard. These were previously
available in the core C-API, and are now made available through PL/SQL.

— Functions to enable proxied access to middle-tier applications

— Functions to create and manage provisioning profiles in the Oracle
Directory Integration and Provisioning platform

XXXV

XXXVi

See Also:

s Chapter 4, "Developing Provisioning-Integrated Applications"

External authentication plug-in support—This feature enables administrators to
use Microsoft Active Directory for storing and managing security credentials
used by Oracle components.

See Also: Chapter 5, "Developing Oracle Internet Directory
Server Plug-ins"

Server discovery using DNS—This feature enables Oracle Internet Directory
clients to discover the host name and port number of the Oracle directory server
running in a given enterprise. It reduces the administrative costs of maintaining
Oracle Internet Directory clients in large deployments.

See Also: "Server Discovery Functionality” on page 3-13

Support for XML interface (DSML 1.0) OID SDK and tools—This feature
enables LDAP tools to process XML as well as LDIF. APIs in Oracle Internet
Directory can programmatically manipulate results and operations in DSML
format.

See Also: Link to relevant chapter or section for New_Feature_5

Client side referral caching—This new feature enables clients to cache referral
information and use it to speed up referral processing.

See Also: "LDAP Session Handle Options" on page 7-10

Part |

Oracle Internet Directory Programming

Concepts

Part I introduces the Oracle Internet Directory, summarizes the basic LDAP
programming concepts, and explains how to directory-enable your applications.
This part also includes short introductory chapters for each language-specific set of
extensions.

It contains these chapters:

Chapter 1, "Introduction”
Chapter 2, "Developing Applications with Standard LDAP APIs"

Chapter 3, "Developing Applications with Oracle Extensions to the Standard
LDAP APIs"

Chapter 4, "Developing Provisioning-Integrated Applications"

Chapter 5, "Developing Oracle Internet Directory Server Plug-ins"

1

Introduction

This chapter briefly describes the intended audience and components of Oracle
Internet Directory Software Developer’s Kit 10g (9.0.4). It also lists the other
components of Oracle Internet Directory and the platforms it supports.

This chapter contains these topics:

About Oracle Internet Directory Software Developer’s Kit 10g (9.0.4)
Components of the Oracle Internet Directory Software Developer’s Kit
Application Development in the Oracle Internet Directory Environment
Other Components of Oracle Internet Directory

Operating Systems Supported

Introduction 1-1

About Oracle Internet Directory Software Developer’s Kit 10g (9.0.4)

About Oracle Internet Directory Software Developer’s Kit 10g (9.0.4)

Oracle Internet Directory SDK 10g (9.0.4) is intended for application developers
using C, C++, and PL/SQL. Java developers can use the JNDI provider from Sun to
access directory information in an Oracle Internet Directory server.

Components of the Oracle Internet Directory Software Developer’s Kit
Oracle Internet Directory Software Developer’s Kit 10g (9.0.4) consists of:

An LDAP Version 3-compliant C API

A PL/SQL API contained in a PL/SQL package called DBMS_LDAP
Sample programs

Oracle Internet Directory Application Developer’s Guide (this document)

Command-line tools

Application Development in the Oracle Internet Directory Environment

This section contains these topics:

Architecture of a Directory-Enabled Application

Directory Interactions During Application Lifecycle

Services and APIs for Integrating Applications with Oracle Internet Directory
Integrating Existing Applications with Oracle Internet Directory

Integrating New Applications with Oracle Internet Directory

1-2 Oracle Internet Directory Application Developer’'s Guide

Application Development in the Oracle Internet Directory Environment

Architecture of a Directory-Enabled Application

Most directory-enabled applications are backend programs that simultaneously
handle multiple requests from multiple users. Figure 1-1 shows how a directory is
used in such environments.

Figure 1-1 A Directory-Enabled Application

User 1
° ._
‘ q‘ —
User 2
s B
i
| I Multiple
— Connections Few
Connections
LDAP-Enabled Oracle
Application Internet
User 3 Directory
s B—
' — User, Group,
Subscriber and
—_ Application Data
User N

il

As Figure 1-1 shows, when a user request needs an LDAP operation to be
performed, the directory-enabled application performs the requested operation by
using a smaller set of pre-created connections to Oracle Internet Directory.

Introduction 1-3

Application Development in the Oracle Internet Directory Environment

Directory Interactions During Application Lifecycle

Table 1-1 gives an overview of the typical directory interactions that an application
makes during its lifecycle..

Table 1-1 Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Installation 1. Create in Oracle Internet Directory an identity
correspondent to the application. The
application uses this identity to perform a
majority of the LDAP operations.

2. Give this identity certain LDAP authorizations,
by making it part of the correct LDAP groups,
so that it can:

Accept user credentials and authenticate them
against Oracle Internet Directory

Impersonate a user—that is, become a proxy
user—if certain LDAP operations must be
performed on behalf of the user

Application Startup and Bootstrap The application must retrieve the credentials to
authenticate itself to Oracle Internet Directory.

If the application stores configuration metadata in
Oracle Internet Directory, then it can retrieve that
metadata and initialize other parts of the
application.

The application can then establish a pool of
connections to serve user requests.

1-4 Oracle Internet Directory Application Developer’'s Guide

Application Development in the Oracle Internet Directory Environment

Table 1-1 (Cont.) Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Runtime For every end-user request that needs an LDAP
operation, the application can:

Pick a connection from the pool of LDAP
connections

Authenticate the end-user if required, and if
Oracle Application Server Single Sign-On is
not used

Switch the user to the end-user identity, if the
LDAP operation needs to be performed with
the effective rights of the end-user

Perform the LDAP operation by using regular
API or the enhancements to it described in this
chapter

Ensure that the effective user is now the
application identity itself, once the operation is
complete, if the application performed a proxy
operation

Return the LDAP connection back to the pool
of connections

Application Shutdown Abandon any outstanding LDAP operations and
close all LDAP connections.

Application Deinstallation Remove the application identity and the associated
LDAP authorizations granted to the application
identity.

Services and APIs for Integrating Applications with Oracle Internet Directory

Application developers can integrate with Oracle Internet Directory by using the
services and APIs listed and described in Table 1-2.

Introduction 1-5

Application Development in the Oracle Internet Directory Environment

Table 1-2 Services and APIs for Integrating with Oracle Internet Directory

Service/API

Description

More Information

Standard LDAP APIs in C, PL/SQL
and Java

Oracle Extensions to Standard C,
PL/SQL and Java APIs

Oracle Delegated Administration
Services

Oracle Directory Provisioning
Integration Service

Oracle Internet Directory Plug-ins

These provide basic LDAP
operations. The standard LDAP API
to be used in Java is the JNDI API
with the LDAP service provider
from Sun Microsystems.

These APIs provide additional
programmatic interfaces that model
various Identity Management
related concepts.

The Oracle Delegated
Administration Services consist of a
core self-service console and
administrative interfaces that may
be customized to support
third-party applications.

You can use the Oracle Provisioning
Integration System for provisioning
third-party applications, as well as
as a means of integrating other
provisioning systems.

Oracle Internet Directory plug-ins
can be used to customize the
behavior of the directory server in
certain deployment scenarios.

Chapter 2, "Developing
Applications with Standard LDAP
APIs"

Chapter 3, "Developing
Applications with Oracle
Extensions to the Standard LDAP
APIs"

Chapter 6, "Developing
Applications Integrated with Oracle
Delegated Administration Services"

"Oracle Delegated Administration
Services", in Oracle Internet Directory
Administrator’s Guide

Chapter 4, "Developing
Provisioning-Integrated
Applications"

"The Oracle Directory Provisioning
Integration Service" in Oracle
Internet Directory Administrator’s
Guide

Chapter 5, "Developing Oracle
Internet Directory Server Plug-ins"

"Oracle Internet Directory Plug-In
Framework" in Oracle Internet
Directory Administrator’s Guide

1-6 Oracle Internet Directory Application Developer’'s Guide

Application Development in the Oracle Internet Directory Environment

Figure 1-2 illustrates an application leveraging some of the services illustrated in
Table 1-2 on page 1-6.

Figure 1-2 An Application Leveraging APIs and Services

DAS
URL
Application APls | DAS
Provisoning C, PL/SQL,
APls Java APIs
Directory Oracle
Integration Internet
Platform Directory

As Figure 1-2 shows, the application integrates with Oracle Internet Directory as
follows:

s Through Oracle Internet Directory PL/SQL, C, or Java APIs, it performs LDAP
operations directly against Oracle Internet Directory.

= For certain operations, it directs its users to some of the self-service capabilities
of Oracle Delegated Administration Services.

s Through the Oracle Directory Provisioning Integration Service, it is notified of
changes to certain user or group entries in Oracle Internet Directory.

Integrating Existing Applications with Oracle Internet Directory

Your enterprise may already have deployed certain applications to perform critical
business applications. Table 1-3 lists and describes the services of the Oracle
Internet Directory infrastructure that you can leverage to modify existing
applications.

Introduction 1-7

Application Development in the Oracle Internet Directory Environment

Table 1-3 Services for Modifying Existing Applications

Service

Description

More Information

Automated User Provisioning

User Authentication Services

Centralized User Profile
Management

You can develop a custom
provisioning agent that automates
the provisioning of users in the
existing application in response to
provisioning events in the Oracle
Identity Management
infrastructure. When yo develop
this agent, you must use the
interfaces of the Oracle Directory
Provisioning Integration Service.

If the user interface of the existing
application is based on HTTP, then
integrating it with Oracle HTTP
Server and protecting its URL by
using mod_osso authenticates all
incoming user requests using the
Oracle Application Server Single
Sign-On.

If the user interface of the existing
application is based on HTTP, and
it is integrated with Oracle
Application Server Single Sign-On
for authentication, then the
application can leverage the Oracle
Internet Directory Self-Service
Console to enable centralized user
profile management. The
Self-Service Console can be
customized by the deployment to
address the specific needs of the
application.

Chapter 4, "Developing
Provisioning-Integrated
Applications."

Oracle Application Server Single
Sign-On Administrator’s Guide

Chapter 6, "Developing
Applications Integrated with Oracle
Delegated Administration Services"

"Oracle Delegated Administration
Services", in Oracle Internet Directory
Administrator’s Guide

Integrating New Applications with Oracle Internet Directory

If you are developing a new application or planning a new release of an existing
application, then you can leverage the services provided by the Oracle Internet
Directory infrastructure extensively. Consider the integration points in described in
Table 14 on page 1-9.

1-8 Oracle Internet Directory Application Developer’'s Guide

Application Development in the Oracle Internet Directory Environment

Table 1-4 Application Integration Points

Integration Point Available Options More Information

User Authentication Services If the application is a J2EE based application, Oracle Application Server
then it can use the services provided by the Containers for J2EE User’s Guide
JAZN interface. If it relies on OC4J, then it can
use the services provided by mod_osso to
authenticate users and get important

Oracle Application Server Single
Sign-On Administrator’s Guide

information about the user in the HTTP PartII, "Oracle Internet
headers. If it is a stand-alone Web-based Directory Programming
application, then it can still leverage Oracle Reference", which contains
Application Server Single Sign-On by becoming reference sections for the

a partner application using the Oracle various LDAP APIs

Application Server Single Sign-On APlIs.
Finally, if the application provides a non-Web
based access interface, then it can authenticate
users by using the Oracle Internet Directory
LDAP APIs available in C, PL/SQL and Java.

Introduction 1-9

Application Development in the Oracle Internet Directory Environment

Table 1-4 (Cont.) Application Integration Points

Integration Point

Available Options

More Information

User Authorization Services

Centralized Profile
Management

Automated User
Provisioning

If the application is a J2EE-based application,
then it can use the services provided by the
JAZN interface to implement and enforce user
authorizations to application defined resources.
The application can model authorizations as
groups in Oracle Internet Directory and then
check the authorizations of a user by checking
his or her group membership. It can do this by
using the Oracle Internet Directory LDAP APIs
available in C, PL/SQL and Java.

You can model application-specific profiles and
user preferences as attributes in Oracle Internet
Directory.

If the user interface of the application is based
on HTTP, and is integrated with Oracle
Application Server Single Sign-On for
authentication, then the application can
leverage the Oracle Internet Directory
Self-Service Console to enable centralized user
profile management. You can customize the
Self-Service Console to address the specific
needs of the application.

The application can also retrieve these profiles
at runtime by using the Oracle Internet
Directory LDAP APIs available in C, PL/SQL
and Java.

If the user interface of the application is based
on HTTP, and it is integrated with Oracle
Application Server Single Sign-On for
authentication, then you can implement
automated user provisioning the very first time
a user accesses the application.

You can integrate the application in the Oracle
Identity Management Infrastructure with the
Oracle Directory Provisioning Integration
Service. The application can then provision or
deprovision user accounts automatically in
response to such administrative actions as
adding, modifying, or deleting an identity.

Oracle Application Server
Containers for J2EE User’s Guide

Part II, "Oracle Internet
Directory Programming
Reference", which contains
reference sections for the
various LDAP APIs

The chapter on deployment
considerations in Oracle
Internet Directory
Administrator’s Guide

Chapter 6, "Developing
Applications Integrated with
Oracle Delegated
Administration Services"

"Oracle Delegated
Administration Services", in
Oracle Internet Directory
Administrator’s Guide

Part II of this guide, which
contains reference sections for
the various LDAP APIs

Chapter 4, "Developing
Provisioning-Integrated
Applications”

1-10 Oracle Internet Directory Application Developer’s Guide

Operating Systems Supported

Other Components of Oracle Internet Directory

The following components of Oracle Internet Directory 10g (9.0.4), not part of the
Oracle Internet Directory Software Developer’s Kit, can be obtained separately:

Oracle directory server, an LDAP Version 3-compliant directory server
Oracle directory replication server

Oracle Directory Manager, a Java-based graphical user interface
Oracle Internet Directory bulk tools

Oracle Internet Directory Administrator’s Guide

Operating Systems Supported

Oracle Internet Directory servers and clients support these operating systems:

HPUX (64 Bit) - 11.0 & 11i

Linux (32 bit)}—Red Hat AS 2.1 and United Linux 1.0
AIX 5L (64 bit)—5.1 and 5.2

HP Tru64—5.1b

Introduction 1-11

Operating Systems Supported

1-12 Oracle Internet Directory Application Developer's Guide

2

Developing Applications with Standard

LDAP APIs

This chapter provides a brief overview of all of the major operations available in the
standard LDAP APL It provides developers a general understanding of
Lightweight Directory Access Protocol (LDAP) and basic knowledge to integrate
with the standard APIs.

This chapter contains these topics:

History of LDAP

Overview of LDAP Models
About Standard LDAP APIs
Initializing an LDAP Session
Authenticating an LDAP Session
Searching the Directory

Terminating the Session

Developing Applications with Standard LDAP APls 2-1

History of LDAP

History of LDAP

LDAP began as a lightweight front end to the X.500 Directory Access Protocol. To simplify
X.500 Directory Access Protocol, LDAP:

s Uses TCP/IP connections which are much more lightweight compared to the
OSI communication stack required by X.500 implementations

» Eliminates little-used and redundant features found in the X.500 Directory
Access Protocol

= Represents most data elements by using simple formats. These formats are
easier to process than the more complicated and highly structured
representations found in X.500.

= Encodes data for transport over networks by using a simplified version of the
same encoding rules used by X.500

Overview of LDAP Models

LDAP defines four basic models to describe its operations. This section contains
these topics:

= LDAP Naming Model

= LDAP Information Model
s LDAP Functional Model
s LDAP Security Model

LDAP Naming Model

The LDAP naming model allows directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a DN. The
distinguished name tells you exactly where the entry resides in the directory’s
hierarchy. This hierarchy is represented by a directory information tree (DIT).

2-2 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models

To understand the relation between a distinguished name and a directory
information tree, look at the example in Figure 2-1.

Figure 2-1 A Directory Information Tree

root

ou=Sales ou=Server Development

cn=Anne Smith cn=Anne Smith

The DIT in Figure 2-1 diagrammatically represents entries for two employees of
Acme Corporation who are both named Anne Smith. It is structured along
geographical and organizational lines. The Anne Smith represented by the left
branch works in the Sales division in the United States, while the other works in the
Server Development division in the United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of Great Britain (uk), in the organization (o) Acme.

The DN for this "Anne Smith" entry is:

cn=Anne Smith, ou=Server Development,c=uk, o=acme

Note that the conventional format of a distinguished name places the lowest DIT
component at the left, then follows it with the next highest component, thus moving
progressively up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). For example, in the above entry for Anne Smith, the
RDN is cn=Anne Smith. Similarly, the RDN for the entry immediately above
Anne Smith’s RDN is ou=Server Development, the RDN for the entry
immediately above ou=Server Development is c=uk, and so on. A DN is thus a
sequence of RDNs separated by commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. For example,
within the global organization in Figure 2-1, to avoid confusion between the two

Developing Applications with Standard LDAP APIs 2-3

Overview of LDAP Models

Anne Smiths, you would use each one’s full DN. (If there are potentially two
employees with the same name in the same organizational unit, you could use
additional mechanisms, such as identifying each employee with a unique
identification number.)

LDAP Information Model

The LDAP information model determines the form and character of information in
the directory. It is centered around entries, which are composed of attributes. In a
directory, each collection of information about an object is called an entry. For
example, a typical telephone directory includes entries for people, and a library
card catalog contains entries for books. Similarly, an online directory might include
entries for employees, conference rooms, e-commerce partners, or shared network
resources such as printers.

In a typical telephone directory, an entry for a person contains such information
items as an address and a phone number. In an online directory, such an
information item is called an attribute. Attributes in a typical employee entry can
include, for example, a job title, an e-mail address, or a phone number.

For example, in Figure 2-2, the entry for Anne Smith in Great Britain (uk) has
several attributes, each providing specific information about her. These are listed in
the balloon to the right of the tree, and they include emailaddrs, printername,

2-4 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models

jpegPhoto, and app preferences. Moreover, each bullet in Figure 2-2 is also an
entry with attributes, although the attributes for each are not shown.

Figure 2-2 Attributes of the Entry for Anne Smith

chn=Anne Smith

emailaddrs=
— printemame=

ipegPhoto=
app Preferen.;i_ey

ou=5erver Dewvelopment

cn=2Anne Smith cn=Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—for example,
jobTitle. The attribute value is the particular occurrence of information
appearing in that entry. For example, the value for the jobTit1le attribute could be
manager.

Developing Applications with Standard LDAP APIs 2-5

Overview of LDAP Models

LDAP Functional Model

The LDAP functional model determines what operations can be performed on the
information. There are three types of functions:

Table 2-1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose
name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations for modifying the
directory: Modify: change existing entries. It allows attributes
and values to be added and deleted. Add: insert entries into
the directory Delete: remove entries from the directory
Modify RDN: change the name of an entry

Authenticate This category defines a bind operation, allowing a client to
initiate a session and prove its identity to the directory. Several
authentication methods are supported, from simple clear-text
password to public key-based authentication. The unbind
operation is used to terminate a directory session.

LDAP Security Model

The LDAP security model allows information in the directory to be secured.
This section contains these topics:

= Authentication: Ensuring that the identities of users, hosts, and clients are
correctly validated

= Access Control and Authorization: Ensuring that a user reads or updates only
the information for which that user has privileges

s Data Integrity: Ensuring that data is not modified during transmission

= Data Privacy: Ensuring that data is not disclosed during transmission

2-6 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models

= Password Protection: Ensuring protection of user passwords through any of
four encryption options

s Password Policies: Enabling you to set rules that govern how passwords are
used

Authentication

Authentication is the process by which the directory server establishes the true
identity of the user connecting to the directory. It occurs when an LDAP session is
established by means of the ldap-bind operation. Every session has an associated
user identity, also referred to as an authorization ID.

To ensure that the identities of users, hosts, and clients are correctly known, Oracle
Internet Directory provides three authentication options: anonymous, simple, and
SSL.

Anonymous Authentication If your directory is available to everyone, then you can
allow users to log in to the directory anonymously. When using anonymous
authentication, users simply leave blank the user name and password fields when
they log in. Each anonymous user then exercises whatever privileges are specified
for anonymous users.

Simple Authentication In this case, the client identifies itself to the server by means of
a DN and a password which are not encrypted when sent over the network. In the
simple authentication option, the server verifies that the DN and password sent by
the client match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Socket Layer (SSL) is an
industry standard protocol for securing network connections. It provides
authentication through the exchange of certificates that are verified by trusted
certificate authorities. A certificate ensures that an entity’s identity information is
correct. An entity can be an end user, a database, an administrator, a client, or a
server. A certificate authority (CA) is an application that creates public key
certificates that are given a high level of trust by all the parties involved.

Developing Applications with Standard LDAP APls 2-7

Overview of LDAP Models

You can use SSL in one of three authentication modes:

Table 2-2 SSL Authentication Modes

SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption/decryption is used.

One-way authentication = Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication ~Both client and server authenticate themselves to each other.
Both the client and server send certificates to each other.

In an Oracle Internet Directory environment, SSL authentication between a client
and a directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on
the SSL port. (The default SSL port is 636.)

2. SSL performs the handshake between client and directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

See Also: Oracle Advanced Security Administrator’s Guide for more
information about SSL

Access Control and Authorization

Authorization is the process of ensuring that a user reads or updates only the
information for which that user has privileges. When directory operations are
attempted within a directory session, the directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform those operations. Otherwise, the operation is disallowed.
Through this mechanism, the directory server protects directory data from
unauthorized operations by directory users. This mechanism is called access
control.

An access control information item (ACI) is the directory metadata that captures the
administrative policies relating to access control.

ACl is stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically, a list of these ACI attribute values, called an Access Control List (ACL), is

2-8 Oracle Internet Directory Application Developer’s Guide

Overview of LDAP Models

associated with directory objects. The attribute values on that list govern the access
policies for those directory objects.

ACIs are represented and stored as text strings in the directory. These strings must
conform to a well defined format. Each valid value of an ACI attribute represents a
distinct access control policy. These individual policy components are referred to as
ACI Directives or ACIs and their format is called the ACI Directive format.

Access control policies can be prescriptive, that is, their security directives can be
set to apply downward to all entries at lower positions in the directory information
tree (DIT). The point from which an access control policy applies is called an access
control policy point (ACP).

Data Integrity

Oracle Internet Directory ensures that data has not been modified, deleted, or
replayed during transmission by using SSL. This SSL feature generates a
cryptographically secure message digest—through cryptographic checksums using
either the MD5 algorithm or the Secure Hash Algorithm (SHA)—and includes it
with each packet sent across the network.

Data Privacy

Oracle Internet Directory ensures that data is not disclosed during transmission by
using public-key encryption available with Secure Sockets Layer (SSL). In
public-key encryption, the sender of a message encrypts the message with the
public key of the recipient. Upon delivery, the recipient decrypts the message using
the recipient’s private key. Specifically, Oracle Internet Directory supports two
levels of encryption available through SSL:

= DES40

The DES40 algorithm, available internationally, is a variant of DES in which the
secret key is preprocessed to provide forty effective key bits. It is designed for
use by customers outside the USA and Canada who want to use a DES-based
encryption algorithm. This feature gives commercial customers a choice in the
algorithm they use, regardless of their geographic location.

= RC4 .40

Oracle has obtained license to export the RC4 data encryption algorithm with a
40-bit key size to virtually all destinations where other Oracle products are
available. This makes it possible for international corporations to safeguard
their entire operations with fast cryptography.

Developing Applications with Standard LDAP APIs 2-9

Overview of LDAP Models

Password Protection During installation, the protection scheme for passwords was
set. You can change that initial configuration by using either Oracle Directory
Manager or ldapmodify. You must be a superuser to change the type of password
encryption.

To encrypt passwords, Oracle Internet Directory uses the MD4 algorithm as the
default. MD4 is a one-way hash function that produces a 128-bit hash, or message
digest. You can change this default to one of the following:

s MD5—An improved, and more complex, version of MD4

s SHA—Secure Hash Algorithm, which produces a 160-bit hash, longer than
MD?5. The algorithm is slightly slower than MD5, but the larger message digest
makes it more secure against brute-force collision and inversion attacks.

s UNIX Crypt—The UNIX encryption algorithm
= No Encryption

The value you specify is stored in the orc1CryptoScheme attribute in the root
DSE. This attribute is single-valued.

During authentication to a directory server, a user enters a password in clear text.
The server then hashes the password by using the specified encryption algorithm,
and verifies it against the hashed password in the userPassword attribute. If the
hashed password values match, then the server authenticates the user. If the hashed
password values do not match, then the server sends the user an Invalid
Credentials error message.

Password Policies A password policy is a set of rules that govern how passwords are
used. When a user attempts to bind to the directory, the directory server uses the
password policy to ensure that the password meets the various requirements set in
that policy

When you establish a password policy, you set the following types of rules, to
mention just a few:

s The maximum length of time a given password is valid
s The minimum number of characters a password must contain

s The ability of users to change their own passwords

2-10 Oracle Internet Directory Application Developer's Guide

About Standard LDAP APIs

About Standard LDAP APIs

The standard LDAP enables you to perform the fundamental LDAP operations
described in the previous section. The standard LDAP APIs are available in the
these languages:

C—Part of the Oracle Internet Directory Software Developer’s Kit

PL/SQL—Part of the Oracle Internet Directory Software Developer’s Kit as
DBMS_LDAP

Java—Part of the Sun Microsystems JNDI package

All of these APIs use TCP/IP connections, are based on LDAP Version 3, and
support SSL connectivity to Oracle Internet Directory.

This section contains these topics:

APl Usage Model

API Usage Model

About the C API

About the Java API

About the DBMS_LDAP Package

Typically, an application uses the functions in the API in four steps:

1.

2
3.
4

Initialize the library and obtain an LDAP session handle.
Authenticate to the LDAP server if necessary.
Perform some LDAP operations and obtain results and errors if any.

Close the session.

Developing Applications with Standard LDAP APIls 2-11

About Standard LDAP APIs

Figure 2-3 illustrates these steps.

Figure 2-3 Steps in Typical DBMS_LDAP Usage

Initialize Session

v

Authenticate Session

v

Perform LDAP
Operations

v

Terminate Session

Later sections in this chapter explain the important features of the API with respect
to each of these steps.

About the C API
To build applications with the C API, you need to:

s Include the header file located at $ORACLE _HOME/ldap/public/ldap.h.

s Dynamically link to the library located at $ORACLE_
HOME/1lib/libclntsh.s0.9.0.

See Also: "Sample C API Usage" on page 7-65 for more details on
how to use the SSL and non-SSL modes

About the Java API

Java developers can use the JNDI LDAP service provider from Sun Microsystems to
access directory information in an Oracle Internet Directory server.

See Also: http://java.sun.com for complete information
about the JNDI provider from Sun

2-12 Oracle Internet Directory Application Developer's Guide

Initializing an LDAP Session

About the DBMS_LDAP Package

The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The naming and syntax of the function calls are
similar to those of the Oracle Internet Directory C API functions and comply with
the current recommendations from the Internet Engineering Task Force (IETF) for
the LDAP C-API. However, the PL/SQL API contains only a subset of the functions
available in the C API. In particular, only synchronous calls to the LDAP server are
available in the PL/SQL API.

To use the PL/SQL LDAP AP], load it into the database. You do this by using a
script called catldap.sqgl that is located in the $ORACLE_HOME/rdbms/admin
directory. You must be connected as SYSUSER using the SQL*Plus command line
tool. You must also execute SQL*Plus in the ORACLE HOME in which your
database is present.

The following is a sample command sequence that you can use to load the DBMS_
LDAP package:

SQL> CONNECT / AS SYSDBA
SQL> @?/rdbms/admin/catldap.sqgl

Initializing an LDAP Session

All LDAP operations require clients to establish an LDAP session with the LDAP
server. To perform LDAP operations, a database session must first initialize and
open an LDAP session.

This section contains these topics:

» Initializing the Session by Using the C API

» Initializing the Session by Using JNDI

» Initializing the Session by Using DBMS_LDAP

Initializing the Session by Using the C API

ldap_init() initializes a session with an LDAP server. The server is not actually
contacted until an operation is performed that requires it, allowing various options
to be set after initialization.

Syntax

LDAP *1dap init
(

Developing Applications with Standard LDAP APIs 2-13

Initializing an LDAP Session

const char *hostname,
int portno

)

Parameters

Table 2-3 Parameters for Idap_init()

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to connect
to. Each host name in the list MAY include a port number which is
separated from the host itself with a colon (:) character. The hosts will be
tried in the order listed, stopping with the first one to which a successful
connection is made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number to connect to. The default LDAP port of
389 can be obtained by supplying the constant LDAP_PORT. If a host
includes a port number then this parameter is ignored.

ldap_init() and ldap_open() both return a session handle, that is, a pointer to an
opaque structure that MUST be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized in which case the
operating system error reporting mechanism can be checked to see why the call
failed.

Initializing the Session by Using JNDI

See Also: The following URL http://java.sun.com for
complete information about the JNDI provider from Sun

Initializing the Session by Using DBMS_LDAP

Initialization occurs by means of a call to the function DBMS_LDAP . init (). The
function ‘init’ has the following syntax:

FUNCTION init (hostname IN VARCHAR2, portnum IN PLS_TNTEGER)
RETURN SESSION;

2-14 Oracle Internet Directory Application Developer's Guide

Authenticating an LDAP Session

To establish an LDAP session, the function init requires a valid host name and a
port number. It allocates a data structure for the LDAP session and returns a handle
of the type DBMS_LDAP . SESSION to the caller. The handle returned from the call to
init should be used in all subsequent LDAP operations with the API. The DBMS_
LDAP API uses the LDAP session handles to maintain state about open
connections, outstanding requests, and other information.

A single database session can obtain as many LDAP sessions as required. There is
an upper limit of 64 simultaneous active LDAP connections. Typically, multiple
LDAP sessions within the same database session are opened if:

s There is a requirement to get data from multiple LDAP servers simultaneously

s There is a requirement to have open sessions using multiple LDAP identities

Note: The handles returned from calls to DBMS_LDAP. init ()
are dynamic constructs: They do not persist across multiple
database sessions. Attempting to store their values in a persistent
form, and to reuse stored values at a later stage, can yield
unpredictable results.

Authenticating an LDAP Session

Before initiating any of the LDAP operations, an individual or application seeking
to perform operations against an LDAP server must be authenticated. If the dn and
passwd parameters are NULL, then the LDAP server assigns a special identity,
called anonymous, to the application. Typically, the anonymous identity is
associated with the least privileges in an LDAP directory.

When a bind operation is completed, the directory server remembers the new
identity until either another bind is done or the LDAP session is terminated by
using unbind_s. The identity is used by the LDAP server to enforce the security
model specified by the enterprise administration. In particular, this identity helps
the LDAP server determine whether the user or application has sufficient privileges
to perform search, update, or compare operations in the directory.

Note that the password for the bind operation is sent in the clear over the network.
If the network is not secure, then consider using SSL for authentication as well as
secure data transport for all LDAP operations.

Developing Applications with Standard LDAP APIs 2-15

Authenticating an LDAP Session

This section contains these topics:

= Authenticating an LDAP Session by Using the C API

= Authenticating an LDAP Session by Using JNDI

= Authenticating an LDAP Session by Using DBMS_LDAP

Authenticating an LDAP Session by Using the C API

The function ldap_simple_bind_s() enables applications to authenticate to the
directory server by using certain credentials.

The function ldap_simple_bind_s() has the following syntax:

int ldap_simple_bind s
(

LDAP*1d,

char*dn,

char*passwd,

)i

Table 2-4 Arguments for Idap_simple_bind_s()

Argument Description

1d A valid LDAP session handle.

dn The identity that the application uses for authentication.
passwd The password for that identity.

If the dn and passwd parameters are NULL, then the LDAP server assigns a special
identity, called anonymous, to the application.

Authenticating an LDAP Session by Using JNDI

There is no special function to perform authentication. The desired authentication
parameters are set up at initialization time.

See Also: The following URL http://java.sun.com for
complete information about the JNDI provider from Sun

2-16 Oracle Internet Directory Application Developer's Guide

Searching the Directory

Authenticating an LDAP Session by Using DBMS_LDAP

The functions simple_bind_s enables applications to authenticate to the directory
server by using certain credentials. The function simple_bind_s has the
following syntax:

FUNCTION simple bind s (1d IN SESSION, dn IN VARCHAR2, passwd IN VARCHAR2)
RETURN PLS_INTEGER;

The function simple_bind_s requires the LDAP session handle obtained from
init as the first parameter. It also requires an LDAP distinguished name (DN) of
an entry. This DN represents the identity that the application uses when it
authenticates

The following PL/SQL code snippet shows a typical usage of the initialization,
authentication, and cleanup functions just described.

DECLARE
retval PLS_INTEGER;
my_session DBMS LDAP.session;

BEGIN
retval = -1;
-- Initialize the LDAP session
my_session := DBMS_LDAP.init (’yow.acme.com’,389) ;
--Authenticate to the directory
retval :=DBMS_LDAP.simple bind_ s (my_session, ’‘cn=orcladmin’,
'welcome’) ;

In the previous example, an LDAP session is initialized to the LDAP server on the
computer yow . acme . com that is listening for requests at TCP/IP port number 389.
Then an authentication is performed with the identity of cn=orcladmin whose
password is welcome. This authenticates the LDAP session and paves the way for
regular LDAP operations.

Searching the Directory

Searches are the most frequently used LDAP operations. The LDAP search
operation allows applications to select and retrieve entries from the directory by
using complex search criteria.

Developing Applications with Standard LDAP APls 2-17

Searching the Directory

This section contains these topics:

Flow of Search-Related Operations

Search Scope

Filters

Searching the Directory by Using the C API
Searching the Directory by Using JNDI
Searching the Directory by Using DBMS_LDAP

Note: This release of the DBMS_LDAP API provides only
synchronous search capability. This implies that the caller of the
search functions is blocked until the LDAP server returns the entire
result set.

Flow of Search-Related Operations

The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1.

2
3
4,
5

o

Decide the attributes that need to be returned, and compose them into an array.
Initiate the search operation with the desired options and filters.

From the result set get an entry.

For the entry obtained in Step 3, get an attribute.

For the attribute obtained in Step 4, get all of the values and copy them into
local variables.

Repeat Step 4 until all attributes of the entry are examined

Repeat Step 3 until there are no more entries

2-18 Oracle Internet Directory Application Developer's Guide

Searching the Directory

Figure 2—4 illustrates the above steps in more detail.

Figure 2-4 Flow of Search-Related Operations

Collect Required Attributes

o v

Issue Search

v

No

Entry Count > 0

}T Get First / Next Entry

v

Entry Valid

No

Yes

T Get First / Next Attribute <=

Attribute Valid

vV Vv
T Get Attribute Values No End of Search

Developing Applications with Standard LDAP APIs 2-19

Searching the Directory

Search Scope

The scope of the search determines the number of entries relative to the base of the
search that the directory server examines to see if they match the given filter
condition. One of three options can be specified when invoking either search_s ()
or search_st () functions:

Table 2-5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the base of the search to see if it matches the given criteria in
the filter.

SCOPE_ONELEVEL The directory server looks only at all of the entries that are

immediate children of the base object to see if they match the
given criteria in the filter.

SCOPE_SUBTREE The directory server looks at the entire LDAP subtree rooted at
and including the base object.

Figure 2-5 illustrates the difference between the three scope options.

Figure 2-5 The Three Scope Options

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

In Figure 2-5, the base of the search is the patterned circle. The shaded rectangle
identifies the entries that are searched.

Base of
Search

2-20 Oracle Internet Directory Application Developer's Guide

Searching the Directory

Filters

The search filter required by the search_s() and search_st() functions follows the
string format defined in RFC 1960 of the Internet Engineering Task Force (IETF).
This section provides a brief overview of the various options available for the filters.

There are six kinds of basic search filters that take an attribute operator value format.
The following table summarizes the basic search filters:

Table 2-6 Search Filters

Filter Type Format Example Matches

Equality (attr=value) (sn=Keaton) Surnames exactly equal
to Keaton.

Approximate (attr~=value) (sn~=Ketan) Surnames
approximately equal to
Ketan.

Substring (attr=[leading]*[any]*[trailing] (sn=*keaton*) Surnames containing

the string “keaton”.

(sn=keaton*) Surnames starting with
“keaton”.

(sn=*keaton) Surnames ending in
“keaton”.

(sn=ke*at*on) Surnames starting with
“ke”, containing “at”
and ending with “on”.

Greater than or (attr>=value) (sn>=Keaton) Surnames

equal lexicographically
greater than or equal to
Keaton.

Less than or (attr<=value) (sn<=Keaton) Surnames

equal lexicographically less

than or equal to Keaton.

Presence (attr=*) (sn=¥*) All entries having the
sn attribute.

The basic filters in Table 2—6 can be combined to form more complex filters using
the Boolean operators and a prefix notation. The & character represents AND, the |
character represents OR, and the ! character represents NOT.

Developing Applications with Standard LDAP APls 2-21

Searching the Directory

Table 2-7 summarizes the fundamental Boolean operations:

Table 2-7 Boolean Operators

Filter
Type Format Example Matches

AND (&(<filterl>)(<filter2>)...) (& (sn=keaton) (objectclass= Entries with
inetOrgPerson)) surname of
Keaton AND
objectclass of
InetOrgPerson.

OR (I (<filterl>)(<filter2>)...) (] (sn~=ketan) (cn=*keaton)) Entries with
surname
approximately
equal to ketan
OR common
name ending in
keaton.

NOT (!(<filter)) (! (mail=*)) Entries without a
mail attribute.

The complex filters shown above can themselves be combined to create arbitrarily
complex nested filters.

Searching the Directory by Using the C API

The function 1dap_search-s () can be used to initiate a synchronous search
operation request in the directory.

The syntax for 1dap_search_s () is:

int ldap_search_s
(

LDAP*1d,

char’ase,
intscope,
char*ilter,
in@attrsonly,
LDAPMessage**res,
)

Flow of Search Operation:

The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

2-22 Oracle Internet Directory Application Developer's Guide

Searching the Directory

1. Decide the attributes that need to be returned, and compose them into an array
of strings with the array being NULL terminated.

2. Initiate the search operation with the desired options and filters using ldap_
search_s() function.

3. From the result-set get an entry using ldap_first_entry() or ldap_next_entry()
function.

4. For the entry obtained in Step 3, get an attribute using ldap_first_attribute() or
ldap_next_attribute() function.

5. For the attribute obtained in Step 4, get all of the values and copy them into
local variables using ldap_get_values() or ldap_get_values_len().

6. Repeat Step 4 until all attributes of the entry are examined.

7. Repeat Step 3 until there are no more entries.

Table 2-8 Arguments for Idap_search_s()

Argument Description

1d A valid LDAP session handle

base The DN of the base entry in the LDAP server where search
should start.

scope The breadth and depth of the DIT that needs to be searched.

filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.

attrsonly If set to 1, only returns the attributes.

res The search results are returned in this argument.

Searching the Directory by Using JNDI

See Also: The following URL http://java.sun.com for
complete information about the JNDI provider from Sun

Searching the Directory by Using DBMS_LDAP

The function available for initiating searches in the DBMS_LDAP API is DBMS_
LDAP.search_s ().

Developing Applications with Standard LDAP APls 2-23

Searching the Directory

The syntax for DBMS_LDAP.search_s () is:

FUNCTION search_s
(
1d IN SESSION,
base IN VARCHARZ,
scope IN PLS INTEGER,
filter IN VARCHARZ,
attrs IN STRING COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)

RETURN PLS_INTEGER;

Both functions take the arguments listed and described in Table 2-9.

Table 2-9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument Description

1d A valid session handle

base The DN of the base entry in the LDAP server where search should start
scope The breadth and depth of the DIT that needs to be searched

filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An OUT parameter that returns the result set for further processing

In addition to search_s, several support functions in the API help in retrieving
search results. These are highlighted in the following section.

Flow of Search Operation:

The programming required to initiate a typical search operation and retrieve results
can be broken into the following steps:

1. Decide the attributes that need to be returned, and compose them into the
DBMS_LDAP.STRING_COLLECTION data-type.

2. Initiate the search operation with the desired options and filters using DBMS_
LDAP.search_s () or DBMS_LDAP.search_st ().

2-24 Oracle Internet Directory Application Developer's Guide

Terminating the Session

3. From the result-set get an entry using DBMS_LDAP. first_entry () or DBMS_
LDAP.next_entry () function.

4. For the entry obtained in Step 3, get an attribute using DBMS_LDAP. first_
attribute () or DBMS_LDAP.next_attribute () function.

5. For the attribute obtained in Step 4, get all of the values and copy them into
local variables using DBMS_LDAP.get_values () or DBMS_LDAP.get_
values_len () function.

6. Repeat Step 4 until all attributes of the entry are examined.

7. Repeat Step 3 until there are no more entries.

Terminating the Session
This section contains these topics:
s Terminating the Session by Using the C API
s Terminating the Session by Using JNDI
s Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API

Once an LDAP session handle is obtained and all of the desired LDAP related work
is complete, the LDAP session must be destroyed. This is accomplished through a
call to ldap_unbind_s().

The function ldap_unbind_s() has the following syntax:

int ldap_unbind_s
(

LDAP* 1d

)

A successful call to 1dap_unbind_s () function closes the TCP/IP connection to
the directory server, de-allocates all the system resources consumed by the LDAP
session and returns the integer LDAP_ SUCCESS to its callers. Once the 1dap_
unbind_s () function is invoked on a particular session, no other LDAP operations
on that session can succeed, unless a new LDAP session is initialized with a call to
ldap_init ().

Developing Applications with Standard LDAP APls 2-25

Terminating the Session

Terminating the Session by Using JNDI

See Also: The following URL http://java.sun.comn for
complete information about the JNDI provider from Sun

Terminating the Session by Using DBMS_LDAP

Once an LDAP session handle is obtained and all of the desired LDAP-related work
is complete, the LDAP session must be destroyed. This is accomplished through a
call to DBMS_LDAP.unbind_s (). The function unbind_s has the following
syntax:

FUNCTION unbind s (1d IN SESSION) RETURN PLS_INTEGER;

A successful call to unbind_s closes the TCP /IP connection to the LDAP server,
de-allocates all system resources consumed by the LDAP session, and returns the
integer DBMS_LDAP . SUCCESS to its callers. Once the unbind_s function is
invoked on a particular session, no other LDAP operations on that session can
succeed unless the session is re-initialized with a call to init.

2-26 Oracle Internet Directory Application Developer's Guide

3

Developing Applications with Oracle
Extensions to the Standard LDAP APIs

This chapters explains the concepts behind Oracle extensions to LDAP APIs, and
describes the abstract entities that are modeled by the extensions as well as the
usage model of those extensions.

This chapter contains these topics:

Overview of Oracle Extensions to the Standard API
User Management Functionality

Group Management Functionality

Identity Management Realm Functionality

Server Discovery Functionality

Resource Information Management Functionality

SASL Authentication Functionality

Dependencies and Limitations for the PL/SQ LDAP API

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-1

Overview of Oracle Extensions to the Standard API

Overview of Oracle Extensions to the Standard API

Based on the entities on which they operate, the functionalities provided by the API
extensions can be categorized as follows:

s User management—This functionality enables applications to get or set various
user related properties

s Group management—This functionality enables applications to query group
properties

= Realm management—This functionality enables applications to get or set such
identity management realm-related properties as user search base

= Server discovery management—This functionality enables applications to locate
a directory server in the Domain Name System (DNS)

= SASL management—This functionality enables applications to authenticate to
the directory by using SASL Digest-MD5 authentication

The primary users of the extensions described in this chapter are backend
applications that must perform LDAP lookups for users, groups, applications, or
hosted companies. This section describes how these applications integrate these API
extensions into their logic—that is, the usage of the API extensions only. It contains
these topics:

= Using the API Extensions in PL/SQL
= Using the API Extensions in Java

s Installation and First Use of Oracle Extensions to the Standard API

See Also: "Architecture of a Directory-Enabled Application" on
page 1-3 for a conceptual description of the usage model

3-2 Oracle Internet Directory Application Developer’s Guide

Overview of Oracle Extensions to the Standard API

Figure 3-1 shows the placement of the API extensions in relation to existing APIs:

Figure 3—1 Oracle API Extensions

Oracle Application Server Oracle Application Server Oracle Application Server
C Program Java Program PL/SQL Program
C API Java PL/SQL
Extensions Extensions Extensions
(ora_ldap) (oracle.ldap.util) (DBMS_LDAP_UTL)
Oracle LDAP SUN JNDI Oracle DBMS_LDAP
C-API Interface pkg.

As Figure 3-1 shows, in the PL/SQL and Java languages, the API extensions are
layered on top of existing APlIs:

s Oracle’s DBMS_LDAP PL/SQL API, for PL/SQL programs
= Sun’s LDAP JNDI Service Provider, for Java programs
s Oracle’s LDAP C API for C programs

Applications must access the underlying APIs for such common things as
establishing and closing connections, and looking up directory entries not covered
by the API extensions.

Figure 3-2 shows the programmatic flow of control for using the API extensions
described in this chapter.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-3

Overview of Oracle Extensions to the Standard API

Figure 3-2 Programmatic Flow of API Extensions

Established Connection
to OID

v

Use Regular f=——P>| Use Oracle
API FUNCHioNns | e Extension API

v

Close OID Connection

Connected State

As Figure 3-2 shows, the applications first establish a connection to Oracle Internet
Directory. They can then use existing API functions and the API extensions
interchangeably.

Using the API Extensions in PL/SQL

Most of the extensions described in this chapter provide helper functions to access
data in relation to such specific LDAP entities as users, groups, realms, and
applications. In many cases, you must pass a reference to one of these entities to the
API functions. These API extensions use opaque data structures, called handles. For
example, an application that needs to authenticate a user would follow these steps:

1. Establish an LDAP connection, or get it from a pool of connections.

2. Create a user handle based on user input. This could be a DN, or a GUID, or a
simple Oracle Application Server Single Sign-On ID.

3. Authenticate the user with the LDAP connection handle, user handle, and
credentials.

4. Free the user handle.

5. Close the LDAP connection, or return the connection back to the pool of
connections.

3-4 Oracle Internet Directory Application Developer’s Guide

Overview of Oracle Extensions to the Standard API

Figure 3-3 illustrates this usage model.

Figure 3-3 Programming Abstractions for the PL/SQL Language

Establish LDAP Connection

%» create_user_handle (userDN)

userHandle
4 LDAPConn

authenticate_user(LDAPConn,
userHandle, userPassword)

userPassword
-

userHandle

A

free_handle(userHandle)

> Close LDAP Connection

LDAPConn

Using the API Extensions in Java

This section describes:
s Theoracle.java.util package

s The PropertySetCollection, PropertySet, and Property classes

The oracle.java.util Package

Instead of handles, LDAP entities—that is, users, groups, realms, and
applications—are modeled as Java objects in the oracle.java.util package. All
other utility functionality is modeled either as individual objects—as, for example,
GUID—or as static member functions of a utility class.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-5

Overview of Oracle Extensions to the Standard API

For example, to authenticate a user, an application must follow these steps:
1. Create oracle.ldap.util.user object, given the user DN.

2. Create a DirContext JNDI object with all of the required properties, or get one
from a pool of DirContext objects.

3. Invoke the User.authenticate function, passing in a reference to the
DirContext object and the user credentials.

4. If DirContext object was retrieved from a pool of existing DirContext
objects, return it to that pool.

Unlike C and PL/SQL, Java language usage does not need to explicitly free objects
because the Java garbage collection mechanism can do it.

PropertySetCollection, PropertySet, and Property Classes

Many of the methods in the user, subscriber, and group classes return a
PropertySetCollection object. The object represents a collection of results. It is
a collection of one or more LDAP entries. Each of these entries is represented by a
PropertySet object, identified by a DN. A property set can contain attributes,
each represented as a property. A property is a collection of one or more values for
the particular attribute it represents. An example of the use of these classes follows:

PropertySetCollection psc = Util.getGroupMembership(ctx,
myuser,
null,
true);

// for loop to go through each PropertySet
for (int i = 0; 1 < psc.size(); i++) {

PropertySet ps = psc.getPropertySet (i) ;

// Print the DN of each PropertySet
System.out.println("dn: " + ps .getDN());

// Get the values for the "objectclass" Property
Property objectclass = ps.getProperty("objectclass");

// for loop to go through each value of Property "objectclass"
for (int j = 0; j< objectclass.size(); j++) {

// Print each "objectclass" value
System.out.println("objectclass: " + objectclass.getValue(3j));

3-6 Oracle Internet Directory Application Developer’s Guide

User Management Functionality

The entity myuser is a user object. The psc object contains all the nested groups
that myuser belongs to. The code loops through the resulting entries and prints out
all the objectclass values of each entry.

See Also: "Java Sample Code" on page B-33 for more sample uses
of the PropertySetCollection, PropertySet, and Property
classes

Installation and First Use of Oracle Extensions to the Standard API

Table 3-1 provides information about installation and first use for each APIL.

Table 3-1 Information about Installation and First Use

Language Installation and First Use Information
Java API Installed as part of the LDAP client installation.
PL/SQL API Installed as part of the Oracle9i Database Server. You must

load it by using a script, called catldap. sql, located in
SORACLE_HOME/rdbms/admin.

CAPI To build applications with the C API, you need to:

Include the header file located at $ ORACLE_
HOME/ldap/public/ldap.h.

Dynamically link to the library located at $ORACLE_
HOME/1lib/libclntsh.s0.9.0.

User Management Functionality

This section describes user management functionality for the Java, PL/SQ, and C L
LDAP APIs.

Directory-enabled applications need to access Oracle Internet Directory for the
following user-related operations:

= User entry properties, which are stored as attributes of the user entry itself—in
the same way, for example, as surname or home address

» Extended user preferences, which pertain to a user but are stored in a different
location in the DIT. These properties can be further classified as:

= Extended user properties common to all applications. These are stored in a
common location in the Oracle Context.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-7

User Management Functionality

» Extended user properties specific to an application. These are stored in the
application-specific DIT.

= Querying the group membership of a user

= Authenticating a user given a simple name and credential

A user is typically identified by the applications by one of the following techniques:
= A fully qualified LDAP distinguished name (DN)

= A global unique identifier (GUID)

= A simple user name along with the subscriber name

This section contains these topics:

s User Management APIs

s User Authentication

s User Creation

= User Object Retrieval

User Management APIs

This section summarizes the user management functionality of each API.

Java API for User Management Functionality

As described in the example in the previous section, all user-related functionality is
abstracted in a Java class called oracle.ldap.util.User. The high-level usage
model for this functionality is:

1. Construct oracle.ldap.util.User object based on DN, GUID, or simple
name.

2. Invoke User.authenticate (DirContext, Credentials) toauthenticate
the user if necessary.

3. Invoke User.getProperties (DirContext) to get the attributes of the user
entry itself.

4. Invoke User.getExtendedProperties(DirContext, PropCategory,
PropType) to get the extended properties of the user. PropCategory here is
either shared or application-specific. PropType is the object representing the
type of property desired. If PropType is NULL, then all properties in a given
category are retrieved.

3-8 Oracle Internet Directory Application Developer’s Guide

User Management Functionality

5. Invoke PropertyType.getDefinition(DirContext) to get the metadata
required to parse the properties returned in step 4.

6. Parse the extended properties and continue with application-specific logic. This
parsing is also done by the application specific logic.

C API for User Management Functionality

Oracle Internet Directory 10g (9.0.4) does not support the C API for user
management functionality.

User Authentication

This section describes user authentication functionality for the Java, PL/SQ, and C
L LDAP APIs.

Java API for User Authentication

User authentication is a common LDAP operation that essentially compares a
particular attribute and its attribute value. Oracle Internet Directory supports the
following:

= Arbitrary attributes can be used during authentication

= Appropriate password policy exceptions are returned by the authentication
method. Note, however, that, in 10g (9.0.4), password policy applies only to the
userpassword attribute.

The following is a piece of sample code demonstrating the usage:

// User userl - is a valid User Object
try
{
userl.authenticateUser (ctx,
User.CREDTYPE PASSWD, ?welcome?) ;

// or
// userl.authenticateUser (ctx, <any
attribute>, <attribute value>);
}
catch (UtilException ue)
{
// Handle the password policy error
accordingly
if (ue instanceof PasswordExpiredException)
// do something

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-9

User Management Functionality

else if (ue instanceof GraceloginException)
// do something

C API for User Authentication

Oracle Internet Directory 10g (9.0.4) does not support the C API for user
authentication functionality.

User Creation

This section describes user creation functionality for the Java, PL/SQ, and C L
LDAP APIs.

Java API for User Creation

The subscriber class offers the createUser () method to programmatically
create users. The object classes required by a user entry are configurable through
Oracle Delegated Administration Services. The createUser () method assumes
that the client understands the requirement and supplies the values for the
mandatory attributes during user creation. If the programmer does not supply the
required information the server will return an error.

The following snippet of sample code demonstrates the usage.

// Subscriber sub is a valid Subscriber object
// DirContext ctx is a valid DirContext

// Create ModPropertySet object to define all the attributes and their values.
ModPropertySet mps = new ModPropertySet () ;

mps .addProperty (LDIF .ATTRIBUTE _CHANGE_TYPE ADD, ?cn?, ?Anika?);

mps .addProperty (LDIF .ATTRIBUTE _CHANGE_TYPE ADD, ?sn?, ?Anika?);

mps .addProperty (LDIF .ATTRIBUTE _CHANGE_TYPE ADD, ?mail?,

?Anika@oracle.com?) ;

// Create user by specifying the nickname and the ModPropertySet defined above
User newUser = sub.createUser(ctx, mps);

// Print the newly created user DN
System.out.println(newUser.getDN(ctx));

// ? perform other operations with this new user

3-10 Oracle Internet Directory Application Developer's Guide

User Management Functionality

PL/SQL API for User Creation

Oracle Internet Directory 10g (9.0.4) does not support the PL/SQL API for user
creation functionality.

C API for User Creation

Oracle Internet Directory 10g (9.0.4) does not support the PL/SQL API for user
creation functionality.

User Object Retrieval

This section describes user object retrieval functionality for the Java, PL/SQ, and C
L LDAP APIs.

Java API for User Object Retrieval

The subscriber class offers the getUser () method to replace the public
constructors of the User class. A user object is returned based on the specified
information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx is contains a valid OID connection with
sufficient privilege to perform the operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext (ctx) ;

// Obtain a Subscriber object representing the default
subscriber

Subscriber sub = roc.getSubscriber (ctx,

Util.IDTYPE DEFAULT, null, null);

// Obtain a User object representing the user whose
nickname is ?Anika?

User userl = sub.getUser (ctx, Util.IDTYPE SIMPLE, ?Anika?,
null) ;

// ? do work with this user

The getUser () method can retrieve users based on DN, GUID
and simple name. A getUsers() method is also available to
perform a filtered search to return more than one user at a
time. The returned object is an array of User objects.

For example,

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-11

Group Management Functionality

// Obtain an array of User object where the users? nickname
starts with ?Ani?

User[] userArr = sub.getUsers(ctx, Util.IDTYPE SIMPLE,
?Ani*?, null);

// ? do work with the User array

PL/SQL API for User Object Retrieval

Oracle Internet Directory 10g (9.0.4) does not support the PL/SQL API for user
object retrieval functionality.

C API for User Object Retrieval

Oracle Internet Directory 10g (9.0.4) does not support the C API for user object
retrieval functionality.

Group Management Functionality

This section describes the group management functionality for the Java, PL/SQ,
and C L LDAP APIs.

Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications need to access Oracle Internet Directory to
get the properties of a group, and verify that a given user is a member of that group.

A group is typically identified by one of the following:
= A fully qualified LDAP distinguished name
= A global unique identifier

= A simple group name along with the subscriber name

Identity Management Realm Functionality

This section describes the identity management realm functionality for the Java,
PL/SQ, and CL LDAP APIs.

An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications need to
access Oracle Internet Directory to get realm properties—for example, user search
base or password policy.

A realm is typically identified by one of the following:
= A fully qualified LDAP distinguished name

3-12 Oracle Internet Directory Application Developer's Guide

Server Discovery Functionality

= A global unique identifier

= A simple enterprise name

Realm Object Retrieval for the Java API

The RootOracleContext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the
root Oracle Context. The RootOracleContext class offers the

getSubscriber () method. It replaces the public constructors of the subscriber
class and returns an identity management realm object based on the specified
information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx is contains a valid OID
connection with sufficient privilege to perform the
operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext (ctx) ;

// Obtain a Subscriber object representing the
Subscriber with simple name ?Oracle?

Subscriber sub = roc.getSubscriber (ctx,
Util.IDTYPE SIMPLE, ?Oracle?, null);

// ? do work with the Subscriber object

Server Discovery Functionality

Directory server discovery (DSD) enables automatic discovery of the Oracle
directory server by directory clients. It allows deployments to manage the directory
host name and port number information in the central DNS server. All directory
clients perform a DNS query at runtime and connect to the directory server.
Directory server location information is stored in a DNS service location record
(SRV).

An SRV contains:
s The DNS name of the server providing LDAP service

s The port number of the corresponding port

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-13

Server Discovery Functionality

= Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
ldap.ora file itself.

This section contains these topics:

= Benefits of Oracle Internet Directory Discovery Interfaces
= Usage Model for Discovery Interfaces

s Determining Server Name and Port Number From DNS
» Environment Variables for DNS Server Discovery

s Programming Interfaces for DNS Server Discovery

= Java APIs for Server Discovery

= Examples: Java API for Directory Server Discovery

See Also:

s '"Discovering LDAP Services with DNS" by Michael P. Armijo
at http:/ /www.ietf.org/

= "A DNS RR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at http:/ /www.ietf.org/

Benefits of Oracle Internet Directory Discovery Interfaces

Typically, the LDAP host name and port information is provided statically in a file
called 1dap . ora which is located on the client in $ORACLE__
HOME/network/admin. For large deployments with many clients, this information
becomes very cumbersome to manage. For example, each time the host name or
port number of a directory server is changed, the 1dap . ora file on each client must
be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the 1dap. ora file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without
regard to the mechanism or standard used to obtain it. Currently, Oracle directory

3-14 Oracle Internet Directory Application Developer's Guide

Server Discovery Functionality

server information can be obtained either from DNS or from 1dap. ora using a
single interface.

Usage Model for Discovery Interfaces

The first step in discovering host name information is to create a discovery handle.
A discovery handle specifies the source from which host name information will be
discovered. In case of the Java API, the discovery handle is created by creating an
instance of oracle.ldap.util.discovery.DiscoveryHelper class.

DiscoveryHelper disco = new DiscoveryHelper (DiscoveryHelper .DNS_DISCOVER) ;
The argument DiscoveryHelper .DNS_DISCOVER specifies the source. In this
case the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In case of DNS these inputs are:

s domain name
s discover method
s sslmode

Detailed explanation of these options is given in Determining Server Name and
Port Number From DNS.

// Set the property for the DNS_DN

disco.setProperty (DiscoveryHelper.DNS_DN, "dc=us,dc=fiction, dc=com") ;

// Set the property for the DNS_DISCOVER_METHOD

disco. setProperty (DiscoveryHelper.DNS_DISCOVER_ METHOD
,DiscoveryHelper.USE_INPUT_ DN_METHOD) ;

// Set the property for the SSLMODE

disco. setProperty (DiscoveryHelper.SSLMODE, "0") ;

Now the information can be discovered.

// Call the discover method
disco.discover (reshdl) ;

The discovered information is returned in a result handle (reshdl object in above
case). Now the results can be extracted from the result handle.

Arraylist result =
(ArrayList)reshdl.get (DiscoveryHelper .DIR_SERVERS) ;

if (result != null)

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-15

Server Discovery Functionality

if (result.size() == 0) return;
System.out.println("The hostnames are :-");
for (int i = 0; i< result.size();i++)
{
String host = (String)result.get(i);
System.out.println((i+1)+".'"+host+""'");
}
}

Determining Server Name and Port Number From DNS

Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there
is more than one SRV resource record, then they are sorted on the basis of their
weights and priorities. The SRV resource records contain host names and port
numbers required for connection. This information is retrieved from the resource
records and returned to the user.

There are three approaches for determining the domain name required for lookup:
= Mapping the distinguished name (DN) of the naming context
s Using the domain component of local machine

= Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context

The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

» It consists of a single attribute type and value
s The attribute type is DC
s The attribute value is non-NULL

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot

3-16 Oracle Internet Directory Application Developer's Guide

Server Discovery Functionality

be converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe, ou=accounting, dc=example, dc=net, the client
converts the dc components into the DNS name example.net.

Search by Domain Component of Local Machine

Sometimes a DN cannot be mapped to a domain name. For example, the DN
o=Oracle IDC, Bangalore cannotbe mapped to a domain name. In this case,
the second approach uses the domain component of local machine on which the
client is running. For example, if the client machine domain name is

mcl.acme. com, then the domain name for the lookup is acme . com.

Search by Default SRV Record in DNS

The third approach looks for a default SRV record in the DNS. This record points to
the default server in the deployment. The domain component is for this default
record is _default.

Once the domain name has been determined, it is used to send a query to DNS. The
DNS is queried for SRV records specified in Oracle Internet Directory-specific
format. For example, if the domain name obtained is example.net, then, for
non-SSL LDAP servers, the query is for SRV resource records having the owner
name _ldap._tcp._oid.example.net.

It is possible that no SRV resource records are returned from the DNS. In such a
case the DNS lookup is performed for the SRV resource records specified in
standard format. For example, the owner name would be _ldap._
tcp.example.net.

See Also: "Oracle Directory Server Administration" in the Oracle
Internet Directory Administrator’s Guide

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the
user.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-17

Server Discovery Functionality

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful.
Try the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the
approaches are tried again, but this time DNS is queried for SRV
records in standard format.

Environment Variables for DNS Server Discovery

The following environment variables have been provided for overriding the default
DSD behavior.

Table 3-2 Environment Variables for DSD Behavior

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is
obtained from the host machine.

ORA_LDAP_DNSPORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOMAIN Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

Programming Interfaces for DNS Server Discovery

The programming interface provided is a single interface to discover directory
server information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used
to discover host name information from the DNS.

3-18 Oracle Internet Directory Application Developer's Guide

Server Discovery Functionality

See Also: For detailed reference information and class
descriptions, refer to the Javadoc located on the product CD.

Java APIs for Server Discovery
A new Java class, the public class, has been introduced:

public class oracle.ldap.util.discovery.DiscoveryHelper

This class provides a method for discovering specific information from the specified
source.

Table 3-3 Methods for Directory Server Discovery

Method Description

discover Discovers the specific information from a given source
setProperty Sets the properties required for discovery
getProperty Accesses the value of properties

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionUtil:

m getDefaultDirCtx: This overloaded function determines the host name and
port information of non-SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover ().

= getSSLDirCtx: This overloaded function determines the host name and port
information of SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover ().

Examples: Java API for Directory Server Discovery
The following is a sample Java program for directory server discovery:

import java.util.*;

import java.lang.*;

import oracle.ldap.util.discovery.*;
import oracle.ldap.util.jndi.*;

public class dsdtest

{
public static void main(String s[]) throws Exception
{

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-19

Server Discovery Functionality

HashMap reshdl = new HashMap() ;

String result = new String();

Object resultObj = new Object();

DiscoveryHelper disco = new
DiscoveryHelper (DiscoveryHelper .DNS_DISCOVER) ;

// Set the property for the DNS_DN
disco. setProperty (DiscoveryHelper.DNS_DN, "dc=us,dc=fiction, dc=com")

i

// Set the property for the DNS_DISCOVER_METHOD
disco. setProperty (DiscoveryHelper.DNS_DISCOVER_ METHOD
,DiscoveryHelper.USE_INPUT_DN_METHOD) ;

// Set the property for the SSIMODE
disco. setProperty (DiscoveryHelper.SSLMODE, "0") ;

// Call the discover method
int res=disco.discover (reshdl) ;
if (res!=0)
System.out.println("Error Code returned by the discover method is :"+res)

// Print the results
printReshdl (reshdl) ;
}

public static void printReshdl (HashMap reshdl)
{
Arraylist result = (ArrayList)reshdl.get (DiscoveryHelper.DIR SERVERS) ;

if (result != null)
{
if (result.size() == 0) return;
System.out .println("The hostnames are :-");
for (int i = 0; i< result.size();i++)
{
String host = (String)result.get(i);
System.out.println((i+1)+".'"+host+"'");

3-20 Oracle Internet Directory Application Developer's Guide

i

Resource Information Management Functionality

Resource Information Management Functionality

To fulfill the requests of users, some Oracle components gather data from various
repositories and services. To gather the data, these components require the
following information:

= Information specifying the type of resource from which the data is to be
gathered. The type of resource could be, for example, an Oracle Database. This
is called resource type information.

= Information for connecting and authenticating users to the resources. This is
called resource access information.

This section contains these topics:
= Resource Type Information
s Resource Access Information

s Location of Resource Information in the DIT

Resource Type Information

Information about the resources that an application uses to service a user request is
called resource type information. A resource type can be, for example, an Oracle9i
Database Server or a Java Database Connectivity Pluggable Data Source. Resource
type information includes such items as the class used to authenticate a user, the
user identifier, and the password.

You specify resource type information by using the Oracle Internet Directory
Self-Service Console.

Resource Access Information

Information for connecting and authenticating users to the databases is called
resource access information. It is stored in an entry called a resource access
descriptor (RAD) from which it can be retrieved and shared by various Oracle
components.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-21

Resource Information Management Functionality

For example, to service the request of a user for a sales report, Oracle Application
Server Reports Services queries multiple databases. When it does this, it does the
following:

1. Retrieves the necessary connect information from the RAD

2. Uses that information to connect to those databases and to authenticate the user
requesting the data

Once it has done this, it compiles the report.

You specify resource access information by using the Oracle Internet Directory
Self-Service Console. You can specify resource access information for each
individual user or commonly for all users. In the latter case, all users connecting to
a given application use, by default, the same information to connect to the necessary
databases. Oracle Corporation recommends defining default resource access
information whenever an application has its own integrated account

3-22 Oracle Internet Directory Application Developer's Guide

Resource Information Management Functionality

management—for example, where each user is defined withn the application itself
by means of a unique songle sign-on user name.

Location of Resource Information in the DIT

Figure 3—4 shows where resource information is located in the DIT.

Figure 3—-4 Placement of Resource Access and Resource Type Information in the DIT

@ root
@ dc=com
@ dc=acme

@ dc=us

OracleContext

User Extensions
Products

User 2

Common
Oracle Application User
Service Reports

Services

Common
Information

Oracle Sales Bug

Database RADs @ Database Database
Server

Resource
Types

Sales Bug
Database Database

As Figure 3—4 shows, the resource access and resource type information is stored in
the Oracle Context.

Resource access information for each user is stored in the cn=User Extensions
node in the Oracle Context. In this example, the cn=User Extensions node

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-23

SASL Authentication Functionality

contains resource access information for both the default user and for specific users.
In the latter cases, the resource access information includes that needed for
accessing both the Sales and the Bug databases.

Resource access information for each application is stored in the object identified by
the application name—in this example, cn=Oracle Application Server
Reports Services, cn=Products,cn=0racle

Context, dc=us, dc=acme, dc=com. This is the user information specific to that
product.

Resource type information is stored in the container cn=resource types,
cn=common, cn=products,cn=0racle Context.

See Also:

» Oracle Internet Directory Administrator’s Guide, for further
information on how to set up and deploy RADs

» Oracle Application Server Reports Services Publishing Reports to the
Web

» Oracle Application Server Forms Services Deployment Guide
» "Function get_user_extended_properties" on page 9-16

» Oracle Internet Directory API Referencefor the following:
oracle.ldap.util.get_extended_properties,
oracle.ldap.util.set_extended_properties, and
oracle.ldap.util.create_extended_properties

Richard’s comment/question:

SASL Authentication Functionality

Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

= SASL Authentication by Using the DIGEST-MD5 Mechanism
= SASL Authentication by Using External Mechanism

3-24 Oracle Internet Directory Application Developer's Guide

SASL Authentication Functionality

SASL Authentication by Using the DIGEST-MD5 Mechanism

SASL Digest-MD5 authentication is the required authentication mechanism for
LDAP Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD5.

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering
Task Force. It is based on the HTTP Digest Authentication (RFC 2617).

See Also: Internet Engineering Task Force Web site:
http:/ /www.ietf.org for RFCs 2829, 2831, and 2617
This section contains these topics:
= Steps Involved in SASL Authentication by Using DIGEST-MD5
= JAVA APIs for SASL Authentication by Using DIGEST-MD5
s C APIs for SASL authentication using DIGEST-MD5
= SASL Authentication by Using External Mechanism

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options
that it supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client's response.

To use the Digest-MD5 authentication mechanism, you can use either the Java API
or the C API to set up the authentication.

JAVA APIs for SASL Authentication by Using DIGEST-MD5
Context.SECURITY_AUTHENTICATION = "DIGEST-MD5".

Context.SECURITY_PRINCIPAL sets to the principal name.
The principal name is a server-specific format. It can be either of the following:

s The DN—that is, dn: —followed by the fully qualified DN of the entity being
authenticated

s The string u: followed by the user identifier.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-25

SASL Authentication Functionality

The Oracle directory server accepts just a fully qualified DN such as
cn=user,ou=my department,o=my company.

Note: The SASL DN must be normalized before it is passed to the
C or Java API that calls the SASL bind. To generate SASL verifiers,
Oracle Internet Directory supports only normalized DNs.

See Also: "JNDI Sample Code" on page B-42

C APIs for SASL authentication using DIGEST-MD5

An LDAP client can use the provided C APISs to set up SASL digest MD5 to connect
to the directory server.

See Also:
= "Authenticating to the Directory" on page 7-18

s "C API Usage for SASL-Based DIGEST-MD5 Authentication"
on page 7-67

SASL Authentication by Using External Mechanism

The following is from section 7.4 of RFC 2222 of the Internet Engineering Task
Force.

The mechanism name associated with external authentication is "EXTERNAL".
The client sends an initial response with the authorization identity. The server
uses information, external to SASL, to determine whether the client is
authorized to authenticate as the authorization identity. If the client is so
authorized, the server indicates successful completion of the authentication
exchange; otherwise the server indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus
requesting the authorization identity be derived from the client's authentication
credentials), the authorization identity is to be derived from authentication
credentials which exist in the system which is providing the external
authentication.

3-26 Oracle Internet Directory Application Developer's Guide

Dependencies and Limitations for the PL/SQ LDAP API

Oracle Internet Directory provides the SASL external mechanism over an SSL
mutual connection. The authorization identity (DN) is derived from the client
certificate during the SSL network negotiation.

Dependencies and Limitations for the PL/SQ LDAP API
The PL/SQL LDAP API for this release has the following limitations:

s The LDAP session handles obtained from the API are valid only for the
duration of the database session. The LDAP session handles cannot be written
to a table and reused in other database sessions.

= Only synchronous versions of LDAP API functions are supported in this
release.

s The PL/SQL LDAP API requires a database connection to work. It cannot be
used in client-side PL/SQL engines (like Oracle Forms) without a valid
database connection.

Developing Applications with Oracle Extensions to the Standard LDAP APIs 3-27

Dependencies and Limitations for the PL/SQ LDAP API

3-28 Oracle Internet Directory Application Developer's Guide

4

Developing Provisioning-Integrated
Applications

This chapter explains how to develop applications that can use the Oracle Directory
Provisioning Integration Service, a component of the Oracle Directory Integration
and Provisioning platform. These applications can be either legacy or third-party
applications that are based on the Oracle platform.

This chapter contains these topics:

» Introduction to the Oracle Directory Provisioning Integration Service
= Provisioning Integration Prerequisites

= Development Usage Model for Provisioning Integration

= Development Tasks for Provisioning Integration

See Also: The chapter on the Oracle Directory Provisioning
Integration Service in Oracle Internet Directory Administrator’s Guide

Developing Provisioning-Integrated Applications 4-1

Introduction to the Oracle Directory Provisioning Integration Service

Introduction to the Oracle Directory Provisioning Integration Service

A big challenge in directory administration is managing provisioning information
for the myriad accounts and applications that each user might need. For example,
adding a user to an information system typically requires a substantial amount of
application provisioning. It can include setting up an e-mail account, which in turn
has specific settings for a mail quota, some default folders, and perhaps some
distribution lists. If there are other connectivity applications that the user needs,
then managing that user’s accounts and personal profile can be overwhelming for a
large enterprise. To meet this challenge, the Oracle Directory Provisioning
Integration Service provides a platform for integrating applications. It enables you
to add a user seamlessly to many key systems in just one step.

The Oracle Directory Provisioning Integration Service serves as a passthrough for
user account information. Rather than provisioning a user with each individual
application, you simply register applications with the provisioning service. This
enables them to send provisioning information directly to Oracle Internet Directory
and receive information from it. Users can then be provisioned at once for a default
set of integrated applications. In this way, the Oracle Directory Provisioning
Integration Service eliminates redundant processing for each individual application.

In addition to a default set of provisioning events defined during installation,
Oracle Internet Directory can define new events and propagate them appropriately
to applications that subscribe to those events. The ability to both send and receive
these provisioning events provides for seamless management of user accounts.

Developing Provisioning-Integrated Applications

Applications integrated with the Oracle Directory Provisioning Integration Service

can be either legacy or third-party applications based on the Oracle platform. Once

it has registered with Oracle Internet Directory, an application can send and receive
provisioning information to and from Oracle Internet Directory.

To integrate an application with the directory provisioning integration service, you
follow these general steps, each of which is explained more fully later in this
chapter:

= Register the application in Oracle Internet Directory.

= Identify the identity management realm under which events are to be
propagated or to be applied.

s Determine whether the application needs to receive events, send events, or
both.

4-2 Oracle Internet Directory Application Developer’s Guide

Developing Provisioning-Integrated Applications

= List out the events that need to be sent or received.
» List out attributes of interest that an event should contain.

= Assign proper privileges to the application identity in the identity management
realm so that the various events can be read from Oracle Internet Directory and
propagated to it, and for applying change events to Oracle Internet Directory.

s Determine the interface name, interface type, and interface connection
information. This is required by the provisioning server to propagate events to
the application and consume events from it.

s Determine the other provisioning scheduling interval, maximum number of
events per schedule, and so on.

= Implement the interface specifications inside the application.

s Create the provisioning profile in Oracle Internet Directory so that event
propagation can start. Create this profile by using the provisioning subscription
tool (oidprovtool).

To clearly explain these general steps, we will consider a sample application.

Example of a Provisioning-Integrated Application

This example of a provisioning-integrated application is called Employee Self
Service Application (ESSA). In this discussion, the terms "user" and "identity" are
used interchangeably.

Requirements of the Employee Self Service Application

This application requires that its entire user base be managed from Oracle Internet
Directory. The application administrator creates, modifies, and deletes identities in
Oracle Internet Directory. The identity information is propagated to the application
as an event, namely, IDENTITY_ADD.

Although the application creates the identity as user data, this is not sufficient to
authorize the employee to access the application. The presence of the identity in
Oracle Internet Directory only facilitates a global login. The application must
discover whether a particular identity is authorized to access the application. This is
achieved by subscribing the identity for that application, a task that the application
administrator can do. This subscribing triggers another event from Oracle Internet
Directory to the application—namely, SUBSCRIPTION_ADD—indicating that the
identity has now been subscribed in Oracle Internet Directory to use that
application. The application can then query the directory to check whether a

Developing Provisioning-Integrated Applications 4-3

Developing Provisioning-Integrated Applications

particular user is present in the application subscription lists before allowing the
user access to the application.

In this example, the events for this application are received from Oracle Internet
Directory. The application itself does not any events to the directory. It could,
however, also send events to Oracle Internet Directory. To do this, the application
identity needs more directory privileges for the various operations that it wants to
perform on the directory. This is explained in "Determining Provisioning Mode for
the Employee Self Service Application" on page 4-6.

The steps are as follows:

1. A user is added in Oracle Internet Directory through either the Oracle Internet
Directory Self-Service Console or some other means such as synchronization
from third party sources or through using command-line tools. The user
information must be placed in the appropriate identity management realm.

2. The IDENTITY_ADD event is propagated from Oracle Internet Directory to the
application. This assumes that the application subscribed to IDENTITY_ADD
event during creation of the provisioning subscription profile.

3. Onreceiving the event, the application adds this identity to its database. In this
example, however, this does not mean that the user is authorized to access the
application. An additional event is required to subscribe the user as an
authorized user of that application.

4. In Oracle Internet Directory, the user is subscribed to the application by using
Oracle Delegated Administration Services.

5. The SUBSCRIPTION_ADD event is propagated from Oracle Internet Directory to
the application. This assumes that the application subscribed to the
SUBSCRIPTION_ADD event during creation of the provisioning subscription
profile.

6. On receiving this event, the application updates the identity record in its
database indicating that this is also an authorized user.

Registering the Employee Self Service Application in Oracle Internet Directory

The application must register itself as an application entity with its own identity
entry in Oracle Internet Directory. You can decide which realm to create the
application identity in, as long as that realm is a well-known location in the DIT. To
create the necessary DIT elements in Oracle Internet Directory, you must follow a
template described in this chapter.

4-4 Oracle Internet Directory Application Developer’s Guide

Developing Provisioning-Integrated Applications

The Oracle Context of the identity management realm has a container for the
various application footprints. That container is:
cn=products, cn=oraclecontext, identity management realm DN.

If the application is meant for only one realm, then Oracle Corporation recommends
that you create the application identity DN in this form:
orclApplicationName=application name,cn=application

type, cn=products, cn=oraclecontext, identity management realm
DN. The cn=application type element is called the application container.

If the application is meant for multiple realms, then you can create the application
identity in the root Oracle Context, namely, cn=products, cn=oraclecontext.
In this example, the location and the content of the entry are as follows:

dn: \
orclApplicationCommonName=ESSA, cn=demoApps, cn=Products, cn=OracleContext, o=ACME,
dc=com

orclapplicationcommonname: ESSA

orclappfullname: Employee Self Service Application

userpassword: welcomel23

description: This is an sample application for demonstration.

orclaci: access to entry by group="cn=odisgroup,cn=odi,cn=oracle internet direct

ory" (proxy)
objectclass: orclApplicationEntity

In this example, the application type or application container is demoApps. The
application name is ESSA.

All directory operations must be done on the behalf of the application by the
provisioning server. Because the server does not have privileges to send or consume
events under the domain, it must process events by impersonating the application
identity. This, in turn, requires that the server be given the proxy privilege. In this
example, it is assumed that the application identity already has the necessary
privileges.

Identifying the Management Context for the Employee Self Service Application

All identity management realms are generally present under the identity
management realm base in the root Oracle Context. The application must be
provisioned for the appropriate realm—that is, proper privileges must be assigned
to this application identity so that it can administer its information under this realm.
In this example, let us assume that the appropriate realm is o=ACME, dc=com.

Developing Provisioning-Integrated Applications 4-5

Developing Provisioning-Integrated Applications

Determining Provisioning Mode for the Employee Self Service Application

You must decide whether the application only receives events or whether it also
sends them to Oracle Internet Directory. The mode can be:

= INBOUND: from the application to Oracle Internet Directory

= OUTBOUND: from Oracle Internet Directory to the application, this is the default
= BOTH

The default mode is OUTBOUND.

In this example, because the application is interested in only receiving events from
Oracle Internet Directory, we specify the events as OUTBOUND only.

Determining Events for the Employee Self Service Application

During installation, a fixed set of events is predefined. You can define new events at
runtime, but they can be propagated in the outbound mode only. The Oracle
Directory Provisioning Integration Service can process only a fixed set of predefined
events for the inbound mode.

In this example, we do not need to define any new events. The following events in
Oracle Internet Directory must be propagated to our sample application:

= Identity creation (IDENTITY_ADD)

» Identity modification (IDENTITY_ _MODIFY)

s Identity employee deletion (IDENTITY_ DELETE)

» Identity subscription addition (SUBSCRIPTION_ADD)

s Identity subscription modification (SUBSCRIPTION_MODIFY)

s Identity subscription deletion (SUBSCRIPTION_DELETE)

Provisioning the Employee Self Service Application for an Identity Management
Realm

This is the most important step, and it involves assigning the proper privileges to
the application identity in the identity management realm. These privileges enable
the application to read and apply the various events from Oracle Internet Directory
and to send change events to Oracle Internet Directory. Inbound events, which
result in modifying Oracle Internet Directory, require more privileges.

Generally, predefined groups are created when the identity management realm is
created. The groups have different privileges as described in this section.

4-6 Oracle Internet Directory Application Developer’s Guide

Developing Provisioning-Integrated Applications

The following template describes all the appropriate ACLs required for an
application to send or receive provisioning events.

The application identity must be added to the appropriate group, but this, in turn,
depends on the privileges it requires. For example, if an application is interested
only in receiving events from Oracle Internet Directory, then it does not need to be
added to groups that can create or modify entries in this realm.

The template accepts a few variables. Once the variables are instantiated, the
template becomes a proper LDIF file that can be executed against Oracle Internet
Directory. You can adjust the variables according to the needs of your deployment.

In this example, the identity management realm is o=ACME, dc=com. The template
of the LDIF file looks like this:

This creates The Application Identity subtree

The following variables are used :
(Some of them are OPTIONAL where the values oidprov tool can get default
values if not supplied.)

%s_TdentityRealm% : Identity Realm DN:
(MANDATORY: This is the domain in which all the related
users and groups are present.
If Default Identity Realm needs to be used
then in an OID install it can be queried.
This value is stored in Root Oracle Context
in OID. This value is stored in
'orcldefaultsubscriber' attribute in
'dn: cn=Cormmon, cn=Products, cn=OracleContext'
entry.)
%s AppType% : Application Type (e.g EBusiness)
(MANDATORY : Name of the suite)
%s AppName% : Application Name (e.g HRMS,Financials,Manufacturing)
(MANDATORY : Name of the Application in the suite.)
%s SvcType% : Service Type (e.g Ebusiness)
(MANDATORY : Alias for name of suite.
This value can be be same as %s_AppType%)
#
#
#
#
#
#

HoHE o FE A

%s_SvcName% : Service Name (e.g HRMS, Financials,Manufacturing)
(MANDATORY : Alias for name of Application.
This value can be same as %s_AppName$)
%s_AppURL® : Application URL if any. (set it to 'NULL' if there is nothing.)

Apart from these variables this LDIF templates would also need the following

information to load this
data to Oracle Internet Directory:

Developing Provisioning-Integrated Applications 4-7

Developing Provisioning-Integrated Applications

#

LDAP_HOST : OID server hostname

LDAP_PORT : OID server port number
BINDDN : cn=orcladmin

BINDPASSWD: Password for orcladmin
#
#

After replacing the variables in the template this data can be loaded in OID
by running the following
command:
ldapmodify -h $LDAP HOST$ -p $LDAP_PORT% -D $BINDDN% \
-w $BINDPWD% -f <this_template_file name>

H* FHF

First we create the Application container. This needs to be created just once
#initially. If this container is

existing b'cos some application was already created using this template,
#please remove this entry from the template/LDIF file.

dn: cn=%s_AppType%, cn=Products, cn=0OracleContext, $s_IdentityRealm%
changetype: add

cn: %$s_AppType$

objectclass: orclContainer

The application identity needs to created next. This is under the
Applications container. This object is of # type "orclApplicationEntity"

dn: orclApplicationCommonName=%s_AppName$, Cn=%S_
AppType%, cn=Products, cn=OracleContext,
%s_TdentityRealm%®
changetype: add
orclapplicationcommonname: %$s_AppName$
orclaci: access to entry by group="cn=odisgroup,cn=odi,cn=oracle internet
directory"
(add, browse, delete, proxy)
objectclass: orclApplicationEntity

The following ACLs are for giving privileges to the application entities for
adding/modifying/deleting
users in the relevant realm.

All members of the group below are allowed to create users in the relevant
realm.

4-8 Oracle Internet Directory Application Developer’s Guide

Developing Provisioning-Integrated Applications

dn: cn=OracleDASCreateUser,cn=Groups, cn=0OracleContext, %s_IdentityRealm%
changetype: modify
add: unigquemember
uniquemember: orclApplicationCommonName=%s_AppName?, Cn=%s_
AppType%, cn=Products, cn=OracleContext,
%s_TIdentityRealm®

All members of the group below are allowed to delete users in the relevant
realm.

dn: cn=OracleDASDeleteUser, cn=Groups, cn=0OracleContext, %s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,
%s_TIdentityRealm%®

All members of the group below are allowed to edit users in the relevant
realm.

dn: cn=OracleDASEditUser, cn=Groups,cn=0OracleContext,%$s_IdentityRealm%
changetype: modify
add: unigquemember
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,
%s_TdentityRealm%®

All members of the group below are allowed to create groups in the relevant
realm.

dn: cn=OracleDASCreateGroup, cn=Groups, cn=0OracleContext, %s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,
%s_TIdentityRealm%®

All members of the group below are allowed to delete groups in the relevant
realm.

dn: cn=OracleDASDeleteGroup, cn=Groups, cn=0OracleContext, %s_IdentityRealm%
changetype: modify

Developing Provisioning-Integrated Applications 4-9

Developing Provisioning-Integrated Applications

add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,

%s_TIdentityRealm%®

All members of the group below are allowed to edit groups in the relevant
realm.

dn: cn=OracleDASEditGroup,cn=Groups, cn=0racleContext, $s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,
%s_TdentityRealm%®

The container is being created to hold the various subscription lists of the
application

for this realm. This container will hold lots of subscription information and
resides just # under the application identity.

dn: cn=subscriptions, orclApplicationCommonName=%s_AppNames, Cn=%s_
AppType%, cn=Products,
cn=OracleContext, $s_IdentityRealm%
changetype: add
cn: subscriptions
objectclass: orclContainer

The following is the group that will hold administrators DNs for managing
subscription lists for this application. The application identity should also
be in this list and # will be added here.

dn: cn=Subscription Admins,cn=Subscriptions, orclApplicationCommonName=%s_
AppName?,

cn=%s_AppType%, cn=products, cn=0OracleContext, $s_IdentityRealm%
changetype: add

cn: Subscription Admins
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,

%s_TdentityRealm%®

objectclass: groupOfUniqueNames

objectclass: orclACPGroup

objectclass: orclprivilegegroup

4-10 Oracle Internet Directory Application Developer's Guide

Developing Provisioning-Integrated Applications

The following is the group that will hold DNs of users who can just view the
subscription lists for this application. The application identity should also
be in this list and # will be added here.

dn: cn=Subscription Viewers,cn=Subscriptions, orclApplicationCommonName=%s_
AppName$s,

cn=%s_AppType%, cn=products, cn=0racleContext, $s_IdentityRealm%
changetype: add

cn: Subscription Viewers
uniquemember: orclApplicationCommonName=%s_AppName?, cn=%s_
AppType%, cn=Products, cn=OracleContext,

%s_TIdentityRealm%®

objectclass: groupOfUniqueNames

objectclass: orclACPGroup

objectclass: orclprivilegegroup

The following is just a container for the actual subscription lists.

dn: cn=subscription data, cn=subscriptions, orclApplicationCommonName=%s_ AppName$,
cn=%s_AppType%, cn=Products, cn=0OracleContext, $s_IdentityRealm%

changetype: add

cn: subscription data

objectclass: orclContainer

The following is a sample subscription list. We are calling it "cn=ACCOUNTS"
since it # signifies accounts in the application.

dn: cn=ACCOUNTS, cn=subscription_

data, cn=subscriptions, orclApplicationCommonName=%s_AppName?, Cn=%s_
AppType%, cn=Products, cn=OracleContext, $s_IdentityRealm%
changetype: add

cn: cn=ACCOUNTS

unigquemember: cn=orcladmin

objectclass: groupOfUniqueNames

objectclass: orclGroup

The following is a container for the service instance entries in the Root
Oracle Context. An application

publishes itself as a service by creating a service instance entriy under
this container. These service

instance entries are created outside any realm and in the root #Oracle
Context.

dn: cn=%s_SvcType%, cn=Services, cn=0OracleContext
changetype: add

Developing Provisioning-Integrated Applications 4-11

Developing Provisioning-Integrated Applications

cn: %$s_SvcType$
objectclass: orclContainer

The following is a container for the service instance entries in the Root
Oracle Context for that service
type

dn: cn=Servicelnstances,cn=%s_SvcType$%, cn=Services, cn=0OracleContext
changetype: add

cn: Servicelnstances

objectclass: orclContainer

The following is a service instance entry. An application publishes itself as
a service by
creating this service instance

dn: cn=%s_SvcName, cn=ServiceInstances,%,cn=%s_
SvcType%, cn=Services, cn=OracleContext
changetype: add

cn: %s_SvcName%

orclServiceType: %s_SvcType%
presentationAddress: %s_AppURLS

objectclass: orclServicelInstance

The following is a container for service instance reference entry that resides
in the relevant realm.

dn: cn=%s_SvcType%, cn=Services, cn=0OracleContext, $s_IdentityRealm%
changetype: add

cn: %$s_SvcType$

objectclass: orclContainer

It is a reference entry which actually points to the actual service instance
entry as well as to the
subscription list container for the application.

dn: cn=%s_SvcName%, cn=%s_SvcType%, cn=Services, cn=OracleContext, $s_IdentityRealm®
changetype: add

cn: %s_SvcName%

description: Link To the Actual Subscription Location for the Application and
the actual Service instance.

orclServiceInstancelocation: cn=%s_SvcName%,cn=%s_

SvcType%, cn=Services, cn=OracleContext

4-12 Oracle Internet Directory Application Developer's Guide

Developing Provisioning-Integrated Applications

orclServiceSubscriptionlocation: cn=subscription data,cn=subscriptions,
orclApplicationCommonName=%s_ AppName$, Cn=%S_

AppType%, cn=Products, cn=OracleContext,
%s_TIdentityRealm%®

objectclass: orclServiceInstanceReference

This LDIF operation gives appropriate privileges to the subscription admin and
subscription viewers
group. The groups have already been created earlier.

dn: cn=subscriptions, orclApplicationCommonName=%s_AppName?, Cn=%s_
AppType%, cn=Products,
cn=0OracleContext, $s_IdentityRealm%
changetype: modify
replace: orclaci
orclaci: access to entry by group="cn=Subscription_
Admins, cn=Subscriptions, orclApplicationCommonName=%s_AppNames,
cn=%s_AppType%, cn=products, cn=0racleContext, %s_IdentityRealm%"
(browse,add, delete) by group="cn=Subscription
Viewers, cn=Subscriptions, orclApplicationCommonName=%s_AppNames,
cn=%s_AppType%, cn=products, cn=0OracleContext, $s_IdentityRealm%" (browse)
orclaci: access to attr=(*) by group="cn=Subscription_
Admins, cn=Subscriptions, orclApplicationCommonName=%s_AppNames,
cn=%s_AppType%, cn=products, cn=0racleContext, %s_IdentityRealm%"
(search, read,write,compare) by group="cn=Subscription
Viewers, cn=Subscriptions, orclApplicationCommonName=%s_AppNames,
cn=%s_AppType%, cn=products, cn=0racleContext, %s_IdentityRealm%"
(search, read, compare)

Determining Scheduling Parameters for the Employee Self Service Application
The scheduling interval determines how often the provisioning servers send or
receive events. The server sends or receives events, and, when it has finished
sending or receiving all of them, it sleeps for a period specified in seconds in the
scheduling interval. The number of events it can send or receive at one time is
dictated by the “Maximum Events per Schedule” parameter.

Let us assume that we need events to be propagated every 2 minutes, and a
maximum of 100 events each time.

Developing Provisioning-Integrated Applications 4-13

Developing Provisioning-Integrated Applications

Determining the Interface Connection Information for the Employee Self Service
Application

Use the following to determine the interface connection information:

s Interface Type: This is the event propagation medium. Currently, only PL/SQL
is supported.

s Interface Name: This is the name of the PL/SQL package that the application
must implement and that the provisioning server invokes to send and receive
events. For our sample application. let us assume ESSA_INTF to be the
interface name.

» Interface Connection information: This is used by the server to connect to the
application database to invoke the PL/SQL interface.

The connection information is in this format:

Database Host: Listener Port: Database SID: DB Account: Password

For a high-availability, RAC-enabled database, the connection information should
be in this format:

Database Host: Listener Port: Service Name: DB Account: Password; Database Host:
Listener Port: Service Name: DB Account: Password; Database Host: Listener Port:
Service Name: DB Account: Password

The entire string should be specified in one line as a single value.

For our sample application, the connection information is:

localhost: 1521: iasdb : scott : tiger

The Oracle directory integration and provisioning server uses JDBC to connect to

the application database using the connect information provided, and then invokes
the PLSQL APIs to propagate or receive events.

Implementing the Interface Specification for the Employee Self Service
Application

The interface is described in detail in Chapter 11, "Provisioning Integration API
Reference".

For outbound events—that is, events from Oracle Internet Directory to the
application—the following interfaces must be implemented:

PROCEDURE PutOIDEvent (event IN LDAP_EVENT,
event_status OUT LDAP_EVENT STATUS) ;

4-14 Oracle Internet Directory Application Developer's Guide

Provisioning Integration Prerequisites

For inbound events—that is, events from application to Oracle Internet
Directory—the following interfaces must be implemented:

—— FUNCTION GetAppEvent (event OUT LDAP_EVENT) RETURNING NUMBER;
-- PROCEDURE PutAppEventStatus (event_status IN LDAP EVENT STATUS)

For our sample application, because we are handling only outbound events, we
implement all interfaces concerning those events.

Creating the Provisioning Subscription Profile for the Employee Self Service
Application

To create the provisioning subscription profile, use the following settings:

SORACLE_HOME/bin/oidprovtool operation=create ldap_host=localhost \
ldap_port=389 ldap_user_dn=cn=orcladmin ldap_user_ password=welcome \
organization_dn="0=ACME, dc=com” \

application dn="orclApplicationCommonName=ESSA, cn=demoApps, cn=Products, \
cn=OracleContext, 0o=ACME, dc=com” \

interface_name=ESSA INTF interface type=PLSQL \
interface_connect_info="localhost:1521:iasdb:scott:tiger” \
event_subscription="IDENTITY:o=oracle,dc=com:ADD(cn, sn,mail,description,
telephonenumber) ™ \

event
subscription="IDENTITY :0=oracle,dc=com:MODIFY (cn, sn,mail,description, telephonenu
mber) ” \

event_subscription="IDENTITY:o0=oracle,dc=com:DELETE “ \
event_subscription="SUBSCRIPTION:cn=ESSA, cn=prducts, cn=oraclecontext, o=oracle,
dc=com:ADD (orclactivestartdate, orclactiveenddate,cn) \

event

subscription="SUBSCRIPTION:cn=ESSA, cn=prducts, cn=oraclecontext, o=oracle,dc=com:M
ODIFY (orclactivestartdate, orclactiveenddate,cn) \

event

subscription="SUBSCRIPTION:cn=ESSA, cn=prducts, cn=oraclecontext, o=oracle, dc=com:
DELETE”

Provisioning Integration Prerequisites

Applications used with Oracle Directory Provisioning Integration Service must be
Oracle RDBMS-based and enabled for Oracle Application Server Single Sign-On.

Developing Provisioning-Integrated Applications 4-15

Development Usage Model for Provisioning Integration

As an application developer, you should be familiar with:

s General LDAP concepts

s Oracle Internet Directory

= Oracle Internet Directory integration with Oracle Application Server
s Oracle Delegated Administration Services

s The user provisioning model as described in the chapter on the Oracle
Directory Provisioning Integration Service in the Oracle Internet Directory
Administrator’s Guide in the Oracle Application Server documentation set.

s The Oracle Directory Integration and Provisioning platform
= Knowledge of SQL, PL/SQL, and database RPCs

In addition, Oracle Corporation recommends that you understand Oracle
Application Server Single Sign-On concepts.

Development Usage Model for Provisioning Integration

This section gives an overview of the usage model for an agent for a
provisioning-integrated application. It contains these topics:

= Initiating Provisioning Integration

= Returning Provisioning Information to the Directory

Initiating Provisioning Integration

During application installation, the following information is provided to the Oracle
Directory Provisioning Integration Service:

= Information to register the application entry in Oracle Internet Directory

» Information to register the application-specific database connect information
with Oracle Internet Directory

Information for the Oracle Directory Provisioning Integration Service to service the
application—for example, the kind of changes required, or scheduling properties.
Figure 4-1 shows the first phase of provisioning—namely, passing user events from

4-16 Oracle Internet Directory Application Developer's Guide

Development Usage Model for Provisioning Integration

Oracle Internet Directory through the Oracle Directory Integration and Provisioning
platform provisioning filter to the application.

Figure 4-1 How an Application Obtains Provisioning Information by Using the Oracle Directory
Provisioning Integration Service

Provisioning-Integrated Oracle Directory Integration
Application Send and Provisioning Platform Get
Provisioning Provisioning Oracl
_— . Events) Events racie
Application Repository D Filter e Internet
Directory

Change

6 Make Application-Specific

In Figure 4-1:

1.

The Oracle Directory Provisioning Integration Service retrieves the changes to
user and group information from the Oracle Internet Directory change log. It
determines which changes to send to the application.

The Oracle Directory Provisioning Integration Service sends the changes to the
application—based on the database connect information—by invoking a
generic provisioning interface.

The generic provisioning interface invokes the application-specific logic. The
application-specific logic translates the generic provisioning event to one that is
application-specific. It then makes the necessary changes in the application
repository.

Returning Provisioning Information to the Directory

It is now possible to return provisioning information to the Oracle Internet
Directory. Figure 4-2 shows the steps involved in this process, which is essentially
the reverse of the provisioning process.

1.

3.

The application repository generates the application event data and sends it to
the Oracle Directory Integration and Provisioning platform.

The Oracle Directory Integration and Provisioning platform filters the event
data and returns the change information to the directory server.

The change is applied in Oracle Internet Directory.

The updated information is stored in the Oracle Internet Directory, ready to be
accessed by other applications.

Developing Provisioning-Integrated Applications 4-17

Development Usage Model for Provisioning Integration

Figure 4-2 How an Application Returns Provisioning Information to Oracle Internet Directory

Provisioning Service

Provisioning-Integrated Oracle Directory Integration)
Application Consume and Provisioning Platform 6 Make change in
Application Oracle Internet
Application Repository &b Filter %}

o Make Change in
Application

Oracle
Internet
Directory

Figure 4-3 on page 4-19 shows the relationship between the services and the

subscribed applications in a provisioning-integrated deployment.

4-18 Oracle Internet Directory Application Developer's Guide

Development Usage Model for Provisioning Integration

Figure 4-3 Provisioning Services and Their Subscribed Applications in a Typical Deployment

cn=0OracleContext

@dc=acme cn=Products

cn=Users cn=EBusiness

[]
cn= cn= ¢cn=

o= Mary Joe Adam

Services

cn=
EBusiness

orclapplicationcommonname=

orclapplicationcommonname=
HRMS

FINANCIALS |

. - _ e Application
cn=subscriptions @ cn=subscriptions Identities

Subscription Lists/ \ N ipti
Locatioer) Pointers cn=subscription_data @ cn=subscription_data El:tb SC%’Ir?tg?r?ers
N

—Service Instance
ch= Reference Entries
Financials

cn=Accounts @ cn=Accounts — Subscription
member:Jon member:Jon Lists
member:Mary member:Mary

member:Joe member:Joe

member:Adam member:Adam

Figure 4-3 shows a DIT in which the entries for two services—Oracle Human

Resources and Oracle Financials—point to their corresponding subscription list
containers.

s Oracle Human Resources is represented as
cn=HRMS, cn=EBusiness, cn=Services, dc=com.

It points to its subscription list: cn=Accounts, cn=subscription_data,
cn=subscriptions, orclapplicationcommonname=HRMS,
cn=EBusiness, cn=Products, cn=0racleContext.

Developing Provisioning-Integrated Applications 4-19

Development Tasks for Provisioning Integration

Oracle Financials is represented as
cn=Financials, cn=EBusiness, cn=Services, dc=com.

It points to its subscription list: cn=Accounts, cn=subscription_
data, cn=subscriptions,orclapplicationcommonname=FINANCIALS,
cn=EBusiness, cn=Products, cn=0racleContext.

Development Tasks for Provisioning Integration

To develop applications for synchronized provisioning, you perform these general
tasks:

1.

Develop application-specific logic to perform provisioning activities in response
to events from the provisioning system.

Modify application installation procedures to enable the applications to
subscribe to provisioning events.

This section contains these topics:

Application Installation

User Creation and Enrollment
User Deletion

Extensible Event Definitions

Application Deinstallation

Application Installation

Modify the installation logic for each application to run a post-installation
configuration tool.

4-20

During application installation, the application invokes the Provisioning
Subscription Tool (oidprovtool). The general pattern of invoking this tool is:

oidprovtool paraml=<pl_value> param2=<p2_value> param3=<p3_value> ...

See Also:

s "Development Usage Model for Provisioning Integration" on
page 4-16 for details of what the post-installation tool should
do

Oracle Internet Directory Application Developer’'s Guide

Development Tasks for Provisioning Integration

User Creation and Enrollment

User Deletion

First, create users in Oracle Internet Directory. Then enroll them in the application.

When using either of these interfaces, you must enable the Oracle Directory
Provisioning Integration Service to identify users presently enrolled in the
application. This way, the delete events it sends correspond only to users enrolled in
the application.

Implement the application logic so that the user_exists function verifies that a
given user in Oracle Internet Directory is enrolled in the application.

The Oracle Directory Provisioning Integration Service primarily propagates the user
deletion events from Oracle Internet Directory to the various
provisioning-integrated applications.

With the PL/SQL callback interface, then the application registers with the Oracle
Directory Provisioning Integration Service and provides:

s The name of a PL/SQL package the application is using
s The connect string to access that package

The Oracle Directory Provisioning Integration Service in turn connects to the
application database and invokes the necessary PL/SQL procedures.

Developing Provisioning-Integrated Applications 4-21

Development Tasks for Provisioning Integration

Figure 4-3 illustrates the system interactions for the PL/SQL callback interface.

Figure 4-4 PL/SQL Callback Interface

Delete
User
9 Oracle
Oracle Get Changes Directory
Internet | Provisioning
Directory Integration
Service

(3] (4]

Invoke Invoke
PKG.user_exists() PKG.user_delete()

Provisioning-Integrated
Application

Generic PL/SQL Interface (ProvPkg)

Application-Specific PL/SQL Logic

Delete User
from
Application

4-22 Oracle Internet Directory Application Developer's Guide

Development Tasks for Provisioning Integration

As Figure 4-3 shows, the deletion of a user from an application comprises these
steps:

1.

The administrator deletes the user in Oracle Internet Directory by using Oracle
Directory Manager or a similar tool.

The Oracle Directory Provisioning Integration Service retrieves that change
from the Oracle Internet Directory change-log interface.

To see if the user deleted from the directory was enrolled for this application,
the Oracle Directory Provisioning Integration Service invokes the user_
exists () function of the provisioning event interface of the application.

If the user is enrolled, then the Oracle Directory Provisioning Integration
Service invokes the user_delete () function of the provisioning event
interface.

The application-specific PL/SQL logic deletes the user and the related footprint
from the application-specific repository.

Step 5 is the responsibility of the provisioning-integrated application developer.

Extensible Event Definitions

This feature allows you to extend the abilities of the Oracle Directory Provisioning
Integration Service to return predefined sets of provisioning information to
applications. Configure the following events at installation to propagate them to the
appropriate applications.

Table 4-1 Extensible Event Definitions

Event Definition

Attribute

Event Object Type Specifies the type of object the event is associated with—for
(orclODIPProvEventObjectType) example, USER, GROUP, or IDENTITY.

LDAP Change Type Indicates what kinds of LDAP operations can generate an
(orclOoDIPProvEventChangeType) event for this type of object—for example, ADD, MODIFY, or

Event Criteria

DELETE)

The additional selection criteria that qualifies an LDAP entry

(orcloDIPProvEventCriteria) to be of a specific object type. For example,

Objectclass=orclUserV2 means that any LDAP entry
that satisfies this criteria can be qualified as this object type,
and any change to this entry can generate appropriate
event(s).

Developing Provisioning-Integrated Applications 4-23

Development Tasks for Provisioning Integration

Application Deinstallation

You must enable the deinstallation logic for each provisioning-integrated
application to run the Provisioning Subscription Tool (oidprovtool) that
unsubscribes the application from the Oracle Directory Provisioning Integration
Service.

LDAP_NTFY Function Definitions

FUNCTION user_exists

A callback function invoked by the Oracle Directory Provisioning Integration
Service to check if a user is enrolled with the application.

Syntax

FUNCTION user_exists (user_name IN VARCHAR2,
user_guid IN VARCHAR2,
user_dn IN VARCHAR2)

Parameters

Table 4-2 Function user_exists Parameters

Parameter Description

user_name_ User identifier

user_guid Global user identifier
user_dn DN attribute of the user entry

Return Value
Returns a (any) positive number if the user exists

FUNCTION group_exists

A callback function invoked by the Oracle Directory Provisioning Integration
Service to check whether a group exists in the application.

Syntax

FUNCTION group_exists (group name IN VARCHAR2,
group_guid IN VARCHAR2,
group_dn IN VARCHAR2)

4-24 Oracle Internet Directory Application Developer's Guide

Development Tasks for Provisioning Integration

RETURN NUMBER;

Parameters

Table 4-3 Function group_exists Parameters

Parameter Description
group_name Group simple name
group_guid GUID of the group
group_dn DN of the group entry

Return value

Returns a positive number if the group exists. Returns zero if the group does not
exist.

FUNCTION event_ntfy

A callback function invoked by the Oracle Directory Provisioning Integration
Service to deliver change notification events for objects modeled in Oracle Internet
Directory. Currently modify and delete change notification events are delivered for
users and groups in Oracle Internet Directory. While delivering events for an object
(represented in Oracle Internet Directory),the related attributes are also sent along
with other details. The attributes are delivered as a collection (array) of attribute
containers, which are in un-normalized form—that is, if an attribute has two values
then two rows would be sent in the collection.

Syntax

FUNCTION event_ntfy (event type IN VARCHARZ,

event_id IN VARCHAR2,

event_src IN VARCHAR2,

event_time IN VARCHAR2,

object_name IN VARCHARZ2,

object_guid IN VARCHAR2,

object_dn IN VARCHAR2,

profile_id IN VARCHAR2,

attr_list IN LDAP_ATTR_LIST)

RETURN NUMBER;

Developing Provisioning-Integrated Applications 4-25

Development Tasks for Provisioning Integration

Parameters

Table 4-4 Parameters for FUNCTION event_ntfy

Parameter Description

event_type Type of event. Possible values: USER_DELETE, USER_
MODIFY, GROUP_DELETE, GROUP_MODIFY'

event_id Event id (change log number)

event_src DN of the modifier responsible for this event

event_time Time when this event occurred

object_name Simple name of the entry.

object_guid GUID of the entry.

object_dn DN of the entry

profile_id Name of the Provisioning Agent

attr_list Collection of 1dap attributes of the entry

Return Values

Success returns a positive number. Failure returns zero.

4-26 Oracle Internet Directory Application Developer's Guide

O

Developing Oracle Internet Directory Server
Plug-ins

This chapter explains how to facilitate custom development by using the Oracle
Internet Directory server plug-in framework.

This chapter contains these topics:
s Introduction to Oracle Internet Directory Server Plug-ins

s Prerequisite Knowledge for Developing Oracle Internet Directory Server
Plug-ins

s Oracle Internet Directory Server Plug-ins Concepts

s Requirements for Oracle Internet Directory Plug-ins

= Usage Model and Examples

= Database Type Definition and Plug-in Module Interface Specifications

= Directory Server Error Code Reference

Developing Oracle Internet Directory Server Plug-ins 5-1

Introduction to Oracle Internet Directory Server Plug-ins

Introduction to Oracle Internet Directory Server Plug-ins

The plug-in framework for Oracle Internet Directory enables you to extend LDAP
operations. For example:

s To authenticate a user when the user information is not stored in the directory
server

s To attach certain custom operations to an LDAP operation. For example, some
LDAP users may have different LDAP data value validation. For each 1dapadd
or ldapmodify operation, they may have different ways to validate the
attribute values.

Prerequisite Knowledge for Developing Oracle Internet Directory Server
Plug-ins
In order to develop Oracle Internet Directory plug-ins you should be familiar with:
= Generic LDAP concepts
s Oracle Internet Directory
s Oracle Internet Directory integration with Oracle Application Server

s SQL, PL/SQL, and database RPCs

Oracle Internet Directory Server Plug-ins Concepts

This section contains these topics:
= About Directory Server Plug-ins
= About Server Plug-in Framework

s Operation-Based Plug-ins Supported in Oracle Internet Directory

About Directory Server Plug-ins

To extend the capabilities of the Oracle Internet Directory server, you can write your
own server plug-in. A server plug-in is a PL/SQL package, shared object or library,
or a dynamic link library on Windows NT, containing your own functions.
(Currently, we support PL/SQL.)

5-2 Oracle Internet Directory Application Developer’s Guide

Oracle Internet Directory Server Plug-ins Concepts

You can write your own plug-in functions to extend the functionality of the Oracle
Internet Directory server using the following methods:

= You can validate data before the server performs an LDAP operation on the
data

= You can perform actions (that you define) after the server successfully
completes an LDAP operation

= You can define extended operations
= You can be authenticated through external credential stores

= You can replace an existing server module by defining your own server
module. For example, you can implement your own password value checking
and place it into the Oracle Internet Directory server.

On startup, the directory server loads your plug-in configuration and library, and

calls your plug-in functions during the course of processing various LDAP requests.

See Also: The chapter on the password policy plug-in in the
Oracle Internet Directory Administrator’s Guide for an example of how
to implement your own password value checking and place it into
the Oracle Internet Directory server

About Server Plug-in Framework

Oracle Internet Directory server plug-in framework is the environment in which the
plug-in user can develop, configure, and apply the plug-ins. Each individual
plug-in instance is called a plug-in module.

The plug-in framework includes the following:

= Plug-in configuration tools

s Plug-in module interface

s Plug-in LDAP API (ODS.LDAP_PLUGIN package)

The steps to use the server plug-in framework are as follows:

1. Write a user-defined plug-in procedure. This plug-in module must be written in
PL/SQL.

Note: The PL/SQL language is currently supported.

Developing Oracle Internet Directory Server Plug-ins 5-3

Oracle Internet Directory Server Plug-ins Concepts

2. Compile the plug-in module against the same database which serves as the
Oracle Internet Directory backend database.

3. Grant execute permission of the plug-in module to ods_server.

4. Register the plug-in module through the configuration entry interface.

Figure 5-1 Oracle Internet Directory Server Plug-in Framework?
B B

LDAP Client LDAP Client
Application 1 Application 2
Plug-in Configuration
9 Toolsg —>| OID LDAP Server
Plug-in Module 1 l Plug-in Module 2 Plug-in Module 3 i
Plug-in Module Interface Plug-in Module Interface Plug-in Module Interface
Plug-in Logic Plug-in Logic Plug-in Logic

3 3 3
v v

PL/SQ Plug-in
LDAP LDAP
API API

Operation-Based Plug-ins Supported in Oracle Internet Directory

For operation-based plug-ins, there are pre-operation, post-operation, and
when-operation plug-ins.

Pre-Operation Plug-ins

The server calls pre-operation plug-in modules before performing the LDAP
operation. The main purpose of this type of plug-in is to validate data before the
data can be used in the LDAP operation.

5-4 Oracle Internet Directory Application Developer’s Guide

Oracle Internet Directory Server Plug-ins Concepts

When an exception occurs in the pre-operation plug-in, one of the following occurs:

s When the return error code indicates warning status, the associated LDAP
request proceeds.

= When the return code indicates failure status, the request does not proceed.

If the associated LDAP request fails later on, then Oracle Internet Directory server
does not rollback the committed code in the plug-in modules.

Post-Operation Plug-ins

The Oracle Internet Directory server calls post-operation plug-in modules after
performing an LDAP operation. The main purpose of this type of plug-in is to
invoke a function after a particular ldap operation is executed. For example, logging
and notification are post-operation plug-in functions.

When an exception occurs in the post-operation plug-in, the associated LDAP
operation will not be rolled back.

If the associated LDAP request fails, then the post plug-in will still be executed.

When-Operation Plug-ins

The OID server calls when-operation plug-in modules in addition to standard ldap
processing. The main purpose of this type of plug-in is to augment existing
functionality. Any extra operations that need to be thought of as part of an LDAP
operation, that is, in the same LDAP transaction, must use the WHEN option. The
when-operation plug-in is essentially in the same transaction as the associated
LDAP request. If either the LDAP request or the plug-in program fails, then all the
changes are rolled back.

There are different types of When-operation plug-ins.
= Add-on
= Replace

For example, for the 1dapcompare operation, you can use the When Add-on type
plug-in. Oracle Internet Directory server executes its server compare code and
executes the plug-in module defined by the plug-in developer. For the Replace Type
plug-in, Oracle Internet Directory does not execute its own compare code and relies
on the plug-in module to do the comparison and pass back the compare result. The
server comparison procedures are replaced by the plug-in module.

Developing Oracle Internet Directory Server Plug-ins 5-5

Requirements for Oracle Internet Directory Plug-ins

When Replace operation plug-ins are only supported in ldapadd, ldapcompare,
ldapdelete, Idapmodify, and ldapbind. When add-on plug-ins are supported in
ldapadd, lIdapdelete, and ldapmodify.

Requirements for Oracle Internet Directory Plug-ins

This section contains these topics:
s Designing Plug-ins

s Creating Plug-ins

s Compiling Plug-ins

= Registering Plug-ins

= Managing Plug-ins

» Enabling and Disabling Plug-ins
= Exception Handling

s Plug-in LDAP API

s Plug-ins and Replication

s Plug-in and Database Tools

= Security

s Plug-in Debugging

Designing Plug-ins

5-6

Use the following guidelines when designing plug-ins:

s Use plug-ins to guarantee that when a specific LDAP operation is performed,
related actions are also performed.

s Use plug-ins only for centralized, global operations that should be invoked for
the program body statement, regardless of which user or LDAP application
issues the statement.

= Do not create recursive plug-ins. For example, creating a PRE_LDAP_BIND
plug-in that itself issues an 1dapbind (through the DBMS_LDAP PL/SQL API)
statement, causes the plug-in to execute recursively until it has run out of
resources.

Oracle Internet Directory Application Developer’'s Guide

Requirements for Oracle Internet Directory Plug-ins

Note: Use plug-ins on the LDAP PL/SQL API judiciously. They
are executed for every LDAP request every time the event occurs
on which the plug-in is created

Types of Plug-in Operations

A plug-in can be associated with 1dapbind, 1dapadd, 1dapmodify,
ldapcompare, l1dapsearch, and 1dapdelete operations.

Naming Plug-ins

Plug-in names (PL/SQL package names) must be unique with respect to other
plug-ins or stored procedures in the same database schema. Plug-in names do not
need to be unique with respect to other database schema objects, such as tables and
views. For example, a database table and a plug-in can have the same name
(however, to avoid confusion, this is not recommended).

Creating Plug-ins

The process to create a plug-in module is the same as to create a PL/SQL package.
There is a plug-in specification part and a plug-in body part. Oracle Internet
Directory defines the plug-in specification because the specification serves as the
interface between Oracle Internet Directory server and custom plug-ins.

For security purposes and for the integrity of the LDAP server, plug-ins can only be
compiled in ODS database schema against the database which serves as the
backend database of the Oracle Internet Directory server.

Plug-in Module Interface Package Specifications

For different types of plug-ins, there are different package specifications defined.
You can name the plug-in package. However, you must follow the signatures
defined for each type of plug-in procedure.

Table 5-1 Plug-in Module Interface

Oracle Internet
Plug-in Item User Defined Directory-Defined

Plug-in Package Name X
Plug-in Procedure Name

Plug-in Procedure Signature

Developing Oracle Internet Directory Server Plug-ins 5-7

Requirements for Oracle Internet Directory Plug-ins

See Also:

Plug-in Module Interface Specifications on page 5-26

andUsage Model and Examples on page 5-20 for coding examples

The following table shows the parameters for different kinds of operation-based

plug-ins.

Table 5-2 Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context

Procedure Name

IN Parameters

OUT Parameters

Before ldapbind

With ldapbind but
replacing the default
server behavior

After Idapbind

Before ldapmodify

With Idapmodify

With Idapmodify but
replacing the default
server behavior

After ldapmodify
Before ldapcompare

With Idapcompare but
replacing the default
server behavior

After ldapcompare

Before ldapadd

With ldapadd

PRE_BIND

WHEN_BIND_
REPLACE

POST_BIND

PRE_MODIFY

WHEN_MODIFY

WHEN_MODIFY_
REPLACE

POST_MODIFY

PRE_COMPARE

WHEN_COMPARE_
REPLACE

POST_COMPARE

PRE_ADD

WHEN_ADD

5-8 Oracle Internet Directory Application Developer’s Guide

Ldapcontext, Bind
DN, Password

Ldapcontext, bind
result, DN,
userpassword

Ldapcontext, Bind
result, Bind DN,
Password

Ldapcontext, DN,
Mod structure

Ldapcontext, DN,
Mod structure

Ldapcontext, DN,
Mod structure

Ldapcontext, Modify
result, DN, Mod
structure

Ldapcontext, DN,
attribute, value

Ldapcontext,
Compare result, DN,
attribute, value

Ldapcontext,
Compare result, DN,
attribute, value

Ldapcontext, Entry

Ldapcontext, Entry

return code, error
message

bind result,
return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

compare result,
return code, error
message

return code, error
message

return code, error
message

return code, error
message

Requirements for Oracle Internet Directory Plug-ins

Table 5-2 (Cont.) Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context

Procedure Name

IN Parameters

OUT Parameters

With ldapadd but
replacing the default
server behavior

After Idapadd
Before ldapdelete

With Idapdelete

With Idapdelete but
replacing the default
server behavior

WHEN_ADD_
REPLACE

POST_ADD

PRE_DELETE

WHEN_DELETE

WHEN_DELETE

Ldapcontext, Entry

Ldapcontext, Add
result, Entry
Ldapcontext, DN
Ldapcontext, DN

Ldapcontext, DN

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

After ldapdelete POST_DELETE Ldapcontext, Delete return code, error
result, DN message

Before ldapsearch PRE_SEARCH Ldapcontext, Base return code, error
DN, scope, filter message

After ldapsearch POST_SEARCH Ldap context, Search return code, error
result, Base DN, message
scope, filter

See Also:

s Error Handling on page 5-15 for valid values for the return
code and error message

s Directory Server Error Code Reference on page 5-30 for valid
values for the OUT parameters return code

s Plug-in Module Interface Specifications on page 5-26 for
complete supported procedure signatures

Developing Oracle Internet Directory Server Plug-ins 5-9

Requirements for Oracle Internet Directory Plug-ins

Compiling Plug-ins

Plug-ins are exactly the same as PL/SQL stored procedures. A PL/SQL anonymous
block is compiled each time it is loaded into memory. Compilation involves the
following stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.
2. Semantic checking: Type checking and further processing on the parse tree.
3. Code generation: The pcode is generated.

If errors occur during the compilation of a plug-in, then the plug-in is not created.
You can use the SHOW ERRORS statement in SQL*Plus or Enterprise Manager to see
any compilation errors when you create a plug-in, or you can SELECT the errors
from the USER_ERRORS view.

All plug-in modules must be compiled in the ODS database schema.

Dependencies

Compiled plug-ins have dependencies. They become invalid if an object depended
upon, such as a stored procedure or function called from the plug-in body, is
modified. Plug-ins that are invalidated for dependency reasons must be recompiled
before the next invocation.

Recompiling Plug-ins
Use the ALTER PACKAGE statement to manually recompile a plug-in. For example,
the following statement recompiles the my_plugin plug-in:

ALTER PACKAGE my _plugin COMPILE PACKAGE;

Granting Permission

Use the GRANT EXECUTE statement to grant execute permission to ods_server for
the plug-in modules.

Registering Plug-ins

To enable the directory server to call a plug-in at the right moment, you must
register the plug-in with the directory server. Do this by creating an entry for the
plug-in under cn=plugin, cn=subconfigsubentry.

5-10 Oracle Internet Directory Application Developer's Guide

Requirements for Oracle Internet Directory Plug-ins

The orclPluginConfig Object Class

A plug-in must have orc1PluginConfig as one of its object classes. This is a
structural object class, and its super class is top. Table 5-3 lists and describes its

attributes.

Table 5-3 Plug-in Attribute Names and Values

Attribute Name

Attribute Value

Mandatory?

cn

orclPluginAttributelist

(only for ldapcompare and
ldapmodify plug-ins.)

orclPluginEnable

orclPluginEntryProperties

orclPluginIsReplace

orclPluginKind

orclPluginLDAPOperation

orclPluginName

Plug-in entry name

A semicolon-separated attribute name
list that controls if the plug-in takes
effect. If the target attribute is included
in the list, then the plug-in is invoked.

0 = disable (default)

1 = enable

An ldap search filter type value need to
be specified here. For example, if we
specify
orclPluginEntryProperties: (& (
objectclass=inetorgperson) (sn
=Cezanne)), then plug-in will not be
invoked if the target entry has
objectclass equal to
inetorgperson and sn equal to
Cezanne.

0 = disable (default)
1 = enable

For WHEN timing plug-in only
PL/SQL
One of the following values:

ldapcompare
ldapmodify
ldapbind
ldapadd
ldapdelete
ldapsearch

Plug-in package name

Developing Oracle Internet Directory Server Plug-ins

Yes
No

Yes

Yes

5-11

Requirements for Oracle Internet Directory Plug-ins

Table 5-3 (Cont.) Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?

orclPluginRequestGroup A semicolon-separated group list that No
controls if the plug-in takes effect. You
can use this group to specify who can
actually invoke the plug-in.

For example, if you specify
orclpluginrequestgroup:cn=sec
urity, cn=groups,dc=oracle,dc=
com, when you register the plug-in,
then the plug-in will not be invoked
unless the ldap request comes from the
person who belongs to the group
cn=security, cn=groups,dc=orac
le,dc=com.

orclPluginRequestNegGroup A semicolon-separated group list that No
controls if the plug-in takes effect. You
can use this group to specify who can
NOT invoke the plug-in. For example,
if you specify
orclpluginrequestgroup:
cn=security, cn=groups,dc=orac
le, dc=com, when you register the
plug-in, then the plug-in will not be
invoked if the ldap request comes from
the person who belongs to the group
cn=security, cn=groups, dc=orac
le,dc=com.

orclPluginResultCode An integer value to specify the ldap No
result code. If this value is specified,
then plug-in will be invoked only if the
ldap operation is in that result code
scenario.

This is only for the POST plug-in type.

orclPluginShareLibLocation File location of the dynamic linking No
library. If this value is not present, then
Oracle Internet Directory server
assumes the plug-in language is
PL/SQL.

orclPluginSubscriberDNList A semicolon separated DN list that No
controls if the plug-in takes effect. If
the target DN of an LDAP operation is
included in the list, then the plug-in is
invoked.

5-12 Oracle Internet Directory Application Developer's Guide

Requirements for Oracle Internet Directory Plug-ins

Table 5-3 (Cont.) Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?

orclPluginTiming One of the following values: No
pre
when
post

orclPluginType One of the following values: Yes
operational

attribute

password_policy
syntax
matchingrule

See Also: Operation-Based Plug-ins
Supported in Oracle Internet Directory
on page 5-4

orclPluginVersion Supported plug-in version number No

Adding a Plug-in Configuration Entry by Using Command-Line Tools

Plug-ins must be added to Oracle Internet Directory server so that the server is
aware of additional operations that must be performed at the correct time.

When the plug-in successfully compiles against the Oracle Internet Directory
backend database, create a new entry and place it under
cn=plugin, cn=subconfigsubentry.

In the following examples, an entry is created for an operation-based plug-in called
my_pluginl. The LDIF file, my_1dif_file.1dif,is as follows:

Example 1
The following is an example LDIF file to create such an object:

cn=when_comp, cn=plugin, cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top

orclPluginName=my pluginl
orclPluginType=operational
orclPluginTiming=when
orclPluginl.DAPOperation=1dapcompare
orclPluginEnable=1

orclPluginVersion=1.0.1
orclPluginIsReplace=1

Developing Oracle Internet Directory Server Plug-ins 5-13

Requirements for Oracle Internet Directory Plug-ins

cn=when_comp

orclPluginKind=PLSQL
orclPluginSubscriberDNList=dc=COM, c=us;dc=us, dc=oracle, dc=com; dc=org, dc=us; o=IMC
,c=US

orclPluginAttributelist=userpassword

Example 2

cn=post_mod plugin, cn=plugin,cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top

orclPluginName=my pluginl
orclPluginType=operational
orclPluginTiming=post
orclPluginl.DAPOperation=1dapmodify
orclPluginEnable=1
orclPluginVersion=1.0.1
cn=post_mod_plugin
orclPluginKind=PLSQL

Add this file to the directory with the following command:

ldapadd -p 389 -h myhost -D binddn -w password -f my 1dif file.ldif

Notes: The plug-in configuration entry, for example,
cn=plugin, cn=subconfigsubentry metadata is not replicated
in the replication environment to avoid creating inconsistent state.

Managing Plug-ins
This section explains modifying plug-ins and debugging plug-ins.

Modifying Plug-ins
Similar to a stored procedure, a plug-in cannot be explicitly altered. It must be
replaced with a new definition.

When replacing a plug-in, you must include the OR REPLACE option in the CREATE
PACKAGE statement. The OR REPLACE option enables a new version of an existing
plug-in to replace an older version without having an effect on grants made for the
original version of the plug-in.

Alternatively, the plug-in can be dropped using the DROP PACKAGE statement, and
you can rerun the CREATE PACKAGE statement.

5-14 Oracle Internet Directory Application Developer's Guide

Requirements for Oracle Internet Directory Plug-ins

If the plug-in name (the package name) is changed, then you must register the new
plug-in again.

Debugging Plug-ins
You can debug a plug-in using the same facilities available for PL/SQL stored
procedures.

Enabling and Disabling Plug-ins

To turn the plug-in on or off, modify the value of orcl1PluginEnable in the
plug-in configuration object. For example, modify the value of
orclPluginEnable in cn=post_mod_plugin,

cn=plugins, cn=subconfigsubentry to be 1/0.

Exception Handling

In each of the plug-in PL/SQL procedures, there must be an exception handling
block to handle errors intelligently and, if possible, recover from them.

See Also: PL/SQL Programming, Error Handling manual for
information about how to use exceptions in a PL/SQL
programming block

Error Handling

Oracle Internet Directory requires that the return code (rc) and error message
(errmsg) are set correctly in the plug-in procedures.

The valid values for the return code is as follows:

Error Code Description

0 Success

Any number greater than Failure, See Also Directory Server Error Code Reference on
zero (0) page 5-30

-1 Warning

The errmsg parameter is a string value that can pass a user’s custom error message
back to Oracle Internet Directory server. The size limit for errmsg is 1024 bytes.
Each time Oracle Internet Directory runs the plug-in program, following the run,

Developing Oracle Internet Directory Server Plug-ins 5-15

Requirements for Oracle Internet Directory Plug-ins

Oracle Internet Directory examines the return code to determine if it must display
the error message.

For example, if the value for the return code is 0, then the error message value is
ignored. If the value of the return code is -1 or greater than zero, then the following
message is either logged in the log file or displayed on the standard output if the
request came from LDAP command-line tools:

ldap addition info: customized error

Program Control Handling between Oracle Internet Directory and Plug-ins

When a plug-in exception is occurring, the following describes where the plug-in
exception occurred and the Oracle Internet Directory server handling of the
exception.

Table 5-4 Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

PRE_BIND, PRE_ Depends on return code. If the return code is:
MODIFY, PRE_ADD,
PRE_SEARCH, PRE_
COMPARE, PRE_DELETE

Greater than zero (error), then no LDAP operation is
performed

-1 (warning), then proceed with the LDAP operation

POST_BIND, POST_ LDAP operation is completed. There is no rollback.
MODIFY, POST_ADD,

POST_SEARCH, WHEN_

DELETE

WHEN_MODIFY, Rollback the LDAP operation
WHEN_ADD, WHEN_
DELETE

When an LDAP operation fails, the following describes the ldap operation failure
and the Oracle Internet Directory server handling of the failure.

Table 5-5 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

PRE_BIND, PRE_ Pre-operation plug-in is completed. There is no rollback.
MODIFY, PRE_ADD,

PRE_SEARCH, WHEN_

DELETE

5-16 Oracle Internet Directory Application Developer's Guide

Requirements for Oracle Internet Directory Plug-ins

Table 5-5 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

POST_BIND, POST_ Proceed with post-operation plug-in. The LDAP operation
MODIFY, POST_ADD, result is one of the IN parameters.

POST_SEARCH, WHEN_

DELETE

WHEN_MODIFY, When types of plug-in changes are rolled back.
WHEN_ADD, WHEN_

DELETE

WHEN Replacement Changes made in the plug-in program body are rolled back.

Plug-in LDAP API

There are different methods for providing API access as follows:

= Allow a user to utilize the standard LDAP PL/SQL APIs. If the program logic is
not carefully planned, then this can cause an infinite loop of plug-in execution.

= Oracle Internet Directory provides the Plug-in LDAP API, which does not cause
a series of plug-in actions in the Oracle Internet Directory server, if there are
plug-ins configured and associated to that LDAP request.

In the Plug-in LDAP API, Oracle Internet Directory provides APIs for connecting
back to the same Oracle Internet Directory server within the plug-in module. In
other words, within the plug-in module, if you want to connect to any external
directory server, you can use the DBMS_LDAP API If you want to connect to the
same Oracle Internet Directory server that is executing this plug-in itself, then you
must use the Plug-in LDAP API for binding and authentication.

Within each plug-in module, there is a 1dapcontext passed from the Oracle
directory server. When we call the Plug-in LDAP API, we must pass this
ldapcontext for security and binding purposes. When binding with this
ldapcontext, Oracle Internet Directory server recognizes this LDAP request is
coming from a plug-in module. For this type of plug-in bind, Oracle Internet
Directory server does not trigger any subsequent plug-ins, and Oracle Internet
Directory server handles this kind of plug-in bind as a super-user bind. Use this
plug-in bind with discretion.

See Also: Plug-in LDAP API Specifications on page 5-19 for
coding examples

Developing Oracle Internet Directory Server Plug-ins 5-17

Requirements for Oracle Internet Directory Plug-ins

Plug-ins and Replication

These cases can cause an inconsistent state in a replication environment:

Plug-in metadata replicated to other nodes

Use in the plug-in program of 1dapmodify, 1dapadd, or any other LDAP
operation that changes the entries in the directory

Plug-in installation on only some of the participating nodes

Implementation in the plug-in of extra checking that depends on the directory
data

Plug-in and Database Tools

Bulk tools do not support server plug-ins.

Security

Some Oracle Internet Directory server plug-ins require you to supply the code that
preserves tight security. For example, if you replace Oracle Internet Directory’s
ldapcompare or ldapbind operation with your own plug-in module, you must
ensure that your implementation of this operation does not omit any functionality
on which security relies.

To ensure tight security, the following must be done:

Create the plug-in packages
Only the LDAP administrator can restrict the database user

Use the access control list (ACL) to set the plug-in configuration entries to be
accessed only by the LDAP administrator

Be aware of the program relationship between different plug-ins

Plug-in Debugging

Oracle Internet Directory plug-in debugging will help you to examine the process
and content of plug-ins.The following commands control the operation of the server
debugging process.

To set up plug-in debugging, run the following command:

% sglplus ods/password @SORACLE/ldap/admin/oidspdsu.pls

5-18 Oracle Internet Directory Application Developer's Guide

Requirements for Oracle Internet Directory Plug-ins

= To enable plug-in debugging, run the following command:

% sglplus ods/password @SORACLE/ldap/admin/oidspdon.pls

= After enabling plug-in debugging, you can use the command

plg_debug (’debuggingmessage’) ;

in the plug-in module code. The debugging message will be stored in the
plug-in debugging table.

» To disable debugging, run the following command:

% sglplus ods/password @SORACLE/ldap/admin/oidspdof.pls

» To show debugging messages that you put in the plug-in module, run the
following command:

% sglplus ods/password @SORACLE/ldap/admin/oidspdsh.pls

s To delete all the debugging messages from the debugging table, run the
following command:

% sglplus ods/password @SORACLE/ldap/admin/oidspdde.pls

Plug-in LDAP API Specifications

CREATE OR REPLACE PACKAGE LDAP_PLUGIN AS
SUBTYPE SESSION IS RAW(32);

-- Initializes the LDAP library and return a session handler
-- for use in subsequent calls.
FUNCTION init (ldappluginctx IN ODS.plugincontext)

RETURN SESSION;

-- Synchronously authenticates to the directory server using
-- a Distinguished Name and password.
FUNCTION simple bind s (ldappluginctx IN ODS.plugincontext,
1d IN SESSION)
RETURN PLS_INTEGER;

-- Get requester info from the plugin context
FUNCTION get_requester (ldappluginctx IN ODS.plugincontext)
RETURN VARCHARZ;
END LDAP_PLUGIN;

Developing Oracle Internet Directory Server Plug-ins 5-19

Usage Model and Examples

Usage Model and Examples

This section contains two example situations about search query logging and

synchronizing two directory information trees (DITs).

Example 1: Search Query Logging

Situation: A user wants to know if it is possible to log all the 1dapsearch

commands.

Solution: Yes. Using the POST 1dapsearch operational plug-in then the user can
log all the 1dapsearch commands. They can either log all the 1dapsearch
requests, or log all the 1dapsearch requests if the search occurs under certain DNs

(under a specific subtree).
To log all the 1dapsearch commands, do the following;:

1. Preparation.

Log all of the 1dapsearch results into a database table. This log table will have

the following columns:

= timestamp

= baseDN

= search scope

= search filter

= required attribute

= search result

Use the following SQL script to create the table:

drop table search log;
create table search log
(timestamp varchar2 (50),
basedn varchar? (256),
searchscope number (1) ;
searchfilter varchar?2 (256);
searchresult number (1))
drop table simple tab;

i

create table simple tab (id NUMBER (7), dump varchar2 (256));

DROP sequence seq;
CREATE sequence seq START WITH 10000;
commit;

5-20 Oracle Internet Directory Application Developer's Guide

Usage Model and Examples

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP PLUGIN_EXAMPLEl AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,
baseDN IN VARCHARZ,
scope IN INTEGER,

filterStr IN VARCHARZ,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

END LDAP_PLUGIN_EXAMPLEL ;

/

3. Create plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP PLUGIN_EXAMPLEl AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,
baseDN IN VARCHARZ,
scope IN INTEGER,

filterStr IN VARCHARZ,
requiredAttr IN ODS.strCollection,

rc OUT INTEGER,
errormsg OUT VARCHAR2
)
IS
BEGIN

INSERT INTO simple_ tab VALUES
(to_char (sysdate, 'Month DD, YYYY HH24:MI:SS'), baseDN, scope,
filterStr, result);
-- The following code segment demonstrate how to iterate
-- the ODS.strCollection
FOR 1_counterl IN 1..requiredAttr.COUNT LOOP
INSERT INTO simple_tab
values (seq.NEXIVAL, 'reqg attr ' || l_counterl || ' ="' ||
requiredAttr (1_counterl)) ;
END LOOP;
rc := 0;
errormsg := 'no post_search plugin error msg';
COMMIT;
EXCEPTION
WHEN others THEN
rc :=1;

Developing Oracle Internet Directory Server Plug-ins

5-21

Usage Model and Examples

errormsg := 'exception: post_search plguin';
END;
END LDAP_PLUGIN_EXAMPLEL ;
/

4. Grant permission to ods_server.

GRANT EXECUTE ON LDAP_PLUGIN_EXAMPLEl TO ods_server;

5. Register plug-in entry to Oracle Internet Directory server.
Use the following to construct an LDIF file (register_post_search.1dif):

cn=post_search, cn=plugin, cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top

orclPluginName=1dap plugin examplel
orclPluginType=operational
orclPluginTiming=post
orclPluginl.DAPOperation=1dapsearch
orclPluginEnable=1
orclPluginVersion=1.0.1
cn=post_search

orclPluginKind=PLSQL

Using the 1dapadd command-line tool to add this entry:

% ldapadd —p port_number -h host name -D bind dn -w passwd -v -f register_
post_search.1dif

Example 2: Synchronizing Two DITs

Situation: There are two dependent products under cn=Products,
cn=oraclecontext where the users in these products have a one-to-one
relationship in Oracle Internet Directory. If a user in the first DIT (product 1) is
deleted, we want to delete the corresponding user in the other DIT (product 2) since
a a relationship exists between these users.

Is there a way to set a trigger within Oracle Internet Directory that, on the event of
deleting the user in the first DIT, will call or pass a trigger to delete the user in the
second DIT?

Solution: Yes, we can use the POST 1dapdelete operation plug-in to handle the
second deletion occurring in the second DIT.

5-22 Oracle Internet Directory Application Developer's Guide

Usage Model and Examples

If the first DIT has the naming context of

cn=DIT1, cn=products, cn=oraclecontext and the second DIT has the
naming context of cn=DIT2, cn=products, cn=oraclecontext, then the
relationship between the two users in the different DITs is that they share the same
ID attribute. Basically, inside of the post ldapdelete plug-in module, we use LDAP_
PLUGIN and DBMS_LDAP APIs to delete the corresponding user in the 2nd DIT.

We must set orclPluginSubscriberDNList to

cn=DIT1, cn=products, cn=oraclecontext, so that whenever we delete
entries under cn=DIT1, cn=products, cn=oraclecontext, the plug-in module
is invoked.

1.

Preparation.

Assume the entries under both DITs have been added into the directory. For
example, the entry

id=12345, cn=DIT1, cn=products, cn=oraclecontext isin DIT1, and
1d=12345,cn=DIT2, cn=products, cn=oraclecontext is in DIT2.

Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i
END LDAP PLUGIN EXAMPLE?Z ;
/

Create plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete

(ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,

dn IN VARCHARZ,

rc OUT INTEGER,

errormsg OUT VARCHAR2

)

IS
retval PLS_INTEGER;
my_session DBMS_LDAP.session;
newDN VARCHAR? (256) ;

Developing Oracle Internet Directory Server Plug-ins 5-23

Usage Model and Examples

BEGIN
retval = -1;
my_session := LDAP_PLUGIN.init (1ldapplugincontext) ;
-- bind to the directory
retval := LDAP_PLUGIN.simple bind s (ldapplugincontext, my session) ;
-- if retval is not 0, then raise exception
newDN := REPLACE(dn, ‘DIT1’, ‘DIT2’);
retval := DBMS_LDAP.delete_s (my_session, newDN) ;
-- if retval is not 0, then raise exception
rc := 0;
errormsg := 'no post delete plguin error msg';
EXCEPTION
WHEN others THEN
rc := 1;
errormsg := 'exception: post_delete plguin';
END;
END LDAP_PLUGIN_EXAMPLE?Z ;
/

4. Register plug-in entry to Oracle Internet Directory server.
Use the following to construct a LDIF file (register_post_delete.1ldif):

cn=post_delete, cn=plugin, cn=subconfigsubentry
objectclass=orclPluginConfig

objectclass=top
orclPluginName=1dap plugin example2
orclPluginType=operational
orclPluginTiming=post
orclPluginlDAPOperation=1dapdelete
orclPluginEnable=1
orclPluginSubscriberDNList=cn=DIT], cn=oraclecontext, cn=products
orclPluginVersion=1.0.1

cn=post_delete

orclPluginKind=PLSQL

Use the 1dapadd command-line tool to add the following entry:

% ldapadd —p port_number -h host name -D bind dn -w passwd —-v —-f register
post_delete.1dif

5-24 Oracle Internet Directory Application Developer's Guide

Database Type Definition and Plug-in Module Interface Specifications

Database Type Definition and Plug-in Module Interface Specifications

This section gives examples of database object type definitions and LDAP_PLUGIN
API Specifications.

This section contains these topics:
= Database Object Type Definitions

s Plug-in Module Interface Specifications

Database Object Type Definitions

This section contains the object definitions for those object types introduced in the
Plug-in LDAP API. All these definitions are in Oracle Directory Server (ODS)
database schema.

create or replace type strCollection as TABLE of VARCHAR2 (512);
/

create or replace type pluginContext as TABLE of VARCHAR2 (512);
/

create or replace type attrvalType as TABLE OF VARCHARZ2 (4000) ;
/

create or replace type attrobj as object (

attrname varchar? (2000),

attrval attrvalType

)i

/

create or replace type attrlist as table of attrobj;
/

create or replace type entryobj as object (
entryname varchar2 (2000),

attr attrlist

)i

/

create or replace type entrylist as table of entryobj;
/

create or replace type bvalobj as object (
length integer,
val varchar? (4000)

Developing Oracle Internet Directory Server Plug-ins 5-25

Database Type Definition and Plug-in Module Interface Specifications

create or replace type bvallist as table of bvalobj;
/

create or replace type modobj as object (
operation integer,

type varchar? (256) ,
vals bvallist

)i

/

create or replace type modlist as table of modobj;
/

Plug-in Module Interface Specifications

You must follow the procedure signature to use ldapbind, ldapsearch, ldapdelete,
ldapadd, Idapcompare, and ldapmodify plug-ins.

CREATE or replace PACKAGE plugin_ testl AS

PROCEDURE pre add (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE when add (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHAR2Z,
entry IN ODS.entryobj,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE when add_replace (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHAR2Z,
entry IN ODS.entryobj,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE post_add (ldapplugincontext IN ODS.plugincontext,

5-26 Oracle Internet Directory Application Developer's Guide

Database Type Definition and Plug-in Module Interface Specifications

result IN INTEGER,

dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE pre modify (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHARZ,
mods IN ODS.modlist,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE when modify (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHARZ,
mods IN ODS.modlist,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE when modify. replace (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHARZ,
mods IN ODS.modlist,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE post_modify (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,

dn IN VARCHARZ,
mods IN ODS.modlist,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE pre compare (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHARZ,
attrname IN VARCHARZ,
attrval 1IN VARCHARZ2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE when compare_ replace (ldapplugincontext IN ODS.plugincontext,

Developing Oracle Internet Directory Server Plug-ins 5-27

Database Type Definition and Plug-in Module Interface Specifications

result OUT INTEGER,
dn IN VARCHARZ,
attrname IN VARCHAR2,
attrval 1IN VARCHARZ2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,
dn IN VARCHARZ,
attrname IN VARCHARZ,
attrval 1IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE pre delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE when delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE when delete replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE post_delete (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHARZ,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)i

PROCEDURE pre search (ldapplugincontext IN ODS.plugincontext,

baseDN IN VARCHARZ,
scope IN INTEGER,

5-28 Oracle Internet Directory Application Developer's Guide

Database Type Definition and Plug-in Module Interface Specifications

filterStr IN VARCHARZ,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,

errormsg OUT VARCHAR2

)i

PROCEDURE post_search (ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,
baseDN IN VARCHARZ,
scope IN INTEGER,

filterStr IN VARCHARZ,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,

errormsg OUT VARCHAR2

)i

PROCEDURE pre bind (ldapplugincontext IN ODS.plugincontext,

dn IN VARCHARZ2,
passwd IN VARCHARZ2,
rc OUT INTEGER,
errormsg OUT VARCHAR2

)i

PROCEDURE when bind replace (ldapplugincontext IN ODS.plugincontext,

result OUT INTEGER,

dn IN VARCHARZ,
passwd IN VARCHAR2,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

PROCEDURE post_bind (ldapplugincontext IN ODS.plugincontext,

result IN INTEGER,

dn IN VARCHARZ2,
passwd IN VARCHARZ2,
rc OUT INTEGER,

errormsg OUT VARCHAR2
)i

END plugin testl;

/

Developing Oracle Internet Directory Server Plug-ins 5-29

Directory Server Error Code Reference

Directory Server Error Code Reference

---Package specification for DBMS_LDAP
- This is the primary interface used by various clients to
- make LDAP requests

CREATE OR REPLACE PACKAGE DBMS_LDAP AS

-- possible error codes we can return from LDAP server

SUCCESS CONSTANT NUMBER := 0;
OPERATIONS_ERROR CONSTANT NUMBER := 1;
PROTOCOL,_ERROR CONSTANT NUMBER := 2;
TIMELIMIT EXCEEDED CONSTANT NUMBER := 3;
SIZELIMIT EXCEEDED CONSTANT NUMBER := 4;
COMPARE_FALSE CONSTANT NUMBER := 5;
COMPARE_TRUE CONSTANT NUMBER := 6;
STRONG_AUTH_NOT_SUPPORTED CONSTANT NUMBER := 7;
STRONG_AUTH_ REQUIRED CONSTANT NUMBER := 8;
PARTTIAL, RESULTS CONSTANT NUMBER := 9;
REFERRAL CONSTANT NUMBER := 10;
ADMINLIMIT EXCEEDED CONSTANT NUMBER := 11;
UNAVATLABLE CRITIC CONSTANT NUMBER := 12;
NO_SUCH_ATTRIBUTE CONSTANT NUMBER := 16;
UNDEFINED_TYPE CONSTANT NUMBER := 17;
INAPPROPRIATE, MATCHING CONSTANT NUMBER := 18;
CONSTRAINT VIOLATION CONSTANT NUMBER := 19;
TYPE_OR_VALUE_EXISTS CONSTANT NUMBER := 20;
INVALID SYNTAX CONSTANT NUMBER := 21;
NO_SUCH_OBJECT CONSTANT NUMBER := 32;
ALIAS_PROBLEM CONSTANT NUMBER := 33;
INVALID DN_SYNTAX CONSTANT NUMBER := 34;
IS LEAF CONSTANT NUMBER := 35;
ALTAS DEREF PROBLEM CONSTANT NUMBER := 36;
INAPPROPRIATE_AUTH CONSTANT NUMBER := 48;
INVALID CREDENTIALS CONSTANT NUMBER := 49;
INSUFFICIENT ACCESS CONSTANT NUMBER := 50;
BUSY CONSTANT NUMBER := 51;
UNAVATLABLE CONSTANT NUMBER := 52;
UNWILLING TO_ PERFORM CONSTANT NUMBER := 53;
LOOP_DETECT CONSTANT NUMBER := 54;
NAMING_VIOLATION CONSTANT NUMBER := 64;
OBJECT_CLASS_VIOLATION CONSTANT NUMBER := 65;

5-30 Oracle Internet Directory Application Developer's Guide

Directory Server Error Code Reference

NOT_ALLOWED_ON_NONLEAF CONSTANT NUMBER :
NOT_ALLOWED_ON_RDN CONSTANT NUMBER :
AIREADY_ EXTSTS CONSTANT NUMBER :
NO_OBJECT_CLASS_MODS CONSTANT NUMBER :
RESULTS_TOO_LARGE CONSTANT NUMBER :
OTHER CONSTANT NUMBER :
SERVER_DOWN CONSTANT NUMBER :
LOCAL_ERROR CONSTANT NUMBER :
ENCODING_ERROR CONSTANT NUMBER :
DECODING_ERROR CONSTANT NUMBER :
TIMEOUT CONSTANT NUMBER :
AUTH_UNKNOWN CONSTANT NUMBER := 86;
FILTER_ERROR CONSTANT NUMBER := 87;
USER_CANCELLED CONSTANT NUMBER := 88;
PARAM_ERROR CONSTANT NUMBER := 89;
NO_MEMORY CONSTANT NUMBER := 90;

66;
67;
68;
69;
70;
80;
81;
82;
83;
84;
85;

Developing Oracle Internet Directory Server Plug-ins 5-31

Directory Server Error Code Reference

5-32 Oracle Internet Directory Application Developer's Guide

6

Developing Applications Integrated with
Oracle Delegated Administration Services

This chapter explains how developers can use the Oracle Delegated Administration
Services URL service units to achieve integration with Oracle Delegated
Administration Services.

It contains the following sections:
» Introduction to the Delegated Administration Services

= Developing Applications Integrated with Oracle Delegated Administration
Services

= Java APIs Used to Access URLs

Developing Applications Integrated with Oracle Delegated Administration Services 6-1

Introduction to the Delegated Administration Services

Introduction to the Delegated Administration Services

Oracle Delegated Administration Services are a set of pre-defined, Web-based
service units for performing directory operations on behalf of a user. Oracle
Delegated Administration Services units enable Oracle Internet Directory to use the
self-service model for directory users to, for instance, update their own information
in an employee directory.

Delegated Administration Services enable you to more easily develop tools for
administering application data in the directory. They provide most of the
functionality that directory-enabled applications require, such as creating a user
entry, creating a group entry, searching for entries, and changing user passwords.

You can embed Delegated Administration Service units into your applications. For
example, if you are building a Web portal, you can add Oracle Delegated
Administration Services units to enable users to change application passwords
stored in the directory. Each service unit has a corresponding URL stored in the
directory. An application can invoke an Oracle Delegated Administration Services
unit by URL discovery at runtime by querying the directory.

Figure 6—1 Overview of Delegated Administration Services

User

- . S Authenticati [S
— DAS-Integrated uthentication ingle
\-qeu__ > Application [F=====*" > Sign-on

.®
Url Authgntication
Redirection A -

User / Group

DASUSetrvices ¢ nformation |St?rﬂ§t
e Directory

Benefits of Oracle Delegated Administration Services-Based Applications

There are three main areas where applications based on Oracle Delegated
Administration Services are more advanced than those based on earlier types of
APIs.

First, because Oracle Delegated Administration Services units are Web-based, an
application developed with them are language-independent. In practice, this means
that the application can handle input and requests from any type of user or
application, eliminating the need for a costly custom solution or configuration.

6-2 Oracle Internet Directory Application Developer’s Guide

Developing Applications Integrated with Oracle Delegated Administration Services

Second, Oracle Delegated Administration Services comes with the Oracle Internet
Directory Self-Service Console, a GUI development tool that automates many of the
directory-oriented application requirements (such as Create, Edit, and Delete). This
tool reduces design and development time for these basic functions.

Third, Oracle Delegated Administration Services is integrated with Oracle
Application Server Single Sign-On, so an application based on Oracle Delegated
Administration Services is automatically authenticated with Oracle Application
Server Single Sign-On. This means that an application using Oracle Delegated
Administration Services can proxy as a user to query the directory on behalf of a
user, for better security.

Developing Applications Integrated with Oracle Delegated
Administration Services

This section contains these topics:

= Prerequisites for Integration with Oracle Delegated Administration Services

s Oracle Delegated Administration Services Integration Methodology and
Considerations

Prerequisites for Integration with Oracle Delegated Administration Services

For an application to integrate with Oracle Delegated Administration Services units,
the following must be true:

s The application must be a Web-based GUL

s The application must be integrated with Oracle Application Server Single
Sign-On either through mod_osso or through partner application.

s The application has certain operations that need to be performed as the
currently signed on user that can be leveraged from Oracle Delegated
Administration Services.

= The application has users or groups stored in Oracle Internet Directory and can
leverage Oracle Delegated Administration Services for user and group
management.

s The application needs to be run under an Oracle Application Server
infrastructure or middle-tier environment such that the discovery mechanism
for the Oracle Delegated Administration Services URL is accessible.

Developing Applications Integrated with Oracle Delegated Administration Services 6-3

Developing Applications Integrated with Oracle Delegated Administration Services

Oracle Delegated Administration Services Integration Methodology and

Considerations

Table 6-1discusses the various considerations for integrating an application with
Oracle Delegated Administration Services.

Table 6-1 Condiserations for Integrating an Application with Oracle Delegated

Administration Services

Point in Application
Lifecycle

Considerations

Application design time

Application installation
time

Application runtime

Ongoing administrative
activities

Examine the various services that Oracle Delegated
Administration Services provides and identify integration
points within the application GUL

Make necessary code changes to pass parameters to the Oracle
Delegated Administration Services self-service units and also
process return parameters from Oracle Delegated
Administration Services.

Introduce code in the bootstrap and installation logic to
dynamically discover the location of Oracle Delegated
Administration Services units from configuration information
in Oracle Internet Directory. To do this, use Oracle Internet
Directory Service Discovery APIs.

Determine the location of Oracle Delegated Administration
Services units and store them in local repository.

Display Oracle Delegated Administration Services URLs in
application GUI shown to users.

Pass the appropriate parameters to the Oracle Delegated
Administration Services by using URL encoding.

Process return codes from Oracle Delegated Administration
Services through the URL return.

Provide the capability to refresh the location of Oracle
Delegated Administration Services and its URLs in the
administrator screens. Do this in case the deployment moves
the location of Oracle Delegated Administration Services after
the application has been installed.

Use Case 1: Create User

This use case shows how to integrate the Create User Oracle Delegated
Administration Services unit with a custom application. In the custom application
page, Create User is shown as a link.

6-4 Oracle Internet Directory Application Developer’s Guide

Developing Applications Integrated with Oracle Delegated Administration Services

1. Identify the Oracle Delegated Administration Services URL base, by using the
Java API string:

baseUrl = Util.getDASUrl (ctx, DASURL_BASE) .
This API returns the Oracle Delegated Administration Services base URL in the
following form: http: //host_name:port/

2. Get the specific URL for the Create User Oracle Delegated Administration
Services unit, by using the string:

relUrl = Util.getDASUrl (ctx , DASURL_CREATE_USER)

The return value is the relative URL to access the Create User unit.

The specific URL is the information needed to generate the link dynamically for
our application.

Next we will look at the parameters that can be customized for this unit. This
unit takes following parameters:

Table 6-2 Oracle Delegated Administration Services URL Parameters

Parameter Description

homeURL The URL which is linked to the global button Home in the
Oracle Delegated Administration Services unit. When the
calling application specifies this value, you can click the Home
button to redirect the Oracle Delegated Administration
Services unit to the URL specified by this parameter.

doneURL This URL is used by Oracle Delegated Administration Services
to redirect the Oracle Delegated Administration Services page
at the end of each operation. In case of Create User, once the
user is created clicking on OK redirects the URL to this
location. Hence the user navigation experience will be smooth.

cancelURL This URL is linked with all the Cancel buttons shown in the
Oracle Delegated Administration Services units. Any time the
user clicks Cancel, the page is redirected to the URL specified
by this parameter.

enablePA This parameter takes a Boolean value of true/false. This will
enable the section Assign Privileges in User or Group
operation. If the enablePA is passed with value of true in the
Create User page, then Assign Privileges to User section will
also appear in the Create User Page.

Developing Applications Integrated with Oracle Delegated Administration Services 6-5

Java APIs Used to Access URLs

3. Build the link with the parameters set to the following values:

baseUrl = http://acme.mydomain.com:7777/

relUrl = oiddas/ui/oracle/ldap/das/admin/AppCreateUserInfoAdmin
homeURL = http://acme.mydomain.com/myapp

cancelURL = http://acme.mydomain.com/myapp

doneURL = http://acme.mydomain.com/myapp

enablePA = true

The complete URL looks like the following:

http://acme.mydomain.com:7777/oiddas/ui/oracle/ldap/das/admin/AppCreateUserI
nfoAdmin? homeURL=http://acme.mydomain.com/myapp&
cancelURL=http://acme.mydomain.com/myapp

& doneURL=http://acme.mydomain.com/myapp& enablePA=true

4. You can now embed this URL in the application.

Use Case 2: User LOV

Oracle Delegated Administration Services List of Values (LOV) is implemented
using JavaScript to invoke and pass values between the LOV calling window and
Oracle Delegated Administration Services LOV page. The application invoking the
LOV needs to open a popup window using JavaScript. Since the Java scripts have
the security restrictions, data passing across the domains is not possible. Due to this
limitation, only the pages in the same domain can access the Oracle Delegated
Administration Services LOV units.

The base and the relative URL can be invoked the same way as Create User. Sample
files are located at:

SORACLE_HOME/ldap/das/samples/lov
This sample illustrates how the LOV can be invoked and data can be passed

between the calling application and Oracle Delegated Administration Services unit.
Complete illustration of the LOV invocation is beyond the scope of this chapter.

Java APIs Used to Access URLs

To discover the Oracle Delegated Administration Services URLs, Java APIs can be
used. More details about the Java API are described in Chapter 3, "Developing
Applications with Oracle Extensions to the Standard LDAP APIs" and Chapter 10,

6-6 Oracle Internet Directory Application Developer’s Guide

Java APls Used to Access URLs

"DAS_URL Interface Reference". The API functions which address the Oracle
Delegated Administration Services URL discovery are:

s getDASUrl(DirContext ctx, String urlTypeDN)

s getAll1DASUr1l(DirContext ctx)

Developing Applications Integrated with Oracle Delegated Administration Services 6-7

Java APIs Used to Access URLs

6-8 Oracle Internet Directory Application Developer’s Guide

Part li

Oracle Internet Directory Programming

Reference

Part II presents the Oracle-specific extensions to standard APIs. This part includes
reference chapters that include classes, exceptions, and sample usage for the C,
PL/SQL, Oracle Delegated Administration Services, and Provisioning Integration
APIs. Further API reference material may be available on the product CD.

This part contains these chapters:

Chapter 7, "The C API for Oracle Internet Directory"
Chapter 8, "DBMS_LDAP PL/SQL Reference"
Chapter 9, "DBMS_LDAP_UTL PL/SQL Reference"
Chapter 10, "DAS_URL Interface Reference"

Chapter 11, "Provisioning Integration API Reference"

7

The C API for Oracle Internet Directory

This chapter introduces the Oracle Internet Directory C API and provides examples
of how to use it.

It contains these topics:

About the Oracle Internet Directory C API
C API Reference

Sample C API Usage

Building Applications with the C API

Dependencies and Limitations of the C API

The C API for Oracle Internet Directory 7-1

About the Oracle Internet Directory C API

About the Oracle Internet Directory C API

The Oracle Internet Directory SDK C API is based on LDAP Version 3 C API and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 10g (9.0.4) in the following modes:
s SSL—AIl communication securedby using SSL
s Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence
of the SSL calls in the API usage. You can easily switch between SSL and non-SSL
modes.

See Also: "Sample C API Usage" on page 7-65 for more details on
how to use the two modes

This section contains these topics:

s Oracle Internet Directory SDK C API SSL Extensions

= Summary of LDAP C API

Oracle Internet Directory SDK C API SSL Extensions

Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The
SSL extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

= None—Neither client nor server is authenticated, and only SSL encryption is
used

= One-way—Only the server is authenticated by the client

s Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

7-2 Oracle Internet Directory Application Developer’s Guide

About the Oracle Internet Directory C API

SSL Interface Calls

There is only one call required to enable SSL:
int ldap_init SSL(Sockbuf *sb, text *sslwallet, text *sslwalletpasswd, int
sslauthmode)

The 1dap_init_SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Table 7-1 Arguments for SSL Interace Calls

Argument Description

sb Socket buffer handle returned by the Idap_open call as part of LDAP
handle.

sslwallet Location of the user wallet.

sslwalletpasswd Password required to use the wallet.

sslauthmode SSL authentication mode user wants to use. Possible values are:
" GSLC_SSL_NO_AUTH—No authentication required

" GSLC_SSL_ONEWAY_AUTH—Only server authentication
required.

" GSLC_SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A non zero return value
indicates an error. The error code can be decoded by using the
function ldap_err2string.

See Also: See "Sample C API Usage" on page 7-65

Wallet Support

depending on which authentication mode is being used, both the server and the
client may require wallets to use the SSL feature. 10g (9.0.4) of the API supports
only the Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

The C API for Oracle Internet Directory 7-3

C API Reference

C API Reference

This section contains these topics:

= Summary of LDAP C API

= Functions

s Initializing an LDAP Session

s LDAP Session Handle Options

= Working With Controls

= Authenticating to the Directory

s Closing the Session

s Performing LDAP Operations

= Abandoning an Operation

= Obtaining Results and Peeking Inside LDAP Messages
» Handling Errors and Parsing Results
= Stepping Through a List of Results

s Parsing Search Results

s C API Usage with SSL

s C API Usage Without SSL

Summary of LDAP C API
Table 7-2 DBMS_LDAP API Subprograms
Function or Procedure Description
ber_free() Free the memory allocated for a BerElement
structure
ldap_abandon_ext Cancel an asynchronous operation

ldap_abandon

7-4 Oracle Internet Directory Application Developer’s Guide

C API Reference

Table 7-2 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

ldap_add_ext
ldap_add_ext_s
ldap_add
ldap_add_s

Add a new entry to the directory

ldap_compare_ext
ldap_compare_ext_s
ldap_compare

ldap_compare_s

Compare entries in the directory

ldap_count_entries

Count the number of entries in a chain of search
results

ldap_count_values

Count the string values of an attribute

ldap_count_values_len

Count the binary values of an attribute

ora_ldap_create_clientctx

Create a client context and returns a handle to it.

ora_ldap_create_cred_hdl

Create a credential handle.

ldap_delete_ext
ldap_delete_ext_s
ldap_delete
ldap_delete_s

Delete an entry from the directory

ora_ldap_destroy_clientctx

Destroy the client context.

ora_ldap_free_cred_hdl

Destroy the credential handle.

ldap_dn2ufn

Converts the name into a more user friendly format

ldap_err2string

Get the error message for a specific error code

ldap_explode_dn
ldap_explode_rdn

Split up a distinguished name into its components

ldap_first_attribute

Get the name of the first attribute in an entry

ldap_first_entry

Get the first entry in a chain of search results

The C API for Oracle Internet Directory 7-5

C API Reference

Table 7-2 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

ora_ldap_get_cred_props

Retrieve properties associated with credential
handle.

ldap_get_dn

Get the distinguished name for an entry

ldap_get_dn

Get the distinguished name for an entry

ldap_get_option

Access the current value of various session-wide
parameters

ldap_get_values

Get the string values of an attribute

ldap_get_values_len

Get the binary values of an attribute

ldap_init
ldap_open

Open a connection to an LDAP server

ora_ldap_init SASL

Perform SASL authentication

ldap_memfree()

Free memory allocated by an LDAP API function
call

ldap_modify_ext
ldap_modify_ext_s
ldap_modify
ldap_modify_s

Modify an entry in the directory

ldap_msgfree

Free the memory allocated for search results or other
LDAP operation results

ldap_next_attribute

Get the name of the next attribute in an entry

ldap_next_entry

Get the next entry in a chain of search results

ldap_perror
DEPRECATED

Prints the message supplied in message.

ldap_rename

ldap_rename_s

Modify the RDN of an entry in the directory

ldap_result2error

DEPRECATED

Return the error code from result message.

7-6 Oracle Internet Directory Application Developer’s Guide

C API Reference

Table 7-2 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

ldap_result
ldap_msgfree
ldap_msgtype
ldap_msgid

Check the results of an asynchronous operation

ldap_sasl_bind
ldap_sasl_bind_s

General authentication to an LDAP server

ldap_search_ext
ldap_search_ext_s
ldap_search
ldap_search_s

Search the directory

ldap_search_st

Search the directory with a timeout value

ldap_set_option

Set the value of these parameters

ora_ldap_set_clientctx

Add properties to the client context handle.

ora_ldap_set_cred_props

Add properties to credential handle.

ldap_simple_bind
ldap_simple_bind_s

Simple authentication to an LDAP server

ldap_unbind_ext
ldap_unbind
ldap_unbind_s

End an LDAP session

ldap_value_free

Free the memory allocated for the string values of an
attribute

ldap_value_free_len

Free the memory allocated for the binary values of
an attribute

This section lists all the calls available in the LDAP C API found in RFC 1823.

The C API for Oracle Internet Directory 7-7

C API Reference

See Also: The following URL, for a more detailed explanation of
these calls:

http://www.ietf.org/

Functions

This section contains these topics:

s Initializing an LDAP Session

s LDAP Session Handle Options

= Authenticating to the Directory

= SASL Authentication Using Oracle Extensions
= SASL Authentication

= Working With Controls

s Closing the Session

s Performing LDAP Operations

= Abandoning an Operation

s Obtaining Results and Peeking Inside LDAP Messages
» Handling Errors and Parsing Results

s Stepping Through a List of Results

s Parsing Search Results

7-8 Oracle Internet Directory Application Developer's Guide

C API Reference

Initializing an LDAP Session
Idap_init

Idap_open

ldap_init() initializes a session with an LDAP server. The server is not actually
contacted until an operation is performed that requires it, allowing various options
to be set after initialization.

Syntax

LDAP *1dap init

(
const char *hostname,
int portno

)

Parameters

Table 7-3 Parameters for Initializing an LDAP Session

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to connect
to. Each host name in the list MAY include a port number which is
separated from the host itself with a colon (:) character. The hosts will be
tried in the order listed, stopping with the first one to which a successful
connection is made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number to connect to. The default LDAP port of
389 can be obtained by supplying the constant LDAP_PORT. If a host
includes a port number then this parameter is ignored.

Usage Notes

ldap_init() and ldap_open() both return a "session handle," a pointer to an opaque
structure that MUST be passed to subsequent calls pertaining to the session. These
routines return NULL if the session cannot be initialized in which case the

The C API for Oracle Internet Directory 7-9

C API Reference

operating system error reporting mechanism can be checked to see why the call
failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the
session. LDAPv3 does not require that a bind operation be completed before other
operations can be performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options

The LDAP session handle returned by 1dap_init () isa pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control
aspects of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions,
described in this section.

Idap_get_option

Idap_set_option

ldap_get_option() is used to access the current value of various session-wide
parameters. 1dap_set_option() is used to set the value of these parameters.
Note that some options are READ-ONLY and cannot be set; it is an error to call
ldap_set_option () and attempt to set a READ-ONLY option.

Note that if automatic referral following is enabled (the default), any connections
created during the course of following referrals will inherit the options associated
with the session that sent the original request that caused the referrals to be
returned.

7-10 Oracle Internet Directory Application Developer's Guide

C API Reference

Syntax
int ldap_get_option
(
LDAP *1d,
int option,
void *outvalue
)
int ldap_set_option
(
LDAP *1d,
int option,
const void *invalue
)
#define LDAP_OPT ON ((void *)1)
#define LDAP OPT OFF ((void *)0)

Parameters

Table 74 lists and describes the paramters for LDAP session handle options.

Table 7-4 Parameters for LDAP Session Handle Options

Parameters Description

1d The session handle. If this is NULL, a set of global defaults is accessed.
New LDAP session handles created with ldap_init() or ldap_open() inherit
their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter SHOULD be
one of the constants listed and described in Table 7-5. After the constant
the actual hexadecimal value of the constant is listed in parentheses.

outvalue The address of a place to put the value of the option. The actual type of this

parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a copy of the data that is associated with
the LDAP session 1d is returned; callers should dispose of the memory by
calling ldap_memfree() or ldap_controls_free(), depending on the type of
data returned.

The C API for Oracle Internet Directory 7-11

C API Reference

Table 7-4 (Cont.) Parameters for LDAP Session Handle Options

Parameters Description

invalue

A pointer to the value the option is to be given. The actual type of this

parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to ldap_set_option(). If a value passed for invalue is
invalid or cannot be accepted by the implementation, Idap_set_option()
should return -1 to indicate an error.

Constants

Table 7-5 lists and describes the constants for LDAP session handle options.

Table 7-5 Constants

Type for invalue Type for outvalue

Constant parameter parameter Description
LDAP_OPT_API_ not applicable LDAPAPIInfo * Used to retrieve some basic information
INFO (0x00) (option is about the LDAP API implementation at
READ-ONLY) execution time. Applications need to be
able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is READ-ONLY and
cannot be set.
ORA_LDAP_OPT_ void * (LDAP_ int* This option determines whether referral
RFRL_CACHE OPT_ON or cache is enabled or not. If this option is set
LDAP_OPT_OFF) to LDAP_OPT_ON then cache is enabled
else cache is disabled.
ORA_LDAP_OPT_ int* int * This option sets the size of referral cache.

RFRL_CACHE_SZ

7-12 Oracle Internet Directory Application Developer's Guide

The size is maximum size in terms of
number of bytes the cache can grow to. It is
set to 1IMB by default.

C API Reference

Table 7-5 (Cont.) Constants

Type for invalue
Constant parameter

Type for outvalue
parameter

Description

LDAP_OPT_DEREF int *
(0x02)

LDAP_OPT_ int *
SIZELIMIT (0x03)

LDAP_OPT_ int *
TIMELIMIT (0x04)

LDAP_OPT_ void * (LDAP_
REFERRALS (0x08) OPT_ON or
LDAP_OPT_OFF)

int *

int *

int *

int *

Determines how aliases are handled
during search. It SHOULD have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHING (0x01),
LDAP_DEREF_FINDING (0x02), or
LDAP_DEREF_ALWAYS (0x03). The
LDAP_DEREF_SEARCHING value means
aliases are dereferenced during the search
but not when locating the base object of the
search. The LDAP_DEREF_FINDING
value means aliases are dereferenced when
locating the base object but not during the
search. The default value for this option is
LDAP_DEREF_NEVER.

A limit on the number of entries to return
from a search. A value of LDAP_NO_
LIMIT (0) means no limit. The default
value for this option is LDAP_NO_LIMIT.

A limit on the number of seconds to spend
on a search. A value of LDAP_NO_LIMIT
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to ldap_search_ext_s() or ldap_
result() -- both of which are described later
in this document -- can be used to specify
both a local and server side time limit. The
default value for this option is LDAP_NO_
LIMIT.

Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It MAY be set to one
of the constants LDAP_OPT_ON or
LDAP_OPT_OFF; any non- NULL pointer
value passed to ldap_set_option() enables
this option. When reading the current
setting using ldap_get_option(), a zero
value means OFF and any nonzero value
means ON. By default, this option is ON.

The C API for Oracle Internet Directory 7-13

C API Reference

Table 7-5 (Cont.) Constants

Constant

Type for invalue
parameter

Type for outvalue
parameter

Description

LDAP_OPT_
RESTART (0x09)

LDAP_OPT_
PROTOCOL_
VERSION (0x11)

LDAP_OPT_
SERVER_
CONTROLS (0x12)

LDAP_OPT_
CLIENT_
CONTROLS (0x13)

LDAP_OPT_APIL_
FEATURE_INFO
(0x15)

LDAP_OPT_HOST_
NAME (0x30)

void * (LDAP_
OPT_ON or
LDAP_OPT_OFF)

int *

int * int *

LDAPControl ** LDAPControl ***

LDAPControl ** LDAPControl ***

not applicable LDAPAPIFeaturelnfo *
(option is

READ-ONLY)

char * char **

7-14 Oracle Internet Directory Application Developer's Guide

Determines whether LDAP I/O operations
are automatically restarted if they stop
prematurely. It MAY be set to one of the
constants LDAP_OPT_ON or LDAP_OPT_
OFF; any non-NULL pointer value passed
to Idap_set_option() enables this option.
When reading the current setting using
ldap_get_option(), a zero value means OFF
and any nonzero value means ON. This
option is useful if an LDAP I/O operation
can be interrupted prematurely, for
example by a timer going off, or other
interrupt. By default, this option is OFF.

This option indicates the version of the
LDAP protocol used when communicating
with the primary LDAP server. It
SHOULD be one of the constants LDAP_
VERSION2 (2) or LDAP_VERSIONS (3). If
no version is set the default is LDAP_
VERSION2 (2).

A default list of LDAP server controls to be
sent with each request.

See Also: "Working With Controls" on
page 7-16

A default list of client controls that affect
the LDAP session.

See Also: "Working With Controls" on
page 7-16

Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is READ-ONLY and cannot be set.

The host name (or list of hosts) for the
primary LDAP server. See the definition of
the host name parameter to ldap_init() for
the allowed syntax.

C API Reference

Table 7-5 (Cont.) Constants

Type for invalue

Type for outvalue

Constant parameter parameter Description

LDAP_OPT_ int * int * The code of the most recent LDAP error
ERROR_NUMBER that occurred for this session.

(0x31)

LDAP_OPT_ char * char ** The message returned with the most recent
ERROR_STRING LDAP error that occurred for this session.
(0x32)

LDAP_OPT_ char * char ** The matched DN value returned with the

MATCHED_DN
(0x33)

most recent LDAP error that occurred for
this session.

Usage Notes

Both 1dap_get_option() and 1dap_set_option () return 0 if successful and
-1if an error occurs. If -1 is returned by either function, a specific error code MAY
be retrieved by calling ldap_get_option() with an option value of LDAP_OPT_
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code
if a call to Idap_get_option() with an option value of LDAP_OPT_ERROR_
NUMBER fails.

When a call to Idap_get_option() succeeds, the API implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
call to ldap_get_option() fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When a call to ldap_set_option() fails, it MUST NOT change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects
the behavior of future LDAP API calls.

Standards track documents that extend this specification and specify new options
SHOULD use values for option macros that are between 0x1000 and 0x3FFF
inclusive. Private and experimental extensions SHOULD use values for the option
macros that are between 0x4000 and 0x7FFF inclusive. All values less than 0x1000
and greater than Ox7FFF that are not defined in this document are reserved and
SHOULD NOT be used. The following macro MUST be defined by C LDAP API
implementations to aid extension implementors:

#define LDAP OPT PRIVATE EXTENSION_BASE 0x4000 /* to OxX7FFF inclusive */

The C API for Oracle Internet Directory 7-15

C API Reference

Working With Controls

LDAPv3 operations can be extended through the use of controls. Controls can be
sent to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are
never sent to a server. A common data structure is used to represent both types of
controls:

typedef struct ldapcontrol
{

char *1dctl_oid;
struct berval 1dctl _wvalue;
char 1dctl_iscritical;

} LDAPControl;
The fields in the ldapcontrol structure are described in Table 7-6.

Table 7-6 Fields in Idapcontrol Structure

Field Description
ldctl_oid The control type, represented as a string.
ldctl_value The data associated with the control (if any). To specify a

zero-length value, set Idctl_value.bv_len to zero and ldctl_
value.bv_val to a zero-length string. To indicate that no data is
associated with the control, set 1dctl_value.bv_val to NULL.

1dctl_iscritical Indicates whether the control is critical of not. If this field is
nonzero, the operation will only be carried out if the control is
recognized by the server and/or client. Note that the LDAP
unbind and abandon operations have no server response, so
clients SHOULD NOT mark server controls critical when used
with these two operations.

Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated array
of ldapcontrol structures. The following routines can be used to dispose of a single
control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);
void ldap_controls_free(LDAPControl **ctrls);

If the ctrl or ctrls parameter is NULL, these calls do nothing.

7-16 Oracle Internet Directory Application Developer's Guide

C API Reference

A set of controls that affect the entire session can be set using the 1dap_set_
option () function described in "ldap_set_option" on page 7-10. A list of controls
can also be passed directly to some LDAP API calls such as Idap_search_ext(), in
which case any controls set for the session through the use of ldap_set_option() are
ignored. Control lists are represented as a NULL-terminated array of pointers to
ldapcontrol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example,
a control has been proposed to support server-side sorting of search results.

One client control is defined in this document (described in the following section).
Other client controls MAY be defined in future revisions of this document or in
documents that extend this APIL.

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 7-10, applications can enable and disable automatic
chasing of referrals on a session-wide basic by using the 1dap_set_option()
function with the LDAP_OPT_REFERRALS option. It is also useful to govern
automatic referral chasing on per-request basis. A client control with an OID of
1.2.840.113556.1.4.616 exists to provide this functionality.

/* OID for referrals client control */
#define LDAP CONTROL, REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP CHASE_SUBORDINATE REFERRALS 0x00000020U0
#define LDAP CHASE_EXTERNAIL, REFERRALS 0x00000040U0

To create a referrals client control, the 1dctl_oid field of an LDAPControl structure
MUST be set to LDAP_CONTROL_REFERRALS ("1.2.840.113556.1.4.616") and the
ldctl_value field MUST be set to a 4-octet value that contains a set of flags. The
ldctl_value.bv_len field MUST always be set to 4. The ldctl_value.bv_val field
MUST point to a 4-octet integer flags value. This flags value can be set to zero to
disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_CHASE_
SUBORDINATE_REFERRALS (0x00000020U) to indicate that only LDAPv3 search
continuation references are to be automatically chased by the API implementation,
to the value LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate
that only LDAPv3 referrals are to be automatically chased, or the logical OR of the
two flag values (0x00000060U) to indicate that both referrals and references are to
be automatically chased.

The C API for Oracle Internet Directory 7-17

C API Reference

Authenticating to the Directory

The following functions are used to authenticate an LDAP client to an LDAP
directory server.

Idap_sasl_bind
Idap_sasl_bind_s
Idap_simple_bind

Idap_simple_bind_s

The Idap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do general
and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the dn to bind as, the method
to use, as a dotted-string representation of an object identifier identifying the
method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or
the simplified routines ldap_simple_bind() or Idap_simple_bind_s() can be used.

Syntax

int ldap_sasl bind

(
LDAP *1d,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

int ldap_sasl bind_ s(

LDAP *1d,

const char *dn,

const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp

7-18 Oracle Internet Directory Application Developer's Guide

C API Reference

int ldap_simple_bind(

LDAP
const char
const char

*1d,
*dl’l,
*passwd

int ldap_simple_bind s(

LDAP

const char

const char
)i

*1d,
*dl’l,
*passwd

The use of the following routines is deprecated and more complete descriptions can
be found in RFC 1823:

int Idap_bind(LDAP *1d, const char *dn, const char *cred, int method);

int Idap_bind_s(LDAP *1d, const char *dn, const char *cred, int method);
int Idap_kerberos_bind(LDAP *1d, const char *dn);
int Idap_kerberos_bind_s(LDAP *1d, const char *dn);

Parameters

Table 7-7 lists and describes the parameters for authenticating to the directory.

Table 7-7 Parameters for Authenticating to the Directory

Parameter Description

1d The session handle

dn The name of the entry to bind as

mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or a
text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For ldap_simple_bind(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

The C API for Oracle Internet Directory 7-19

C API Reference

Table 7-7 (Cont.) Parameters for Authenticating to the Directory

Parameter Description

msgidp This result parameter will be set to the message id of the request if the
ldap_sasl_bind() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated berval
structure is returned that SHOULD be disposed of by calling
ber_bvfree(). NULL SHOULD be passed to ignore this field.

Usage Notes

Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The Idap_sasl_bind() function initiates an asynchronous bind operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, ldap_sasl_bind() places the message id of the request
in *msgidp. A subsequent call to ldap_result(), described in "ldap_result" on

page 7-47, can be used to obtain the result of the bind.

The Idap_simple_bind() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to Idap_
result(), described in , can be used to obtain the result of the bind. In case of error,
ldap_simple_bind() will return -1, setting the session error parameters in the LDAP
structure appropriately.

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPv2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to ldap_
sasl_bind() or ldap_sasl_bind_s().

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

7-20 Oracle Internet Directory Application Developer's Guide

C API Reference

SASL Authentication Using Oracle Extensions
The function ora_ldap_init_SASL()can be used for SASL based authentication.

This function among other arguments accepts

DN of the entity to be authenticated.

SASL credential handle for the entity. (This handle can be managed using ora_
ldap_create_cred_hdl(), ora_ldap_set_cred_props() and ora_ldap_free_cred_
hdl() functions).

SASL mechanism to be used.

This function encapsulates the SASL handshake between the client and the
directory server for various standard SASL mechanisms thereby reducing the
coding effort involved in establishing a SASL-based connection to the directory
server.

Supported SASL mechanisms:

DIGEST-MD5

The SASL API supports the authentication only mode of DIGEST-MD5. The
other two authentication modes addressing data privacy and data integrity are
yet to be supported.

While authenticating against Oracle Internet Directory, the DN of the user has
to be normalized before it is sent across to the server. This can be done either
outside the SASL API using the ora_ldap_normalize_dn () function before
the DN is passed on to the SASL API or with the SASL API by setting the ORA_
LDAP_CRED_SASL_NORM_AUTHDN option in SASL credentials handle using
ora_ldap_set_cred_handle().

EXTERNAL:

The SASL API and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requies that the SSL connection (mutual authentication
mode) be established to the directory server by using the ora_ldap_init_
SSL () function. The ora_ldap_init_SASL () function can then be invoked
with the mechanism argument as EXTERNAL. The directory server would then
authenticate the user based on the user credentials in SSL. connection.

The C API for Oracle Internet Directory 7-21

C API Reference

The following functions are used to create and manage SASL credential handles.
ora_ldap_create_cred_hdl
ora_ldap_set_cred_props
ora_ldap_get_cred_props

ora_ldap_free_cred_hdl

The ora_ldap_create_cred_hdl function should be used to create a SASL
credential handle of certain type based on the type of mechanism used for SASL
authentication. The ora_ldap_set_cred_props () can be used to add relevant
credentials to the handle needed for SASL authentication. The ora_ldap_get_
cred_props () function can be used for retrieving the properties stored in the
credential handle, and ora_ldap_free cred_hdl () function should be used to
destroy the handle after its use.

Syntax

OraldapHandle ora_ldap create cred hdl
(
OraLdapClientCtx * clientCtx,
int credType
)i

OraldapHandle ora_ldap set cred_props
(
OraLdapClientCtx * clientCtx,

OraLdapHandle cred,
int propType,
void * inProperty

)i
OraldapHandle ora_ldap get cred_props
(
OraLdapClientCtx * clientCtx,
OraLdapHandle cred,
int propType,
void * outProperty
)i

OraldapHandle ora_ldap free cred hdl
(

7-22 Oracle Internet Directory Application Developer's Guide

C API Reference

OraLdapClientCtx * clientCtx,
OraLdapHandle cred

)

Parameters

Table 7-8 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx() and ora_ldap_free_clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

propType Type of credential, which needs to be added to credential
handle.

inProperty One of the SASL Credentials to be stored in credential handle.

outProperty One of the SASL credentials stored in credential handle.

SASL Authentication

The following function can be used for SASL authentication:

ora_ldap_init_SASL
This function performs SASL authentication based on the mechanism specified as
one of its input arguments.

Syntax

int ora_ldap_ init_SASL

(

OraldapClientCtx * clientCtx,
LDAPF1d,

char* dn,

char* mechanism,
OraldapHandle cred,
LDAPControl**serverctrls,

The C API for Oracle Internet Directory 7-23

C API Reference

LDAPControl**clientctrls
)i

Parameters

Table 7-9 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx () and ora_ldap_free_clientctx()
functions.

1d Ldap session handle.

dn User DN who needs to be authenticated.

mechanism SASL mechanism.

cred Credentials needed for SASL authentication.

serverctrls List of LDAP server controls

clientctrls List of client controls

Closing the Session

The following functions are used to unbind from the directory, close open
connections, and dispose of the session handle.

Idap_unbind_ext
Idap_unbind
Idap_unbind_s

Syntax

int ldap_unbind_ext(LDAP *1d, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap unbind(LDAP *1d);

int ldap_unbind_s(LDAP *1d);

7-24 Oracle Internet Directory Application Developer's Guide

C API Reference

Parameters

Table 7-10 Parameters for Closing the Session

Parameter Description

1d The session handle
serverctrls List of LDAP server controls
clientctrls List of client controls

Usage Notes

The Idap_unbind_ext(), Idap_unbind() and ldap_unbind_s() all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all
resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request
cannot be sent to the LDAP server). After a call to one of the unbind functions, the
session handle 1d is invalid and it is illegal to make any further LDAP API calls
using 1d.

The ldap_unbind() and ldap_unbind_s() functions behave identically. The ldap_
unbind_ext() function allows server and client controls to be included explicitly, but
note that since there is no server response to an unbind request there is no way to
receive a response to a server control sent with an unbind request.

The C API for Oracle Internet Directory 7-25

C API Reference

Performing LDAP Operations

These functions are used to search the LDAP directory, returning a requested set of
attributes for each entry matched:

Idap_search_ext
Idap_search_ext_s
Idap_search
Idap_search_s

Idap_search_st

Syntax
int ldap_search_ext
(
LDAP *1d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp

int ldap_search_ext_s

LDAP *1d,

const char *base,

int scope,

const char *filter,

char **attrs,

int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,

struct timeval *timeout,

7-26 Oracle Internet Directory Application Developer's Guide

C API Reference

int sizelimit,
LDAPMessage **res

int ldap_search

LDAP *1d,

const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly

int ldap_search_s

LDAP *1d,

const char *base,

int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPMessage **res

int ldap_search_st

LDAP *1d,

const char *base,

int scope,
const char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res

The C API for Oracle Internet Directory 7-27

C API Reference

Parameters

Table 7-11 lists and describes the parameters for search operations.

Table 7-11

Parameters for Search Operations

Parameter

Description

1d
base

scope

filter

attrs

attrsonly

The session handle.
The dn of the entry at which to start the search.

One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_
ONELEVEL (0x01), or LDAP_SCOPE_SUBTREE (0x02),
indicating the scope of the search.

A character string representing the search filter. The value
NULL can be passed to indicate that the filter "(objectclass=*)"
which matches all entries is to be used. Note that if the caller of
the API is using LDAPV2, only a subset of the filter
functionality can be successfully used.

A NULL-terminated array of strings indicating which
attributes to return for each matching entry. Passing NULL for
this parameter causes all available user attributes to be
retrieved. The special constant string LDAP_NO_ATTRS ("1.1")
MAY be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special
constant string LDAP_ALL_USER_ATTRS ("*") can be used in
the attrs array along with the names of some operational
attributes to indicate that all user attributes plus the listed
operational attributes are to be returned.

A boolean value that MUST be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

7-28 Oracle Internet Directory Application Developer's Guide

C API Reference

Table 7-11 (Cont.) Parameters for Search Operations

Parameter

Description

timeout

sizelimit

res

serverctrls

clientctrls

For the ldap_search_st() function, this specifies the local search
timeout value (if it is NULL, the timeout is infinite). If a zero
timeout (Where tv_sec and tv_usec are both zero) is passed,
API implementations SHOULD return LDAP_PARAM _
ERROR. For the ldap_search_ext() and ldap_search_ext_s()
functions, the timeout parameter specifies both the local search
timeout value and the operation time limit that is sent to the
server within the search request. Passing a NULL value for
timeout causes the global default timeout stored in the LDAP
session handle (set by using ldap_set_option() with the LDAP_
OPT_TIMELIMIT parameter) to be sent to the server with the
request but an infinite local search timeout to be used. If a zero
timeout (Where tv_sec and tv_usec are both zero) is passed in,
API implementations SHOULD return LDAP_PARAM _
ERROR. If a zero value for tv_sec is used but tv_usec is
nonzero, an operation time limit of 1 SHOULD be passed to
the LDAP server as the operation time limit. For other values
of tv_sec, the tv_sec value itself SHOULD be passed to the
LDAP server.

For the ldap_search_ext() and ldap_search_ext_s() calls, this is
a limit on the number of entries to return from the search. A
value of LDAP_NO_LIMIT (0) means no limit.

For the synchronous calls, this is a result parameter which will
contain the results of the search upon completion of the call. If
no results are returned, *res is set to NULL.

List of LDAP server controls.

List of client controls.

The C API for Oracle Internet Directory 7-29

C API Reference

Table 7-11 (Cont.) Parameters for Search Operations

Parameter Description

msgidp This result parameter will be set to the message id of the
request if the ldap_search_ext() call succeeds.There are three
options in the session handle Id which potentially affect how
the search is performed. They are:

» LDAP_OPT_SIZELIMIT—A limit on the number of entries
to return from the search. A value of LDAP_NO_LIMIT (0)
means no limit. Note that the value from the session
handle is ignored when using the Idap_search_ext() or
ldap_search_ext_s() functions.

s LDAP_OPT_TIMELIMIT—A limit on the number of
seconds to spend on the search. A value of LDAP_NO_
LIMIT (0) means no limit. Note that the value from the
session handle is ignored when using the ldap_search_
ext() or Idap_search_ext_s() functions.

= LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER
(0x00), LDAP_DEREF_SEARCHING (0x01), LDAP_
DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS
(0x03), specifying how aliases are handled during the
search. The LDAP_DEREF_SEARCHING value means
aliases are dereferenced during the search but not when
locating the base object of the search. The LDAP_DEREF_
FINDING value means aliases are dereferenced when
locating the base object but not during the search.

Usage Notes

The Idap_search_ext() function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_search_ext() places the message
id of the request in *msgidp. A subsequent call to ldap_result(), described in "ldap_
result” on page 7-47, can be used to obtain the results from the search. These results
can be parsed using the result parsing routines described in detail later.

Similar to ldap_search_ext(), the ldap_search() function initiates an asynchronous
search operation and returns the message id of the operation initiated. As for ldap_
search_ext(), a subsequent call to Idap_result(), described in "ldap_result" on

page 7-47, can be used to obtain the result of the bind. In case of error, Idap_search()
will return -1, setting the session error parameters in the LDAP structure
appropriately.

The synchronous ldap_search_ext_s(), Idap_search_s(), and ldap_search_st()
functions all return the result of the operation, either the constant LDAP_SUCCESS

7-30 Oracle Internet Directory Application Developer's Guide

C API Reference

if the operation was successful, or another LDAP error code if it was not. Entries
returned from the search (if any) are contained in the res parameter. This parameter
is opaque to the caller. Entries, attributes, values, and so on, can be extracted by
calling the parsing routines described in this section. The results contained in res
SHOULD be freed when no longer in use by calling ldap_msgfree(), described later.

The Idap_search_ext() and ldap_search_ext_s() functions support LDAPv3 server
controls, client controls, and allow varying size and time limits to be easily specified
for each search operation. The Idap_search_st() function is identical to ldap_search_
s() except that it takes an additional parameter specifying a local timeout for the
search. The local search timeout is used to limit the amount of time the API
implementation will wait for a search to complete. After the local search timeout
expires, the API implementation will send an abandon operation to stop the search
operation.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

Reading an Entry

LDAP does not support a read operation directly. Instead, this operation is
emulated by a search with base set to the DN of the entry to read, scope set to
LDAP_SCOPE_BASE, and filter set to "(objectclass=*)" or NULL. attrs contains the
list of attributes to return.

Listing the Children of an Entry

LDAP does not support a list operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter set to "(objectclass=*)" or NULL. attrs contains the list of
attributes to return for each child entry.

Idap_compare_ext
Idap_compare_ext_s
Idap_compare
Idap_compare_s

These routines are used to compare a given attribute value assertion against an
LDAP entry.

The C API for Oracle Internet Directory 7-31

C API Reference

Syntax

int

(

int

int

int

)i

ldap_compare ext

LDAP

const char

const char

const struct berval
LDAPControl
LDAPControl

int

ldap_compare ext_s

LDAP

const char

const char

const struct berval
LDAPControl
LDAPControl

ldap_ compare

LDAP

const char
const char
const char

ldap compare s

LDAP

const char
const char
const char

Parameters

*1d,

*dn,

*attr,
*bvalue,
**serverctrls,
**clientctrls,
*msgidp

*1d,

*dn,

*attr,
*bvalue,
**serverctrls,
**clientctrls

*1d,
*dn,
*attr,
*value

*1d,
*dn,
*attr,
*value

Table 7-12 lists and describes the parameters for compare operations.

Table 7-12 Parameters for Compare Operations

Parameter Description

1d The session handle.

7-32 Oracle Internet Directory Application Developer's Guide

C API Reference

Table 7-12 (Cont.) Parameters for Compare Operations

Parameter Description

dn The name of the entry to compare against.

attr The attribute to compare against.

bvalue The attribute value to compare against those found in the

given entry. This parameter is used in the extended routines
and is a pointer to a struct berval so it is possible to compare
binary values.

value A string attribute value to compare against, used by the ldap_
compare() and ldap_compare_s() functions. Use ldap_
compare_ext() or Idap_compare_ext_s() if you need to compare
binary values.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the

request if the ldap_compare_ext() call succeeds.

Usage Notes

The Idap_compare_ext() function initiates an asynchronous compare operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_compare_ext() places the
message id of the request in *msgidp. A subsequent call to ldap_result(), described
in "ldap_result" on page 7-47, can be used to obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an
asynchronous compare operation and returns the message id of the operation
initiated. As for Idap_compare_ext(), a subsequent call to ldap_result(), described in
"ldap_result" on page 7-47, can be used to obtain the result of the bind. In case of
error, ldap_compare() will return -1, setting the session error parameters in the
LDAP structure appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

The Idap_compare_ext() and ldap_compare_ext_s() functions support LDAPv3
server controls and client controls.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

The C API for Oracle Internet Directory 7-33

C API Reference

Idap_modify_ext

Idap_modify_ext_s

Idap_modify
Idap_modify_s
These routines are used to modify an existing LDAP entry.
Syntax
typedef struct ldapmod
{
int mod_op;
char *mod_type;

union mod_vals u

{
char **modv_strvals;
struct berval **modv_bvals;
} mod _vals;

} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify ext

LDAP *1d,

const char *dn,

LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

int ldap_modify ext_s

LDAP *1d,

const char *dn,

LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls

7-34 Oracle Internet Directory Application Developer's Guide

C API Reference

int ldap_modify
(

LDAP *1d,
const char *dn,
LDAPMod **mods

)

int ldap_modify s

LDAP *1d,
const char *dn,
LDAPMod **mods
)
Parameters

Table 7-13 lists and describes the parameters for modify operations.

Table 7-13 Parameters for Modify Operations

Parameter Description

1d The session handle

dn The name of the entry to modify

mods A NULL-terminated array of modifications to make to the
entry

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the

request if the ldap_modify_ext() call succeeds

Table 7-14 lists and describes the fields in the LDAPMod structure.

Table 7-14 Fields in LDAPMod Structure

Field Description

mod_op The modification operation to perform. It MUST be one of
LDAP_MOD_ADD (0x00), LDAP_MOD_DELETE (0x01), or
LDAP_MOD_REPLACE (0x02). This field also indicates the
type of values included in the mod_vals union. It is logically
ORed with LDAP_MOD_BVALUES (0x80) to select the
mod_bvalues form. Otherwise, the mod_values form is used.

The C API for Oracle Internet Directory 7-35

C API Reference

Table 7-14 (Cont) Fields in LDAPMod Structure

Field Description
mod_type The type of the attribute to modify.
mod_vals The values (if any) to add, delete, or replace. Only one of the

mod_values or mod_bvalues variants can be used, selected by
ORing the mod_op field with the constant LDAP_MOD_
BVALUES. mod_values is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a
NULL-terminated array of berval structures that can be used to
pass binary values such as images.

Usage Notes

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values
after the modification, having been created if necessary, or removed if the mod_vals
field is NULL. All modifications are performed in the order in which they are listed.

The 1dap_modify_ext () function initiates an asynchronous modify operation
and returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, 1dap_modify_ext () places the
message id of the request in *msgidp. A subsequent call to 1dap_result (),
described in "ldap_result” on page 7-47, can be used to obtain the result of the
modify.

Similar to 1dap_modify_ ext (), the 1dap_modify () function initiates an
asynchronous modify operation and returns the message id of the operation
initiated. As for 1dap_modify_ext (), a subsequent call to 1dap_result (),
described in "ldap_result" on page 7-47, can be used to obtain the result of the
modify. In case of error, 1dap_modify () will return -1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous 1dap_modify ext_s() and ldap_modify_s () functions both
return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

The 1dap_modify_ext () and 1dap_modify_ext_s () functions support
LDAPv3 server controls and client controls.

7-36 Oracle Internet Directory Application Developer's Guide

C API Reference

See Also:

"Handling Errors and Parsing Results" on page 7-50 for

more information about possible errors and how to interpret them.

Idap_rename

Idap_rename_s

These routines are used to change the name of an entry.

int ldap_rename
(
LDAP
const char
const char
const char
int
LDAPControl
LDAPControl
int

int ldap_rename s

LDAP

const char
const char
const char
int
LDAPControl
LDAPControl

)i

*1d,

*dn,

*newrdn,
*newparent,
deleteoldrdn,
**serverctrls,
**clientctrls,
*msgidp

*1d,

*dn,

*newrdn,
*newparent,
deleteoldrdn,
**serverctrls,
**clientctrls

The use of the following routines is deprecated and more complete descriptions can
be found in RFC 1823:

int ldap_modrdn
(
LDAP
const char
const char

int ldap_modrdn_s

LDAP
const char
const char

*1d,
*dl’l,
*newrdn

*1d,
*dl’l,
*newrdn

The C API for Oracle Internet Directory 7-37

C API Reference

)i
int ldap_modrdn2
(

LDAP *1d,

const char *dn,

const char *newrdn,

int deleteoldrdn

int ldap_modrdn2_s

LDAP *1d,

const char *dn,

const char *newrdn,

int deleteoldrdn
)
Parameters

Table 7-15 lists and describes the parameters for rename operations.

Table 7-15 Parameters for Rename Operations

Parameter Description

1d The session handle.

dn The name of the entry whose DN is to be changed.

newrdn The new RDN to give the entry.

newparent The new parent, or superior entry. If this parameter is NULL,
only the RDN of the entry is changed. The root DN SHOULD
be specified by passing a zero length string, . The newparent
parameter SHOULD always be NULL when using version 2 of
the LDAP protocol; otherwise the server's behavior is
undefined.

deleteoldrdn This parameter only has meaning on the rename routines if
newrdn is different than the old RDN. It is a boolean value, if
nonzero indicating that the old RDN value(s) is to be removed,
if zero indicating that the old RDN value(s) is to be retained as
non-distinguished values of the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the

request if the ldap_rename() call succeeds.

7-38 Oracle Internet Directory Application Developer's Guide

C API Reference

Usage Notes

The 1dap_rename () function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_rename () places the DN message id of
the request in *msgidp. A subsequent call to 1dap_result (), described in "ldap_
result” on page 7-47, can be used to obtain the result of the rename.

The synchronous 1dap_rename_s () returns the result of the operation, either the
constant LDAP_ SUCCESS if the operation was successful, or another LDAP error
code if it was not.

The 1dap_rename () and 1dap_rename_s () functions both support LDAPv3
server controls and client controls.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

The C API for Oracle Internet Directory 7-39

C API Reference

7-40 Oracle Internet Directory Application Developer's Guide

Idap_add_ext

Idap_add_ext_s

Idap_add

Idap_add_s

These functions are used to add entries to the LDAP directory.

Syntax

int

(

int

int

int

ldap add ext

LDAP

const char
LDAPMod
LDAPControl
LDAPControl
int

ldap add ext s

LDAP

const char
LDAPMod
LDAPControl
LDAPControl

ldap add
LDAP

const char
LDAPMod
ldap add s
LDAP

const char
LDAPMod

*1d,

*dn,

**attrs,
**serverctrls,
**clientctrls,
*msgidp

*1d,

*dn,

**attrs,
**serverctrls,
**clientctrls

*1d,
*dl’l,
**attrs

*1d,
*dl’l,
**attrs

C API Reference

Parameters
Table 7-16 lists and describes the parameters for add operations.

Table 7-16 Parameters for Add Operations

Parameter Description

1d The session handle.

dn The name of the entry to add.

attrs The entry's attributes, specified using the LDAPMod structure

defined for Idap_modify(). The mod_type and mod_vals fields
MUST be filled in. The mod_op field is ignored unless ORed
with the constant LDAP_MOD_BVALUES, used to select the
mod_bvalues case of the mod_vals union.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter will be set to the message id of the

request if the ldap_add_ext() call succeeds.

Usage Notes

Note that the parent of the entry being added must already exist or the parent must
be empty—that is, equal to the root DN—for an add to succeed.

The 1dap_add_ext () function initiates an asynchronous add operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_add_ext () places the message id of
the request in *msgidp. A subsequent call to 1dap_result (), described in "ldap_
result” on page 7-47, can be used to obtain the result of the add.

Similar to 1dap_add_ext (), the 1dap_add () function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for 1dap_
add_ext (), a subsequent call to ldap_result(), described in "ldap_result" on

page 7-47, can be used to obtain the result of the add. In case of error, 1dap_add ()
will return -1, setting the session error parameters in the LDAP structure
appropriately.

The synchronous 1dap_add_ext_s () and 1dap_add_s () functions both return
the result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The 1dap_add_ext () and 1dap_add_ext_s () functions support LDAPv3
server controls and client controls.

The C API for Oracle Internet Directory 7-41

C API Reference

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

Idap_delete_ext
Idap_delete_ext_s
Idap_delete

Idap_delete_s

These functions are used to delete a leaf entry from the LDAP directory.

Syntax

int ldap delete ext

(
LDAP *1d,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_delete_ext_s
(

7-42 Oracle Internet Directory Application Developer's Guide

LDAP *1d,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls
)i
int Idap_delete
(
LDAP *1d,
const char *dn
)i
int ldap_delete_ s
(
LDAP *1d,
const char *dn

)i

C API Reference

Parameters
Table 7-17 lists and describes the parameters for delete operations.

Table 7-17 Parameters for Delete Operations

Parameter Description

1d The session handle.

dn The name of the entry to delete.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the

request if the ldap_delete_ext() call succeeds.

Usage Notes

Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

The 1dap_delete_ext () function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_delete_ext () places the message id
of the request in *msgidp. A subsequent call to 1dap_result (), described in
"ldap_result" on page 7-47, can be used to obtain the result of the delete.

Similar to 1dap_delete_ext (), the 1dap_delete () function initiates an
asynchronous delete operation and returns the message id of the operation
initiated. As for 1dap_delete_ext (), a subsequent call to 1dap_result (),
described in "ldap_result" on page 7-47, can be used to obtain the result of the
delete. In case of error, 1dap_delete () will return -1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous 1dap_delete_ext_s () and ldap_delete_s () functions both
return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

The 1dap_delete_ext () and 1dap_delete_ext_s () functions support
LDAPv3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

The C API for Oracle Internet Directory 7-43

C API Reference

Idap_extended_operation

Idap_extended_operation_s

These routines allow extended LDAP operations to be passed to the server,
providing a general protocol extensibility mechanism.

Syntax

int ldap_extended operation

(
LDAP *1d,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

int ldap_extended operation s

LDAP *1d,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap

)i

Parameters

Table 7-18 lists and describes the parameters for extended operations.

Table 7-18 Parameters for Extended Operations

Parameter Description

1d The session handle

requestoid The dotted-OID text string naming the request

requestdata The arbitrary data needed by the operation (if NULL, no data
is sent to the server)

serverctrls List of LDAP server controls

clientctrls List of client controls

7-44 Oracle Internet Directory Application Developer's Guide

C API Reference

Table 7-18 (Cont.) Parameters for Extended Operations

Parameter Description

msgidp This result parameter will be set to the message id of the
request if the ldap_extended_operation() call succeeds.

retoidp Pointer to a character string that will be set to an allocated,
dotted-OID text string returned by the server. This string
SHOULD be disposed of using the ldap_memfree() function. If
no OID was returned, *retoidp is set to NULL.

retdatap Pointer to a berval structure pointer that will be set an
allocated copy of the data returned by the server. This struct
berval SHOULD be disposed of using ber_bvfree(). If no data
is returned, *retdatap is set to NULL.

Usage Notes

The 1dap_extended_operation () function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, 1dap_extended_
operation () places the message id of the request in *msgidp. A subsequent call
to 1dap_result (), described in "ldap_result" on page 7-47, can be used to obtain
the result of the extended operation which can be passed to 1dap_parse_
extended_result () to obtain the OID and data contained in the response.

The synchronous 1dap_extended_operation_s () function returns the result of
the operation, either the constant LDAP_ SUCCESS if the operation was successful, or
another LDAP error code if it was not. The retoid and retdata parameters are filled
in with the OID and data from the response. If no OID or data was returned, these
parameters are set to NULL.

The 1dap_extended_operation() and 1dap_extended_operation_ s ()
functions both support LDAPv3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

The C API for Oracle Internet Directory 7-45

C API Reference

Abandoning an Operation
Idap_abandon_ext

Idap_abandon
These calls are used to abandon an operation in progress:

Syntax

int ldap_abandon_ext

(
LDAP *1d,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls

int ldap_abandon

LDAP *1d,
int msgid
)
Parameters

Table 7-19 lists and describes the parameters for abandoning an operation.

Table 7-19 Parameters for Abandoning an Operation

Parameter Description

1d The session handle.

msgid The message id of the request to be abandoned.
serverctrls List of LDAP server controls.

clientctrls List of client controls.

Usage Notes

ldap_abandon_ext () abandons the operation with message id msgid and
returns the constant LDAP_SUCCESS if the abandon was successful or another
LDAP error code if not.

7-46 Oracle Internet Directory Application Developer's Guide

C API Reference

ldap_abandon () is identical to 1dap_abandon_ext () except that it does not
accept client or server controls and it returns zero if the abandon was successful, -1
otherwise.

After a successful call to 1dap_abandon () or 1dap_abandon_ext (), results
with the given message id are never returned from a subsequent call to 1dap_
result (). There is no server response to LDAP abandon operations.

See Also: "Handling Errors and Parsing Results" on page 7-50 for
more information about possible errors and how to interpret them.

Obtaining Results and Peeking Inside LDAP Messages
Idap_result
Idap_msgfree
Idap_msgtype

Idap_msgid

ldap_result () is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, 1dap_result () can actually
return a list or "chain" of result messages. The 1dap_result () function only
returns messages for a single request, so for all LDAP operations other than search
only one result message is expected; that is, the only time the "result chain" can
contain more than one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of
messages returned by calling 1dap_result () or by calling a synchronous search
routine will never be affected by subsequent LDAP API calls (except for 1dap_
msgfree () which is used to dispose of a chain of messages).

ldap_msgfree () frees the result messages (possibly an entire chain of messages)
obtained from a previous call to 1dap_result () or from a call to a synchronous
search routine.

ldap_msgtype () returns the type of an LDAP message. 1dap_msgid () returns
the message ID of an LDAP message.

The C API for Oracle Internet Directory 7-47

C API Reference

Syntax

int ldap_result

(
LDAP *1d,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res

)i
int ldap msgfree(LDAPMessage *res);
int ldap_msgtype(LDAPMessage *res);

int ldap_msgid(LDAPMessage *res);

Parameters

Table 7-20 lists and describes the parameters for obtaining results and peeling

inside LDAP messages.

Table 7-20 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter

Description

1d
msgid

all

timeout

res

The session handle.

The message id of the operation whose results are to be
returned, the constant LDAP_RES_UNSOLICITED (0) if an
unsolicited result is desired, or the constant LDAP_RES_ANY
(-1) if any result is desired.

Specifies how many messages will be retrieved in a single call
to ldap_result(). This parameter only has meaning for search
results. Pass the constant LDAP_MSG_ONE (0x00) to retrieve
one message at a time. Pass LDAP_MSG_ALL (0x01) to request
that all results of a search be received before returning all
results in a single chain. Pass LDAP_MSG_RECEIVED (0x02)
to indicate that all messages retrieved so far are to be returned
in the result chain.

A timeout specifying how long to wait for results to be
returned. A NULL value causes ldap_result() to block until
results are available. A timeout value of zero seconds specifies
a polling behavior.

For ldap_result(), a result parameter that will contain the
result(s) of the operation. If no results are returned, *res is set
to NULL. For ldap_msgfree(), the result chain to be freed,
obtained from a previous call to ldap_result(), ldap_search_s(),
or ldap_search_st(). If res is NULL, nothing is done and Idap_
msgfree() returns zero.

7-48 Oracle Internet Directory Application Developer's Guide

C API Reference

Usage Notes

Upon successful completion, 1dap_result () returns the type of the first result
returned in the res parameter. This will be one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)
LDAP_RES_SEARCH_REFERENCE (0x73)--new in LDAPv3
LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) --new in LDAPv3

ldap_result () returns O if the timeout expired and -1 if an error occurs, in
which case the error parameters of the LDAP session handle will be set accordingly.

LDAP_MSGFREE () frees each message in the result chain pointed to by res and
returns the type of the last message in the chain. If RES is NULL, then nothing is
done and the value zero is returned.

LDAP_MSGTYPE () returns the type of the LDAP message it is passed as a
parameter. The type will be one of the types listed previously, or —1 on error.

LDAP_MSGID () returns the message ID associated with the LDAP message passed
as a parameter, or —1 on error.

The C API for Oracle Internet Directory 7-49

C API Reference

Handling Errors and Parsing Results
Idap_parse_result
Idap_parse_sasl_bind_result
Idap_parse_extended_result

Idap_err2string

These calls are used to extract information from results and handle errors returned
by other LDAP API routines. Note that LDAP_ PARSE_ SASL_BIND_RESULT () and
LDAP_ PARSE_EXTENDED_RESULT () must typically be used in addition to LDAP__
PARSE_RESULT () to retrieve all the result information from SASL Bind and
Extended Operations respectively.

Syntax

int ldap_parse result

(
LDAP *1d,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***gserverctrlsp,
int freeit

int ldap_parse sasl_bind result

LDAP *1d,
LDAPMessage *res,

struct berval **servercredp,
int freeit

int ldap_parse extended result

LDAP *1d,
LDAPMessage *res,

7-50 Oracle Internet Directory Application Developer's Guide

C API Reference

char **retoidp,
struct berval **retdatap,
int freeit
)i
#define LDAP NOTICE OF DISCONNECTION "1.3.6.1.4.1.1466.20036"

char *1dap err2string(int err);

The use of the following routines is deprecated and more complete descriptions can
be found in RFC 1823:

int ldap result2error

(

LDAP *1d,
LDAPMessage *res,
int freeit

)i
void ldap_perror(LDAP *1d, const char *msg);

Parameters
Table 7-21 lists and describes parameters for handling errors and parsing results.

Table 7-21 Parameters for Handling Errors and Parsing Results

Parameter Description
1d The session handle.
res The result of an LDAP operation as returned by ldap_result()

or one of the synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error
code field from the LDAPMessage message. This is the
indication from the server of the outcome of the operation.
NULL SHOULD be passed to ignore this field.

matcheddnp In the case of a return of LDAP_NO_ SUCH_OBJECT, this result
parameter will be filled in with a DN indicating how much of
the name in the request was recognized. NULL SHOULD be
passed to ignore this field. The matched DN string SHOULD
be freed by calling 1dap_memfree () which is described later
in this document.

errmsgp This result parameter will be filled in with the contents of the
error message field from the LDAPMessage message. The error
message string SHOULD be freed by calling 1dap_
memfree () which is described later in this document. NULL
SHOULD be passed to ignore this field.

The C API for Oracle Internet Directory 7-51

C API Reference

Table 7-21 (Cont.) Parameters for Handling Errors and Parsing Results

Parameter

Description

referralsp

serverctrlsp

freeit

servercredp

retoidp

retdatap

err

This result parameter will be filled in with the contents of the
referrals field from the LDAPMessage message, indicating zero
or more alternate LDAP servers where the request is to be
retried. The referrals array SHOULD be freed by calling 1dap_
value_free () which is described later in this document.
NULL SHOULD be passed to ignore this field.

This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage message. The control
array SHOULD be freed by calling 1dap_controls_free ()
which was described earlier.

A Boolean that determines whether the res parameter is
disposed of or not. Pass any nonzero value to have these
routines free res after extracting the requested information.
This is provided as a convenience; you can also use ldap_
msgfree() to free the result later. If freeit is nonzero, the entire
chain of messages represented by res is disposed of.

For SASL bind results, this result parameter will be filled in
with the credentials passed back by the server for mutual
authentication, if given. An allocated berval structure is
returned that SHOULD be disposed of by calling ber_bvfree().
NULL SHOULD be passed to ignore this field.

For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string SHOULD be disposed of by
calling Idap_memfree(). NULL SHOULD be passed to ignore
this field. The LDAP_NOTICE_OF_DISCONNECTION macro is
defined as a convenience for clients that wish to check an OID
to see if it matches the one used for the unsolicited Notice of
Disconnection (defined in RFC 2251[2] section 4.4.1).

For extended results, this result parameter will be filled in with
a pointer to a struct berval containing the data in the extended
operation response. It SHOULD be disposed of by calling ber_
bvfree(). NULL SHOULD be passed to ignore this field.

For 1dap_err2string (), an LDAP error code, as returned
by ldap_parse_result () or another LDAP API call.

Usage Notes

Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

7-52 Oracle Internet Directory Application Developer's Guide

C API Reference

The 1dap_parse_result (), ldap_parse_sasl_bind_result (), and ldap_parse_
extended_result () functions all skip over messages of type LDAP_RES_SEARCH_
ENTRY and LDAP_RES_SEARCH_REFERENCE when looking for a result message to
parse. They return the constant LDAP_SUCCESS if the result was successfully parsed
and another LDAP error code if not. Note that the LDAP error code that indicates
the outcome of the operation performed by the server is placed in the errcodep
ldap_parse_result () parameter. If a chain of messages that contains more than
one result message is passed to these routines they always operate on the first result
in the chain.

ldap_err2string () is used to convert a numeric LDAP error code, as returned by
ldap_parse_result (), ldap_parse_sasl_bind_result (), ldap_parse_
extended_result () or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It
returns a pointer to static data.

Stepping Through a List of Results

These routines are used to step through the list of messages in a result chain
returned by 1dap_result ().

Idap_first_message

Idap_next_message
For search operations, the result chain can actually include referral messages, entry
messages, and result messages.

ldap_count_messages () is used to count the number of messages returned. The
ldap_msgtype () function, described previously, can be used to distinguish
between the different message types.

LDAPMessage *ldap_first_message(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next message(LDAP *1d, LDAPMessage *msg);
int ldap_count messages(LDAP *1d, LDAPMessage *res);

Parameters
Table 7-22 lists and describes the parameters for stepping through a list of results.

Table 7-22 Parameters for Stepping Through a List of Results

Parameter Description

1d The session handle.

The C API for Oracle Internet Directory 7-53

C API Reference

Table 7-22 (Cont.) Parameters for Stepping Through a List of Results

Parameter Description

res The result chain, as obtained by a call to one of the
synchronous search routines or ldap_result().

msg The message returned by a previous call to ldap_first_
message() or Idap_next_message().

Usage Notes

ldap_first_message() and ldap_next_message () will return NULL when
no more messages exist in the result set to be returned. NULL is also returned if an
error occurs while stepping through the entries, in which case the error parameters
in the session handle 1d will be set to indicate the error.

If successful, 1dap_count_messages () returns the number of messages
contained in a chain of results; if an error occurs such as the res parameter being
invalid, -1 is returned. The 1dap_count_messages () call can also be used to
count the number of messages that remain in a chain if called with a message, entry,
or reference returned by 1dap_first_message(), ldap_next_message(),
ldap_first_entry (), ldap_next_entry (), ldap_first_reference(),
ldap_next_reference().

Parsing Search Results

The following calls are used to parse the entries and references returned by 1dap_
search () and friends. These results are returned in an opaque structure that MAY
be accessed by calling the routines described in this section. Routines are provided
to step through the entries and references returned, step through the attributes of an

7-54 Oracle Internet Directory Application Developer's Guide

C API Reference

entry, retrieve the name of an entry, and retrieve the values associated with a given
attribute in an entry.

Idap_first_entry
Idap_next_entry
Idap_first_reference
Idap_next_reference
Idap_count_entries

Idap_count_references

The 1dap_first_entry () and 1dap_next_entry () routines are used to step
through and retrieve the list of entries from a search result chain. The 1dap_
first_reference() and ldap_next_reference () routines are used to step
through and retrieve the list of continuation references from a search result chain.
ldap_count_entries () is used to count the number of entries returned. 1dap_
count_references () is used to count the number of references returned.

LDAPMessage *ldap_first_entry(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next_entry(LDAP *1d, LDAPMessage *entry);
LDAPMessage *ldap_first_reference(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next_ reference(LDAP *1d, LDAPMessage *ref);
int ldap_count_entries(LDAP *1d, LDAPMessage *res);

int ldap_count_ references(LDAP *1d, LDAPMessage *res);

Parameters

Table 7-23 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Table 7-23 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description
1d The session handle.
res The search result, as obtained by a call to one of the synchronous search

routines or ldap_result().

The C API for Oracle Internet Directory 7-55

C API Reference

Table 7-23 (Cont.) Parameters for Retrieving Entries and Continuation References
from a Search Result Chain, and for Counting Entries Returned

Parameter Description

entry The entry returned by a previous call to 1dap_first_entry() or Idap_next_
entry().

ref The reference returned by a previous call to ldap_first_reference() or

ldap_next_reference().

Usage Notes
ldap_first_entry(),ldap_next_entry(),ldap_first_reference() and
ldap_next_reference () all return NULL when no more entries or references
exist in the result set to be returned. NULL is also returned if an error occurs while
stepping through the entries or references, in which case the error parameters in the
session handle 1d will be set to indicate the error.

ldap_count_entries () returns the number of entries contained in a chain of
entries; if an error occurs such as the res parameter being invalid, -1 is returned.
The 1dap_count_entries () call can also be used to count the number of entries
that remain in a chain if called with a message, entry or reference returned by
ldap_first_message (), ldap_next_message (), ldap_first_entry (),
ldap_next_entry (), ldap_first_reference (), l1dap_next_

reference ().

ldap_count_references () returns the number of references contained in a
chain of search results; if an error occurs such as the res parameter being invalid,
-1 is returned. The 1dap_count_references () call can also be used to count
the number of references that remain in a chain.

7-56 Oracle Internet Directory Application Developer's Guide

C API Reference

Idap_first_attribute

Idap_next_attribute
These calls are used to step through the list of attribute types returned with an
entry.

char *ldap_first_attribute
(

LDAP *1d,
LDAPMessage *entry,
BerElement **ptr

)i

char *1dap next_attribute
(

LDAP *1d,
LDAPMessage *entry,
BerElement *ptr

)
void ldap_memfree(char *mem);

Parameters

Table 7—24 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 7-24 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

1d The session handle.

entry The entry whose attributes are to be stepped through, as
returned by 1dap_first_entry () or ldap_next_
entry ().

ptr Inldap_first_attribute (), the address of a pointer

used internally to keep track of the current position in the
entry. In 1dap_next_attribute (), the pointer returned
by a previous call to 1dap_first_attribute(). The
BerElement type itself is an opaque structure.

The C API for Oracle Internet Directory 7-57

C API Reference

Table 7-24 (Cont.) Parameters for Stepping Through Attribute Types Returned with

Parameter Description

mem A pointer to memory allocated by the LDAP library, such as
the attribute type names returned by 1dap_first_
attribute () and 1dap_next_attribute, or the DN
returned by 1dap_get_dn (). If memis NULL, the 1dap_
memfree () call does nothing.

Usage Notes

ldap_first_attribute() and 1dap_next_attribute () will return NULL
when the end of the attributes is reached, or if there is an error, in which case the
error parameters in the session handle Id will be set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This SHOULD be freed when no longer in use by calling 1dap_memfree ().

ldap_first_attribute () will allocate and return in ptr a pointer to a
BerElement used to keep track of the current position. This pointer MAY be
passed in subsequent calls to 1dap_next_attribute () to step through the
entry's attributes. After a set of calls to 1dap_first_attribute() and ldap_
next_attribute(),if ptr is non-NULL, it SHOULD be freed by calling ber_
free(ptr, 0).Note thatitis very important to pass the second parameter as 0
(zero) in this call, since the buffer associated with the BerElement does not point
to separately allocated memory.

The attribute type names returned are suitable for passing in a call to 1dap_get_
values () and friends to retrieve the associated values.

7-58 Oracle Internet Directory Application Developer's Guide

C API Reference

Idap_get_values
Idap_get_values_len
Idap_count_values
Idap_count_values_len
Idap_value_free

Idap_value_free_len

ldap_get_values () and 1dap_get_values_len () are used to retrieve the
values of a given attribute from an entry. 1dap_count_values () and 1dap_
count_values_len () are used to count the returned values.

ldap_value_free() and 1dap_value_free_len () are used to free the values.

Syntax

char **1ldap get_values

(
LDAP *1d,
LDAPMessage *entry,
const char *attr

)i

struct berval **1ldap get values_len
(

LDAP *1d,
LDAPMessage *entry,
const char *attr

)i

int ldap_count values(char **vals);
int ldap_count values_len(struct berval **vals);
void ldap_value_free(char **vals);
void ldap_value_free len(struct berval **vals);

The C API for Oracle Internet Directory 7-59

C API Reference

Parameters
Table 7-25 lists and describes the parameters for retrieving and counting attribute
values.

Table 7-25 Parameters for Retrieving and Counting Attribute Values

Parameter Description
1d The session handle.
entry The entry from which to retrieve values, as returned by ldap_

first_entry() or Idap_next_entry().

attr The attribute whose values are to be retrieved, as returned by
ldap_first_attribute () or ldap_next_
attribute (), or a caller-supplied string (for example,
"mail").

vals The values returned by a previous call to 1dap_get__
values () or ldap_get_values_len().

Usage Notes

Two forms of the various calls are provided. The first form is only suitable for use
with non-binary character string data. The second _1en form is used with any kind
of data.

ldap_get_values () and 1dap_get_values_len () return NULL if no values
are found for attr or if an error occurs.

ldap_count_values () and 1ldap_count_values_len() return -1 if an error
occurs such as the vals parameter being invalid.

If a NULL vals parameter is passed to 1dap_value_free () or ldap_value_
free_len(), nothing is done.

Note that the values returned are dynamically allocated and SHOULD be freed by
calling either 1dap_value_free() or 1dap_value_free_len() whenno
longer in use.

7-60 Oracle Internet Directory Application Developer's Guide

C API Reference

Idap_get_dn
Idap_explode_dn
Idap_explode_rdn

Idap_dn2ufn

ldap_get_dn() is used to retrieve the name of an entry. 1dap_explode_dn ()
and 1dap_explode_rdn () are used to break up a name into its component parts.
ldap_dn2ufn () is used to convert the name into a more "user friendly" format.

Syntax

char *1ldap get_dn(LDAP *1d, LDAPMessage *entry);

char **1dap explode dn(const char *dn, int notypes) ;
char **1dap explode rdn(const char *rdn, int notypes);
char *ldap dn2ufn(const char *dn);

Parameters
Table 7-26 lists and describes the parameters for retrieving, exploding, and
converting entry names.

Table 7-26 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description
1d The session handle.
entry The entry whose name is to be retrieved, as returned by

ldap_first_entry () or ldap_next_entry ().
dn The DN to explode, such as returned by 1dap_get_dn ().

rdn The RDN to explode, such as returned in the components of
the array returned by 1dap_explode_dn ().

notypes A Boolean parameter, if nonzero indicating that the DN or
RDN components are to have their type information stripped
off: cn=Babs would become Babs.

Usage Notes

ldap_get_dn () will return NULL if there is some error parsing the DN, setting
error parameters in the session handle 1d to indicate the error. It returns a pointer

The C API for Oracle Internet Directory 7-61

C API Reference

to newly allocated space that the caller SHOULD free by calling 1dap_memfree ()
when it is no longer in use.

ldap_explode_dn () returns a NULL-terminated char * array containing the
RDN components of the DN supplied, with or without types as indicated by the
notypes parameter. The components are returned in the order they appear in the
dn. The array returned SHOULD be freed when it is no longer in use by calling
ldap_value_free().

ldap_explode_rdn () returns a NULL-terminated char * array containing the
components of the RDN supplied, with or without types as indicated by the
notypes parameter. The components are returned in the order they appear in the
rdn. The array returned SHOULD be freed when it is no longer in use by calling
ldap_value_free().

ldap_dn2ufn () converts the DN into a user friendly format. The UFN returned is
newly allocated space that SHOULD be freed by a call to 1dap_memfree () when
no longer in use.

Idap_get_entry_controls
ldap_get_entry_controls() is used to extract LDAP controls from an entry.

Syntax
int ldap_get_entry controls
(
LDAP *1d,
LDAPMessage *entry,
LDAPControl ***gserverctrlsp
)i
Parameters
Table 7-27 lists and describes the parameters for extracting LDAP control from an
entry.

Table 7-27 Parameters for Extracting LDAP Controls from an Entry

Parameters Description
1d The session handle.
entry The entry to extract controls from, as returned by 1dap_

first_entry () or ldap_next_entry ().

7-62 Oracle Internet Directory Application Developer's Guide

C API Reference

Table 7-27 (Cont.) Parameters for Extracting LDAP Controls from an Entry

Parameters Description

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of entry. The control array SHOULD be
freed by calling 1dap_controls_free().If
serverctrlsp is NULL, no controls are returned.

Usage Notes
ldap_get_entry controls () returns an LDAP error code that indicates
whether the reference could be successfully parsed (LDAP_SUCCESS if all goes

well).

The C API for Oracle Internet Directory 7-63

C API Reference

Idap_parse_reference

ldap_parse_reference () is used to extract referrals and controls from a
SearchResultReference message.

Syntax

int ldap parse reference

(
LDAP *1d,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***gserverctrlsp,
int freeit

)i

Parameters

Table 7-28 lists and describes parameters for extracting referrals and controls from a
searchresultreference message.

Table 7-28 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description
1d The session handle.
ref The reference to parse, as returned by 1dap_result (),

ldap_first_reference(),or ldap_next_
reference().

referralsp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals
(typically LDAP URLSs) contained in ref. The array SHOULD
be freed when no longer in used by calling 1dap_value_
free().Ilf referralsp is NULL, the referral URLs are not
returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of ref. The control array SHOULD be
freed by calling 1dap_controls_free().If
serverctrlsp is NULL, no controls are returned.

freeit A Boolean that determines whether the ref parameter is
disposed of or not. Pass any nonzero value to have this routine
free ref after extracting the requested information. This is
provided as a convenience; you can also use 1dap__
msgfree () to free the result later.

7-64 Oracle Internet Directory Application Developer's Guide

Sample C APl Usage

Usage Notes

ldap_parse_reference () returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C APl Usage

The following examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The
sample code for the command-line tool to perform an LDAP search also
demonstrates use of the API in both the SSL and the non-SSL mode.

This section contains these topics:

s C API Usage with SSL

s C API Usage Without SSL

s C API Usage for SASL-Based DIGEST-MD5 Authentication

C API Usage with SSL

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <gsle.h>
#include <gslc.h>
#include <gsld.h>
#include "gslcc.h"

main()
{
LDAP *1d;
int ret = 0;

/* open a connection */
if ((1d = ldap_open("MyHost", 636)) == NULL)
exit(1);

/* SSL initialization */
ret = ldap init_SSL(&1d->1d_sb, "file:/sslwallet", "welcome",
GSLC_SSL,_ONEWAY_AUTH) ;
if(ret !'= 0)
{
printf (" %s \n", ldap_err2string(ret));

The C API for Oracle Internet Directory 7-65

Sample C API Usage

/* authenticate as nobody */

if (ldap_bind s(1d, NULL, NULL) != LDAP_SUCCESS) ({
ldap_perror(1d, "ldap_ bind s");
exit(1);

}

Because the user is making the 1dap_init_SSL call, the client/server
communication in the previous example is secured by using SSL.

C APl Usage Without SSL

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <gsle.h>
#include <gslc.h>
#include <gsld.h>
#include "gslcc.h"

main()
{
LDAP *1d;
int ret = 0;

/* open a connection */
if ((1d = ldap _open("MyHost", LDAP_PORT)) == NULL)
exit(1);

/* authenticate as nobody */

if (ldap_bind s(1d, NULL, NULL) != LDAP_SUCCESS) ({
ldap_perror(1d, "ldap_ bind s");
exit(1);

7-66 Oracle Internet Directory Application Developer's Guide

Sample C APl Usage

In the previous example, the user is not making the 1dap_init_SSL call, and the
client/server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication

This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MDS5 authentication to a directory server.

EXPORT FUNCTION (S)
NONE

INTERNAL FUNCTION(S)
NONE

STATIC FUNCTION (S)
NONE

NOTES
Usage:
saslbind -h <LDAP host> -p < LDAP port> -D < Authentication identity DN> \
-w <password >

options

-h LDAP host

- LDAP port

-D DN of the identity for authentication
-p Password

Default SASL authentication parameters used by the demo program
SASL Security Property : Currenty only "auth" security property
is supported by the C-API. This demo
program uses this security property.
SASL Mechanism : Supported mechanisms by OID
"DIGEST-MD5" - This demo program
illustrates it's usage.
"EXTERNAL" - SSL authentication is used.
(This demo program does
not illustrate it's usage.)
Authorization identity : This demo program does not use any
authorization identity.

MODIFIED (MM/DD/YY)
*kk koK Kk 06/12/03 - Creation

The C API for Oracle Internet Directory 7-67

Sample C API Usage

#include <stdio.h>
#include <stdlib.h>
#include <ldap.h>

static int ldap_version = LDAP_VERSION3;

main (int argc, char **argv)

{
LDAP* 14;
extern char* optarg;
char* ldap_host = NULL;
char* 1ldap bind_dn = NULL;
char* 1ldap bind_pw = NULL;
int authmethod = 0;
char ldap_local_host[256] = "localhost";
int 1ldap port = 389;
char* authcid = (char *)NULL;
char* mech = "DIGEST-MD5"; /* SASL mechanism */
char* authzid = (char *)NULL;
char* sasl_secprops = "auth";
char* realm = (char *)NULL;
int status = LDAP_SUCCESS;

OraLdapHandle sasl_cred = (OraldapHandle)NULL;
OraLdapClientCtx *cctx = (OraldapClientCtx *)NULL;
int i=0;

while ((i1 = getopt(argc, argv,
"D:h:p:w:E:P:U:V:W:0:R:X:Y:Z"
)) != EOF) {

switch(i) {

case 'h':/* ldap host */
ldap host = (char *)strdup(optarg);

7-68 Oracle Internet Directory Application Developer's Guide

Sample C APl Usage

break;

case 'D':/* bind DN */
authcid = (char *)strdup(optarg);
break;

case 'p':/* ldap port */
ldap port = atoi(optarg);
break;
case 'w':/* Password */
ldap bind pw = (char *)strdup(optarg);
break;

default:
printf ("Invalid Arguments passed\n") ;

/* Get the connection to the LDAP server */
if (ldap host == NULL)
ldap_host = ldap local_host;

if ((1d = ldap_open (ldap_host, ldap_port)) == NULL)
{

ldap_perror (1d, "ldap_init");

exit (1);

/* Create the client context needed by LDAP C-API Oracle Extension functions*/
status = ora_ldap_ init clientctx(&cctx);

1f (LDAP_SUCCESS != status) {
printf ("Failed during creation of client context \n");
exit (1) ;

/* Create SASL credentials */
sasl_cred = ora_ldap_create cred_hdl (cctx, ORA _LDAP_CRED HANDLE_ SASL, MDS) ;

ora_ldap set_cred props (cctx, sasl_cred, ORA_LDAP CRED_SASL, REAIM, (void
*)realm) ;

ora_ldap_set_cred props (cctx, sasl cred, ORA_LDAP CRED_SASI, AUTH PASSWORD,
(void *)ldap_lind pw) ;

ora_ldap_set_cred props (cctx, sasl cred, ORA_LDAP CRED_SASL, AUTHORIZATION_
ID, (void *)authzid);

The C API for Oracle Internet Directory 7-69

Building Applications with the C API

ora_ldap_set_cred props (cctx, sasl_cred, ORA _LDAP_CRED_SASL, SECURITY_
PROPERTIES, (void *)sasl_secprops) ;

/* If connecting to OID using SASL DIGEST-MD5, the Authentication ID
has to be normalized before it's sent to the server,
the LDAP C-API does this normalization based on the following flag set in

SASL credential properties */
ora_ldap set_cred props (cctx, sasl cred, ORA_LDAP_CRED_SASI, NORM AUTHDN, (void

*)NULL) ;

/* SASL Authetication to LDAP Server */
status = (int)ora_ldap init_ SASL(cctx, 1d, (char *)authcid, (char *)ORA_LDAP_
SASI, MECH_DIGEST MD5,
sasl_cred, NULL, NULL) ;

if (LDAP_SUCCESS == status) {

printf ("SASL bind successful \n");

telse {
printf ("SASL bind failed with status : %d\n", status);

/* Free SASL Credentials */
ora_ldap_free cred hdl (cctx, sasl cred);
status = ora_ldap_ free clientctx(cctx) ;

/* Unbind from LDAP server */
1dap_unbind (14d) ;

return (0);

/* end of file saslbind.c */

Building Applications with the C API

This section contains these topics:
= Required Header Files and Libraries

= Building a Sample Search Tool

7-70 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

Required Header Files and Libraries
To build applications with the C API, you need to:
s Include the header file located at $ ORACLE_HOME/1dap/public/ldap.h.

s Dynamically link to the library located at $ORACLE_
HOME/1lib/libclntsh.s0.9.0.

Building a Sample Search Tool

The Oracle Internet Directory SDK 10g (9.0.4) provides a sample command line tool,
samplesearch, for demonstrating how to use the C API to build applications. You
can use samplesearch to perform LDAP searches in either SSL or non-SSL mode.

You can find the source file (samplesearch. c) and the make file (demo_
ldap.mk) in the following directory: $§ORACLE_HOME /1dap/demo.

To build the sample search tool, enter the following command:

make -f demo_ldap.mk build EXE=samplesearch OBJS=samplesearch.o

Note: You can use this make file to build other client applications
by using the C APL Replace samplesearch with the name of the
binary you want to build, and samplesearch. o with your own
object file.

The sample code for samplesearch is:

/ *
NAME
sOgsldsearch.c - <one-line expansion of the name>
DESCRIPTION
<short description of component this file declares/defines>
PUBLIC FUNCTION(S)
<list of external functions declared/defined - with one-line descriptions>
PRIVATE FUNCTION(S)
<list of static functions defined in .c file - with one-line descriptions>
RETURNS
<function return values, for .c file with single function>
NOTES
<other useful comments, qualifications, and so on>
*/

#include <stdio.h>

The C API for Oracle Internet Directory 7-71

Building Applications with the C API

#include <string.h>
#include <ctype.h>

#include <netdb.h>

#include "ldap.h"

#define DEFSEP'='

#define LDAPSEARCH_BINDDN NULL
#define LDAPSEARCH_BASE DEFAULT BASE
#define DEFAULT BASE "o=oracle, c=US"

#ifdef LDAP DEBUG
extern int ldap_debug, lber debug;
#endif /* LDAP_DEBUG */

usage(s)
char*s;
{
fprintf(stderr, "usage: %s [options] filter [attributes...]\nwhere:\n", s
)i
fprintf(stderr, " filter\tRFC-1558 compliant LDAP search filter\n");
fprintf(stderr, " attributes\twhitespace-separated list of attributes to
retrieve\n");

fprintf(stderr, "\t\t(if no attribute list is given, all are retrieved)\n"

)i
fprintf(stderr, "options:\n");

fprintf(stderr, " -n\t\tshow what would be done but don't actually
search\n");

fprintf(stderr, " -v\t\trun in verbose mode (diagnostics to standard
output)\n") ;

fprintf(stderr, " -t\t\twrite values to files in /tmp\n");

fprintf(stderr, " -u\t\tinclude User Friendly entry names in the
output\n");

fprintf(stderr, " -A\t\tretrieve attribute names only (no values)\n");

fprintf(stderr, " -B\t\tdo not suppress printing of non-ASCII values\n"
)i

fprintf(stderr, " -L\t\tprint entries in LDIF format (-B is implied)\n"

)i
#ifdef LDAP REFERRALS

fprintf(stderr, " -R\t\tdo not automatically follow referrals\n");
#endif /* LDAP_REFERRALS */

fprintf(stderr, " -d level\tset LDAP debugging level to “level'\n");

fprintf(stderr, " -F sep\tprint ‘sep' instead of ‘=' between attribute
names and values\n");

fprintf(stderr, " -S attr\tsort the results by attribute “attr'\n");

fprintf(stderr, " -f file\tperform sequence of searches listed in

7-72 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

“file'\n");

fprintf(stderr, " -b basedn\tbase dn for search\n");

fprintf(stderr, " -s scope\tone of base, one, or sub (search scope)\n"
)i

fprintf(stderr, " -a deref\tone of never, always, search, or find (alias
dereferencing) \n");

fprintf(stderr, " -1 time lim\ttime limit (in seconds) for search\n");

fprintf(stderr, " -z size lim\tsize limit (in entries) for search\n");

fprintf(stderr, " -D binddn\tbind dn\n");

fprintf(stderr, " -w passwd\tbind passwd (for simple authentication)\n"

)

#ifdef KERBEROS

fprintf(stderr, " -k\t\tuse Kerberos instead of Simple Password
authentication\n");
#endif

fprintf(stderr, " -h host\tldap server\n");

fprintf(stderr, " -p port\tport on ldap server\n");

fprintf(stderr, " -W Wallet\tWallet location\n");

fprintf(stderr, " -P Wpasswd\tWallet Password\n");

fprintf(stderr, " -U SSLAuth\tSSL Authentication Mode\n");

return;

static char*binddn = LDAPSEARCH BINDDN;

static char*passwd = NULL;

static char*base = LDAPSEARCH BASE;

static char*ldaphost = NULL;

static intldapport = LDAP_PORT;

static char*sep = DEFSEP;

static char*sortattr = NULL;

static intskipsortattr = 0;

static intverbose, not, includeufn, allow _binary, vals2tmp, 1dif;
/* TEMP */

main(argc, argv)
intargc;
char**argv;

{

char*infile, *filtpattern, **attrs, line[BUFSIZ];
FILE fp;

intrc, i, first, scope, kerberos, deref, attrsonly;
intldap_options, timelimit, sizelimit, authmethod;
LDAP*1d;

extern char*optarg;

extern intoptind;

The C API for Oracle Internet Directory 7-73

Building Applications with the C API

charlocalHostName [MAXHOSTNAMELEN + 1];
char *sslwrl = NULL;
char*sslpasswd = NULL;

int sslauth=0,err=0;

infile = NULL;
deref = verbose = allow binary = not = kerberos = vals2tmp =
attrsonly = 1dif = 0;
#ifdef LDAP REFERRALS
1dap_options = LDAP OPT REFERRALS;
#else /* LDAP REFERRALS */
ldap options = 0;
#endif /* LDAP REFERRALS */
sizelimit = timelimit = 0;
scope = LDAP SCOPE_SUBTREE;

while ((i = getopt(argc, argv,
#ifdef KERBEROS
"KknuvtRABID:s: f:h:b:d:p:F:a:w:1:2:3:"
#else
"nuvtRABLD:s:f:h:b:d:p:F:a:w:1:z:S:W:P:U:"
#endif
)) != EOF) {
switch(i) {
case 'n':/* do Not do any searches */
++not;
break;
case 'v':/* verbose mode */
++verbose;
break;
case 'd':
#ifdef LDAP_ DEBUG
ldap debug = lber_debug = atoi(optarg);/* */
#else /* LDAP DEBUG */
fprintf(stderr, "compile with -DLDAP_DEBUG for debugging\n");
#endif /* LDAP DEBUG */
break;
#ifdef KERBEROS
case 'k':/* use kerberos bind */

kerberos = 2;
break;
case 'K':/* use kerberos bind, 1lst part only */
kerberos = 1;
break;
#endif

7-74 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

case 'u':/* include UFN */
++includeufn;
break;
case 't':/* write attribute values to /tmp files */
++vals2tmp;
break;
case 'R':/* don't automatically chase referrals */
#ifdef LDAP REFERRALS
ldap options &= ~LDAP_OPT REFERRALS;
#else /* LDAP REFERRALS */
fprintf(stderr,
"compile with -DLDAP_REFERRALS for referral support\n");
#endif /* LDAP REFERRALS */
break;
case 'A':/* retrieve attribute names only -- no values */
++attrsonly;
break;
case 'L':/* print entries in LDIF format */
++1dif;
/* fall through -- always allow binary when outputting LDIF */
case 'B':/* allow binary values to be printed */
++allow_binary;
break;
case 's':/* search scope */
if (strncasecmp(optarg, "base", 4) == 0) {
scope = LDAP SCOPE_BASE;
} else if (strncasecmp(optarg, "one", 3) ==) {
scope = LDAP SCOPE_ONELEVEL;
} else if (strncasecmp(optarg, "sub", 3) == 0) {
scope = LDAP SCOPE_SUBTREE;
} else {
fprintf (stderr, "scope should be base, one, or sub\n");
usage(argv[0 1);
exit(l);
}
break;

case 'a':/* set alias deref option */

if (strncasecmp(optarg, "never", 5) == 0) {
deref = LDAP_DEREF NEVER;

} else if (strncasecmp(optarg, "search", 5) ==) {
deref = LDAP DEREF SEARCHING;

} else if (strncasecmp(optarg, "find", 4) ==) {
deref = LDAP_DEREF FINDING;

} else if (strncasecmp(optarg, "always", 6) ==) |

The C API for Oracle Internet Directory 7-75

Building Applications with the C API

deref = LDAP DEREF AILWAYS;
} else {
fprintf (stderr, "alias deref should be never, search, find, or always\n");
usage(argvl[0 1);
exit(l);
}
break;

case 'F':/* field separator */

sep = (char *)strdup(optarg);
break;

case 'f':/* input file */
infile = (char *)strdup(optarg);
break;

case 'h':/* ldap host */
ldaphost = (char *)strdup(optarg);
break;

case 'b':/* searchbase */
base = (char *)strdup(optarg);
break;

case 'D':/* bind DN */
binddn = (char *)strdup(optarg);
break;

case 'p':/* ldap port */
ldapport = atoi(optarg);
break;

case 'w':/* bind password */
passwd = (char *)strdup(optarg);
break;

case 'l':/* time limit */
timelimit = atoi(optarg);
break;

case 'z':/* size limit */
sizelimit = atoi(optarg);
break;

case 'S':/* sort attribute */
sortattr = (char *)strdup(optarg);
break;

case 'W':/* Wallet URL */
sslwrl = (char *)strdup(optarg);
break;

case 'P':/* Wallet password */
sslpasswd = (char *)strdup(optarg);
break;

case 'U':/* SSL Authentication Mode */

7-76 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

sslauth = atoi(optarg);

break;
default:
usage(argv([0]);
exit(l);
break;
}
}

if (argc - optind < 1) {
usage(argv[0 1);

exit (1) ;
}
filtpattern = (char *)strdup(argv[optind]);
if (argv[optind + 1] == NULL) {
attrs = NULL;
} else if (sortattr == NULL || *sortattr == '\0') {
attrs = &argv|[optind + 1];
} else {
for (i = optind + 1; 1 < argc; i++) {
if (strcasecmp(argv[i], sortattr) == 0) {
break;
}
}
if (1 == argc) {
skipsortattr = 1;
argv[optind] = sortattr;
} else {
optind++;
}
attrs = &argv|[optind];
}
if (infile != NULL) {
if (infile[0] == '-' && infile[l] == '\0') {
fp = stdin;
} else if ((fp = fopen(infile, "r")) == NULL) {
perror(infile);
exit(1);
}
}
if (ldaphost == NULL) {
if (gethostname (localHostName, MAXHOSTNAMELEN) != 0) {

perror ("gethostname") ;

The C API for Oracle Internet Directory 7-77

Building Applications with the C API

exit(1);

}
ldaphost = localHostName;

if (verbose) {
printf("ldap open(%s, %d)\n", ldaphost, ldapport);

}

if ((1d = ldap_open(ldaphost, ldapport)) == NULL) {
perror (ldaphost);
exit(1);

}

if (sslauth > 1)

{
if (!sslwrl || !sslpasswd)

printf ("Null Wallet or password given\n");
exit (0);

}
if (sslauth > 0)

{
if (sslauth == 1)
sslauth = GSLC_SSI,_NO AUTH;
else if (sslauth == 2)
sslauth = GSLC_SSIL, ONEWAY_ AUTH;
else if (sslauth == 3)
sslauth = GSLC_SSIL, TWOWAY_ AUTH;

else

{
printf (" Wrong SSL Authenication Mode Value\n") ;

exit(0);

}

err = ldap init_SSL(&1d->1d_sb, sslwrl, sslpasswd, sslauth) ;
if (err != 0)

printf (" %s\n", ldap_err2string(err)) ;
exit(0);

1d->1d_deref = deref;

7-78 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

1d->1d_timelimit = timelimit;
1d->1d_sizelimit = sizelimit;
1d->1d_options = ldap options;

if (!kerberos) {
authmethod = LDAP_AUTH _SIMPLE;
} else if (kerberos == 1) {

authmethod = LDAP_AUTH KRBV41;
} else {
authmethod = LDAP AUTH KRBV4;
}
if (ldap bind_s(1d, binddn, passwd, authmethod) != LDAP_SUCCESS) {
ldap perror(1d, "ldap bind");
exit(1);
}

if (verbose) {
printf("filter pattern: %s\nreturning: ", filtpattern);
if (attrs == NULL) {

printf("ALL");

} else {
for (i =0; attrs[i] != NULL; ++i) {
printf("$s ", attrs[1]);
}
}
putchar('\n');
}

if (infile == NULL) {
rc = dosearch(1d, base, scope, attrs, attrsonly, filtpattern, "");

} else {

rc = 0;

first = 1;

while (rc == 0 && fgets(line, sizeof(line), fp) != NULL) {
line[strlen(line) -1 1 = '\0';

if (!'first) {
putchar('\n');

} else {
first = 0;
}
rc = dosearch(1d, base, scope, attrs, attrsonly, filtpattern,
line);
}
if (fp != stdin) {
fclose(fp);

The C API for Oracle Internet Directory 7-79

Building Applications with the C API

ldap_unbind(14);
exit(rc);

dosearch(1d, base, scope, attrs, attrsonly, filtpatt, value)

LDAP*1d;
char*base;
intscope;
char**attrs;
intattrsonly;
char*filtpatt;
char*value;

charfilter[BUFSIZ], **val;
intrc, first, matches;
LDAPMessage*res, *e;

sprintf(filter, filtpatt, value);

if (verbose) {
printf("filter is: (%s)\n", filter);

}

if (not) {
return(LDAP_SUCCESS) ;
}

if (ldap _search(1d, base, scope, filter, attrs, attrsonly) == -1) {

ldap perror(1d, "ldap_search");
return(1ld->1d errno);

}

matches = 0;
first = 1;

while ((rc = ldap_result(1d, LDAP_RES_ANY, sortattr ? 1 :

== LDAP RES_SEARCH_ENTRY) {
matches++;
e = ldap first_entry(1d, res);
if (!'first) {

putchar('\n');
} else {

first = 0;

7-80 Oracle Internet Directory Application Developer's Guide

0, NULL, &res))

Building Applications with the C API

}
print_entry(1d, e, attrsonly);
ldap msgfree(res);

}

if ((re == -1) {
ldap perror(1d, "ldap_result");
return(rc);

}

if ((rc = ldap_resultlerror(1d, res, 0)) != LDAP SUCCESS) {
ldap perror(1d, "ldap_ search");

}

if (sortattr != NULL) {
extern intstrcasecmp() ;

(void) ldap_sort entries(1d, &res,

(*sortattr == '\0') ? NULL : sortattr, strcasecmp);
matches = 0;
first = 1;
for (e = ldap_first_entry(1d, res); e != NULLMSG;
e = ldap next_entry(1d, e)) {

matches++;

if (!first) {
putchar('\n');
} else {
first = 0;
}
print_entry(1d, e, attrsonly);
}
}

if (verbose) {
printf("%d matches\n", matches);

ldap _msgfree(res);
return(rc);

print_entry(1d, entry, attrsonly)
LDAP*1d;
LDAPMessage*entry;
intattrsonly;

char*a, *dn, *ufn, tmpfnamel[64];

The C API for Oracle Internet Directory 7-81

Building Applications with the C API

intd, j, notascii;
BerElement*ber;
struct berval**bvals;
FILE‘tmpfp;

extern char*mktemp () ;

dn = ldap_get_dn(1d, entry);
if (1ldaif) {
write 1dif_wvalue("dn", dn, strlen(dn));

} else {
printf("$s\n", dn);
}

if (includeufn) {
ufn = ldap dn2ufn(dn);
if (1dif) {

write 1dif_wvalue("ufn", ufn, strlen(ufn));
} else {

printf("%s\n", ufn);

}
free(ufn);
}
free(dn);
for (a = ldap first_attribute(1d, entry, &ber); a != NULL;
a = ldap next_attribute(1d, entry, ber)) {
if (skipsortattr && strcasecmp(a, sortattr) ==) {
continue;
}

if (attrsonly) {
if (1dif) {

write 1dif value(a, "", 0);
} else {

printf("%s\n", a);
}

} else if ((bvals = ldap_get values_len(1d, entry, a)) != NULL) {
for (i = 0; bvals[i] != NULL; i++) {

if (vals2tmp) {
sprintf(tmpfname, "/tmp/ldapsearch-%s-XXXXXX", a);
tmpfp = NULL;

if (mktemp(tmpfname) == NULL) {
perror (tmpfname) ;
} else if ((tmpfp = fopen(tmpfname, "w")) == NULL) {

perror (tmpfname);
} else if (fwrite(bvals[i]->bv_val,

7-82 Oracle Internet Directory Application Developer's Guide

Building Applications with the C API

bvals[i]->bv_len, 1, tmpfp) == 0) {
perror (tmpfname);

} else if (1dif) {
write_1dif value(a, tmpfname, strlen(tmpfname));

} else {
printf("%s%s%$s\n", a, sep, tmpfname);
}

if (tmpfp !'= NULL) {
fclose(tmpfp);

}
} else {

notascii = 0;

if (!'allow binary) {
for (j =0; jJ <bvals[i 1->bv_len; ++j) {

[1 1->bv.vall j 1)

if (!isascii(bvals) |
notascii = 1;
break;
}
}
}
if (1dif) {
write_1dif value(a, bvals[i]1->bv_val,
bvals[1]->bv_len);
} else
{
printf("%s%s%s\n", a, sep,
notascii ? "NOT ASCII" : (char *)bvals[i]1->bv_val);
}
}
}
gsledePBerBvecfree(bvals);
}
}
}
int

write 1dif value(char *type, char *value, unsigned long vallen)
{

char *1dif;
if ((1ldif = gsldlDLdifTypeAndvValue(type, value, (int)vallen)) == NULL)
{

The C API for Oracle Internet Directory 7-83

Dependencies and Limitations of the C API

return(-1);

}

fputs (1dif, stdout);
free(1dif);

return(0);

Dependencies and Limitations of the C API

This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core
libraries.

To use the different authentication modes in SSL, the directory server requires

corresponding configuration settings.

See Also: Oracle Internet Directory Administrator’s Guide for details
about how to set the directory server in various SSL authentication
modes

Oracle Wallet Manager is required for creating wallets if you are using the C APl in
SSL mode.

TCP/IP Socket Library is required.

The following Oracle libraries are required:

s Oracle SSL-related libraries

s Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP
SDK specifications (RFC 1823).

7-84 Oracle Internet Directory Application Developer's Guide

8

DBMS LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures which can be used by PL/SQL
programmers to access data from LDAP servers. This section explains all of the API
functions in detail. Be sure that you have read the previous DBMS_LDAP PL/SQL
package information before using this section.

This section contains these topics:
= Summary of Subprograms

s Exception Summary

s Data-Type Summary

= Subprograms

DBMS_LDAP PL/SQL Reference 8-1

Summary of Subprograms

Summary of Subprograms

Table 8-1 DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION init

FUNCTION simple_bind_s

FUNCTION bind_s

FUNCTION unbind_s

FUNCTION compare_s

FUNCTION search_s

FUNCTION search_st

FUNCTION first_entry

FUNCTION next_entry

FUNCTION count_entries

init() initializes a session with an LDAP server. This
actually establishes a connection with the LDAP
server.

The function simple_bind_s can be used to perform
simple user name/password based authentication to
the directory server.

The function bind_s can be used to perform complex
authentication to the directory server.

The function unbind_s is used for closing an active
LDAP session.

The function compare_s can be used to test if a
particular attribute in a particular entry has a
particular value.

The function search_s performs a synchronous
search in the LDAP server. It returns control to the
PL/SQL environment only after all of the search
results have been sent by the server or if the search
request is 'timed-out' by the server.

The function search_st performs a synchronous
search in the LDAP server with a client side
time-out. It returns control to the PL/SQL
environment only after all of the search results have
been sent by the server or if the search request is
'timed-out' by the client or the server.

The function first_entry is used to retrieve the first
entry in the result set returned by either search_s or
search_st.

The function next_entry() is used to iterate to the next
entry in the result set of a search operation.

This function is used to count the number of entries in the
result set. It can also be used to count the number of
entries remaining during a traversal of the result set using
a combination of the functions first_entry() and next_

entry().

8-2 Oracle Internet Directory Application Developer’s Guide

Summary of Subprograms

Table 8-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION first_attribute
FUNCTION next_attribute
FUNCTION get_dn
FUNCTION get_values
FUNCTION get_values_len
FUNCTION delete_s
FUNCTION modrdn2_s
FUNCTION err2string

FUNCTION create_mod_array

PROCEDURE populate_mod_

array (String Version)

PROCEDURE populate_mod_
array (Binary Version)

FUNCTION modify_s

FUNCTION add_s

PROCEDURE free_mod_array

The function first_attribute() fetches the first attribute of a
given entry in the result set.

The function next_attribute() fetches the next attribute of a
given entry in the result set.

The function get_dn() retrieves the X.500 distinguished
name of given entry in the result set.

The function get_values() can be used to retrieve all of the
values associated for a given attribute in a given entry.

The function get_values_len() can be used to retrieve
values of attributes that have a 'Binary' syntax.

This function can be used to remove a leaf entry in the
LDAP Directory Information Tree.

The function modrdn2_s() can be used to rename the
relative distinguished name of an entry.

The function err2string() can be used to convert an LDAP
error code to string in the local language in which the API
is operating.

The function create_mod_array() allocates memory for
array modification entries that will be applied to an entry
using the modify_s() functions.

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, we have to call
DBMS_LDAP.creat_mod_array () and DBMS_
LDAP.populate_mod_array() first.

Adds a new entry to the LDAP directory synchronously.
Before calling add_s, we have to call DBMS_
LDAP.creat_mod_array () and DBMS_
LDAP.populate_mod_array() first.

Frees the memory allocated by DBMS_LDAP. create_
mod_arrayl().

DBMS_LDAP PL/SQL Reference 8-3

Summary of Subprograms

Table 8-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION count_values

FUNCTION count_values_len

FUNCTION rename_s
FUNCTION explode_dn
FUNCTION open_ssl

FUNCTION msgfree

FUNCTION ber_free

FUNCTION nls_convert_to_utf8

FUNCTION nls_convert_from_
utf8

FUNCTION nls_get_
dbcharset_name

Counts the number of values returned by DBMS_
LDAP.get_values ().

Counts the number of values returned by DBMS_
LDAP.get_values_len ().

Renames an LDAP entry synchronously.
Breaks a DN up into its components.

Establishes an SSL (Secure Sockets Layer) connection over
an existing LDAP connection.

This function frees the chain of messages associated with
the message handle returned by synchronous search
functions.

This function frees the memory associated with a handle
to BER ELEMENT.

The nls_convert_to_utf8 function converts the input string
containing database character set data to UTF8 character
set data and returns it.

The nls_convert_from_utf8 function converts the input
string containing UTF8 character set data to database
character set data and returns it.

The nls_get_dbcharset_name function returns a string
containing the database character set name.

See Also:

= Searching the Directory for information about the DBMS_
LDAP.search_s () and DBMS_LDAP. search_st () functions

s Terminating the Session by Using DBMS_LDAP for
information about the DBMS_LDAP.unbind_s () function

8-4 Oracle Internet Directory Application Developer’s Guide

Exception Summary

Exception Summary

DBMS_LDAP can generate the following exceptions:

Table 8-2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error

Number Cause of Exception

general_error

init_failed

invalid_session

invalid_auth_method

invalid_search_scope

invalid_search_time_val

invalid_message

count_entry_error

get_dn_error

invalid_entry_dn

invalid_mod_array

31202

31203

31204

31205

31206

31207

31208

31209

31210

31211

31212

Raised anytime an error is encountered that does
not have a specific PL/SQL exception associated
with it. The error string contains the description
of the problem in the local language of the user.

Raised by DBMS_LDAP.nit() if there are some
problems.

Raised by all functions and procedures in the
DBMS_LDAP package if they are passed an
invalid session handle.

Raised by DBMS_LDAPbind_s() if the
authentication method requested is not
supported.

Raised by all of the 'search’ functions if the scope
of the search is invalid.

Raised by time based search function: DBMS_
LDAP.search_st() if it is given an invalid value for
the time limit.

Raised by all functions that iterate through a
result-set for getting entries from a search
operation if the message handle given to them is
invalid.

Raised by DBMS_LDAP.count_entries if it cannot
count the entries in a given result set.

Raised by DBMS_LDAP.get_dn if the DN of the
entry it is retrieving is NULL.

Raised by all the functions that
modify/add/rename an entry if they are
presented with an invalid entry DN.

Raised by all functions that take a modification
array as an argument if they are given an invalid
modification array.

DBMS_LDAP PL/SQL Reference 8-5

Data-Type Summary

Table 8-2 (Cont.) DBMS_LDAP Exception Summary

Oracle
Error

Exception Name Number Cause of Exception

invalid_mod_option 31213 Raised by DBMS_LDAP.populate_mod_array if
the modification option given is anything other
than MOD_ADD, MOD_DELETE or MOD_
REPLACE.

invalid_mod_type 31214 Raised by DBMS_LDAP.populate_mod_array if
the attribute type that is being modified is NULL.

invalid_mod_value 31215 Raised by DBMS_LDAP.populate_mod_array if
the modification value parameter for a given
attribute is NULL.

invalid_rdn 31216 Raised by all functions and procedures that
expect a valid RDN if the value of the RDN is
NULL.

invalid_newparent 31217 Raised by DBMS_LDAP.rename_s if the new
parent of an entry being renamed is NULL.

invalid_deleteoldrdn 31218 Raised by DBMS_LDAP.rename_s if the
deleteoldrdn parameter is invalid.

invalid_notypes 31219 Raised by DBMS_LDAP.explode_dn if the
notypes parameter is invalid.

invalid_ssl_wallet_loc 31220 Raised by DBMS_LDAP.open_ssl if the wallet

invalid_ssl_wallet_password 31221

invalid_ssl_auth_mode 31222

location is NULL but the SSL authentication
mode requires a valid wallet.

Raised by DBMS_LDAP.open_ssl if the wallet
password given is NULL.

Raised by DBMS_LDAP.open_ssl if the SSL
authentication mode is not one of 1, 2 or 3.

Data-Type Summary

The DBMS_LDAP package uses the following data-types:

Table 8-3 DBMS_LDAP Data-Type Summary

Data-Type Purpose

SESSION Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

8-6 Oracle Internet Directory Application Developer’s Guide

Subprograms

Table 8-3 (Cont.) DBMS_LDAP Data-Type Summary

Data-Type Purpose

MESSAGE Used to hold a handle to the message retrieved from the result
set. This is used by all functions that work with entries attributes
and values.

MOD_ARRAY Used to hold a handle into the array of modifications being
passed into either modify_s() or add_s().

TIMEVAL Used to pass time limit information to the LDAP API functions

BER_ELEMENT

STRING_COLLECTION

BINVAL_COLLECTION
BERVAL_COLLECTION

that require a time limit.

Used to hold a handle to a BER structure used for decoding
incoming messages.

Used to hold a list of VARCHAR?2 strings which can be passed
on to the LDAP server.

Used to hold a list of RAW data which represent binary data.

Used to hold a list of BERVAL values that are used for
populating a modification array.

Subprograms

FUNCTION init

init() initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

Syntax

FUNCTION init
(

hostname IN VARCHARZ2,
portnum IN PLS_TNTEGER

RETURN SESSION;

DBMS_LDAP PL/SQL Reference 8-7

Subprograms

Parameters

Table 8-4 INIT Function Parameters

Parameter

Description

hostname

portnum

Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server
to connect to. Each host name in the list MAY include a port
number which is separated from the host itself with a colon (:)
character. The hosts will be tried in the order listed, stopping
with the first one to which a successful connection is made.

Contains the TCP port number to connect to. If a host includes
a port number then this parameter is ignored. If this parameter
is not specified and the host name also does not contain the
port number, a default port number of 389 is assumed.

Return Values

Table 8-5 INIT Function Return Values

Value

Description

SESSION (function return)

A handle to an LDAP session which can be used for further
calls into the API.

Exceptions

Table 8-6 INIT Function Exceptions

Exception

Description

init_failed

general_error

Raised when there is a problem contacting the LDAP server.

For all other errors. The error string associated with the
exception describes the error in detail.

Usage Notes

DBMS_LDAP.init() is the first function that should be called in order to establish a
session to the LDAP server. Function DBMS_LDAP.init () returns a "session
handle," a pointer to an opaque structure that MUST be passed to subsequent calls
pertaining to the session. This routine will return NULL and raise the “INIT_
FAILED” exception if the session cannot be initialized.Subsequent to the call to
init(), the connection has to be authenticated using DBMS_LDAPbind_s or DBMS_

LDAP.simple_bind_s().

8-8 Oracle Internet Directory Application Developer’s Guide

Subprograms

See Also
DBMS_LDAP.simple_bind_s(), DBMS_LDAPbind_s().

FUNCTION simple_bind_s

The function simple_bind_s can be used to perform simple username/password
based authentication to the directory server.

Syntax
FUNCTION simple_bind s
(
1d IN SESSION,
dn IN VARCHARZ,

passwd IN VARCHAR2

RETURN PLS_INTEGER;

Parameters

Table 8-7 SIMPLE_BIND_S Function Parameters

Parameter Description

1d A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Return Values

Table 8-8 SIMPLE_BIND_S Function Return Values

Value Description
PLS_INTEGER (function DBMS_LDAP.SUCCESS on a successful completion. If there
return) was a problem, one of the following exceptions will be raised.

DBMS_LDAP PL/SQL Reference 8-9

Subprograms

Exceptions

Table 8-9 SIMPLE_BIND_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAP.simple_bind_s() can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

FUNCTION bind_s

The function bind_s can be used to perform complex authentication to the directory

server.

Syntax

FUNCTION bind s

(
1d IN SESSION,
dn IN VARCHARZ,

cred IN VARCHAR2,
meth IN PLS_TINTEGER

RETURN PLS_INTEGER;

Parameters

Table 8-10 BIND_S Function Parameters

Parameter Description

1d A valid LDAP session handle

dn The Distinguished Name of the User that we are trying to login
as

cred A text string containing the credentials used for authentication

meth The authentication method

8-10 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-11 BIND_S Function Return Values

Value Description

PLS_INTEGER (function DBMS_LDAP.SUCCESS on a successful completion. One of the
return) following exceptions is raised if there was a problem.
Exceptions

Table 8-12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle 1d is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

general_error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAPbind_s() can be used to authenticate a user. It can be called only after
a valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP.simple_bind_s().

FUNCTION unbind_s

The function unbind_s is used for closing an active LDAP session.

Syntax

FUNCTION unbind s
(
1d IN SESSION
)
RETURN PLS_TNTEGER;

DBMS_LDAP PL/SQL Reference 8-11

Subprograms

Parameters

Table 8-13 UNBIND_S Function Parameters

Parameter Description

1d A valid LDAP session handle.

Return Values

Table 8-14 UNBIND_S Function Return Values

Value Description

PLS_INTEGER (function = DBMS_LDAP.SUCCESS on proper completion. One of the
return) following exceptions is raised otherwise.

Exceptions

Table 8-15 UNBIND_S Function Exceptions

Exception Description
invalid_session Raised if the sessions handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception will explain the error in detail.

8-12 Oracle Internet Directory Application Developer's Guide

Subprograms

Usage Notes

The unbind_s () function, will send an unbind request to the server, close all open
connections associated with the LDAP session and dispose of all resources
associated with the session handle before returning. After a call to this function, the
session handle 1d is invalid and it is illegal to make any further LDAP API calls
using 1d.

See Also
DBMS_LDAPbind_s(), DBMS_LDAP.simple_bind_s().

FUNCTION compare_s

The function compare_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax

FUNCTION compare s

(
14 IN SESSION,
dn IN VARCHAR2,
attr 1IN VARCHARZ,
value IN VARCHAR2

RETURN PLS_INTEGER;
Parameters

Table 8-16 COMPARE_S Function Parameters

Parameter Description

1d A valid LDAP session handle

dn The name of the entry to compare against
attr The attribute to compare against.

value A string attribute value to compare against

DBMS_LDAP PL/SQL Reference 8-13

Subprograms

Return Values

Table 8-17 COMPARE_S Function Return Values

Value Description

PLS_INTEGER (function COMPARE_TRUE is the given attribute has a matching value.

return) COMPARE_FALSE if the value of the attribute does not match
the value given.

8-14 Oracle Internet Directory Application Developer's Guide

Subprograms

Exceptions

Table 8-18 COMPARE_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function compare_s can be used to assert if the value of a given attribute stored
in the directory server matches a certain value.This operation can only be
performed on attributes whose syntax definition allows them to be compared. The
compare_s function can only be called after a valid LDAP session handle has been
obtained from the init() function and authenticated using the bind_s() or simple_
bind_s() functions.

See Also
DBMS_LDAPbind_s()

DBMS_LDAP PL/SQL Reference 8-15

Subprograms

FUNCTION search_s

The function search_s performs a synchronous search in the LDAP server. It returns
control to the PL/SQL environment only after all of the search results have been
sent by the server or if the search request is 'timed-out’ by the server.

Syntax
FUNCTION search s
(
1d IN SESSION,
base IN VARCHARZ,
scope IN PLS INTEGER,
filter IN VARCHAR2Z,
attrs IN STRING COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE

RETURN PLS_INTEGER;

Parameters

Table 8-19 SEARCH_S Function Parameters

Parameter

Description

1d
base

scope

filter

attrs

attrsonly

A valid LDAP session handle.
The dn of the entry at which to start the search.

One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or SCOPE_
SUBTREE (0x02), indicating the scope of the search.

A character string representing the search filter. The value NULL can
be passed to indicate that the filter "(objectclass=*)" which matches all
entries is to be used.

A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") MAY be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

A boolean value that MUST be zero if both attribute types and values
are to be returned, and non-zero if only types are wanted.

8-16 Oracle Internet Directory Application Developer's Guide

Subprograms

Table 8-19 (Cont.) SEARCH_S Function Parameters

Parameter Description

res This is a result parameter which will contain the results of the search
upon completion of the call. If no results are returned, *res is set to

NULL.

Return Values

Table 8-20 SEARCH_S Function Return Value

Value

Description

PLS_INTEGER (function
return)

res (OUT parameter)

DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

If the search succeeded and there are entries, this parameter is
set to a NON-NULL value which can be used to iterate
through the result set.

Exceptions

Table 8-21 SEARCH_S Function Exceptions

Exception

Description

invalid_session

invalid_search_scope

general_error

Raised if the session handle 1d is invalid.

Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

For all other errors. The error string associated with this
exception will explain the error in detail.

DBMS_LDAP PL/SQL Reference 8-17

Subprograms

Usage Notes

The function search_s() issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search (if any) are contained in the res parameter. This parameter
is opaque to the caller. Entries, attributes, values, etc., can be extracted by calling the
parsing routines described below.

See Also
DBMS_LDAP.search_st(), DBMS_LDAP/first_entry(), DBMS_LDAP.next_entry.

FUNCTION search_st

The function search_st performs a synchronous search in the LDAP server with a
client-side time-out. It returns control to the PL/SQL environment only after all of
the search results have been sent by the server or if the search request is 'timed-out’
by the client or the server.

Syntax

FUNCTION search_ st

(
1d IN SESSION,
base IN VARCHARZ2,

scope IN PLS TINTEGER,
filter IN VARCHAR2,

attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,

tv IN TIMEVAL,

res OUT MESSAGE

RETURN PLS_INTEGER;

Parameters

Table 8-22 SEARCH_ST Function Parameters

Parameter Description

1d A valid LDAP session handle.

base The dn of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or

SCOPE_SUBTREE (0x02), indicating the scope of the search.

8-18 Oracle Internet Directory Application Developer's Guide

Subprograms

Table 8-22 (Cont.) SEARCH_ST Function Parameters

Parameter Description

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter "(objectclass=*)"
which matches all entries is to be used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS ("1.1") MAY be used as the only
string in the array to indicate that no attribute types are to be
returned by the server. The special constant string ALL_USER_
ATTRS ("*") can be used in the attrs array along with the names
of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be

returned.

attrsonly A boolean value that MUST be zero if both attribute types and
values are to be returned, and non-zero if only types are
wanted.

tv The time-out value expressed in seconds and microseconds

that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Return Values

Table 8-23 SEARCH_ST Function Return Values

Value Description

PLS_INTEGER (function DBMS_LDAP.SUCCESS if the search operation succeeded. An

return) exception is raised in all other cases.

res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a NON_NULL value which can be used to iterate
through the result set.

Exceptions

Table 8-24 SEARCH_ST Function Exceptions

Exception Description

invalid_session Raised if the session handle 14 is invalid.

DBMS_LDAP PL/SQL Reference 8-19

Subprograms

Table 8-24 (Cont.) SEARCH_ST Function Exceptions

Exception Description

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_time_value Raised if the time value specified for the time-out is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Usage Notes

This function is very similar to DBMS_LDAP.search_s() except that it requires a
time-out value to be given.

See Also
DBMS_LDAPsearch_s(), DBML_LDAPfirst_entry(), DBMS_LDAP.next_entry.

FUNCTION first_entry

The function first_entry is used to retrieve the first entry in the result set returned
by either search_s() or search_st()

Syntax

FUNCTION first entry
(
1d IN SESSICON,
msg IN MESSAGE

RETURN MESSAGE;

Parameters

Table 8-25 FIRST_ENTRY Function Parameters

Parameter Description
1d A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

8-20 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-26 FIRST_ENTRY Return Values

Value Description
MESSAGE (function A handle to the first entry in the list of entries returned from
return) the LDAP server. It is set to NULL if there was an error and an

exception is raised.

Exceptions

Table 8-27 FIRST_ENTRY Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid_message Raised if the incoming "msg" handle is invalid.

Usage Notes

The function first_entry() should always be the first function used to retrieve the
results from a search operation.

See Also
DBMS_LDAPnext_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_st()

FUNCTION next_entry

The function next_entry() is used to iterate to the next entry in the result set of a
search operation.

Syntax

FUNCTION next_entry
(
1d IN SESSION,
msg IN MESSAGE

RETURN MESSAGE;

DBMS_LDAP PL/SQL Reference 8-21

Subprograms

Parameters

Table 8-28 NEXT_ENTRY Function Parameters

Parameter Description
1d A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

Return Values

Table 8-29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Exceptions

Table 8-30 NEXT_ENTRY Function Exceptions

Exception Description
invalid_session Raised if the session handle, 14 is invalid.
invalid_message Raised if the incoming 'msg' handle is invalid.

Usage Notes

The function next_entry() should always be called after a call to the function first_
entry(). Also, the return value of a successful call to next_entry() should be used as
'msg’ argument used in a subsequent call to the function next_entry() to fetch the
next entry in the list.

See Also
DBMS_LDAP/first_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_st()

8-22 Oracle Internet Directory Application Developer's Guide

Subprograms

FUNCTION count_entries

This function is used to count the number of entries in the result set. It can also be
used to count the number of entries remaining during a traversal of the result set
using a combination of the functions first_entry() and next_entry().

Syntax
FUNCTION count entries
(
1d 1IN SESSION,
msg IN MESSAGE

RETURN PLS_INTEGER;

Parameters

Table 8-31 COUNT_ENTRY Function Parameters

Parameter Description
1d A valid LDAP session handle
msg The search result, as obtained by a call to one of the

synchronous search routines

Return Values

Table 8-32 COUNT_ENTRY Function Return Values

Value Description

PLS INTEGER (function Non-zero if there are entries in the result set

return) -1 if there was a problem.

Exceptions

Table 8-33 COUNT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming 'msg' handle is invalid.
count_entry_error Raised if there was a problem in counting the entries.

DBMS_LDAP PL/SQL Reference 8-23

Subprograms

Usage Notes

count_entries () returns the number of entries contained in a chain of entries; if an
error occurs such as the res parameter being invalid, -1 is returned. The count_
entries () call can also be used to count the number of entries that remain in a chain
if called with a message, entry or reference returned by first_message (), next_

message (), first_entry (), next_entry (), first_reference (), next_reference().

See Also
DBMS_LDAP/first_entry(), DBMS_LDAP.next_entry().

FUNCTION first_attribute

The function first_attribute() fetches the first attribute of a given entry in the result
set.

Syntax

FUNCTION first_attribute

(
1d IN SESSION,
ldapentry IN MESSAGE,

ber_elem OUT BER_ELEMENT

RETURN VARCHAR2 ;

Parameters

Table 8-34 FIRST_ATTRIBUTE Function Parameter

Parameter Description

1d A valid LDAP session handle

ldapentry The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry()

ber_elem A handle to a BER ELEMENT that is used to keep track of

which attribute in the entry has been read

8-24 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-35 FIRST_ATTRIBUTE Function Return Values

Value Description
VARCHAR? (function The name of the attribute if it exists.
return)

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAPnext_attribute() to iterate over
all of the attributes

Exceptions

Table 8-36 FIRST_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid_message Raised if the incoming 'msg' handle is invalid

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate through the
various attributes of an entry. The name of the attribute returned from a call to first_
attribute() can in turn be used in calls to the functions get_values() or get_values_
len() to get the values of that particular attribute.

See Also

DBMS_LDAPnext_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_
values_len(), DBMS_LDAP:first_entry(), DBMS_LDAP.next_entry().

FUNCTION next_attribute

The function next_attribute() fetches the next attribute of a given entry in the result
set.

Syntax

FUNCTION next_attribute

(
1d IN SESSION,
ldapentry IN MESSAGE,
ber _elem IN BER_ELEMENT

DBMS_LDAP PL/SQL Reference 8-25

Subprograms

RETURN VARCHAR2 ;

Parameters

Table 8-37 NEXT_ATTRIBUTE Function Parameters

Parameter Description
1d A valid LDAP session handle.
ldapentry The entry whose attributes are to be stepped through, as

returned by first_entry() or next_entry().

ber_elem A handle to a BER ELEMENT that is used to keep track of
which attribute in the entry has been read.

Return Values

Table 8-38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR? (function The name of the attribute if it exists.
return)

Exceptions

Table 8-39 NEXT_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid_message Raised if the incoming 'msg' handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate through the
various attributes of an entry. The name of the attribute returned from a call to
next_attribute() can in turn be used in calls to the functions get_values() or get_
values_len() to get the values of that particular attribute.

8-26 Oracle Internet Directory Application Developer's Guide

Subprograms

See Also

DBMS_LDAP/first_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_values_
len(), DBMS_LDAPfirst_entry(), DBMS_LDAP.next_entry().

FUNCTION get_dn

The function get_dn() retrieves the X.500 distinguished name of given entry in the
result set.

Syntax

FUNCTION get_dn

(
1ld 1IN SESSION,
ldapentry IN MESSAGE

RETURN VARCHAR2 ;

Parameters

Table 8-40 GET_DN Function Parameters

Parameter Description
1d A valid LDAP session handle.
ldapentry The entry whose DN is to be returned.

Return Values

Table 8-41 GET_DN Function Return Values

Value Description
VARCHAR? (function The X.500 Distinguished name of the entry as a PL/SQL string.
return)

NULL if there was a problem.

Exceptions

Table 8-42 GET_DN Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming 'msg' handle is invalid.

DBMS_LDAP PL/SQL Reference 8-27

Subprograms

Table 8-42 (Cont.) GET_DN Function Exceptions

Exception Description

get_dn_error Raised if there was a problem in determining the DN

Usage Notes

The function get_dn() can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
explode_dn() to retrieve the individual components of the DN.

See Also
DBMS_LDAP.explode_dny).

FUNCTION get_values

The function get_values() can be used to retrieve all of the values associated for a
given attribute in a given entry.

Syntax

FUNCTION get_values

(
1d IN SESSICN,
ldapentry IN MESSAGE,
attr IN VARCHAR2

RETURN STRING COLLECTION;
Parameters

Table 8-43 GET_VALUES Function Parameters

Parameter Description

1d A valid LDAP session handle

ldapentry A valid handle to an entry returned from a search result
attr The name of the attribute for which values are being sought

8-28 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-44 GET_VALUES Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
(function return) given attribute

NULL if there are no values associated with the given attribute

Exceptions

Table 8-45 GET_VALUES Function Exceptions

Exception Description
invalid session Raised if the session handle 14 is invalid.
invalid message Raised if the incoming 'entry handle' is invalid.

Usage Notes

The function get_values() can only be called after the handle to entry has been first
retrieved by call to either first_entry() or next_entry(). The name of the attribute
may be known beforehand or can also be determined by a call to first_attribute() or
next_attribute().The function get_values() always assumes that the data-type of the
attribute it is retrieving is 'String'. For retrieving binary data-types, get_values_len()
should be used.

See Also

DBMS_LDAP/first_entry(), DBMS_LDAPnext_entry(), DBMS_LDAP.count_values(),
DBMS_LDAP.get_values_len().

FUNCTION get_values_len

The function get_values_len() can be used to retrieve values of attributes that have a
‘Binary' syntax.

Syntax

FUNCTION get_values_ len

(
1d IN SESSICN,
ldapentry IN MESSAGE,
attr IN VARCHAR2

DBMS_LDAP PL/SQL Reference 8-29

Subprograms

RETURN BINVAL_ COLLECTION;

Parameters

Table 8-46 GET_VALUES_LEN Function Parameters

Parameter Description

1d A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

Return Values

Table 8-47 GET_VALUES LEN Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL 'Raw' collection containing all the values of the
(function return given attribute.

NULL if there are no values associated with the given
attribute.

Exceptions

Table 8-48 GET_VALUES_LEN Function Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid_message Raised if the incoming 'entry handle' is invalid

Usage Notes

The function get_values_len() can only be called after the handle to entry has been
first retrieved by call to either first_entry() or next_entry().The name of the attribute
may be known beforehand or can also be determined by a call to first_attribute() or
next_attribute().This function can be used to retrieve both binary and non-binary
attribute values.

8-30 Oracle Internet Directory Application Developer's Guide

Subprograms

See Also

DBMS_LDAP/first_entry(), DBMS_LDAPnext_entry(), DBMS_LDAP.count_values_
len(), DBMS_LDAP.get_values().

FUNCTION delete_s

The function delete_s() can be used to remove a leaf entry in the LDAP Directory
Information Tree.

Syntax

FUNCTION delete_s

(
1d IN SESSION,
entrydn IN VARCHAR2

RETURN PLS_INTEGER;

Parameters

Table 8-49 DELETE_S Function Parameters

Parameter Name Description
1d A valid LDAP session
entrydn The X.500 distinguished name of the entry to delete

Return Values

Table 8-50 DELETE_S Function Return Values

Value Description

PLS_INTEGER (function DBMS_LDAP.SUCCESS if the delete operation wa successful.
return) And exception is raised otherwise.

Exceptions

Table 8-51 DELETE_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid

DBMS_LDAP PL/SQL Reference 8-31

Subprograms

Table 8-51 (Cont) DELETE_S Function Exceptions

Exception Description

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Usage Notes

The function delete_s() can be used to remove only leaf level entries in the LDAP
DIT. A leaf level entry is an entry that does not have any children/ldap entries
under it. It cannot be used to delete non-leaf entries.

See Also
DBMS_LDAP.modrdn2_s()

FUNCTION modrdn2_s

The function modrdn2_s() can be used to rename the relative distinguished name of
an entry.

Syntax
FUNCTION modrdn2_s
(
1d IN SESSION,
entrydn in VARCHAR2
newrdn in VARCHAR2
deleteoldrdn IN PLS_INTEGER

RETURN PLS_INTEGER;
Parameters

Table 8-52 MODRDN2_S Function Parameters

Parameter Description

1d A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newrdn The new relative distinguished name of the entry.

deleteoldrdn A boolean value that if non-zero indicates that the attribute

values from the old name should be removed from the entry.

8-32 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-53 MODRDN2_S Function Return Values

Value Description

PLS_INTEGER (function DBMS_LDAP.SUCCESS if the operation was successful. An
return) exception is raised otherwise.

Exceptions

Table 8-54 MODRDN2_S Function Exceptions

Exception Description

invalid_session Raised if the session handle 14 is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function nodrdn2_s() can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use rename_s() which
can achieve the same foundation.

See Also
DBMS_LDAP.rename_s().

DBMS_LDAP PL/SQL Reference 8-33

Subprograms

FUNCTION err2string

The function err2string() can be used to convert an LDAP error code to string in the
local language in which the APl is operating

Syntax

FUNCTION err2string
(

ldap err IN PLS_INTEGER
)

RETURN VARCHARZ ;

Parameters

Table 8-55 ERR2STRING Function Parameters

Parameter Description

ldap_err An error number returned from one the API calls.

Return Values

Table 8-56 ERR2STRING Function Return Values

Value Description

VARCHAR? (function A character string appropriately translated to the local
return) language which describes the error in detail.
Exceptions

Table 8-57 ERR2STRING Function Exceptions

Exception Description

N/A None.

Usage Notes

In this release, the exception handling mechanism automatically invokes this if any
of the API calls encounter an error.

See Also
N/A

8-34 Oracle Internet Directory Application Developer's Guide

Subprograms

FUNCTION create_mod_array

The function create_mod_array() allocates memory for array modification entries
that will be applied to an entry using the modify_s() or add_s() functions.

Syntax

FUNCTION create_mod_array
(

num IN PLS TNTEGER
)

RETURN MOD_ARRAY;

Parameters

Table 8-58 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add /modify.

Return Values

Table 8-59 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY (function The data structure holds a pointer to an LDAP mod array.
return) NULL if there was a problem.

Exceptions

Table 8-60 CREATE_MOD_ARRAY Function Exceptions

Exception Description
N/A No LDAP specific exception will be raised

DBMS_LDAP PL/SQL Reference 8-35

Subprograms

Usage Notes

This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s.Itis required to call DBMS_LDAP. free_mod_array to free
memory after the calls to add_s or modify_s have completed.

See Also

DBMS_LDAP.populate_mod_array(),DBMS_LDAP.modify_s (), DBMS_
LDAP.add_s (),and DBMS_LDAP. free_mod_array ().

PROCEDURE populate_mod_array (String Version)

Populates one set of attribute information for add or modify operations.

Syntax

PROCEDURE populate_mod_array
(

modptr IN DBMS LDAP.MOD_ARRAY,

mod_op IN PLS_ INTEGER,

mod_type IN VARCHARZ,

modval IN DBMS_LDAP.STRING_COLLECTION
)

Parameters

Table 8-61 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

modptr The data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform.
mod_type This field indicates the name of the attribute type to which the

modification applies.

modval This field specifies the attribute values to add, delete, or
replace. It is for the string values only.

Return Values

Table 8-62 POPULATE_MOD_ARRAY (String Version) Procedure Return Values

Value Description

N/A

8-36 Oracle Internet Directory Application Developer's Guide

Subprograms

Exceptions

Table 8-63 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array
invalid_mod_option Invalid LDAP mod option
invalid_mod_type Invalid LDAP mod type
invalid_mod_value Invalid LDAP mod value

Usage Notes

This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s.Ithas to happen after DBMS_LDAP.create_mod_array called.

See Also

DBMS_LDAP.create_mod_array(),DBMS_LDAP.modify s (), DBMS_
LDAP.add_s (),and DBMS_LDAP. free_mod_array ().

PROCEDURE populate_mod_array (Binary Version)

Populates one set of attribute information for add or modify operations. This
procedure call has to happen after DBMS_LDAP.create_mod_array () called.

Syntax

PROCEDURE populate_mod_array
(

modptr IN DBMS LDAP.MOD_ARRAY,

mod_op IN PLS_ INTEGER,

mod_type IN VARCHARZ,

modbval IN DBMS LDAP.BERVAL COLLECTION
)

Parameters

Table 8-64 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description
modptr The data structure holds a pointer to an LDAP mod array
mod_op This field specifies the type of modification to perform

DBMS_LDAP PL/SQL Reference 8-37

Subprograms

Table 8-64 (Cont.) POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

mod_type This field indicates the name of the attribute type to which the
modification applies

modbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values

Return Values

Table 8-65 POPULATE_MOD_ARRAY (Binary Version) Procedure Return Values

Value Description

N/A

Exceptions

Table 8-66 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array
invalid_mod_option Invalid LDAP mod option
invalid_mod_type Invalid LDAP mod type
invalid_mod_value Invalid LDAP mod value

Usage Notes

This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s.It has to happen after DBMS_LDAP.create_mod_array called.

See Also

DBMS_LDAP.create_mod_array(),DBMS_LDAP.modify s (), DBMS_
LDAP.add_s (),and DBMS_LDAP. free_mod_array ().

8-38 Oracle Internet Directory Application Developer's Guide

Subprograms

FUNCTION modify_s

Performs a synchronous modification of an existing LDAP directory entry.

Syntax

FUNCTION modify. s

(
1d IN DBMS IDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD ARRAY

RETURN PLS_INTEGER;
Parameters

Table 8-67 MODIFY_S Function Parameters

Parameter Description

1d This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init () .

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array ().

Return Values

Table 8-68 MODIFY_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation

Exceptions

Table 8-69 MODIFY _S Function Exceptions

Exception Description
invalid_session Invalid LDAP session
invalid_entry_dn Invalid LDAP entry dn

DBMS_LDAP PL/SQL Reference 8-39

Subprograms

Table 8-69 (Cont.) MODIFY_S Function Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array

Usage Notes

This function call has to follow successful calls of DBMS_LDAP.create_mod_
array () and DBMS_LDAP.populate_mod_array ().

See Also

DBMS_LDAP.create_mod_array () ,DBMS_LDAP.populate_mod_array (),
DBMS_LDAP.add_s (),and DBMS_LDAP. free_mod_array ().

FUNCTION add_s

Adds a new entry to the LDAP directory synchronously. Before calling add_s, we
have to call DBMS_LDAP.create_mod_array () and DBMS_LDAP.populate_
mod_array ().

Syntax

FUNCTION add_s

(
1d IN DBMS_LDAP.SESSICON,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD ARRAY

RETURN PLS_INTEGER;

Parameters

Table 8-70 ADD_S Function Parameters

Parameter Description

1d This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init ().

entrydn This parameter specifies the name of the directory entry to be
created.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array ().

8-40 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-71 ADD_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation.

Exceptions

Table 8-72 ADD_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
invalid_mod_array Invalid LDAP mod array.

Usage Notes

The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls of DBMS_LDAP.create_mod_array ()
and DBMS_LDAP.populate_mod_array ().

See Also

DBMS_LDAP.create_mod_array () ,DBMS_LDAP.populate_mod_array (),
DBMS_LDAP.modify_s(),and DBMS_LDAP. free_mod_array ().

PROCEDURE free_mod_array
Frees the memory allocated by DBMS_LDAP.create_mod_array ().

Syntax

PROCEDURE free_mod_array
(

modptr IN DBMS_LDAP.MOD ARRAY
)

DBMS_LDAP PL/SQL Reference 8-41

Subprograms

Parameters

Table 8-73 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array ().

Return Values

Table 8-74 FREE_MOD_ARRAY Procedure Return Value

Value Description

N/A

Exceptions

Table 8-75 FREE_MOD_ARRAY Procedure Exceptions

Exception Description

N/A No LDAP specific exception will be raised.

Usage Notes
N/A

See Also

DBMS_LDAP.populate_mod_array(),DBMS_LDAP.modify_s (), DBMS_
LDAP.add_s (), and DBMS_LDAP.create_mod_array ().

FUNCTION count_values
Counts the number of values returned by DBMS_LDAP.get_values ().

Syntax

FUNCTION count_values

(
values IN DBMS LDAP.STRING COLLECTION

)
RETURN PLS_INTEGER;

8-42 Oracle Internet Directory Application Developer's Guide

Subprograms

Parameters

Table 8-76 COUNT_VALUES Function Parameters

Parameter Description

values The collection of string values.

Return Values

Table 8-77 COUNT_VALUES Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the operation.
Exceptions

Table 8-78 COUNT_VALUES Function Exceptions

Exception Description

N/A No LDAP specific exception will be raised.

Usage Notes
N/A

See Also
DBMS_LDAP.count_values_len(), DBMS_LDAP.get_values().

FUNCTION count_values_len
Counts the number of values returned by DBMS_LDAP.get_values_len().

Syntax

FUNCTION count values len

(
values IN DBMS LDAP.BINVAL COLLECTION

)
RETURN PLS_INTEGER;

DBMS_LDAP PL/SQL Reference 8-43

Subprograms

Parameters

Table 8-79 COUNT_VALUES_LEN Function Parameters

Parameter Description

values The collection of binary values.

Return Values

Table 8-80 COUNT_VALUES_LEN Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the operation.
Exceptions

Table 8-81 COUNT_VALUES_LEN Function Exceptions

Exception Description

N/A No LDAP specific exception will be raised.

Usage Notes
N/A

See Also
DBMS_LDAP.count_values (), DBMS_LDAP.get_values_len().

FUNCTION rename_s

Renames an LDAP entry synchronously.

Syntax

FUNCTION rename s

(
1d IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,

newparent IN VARCHAR2,

deleteoldrdn IN PLS INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL

8-44 Oracle Internet Directory Application Developer's Guide

Subprograms

RETURN PLS_INTEGER;

Parameters

Table 8-82 RENAME_S Function Parameters

Parameter Description

1d This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init () .

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newrdn This parameter specifies the new RDN.

newparent This parameter specifies the DN of the new parent.

deleteoldrdn This parameter specifies if the old RDN should be retained. If
this value is 1, then the old RDN will be removed.

serverctrls Currently not supported.

clientctrls Currently not supported.

Return Values

Table 8-83 RENAME_S Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the operation.
Exceptions

Table 8-84 RENAME_S Function Exceptions

Exception Description
invalid_session Invalid LDAP Session.
invalid_entry_dn Invalid LDAP DN.
invalid_rdn Invalid LDAP RDN.
invalid_newparent Invalid LDAP newparent.
invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

DBMS_LDAP PL/SQL Reference 8-45

Subprograms

Usage Notes
N/A

See Also
DBMS_LDAP.modrdn2_s ().

FUNCTION explode_dn

Breaks a DN up into its components.

Syntax

FUNCTION explode_dn

(
dn IN VARCHARZ2,
notypes IN PLS_ TNTEGER

RETURN STRING_COLLECTION;

Parameters

Table 8-85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

notypes This parameter specifies if the attribute tags will be returned. If

this value is not 0, then there will be no attribute tags will be

returned.

Return Values

Table 8-86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN can not be broken up, NULL will

be returned.

8-46 Oracle Internet Directory Application Developer's Guide

Subprograms

Exceptions

Table 8-87 EXPLODE_DN Function Exceptions

Exception Description
invalid_entry_dn Invalid LDAP DN.
invalid_notypes Invalid LDAP notypes value.

DBMS_LDAP PL/SQL Reference 8-47

Subprograms

Usage Notes
N/A

See Also
DBMS_LDAP.get_dn().

FUNCTION open_ssl

Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP

connection.

Syntax

FUNCTION open_ssl

(
1d IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHARZ,
sslauth IN PLS_ INTEGER

RETURN PLS_INTEGER;

Parameters

Table 8-88 OPEN_SSL Function Parameters

Parameter Description

1d This parameter is a handle to an LDAP session, as returned by a
successful call to DBMS_LDAP. init () .

sslwrl This parameter specifies the wallet location (Required for
one-way or two-way SSL connection.)

sslwalletpasswd This parameter specifies the wallet password (Required for
one-way or two-way SSL connection.)

sslauth This parameter specifies the SSL Authentication Mode (1 for no
authentication required, 2 for one way authentication required, 3
for two way authentication required.

8-48 Oracle Internet Directory Application Developer's Guide

Subprograms

Return Values

Table 8-89 OPEN_SSL Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the operation.
Exceptions

Table 8-90 OPEN_SSL Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.
invalid_ssl_wallet_loc Invalid LDAP SSL wallet location.

invalid_ssl_wallet_ Invalid LDAP SSL wallet passwd.
passwd

invalid_ssl_auth_mode Invalid LDAP SSL authentication mode.

Usage Notes
Need to call DBMS_LDAP. init () first to acquire a valid ldap session.

See Also
DBMS_LDAP.init ().

DBMS_LDAP PL/SQL Reference 8-49

Subprograms

FUNCTION msgfree

This function frees the chain of messages associated with the message handle
returned by synchronous search functions.

Syntax

FUNCTION msgfree

(
res IN MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Table 8-91 MSGFREE Function Parameters

Parameter Description

res The message handle as obtained by a call to one of the
synchronous search routines.

Return Values

Table 8-92 MSGFREE Return Values

Value Description

PLS_INTEGER Indicates the type of the last message in the chain.
The function might return any of the following values:
= DBMS_LDAPLDAP_RES_BIND
= DBMS_LDAPLDAP_RES_SEARCH_ENTRY
= DBMS_LDAPLDAP_RES_SEARCH_REFERENCE
= DBMS_LDAPLDAP_RES_SEARCH_RESULT
= DBMS_LDAPLDAP_RES_MODIFY
= DBMS_LDAPLDAP_RES_ADD
= DBMS_LDAPLDAP_RES_DELETE
= DBMS_LDAPLDAP_RES_MODDN
= DBMS_LDAPLDAP_RES_COMPARE
= DBMS_LDAPLDAP_RES_EXTENDED

8-50 Oracle Internet Directory Application Developer's Guide

Subprograms

Exceptions
N/A. No LDAP-specific exception is raised.

Usage Notes
N/A

See Also
DBMS_LDAP.search_s (), DBMS_LDAP.search_st().

FUNCTION ber_free
This function frees the memory associated with a handle to BER ELEMENT.

Syntax
PROCEDURE ber_free

(
ber_elem IN BER_ELEMENT,
freebuf 1IN PLS_INTEGER

Parameters

Table 8-93 BER_FREE Function Parameters

Parameter Description
ber_elem A handle to BER ELEMENT.
freebuf The value of this flag should be zero while the BER ELEMENT

returned from DBMS_LDAP first_attribute() is being freed. For
any other case, the value of this flag should be one.

The default value of this parameter is zero.

Return Values
N/A

Exceptions
N/A. No LDAP-specific exception is raised.

Usage Notes
N/A

DBMS_LDAP PL/SQL Reference 8-51

Subprograms

See Also
DBMS_LDAP.first_attribute(),DBMS_LDAP.next_attribute().

Function nls_convert_to_utf8

The nls_convert_to_utf8() function converts the input string containing database
character set data to UTF8 character set data and returns it.

Syntax

Function nls_convert_to utf8
(
data_local IN VARCHAR2

)
RETURN VARCHARZ ;

Parameters

Table 8-94 Parameters for nils_convert _to_utf8

Parameter Description

data_local Contains the database character set data.

Return Values

Table 8-95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR2 UTF8 character set data string.

Usage Notes

The functions in DBMS_LDAP package expect the input data to be of UTF8
character set if the UTFS_CONVERSION package variable is set to FALSE. In that
case nls_convert_to_utf8() function can be used to convert the input data from
database character set to UTF8 character set.

If the UTF8_CONVERSION package variable of DBMS_LDAP package is set to
TRUE, then functions in DBMS_LDAP package expect the input data to be of
database character set.

8-52 Oracle Internet Directory Application Developer's Guide

Subprograms

See Also
DBMS_LDAPnIs_convert_from_utf8(), DBMS_LDAPnIs_get_dbcharset_name().

FUNCTION nls_convert_to_utf8

The nls_convert_to_utf8() function converts the input string collection containing
database character set data to UTFS character set data and returns it.

Syntax

Function nls_convert_to utf8
(
data_local IN STRING_COLLECTION

)
RETURN STRING_COLLECTTICN;

Parameters

Table 8-96 Parameters for nils_convert _to_utf8

Parameter Description

data_local Collection of strings containing database character set data.

Return Values

Table 8-97 Return Values for nls_convert_to_utf8

Value Description

STRING_COLLECTION (Collection of strings containing UTF8 character set data.

Usage Notes

The functions in DBMS_LDAP package expect the input data to be of UTF8
character set if the UTFS_CONVERSION package variable is set to FALSE. In that
case nls_convert_to_utf8() function can be used to convert the input data from
database character set to UTF8 character set.

If the UTF8_CONVERSION package variable of DBMS_LDAP package is set to
TRUE, then functions in DBMS_LDAP package expect the input data to be of
database character set.

DBMS_LDAP PL/SQL Reference 8-53

Subprograms

See Also
DBMS_LDAPnIs_convert_from_utf8(), DBMS_LDAPnIs_get_dbcharset_name().

FUNCTION nls_convert_from_utf8

The nls_convert_from_utf8() function converts the input string containing UTF8
character set data to database character set data and returns it.

Syntax

Function nls_convert from utf8

(
data_utf8 IN VARCHAR2

)
RETURN VARCHARZ ;

Parameters

Table 8-98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains the UTF8 character set data.

Return Values

Table 8-99 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Database character set data string.

Usage Notes

The functions in DBMS_LDAP package return UTFS8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. In that case nls_convert_from_
utf8() function can be used to convert the output data from UTES character set to
database character set.

If the UTF8_CONVERSION package variable of DBMS_LDAP package is set to
TRUE, then functions in DBMS_LDAP package return database character set data.

See Also
DBMS_LDAPnIs_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_name().

8-54 Oracle Internet Directory Application Developer's Guide

Subprograms

FUNCTION nls_convert_from_utf8

The nls_convert_from_utf8() function converts the input string collection containing
UTES character set data to database character set data and returns it.

Syntax

Function nls_convert from utf8

(
data_utf8 IN STRING_COLLECTICN

)
RETURN STRING_COLLECTTICN;

Parameters

Table 8-100 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Collection of strings containing UTF8 character set data.

Return Values

Table 8-101 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Usage Notes

The functions in DBMS_LDAP package return UTFS8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. In that case nls_convert_from_
utf8() function can be used to convert the output data from UTE8 character set to
database character set.

If the UTF8_CONVERSION package variable of DBMS_LDAP package is set to
TRUE, then functions in DBMS_LDAP package return database character set data.

See Also
DBMS_LDAPnIs_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_name().

DBMS_LDAP PL/SQL Reference 8-55

Subprograms

FUNCTION nis_get_dbcharset_name

The nls_get_dbcharset_name() function returns a string containing the database
character set name.

Syntax
Function nls_get_dbcharset_name

RETURN VARCHAR2;
Parameters
None

Return Values

Table 8-102 Return Value for nls_get_dbcharset_name

Value Description
VARCHAR2 String containing database character set name.
See Also

DBMS_LDAPnls_convert_to_utf8(), DBMS_LDAP.nls_convert_from_utf8().

8-56 Oracle Internet Directory Application Developer's Guide

9

DBMS LDAP UTL PL/SQL Reference

This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions. This chapter contains these topics:

= Summary of Subprograms

s Function Return Code Summary
s Data Type Summary

s User-Related Subprograms

= Group-Related Subprograms

= Subscriber-Related Subprograms
= Property-Related Subprograms

= Miscellaneous Subprograms

DBMS_LDAP_UTL PL/SQL Reference 9-1

Summary of Subprograms

Table 9-1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure

Purpose

Function authenticate_user
Function create_user_handle

Function set_user_handle_
properties

Function get_user_properties
Function set_user_properties

Function get_user_extended_
properties

Function get_user_dn

Function check_group_
membership

Function locate_subscriber_for

user

Function get_group_
membership

Authenticates a user against an LDAP server
Creates a user handle

Associates the given properties to the user handle

Retrieves user properties from an LDAP server
Modifies the properties of a user

Retrieves user extended properties

Retrieves a user DN

Checks whether a user is member of the given group
Retrieves the subscriber for the given user

Retrieves a list of groups of which the user is a member

Table 9-2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure

Purpose

Function create_group_handle

Function set_group_handle_
properties

Function get_group_properties

Function get_group_dn

Creates a group handle

Associates the given properties with the group handle

Retrieves group properties from an LDAP server

Retrieves a group DN

9-2 Oracle Internet Directory Application Developer’s Guide

Table 9-3 DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure

Purpose

Function create_subscriber
handle

Function get_subscriber_
properties

Function get_subscriber_dn

Creates a subscriber handle
Retrieves subscriber properties from an LDAP server

Retrieves a subscriber DN

Table 9-4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure

Purpose

Function normalize_dn_with_
case

Function get_property_names
Function get_property_values

Function get_property_values_
len

Procedure free_propertyset_
collection

Function create_mod_
propertyset

Function populate_mod_
propertyset

Procedure free_mod_propertyset

Procedure free_handle

Function check_interface
version

Normalizes the DN string

Retrieves a list of property names in a PROPERTY_SET
Retrieves a list of values for a property name

Retrieves a list of binary values for a property name
Frees PROPERTY_SET_COLLECTION

Creates a MOD_PROPERTY_SET

Populates a MOD_PROPERTY_SET structure

Frees a MOD_PROPERTY_SET
Frees handles

Checks for support of the interface version.

DBMS_LDAP_UTL PL/SQL Reference

9-3

Function Return Code Summary

Function Return Code Summary
The DBMS_LDAP_UTL functions can return the values in the following table

Table 9-5 Function Return Codes

Return

Name Code Description

SUCCESS 0 Operation successful.

GENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERROR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_ -3 Returned by user-related functions and group

MEMBERSHIP functions when the given user doesn’t have any
group membership.

NO_SUCH_SUBSCRIBER -4 Returned by subscriber-related functions when the
subscriber doesn’t exist in the directory.

NO_SUCH_USER -5 Returned by user-related functions when the user
doesn’t exist in the directory.

NO_ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context doesn’t exist in the directory.

MULTIPLE_ -7 Returned by subscriber-related functions when

SUBSCRIBER_ENTRIES multiple subscriber entries are found for the given
subscriber nickname.

INVALID_ROOT_ORCL_ -8 Root oracle context doesn’t contain all the required

CTX information needed by the function.

NO_SUBSCRIBER_ORCL_ -9 Oracle context doesn’t exist for the subscriber.

CTX

INVALID_SUBSCRIBER_ -10 Oracle context for the subscriber is invalid.

ORCL_CTX

MULTIPLE_USER _ -11 Returned by user-related functions when multiple

ENTRIES user entries exist for the given user nickname.

NO_SUCH_GROUP -12 Returned by group related functions when a group
doesn’t exist in the directory.

MULTIPLE_GROUP_ -13 Multiple group entries exist for the given group

ENTRIES nickname in the directory.

9-4 Oracle Internet Directory Application Developer’s Guide

Function Return Code Summary

Table 9-5 Function Return Codes

Return
Name Code Description
ACCT_TOTALLY_ -14 Returned by DBMS_LDAP_UTL.authenticate_user()
LOCKED_EXCEPTION function when a user account is locked. This error is

based on the password policy set in the subscriber
oracle context.

AUTH_PASSWD_ -15 Returned by DBMS_LDAP_UTL.authenticate_user()

CHANGE_WARN function when the user password needs to be
changed. This is a password policy error.

AUTH_FAILURE_ -16 Returned by DBMS_LDAP_UTL.authenticate_user()

EXCEPTION function when user authentication fails.

PWD_EXPIRED_ -17 Returned by DBMS_LDAP_UTL.authenticate_user()

EXCEPTION function when the user password has expired. This is
a password policy error.

RESET_HANDLE -18 Returned when entity handle properties are being
reset by the caller.

SUBSCRIBER_NOT_ -19 Returned by DBMS_LDAP-UTL.locate_subscriber_

FOUND for_user() function when it is unable to locate the
subscriber.

PWD_EXPIRE_WARN -20 Returned by DBMS_LDAP_UTL.authenticate_user()

function when the user password is about to expire.
This is a password policy error.

PWD_MINLENGTH_ 21 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password is less than the minimum
required length. This is a password policy error.

PWD_NUMERIC_ERROR -22 Returned by DBMS_LDAP_UTL.set_user_properties()
function while changing the user password and the
new user password doesn’t contain at least one
numeric character. This is a password policy error.

PWD_NULL_ERROR -23 Returned by DBMS_LDAP_UTL.set_user_properties()
function while changing the user password and the
new user password is an empty password. This is a
password policy error.

PWD_INHISTORY_ -24 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password is the same as the previous
password. This is a password policy error.

DBMS_LDAP_UTL PL/SQL Reference 9-5

Data Type Summary

Table 9-5 Function Return Codes

Return

Name Code Description

PWD_ILLEGALVALUE_ -25 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password has an illegal character. This is a
password policy error.

PWD_GRACELOGIN_ -26 Returned by DBMS_LDAP_UTL.authenticate_user()

WARN function to indicate that the user password has
expired and the user has been given a grace login.
This is a password policy error.

PWD_MUSTCHANGE_ -27 Returned by DBMS_LDAP_UTL.authenticate_userr()

ERROR function when user password needs to be changed.
This is a password policy error.

USER_ACCT_DISABLED_ -29 Returned by DBMS_LDAP_UTL.authenticate_user()

ERROR function when user account has been disabled. This is
a password policy error.

PROPERTY_NOT_ -30 Returned by user-related functions while searching

FOUND for a user property in the directory.

Data Type Summary

The DBMS_LDAP_UTL package uses the data types in the following table

Table 9-6 DBMS_LDAP_UTL Data Types

Data Type

Purpose

HANDLE

PROPERTY_SET
PROPERTY_SET_COLLECTION
MOD_PROPERTY_SET

Used to hold entity related.
Used to hold the properties of an entity.
List of PROPERTY_SET structures.

Structure to hold modify operations on an entity.

9-6 Oracle Internet Directory Application Developer’s Guide

Data Type Summary

User-Related Subprograms

A user is represented using DBMS_LDAP_UTL.HANDLE data type. You can create
a user handle by using a DN, GUID or a simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the
root Oracle Context and the subscriber Oracle Context is used to identify the user.
Here is an example of a user handle creation:

retval := DBMS_LDAP UTL.create user_handle(
user_handle,
DBMS_LDAP_UTL.TYPE DN,
"cn=userl, cn=users, o=acme, dc=com"

)i

This user handle must be associated with appropriate subscriber handle. For
example given a Subscriber handle : subscriber_handle representing
o=acme, dc=com, the subscriber handle can be associated in the following way:

retval := DBMS_LDAP UTL.set_user_handle properties (
user_handle,
DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,
subscriber handle
)i

Some common usage of User handles include setting and getting user properties,
and authentication of the user. Here is an example of authenticating a user:

retval := DBMS_LDAP UTL.authenticate_ user (
my_session,
user_handle,
DBMS_LDAP UTL.AUTH SIMPLE,
"welcome",
NULL
)i

In this example, the user is authenticated using a clear text password welcome.
Here is an example of getting the telephone number of the user:

- my_attrs is of type DBMS LDAP.STRING_COLLECTTION
my attrs(l) := ‘telephonenumber’;
retval := DBMS_LDAP UTL.get_user_ properties (
my_session,
my_attrs,
DBMS_LDAP UTL.ENTRY_PROPERTTES,
my_pset_coll

DBMS_LDAP_UTL PL/SQL Reference 9-7

Data Type Summary

See Also: "DBMS_LDAP_UTL Sample Code" on page B-14 for
samples of user handle

Function authenticate_user

The function authenticate_user() authenticates the user against Oracle Internet
Directory.

Syntax

FUNCTION authenticate_user
(

1d IN SESSION,

user_handle IN HANDLE,
auth type IN PLS_INTEGER,
credentials IN VARCHAR2,
binary credentials IN RAW
)

RETURN PLS_INTEGER;

Parameters

Table 9-7 AUTHENTICATE_USER Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user HANDLE The user handle.

auth_type PLS_INTEGER Type of authentication. Valid values are as follows:
- DBMS_LDAP_UTL.AUTH_SIMPLE

credentials VARCHAR?2 The user credentials. Valid values are as follows:
for DBMS_LDAP_UTL.AUTH_SIMPLE - password

binary_ RAW The binary credentials. Valid values are as follows:

credentials for DBMS_LDAP_UTL.AUTH_SIMPLE - NULL

9-8 Oracle Internet Directory Application Developer’s Guide

Data Type Summary

Return Values

Table 9-8 AUTHENTICATE_USER Function Return Values

Value

Description

DBMS_LDAP_UTL.SUCCESS
DBMS_LDAP_UTL.PARAM_ERROR
DBMS_LDAP_UTL.GENERAL_ERROR
DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES

DBMS_LDAP_UTL.INVALID_SUBSCRIBER_ORCL_CTX

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER
DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX
DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_EXCP
DBMS_LDAP_UTL.AUTH_PASSWD_CHANGE_WARN
DBMS_LDAP_UTL.AUTH_FAILURE_EXCP
DBMS_LDAP_UTL.PWD_EXPIRED_EXCP
DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN
DBMS_LDAP error codes

On a successful completion.
Invalid input parameters.
Authentication failed.

User doesn't exist.

Multiple number of user DN
entries exist in the directory
for the given user.

Invalid Subscriber Oracle
Context.

Subscriber doesn't exist.

Multiple number of
subscriber DN entries exist in
the directory for the given
subscriber.

Invalid Root Oracle Context.
User account is locked.
Password should be changed.
Authentication failed.

User password has expired.
Grace login for user.

Returns proper DBMS_LDAP
error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to

DBMS_LDAP.init().

DBMS_LDAP_UTL PL/SQL Reference 9-9

Data Type Summary

See Also
DBMS_LDAP.nit(), DBMS_LDAP_UTL.create_user_handle().

Function create_user_handle
The function create_user_handle() creates a user handle.

Syntax

FUNCTION create_user handle
(

user_hd OUT HANDLE,
user_type IN PLS_TNTEGER,
user_id IN VARCHAR2,

)

RETURN PLS_TNTEGER;

Parameters

Table 9-9 CREATE_USER _HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

user_type PLS_INTEGER The type of user ID that is passed. Valid values
for this argument are as follows:

= -DBMS_LDAP_UTL.TYPE_DN
= -DBMS_LDAP_UTL.TYPE GUID
= -DBMS_LDAP_UTL.TYPE_NICKNAME

user_id VARCHAR?2 The user ID representing the user entry.

Return Values

Table 9-10 CREATE_USER HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

9-10 Oracle Internet Directory Application Developer's Guide

Data Type Summary

See Also
DBMS_LDAP_UTL.get_user_properties(), DBMS_LDAP_UTL.set_user_handle_
properties().

Function set_user_handle_properties
The function set_user_handle_properties() configures the user handle properties.

Syntax

FUNCTION set_user_handle properties
(

user_hd IN HANDLE,

property_ type IN PLS TINTEGER,
property IN HANDLE

)

RETURN PLS_TNTEGER;

Parameters

Table 9-11 SET_USER_HANDLE PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

property_type PLS_INTEGER The type of property that is passed. Valid values for
this argument are as follows:

- DBMS_LDAP_UTL.SUBSCRIBER_HANDLE
property HANDLE The property describing the user entry.

Return Values

Table 9-12 SET_USER _HANDLE PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.RESET_HANDLE When a caller tries to reset the

existing handle properties.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP_UTL PL/SQL Reference 9-11

Data Type Summary

Usage Notes

The subscriber handle doesn’t need to be set in User Handle Properties if the user
handle is created with TYPE_DN or TYPE_GUID as the user_type.

See Also
DBMS_LDAP_UTL.get_user_properties().

Function get_user_properties
The function get_user_properties() retrieves the user properties.

Syntax

FUNCTION get_user properties

(

1d IN SESSION,

user_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

ret_pset _coll OUT PROPERTY_ SET COLLECTION
)

RETURN PLS_TNTEGER;

Parameters

Table 9-13 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING _ The list of attributes to fetch for the user.
COLLECTION

ptype PLS_INTEGER }Zl}l); V\?sf:properties to return. Valid values are as

- DBMS_LDAP_UTL.ENTRY_PROPERTIES
- DBMS_LDAP_UTL.NICKNAME_PROPERTY

ret-pset_ PROPERTY_ The user details containing the attributes requested
collection SET_ by the caller.
COLLECTION

9-12 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Return Values

Table 9-14 GET_USER_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_USER User doesn't exist.
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES Multiple number of user DN

entries exist in the directory
for the given user.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Returns proper DBMS_LDAP

error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes
This function requires the following;:

s A valid LDAP session handle which must be obtained from the DBMS_
LDAP.init() function.

= A valid subscriber handle to be set in the group handle properties if the user
type is of: - DBMS_LDAP_UTL.TYPE_NICKNAME.

This function doesn’t identify a NULL subscriber handle as a default subscriber.
The default subscriber can be obtained from - DBMS_LDAP_UTL.create_
subscriber_handle(), where a NULL subscriber_id is passed as an argument.

If the group type is any of the following, then the subscriber handle doesn’t need to
be set in the user handle properties:

- DBMS_LDAP_UTL.TYPE_GUID
- DBMS_LDAP_UTL.TYPE_DN .

If the subscriber handle is set, then it would be ignored.

DBMS_LDAP_UTL PL/SQL Reference 9-13

Data Type Summary

See Also
DBMS_LDAP.nit(), DBMS_LDAP_UTL.create_user_handle().

Function set_user_properties
The function set_user_properties() modifies the properties of a user.

Syntax

FUNCTION set_user properties
(

1d IN SESSION,

user_handle IN HANDLE,
pset_type IN PLS TINTEGER,
mod_pset IN PROPERTY_SET,
mod_op IN PLS_ INTEGER

)

RETURN PLS_TNTEGER;

Parameters

Table 9-15 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.
pset_type PLS_INTEGER The type of property set being modified. Valid

values are as follows:

- ENTRY_PROPERTIES

mod_pset PROPERTY _ Data structure containing modify operations to
SET perform on the property set.
mod_op PLS_INTEGER The type of modify operation to be performed on

the property set. Valid values are as follows:
- ADD_PROPERTYSET

- MODIFY_PROPERTYSET
-DELETE_PROPERTYSET

9-14 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Return Values

Table 9-16 SET_USER_PROPERTIES Function Return Values

Value

Description

DBMS_LDAP_UTL.SUCCESS
DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX

DBMS_LDAP_UTL.PWD_MIN_LENGTH_ERROR

DBMS_LDAP_UTL.PWD_NUMERIC_ERROR

DBMS_LDAP_UTL.PWD_NULL_ERROR

DBMS_LDAP_UTL.PWD_INHISTORY_ERROR

DBMS_LDAP_UTL.PWD_ILLEGALVALUE_ERROR

DBMS_LDAP_UTL.GENERAL_ERROR
DBMS_LDAP error codes

On a successful completion.
User doesn't exist.

Multiple number of user DN
entries exist in the directory
for the given user.

Invalid Root Oracle Context.

Password length is less than
the minimum required
length.

Password must contain
numeric characters.

Password cannot be NULL.

Password cannot be the same
as the one that is being
replaced.

Password contains illegal
characters.

Other error.

Returns proper DBMS_LDAP
error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to

DBMS_LDAP.init().

See Also

DBMS_LDAPinit(), DBMS_LDAP_UTL.get_user_properties().

DBMS_LDAP_UTL PL/SQL Reference 9-15

Data Type Summary

Function get_user_extended_properties
The function get_user_extended_properties() retrieves user extended properties.

Syntax

FUNCTION get_user_ extended properties

(

1d IN SESSION,

user_handle IN HANDLE,

ptype IN PLS_TINTEGER,

filter IN VARCHARZ2,

rep_pset _coll OUT PROPERTY_ SET COLLECTION
)

RETURN PLS_TNTEGER;

Parameters

Table 9-17 GET_USER_EXTENDED_ PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING _ A list of attributes to fetch for the user.
COLLECTION

ptype PLS_INTEGER ;I;}Ifotxse of properties to return. Valid values are as

- DBMS_LDAP_UTL.EXTPROPTYPE_RAD

filter VARCHAR?2 An LDAP filter to further refine the user properties
returned by the function.

ret_pset_ PROPERTY_SET_ The user details containing the attributes requested

collection COLLECTION by the caller.

Return Values

Table 9-18 GET_USER _EXTENDED PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

9-16 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Value

Description

DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES

USER_PROPERTY_NOT_FOUND

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX
DBMS_LDAP_UTL.GENERAL_ERROR
DBMS_LDAP error codes

User doesn't exist.

Multiple number of user DN
entries exist in the directory
for the given user.

User extended property
doesn’t exist.

Invalid Root Oracle Context.
Other error.

Returns proper DBMS_LDAP
error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to

DBMS_LDAP.init().

See Also

DBMS_LDAPinit(), DBMS_LDAP_UTL.get_user_properties().

Function get_user_dn
The function get_user_dn() returns the user DN.

Syntax

FUNCTION get_user_dn

(

1d IN SESSION,
user_handle IN HANDLE,
dn OUT VARCHAR2

)

RETURN PLS_TNTEGER;

DBMS_LDAP_UTL PL/SQL Reference 9-17

Data Type Summary

Parameters

Table 9-19 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.
dn VARCHAR2 The user DN.

Return Values

Table 9-20 GET_USER_DN Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL.NO_SUCH_USER User doesn't exist.
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES Multiple number of user DN

entries exist in the directory
for the given user.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Returns proper DBMS_LDAP

error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.nit().

See Also
DBMS_LDAP.init().

9-18 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Function check_group_membership
The function check_group_membership() checks the membership of the user to a
group.

Syntax

FUNCTION check group membership
(

1d IN SESSION,

user_handle IN HANDLE,
group_handle IN HANDLE,

nested IN PLS INTEGER

)
RETURN PLS_INTEGER;

Parameters

Table 9-21 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

group_handle = HANDLE The group handle.

nested PLS_INTEGER The type of membership the user holds in groups.

Valid values are as follows:
DBMS_LDAP_UTL.NESTED_MEMBERSHIP
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

Return Values

Table 9-22 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS If user is a member.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GROUP_MEMBERSHIP If user is not a member.

DBMS_LDAP_UTL PL/SQL Reference 9-19

Data Type Summary

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.nit().

See Also
DBMS_LDAP.get_group_membership().

Function locate_subscriber_for_user

The function locate_subscriber_for_user() retrieves the subscriber for the given user
and returns a handle to it.

Syntax

FUNCTION locate_subscriber_ for user
(

1d IN SESSION,

user_handle IN HANDLE,

subscriber handle OUT HANDLE

)

RETURN PLS_TNTEGER;

Parameters

Table 9-23 LOCATE_SUBSCRIBER FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.

subscriber_ HANDLE The subscriber handle.

handle

Return Values

Table 9-24 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

9-20 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Value

Description

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES

DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES

DBMS_LDAP_UTL.SUBSCRIBER_NOT_FOUND

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX
DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_EXCP
DBMS_LDAP_UTL.GENERAL_ERROR

DBMS_LDAP error codes

Multiple number of
subscriber DN entries exist in
the directory for the given
subscriber.

User doesn’t exist.

Multiple number of user DN
entries exist in the directory
for the given user.

Unable to locate subscriber
for the given user.

Invalid Root Oracle Context.
User account is locked.
Other error.

Returns proper DBMS_LDAP
error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to

DBMS_LDAP.init().

See Also

DBMS_LDAP.nit(), DBMS_LDAP_UTL.create_user_handle().

Function get_group_membership

The function get_group_membership() returns the list of groups to which the user is

a member.

Syntax

FUNCTION get_group_membership

(

user_handle IN HANDLE,

nested IN PLS INTEGER,

attr_list IN STRING COLLECTION,
ret_groups OUT PROPERTY_SET COLLECTION

DBMS_LDAP_UTL PL/SQL Reference 9-21

Data Type Summary

)
RETURN PLS_INTEGER;

Parameters

Table 9-25 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.
nested PLS_INTEGER The type of membership the user holds in groups.

Valid values are as follows:
DBMS_LDAP_UTL.NESTED_MEMBERSHIP
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

attr_list STRING _ A list of attributes to be returned.
COLLECTION

ret_groups PROPERTY_ A pointer to a pointer to an array of group entries.
SET_
COLLECTION

Return Values

Table 9-26 GET_GROUP_MEMBERSHIP Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.nit().

See Also
DBMS_LDAP.init().

9-22 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Group-Related Subprograms

A group is represented using by using the DBMS_LDAP_UTL.HANDLE data type.
A group handle represents a valid group entry. You can create a group handle by
using a DN, GUID or a simple name, along with the appropriate subscriber handle.
When a simple name is used, additional information from the Root Oracle Context
and the Subscriber Oracle Context is used to identify the group. Here is an example
of a group handle creation:

retval := DBMS_LDAP UTL.create group_handle (
group_handle,

DBMS_LDAP UTL.TYPE_DN,

"cn=groupl, cn=Groups, o=acme, dc=com"

)i

This group handle has to be associated with appropriate subscriber handle. For
example given a Subscriber handle : subscriber_handle representing
“o=acme,dc=com”, the subscriber handle can be associated in the following way:

retval := DBMS_LDAP UTL.set_group_handle properties (
group_handle,

DBMS_LDAP UTL.SUBSCRIBER HANDLE,

subscriber handle

)i

A sample usage of group handle is getting group properties. Here is an example:

my_attrs is of type DBMS LDAP.STRING_COLLECTION
my_attrs(l) := ‘uniquemember’;

retval := DBMS_LDAP UTL.get_group_ properties (
my_session,

my_attrs,

DBMS_LDAP_UTL.ENTRY. PROPERTIES,

my_pset_coll
)i
The group-related subprograms also support membership-related functionality.
Given a user handle, you can find out if it is a direct or a nested member of a group
by using the DBMS_LDAP_UTL. check_group_membership () function. Here is
an example:

retval := DBMS_LDAP UTL.check group_membership (
session,

user_handle,

group_handle,

DBMS_LDAP_UTL.DIRECT MEMBERSHIP

DBMS_LDAP_UTL PL/SQL Reference 9-23

Data Type Summary

You can also obtain a list of groups that a particular group belongs to using DBMS_
LDAP_UTL.get_group_membership () function. For example:

my_attrs is of type DBMS LDAP.STRING_COLLECTION
my_attrs(l) := ‘cn’;
retval := DBMS_LDAP UTL.get_group_membership (
my_session,
user_handle,
DBMS_LDAP_UTL.DIRECT MEMBERSHIP,
my_attrs
my_pset_coll
)i

See Also: Example: Group-Related Functions on page B-27 for
more usage samples of group handle

Function create_group_handle
The function create_group_handle() creates a group handle.

Syntax

FUNCTION create group_handle
(

group_hd OUT HANDLE,
group_type IN PLS_TINTEGER,
group_id IN VARCHAR2

)

RETURN PLS_TNTEGER;

Parameters

Table 9-27 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to a handle to a group.

group_type PLS_INTEGER The type of group ID that is passed. Valid
values for this argument are as follows:

- DBMS_LDAP_UTL.TYPE_DN
- DBMS_LDAP_UTL.TYPE_GUID
- DBMS_LDAP_UTL.TYPE_NICKNAME

9-24 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Parameter Name Parameter Type Parameter Description

group_id VARCHAR?2 The group ID representing the group entry.

Return Values

Table 9-28 CREATE_GROUP_HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

See Also

DBMS_LDAP_UTL.get_group_properties(), DBMS_LDAP_UTL.set_group_handle_
properties().

Function set_group_handle_properties

The function set_group_handle_properties() configures the group handle
properties.

Syntax

FUNCTION set_group handle properties
(

group_hd IN HANDLE,

property_ type IN PLS TINTEGER,
property IN HANDLE

)

RETURN PLS_TNTEGER;

Parameters

Table 9-29 SET_GROUP_HANDLE PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

DBMS_LDAP_UTL PL/SQL Reference 9-25

Data Type Summary

Parameter Name Parameter Type Parameter Description

property_type PLS_INTEGER The type of property that is passed. Valid
values for this argument are as follows:

- DBMS_LDAP_UTL.GROUP_HANDLE

property HANDLE The property describing the group entry.

Return Values

Table 9-30 SET_GROUP_HANDLE PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.RESET_HANDLE When a caller tries to reset the
existing handle properties.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Usage Notes

The subscriber handle doesn’t need to be set in Group Handle Properties if the
group handle is created with TYPE_DN or TYPE_GUID as the group_type.

See Also
DBMS_LDAP_UTL.get_group_properties().

Function get_group_properties
The function get_group_properties() retrieves the group properties.

Syntax

FUNCTION get_group_properties

(

1d IN SESSION,

group_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

ret_pset _coll OUT PROPERTY_ SET COLLECTION
)

RETURN PLS_TNTEGER;

9-26 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Parameters

Table 9-31 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

group_handle = HANDLE The group handle.

attrs STRING _ A list of attributes that must be fetched for the
COLLECTION group.

ptype PLS_INTEGER The type of properties to be returned. Valid values

are as follows:

- DBMS_LDAP_UTL.ENTRY_PROPERTIES

ret_pset_coll PROPERTY _ The group details containing the attributes
SET_ requested by the caller.
COLLECTION

Return Values

Table 9-32 GET_GROUP_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn’t exist.
DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group

DN entries exist in the
directory for the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Returns proper DBMS_LDAP

error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

DBMS_LDAP_UTL PL/SQL Reference 9-27

Data Type Summary

Usage Notes
This function requires the following;:

s A valid LDAP session handle which must be obtained from the DBMS_
LDAP.init() function.

= A valid subscriber handle to be set in the group handle properties if the group
type is of: - DBMS_LDAP_UTL.TYPE_NICKNAME.

This function doesn’t identify a NULL subscriber handle as a default subscriber.
The default subscriber can be obtained from - DBMS_LDAP_UTL.create_
subscriber_handle(), where a NULL subscriber_id is passed as an argument.

If the group type is any of the following, then the subscriber handle doesn’t need to
be set in the group handle properties:

- DBMS_LDAP_UTL.TYPE_GUID
- DBMS_LDAP_UTL.TYPE_DN .

If the subscriber handle is set, then it would be ignored.

See Also
DBMS_LDAP.nit(), DBMS_LDAP_UTL.create_group_handle().

Function get_group_dn
The function get_group_dn() returns the group DN.

Syntax

FUNCTION get_group_ dn
(

1d IN SESSION,
group_handle IN HANDLE
dn OUT VARCHAR2

)

RETURN PLS_TNTEGER;

9-28 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Parameters

Table 9-33 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
group_handle = HANDLE The group handle.
dn VARCHAR2 The group DN.

Return Values

Table 9-34 GET_GROUP_DN Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn’t exist.
DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group

DN entries exist in the
directory for the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Returns proper DBMS_LDAP

error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.nit().

See Also
DBMS_LDAP.init().

DBMS_LDAP_UTL PL/SQL Reference 9-29

Data Type Summary

Subscriber-Related Subprograms

A subscriber is represented by using dbms_1ldap_utl.handle data type. You can
create a subscriber handle by using a DN, GUID or a simple name. When a simple
name is used, additional information from the root Oracle Context is used to
identify the subscriber. Here is an example of a subscriber handle creation:

retval := DBMS_LDAP UTL.create subscriber handle(
subscriber_handle,
DBMS_LDAP_UTL.TYPE DN,
"o=acme, dc=com"

)i

subscriber_handle is created by it’s DN: o=oracle, dc=com.

A common usage of subscriber handle is getting subscriber properties. Here is an
example:

my_attrs is of type DBMS LDAP.STRING_COLLECTION
my_attrs(l) := ‘orclguid’;
retval := DBMS_LDAP UTL.get_subscriber properties (

my_session,

my_attrs,

DBMS_LDAP_UTL.ENTRY_ PROPERTIES,

my_pset_coll

)i

See Also: "DBMS_LDAP_UTL Sample Code" on page B-14 for
samples of subscriber handle

Function create_subscriber_handle
The function create_subscriber_handle() creates a subscriber handle.

Syntax

FUNCTION create_subscriber handle
(

1d IN SESSION,

subscriber_hd OUT HANDLE,
subscriber type IN PLS_INTEGER,
subscriber_id IN VARCHAR2

)

RETURN PLS_INTEGER;

9-30 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Parameters

Table 9-35 CREATE_SUBSCRIBER HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
subscriber_hd HANDLE A pointer to a handle to a subscriber.

subscriber_type PLS_INTEGER The type of subscriber ID that is passed. Valid
values for this argument are:

- DBMS_LDAP_UTL.TYPE_DN

- DBMS_LDAP_UTL.TYPE_GUID

- DBMS_LDAP_UTL.TYPE_NICKNAME
- DBMS_LDAP_UTL.TYPE_DEFAULT

subscriber_id VARCHAR?2 The subscriber ID representing the subscriber entry.
This can be NULL if subscriber_type is as follows:

- DBMS_LDAP_UTL.TYPE_DEFAULT

Then the default subscriber is fetched from Root
Oracle Context.

Return Values

Table 9-36 CREATE_SUBSCRIBER HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

See Also

DBMS_LDAP_UTL.get_subscriber_properties().

Function get_subscriber_properties

The function get_subscriber_properties() retrieves the subscriber properties for the
given subscriber handle.

Syntax
FUNCTION get_subscriber_properties

DBMS_LDAP_UTL PL/SQL Reference 9-31

Data Type Summary

(

1d IN SESSION,

subscriber_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_TINTEGER,

ret_pset _coll OUT PROPERTY_ SET COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 9-37 GET_SUBSCRIBER _PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
subscriber_ HANDLE The subscriber handle.
handle
attrs STRING _ A list of attributes that must be fetched for the
COLLECTION subscriber.
ptype PLS_INTEGER The type of properties to return. Valid values are as
follows:

- DBMS_LDAP_UTL.ENTRY_PROPERTIES

- DBMS_LDAP_UTL.COMMON_PROPERTIES, to
retrieve the subscriber’s Oracle Context Properties.

ret_pset_coll PROPERTY _ The subscriber details containing the attributes
SET_ requested by the caller.
COLLECTION

Return Values

Table 9-38 GET_SUBSCRIBER PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

9-32 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Value

Description

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX
DBMS_LDAP_UTL.GENERAL_ERROR

DBMS_LDAP error codes

Multiple number of
subscriber DN entries exist in
the directory for the given
subscriber.

Invalid Root Oracle Context.
Other error.

Returns proper DBMS_LDAP
error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to

DBMS_LDAP.init().

See Also

DBMS_LDAP.Init(), DBMS_LDAP_UTL.create_subscriber_handle().

Function get_subscriber_dn

The function get_subscriber_dn() returns the subscriber DN.

Syntax

FUNCTION get_subscriber_dn

(

1d IN SESSION,
subscriber_handle IN HANDLE,
dn OUT VARCHAR2

)

RETURN PLS_TINTEGER;

DBMS_LDAP_UTL PL/SQL Reference 9-33

Data Type Summary

Parameters

Table 9-39 GET_SUBSCRIBER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
subscriber_ HANDLE The subscriber handle.
handle

dn VARCHAR2 The subscriber DN.

Return Values

Table 9-40 GET_SUBSCRIBER_DN Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn’t exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of
subscriber DN entries exist in
the directory for the given

subscriber.
DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Returns proper DBMS_LDAP

error codes for unconditional
failures while carrying out
LDAP operations by the
LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.nit().

See Also
DBMS_LDAP.init().

9-34 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Function get_subscriber_ext_properties

The function get_subscriber_ext_properties() retrieves the subscriber extended
properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax

FUNCTION get_subscriber_ext_properties

(

1d IN SESSION,

subscriber_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_TINTEGER,

filter IN VARCHAR2,

rep_pset _coll OUT PROPERTY_ SET COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 9-41 GET_SUBSCRIBER _EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session
handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of attributes to fetch for

the subscriber.

ptype PLS_INTEGER The type of properties to
return. Valid values are as
follows: - DBMS_LDAP_
UTL.DEFAULT_RAD_
PROPERTIES

filter VARCHAR2 An LDATP filter to further
refine the subscriber
properties returned by the
function.

DBMS_LDAP_UTL PL/SQL Reference 9-35

Data Type Summary

Table 9-41 (Cont.) GET_SUBSCRIBER _EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
ret_pset_collection PROPERTY_SET The subscriber details
COLLECTION containing the attributes
requested by the caller.

Return Values

Table 9-42 GET_USER _EXTENDED PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_USER User doesn't exist.
DBMS_LDAP_UTL.INVALID_ROOT_ Invalid Root Oracle Context.

ORCL_CTX

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Returns proper DBMS_LDAP error codes for

unconditional failures while carrying
outLDAP operations by the LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also DBMS_LDAP.init (), DBMS_LDAP_UTL.get_subscriber_
properties ().

Property-Related Subprograms

Many of the user-related, subscriber-related, and group-related subprograms return
DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION, which is a collection of one or
more LDAP entries representing results. Each of these entries is represented by a
DBMS_LDAP_UTL.PROPERTY_SET. A PROPERTY_SET may contain
attributes—that is, properties—and its values. Here is sample usage illustrating the
retrieval of properties from DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION:

my_attrs is of type DBMS LDAP.STRING_COLLECTION

9-36 Oracle Internet Directory Application Developer's Guide

Data Type Summary

my attrs(l) := ‘cn’;

retval := DBMS_LDAP UTL.get_group_ membership (
my_session,

user_handle,

DBMS_LDAP_UTL.DIRECT MEMBERSHIP,

my_attrs,

my_pset_coll

)i

IF my pset_coll.count > 0 THEN
FOR i in my pset_coll.first .. my pset coll.last LOOP
- my_property names is of type DBMS_LDAP.STRING COLLECTION
retval := DBMS_LDAP UTL.get_property names (
pset_coll (i),
property_ names
IF my_property names.count > 0 THEN
FOR j in my property names.first .. my property names.last LOOP
retval := DBMS_LDAP UTL.get_property values (
pset_coll (i),
property. names (j),
property._values
if my property values.COUNT > 0 then
FOR k in my_property. values.FIRST..my property values.LAST LOOP
DBMS_OUTPUT. PUT_LINE (my_property names (j) || ‘: °

| |my_property values (k)) ;
END LOOP; -- For each value
else
DBMS_OUTPUT. PUT_LINE('NO VALUES FOR ‘' || my_property names(j));
end if;
END LOOP; -- For each property name
END IF; -- IF my_property names.count > 0
END LOOP; -- For each propertyset
END IF; -- If my pset _coll.count > 0

use_handle is a user handle. my_pset_coll contains all the nested groups that
user_handle belongs to. The code loops through the resulting entries and prints

out the cn of each entry.

See Also: Example: Property-Related Subprograms on page B-19
for more usage samples of the Property-related subpropgrams

DBMS_LDAP_UTL PL/SQL Reference 9-37

Data Type Summary

Miscellaneous Subprograms

Function normalize_dn_with_case

The function normalize_dn_with_case() removes unnecessary white space
characters from a DN and converts all characters to lower case based on a flag.

Syntax

FUNCTION normalize dn _with case
(

dn IN VARCHARZ,

lower_case IN PLS INTEGER,

norm _dn OUT VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 9-43 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description

dn VARCHAR2 The DN.

lower_case PLS_INTEGER If set to 1: The normalized DN returns in lower
case.
If set to 0: The case is preserved in the normalized
DN string.

norm_dn VARCHAR2 The normalized DN.

Return Values

Table 9-44 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

9-38 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names

The function get_property_names() retrieves the list of property names in the
property set.

Syntax

FUNCTION get_property names

(

pset IN PROPERTY_ SET,

property names OUT STRING_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 9-45 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_ The property set in the property set collection
SET returned from any of the following functions:

- DBMS_LDAP_UTL.get_group_membership()

- DBMS_LDAP_UTL.get_subscriber_properties()
- DBMS_LDAP_UTL.get_user_properties()

- DBMS_LDAP_UTL.get_group_properties()

property_ STRING_ A list of property names associated with the
names COLLECTION property set.

Return Values

Table 9-46 GET_PROPERTY_NAMES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On error.

DBMS_LDAP_UTL PL/SQL Reference 9-39

Data Type Summary

See Also
DBMS_LDAP_UTL.get_property values().

Function get_property_values

The function get_property_values() retrieves the property values (the strings) for a
given property name and property.

Syntax

FUNCTION get_property values

(

pset IN PROPERTY_SET,

property_name IN VARCHARZ,
property._values OUT STRING_COLLECTION

)
RETURN PLS_INTEGER;

Parameters

Table 9-47 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR?2 The property name.

pset PROPERTY_ The property set in the property set collection
SET obtained from any of the following function
returns:

- DBMS_LDAP_UTL.get_group_membership()

- DBMS_LDAP_UTL.get_subscriber_properties()
- DBMS_LDAP_UTL.get_user_properties()

- DBMS_LDAP_UTL.get_group_properties()

property_ STRING_ A list of property values (strings).
values COLLECTION

Return Values

Table 9-48 GET_PROPERTY_VALUES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

9-40 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Value Description
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

See Also

DBMS_LDAP_UTL.get_property_values_len().

Function get_property_values_len

The function get_property_values_len() retrieves the binary property values for a
given property name and property.

Syntax

FUNCTION get_property values_len

(

pset IN PROPERTY_ SET,

property_name IN VARCHARZ,

auth type IN PLS_INTEGER,
property._values OUT BINVAL,_ COLLECTION
)

RETURN PLS_TNTEGER;

Parameters

Table 9-49 GET_PROPERTY _VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR?2 A property name.

pset PROPERTY_ The property set in the property set collection
SET obtained from any of the following function
returns:

- DBMS_LDAP_UTL.get_group_membership()

- DBMS_LDAP_UTL.get_subscriber_properties()
- DBMS_LDAP_UTL.get_user_properties()

- DBMS_LDAP_UTL.get_group_properties()

property_ BINVAL_ A list of binary property values.
values COLLECTION

DBMS_LDAP_UTL PL/SQL Reference 9-41

Data Type Summary

Return Values

Table 9-50 GET_PROPERTY _VALUES_LEN Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

See Also

DBMS_LDAP_UTL.get_property_values().

Procedure free_propertyset_collection

The procedure free_propertyset_collection() frees the memory associated with
property set collection.

Syntax

PROCEDURE free propertyset_collection

(
pset_collection IN OUT PROPERTY_SET COLLECTION

)
Parameters

Table 9-51 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description

pset_collection PROPERTY_ The property set collection returned from one
SET_ of the following functions:
COLLECTION

-DBMS_LDAP_UTL.get_group_membership()
-DBMS_LDAP_UTL.get_subscriber_properties()
-DBMS_LDAP_UTL.get_user_properties()
-DBMS_LDAP_UTL.get_group_properties()

Return Values
N/A

9-42 Oracle Internet Directory Application Developer's Guide

Data Type Summary

See Also

DBMS_LDAP_UTL.get_group_membership(), DBMS_LDAP_UTL.get_subscriber_
properties(), DBMS_LDAP_UTL.get_user_properties(), DBMS_LDAP_UTL.get_
group_properties().

Function create_mod_propertyset

The function create_mod_propertyset() creates a MOD_PROPERTY_SET data
structure.

Syntax

FUNCTION create_mod. propertyset
(

pset_type IN PLS TNTEGER,
pset_name IN VARCHARZ2,

)

RETURN PLS_INTEGER;

Parameters

Table 9-52 CREATE_MOD _PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset_type PLS_INTEGER The type of property set being modified. Valid

values are as follows:

- ENTRY_PROPERTIES

pset_name VARCHAR?2 The name of the property set. This can be NULL if
ENTRY_PROPERTIES are being modified.

mod_pset MOD_ The data structure to contain modify operations to
PROPERTY _ be performed on the property set.
SET

Return Values

Table 9-53 CREATE_MOD _PROPERTYSETFunction Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP_UTL PL/SQL Reference 9-43

Data Type Summary

See Also
DBMS_LDAP_UTL.populate_mod_propertyset().

Function populate_mod_propertyset

The function populate_mod_propertyset() populates the MOD_PROPERTY_SET
data structure.

Syntax

FUNCTION populate mod propertyset

(

mod_pset IN MOD_PROPERTY_SET,
property_mod op IN PLS_INTEGER,
property_name IN VARCHARZ,
property_values IN STRING_COLLECTTION
)

RETURN PLS_TNTEGER;

Parameters

Table 9-54 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

mod_pset MOD_ Mod-PropertySet data structure.
PROPERTY_
SET

property_mod_ PLS_INTEGER The type of modify operation to perform on a
op property. Valid values are as follows:

- ADD_PROPERTY

- REPLACE_PROPERTY

- DELETE_PROPERTY

property_name VARCHAR2 The name of the property.

property_ STRING_ Values associated with the property.
values COLLECTION

9-44 Oracle Internet Directory Application Developer's Guide

Data Type Summary

Return Values

Table 9-55 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN Grace login for user.

See Also

DBMS_LDAP_UTL.create_mod_propertyset().

Procedure free_mod_propertyset

The procedure free_mod_propertyset() frees the MOD_PROPERTY_SET data
structure.

Syntax

PROCEDURE free_mod_propertyset

(
mod_pset IN MOD_PROPERTY_ SET

)
Parameters

Table 9-56 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description

mod_pset PROPERTY_ Mod_PropertySet data structure.
SET

Return Values
N/A

See Also
DBMS_LDAP_UTL.create_mod_propertyset().

DBMS_LDAP_UTL PL/SQL Reference 9-45

Data Type Summary

Procedure free_handle

The procedure free_handle() frees the memory associated with the handle.

Syntax
PROCEDURE free handle

(
handle IN OUT HANDLE

)
Parameters

Table 9-57 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handle HANDLE A pointer to a handle.

Return Values
N/A

See Also

DBMS_LDAP_UTL.create_user_handle(), DBMS_LDAP_UTL.create_subscriber_

handle(), DBMS_LDAP_UTL.create_group_handle().

Function check_interface version

The function check_interface_version() checks for support of the interface version.

Syntax

FUNCTION check interface version
(

interface_version IN VARCHAR2

)

RETURN PLS_TINTEGER;

9-46 Oracle Internet Directory Application Developer's Guide

Function Return Code Summary

Parameters

Table 9-58 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface_ VARCHAR2 Version of the interface.
version

Return Values

Table 9-59 CHECK_ VERSION_INTERFACE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS Interface version is
supported.

DBMS_LDAP_UTL.GENERAL_ERROR Interface version is not
supported.

Function Return Code Summary
The DBMS_LDAP_UTL functions can return the values in the following table

Table 9-60 Function Return Codes

Return

Name Code Description

SUCCESS 0 Operation successful.

GENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERROR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_ -3 Returned by user-related functions and group

MEMBERSHIP functions when the given user doesn’t have any

group membership.

NO_SUCH_SUBSCRIBER -4 Returned by subscriber-related functions when the

subscriber doesn’t exist in the directory.

NO_SUCH_USER -5 Returned by user-related functions when the user
doesn’t exist in the directory.

DBMS_LDAP_UTL PL/SQL Reference 9-47

Function Return Code Summary

Table 9-60 Function Return Codes

Return

Name Code Description

NO_ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context doesn’t exist in the directory.

MULTIPLE_ -7 Returned by subscriber-related functions when

SUBSCRIBER_ENTRIES multiple subscriber entries are found for the given
subscriber nickname.

INVALID_ROOT_ORCL_ -8 Root oracle context doesn’t contain all the required

CTX information needed by the function.

NO_SUBSCRIBER_ORCL_ -9 Oracle context doesn’t exist for the subscriber.

CTX

INVALID_SUBSCRIBER_ -10 Oracle context for the subscriber is invalid.

ORCL_CTX

MULTIPLE_USER _ -11 Returned by user-related functions when multiple

ENTRIES user entries exist for the given user nickname.

NO_SUCH_GROUP -12 Returned by group related functions when a group
doesn’t exist in the directory.

MULTIPLE_GROUP_ -13 Multiple group entries exist for the given group

ENTRIES nickname in the directory.

ACCT_TOTALLY_ -14 Returned by DBMS_LDAP_UTL.authenticate_user()

LOCKED_EXCEPTION function when a user account is locked. This error is
based on the password policy set in the subscriber
oracle context.

AUTH_PASSWD_ -15 Returned by DBMS_LDAP_UTL.authenticate_user()

CHANGE_WARN function when the user password needs to be
changed. This is a password policy error.

AUTH_FAILURE_ -16 Returned by DBMS_LDAP_UTL.authenticate_user()

EXCEPTION function when user authentication fails.

PWD_EXPIRED_ -17 Returned by DBMS_LDAP_UTL.authenticate_user()

EXCEPTION function when the user password has expired. This is
a password policy error.

RESET_HANDLE -18 Returned when entity handle properties are being
reset by the caller.

SUBSCRIBER_NOT_ -19 Returned by DBMS_LDAP-UTL.locate_subscriber_

FOUND

for_user() function when it is unable to locate the
subscriber.

9-48 Oracle Internet Directory Application Developer's Guide

Function Return Code Summary

Table 9-60 Function Return Codes

Return
Name Code Description
PWD_EXPIRE_WARN -20 Returned by DBMS_LDAP_UTL.authenticate_user()

function when the user password is about to expire.
This is a password policy error.

PWD_MINLENGTH_ 21 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password is less than the minimum
required length. This is a password policy error.

PWD_NUMERIC_ERROR -22 Returned by DBMS_LDAP_UTL.set_user_properties()
function while changing the user password and the
new user password doesn’t contain at least one
numeric character. This is a password policy error.

PWD_NULL_ERROR -23 Returned by DBMS_LDAP_UTL.set_user_properties()
function while changing the user password and the
new user password is an empty password. This is a
password policy error.

PWD_INHISTORY_ -24 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password is the same as the previous
password. This is a password policy error.

PWD_ILLEGALVALUE_ -25 Returned by DBMS_LDAP_UTL.set_user_properties()

ERROR function while changing the user password and the
new user password has an illegal character. This is a
password policy error.

PWD_GRACELOGIN_ -26 Returned by DBMS_LDAP_UTL.authenticate_user()

WARN function to indicate that the user password has
expired and the user has been given a grace login.
This is a password policy error.

PWD_MUSTCHANGE_ -27 Returned by DBMS_LDAP_UTL.authenticate_userr()
ERROR function when user password needs to be changed.
This is a password policy error.

USER_ACCT_DISABLED_ -29 Returned by DBMS_LDAP_UTL.authenticate_user()

ERROR function when user account has been disabled. This is
a password policy error.

PROPERTY_NOT_ -30 Returned by user-related functions while searching

FOUND for a user property in the directory.

DBMS_LDAP_UTL PL/SQL Reference 9-49

Data-Type Summary

Data-Type Summary

The DBMS_LDAP_UTL package uses the data types in the following table

Table 9-61 DBMS_LDAP_UTL Data Types

Data Type Purpose
HANDLE Used to hold entity related.
PROPERTY_SET Used to hold the properties of an entity.

PROPERTY_SET_COLLECTION List of PROPERTY_SET structures.
MOD_PROPERTY_SET Structure to hold modify operations on an entity.

9-50 Oracle Internet Directory Application Developer's Guide

10

DAS URL Interface Reference

This chapter describes the Oracle extensions to the DAS_URL Service Interface. It
contains these sections:

Oracle Delegated Administration Services Units and Corresponding Directory
Entries

DAS Units and Corresponding URL Parameters
DAS URL API Parameter Descriptions

User or Group List of Values Access

DAS_URL Interface Reference 10-1

Oracle Delegated Administration Services Units and Corresponding Directory Entries

Oracle Delegated Administration Services Units and Corresponding
Directory Entries

Table 10-1

Table 10-1 lists each Oracle Delegated Administration Services unit and the
corresponding entry in Oracle Internet Directory which stores the relative URL.

Service Units and Corresponding Entries

Service Unit

Entry

Create User

cn=CreateUser, cn=0OperationURLs, cn=DAS, cn=Products, cn=0OracleContext

Edit User cn=EditUser, cn=OperationURLs, cn=DAS, cn=Products, cn=0OracleContext
Edit User when cn=EditUserGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,

GUID is passed as cn=OracleContext

a parameter

Delete User cn=DeleteUser, cn=0perationURLs, cn=DAS, cn=Products, cn=0racleContext
Delete User when cn=DeleteUserGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,

GUID of the user cn=0OracleContext

to be deleted is

passed as a

parameter

Create Group

cn=CreateGroup, cn=0perationURLs, cn=DAS, cn=Products,
cn=0racleContext

Edit Group cn=EditGroup, cn=0perationURLs, cn=DAS, cn=Products, cn=0OracleContext

Edit the group cn=EditGroupGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,

whose GUID is cn=OracleContext

passed through a

parameter

Delete Group cn=DeleteGroup, cn=OperationURLs, cn=DAS, cn=Products,
cn=OracleContext

Delete group with cn=DeleteGroupGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,

the GUID passed cn=OracleContext

through a

parameter

Assign privileges cn=UserPrivilege, cn=OperationURLs, cn=DAS, cn=Products,

to a user cn=0OracleContext

Assign privileges = cn=UserPrivilegeGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,

to a user with the cn=OracleContext

GUID passed

through a

parameter

10-2 Oracle Internet Directory Application Developer's Guide

DAS Units and Corresponding URL Parameters

Table 10-1 (Cont.) Service Units and Corresponding Entries

Service Unit Entry

Assign privilege to cn=GroupPrivilege, cn=OperationURLs, cn=DAS, cn=Products,
a group cn=OracleContext

Assign privilege to cn=GroupPrivilegeGivenGUID, cn=OperationURLs, cn=DAS, cn=Products,
a group with the cn=OracleContext
given GUID

View User account cn=AccountInfo,cn=OperationURLs, cn=DAS,cn=Products,
information/Profil cn=OracleContext
e

Edit User account cn=Edit My Profile, cn=OperationURLs, cn=DAS, cn=Products,
Information/Profil cn=0OracleContext
e

Change Password cn=PasswordChange, cn=OperationURLs, cn=DAS, cn=Products,
cn=0OracleContext

Search User cn=UserSearch, cn=OperationURLs,cn=DAS, cn=Products,
cn=0racleContext

Search Group cn=GroupSearch, cn=OperationURLs, cn=DAS, cn=Products,
cn=OracleContext

Search User LOV cn=UserLOV, cn=OperationURLs, cn=DAS, cn=Products,
cn=0racleContext

Search Group LOV cn=GroupLOV, cn=OperationURLs, cn=DAS, cn=Products,
cn=0OracleContext

EUS Console cn=EUS
Console, cn=0OperationURLs, cn=DAS, cn=Products, cn=0OracleContext"

Delegation Console cn=DelegationConsole, cn=OperationURLs, cn=DAS, cn=Products,
cn=OracleContext

DAS Units and Corresponding URL Parameters

The following table lists all the available DAS units and the URL parameters that
can be passed to DAS units.

Table 10-2 DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

Create User homeURL, doneURL, returnGUID
cancelURL, enablePA

DAS_URL Interface Reference 10-3

DAS Units and Corresponding URL Parameters

Table 10-2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values
Edit User homeURL, doneURL

cancelURL, enablePA
EditUserGivenGUID homeURL, doneURL,

cancelURL,

enablePA , userGUID
EditMyProfile homeURL, doneURL,

Delegation Console

cancelURL

DeleteUser homeURL, doneURL,
cancelURL

DeleteUserGivenGUID homeURL, doneURL,
cancelURL, userGUID

UserPrivilege homeURL, doneURL,

UserPrivilegeGivenGUID

cancelURL

homeURL, doneURL,
cancelURL, userGUID

CreateGroup homeURL, doneURL, returnGUID
cancelURL,
enablePA , parentDN

EditGroup homeURL, doneURL,
cancelURL, enablePA

EditGroupGivenGUID homeURL, doneURL,
cancelURLenablePA ,
groupGUID

DeleteGroup homeURL, doneURL,
cancelURL

DeleteGroupGivenGUID homeURL, doneURL,
cancelURL, groupGUID

GroupPrivilege homeURL, doneURL,

GroupPrivilegeGivenGUI
D

AccountInfo

cancelURL

homeURL, doneURL,
cancelURL, groupGUID

homeURL, doneURL,
cancelURL

10-4 Oracle Internet Directory Application Developer's Guide

DAS URL API Parameter Descriptions

Table 10-2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit

Parameter

Return Values

PasswordChange
UserSearch
GroupSearch

UserLOV

GroupLOV

homeURL, doneURL,
cancelURL

homeURL, doneURLm,
cancelURL

homeURL, doneURL,
cancelURL

base, cfilter, title
dasdomain

otype, base,
cfilter, title

dasdomain

DAS URL API Parameter Descriptions

The following parameters are used with DAS units.

Table 10-3 DAS URL Parameter Descriptions

Parameter

Description

homeURL

doneURL

cancelURL

enablePA

userGUID

The URL which is linked to the global button Home. When the calling
application specifies this value, clicking the Home button will redirect
the DAS unit to the URL specified by this parameter.

This URL is used by DAS to redirect the DAS page at the end of each
operation. In case of Create User, once the user is created, clicking OK
will redirect the URL to this location. Hence the user navigation
experience will be smooth.

This URL is linked with all the Cancel buttons shown in the DAS units.
Any time the user clicks Cancel, the page is redirected to the URL
specified by this parameter.

This parameter takes a Boolean value of true/false. This will enable the
section Assign Privileges in User or Group operation. If the enablePA is
passed with value of true in the Create User page, then the Assign
Privileges to User section will also appear in the Create User page.

This is the GUID of the user to be edited or deleted. This corresponds to
the orclguid attribute. Specifying this will skip the search for the User
step in either editUser or deleteUser units.

DAS_URL Interface Reference 10-5

User or Group List of Values Access

Table 10-3 (Cont) DAS URL Parameter Descriptions

Parameter

Description

GroupGUID

parentDN

base

cfilter

title

otype

returnGUID

dasdomain

This is the GUID of the group to be edited or deleted. This corresponds
to the orclguid attribute. Specifying this will skip the search for the
group step in either editGroup or deleteGroup units.

When this parameter is specified in CreateGroup, the group will be
created under this container. If not specified, group creation will default
to the group search base.

This parameter represents the search base in case of search operations.

This parameter represents the filter to be used for the search. This filter
is LDAP-compliant.

This parameter represents the title to be shown in the Search and Select
LOV page.

This parameter represents the object type used for search. Values
supported are Select, Edit, and Assign.

This parameter is appended to the doneURL in case of a create
operation. The value will be the orclguid of the new object.

This parameter is needed only when the browser is Internet Explorer
and the calling URL and the DAS URL are on different hosts and same
domain. An example value is us.oracle.com. Note the calling application
also needs to set the document . domain parameter on the formload.
For more details, refer to Microsoft support at:

http://support.microsoft.com/

User or Group List of Values Access
In DAS, the search page for users or groups is called the List of Values (LOV).

DAS uses Java scripts to access the LOV, and to pass values between the LOV
calling window and DAS LOV page. Since the Java scripts have security
restrictions, data cannot pass across the domains. Due to this limitation, only the
pages in the same domain can access the DAS LOV units.

The example below is a simple HTML file which invokes the DAS User LOV. Note
the Javascript functions are taken from the MarlinCore. js file published with
UIX. Applications may use their own Javascript procedures or use the UIX library

utilities.

<html>
<head>

<title>test</title>

10-6 Oracle Internet Directory Application Developer's Guide

User or Group List of Values Access

</head>
<script src="/cabo/jsLibs/MarlinCore.js">
</script>
<body>
<form name="forml" method="GET" action="test.html">
<script language="javascript">
function doSelect (lovivindow, event)
{
var value = loviWindow.userName;
if (value!=(void 0)){
document . forml.lovl.value = lovivindow.userName;
document . forml.lov2.value = loviWindow.userGuid

}
}
</script>
<table border="0" cellspacing="0" cellpadding="0">
<tr>
<td align="right" nowrap>

<label for="M__Id2500">Manager</label>

</td>
<td nowrap>

<input id="M__TId2500" name="lovl" size="25" type="text">
<a onclick="openWindow (top,
' /oiddas/cabo/jsps/frameRedirect.jsp?redirect=http://sneaker.us.oracle.com: 7777/
oiddas/ui/oracle/ldap/das/search/LOVUserSearch?title=User"’,
'lovitindow', {width:600,height:600},
false, 'dialog',doSelect);
return false;"

href: nn >
<img src="/oiddas/oracle/ldap/das/Images/c-lov.gif"

alt="Testing lov" border="0" align="absmiddle">

</td>
</tr>
<tr>
<td align="right" nowrap>

<label for="M__Id2501">Guid</label>

</td>
<td>

DAS_URL Interface Reference 10-7

User or Group List of Values Access

<input id="M__ Id2501" name="lov2" size="25" type="text">
</td>
</tr>
</table>
</ form>
</body>
</html>

More details about the UIX openWindow function are available at:

http://cabo/cabo/marlin/docs/windowdsS . html

10-8 Oracle Internet Directory Application Developer's Guide

11

Provisioning Integration APl Reference

This chapter contains reference information for the Oracle Directory Provisioning
Integration Service Registration APL. It contains the following sections:

Versioning of Provisioning Files and Interfaces
Extensible Event Definition Configuration
INBOUND And OUTBOUND Events
PL/SQL Bidirectional Interface (Version 2.0)

Provisioning Event Interface (Version 1.1)

Provisioning Integration API Reference 11-1

Versioning of Provisioning Files and Interfaces

Versioning of Provisioning Files and Interfaces

In the Oracle Internet Directory release 9.0.2, the default interface version was
version 1.1. In release 9.0.4, the interface version defaults to version 2.0, but the
administrator can set this back to version 1.1 to maintain the previous interface.

Extensible Event Definition Configuration

This feature is meant only for OUTBOUND events. This feature addresses the
ability to define a new EVENT at run time so that the Provisioning Integration

service can interpret a change in Oracle Internet Directory and determine whether

an appropriate event is to be generated and propagated to an application. The

following events will be the only configured events at the installation time.

An Event Definition (entry) consists of the following attributes.

Event Object Type (orc10DIPProvEventObjectType): This specifies the
type of Object the Event is associated with. E.g The object could be a USER,
GROUP, IDENTIT Yetc.

LDAP Change Type (orc1O0DIPProvEventChangeType): This indicates what
all kinds of LDAP operations can generate an Event for this type of Object. (e.g
ADD, MODIFY, DELETE)

Event Criteria (orc10DIPProvEventCriteria): The additional selection
criteria that qualifies an LDAP entry to be of a specific Object Type. For
example, Objectclass=orclUserV2 means that any LDAP entry which
satisfies this criteria can be qualified as this Object Type and any change to this
entry can generate appropriate event(s).

The object class that holds the above attributes is
orclODIPProvEventTypeConfig. The container
cn=ProvisioningEventTypeConfig, cn=0di, cn=oracle internet
directory is used to store all the event type configurations.

11-2 Oracle Internet Directory Application Developer's Guide

Extensible Event Definition Configuration

Table 11-1 lists the event definitions predefined as a part of the installation.

Table 11-1 Predefined Event Definitions

Event Object Type

LDAP Change Type Event Criteria

ENTRY
USER

IDENTITY

GROUP

SUBSCRPTION
SUBSCRIBER

ADD, MODIFY, DELETE =~ OBJECTCLASS=*

ADD, MODIFY, DELETE ~ OBJECTCLASS=interorgperson
OBJECTCLASS=orcluserv2

ADD, MODIFY, DELETE = OBJECTCLASS=interorgperson
OBJECTCLASS=orcluserv2

ADD, MODIFY, DELETE = OBJECTCLASS=orclgroup
OBJECTCLASS=groupofuniquenames

ADD, MODIFY, DELETE = OBJECTCLASS=orclservicerecepient
ADD, DELETE, MODIFY OBJECTCLASS=orclsubscriber

The container cn=ProvisioningEventTypeConfig, cn=odi, cn=oracle
internet directory is used to store all the event definition configurations.
LDAP configuration of the predefined event definitions is as follows:

dn: orclODIPProvEventObjectType=ENTRY, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: ENTRY

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=*

objectclass: orclODIPProvEventTypeConfig

dn:

orclODIPProvEventObjectType=USER, cn=ProvisioningEventTypeConfig, cn=odi, cn=oracle
internet directory

orclODIPProvEventObjectType: USER

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=InetOrgPerson

orclODIPProvEventCriteria: objectclass=orcluserv2

objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=IDENTITY, ch=ProvisioningEventTypeConfig, cn=odi,

Provisioning Integration APl Reference 11-3

Extensible Event Definition Configuration

cn=oracle internet directory
orclODIPProvEventObjectType: IDENTITY
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=inetorgperson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=GROUP, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: GROUP

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclgroup

orclODIPProvEventCriteria: objectclass=groupofuniquenames

objectclass: orclODIPProvEventTypeConfig

dn:

orclODIPProvEventObjectType=SUBSCRIPTION, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: SUBSCRIPTION

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclservicerecepient

objectclass: orclODIPProvEventTypeConfig

dn:

orclODIPProvEventObjectType=SUBSCRIBER, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: SUBSCRIBER

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclsubscriber

objectclass: orclODIPProvEventTypeConfig

To define a new event of Object type XYZ (which is qualified with the object class
“0bjXYZ"), create the following entry in OID. The DIP server would recognize this
new EVENT definition and propagate events if necessary to applications that
subscribe to this event.

dn: orclODIPProvEventObjectType=XYZ,cn=ProvisioningEventTypeConfig, cn=odi,

11-4 Oracle Internet Directory Application Developer's Guide

INBOUND And OUTBOUND Events

cn=oracle internet directory
orclODIPProvEventObjectType: XYZ
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=objXYZ
objectclass: orclODIPProvEventTypeConfig

This means that if an LDAP entry with the object class “objXYZ" is
added /modified /deleted, DIP will propagate the XYZ_ADD/XYZ_
MODIFY/XYZ_DELETE event respectively to any application concerned.

INBOUND And OUTBOUND Events

An application can register as a supplier as well as a consumer of events. The
provisioning subscription profile has the attributes described in Table 11-2 on
page 11-6.

Provisioning Integration APl Reference 11-5

INBOUND And OUTBOUND Events

Table 11-2 Attributes of the Provisioning Subscription Profile

Attribute Description

EventSubscriptions OUTBOUND Events only. (Multi valued)

This is same as it was in the previous release. Events for which DIP should send
notification to this application. Format of this string :"[USERJGROUP]:[Domain of
interest>]:[DELETE | ADD | MODIFY (<list of attributes separated by comma>)]"
Multiple values may be specified by listing the parameter multiple times each with
different values. If not specified the following defaults are assumed: USER:<org.
DN>:DELETEGROUP:<org. DN>:DELETE—that is, send user and group delete
notifications under the organization DN.

MappingRules INBOUND Events Only (Multi valued) New to this release This is used to map the
type of object received from an application and a qualifying filter condition to
determine the domain of interest for this event.

OBJECT_TYPE: Filter condition: Domain Of Interest

Multiple rules are allowed.

For example:

s EMP:cn=users,dc=acme,dc=com
This means that if the object type received is “EMP”, the event is meant for the
domain “cn=users,dc=acme,dc=com”

s EMP:I=AMERICA:I=AMER cn=users,dc=acme,dc=com
This means that if the object type received is “EMP”, and the event has the
attribute 1 (locality) and its value is “AMERICA”, the event is meant for the
domain “1=AMER ,cn=users,dc=acme,dc=com”

permittedOperations INBOUND Events Only (Multi valued)

New to this release.

This is used to define the types of EVENT an application is privileged to send to
the Provisioning Integration Service.

Format : Event_Object: Affected Domain:Operation(Attributes,...) For example:
» IDENTITY:cn=users,dc=acme,dc=com:ADD(*)

This means that IDENTITY_ADD event is allowed for the specified domain
and all attributes are also allowed.

= IDENTITY:cn=users,dc=acme,dc=com:MODIFY(cn,sn.mail, telephonenumber)

This means that IDENTITY_MODIFY is allowed for only the attributews in
the list. Any extra attributes are silently ignored.

11-6 Oracle Internet Directory Application Developer's Guide

PL/SQL Bidirectional Interface (Version 2.0)

PL/SQL Bidirectional Interface (Version 2.0)

The PL/SQL callback interface requires you to develop a PL/SQL package that
Oracle Provisioning Integration Service invokes in the application specific database.
Choose any name for the package, but be sure to use the same name when you
register the package at

Subscription time. Implement the package by the following PL/SQL package
specification:

DROP TYPE LDAP_EVENT;

DROP TYPE LDAP EVENT STATUS;
DROP TYPE LDAP ATTR LIST;
DROP TYPE LDAP ATTR;

—- Name: LDAP_ATTR

-— Data Type: OBJECT

DESCRIPTION: This structure contains details regarding an attribute. A list of
one or more of this object is passed in any event.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2 (256) ,
attr_value VARCHAR2 (4000)
attr_bvalue RAIW (2048) ,
attr_value_ len INTEGER,
attr_type INTEGER |,
attr_mod_op INTEGER

)i
GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP ATTR LIST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP ATTR LIST to public;

—-— Name: LDAP EVENT

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains event information plus the attribute
-- list

Provisioning Integration API Reference 11-7

PL/SQL Bidirectional Interface (Version 2.0)

CREATE TYPE LDAP_EVENT AS OBJECT (
event_type VARCHAR2(32),
event_id VARCHAR2 (32) ,
event_src VARCHAR2
event_time VARCHAR2

(3

(1024),

(
object_name VARCHAR2 (

(

(3

(

32),
1024),
object_type VARCHAR2 (32),
object_guid VARCHAR2 (32),
object_dn VARCHAR2(1024),
profile id VARCHAR2 (1024),
attr list IDAP ATTR LIST) ;

GRANT EXECUTE ON LDAP_EVENT to public;

-— Name: LDAP EVENT STATUS
-— Data Type: OBJECT
-- DESCRIPTION: This structure contains information that is sent by the consumer

event to the supplier in response to the actual

CREATE TYPE LDAP_EVENT STATUS AS OBJECT (
event_id VARCHAR2 (32) ,
orclguid VARCHAR(32),
error_code INTEGER,
error_String VARCHAR2 (1024),
error_disposition VARCHAR2 (32)) ;

GRANT EXECUTE ON LDAP_EVENT STATUS to public;

11-8 Oracle Internet Directory Application Developer’'s Guide

Provisioning Event Interface (Version 1.1)

Provisioning Event Interface (Version 1.1)

As stated in "Development Tasks for Provisioning Integration" on page 4-20, you
must develop logic to consume events generated by the Oracle Directory
Provisioning Integration Service.The PL/SQL callback interface requires you to
develop a PL/SQL package that Oracle Directory Provisioning Integration Service
invokes in the application-specific database. Choose any name for the package, but
be sure to use the same name when you register the package at subscription time.
Implement the package by the following PL/SQL package specification:

Rem

Rem NAME

Rem ldap ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP_ATTR LIST;
DROP TYPE LDAP_ ATTR;

-- LDAP ATTR
-— Name : LDAP ATTR
-— Data Type : OBJECT

-- DESCRIPTION : This structure contains details regarding
- an attribute.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2 (255) ,

attr_value VARCHAR2 (2048) ,

attr_bvalue RAIW (2048) ,

attr_value_ len INTEGER,

attr_type INTEGER -- (0 - String, 1 - Binary)
attr_mod_op INTEGER

GRANT EXECUTE ON LDAP_ATTR to public;

-- Name : LDAP_ATTR LIST

-- Data Type : COLLECTION

-- DESCRIPTION : This structure contains collection
- of attributes.

Provisioning Integration APl Reference 11-9

Provisioning Event Interface (Version 1.1)

CREATE TYPE LDAP ATTR LIST AS TABLE OF LDAP_ATTR;

/
GRANT EXECUTE ON LDAP_ATTR LIST to public;

-- NAME : LDAP NTFY

-- DESCRIPTION : This a notifier interface implemented by Provisioning System
- clients to receive information about changes in OID.

- The name of package can be customized as needed.

- The functions names within this package SHOULD NOT be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

-- LDAP NTFY data type definitions

-- Event Types

USER_DELETE CONSTANT VARCHAR2 (256) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2 (256) := 'USER _MODIFY';
GROUP_DELETE CONSTANT VARCHARZ2 (256) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHARZ2 (256) := 'GROUP_MODIFY';
-- Return Codes (Boolean)

SUCCESS CONSTANT NUMBER := 1;

FATLURE CONSTANT NUMBER =0;

-- Values for attr_mod _op in LDAP_ATTR object.

MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

—-— Name: LDAP NTFY

-- DESCRIPTION: This is the interface to be implemented by Provisioning System
-- clients to send/receive information to/from OID. The name of

-- Package can be customized as needed.

-- The functions names within this package SHOULD NOT be changed.

11-10 Oracle Internet Directory Application Developer’s Guide

Provisioning Event Interface (Version 1.1)

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

Predefined Event Types
ENTRY_ADD CONSTANT VARCHAR2 (32) := 'ENTRY_ADD';
ENTRY_DELETE CONSTANT VARCHAR2 (32) := 'ENTRY DELETE';
ENTRY_MODIFY CONSTANT VARCHAR2 (32) := 'ENTRY_MODIFY';
USER_ADD CONSTANT VARCHAR2 (32) := 'USER_ADD';
USER_DELETE CONSTANT VARCHAR2 (32) := 'USER _DELETE';
USER_MODIFY CONSTANT VARCHARZ2 (32) := 'USER _MODIFY';
IDENTTTY_ ADD CONSTANT VARCHAR2 (32) := 'IDENTITY ADD';
IDENTITY DELETE CONSTANT VARCHAR2 (32) := 'IDENTITY DELETE';
IDENTITY MODIFY CONSTANT VARCHAR2 (32) := 'IDENTITY MODIFY';
GROUP_ADD CONSTANT VARCHAR2 (32) := 'GROUP_ADD';
GROUP_DELETE CONSTANT VARCHAR2 (32) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (32) := 'GROUP_MODIFY';
SUBSCRIPTION_ADD CONSTANT VARCHAR2 (32) := 'SUBSCRIPTION ADD';
SUBSCRIPTION DELETE CONSTANT VARCHAR2 (32) := 'SUBSCRIPTION_DELETE';
SUBSCRIPTION_MODI CONSTANT VARCHAR2 (32) := 'SUBSCRIPTION_MODIFY';
SUBSCRIBER_ADD CONSTANT VARCHAR2 (32) := 'SUBSCRIBER ADD';
SUBSCRIBER_DELETE CONSTANT VARCHAR2 (32) := 'SUBSCRIBER DELETE';
SUBSCRIBER_MODIFY CONSTANT VARCHAR2 (32) := 'SUBSCRIBER MODIFY';
Attribute Type
ATTR _TYPE_STRING CONSTANT NUMBER := 0;
ATTR TYPE_BINARY CONSTANT NUMBER := 1;
ATTR_TYPE_ENCRYPTED STRING CONSTANT NUMBER := 2;

Attribute Modification Type

MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

Provisioning Integration APl Reference 11-11

Provisioning Event Interface (Version 1.1)

Event Dispostions Constants

Callbacks

EVENT_SUCCESS CONSTANT VARCHAR2 (32) := 'EVENT_SUCCESS';
EVENT_FATLURE CONSTANT VARCHAR2 (32) := 'EVENT _FATLURE';
EVENT_RESEND CONSTANT VARCHAR2 (32) := 'EVENT RESEND';

A callback function invoked by the Oracle Directory Provisioning Integration
Service to send or receive notification events. While transferring events for an
object, the related attributes can also be sent along with other details. The attributes
are delivered as a collection (array) of attribute containers, which are in
un-normalized form—that is, if an attribute has two values then two rows would be
sent in the collection.

GetAppEvent()

The Oracle directory integration and provisioning server invokes this APl in the
remote database. It is up to the appliction to respond with an event. Once the Oracle
Directory Integration and Provisioning platform gets the event, it processes the it
and sends the status back using the PutAppEventStatus () callback. The return
value of GetAppEvent () indicates whether an event is returned or not.

FUNCTION GetAppEvent (event OUT LDAP_EVENT)
RETURN NUMBER;

—-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER := 0;
EVENT_NOT_FOUND CONSTANT NUMBER 1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—then it responds with EVENT_RESEND and the application is
expected to resend that event in the future when GetAppEvent () is invoked
again.

If the provisioning server is able to process the event, but it finds that the event
cannot be processed—for example, the user to be modified does not exist, or the
user to be subscribed does not exist, or the user to be deleted does not exist—then it
responds with EVENT_ERROR to indicate to the application that something was
wrong. It is not required to resend the event. It is up to the application to handle the
event.

11-12 Oracle Internet Directory Application Developer's Guide

Provisioning Event Interface (Version 1.1)

Note the difference between EVENT_RESEND and EVENT_ERROR in the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

EVENT_ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reaons.

PutAppEventStatus()

The Oracle directory integration and provisioning server invokes this callback in the
remote database after processing an event it had received using the

GetAppEvent () callback. For every event received, the Oracle directory
integration and provisioning server sends the status event back after processing the
event.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT STATUS) ;

PutOIDEvent()

The Oracle directory integration and provisioning server invokes this APl in the
remote database. It sends event to applications using this callback. It also expects n
status event object in response as an OUT parameter. If valid event status
object is not sent back or it indicates a RESEND, then the Oracle directory
integration and provisioning server resends this event again. In case of EVENT_
ERROR, the server does not resend the event.

PROCEDURE PutOIDEvent (event IN LDAP_EVENT, event_status OUT LDAP EVENT
STATUS) ;

END LDAP_NTFY;

/

Provisioning Integration APl Reference 11-13

Provisioning Event Interface (Version 1.1)

11-14 Oracle Internet Directory Application Developer's Guide

Part lli

Appendixes

Part III explains the command-line tools, including generic tools and Oracle-specific
tools. It contains these appendixes:

= Appendix A, "Syntax for LDIF and Command-Line Tools"
= Appendix B, "Sample Usage"

A

Syntax for LDIF and Command-Line Tools

This appendix provides syntax, usage notes, and examples for LDAP Data
Interchange Format (LDIF) and LDAP command-line tools. It contains these topics:

LDAP Data Interchange Format (LDIF) Syntax

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory
Servers

Entry and Attribute Management Command-Line Tools Syntax

Oracle Directory Integration and Provisioning Platform Command-Line Tools
Syntax

Syntax for LDIF and Command-Line Tools A-1

LDAP Data Interchange Format

(LDIF) Syntax

LDAP Data Interchange Format (LDIF) Syntax

The stan

dardized file format for directory entries is as follows:

dn: distinguished _name
attribute_type: attribute value

objectClass: object_class_value

Property Value Description

dn: RDN,RDN,RDN,... Separate RDNs with commas.

attribute_ attribute_value This line repeats for every attribute in the entry,

type: and for every attribute value in multi-valued
attributes.

objectClass: object_class_ value This line repeats for every object class.

The following example shows a file entry for an employee. The first line contains

the DN.

The lines that follow the DN begin with the mnemonic for an attribute,

followed by the value to be associated with that attribute. Note that each entry ends
with lines defining the object classes for the entry.

dn:
cn:
cn:
sn:
mail

cn=Suzie Smith, ou=Server Technology,o=Acme, c=US
Suzie Smith

SuzieS

Smith

: ssmith@us.Acme.com

telephoneNumber: 69332

phot
obje
obje
obje

A-2 Oracle Internet Directo

0: /ORACLE_HOME/empdir/photog/ssmith.jpg
ctClass: organizationalPerson

ctClass: person

ctClass: top

ry Application Developer’s Guide

LDAP Data Interchange Format (LDIF) Syntax

The next example shows a file entry for an organization:

dn: o=Acme, c=US

0: Acme

ou: Financial Applications
objectClass: organization
objectClass: top

LDIF Formatting Notes
A list of formatting rules follows. This list is not exhaustive.

All mandatory attributes belonging to an entry being added must be included
with non-null values in the LDIF file.

Tip: To see the mandatory and optional attribute types for an
object class, use Oracle Directory Manager. See Oracle Internet
Directory Administrator’s Guide.

Non-printing characters and tabs are represented in attribute values by base-64
encoding.

The entries in your file must be separated from each other by a blank line.
A file must contain at least one entry.

Lines can be continued to the next line by beginning the continuation line with
a space or a tab.

Add a blank line between separate entries.

Reference binary files, such as photographs, with the absolute address of the
file, preceded by a forward slash (“/”).

The DN contains the full, unique directory address for the object.

The lines listed after the DN contain both the attributes and their values. DNs
and attributes used in the input file must match the existing structure of the
DIT. Do not use attributes in the input file that you have not implemented in
your DIT.

Sequence the entries in an LDIF file so that the DIT is created from the top
down. If an entry relies on an earlier entry for its DN, make sure that the earlier
entry is added before its child entry.

Syntax for LDIF and Command-Line Tools A-3

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

= When you define schema within an LDIF file, insert a white space between the
opening parenthesis and the beginning of the text, and between the end of the
text and the ending parenthesis.

See Also:

s The various resources listed in "Related Documentation" on
page xxvi for a complete list of LDIF formatting rules

s The section "Using Globalization Support with LDIF Files" in
Oracle Internet Directory Administrator’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory
Servers

This section tells how to use command-line tools for starting, stopping, restarting,
and monitoring Oracle Internet Directory servers. It contains these topics:

s The OID Monitor (oidmon) Syntax
= The OID Control Utility (oidctl) Syntax

The OID Monitor (oidmon) Syntax

Use the OID Monitor to initiate, monitor, and terminate directory server processes.
If you elect to install a replication server, OID Monitor controls it. When you issue
commands through OID Control Utility (OIDCTL) to start or stop directory server
instances, your commands are interpreted by this process.

Starting the OID Monitor

Starting OID Monitor restarts any Oracle Internet Directory processes that were
previously stopped.

To start the OID Monitor:
1. Set the following environment variables:
= ORACLE_HOME
s ORACLE_SID or a proper TNS CONNECT string

s NLS_LANG (APPROPRIATE_LANGUAGE.AL32UTES). The default
language set at installation is AMERICAN_AMERICA.

A-4 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

= PATH. In the PATH environment variable, specify the Oracle LDAP
binary—that is, ORACLE_HOME/bin—before the UNIX binary directory.

2. At the system prompt, type:

oidmon [connect=connect_string] [host=virtual/host_name] [sleep=seconds]

start

Table A-1 Arguments for Starting OID Monitor

Argument

Description

connect=connect_string

host=virtual/host_name

sleep=seconds

start

Specifies the connect string for the database to which you want
to connect. This is the network service name set in the
tnsnames . ora file. This argument is optional.

Specifies the virtual host or rack nodes on which to start OID
Monitor

Specifies number of seconds after which the OID Monitor
should check for new requests from OID Control and for
requests to restart any servers that may have stopped. The
default sleep time is 10 seconds. This argument is optional.

Starts the OID Monitor process

For example:

oidmon connect=dbsl sleep=15 start

To start OID Monitor on a virtual host:

oidmon connect=dbsl host=virtual_host start

Stopping the OID Monitor
Stopping the OID Monitor also stops all other Oracle Internet Directory processes.

To stop the OID Monitor daemon, at the system prompt, type:

oidmon [connect=connect_string] [host=virtual/host_name] stop

Table A-2 Arguments for Stopping OID Monitor

Argument

Description

connect=connect_
string

Specifies the connect string for the database to which you want
to connect. This is the connect string set in the tnsnames . ora
file.

Syntax for LDIF and Command-Line Tools A-5

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-2 (Cont.) Arguments for Stopping OID Monitor

Argument Description

host=virtual/host Specifies the virtual host or rack nodes on which to start OID

name

stop

Monitor

Stops the OID Monitor process

For example:

oidmon connect=dbsl stop

Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration

While starting and stopping OID Monitor, use the host parameter to specify the
virtual host name. The syntax is:

oidmon [connect=connect_string] host=virtual_ host start\stop

Note: If you are going to start Oracle Internet Directory servers on
a virtual host, then, when using both OIDMON and OIDCTL, be
sure to specify the host argument as the virtual host.

If the OID Monitor is started with the host=host name argument,
and the host name does not match the name of the physical host,
then the OID Monitor assumes that the intended host is the logical
host. You must use the same host name when using OIDCTL to
stop or start any servers, otherwise the OID Monitor does not start
or stop the servers.

To determine the physical host name, execute the uname command.

The OID Control Utility (oidctl) Syntax

OID Control Utility is a command-line tool for starting and stopping the directory
server. The commands are interpreted and executed by the OID Monitor process.

Note: Although you can start the directory server without using
OID Monitor and the OID Control Utility, Oracle Corporation
recommends that you use them. This way, if the directory server
unexpectedly terminates, then OID Monitor automatically restarts
it.

A-6 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

This section contains these topics:

= Starting and Stopping an Oracle Directory Server Instance

s Troubleshooting Directory Server Instance Startup

= Starting and Stopping an Oracle Directory Replication Server Instance
» Starting the Oracle Directory Integration and Provisioning Server

= Stopping the Oracle Directory Integration and Provisioning Server

= Restarting Oracle Internet Directory Server Instances

» Starting and Stopping Oracle Internet Directory Servers on Either a Virtual Host
or a Rack Node

Starting and Stopping an Oracle Directory Server Instance
Use the OID Control Utility to start and stop Oracle directory server instances.

Starting an Oracle Directory Server Instance The syntax for starting an Oracle directory
server instance is:

oidctl connect=connect_string server=oidldapd instance=server_instance_number
[configset=configset_number] [host=virtual/host_name][flags=' -p port_number
-work maximum_number_of worker_ threads_per_server -debug debug_level -1 change_
logging' -server number_of_ server_processes] start

Table A-3 Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

-debug debug level Specifies a debug level during Oracle directory server
instance startup

Syntax for LDIF and Command-Line Tools A-7

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-3 (Cont.) Arguments for Starting a Directory Server by Using OIDCTL

Argument

Description

-1 change logging

-p port_number

-server number._ of_ server.
processes

-sport

-work maximum_number_ of_
worker_threads_per_ server

configset=configset_

number

connect=connect_string

host=virtual/host_name

Turns replication change logging on and off. To turn it
off, enter -1 false. To turn it on, do any one of the
following:

= omit the -1 flag
= enter simply -1
. enter -1 true

Turning off change logging for a given node by
specifying -1 false has two drawbacks: it prevents
replication of updates on that node to other nodes in
the DRG, and it prevents application provisioning and
synchronization of connected directories, because those
two services require an active change log. The default,
TRUE, permits replication, provisioning, and
synchronization.

Specifies a port number during server instance startup.
The default port number is 389.

Specifies the number of server processes to start on this
port

Specifies the SSL port number during server instance
startup. Default port if not set is 636.

See Also:

s The information about orclsslenable attribute
in the section "Configuration Set Entry Schema
Elements" in Oracle Internet Directory
Administrator’s Guide

= "Configuring SSL Parameters"in Oracle Internet
Directory Administrator’s Guide

Specifies the maximum number of worker threads for
this server

Configset number used to start the server. This defaults
to configsetO if not set. This should be a number
between 0 and 1000.

If you already have a tnsnames . ora file configured,
then this is the net service name specified in that file,
located in ORACLE_HOME/network/admin.

Specifies the virtual host or rack nodes on which to
start the directory server

A-8 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-3 (Cont.) Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

instance=server_ instance_ Instance number of the server to start. Should be a
number number between 1 and 1000.

server=oidldapd Type of server to start (valid values are OIDLDAPD

and OIDREPLD). This is not case-sensitive.

start Starts the server specified in the server argument.

For example, to start a directory server instance whose net service name is dbsl,
using configset5, at port 12000, with a debug level of 1024, an instance number 3,
and in which change logging is turned off, type at the system prompt:

oidctl connect=dbsl server=oidldapd instance=3 configset=5 flags='-p 12000
-debug 1024 -1 ' start

When starting and stopping an Oracle directory server instance, the server name
and instance number are mandatory, as are the commands start or stop. All
other arguments are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (configset0) if not set.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Stopping an Oracle Directory Server Instance At the system prompt, type:

oidctl connect=connect_string server=oidldapd instance=server_instance_number
stop

For example:

oidctl connect=dbsl server=oidldapd instance=3 stop

Syntax for LDIF and Command-Line Tools A-9

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Troubleshooting Directory Server Instance Startup

If the directory server fails to start, you can override all user-specified configuration
parameters to start the directory server and then return the configuration sets to a
workable state by using the ldapmodify operation.

To start the directory server by using its hard-coded default parameters instead of
the configuration parameters stored in the directory, type at the system prompt:

oidctl connect=connect_string flags='-p port_number -f'

The -f option in the flags starts the server with hard-coded configuration values,
overriding any defined configuration sets except for the values in configsetO.

To see debug log files generated by the OID Control Utility, navigate to $ORACLE_

HOME/ldap/log.

Starting and Stopping an Oracle Directory Replication Server Instance
Use the OID Control Utility to start and stop Oracle directory replication server

instances.

Starting an Oracle Directory Replication Server Instance The syntax for starting the Oracle
directory replication server is:

oidctl connect=connect_string server=oidrepld instance=server_instance_number

[configset=configset_number]

flags=' -p directory_server_ port_number -d debug_

level -h directory_server_host_name -m [true \ false]-z transaction_size ' start

Table A-4 Arguments for Starting a Directory Replication Server by Using OIDCTL

Argument

Description

connect=connect_
string

server=oidrepld

instance=server_
instance_number

configset=config
set_number

-p directory.
server_port_
number

If you already have a tnsnames . ora file configured, then this is
the name specified in that file, which is located in ORACLE_
HOME /network/admin

Type of server to start (valid values are OIDLDAPD and
OIDREPLD). This is not case-sensitive.

Instance number of the server to start. Should be a number between
1 and 1000.

Configset number used to start the server. The default is
configset0. This should be a number between 0 and 1000.

Port number that the replication server uses to connect to the
directory on TCP port directory_server_port_number. If you do not
specify this option, the tool connects to the default port (389).

A-10 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-4 (Cont.) Arguments for Starting a Directory Replication Server by Using

Argument Description
-d debug_level Specifies a debug level during replication server instance startup
-h directory_ Specifies the directory_server_host_name to which the replication

server_host_name server connects, rather than to the default host, that is, your local
computer. Directory_server_host_name can be a computer name or an
IP address. (Replication server only)

-m [true|falsel Turns conflict resolution on and off. Valid values are true and
false. The default is true. (Replication server only)

-z transaction_ Specifies the number of changes applied in each replication update

size cycle. If you do not specify this, the number is determined by the
Oracle directory server sizelimit parameter, which has a default
setting of 1024. You can configure this latter setting.

start Starts the server specified in the server argument.

For example, to start the replication server with an instance=1, at port 12000, with
debugging set to 1024, type at the system prompt:

oidctl connect=dbsl server=oidrepld instance=1 flags='-p 12000 -h eastsunll -d
1024' start

When starting and stopping an Oracle directory replication server, the -h flag,
which specifies the host name, is mandatory. All other flags are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (configset0) if not set.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Stopping an Oracle Directory Replication Server Instance At the system prompt, type:

oidctl connect=connect_string server=0IDREPLD instance=server_instance_number
stop

Syntax for LDIF and Command-Line Tools A-11

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

For example:

oidctl connect=dbsl server=oidrepld instance=1 stop

Starting the Oracle Directory Integration and Provisioning Server

The Oracle directory integration and provisioning server executable, odisrv,
resides in the $ ORACLE_HOME/bin directory.

The way you start the directory integration and provisioning server depends on
whether your installation is:

A typical Oracle Internet Directory installation

In this case, your installation includes, among other server and client
components, the OID Monitor and the OID Control Utility. In such installations,
you start and stop the directory integration and provisioning server by using
these tools.

Note: Although you can start the directory integration and
provisioning server without using the OID Monitor and the OID
Control Utility, Oracle Corporation recommends that you use them.
This way, if the directory integration and provisioning server
unexpectedly terminates, the OID Monitor automatically restarts it.

An Oracle Directory Integration and Provisioning platform-only installation

In this case, the way you start the directory integration and provisioning server
depends on whether you are using the Oracle Directory Integration and
Provisioning platform for high availability.

If you are using Oracle Directory Integration and Provisioning platform for
high availability, then Oracle Corporation recommends that you start the
directory integration and provisioning server by using the OID Monitor
and the OID Control Utility. This requires configuring the tnsnames. ora
file with the right host and SID to which the OID Monitor must connect.

If you are not using Oracle Directory Integration and Provisioning platform
for high availability, then Oracle Corporation recommends that you start
the directory integration and provisioning server without using the OID
Monitor.

A-12 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

You can start the directory integration and provisioning server in either SSL mode
for tighter security, or non-SSL mode. You need to use a connect string to connect to
the database.

Note: When the Oracle directory integration and provisioning
server is invoked in the default mode, it supports only the Oracle
Directory Provisioning Integration Service, and not the Oracle
Directory Synchronization Service.

Starting the Oracle Directory Integration and Provisioning Server by Using the OID Monitor and
Control Utilities To start the directory integration and provisioning server in non-SSL mode:

1.

Be sure that OID Monitor is running. To verify this on UNIX, enter the following at the
command line:

ps -ef | grep oidmon

If OID Monitor is not running, then start it by following the instructions in "The OID
Monitor (oidmon) Syntax" on page A-4.

Start the directory integration and provisioning server by using the OID Control Utility.
Do this by entering:

oidctl [connect=connect_string] server=odisrv [instance=instance_number]
[config=configuration set_number] [flags="[host=hostname] [port=port_number]
[debug=debug_level] [refresh=interval_between_ refresh)|
[grpID=group_identifier_ of_provisioning profile]

[maxprofiles=number_of profiles]

[sslauth=ssl_mode]"] start

Table A-5 describes the arguments in this command.

Table A-5 Description of Arguments for Starting the Oracle Directory Integration and
Provisioning Server

Argument Description

connect=connect_string If you already have a tnsnames . ora file configured, then

this is the net service name specified in that file, located in
$ORACLE_HOME/network/admin

server=odisrv Type of server to start. In this case, the server you are starting

is odisrv. This is not case-sensitive. This argument is
mandatory.

Syntax for LDIF and Command-Line Tools A-13

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-5 (Cont.) Description of Arguments for Starting the Oracle Directory
Integration and Provisioning Server

Argument

Description

instance=instance_number

config=configuration_set_
number

host=hostname
port=port_number

debug=debug_level

refresh=interval_between_
refreshes

maxprofiles=number_of
profiles

Specifies the instance number to assign to the directory
integration and provisioning server. This instance number
must be unique. OID Monitor verifies that the instance
number is not already associated with a currently running
instance of this server. If it is associated with a currently
running instance, then OID Monitor returns an error
message.

Specifies the number of the configuration set that the
directory integration and provisioning server is to execute.
This argument is mandatory.

Oracle directory server host name
Oracle directory server port number

The required debugging level of the directory integration and
provisioning server

= See Also: The chapter on "Logging, Auditing, and
Monitoring the Directory” in in Oracle Internet
Directory Administrator’s Guide for a description of
the various debug levels

Specifies the interval, in minutes, between server refreshes
for any changes in the integration profiles.
Default is 2 minutes (Refresh=2).

Specifies the maximum number of profiles that can be
executed concurrently for this server instance

A-14 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-5 (Cont.) Description of Arguments for Starting the Oracle Directory
Integration and Provisioning Server

Argument Description

sslauth=ssl_mode SSL modes:
. 0: SSL is not used—that is, non-SSL mode

. 1: SSL used for encryption only—that is, with no PKI
authentication. A wallet is not used in this case.

m 2:SSL is used with one-way authentication. This mode
requires you to specify a complete path name of an
Oracle Wallet, including the file name itself, unlike
other Oracle Internet Directory tools that expect only
the wallet location. For example, in a server-only
installation, or in a complete installation, you would
enter something like this:

oidctl server=odisrv
[instance=instance_number]
[configset=configset_number]
[grpID=group_identifier of_provisioning
profile]

flags="host=myhost

port=myport sslauth=2

In a client-only installation, you would enter something
like this:

odisrv [host=host_name]
[port=port_number]
config=configuration_set_number
[instance=instance_number]
[debug=debug_level]
[refresh=interval_between refresh]
[maxprofiles=number_of profiles]
[refresh=interval_between refresh]
[maxprofiles=number_of profiles]
[sslauth=ssI_mode]

Starting the Oracle Directory Integration and Provisioning Server Without Using the OID
Monitor and the OID Control Utility In a client-only installation, where the OID Monitor
and OID Control tools are not available, the Oracle directory integration and
provisioning server can be started without OID Monitor or OID Control Utility,
either in non-SSL mode or, for tighter security, in SSL mode. The parameters described
in Table A-5 on page A-13 remain the parameters for each type of invocation.

Syntax for LDIF and Command-Line Tools A-15

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

To start the directory integration and provisioning server, enter the following at the
command line:

odisrv [host=host_name] [port=port_number]

config=configuration_set_number [instance=instance_number] [debug=debug_ level]
[refresh=interval_between_refresh] [maxprofiles=number_ of profiles]
[sslauth=ssl_mode]

Stopping the Oracle Directory Integration and Provisioning Server

The way you stop the directory integration and provisioning server depends on the
tool that you used to start it.

Stopping the Oracle Directory Integration and Provisioning Server by Using OID Monitor and
the OID Control Utility If you started the directory integration and provisioning server
by using OID Monitor and the OID Control utility, then you use them to stop it, as
follows:

1. Before you stop the directory integration and provisioning server, be sure that
the OID Monitor is running. To verify this, enter the following at the command
line:

ps -ef | grep oidmon

If OID Monitor is not running, then start it by following the instructions in "The

OID Monitor (oidmon) Syntax" on page A-4.
2. Stop the directory integration and provisioning server by entering:

oidctl [connect=connect_string] server=odisrv instance=instance stop
Stopping the Oracle Directory Integration and Provisioning Server Without Using OID Monitor
and the OID Control Utility In a client-only installation, where the OID Monitor and
OID Control tools are not available, the Oracle directory integration and
provisioning server can be started without OID Control. To stop the server without

these tools, use the stopodiserver. sh tool, which is located in the SORACLE
HOME/1ldap/admin directory.

A-16 Oracle Internet Directory Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

s Cygwin 1.3.2.2-1 or later. Visit:
http://sources.redhat.com

s MKS Toolkit 6.1. Visit:
http://www.datafocus.com/

See Also: "The StopOdiServer.sh Tool Syntax" on page A-62 for
instructions about using the stopodiserver.sh tool

Note: If the Oracle directory integration and provisioning server
is stopped by any means other than the methods mentioned in this
section, then the server cannot be started from the same host. In
that case, the footprint of the previous execution in the directory

needs to be removed by using the following command:

SORACLE_HOME/ldap/admin/stopodiserver.sh [-host
directory_ server host] [-port directory server.

port] [-binddn super _user_ dN (default is

cn=orcladmin)] [-bindpass super_user_ password
(default is welcome)] -instance number_of the_

instance_to_stop -clean

Restarting Oracle Internet Directory Server Instances

When you want to refresh the server cache immediately, rather than at the next

scheduled time, use the RESTART command. When the Oracle Internet Directory

server restarts, it maintains the same parameters it had before it stopped.

To restart an Oracle Internet Directory server instance, at the system prompt, type:

oidctl connect=connect_string server={oidldapd|oidrepld|odisrv}
instance=server_instance_number restart

OID Monitor must be running whenever you restart directory server instances.

If you try to contact a server that is not running, you receive from the SDK the error

message 81-LDAP_SERVER_DOWN.

Syntax for LDIF and Command-Line Tools

A-17

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

If you change a configuration set entry that is referenced by an active server
instance, you must stop that instance and restart it to effect the changed value in the
configuration set entry on that server instance. You can either issue the STOP
command followed by the START command, or you can use the RESTART
command. RESTART both stops and restarts the server instance.

For example, suppose that Oracle directory server instancel is started, using
configset3, and with the net service name dbs1. Further, suppose that, while
instancel is running, you change one of the attributes in configset3. To enable the
change in configset3 to take effect on instancel, you enter the following command:

oidctl connect=dbsl server=oidldapd instance=1 restart

If there are more than one instance of the Oracle directory server running on that
node using configset3, then you can restart all the instances at once by using the
following command syntax:

oidctl connect=dbsl server=oidldapd restart

Note that this command restarts all the instances running on the node, whether they
are using configset3 or not.

Important Note: During the restart process, clients cannot access
the Oracle directory server instance. However, the process takes
only a few seconds to execute.

Starting and Stopping Oracle Internet Directory Servers on Either a Virtual Host
or a Rack Node

When starting a directory server, a directory replication server, or a directory
integration and provisioning server, use the host parameter to specify the virtual
host name.

Starting and Stopping a Directory Server on Either a Virtual Host or a Rack
Node

To start a directory server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=oidldapd
instance=instance_number configset=configset_number flags= "..." start

To stop a directory server on a virtual host:

oidctl host=virtual_ host_name server=oidldapd instance=instance_number stop

A-18 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Starting and Stopping a Directory Replication Server on Either a Virtual Host
or a Rack Node

To start a directory replication server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=oidrepld
instance=instance_number flags= "..." start

To stop a directory replication server on a virtual host:

oidctl host=virtual_ host_name server=oidrepld instance=instance_number stop

Starting and Stopping a Oracle Directory Integration and Provisioning Server
on Either a Virtual Host or a Rack Node

To start a directory integration and provisioning server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=odisrv
instance=instance_number configset=configset_number flags= "..." start

To stop a directory integration and provisioning server on a virtual host:
oidctl host=virtual/host_name server=odisrv instance=instance_number stop
When the directory server is started to run on the virtual host, it binds and listens to

requests on the specified LDAP port on the IP address or IP addresses that
correspond to the virtual host only.

When communicating with the directory server, the directory replication server
uses the virtual host name. Further, the replicalID attribute that represents the
unique replication identification for the Oracle Internet Directory node is generated
once. It is independent of the host name and hence requires no special treatment in
cold failover configuration.

When communicating with the directory server, the directory integration and
provisioning server uses the virtual host name.

Entry and Attribute Management Command-Line Tools Syntax
This section tells you how to use the following tools:
s The Catalog Management Tool (catalog.sh) Syntax
= ldapadd Syntax
s ldapaddmt Syntax

Syntax for LDIF and Command-Line Tools A-19

Entry and Attribute Management Command-Line Tools Syntax

» ldapbind Syntax

» ldapcompare Syntax
= ldapdelete Syntax

= ldapmoddn Syntax

» ldapmodify Syntax

» ldapmodifymt Syntax
= ldapsearch Syntax

Note: Various UNIX shells interpret some characters—for
example, asterisks (*)—as special characters. Depending on the
shell you are using, you may need to escape these characters.

The Catalog Management Tool (catalog.sh) Syntax

Oracle Internet Directory uses indexes to make attributes available for searches.
When Oracle Internet Directory is installed, the cn=catalogs entry lists available
attributes that can be used in a search. You can index only those attributes that have:

= An equality matching rule
= Matching rules supported by Oracle Internet Directory

If you want to use additional attributes in search filters, then you must add them to
the catalog entry. You can do this at the time you create the attribute by using Oracle
Directory Manager. However, if the attribute already exists, then you can index it
only by using the Catalog Management tool.

Before running catalog.sh, be sure that the directory server is either stopped or in
read-only mode. Otherwise, data will be inconsistent.

Caution: Do not use the catalog.sh -delete option on indexes
created by the Oracle Internet Directory base schema. Removing
indexes from base schema attributes can adversely impact the
operation of Oracle Internet Directory.

A-20 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

s Cygwin 1.3.2.2-1 or later. Visit:
http://sources.redhat.com

s MKS Toolkit 6.1. Visit:
http://www.datafocus.com/

The Catalog Management tool uses this syntax:

catalog.sh -connect connect_string {—add\—delete} {-attr attr_name\—file file_
name}

Table A-6 Arguments for the Catalog Management Tool (catalog.sh)

Argument Description
-connect connect_ Specifies the connect string to connect to the directory
string database. This argument is mandatory.

See Also: Oracle9i Net Services Administrator’s Guide in the
Oracle Database Documentation Library

-add -attr attr_name Indexes the specified attribute

-delete -attr attr_ Drops the index from the specified attribute
name

-add -file file name Indexes attributes (one for each line) in the specified file

-delete -file file_ Drops the indexes from the attributes in the specified file
name

When you enter the catalog.sh command, the following message appears:

This tool can only be executed if you know the 0iD user password.
Enter 0iD password:

If you enter the correct password, the command is executed. If you give an incorrect
password, the following message is displayed:

Cannot execute this tool

To effect the changes after running the Catalog Management tool, stop, then restart,
the Oracle directory server.

Syntax for LDIF and Command-Line Tools A-21

Entry and Attribute Management Command-Line Tools Syntax

See Also:

s "The OID Control Utility (oidctl) Syntax" on page A-6 and for
instructions on starting and restarting directory servers. Note
that OID Monitor must be running before you start a directory
server.

s "The OID Monitor (oidmon) Syntax" on page A-4 for
information about starting OID Monitor

s The section "Matching Rules"in Oracle Internet Directory
Administrator’s Guide for the matching rules supported by Oracle
Internet Directory

Idapadd Syntax

The Idapadd command-line tool enables you to add entries, their object classes,
attributes, and values to the directory. To add attributes to an existing entry, use the
ldapmodify command, explained in "ldapmodify Syntax" on page A-33.

See Also: "Adding Configuration Set Entries by Using ldapadd"
in Oracle Internet Directory Administrator’s Guide for an explanation
of using Idapadd to configure a server with an input file

ldapadd uses this syntax:
ldapadd [arguments] -f file name
where file nameis the name of an LDIF file written with the specifications

explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on
page A-2.

The following example adds the entry specified in the LDIF file
my_1dif_file.1ldi:

ldapadd -p 389 -h myhost -f my_1dif file.1ldi

Table A-7 Arguments for Idapadd

Optional Arguments Description

-b Specifies that you have included binary file names in the file,
which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

A-22 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-7 (Cont.) Arguments for Idapadd

Optional Arguments

Description

-C

-D “binddn”

-E “character_set”

-f file name

-h Idaphost

-0 ref hop limit

-p directory server.
port_number

-P wallet_password

Tells ldapadd to proceed in spite of errors. The errors will be
reported. (If you do not use this option, Idapadd stops when it
encounters an error.)

When authenticating to the directory, specifies doing so as the
entry specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Specifies the input name of the LDIF format import data file.
For a detailed explanation of how to format an LDIF file, see
"LDAP Data Interchange Format (LDIF) Syntax" on page A-2.

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Same as -k, but performs only the first step of the Kerberos
bind

Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBEROS defined.You must already have a valid ticket
granting ticket.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port directory_server_port_
number. If you do not specify this option, the tool connects to
the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Syntax for LDIF and Command-Line Tools A-23

Entry and Attribute Management Command-Line Tools Syntax

Table A-7 (Cont.) Arguments for Idapadd

Optional Arguments Description

-U SSLAuth Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required
-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections.

For example, on UNIX, you could set this parameter as
follows: -W “file:/home/my_dir/my_wallet”

On Windows NT, you could set this parameter as follows: -w
“file:C:\my_dir\my_wallet”

-X dsml_file Specifies the input name of the DSML format import data file.

Idapaddmt Syntax

ldapaddmt is like Idapadd: It enables you to add entries, their object classes,
attributes, and values to the directory. It is unlike ldapadd in that it supports
multiple threads for adding entries concurrently.

While it is processing LDIF entries, Idapaddmt logs errors in the add. log file in the
current directory.

ldapaddmt uses this syntax:
ldapaddmt -T number_of_threads -h host -p port -f file name
where file nameis the name of an LDIF file written with the specifications

explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on
page A-2.

The following example uses five concurrent threads to process the entries in the file
myentries.ldif.

ldapaddmt -T 5 -h nodel -p 3000 -f myentries.ldif

A-24 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Note: Increasing the number of concurrent threads improves the
rate at which LDIF entries are created, but consumes more system

resources.

Table A-8 Arguments for Idapaddmt

Optional Arguments

Description

-b

-D “binddn”

-E “character_set”

-h Idap host

-0 ref hop limit

-p ldapport

Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

Tells the tool to proceed in spite of errors. The errors will be
reported. (If you do not use this option, the tool stops when it
encounters an error.)

When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Same as -k, but performs only the first step of the kerberos
bind

Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with

KERBEROS defined. You must already have a valid ticket
granting ticket.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Syntax for LDIF and Command-Line Tools A-25

Entry and Attribute Management Command-Line Tools Syntax

Table A-8 (Cont.) Arguments for Idapaddmt

Optional Arguments Description

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-T Sets the number of threads for concurrently processing entries
-U SSLAuth Specifies SSL Authentication Mode:

= 1 for no authentication required

= 2 for one way authentication required

= 3 for two way authentication required
-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_wallet” On
Windows NT, you could set this parameter as follows: -W
“file:C:\my_dir\my_wallet”

-X dsml_file Specifies the input name of the DSML format import data file.

Idapbind Syntax

The Idapbind command-line tool enables you to see whether you can authenticate a
client to a server.

ldapbind uses this syntax:

ldapbind [arguments]

Table A-9 Arguments for Idapbind

Optional Arguments Description

-D “binddn” When authenticating to the directory, specifies doing so as the
entry specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

-E “.character_set” Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

A-26 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-9 (Cont.) Arguments for Idapbind

Optional Arguments

Description

-h Idaphost

-n

-p Idapport

-P wallet_password

-U SSLAuth

-V Idap_version

-w password

-W wallet_location

-O sasl_security_properties

-Y sasl_mechanism

-R sasl_realm

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Shows what would occur without actually performing the
operation

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies the wallet password required for one-way or
two-way SSL connections

Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Provides the password required to connect

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_wallet” On
Windows NT, you could set this parameter as follows: -W
“file:C:\my_dir\my_wallet”

Specifies SASL security properties. The security property
supported is -O "auth". This security property is for
DIGEST-MD5 SASL mechanism. It enables authentication with
no data integrity or data privacy.

Specifies a SASL mechanism. These mechanisms are
supported:
= Y '"DIGEST-MD5"

» Y '"EXTERNAL": The SASL authentication in this
mechanism is done on top of two-way SSL authentication.
In this case the identity of the user stored in the SSL wallet
is used for SASL authentication.

Specifies a SASL realm

Syntax for LDIF and Command-Line Tools A-27

Entry and Attribute Management Command-Line Tools Syntax

Idapcompare Syntax

The ldapcompare command-line tool enables you to match attribute values you
specify in the command line with the attribute values in the directory entry.

ldapcompare uses this syntax:

ldapcompare [arguments]

The following example tells you whether Person Nine’s title is associate.

ldapcompare -p 389 -h myhost -b "cn=Person Nine,ou=EuroSInet Suite,o0=IMC,c=US"

-a title -v associate

Table A-10 Arguments for Idapcompare

Optional Arguments

Description

-a attribute name

-b “basedn”

-v attribute value

-D binddn

-d debug-level

-E “character_set”

-f file_name

-h Idaphost

-O ref_hop_limit

Specifies the attribute on which to perform the compare. This
argument is mandatory.

Specifies the distinguished name of the entry on which to
perform the compare. This argument is mandatory.

Specifies the attribute value to compare. This argument is
mandatory.

When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

Sets the debugging level. See the chapter on "Logging,
Auditing, and Monitoring the Directory" in Oracle Internet
Directory Administrator’s Guide.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Specifies the input file name

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Specifies the number of referral hops that a client should
process. The default value is 5.

A-28 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-10 Arguments for Idapcompare

Optional Arguments

Description

-p Idapport

-P wallet_password

-U SSLAuth

-V Idap_version

-w password

-W wallet_location

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Provides the password required to connect

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_
wallet”

On Windows NT, you could set this parameter as follows: -w
“file:C:\my_dir\my_wallet”

Idapdelete Syntax

The Idapdelete command-line tool enables you to remove entire entries from the
directory that you specify in the command line.

ldapdelete uses this syntax:

ldapdelete [arguments] ["entry_ DN" \ -f input_file name]

Note: If you specify the entry DN, then do not use the - f option.

The following example uses port 389 on a host named myhost.

ldapdelete -p 389 -h myhost "ou=EuroSInet Suite, o0=IMC, c=US"

Syntax for LDIF and Command-Line Tools A-29

Entry and Attribute Management Command-Line Tools Syntax

Table A-11 Arguments for Idapdelete

Optional Argument

Description

-D “binddn”

-d debug-level

-E “character_set”

-f input_file_name

-h Idaphost

-k

-n

-O ref_hop_limit

-p Idapport

-P wallet_password

-U SSLAuth

-V

When authenticating to the directory, uses a full DN for the
binddn parameter—that is, the DN of the user seeking
authentication; typically used with the -w password option.

Sets the debugging level. See "Setting Debug Logging Levels
by Using the OID Control Utility"in Oracle Internet Directory
Administrator’s Guide.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Specifies the input file name

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Authenticates using authentication instead of simple
authentication. To enable this option, you must compile with
Kerberos defined. You must already have a valid ticket
granting ticket.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would be done, but doesn’t actually delete

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required

Specifies verbose mode

A-30 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-11 (Cont.) Arguments for Idapdelete

Optional Argument Description

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_wallet” On
Windows NT, you could set this parameter as follows: -W
“file:C:\my_dir\my_wallet”

Idapmoddn Syntax

The Idapmoddn command-line tool enables you to modify the DN or RDN of an
entry.

ldapmoddn uses this syntax:
ldapmoddn [arguments]
The following example uses ldapmoddn to modify the RDN component of a DN

from “cn=mary smith” to “cn=mary jones”.Ituses port 389, and a host
named myhost.

ldapmoddn -p 389 -h myhost -b "cn=mary smith,dc=Americas,dc=imc,dc=com" -R
"cn=mary jones"

Table A-12 Arguments for [dapmoddn

Argument Description

-b “basedn” Specifies DN of the entry to be moved. This argument is
mandatory.

-D “binddn” When authenticating to the directory, do so as the entry is

specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

-E “character_set” Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

-f file_name Specifies the input file name

Syntax for LDIF and Command-Line Tools A-31

Entry and Attribute Management Command-Line Tools Syntax

Table A-12 Arguments for [dapmoddn

Argument Description

-h Idaphost Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

-M Instructs the tool to send the ManageDSAIT control to the

-N newparent

-O ref_hop_limit
-p Idapport

-P wallet_password

-r

-R newrdn

-U SSLAuth

-V Idap_version

-w password

-W wallet_location

server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Specifies new parent of the RDN. Either this argument or the
-R argument must be specified.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Specifies that the old RDN is not retained as a value in the
modified entry. If this argument is not included, the old RDN is
retained as an attribute in the modified entry.

Specifies new RDN. Either this argument or the -N argument
must be specified.

Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Provides the password required to connect.

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_
wallet”

On Windows NT, you could set this parameter as follows: -W
“file:C:\my_dir\my_wallet”

A-32 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Idapmodify Syntax

The Idapmodify tool enables you to act on attributes.

ldapmodify uses this syntax:

ldapmodify [arguments]

-f file_name

where file nameis the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-2.

The list of arguments in the following table is not exhaustive. These arguments are

all optional.

Table A-13 Arguments for Idapmodify

Argument

Description

-a

-b

-C

-D “binddn”

-E “character_set”

-h Idaphost

-n

-o log_file_name

Denotes that entries are to be added, and that the input file is
in LDIF format.

Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

Tells ldapmodify to proceed in spite of errors. The errors will
be reported. (If you do not use this option, Idapmodify stops
when it encounters an error.)

When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Can be used with the -c option to write the erroneous LDIF
entries in the logfile. You must specify the absolute path for the
log file name.

Syntax for LDIF and Command-Line Tools A-33

Entry and Attribute Management Command-Line Tools Syntax

Table A-13 (Cont.) Arguments for Idapmodify

Argument Description

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required
-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_
wallet”

On Windows NT, you could set this parameter as follows: -w
“file:C:\my_dir\my_wallet”

To run modify, delete, and modifyrdn operations using the - £ flag, use LDIF
for the input file format (see "LDAP Data Interchange Format (LDIF) Syntax" on
page A-2) with the specifications noted in this section:

If you are making several modifications, then, between each modification you enter,
add a line that contains a hyphen (-) only. For example:

dn: cn=Barbara Fritchy,ou=Sales,o=0racle,c=US
changetype: modify

add: work-phone

work-phone: 510/506-7000

work-phone: 510/506-7001

delete: home-fax

A-34 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Unnecessary space characters in the LDIF input file, such as a space at the end of an
attribute value, will cause the LDAP operations to fail.

Line 1: Every change record has, as its first line, the literal dn: followed by the DN
value for the entry, for example:

dn:cn=Barbara Fritchy,ou=Sales,o=0Oracle,c=US
Line 2: Every change record has, as its second line, the literal changetype:
followed by the type of change (add, delete, modify, modrdn), for example:

changetype: modify

or

changetype: modrdn

Format the remainder of each record according to the following requirements for
each type of change:

s changetype: add

Uses LDIF format (see "LDAP Data Interchange Format (LDIF) Syntax" on
page A-2).

m changetype: modify

The lines that follow this changetype consist of changes to attributes belonging
to the entry that you identified previously in Line 1. You can specify three
different types of attribute modifications—add, delete, and replace—which are
explained next:

— Add attribute values. This option to changetype modify adds more values
to an existing multi-valued attribute. If the attribute does not exist, it adds
the new attribute with the specified values:

add: attribute name
attribute name: valuel
attribute name: value2...

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=0racle,c=US
changetype: modify

add: work-phone

work-phone: 510/506-7000

work-phone: 510/506-7001

Syntax for LDIF and Command-Line Tools A-35

Entry and Attribute Management Command-Line Tools Syntax

— Delete values. If you supply only the delete line, all the values for the
specified attribute are deleted. Otherwise, if you specify an attribute line,
you can delete specific values from the attribute:

delete: attribute name
[attribute name: valuell

For example:

dn: cn=Barbara Fritchy,ou=Sales,o=0racle,c=US
changetype: modify
delete: home-fax

- Replace values. Use this option to replace all the values belonging to an
attribute with the new, specified set:

replace: attribute name
[attribute name: valuel ...]

If you do not provide any attributes with replace, then the directory adds
an empty set. It then interprets the empty set as a delete request, and
complies by deleting the attribute from the entry. This is useful if you want
to delete attributes that may or may not exist.

For example:

dn: cn=Barbara Fritchy,ou=Sales,o=0racle,c=US
changetype: modify

replace: work-phone

work-phone: 510/506-7002

*

changetype:delete

This change type deletes entries. It requires no further input, since you
identified the entry in Line 1 and specified a changetype of delete in
Line 2.

For example:

dn: cn=Barbara Fritchy,ou=Sales,o=0Oracle,c=US
changetype: delete

changetype :modrdn

The line following the change type provides the new relative distin-
guished name using this format:

A-36 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

newrdn: RDN

For example:

dn: cn=Barbara Fritchy,ou=Sales,o=0racle,c=US

changetype: modrdn

newrdn: cn=Barbara Fritchy-Blomberg
To specify an attribute as single-valued, include in the attribute definition entry in
the LDIF file the keyword SINGLE-VALUE with surrounding white space.

Example: Using Idapmodify to Add an Attribute

This example adds a new attribute called myAttr. The LDIF file for this operation
is:

dn: cn=subschemasubentry

changetype: modify

add: attributetypes

attributetypes: (1.2.3.4.5.6.7 NAME ‘myAttr’ DESC ‘New attribute definition’
EQUALITY caseIgnoreMatch SYNTAX

‘1.3.6.1.4.1.1466.115.121.1.15")

On the first line, enter the DN specifying where this new attribute is to be located.
All attributes and object classes they are stored in cn=subschemasubentry.

The second and third lines show the proper format for adding a new attribute.

The last line is the attribute definition itself. The first part of this is the object
identifier number: 1.2.3.4.5.6.7. It must be unique among all other object
classes and attributes. Next is the NAME of the attribute. In this case the attribute
NAME is myAttr. It must be surrounded by single quotes. Next is a description of
the attribute. Enter whatever description you want between single quotes. At the
end of this attribute definition in this example are optional formatting rules to the
attribute. In this case we are adding a matching rule of EQUALITY
caseIgnoreMatchand a SYNTAX of Directory String. Thisexample uses the
object ID number of 1.3.6.1.4.1.1466.115.121.1.15 instead of the SYNTAXES name
which is “Directory String”.

Put your attribute information in a file formatted like this example. Then run the
following command to add the attribute to the schema of your Oracle directory
server.

ldapmodify -h yourhostname -p 389 -D "orcladmin" -w "welcome" -v -f
/tmp/newattr.1dif

Syntax for LDIF and Command-Line Tools A-37

Entry and Attribute Management Command-Line Tools Syntax

This ldapmodify command assumes that your Oracle directory server is running on
port 389, that your super user account name is orcladmin, that your super user
password is welcome and that the name of your LDIF file is newattr.1dif.
Substitute the host name of your computer where you see yourhostname.

If you are not in the directory where the LDIF file is located, then you must enter
the full directory path to the file at the end of your command. This example
assumes that your LDIF file is located in the / tmp directory.

Idapmodifymt Syntax

The ldapmodifymt command-line tool enables you to modify several entries
concurrently.

ldapmodifymt uses this syntax:

ldapmodifymt -T number_of threads [arguments] -f file_name

where file nameis the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-2.

See Also: "ldapmodify Syntax" on page A-33 for additional
formatting specifications used by ldapmodifymt

The following example uses five concurrent threads to modify the entries in the file
myentries.ldif.

ldapmodifymt -T 5 -h nodel -p 3000 -f myentries.ldif

Note: The ldapmodifymt tool logs error messages in the file
add. log, which is located in the directory where you are running
the command.

The arguments in the following table are all optional.

Table A-14 Arguments for Idapmodifymt

Argument Description

-a Denotes that entries are to be added, and that the input file is
in LDIF format. (If you are running Idapadd, this flag is not
required.)

A-38 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-14 (Cont.) Arguments for Idapmodifymt

Argument Description

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

-c Tells ldapmodify to proceed in spite of errors. The errors will
be reported. (If you do not use this option, Idapmodify stops
when it encounters an error.)

-D “binddn"” When authenticating to the directory, specifies doing so as the

-E “character_set”

-h Idaphost

-0 ref hop limit

-p ldapport

-P wallet_password

-U SSLAuth

-V ldap_version

entry is specified in binddn—that is, the DN of the user
seeking authentication. Use this with the -w password option.

Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Sets the number of threads for concurrently processing entries

Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required
Specifies verbose mode

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Syntax for LDIF and Command-Line Tools A-39

Entry and Attribute Management Command-Line Tools Syntax

Table A-14 (Cont.) Arguments for Idapmodifymt

Argument Description

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_wallet”

On Windows NT, you could set this parameter as follows: -w
“file:C:\my_dir\my_wallet”

Idapsearch Syntax

A-40

The Idapsearch command-line tool enables you to search for and retrieve specific
entries in the directory.

The ldapsearch tool uses this syntax:
ldapsearch [arguments] filter [attributes]

The filter format must be compliant with RFC-2254.

See Also: RFC-2254 available at http: //www.ietf.org for
further information about the standard for the filter format

Separate attributes with a space. If you do not list any attributes, all attributes are
retrieved.

Note:

s The Ildapsearch tool does not generate LDIF output by default.
To generate LDIF output from the ldapsearch command-line
tool, use the -L flag.

= Various UNIX shells interpret some characters—for example,
asterisks (*)—as special characters. Depending on the shell you
are using, you may need to escape these characters.

Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-15 Arguments for Idapsearch

Argument Description

-b “basedn” Specifies the base DN for the search. This argument is
mandatory.

-s scope This argument is mandatory. Specifies search scope: base, one,

or sub Base: Retrieves a particular directory entry. Along with
this search depth, you use the search criteria bar to select the
attribute objectClass and the filter Present. One Level:
Limits your search to all entries beginning one level down
from the root of your search Subtree: Searches entries within
the entire subtree, including the root of your search

-A Retrieves attribute names only (no values)

-a deref Specifies alias dereferencing: never, always, search, or find

-B Allows printing of non-ASCII values

-D “binddn” When authenticating to the directory, specifies doing so as the

entry specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

-d debug level Sets debugging level to the level specified (see the chapter on
"Logging, Auditing, and Monitoring the Directory" in Oracle
Internet Directory Administrator’s Guide)

-E “character_set” Specifies native character set encoding. See Appendix G,
"Globalization Support in the Directory"in Oracle Internet
Directory Administrator’s Guide.

-f file Performs sequence of searches listed in file

-F sep Prints ‘sep’ instead of ‘=" between attribute names and values

-h Idaphost Connects to Idaphost, rather than to the default host, that is,
your local computer. Idaphost can be a computer name or an IP
address.

-L Prints entries in LDIF format (-B is implied)

-1 timelimit Specifies maximum time (in seconds) to wait for ldapsearch

command to complete

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would be done without actually searching

Syntax for LDIF and Command-Line Tools A-41

Entry and Attribute Management Command-Line Tools Syntax

Table A-15 (Cont.) Arguments for Idapsearch

Argument

Description

-O ref_hop_limit

-p Idapport

-P wallet_password

=S attr
-t
-u

-U SSLAuth

-v
-w passwd

-W wallet_location

-z sizelimit

-X

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port ldapport. If you do not
specify this option, the tool connects to the default port (389).

Specifies wallet password required for one-way or two-way
SSL connections

Sorts the results by attribute attr

Writes to files in / tmp

Includes user friendly entry names in the output
Specifies the SSL authentication mode:

= 1 for no authentication required

= 2 for one way authentication required

= 3 for two way authentication required
Specifies verbose mode

Specifies bind passwd for simple authentication

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W “file:/home/my_dir/my_
wallet”

On Windows NT, you could set this parameter as follows: -w
“file:C:\my_dir\my_wallet”

Specifies maximum number of entries to retrieve

Prints the entries in DSML v1 format.

Examples of Idapsearch Filters
Study the following examples to see how to build your own search commands.

Example 1: Base Object Search The following example performs a base-level search on

the directory from the root.

ldapsearch -p 389 -h myhost -b "" -s base -v "objectclass=*"

= -bspecifies base DN for the search, root in this case.

A-42 Oracle Internet Directory Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

= -s specifies whether the search is a base search (base), one level search (one)
or subtree search (sub).

= “objectclass=*" specifies the filter for search.

Example 2: One-Level Search The following example performs a one level search
starting at “ou=HR, ou=Americas, o=IMC, c=US".

ldapsearch -p 389 -h myhost -b "ou=HR, ou=Americas, o0=IMC, c=US" -s one -v
"objectclass=*"

Example 3: Subtree Search The following example performs a subtree search and
returns all entries having a DN starting with “cn=us"”.

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*"

Example 4: Search Using Size Limit The following example actually retrieves only two
entries, even if there are more than two matches.

ldapsearch -h myhost -p 389 -z 2 -b "ou=Benefits, ou=HR, ou=Americas,o=IMC,c=US"
-s one "objectclass=*"

Example 5: Search with Required Attributes The following example returns only the DN
attribute values of the matching entries:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "objectclass=*" dn

The following example retrieves only the distinguished name along with the
surname (sn) and description (description) attribute values:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*" dn sn description
Example 6: Search for Entries with Attribute Options The following example retrieves
entries with common name (cn) attributes that have an option specifying a

language code attribute option. This particular example retrieves entries in which
the common names are in French and begin with the letter R.

ldapsearch -p 389 -h myhost -b "c=US" -s sub "cn;lang-fr=R*"
Suppose that, in the entry for John, no value is set for the cn; lang-it language

code attribute option. In this case, the following example does not return John’s
entry:

ldapsearch -p 389 -h myhost -b "c=us" -s sub "cn;lang-it=Giovanni"

Syntax for LDIF and Command-Line Tools A-43

Entry and Attribute Management Command-Line Tools Syntax

Example 7: Searching for All User Attributes and Specified Operational Attributes The
following example retrieves all user attributes and the createtimestamp and
orclguid operational attributes:

ldapsearch -p 389 -h myhost -b "ou=Benefits, ou=HR, ou=Americas, 0=IMC,c=US" -s sub
"cn=Person*" * createtimestamp orclguid

The following example retrieves entries modified by Anne Smith:

ldapsearch -h sunl -b "" "(&(objectclass=*) (modifiersname=cn=Anne

Smith))"

The following example retrieves entries modified between 01 April 2001 and 06
April 2001:

ldapsearch -h sunl -b "" "(&(objectclass=*) (modifytimestamp >= 20000401000000)
(modifytimestamp <= 20000406235959))"

Note: Because modifiersname and modifytimestamp are not
indexed attributes, use catalog.sh to index these two attributes.
Then, restart the Oracle directory server before issuing the two
previous ldapsearch commands.

Other Examples: Each of the following examples searches on port 389 of host sunl,
and searches the whole subtree starting from the DN “ou=hr, o=acme, c=us”.

The following example searches for all entries with any value for the objectclass
attribute.

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree "objectclass=*"
The following example searches for all entries that have orc1 at the beginning of
the value for the objectclass attribute.

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree
"objectclass=orcl*"

The following example searches for entries where the objectclass attribute
begins with orc1 and cn begins with foo.

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree
" (& (objectclass=orcl*) (cn=foo*))"

The following example searches for entries in which the common name (cn) is not
foo.

A-44 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree "(!(cn=foo))"

The following example searches for entries in which cn begins with foo or sn
begins with bar.

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree
"(| (cn=foo*) (sn=bar*))"

The following example searches for entries in which employeenumber is less than
or equal to 10000.

ldapsearch -p 389 -h sunl -b "ou=hr, o=acme, c=us" -s subtree
"employeenumber<=10000"

Oracle Directory Integration and Provisioning Platform Command-Line

Tools Syntax

This section contains these topics:

The Directory Integration and Provisioning Assistant
The IdapUpload AgentFile.sh Tool Syntax

The ldapCreateConn.sh Tool Syntax

The ldapDeleteConn.sh Tool Syntax

The StopOdiServer.sh Tool Syntax

The schemasync Tool Syntax

The Oracle Directory Integration and Provisioning Server Registration Tool
(odisrvreg)

The Provisioning Subscription Tool (oidprovtool) Syntax

The Directory Integration and Provisioning Assistant

Table A-16 lists the tasks you can perform by using the Directory Integration and
Provisioning Assistant and the corresponding commands. It also points you to
instructions for performing each task.

Syntax for LDIF and Command-Line Tools A-45

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-16 Summary of Functionality of the Directory Integration and Provisioning Assistant

Tasks Commands More Information
Create, modify, or delete a synchronization profile createprofile "Creating, Modifying, and Deleting
modi Fyorofil Synchronization Profiles" on
P © page A-47
deleteprofile
See all the profile names in Oracle Internet listprofiles "Listing All Synchronization Profiles
Directory in Oracle Internet Directory” on
page A-54
See the details of a specific profile showprofile "Viewing the Details of a Specific
Synchronization Profile" on
page A-54
Make Oracle Internet Directory and the connected bootstrap "Bootstrapping a Directory by Using
directory identical before beginning the Directory Integration and
synchronization Provisioning Assistant" on page A-49
Set the wallet password that the Oracle directory =~ wpasswd "Setting the Wallet Password for the
integration and provisioning server later uses to Oracle Directory Integration and
connect to Oracle Internet Directory Provisioning Server" on page A-55
Reset the password of the administrator of the chgpasswd "Changing the Password of the
Oracle Directory Integration Platform Administrator of the Oracle Directory
Integration and Provisioning
Platform" on page A-54
Move integration profiles from one identity reassociate "Moving an Integration Profile to a

management node to another

Different Identity Management
Node" on page A-55

The command-line interface for the Directory Integration and Provisioning

Assistant is:

dipassistant command [-help]

command := Directory Integration and Provisioning Assistant command

Directory Integration and Provisioning Assistant command :=

createprofile [cp]

showprofile[sp]
bootstrap [bs]
wpasswd [wp]

chgpasswd [cpw]

modifyprofile [mp]
deleteprofile [dp]
listprofiles[lsprof]

A-46 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

| reassociate [rs]

For help on a particular command, enter:

dipassistant command -help

Creating, Modifying, and Deleting Synchronization Profiles

The syntax for creating, modifying, or deleting synchronization profiles by using
the Directory Integration and Provisioning Assistant is:

dipassistant createprofile | modifyprofile | deleteprofile

[-host host name] [-port port number] [-dn bind_DN] [-passwd password]
{-file file name | -profile profile name } [propNamel=value]
[propName2=value]... [-configset configset_number]

For example:

dipassistant createprofile -host myhost -port 3060 -passwd xxxX
-file import.profile -configset 1

dipassistant modifyprofile -host myhost -port 3060 -passwd xxxxX
-file import.profile -dn xxxx -passwd xxxx -profile myprofile
[propNamel=value]

[propName2=value]...

dipassistant deleteprofile -profile myprofile [-host myhost] [-port 3060] [-dn
xxxxX] [-passwd xxxx] [-configset 1]

Table A-17 on page A-47 describes the parameters for creating, modifying, and
deleting synchronization profiles by using the Directory Integration and
Provisioning Assistant.

Table A-17 Parameters for Creating, Modifying, and Deleting Synchronization
Profiles by Using the Directory Integration and Provisioning Assistant

Parameter Description

-host Host where Oracle Internet Directory is running. The default value is
the name of the local host.

-port Port at which Oracle Internet Directory was started. The default is 389.

-dn The Bind DN to be used in identifying to the directory. The default

value is the DN of the Oracle Directory Integration and Provisioning
platform administrator.

Syntax for LDIF and Command-Line Tools A-47

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-17 (Cont.) Parameters for Creating, Modifying, and Deleting Synchronization
Profiles by Using the Directory Integration and Provisioning Assistant

Parameter Description

-passwd The password of the bind DN to be used while binding to the
directory.

-file The file containing all the profile parameters.
See Also: Table A-18 on page A-48 for a list of parameters and their
description

-configset Number of the configuration set entry with which the profile needs to

be associated

-profile Profile that needs to modified

The properties expected by createprofile and modifyprofile commands are
described in Table A-18. When modifying an already existing profile, no defaults
are assumed. Only those attributes specified in the file are changed.

Table A-18 Properties Expected by createprofile and modifyprofile Commands

Parameter Description Default
odip.profile.name Name of the profile -
odip.profile.password Password for accessing this profile -
odip.profile.status Either DISABLE or ENABLE DISABLE
odip.profile.syncmode Direction of synchronization. When the changes are IMPORT

propagated from the third party to Oracle Internet
Directory, the synchronization mode is IMPORT.
When the changes are propagated to the third party
directory, the synchronization mode is EXPORT.

odip.profile.retry Maximum number of times this profile should be 4
executed in the case of an error before the
integration server gives up

odip.profile.schedinterval Interval between successive executions of this 1 Minute
profile by the integration server. If the previous
execution has not completed then the next execution
will not resume until it completes.

odip.profile.agentexecommand In the case of a NON-LDAP interface, the command -
to produce the information in LDIF format

odip.profile.condirurl Location of third-party directory [hostname:port] -

A-48 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-18 (Cont.) Properties Expected by createprofile and modifyprofile Commands

Parameter Description Default

odip.profile.condiraccount DN or user name used to connect to the third party -
directory.

odip.profile.condirpassword Password used for identification to the third-party -
directory.

odip.profile.interface Indicator as to whether the LDAP or LDIF or DB or LDAP
TAGGED format is to be used for data exchange

odip.profile.configfile Name of the file that contains the additional -
profile-specific information to be used for execution

odip.profile.mapfile Name of the file that contains the mapping rules -

odip.profile.condirfilter Filter that needs to be applied to the changes read -

from the connected directory before importing to
Oracle Internet Directory

odip.profile.oidfilter Filter that needs to be applied to the changes thatare -
read from the Oracle Internet Directory before
exporting to the connected directory

odip.profile.lastchgnum Last applied change number. In the case of an export -
profile this number refers to Oracle Internet
Directory’s last applied change number However, n
the case of the import profile, this number refers to
the last applied change number in the connected
directory

Bootstrapping a Directory by Using the Directory Integration and Provisioning
Assistant
The command-line interface to the bootstrap command is:

dipassistant bootstrap { -profile profile name [-host host_name] [-port port_
number] -dn bind_DN [-passwd password] [-log log file] [-logseverity severity]
[-trace trace_file] [-tracelevel trace_level] [-loadparallelism <#nThrs>]
[-loadretry <retryCnt>] | -cfg file name }

For example, either:

dipassistant bs -cfg bootstrap cfg
or

dipassistant bs -host myhost -port 3060 -dn cn=orcladmin -password xxxx -profile
iPlanetProfile

Syntax for LDIF and Command-Line Tools A-49

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-19 Parameters of a deleteprofile Command

Parameter Description

-cfg A configuration file containing all the parameters required for
performing the bootstrapping.
See Also: Table A-20 on page A-51 for a list of parameters and
their description

-host Host where Oracle Internet Directory is running

-port Port at which Oracle Internet Directory was started

-dn The Bind Dn to be used in identifying to the directory

-password The password of the Bind DN to be used while binding to the
directory

-profile The profile name.

-log Log file. If this parameter is not specified, then, by default, the
log information is written to OH/1dap/odi/bootstrap.log

-logseverity Log severity 1-15.1-INFO, 2 - WARNING, 3 - DEBUG, 4 -
ERROR. Or any combination of these. If not specified, then
INFO and ERROR messages alone will be logged.

-trace Trace file for debugging purpose

-trace level

-loadRetry

-loadparallelism

Trace level

When the loading to the destination fails, the number of times
the retry should be made before marking the entry as bad entry

Indicator that loading to Oracle Internet Directory is to take
place in parallel by using multiple threads. For example,
-loadparallelism 5 means that5 threads are to be created,
each of which tries to load the entries in parallel to Oracle
Internet Directory.

A-50 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Properties Expected by the Bootstrapping Command

Table A-20 Bootstrapping Properties

Property

Description Mandatory Default

odip.bootstrap.srctype

odip.bootstrap.desttype

odip.bootstrap.srcurl

odip.bootstrap.desturl

odip.bootstrap.srcsslmode

Indicator of whether Yes -
source of the

bootstrapping is LDAP or

LDIF. Valid values are

either LDAP or LDIF.

Indicator of whether Yes -
destination of the

bootstrapping is LDAP or

LDIF. Valid values are

either LDAP or LDIF.

In the case of LDAP source Yes -
type, location of the source

directory. In the case of

LDIF, the location of the

LDIF file.

Note: For LDAP, the
expected format is

host [:port]. For LDIF,
the expected format is the
absolute path of the file.

In the case of LDAP, Yes -
location of the destination

directory. In the case of

LDIF, the location of the

LDIF file.

Note: For LDAP, the
expected format is

host [:port]. For LDIF,
the expected format is the
absolute path of the file.

Indicator of whether No FALSE
SSL-based authentication

must be used to connect to

the source of the

bootstrapping. A value of

TRUE indicates that

SSL-based authentication

must be used.

Syntax for LDIF and Command-Line Tools A-51

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-20 (Cont.) Bootstrapping Properties

Property Description Mandatory Default

odip.bootstrap.destsslmode Indicator of whether No FALSE
SSL-based authentication
must be used to connect to
the destination of the
bootstrapping. TRUE
indicates that SSL-based
authentication must be
used.

Note: In the case of LDIF,
this parameter is
meaningless.

odip.bootstrap.srcdn Supplement to the source Only in the -
URL. In the case of LDIF case of
binding, this parameter is LDAP
meaningless. However in
the case of LDAP, this
parameter specifies the
Bind DN.

odip.bootstrap.destdn Supplement to the Only inthe -
destination URL. In the case of
case of LDIF binding, this LDAP
parameter is meaningless.
However in the case of
LDAP, this parameter
specifies the Bind DN.

odip.bootstrap.srcpasswd Bind password to the No -
source. In the case of
LDAP binding, this is used
as security. Oracle
Corporation recommends
that you not specify the
password in this file.

odip.bootstrap.destpasswd Bind password. In the case No -
of LDAP binding, this is
used as security credential.

Oracle Corporation
recommends that you not
specify the password in
this file.

A-52 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-20 (Cont.) Bootstrapping Properties

Property

Description

Mandatory

Default

odip.bootstrap.mapfile

odip.bootstrap.logfile

odip.bootstrap.logseverity

odip.bootstrap.loadparallelism

odip.bootstrap.loadretry

odip.bootstrap.trcfile

odip.bootstrap.trclevel

Location of the map file
that contains the attribute
and domain mappings.

Location of the log file. If
this file already exists then
it will be appended. The
default log file is
bootstrap.log created
under SORACLE__
HOME/1dap/odi/log
directory.

Type of log messages that
needs to be logged.

INFO -1
WARNING - 2
DEBUG -4
ERROR -8

Note: A combination of
these types can also be
given. For example, if you
are interested only in
WARNING and ERROR
message, then specify a
value of 8+2—that is, 10.
Similarly, for all types of
message, use 1 +2 +4 + 8
=15

Numeric value indicating
the number of writer
threads used to load the
processed data to the
destination

In the event of a failure to
load an entry, indicator of
how many times to retry

Location of the trace file. If
this file already exists, then
it is overwritten.

The tracing level

No

No

No

No

No

No

No

The file bootstrap. log
created under the
directory $ORACLE_
HOME/1dap/odi/

1+8=9

$SORACLE.__
HOME/ldap/odi/log/b
ootstrap.trc

3

Syntax for LDIF and Command-Line Tools

A-53

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Changing the Password of the Administrator of the Oracle Directory Integration
and Provisioning Platform

The default password for the dipadmin account is same as ias_admin password
chosen during installation. This command lets you reset the password of dipadmin
account. To reset that password, you must provide the security credentials of the
orcladmin account.

For example:

$ dipassistant chgpasswd -passwd orcladmin password -host oid.heman.com
-port 3060

The Assistant then prompts for the new password as follows:

New Password:
Confirm Password:

Listing All Synchronization Profiles in Oracle Internet Directory

The listprofiles command prints a list of all the synchronization profiles in Oracle
Internet Directory. For example:

$ dipassistant listprofiles -passwd dipadmin password -host oid.heman.com
-port 3060

This command prints the following sample list:

IplanetExport
IplanetImport
ActiveImport
ActiveExport
LdifExport
LdifImport
TaggedExport
TaggedImport
OracleHRAgent
ActiveChgImp

Note: The list shown here is the default set of profiles created
during installation.

Viewing the Details of a Specific Synchronization Profile

The showprofile command prints the details of a specific synchronization profile
For example:

A-54 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

$ dipassistant showprofile -passwd dipadmin password -host oid.heman.com
-port 3060 -profile ActiveImport

This command prints the following sample output:

odip.profile.version = 1.0
odip.profile.lastchgnum = 0
odip.profile.interface = LDAP
odip.profile.oidfilter = orclObjectGUID
odip.profile.schedinterval = 60
odip.profile.name = ActiveImport
odip.profile.syncmode = IMPORT
odip.profile.retry = 5
odip.profile.debuglevel = 0
odip.profile.status = DISABLE

Setting the Wallet Password for the Oracle Directory Integration and
Provisioning Server
The wpPasswd command enables you to set the wallet password that the Oracle

directory integration and provisioning server later uses to connect to Oracle Internet
Directory. To use this command, enter:

dipassistant wp

The Directory Integration and Provisioning Assistant prompts you to enter, and
then confirm, the password.

Moving an Integration Profile to a Different Identity Management Node

You can use the Directory Integration and Provisioning Assistant to move directory
integration profiles to another node and to reassociate them with it. For example, if
the middle-tier components are associated with a particular Oracle Identity
Management infrastructure, then all the integration profiles existing in that
infrastructure node can be moved to a new infrastructure node.

Syntax for LDIF and Command-Line Tools A-55

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-21 describes the reassociation rules.

Table A-21 Scenarios for Reassociating Directory Integration Profiles

Scenario Actions Taken

Integration profile does The integration profile is copied to the second Oracle Internet
not exist on the second Directory node and is disabled after copying. It must be
Oracle Internet Directory ~ enabled by the application. The 1astchangenumber attribute
node in the integration profile is modified to the current last change

number on the second Oracle Internet Directory node.

Integration profile exists ~ Both integration profiles are reconciled in the following
on the second Oracle manner:

Internet Directorynode Any new attribute in the profile on node 1 is added to the

profile on node 2

= For existing same attributes, the values in profile on node
1 override the attributes in the profile on node 2

= The Profile is disabled after copying. It needs to be
enabled by the application.

s The lastchangenumber attribute in the integration
profile is modified to the current last change number on
the second Oracle Internet Directory node

The usage is as follows

dipassistant reassociate [-src_ldap_host <hostName>]
[-src_ldap_port <portNo>] [-src_ldap_dn <bindDn>] [-src_ldap_passwd
<password>] -dst_ldap_host <hostName> [-dst_ldap_port <portNo>]
[-dst_ldap_dn <bindDn>] [-dst_ldap_passwd <password>] [-log <logfile>]
Options:

-src_ldap_host <hostName> : Host where OID-1 runs

-src_ldap_port <portNo> : Port at which OID-1 runs

-src_ldap_dn <bindDn> : Bind Dn to connect to OID-1
-src_ldap_passwd <password> : Bind Dn password to connect to OID-1
-dst_ldap_host <hostName> : Host where OID-2 runs

-dst_ldap_port <portNo> : Port at which OID-2 runs

-dst_ldap_dn <bindDn> : Bind Dn to connect to OID-2
-dst_ldap_passwd <password> : Bind Dn password to connect to OID-2
-log <logFile> : Log file

Defaults:

src_ldap_host - localhost, src_ldap_port & dst_ldap_port - 389
src_ldap_dn & dst_ldap_dn - cn=orcladmin account

A-56 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Examples:

dipassistant reassociate -src_ldap_host oidl.mycorp.com \
-dst_ldap_host o0id2.mycorp.com -src_ldap_passwd xxxx \
-dst_ldap_passwd xxxx

dipassistant rs -help

Note if the location of the log file is not specified then by default it will be created as
SORACLE_HOME/ldap/odi/log/reassociate. log.

Limitations of the Directory Integration and Provisioning Assistant in Oracle
Internet Directory 10g (9.0.4)

In this release, the Directory Integration and Provisioning Assistant does not
support the following:

= SSL-based authentications to Oracle Internet Directory
s Schema synchronization

= Automatic profile creation at the end of the bootstrapping process when used
with the -cfg option

= Mapping file validation
s Creation of a failed entries file

The following elements of the Directory Integration and Provisioning Assistant are
untested:

= Bootstrapping of the connected directory over the SSL connection

s The use of the modifyprofile command while synchronization is happening for
that profile

The bootstrapping command of the Directory Integration and Provisioning
Assistant has the limitations described in Table A-22.

Table A-22 Limitations of Bootstrapping in the Directory Integration and
Provisioning Assistant

Type of Bootstrapping Limitation
LDIF-to-LDIF None

Syntax for LDIF and Command-Line Tools A-57

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-22 (Cont.) Limitations of Bootstrapping in the Directory Integration and
Provisioning Assistant

Type of Bootstrapping Limitation

LDAP-to-LDIF For a large number of entries, bootstrapping can fail with an
error of size limit exceeded. To resolve this, the server from
which you are bootstrapping should:

= Support paged results control (OID 1.2.840.113556.1.4.319).
Currently, Microsoft Active Directory is the only LDAP
directory that supports this control.

= Have an adequate value for the server side search size
limit parameter

= Use the proprietary Import/Export tool, take the dump of
the data, and bootstrap by using either the LDIF-to-LDIF
or the LDIF-to-LDAP approach

LDIF -to-LDAP None
LDAP-to-LDAP Same as LDAP-to-LDIF

The IdapUploadAgentFile.sh Tool Syntax

Use LdapUploadAgentFile. sh to load mapping and configuration information
when you are synchronizing directories.

ldapUploadAgentFile.sh -name profile name
-config configset the profile is associated with
-LDAPhost directory server. host

-LDAPport directory server. port

-binddn DN that can modify the profile >
-bindpass password for. the bind DN

-attrtype “MAP” ‘ “ATTR"

-filename complete path of file to be uploaded

Table A-23 Arguments for IdapUploadAgentFile.sh

Argument Description

Name The name of the integration profile to which the information
needs to be loaded.

Config The configset to which the profile belongs to.

LDAPhost Directory server host

LDAPport Directory server port

A-58 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-23 (Cont.) Arguments for IdapUploadAgentFile.sh

Argument Description

Binddn Bind DN of the directory user who has access rights to modify
the profile entry. The default is cn=orcladmin

Bindpass Password corresponding to the bind DN. The default is
welcome.

AttrType Type of file to be loaded. “MAP”’ is specified for loading the
mapping file. And “ATTR” is specified for loading the config
info file.

Filename Complete path name of the file to be uploaded.

Note: Alternatively, you can use the Directory Integration and
Provisioning Assistant to perform this operation. Enter either of the
following:

dipassistant mp [options] odip.profile.mapfile=your
map file

dipassistant mp [options] odip.profile.configfile=
your configuration file

See Also: Chapter 33, "Oracle Directory Synchronization Service"
in Oracle Internet Directory Administrator’s Guide for a description of
when to use 1dapUploadAgentFile.sh

The IdapCreateConn.sh Tool Syntax

You can create an integration profile by using the command-line tool
ldapcreateConn.sh. This tool is in the following directory:

SORACLE_HOME/ldap/admin/ .

The following example creates an integration profile named "HRMS" in
configuration set 2:

ldapcreateComn. sh
-name agent_name>
[-type <IMPORT | EXPORT >] \
[—agentpwd agent_password] \
[-config configset_to_associate with] \

Syntax for LDIF and Command-Line Tools A-59

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

[
[
[
[
[
[
[
[
[
[
[
[

-bindpass

-LDAPhost directory server. host]

-LDAPport directory server. port] \

-binddn DN _of_ super. user] \

Bind_password] \ [
-retry maximum retry count_on synchronization errors] \

-poll polling interval for. synchronization] \

-host host_on which to run agent] \

-conndirurl connected directory URL] \

-conndiracct connected directory account_information] \
-conndirpwd connected directory account_password] \

-execmd command line for. the agent] \

-iftype interface type] \ [

-condirfilter connected directory matching filter]\
[—oidfilter OID matching filter] \

[-U SSL_authentication mode]

[-W wallet_location]\

[-P wallet_password]

Table A-24 Arguments for Registering a Partner Agent by Using IdapcreateConn.sh

Argument

Description

Name
Type
Agentpwd
Config
LDAPhost
LDAPport

Binddn

Bindpass

Retry

Poll

Host

Conndirurl

Conndiracct

The name of the Integration Profile.This must be unique.
IMPORT/EXPORT. The default is IMPORT/

The password to protect the profile. The default is ‘welcome’.
The configuration set number. The default is 1.

Directory server host. The default is the current host.
Directory server port The default is port 389.

The bind DN of the Directory user which has the privileges to
create Integration profile. The default is ‘cn=orcladmin’

The bind password. The default is ‘welcome’

Maximum number of retries to be done by the server when
encountering a synchronization error. The default is ‘5’.

The scheduling interval of the profile. The default is ‘60
seconds.

This is currently used. For the time being, it should be set to
the machine name on which the DIP server is executing.

The connected directory access Information.

The connected directory account.

A-60 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-24 (Cont.) Arguments for Registering a Partner Agent by Using

Argument Description

Conndirpwd The connected directory account password
Execmd The OS command line to execute the partner agent.
Iftype The interface type. The default is TAGGED.
Condirfilter The connected directory matching filter
Oidfilter The OID matching filter.

Note: Alternatively, you can use the createprofile option of
the Directory Integration and Provisioning Assistant to perform
this operation.

The IdapDeleteConn.sh Tool Syntax

You can deregister a synchronization profile by using the command-line tool
ldapDeleteConn . sh. This tool is in the directory $ORACLE_HOME/1dap/admin/.

The syntax is:

ldapdeleteConn.sh [-name Profile_Name]
-LDAPhost <LDAP server host> (default is local host)]
[-LDAPport directory_server_port> (default 389)]
[-binddn SuperUserDN (default cn=orcladmin)]
[-bindpass password (default=welcome)]
[-config configset_associated_with _agent]
[-U <SSL_authentication_mode>]
[-W wWallet_location]
[-P Wallet_password]
[-help | -usage]

The following example deregisters a profile entry and dissociates it from the
configuration set 2 (config 2) entry:

ldapDeleteConn.sh name HRMS config 2

Note: Alternatively, you can use the deleteprofile option of
the Directory Integration and Provisioning Assistant to perform
this operation.

Syntax for LDIF and Command-Line Tools A-61

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

The StopOdiServer.sh Tool Syntax

In a client-only installation where OID Monitor and OIDCTL tools are not available,
you can start the directory integration and provisioning server without OIDCTL. To
stop the server, use the stopOdiServer.sh tool.

The path name for this tool is:
SORACLE_HOME/ldap/admin/stopodiserver.sh

The usage is:

SORACLE_HOME/ldap/admin/stopodiserver.sh
[-LDAPhost LDAP server. host]
[-LDAPport LDAP server_port]
[-binddn super. user: dn (default cn=orcladmin)]
[-bindpass bind password (default=welcome)]
-instance instance number. to stop

Table A-25 Arguments for Stopping the Oracle Directory Integration and
Provisioning Server

Argument Description

LDAPhost Directory server host. The default is the current host.

LDAPport Directory server port. The default is port 389.

Binddn The bind DN of the Directory user which has the privileges to
create Integration profile. The default is ‘cn=orcladmin’

Bindpass The bind password. The default is “‘welcome’

Instance The instance number of the Oracle directory integration and

provisioning server to stop.

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

s Cygwin 1.3.2.2-1 or later. Visit:
http://sources.redhat.com

s MKS Toolkit 6.1. Visit:
http://www.datafocus.com/

A-62 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

The schemasync Tool Syntax

The schemasync tool enables you to synchronize schema elements—namely
attributes and object classes—between an Oracle directory server and third-party
LDAP directories.

The usage for schemasync is as follows:

SORACLE_HOME/bin/schemasync
-srchost source LDAP_directory
-srcport source_LDAP port_numbert
-srcdn privileged DN_in_source_directory_to_access_schema
-srcpwd password
-dsthost destination_LDAP_directory
-dstport destination_LDAP_port
-dstdn privileged dn_in_destination_directory_to_access_schema
-dstpwd password
[-1dap]

Note: the -1dap parameter is optional. If it is specified, then the
schema changes are applied directly from the source LDAP
directory to the destination LDAP directory. If it is not specified,
then the schema changes are placed in the following LDIF files:

s SORACLE_HOME/ldap/odi/data/attributetypes.1dif
This file has the new attribute definitions.

m SORACLE_HOME/ldap/odi/data/objectclasses.ldif
This file has the new object class definitions.

if you do not specify -1dap, then you must use Idapmodify to
upload the definitions from these two files, first attribute types and
then object classes.

The errors that occur during schema synchronization are logged in the
following log files:

m SORACLE_HOME/ldap/odi/log/attributetypes.log

m SORACLE_HOME/ldap/odi/log/objectclasses.log

Syntax for LDIF and Command-Line Tools A-63

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

The Oracle Directory Integration and Provisioning Server Registration Tool
(odisrvreg)

To register an Oracle directory integration and provisioning server with the
directory, this tool creates an entry in the directory and sets the password for the
directory integration and provisioning server. If the registration entry already exists,
then you can use the tool to reset the existing password. The odisrvreg tool also
creates a local file called odisrvwallet_hostname, at SORACLE
HOME/1ldap/odi/conf. This file acts as a private wallet for the directory integration
and provisioning server, which uses it on startup to bind to the directory.

Table A-26 describes the parameters that you use with the Oracle Directory
Integration and Provisioning Server Registration Tool. You can also run odisrvreg
in SSL mode to make communication between the tool and the directory fully
secure, using the -U, -W, and - P parameters that are also described in Table A-26.

To register the directory integration and provisioning server, enter this command:

odisrvreg -h host_name -p port -D binddn -w bindpasswd -I passwd [-U ssl_mode -W
wallet -P wallet_password]

Table A-26 Descriptions of ODISRVREG Arguments

Argument Description

-h host_name Oracle directory server host name

-p port_number Port number on which the directory server is running

-D binddn Bind DN. The bind DN must have authorization to create the

registration entry for the directory integration and
provisioning server

-lhost In a cold failover cluster configuration, the virtual hostname

-w bindpasswd Bind password

-U SSL mode For no authorization, specify 0. For one-way authorization,
specify 1.

-W wallet location Location of the Oracle Wallet containing the SSL certificate

-P wallet password Wallet password to open the Oracle wallet

A-64 Oracle Internet Directory Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

The Provisioning Subscription Tool (oidprovtool) Syntax

Use the Provisioning Subscription Tool to administer provisioning profile entries in
the directory. More specifically, use it to perform these activities:

Create a new provisioning profile. A new provisioning profile is created and set
to the enabled state so that the Oracle Directory Integration and Provisioning
platform can process it

Disable an existing provisioning profile

Enabled a disabled provisioning profile

Delete an existing provisioning profile

Get the current status of a given provisioning profile

Clear all of the errors in an existing provisioning profile

The Provisioning Subscription Tool shields the location and schema details of the
provisioning profile entries from the callers of the tool. From the callers'
perspective, the combination of an application and a subscriber uniquely identify a
provisioning profile. The constraint in the system is that there can be only one
provisioning profile for each application for each subscriber.

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

s Cygwin 1.3.2.2-1 or later. Visit:
http://sources.redhat.com

s MKS Toolkit 6.1. Visit:
http://www.datafocus.com/

The name of the executable is oidProvTool, located in $ORACLE HOME/bin.

To invoke this tool, use this command:

oidprovtool paraml=paraml_value param2=param?_value param3=param3_value ...

Syntax for LDIF and Command-Line Tools A-65

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-27 Provisioning Subscription Tool Parameters

The Provisioning Subscription Tool accepts the following parameters:

Name

Description

Operations

Mandatory/Optional

operation

ldap_host

profile_status

profile_mode

profile_debug

sslmode

ldap_port

The subscription operation to be
performed. The legal values for
this parameter are: create,
enable, disable, delete, status
and reset. Only one operation
can be performed for each
invocation of the tool.

Host-name of the directory
server on which the subscription
operations are to be performed.
If not specified, the default value
of ‘localhost’ is assumed.

The status of the profile
(ENABLED/ DISABLED). Default
is ENABLED.

IBOUND/OUTBOUND/BOTH.
Default is OUTBOUND.

The debugging level with which
the profile is executed by the
Oracle directory integration and
provisioning server.

Indicator of whether to execute
the Provisioning Subscription
Tool in SSL mode. A value of 0
indicates non-ssl and 1 indicates
SSL mode.

The TCP/IP port on which the
LDAP server is listening for
requests. If not specified, the

default value of ‘389’ is assumed.

A-66 Oracle Internet Directory Application Developer’s Guide

all

all

Create

Create

All

All

all

M

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-27 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

ldap_user_dn The LDAP distinguished name all M
of the user on whose behalf the
operation is to be performed.
Not all users have the necessary
permissions to perform
Provisioning Subscription
operations. Please see the
administrative guide to grant or
deny LDAP users the permission
to perform Provisioning
Subscription operations.

ldap_user_password The password of the user on all M
whose behalf the operation is to
be performed.

application_dn The LDAP distinguished name all M
of the application for which the
Provisioning Subscription
Operation is being performed.
The combination of the
application_dn and the
organization_dn parameters
help the subscription tool to
uniquely identify a provisioning
profile.

organization_dn The LDAP distinguished name all M
of the organization for which the
Provisioning Subscription
Operation is being performed.
The combination of the
application_dn and the
organization_dn parameters
help the subscription tool to
uniquely identify a provisioning
profile.

interface_name Database schema name for the create only M
PLSQL package. Format of the
value should be:
[Schema].[PACKAGE_NAME]

Syntax for LDIF and Command-Line Tools A-67

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-27 (Cont.) Provisioning Subscription Tool Parameters

Name Description

Operations

Mandatory/Optional

interface_type The type of the interface to
which events have to be
propagated.Valid Values: PLSQL
(if not specified this is assumed
as the default)

interface_connect_info Database connect string Format
of this
string:[HOST]:[PORT]:[SID]:
[USER_ID]:[PASSWORD]

interface_version The version of the interface
protocol. Valid Values: 1.0 or
1.11.0 will be the old interface. If
not specified, this is used as the
default.

interface_additional_info Additional information for the
interface. This is not currently
used.

A-68 Oracle Internet Directory Application Developer’s Guide

create only

create only

create only

create only

O

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-27 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

schedule The scheduling information for create only @)
this profile. The value is the
length of the time interval in
seconds after which DIP will
process this profile. If not
specified, a default of 3600 is
assumed.

max_retries The number of times the create only @)
Provisioning Service should
retry a failed event delivery. If
not specified, a default value of 5
is assumed.

event_subscription Events for which DIP should create only O
send notification to this
application. Format of this
string:”[USER]JGROUP]:[Domain
0
i{;teresb]:[DELETE]ADD]MODI
FY(<list of attributes separated by
comma>)]"Multiple values may
be specified by listing the
parameter multiple times each
with different values. If not
specified the following defaults
are assumed:USER:<org.
DN>:DELETEGROUP:<org.
DN>:DELETEqQthat is, send
user and group delete
notifications under the
organization DN.

Syntax for LDIF and Command-Line Tools A-69

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-70 Oracle Internet Directory Application Developer’s Guide

Sample Usage

This appendix provides sample code.
This section contains these topics

= DBMS_LDAP Sample Code

= DBMS_LDAP_UTL Sample Code
= Java Sample Code

Sample Usage B-1

DBMS_LDAP Sample Code

DBMS_LDAP Sample Code
This section contains these topics:
s Using DBMS_LDAP from a Database Trigger
= Using DBMS_LDAP for a Search

Using DBMS_LDAP from a Database Trigger

The DBMS_LDAP API can be invoked from database triggers to synchronize any
changes to a database table with an enterprise-wide LDAP server. The following
example illustrates how changes to a table called 'EMP' are synchronized with the
data in an LDAP server using triggers for insert, update, and delete. There are two
files associated with this sample:

s Thefile trigger.sqgl creates the table as well as the triggers associated with it

s The file empdata. sql inserts some sample data into the table EMP, which
automatically gets updated to the LDAP server through the insert trigger

These files can be found in the p1sqgl directory under $ ORACLE_
HOME/1ldap/demo

B-2 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

The trigger.sql File

This SQL file creates a database table called 'EMP" and creates a trigger on it called
LDAP_EMP which will synchronize all changes happening to the table with an
LDAP server. The changes to the database table are reflected/replicated to the
LDAP directory using the DBMS_LDAP package.

This script assumes the following:
s LDAP server hostname: NULL (local host)
s LDAP server portnumber: 389
= Directory container for employee records: o=acme, dc=com
s Username/Password for Directory Updates: cn=orcladmin/welcome
The aforementioned variables could be customized for different environments by
changing the appropriate variables in the code below.
Table Definition Employee Details(Columns) in Database Table(EMP):
EMP_ID—Number
FIRST_NAME—Varchar2
LAST_NAME—Varchar2
MANAGER_ID—Number
PHONE_NUMBER—Varchar2
MOBILE—Varchar2
ROOM_NUMBER—Varchar2
TITLE—Varchar2

LDAP Schema Definition & Mapping to Relational Schema EMP Corresponding Data
representation in LDAP directory:

DN—cn=FIRST_NAME LAST_NAME, o=acme, dc=com]
cn—FIRST_NAME LAST _NAME

sn—LAST _NAME

givenname—FIRST_NAME

manager—DN

Sample Usage B-3

DBMS_LDAP Sample Code

telephonenumber—PHONE_NUMBER

mobile—MOBILE

employeeNumber—EMP_ID

userpassword—FIRST_NAME

objectclass—person, organizationalperson, inetOrgPerson, top

—Creating EMP table

PROMPT Dropping Table EMP ..
drop table EMP;

PROMPT Creating Table EMP ..
CREATE TABLE EMP (

EMP_ID NUMBER, Employee Number
FIRST NAME VARCHAR2 (256), First Name

LAST NAME VARCHAR2 (256), Last Name

MANAGER_ID NUMBER, Manager Number
PHONE_NUMBER VARCHARZ2 (256) , Telephone Number
MOBILE VARCHAR2 (256), Mobile Number
ROOM_NUMBER VARCHARZ2 (256) , Room Number

TITLE VARCHAR2 (256) Title in the company

)i
—Creating Trigger LDAP_EMP
PROMPT Creating Trigger LDAP_EMP ..

CREATE OR REPLACE TRIGGER LDAP_EMP
AFTER INSERT OR DELETE OR UPDATE ON EMP
FOR EACH ROW

DECLARE
retval PLS_INTEGER;
emp_session DBMS_LDAP.session;
emp_dn VARCHAR2 (256) ;
emp_rdn VARCHAR2 (256) ;
emp_array DBMS_LDAP.MOD_ARRAY;
emp_vals DBMS_LDAP.STRING COLLECTION ;
ldap_host VARCHAR2 (256) ;
ldap port VARCHAR2 (256);
ldap user VARCHAR2 (256);
ldap passwd VARCHAR2 (256) ;
ldap base VARCHAR2 (256);

B-4 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

BEGIN
retval = -1;
-- Customize the following variables as needed
ldap host = NULL;
ldap port := '389';
ldap user := 'cn=orcladmin';
ldap passwd:= 'welcome';
ldap base := 'o=acme,dc=com';

-- end of customizable settings

DBMS_OUTPUT. PUT (' Trigger [LDAP EMP]: Replicating changes ') ;
DBMS_OUTPUT.PUT LINE('to directory .. ');

DBMS_OUTPUT. PUT_LINE (RPAD('LDAP Host ',25,' ') |
DBMS_OUTPUT. PUT_LINE (RPAD('LDAP Port ',25,' ') |

ldap_host) ;
1dap_port) ;

-- Choosing exceptions to be raised by DBMS_LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Initialize ldap library and get session handle.
emp_session := DBMS LDAP.init (ldap_host, 1dap_port) ;

DBMS_OUTPUT.PUT_LINE (RPAD('Ldap session ',25,' ') || ': ' ||

RAWTOHEX (SUBSTR (emp_session, 1,8)) ||
' (returned from init)');

-- Bind to the directory
retval := DBMS_LDAP.simple bind s(emp_session,

ldap user, 1dap_passwd) ;

DBMS_OUTPUT. PUT_LINE (RPAD('simple bind s Returns ',25,' ') || ': '
|| TO_CHAR(retval));

-- Process New Entry in the database

IF INSERTING THEN

-- Create and setup attribute array for the New entry
__array := DBMS_LDAP.create mod array(14) ;

-- RN to be - cn="FIRST NAME LAST NAME"
_vals(l) := :new.FIRST NAME || ' ' || :new.LAST NAME;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,

Sample Usage B-5

DBMS_LDAP Sample Code

'en', emp_vals) ;

emp_vals(l) := :new.LAST NAME;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_ADD,
'sn',emp_vals) ;

 vals(l) := :new.FIRST NAME;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'givenname', emp vals) ;

emp_vals(l) := 'top';

emp _vals(2) := 'person';
, vals(3) := 'organizationalPerson';
 vals(4) := 'inetOrgPerson';

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'objectclass',emp vals) ;

emp_vals.DELETE;
emp _vals(l) := :new.PHONE NUMBER;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'telephonenumber', emp vals) ;

emp_vals(l) := :new.MOBILE;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'mobile',emp_vals);

emp _vals(l) := :new.ROOM NUMBER;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'roomNumber' , emp_vals) ;

 vals(l) := :new.TITLE;

DBMS_LDAP.populate mod_array (emp_array, DBMS_LDAP.MOD_ADD,
'title',emp vals);

emp_vals(l) := :new.EMP_ID;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_ADD,
'employeeNumber ', emp_vals) ;

B-6 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

emp_vals(l) := :new.FIRST NAME;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_ADD,

'userpassword',emp vals) ;

-- DN for Entry to be Added under 'ldap base' [o=acme, dc=com]

dn := 'cn=' || :new.FIRST NAME || ' ' ||

:new.LAST NAME || ', ' || ldap_base ;

DBMS_OUTPUT. PUT_LINE (RPAD('Adding Entry for DN ',25,' ') || ': [

|| emo dn || *17);

-- Add new Entry to ldap directory

retval := DBMS LDAP.add s() session,emp dn,emp_array) ;

DBMS_OUTPUT.PUT_LINE(RPAD('add s Returns ',25,' ')
| | TO_CHAR(retval));

-- Free attribute array (emp_array)
DBMS_LDAP.free mod array(emp_array) ;

END TF; -- INSERTING
-- Process Entry deletion in database

IF DELETING THEN

-- DN for Entry to be deleted under 'ldap_lase' [o=acme, dc=com]

_dn := 'cn=' || :0ld.FIRST NAME || ' ' ||
:01d.LAST NAME || ', ' || ldap_base ;
DBMS_OUTPUT. PUT_LINE (RPAD('Deleting Entry for DN ',25,

[|] emp_an || 1Y)

-- Delete entry in ldap directory
retval := DBMS_LDAP.delete_ s () session,emp dn);
DBMS_OUTPUT.PUT LINE (RPAD('delete s Returns ',25,
TO_CHAR (retval)) ;
END IF; -- DELETING
-- Process updated Entry in database

IF UPDATING THEN

||)||

ICHIERN]

Sample Usage B-7

DBMS_LDAP Sample Code

-- Since two Table columns(in this case) constitue a RDN
-- check for any changes and update RDN in ldap directory
-- before updating any other attributes of the Entry.

IF :0l1d.FIRST NAME <> :new.FIRST NAME OR
:01d.LAST NAME <> :new.LAST NAME THEN

_dn := 'cn=' || :0ld.FIRST NAME || ' ' ||
:01d.LAST NAME || ', ' || ldap_base;
_rdn := 'cn=' || :new.FIRST NAME || ' ' || :new.LAST NAME;

DBMS_OUTPUT. PUT_LINE (RPAD('Renaming OLD DN ',25,' ') ||
s [t || empan || 1Y)
DBMS_OUTPUT. PUT_LINE(RPAD(' => NEW RDN ',25,' ') ||
r [t || empxdn || "1)
retval := DBMS_LDAP.modrdn2_s (emp_session, emp_dn,emp rdn,
DBMS_LDAP.MOD_DELETE) ;
DBMS_OUTPUT. PUT_LINE (RPAD('modrdn2_s Returns ',25,' ') || ':
TO_CHAR(retval)) ;
END TF;

-- DN for Entry to be updated under 'ldap_lase' [o=acme, dc=com]

dn := 'cn=' || :new.FIRST NAME || ' ' ||

:new.LAST NAME || ', ' || ldap_base;

DBMS_OUTPUT. PUT_LINE (RPAD('Updating Entry for DN ',25,' ') ||
[|| empan || 1Y)

-- Create and setup attribute array(emp_array) for updated entry
emp_array := DBMS_LDAP.create mod array(7);

emp_vals(l) := :new.LAST NAME;

DBMS_LDAP.populate mod array (emp_array, DBMS_LDAP.MOD REPLACE,
'sn',emp_vals) ;

emp_vals(l) := :new.FIRST NAME;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_REPIACE,
'givenname', emp vals) ;

 vals(l) := :new.PHONE_NUMBER;

B-8 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

DBMS_LDAP.populate mod array (emp_array, DBMS_LDAP.MOD REPLACE,

'telephonenumber', emp vals) ;

 vals(l) := :new.MOBILE;

DBMS_LDAP.populate mod _array (emp_array, DBMS_LDAP.MOD REPLACE,

'mobile', emp_vals) ;

emp vals(l) := :new.ROOM NUMBER;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_REPIACE,

'roonNumber' , emp_vals) ;

 vals(l) := :new.TITLE;

DBMS_LDAP.populate mod array (emp_array, DBMS_LDAP.MOD REPLACE,

'title',emp_vals);

emp_vals(l) := :new.EMP_ID;

DBMS_LDAP.populate mod_array () array,DBMS_LDAP.MOD_REPIACE,

'employeeNumber ', emp_vals) ;

-- Modify entry in ldap directory

retval := DBMS_LDAP.modify s(__session, emp_dn, _array) ;

DBMS_OQUTPUT. PUT_LINE(RPAD('modify s Returns ',25,'
TO_CHAR (retval)) ;

-- Free attribute array (emp_array)
DBMS_LDAP.free mod array(emp_array) ;

END IF; -- UPDATING

-- Unbind from ldap directory
retval := DBMS_LDAP.unbind s () session);

DBMS_OUTPUT. PUT_LINE (RPAD ('unbind res Returns ',25,' ') ||
TO_CHAR (retval)) ;

RINIERE

DBMS_OUTPUT. PUT_LINE('Directory operation Successful .. exiting');

-- Handle Exceptions
EXCEPTION
WHEN OTHERS THEN

Sample Usage B-9

DBMS_LDAP Sample Code

-- TODO : should the trigger call unbind at this point ??
-- what if the exception was raised from unbind itself ??

DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS_OUTPUT.PUT_LINE(' Error Message : ' || SQLERRM);
DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

Using DBMS_LDAP for a Search

The following example illustrates using the DBMS_LDAP API to perform an LDAP
search in a PL/SQL program. This example searches for the entries created using
the trigger example described previously. It assumes a base of o=acme, dc=com
and performs a subtree search to retrieve all entries that are subordinates of the base
entry. The code shown below is contained in a file called search. sql which can be
found in the SORACLE_HOME/1ldap/demo/plsqgl directory.

The search.sql File

This SQL file contains the PL/SQL code required to perform a typical search against
an LDAP server.

This script assumes the following:

= LDAP server host name: NULL (local host)

s LDAP server portnumber: 389

s Directory container for employee records: o=acme, dc=com

s Username/Password for Directory Updates: cn=orcladmin/welcome

Note: Run this file after you have run the trigger.sgl and
empdata. sql scripts to see what entries were added by the
database triggers.

set serveroutput on size 30000

DECLARE
retval PLS_INTEGER;

B-10 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

my_session DBMS_LDAP.session;

my_attrs DBMS_LDAP.string _collection;
my_message DBMS_LDAP.message;

my_entry DBMS_LDAP.message;

entry index PLS_INTEGER;

my_dn VARCHAR?2 (256) ;

my_attr name VARCHAR2 (256) ;

my ber_elmt DBMS LDAP.ber element;
attr_index PLS_INTEGER;

i PLS TINTEGER;

my vals DBMS LDAP.STRING COLLECTION ;
ldap_host VARCHAR2 (256) ;

ldap port VARCHAR2 (256);

ldap user VARCHAR2 (256);

ldap passwd VARCHAR2 (256) ;

ldap base VARCHAR2 (256);

BEGIN
retval = -1;

-- Please customize the following variables as needed

ldap host := NULL ;

ldap port := '389';

ldap user := 'cn=orcladmin';
ldap passwd:= 'welcome';

ldap base := 'o=acme,dc=com';

-- end of customizable settings

DBMS_OUTPUT.PUT('DBMS_LDAP Search Example ');
DBMS_OUTPUT.PUT LINE('to directory .. ');
DBMS_OUTPUT.PUT_LINE(RPAD('LDAP Host ',25,' ') |
DBMS_OUTPUT.PUT LINE(RPAD('LDAP Port ',25,' ') |

-- Choosing exceptions to be raised by DBMS LDAP library.

DBMS_IDAP.USE_EXCEPTION := TRUE;

my_session := DBMS_LDAP.init (1ldap host, 1dap port) ;

DBMS_OUTPUT.PUT LINE (RPAD('Ldap session ',25,' ') || ': ' ||
RAWTOHEX (SUBSTR (my._session,1,8)) ||

' (returned from init)');

-- bind to the directory
retval := DBMS_LDAP.simple bind s (my session,

Sample Usage B-11

DBMS_LDAP Sample Code

ldap user, ldap_passwd) ;

DBMS_OUTPUT. PUT_LINE(RPAD('simple bind s Returns ',25,' ') || ': '
|| TO_CHAR(retval));

-- issue the search
my_attrs(l) := '*'; -- retrieve all attributes
retval := DBMS_LDAP.search s(my session, ldap_lase,
DBRMS_IDAP.SCOPE_SUBTREE,
'objectclass=*",
my_attrs,
0,
my_message) ;

DBMS_OUTPUT.PUT_LINE(RPAD('search s Returns ',25,' ') || ': '
|| TO_CHAR(retval));
DBMS_OUTPUT.PUT LINE (RPAD('LDAP message ',25,' ') || ': ' ||
RAWTOHEX (SUBSTR (my._message, 1,8)) ||
' (returned from search s)');

-- count the number of entries returned

retval := DBMS_LDAP.count_entries (my session, my message) ;

DBMS_OUTPUT.PUT_LINE (RPAD('Number of Entries ',25,' ') || ': '
|| TO_CHAR(retval));

DBMS_OUTPUT.PUT

-- get the first entry
my_entry := DBMS_LDAP.first_entry (my_session, my message);
entry index := 1;

-- Loop through each of the entries one by one
while my_entry IS NOT NULL loop
-- print the current entry
my_dn := DBMS LDAP.get_dn(my_session, my entry);

-- DBMS_OUTPUT.PUT LINE (' entry #' || TO_CHAR(entry index) ||
-- ' entry ptr: ' || RAWIOHEX(SUBSIR (my_entry,1,8)));

DBMS_OUTPUT. PUT_LINE (' dn: ' || my_dn);

my_attr _name := DBMS_LDAP.first attribute(my session,my entry,

my ber_elmt) ;

attr_index := 1;

while my attr name IS NOT NULL loop
my vals := DBMS_LDAP.get_values (my_session, my_entry,
my_attr name) ;

B-12 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP Sample Code

if my vals.COUNT > 0 then
FOR i in my_vals.FIRST..my vals.LAST loop
DBMS_OUTPUT . PUT_LINE (' " || my_attr name || ' : '

SUBSTR (my_vals (i), 1,200));

end loop;
end if;
my attr name := DBMS_LDAP.next attribute(my session,my_entry,
my_ber_elmt) ;
attr_index := attr_index+1;

end loop;
my_entry := DBMS_LDAP.next_entry(my session, my_entry);
DBMS_OUTPUT. PUT_
LINE (' ")
entry index := entry index+1;
end loop;

-- unbind from the directory

retval := DBMS_LDAP.unbind_ s (my session);

DBMS_OUTPUT.PUT_LINE(RPAD('unbind res Returns ',25,' ') || ': ' ||
TO_CHAR (retval)) ;

DBMS_OUTPUT.PUT_LINE('Directory operation Successful .. exiting');

-- Handle Exceptions

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS OUTPUT.PUT _LINE(' Error Message : ' || SQLERRM);
DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');
END;
/

Sample Usage B-13

DBMS_LDAP_UTL Sample Code

DBMS_LDAP_UTL Sample Code

This section contains these topics:

= Example: User-Related Functions

= Example: Property-Related Subprograms
= Example: Subscriber-Related Functions

= Example: Group-Related Functions

Example: User-Related Functions

This is a sample usage of user-related functions in the DBMS_LDAP_UTL package.
You can create a user handle using DN, GUID or a simple name representing the
user.

This sample program demonstrates the following user-related functions:
= DBMS_LDAP_UTL.create_user_handle()

= DBMS_LDAP_UTL.set_user_handle_properties()

=« DBMS_LDAP_UTL.authenticate_user()

= DBMS_LDAP_UTL.get_user_properties()

= DBMS_LDAP_UTL.set_user_properties()

set serveroutput on size 30000

DECLARE
ldap host VARCHAR?2 (256) ;
ldap_port PLS_INTEGER;
ldap_user VARCHAR2 (256) ;
ldap passwd VARCHAR2 (256) ;
ldap base VARCHAR2 (256) ;
retval PLS_TINTEGER;
my_session DBMS_LDAP. session;

subscriber_handle DBEMS_LDAP_ UTL.HANDLE;
sub_type PLS_INTEGER;
subscriber_id VARCHAR2 (2000) ;

B-14 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

my_pset_coll DBMS_LDAP_UTL.PROPERTY_SET COLLECTION;
my_property_names DBMS_LDAP. STRING_COLLECTION;
my_property values DBMS_LDAP.STRING_COLLECTION;

user_handle DBMS_LDAP UTL.HANDLE;

user_id VARCHAR2 (2000) ;

user_type PLS_INTEGER;

user_password VARCHARZ2 (2000) ;

my_mod_pset DBMS_LDAP UTL.MOD_ PROPERTY_SET;
my_attrs DBMS_IDAP.STRING_COLLECTION;
BEGIN

-- Please customize the following variables as needed

ldap_host := NULL ;

ldap_port = 389;

ldap_user := 'cn=orcladmin';

ldap passwd i= 'welcome' ;

sub_type := DBMS_LDAP UTL.TYPE DN;
subscriber_id := 'o=acme, dc=com' ;

user._type = DBMS_IDAP UTL.TYPE DN;

user_id i= 'cn=userl, cn=users, o=acme, dc=com’ ;
user_password := 'welcome' ;

-- Choosing exceptions to be raised by DBMS LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Comnect to the LDAP server
-- and obtain and 1d session.

my_session := DBMS_LDAP.init (ldap host, 1dap port) ;

Sample Usage B-15

DBMS_LDAP_UTL Sample Code

retval := DBMS_LDAP.simple bind s (my session,
ldap_user,
ldap_passwd) ;

retval := DBMS_LDAP UTL.create_subscriber handle (subscriber handle,
sub_type,
subscriber_id) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT.PUT_LINE ('create _subscriber handle returns : ' || to_
char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.create_user handle (user_handle,user_ type,user_id);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT _LINE('create user handle returns : ' || to_char(retval));
END TIF';

-- Set user handle properties
-- (link subscriber to user)

retval := DBMS_LDAP UTL.set_user_handle properties (user handle,
DBMS_LDAP UTL.SUBSCRIBER _HANDLE,
subscriber_handle) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT . PUT_LINE ('set_user_handle properties returns : ' || to_
char (retval)) ;

B-16 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

retval := DBMS_LDAP UTL.authenticate_ user (my_session,

user_handle,
DBMS_LDAP UTL.AUTH_SIMPLE,
user_password,
NULL) ;
IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT.PUT _LINE ('authenticate user returns : ' || to_char(retval));

END TIF;

-- like .. telephone number
my_attrs(l) := 'telephonenumber';

retval := DBMS_LDAP UTL.get_user_ properties (my session,
user_handle,
my_attrs,
DBMS_LDAP_ UTL.ENTRY_PROPERTIES,
my pset_coll) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('get user_properties returns : ' || to_char(retval));
END TIF';

retval := DBMS_LDAP UTL.create mod propertyset (DBMS_LDAP UTL.ENTRY_ PROPERTIES,
NULL, my_mod_pset) ;

Sample Usage B-17

DBMS_LDAP_UTL Sample Code

IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT. PUT_LINE ('create mod propertyset returns : ' || to_
char (retval)) ;
END TIF';

my_property values.delete;
my_property values(l) := '444-6789';
retval := DBMS_LDAP UTL.populate _mod propertyset (my _mod pset,
DBMS_LDAP_UTL.REPLACE_PROPERTY,
'telephonenumber' ,my_property.
values) ;
my_property values.delete;

IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT . PUT_LINE ('populate mod propertyset returns : ' || to_
char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.set_user_properties (my session,user _handle,
DBMS_LDAP_UTL.ENTRY_ PROPERTIES,
my_mod_pset,
DBMS_LDAP_UTL.MODIFY_ PROPERTY_ SET) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors

DBMS_OUTPUT.PUT _LINE('set_user_properties returns : ' || to_char(retval));
END TF;

-- Free handles

B-18 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

DBMS_LDAP UTL. free handle (subscriber handle) ;
DBMS_LDAP UTL. free handle(user_handle) ;

-- unbind from the directory
retval := DBMS_LDAP.unbind s (my session);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('unbind s returns : ' || to_char(retval));
END TIF';

-- Handle Exceptions

EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS OUTPUT.PUT _LINE(' Error Message : ' || SQLERRM);

DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;
/

Example: Property-Related Subprograms

This sample code demonstrates the usage of the Property related subprograms of
the DBMS_LDAP_UTL package. Most of the subprograms related to user,
subscriber, and group handles return DBMS_LDAP_UTL.PROPERTY_SET_
COLLECTION.

A PROPERTY_SET_COLLECTION contains a set of PROPERTY_SETs. A
PROPERTY_SET is analogous to an LDAP entry which is identified by the DN.
Each PropertySet contains a set of zero or more Properties. A Property is analogous
to a particular attribute of an LDAP entry and it may contain one or more values.

set serveroutput on size 30000

DECLARE
ldap_host VARCHAR2 (256) ;
ldap_port PLS_INTEGER;
ldap_user VARCHAR2 (256) ;

1ldap passwd VARCHAR?2 (256) ;

Sample Usage B-19

DBMS_LDAP_UTL Sample Code

ldap_base VARCHAR? (256) ;
retval PLS_INTEGER;
my_session DBMS_LDAP. session;

subscriber_handle DBEMS_LDAP_ UTL.HANDLE;

sub_type PLS INTEGER;
subscriber_id VARCHAR2 (2000) ;
my_pset_coll DBMS_LDAP UTL.PROPERTY_SET COLLECTION;

my_property_names DBMS_LDAP. STRING_COLLECTION;
my_property values DBMS_LDAP.STRING_COLLECTION;

user_handle DBMS_LDAP UTL.HANDLE;

user_id VARCHAR2 (2000) ;

user_type PLS_INTEGER;

user_password VARCHARZ2 (2000) ;

my_mod_pset DBMS_LDAP UTL.MOD_ PROPERTY_SET;

my_attrs DBMS_IDAP.STRING_COLLECTION;
BEGIN

-- Please customize the following variables as needed

1ldap_host := NULL ;

ldap_port 1= 389;

ldap user := 'cn=orcladmin';

ldap passwd := 'welcome';

sub_type := DBMS_LDAP UTL.TYPE_DN;
subscriber._id := 'o=acme,dc=com';

user._type := DBMS_IDAP UTL.TYPE DN;

user_id := 'cn=userl, cn=users, o=acme,dc=com' ;
user_password := 'welcome';

-- Choosing exceptions to be raised by DBMS LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Comnect to the LDAP server

B-20 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

-- and obtain and 1d session.

my_session := DBMS_LDAP.init (1ldap host, 1dap port) ;

retval := DBMS_LDAP.simple bind s (my session,
ldap_user,
ldap_passwd) ;

retval := DBMS_LDAP UTL.create_subscriber handle (subscriber handle,

sub_type,
subscriber_id);
IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT.PUT_LINE ('create_subscriber handle returns : ' || to_
char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.create_user_ handle (user_handle,user_type,user_id);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT _LINE('create user handle returns : ' || to_char(retval));
END TIF';

-- Set user handle properties
-- (link subscriber to user)

Sample Usage B-21

DBMS_LDAP_UTL Sample Code

retval := DBMS_LDAP UTL.set_user_handle properties (user handle,
DBMS_LDAP UTL.SUBSCRIBER HANDLE,
subscriber_handle) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('set_user_handle properties returns : ' || to_
char (retval)) ;
END TIF';

my_attrs(l) := 'telephonenumber';

retval := DBMS_LDAP UTL.get_user_ properties (my session,
user_handle,
my_attrs,
DBMS_LDAP UTL.ENTRY_PROPERTIES,
my _pset_coll) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('get user_properties returns : ' || to_char(retval));
END TIF';

IF my _pset_coll.count > 0 THEN

FOR i in my pset_coll.first .. my pset coll.last LOOP
retval := DBMS_LDAP UTL.get_ property names (my_pset coll (i),
my_property_names) ;
IF my property names.count > 0 THEN

FOR j in my_property names.first .. my property names.last LOOP
retval := DBMS_LDAP UTL.get_ property values (my pset coll (i),

B-22 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

my_property names(j),
my_property_values) ;
IF my_property values.COUNT > 0 THEN
FOR k in my property values.FIRST..my property values.LAST LOOP

DBMS_OUTPUT.PUT_LINE(my property names(j) || ' : ' ||
my_property values (k)) ;

END LOOP;
END TIF;

END LOOP;
END IF; -- IF my_property names.count > 0
END LOOP;
END IF; -- If my pset _coll.count > 0

-- Free my properties
IF my pset_coll.count > 0 then

DBMS_LDAP UTL.free propertyset_collection (my pset coll);
end if;

DBMS_LDAP UTL. free handle (subscriber handle) ;
DBMS_LDAP UTL. free handle(user_handle) ;

-- unbind from the directory
retval := DBMS_LDAP.unbind s (my session);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('unbind s returns : ' || to_char(retval));
END TIF';

-- Handle Exceptions
EXCEPTION

Sample Usage B-23

DBMS_LDAP_UTL Sample Code

WHEN OTHERS THEN
DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS OUTPUT.PUT _LINE(' Error Message : ' || SQLERRM);
DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;

Example: Subscriber-Related Functions

This is a sample usage of Subscriber related functions in the DBMS_LDAP_UTL
package. You can create a subscriber handle using DN, GUID or a simple name
representing the subscriber.

This sample program demonstrates the following subscriber-related functions:

» DBMS_LDAP_UTL.create_subscriber_handle()
= DBMS_LDAP_UTL.get_subscriber_properties()

set serveroutput on size 30000

DECLARE
ldap host VARCHAR?2 (256) ;
ldap_port PLS_INTEGER;
ldap_user VARCHAR2 (256) ;
1ldap passwd VARCHAR2 (256) ;
ldap base VARCHAR2 (256) ;
retval PLS_TINTEGER;

my_session

subscriber_handle
sub_type
subscriber_id

my_pset_coll

my_property. names
my_property values

user_handle
user_id
user_type
user_password

DBMS_LDAP. session;

DBEMS_LDAP_UTL.HANDLE;
PLS_INTEGER;
VARCHAR2 (2000) ;

DBMS_LDAP_ UTL.PROPERTY_SET COLLECTION;
DBMS_LDAP. STRING_COLLECTION;
DBMS_LDAP. STRING_COLLECTION;

DBMS_LDAP_UTL .HANDLE;
VARCHAR2 (2000) ;
PLS_INTEGER;

VARCHAR2 (2000) ;

B-24 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

my_mod_pset DBMS_LDAP UTL.MOD_PROPERTY_SET;
my_attrs DBMS_LDAP. STRING_COLLECTION;
BEGIN

-- Please customize the following variables as needed

1ldap_host := NULL ;

ldap_port 1= 389;

ldap user := 'cn=orcladmin';

ldap passwd := 'welcome';

sub_type := DBMS_LDAP UTL.TYPE_DN;
subscriber._id := 'o=acme,dc=com';

user._type := DBMS_IDAP UTL.TYPE DN;

user_id := 'cn=userl, cn=users, o=acme,dc=com';
user_password := 'welcome';

-- Choosing exceptions to be raised by DBMS LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Comnect to the LDAP server
-- and obtain and 1d session.

my_session := DBMS_LDAP.init (ldap host, 1dap port) ;

retval := DBMS_LDAP.simple bind s (my session,
ldap_user,
ldap_passwd) ;

Sample Usage B-25

DBMS_LDAP_UTL Sample Code

retval := DBMS_LDAP UTL.create_subscriber handle (subscriber handle,
sub_type,
subscriber_id) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE ('create _subscriber handle returns : ' || to_
char (retval)) ;
END TIF';

my_attrs(l) := 'orclguid';

retval := DBMS_LDAP UTL.get_subscriber properties (my_session,
subscriber_handle,
my_attrs,
DBMS_LDAP UTL.ENTRY_PROPERTIES,
my _pset_coll) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT. PUT_LINE ('get_subscriber properties returns : ' || to_
char (retval)) ;
END TIF';

DBMS_LDAP UTL. free handle (subscriber handle) ;
-- unbind from the directory

retval := DBMS_LDAP.unbind s (my session);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors
DBMS_OUTPUT.PUT LINE('unbind s returns : ' || to_char(retval));

B-26 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

END TIF;

-- Handle Exceptions

EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS _OUTPUT.PUT_LINE(' Error Message : ' || SQLERRM);

DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;
/

Example: Group-Related Functions

This is a sample usage of Group related functions in DBMS_LDAP_UTL package.
You can create a group handle using DN, GUID or a simple name representing the

group.
This sample program demonstrates the following group-related functions:
= DBMS_LDAP_UTL.create_group_handle()

= DBMS_LDAP_UTL.set_group_handle_properties()

= DBMS_LDAP_UTL.check_group_membership()

= DBMS_LDAP_UTL.get_group_membership()

= DBMS_LDAP_UTL.get_group_properties()

set serveroutput on size 30000

DECLARE
ldap host VARCHAR?2 (256) ;
ldap_port PLS INTEGER;
ldap_user VARCHAR2 (256) ;
1ldap passwd VARCHAR?2 (256) ;
ldap base VARCHAR2 (256) ;
retval PLS_TINTEGER;
my_session DBMS_LDAP. session;

subscriber_handle DBEMS_LDAP_ UTL.HANDLE;
sub_type PLS_INTEGER;
subscriber_id VARCHAR2 (2000) ;

Sample Usage B-27

DBMS_LDAP_UTL Sample Code

my_pset_coll DBMS_LDAP_UTL.PROPERTY_SET COLLECTION;
my_property_names DBMS_LDAP. STRING_COLLECTION;
my_property values DBMS_LDAP.STRING_COLLECTION;

group_handle DBMS_LDAP UTL.HANDLE;
group_id VARCHAR2 (2000) ;

group_type PLS_INTEGER;

user_handle DBMS_LDAP UTL.HANDLE;

user_id VARCHAR2 (2000) ;

user_type PLS_INTEGER;

my_mod_pset DBMS_LDAP UTL.MOD_ PROPERTY_SET;
my_attrs DBMS_IDAP.STRING_COLLECTION;
BEGIN

-- Please customize the following variables as needed

ldap_host := NULL ;

ldap_port 1= 389;

ldap user := 'cn=orcladmin';

ldap passwd := 'welcome';

sub_type := DBMS_LDAP UTL.TYPE_DN;

subscriber._id := 'o=acme,dc=com';

user._type := DBMS_IDAP UTL.TYPE DN;

user_id := 'cn=userl, cn=users, o=acme,dc=com' ;
group_type := DBMS LDAP_UTL.TYPE_DN;

group_id := 'cn=groupl, cn=groups, o=acme, dc=com' ;

-- Choosing exceptions to be raised by DBMS LDAP library.
DBMS_LDAP.USE_EXCEPTION := TRUE;

-- Comnect to the LDAP server
-- and obtain and 1d session.

my_session := DBMS_LDAP.init (ldap host, 1dap port) ;

B-28 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

retval := DBMS_LDAP.simple bind s (my session,
ldap_user,
ldap_passwd) ;

retval := DBMS_LDAP UTL.create_subscriber handle (subscriber handle,

sub_type,
subscriber_id) ;
IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors
DBMS_OUTPUT.PUT_LINE ('create _subscriber handle returns : ' || to_
char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.create_user_ handle (user_handle,user_type,user_id);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT LINE('create user handle returns : ' || to_char(retval));
END TIF';

-- Set User handle properties
-- (link subscriber to user)

retval := DBMS_LDAP UTL.set_user_handle properties (user handle,
DBMS_LDAP UTL.SUBSCRIBER _HANDLE,
subscriber_handle) ;

Sample Usage B-29

DBMS_LDAP_UTL Sample Code

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE ('set_user_handle properties returns : ' || to_
char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.create_group_handle (group_handle, group_type, group_id) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('create group handle returns : ' || to_char(retval));
END TIF';

-- Set Group handle properties
-- (link subscriber to group)

retval := DBMS_LDAP UTL.set_group_handle properties (group handle,
DBMS_LDAP UTL.SUBSCRIBER _HANDLE,
subscriber_handle) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT . PUT_LINE ('set_group_handle properties returns : ' || to_
char (retval)) ;
END TIF';

-- like .. telephone number
my_attrs(l) := 'uniquemember';
retval := DBMS_LDAP UTL.get_group_properties (my session,

group_handle,
my_attrs,

B-30 Oracle Internet Directory Application Developer’s Guide

DBMS_LDAP_UTL Sample Code

DBRMS_IDAP UTL.ENTRY_ PROPERTIES,
my _pset_coll) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('get_group_properties returns : ' || to_char (retval)) ;
END TIF';

retval := DBMS_LDAP UTL.check_group_membership(my session,
user_handle,
group_handle,
DBMS_LDAP_UTL.DIRECT MEMBERSHIP) ;

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT . PUT_LINE (' check group membership returns : ' || to_
char (retval)) ;
END TIF';

my_attrs.delete();
my_attrs(l) := 'cn';

retval := DBMS_LDAP UTL.get_group_membership (my_ session,
user_handle,
DBMS_LDAP UTL.DIRECT MEMBERSHIP,
my_attrs,
my_pset_coll);

IF retval != DBMS_LDAP UTL.SUCCESS THEN
-- Handle Errors

DBMS_OUTPUT . PUT_LINE ('get_group membership returns : ' || to_char(retval));
END TIF';

Sample Usage B-31

DBMS_LDAP_UTL Sample Code

-- Free handle

DBMS_LDAP UTL. free handle (subscriber handle) ;
DBMS_LDAP UTL. free handle(user_handle) ;
DBMS_LDAP_UTL. free handle (group_handle) ;

-- unbind from the directory
retval := DBMS_LDAP.unbind s (my session);

IF retval != DBMS_LDAP UTL.SUCCESS THEN

-- Handle Errors

DBMS_OUTPUT.PUT_LINE('unbind s returns : ' || to_char(retval));
END TIF';

-- Handle Exceptions

EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT. PUT_LINE (' Error code : ' || TO_CHAR(SQLCODE)) ;
DBMS _OUTPUT.PUT _LINE(' Error Message : ' || SQLERRM);

DBMS_OUTPUT.PUT_LINE(' Exception encountered .. exiting');

END;

B-32 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

Java Sample Code
This section contains Java sample code.
This section contains these topics:
s User Class Sample Code
= Subscriber Class Sample Code
s Group Class Sample Code
= Print Sample Code
= JNDI Sample Code
s SASL-Based Authentication Sample Code

User Class Sample Code

/*

* SampleUser.java

*

* This is a sample usage of the User class in oracle.ldap.util package

* found in ldapjclnt9.jar. You can define a user using DN, GUID, or

* a simple name representing the user. The following methods are exercised
* in this sample program:

*

* - User.authenticateUser() - to authenticate a user with the appropriate

* credentials

* - User.getProperties() - to obtain properties of the user

* - User.setProperties() - to add, replace, or delete properties of the user
*

*
~

import oracle.ldap.util.*;
import oracle.ldap.util.jndi.*;

import java.io.*;

import java.util.*;

import javax.naming.*;

import javax.naming.directory.*;

public class SampleUser {

public static void main(String argvl[])
throws NamingException {

Sample Usage B-33

Java Sample Code

// Create InitialDirContext

InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx("sandal",
"3060",
"cn=orcladmin",
"welcome") ;

// Create Subscriber object
Subscriber mysub = null;
try {

// Creation using DN
mysub = new Subscriber (ctx, Util.IDTYPE DN, "o=oracle,dc=com", false

}
catch (UtilException e) {
/*
* Exception encountered in subscriber object constructor
*/
}

// Create User Objects

User myuser = null,
myuserl = null;

try {
// Create User using a subscriber DN and the User DN

myuser = new User (ctx,
Util.IDTYPE_DN,
"cn=userl, cn=users, o=oracle,dc=com",
Util.IDTYPE_DN,
"o=oracle,dc=com"
false);

// Create User using a subscriber object and the User
// simple name

myuserl = new User (ctx,
Util.IDTYPE SIMPLE,
"userl",
mysub,

B-34 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

false);
}
catch (UtilException e) {
/*
* Exception encountered in User object constructor
*/

// Authenticate User

try {
myuserl.authenticateUser (ctx,User.CREDTYPE PASSWD, "welcome") ;

}

catch (UtilException e) {
/*
* Authenticate fails
*/

// Perform User operations

try {
PropertySetCollection result = null;

// Get telephonenumber of user

String[] userAttrList = {"telephonenumber"};
result = myuserl.getProperties (ctx,userAttrList);

/*
* Do work with result

*/
Util.printResults(result) ;

// Set telephonenumber of user

// Create JNDI ModificationItem

ModificationItem[] mods = new ModificationItem[1];

mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,

new BasicAttribute("telephonenumber", "444-6789"));

// Perform modification using User object

Sample Usage B-35

Java Sample Code

}
Y} // E

myuser . setProperties (ctx, mods) ;

}

catch (UtilException e) {
/*
* Exception encountered in User object operations
*/

}

nd of SampleUser.java

Subscriber Class Sample Code

SampleSubscriber. java

Thi

s is a sample usage of the Subscriber class in oracle.ldap.util package

found in ldapjclnt9.jar. You can define a group using a DN, GUID, or a

thi

- S

import
import

import
import
import
import
public

pub

s sample program:

ubscriber.getProperties() - to obtain properties of the group

*
*
*
*
* gimple name of the subscriber. The following methods are exercised in
*
*
*
*

oracle.ldap.util.*;
oracle.ldap.util.jndi.*;

java.io.*;

java.util.*;
javax.naming. *;
javax.naming.directory.*;

class SampleSubscriber {

lic static void main(String argvl[])
throws NamingException {

// Create InitialDirContext

InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx("sandal",
"3060",
"cn=orcladmin",
"welcome") ;

B-36 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

// Create Subscriber object

Subscriber mysub = null,
mysubl = null,
mysub2 = null;

try {

// Creation using DN

mysub = new Subscriber (ctx,
Util.IDTYPE DN,
"o=oracle,dc=com",
false);

// Creation using Simple Name

mysubl = new Subscriber(ctx,
Util.IDTYPE_SIMPLE,
"Oracle",
false);

// Creation using GUID

mysub2 = new Subscriber(ctx,
Util.IDTYPE GUID,
"93B37BBC3B1F46F8E034080020F73460",

false);
}
catch (UtilException e) {
/*
* Exception encountered in subscriber object constructor
*/
}

// Set the attribute list for attributes returned

String[] attrList = { "cn",
"orclcommonusersearchbase",
"orclguid" };

// Get Subscriber Properties

PropertySetCollection result = null;
try {
result = mysub.getProperties (ctx,attrlList);
}
catch (UtilException e) {
/*

Sample Usage B-37

Java Sample Code

* Exception encountered when searching for subscriber properties

*/
}
/*
* Do work with the result
*/

Util.printResults(result) ;

Group Class Sample Code

/*

* SampleGroup.java

*

* This is a sample usage of the Group class in oracle.ldap.util package
* found in ldapjclnt9.jar. You can define a group using DN or GUID.
* The following methods are exercised in this sample program:

*

* — Group.isMember() - to see if a particular user is

* a member of this group

* - Util.getGroupMembership() - to obtain the list of groups which a
* particular user belongs to

* — Group.getProperties() - to obtain properties of the group

*

*/

import oracle.ldap.util.*;
import oracle.ldap.util.jndi.*;

import java.io.*;

import java.util.*;

import javax.naming.*;

import javax.naming.directory.*;

public class SampleGroup {

public static void main(String argvl[])
throws NamingException {

// Create InitialDirContext

InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx("sandal",

B-38 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

n 3 O 6 O n ,
"cn=orcladmin",
"welcome") ;

// Create Group Object
Group mygroup = null;
try {
mygroup = new Group (Util.IDTYPE DN,
"cn=groupl, cn=Groups, o=oracle,dc=com") ;

}
catch (UtilException e) {
/*
* Error encountered in Group constructor
*/
}

// Create User Object

User myuser = null;
try {
// Create User using a subscriber DN and the User DN
myuser = new User (ctx,
Util.IDTYPE_DN,
"cn=orcladmin, cn=users, o=oracle,dc=com",
Util.IDTYPE_DN,
"o=oracle,dc=com",

false);
}
catch (UtilException e) {
/*
* Exception encountered in User object constructor
*/
}

// Perform Group Operations

try {
// isMember method

if (mygroup.isMember (ctx,
myuser,
true)) {

/*
* myuser is a member of this group

Sample Usage B-39

Java Sample Code

Print Sample Code

}

* Do work

*
*

*
*/
System.out.println("is member") ;

// Get all nested groups that a user belongs to

PropertySetCollection result = Util.getGroupMembership(ctx,

myuser,
new String[0],
true);

* Do work with result

*/
Util.printResults (result);

// Get Group Properties
result = getProperties(ctx, null);

/*
* Do work with result
*

*

*

*/

catch (UtilException e) {

/ *
* Exception encountered in getGroupMembership
*/

} // End of SampleGroup.java

* SamplePrint.Jjava

B-40 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

*
* This sample program demonstrates the usage of the PropertySetCollection
* class which is a key structure used in the oracle.ldap.util package for
* obtaining search results. A sample printResults() method is implemented
* that neatly prints out the values of a PropertySetCollection.
* A ProperSetCollection contains a set of PropertySets. A PropertySet is
* analogous to an LDAP entry which is identified by the DN. Each PropertySet
* contains a set of zero or more Properties. A Property is analogous to a
* particular attribute of an LDAP entry and it may contain one or more
* values. The printResults() method takes in a PropertySetCollection and
* navigates through it in a systemmatic way, printing out the results to
* the system output.
*
*/

import oracle.ldap.util.*;

import oracle.ldap.util.jndi.*;

import java.io.*;

import java.util.*;

import javax.naming.*;

import javax.naming.directory.*;

public class SamplePrint {

public static void printResults(PropertySetCollection resultSet)

{

/

/ for loop to go through each PropertySet

for (int i = 0; i < resultSet.size(); i++)

{

// Get PropertySet
PropertySet curkEntry = resultSet.getPropertySet(i);
Object obj = null;

// Print DN of PropertySet
System.out.println("dn: " + curEntry.getDN());

// Go through each Property of the PropertySet
for (int j = 0; j < curEntry.size(); j++)
{

// Get Property

Property curAttr = curEntry.getProperty(j);

// Go through each value of the Property
for (int k = 0; k < curAttr.size(); k++)

Sample Usage B-41

Java Sample Code

obj = curAttr.getValue(k);
if(obj instanceof java.lang.String) {
System.out .println(curAttr.getName() + ": "
+ (String) obj);
}
else if (obj instanceof bytel]) {
System.out .println(curAttr.getName() + ": "
+ (new java.lang.String((byte [])obj)));

}
System.out.println() ;

} // End of SamplePrint.java

JNDI Sample Code

import javax.naming.*;

import javax.naming.directory.*;
import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;
import oracle.ldap.util.*;
import java.lang.*;

import java.util.*;

/*

* JNDI SASL Digest MD5 is available in JDK 1.4 and later
*/

public class LdapSaslDigestMD5

public static void main(String[] args)
throws Exception

System.out.println("port : " + args[l]);
System.out.println("bindDN : " + args([2]);
System.out.println ("bindPwd: " + args([3]);

// Important note:
// The bindDN must be normalized before passing it to JNDI context

B-42 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

// For example: cn=smith, ou=o0id, o=oracle,c=us

// (capital and space will not be accepted as a normalized dn)
// Right now we only support dn in only.

// uid form will be supported in the next release.

// The noralize dn call is a static method in Util.java.
String normDN = Util.normalizeDN(args([2]);
Hashtable hashtable = new Hashtable() ;

// Look through System Properties for Context Factory if available
// set the CONTEXT factory only if it has not been set

// in the environment - set default to com.sun.jndi.ldap.ldapCtxFactory
hashtable.put (Context . INITTAL, CONTEXT_ FACTORY,

"com.sun. jndi.ldap.LdapCtxFactory") ;

hashtable.put (Context . PROVIDER URL, "ldap://"+args[0]+":"+args[l]);
// Set security authentication context to Digest MD5

hashtable.put (Context . SECURITY_AUTHENTICATICON, "DIGEST-MD5");
hashtable.put (Context . SECURITY_PRINCIPAL, normDN) ;
hashtable.put (Context . SECURITY_CREDENTIALS, args([3]);
hashtable.put ("java.naming.security.sasl.realm", "");

LdapContext ctx = new InitialldapContext (hashtable,null) ;
System.out.println("sasl bind successful");

// Some search after the SASL bind has been done
PropertySetCollection psc = Util.ldapSearch(ctx,"", "objectclass=*",
SearchControls.OBJECT SCOPE,

new String[] {"supportedSASLmechanism"});

Util.printResults(psc) ;

System.exit (0) ;

/*

* Sample code Using JNDI/SASL EXTERNAL to comnect to OID

* This code will work only with OID SSL setup in mutual authentication mode
only.

* JNDI client needs to provide a client certificate that can be recognized by
* server side.

*/

Sample Usage B-43

Java Sample Code

import java.util.*;

import javax.naming.*;

import javax.naming.directory.*;

import oracle.security.jazn.spi.ldap.*;

public class LdapSaslExternal

{

public static void main (String[] args)
{

try {

Hashtable env = new Hashtable() ;

// Specify host and port to use for directory service
env.put ("javax.net .debug", "all");

env.put ("com.sun.jndi.ldap.trace.ber", System.out);
env.put ("com.sun.naming.ldap.trace.ber", System.out);
env.put (Context .PROVIDER_URL, "ldap://some_url:5055/");

env.put ("java.naming.security.protocol", "ssl");

System.setProperty ("oracle.security.jazn.ldap.walletloc", "<wallet_
url>/ewallet.txt") ;

System.setProperty ("oracle.security.jazn.ldap.walletpwd", "welcome0l1l") ;
// You can use any SSL Socket Factory of your implementation or toolkit

env.put ("java.naming.ldap.factory.socket", "oracle.security.jazn.spi.ldap.JAZNSSL
SocketFactoryImpl") ;

// specify authentication information

// Note: you can also set security authentication context to "SIMPLE" to
// connect to OID; however, this functionality supports for backward

// compatibility with LDAP version 2.

env.put (Context . SECURITY_AUTHENTICATION, "EXTERNAL"); // TO-DO: add secure
hannes

env.put (Context . SECURITY_PRINCIPAL, "cn=test,ou=security,o=oracle,c=us");
nv.put (Context . SECURITY_CREDENTIALS, "welcome"); // TO-DO: add SSL

env.put ("java.naming.factory.initial", "com.sun.jndi.ldap.LdapCtxFactory");

// Set your own SSL Socket factory Impl class here.
System.getProperties () .put ("SSLSocketFactoryImplClass", "oracle.security.jazn.spi

B-44 Oracle Internet Directory Application Developer’s Guide

Java Sample Code

.1dap.JAZNSSLSocketFactoryImpl") ;

DirContext dirCtx = new InitialDirContext (env) ;
System.out.println ("return from InitialDirContext") ;
Object obj = dirCtx.lookup("");
System.out.println("Looked up obj : " + obj);

} catch (Exception exp) {

exp.printStackTrace() ;

System.exit (-1) ;

}

}

}

SASL-Based Authentication Sample Code

/* $SHeader: LdapSasl.java 05-may-2003.15:14:22 gdinh Exp $ */
/* Copyright (c) 2003, Oracle Corporation. All rights reserved. */

/ *
DESCRIPTION
<short description of component this file declares/defines>

PRIVATE CLASSES
<list of private classes defined - with one-line descriptions>

NOTES
<other useful comments, qualifications, etc.>

MODIFIED (MM/DD/YY)
HFk kK 04/23/03 - Creation
*/

/**

* @version S$Header: LdapSasl.java 05-may-2003.15:14:22 ***** Exp $
@author *****

* (@since release specific (what release of product did this appear in)

*/

package oracle.ldap.util.jndi;
import javax.naming.*;
import javax.naming.directory.*;

import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;

Sample Usage B-45

Java Sample Code

import oracle.ldap.util.*;
import java.lang.*;
import java.util.*;

public class LdapSasl
{
public static void main(String[] args)
throws Exception

System.out .println ("port : " + args[l]);
System.out.println("bindDN : " + args[2]);
System.out .println("bindPwd: " + args([3]);

Hashtable hashtable = new Hashtable();

// Look through System Properties for Context Factory if available

// set the CONTEXT factory only if it has not been set

// in the environment - set default to com.sun.jndi.ldap.lLdapCtxFactory

hashtable.put (Context.INITIAL,_CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

hashtable.put (Context.PROVIDER URL, "ldap://"+args[0]+":"+args[l]);

/ /hashtable.put (Context . SECURITY_AUTHENTICATION, "simple");
hashtable.put (Context.SECURITY_AUTHENTICATION, "DIGEST-MD5") ;
hashtable.put (Context.SECURITY_PRINCIPAL, argsl[2]);
hashtable.put (Context.SECURITY_CREDENTIALS, args[3]);
hashtable.put ("java.naming.security.sasl.realm", "");
LdapContext ctx = new InitialldapContext (hashtable,null);
System.out.println("sasl bind successful");
/ /PropertySetCollection psc =

Util.ldapSearch (ctx,"", "objectclass=*", SearchControls.OBJECT SCOPE,
//new String[] {"supportedSASLmechanism"});

//Util.printResults (psc) ;

System.exit (0);

B-46 Oracle Internet Directory Application Developer’s Guide

C

DSML Syntax

This appendix contains the following sections:
» Capabilities of DSML

= DSML Syntax

= Tools Enabled for DSML

DSML Syntax C-1

Capabilities of DSML

Capabilities

of DSML

Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are
brought to the Internet, there is a pressing and urgent need to express the directory
information as XML data. This caters to the growing breed of applications that are
not LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of
LDAP information and operations. The LDAP Data Interchange Format (LDIF) is

used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of Using DSML

Using DSML with Oracle Internet Directory and Internet applications makes it
easier to flexibly integrate data from disparate sources. Also, DSML enables
applications that do not use LDAP to communicate with LDAP-based applications,
easily operating on data generated by an Oracle Internet Directory client tool or
accessing the directory through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured
data in XML will be uniform and independent of application or vendors,thus
making possible numerous new flat file type synchronization connectors. Once in
XML format, the directory data can be made available in the middle tier and have
more meaningful searches performed on it.

DSML Syntax

A DSML version 1 document describes either directory entries, a directory schema
or both. Each directory entry has a universally unique name called a distinguished
name (DN). A directory entry has a number of property-value pairs called directory
attributes. Every directory entry is a member of a number of object classes. An
entry's object classes constrain the directory attributes the entry can take. Such
constraints are described in a directory schema, which may be included in the same
DSML document or may be in a separate document.

The namespace URI [9] of DSMLv1 is http://www.dsml .org/DSML. All the
XML element tags may be prefixed with dsm1l string. (that is, a namespace prefix).

The following subsections briefly explain the top-level structure of DSML and how
to represent the directory and schema entries.

C-2 Oracle Internet Directory Application Developer’s Guide

DSML Syntax

Top-Level Structure

The top-level document element of DSML is of the type dsm1, which may have
child elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the
type entry: Similarly the child element directory-schema may in turn have
child elements of the types class and attribute-type.

At the top level, the structure of a DSML document is thus:

<dsml:dsml xmlns:dsml=http://www.dsml.org/DSML>
<!- a document with directory & schema entries -->
<dsml:directory-entries>
<dsml:entry dn="...">...</dsml:entry>

</dsml:directory-entries>

<dsml:directory-schema>
<dsml:class id="..." ...>...</dsml:class>
<dsml:attribute-type id="..." ...>...</dsml:attribute-type>

</dsml:dsml>

Directory Entries

The element type entry represents a directory entry in a DSML document. The
entry element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

XML entry to describe the directory entry is as follows

<dsml:entry dn="uid=Heman, c=in, dc=oracle, dc=com">
<dsml:objectclass>
<dsml:oc-value>top</dsml:oc-value>
<dsml:oc-value ref="#person”’>person</dsml:oc-value>
<dsml :oc-value>organizationalPerson</dsml:oc-value>
<dsml :oc-value>inetOrgPerson</dsml:oc-value>
</dsml:objectclass>
<dsml:attr name="sn">
<dsml:value>Siva</dsml:value></dsml:attr>
<dsml:attr name="uid">

DSML Syntax C-3

DSML Syntax

<dsml:value>Heman</dsml:value></dsml:attr>
<dsml:attr name="mail">

<dsml:value>Svenugop@Oracle.com</dsml:value></dsml:attr>
<dsml:attr name="givenname">

<dsml:value>Siva V. Kumar</dsml:value></dsml:attr>
<dsml:attr name="cn">

<dsml:value>Siva Kumar</dsml:value></dsml:attr>

The oc-value's ref is a URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the person
object class. The child elements objectclass and attris used to specify the
object classes and the attributes of a directory entry.

Schema Entries

The element type class represents a schema entry in a DSML document. The
class element takes an XML attribute id to make referencing easier.

For example, the object class definition for the person object class might look like
the following:

<dsml:class id="person" superior="#top" type="structural">
<dsml : name>person</dsml :name>
<dsml:description>...</dsml:description>
<dsml:object-identifier>2.5.6.6</object-identifier>
<dsml:attribute ref="#sn" required="true"/>
<dsml:attribute ref="#cn" required="true"/>
<dsml:attribute ref="#userPassword" required="false"/>
<dsml:attribute ref="#telephoneNumber" required="false"/>
<dsml:attribute ref="#seeAlso" required="false"/>
<dsml:attribute ref="#description" required="false"/>

</dsml:class>

In a similar way the directory attributes are also described. For example the attribute
definition for the cn attribute may look like the following:

<dsml:attribute-type id="cn">
<dsml :name>cn</dsml :name>
<dsml:description>...</dsml:description>
<dsml:object-identifier>2.5.4.3</object-identifier>
<dsml:syntax>1.3.6.1.4.1.1466.115.121.1.44</dsml:syntax>
</dsml:attribute-type>

C-4 Oracle Internet Directory Application Developer’s Guide

Tools Enabled for DSML

Tools Enabled for DSML

With the XML framework, you can now use non-ldap applications to access
directory data. The XML framework broadly defines the access points and provides
the following tools:

= ldapadd
= ldapaddmt
= ldapsearch

See Also: "Entry Management Command-Line Tools" in
Appendix A for complete syntax and usage information for these
tools

The Oracle Internet Directory client tools 1difwrite generates directory data and
schema LDIF files. If these LDIF files are converted to XML, then the XML file can
be stored on an application server and queried. The response time to the client will
be much less in this scenario compared to performing an LDAP operation as against
an LDAP server.

DSML Syntax C-5

Tools Enabled for DSML

C-6 Oracle Internet Directory Application Developer’s Guide

Glossary

access control item (ACI)

An attribute that determines who has what type of access to what directory data. It
contains a set of rules for structural access items, which pertain to entries, and
content access items, which pertain to attributes. Access to both structural and
content access items may be granted to one or more users or groups.

access control list (ACL)

The group of access directives that you define. The directives grant levels of access
to specific data for specific clients, or groups of clients, or both.

access control policy point

An entry that contains security directives that apply downward to all entries at
lower positions in the directory information tree (DIT).

ACI

See access control item (ACI).

ACL

See access control list (ACL).

ACP

See access control policy point.

administrative area

A subtree on a directory server whose entries are under the control (schema, ACL,
and collective attributes) of a single administrative authority.

Glossary-1

Glossary-2

advanced symmetric replication (ASR)
See Oracle9i Advanced Replication

anonymous authentication

The process by which the directory authenticates a user without requiring a user
name and password combination. Each anonymous user then exercises the
privileges specified for anonymous users.

API

See application program interface.

application program interface

Programs to access the services of a specified application. For example,
LDAP-enabled clients access directory information through programmatic calls
available in the LDAP APL

ASR
See Oracle9i Advanced Replication

attribute

An item of information that describes some aspect of an entry. An entry comprises a
set of attributes, each of which belongs to an object class. Moreover, each attribute
has both a fype, which describes the kind of information in the attribute, and a value,
which contains the actual data.

attribute configuration file
In an Oracle Directory Integration Platform environment, a file that specifies
attributes of interest in a connected directory.

attribute type

The kind of information an attribute contains, for example, jobTitle.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes
have the same value. It enables applications synchronizing with the enterprise
directory to use attributes as unique keys.

attribute value

The particular occurrence of information appearing in that entry. For example, the
value for the jobTitle attribute could be manager.

authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system.
authorization

Permission given to a user, program, or process to access an object or set of objects.

binding

The process of authenticating to a directory.

central directory

In an Oracle Directory Integration Platform environment, the directory that acts as
the central repository. In an Oracle Directory Integration and Provisioning platform
environment, Oracle Internet Directory is the central directory.

certificate

An ITU x.509 v3 standard data structure that securely binds an identity to a public
key. A certificate is created when an entity’s public key is signed by a trusted
identity: a certificate authority (CA). This certificate ensures that the entity’s
information is correct and that the public key actually belongs to that entity.

certificate authority (CA)

A trusted third party that certifies that other entities—users, databases,
administrators, clients, servers—are who they say they are. The certificate authority
verifies the user’s identity and grants a certificate, signing it with the certificate
authority’s private key.

certificate chain

An ordered list of certificates containing an end-user or subscriber certificate and its
certificate authority certificates.

change logs

A database that records changes made to a directory server.

Glossary-3

Glossary-4

cipher suite

In SSL, a set of authentication, encryption, and data integrity algorithms used for
exchanging messages between network nodes. During an SSL handshake, the two
nodes negotiate to see which cipher suite they will use when transmitting messages
back and forth.

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.
cold backup

The procedure to add a new DSA node to an existing replicating system by using
the database copy procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on the directory from all of the
concurrent clients. Note that this is not necessarily the same as the concurrent
clients, because some of the clients may be keeping their sessions idle.

configset

See configuration set entry.

configuration set entry

A directory entry holding the configuration parameters for a specific instance of the
directory server. Multiple configuration set entries can be stored and referenced at
runtime. The configuration set entries are maintained in the subtree specified by the
subConfigsubEntry attribute of the DSE, which itself resides in the associated
directory information base (DIB) against which the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

The destination service is indicated by using its service name for Oracle9i release 9.2
database or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7
databases. The network route provides, at a minimum, the location of the listener
through use of a network address.

connected directory

In an Oracle Directory Integration Platform environment, an information repository
requiring full synchronization of data between Oracle Internet Directory and
itself—for example, an Oracle human Resources database.

consumer

A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

context prefix

The DN of the root of a naming context.

cryptography
The practice of encoding and decoding data, resulting in secure messages.

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

decryption

The process of converting the contents of an encrypted message (ciphertext) back
into its original readable format (plaintext).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and

Glossary-5

Glossary-6

stores information for them. In such hosted environments, the enterprise
performing the hosting is called the default identity management realm, and the
enterprises that are hosted are each associated with their own identity management
realm in the DIT.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and
stores information for them. In such an environment, a global administrator
performs activities that span the entire directory. Other administrators—called
delegated administrators—may exercise roles in specific identity management
realms, or for specific applications.

DES
Data Encryption Standard, a block cipher developed by IBM and the U.S.
government in the 1970's as an official standard.

DIB

See directory information base (DIB).

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration profile

In an Oracle Directory Integration Platform environment, an entry in Oracle
Internet Directory that describes how Oracle Directory Integration and Provisioning
platform communicates with external systems and what is communicated.

directory integration and provisioning server

In an Oracle Directory Integration Platform environment, the server that drives the
synchronization of data between Oracle Internet Directory and a connected
directory.

directory naming context

See naming context.

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that the Oracle Directory Integration and
Provisioning platform sends to the directory-enabled applications
directory replication group (DRG)

The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory
server, each started with the same or different configuration set entries and startup
flags, are said to be different directory server instances.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the
same DIT name, but have different contents—that is, the contents can be specific to
the directory holding it. A DSE is an entry with contents specific to the directory
server holding it.

directory synchronization profile

A special kind of directory integration profile that describes how synchronization
is carried out between Oracle Internet Directory and an external system.

directory system agent (DSA)

The X.500 term for a directory server.

distinguished name (DN)

The unique name of a directory entry. It comprises all of the individual names of the
parent entries back to the root.

DIS

See directory integration and provisioning server

DIT

See directory information tree (DIT)

Glossary-7

Glossary-8

DN
See distinguished name (DN)

DRG
See directory replication group (DRG)

DSA
See directory system agent (DSA)

DSE
See directory-specific entry (DSE)

DSA-specific entries. Different DSAs may hold the same DIT name, but have
different contents. That is, the contents can be specific to the DSA holding it. A DSE
is an entry with contents specific to the DSA holding it.

encryption

The process of disguising the contents of a message and rendering it unreadable
(ciphertext) to anyone but the intended recipient.

entry

The building block of a directory, it contains information about an object of interest
to directory users.

export agent

In an Oracle Directory Integration Platform environment, an agent that exports data
out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration Platform environment, the file that contains data
exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of Oracle directory integration
and provisioning server. The Oracle directory integration and provisioning server
does not provide scheduling, mapping, or error handling services for it. An external

agent is typically used when a third party metadirectory solution is integrated with
the Oracle Directory Integration Platform.
failover

The process of failure recognition and recovery. In a cold failover cluster
configuration, an application running on one cluster node is transparently migrated
to another cluster node. During this migration, clients accessing the service on the
cluster see a momentary outage and may need to reconnect once the failover is
complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

filter

A method of qualifying data, usually data that you are seeking. Filters are always
expressed as DN, for example: cn=susie smith, o=acme, c=us.

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and
stores information for them. In such an environment, a global administrator
performs activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a
user.

grace login

A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the groups can be found.

Glossary-9

Glossary-10

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID
See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

identity management

The process by which the complete security lifecycle for network entities is
managed in an organization. It typically refers to the management of an
organization’s application users, where steps in the security life cycle include
account creation, suspension, privilege modification, and account deletion. The
network entities managed may also include devices, processes, applications, or
anything else that needs to interact in a networked environment. Entities managed
by an identity management process may also include users outside of the
organization, for example customers, trading partners, or Web services.

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the
enterprise may belong to another realm. An identity management realm is
represented in the directory by a specific entry with a special object class associated
with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

= User naming policy of the identity management realm—that is, how users are
named and located

» Mandatory authentication attributes

= Location of groups in the identity management realm

s Privilege assignments for the identity management realm—for example: who
has privileges to add more users to the Realm.

= Application specific data for that Realm including authorizations

import agent

In an Oracle Directory Integration Platform environment, an agent that imports
data into Oracle Internet Directory.

import data file

In an Oracle Directory Integration Platform environment, the file containing the
data imported by an import agent.

inherit
When an object class has been derived from another class, it also derives, or

inherits, many of the characteristics of that other class. Similarly, an attribute
subtype inherits the characteristics of its supertype.

instance

See directory server instance.

integrity
The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet architecture
and the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in
a way that is functionally equivalent to local mailboxes.

Glossary-11

Glossary-12

key

A string of bits used widely in cryptography, allowing people to encrypt and
decrypt data; a key can be used to perform other mathematical operations as well.
Given a cipher, a key determines the mapping of the plaintext to the ciphertext.

key pair
A public key and its associated private key.
See public/private key pair.

knowledge reference

The access information (name and address) for a remote DSA and the name of the
DIT subtree that the remote DSA holds. Knowledge references are also called
referrals.

latency

The time a client has to wait for a given directory operation to complete. Latency
can be defined as wasted time. In networking discussions, latency is defined as the
travel time of a packet from source to destination.

LDAP
See Lightweight Directory Access Protocol (LDAP).

LDIF
See LDAP Data Interchange Format (LDIF).

Lightweight Directory Access Protocol (LDAP)

A standard, extensible directory access protocol. It is a common language that
LDAP clients and servers use to communicate. The framework of design
conventions supporting industry-standard directory products, such as the Oracle
Internet Directory.

LDAP Data Interchange Format (LDIF)

The set of standards for formatting an input file for any of the LDAP command-line
utilities.

logical host

In a cold failover cluster configuration, one or more disk groups and pairs of host
names and IP addresses. It is mapped to a physical host in the cluster. This physical
host impersonates the host name and IP address of the logical host

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender
and receiver. This type of security attack works only in the absence of
authentication.

mapping rules file

In an Oracle Directory Integration Platform environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with
the telephoneNumber attribute could cause "(650) 123-4567" to be matched with
either "(650) 123-4567" or "6501234567" or both. When you create an attribute, you
associate a matching rule with it.

MD4

A one-way hash function that produces a 128-bit hash, or message digest. If as little
as a single bit value in the file is modified, the MD4 checksum for the file will
change. Forgery of a file in a way that will cause MD4 to generate the same result as
that for the original file is considered extremely difficult.

MD5

An improved version of MD4.

MDS

See master definition site (MDS)

Glossary-13

Glossary-14

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

MTS

See shared server

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a
multimaster replication environment, each node is both a supplier and a consumer
node, and the entire directory is replicated on each node.

haming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The
default value for this is cn.

haming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to
either leaf entries or knowledge references (also called referrals) to subordinate
naming contexts. It can range in size from a single entry to the entire DIT.

native agent

In an Oracle Directory Integration Platform environment, an agent that runs under
the control of the directory integration and provisioning server. It is in contrast to
an external agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service
name in a connect string for the service to which they wish to connect:

CONNECT username/password@net_service_name

Depending on your needs, net service names can be stored in a variety of places,
including;:

s Local configuration file, tnsnames . ora, on each client
= Directory server
s Oracle Names server

= External naming service, such as NDS, NIS or CDS

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default
value for this is uid. Applications use this to resolve a simple user name to the
complete distinguished name. The user nickname attribute cannot be
multi-valued—that is, a given user cannot have multiple nicknames stored under
the same attribute name.

object class

A named group of attributes. When you want to assign attributes to an entry, you
do so by assigning to that entry the object classes that hold those attributes.

All objects associated with the same object class share the same attributes.

OEM

See Oracle Enterprise Manager.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory
connects to an Oracle database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates
the Oracle directory server processes. It also controls the replication server if one is
installed, and Oracle directory integration and provisioning server.

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

Glossary-15

Glossary-16

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size
output.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle database server and control all phases of SQL statement execution.

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle
Internet Directory Self-Service Console makes it easier to develop and deploy
administration solutions for both Oracle and third-party applications that use
Oracle Internet Directory.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle directory integration and provisioning server

In an Oracle Directory Integration Platform environment, a daemon process that
monitors Oracle Internet Directory for change events and takes action based on the
information present in the directory integration profile.

Oracle Directory Manager
A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems
management platform for managing Oracle products.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of Oracle9i.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The
main function of Oracle Net Services is to establish network sessions and transfer
data between a client application and a server. Oracle Net Services is located on
each computer in the network. Once a network session is established, Oracle Net
Services acts as a data courier for the client and the server.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See Also: Oracle Advanced Security Administrator’s Guide

Oracle9i Advanced Replication

A feature in Oracle9i that enables database tables to be kept synchronized across
two Oracle databases.

other information repository

In an Oracle Directory Integration and Provisioning platform environment, in
which Oracle Internet Directory serves as the central directory, any information
repository except Oracle Internet Directory.

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such

Glossary-17

Glossary-18

a replication environment, each node is both a supplier and a consumer node, and
the entire directory is replicated on each node.

PKCS #12

A public-key encryption standard (PKCS). RSA Data Security, Inc. PKCS #12 is an
industry standard for storing and transferring personal authentication
credentials—typically in a format called a wallet.

plaintext

Message text that has not been encrypted.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

primary node

In a cold failover cluster configuration, the cluster node on which the application
runs at any given time.

See Also: secondary node on page Glossary-21

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures.

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to
that information in Oracle Internet Directory.

profile

See directory integration profile

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user’s behalf. A proxy user has
the privilege to switch identities and, once it has logged into the directory, switches
to the end user’s identity. It then performs operations on the end user’s behalf,
using the authorization appropriate to that particular end user.

public key

In public-key cryptography this key is made public to all, it is primarily
used for encryption but can be used for verifying signatures.

public-key cryptography

Cryptography based on methods involving a public key and a private key.

public-key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using
the recipient’s private key.

public/private key pair

A mathematically related set of two numbers where one is called the private key
and the other is called the public key. Public keys are typically made widely
available, while private keys are available only to their owners. Data encrypted
with a public key can only be decrypted with its associated private key and vice
versa. Data encrypted with a public key cannot be decrypted with the same public
key.

realm search base

An attribute in the root Oracle Context that identifies the entry in the DIT that
contains all identity management realms. This attribute is used when mapping a
simple realm name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also knowledge reference.

Glossary-19

Glossary-20

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database
management system, or RDBMS. It stores data in two or more tables and enables
you to define relationships between the tables. The link is based on one or more
fields common to both tables.

replica

Each copy of a naming context that is contained within a single server.

RDN
See relative distinguished name (RDN).

registry entry

An entry containing runtime information associated with invocations of Oracle
directory servers, called a directory server instance. Registry entries are stored in
the directory itself, and remain there until the corresponding directory server
instance stops.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names
that would serve to uniquely address the entry. In the example,

cn=S8Smith, o=acme, c=US, the RDN is cn=Smith.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS),
that participates in Oracle9i Advanced Replication.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

root DSE

See root directory specific entry.

root directory specific entry

An entry storing operational information about the directory. The information is
stored in a number of attributes.

Root Oracle Context

In the Oracle Identity Management infrastructure, the Root Oracle Context is an
entry in Oracle Internet Directory containing a pointer to the default identity
management realm in the infrastructure. It also contains information on how to
locate an identity management realm given a simple name of the realm.

SASL
See Simple Authentication and Security Layer (SASL)

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In a cold failover cluster configuration, the cluster node to which an application is
moved during a failover.

See Also: primary node on page Glossary-18

Secure Hash Algorithm (SHA)

An algorithm that takes a message of less than 264 bits in length and produces a
160-bit message digest. The algorithm is slightly slower than MD5, but the larger
message digest makes it more secure against brute-force collision and inversion
attacks.

Secure Socket Layer (SSL)

An industry standard protocol designed by Netscape Communications Corporation
for securing network connections. SSL provides authentication, encryption, and
data integrity using public key infrastructure (PKI).

Glossary-21

Glossary-22

service time

The time between the initiation of a request and the completion of the response to
the request.

session key

A key for symmetric-key cryptosystems that is used for the duration of one message
or communication session.

SGA
See System Global Area (SGA).

SHA
See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request
from the queue. This means a small pool of server processes can server a large
amount of clients. Contrast with dedicated server.

sibling

An entry that has the same parent as one or more other entries.

simple authentication

The process by which the client identifies itself to the server by means of a DN and
a password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the
client match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use
this specification, a protocol includes a command for identifying and authenticating
a user to a server and for optionally negotiating a security layer for subsequent
protocol interactions. The command has a required argument identifying a SASL
mechanism.

single key-pair wallet

A PKCS #12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

slave

See consumer.

SLAPD
Standalone LDAP daemon.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in
the scope of the search. It points the user to the server that stores the requested
information.

specific administrative area

Administrative areas control:

= Subschema administration

= Access control administration

= Collective attribute administration

A specific administrative area controls one of these aspects of administration. A
specific administrative area is part of an autonomous administrative area.

sponsor node

In replication, the node that is used to provide initial data to a new node.

SSL
See Secure Socket Layer (SSL).

subACLSubentry

A specific type of subentry that contains ACL information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

Glossary-23

Glossary-24

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

= Access control policy points
s Schema rules
s Collective attributes

Subentries are located immediately below the root of an administrative area.

subordinate reference

A knowledge reference pointing downward in the DIT to a naming context that
starts immediately below an entry.

subschema DN

The list of DIT areas having independent schema definitions.

subSchemaSubentry

A specific type of subentry containing schema information.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a commonName (cn) attribute with American English as an
option is a subtype of the commonName (cn) attribute without that option.
Conversely, the commonName (cn) attribute without an option is the supertype of
the same attribute with an option.

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class person is the superclass of the object class organizationalPerson. The
latter, namely, organizationalPerson, is a subclass of person and inherits the
attributes contained in person.

superior reference

A knowledge reference pointing upward to a DSA that holds a naming context
higher in the DIT than all the naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the commonName (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a commonName (cn)
attribute with American English as an option is a subtype of the commonName (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It
supplies updates from the master copy to the consumer server.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the
same instance, the data in the instance SGA is shared among the users.
Consequently, the SGA is sometimes referred to as the "shared global area.” The
combination of the background processes and memory buffers is called an Oracle
instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory
itself. Some operational information is specified by the directory to control the
server, for example, the time stamp for an entry. Other operational information,
such as access information, is defined by administrators and is used by the directory
program in its processing.

TLS

See Transport Layer Security (TLS)

think time

The time the user is not engaged in actual use of the processor.

throughput

The number of requests processed by Oracle Internet Directory for each unit of
time. This is typically represented as "operations per second.”

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol
enables client/server applications to communicate in a way that prevents
eavesdropping, tampering, or message forgery.

Glossary-25

Glossary-26

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when
an identity is being validated as the entity it claims to be. Typically, the certificate
authorities you trust issue user certificates.

trustpoint

See trusted certificate.

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in
this standard.

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined
by Unicode Inc. Unicode is canonical encoding which means its value can be passed
around in different locales. But it does not guarantee a round-trip conversion
between it and every Oracle character set without information loss.

UNIX Crypt
The UNIX encryption algorithm.

user search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects
the mean solar time along the Earth's prime meridian. UTC is indicated by a z at the
end of the value, for example, 200011281010z.

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded
with one byte, characters from 128-2047 require two bytes, characters from
2048-65535 require three bytes, and characters beyond 65535 require four bytes. The
Oracle character set name for this is AL32UTES8 (for the Unicode 3.1 standard).

virtual host name

In a cold failover cluster configuration, the host name corresponding to this virtual
IP address.

virtual IP address

In a cold failover cluster configuration, each physical node has its own physical IP
address and physical host name. To present a single system image to the outside
world, the cluster uses a dynamic IP address that can be moved to any physical
node in the cluster. This is called the virtual IP address.

wallet

An abstraction used to store and manage security credentials for an individual
entity. It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

wait time

The time between the submission of the request and initiation of the response.

X.509
A popular format from ISO used to sign public keys.

Glossary-27

Glossary-28

Index

Numerics with the C API, 7-70
attribute options
searching for by using ldapsearch, A-43
attribute values, replacing, A-36
attributes

389 port, A-9, A-11
636 port, A-9, A-11

A

abandoning an operation, 7-46
access control, 2-6,2-8
and authorization, 2-8
access control information (ACI), 2-9
attributes, 2-8
directives
format, 2-9
Access Control List (ACL), 2-8
access control lists (ACLs), 2-8
ACI. See access control information (ACI)
ACLs. See Access Control List (ACL)
add.log, A-24
administration tools
ldapadd, A-22
ldapaddmt, A-24
ldapbind, A-26
ldapcompare, A-28
ldapdelete, A-29
ldapmoddn, A-31
ldapmodify, A-33
ldapmodifymt, A-38
ldapsearch, A-40
agent tools, A-45
agents
uploading agent file, A-58
anonymous authentication, 2-7
applications, building

adding
by using ldapadd, A-22
concurrently, by using ldapaddmt, A-24
to existing entries, A-22
attribute options
searching for by using ldapsearch, A-43
deleting
by using ldapmodify, A-36
in LDIF files, A-2
types, 2-5
values, 2-5
deleting, A-36

authentication, 2-6,2-7

anonymous, 2-7
certificate-based, 2-7
Kerberos, A-23, A-25, A-30
modes, SSL, 7-2
one-way SSL, 2-8
options, 2-7
password-based, 2-7

PKI, 2-9
SSL, 2-7,2-8,7-2
none, 7-2

one-way, 7-2
two-way, 7-2

with ldapadd, A-24
with ldapaddmt, A-26
with ldapbind, A-27
with ldapmodify, A-34

Index-1

with ldapmodifymt, A-39
strong, 2-7
to a directory server
enabling, 2-15
enabling, by using DBMS_LDAP, 2-17
enabling, by using the C API, 2-16
to the directory, 7-18
two-way SSL, 2-8
authorization, 2-6, 2-8
authorization ID, 2-7

base search, A-41

bootstrap command, in Directory Integration and
Provisioning Assistant, A-49

bulk tools, 1-11

Cc

CAPI, 7-1
functions

abandon, 7-46
abandon_ext, 7-46
add, 7-40
add_ext, 7-40
add_ext_s, 7-40
add_s, 7-40
compare, 7-31
compare_ext, 7-31
compare_ext_s, 7-31
compare_s, 7-31
count_entries, 7-55
count_references, 7-55
count_values, 7-59
count_values_len, 7-59
delete, 7-42
delete_ext, 7-42
delete_ext_s, 7-42
delete_s, 7-42
dn2ufn, 7-61
err2string, 7-50
explode_dn, 7-61
explode_rdn, 7-61
extended_operation, 7-44

Index-2

extended_operation_s, 7-44
first_attribute, 7-57
first_entry, 7-55
first_message, 7-53
first_reference, 7-55
get_dn, 7-61
get_entry_controls, 7-62
get_option, 7-10
get_values, 7-59
get_values_len, 7-59
init, 7-9

init_ssl call, 7-3
modify, 7-34
modify_ext, 7-34
modify_ext_s, 7-34
modify_s, 7-34
msgfree, 7-47
msgid, 7-47
msgtype, 7-47
next_attribute, 7-57
next_entry, 7-55
next_message, 7-53
next_reference, 7-55
open, 79
parse_extended_result, 7-50
parse_reference, 7-64
parse_result, 7-50
parse_sasl_bind_result, 7-50
rename, 7-37
rename_s, 7-37
result, 7-47
sasl_bind, 7-18
sasl_bind_s, 7-18
search, 7-26
search_ext, 7-26
search_ext_s, 7-26
search_s, 7-26
search_st, 7-26
set_option, 7-10
simple_bind, 7-18
simple_bind_s, 7-18
unbind, 7-24
unbind_ext, 7-24
unbind_s, 7-24
value_free, 7-59

value_free_len, 7-59

reference, 7-4

sample search tool, 7-71

sample usage, 7-65

summary, 7-4

usage with SSL, 7-65

usage without SSL, 7-66
Catalog Management Tool

syntax, A-20
Catalog Management tool
syntax, A-20
catalog.sh
syntax, A-20

catldap.sql, 2-13
certificate authority, 2-7
certificate-based authentication, 2-7
certificates, 2-7
change logging, A-9
change logs
flag, A-8
toggling, A-8
change types, in Idapmodify input files, A-35
changetype attribute
add, A-35
delete, A-36
modify, A-35
modrdn, A-36
children of an entry, listing, 7-31
command-line tools
Directory Integration and Provisioning
Assistant, A-45
ldapadd, A-22
ldapaddmt, A-24
ldapbind, A-26
ldapcompare, A-28
ldapcreateconn.sh, A-59
ldapdelete, A-29
ldapmoddn, A-31
ldapmodify, A-33
ldapmodifymt, A-38
ldapsearch, A-40
ldapUpload AgentFile.sh, A-58
schemasync, A-63
stopodiserver.sh, A-62
syntax, A-19

components

Oracle Internet Directory SDK, 1-2
configuration set entries

modifying, A-18

overriding user-specified, A-10
controls, working with, 7-16
creating an integration profile, A-59

D

DAP Information Model, 2-4
DAS units, 6-2
DAS URL Parameter Descriptions, 10-5
DAS URL Parameters, 6-5
DAS URL parameters, 10-3
data
integrity, 2-6,2-9
privacy, 2-6,2-9
data-type summary, 8-6
DBMS_LDAP
about, i-xxvii
sample usage
about, B-1
for a search, B-10
from a database trigger, B-2
Java sample code, B-33
DBMS_LDAP package, i-xxvii
searching by using, 2-17
DBMS_LDAP_UTL
about, 9-1
data-types, 9-6,9-50
function return codes, 9-4,9-47
group-related subprograms
about, 9-2
function create_group_handle, 9-24
function get_group_dn, 9-28
function get_group_properties, 9-26
function set_group_handle_properties, 9-25
miscellaneous subprograms
about, 9-3
function check_interface_version, 9-46
function create_mod_propertyset, 9-43
function get_property_names, 9-39
function get_property_values, 9-40
function get_property_values_len, 9-41

Index-3

function normalize_dn_with_case, 9-38
function populate_mod_propertyset, 9-44
procedure free_handle, 9-46
procedure free_mod_propertyset, 9-45
procedure free_propertyset_collection, 9-42
subscriber-related subprograms
about, 9-3
function create_subscriber_handle, 9-30
function get_subscriber_dn, 9-33
function get_subscriber_properties, 9-31
user-related subprograms
about, 9-2
function authenticate_user, 9-8
function check_group_membership, 9-19
function create_user_handle, 9-10
function get_group_membership, 9-21
function get_user_dn, 9-17
function get_user_extended_properties, 9-16
function get_user_properties, 9-12
function locate_subscriber_for_user, 9-20
function set_user_handle_properties, 9-11
function set_user_properties, 9-14
debug
log files, viewing, A-10
default port
number, A-9, A-11
Delegated Administration Services, 6-2
dependencies and limitations, 7-84
C API, 7-84
DES40 encryption, 2-9
directives, 2-9
Directory Information Tree, 2-3
directory information tree (DIT), 2-2
Directory Integration and Provisioning Assistant
bootstrap command, A-49
what it does, A-45
directory integration and provisioning server
registration tool, A-64
starting, A-12
stopping, A-16
directory replication server
starting, A-10, A-11
stopping, A-11
directory server discovery, 3-13
directory servers

Index-4

restarting, A-17

starting
mandatory arguments, A-9
syntax, A-7

with default configuration, A-10
stopping, A-9
distinguished names, 2-2
components of, 2-3
format, 2-3
in LDIF files, A-2
DNis. see distinguished names.
documentation, related, i-xxviii

E

encryption
DES40, 2-9
levels available in Oracle Internet Directory, 2-9
options for passwords, 2-10
passwords, 2-10
default, 2-10

MD4, 2-10
MD5, 2-10
SHA, 2-10
UNIX crypt, 2-10
RC4_40, 29
entries
adding

by using ldapadd, A-22
by using ldapaddmt, A-24
deleting
by using ldapdelete, A-29
by using ldapmodify, A-36
distinguished names of, 2-2
locating by using distinguished names, 2-3
modifying
by using ldapmodify, A-33
concurrently, by using ldapmodifymt, A-38
naming, 2-2
reading, 7-31
searching
base level, A-41
by using ldapsearch, A-40, A-58, A-59
one-level, A-41
subtree level, A-41

errors
handling and parsing results, 7-50
exception summary, 8-5

F

filters, 2-21
IETF-compliant, A-40
ldapsearch, A-42

formats, of distinguished names, 2-3

G

group entries
creating
by using ldapmodify, A-35

H

header files and libraries, required, 7-71
history of LDAP, 2-2

index
StopOdiServer.sh, A-62
integration profiles
creating, A-59
integrity, data, 2-9
interface calls, SSL, 7-3

J

Java, 1-2,2-12
Java API reference
class descriptions
Property class, 3-6
PropertySet class, 3-6
PropertySetCollection class, 3-6
JNDI, 1-2,2-12
JPEG images, adding with ldapadd, A-24

K

Kerberos authentication, A-23, A-25, A-30

L

LDAP
functional model, 2-6
history, 2-2
information model, 2-4
messages, obtaining results and peeking
inside, 7-47
naming model, 2-2
operations, performing, 7-26
search filters, IETF-compliant, A-40
security model, 2-6
server instances
starting, A-7
session handle options, 7-10
in the C API, 2-15
sessions
initializing, 2-13,7-9
version 2 C API, 7-2
LDAP APIs, 1-6

LDAP Data Interchange Format (LDIF), A-2

syntax, A-2
LDAP Functional Model, 2-6
LDAP Models, 2-2

LDAP Naming Model, 2-2
LDAP Security Model, 2-6
ldapadd, A-22

adding entries, A-22

adding JPEG images, A-24

LDIF files in, A-22

syntax, A-22
ldapaddmt, A-24

adding entries concurrently, A-24

LDIF filesin, A-24

log, A-24

syntax, A-24
ldapbind, A-26

syntax, A-26
ldap-bind operation, 2-7
ldapcompare, A-28

syntax, A-28
ldapcreateConn.sh

syntax, A-59
ldapdelete, A-29

deleting entries, A-29

Index-5

syntax, A-29
ldapmoddn, A-31
syntax, A-31

ldapmodify, A-33
adding values to multivalued attributes,
change types, A-35
creating group entries,
deleting entries, A-36
LDIF filesin, A-33
replacing attribute values,
syntax, A-33
ldapmodifymt, A-38
by using, A-38
LDIF filesin, A-38
multithreaded processing,
syntax, A-38
ldapsearch, 7-71, A-40, A-58, A-59

A-35

A-36

A-39

filters, A-42

syntax, A-40
ldapUpload AgentFile.sh

syntax, A-58, A-59
LDIF

files

A-22

A-24
A-33

A-38

in Idapadd commands,
in Idapaddmt commands,
in ldapmodify commands,
in ldapmodifymt commands,
formatting notes, A-3
formatting rules, A-3
syntax, A-2
using, A-2
List of Values (LOV), 6-6
log files
debug, viewing, A-10

M

A-35

MD4, for password encryption, 2-10
MD?5, for password encryption, 2-10
multiple threads, A-39

in ldapaddmt, A-24

increasing the number of, A-25
multithreaded command-line tools

ldapaddmt, A-24

ldapmodifymt, A-39

Index-6

multivalued attributes

adding values to, by using ldapmodify, A-35

N

naming entries, 2-2
net service name, A-5

(o)

object classes
adding

concurrently, by using ldapaddmt, A-24
in LDIF files, A-2
objects
removing
by using command-line tools, A-29

removing by using command-line tools,
odisrvreg, A-64
OID Control Utility, A-6
run-server command, A-6
stop-server command, A-6
syntax, A-6
viewing debug log files,
OID Monitor, A-6
sleep time, A-5
starting, A-4, A-5
stopping, A-5
syntax, A-4
oidctl
viewing debug log files, A-10
oidctl. See OID Control Utility
OIDLDAPD, A-9
OIDREPLD, A-11
one-level search, A-41
one-way SSL authentication, 2-8,7-2
OpenLDAP Community, i-xxix

A-10

A-33

operating systems supported by Oracle Internet

Directory, 1-11
operational attributes
ACI, 2-8
Oracle Directory Manager, 1-11
listing attribute types, A-3
Oracle directory replication server, 1-11
Oracle directory replication server instances

starting, A-10, A-11
stopping, A-10, A-11
Oracle directory server, 1-11
Oracle directory server instances
starting, A-7
stopping, A-7, A-9
Oracle extensions
about, 3-1
application
deinstallation logic, 1-5
runtime logic, 1-5
shutdown logic, 1-5
startup and bootstrap logic, 1-4
group management functionality, 3-12
programming abstractions
for Java language, 3-5
for PL/SQL language, 3-4
user management functionality, 3-5, 3-7
Oracle extensions to support SSL, 7-2
Oracle Internet Directory, components, 1-11
Oracle SSL call interface, 7-2
Oracle SSL extensions, 7-2
Oracle SSL-related libraries, 7-84
Oracle system libraries, 7-84
Oracle wallet, 7-3
Oracle Wallet Manager, 7-3
required for creating wallets, 7-84
Oracle wallets
changing location of
with ldapadd, A-24
with ldapaddmt, A-26
with ldapbind, A-27
with ldapcompare, A-29
with ldapdelete, A-31
with ldapmoddn, A-32
with ldapmodify, A-34
with ldapmodifymt, A-40
with ldapsearch, A-42
Oracle xxtensions
what an LDAP-integrated application looks
like, 1-3
overview of LDAP models, 2-2

P

password-based authentication,

passwords
encryption, 2-7,2-10
default, 2-10

MD4, 2-10
MD5, 2-10
SHA, 2-10

UNIX crypt, 2-10

encryption options, 2-10

policies, 2-10
performance

by using multiple threads,

permissions, 2-6,2-8
PKI authentication, 2-9
PL/SQL API, 8-1

contains subset of C API,
data-type summary, 8-6
exception summary, 8-5

functions
add_s, 8-40
ber_free, 8-51
bind_s, 8-10

compare_s, 8-13
count_entries, 8-23
count_values, 8-42

count_values_len, 8-43

create_mod_array,
dbms_ldap.init, 8-8
delete_s, 8-31
err2string, 8-34
explode_dn, 8-46
first_attribute, 8-24
first_entry, 8-20
get_dn, 8-27
get_values, 8-28

get_values_len, 8-29

init, 8-7
modify_s, 8-39
modrdn2_s, 8-32
msgfree, 8-50
next_attribute, 8-25
next_entry, 8-21

open_ssl, 8-48, 8-50, 8-51

2-7

A-25

2-13

Index-7

rename_s, 8-44
search_s, 8-16
search_st, 8-18
simple_bind_s, 8-9
unbind_s, 8-11
loading into database, 2-13
procedures
free_mod_array, 8-41

populate_mod_array (binary version), 8-37
populate_mod_array (string version), 8-36

subprograms, 8-7
summary, 8-2
using for a search, B-10
using from a database trigger, B-2
port
default, A-9, A-11
port 389, A-9, A-11
port 636, A-9, A-11
privacy, data, 2-6,2-9
privileges, 2-6,2-8
procedures, PL/SQL
free_mod_array, 8-41
populate_mod_array (binary version), 8-37
populate_mod_array (string version), 8-36
profile tools, A-45

profiles
deregistering, A-61
provisioning
tool
syntax, A-65
Provisioning Subscription Tool, A-65
public key

infrastructure, 2-9

R

RC4_40 encryption, 2-9
RDN:s. see relative distinguished names (RDNs)
related documentation, i-xxviii
relative distinguished names (RDNs), 2-3
modifying
by using ldapmodify, A-36
results, stepping through a list of, 7-53
RFC 1823, 7-84
rules, LDIF, A-3

Index-8

run-server command, by using OID Control
Utility, A-6

S

sample C APl usage, 7-65
sample search tool, building with C API, 7-71
SDK components, 1-2
search
filters
IETF-compliant, A-40
ldapsearch, A-42
results
parsing, 7-54
scope, 2-20
search-related operations, flow of, 2-18
security, within Oracle Internet Directory
environment, 2-6
self-service console, 6-3
Service Discovery APIs, 6-4
service location record, 3-13
sessions
closing, 7-24
enabling termination by using DBMS_
LDAP, 2-26
initializing
by using DBMS_LDAP, 2-14
by using the C API, 2-13
session-specific user identity, 2-7
SHA (Secure Hash Algorithm), for password
encryption, 2-10
simple authentication, 2-7
sleep time, OID Monitor, A-5
Smith, Mark, i-xxix
SQL*Plus, 2-13
SSL
authentication modes, 7-2
default port, 2-8
enabling
with ldapadd, A-24
with ldapaddmt, A-26
with ldapbind, A-27
with ldapmodify, A-34
with ldapmodifymt, A-39
handshake, 7-3

interface calls, 7-3
no authentication, 2-8
one-way authentication, 2-8
Oracle extensions, 7-2
provide encryption and decryption, 7-2
strong authentication, 2-9

schemasync, A-63

T

TCP/IP socket library, 7-84
troubleshooting

directory server instance startup, A-10
two-way authentication, SSL, 7-2

two-way authentication, 2-8
wallets, 7-3

S5O, 6-3 types of attributes, 2-5
stopodiserver.sh, A-62
stop-server command, A-6 U

strong authentication, 2-7
subtree level search, A-41
syntax
Catalog Management Tool, A-20 Vv
catalog management tool, A-21
catalog.sh, A-20
command-line tools, A-19
Directory Integration and Provisioning w
Assistant, A-45
directory integration and provisioning server
registration tool, A-64
ldapadd, A-22
ldapaddmt, A-24
ldapbind, A-26
ldapcompare, A-28
ldapcreateconn.sh, A-59
ldapdelete, A-29
ldapDeleteConn.sh, A-61
ldapmoddn, A-31
ldapmodify, A-33
ldapmodifymt, A-38
ldapsearch, A-40
ldapUpload AgentFile.sh, A-58, A-59
LDIF, A-2
LDIF and command-line tools, A-1, B-1
odisrvreg, A-64
OID Control Utility, A-6
OID Monitor, A-4
oidctl, A-6
oidprovtool, A-65
Oracle Directory Integration and Provisioning
Platform command-line tools, A-45
Provisioning Subscription Tool, A-65
provisioning tool, A-65

UNIX crypt, for password encryption, 2-10

values, deleting attribute, A-36

wallets
SSL, 7-3
support, 7-3

Index-9

Index-10

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	What’s New in Oracle Internet Directory Software Developer’s Kit?
	1 Introduction
	About Oracle Internet Directory Software Developer’s Kit 10g (9.0.4)
	Components of the Oracle Internet Directory Software Developer’s Kit
	Application Development in the Oracle Internet Directory Environment
	Architecture of a Directory-Enabled Application
	Directory Interactions During Application Lifecycle
	Services and APIs for Integrating Applications with Oracle Internet Directory
	Integrating Existing Applications with Oracle Internet Directory
	Integrating New Applications with Oracle Internet Directory

	Other Components of Oracle Internet Directory
	Operating Systems Supported

	2 Developing Applications with Standard LDAP APIs
	History of LDAP
	Overview of LDAP Models
	LDAP Naming Model
	LDAP Information Model
	LDAP Functional Model
	LDAP Security Model
	Authentication
	Anonymous Authentication
	Simple Authentication
	Authentication Using Secure Sockets Layer (SSL)

	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Protection
	Password Policies

	About Standard LDAP APIs
	API Usage Model
	About the C API
	About the Java API
	About the DBMS_LDAP Package

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using JNDI
	Initializing the Session by Using DBMS_LDAP

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using JNDI
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Flow of Search-Related Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using JNDI
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using JNDI
	Terminating the Session by Using DBMS_LDAP

	3 Developing Applications with Oracle Extensions to the Standard LDAP APIs
	Overview of Oracle Extensions to the Standard API
	Using the API Extensions in PL/SQL
	Using the API Extensions in Java
	The oracle.java.util Package
	PropertySetCollection, PropertySet, and Property Classes

	Installation and First Use of Oracle Extensions to the Standard API

	User Management Functionality
	User Management APIs
	Java API for User Management Functionality
	C API for User Management Functionality

	User Authentication
	Java API for User Authentication
	C API for User Authentication

	User Creation
	Java API for User Creation
	PL/SQL API for User Creation
	C API for User Creation

	User Object Retrieval
	Java API for User Object Retrieval
	PL/SQL API for User Object Retrieval
	C API for User Object Retrieval

	Group Management Functionality
	Identity Management Realm Functionality
	Realm Object Retrieval for the Java API

	Server Discovery Functionality
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery
	Java APIs for Server Discovery
	Examples: Java API for Directory Server Discovery

	Resource Information Management Functionality
	Resource Type Information
	Resource Access Information
	Location of Resource Information in the DIT

	SASL Authentication Functionality
	SASL Authentication by Using the DIGEST-MD5 Mechanism
	Steps Involved in SASL Authentication by Using DIGEST-MD5
	JAVA APIs for SASL Authentication by Using DIGEST-MD5
	C APIs for SASL authentication using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Dependencies and Limitations for the PL/SQ LDAP API

	4 Developing Provisioning-Integrated Applications
	Introduction to the Oracle Directory Provisioning Integration Service
	Developing Provisioning-Integrated Applications
	Example of a Provisioning-Integrated Application
	Requirements of the Employee Self Service Application
	Registering the Employee Self Service Application in Oracle Internet Directory
	Identifying the Management Context for the Employee Self Service Application
	Determining Provisioning Mode for the Employee Self Service Application
	Determining Events for the Employee Self Service Application
	Provisioning the Employee Self Service Application for an Identity Management Realm
	Determining Scheduling Parameters for the Employee Self Service Application
	Determining the Interface Connection Information for the Employee Self Service Application
	Implementing the Interface Specification for the Employee Self Service Application
	Creating the Provisioning Subscription Profile for the Employee Self Service Application

	Provisioning Integration Prerequisites
	Development Usage Model for Provisioning Integration
	Initiating Provisioning Integration
	Returning Provisioning Information to the Directory

	Development Tasks for Provisioning Integration
	Application Installation
	User Creation and Enrollment
	User Deletion
	Extensible Event Definitions
	Application Deinstallation
	LDAP_NTFY Function Definitions
	FUNCTION user_exists
	FUNCTION group_exists

	FUNCTION event_ntfy

	5 Developing Oracle Internet Directory Server Plug-ins
	Introduction to Oracle Internet Directory Server Plug-ins
	Prerequisite Knowledge for Developing Oracle Internet Directory Server Plug-ins
	Oracle Internet Directory Server Plug-ins Concepts
	About Directory Server Plug-ins
	About Server Plug-in Framework
	Operation-Based Plug-ins Supported in Oracle Internet Directory
	Pre-Operation Plug-ins
	Post-Operation Plug-ins
	When-Operation Plug-ins

	Requirements for Oracle Internet Directory Plug-ins
	Designing Plug-ins
	Types of Plug-in Operations
	Naming Plug-ins

	Creating Plug-ins
	Plug-in Module Interface Package Specifications

	Compiling Plug-ins
	Dependencies
	Recompiling Plug-ins
	Granting Permission

	Registering Plug-ins
	The orclPluginConfig Object Class
	Adding a Plug-in Configuration Entry by Using Command-Line Tools
	Example 1
	Example 2

	Managing Plug-ins
	Modifying Plug-ins
	Debugging Plug-ins

	Enabling and Disabling Plug-ins
	Exception Handling
	Error Handling
	Program Control Handling between Oracle Internet Directory and Plug-ins

	Plug-in LDAP API
	Plug-ins and Replication
	Plug-in and Database Tools
	Security
	Plug-in Debugging
	Plug-in LDAP API Specifications

	Usage Model and Examples
	Example 1: Search Query Logging
	Example 2: Synchronizing Two DITs

	Database Type Definition and Plug-in Module Interface Specifications
	Database Object Type Definitions
	Plug-in Module Interface Specifications

	Directory Server Error Code Reference

	6 Developing Applications Integrated with Oracle Delegated Administration Services
	Introduction to the Delegated Administration Services
	Benefits of Oracle Delegated Administration Services-Based Applications

	Developing Applications Integrated with Oracle Delegated Administration Services
	Prerequisites for Integration with Oracle Delegated Administration Services
	Oracle Delegated Administration Services Integration Methodology and Considerations

	Java APIs Used to Access URLs

	7 The C API for Oracle Internet Directory
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	C API Reference
	Summary of LDAP C API
	Functions
	Initializing an LDAP Session
	ldap_init
	ldap_open

	LDAP Session Handle Options
	ldap_get_option
	ldap_set_option

	Working With Controls
	Authenticating to the Directory
	ldap_sasl_bind
	ldap_sasl_bind_s
	ldap_simple_bind
	ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_create_cred_hdl
	ora_ldap_set_cred_props
	ora_ldap_get_cred_props
	ora_ldap_free_cred_hdl

	SASL Authentication
	ora_ldap_init_SASL

	Closing the Session
	ldap_unbind_ext
	ldap_unbind
	ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext
	ldap_search_ext_s
	ldap_search
	ldap_search_s
	ldap_search_st
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext
	ldap_compare_ext_s
	ldap_compare
	ldap_compare_s
	Usage Notes
	ldap_modify_ext
	ldap_modify_ext_s
	ldap_modify
	ldap_modify_s
	ldap_rename
	ldap_rename_s
	ldap_add_ext
	ldap_add_ext_s
	ldap_add
	ldap_add_s
	ldap_delete_ext
	ldap_delete_ext_s
	ldap_delete
	ldap_delete_s
	ldap_extended_operation
	ldap_extended_operation_s
	Syntax
	Usage Notes

	Abandoning an Operation
	ldap_abandon_ext
	ldap_abandon
	Usage Notes

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result
	ldap_msgfree
	ldap_msgtype
	ldap_msgid
	Usage Notes

	Handling Errors and Parsing Results
	ldap_parse_result
	ldap_parse_sasl_bind_result
	ldap_parse_extended_result
	ldap_err2string

	Stepping Through a List of Results
	ldap_first_message
	ldap_next_message

	Parsing Search Results
	ldap_first_entry
	ldap_next_entry
	ldap_first_reference
	ldap_next_reference
	ldap_count_entries
	ldap_count_references
	ldap_first_attribute
	ldap_next_attribute
	ldap_get_values
	ldap_get_values_len
	ldap_count_values
	ldap_count_values_len
	ldap_value_free
	ldap_value_free_len
	ldap_get_dn
	ldap_explode_dn
	ldap_explode_rdn
	ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication

	Building Applications with the C API
	Required Header Files and Libraries
	Building a Sample Search Tool

	Dependencies and Limitations of the C API

	8 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data-Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	Function nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	9 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Function Return Code Summary
	Data Type Summary
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version

	Function Return Code Summary
	Data-Type Summary

	10 DAS_URL Interface Reference
	Oracle Delegated Administration Services Units and Corresponding Directory Entries
	DAS Units and Corresponding URL Parameters
	DAS URL API Parameter Descriptions
	User or Group List of Values Access

	11 Provisioning Integration API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	INBOUND And OUTBOUND Events
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispostions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	A Syntax for LDIF and Command-Line Tools
	LDAP Data Interchange Format (LDIF) Syntax
	Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers
	The OID Monitor (oidmon) Syntax
	Starting the OID Monitor
	Stopping the OID Monitor
	Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration

	The OID Control Utility (oidctl) Syntax
	Starting and Stopping an Oracle Directory Server Instance
	Starting an Oracle Directory Server Instance
	Stopping an Oracle Directory Server Instance

	Troubleshooting Directory Server Instance Startup
	Starting and Stopping an Oracle Directory Replication Server Instance
	Starting an Oracle Directory Replication Server Instance
	Stopping an Oracle Directory Replication Server Instance

	Starting the Oracle Directory Integration and Provisioning Server
	Starting the Oracle Directory Integration and Provisioning Server by Using the OID Monitor and Co...
	Starting the Oracle Directory Integration and Provisioning Server Without Using the OID Monitor a...

	Stopping the Oracle Directory Integration and Provisioning Server
	Stopping the Oracle Directory Integration and Provisioning Server by Using OID Monitor and the OI...
	Stopping the Oracle Directory Integration and Provisioning Server Without Using OID Monitor and t...

	Restarting Oracle Internet Directory Server Instances
	Starting and Stopping Oracle Internet Directory Servers on Either a Virtual Host or a Rack Node

	Entry and Attribute Management Command-Line Tools Syntax
	The Catalog Management Tool (catalog.sh) Syntax
	ldapadd Syntax
	ldapaddmt Syntax
	ldapbind Syntax
	ldapcompare Syntax
	ldapdelete Syntax
	ldapmoddn Syntax
	ldapmodify Syntax
	ldapmodifymt Syntax
	ldapsearch Syntax
	Examples of ldapsearch Filters
	Example 1: Base Object Search
	Example 2: One-Level Search
	Example 3: Subtree Search
	Example 4: Search Using Size Limit
	Example 5: Search with Required Attributes
	Example 6: Search for Entries with Attribute Options
	Example 7: Searching for All User Attributes and Specified Operational Attributes
	Other Examples:

	Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax
	The Directory Integration and Provisioning Assistant
	Creating, Modifying, and Deleting Synchronization Profiles
	Bootstrapping a Directory by Using the Directory Integration and Provisioning Assistant
	Properties Expected by the Bootstrapping Command
	Changing the Password of the Administrator of the Oracle Directory Integration and Provisioning P...
	Listing All Synchronization Profiles in Oracle Internet Directory
	Viewing the Details of a Specific Synchronization Profile
	Setting the Wallet Password for the Oracle Directory Integration and Provisioning Server
	Moving an Integration Profile to a Different Identity Management Node
	Limitations of the Directory Integration and Provisioning Assistant in Oracle Internet Directory ...

	The ldapUploadAgentFile.sh Tool Syntax
	The ldapCreateConn.sh Tool Syntax
	The ldapDeleteConn.sh Tool Syntax
	The StopOdiServer.sh Tool Syntax
	The schemasync Tool Syntax
	The Oracle Directory Integration and Provisioning Server Registration Tool (odisrvreg)
	The Provisioning Subscription Tool (oidprovtool) Syntax

	B Sample Usage
	DBMS_LDAP Sample Code
	Using DBMS_LDAP from a Database Trigger
	The trigger.sql File
	Table Definition
	LDAP Schema Definition & Mapping to Relational Schema EMP

	Using DBMS_LDAP for a Search
	The search.sql File

	DBMS_LDAP_UTL Sample Code
	Example: User-Related Functions
	Example: Property-Related Subprograms
	Example: Subscriber-Related Functions
	Example: Group-Related Functions

	Java Sample Code
	User Class Sample Code
	Subscriber Class Sample Code
	Group Class Sample Code
	Print Sample Code
	JNDI Sample Code
	SASL-Based Authentication Sample Code

	C DSML Syntax
	Capabilities of DSML
	Benefits of Using DSML

	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /SymbolMT
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020006100630063006f007200640069006e006700200074006f0020004f007200610063006c00650020007300740061006e00640061007200640073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200034002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

